perf: Separate find_get_context() from event initialization
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 /*
38 * Each CPU has a list of per CPU events:
39 */
40 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
41
42 static atomic_t nr_events __read_mostly;
43 static atomic_t nr_mmap_events __read_mostly;
44 static atomic_t nr_comm_events __read_mostly;
45 static atomic_t nr_task_events __read_mostly;
46
47 /*
48 * perf event paranoia level:
49 * -1 - not paranoid at all
50 * 0 - disallow raw tracepoint access for unpriv
51 * 1 - disallow cpu events for unpriv
52 * 2 - disallow kernel profiling for unpriv
53 */
54 int sysctl_perf_event_paranoid __read_mostly = 1;
55
56 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
57
58 /*
59 * max perf event sample rate
60 */
61 int sysctl_perf_event_sample_rate __read_mostly = 100000;
62
63 static atomic64_t perf_event_id;
64
65 void __weak perf_event_print_debug(void) { }
66
67 void perf_pmu_disable(struct pmu *pmu)
68 {
69 int *count = this_cpu_ptr(pmu->pmu_disable_count);
70 if (!(*count)++)
71 pmu->pmu_disable(pmu);
72 }
73
74 void perf_pmu_enable(struct pmu *pmu)
75 {
76 int *count = this_cpu_ptr(pmu->pmu_disable_count);
77 if (!--(*count))
78 pmu->pmu_enable(pmu);
79 }
80
81 static void get_ctx(struct perf_event_context *ctx)
82 {
83 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
84 }
85
86 static void free_ctx(struct rcu_head *head)
87 {
88 struct perf_event_context *ctx;
89
90 ctx = container_of(head, struct perf_event_context, rcu_head);
91 kfree(ctx);
92 }
93
94 static void put_ctx(struct perf_event_context *ctx)
95 {
96 if (atomic_dec_and_test(&ctx->refcount)) {
97 if (ctx->parent_ctx)
98 put_ctx(ctx->parent_ctx);
99 if (ctx->task)
100 put_task_struct(ctx->task);
101 call_rcu(&ctx->rcu_head, free_ctx);
102 }
103 }
104
105 static void unclone_ctx(struct perf_event_context *ctx)
106 {
107 if (ctx->parent_ctx) {
108 put_ctx(ctx->parent_ctx);
109 ctx->parent_ctx = NULL;
110 }
111 }
112
113 /*
114 * If we inherit events we want to return the parent event id
115 * to userspace.
116 */
117 static u64 primary_event_id(struct perf_event *event)
118 {
119 u64 id = event->id;
120
121 if (event->parent)
122 id = event->parent->id;
123
124 return id;
125 }
126
127 /*
128 * Get the perf_event_context for a task and lock it.
129 * This has to cope with with the fact that until it is locked,
130 * the context could get moved to another task.
131 */
132 static struct perf_event_context *
133 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
134 {
135 struct perf_event_context *ctx;
136
137 rcu_read_lock();
138 retry:
139 ctx = rcu_dereference(task->perf_event_ctxp);
140 if (ctx) {
141 /*
142 * If this context is a clone of another, it might
143 * get swapped for another underneath us by
144 * perf_event_task_sched_out, though the
145 * rcu_read_lock() protects us from any context
146 * getting freed. Lock the context and check if it
147 * got swapped before we could get the lock, and retry
148 * if so. If we locked the right context, then it
149 * can't get swapped on us any more.
150 */
151 raw_spin_lock_irqsave(&ctx->lock, *flags);
152 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
153 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
154 goto retry;
155 }
156
157 if (!atomic_inc_not_zero(&ctx->refcount)) {
158 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
159 ctx = NULL;
160 }
161 }
162 rcu_read_unlock();
163 return ctx;
164 }
165
166 /*
167 * Get the context for a task and increment its pin_count so it
168 * can't get swapped to another task. This also increments its
169 * reference count so that the context can't get freed.
170 */
171 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
172 {
173 struct perf_event_context *ctx;
174 unsigned long flags;
175
176 ctx = perf_lock_task_context(task, &flags);
177 if (ctx) {
178 ++ctx->pin_count;
179 raw_spin_unlock_irqrestore(&ctx->lock, flags);
180 }
181 return ctx;
182 }
183
184 static void perf_unpin_context(struct perf_event_context *ctx)
185 {
186 unsigned long flags;
187
188 raw_spin_lock_irqsave(&ctx->lock, flags);
189 --ctx->pin_count;
190 raw_spin_unlock_irqrestore(&ctx->lock, flags);
191 put_ctx(ctx);
192 }
193
194 static inline u64 perf_clock(void)
195 {
196 return local_clock();
197 }
198
199 /*
200 * Update the record of the current time in a context.
201 */
202 static void update_context_time(struct perf_event_context *ctx)
203 {
204 u64 now = perf_clock();
205
206 ctx->time += now - ctx->timestamp;
207 ctx->timestamp = now;
208 }
209
210 /*
211 * Update the total_time_enabled and total_time_running fields for a event.
212 */
213 static void update_event_times(struct perf_event *event)
214 {
215 struct perf_event_context *ctx = event->ctx;
216 u64 run_end;
217
218 if (event->state < PERF_EVENT_STATE_INACTIVE ||
219 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
220 return;
221
222 if (ctx->is_active)
223 run_end = ctx->time;
224 else
225 run_end = event->tstamp_stopped;
226
227 event->total_time_enabled = run_end - event->tstamp_enabled;
228
229 if (event->state == PERF_EVENT_STATE_INACTIVE)
230 run_end = event->tstamp_stopped;
231 else
232 run_end = ctx->time;
233
234 event->total_time_running = run_end - event->tstamp_running;
235 }
236
237 /*
238 * Update total_time_enabled and total_time_running for all events in a group.
239 */
240 static void update_group_times(struct perf_event *leader)
241 {
242 struct perf_event *event;
243
244 update_event_times(leader);
245 list_for_each_entry(event, &leader->sibling_list, group_entry)
246 update_event_times(event);
247 }
248
249 static struct list_head *
250 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
251 {
252 if (event->attr.pinned)
253 return &ctx->pinned_groups;
254 else
255 return &ctx->flexible_groups;
256 }
257
258 /*
259 * Add a event from the lists for its context.
260 * Must be called with ctx->mutex and ctx->lock held.
261 */
262 static void
263 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
264 {
265 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
266 event->attach_state |= PERF_ATTACH_CONTEXT;
267
268 /*
269 * If we're a stand alone event or group leader, we go to the context
270 * list, group events are kept attached to the group so that
271 * perf_group_detach can, at all times, locate all siblings.
272 */
273 if (event->group_leader == event) {
274 struct list_head *list;
275
276 if (is_software_event(event))
277 event->group_flags |= PERF_GROUP_SOFTWARE;
278
279 list = ctx_group_list(event, ctx);
280 list_add_tail(&event->group_entry, list);
281 }
282
283 list_add_rcu(&event->event_entry, &ctx->event_list);
284 ctx->nr_events++;
285 if (event->attr.inherit_stat)
286 ctx->nr_stat++;
287 }
288
289 static void perf_group_attach(struct perf_event *event)
290 {
291 struct perf_event *group_leader = event->group_leader;
292
293 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
294 event->attach_state |= PERF_ATTACH_GROUP;
295
296 if (group_leader == event)
297 return;
298
299 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
300 !is_software_event(event))
301 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
302
303 list_add_tail(&event->group_entry, &group_leader->sibling_list);
304 group_leader->nr_siblings++;
305 }
306
307 /*
308 * Remove a event from the lists for its context.
309 * Must be called with ctx->mutex and ctx->lock held.
310 */
311 static void
312 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
313 {
314 /*
315 * We can have double detach due to exit/hot-unplug + close.
316 */
317 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
318 return;
319
320 event->attach_state &= ~PERF_ATTACH_CONTEXT;
321
322 ctx->nr_events--;
323 if (event->attr.inherit_stat)
324 ctx->nr_stat--;
325
326 list_del_rcu(&event->event_entry);
327
328 if (event->group_leader == event)
329 list_del_init(&event->group_entry);
330
331 update_group_times(event);
332
333 /*
334 * If event was in error state, then keep it
335 * that way, otherwise bogus counts will be
336 * returned on read(). The only way to get out
337 * of error state is by explicit re-enabling
338 * of the event
339 */
340 if (event->state > PERF_EVENT_STATE_OFF)
341 event->state = PERF_EVENT_STATE_OFF;
342 }
343
344 static void perf_group_detach(struct perf_event *event)
345 {
346 struct perf_event *sibling, *tmp;
347 struct list_head *list = NULL;
348
349 /*
350 * We can have double detach due to exit/hot-unplug + close.
351 */
352 if (!(event->attach_state & PERF_ATTACH_GROUP))
353 return;
354
355 event->attach_state &= ~PERF_ATTACH_GROUP;
356
357 /*
358 * If this is a sibling, remove it from its group.
359 */
360 if (event->group_leader != event) {
361 list_del_init(&event->group_entry);
362 event->group_leader->nr_siblings--;
363 return;
364 }
365
366 if (!list_empty(&event->group_entry))
367 list = &event->group_entry;
368
369 /*
370 * If this was a group event with sibling events then
371 * upgrade the siblings to singleton events by adding them
372 * to whatever list we are on.
373 */
374 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
375 if (list)
376 list_move_tail(&sibling->group_entry, list);
377 sibling->group_leader = sibling;
378
379 /* Inherit group flags from the previous leader */
380 sibling->group_flags = event->group_flags;
381 }
382 }
383
384 static inline int
385 event_filter_match(struct perf_event *event)
386 {
387 return event->cpu == -1 || event->cpu == smp_processor_id();
388 }
389
390 static void
391 event_sched_out(struct perf_event *event,
392 struct perf_cpu_context *cpuctx,
393 struct perf_event_context *ctx)
394 {
395 u64 delta;
396 /*
397 * An event which could not be activated because of
398 * filter mismatch still needs to have its timings
399 * maintained, otherwise bogus information is return
400 * via read() for time_enabled, time_running:
401 */
402 if (event->state == PERF_EVENT_STATE_INACTIVE
403 && !event_filter_match(event)) {
404 delta = ctx->time - event->tstamp_stopped;
405 event->tstamp_running += delta;
406 event->tstamp_stopped = ctx->time;
407 }
408
409 if (event->state != PERF_EVENT_STATE_ACTIVE)
410 return;
411
412 event->state = PERF_EVENT_STATE_INACTIVE;
413 if (event->pending_disable) {
414 event->pending_disable = 0;
415 event->state = PERF_EVENT_STATE_OFF;
416 }
417 event->tstamp_stopped = ctx->time;
418 event->pmu->del(event, 0);
419 event->oncpu = -1;
420
421 if (!is_software_event(event))
422 cpuctx->active_oncpu--;
423 ctx->nr_active--;
424 if (event->attr.exclusive || !cpuctx->active_oncpu)
425 cpuctx->exclusive = 0;
426 }
427
428 static void
429 group_sched_out(struct perf_event *group_event,
430 struct perf_cpu_context *cpuctx,
431 struct perf_event_context *ctx)
432 {
433 struct perf_event *event;
434 int state = group_event->state;
435
436 event_sched_out(group_event, cpuctx, ctx);
437
438 /*
439 * Schedule out siblings (if any):
440 */
441 list_for_each_entry(event, &group_event->sibling_list, group_entry)
442 event_sched_out(event, cpuctx, ctx);
443
444 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
445 cpuctx->exclusive = 0;
446 }
447
448 /*
449 * Cross CPU call to remove a performance event
450 *
451 * We disable the event on the hardware level first. After that we
452 * remove it from the context list.
453 */
454 static void __perf_event_remove_from_context(void *info)
455 {
456 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
457 struct perf_event *event = info;
458 struct perf_event_context *ctx = event->ctx;
459
460 /*
461 * If this is a task context, we need to check whether it is
462 * the current task context of this cpu. If not it has been
463 * scheduled out before the smp call arrived.
464 */
465 if (ctx->task && cpuctx->task_ctx != ctx)
466 return;
467
468 raw_spin_lock(&ctx->lock);
469
470 event_sched_out(event, cpuctx, ctx);
471
472 list_del_event(event, ctx);
473
474 raw_spin_unlock(&ctx->lock);
475 }
476
477
478 /*
479 * Remove the event from a task's (or a CPU's) list of events.
480 *
481 * Must be called with ctx->mutex held.
482 *
483 * CPU events are removed with a smp call. For task events we only
484 * call when the task is on a CPU.
485 *
486 * If event->ctx is a cloned context, callers must make sure that
487 * every task struct that event->ctx->task could possibly point to
488 * remains valid. This is OK when called from perf_release since
489 * that only calls us on the top-level context, which can't be a clone.
490 * When called from perf_event_exit_task, it's OK because the
491 * context has been detached from its task.
492 */
493 static void perf_event_remove_from_context(struct perf_event *event)
494 {
495 struct perf_event_context *ctx = event->ctx;
496 struct task_struct *task = ctx->task;
497
498 if (!task) {
499 /*
500 * Per cpu events are removed via an smp call and
501 * the removal is always successful.
502 */
503 smp_call_function_single(event->cpu,
504 __perf_event_remove_from_context,
505 event, 1);
506 return;
507 }
508
509 retry:
510 task_oncpu_function_call(task, __perf_event_remove_from_context,
511 event);
512
513 raw_spin_lock_irq(&ctx->lock);
514 /*
515 * If the context is active we need to retry the smp call.
516 */
517 if (ctx->nr_active && !list_empty(&event->group_entry)) {
518 raw_spin_unlock_irq(&ctx->lock);
519 goto retry;
520 }
521
522 /*
523 * The lock prevents that this context is scheduled in so we
524 * can remove the event safely, if the call above did not
525 * succeed.
526 */
527 if (!list_empty(&event->group_entry))
528 list_del_event(event, ctx);
529 raw_spin_unlock_irq(&ctx->lock);
530 }
531
532 /*
533 * Cross CPU call to disable a performance event
534 */
535 static void __perf_event_disable(void *info)
536 {
537 struct perf_event *event = info;
538 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
539 struct perf_event_context *ctx = event->ctx;
540
541 /*
542 * If this is a per-task event, need to check whether this
543 * event's task is the current task on this cpu.
544 */
545 if (ctx->task && cpuctx->task_ctx != ctx)
546 return;
547
548 raw_spin_lock(&ctx->lock);
549
550 /*
551 * If the event is on, turn it off.
552 * If it is in error state, leave it in error state.
553 */
554 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
555 update_context_time(ctx);
556 update_group_times(event);
557 if (event == event->group_leader)
558 group_sched_out(event, cpuctx, ctx);
559 else
560 event_sched_out(event, cpuctx, ctx);
561 event->state = PERF_EVENT_STATE_OFF;
562 }
563
564 raw_spin_unlock(&ctx->lock);
565 }
566
567 /*
568 * Disable a event.
569 *
570 * If event->ctx is a cloned context, callers must make sure that
571 * every task struct that event->ctx->task could possibly point to
572 * remains valid. This condition is satisifed when called through
573 * perf_event_for_each_child or perf_event_for_each because they
574 * hold the top-level event's child_mutex, so any descendant that
575 * goes to exit will block in sync_child_event.
576 * When called from perf_pending_event it's OK because event->ctx
577 * is the current context on this CPU and preemption is disabled,
578 * hence we can't get into perf_event_task_sched_out for this context.
579 */
580 void perf_event_disable(struct perf_event *event)
581 {
582 struct perf_event_context *ctx = event->ctx;
583 struct task_struct *task = ctx->task;
584
585 if (!task) {
586 /*
587 * Disable the event on the cpu that it's on
588 */
589 smp_call_function_single(event->cpu, __perf_event_disable,
590 event, 1);
591 return;
592 }
593
594 retry:
595 task_oncpu_function_call(task, __perf_event_disable, event);
596
597 raw_spin_lock_irq(&ctx->lock);
598 /*
599 * If the event is still active, we need to retry the cross-call.
600 */
601 if (event->state == PERF_EVENT_STATE_ACTIVE) {
602 raw_spin_unlock_irq(&ctx->lock);
603 goto retry;
604 }
605
606 /*
607 * Since we have the lock this context can't be scheduled
608 * in, so we can change the state safely.
609 */
610 if (event->state == PERF_EVENT_STATE_INACTIVE) {
611 update_group_times(event);
612 event->state = PERF_EVENT_STATE_OFF;
613 }
614
615 raw_spin_unlock_irq(&ctx->lock);
616 }
617
618 static int
619 event_sched_in(struct perf_event *event,
620 struct perf_cpu_context *cpuctx,
621 struct perf_event_context *ctx)
622 {
623 if (event->state <= PERF_EVENT_STATE_OFF)
624 return 0;
625
626 event->state = PERF_EVENT_STATE_ACTIVE;
627 event->oncpu = smp_processor_id();
628 /*
629 * The new state must be visible before we turn it on in the hardware:
630 */
631 smp_wmb();
632
633 if (event->pmu->add(event, PERF_EF_START)) {
634 event->state = PERF_EVENT_STATE_INACTIVE;
635 event->oncpu = -1;
636 return -EAGAIN;
637 }
638
639 event->tstamp_running += ctx->time - event->tstamp_stopped;
640
641 if (!is_software_event(event))
642 cpuctx->active_oncpu++;
643 ctx->nr_active++;
644
645 if (event->attr.exclusive)
646 cpuctx->exclusive = 1;
647
648 return 0;
649 }
650
651 static int
652 group_sched_in(struct perf_event *group_event,
653 struct perf_cpu_context *cpuctx,
654 struct perf_event_context *ctx)
655 {
656 struct perf_event *event, *partial_group = NULL;
657 struct pmu *pmu = group_event->pmu;
658
659 if (group_event->state == PERF_EVENT_STATE_OFF)
660 return 0;
661
662 pmu->start_txn(pmu);
663
664 if (event_sched_in(group_event, cpuctx, ctx)) {
665 pmu->cancel_txn(pmu);
666 return -EAGAIN;
667 }
668
669 /*
670 * Schedule in siblings as one group (if any):
671 */
672 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
673 if (event_sched_in(event, cpuctx, ctx)) {
674 partial_group = event;
675 goto group_error;
676 }
677 }
678
679 if (!pmu->commit_txn(pmu))
680 return 0;
681
682 group_error:
683 /*
684 * Groups can be scheduled in as one unit only, so undo any
685 * partial group before returning:
686 */
687 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
688 if (event == partial_group)
689 break;
690 event_sched_out(event, cpuctx, ctx);
691 }
692 event_sched_out(group_event, cpuctx, ctx);
693
694 pmu->cancel_txn(pmu);
695
696 return -EAGAIN;
697 }
698
699 /*
700 * Work out whether we can put this event group on the CPU now.
701 */
702 static int group_can_go_on(struct perf_event *event,
703 struct perf_cpu_context *cpuctx,
704 int can_add_hw)
705 {
706 /*
707 * Groups consisting entirely of software events can always go on.
708 */
709 if (event->group_flags & PERF_GROUP_SOFTWARE)
710 return 1;
711 /*
712 * If an exclusive group is already on, no other hardware
713 * events can go on.
714 */
715 if (cpuctx->exclusive)
716 return 0;
717 /*
718 * If this group is exclusive and there are already
719 * events on the CPU, it can't go on.
720 */
721 if (event->attr.exclusive && cpuctx->active_oncpu)
722 return 0;
723 /*
724 * Otherwise, try to add it if all previous groups were able
725 * to go on.
726 */
727 return can_add_hw;
728 }
729
730 static void add_event_to_ctx(struct perf_event *event,
731 struct perf_event_context *ctx)
732 {
733 list_add_event(event, ctx);
734 perf_group_attach(event);
735 event->tstamp_enabled = ctx->time;
736 event->tstamp_running = ctx->time;
737 event->tstamp_stopped = ctx->time;
738 }
739
740 /*
741 * Cross CPU call to install and enable a performance event
742 *
743 * Must be called with ctx->mutex held
744 */
745 static void __perf_install_in_context(void *info)
746 {
747 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
748 struct perf_event *event = info;
749 struct perf_event_context *ctx = event->ctx;
750 struct perf_event *leader = event->group_leader;
751 int err;
752
753 /*
754 * If this is a task context, we need to check whether it is
755 * the current task context of this cpu. If not it has been
756 * scheduled out before the smp call arrived.
757 * Or possibly this is the right context but it isn't
758 * on this cpu because it had no events.
759 */
760 if (ctx->task && cpuctx->task_ctx != ctx) {
761 if (cpuctx->task_ctx || ctx->task != current)
762 return;
763 cpuctx->task_ctx = ctx;
764 }
765
766 raw_spin_lock(&ctx->lock);
767 ctx->is_active = 1;
768 update_context_time(ctx);
769
770 add_event_to_ctx(event, ctx);
771
772 if (event->cpu != -1 && event->cpu != smp_processor_id())
773 goto unlock;
774
775 /*
776 * Don't put the event on if it is disabled or if
777 * it is in a group and the group isn't on.
778 */
779 if (event->state != PERF_EVENT_STATE_INACTIVE ||
780 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
781 goto unlock;
782
783 /*
784 * An exclusive event can't go on if there are already active
785 * hardware events, and no hardware event can go on if there
786 * is already an exclusive event on.
