perf: Find task before event alloc
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 static atomic_t nr_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
41
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
45
46 /*
47 * perf event paranoia level:
48 * -1 - not paranoid at all
49 * 0 - disallow raw tracepoint access for unpriv
50 * 1 - disallow cpu events for unpriv
51 * 2 - disallow kernel profiling for unpriv
52 */
53 int sysctl_perf_event_paranoid __read_mostly = 1;
54
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56
57 /*
58 * max perf event sample rate
59 */
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
61
62 static atomic64_t perf_event_id;
63
64 void __weak perf_event_print_debug(void) { }
65
66 extern __weak const char *perf_pmu_name(void)
67 {
68 return "pmu";
69 }
70
71 void perf_pmu_disable(struct pmu *pmu)
72 {
73 int *count = this_cpu_ptr(pmu->pmu_disable_count);
74 if (!(*count)++)
75 pmu->pmu_disable(pmu);
76 }
77
78 void perf_pmu_enable(struct pmu *pmu)
79 {
80 int *count = this_cpu_ptr(pmu->pmu_disable_count);
81 if (!--(*count))
82 pmu->pmu_enable(pmu);
83 }
84
85 static DEFINE_PER_CPU(struct list_head, rotation_list);
86
87 /*
88 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
89 * because they're strictly cpu affine and rotate_start is called with IRQs
90 * disabled, while rotate_context is called from IRQ context.
91 */
92 static void perf_pmu_rotate_start(struct pmu *pmu)
93 {
94 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95 struct list_head *head = &__get_cpu_var(rotation_list);
96
97 WARN_ON(!irqs_disabled());
98
99 if (list_empty(&cpuctx->rotation_list))
100 list_add(&cpuctx->rotation_list, head);
101 }
102
103 static void get_ctx(struct perf_event_context *ctx)
104 {
105 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
106 }
107
108 static void free_ctx(struct rcu_head *head)
109 {
110 struct perf_event_context *ctx;
111
112 ctx = container_of(head, struct perf_event_context, rcu_head);
113 kfree(ctx);
114 }
115
116 static void put_ctx(struct perf_event_context *ctx)
117 {
118 if (atomic_dec_and_test(&ctx->refcount)) {
119 if (ctx->parent_ctx)
120 put_ctx(ctx->parent_ctx);
121 if (ctx->task)
122 put_task_struct(ctx->task);
123 call_rcu(&ctx->rcu_head, free_ctx);
124 }
125 }
126
127 static void unclone_ctx(struct perf_event_context *ctx)
128 {
129 if (ctx->parent_ctx) {
130 put_ctx(ctx->parent_ctx);
131 ctx->parent_ctx = NULL;
132 }
133 }
134
135 /*
136 * If we inherit events we want to return the parent event id
137 * to userspace.
138 */
139 static u64 primary_event_id(struct perf_event *event)
140 {
141 u64 id = event->id;
142
143 if (event->parent)
144 id = event->parent->id;
145
146 return id;
147 }
148
149 /*
150 * Get the perf_event_context for a task and lock it.
151 * This has to cope with with the fact that until it is locked,
152 * the context could get moved to another task.
153 */
154 static struct perf_event_context *
155 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
156 {
157 struct perf_event_context *ctx;
158
159 rcu_read_lock();
160 retry:
161 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
162 if (ctx) {
163 /*
164 * If this context is a clone of another, it might
165 * get swapped for another underneath us by
166 * perf_event_task_sched_out, though the
167 * rcu_read_lock() protects us from any context
168 * getting freed. Lock the context and check if it
169 * got swapped before we could get the lock, and retry
170 * if so. If we locked the right context, then it
171 * can't get swapped on us any more.
172 */
173 raw_spin_lock_irqsave(&ctx->lock, *flags);
174 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
175 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
176 goto retry;
177 }
178
179 if (!atomic_inc_not_zero(&ctx->refcount)) {
180 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181 ctx = NULL;
182 }
183 }
184 rcu_read_unlock();
185 return ctx;
186 }
187
188 /*
189 * Get the context for a task and increment its pin_count so it
190 * can't get swapped to another task. This also increments its
191 * reference count so that the context can't get freed.
192 */
193 static struct perf_event_context *
194 perf_pin_task_context(struct task_struct *task, int ctxn)
195 {
196 struct perf_event_context *ctx;
197 unsigned long flags;
198
199 ctx = perf_lock_task_context(task, ctxn, &flags);
200 if (ctx) {
201 ++ctx->pin_count;
202 raw_spin_unlock_irqrestore(&ctx->lock, flags);
203 }
204 return ctx;
205 }
206
207 static void perf_unpin_context(struct perf_event_context *ctx)
208 {
209 unsigned long flags;
210
211 raw_spin_lock_irqsave(&ctx->lock, flags);
212 --ctx->pin_count;
213 raw_spin_unlock_irqrestore(&ctx->lock, flags);
214 put_ctx(ctx);
215 }
216
217 static inline u64 perf_clock(void)
218 {
219 return local_clock();
220 }
221
222 /*
223 * Update the record of the current time in a context.
224 */
225 static void update_context_time(struct perf_event_context *ctx)
226 {
227 u64 now = perf_clock();
228
229 ctx->time += now - ctx->timestamp;
230 ctx->timestamp = now;
231 }
232
233 /*
234 * Update the total_time_enabled and total_time_running fields for a event.
235 */
236 static void update_event_times(struct perf_event *event)
237 {
238 struct perf_event_context *ctx = event->ctx;
239 u64 run_end;
240
241 if (event->state < PERF_EVENT_STATE_INACTIVE ||
242 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
243 return;
244
245 if (ctx->is_active)
246 run_end = ctx->time;
247 else
248 run_end = event->tstamp_stopped;
249
250 event->total_time_enabled = run_end - event->tstamp_enabled;
251
252 if (event->state == PERF_EVENT_STATE_INACTIVE)
253 run_end = event->tstamp_stopped;
254 else
255 run_end = ctx->time;
256
257 event->total_time_running = run_end - event->tstamp_running;
258 }
259
260 /*
261 * Update total_time_enabled and total_time_running for all events in a group.