787 */
788 if (!group_can_go_on(event, cpuctx, 1))
789 err = -EEXIST;
790 else
791 err = event_sched_in(event, cpuctx, ctx);
792
793 if (err) {
794 /*
795 * This event couldn't go on. If it is in a group
796 * then we have to pull the whole group off.
797 * If the event group is pinned then put it in error state.
798 */
799 if (leader != event)
800 group_sched_out(leader, cpuctx, ctx);
801 if (leader->attr.pinned) {
802 update_group_times(leader);
803 leader->state = PERF_EVENT_STATE_ERROR;
804 }
805 }
806
807 unlock:
808 raw_spin_unlock(&ctx->lock);
809 }
810
811 /*
812 * Attach a performance event to a context
813 *
814 * First we add the event to the list with the hardware enable bit
815 * in event->hw_config cleared.
816 *
817 * If the event is attached to a task which is on a CPU we use a smp
818 * call to enable it in the task context. The task might have been
819 * scheduled away, but we check this in the smp call again.
820 *
821 * Must be called with ctx->mutex held.
822 */
823 static void
824 perf_install_in_context(struct perf_event_context *ctx,
825 struct perf_event *event,
826 int cpu)
827 {
828 struct task_struct *task = ctx->task;
829
830 event->ctx = ctx;
831
832 if (!task) {
833 /*
834 * Per cpu events are installed via an smp call and
835 * the install is always successful.
836 */
837 smp_call_function_single(cpu, __perf_install_in_context,
838 event, 1);
839 return;
840 }
841
842 retry:
843 task_oncpu_function_call(task, __perf_install_in_context,
844 event);
845
846 raw_spin_lock_irq(&ctx->lock);
847 /*
848 * we need to retry the smp call.
849 */
850 if (ctx->is_active && list_empty(&event->group_entry)) {
851 raw_spin_unlock_irq(&ctx->lock);
852 goto retry;
853 }
854
855 /*
856 * The lock prevents that this context is scheduled in so we
857 * can add the event safely, if it the call above did not
858 * succeed.
859 */
860 if (list_empty(&event->group_entry))
861 add_event_to_ctx(event, ctx);
862 raw_spin_unlock_irq(&ctx->lock);
863 }
864
865 /*
866 * Put a event into inactive state and update time fields.
867 * Enabling the leader of a group effectively enables all
868 * the group members that aren't explicitly disabled, so we
869 * have to update their ->tstamp_enabled also.
870 * Note: this works for group members as well as group leaders
871 * since the non-leader members' sibling_lists will be empty.
872 */
873 static void __perf_event_mark_enabled(struct perf_event *event,
874 struct perf_event_context *ctx)
875 {
876 struct perf_event *sub;
877
878 event->state = PERF_EVENT_STATE_INACTIVE;
879 event->tstamp_enabled = ctx->time - event->total_time_enabled;
880 list_for_each_entry(sub, &event->sibling_list, group_entry) {
881 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
882 sub->tstamp_enabled =
883 ctx->time - sub->total_time_enabled;
884 }
885 }
886 }
887
888 /*
889 * Cross CPU call to enable a performance event
890 */
891 static void __perf_event_enable(void *info)
892 {
893 struct perf_event *event = info;
894 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
895 struct perf_event_context *ctx = event->ctx;
896 struct perf_event *leader = event->group_leader;
897 int err;
898
899 /*
900 * If this is a per-task event, need to check whether this
901 * event's task is the current task on this cpu.
902 */
903 if (ctx->task && cpuctx->task_ctx != ctx) {
904 if (cpuctx->task_ctx || ctx->task != current)
905 return;
906 cpuctx->task_ctx = ctx;
907 }
908
909 raw_spin_lock(&ctx->lock);
910 ctx->is_active = 1;
911 update_context_time(ctx);
912
913 if (event->state >= PERF_EVENT_STATE_INACTIVE)
914 goto unlock;
915 __perf_event_mark_enabled(event, ctx);
916
917 if (event->cpu != -1 && event->cpu != smp_processor_id())
918 goto unlock;
919
920 /*
921 * If the event is in a group and isn't the group leader,
922 * then don't put it on unless the group is on.
923 */
924 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
925 goto unlock;
926
927 if (!group_can_go_on(event, cpuctx, 1)) {
928 err = -EEXIST;
929 } else {
930 if (event == leader)
931 err = group_sched_in(event, cpuctx, ctx);
932 else
933 err = event_sched_in(event, cpuctx, ctx);
934 }
935
936 if (err) {
937 /*
938 * If this event can't go on and it's part of a
939 * group, then the whole group has to come off.
940 */
941 if (leader != event)
942 group_sched_out(leader, cpuctx, ctx);
943 if (leader->attr.pinned) {
944 update_group_times(leader);
945 leader->state = PERF_EVENT_STATE_ERROR;
946 }
947 }
948
949 unlock:
950 raw_spin_unlock(&ctx->lock);
951 }
952
953 /*
954 * Enable a event.
955 *
956 * If event->ctx is a cloned context, callers must make sure that
957 * every task struct that event->ctx->task could possibly point to
958 * remains valid. This condition is satisfied when called through
959 * perf_event_for_each_child or perf_event_for_each as described
960 * for perf_event_disable.
961 */
962 void perf_event_enable(struct perf_event *event)
963 {
964 struct perf_event_context *ctx = event->ctx;
965 struct task_struct *task = ctx->task;
966
967 if (!task) {
968 /*
969 * Enable the event on the cpu that it's on
970 */
971 smp_call_function_single(event->cpu, __perf_event_enable,
972 event, 1);
973 return;
974 }
975
976 raw_spin_lock_irq(&ctx->lock);
977 if (event->state >= PERF_EVENT_STATE_INACTIVE)
978 goto out;
979
980 /*
981 * If the event is in error state, clear that first.
982 * That way, if we see the event in error state below, we
983 * know that it has gone back into error state, as distinct
984 * from the task having been scheduled away before the
985 * cross-call arrived.
986 */
987 if (event->state == PERF_EVENT_STATE_ERROR)
988 event->state = PERF_EVENT_STATE_OFF;
989
990 retry:
991 raw_spin_unlock_irq(&ctx->lock);
992 task_oncpu_function_call(task, __perf_event_enable, event);
993
994 raw_spin_lock_irq(&ctx->lock);
995
996 /*
997 * If the context is active and the event is still off,
998 * we need to retry the cross-call.
999 */
1000 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1001 goto retry;
1002
1003 /*
1004 * Since we have the lock this context can't be scheduled
1005 * in, so we can change the state safely.
1006 */
1007 if (event->state == PERF_EVENT_STATE_OFF)
1008 __perf_event_mark_enabled(event, ctx);
1009
1010 out:
1011 raw_spin_unlock_irq(&ctx->lock);
1012 }
1013
1014 static int perf_event_refresh(struct perf_event *event, int refresh)
1015 {
1016 /*
1017 * not supported on inherited events
1018 */
1019 if (event->attr.inherit)
1020 return -EINVAL;
1021
1022 atomic_add(refresh, &event->event_limit);
1023 perf_event_enable(event);
1024
1025 return 0;
1026 }
1027
1028 enum event_type_t {
1029 EVENT_FLEXIBLE = 0x1,
1030 EVENT_PINNED = 0x2,
1031 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1032 };
1033
1034 static void ctx_sched_out(struct perf_event_context *ctx,
1035 struct perf_cpu_context *cpuctx,
1036 enum event_type_t event_type)
1037 {
1038 struct perf_event *event;
1039
1040 raw_spin_lock(&ctx->lock);
1041 ctx->is_active = 0;
1042 if (likely(!ctx->nr_events))
1043 goto out;
1044 update_context_time(ctx);
1045
1046 if (!ctx->nr_active)
1047 goto out;
1048
1049 if (event_type & EVENT_PINNED) {
1050 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1051 group_sched_out(event, cpuctx, ctx);
1052 }
1053
1054 if (event_type & EVENT_FLEXIBLE) {
1055 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1056 group_sched_out(event, cpuctx, ctx);
1057 }
1058 out:
1059 raw_spin_unlock(&ctx->lock);
1060 }
1061
1062 /*
1063 * Test whether two contexts are equivalent, i.e. whether they
1064 * have both been cloned from the same version of the same context
1065 * and they both have the same number of enabled events.
1066 * If the number of enabled events is the same, then the set
1067 * of enabled events should be the same, because these are both
1068 * inherited contexts, therefore we can't access individual events
1069 * in them directly with an fd; we can only enable/disable all
1070 * events via prctl, or enable/disable all events in a family
1071 * via ioctl, which will have the same effect on both contexts.
1072 */
1073 static int context_equiv(struct perf_event_context *ctx1,
1074 struct perf_event_context *ctx2)
1075 {
1076 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1077 && ctx1->parent_gen == ctx2->parent_gen
1078 && !ctx1->pin_count && !ctx2->pin_count;
1079 }
1080
1081 static void __perf_event_sync_stat(struct perf_event *event,
1082 struct perf_event *next_event)
1083 {
1084 u64 value;
1085
1086 if (!event->attr.inherit_stat)
1087 return;
1088
1089 /*
1090 * Update the event value, we cannot use perf_event_read()
1091 * because we're in the middle of a context switch and have IRQs
1092 * disabled, which upsets smp_call_function_single(), however
1093 * we know the event must be on the current CPU, therefore we
1094 * don't need to use it.
1095 */
1096 switch (event->state) {
1097 case PERF_EVENT_STATE_ACTIVE:
1098 event->pmu->read(event);
1099 /* fall-through */
1100
1101 case PERF_EVENT_STATE_INACTIVE:
1102 update_event_times(event);
1103 break;
1104
1105 default:
1106 break;
1107 }
1108
1109 /*
1110 * In order to keep per-task stats reliable we need to flip the event
1111 * values when we flip the contexts.
1112 */
1113 value = local64_read(&next_event->count);
1114 value = local64_xchg(&event->count, value);
1115 local64_set(&next_event->count, value);
1116
1117 swap(event->total_time_enabled, next_event->total_time_enabled);
1118 swap(event->total_time_running, next_event->total_time_running);
1119
1120 /*
1121 * Since we swizzled the values, update the user visible data too.
1122 */
1123 perf_event_update_userpage(event);
1124 perf_event_update_userpage(next_event);
1125 }
1126
1127 #define list_next_entry(pos, member) \
1128 list_entry(pos->member.next, typeof(*pos), member)
1129
1130 static void perf_event_sync_stat(struct perf_event_context *ctx,
1131 struct perf_event_context *next_ctx)
1132 {
1133 struct perf_event *event, *next_event;
1134
1135 if (!ctx->nr_stat)
1136 return;
1137
1138 update_context_time(ctx);
1139
1140 event = list_first_entry(&ctx->event_list,
1141 struct perf_event, event_entry);
1142
1143 next_event = list_first_entry(&next_ctx->event_list,
1144 struct perf_event, event_entry);
1145
1146 while (&event->event_entry != &ctx->event_list &&
1147 &next_event->event_entry != &next_ctx->event_list) {
1148
1149 __perf_event_sync_stat(event, next_event);
1150
1151 event = list_next_entry(event, event_entry);
1152 next_event = list_next_entry(next_event, event_entry);
1153 }
1154 }
1155
1156 /*
1157 * Called from scheduler to remove the events of the current task,
1158 * with interrupts disabled.
1159 *
1160 * We stop each event and update the event value in event->count.
1161 *
1162 * This does not protect us against NMI, but disable()
1163 * sets the disabled bit in the control field of event _before_
1164 * accessing the event control register. If a NMI hits, then it will
1165 * not restart the event.
1166 */
1167 void perf_event_task_sched_out(struct task_struct *task,
1168 struct task_struct *next)
1169 {
1170 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1171 struct perf_event_context *ctx = task->perf_event_ctxp;
1172 struct perf_event_context *next_ctx;
1173 struct perf_event_context *parent;
1174 int do_switch = 1;
1175
1176 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1177
1178 if (likely(!ctx || !cpuctx->task_ctx))
1179 return;
1180
1181 rcu_read_lock();
1182 parent = rcu_dereference(ctx->parent_ctx);
1183 next_ctx = next->perf_event_ctxp;
1184 if (parent && next_ctx &&
1185 rcu_dereference(next_ctx->parent_ctx) == parent) {
1186 /*
1187 * Looks like the two contexts are clones, so we might be
1188 * able to optimize the context switch. We lock both
1189 * contexts and check that they are clones under the
1190 * lock (including re-checking that neither has been
1191 * uncloned in the meantime). It doesn't matter which
1192 * order we take the locks because no other cpu could
1193 * be trying to lock both of these tasks.
1194 */
1195 raw_spin_lock(&ctx->lock);
1196 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1197 if (context_equiv(ctx, next_ctx)) {
1198 /*
1199 * XXX do we need a memory barrier of sorts
1200 * wrt to rcu_dereference() of perf_event_ctxp
1201 */
1202 task->perf_event_ctxp = next_ctx;
1203 next->perf_event_ctxp = ctx;
1204 ctx->task = next;
1205 next_ctx->task = task;
1206 do_switch = 0;
1207
1208 perf_event_sync_stat(ctx, next_ctx);
1209 }
1210 raw_spin_unlock(&next_ctx->lock);
1211 raw_spin_unlock(&ctx->lock);
1212 }
1213 rcu_read_unlock();
1214
1215 if (do_switch) {
1216 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1217 cpuctx->task_ctx = NULL;
1218 }
1219 }
1220
1221 static void task_ctx_sched_out(struct perf_event_context *ctx,
1222 enum event_type_t event_type)
1223 {
1224 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1225
1226 if (!cpuctx->task_ctx)
1227 return;
1228
1229 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1230 return;
1231
1232 ctx_sched_out(ctx, cpuctx, event_type);
1233 cpuctx->task_ctx = NULL;
1234 }
1235
1236 /*
1237 * Called with IRQs disabled
1238 */
1239 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1240 {
1241 task_ctx_sched_out(ctx, EVENT_ALL);
1242 }
1243
1244 /*
1245 * Called with IRQs disabled
1246 */
1247 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1248 enum event_type_t event_type)
1249 {
1250 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1251 }
1252
1253 static void
1254 ctx_pinned_sched_in(struct perf_event_context *ctx,
1255 struct perf_cpu_context *cpuctx)
1256 {
1257 struct perf_event *event;
1258
1259 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1260 if (event->state <= PERF_EVENT_STATE_OFF)
1261 continue;
1262 if (event->cpu != -1 && event->cpu != smp_processor_id())
1263 continue;
1264
1265 if (group_can_go_on(event, cpuctx, 1))
1266 group_sched_in(event, cpuctx, ctx);
1267
1268 /*
1269 * If this pinned group hasn't been scheduled,
1270 * put it in error state.
1271 */
1272 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1273 update_group_times(event);
1274 event->state = PERF_EVENT_STATE_ERROR;
1275 }
1276 }
1277 }
1278
1279 static void
1280 ctx_flexible_sched_in(struct perf_event_context *ctx,
1281 struct perf_cpu_context *cpuctx)
1282 {
1283 struct perf_event *event;
1284 int can_add_hw = 1;
1285
1286 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1287 /* Ignore events in OFF or ERROR state */
1288 if (event->state <= PERF_EVENT_STATE_OFF)
1289 continue;
1290 /*
1291 * Listen to the 'cpu' scheduling filter constraint
1292 * of events:
1293 */
1294 if (event->cpu != -1 && event->cpu != smp_processor_id())
1295 continue;
1296
1297 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1298 if (group_sched_in(event, cpuctx, ctx))
1299 can_add_hw = 0;
1300 }
1301 }
1302 }
1303
1304 static void
1305 ctx_sched_in(struct perf_event_context *ctx,
1306 struct perf_cpu_context *cpuctx,
1307 enum event_type_t event_type)
1308 {
1309 raw_spin_lock(&ctx->lock);
1310 ctx->is_active = 1;
1311 if (likely(!ctx->nr_events))
1312 goto out;
1313
1314 ctx->timestamp = perf_clock();
1315
1316 /*
1317 * First go through the list and put on any pinned groups
1318 * in order to give them the best chance of going on.
1319 */
1320 if (event_type & EVENT_PINNED)
1321 ctx_pinned_sched_in(ctx, cpuctx);
1322
1323 /* Then walk through the lower prio flexible groups */
1324 if (event_type & EVENT_FLEXIBLE)
1325 ctx_flexible_sched_in(ctx, cpuctx);
1326
1327 out:
1328 raw_spin_unlock(&ctx->lock);
1329 }
1330
1331 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1332 enum event_type_t event_type)
1333 {
1334 struct perf_event_context *ctx = &cpuctx->ctx;
1335
1336 ctx_sched_in(ctx, cpuctx, event_type);
1337 }
1338
1339 static void task_ctx_sched_in(struct task_struct *task,
1340 enum event_type_t event_type)
1341 {
1342 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1343 struct perf_event_context *ctx = task->perf_event_ctxp;
1344
1345 if (likely(!ctx))
1346 return;
1347 if (cpuctx->task_ctx == ctx)
1348 return;
1349 ctx_sched_in(ctx, cpuctx, event_type);
1350 cpuctx->task_ctx = ctx;
1351 }
1352 /*
1353 * Called from scheduler to add the events of the current task
1354 * with interrupts disabled.
1355 *
1356 * We restore the event value and then enable it.
1357 *
1358 * This does not protect us against NMI, but enable()
1359 * sets the enabled bit in the control field of event _before_
1360 * accessing the event control register. If a NMI hits, then it will
1361 * keep the event running.
1362 */
1363 void perf_event_task_sched_in(struct task_struct *task)
1364 {
1365 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1366 struct perf_event_context *ctx = task->perf_event_ctxp;
1367
1368 if (likely(!ctx))
1369 return;
1370
1371 if (cpuctx->task_ctx == ctx)
1372 return;
1373
1374 /*
1375 * We want to keep the following priority order:
1376 * cpu pinned (that don't need to move), task pinned,
1377 * cpu flexible, task flexible.
1378 */
1379 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1380
1381 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1382 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1383 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1384
1385 cpuctx->task_ctx = ctx;
1386 }
1387
1388 #define MAX_INTERRUPTS (~0ULL)
1389
1390 static void perf_log_throttle(struct perf_event *event, int enable);
1391
1392 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1393 {
1394 u64 frequency = event->attr.sample_freq;
1395 u64 sec = NSEC_PER_SEC;
1396 u64 divisor, dividend;
1397
1398 int count_fls, nsec_fls, frequency_fls, sec_fls;
1399
1400 count_fls = fls64(count);
1401 nsec_fls = fls64(nsec);
1402 frequency_fls = fls64(frequency);
1403 sec_fls = 30;
1404
1405 /*
1406 * We got @count in @nsec, with a target of sample_freq HZ
1407 * the target period becomes:
1408 *
1409 * @count * 10^9
1410 * period = -------------------
1411 * @nsec * sample_freq
1412 *
1413 */
1414
1415 /*
1416 * Reduce accuracy by one bit such that @a and @b converge
1417 * to a similar magnitude.
1418 */
1419 #define REDUCE_FLS(a, b) \
1420 do { \
1421 if (a##_fls > b##_fls) { \
1422 a >>= 1; \
1423 a##_fls--; \
1424 } else { \
1425 b >>= 1; \
1426 b##_fls--; \
1427 } \
1428 } while (0)
1429
1430 /*
1431 * Reduce accuracy until either term fits in a u64, then proceed with
1432 * the other, so that finally we can do a u64/u64 division.
1433 */
1434 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1435 REDUCE_FLS(nsec, frequency);
1436 REDUCE_FLS(sec, count);
1437 }
1438
1439 if (count_fls + sec_fls > 64) {
1440 divisor = nsec * frequency;
1441
1442 while (count_fls + sec_fls > 64) {
1443 REDUCE_FLS(count, sec);
1444 divisor >>= 1;
1445 }
1446
1447 dividend = count * sec;
1448 } else {
1449 dividend = count * sec;
1450
1451 while (nsec_fls + frequency_fls > 64) {
1452 REDUCE_FLS(nsec, frequency);
1453 dividend >>= 1;
1454 }
1455
1456 divisor = nsec * frequency;
1457 }
1458
1459 if (!divisor)
1460 return dividend;
1461
1462 return div64_u64(dividend, divisor);
1463 }
1464
1465 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1466 {
1467 struct hw_perf_event *hwc = &event->hw;
1468 s64 period, sample_period;
1469 s64 delta;
1470
1471 period = perf_calculate_period(event, nsec, count);
1472
1473 delta = (s64)(period - hwc->sample_period);
1474 delta = (delta + 7) / 8; /* low pass filter */
1475
1476 sample_period = hwc->sample_period + delta;
1477
1478 if (!sample_period)
1479 sample_period = 1;
1480
1481 hwc->sample_period = sample_period;
1482
1483 if (local64_read(&hwc->period_left) > 8*sample_period) {
1484 event->pmu->stop(event, PERF_EF_UPDATE);
1485 local64_set(&hwc->period_left, 0);
1486 event->pmu->start(event, PERF_EF_RELOAD);
1487 }
1488 }
1489
1490 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1491 {
1492 struct perf_event *event;
1493 struct hw_perf_event *hwc;
1494 u64 interrupts, now;
1495 s64 delta;
1496
1497 raw_spin_lock(&ctx->lock);
1498 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1499 if (event->state != PERF_EVENT_STATE_ACTIVE)
1500 continue;
1501
1502 if (event->cpu != -1 && event->cpu != smp_processor_id())
1503 continue;
1504
1505 hwc = &event->hw;
1506
1507 interrupts = hwc->interrupts;
1508 hwc->interrupts = 0;
1509
1510 /*
1511 * unthrottle events on the tick
1512 */
1513 if (interrupts == MAX_INTERRUPTS) {
1514 perf_log_throttle(event, 1);
1515 event->pmu->start(event, 0);
1516 }
1517
1518 if (!event->attr.freq || !event->attr.sample_freq)
1519 continue;
1520
1521 event->pmu->read(event);
1522 now = local64_read(&event->count);
1523 delta = now - hwc->freq_count_stamp;
1524 hwc->freq_count_stamp = now;
1525
1526 if (delta > 0)
1527 perf_adjust_period(event, TICK_NSEC, delta);
1528 }
1529 raw_spin_unlock(&ctx->lock);
1530 }
1531
1532 /*
1533 * Round-robin a context's events:
1534 */
1535 static void rotate_ctx(struct perf_event_context *ctx)
1536 {
1537 raw_spin_lock(&ctx->lock);
1538
1539 /* Rotate the first entry last of non-pinned groups */
1540 list_rotate_left(&ctx->flexible_groups);
1541
1542 raw_spin_unlock(&ctx->lock);
1543 }
1544
1545 void perf_event_task_tick(struct task_struct *curr)
1546 {
1547 struct perf_cpu_context *cpuctx;
1548 struct perf_event_context *ctx;
1549 int rotate = 0;
1550
1551 if (!atomic_read(&nr_events))
1552 return;
1553
1554 cpuctx = &__get_cpu_var(perf_cpu_context);
1555 if (cpuctx->ctx.nr_events &&
1556 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1557 rotate = 1;
1558
1559 ctx = curr->perf_event_ctxp;
1560 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1561 rotate = 1;
1562
1563 perf_ctx_adjust_freq(&cpuctx->ctx);
1564 if (ctx)
1565 perf_ctx_adjust_freq(ctx);
1566
1567 if (!rotate)
1568 return;
1569
1570 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1571 if (ctx)
1572 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1573
1574 rotate_ctx(&cpuctx->ctx);
1575 if (ctx)
1576 rotate_ctx(ctx);
1577
1578 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1579 if (ctx)
1580 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1581 }
1582
1583 static int event_enable_on_exec(struct perf_event *event,
1584 struct perf_event_context *ctx)
1585 {
1586 if (!event->attr.enable_on_exec)
1587 return 0;
1588
1589 event->attr.enable_on_exec = 0;
1590 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1591 return 0;
1592
1593 __perf_event_mark_enabled(event, ctx);
1594
1595 return 1;
1596 }
1597
1598 /*
1599 * Enable all of a task's events that have been marked enable-on-exec.
1600 * This expects task == current.
1601 */
1602 static void perf_event_enable_on_exec(struct task_struct *task)
1603 {
1604 struct perf_event_context *ctx;
1605 struct perf_event *event;
1606 unsigned long flags;
1607 int enabled = 0;
1608 int ret;
1609
1610 local_irq_save(flags);
1611 ctx = task->perf_event_ctxp;
1612 if (!ctx || !ctx->nr_events)
1613 goto out;
1614
1615 __perf_event_task_sched_out(ctx);
1616
1617 raw_spin_lock(&ctx->lock);
1618
1619 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1620 ret = event_enable_on_exec(event, ctx);
1621 if (ret)
1622 enabled = 1;
1623 }
1624
1625 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1626 ret = event_enable_on_exec(event, ctx);
1627 if (ret)
1628 enabled = 1;
1629 }
1630
1631 /*
1632 * Unclone this context if we enabled any event.
1633 */
1634 if (enabled)
1635 unclone_ctx(ctx);
1636
1637 raw_spin_unlock(&ctx->lock);
1638
1639 perf_event_task_sched_in(task);
1640 out:
1641 local_irq_restore(flags);
1642 }
1643
1644 /*
1645 * Cross CPU call to read the hardware event
1646 */
1647 static void __perf_event_read(void *info)
1648 {
1649 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1650 struct perf_event *event = info;
1651 struct perf_event_context *ctx = event->ctx;
1652
1653 /*
1654 * If this is a task context, we need to check whether it is
1655 * the current task context of this cpu. If not it has been
1656 * scheduled out before the smp call arrived. In that case
1657 * event->count would have been updated to a recent sample
1658 * when the event was scheduled out.
1659 */
1660 if (ctx->task && cpuctx->task_ctx != ctx)
1661 return;
1662
1663 raw_spin_lock(&ctx->lock);
1664 update_context_time(ctx);
1665 update_event_times(event);
1666 raw_spin_unlock(&ctx->lock);
1667
1668 event->pmu->read(event);
1669 }
1670
1671 static inline u64 perf_event_count(struct perf_event *event)
1672 {
1673 return local64_read(&event->count) + atomic64_read(&event->child_count);
1674 }
1675
1676 static u64 perf_event_read(struct perf_event *event)
1677 {
1678 /*
1679 * If event is enabled and currently active on a CPU, update the
1680 * value in the event structure:
1681 */
1682 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1683 smp_call_function_single(event->oncpu,
1684 __perf_event_read, event, 1);
1685 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1686 struct perf_event_context *ctx = event->ctx;
1687 unsigned long flags;
1688
1689 raw_spin_lock_irqsave(&ctx->lock, flags);
1690 update_context_time(ctx);
1691 update_event_times(event);
1692 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1693 }
1694
1695 return perf_event_count(event);
1696 }
1697
1698 /*
1699 * Callchain support
1700 */
1701
1702 struct callchain_cpus_entries {
1703 struct rcu_head rcu_head;
1704 struct perf_callchain_entry *cpu_entries[0];
1705 };
1706
1707 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1708 static atomic_t nr_callchain_events;
1709 static DEFINE_MUTEX(callchain_mutex);
1710 struct callchain_cpus_entries *callchain_cpus_entries;
1711
1712
1713 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1714 struct pt_regs *regs)
1715 {
1716 }
1717
1718 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1719 struct pt_regs *regs)
1720 {
1721 }
1722
1723 static void release_callchain_buffers_rcu(struct rcu_head *head)
1724 {
1725 struct callchain_cpus_entries *entries;
1726 int cpu;
1727
1728 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1729
1730 for_each_possible_cpu(cpu)
1731 kfree(entries->cpu_entries[cpu]);
1732
1733 kfree(entries);
1734 }
1735
1736 static void release_callchain_buffers(void)
1737 {
1738 struct callchain_cpus_entries *entries;
1739
1740 entries = callchain_cpus_entries;
1741 rcu_assign_pointer(callchain_cpus_entries, NULL);
1742 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1743 }
1744
1745 static int alloc_callchain_buffers(void)
1746 {
1747 int cpu;
1748 int size;
1749 struct callchain_cpus_entries *entries;
1750
1751 /*
1752 * We can't use the percpu allocation API for data that can be
1753 * accessed from NMI. Use a temporary manual per cpu allocation
1754 * until that gets sorted out.
1755 */
1756 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1757 num_possible_cpus();
1758
1759 entries = kzalloc(size, GFP_KERNEL);
1760 if (!entries)
1761 return -ENOMEM;
1762
1763 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1764
1765 for_each_possible_cpu(cpu) {
1766 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1767 cpu_to_node(cpu));
1768 if (!entries->cpu_entries[cpu])
1769 goto fail;
1770 }
1771
1772 rcu_assign_pointer(callchain_cpus_entries, entries);
1773
1774 return 0;
1775
1776 fail:
1777 for_each_possible_cpu(cpu)
1778 kfree(entries->cpu_entries[cpu]);
1779 kfree(entries);
1780
1781 return -ENOMEM;
1782 }
1783
1784 static int get_callchain_buffers(void)
1785 {
1786 int err = 0;
1787 int count;
1788
1789 mutex_lock(&callchain_mutex);
1790
1791 count = atomic_inc_return(&nr_callchain_events);
1792 if (WARN_ON_ONCE(count < 1)) {
1793 err = -EINVAL;
1794 goto exit;
1795 }
1796
1797 if (count > 1) {
1798 /* If the allocation failed, give up */
1799 if (!callchain_cpus_entries)
1800 err = -ENOMEM;
1801 goto exit;
1802 }
1803
1804 err = alloc_callchain_buffers();
1805 if (err)
1806 release_callchain_buffers();
1807 exit:
1808 mutex_unlock(&callchain_mutex);
1809
1810 return err;
1811 }
1812
1813 static void put_callchain_buffers(void)
1814 {
1815 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1816 release_callchain_buffers();
1817 mutex_unlock(&callchain_mutex);
1818 }
1819 }
1820
1821 static int get_recursion_context(int *recursion)
1822 {
1823 int rctx;
1824
1825 if (in_nmi())
1826 rctx = 3;
1827 else if (in_irq())
1828 rctx = 2;
1829 else if (in_softirq())
1830 rctx = 1;
1831 else
1832 rctx = 0;
1833
1834 if (recursion[rctx])
1835 return -1;
1836
1837 recursion[rctx]++;
1838 barrier();
1839
1840 return rctx;
1841 }
1842
1843 static inline void put_recursion_context(int *recursion, int rctx)
1844 {
1845 barrier();
1846 recursion[rctx]--;
1847 }
1848
1849 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1850 {
1851 int cpu;
1852 struct callchain_cpus_entries *entries;
1853
1854 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1855 if (*rctx == -1)
1856 return NULL;
1857
1858 entries = rcu_dereference(callchain_cpus_entries);
1859 if (!entries)
1860 return NULL;
1861
1862 cpu = smp_processor_id();
1863
1864 return &entries->cpu_entries[cpu][*rctx];
1865 }
1866
1867 static void
1868 put_callchain_entry(int rctx)
1869 {
1870 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1871 }
1872
1873 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1874 {
1875 int rctx;
1876 struct perf_callchain_entry *entry;
1877
1878
1879 entry = get_callchain_entry(&rctx);
1880 if (rctx == -1)
1881 return NULL;
1882
1883 if (!entry)
1884 goto exit_put;
1885
1886 entry->nr = 0;
1887
1888 if (!user_mode(regs)) {
1889 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
1890 perf_callchain_kernel(entry, regs);
1891 if (current->mm)
1892 regs = task_pt_regs(current);
1893 else
1894 regs = NULL;
1895 }
1896
1897 if (regs) {
1898 perf_callchain_store(entry, PERF_CONTEXT_USER);
1899 perf_callchain_user(entry, regs);
1900 }
1901
1902 exit_put:
1903 put_callchain_entry(rctx);
1904
1905 return entry;
1906 }
1907
1908 /*
1909 * Initialize the perf_event context in a task_struct:
1910 */
1911 static void
1912 __perf_event_init_context(struct perf_event_context *ctx,
1913 struct task_struct *task)
1914 {
1915 raw_spin_lock_init(&ctx->lock);
1916 mutex_init(&ctx->mutex);
1917 INIT_LIST_HEAD(&ctx->pinned_groups);
1918 INIT_LIST_HEAD(&ctx->flexible_groups);
1919 INIT_LIST_HEAD(&ctx->event_list);
1920 atomic_set(&ctx->refcount, 1);
1921 ctx->task = task;
1922 }
1923
1924 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1925 {
1926 struct perf_event_context *ctx;
1927 struct perf_cpu_context *cpuctx;
1928 struct task_struct *task;
1929 unsigned long flags;
1930 int err;
1931
1932 if (pid == -1 && cpu != -1) {
1933 /* Must be root to operate on a CPU event: */
1934 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1935 return ERR_PTR(-EACCES);
1936
1937 if (cpu < 0 || cpu >= nr_cpumask_bits)
1938 return ERR_PTR(-EINVAL);
1939
1940 /*
1941 * We could be clever and allow to attach a event to an
1942 * offline CPU and activate it when the CPU comes up, but
1943 * that's for later.
1944 */
1945 if (!cpu_online(cpu))
1946 return ERR_PTR(-ENODEV);
1947
1948 cpuctx = &per_cpu(perf_cpu_context, cpu);
1949 ctx = &cpuctx->ctx;
1950 get_ctx(ctx);
1951
1952 return ctx;
1953 }
1954
1955 rcu_read_lock();
1956 if (!pid)
1957 task = current;
1958 else
1959 task = find_task_by_vpid(pid);
1960 if (task)
1961 get_task_struct(task);
1962 rcu_read_unlock();
1963
1964 if (!task)
1965 return ERR_PTR(-ESRCH);
1966
1967 /*
1968 * Can't attach events to a dying task.
1969 */
1970 err = -ESRCH;
1971 if (task->flags & PF_EXITING)
1972 goto errout;
1973
1974 /* Reuse ptrace permission checks for now. */
1975 err = -EACCES;
1976 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1977 goto errout;
1978
1979 retry:
1980 ctx = perf_lock_task_context(task, &flags);
1981 if (ctx) {
1982 unclone_ctx(ctx);
1983 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1984 }
1985
1986 if (!ctx) {
1987 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1988 err = -ENOMEM;
1989 if (!ctx)
1990 goto errout;
1991 __perf_event_init_context(ctx, task);
1992 get_ctx(ctx);
1993 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1994 /*
1995 * We raced with some other task; use
1996 * the context they set.
1997 */
1998 kfree(ctx);
1999 goto retry;
2000 }
2001 get_task_struct(task);
2002 }
2003
2004 put_task_struct(task);
2005 return ctx;
2006
2007 errout:
2008 put_task_struct(task);
2009 return ERR_PTR(err);
2010 }
2011
2012 static void perf_event_free_filter(struct perf_event *event);
2013
2014 static void free_event_rcu(struct rcu_head *head)
2015 {
2016 struct perf_event *event;
2017
2018 event = container_of(head, struct perf_event, rcu_head);
2019 if (event->ns)
2020 put_pid_ns(event->ns);
2021 perf_event_free_filter(event);
2022 kfree(event);
2023 }
2024
2025 static void perf_pending_sync(struct perf_event *event);
2026 static void perf_buffer_put(struct perf_buffer *buffer);
2027
2028 static void free_event(struct perf_event *event)
2029 {
2030 perf_pending_sync(event);
2031
2032 if (!event->parent) {
2033 atomic_dec(&nr_events);
2034 if (event->attr.mmap || event->attr.mmap_data)
2035 atomic_dec(&nr_mmap_events);
2036 if (event->attr.comm)
2037 atomic_dec(&nr_comm_events);
2038 if (event->attr.task)
2039 atomic_dec(&nr_task_events);
2040 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2041 put_callchain_buffers();
2042 }
2043
2044 if (event->buffer) {
2045 perf_buffer_put(event->buffer);
2046 event->buffer = NULL;
2047 }
2048
2049 if (event->destroy)
2050 event->destroy(event);
2051
2052 put_ctx(event->ctx);
2053 call_rcu(&event->rcu_head, free_event_rcu);
2054 }
2055
2056 int perf_event_release_kernel(struct perf_event *event)
2057 {
2058 struct perf_event_context *ctx = event->ctx;
2059
2060 /*
2061 * Remove from the PMU, can't get re-enabled since we got
2062 * here because the last ref went.
2063 */
2064 perf_event_disable(event);
2065
2066 WARN_ON_ONCE(ctx->parent_ctx);
2067 /*
2068 * There are two ways this annotation is useful:
2069 *
2070 * 1) there is a lock recursion from perf_event_exit_task
2071 * see the comment there.
2072 *
2073 * 2) there is a lock-inversion with mmap_sem through
2074 * perf_event_read_group(), which takes faults while
2075 * holding ctx->mutex, however this is called after
2076 * the last filedesc died, so there is no possibility
2077 * to trigger the AB-BA case.
2078 */
2079 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2080 raw_spin_lock_irq(&ctx->lock);
2081 perf_group_detach(event);
2082 list_del_event(event, ctx);
2083 raw_spin_unlock_irq(&ctx->lock);
2084 mutex_unlock(&ctx->mutex);
2085
2086 mutex_lock(&event->owner->perf_event_mutex);
2087 list_del_init(&event->owner_entry);
2088 mutex_unlock(&event->owner->perf_event_mutex);
2089 put_task_struct(event->owner);
2090
2091 free_event(event);
2092
2093 return 0;
2094 }
2095 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2096
2097 /*
2098 * Called when the last reference to the file is gone.
2099 */
2100 static int perf_release(struct inode *inode, struct file *file)
2101 {
2102 struct perf_event *event = file->private_data;
2103
2104 file->private_data = NULL;
2105
2106 return perf_event_release_kernel(event);
2107 }
2108
2109 static int perf_event_read_size(struct perf_event *event)
2110 {
2111 int entry = sizeof(u64); /* value */
2112 int size = 0;
2113 int nr = 1;
2114
2115 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2116 size += sizeof(u64);
2117
2118 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2119 size += sizeof(u64);
2120
2121 if (event->attr.read_format & PERF_FORMAT_ID)
2122 entry += sizeof(u64);
2123
2124 if (event->attr.read_format & PERF_FORMAT_GROUP) {
2125 nr += event->group_leader->nr_siblings;
2126 size += sizeof(u64);
2127 }
2128
2129 size += entry * nr;
2130
2131 return size;
2132 }
2133
2134 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2135 {
2136 struct perf_event *child;
2137 u64 total = 0;
2138
2139 *enabled = 0;
2140 *running = 0;
2141
2142 mutex_lock(&event->child_mutex);
2143 total += perf_event_read(event);
2144 *enabled += event->total_time_enabled +
2145 atomic64_read(&event->child_total_time_enabled);
2146 *running += event->total_time_running +
2147 atomic64_read(&event->child_total_time_running);
2148
2149 list_for_each_entry(child, &event->child_list, child_list) {
2150 total += perf_event_read(child);
2151 *enabled += child->total_time_enabled;
2152 *running += child->total_time_running;
2153 }
2154 mutex_unlock(&event->child_mutex);
2155
2156 return total;
2157 }
2158 EXPORT_SYMBOL_GPL(perf_event_read_value);
2159
2160 static int perf_event_read_group(struct perf_event *event,
2161 u64 read_format, char __user *buf)
2162 {
2163 struct perf_event *leader = event->group_leader, *sub;
2164 int n = 0, size = 0, ret = -EFAULT;
2165 struct perf_event_context *ctx = leader->ctx;
2166 u64 values[5];
2167 u64 count, enabled, running;
2168
2169 mutex_lock(&ctx->mutex);
2170 count = perf_event_read_value(leader, &enabled, &running);
2171
2172 values[n++] = 1 + leader->nr_siblings;
2173 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2174 values[n++] = enabled;
2175 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2176 values[n++] = running;
2177 values[n++] = count;
2178 if (read_format & PERF_FORMAT_ID)
2179 values[n++] = primary_event_id(leader);
2180
2181 size = n * sizeof(u64);
2182
2183 if (copy_to_user(buf, values, size))
2184 goto unlock;
2185
2186 ret = size;
2187
2188 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2189 n = 0;
2190
2191 values[n++] = perf_event_read_value(sub, &enabled, &running);
2192 if (read_format & PERF_FORMAT_ID)
2193 values[n++] = primary_event_id(sub);
2194
2195 size = n * sizeof(u64);
2196
2197 if (copy_to_user(buf + ret, values, size)) {
2198 ret = -EFAULT;
2199 goto unlock;
2200 }
2201
2202 ret += size;
2203 }
2204 unlock:
2205 mutex_unlock(&ctx->mutex);
2206
2207 return ret;
2208 }
2209
2210 static int perf_event_read_one(struct perf_event *event,
2211 u64 read_format, char __user *buf)
2212 {
2213 u64 enabled, running;
2214 u64 values[4];
2215 int n = 0;
2216
2217 values[n++] = perf_event_read_value(event, &enabled, &running);
2218 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2219 values[n++] = enabled;
2220 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2221 values[n++] = running;
2222 if (read_format & PERF_FORMAT_ID)
2223 values[n++] = primary_event_id(event);
2224
2225 if (copy_to_user(buf, values, n * sizeof(u64)))
2226 return -EFAULT;
2227
2228 return n * sizeof(u64);
2229 }
2230
2231 /*
2232 * Read the performance event - simple non blocking version for now
2233 */
2234 static ssize_t
2235 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2236 {
2237 u64 read_format = event->attr.read_format;
2238 int ret;
2239
2240 /*
2241 * Return end-of-file for a read on a event that is in
2242 * error state (i.e. because it was pinned but it couldn't be
2243 * scheduled on to the CPU at some point).