262 */
263 static void update_group_times(struct perf_event *leader)
264 {
265 struct perf_event *event;
266
267 update_event_times(leader);
268 list_for_each_entry(event, &leader->sibling_list, group_entry)
269 update_event_times(event);
270 }
271
272 static struct list_head *
273 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
274 {
275 if (event->attr.pinned)
276 return &ctx->pinned_groups;
277 else
278 return &ctx->flexible_groups;
279 }
280
281 /*
282 * Add a event from the lists for its context.
283 * Must be called with ctx->mutex and ctx->lock held.
284 */
285 static void
286 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
287 {
288 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
289 event->attach_state |= PERF_ATTACH_CONTEXT;
290
291 /*
292 * If we're a stand alone event or group leader, we go to the context
293 * list, group events are kept attached to the group so that
294 * perf_group_detach can, at all times, locate all siblings.
295 */
296 if (event->group_leader == event) {
297 struct list_head *list;
298
299 if (is_software_event(event))
300 event->group_flags |= PERF_GROUP_SOFTWARE;
301
302 list = ctx_group_list(event, ctx);
303 list_add_tail(&event->group_entry, list);
304 }
305
306 list_add_rcu(&event->event_entry, &ctx->event_list);
307 if (!ctx->nr_events)
308 perf_pmu_rotate_start(ctx->pmu);
309 ctx->nr_events++;
310 if (event->attr.inherit_stat)
311 ctx->nr_stat++;
312 }
313
314 static void perf_group_attach(struct perf_event *event)
315 {
316 struct perf_event *group_leader = event->group_leader;
317
318 /*
319 * We can have double attach due to group movement in perf_event_open.
320 */
321 if (event->attach_state & PERF_ATTACH_GROUP)
322 return;
323
324 event->attach_state |= PERF_ATTACH_GROUP;
325
326 if (group_leader == event)
327 return;
328
329 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
330 !is_software_event(event))
331 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
332
333 list_add_tail(&event->group_entry, &group_leader->sibling_list);
334 group_leader->nr_siblings++;
335 }
336
337 /*
338 * Remove a event from the lists for its context.
339 * Must be called with ctx->mutex and ctx->lock held.
340 */
341 static void
342 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
343 {
344 /*
345 * We can have double detach due to exit/hot-unplug + close.
346 */
347 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
348 return;
349
350 event->attach_state &= ~PERF_ATTACH_CONTEXT;
351
352 ctx->nr_events--;
353 if (event->attr.inherit_stat)
354 ctx->nr_stat--;
355
356 list_del_rcu(&event->event_entry);
357
358 if (event->group_leader == event)
359 list_del_init(&event->group_entry);
360
361 update_group_times(event);
362
363 /*
364 * If event was in error state, then keep it
365 * that way, otherwise bogus counts will be
366 * returned on read(). The only way to get out
367 * of error state is by explicit re-enabling
368 * of the event
369 */
370 if (event->state > PERF_EVENT_STATE_OFF)
371 event->state = PERF_EVENT_STATE_OFF;
372 }
373
374 static void perf_group_detach(struct perf_event *event)
375 {
376 struct perf_event *sibling, *tmp;
377 struct list_head *list = NULL;
378
379 /*
380 * We can have double detach due to exit/hot-unplug + close.
381 */
382 if (!(event->attach_state & PERF_ATTACH_GROUP))
383 return;
384
385 event->attach_state &= ~PERF_ATTACH_GROUP;
386
387 /*
388 * If this is a sibling, remove it from its group.
389 */
390 if (event->group_leader != event) {
391 list_del_init(&event->group_entry);
392 event->group_leader->nr_siblings--;
393 return;
394 }
395
396 if (!list_empty(&event->group_entry))
397 list = &event->group_entry;
398
399 /*
400 * If this was a group event with sibling events then
401 * upgrade the siblings to singleton events by adding them
402 * to whatever list we are on.
403 */
404 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
405 if (list)
406 list_move_tail(&sibling->group_entry, list);
407 sibling->group_leader = sibling;
408
409 /* Inherit group flags from the previous leader */
410 sibling->group_flags = event->group_flags;
411 }
412 }
413
414 static inline int
415 event_filter_match(struct perf_event *event)
416 {
417 return event->cpu == -1 || event->cpu == smp_processor_id();
418 }
419
420 static int
421 __event_sched_out(struct perf_event *event,
422 struct perf_cpu_context *cpuctx,
423 struct perf_event_context *ctx)
424 {
425 u64 delta;
426 /*
427 * An event which could not be activated because of
428 * filter mismatch still needs to have its timings
429 * maintained, otherwise bogus information is return
430 * via read() for time_enabled, time_running:
431 */
432 if (event->state == PERF_EVENT_STATE_INACTIVE
433 && !event_filter_match(event)) {
434 delta = ctx->time - event->tstamp_stopped;
435 event->tstamp_running += delta;
436 event->tstamp_stopped = ctx->time;
437 }
438
439 if (event->state != PERF_EVENT_STATE_ACTIVE)
440 return 0;
441
442 event->state = PERF_EVENT_STATE_INACTIVE;
443 if (event->pending_disable) {
444 event->pending_disable = 0;
445 event->state = PERF_EVENT_STATE_OFF;
446 }
447 event->pmu->del(event, 0);
448 event->oncpu = -1;
449
450 if (!is_software_event(event))
451 cpuctx->active_oncpu--;
452 ctx->nr_active--;
453 if (event->attr.exclusive || !cpuctx->active_oncpu)
454 cpuctx->exclusive = 0;
455 return 1;
456 }
457
458 static void
459 event_sched_out(struct perf_event *event,
460 struct perf_cpu_context *cpuctx,
461 struct perf_event_context *ctx)
462 {
463 int ret;
464
465 ret = __event_sched_out(event, cpuctx, ctx);
466 if (ret)
467 event->tstamp_stopped = ctx->time;
468 }
469
470 static void
471 group_sched_out(struct perf_event *group_event,
472 struct perf_cpu_context *cpuctx,
473 struct perf_event_context *ctx)
474 {
475 struct perf_event *event;
476 int state = group_event->state;
477
478 event_sched_out(group_event, cpuctx, ctx);
479
480 /*
481 * Schedule out siblings (if any):
482 */
483 list_for_each_entry(event, &group_event->sibling_list, group_entry)
484 event_sched_out(event, cpuctx, ctx);
485
486 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
487 cpuctx->exclusive = 0;
488 }
489
490 static inline struct perf_cpu_context *
491 __get_cpu_context(struct perf_event_context *ctx)
492 {
493 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
494 }
495
496 /*
497 * Cross CPU call to remove a performance event
498 *
499 * We disable the event on the hardware level first. After that we
500 * remove it from the context list.