2244 */
2245 if (event->state == PERF_EVENT_STATE_ERROR)
2246 return 0;
2247
2248 if (count < perf_event_read_size(event))
2249 return -ENOSPC;
2250
2251 WARN_ON_ONCE(event->ctx->parent_ctx);
2252 if (read_format & PERF_FORMAT_GROUP)
2253 ret = perf_event_read_group(event, read_format, buf);
2254 else
2255 ret = perf_event_read_one(event, read_format, buf);
2256
2257 return ret;
2258 }
2259
2260 static ssize_t
2261 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2262 {
2263 struct perf_event *event = file->private_data;
2264
2265 return perf_read_hw(event, buf, count);
2266 }
2267
2268 static unsigned int perf_poll(struct file *file, poll_table *wait)
2269 {
2270 struct perf_event *event = file->private_data;
2271 struct perf_buffer *buffer;
2272 unsigned int events = POLL_HUP;
2273
2274 rcu_read_lock();
2275 buffer = rcu_dereference(event->buffer);
2276 if (buffer)
2277 events = atomic_xchg(&buffer->poll, 0);
2278 rcu_read_unlock();
2279
2280 poll_wait(file, &event->waitq, wait);
2281
2282 return events;
2283 }
2284
2285 static void perf_event_reset(struct perf_event *event)
2286 {
2287 (void)perf_event_read(event);
2288 local64_set(&event->count, 0);
2289 perf_event_update_userpage(event);
2290 }
2291
2292 /*
2293 * Holding the top-level event's child_mutex means that any
2294 * descendant process that has inherited this event will block
2295 * in sync_child_event if it goes to exit, thus satisfying the
2296 * task existence requirements of perf_event_enable/disable.
2297 */
2298 static void perf_event_for_each_child(struct perf_event *event,
2299 void (*func)(struct perf_event *))
2300 {
2301 struct perf_event *child;
2302
2303 WARN_ON_ONCE(event->ctx->parent_ctx);
2304 mutex_lock(&event->child_mutex);
2305 func(event);
2306 list_for_each_entry(child, &event->child_list, child_list)
2307 func(child);
2308 mutex_unlock(&event->child_mutex);
2309 }
2310
2311 static void perf_event_for_each(struct perf_event *event,
2312 void (*func)(struct perf_event *))
2313 {
2314 struct perf_event_context *ctx = event->ctx;
2315 struct perf_event *sibling;
2316
2317 WARN_ON_ONCE(ctx->parent_ctx);
2318 mutex_lock(&ctx->mutex);
2319 event = event->group_leader;
2320
2321 perf_event_for_each_child(event, func);
2322 func(event);
2323 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2324 perf_event_for_each_child(event, func);
2325 mutex_unlock(&ctx->mutex);
2326 }
2327
2328 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2329 {
2330 struct perf_event_context *ctx = event->ctx;
2331 unsigned long size;
2332 int ret = 0;
2333 u64 value;
2334
2335 if (!event->attr.sample_period)
2336 return -EINVAL;
2337
2338 size = copy_from_user(&value, arg, sizeof(value));
2339 if (size != sizeof(value))
2340 return -EFAULT;
2341
2342 if (!value)
2343 return -EINVAL;
2344
2345 raw_spin_lock_irq(&ctx->lock);
2346 if (event->attr.freq) {
2347 if (value > sysctl_perf_event_sample_rate) {
2348 ret = -EINVAL;
2349 goto unlock;
2350 }
2351
2352 event->attr.sample_freq = value;
2353 } else {
2354 event->attr.sample_period = value;
2355 event->hw.sample_period = value;
2356 }
2357 unlock:
2358 raw_spin_unlock_irq(&ctx->lock);
2359
2360 return ret;
2361 }
2362
2363 static const struct file_operations perf_fops;
2364
2365 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2366 {
2367 struct file *file;
2368
2369 file = fget_light(fd, fput_needed);
2370 if (!file)
2371 return ERR_PTR(-EBADF);
2372
2373 if (file->f_op != &perf_fops) {
2374 fput_light(file, *fput_needed);
2375 *fput_needed = 0;
2376 return ERR_PTR(-EBADF);
2377 }
2378
2379 return file->private_data;
2380 }
2381
2382 static int perf_event_set_output(struct perf_event *event,
2383 struct perf_event *output_event);
2384 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2385
2386 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2387 {
2388 struct perf_event *event = file->private_data;
2389 void (*func)(struct perf_event *);
2390 u32 flags = arg;
2391
2392 switch (cmd) {
2393 case PERF_EVENT_IOC_ENABLE:
2394 func = perf_event_enable;
2395 break;
2396 case PERF_EVENT_IOC_DISABLE:
2397 func = perf_event_disable;
2398 break;
2399 case PERF_EVENT_IOC_RESET:
2400 func = perf_event_reset;
2401 break;
2402
2403 case PERF_EVENT_IOC_REFRESH:
2404 return perf_event_refresh(event, arg);
2405
2406 case PERF_EVENT_IOC_PERIOD:
2407 return perf_event_period(event, (u64 __user *)arg);
2408
2409 case PERF_EVENT_IOC_SET_OUTPUT:
2410 {
2411 struct perf_event *output_event = NULL;
2412 int fput_needed = 0;
2413 int ret;
2414
2415 if (arg != -1) {
2416 output_event = perf_fget_light(arg, &fput_needed);
2417 if (IS_ERR(output_event))
2418 return PTR_ERR(output_event);
2419 }
2420
2421 ret = perf_event_set_output(event, output_event);
2422 if (output_event)
2423 fput_light(output_event->filp, fput_needed);
2424
2425 return ret;
2426 }
2427
2428 case PERF_EVENT_IOC_SET_FILTER:
2429 return perf_event_set_filter(event, (void __user *)arg);
2430
2431 default:
2432 return -ENOTTY;
2433 }
2434
2435 if (flags & PERF_IOC_FLAG_GROUP)
2436 perf_event_for_each(event, func);
2437 else
2438 perf_event_for_each_child(event, func);
2439
2440 return 0;
2441 }
2442
2443 int perf_event_task_enable(void)
2444 {
2445 struct perf_event *event;
2446
2447 mutex_lock(&current->perf_event_mutex);
2448 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2449 perf_event_for_each_child(event, perf_event_enable);
2450 mutex_unlock(&current->perf_event_mutex);
2451
2452 return 0;
2453 }
2454
2455 int perf_event_task_disable(void)
2456 {
2457 struct perf_event *event;
2458
2459 mutex_lock(&current->perf_event_mutex);
2460 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2461 perf_event_for_each_child(event, perf_event_disable);
2462 mutex_unlock(&current->perf_event_mutex);
2463
2464 return 0;
2465 }
2466
2467 #ifndef PERF_EVENT_INDEX_OFFSET
2468 # define PERF_EVENT_INDEX_OFFSET 0
2469 #endif
2470
2471 static int perf_event_index(struct perf_event *event)
2472 {
2473 if (event->hw.state & PERF_HES_STOPPED)
2474 return 0;
2475
2476 if (event->state != PERF_EVENT_STATE_ACTIVE)
2477 return 0;
2478
2479 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2480 }
2481
2482 /*
2483 * Callers need to ensure there can be no nesting of this function, otherwise
2484 * the seqlock logic goes bad. We can not serialize this because the arch
2485 * code calls this from NMI context.
2486 */
2487 void perf_event_update_userpage(struct perf_event *event)
2488 {
2489 struct perf_event_mmap_page *userpg;
2490 struct perf_buffer *buffer;
2491
2492 rcu_read_lock();
2493 buffer = rcu_dereference(event->buffer);
2494 if (!buffer)
2495 goto unlock;
2496
2497 userpg = buffer->user_page;
2498
2499 /*
2500 * Disable preemption so as to not let the corresponding user-space
2501 * spin too long if we get preempted.
2502 */
2503 preempt_disable();
2504 ++userpg->lock;
2505 barrier();
2506 userpg->index = perf_event_index(event);
2507 userpg->offset = perf_event_count(event);
2508 if (event->state == PERF_EVENT_STATE_ACTIVE)
2509 userpg->offset -= local64_read(&event->hw.prev_count);
2510
2511 userpg->time_enabled = event->total_time_enabled +
2512 atomic64_read(&event->child_total_time_enabled);
2513
2514 userpg->time_running = event->total_time_running +
2515 atomic64_read(&event->child_total_time_running);
2516
2517 barrier();
2518 ++userpg->lock;
2519 preempt_enable();
2520 unlock:
2521 rcu_read_unlock();
2522 }
2523
2524 static unsigned long perf_data_size(struct perf_buffer *buffer);
2525
2526 static void
2527 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2528 {
2529 long max_size = perf_data_size(buffer);
2530
2531 if (watermark)
2532 buffer->watermark = min(max_size, watermark);
2533
2534 if (!buffer->watermark)
2535 buffer->watermark = max_size / 2;
2536
2537 if (flags & PERF_BUFFER_WRITABLE)
2538 buffer->writable = 1;
2539
2540 atomic_set(&buffer->refcount, 1);
2541 }
2542
2543 #ifndef CONFIG_PERF_USE_VMALLOC
2544
2545 /*
2546 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2547 */
2548
2549 static struct page *
2550 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2551 {
2552 if (pgoff > buffer->nr_pages)
2553 return NULL;
2554
2555 if (pgoff == 0)
2556 return virt_to_page(buffer->user_page);
2557
2558 return virt_to_page(buffer->data_pages[pgoff - 1]);
2559 }
2560
2561 static void *perf_mmap_alloc_page(int cpu)
2562 {
2563 struct page *page;
2564 int node;
2565
2566 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2567 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2568 if (!page)
2569 return NULL;
2570
2571 return page_address(page);
2572 }
2573
2574 static struct perf_buffer *
2575 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2576 {
2577 struct perf_buffer *buffer;
2578 unsigned long size;
2579 int i;
2580
2581 size = sizeof(struct perf_buffer);
2582 size += nr_pages * sizeof(void *);
2583
2584 buffer = kzalloc(size, GFP_KERNEL);
2585 if (!buffer)
2586 goto fail;
2587
2588 buffer->user_page = perf_mmap_alloc_page(cpu);
2589 if (!buffer->user_page)
2590 goto fail_user_page;
2591
2592 for (i = 0; i < nr_pages; i++) {
2593 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2594 if (!buffer->data_pages[i])
2595 goto fail_data_pages;
2596 }
2597
2598 buffer->nr_pages = nr_pages;
2599
2600 perf_buffer_init(buffer, watermark, flags);
2601
2602 return buffer;
2603
2604 fail_data_pages:
2605 for (i--; i >= 0; i--)
2606 free_page((unsigned long)buffer->data_pages[i]);
2607
2608 free_page((unsigned long)buffer->user_page);
2609
2610 fail_user_page:
2611 kfree(buffer);
2612
2613 fail:
2614 return NULL;
2615 }
2616
2617 static void perf_mmap_free_page(unsigned long addr)
2618 {
2619 struct page *page = virt_to_page((void *)addr);
2620
2621 page->mapping = NULL;
2622 __free_page(page);
2623 }
2624
2625 static void perf_buffer_free(struct perf_buffer *buffer)
2626 {
2627 int i;
2628
2629 perf_mmap_free_page((unsigned long)buffer->user_page);
2630 for (i = 0; i < buffer->nr_pages; i++)
2631 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2632 kfree(buffer);
2633 }
2634
2635 static inline int page_order(struct perf_buffer *buffer)
2636 {
2637 return 0;
2638 }
2639
2640 #else
2641
2642 /*
2643 * Back perf_mmap() with vmalloc memory.
2644 *
2645 * Required for architectures that have d-cache aliasing issues.
2646 */
2647
2648 static inline int page_order(struct perf_buffer *buffer)
2649 {
2650 return buffer->page_order;
2651 }
2652
2653 static struct page *
2654 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2655 {
2656 if (pgoff > (1UL << page_order(buffer)))
2657 return NULL;
2658
2659 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2660 }
2661
2662 static void perf_mmap_unmark_page(void *addr)
2663 {
2664 struct page *page = vmalloc_to_page(addr);
2665
2666 page->mapping = NULL;
2667 }
2668
2669 static void perf_buffer_free_work(struct work_struct *work)
2670 {
2671 struct perf_buffer *buffer;
2672 void *base;
2673 int i, nr;
2674
2675 buffer = container_of(work, struct perf_buffer, work);
2676 nr = 1 << page_order(buffer);
2677
2678 base = buffer->user_page;
2679 for (i = 0; i < nr + 1; i++)
2680 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2681
2682 vfree(base);
2683 kfree(buffer);
2684 }
2685
2686 static void perf_buffer_free(struct perf_buffer *buffer)
2687 {
2688 schedule_work(&buffer->work);
2689 }
2690
2691 static struct perf_buffer *
2692 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2693 {
2694 struct perf_buffer *buffer;
2695 unsigned long size;
2696 void *all_buf;
2697
2698 size = sizeof(struct perf_buffer);
2699 size += sizeof(void *);
2700
2701 buffer = kzalloc(size, GFP_KERNEL);
2702 if (!buffer)
2703 goto fail;
2704
2705 INIT_WORK(&buffer->work, perf_buffer_free_work);
2706
2707 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2708 if (!all_buf)
2709 goto fail_all_buf;
2710
2711 buffer->user_page = all_buf;
2712 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2713 buffer->page_order = ilog2(nr_pages);
2714 buffer->nr_pages = 1;
2715
2716 perf_buffer_init(buffer, watermark, flags);
2717
2718 return buffer;
2719
2720 fail_all_buf:
2721 kfree(buffer);
2722
2723 fail:
2724 return NULL;
2725 }
2726
2727 #endif
2728
2729 static unsigned long perf_data_size(struct perf_buffer *buffer)
2730 {
2731 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2732 }
2733
2734 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2735 {
2736 struct perf_event *event = vma->vm_file->private_data;
2737 struct perf_buffer *buffer;
2738 int ret = VM_FAULT_SIGBUS;
2739
2740 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2741 if (vmf->pgoff == 0)
2742 ret = 0;
2743 return ret;
2744 }
2745
2746 rcu_read_lock();
2747 buffer = rcu_dereference(event->buffer);
2748 if (!buffer)
2749 goto unlock;
2750
2751 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2752 goto unlock;
2753
2754 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2755 if (!vmf->page)
2756 goto unlock;
2757
2758 get_page(vmf->page);
2759 vmf->page->mapping = vma->vm_file->f_mapping;
2760 vmf->page->index = vmf->pgoff;
2761
2762 ret = 0;
2763 unlock:
2764 rcu_read_unlock();
2765
2766 return ret;
2767 }
2768
2769 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2770 {
2771 struct perf_buffer *buffer;
2772
2773 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2774 perf_buffer_free(buffer);
2775 }
2776
2777 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2778 {
2779 struct perf_buffer *buffer;
2780
2781 rcu_read_lock();
2782 buffer = rcu_dereference(event->buffer);
2783 if (buffer) {
2784 if (!atomic_inc_not_zero(&buffer->refcount))
2785 buffer = NULL;
2786 }
2787 rcu_read_unlock();
2788
2789 return buffer;
2790 }
2791
2792 static void perf_buffer_put(struct perf_buffer *buffer)
2793 {
2794 if (!atomic_dec_and_test(&buffer->refcount))
2795 return;
2796
2797 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2798 }
2799
2800 static void perf_mmap_open(struct vm_area_struct *vma)
2801 {
2802 struct perf_event *event = vma->vm_file->private_data;
2803
2804 atomic_inc(&event->mmap_count);
2805 }
2806
2807 static void perf_mmap_close(struct vm_area_struct *vma)
2808 {
2809 struct perf_event *event = vma->vm_file->private_data;
2810
2811 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2812 unsigned long size = perf_data_size(event->buffer);
2813 struct user_struct *user = event->mmap_user;
2814 struct perf_buffer *buffer = event->buffer;
2815
2816 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2817 vma->vm_mm->locked_vm -= event->mmap_locked;
2818 rcu_assign_pointer(event->buffer, NULL);
2819 mutex_unlock(&event->mmap_mutex);
2820
2821 perf_buffer_put(buffer);
2822 free_uid(user);
2823 }
2824 }
2825
2826 static const struct vm_operations_struct perf_mmap_vmops = {
2827 .open = perf_mmap_open,
2828 .close = perf_mmap_close,
2829 .fault = perf_mmap_fault,
2830 .page_mkwrite = perf_mmap_fault,
2831 };
2832
2833 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2834 {
2835 struct perf_event *event = file->private_data;
2836 unsigned long user_locked, user_lock_limit;
2837 struct user_struct *user = current_user();
2838 unsigned long locked, lock_limit;
2839 struct perf_buffer *buffer;
2840 unsigned long vma_size;
2841 unsigned long nr_pages;
2842 long user_extra, extra;
2843 int ret = 0, flags = 0;
2844
2845 /*
2846 * Don't allow mmap() of inherited per-task counters. This would
2847 * create a performance issue due to all children writing to the
2848 * same buffer.
2849 */
2850 if (event->cpu == -1 && event->attr.inherit)
2851 return -EINVAL;
2852
2853 if (!(vma->vm_flags & VM_SHARED))
2854 return -EINVAL;
2855
2856 vma_size = vma->vm_end - vma->vm_start;
2857 nr_pages = (vma_size / PAGE_SIZE) - 1;
2858
2859 /*
2860 * If we have buffer pages ensure they're a power-of-two number, so we
2861 * can do bitmasks instead of modulo.
2862 */
2863 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2864 return -EINVAL;
2865
2866 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2867 return -EINVAL;
2868
2869 if (vma->vm_pgoff != 0)
2870 return -EINVAL;
2871
2872 WARN_ON_ONCE(event->ctx->parent_ctx);
2873 mutex_lock(&event->mmap_mutex);
2874 if (event->buffer) {
2875 if (event->buffer->nr_pages == nr_pages)
2876 atomic_inc(&event->buffer->refcount);
2877 else
2878 ret = -EINVAL;
2879 goto unlock;
2880 }
2881
2882 user_extra = nr_pages + 1;
2883 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2884
2885 /*
2886 * Increase the limit linearly with more CPUs:
2887 */
2888 user_lock_limit *= num_online_cpus();
2889
2890 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2891
2892 extra = 0;
2893 if (user_locked > user_lock_limit)
2894 extra = user_locked - user_lock_limit;
2895
2896 lock_limit = rlimit(RLIMIT_MEMLOCK);
2897 lock_limit >>= PAGE_SHIFT;
2898 locked = vma->vm_mm->locked_vm + extra;
2899
2900 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2901 !capable(CAP_IPC_LOCK)) {
2902 ret = -EPERM;
2903 goto unlock;
2904 }
2905
2906 WARN_ON(event->buffer);
2907
2908 if (vma->vm_flags & VM_WRITE)
2909 flags |= PERF_BUFFER_WRITABLE;
2910
2911 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
2912 event->cpu, flags);
2913 if (!buffer) {
2914 ret = -ENOMEM;
2915 goto unlock;
2916 }
2917 rcu_assign_pointer(event->buffer, buffer);
2918
2919 atomic_long_add(user_extra, &user->locked_vm);
2920 event->mmap_locked = extra;
2921 event->mmap_user = get_current_user();
2922 vma->vm_mm->locked_vm += event->mmap_locked;
2923
2924 unlock:
2925 if (!ret)
2926 atomic_inc(&event->mmap_count);
2927 mutex_unlock(&event->mmap_mutex);
2928
2929 vma->vm_flags |= VM_RESERVED;
2930 vma->vm_ops = &perf_mmap_vmops;
2931
2932 return ret;
2933 }
2934
2935 static int perf_fasync(int fd, struct file *filp, int on)
2936 {
2937 struct inode *inode = filp->f_path.dentry->d_inode;
2938 struct perf_event *event = filp->private_data;
2939 int retval;
2940
2941 mutex_lock(&inode->i_mutex);
2942 retval = fasync_helper(fd, filp, on, &event->fasync);
2943 mutex_unlock(&inode->i_mutex);
2944
2945 if (retval < 0)
2946 return retval;
2947
2948 return 0;
2949 }
2950
2951 static const struct file_operations perf_fops = {
2952 .llseek = no_llseek,
2953 .release = perf_release,
2954 .read = perf_read,
2955 .poll = perf_poll,
2956 .unlocked_ioctl = perf_ioctl,
2957 .compat_ioctl = perf_ioctl,
2958 .mmap = perf_mmap,
2959 .fasync = perf_fasync,
2960 };
2961
2962 /*
2963 * Perf event wakeup
2964 *
2965 * If there's data, ensure we set the poll() state and publish everything
2966 * to user-space before waking everybody up.
2967 */
2968
2969 void perf_event_wakeup(struct perf_event *event)
2970 {
2971 wake_up_all(&event->waitq);
2972
2973 if (event->pending_kill) {
2974 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2975 event->pending_kill = 0;
2976 }
2977 }
2978
2979 /*
2980 * Pending wakeups
2981 *
2982 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2983 *
2984 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2985 * single linked list and use cmpxchg() to add entries lockless.
2986 */
2987
2988 static void perf_pending_event(struct perf_pending_entry *entry)
2989 {
2990 struct perf_event *event = container_of(entry,
2991 struct perf_event, pending);
2992
2993 if (event->pending_disable) {
2994 event->pending_disable = 0;
2995 __perf_event_disable(event);
2996 }
2997
2998 if (event->pending_wakeup) {
2999 event->pending_wakeup = 0;
3000 perf_event_wakeup(event);
3001 }
3002 }
3003
3004 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3005
3006 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3007 PENDING_TAIL,
3008 };
3009
3010 static void perf_pending_queue(struct perf_pending_entry *entry,
3011 void (*func)(struct perf_pending_entry *))
3012 {
3013 struct perf_pending_entry **head;
3014
3015 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3016 return;
3017
3018 entry->func = func;
3019
3020 head = &get_cpu_var(perf_pending_head);
3021
3022 do {
3023 entry->next = *head;
3024 } while (cmpxchg(head, entry->next, entry) != entry->next);
3025
3026 set_perf_event_pending();
3027
3028 put_cpu_var(perf_pending_head);
3029 }
3030
3031 static int __perf_pending_run(void)
3032 {
3033 struct perf_pending_entry *list;
3034 int nr = 0;
3035
3036 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3037 while (list != PENDING_TAIL) {
3038 void (*func)(struct perf_pending_entry *);
3039 struct perf_pending_entry *entry = list;
3040
3041 list = list->next;
3042
3043 func = entry->func;
3044 entry->next = NULL;
3045 /*
3046 * Ensure we observe the unqueue before we issue the wakeup,
3047 * so that we won't be waiting forever.