501 */
502 static void __perf_event_remove_from_context(void *info)
503 {
504 struct perf_event *event = info;
505 struct perf_event_context *ctx = event->ctx;
506 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
507
508 /*
509 * If this is a task context, we need to check whether it is
510 * the current task context of this cpu. If not it has been
511 * scheduled out before the smp call arrived.
512 */
513 if (ctx->task && cpuctx->task_ctx != ctx)
514 return;
515
516 raw_spin_lock(&ctx->lock);
517
518 event_sched_out(event, cpuctx, ctx);
519
520 list_del_event(event, ctx);
521
522 raw_spin_unlock(&ctx->lock);
523 }
524
525
526 /*
527 * Remove the event from a task's (or a CPU's) list of events.
528 *
529 * Must be called with ctx->mutex held.
530 *
531 * CPU events are removed with a smp call. For task events we only
532 * call when the task is on a CPU.
533 *
534 * If event->ctx is a cloned context, callers must make sure that
535 * every task struct that event->ctx->task could possibly point to
536 * remains valid. This is OK when called from perf_release since
537 * that only calls us on the top-level context, which can't be a clone.
538 * When called from perf_event_exit_task, it's OK because the
539 * context has been detached from its task.
540 */
541 static void perf_event_remove_from_context(struct perf_event *event)
542 {
543 struct perf_event_context *ctx = event->ctx;
544 struct task_struct *task = ctx->task;
545
546 if (!task) {
547 /*
548 * Per cpu events are removed via an smp call and
549 * the removal is always successful.
550 */
551 smp_call_function_single(event->cpu,
552 __perf_event_remove_from_context,
553 event, 1);
554 return;
555 }
556
557 retry:
558 task_oncpu_function_call(task, __perf_event_remove_from_context,
559 event);
560
561 raw_spin_lock_irq(&ctx->lock);
562 /*
563 * If the context is active we need to retry the smp call.
564 */
565 if (ctx->nr_active && !list_empty(&event->group_entry)) {
566 raw_spin_unlock_irq(&ctx->lock);
567 goto retry;
568 }
569
570 /*
571 * The lock prevents that this context is scheduled in so we
572 * can remove the event safely, if the call above did not
573 * succeed.
574 */
575 if (!list_empty(&event->group_entry))
576 list_del_event(event, ctx);
577 raw_spin_unlock_irq(&ctx->lock);
578 }
579
580 /*
581 * Cross CPU call to disable a performance event
582 */
583 static void __perf_event_disable(void *info)
584 {
585 struct perf_event *event = info;
586 struct perf_event_context *ctx = event->ctx;
587 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
588
589 /*
590 * If this is a per-task event, need to check whether this
591 * event's task is the current task on this cpu.
592 */
593 if (ctx->task && cpuctx->task_ctx != ctx)
594 return;
595
596 raw_spin_lock(&ctx->lock);
597
598 /*
599 * If the event is on, turn it off.
600 * If it is in error state, leave it in error state.
601 */
602 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
603 update_context_time(ctx);
604 update_group_times(event);
605 if (event == event->group_leader)
606 group_sched_out(event, cpuctx, ctx);
607 else
608 event_sched_out(event, cpuctx, ctx);
609 event->state = PERF_EVENT_STATE_OFF;
610 }
611
612 raw_spin_unlock(&ctx->lock);
613 }
614
615 /*
616 * Disable a event.
617 *
618 * If event->ctx is a cloned context, callers must make sure that
619 * every task struct that event->ctx->task could possibly point to
620 * remains valid. This condition is satisifed when called through
621 * perf_event_for_each_child or perf_event_for_each because they
622 * hold the top-level event's child_mutex, so any descendant that
623 * goes to exit will block in sync_child_event.
624 * When called from perf_pending_event it's OK because event->ctx
625 * is the current context on this CPU and preemption is disabled,
626 * hence we can't get into perf_event_task_sched_out for this context.
627 */
628 void perf_event_disable(struct perf_event *event)
629 {
630 struct perf_event_context *ctx = event->ctx;
631 struct task_struct *task = ctx->task;
632
633 if (!task) {
634 /*
635 * Disable the event on the cpu that it's on
636 */
637 smp_call_function_single(event->cpu, __perf_event_disable,
638 event, 1);
639 return;
640 }
641
642 retry:
643 task_oncpu_function_call(task, __perf_event_disable, event);
644
645 raw_spin_lock_irq(&ctx->lock);
646 /*
647 * If the event is still active, we need to retry the cross-call.
648 */
649 if (event->state == PERF_EVENT_STATE_ACTIVE) {
650 raw_spin_unlock_irq(&ctx->lock);
651 goto retry;
652 }
653
654 /*
655 * Since we have the lock this context can't be scheduled
656 * in, so we can change the state safely.
657 */
658 if (event->state == PERF_EVENT_STATE_INACTIVE) {
659 update_group_times(event);
660 event->state = PERF_EVENT_STATE_OFF;
661 }
662
663 raw_spin_unlock_irq(&ctx->lock);
664 }
665
666 static int
667 __event_sched_in(struct perf_event *event,
668 struct perf_cpu_context *cpuctx,
669 struct perf_event_context *ctx)
670 {
671 if (event->state <= PERF_EVENT_STATE_OFF)
672 return 0;
673
674 event->state = PERF_EVENT_STATE_ACTIVE;
675 event->oncpu = smp_processor_id();
676 /*
677 * The new state must be visible before we turn it on in the hardware:
678 */
679 smp_wmb();
680
681 if (event->pmu->add(event, PERF_EF_START)) {
682 event->state = PERF_EVENT_STATE_INACTIVE;
683 event->oncpu = -1;
684 return -EAGAIN;
685 }
686
687 if (!is_software_event(event))
688 cpuctx->active_oncpu++;
689 ctx->nr_active++;
690
691 if (event->attr.exclusive)
692 cpuctx->exclusive = 1;
693
694 return 0;
695 }
696
697 static inline int
698 event_sched_in(struct perf_event *event,
699 struct perf_cpu_context *cpuctx,
700 struct perf_event_context *ctx)
701 {
702 int ret = __event_sched_in(event, cpuctx, ctx);
703 if (ret)
704 return ret;
705 event->tstamp_running += ctx->time - event->tstamp_stopped;
706 return 0;
707 }
708
709 static void
710 group_commit_event_sched_in(struct perf_event *group_event,
711 struct perf_cpu_context *cpuctx,
712 struct perf_event_context *ctx)
713 {
714 struct perf_event *event;
715 u64 now = ctx->time;
716
717 group_event->tstamp_running += now - group_event->tstamp_stopped;
718 /*
719 * Schedule in siblings as one group (if any):
720 */
721 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
722 event->tstamp_running += now - event->tstamp_stopped;
723 }
724 }
725
726 static int
727 group_sched_in(struct perf_event *group_event,
728 struct perf_cpu_context *cpuctx,
729 struct perf_event_context *ctx)
730 {
731 struct perf_event *event, *partial_group = NULL;
732 struct pmu *pmu = group_event->pmu;
733
734 if (group_event->state == PERF_EVENT_STATE_OFF)
735 return 0;
736
737 pmu->start_txn(pmu);
738
739 /*
740 * use __event_sched_in() to delay updating tstamp_running
741 * until the transaction is committed. In case of failure
742 * we will keep an unmodified tstamp_running which is a
743 * requirement to get correct timing information
744 */
745 if (__event_sched_in(group_event, cpuctx, ctx)) {
746 pmu->cancel_txn(pmu);
747 return -EAGAIN;
748 }
749
750 /*
751 * Schedule in siblings as one group (if any):
752 */
753 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
754 if (__event_sched_in(event, cpuctx, ctx)) {
755 partial_group = event;
756 goto group_error;
757 }
758 }
759
760 if (!pmu->commit_txn(pmu)) {
761 /* commit tstamp_running */
762 group_commit_event_sched_in(group_event, cpuctx, ctx);
763 return 0;
764 }
765 group_error:
766 /*
767 * Groups can be scheduled in as one unit only, so undo any
768 * partial group before returning:
769 *
770 * use __event_sched_out() to avoid updating tstamp_stopped
771 * because the event never actually ran
772 */
773 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
774 if (event == partial_group)
775 break;
776 __event_sched_out(event, cpuctx, ctx);
777 }
778 __event_sched_out(group_event, cpuctx, ctx);
779
780 pmu->cancel_txn(pmu);
781
782 return -EAGAIN;
783 }
784
785 /*
786 * Work out whether we can put this event group on the CPU now.
787 */
788 static int group_can_go_on(struct perf_event *event,
789 struct perf_cpu_context *cpuctx,
790 int can_add_hw)
791 {
792 /*
793 * Groups consisting entirely of software events can always go on.
794 */
795 if (event->group_flags & PERF_GROUP_SOFTWARE)
796 return 1;
797 /*
798 * If an exclusive group is already on, no other hardware
799 * events can go on.
800 */
801 if (cpuctx->exclusive)
802 return 0;
803 /*
804 * If this group is exclusive and there are already
805 * events on the CPU, it can't go on.
806 */
807 if (event->attr.exclusive && cpuctx->active_oncpu)
808 return 0;
809 /*
810 * Otherwise, try to add it if all previous groups were able
811 * to go on.
812 */
813 return can_add_hw;
814 }
815
816 static void add_event_to_ctx(struct perf_event *event,
817 struct perf_event_context *ctx)
818 {
819 list_add_event(event, ctx);
820 perf_group_attach(event);
821 event->tstamp_enabled = ctx->time;
822 event->tstamp_running = ctx->time;
823 event->tstamp_stopped = ctx->time;
824 }
825
826 /*
827 * Cross CPU call to install and enable a performance event
828 *
829 * Must be called with ctx->mutex held
830 */
831 static void __perf_install_in_context(void *info)
832 {
833 struct perf_event *event = info;
834 struct perf_event_context *ctx = event->ctx;
835 struct perf_event *leader = event->group_leader;
836 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
837 int err;
838
839 /*
840 * If this is a task context, we need to check whether it is
841 * the current task context of this cpu. If not it has been
842 * scheduled out before the smp call arrived.
843 * Or possibly this is the right context but it isn't
844 * on this cpu because it had no events.
845 */
846 if (ctx->task && cpuctx->task_ctx != ctx) {
847 if (cpuctx->task_ctx || ctx->task != current)
848 return;
849 cpuctx->task_ctx = ctx;
850 }
851
852 raw_spin_lock(&ctx->lock);
853 ctx->is_active = 1;
854 update_context_time(ctx);
855
856 add_event_to_ctx(event, ctx);
857
858 if (event->cpu != -1 && event->cpu != smp_processor_id())
859 goto unlock;
860
861 /*
862 * Don't put the event on if it is disabled or if
863 * it is in a group and the group isn't on.
864 */
865 if (event->state != PERF_EVENT_STATE_INACTIVE ||
866 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
867 goto unlock;
868
869 /*
870 * An exclusive event can't go on if there are already active
871 * hardware events, and no hardware event can go on if there
872 * is already an exclusive event on.
873 */
874 if (!group_can_go_on(event, cpuctx, 1))
875 err = -EEXIST;
876 else
877 err = event_sched_in(event, cpuctx, ctx);
878
879 if (err) {
880 /*
881 * This event couldn't go on. If it is in a group
882 * then we have to pull the whole group off.
883 * If the event group is pinned then put it in error state.
884 */
885 if (leader != event)
886 group_sched_out(leader, cpuctx, ctx);
887 if (leader->attr.pinned) {
888 update_group_times(leader);
889 leader->state = PERF_EVENT_STATE_ERROR;
890 }
891 }
892
893 unlock:
894 raw_spin_unlock(&ctx->lock);
895 }
896
897 /*
898 * Attach a performance event to a context
899 *
900 * First we add the event to the list with the hardware enable bit
901 * in event->hw_config cleared.
902 *
903 * If the event is attached to a task which is on a CPU we use a smp
904 * call to enable it in the task context. The task might have been
905 * scheduled away, but we check this in the smp call again.
906 *
907 * Must be called with ctx->mutex held.