3048 * -- see perf_not_pending().
3049 */
3050 smp_wmb();
3051
3052 func(entry);
3053 nr++;
3054 }
3055
3056 return nr;
3057 }
3058
3059 static inline int perf_not_pending(struct perf_event *event)
3060 {
3061 /*
3062 * If we flush on whatever cpu we run, there is a chance we don't
3063 * need to wait.
3064 */
3065 get_cpu();
3066 __perf_pending_run();
3067 put_cpu();
3068
3069 /*
3070 * Ensure we see the proper queue state before going to sleep
3071 * so that we do not miss the wakeup. -- see perf_pending_handle()
3072 */
3073 smp_rmb();
3074 return event->pending.next == NULL;
3075 }
3076
3077 static void perf_pending_sync(struct perf_event *event)
3078 {
3079 wait_event(event->waitq, perf_not_pending(event));
3080 }
3081
3082 void perf_event_do_pending(void)
3083 {
3084 __perf_pending_run();
3085 }
3086
3087 /*
3088 * We assume there is only KVM supporting the callbacks.
3089 * Later on, we might change it to a list if there is
3090 * another virtualization implementation supporting the callbacks.
3091 */
3092 struct perf_guest_info_callbacks *perf_guest_cbs;
3093
3094 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3095 {
3096 perf_guest_cbs = cbs;
3097 return 0;
3098 }
3099 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3100
3101 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3102 {
3103 perf_guest_cbs = NULL;
3104 return 0;
3105 }
3106 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3107
3108 /*
3109 * Output
3110 */
3111 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3112 unsigned long offset, unsigned long head)
3113 {
3114 unsigned long mask;
3115
3116 if (!buffer->writable)
3117 return true;
3118
3119 mask = perf_data_size(buffer) - 1;
3120
3121 offset = (offset - tail) & mask;
3122 head = (head - tail) & mask;
3123
3124 if ((int)(head - offset) < 0)
3125 return false;
3126
3127 return true;
3128 }
3129
3130 static void perf_output_wakeup(struct perf_output_handle *handle)
3131 {
3132 atomic_set(&handle->buffer->poll, POLL_IN);
3133
3134 if (handle->nmi) {
3135 handle->event->pending_wakeup = 1;
3136 perf_pending_queue(&handle->event->pending,
3137 perf_pending_event);
3138 } else
3139 perf_event_wakeup(handle->event);
3140 }
3141
3142 /*
3143 * We need to ensure a later event_id doesn't publish a head when a former
3144 * event isn't done writing. However since we need to deal with NMIs we
3145 * cannot fully serialize things.
3146 *
3147 * We only publish the head (and generate a wakeup) when the outer-most
3148 * event completes.
3149 */
3150 static void perf_output_get_handle(struct perf_output_handle *handle)
3151 {
3152 struct perf_buffer *buffer = handle->buffer;
3153
3154 preempt_disable();
3155 local_inc(&buffer->nest);
3156 handle->wakeup = local_read(&buffer->wakeup);
3157 }
3158
3159 static void perf_output_put_handle(struct perf_output_handle *handle)
3160 {
3161 struct perf_buffer *buffer = handle->buffer;
3162 unsigned long head;
3163
3164 again:
3165 head = local_read(&buffer->head);
3166
3167 /*
3168 * IRQ/NMI can happen here, which means we can miss a head update.
3169 */
3170
3171 if (!local_dec_and_test(&buffer->nest))
3172 goto out;
3173
3174 /*
3175 * Publish the known good head. Rely on the full barrier implied
3176 * by atomic_dec_and_test() order the buffer->head read and this
3177 * write.
3178 */
3179 buffer->user_page->data_head = head;
3180
3181 /*
3182 * Now check if we missed an update, rely on the (compiler)
3183 * barrier in atomic_dec_and_test() to re-read buffer->head.
3184 */
3185 if (unlikely(head != local_read(&buffer->head))) {
3186 local_inc(&buffer->nest);
3187 goto again;
3188 }
3189
3190 if (handle->wakeup != local_read(&buffer->wakeup))
3191 perf_output_wakeup(handle);
3192
3193 out:
3194 preempt_enable();
3195 }
3196
3197 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3198 const void *buf, unsigned int len)
3199 {
3200 do {
3201 unsigned long size = min_t(unsigned long, handle->size, len);
3202
3203 memcpy(handle->addr, buf, size);
3204
3205 len -= size;
3206 handle->addr += size;
3207 buf += size;
3208 handle->size -= size;
3209 if (!handle->size) {
3210 struct perf_buffer *buffer = handle->buffer;
3211
3212 handle->page++;
3213 handle->page &= buffer->nr_pages - 1;
3214 handle->addr = buffer->data_pages[handle->page];
3215 handle->size = PAGE_SIZE << page_order(buffer);
3216 }
3217 } while (len);
3218 }
3219
3220 int perf_output_begin(struct perf_output_handle *handle,
3221 struct perf_event *event, unsigned int size,
3222 int nmi, int sample)
3223 {
3224 struct perf_buffer *buffer;
3225 unsigned long tail, offset, head;
3226 int have_lost;
3227 struct {
3228 struct perf_event_header header;
3229 u64 id;
3230 u64 lost;
3231 } lost_event;
3232
3233 rcu_read_lock();
3234 /*
3235 * For inherited events we send all the output towards the parent.
3236 */
3237 if (event->parent)
3238 event = event->parent;
3239
3240 buffer = rcu_dereference(event->buffer);
3241 if (!buffer)
3242 goto out;
3243
3244 handle->buffer = buffer;
3245 handle->event = event;
3246 handle->nmi = nmi;
3247 handle->sample = sample;
3248
3249 if (!buffer->nr_pages)
3250 goto out;
3251
3252 have_lost = local_read(&buffer->lost);
3253 if (have_lost)
3254 size += sizeof(lost_event);
3255
3256 perf_output_get_handle(handle);
3257
3258 do {
3259 /*
3260 * Userspace could choose to issue a mb() before updating the
3261 * tail pointer. So that all reads will be completed before the
3262 * write is issued.
3263 */
3264 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3265 smp_rmb();
3266 offset = head = local_read(&buffer->head);
3267 head += size;
3268 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3269 goto fail;
3270 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3271
3272 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3273 local_add(buffer->watermark, &buffer->wakeup);
3274
3275 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3276 handle->page &= buffer->nr_pages - 1;
3277 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3278 handle->addr = buffer->data_pages[handle->page];
3279 handle->addr += handle->size;
3280 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3281
3282 if (have_lost) {
3283 lost_event.header.type = PERF_RECORD_LOST;
3284 lost_event.header.misc = 0;
3285 lost_event.header.size = sizeof(lost_event);
3286 lost_event.id = event->id;
3287 lost_event.lost = local_xchg(&buffer->lost, 0);
3288
3289 perf_output_put(handle, lost_event);
3290 }
3291
3292 return 0;
3293
3294 fail:
3295 local_inc(&buffer->lost);
3296 perf_output_put_handle(handle);
3297 out:
3298 rcu_read_unlock();
3299
3300 return -ENOSPC;
3301 }
3302
3303 void perf_output_end(struct perf_output_handle *handle)
3304 {
3305 struct perf_event *event = handle->event;
3306 struct perf_buffer *buffer = handle->buffer;
3307
3308 int wakeup_events = event->attr.wakeup_events;
3309
3310 if (handle->sample && wakeup_events) {
3311 int events = local_inc_return(&buffer->events);
3312 if (events >= wakeup_events) {
3313 local_sub(wakeup_events, &buffer->events);
3314 local_inc(&buffer->wakeup);
3315 }
3316 }
3317
3318 perf_output_put_handle(handle);
3319 rcu_read_unlock();
3320 }
3321
3322 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3323 {
3324 /*
3325 * only top level events have the pid namespace they were created in
3326 */
3327 if (event->parent)
3328 event = event->parent;
3329
3330 return task_tgid_nr_ns(p, event->ns);
3331 }
3332
3333 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3334 {
3335 /*
3336 * only top level events have the pid namespace they were created in
3337 */
3338 if (event->parent)
3339 event = event->parent;
3340
3341 return task_pid_nr_ns(p, event->ns);
3342 }
3343
3344 static void perf_output_read_one(struct perf_output_handle *handle,
3345 struct perf_event *event)
3346 {
3347 u64 read_format = event->attr.read_format;
3348 u64 values[4];
3349 int n = 0;
3350
3351 values[n++] = perf_event_count(event);
3352 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3353 values[n++] = event->total_time_enabled +
3354 atomic64_read(&event->child_total_time_enabled);
3355 }
3356 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3357 values[n++] = event->total_time_running +
3358 atomic64_read(&event->child_total_time_running);
3359 }
3360 if (read_format & PERF_FORMAT_ID)
3361 values[n++] = primary_event_id(event);
3362
3363 perf_output_copy(handle, values, n * sizeof(u64));
3364 }
3365
3366 /*
3367 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3368 */
3369 static void perf_output_read_group(struct perf_output_handle *handle,
3370 struct perf_event *event)
3371 {
3372 struct perf_event *leader = event->group_leader, *sub;
3373 u64 read_format = event->attr.read_format;
3374 u64 values[5];
3375 int n = 0;
3376
3377 values[n++] = 1 + leader->nr_siblings;
3378
3379 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3380 values[n++] = leader->total_time_enabled;
3381
3382 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3383 values[n++] = leader->total_time_running;
3384
3385 if (leader != event)
3386 leader->pmu->read(leader);
3387
3388 values[n++] = perf_event_count(leader);
3389 if (read_format & PERF_FORMAT_ID)
3390 values[n++] = primary_event_id(leader);
3391
3392 perf_output_copy(handle, values, n * sizeof(u64));
3393
3394 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3395 n = 0;
3396
3397 if (sub != event)
3398 sub->pmu->read(sub);
3399
3400 values[n++] = perf_event_count(sub);
3401 if (read_format & PERF_FORMAT_ID)
3402 values[n++] = primary_event_id(sub);
3403
3404 perf_output_copy(handle, values, n * sizeof(u64));
3405 }
3406 }
3407
3408 static void perf_output_read(struct perf_output_handle *handle,
3409 struct perf_event *event)
3410 {
3411 if (event->attr.read_format & PERF_FORMAT_GROUP)
3412 perf_output_read_group(handle, event);
3413 else
3414 perf_output_read_one(handle, event);
3415 }
3416
3417 void perf_output_sample(struct perf_output_handle *handle,
3418 struct perf_event_header *header,
3419 struct perf_sample_data *data,
3420 struct perf_event *event)
3421 {
3422 u64 sample_type = data->type;
3423
3424 perf_output_put(handle, *header);
3425
3426 if (sample_type & PERF_SAMPLE_IP)
3427 perf_output_put(handle, data->ip);
3428
3429 if (sample_type & PERF_SAMPLE_TID)
3430 perf_output_put(handle, data->tid_entry);
3431
3432 if (sample_type & PERF_SAMPLE_TIME)
3433 perf_output_put(handle, data->time);
3434
3435 if (sample_type & PERF_SAMPLE_ADDR)
3436 perf_output_put(handle, data->addr);
3437
3438 if (sample_type & PERF_SAMPLE_ID)
3439 perf_output_put(handle, data->id);
3440
3441 if (sample_type & PERF_SAMPLE_STREAM_ID)
3442 perf_output_put(handle, data->stream_id);
3443
3444 if (sample_type & PERF_SAMPLE_CPU)
3445 perf_output_put(handle, data->cpu_entry);
3446
3447 if (sample_type & PERF_SAMPLE_PERIOD)
3448 perf_output_put(handle, data->period);
3449
3450 if (sample_type & PERF_SAMPLE_READ)
3451 perf_output_read(handle, event);
3452
3453 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3454 if (data->callchain) {
3455 int size = 1;
3456
3457 if (data->callchain)
3458 size += data->callchain->nr;
3459
3460 size *= sizeof(u64);
3461
3462 perf_output_copy(handle, data->callchain, size);
3463 } else {
3464 u64 nr = 0;
3465 perf_output_put(handle, nr);
3466 }
3467 }
3468
3469 if (sample_type & PERF_SAMPLE_RAW) {
3470 if (data->raw) {
3471 perf_output_put(handle, data->raw->size);
3472 perf_output_copy(handle, data->raw->data,
3473 data->raw->size);
3474 } else {
3475 struct {
3476 u32 size;
3477 u32 data;
3478 } raw = {
3479 .size = sizeof(u32),
3480 .data = 0,
3481 };
3482 perf_output_put(handle, raw);
3483 }
3484 }
3485 }
3486
3487 void perf_prepare_sample(struct perf_event_header *header,
3488 struct perf_sample_data *data,
3489 struct perf_event *event,
3490 struct pt_regs *regs)
3491 {
3492 u64 sample_type = event->attr.sample_type;
3493
3494 data->type = sample_type;
3495
3496 header->type = PERF_RECORD_SAMPLE;
3497 header->size = sizeof(*header);
3498
3499 header->misc = 0;
3500 header->misc |= perf_misc_flags(regs);
3501
3502 if (sample_type & PERF_SAMPLE_IP) {
3503 data->ip = perf_instruction_pointer(regs);
3504
3505 header->size += sizeof(data->ip);
3506 }
3507
3508 if (sample_type & PERF_SAMPLE_TID) {
3509 /* namespace issues */
3510 data->tid_entry.pid = perf_event_pid(event, current);
3511 data->tid_entry.tid = perf_event_tid(event, current);
3512
3513 header->size += sizeof(data->tid_entry);
3514 }
3515
3516 if (sample_type & PERF_SAMPLE_TIME) {
3517 data->time = perf_clock();
3518
3519 header->size += sizeof(data->time);
3520 }
3521
3522 if (sample_type & PERF_SAMPLE_ADDR)
3523 header->size += sizeof(data->addr);
3524
3525 if (sample_type & PERF_SAMPLE_ID) {
3526 data->id = primary_event_id(event);
3527
3528 header->size += sizeof(data->id);
3529 }
3530
3531 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3532 data->stream_id = event->id;
3533
3534 header->size += sizeof(data->stream_id);
3535 }
3536
3537 if (sample_type & PERF_SAMPLE_CPU) {
3538 data->cpu_entry.cpu = raw_smp_processor_id();
3539 data->cpu_entry.reserved = 0;
3540
3541 header->size += sizeof(data->cpu_entry);
3542 }
3543
3544 if (sample_type & PERF_SAMPLE_PERIOD)
3545 header->size += sizeof(data->period);
3546
3547 if (sample_type & PERF_SAMPLE_READ)
3548 header->size += perf_event_read_size(event);
3549
3550 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3551 int size = 1;
3552
3553 data->callchain = perf_callchain(regs);
3554
3555 if (data->callchain)
3556 size += data->callchain->nr;
3557
3558 header->size += size * sizeof(u64);
3559 }
3560
3561 if (sample_type & PERF_SAMPLE_RAW) {
3562 int size = sizeof(u32);
3563
3564 if (data->raw)
3565 size += data->raw->size;
3566 else
3567 size += sizeof(u32);
3568
3569 WARN_ON_ONCE(size & (sizeof(u64)-1));
3570 header->size += size;
3571 }
3572 }
3573
3574 static void perf_event_output(struct perf_event *event, int nmi,
3575 struct perf_sample_data *data,
3576 struct pt_regs *regs)
3577 {
3578 struct perf_output_handle handle;
3579 struct perf_event_header header;
3580
3581 /* protect the callchain buffers */
3582 rcu_read_lock();
3583
3584 perf_prepare_sample(&header, data, event, regs);
3585
3586 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3587 goto exit;
3588
3589 perf_output_sample(&handle, &header, data, event);
3590
3591 perf_output_end(&handle);
3592
3593 exit:
3594 rcu_read_unlock();
3595 }
3596
3597 /*
3598 * read event_id
3599 */
3600
3601 struct perf_read_event {
3602 struct perf_event_header header;
3603
3604 u32 pid;
3605 u32 tid;
3606 };
3607
3608 static void
3609 perf_event_read_event(struct perf_event *event,
3610 struct task_struct *task)
3611 {
3612 struct perf_output_handle handle;
3613 struct perf_read_event read_event = {
3614 .header = {
3615 .type = PERF_RECORD_READ,
3616 .misc = 0,
3617 .size = sizeof(read_event) + perf_event_read_size(event),
3618 },
3619 .pid = perf_event_pid(event, task),
3620 .tid = perf_event_tid(event, task),
3621 };
3622 int ret;
3623
3624 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3625 if (ret)
3626 return;
3627
3628 perf_output_put(&handle, read_event);
3629 perf_output_read(&handle, event);
3630
3631 perf_output_end(&handle);
3632 }
3633
3634 /*
3635 * task tracking -- fork/exit
3636 *
3637 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3638 */
3639
3640 struct perf_task_event {
3641 struct task_struct *task;
3642 struct perf_event_context *task_ctx;
3643
3644 struct {
3645 struct perf_event_header header;
3646
3647 u32 pid;
3648 u32 ppid;
3649 u32 tid;
3650 u32 ptid;
3651 u64 time;
3652 } event_id;
3653 };
3654
3655 static void perf_event_task_output(struct perf_event *event,
3656 struct perf_task_event *task_event)
3657 {
3658 struct perf_output_handle handle;
3659 struct task_struct *task = task_event->task;
3660 int size, ret;
3661
3662 size = task_event->event_id.header.size;
3663 ret = perf_output_begin(&handle, event, size, 0, 0);
3664
3665 if (ret)
3666 return;
3667
3668 task_event->event_id.pid = perf_event_pid(event, task);
3669 task_event->event_id.ppid = perf_event_pid(event, current);
3670
3671 task_event->event_id.tid = perf_event_tid(event, task);
3672 task_event->event_id.ptid = perf_event_tid(event, current);
3673
3674 perf_output_put(&handle, task_event->event_id);
3675
3676 perf_output_end(&handle);
3677 }
3678
3679 static int perf_event_task_match(struct perf_event *event)
3680 {
3681 if (event->state < PERF_EVENT_STATE_INACTIVE)
3682 return 0;
3683
3684 if (event->cpu != -1 && event->cpu != smp_processor_id())
3685 return 0;
3686
3687 if (event->attr.comm || event->attr.mmap ||
3688 event->attr.mmap_data || event->attr.task)
3689 return 1;
3690
3691 return 0;
3692 }
3693
3694 static void perf_event_task_ctx(struct perf_event_context *ctx,
3695 struct perf_task_event *task_event)
3696 {
3697 struct perf_event *event;
3698
3699 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3700 if (perf_event_task_match(event))
3701 perf_event_task_output(event, task_event);
3702 }
3703 }
3704
3705 static void perf_event_task_event(struct perf_task_event *task_event)
3706 {
3707 struct perf_cpu_context *cpuctx;
3708 struct perf_event_context *ctx = task_event->task_ctx;
3709
3710 rcu_read_lock();
3711 cpuctx = &get_cpu_var(perf_cpu_context);
3712 perf_event_task_ctx(&cpuctx->ctx, task_event);
3713 if (!ctx)
3714 ctx = rcu_dereference(current->perf_event_ctxp);
3715 if (ctx)
3716 perf_event_task_ctx(ctx, task_event);
3717 put_cpu_var(perf_cpu_context);
3718 rcu_read_unlock();
3719 }
3720
3721 static void perf_event_task(struct task_struct *task,
3722 struct perf_event_context *task_ctx,
3723 int new)
3724 {
3725 struct perf_task_event task_event;
3726
3727 if (!atomic_read(&nr_comm_events) &&
3728 !atomic_read(&nr_mmap_events) &&
3729 !atomic_read(&nr_task_events))
3730 return;
3731
3732 task_event = (struct perf_task_event){
3733 .task = task,
3734 .task_ctx = task_ctx,
3735 .event_id = {
3736 .header = {
3737 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3738 .misc = 0,
3739 .size = sizeof(task_event.event_id),
3740 },
3741 /* .pid */
3742 /* .ppid */
3743 /* .tid */
3744 /* .ptid */
3745 .time = perf_clock(),
3746 },
3747 };
3748
3749 perf_event_task_event(&task_event);
3750 }
3751
3752 void perf_event_fork(struct task_struct *task)
3753 {
3754 perf_event_task(task, NULL, 1);
3755 }
3756
3757 /*
3758 * comm tracking
3759 */
3760
3761 struct perf_comm_event {
3762 struct task_struct *task;
3763 char *comm;
3764 int comm_size;
3765
3766 struct {
3767 struct perf_event_header header;
3768
3769 u32 pid;
3770 u32 tid;
3771 } event_id;
3772 };
3773
3774 static void perf_event_comm_output(struct perf_event *event,
3775 struct perf_comm_event *comm_event)
3776 {
3777 struct perf_output_handle handle;
3778 int size = comm_event->event_id.header.size;
3779 int ret = perf_output_begin(&handle, event, size, 0, 0);
3780
3781 if (ret)
3782 return;
3783
3784 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3785 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3786
3787 perf_output_put(&handle, comm_event->event_id);
3788 perf_output_copy(&handle, comm_event->comm,
3789 comm_event->comm_size);
3790 perf_output_end(&handle);
3791 }
3792
3793 static int perf_event_comm_match(struct perf_event *event)
3794 {
3795 if (event->state < PERF_EVENT_STATE_INACTIVE)
3796 return 0;
3797
3798 if (event->cpu != -1 && event->cpu != smp_processor_id())
3799 return 0;
3800
3801 if (event->attr.comm)
3802 return 1;
3803
3804 return 0;
3805 }
3806
3807 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3808 struct perf_comm_event *comm_event)
3809 {
3810 struct perf_event *event;
3811
3812 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3813 if (perf_event_comm_match(event))
3814 perf_event_comm_output(event, comm_event);
3815 }
3816 }
3817
3818 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3819 {
3820 struct perf_cpu_context *cpuctx;
3821 struct perf_event_context *ctx;
3822 unsigned int size;
3823 char comm[TASK_COMM_LEN];
3824
3825 memset(comm, 0, sizeof(comm));
3826 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3827 size = ALIGN(strlen(comm)+1, sizeof(u64));
3828
3829 comm_event->comm = comm;
3830 comm_event->comm_size = size;
3831
3832 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3833
3834 rcu_read_lock();
3835 cpuctx = &get_cpu_var(perf_cpu_context);
3836 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3837 ctx = rcu_dereference(current->perf_event_ctxp);
3838 if (ctx)
3839 perf_event_comm_ctx(ctx, comm_event);
3840 put_cpu_var(perf_cpu_context);
3841 rcu_read_unlock();
3842 }
3843
3844 void perf_event_comm(struct task_struct *task)
3845 {
3846 struct perf_comm_event comm_event;
3847
3848 if (task->perf_event_ctxp)
3849 perf_event_enable_on_exec(task);
3850
3851 if (!atomic_read(&nr_comm_events))
3852 return;
3853
3854 comm_event = (struct perf_comm_event){
3855 .task = task,
3856 /* .comm */
3857 /* .comm_size */
3858 .event_id = {
3859 .header = {
3860 .type = PERF_RECORD_COMM,
3861 .misc = 0,
3862 /* .size */
3863 },
3864 /* .pid */
3865 /* .tid */
3866 },
3867 };
3868
3869 perf_event_comm_event(&comm_event);
3870 }
3871
3872 /*
3873 * mmap tracking
3874 */
3875
3876 struct perf_mmap_event {
3877 struct vm_area_struct *vma;
3878
3879 const char *file_name;
3880 int file_size;
3881
3882 struct {
3883 struct perf_event_header header;
3884
3885 u32 pid;
3886 u32 tid;
3887 u64 start;
3888 u64 len;
3889 u64 pgoff;
3890 } event_id;
3891 };
3892
3893 static void perf_event_mmap_output(struct perf_event *event,
3894 struct perf_mmap_event *mmap_event)
3895 {
3896 struct perf_output_handle handle;
3897 int size = mmap_event->event_id.header.size;
3898 int ret = perf_output_begin(&handle, event, size, 0, 0);
3899
3900 if (ret)
3901 return;
3902
3903 mmap_event->event_id.pid = perf_event_pid(event, current);
3904 mmap_event->event_id.tid = perf_event_tid(event, current);
3905
3906 perf_output_put(&handle, mmap_event->event_id);
3907 perf_output_copy(&handle, mmap_event->file_name,
3908 mmap_event->file_size);
3909 perf_output_end(&handle);
3910 }
3911
3912 static int perf_event_mmap_match(struct perf_event *event,
3913 struct perf_mmap_event *mmap_event,
3914 int executable)
3915 {
3916 if (event->state < PERF_EVENT_STATE_INACTIVE)
3917 return 0;
3918
3919 if (event->cpu != -1 && event->cpu != smp_processor_id())
3920 return 0;
3921
3922 if ((!executable && event->attr.mmap_data) ||
3923 (executable && event->attr.mmap))
3924 return 1;
3925
3926 return 0;
3927 }
3928
3929 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3930 struct perf_mmap_event *mmap_event,
3931 int executable)
3932 {
3933 struct perf_event *event;
3934
3935 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3936 if (perf_event_mmap_match(event, mmap_event, executable))
3937 perf_event_mmap_output(event, mmap_event);
3938 }
3939 }
3940
3941 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3942 {
3943 struct perf_cpu_context *cpuctx;
3944 struct perf_event_context *ctx;
3945 struct vm_area_struct *vma = mmap_event->vma;
3946 struct file *file = vma->vm_file;
3947 unsigned int size;
3948 char tmp[16];
3949 char *buf = NULL;
3950 const char *name;
3951
3952 memset(tmp, 0, sizeof(tmp));
3953
3954 if (file) {
3955 /*
3956 * d_path works from the end of the buffer backwards, so we
3957 * need to add enough zero bytes after the string to handle
3958 * the 64bit alignment we do later.