908 */
909 static void
910 perf_install_in_context(struct perf_event_context *ctx,
911 struct perf_event *event,
912 int cpu)
913 {
914 struct task_struct *task = ctx->task;
915
916 event->ctx = ctx;
917
918 if (!task) {
919 /*
920 * Per cpu events are installed via an smp call and
921 * the install is always successful.
922 */
923 smp_call_function_single(cpu, __perf_install_in_context,
924 event, 1);
925 return;
926 }
927
928 retry:
929 task_oncpu_function_call(task, __perf_install_in_context,
930 event);
931
932 raw_spin_lock_irq(&ctx->lock);
933 /*
934 * we need to retry the smp call.
935 */
936 if (ctx->is_active && list_empty(&event->group_entry)) {
937 raw_spin_unlock_irq(&ctx->lock);
938 goto retry;
939 }
940
941 /*
942 * The lock prevents that this context is scheduled in so we
943 * can add the event safely, if it the call above did not
944 * succeed.
945 */
946 if (list_empty(&event->group_entry))
947 add_event_to_ctx(event, ctx);
948 raw_spin_unlock_irq(&ctx->lock);
949 }
950
951 /*
952 * Put a event into inactive state and update time fields.
953 * Enabling the leader of a group effectively enables all
954 * the group members that aren't explicitly disabled, so we
955 * have to update their ->tstamp_enabled also.
956 * Note: this works for group members as well as group leaders
957 * since the non-leader members' sibling_lists will be empty.
958 */
959 static void __perf_event_mark_enabled(struct perf_event *event,
960 struct perf_event_context *ctx)
961 {
962 struct perf_event *sub;
963
964 event->state = PERF_EVENT_STATE_INACTIVE;
965 event->tstamp_enabled = ctx->time - event->total_time_enabled;
966 list_for_each_entry(sub, &event->sibling_list, group_entry) {
967 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
968 sub->tstamp_enabled =
969 ctx->time - sub->total_time_enabled;
970 }
971 }
972 }
973
974 /*
975 * Cross CPU call to enable a performance event
976 */
977 static void __perf_event_enable(void *info)
978 {
979 struct perf_event *event = info;
980 struct perf_event_context *ctx = event->ctx;
981 struct perf_event *leader = event->group_leader;
982 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
983 int err;
984
985 /*
986 * If this is a per-task event, need to check whether this
987 * event's task is the current task on this cpu.
988 */
989 if (ctx->task && cpuctx->task_ctx != ctx) {
990 if (cpuctx->task_ctx || ctx->task != current)
991 return;
992 cpuctx->task_ctx = ctx;
993 }
994
995 raw_spin_lock(&ctx->lock);
996 ctx->is_active = 1;
997 update_context_time(ctx);
998
999 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1000 goto unlock;
1001 __perf_event_mark_enabled(event, ctx);
1002
1003 if (event->cpu != -1 && event->cpu != smp_processor_id())
1004 goto unlock;
1005
1006 /*
1007 * If the event is in a group and isn't the group leader,
1008 * then don't put it on unless the group is on.
1009 */
1010 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1011 goto unlock;
1012
1013 if (!group_can_go_on(event, cpuctx, 1)) {
1014 err = -EEXIST;
1015 } else {
1016 if (event == leader)
1017 err = group_sched_in(event, cpuctx, ctx);
1018 else
1019 err = event_sched_in(event, cpuctx, ctx);
1020 }
1021
1022 if (err) {
1023 /*
1024 * If this event can't go on and it's part of a
1025 * group, then the whole group has to come off.
1026 */
1027 if (leader != event)
1028 group_sched_out(leader, cpuctx, ctx);
1029 if (leader->attr.pinned) {
1030 update_group_times(leader);
1031 leader->state = PERF_EVENT_STATE_ERROR;
1032 }
1033 }
1034
1035 unlock:
1036 raw_spin_unlock(&ctx->lock);
1037 }
1038
1039 /*
1040 * Enable a event.
1041 *
1042 * If event->ctx is a cloned context, callers must make sure that
1043 * every task struct that event->ctx->task could possibly point to
1044 * remains valid. This condition is satisfied when called through
1045 * perf_event_for_each_child or perf_event_for_each as described
1046 * for perf_event_disable.
1047 */
1048 void perf_event_enable(struct perf_event *event)
1049 {
1050 struct perf_event_context *ctx = event->ctx;
1051 struct task_struct *task = ctx->task;
1052
1053 if (!task) {
1054 /*
1055 * Enable the event on the cpu that it's on
1056 */
1057 smp_call_function_single(event->cpu, __perf_event_enable,
1058 event, 1);
1059 return;
1060 }
1061
1062 raw_spin_lock_irq(&ctx->lock);
1063 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1064 goto out;
1065
1066 /*
1067 * If the event is in error state, clear that first.
1068 * That way, if we see the event in error state below, we
1069 * know that it has gone back into error state, as distinct
1070 * from the task having been scheduled away before the
1071 * cross-call arrived.
1072 */
1073 if (event->state == PERF_EVENT_STATE_ERROR)
1074 event->state = PERF_EVENT_STATE_OFF;
1075
1076 retry:
1077 raw_spin_unlock_irq(&ctx->lock);
1078 task_oncpu_function_call(task, __perf_event_enable, event);
1079
1080 raw_spin_lock_irq(&ctx->lock);
1081
1082 /*
1083 * If the context is active and the event is still off,
1084 * we need to retry the cross-call.
1085 */
1086 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1087 goto retry;
1088
1089 /*
1090 * Since we have the lock this context can't be scheduled
1091 * in, so we can change the state safely.
1092 */
1093 if (event->state == PERF_EVENT_STATE_OFF)
1094 __perf_event_mark_enabled(event, ctx);
1095
1096 out:
1097 raw_spin_unlock_irq(&ctx->lock);
1098 }
1099
1100 static int perf_event_refresh(struct perf_event *event, int refresh)
1101 {
1102 /*
1103 * not supported on inherited events
1104 */
1105 if (event->attr.inherit)
1106 return -EINVAL;
1107
1108 atomic_add(refresh, &event->event_limit);
1109 perf_event_enable(event);
1110
1111 return 0;
1112 }
1113
1114 enum event_type_t {
1115 EVENT_FLEXIBLE = 0x1,
1116 EVENT_PINNED = 0x2,
1117 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1118 };
1119
1120 static void ctx_sched_out(struct perf_event_context *ctx,
1121 struct perf_cpu_context *cpuctx,
1122 enum event_type_t event_type)
1123 {
1124 struct perf_event *event;
1125
1126 raw_spin_lock(&ctx->lock);
1127 perf_pmu_disable(ctx->pmu);
1128 ctx->is_active = 0;
1129 if (likely(!ctx->nr_events))
1130 goto out;
1131 update_context_time(ctx);
1132
1133 if (!ctx->nr_active)
1134 goto out;
1135
1136 if (event_type & EVENT_PINNED) {
1137 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1138 group_sched_out(event, cpuctx, ctx);
1139 }
1140
1141 if (event_type & EVENT_FLEXIBLE) {
1142 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1143 group_sched_out(event, cpuctx, ctx);
1144 }
1145 out:
1146 perf_pmu_enable(ctx->pmu);
1147 raw_spin_unlock(&ctx->lock);
1148 }
1149
1150 /*
1151 * Test whether two contexts are equivalent, i.e. whether they
1152 * have both been cloned from the same version of the same context
1153 * and they both have the same number of enabled events.
1154 * If the number of enabled events is the same, then the set
1155 * of enabled events should be the same, because these are both
1156 * inherited contexts, therefore we can't access individual events
1157 * in them directly with an fd; we can only enable/disable all
1158 * events via prctl, or enable/disable all events in a family
1159 * via ioctl, which will have the same effect on both contexts.
1160 */
1161 static int context_equiv(struct perf_event_context *ctx1,
1162 struct perf_event_context *ctx2)
1163 {
1164 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1165 && ctx1->parent_gen == ctx2->parent_gen
1166 && !ctx1->pin_count && !ctx2->pin_count;
1167 }
1168
1169 static void __perf_event_sync_stat(struct perf_event *event,
1170 struct perf_event *next_event)
1171 {
1172 u64 value;
1173
1174 if (!event->attr.inherit_stat)
1175 return;
1176
1177 /*
1178 * Update the event value, we cannot use perf_event_read()
1179 * because we're in the middle of a context switch and have IRQs
1180 * disabled, which upsets smp_call_function_single(), however
1181 * we know the event must be on the current CPU, therefore we
1182 * don't need to use it.
1183 */
1184 switch (event->state) {
1185 case PERF_EVENT_STATE_ACTIVE:
1186 event->pmu->read(event);
1187 /* fall-through */
1188
1189 case PERF_EVENT_STATE_INACTIVE:
1190 update_event_times(event);
1191 break;
1192
1193 default:
1194 break;
1195 }
1196
1197 /*
1198 * In order to keep per-task stats reliable we need to flip the event
1199 * values when we flip the contexts.
1200 */
1201 value = local64_read(&next_event->count);
1202 value = local64_xchg(&event->count, value);
1203 local64_set(&next_event->count, value);
1204
1205 swap(event->total_time_enabled, next_event->total_time_enabled);
1206 swap(event->total_time_running, next_event->total_time_running);
1207
1208 /*
1209 * Since we swizzled the values, update the user visible data too.
1210 */
1211 perf_event_update_userpage(event);
1212 perf_event_update_userpage(next_event);
1213 }
1214
1215 #define list_next_entry(pos, member) \
1216 list_entry(pos->member.next, typeof(*pos), member)
1217
1218 static void perf_event_sync_stat(struct perf_event_context *ctx,
1219 struct perf_event_context *next_ctx)
1220 {
1221 struct perf_event *event, *next_event;
1222
1223 if (!ctx->nr_stat)
1224 return;
1225
1226 update_context_time(ctx);
1227
1228 event = list_first_entry(&ctx->event_list,
1229 struct perf_event, event_entry);
1230
1231 next_event = list_first_entry(&next_ctx->event_list,
1232 struct perf_event, event_entry);
1233
1234 while (&event->event_entry != &ctx->event_list &&
1235 &next_event->event_entry != &next_ctx->event_list) {
1236
1237 __perf_event_sync_stat(event, next_event);
1238
1239 event = list_next_entry(event, event_entry);
1240 next_event = list_next_entry(next_event, event_entry);
1241 }
1242 }
1243
1244 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1245 struct task_struct *next)
1246 {
1247 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1248 struct perf_event_context *next_ctx;
1249 struct perf_event_context *parent;
1250 struct perf_cpu_context *cpuctx;
1251 int do_switch = 1;
1252
1253 if (likely(!ctx))
1254 return;
1255
1256 cpuctx = __get_cpu_context(ctx);
1257 if (!cpuctx->task_ctx)
1258 return;
1259
1260 rcu_read_lock();
1261 parent = rcu_dereference(ctx->parent_ctx);
1262 next_ctx = next->perf_event_ctxp[ctxn];
1263 if (parent && next_ctx &&
1264 rcu_dereference(next_ctx->parent_ctx) == parent) {
1265 /*
1266 * Looks like the two contexts are clones, so we might be
1267 * able to optimize the context switch. We lock both
1268 * contexts and check that they are clones under the
1269 * lock (including re-checking that neither has been
1270 * uncloned in the meantime). It doesn't matter which
1271 * order we take the locks because no other cpu could
1272 * be trying to lock both of these tasks.
1273 */
1274 raw_spin_lock(&ctx->lock);
1275 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1276 if (context_equiv(ctx, next_ctx)) {
1277 /*
1278 * XXX do we need a memory barrier of sorts
1279 * wrt to rcu_dereference() of perf_event_ctxp
1280 */
1281 task->perf_event_ctxp[ctxn] = next_ctx;
1282 next->perf_event_ctxp[ctxn] = ctx;
1283 ctx->task = next;
1284 next_ctx->task = task;
1285 do_switch = 0;
1286
1287 perf_event_sync_stat(ctx, next_ctx);
1288 }
1289 raw_spin_unlock(&next_ctx->lock);
1290 raw_spin_unlock(&ctx->lock);
1291 }
1292 rcu_read_unlock();
1293
1294 if (do_switch) {
1295 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1296 cpuctx->task_ctx = NULL;
1297 }
1298 }
1299
1300 #define for_each_task_context_nr(ctxn) \
1301 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1302
1303 /*
1304 * Called from scheduler to remove the events of the current task,
1305 * with interrupts disabled.
1306 *
1307 * We stop each event and update the event value in event->count.