3959 */
3960 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3961 if (!buf) {
3962 name = strncpy(tmp, "//enomem", sizeof(tmp));
3963 goto got_name;
3964 }
3965 name = d_path(&file->f_path, buf, PATH_MAX);
3966 if (IS_ERR(name)) {
3967 name = strncpy(tmp, "//toolong", sizeof(tmp));
3968 goto got_name;
3969 }
3970 } else {
3971 if (arch_vma_name(mmap_event->vma)) {
3972 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3973 sizeof(tmp));
3974 goto got_name;
3975 }
3976
3977 if (!vma->vm_mm) {
3978 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3979 goto got_name;
3980 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
3981 vma->vm_end >= vma->vm_mm->brk) {
3982 name = strncpy(tmp, "[heap]", sizeof(tmp));
3983 goto got_name;
3984 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
3985 vma->vm_end >= vma->vm_mm->start_stack) {
3986 name = strncpy(tmp, "[stack]", sizeof(tmp));
3987 goto got_name;
3988 }
3989
3990 name = strncpy(tmp, "//anon", sizeof(tmp));
3991 goto got_name;
3992 }
3993
3994 got_name:
3995 size = ALIGN(strlen(name)+1, sizeof(u64));
3996
3997 mmap_event->file_name = name;
3998 mmap_event->file_size = size;
3999
4000 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4001
4002 rcu_read_lock();
4003 cpuctx = &get_cpu_var(perf_cpu_context);
4004 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
4005 ctx = rcu_dereference(current->perf_event_ctxp);
4006 if (ctx)
4007 perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
4008 put_cpu_var(perf_cpu_context);
4009 rcu_read_unlock();
4010
4011 kfree(buf);
4012 }
4013
4014 void perf_event_mmap(struct vm_area_struct *vma)
4015 {
4016 struct perf_mmap_event mmap_event;
4017
4018 if (!atomic_read(&nr_mmap_events))
4019 return;
4020
4021 mmap_event = (struct perf_mmap_event){
4022 .vma = vma,
4023 /* .file_name */
4024 /* .file_size */
4025 .event_id = {
4026 .header = {
4027 .type = PERF_RECORD_MMAP,
4028 .misc = PERF_RECORD_MISC_USER,
4029 /* .size */
4030 },
4031 /* .pid */
4032 /* .tid */
4033 .start = vma->vm_start,
4034 .len = vma->vm_end - vma->vm_start,
4035 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4036 },
4037 };
4038
4039 perf_event_mmap_event(&mmap_event);
4040 }
4041
4042 /*
4043 * IRQ throttle logging
4044 */
4045
4046 static void perf_log_throttle(struct perf_event *event, int enable)
4047 {
4048 struct perf_output_handle handle;
4049 int ret;
4050
4051 struct {
4052 struct perf_event_header header;
4053 u64 time;
4054 u64 id;
4055 u64 stream_id;
4056 } throttle_event = {
4057 .header = {
4058 .type = PERF_RECORD_THROTTLE,
4059 .misc = 0,
4060 .size = sizeof(throttle_event),
4061 },
4062 .time = perf_clock(),
4063 .id = primary_event_id(event),
4064 .stream_id = event->id,
4065 };
4066
4067 if (enable)
4068 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4069
4070 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4071 if (ret)
4072 return;
4073
4074 perf_output_put(&handle, throttle_event);
4075 perf_output_end(&handle);
4076 }
4077
4078 /*
4079 * Generic event overflow handling, sampling.
4080 */
4081
4082 static int __perf_event_overflow(struct perf_event *event, int nmi,
4083 int throttle, struct perf_sample_data *data,
4084 struct pt_regs *regs)
4085 {
4086 int events = atomic_read(&event->event_limit);
4087 struct hw_perf_event *hwc = &event->hw;
4088 int ret = 0;
4089
4090 if (!throttle) {
4091 hwc->interrupts++;
4092 } else {
4093 if (hwc->interrupts != MAX_INTERRUPTS) {
4094 hwc->interrupts++;
4095 if (HZ * hwc->interrupts >
4096 (u64)sysctl_perf_event_sample_rate) {
4097 hwc->interrupts = MAX_INTERRUPTS;
4098 perf_log_throttle(event, 0);
4099 ret = 1;
4100 }
4101 } else {
4102 /*
4103 * Keep re-disabling events even though on the previous
4104 * pass we disabled it - just in case we raced with a
4105 * sched-in and the event got enabled again:
4106 */
4107 ret = 1;
4108 }
4109 }
4110
4111 if (event->attr.freq) {
4112 u64 now = perf_clock();
4113 s64 delta = now - hwc->freq_time_stamp;
4114
4115 hwc->freq_time_stamp = now;
4116
4117 if (delta > 0 && delta < 2*TICK_NSEC)
4118 perf_adjust_period(event, delta, hwc->last_period);
4119 }
4120
4121 /*
4122 * XXX event_limit might not quite work as expected on inherited
4123 * events
4124 */
4125
4126 event->pending_kill = POLL_IN;
4127 if (events && atomic_dec_and_test(&event->event_limit)) {
4128 ret = 1;
4129 event->pending_kill = POLL_HUP;
4130 if (nmi) {
4131 event->pending_disable = 1;
4132 perf_pending_queue(&event->pending,
4133 perf_pending_event);
4134 } else
4135 perf_event_disable(event);
4136 }
4137
4138 if (event->overflow_handler)
4139 event->overflow_handler(event, nmi, data, regs);
4140 else
4141 perf_event_output(event, nmi, data, regs);
4142
4143 return ret;
4144 }
4145
4146 int perf_event_overflow(struct perf_event *event, int nmi,
4147 struct perf_sample_data *data,
4148 struct pt_regs *regs)
4149 {
4150 return __perf_event_overflow(event, nmi, 1, data, regs);
4151 }
4152
4153 /*
4154 * Generic software event infrastructure
4155 */
4156
4157 /*
4158 * We directly increment event->count and keep a second value in
4159 * event->hw.period_left to count intervals. This period event
4160 * is kept in the range [-sample_period, 0] so that we can use the
4161 * sign as trigger.
4162 */
4163
4164 static u64 perf_swevent_set_period(struct perf_event *event)
4165 {
4166 struct hw_perf_event *hwc = &event->hw;
4167 u64 period = hwc->last_period;
4168 u64 nr, offset;
4169 s64 old, val;
4170
4171 hwc->last_period = hwc->sample_period;
4172
4173 again:
4174 old = val = local64_read(&hwc->period_left);
4175 if (val < 0)
4176 return 0;
4177
4178 nr = div64_u64(period + val, period);
4179 offset = nr * period;
4180 val -= offset;
4181 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4182 goto again;
4183
4184 return nr;
4185 }
4186
4187 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4188 int nmi, struct perf_sample_data *data,
4189 struct pt_regs *regs)
4190 {
4191 struct hw_perf_event *hwc = &event->hw;
4192 int throttle = 0;
4193
4194 data->period = event->hw.last_period;
4195 if (!overflow)
4196 overflow = perf_swevent_set_period(event);
4197
4198 if (hwc->interrupts == MAX_INTERRUPTS)
4199 return;
4200
4201 for (; overflow; overflow--) {
4202 if (__perf_event_overflow(event, nmi, throttle,
4203 data, regs)) {
4204 /*
4205 * We inhibit the overflow from happening when
4206 * hwc->interrupts == MAX_INTERRUPTS.
4207 */
4208 break;
4209 }
4210 throttle = 1;
4211 }
4212 }
4213
4214 static void perf_swevent_event(struct perf_event *event, u64 nr,
4215 int nmi, struct perf_sample_data *data,
4216 struct pt_regs *regs)
4217 {
4218 struct hw_perf_event *hwc = &event->hw;
4219
4220 local64_add(nr, &event->count);
4221
4222 if (!regs)
4223 return;
4224
4225 if (!hwc->sample_period)
4226 return;
4227
4228 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4229 return perf_swevent_overflow(event, 1, nmi, data, regs);
4230
4231 if (local64_add_negative(nr, &hwc->period_left))
4232 return;
4233
4234 perf_swevent_overflow(event, 0, nmi, data, regs);
4235 }
4236
4237 static int perf_exclude_event(struct perf_event *event,
4238 struct pt_regs *regs)
4239 {
4240 if (event->hw.state & PERF_HES_STOPPED)
4241 return 0;
4242
4243 if (regs) {
4244 if (event->attr.exclude_user && user_mode(regs))
4245 return 1;
4246
4247 if (event->attr.exclude_kernel && !user_mode(regs))
4248 return 1;
4249 }
4250
4251 return 0;
4252 }
4253
4254 static int perf_swevent_match(struct perf_event *event,
4255 enum perf_type_id type,
4256 u32 event_id,
4257 struct perf_sample_data *data,
4258 struct pt_regs *regs)
4259 {
4260 if (event->attr.type != type)
4261 return 0;
4262
4263 if (event->attr.config != event_id)
4264 return 0;
4265
4266 if (perf_exclude_event(event, regs))
4267 return 0;
4268
4269 return 1;
4270 }
4271
4272 static inline u64 swevent_hash(u64 type, u32 event_id)
4273 {
4274 u64 val = event_id | (type << 32);
4275
4276 return hash_64(val, SWEVENT_HLIST_BITS);
4277 }
4278
4279 static inline struct hlist_head *
4280 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4281 {
4282 u64 hash = swevent_hash(type, event_id);
4283
4284 return &hlist->heads[hash];
4285 }
4286
4287 /* For the read side: events when they trigger */
4288 static inline struct hlist_head *
4289 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4290 {
4291 struct swevent_hlist *hlist;
4292
4293 hlist = rcu_dereference(ctx->swevent_hlist);
4294 if (!hlist)
4295 return NULL;
4296
4297 return __find_swevent_head(hlist, type, event_id);
4298 }
4299
4300 /* For the event head insertion and removal in the hlist */
4301 static inline struct hlist_head *
4302 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4303 {
4304 struct swevent_hlist *hlist;
4305 u32 event_id = event->attr.config;
4306 u64 type = event->attr.type;
4307
4308 /*
4309 * Event scheduling is always serialized against hlist allocation
4310 * and release. Which makes the protected version suitable here.
4311 * The context lock guarantees that.
4312 */
4313 hlist = rcu_dereference_protected(ctx->swevent_hlist,
4314 lockdep_is_held(&event->ctx->lock));
4315 if (!hlist)
4316 return NULL;
4317
4318 return __find_swevent_head(hlist, type, event_id);
4319 }
4320
4321 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4322 u64 nr, int nmi,
4323 struct perf_sample_data *data,
4324 struct pt_regs *regs)
4325 {
4326 struct perf_cpu_context *cpuctx;
4327 struct perf_event *event;
4328 struct hlist_node *node;
4329 struct hlist_head *head;
4330
4331 cpuctx = &__get_cpu_var(perf_cpu_context);
4332
4333 rcu_read_lock();
4334
4335 head = find_swevent_head_rcu(cpuctx, type, event_id);
4336
4337 if (!head)
4338 goto end;
4339
4340 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4341 if (perf_swevent_match(event, type, event_id, data, regs))
4342 perf_swevent_event(event, nr, nmi, data, regs);
4343 }
4344 end:
4345 rcu_read_unlock();
4346 }
4347
4348 int perf_swevent_get_recursion_context(void)
4349 {
4350 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4351
4352 return get_recursion_context(cpuctx->recursion);
4353 }
4354 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4355
4356 void inline perf_swevent_put_recursion_context(int rctx)
4357 {
4358 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4359
4360 put_recursion_context(cpuctx->recursion, rctx);
4361 }
4362
4363 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4364 struct pt_regs *regs, u64 addr)
4365 {
4366 struct perf_sample_data data;
4367 int rctx;
4368
4369 preempt_disable_notrace();
4370 rctx = perf_swevent_get_recursion_context();
4371 if (rctx < 0)
4372 return;
4373
4374 perf_sample_data_init(&data, addr);
4375
4376 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4377
4378 perf_swevent_put_recursion_context(rctx);
4379 preempt_enable_notrace();
4380 }
4381
4382 static void perf_swevent_read(struct perf_event *event)
4383 {
4384 }
4385
4386 static int perf_swevent_add(struct perf_event *event, int flags)
4387 {
4388 struct hw_perf_event *hwc = &event->hw;
4389 struct perf_cpu_context *cpuctx;
4390 struct hlist_head *head;
4391
4392 cpuctx = &__get_cpu_var(perf_cpu_context);
4393
4394 if (hwc->sample_period) {
4395 hwc->last_period = hwc->sample_period;
4396 perf_swevent_set_period(event);
4397 }
4398
4399 hwc->state = !(flags & PERF_EF_START);
4400
4401 head = find_swevent_head(cpuctx, event);
4402 if (WARN_ON_ONCE(!head))
4403 return -EINVAL;
4404
4405 hlist_add_head_rcu(&event->hlist_entry, head);
4406
4407 return 0;
4408 }
4409
4410 static void perf_swevent_del(struct perf_event *event, int flags)
4411 {
4412 hlist_del_rcu(&event->hlist_entry);
4413 }
4414
4415 static void perf_swevent_start(struct perf_event *event, int flags)
4416 {
4417 event->hw.state = 0;
4418 }
4419
4420 static void perf_swevent_stop(struct perf_event *event, int flags)
4421 {
4422 event->hw.state = PERF_HES_STOPPED;
4423 }
4424
4425 /* Deref the hlist from the update side */
4426 static inline struct swevent_hlist *
4427 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4428 {
4429 return rcu_dereference_protected(cpuctx->swevent_hlist,
4430 lockdep_is_held(&cpuctx->hlist_mutex));
4431 }
4432
4433 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4434 {
4435 struct swevent_hlist *hlist;
4436
4437 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4438 kfree(hlist);
4439 }
4440
4441 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4442 {
4443 struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4444
4445 if (!hlist)
4446 return;
4447
4448 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4449 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4450 }
4451
4452 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4453 {
4454 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4455
4456 mutex_lock(&cpuctx->hlist_mutex);
4457
4458 if (!--cpuctx->hlist_refcount)
4459 swevent_hlist_release(cpuctx);
4460
4461 mutex_unlock(&cpuctx->hlist_mutex);
4462 }
4463
4464 static void swevent_hlist_put(struct perf_event *event)
4465 {
4466 int cpu;
4467
4468 if (event->cpu != -1) {
4469 swevent_hlist_put_cpu(event, event->cpu);
4470 return;
4471 }
4472
4473 for_each_possible_cpu(cpu)
4474 swevent_hlist_put_cpu(event, cpu);
4475 }
4476
4477 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4478 {
4479 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4480 int err = 0;
4481
4482 mutex_lock(&cpuctx->hlist_mutex);
4483
4484 if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4485 struct swevent_hlist *hlist;
4486
4487 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4488 if (!hlist) {
4489 err = -ENOMEM;
4490 goto exit;
4491 }
4492 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4493 }
4494 cpuctx->hlist_refcount++;
4495 exit:
4496 mutex_unlock(&cpuctx->hlist_mutex);
4497
4498 return err;
4499 }
4500
4501 static int swevent_hlist_get(struct perf_event *event)
4502 {
4503 int err;
4504 int cpu, failed_cpu;
4505
4506 if (event->cpu != -1)
4507 return swevent_hlist_get_cpu(event, event->cpu);
4508
4509 get_online_cpus();
4510 for_each_possible_cpu(cpu) {
4511 err = swevent_hlist_get_cpu(event, cpu);
4512 if (err) {
4513 failed_cpu = cpu;
4514 goto fail;
4515 }
4516 }
4517 put_online_cpus();
4518
4519 return 0;
4520 fail:
4521 for_each_possible_cpu(cpu) {
4522 if (cpu == failed_cpu)
4523 break;
4524 swevent_hlist_put_cpu(event, cpu);
4525 }
4526
4527 put_online_cpus();
4528 return err;
4529 }
4530
4531 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4532
4533 static void sw_perf_event_destroy(struct perf_event *event)
4534 {
4535 u64 event_id = event->attr.config;
4536
4537 WARN_ON(event->parent);
4538
4539 atomic_dec(&perf_swevent_enabled[event_id]);
4540 swevent_hlist_put(event);
4541 }
4542
4543 static int perf_swevent_init(struct perf_event *event)
4544 {
4545 int event_id = event->attr.config;
4546
4547 if (event->attr.type != PERF_TYPE_SOFTWARE)
4548 return -ENOENT;
4549
4550 switch (event_id) {
4551 case PERF_COUNT_SW_CPU_CLOCK:
4552 case PERF_COUNT_SW_TASK_CLOCK:
4553 return -ENOENT;
4554
4555 default:
4556 break;
4557 }
4558
4559 if (event_id > PERF_COUNT_SW_MAX)
4560 return -ENOENT;
4561
4562 if (!event->parent) {
4563 int err;
4564
4565 err = swevent_hlist_get(event);
4566 if (err)
4567 return err;
4568
4569 atomic_inc(&perf_swevent_enabled[event_id]);
4570 event->destroy = sw_perf_event_destroy;
4571 }
4572
4573 return 0;
4574 }
4575
4576 static struct pmu perf_swevent = {
4577 .event_init = perf_swevent_init,
4578 .add = perf_swevent_add,
4579 .del = perf_swevent_del,
4580 .start = perf_swevent_start,
4581 .stop = perf_swevent_stop,
4582 .read = perf_swevent_read,
4583 };
4584
4585 #ifdef CONFIG_EVENT_TRACING
4586
4587 static int perf_tp_filter_match(struct perf_event *event,
4588 struct perf_sample_data *data)
4589 {
4590 void *record = data->raw->data;
4591
4592 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4593 return 1;
4594 return 0;
4595 }
4596
4597 static int perf_tp_event_match(struct perf_event *event,
4598 struct perf_sample_data *data,
4599 struct pt_regs *regs)
4600 {
4601 /*
4602 * All tracepoints are from kernel-space.
4603 */
4604 if (event->attr.exclude_kernel)
4605 return 0;
4606
4607 if (!perf_tp_filter_match(event, data))
4608 return 0;
4609
4610 return 1;
4611 }
4612
4613 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4614 struct pt_regs *regs, struct hlist_head *head, int rctx)
4615 {
4616 struct perf_sample_data data;
4617 struct perf_event *event;
4618 struct hlist_node *node;
4619
4620 struct perf_raw_record raw = {
4621 .size = entry_size,
4622 .data = record,
4623 };
4624
4625 perf_sample_data_init(&data, addr);
4626 data.raw = &raw;
4627
4628 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4629 if (perf_tp_event_match(event, &data, regs))
4630 perf_swevent_event(event, count, 1, &data, regs);
4631 }
4632
4633 perf_swevent_put_recursion_context(rctx);
4634 }
4635 EXPORT_SYMBOL_GPL(perf_tp_event);
4636
4637 static void tp_perf_event_destroy(struct perf_event *event)
4638 {
4639 perf_trace_destroy(event);
4640 }
4641
4642 static int perf_tp_event_init(struct perf_event *event)
4643 {
4644 int err;
4645
4646 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4647 return -ENOENT;
4648
4649 /*
4650 * Raw tracepoint data is a severe data leak, only allow root to
4651 * have these.
4652 */
4653 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4654 perf_paranoid_tracepoint_raw() &&
4655 !capable(CAP_SYS_ADMIN))
4656 return -EPERM;
4657
4658 err = perf_trace_init(event);
4659 if (err)
4660 return err;
4661
4662 event->destroy = tp_perf_event_destroy;
4663
4664 return 0;
4665 }
4666
4667 static struct pmu perf_tracepoint = {
4668 .event_init = perf_tp_event_init,
4669 .add = perf_trace_add,
4670 .del = perf_trace_del,
4671 .start = perf_swevent_start,
4672 .stop = perf_swevent_stop,
4673 .read = perf_swevent_read,
4674 };
4675
4676 static inline void perf_tp_register(void)
4677 {
4678 perf_pmu_register(&perf_tracepoint);
4679 }
4680
4681 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4682 {
4683 char *filter_str;
4684 int ret;
4685
4686 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4687 return -EINVAL;
4688
4689 filter_str = strndup_user(arg, PAGE_SIZE);
4690 if (IS_ERR(filter_str))
4691 return PTR_ERR(filter_str);
4692
4693 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4694
4695 kfree(filter_str);
4696 return ret;
4697 }
4698
4699 static void perf_event_free_filter(struct perf_event *event)
4700 {
4701 ftrace_profile_free_filter(event);
4702 }
4703
4704 #else
4705
4706 static inline void perf_tp_register(void)
4707 {
4708 }
4709
4710 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4711 {
4712 return -ENOENT;
4713 }
4714
4715 static void perf_event_free_filter(struct perf_event *event)
4716 {
4717 }
4718
4719 #endif /* CONFIG_EVENT_TRACING */
4720
4721 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4722 void perf_bp_event(struct perf_event *bp, void *data)
4723 {
4724 struct perf_sample_data sample;
4725 struct pt_regs *regs = data;
4726
4727 perf_sample_data_init(&sample, bp->attr.bp_addr);
4728
4729 if (!bp->hw.state && !perf_exclude_event(bp, regs))
4730 perf_swevent_event(bp, 1, 1, &sample, regs);
4731 }
4732 #endif
4733
4734 /*
4735 * hrtimer based swevent callback
4736 */
4737
4738 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4739 {
4740 enum hrtimer_restart ret = HRTIMER_RESTART;
4741 struct perf_sample_data data;
4742 struct pt_regs *regs;
4743 struct perf_event *event;
4744 u64 period;
4745
4746 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4747 event->pmu->read(event);
4748
4749 perf_sample_data_init(&data, 0);
4750 data.period = event->hw.last_period;
4751 regs = get_irq_regs();
4752
4753 if (regs && !perf_exclude_event(event, regs)) {
4754 if (!(event->attr.exclude_idle && current->pid == 0))
4755 if (perf_event_overflow(event, 0, &data, regs))
4756 ret = HRTIMER_NORESTART;
4757 }
4758
4759 period = max_t(u64, 10000, event->hw.sample_period);
4760 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4761
4762 return ret;
4763 }
4764
4765 static void perf_swevent_start_hrtimer(struct perf_event *event)
4766 {
4767 struct hw_perf_event *hwc = &event->hw;
4768
4769 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4770 hwc->hrtimer.function = perf_swevent_hrtimer;
4771 if (hwc->sample_period) {
4772 s64 period = local64_read(&hwc->period_left);
4773
4774 if (period) {
4775 if (period < 0)
4776 period = 10000;
4777
4778 local64_set(&hwc->period_left, 0);
4779 } else {
4780 period = max_t(u64, 10000, hwc->sample_period);
4781 }
4782 __hrtimer_start_range_ns(&hwc->hrtimer,
4783 ns_to_ktime(period), 0,
4784 HRTIMER_MODE_REL, 0);
4785 }
4786 }
4787
4788 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4789 {
4790 struct hw_perf_event *hwc = &event->hw;
4791
4792 if (hwc->sample_period) {
4793 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4794 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4795
4796 hrtimer_cancel(&hwc->hrtimer);
4797 }
4798 }
4799
4800 /*
4801 * Software event: cpu wall time clock
4802 */
4803
4804 static void cpu_clock_event_update(struct perf_event *event)
4805 {
4806 s64 prev;
4807 u64 now;
4808
4809 now = local_clock();
4810 prev = local64_xchg(&event->hw.prev_count, now);
4811 local64_add(now - prev, &event->count);
4812 }
4813
4814 static void cpu_clock_event_start(struct perf_event *event, int flags)
4815 {
4816 local64_set(&event->hw.prev_count, local_clock());
4817 perf_swevent_start_hrtimer(event);
4818 }
4819
4820 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4821 {
4822 perf_swevent_cancel_hrtimer(event);
4823 cpu_clock_event_update(event);
4824 }
4825
4826 static int cpu_clock_event_add(struct perf_event *event, int flags)
4827 {
4828 if (flags & PERF_EF_START)
4829 cpu_clock_event_start(event, flags);
4830
4831 return 0;
4832 }
4833
4834 static void cpu_clock_event_del(struct perf_event *event, int flags)
4835 {
4836 cpu_clock_event_stop(event, flags);
4837 }
4838
4839 static void cpu_clock_event_read(struct perf_event *event)
4840 {
4841 cpu_clock_event_update(event);
4842 }
4843
4844 static int cpu_clock_event_init(struct perf_event *event)
4845 {
4846 if (event->attr.type != PERF_TYPE_SOFTWARE)
4847 return -ENOENT;
4848
4849 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4850 return -ENOENT;
4851
4852 return 0;
4853 }
4854
4855 static struct pmu perf_cpu_clock = {
4856 .event_init = cpu_clock_event_init,
4857 .add = cpu_clock_event_add,
4858 .del = cpu_clock_event_del,
4859 .start = cpu_clock_event_start,
4860 .stop = cpu_clock_event_stop,
4861 .read = cpu_clock_event_read,
4862 };
4863
4864 /*
4865 * Software event: task time clock
4866 */
4867
4868 static void task_clock_event_update(struct perf_event *event, u64 now)
4869 {
4870 u64 prev;
4871 s64 delta;
4872
4873 prev = local64_xchg(&event->hw.prev_count, now);
4874 delta = now - prev;
4875 local64_add(delta, &event->count);
4876 }
4877
4878 static void task_clock_event_start(struct perf_event *event, int flags)
4879 {
4880 local64_set(&event->hw.prev_count, event->ctx->time);
4881 perf_swevent_start_hrtimer(event);
4882 }
4883
4884 static void task_clock_event_stop(struct perf_event *event, int flags)
4885 {
4886 perf_swevent_cancel_hrtimer(event);
4887 task_clock_event_update(event, event->ctx->time);
4888 }
4889
4890 static int task_clock_event_add(struct perf_event *event, int flags)
4891 {
4892 if (flags & PERF_EF_START)
4893 task_clock_event_start(event, flags);
4894
4895 return 0;
4896 }
4897
4898 static void task_clock_event_del(struct perf_event *event, int flags)
4899 {
4900 task_clock_event_stop(event, PERF_EF_UPDATE);
4901 }
4902
4903 static void task_clock_event_read(struct perf_event *event)
4904 {
4905 u64 time;
4906
4907 if (!in_nmi()) {
4908 update_context_time(event->ctx);
4909 time = event->ctx->time;
4910 } else {
4911 u64 now = perf_clock();
4912 u64 delta = now - event->ctx->timestamp;
4913 time = event->ctx->time + delta;
4914 }
4915
4916 task_clock_event_update(event, time);
4917 }
4918
4919 static int task_clock_event_init(struct perf_event *event)
4920 {
4921 if (event->attr.type != PERF_TYPE_SOFTWARE)
4922 return -ENOENT;
4923
4924 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
4925 return -ENOENT;
4926
4927 return 0;
4928 }
4929
4930 static struct pmu perf_task_clock = {
4931 .event_init = task_clock_event_init,
4932 .add = task_clock_event_add,
4933 .del = task_clock_event_del,
4934 .start = task_clock_event_start,
4935 .stop = task_clock_event_stop,
4936 .read = task_clock_event_read,
4937 };
4938
4939 static LIST_HEAD(pmus);
4940 static DEFINE_MUTEX(pmus_lock);
4941 static struct srcu_struct pmus_srcu;
4942
4943 static void perf_pmu_nop_void(struct pmu *pmu)
4944 {
4945 }
4946
4947 static int perf_pmu_nop_int(struct pmu *pmu)
4948 {
4949 return 0;
4950 }
4951
4952 static void perf_pmu_start_txn(struct pmu *pmu)
4953 {
4954 perf_pmu_disable(pmu);
4955 }
4956
4957 static int perf_pmu_commit_txn(struct pmu *pmu)
4958 {
4959 perf_pmu_enable(pmu);
4960 return 0;
4961 }
4962
4963 static void perf_pmu_cancel_txn(struct pmu *pmu)
4964 {
4965 perf_pmu_enable(pmu);
4966 }
4967
4968 int perf_pmu_register(struct pmu *pmu)
4969 {
4970 int ret;
4971
4972 mutex_lock(&pmus_lock);
4973 ret = -ENOMEM;
4974 pmu->pmu_disable_count = alloc_percpu(int);
4975 if (!pmu->pmu_disable_count)
4976 goto unlock;
4977
4978 if (!pmu->start_txn) {
4979 if (pmu->pmu_enable) {
4980 /*
4981 * If we have pmu_enable/pmu_disable calls, install
4982 * transaction stubs that use that to try and batch
4983 * hardware accesses.
4984 */
4985 pmu->start_txn = perf_pmu_start_txn;
4986 pmu->commit_txn = perf_pmu_commit_txn;
4987 pmu->cancel_txn = perf_pmu_cancel_txn;
4988 } else {
4989 pmu->start_txn = perf_pmu_nop_void;
4990 pmu->commit_txn = perf_pmu_nop_int;
4991 pmu->cancel_txn = perf_pmu_nop_void;
4992 }
4993 }
4994
4995 if (!pmu->pmu_enable) {
4996 pmu->pmu_enable = perf_pmu_nop_void;
4997 pmu->pmu_disable = perf_pmu_nop_void;
4998 }
4999
5000 list_add_rcu(&pmu->entry, &pmus);
5001 ret = 0;
5002 unlock:
5003 mutex_unlock(&pmus_lock);
5004
5005 return ret;
5006 }
5007
5008 void perf_pmu_unregister(struct pmu *pmu)
5009 {
5010 mutex_lock(&pmus_lock);
5011 list_del_rcu(&pmu->entry);
5012 mutex_unlock(&pmus_lock);
5013
5014 synchronize_srcu(&pmus_srcu);
5015
5016 free_percpu(pmu->pmu_disable_count);
5017 }
5018
5019 struct pmu *perf_init_event(struct perf_event *event)
5020 {
5021 struct pmu *pmu = NULL;
5022 int idx;
5023
5024 idx = srcu_read_lock(&pmus_srcu);
5025 list_for_each_entry_rcu(pmu, &pmus, entry) {
5026 int ret = pmu->event_init(event);
5027 if (!ret)
5028 break;
5029 if (ret != -ENOENT) {
5030 pmu = ERR_PTR(ret);
5031 break;
5032 }
5033 }
5034 srcu_read_unlock(&pmus_srcu, idx);
5035
5036 return pmu;
5037 }
5038
5039 /*
5040 * Allocate and initialize a event structure
5041 */
5042 static struct perf_event *
5043 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5044 struct perf_event *group_leader,
5045 struct perf_event *parent_event,
5046 perf_overflow_handler_t overflow_handler)
5047 {
5048 struct pmu *pmu;
5049 struct perf_event *event;
5050 struct hw_perf_event *hwc;
5051 long err;
5052
5053 event = kzalloc(sizeof(*event), GFP_KERNEL);
5054 if (!event)
5055 return ERR_PTR(-ENOMEM);
5056
5057 /*
5058 * Single events are their own group leaders, with an
5059 * empty sibling list:
5060 */
5061 if (!group_leader)
5062 group_leader = event;
5063
5064 mutex_init(&event->child_mutex);
5065 INIT_LIST_HEAD(&event->child_list);
5066
5067 INIT_LIST_HEAD(&event->group_entry);
5068 INIT_LIST_HEAD(&event->event_entry);
5069 INIT_LIST_HEAD(&event->sibling_list);
5070 init_waitqueue_head(&event->waitq);
5071
5072 mutex_init(&event->mmap_mutex);
5073
5074 event->cpu = cpu;
5075 event->attr = *attr;
5076 event->group_leader = group_leader;
5077 event->pmu = NULL;
5078 event->oncpu = -1;
5079
5080 event->parent = parent_event;
5081
5082 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5083 event->id = atomic64_inc_return(&perf_event_id);
5084
5085 event->state = PERF_EVENT_STATE_INACTIVE;
5086
5087 if (!overflow_handler && parent_event)
5088 overflow_handler = parent_event->overflow_handler;
5089
5090 event->overflow_handler = overflow_handler;
5091
5092 if (attr->disabled)
5093 event->state = PERF_EVENT_STATE_OFF;
5094
5095 pmu = NULL;
5096
5097 hwc = &event->hw;
5098 hwc->sample_period = attr->sample_period;
5099 if (attr->freq && attr->sample_freq)
5100 hwc->sample_period = 1;
5101 hwc->last_period = hwc->sample_period;
5102
5103 local64_set(&hwc->period_left, hwc->sample_period);
5104
5105 /*
5106 * we currently do not support PERF_FORMAT_GROUP on inherited events
5107 */
5108 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5109 goto done;
5110
5111 pmu = perf_init_event(event);
5112
5113 done:
5114 err = 0;
5115 if (!pmu)
5116 err = -EINVAL;
5117 else if (IS_ERR(pmu))
5118 err = PTR_ERR(pmu);
5119
5120 if (err) {
5121 if (event->ns)
5122 put_pid_ns(event->ns);
5123 kfree(event);
5124 return ERR_PTR(err);
5125 }
5126
5127 event->pmu = pmu;
5128
5129 if (!event->parent) {
5130 atomic_inc(&nr_events);
5131 if (event->attr.mmap || event->attr.mmap_data)
5132 atomic_inc(&nr_mmap_events);
5133 if (event->attr.comm)
5134 atomic_inc(&nr_comm_events);
5135 if (event->attr.task)
5136 atomic_inc(&nr_task_events);
5137 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5138 err = get_callchain_buffers();
5139 if (err) {
5140 free_event(event);
5141 return ERR_PTR(err);
5142 }
5143 }
5144 }
5145
5146 return event;
5147 }
5148
5149 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5150 struct perf_event_attr *attr)
5151 {
5152 u32 size;
5153 int ret;
5154
5155 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5156 return -EFAULT;
5157
5158 /*
5159 * zero the full structure, so that a short copy will be nice.
5160 */
5161 memset(attr, 0, sizeof(*attr));
5162
5163 ret = get_user(size, &uattr->size);
5164 if (ret)
5165 return ret;
5166
5167 if (size > PAGE_SIZE) /* silly large */
5168 goto err_size;
5169
5170 if (!size) /* abi compat */
5171 size = PERF_ATTR_SIZE_VER0;
5172
5173 if (size < PERF_ATTR_SIZE_VER0)
5174 goto err_size;
5175
5176 /*
5177 * If we're handed a bigger struct than we know of,
5178 * ensure all the unknown bits are 0 - i.e. new
5179 * user-space does not rely on any kernel feature
5180 * extensions we dont know about yet.
5181 */
5182 if (size > sizeof(*attr)) {
5183 unsigned char __user *addr;
5184 unsigned char __user *end;
5185 unsigned char val;
5186
5187 addr = (void __user *)uattr + sizeof(*attr);
5188 end = (void __user *)uattr + size;
5189
5190 for (; addr < end; addr++) {
5191 ret = get_user(val, addr);
5192 if (ret)
5193 return ret;
5194 if (val)
5195 goto err_size;
5196 }
5197 size = sizeof(*attr);
5198 }
5199
5200 ret = copy_from_user(attr, uattr, size);
5201 if (ret)
5202 return -EFAULT;
5203
5204 /*
5205 * If the type exists, the corresponding creation will verify
5206 * the attr->config.
5207 */
5208 if (attr->type >= PERF_TYPE_MAX)
5209 return -EINVAL;
5210
5211 if (attr->__reserved_1)
5212 return -EINVAL;
5213
5214 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5215 return -EINVAL;
5216
5217 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5218 return -EINVAL;
5219
5220 out:
5221 return ret;
5222
5223 err_size:
5224 put_user(sizeof(*attr), &uattr->size);
5225 ret = -E2BIG;
5226 goto out;
5227 }
5228
5229 static int
5230 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5231 {
5232 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5233 int ret = -EINVAL;
5234
5235 if (!output_event)
5236 goto set;
5237
5238 /* don't allow circular references */
5239 if (event == output_event)
5240 goto out;
5241
5242 /*
5243 * Don't allow cross-cpu buffers
5244 */
5245 if (output_event->cpu != event->cpu)
5246 goto out;
5247
5248 /*
5249 * If its not a per-cpu buffer, it must be the same task.