1308 *
1309 * This does not protect us against NMI, but disable()
1310 * sets the disabled bit in the control field of event _before_
1311 * accessing the event control register. If a NMI hits, then it will
1312 * not restart the event.
1313 */
1314 void perf_event_task_sched_out(struct task_struct *task,
1315 struct task_struct *next)
1316 {
1317 int ctxn;
1318
1319 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1320
1321 for_each_task_context_nr(ctxn)
1322 perf_event_context_sched_out(task, ctxn, next);
1323 }
1324
1325 static void task_ctx_sched_out(struct perf_event_context *ctx,
1326 enum event_type_t event_type)
1327 {
1328 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1329
1330 if (!cpuctx->task_ctx)
1331 return;
1332
1333 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1334 return;
1335
1336 ctx_sched_out(ctx, cpuctx, event_type);
1337 cpuctx->task_ctx = NULL;
1338 }
1339
1340 /*
1341 * Called with IRQs disabled
1342 */
1343 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1344 {
1345 task_ctx_sched_out(ctx, EVENT_ALL);
1346 }
1347
1348 /*
1349 * Called with IRQs disabled
1350 */
1351 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1352 enum event_type_t event_type)
1353 {
1354 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1355 }
1356
1357 static void
1358 ctx_pinned_sched_in(struct perf_event_context *ctx,
1359 struct perf_cpu_context *cpuctx)
1360 {
1361 struct perf_event *event;
1362
1363 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1364 if (event->state <= PERF_EVENT_STATE_OFF)
1365 continue;
1366 if (event->cpu != -1 && event->cpu != smp_processor_id())
1367 continue;
1368
1369 if (group_can_go_on(event, cpuctx, 1))
1370 group_sched_in(event, cpuctx, ctx);
1371
1372 /*
1373 * If this pinned group hasn't been scheduled,
1374 * put it in error state.
1375 */
1376 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1377 update_group_times(event);
1378 event->state = PERF_EVENT_STATE_ERROR;
1379 }
1380 }
1381 }
1382
1383 static void
1384 ctx_flexible_sched_in(struct perf_event_context *ctx,
1385 struct perf_cpu_context *cpuctx)
1386 {
1387 struct perf_event *event;
1388 int can_add_hw = 1;
1389
1390 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1391 /* Ignore events in OFF or ERROR state */
1392 if (event->state <= PERF_EVENT_STATE_OFF)
1393 continue;
1394 /*
1395 * Listen to the 'cpu' scheduling filter constraint
1396 * of events:
1397 */
1398 if (event->cpu != -1 && event->cpu != smp_processor_id())
1399 continue;
1400
1401 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1402 if (group_sched_in(event, cpuctx, ctx))
1403 can_add_hw = 0;
1404 }
1405 }
1406 }
1407
1408 static void
1409 ctx_sched_in(struct perf_event_context *ctx,
1410 struct perf_cpu_context *cpuctx,
1411 enum event_type_t event_type)
1412 {
1413 raw_spin_lock(&ctx->lock);
1414 ctx->is_active = 1;
1415 if (likely(!ctx->nr_events))
1416 goto out;
1417
1418 ctx->timestamp = perf_clock();
1419
1420 /*
1421 * First go through the list and put on any pinned groups
1422 * in order to give them the best chance of going on.
1423 */
1424 if (event_type & EVENT_PINNED)
1425 ctx_pinned_sched_in(ctx, cpuctx);
1426
1427 /* Then walk through the lower prio flexible groups */
1428 if (event_type & EVENT_FLEXIBLE)
1429 ctx_flexible_sched_in(ctx, cpuctx);
1430
1431 out:
1432 raw_spin_unlock(&ctx->lock);
1433 }
1434
1435 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1436 enum event_type_t event_type)
1437 {
1438 struct perf_event_context *ctx = &cpuctx->ctx;
1439
1440 ctx_sched_in(ctx, cpuctx, event_type);
1441 }
1442
1443 static void task_ctx_sched_in(struct perf_event_context *ctx,
1444 enum event_type_t event_type)
1445 {
1446 struct perf_cpu_context *cpuctx;
1447
1448 cpuctx = __get_cpu_context(ctx);
1449 if (cpuctx->task_ctx == ctx)
1450 return;
1451
1452 ctx_sched_in(ctx, cpuctx, event_type);
1453 cpuctx->task_ctx = ctx;
1454 }
1455
1456 void perf_event_context_sched_in(struct perf_event_context *ctx)
1457 {
1458 struct perf_cpu_context *cpuctx;
1459
1460 cpuctx = __get_cpu_context(ctx);
1461 if (cpuctx->task_ctx == ctx)
1462 return;
1463
1464 perf_pmu_disable(ctx->pmu);
1465 /*
1466 * We want to keep the following priority order:
1467 * cpu pinned (that don't need to move), task pinned,
1468 * cpu flexible, task flexible.
1469 */
1470 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1471
1472 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1473 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1474 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1475
1476 cpuctx->task_ctx = ctx;
1477
1478 /*
1479 * Since these rotations are per-cpu, we need to ensure the
1480 * cpu-context we got scheduled on is actually rotating.
1481 */
1482 perf_pmu_rotate_start(ctx->pmu);
1483 perf_pmu_enable(ctx->pmu);
1484 }
1485
1486 /*
1487 * Called from scheduler to add the events of the current task
1488 * with interrupts disabled.
1489 *
1490 * We restore the event value and then enable it.
1491 *
1492 * This does not protect us against NMI, but enable()
1493 * sets the enabled bit in the control field of event _before_
1494 * accessing the event control register. If a NMI hits, then it will
1495 * keep the event running.
1496 */
1497 void perf_event_task_sched_in(struct task_struct *task)
1498 {
1499 struct perf_event_context *ctx;
1500 int ctxn;
1501
1502 for_each_task_context_nr(ctxn) {
1503 ctx = task->perf_event_ctxp[ctxn];
1504 if (likely(!ctx))
1505 continue;
1506
1507 perf_event_context_sched_in(ctx);
1508 }
1509 }
1510
1511 #define MAX_INTERRUPTS (~0ULL)
1512
1513 static void perf_log_throttle(struct perf_event *event, int enable);
1514
1515 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1516 {
1517 u64 frequency = event->attr.sample_freq;
1518 u64 sec = NSEC_PER_SEC;
1519 u64 divisor, dividend;
1520
1521 int count_fls, nsec_fls, frequency_fls, sec_fls;
1522
1523 count_fls = fls64(count);
1524 nsec_fls = fls64(nsec);
1525 frequency_fls = fls64(frequency);
1526 sec_fls = 30;
1527
1528 /*
1529 * We got @count in @nsec, with a target of sample_freq HZ
1530 * the target period becomes:
1531 *
1532 * @count * 10^9
1533 * period = -------------------
1534 * @nsec * sample_freq
1535 *
1536 */
1537
1538 /*
1539 * Reduce accuracy by one bit such that @a and @b converge
1540 * to a similar magnitude.