5250 */
5251 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5252 goto out;
5253
5254 set:
5255 mutex_lock(&event->mmap_mutex);
5256 /* Can't redirect output if we've got an active mmap() */
5257 if (atomic_read(&event->mmap_count))
5258 goto unlock;
5259
5260 if (output_event) {
5261 /* get the buffer we want to redirect to */
5262 buffer = perf_buffer_get(output_event);
5263 if (!buffer)
5264 goto unlock;
5265 }
5266
5267 old_buffer = event->buffer;
5268 rcu_assign_pointer(event->buffer, buffer);
5269 ret = 0;
5270 unlock:
5271 mutex_unlock(&event->mmap_mutex);
5272
5273 if (old_buffer)
5274 perf_buffer_put(old_buffer);
5275 out:
5276 return ret;
5277 }
5278
5279 /**
5280 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5281 *
5282 * @attr_uptr: event_id type attributes for monitoring/sampling
5283 * @pid: target pid
5284 * @cpu: target cpu
5285 * @group_fd: group leader event fd
5286 */
5287 SYSCALL_DEFINE5(perf_event_open,
5288 struct perf_event_attr __user *, attr_uptr,
5289 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5290 {
5291 struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5292 struct perf_event_attr attr;
5293 struct perf_event_context *ctx;
5294 struct file *event_file = NULL;
5295 struct file *group_file = NULL;
5296 int event_fd;
5297 int fput_needed = 0;
5298 int err;
5299
5300 /* for future expandability... */
5301 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5302 return -EINVAL;
5303
5304 err = perf_copy_attr(attr_uptr, &attr);
5305 if (err)
5306 return err;
5307
5308 if (!attr.exclude_kernel) {
5309 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5310 return -EACCES;
5311 }
5312
5313 if (attr.freq) {
5314 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5315 return -EINVAL;
5316 }
5317
5318 event_fd = get_unused_fd_flags(O_RDWR);
5319 if (event_fd < 0)
5320 return event_fd;
5321
5322 event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
5323 if (IS_ERR(event)) {
5324 err = PTR_ERR(event);
5325 goto err_fd;
5326 }
5327
5328 /*
5329 * Get the target context (task or percpu):
5330 */
5331 ctx = find_get_context(pid, cpu);
5332 if (IS_ERR(ctx)) {
5333 err = PTR_ERR(ctx);
5334 goto err_alloc;
5335 }
5336
5337 if (group_fd != -1) {
5338 group_leader = perf_fget_light(group_fd, &fput_needed);
5339 if (IS_ERR(group_leader)) {
5340 err = PTR_ERR(group_leader);
5341 goto err_context;
5342 }
5343 group_file = group_leader->filp;
5344 if (flags & PERF_FLAG_FD_OUTPUT)
5345 output_event = group_leader;
5346 if (flags & PERF_FLAG_FD_NO_GROUP)
5347 group_leader = NULL;
5348 }
5349
5350 /*
5351 * Look up the group leader (we will attach this event to it):
5352 */
5353 if (group_leader) {
5354 err = -EINVAL;
5355
5356 /*
5357 * Do not allow a recursive hierarchy (this new sibling
5358 * becoming part of another group-sibling):
5359 */
5360 if (group_leader->group_leader != group_leader)
5361 goto err_context;
5362 /*
5363 * Do not allow to attach to a group in a different
5364 * task or CPU context:
5365 */
5366 if (group_leader->ctx != ctx)
5367 goto err_context;
5368 /*
5369 * Only a group leader can be exclusive or pinned
5370 */
5371 if (attr.exclusive || attr.pinned)
5372 goto err_context;
5373 }
5374
5375 if (output_event) {
5376 err = perf_event_set_output(event, output_event);
5377 if (err)
5378 goto err_context;
5379 }
5380
5381 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5382 if (IS_ERR(event_file)) {
5383 err = PTR_ERR(event_file);
5384 goto err_context;
5385 }
5386
5387 event->filp = event_file;
5388 WARN_ON_ONCE(ctx->parent_ctx);
5389 mutex_lock(&ctx->mutex);
5390 perf_install_in_context(ctx, event, cpu);
5391 ++ctx->generation;
5392 mutex_unlock(&ctx->mutex);
5393
5394 event->owner = current;
5395 get_task_struct(current);
5396 mutex_lock(&current->perf_event_mutex);
5397 list_add_tail(&event->owner_entry, &current->perf_event_list);
5398 mutex_unlock(&current->perf_event_mutex);
5399
5400 /*
5401 * Drop the reference on the group_event after placing the
5402 * new event on the sibling_list. This ensures destruction
5403 * of the group leader will find the pointer to itself in
5404 * perf_group_detach().
5405 */
5406 fput_light(group_file, fput_needed);
5407 fd_install(event_fd, event_file);
5408 return event_fd;
5409
5410 err_context:
5411 fput_light(group_file, fput_needed);
5412 put_ctx(ctx);
5413 err_alloc:
5414 free_event(event);
5415 err_fd:
5416 put_unused_fd(event_fd);
5417 return err;
5418 }
5419
5420 /**
5421 * perf_event_create_kernel_counter
5422 *
5423 * @attr: attributes of the counter to create
5424 * @cpu: cpu in which the counter is bound
5425 * @pid: task to profile
5426 */
5427 struct perf_event *
5428 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5429 pid_t pid,
5430 perf_overflow_handler_t overflow_handler)
5431 {
5432 struct perf_event_context *ctx;
5433 struct perf_event *event;
5434 int err;
5435
5436 /*
5437 * Get the target context (task or percpu):
5438 */
5439
5440 event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
5441 if (IS_ERR(event)) {
5442 err = PTR_ERR(event);
5443 goto err;
5444 }
5445
5446 ctx = find_get_context(pid, cpu);
5447 if (IS_ERR(ctx)) {
5448 err = PTR_ERR(ctx);
5449 goto err_free;
5450 }
5451
5452 event->filp = NULL;
5453 WARN_ON_ONCE(ctx->parent_ctx);
5454 mutex_lock(&ctx->mutex);
5455 perf_install_in_context(ctx, event, cpu);
5456 ++ctx->generation;
5457 mutex_unlock(&ctx->mutex);
5458
5459 event->owner = current;
5460 get_task_struct(current);
5461 mutex_lock(&current->perf_event_mutex);
5462 list_add_tail(&event->owner_entry, &current->perf_event_list);
5463 mutex_unlock(&current->perf_event_mutex);
5464
5465 return event;
5466
5467 err_free:
5468 free_event(event);
5469 err:
5470 return ERR_PTR(err);
5471 }
5472 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5473
5474 /*
5475 * inherit a event from parent task to child task:
5476 */
5477 static struct perf_event *
5478 inherit_event(struct perf_event *parent_event,
5479 struct task_struct *parent,
5480 struct perf_event_context *parent_ctx,
5481 struct task_struct *child,
5482 struct perf_event *group_leader,
5483 struct perf_event_context *child_ctx)
5484 {
5485 struct perf_event *child_event;
5486
5487 /*
5488 * Instead of creating recursive hierarchies of events,
5489 * we link inherited events back to the original parent,
5490 * which has a filp for sure, which we use as the reference
5491 * count:
5492 */
5493 if (parent_event->parent)
5494 parent_event = parent_event->parent;
5495
5496 child_event = perf_event_alloc(&parent_event->attr,
5497 parent_event->cpu,
5498 group_leader, parent_event,
5499 NULL);
5500 if (IS_ERR(child_event))
5501 return child_event;
5502 get_ctx(child_ctx);
5503
5504 /*
5505 * Make the child state follow the state of the parent event,
5506 * not its attr.disabled bit. We hold the parent's mutex,
5507 * so we won't race with perf_event_{en, dis}able_family.
5508 */
5509 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5510 child_event->state = PERF_EVENT_STATE_INACTIVE;
5511 else
5512 child_event->state = PERF_EVENT_STATE_OFF;
5513
5514 if (parent_event->attr.freq) {
5515 u64 sample_period = parent_event->hw.sample_period;
5516 struct hw_perf_event *hwc = &child_event->hw;
5517
5518 hwc->sample_period = sample_period;
5519 hwc->last_period = sample_period;
5520
5521 local64_set(&hwc->period_left, sample_period);
5522 }
5523
5524 child_event->ctx = child_ctx;
5525 child_event->overflow_handler = parent_event->overflow_handler;
5526
5527 /*
5528 * Link it up in the child's context:
5529 */
5530 add_event_to_ctx(child_event, child_ctx);
5531
5532 /*
5533 * Get a reference to the parent filp - we will fput it
5534 * when the child event exits. This is safe to do because
5535 * we are in the parent and we know that the filp still
5536 * exists and has a nonzero count:
5537 */
5538 atomic_long_inc(&parent_event->filp->f_count);
5539
5540 /*
5541 * Link this into the parent event's child list
5542 */
5543 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5544 mutex_lock(&parent_event->child_mutex);
5545 list_add_tail(&child_event->child_list, &parent_event->child_list);
5546 mutex_unlock(&parent_event->child_mutex);
5547
5548 return child_event;
5549 }
5550
5551 static int inherit_group(struct perf_event *parent_event,
5552 struct task_struct *parent,
5553 struct perf_event_context *parent_ctx,
5554 struct task_struct *child,
5555 struct perf_event_context *child_ctx)
5556 {
5557 struct perf_event *leader;
5558 struct perf_event *sub;
5559 struct perf_event *child_ctr;
5560
5561 leader = inherit_event(parent_event, parent, parent_ctx,
5562 child, NULL, child_ctx);
5563 if (IS_ERR(leader))
5564 return PTR_ERR(leader);
5565 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5566 child_ctr = inherit_event(sub, parent, parent_ctx,
5567 child, leader, child_ctx);
5568 if (IS_ERR(child_ctr))
5569 return PTR_ERR(child_ctr);
5570 }
5571 return 0;
5572 }
5573
5574 static void sync_child_event(struct perf_event *child_event,
5575 struct task_struct *child)
5576 {
5577 struct perf_event *parent_event = child_event->parent;
5578 u64 child_val;
5579
5580 if (child_event->attr.inherit_stat)
5581 perf_event_read_event(child_event, child);
5582
5583 child_val = perf_event_count(child_event);
5584
5585 /*
5586 * Add back the child's count to the parent's count:
5587 */
5588 atomic64_add(child_val, &parent_event->child_count);
5589 atomic64_add(child_event->total_time_enabled,
5590 &parent_event->child_total_time_enabled);
5591 atomic64_add(child_event->total_time_running,
5592 &parent_event->child_total_time_running);
5593
5594 /*
5595 * Remove this event from the parent's list
5596 */
5597 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5598 mutex_lock(&parent_event->child_mutex);
5599 list_del_init(&child_event->child_list);
5600 mutex_unlock(&parent_event->child_mutex);
5601
5602 /*
5603 * Release the parent event, if this was the last
5604 * reference to it.
5605 */
5606 fput(parent_event->filp);
5607 }
5608
5609 static void
5610 __perf_event_exit_task(struct perf_event *child_event,
5611 struct perf_event_context *child_ctx,
5612 struct task_struct *child)
5613 {
5614 struct perf_event *parent_event;
5615
5616 perf_event_remove_from_context(child_event);
5617
5618 parent_event = child_event->parent;
5619 /*
5620 * It can happen that parent exits first, and has events
5621 * that are still around due to the child reference. These
5622 * events need to be zapped - but otherwise linger.
5623 */
5624 if (parent_event) {
5625 sync_child_event(child_event, child);
5626 free_event(child_event);
5627 }
5628 }
5629
5630 /*
5631 * When a child task exits, feed back event values to parent events.
5632 */
5633 void perf_event_exit_task(struct task_struct *child)
5634 {
5635 struct perf_event *child_event, *tmp;
5636 struct perf_event_context *child_ctx;
5637 unsigned long flags;
5638
5639 if (likely(!child->perf_event_ctxp)) {
5640 perf_event_task(child, NULL, 0);
5641 return;
5642 }
5643
5644 local_irq_save(flags);
5645 /*
5646 * We can't reschedule here because interrupts are disabled,
5647 * and either child is current or it is a task that can't be
5648 * scheduled, so we are now safe from rescheduling changing
5649 * our context.
5650 */
5651 child_ctx = child->perf_event_ctxp;
5652 __perf_event_task_sched_out(child_ctx);
5653
5654 /*
5655 * Take the context lock here so that if find_get_context is
5656 * reading child->perf_event_ctxp, we wait until it has
5657 * incremented the context's refcount before we do put_ctx below.
5658 */
5659 raw_spin_lock(&child_ctx->lock);
5660 child->perf_event_ctxp = NULL;
5661 /*
5662 * If this context is a clone; unclone it so it can't get
5663 * swapped to another process while we're removing all
5664 * the events from it.
5665 */
5666 unclone_ctx(child_ctx);
5667 update_context_time(child_ctx);
5668 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5669
5670 /*
5671 * Report the task dead after unscheduling the events so that we
5672 * won't get any samples after PERF_RECORD_EXIT. We can however still
5673 * get a few PERF_RECORD_READ events.
5674 */
5675 perf_event_task(child, child_ctx, 0);
5676
5677 /*
5678 * We can recurse on the same lock type through:
5679 *
5680 * __perf_event_exit_task()
5681 * sync_child_event()
5682 * fput(parent_event->filp)
5683 * perf_release()
5684 * mutex_lock(&ctx->mutex)
5685 *
5686 * But since its the parent context it won't be the same instance.
5687 */
5688 mutex_lock(&child_ctx->mutex);
5689
5690 again:
5691 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5692 group_entry)
5693 __perf_event_exit_task(child_event, child_ctx, child);
5694
5695 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5696 group_entry)
5697 __perf_event_exit_task(child_event, child_ctx, child);
5698
5699 /*
5700 * If the last event was a group event, it will have appended all
5701 * its siblings to the list, but we obtained 'tmp' before that which
5702 * will still point to the list head terminating the iteration.
5703 */
5704 if (!list_empty(&child_ctx->pinned_groups) ||
5705 !list_empty(&child_ctx->flexible_groups))
5706 goto again;
5707
5708 mutex_unlock(&child_ctx->mutex);
5709
5710 put_ctx(child_ctx);
5711 }
5712
5713 static void perf_free_event(struct perf_event *event,
5714 struct perf_event_context *ctx)
5715 {
5716 struct perf_event *parent = event->parent;
5717
5718 if (WARN_ON_ONCE(!parent))
5719 return;
5720
5721 mutex_lock(&parent->child_mutex);
5722 list_del_init(&event->child_list);
5723 mutex_unlock(&parent->child_mutex);
5724
5725 fput(parent->filp);
5726
5727 perf_group_detach(event);
5728 list_del_event(event, ctx);
5729 free_event(event);
5730 }
5731
5732 /*
5733 * free an unexposed, unused context as created by inheritance by
5734 * init_task below, used by fork() in case of fail.
5735 */
5736 void perf_event_free_task(struct task_struct *task)
5737 {
5738 struct perf_event_context *ctx = task->perf_event_ctxp;
5739 struct perf_event *event, *tmp;
5740
5741 if (!ctx)
5742 return;
5743
5744 mutex_lock(&ctx->mutex);
5745 again:
5746 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5747 perf_free_event(event, ctx);
5748
5749 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5750 group_entry)
5751 perf_free_event(event, ctx);
5752
5753 if (!list_empty(&ctx->pinned_groups) ||
5754 !list_empty(&ctx->flexible_groups))
5755 goto again;
5756
5757 mutex_unlock(&ctx->mutex);
5758
5759 put_ctx(ctx);
5760 }
5761
5762 static int
5763 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5764 struct perf_event_context *parent_ctx,
5765 struct task_struct *child,
5766 int *inherited_all)
5767 {
5768 int ret;
5769 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5770
5771 if (!event->attr.inherit) {
5772 *inherited_all = 0;
5773 return 0;
5774 }
5775
5776 if (!child_ctx) {
5777 /*
5778 * This is executed from the parent task context, so
5779 * inherit events that have been marked for cloning.
5780 * First allocate and initialize a context for the
5781 * child.
5782 */
5783
5784 child_ctx = kzalloc(sizeof(struct perf_event_context),
5785 GFP_KERNEL);
5786 if (!child_ctx)
5787 return -ENOMEM;
5788
5789 __perf_event_init_context(child_ctx, child);
5790 child->perf_event_ctxp = child_ctx;
5791 get_task_struct(child);
5792 }
5793
5794 ret = inherit_group(event, parent, parent_ctx,
5795 child, child_ctx);
5796
5797 if (ret)
5798 *inherited_all = 0;
5799
5800 return ret;
5801 }
5802
5803
5804 /*
5805 * Initialize the perf_event context in task_struct
5806 */
5807 int perf_event_init_task(struct task_struct *child)
5808 {
5809 struct perf_event_context *child_ctx, *parent_ctx;
5810 struct perf_event_context *cloned_ctx;
5811 struct perf_event *event;
5812 struct task_struct *parent = current;
5813 int inherited_all = 1;
5814 int ret = 0;
5815
5816 child->perf_event_ctxp = NULL;
5817
5818 mutex_init(&child->perf_event_mutex);
5819 INIT_LIST_HEAD(&child->perf_event_list);
5820
5821 if (likely(!parent->perf_event_ctxp))
5822 return 0;
5823
5824 /*
5825 * If the parent's context is a clone, pin it so it won't get
5826 * swapped under us.
5827 */
5828 parent_ctx = perf_pin_task_context(parent);
5829
5830 /*
5831 * No need to check if parent_ctx != NULL here; since we saw
5832 * it non-NULL earlier, the only reason for it to become NULL
5833 * is if we exit, and since we're currently in the middle of
5834 * a fork we can't be exiting at the same time.
5835 */
5836
5837 /*
5838 * Lock the parent list. No need to lock the child - not PID
5839 * hashed yet and not running, so nobody can access it.
5840 */
5841 mutex_lock(&parent_ctx->mutex);
5842
5843 /*
5844 * We dont have to disable NMIs - we are only looking at
5845 * the list, not manipulating it:
5846 */
5847 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5848 ret = inherit_task_group(event, parent, parent_ctx, child,
5849 &inherited_all);
5850 if (ret)
5851 break;
5852 }
5853
5854 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5855 ret = inherit_task_group(event, parent, parent_ctx, child,
5856 &inherited_all);
5857 if (ret)
5858 break;
5859 }
5860
5861 child_ctx = child->perf_event_ctxp;
5862
5863 if (child_ctx && inherited_all) {
5864 /*
5865 * Mark the child context as a clone of the parent
5866 * context, or of whatever the parent is a clone of.
5867 * Note that if the parent is a clone, it could get
5868 * uncloned at any point, but that doesn't matter
5869 * because the list of events and the generation
5870 * count can't have changed since we took the mutex.
5871 */
5872 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5873 if (cloned_ctx) {
5874 child_ctx->parent_ctx = cloned_ctx;
5875 child_ctx->parent_gen = parent_ctx->parent_gen;
5876 } else {
5877 child_ctx->parent_ctx = parent_ctx;
5878 child_ctx->parent_gen = parent_ctx->generation;
5879 }
5880 get_ctx(child_ctx->parent_ctx);
5881 }
5882
5883 mutex_unlock(&parent_ctx->mutex);
5884
5885 perf_unpin_context(parent_ctx);
5886
5887 return ret;
5888 }
5889
5890 static void __init perf_event_init_all_cpus(void)
5891 {
5892 int cpu;
5893 struct perf_cpu_context *cpuctx;
5894
5895 for_each_possible_cpu(cpu) {
5896 cpuctx = &per_cpu(perf_cpu_context, cpu);
5897 mutex_init(&cpuctx->hlist_mutex);
5898 __perf_event_init_context(&cpuctx->ctx, NULL);
5899 }
5900 }
5901
5902 static void __cpuinit perf_event_init_cpu(int cpu)
5903 {
5904 struct perf_cpu_context *cpuctx;
5905
5906 cpuctx = &per_cpu(perf_cpu_context, cpu);
5907
5908 mutex_lock(&cpuctx->hlist_mutex);
5909 if (cpuctx->hlist_refcount > 0) {
5910 struct swevent_hlist *hlist;
5911
5912 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5913 WARN_ON_ONCE(!hlist);
5914 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5915 }
5916 mutex_unlock(&cpuctx->hlist_mutex);
5917 }
5918
5919 #ifdef CONFIG_HOTPLUG_CPU
5920 static void __perf_event_exit_cpu(void *info)
5921 {
5922 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5923 struct perf_event_context *ctx = &cpuctx->ctx;
5924 struct perf_event *event, *tmp;
5925
5926 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5927 __perf_event_remove_from_context(event);
5928 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5929 __perf_event_remove_from_context(event);
5930 }
5931 static void perf_event_exit_cpu(int cpu)
5932 {
5933 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5934 struct perf_event_context *ctx = &cpuctx->ctx;
5935
5936 mutex_lock(&cpuctx->hlist_mutex);
5937 swevent_hlist_release(cpuctx);
5938 mutex_unlock(&cpuctx->hlist_mutex);
5939
5940 mutex_lock(&ctx->mutex);
5941 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5942 mutex_unlock(&ctx->mutex);
5943 }
5944 #else
5945 static inline void perf_event_exit_cpu(int cpu) { }
5946 #endif
5947
5948 static int __cpuinit
5949 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5950 {
5951 unsigned int cpu = (long)hcpu;
5952
5953 switch (action & ~CPU_TASKS_FROZEN) {
5954
5955 case CPU_UP_PREPARE:
5956 case CPU_DOWN_FAILED:
5957 perf_event_init_cpu(cpu);
5958 break;
5959
5960 case CPU_UP_CANCELED:
5961 case CPU_DOWN_PREPARE:
5962 perf_event_exit_cpu(cpu);
5963 break;
5964
5965 default:
5966 break;
5967 }
5968
5969 return NOTIFY_OK;
5970 }
5971
5972 void __init perf_event_init(void)
5973 {
5974 perf_event_init_all_cpus();
5975 init_srcu_struct(&pmus_srcu);
5976 perf_pmu_register(&perf_swevent);
5977 perf_pmu_register(&perf_cpu_clock);
5978 perf_pmu_register(&perf_task_clock);
5979 perf_tp_register();
5980 perf_cpu_notifier(perf_cpu_notify);
5981 }
This page took 0.148287 seconds and 6 git commands to generate.