1541 */
1542 #define REDUCE_FLS(a, b) \
1543 do { \
1544 if (a##_fls > b##_fls) { \
1545 a >>= 1; \
1546 a##_fls--; \
1547 } else { \
1548 b >>= 1; \
1549 b##_fls--; \
1550 } \
1551 } while (0)
1552
1553 /*
1554 * Reduce accuracy until either term fits in a u64, then proceed with
1555 * the other, so that finally we can do a u64/u64 division.
1556 */
1557 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1558 REDUCE_FLS(nsec, frequency);
1559 REDUCE_FLS(sec, count);
1560 }
1561
1562 if (count_fls + sec_fls > 64) {
1563 divisor = nsec * frequency;
1564
1565 while (count_fls + sec_fls > 64) {
1566 REDUCE_FLS(count, sec);
1567 divisor >>= 1;
1568 }
1569
1570 dividend = count * sec;
1571 } else {
1572 dividend = count * sec;
1573
1574 while (nsec_fls + frequency_fls > 64) {
1575 REDUCE_FLS(nsec, frequency);
1576 dividend >>= 1;
1577 }
1578
1579 divisor = nsec * frequency;
1580 }
1581
1582 if (!divisor)
1583 return dividend;
1584
1585 return div64_u64(dividend, divisor);
1586 }
1587
1588 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1589 {
1590 struct hw_perf_event *hwc = &event->hw;
1591 s64 period, sample_period;
1592 s64 delta;
1593
1594 period = perf_calculate_period(event, nsec, count);
1595
1596 delta = (s64)(period - hwc->sample_period);
1597 delta = (delta + 7) / 8; /* low pass filter */
1598
1599 sample_period = hwc->sample_period + delta;
1600
1601 if (!sample_period)
1602 sample_period = 1;
1603
1604 hwc->sample_period = sample_period;
1605
1606 if (local64_read(&hwc->period_left) > 8*sample_period) {
1607 event->pmu->stop(event, PERF_EF_UPDATE);
1608 local64_set(&hwc->period_left, 0);
1609 event->pmu->start(event, PERF_EF_RELOAD);
1610 }
1611 }
1612
1613 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1614 {
1615 struct perf_event *event;
1616 struct hw_perf_event *hwc;
1617 u64 interrupts, now;
1618 s64 delta;
1619
1620 raw_spin_lock(&ctx->lock);
1621 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1622 if (event->state != PERF_EVENT_STATE_ACTIVE)
1623 continue;
1624
1625 if (event->cpu != -1 && event->cpu != smp_processor_id())
1626 continue;
1627
1628 hwc = &event->hw;
1629
1630 interrupts = hwc->interrupts;
1631 hwc->interrupts = 0;
1632
1633 /*
1634 * unthrottle events on the tick
1635 */
1636 if (interrupts == MAX_INTERRUPTS) {
1637 perf_log_throttle(event, 1);
1638 event->pmu->start(event, 0);
1639 }
1640
1641 if (!event->attr.freq || !event->attr.sample_freq)
1642 continue;
1643
1644 event->pmu->read(event);
1645 now = local64_read(&event->count);
1646 delta = now - hwc->freq_count_stamp;
1647 hwc->freq_count_stamp = now;
1648
1649 if (delta > 0)
1650 perf_adjust_period(event, period, delta);
1651 }
1652 raw_spin_unlock(&ctx->lock);
1653 }
1654
1655 /*
1656 * Round-robin a context's events:
1657 */
1658 static void rotate_ctx(struct perf_event_context *ctx)
1659 {
1660 raw_spin_lock(&ctx->lock);
1661
1662 /* Rotate the first entry last of non-pinned groups */
1663 list_rotate_left(&ctx->flexible_groups);
1664
1665 raw_spin_unlock(&ctx->lock);
1666 }
1667
1668 /*
1669 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1670 * because they're strictly cpu affine and rotate_start is called with IRQs
1671 * disabled, while rotate_context is called from IRQ context.
1672 */
1673 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1674 {
1675 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1676 struct perf_event_context *ctx = NULL;
1677 int rotate = 0, remove = 1;
1678
1679 if (cpuctx->ctx.nr_events) {
1680 remove = 0;
1681 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1682 rotate = 1;
1683 }
1684
1685 ctx = cpuctx->task_ctx;
1686 if (ctx && ctx->nr_events) {
1687 remove = 0;
1688 if (ctx->nr_events != ctx->nr_active)
1689 rotate = 1;
1690 }
1691
1692 perf_pmu_disable(cpuctx->ctx.pmu);
1693 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1694 if (ctx)
1695 perf_ctx_adjust_freq(ctx, interval);
1696
1697 if (!rotate)
1698 goto done;
1699
1700 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1701 if (ctx)
1702 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1703
1704 rotate_ctx(&cpuctx->ctx);
1705 if (ctx)
1706 rotate_ctx(ctx);
1707
1708 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1709 if (ctx)
1710 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1711
1712 done:
1713 if (remove)
1714 list_del_init(&cpuctx->rotation_list);
1715
1716 perf_pmu_enable(cpuctx->ctx.pmu);
1717 }
1718
1719 void perf_event_task_tick(void)
1720 {
1721 struct list_head *head = &__get_cpu_var(rotation_list);
1722 struct perf_cpu_context *cpuctx, *tmp;
1723
1724 WARN_ON(!irqs_disabled());
1725
1726 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1727 if (cpuctx->jiffies_interval == 1 ||
1728 !(jiffies % cpuctx->jiffies_interval))
1729 perf_rotate_context(cpuctx);
1730 }
1731 }
1732
1733 static int event_enable_on_exec(struct perf_event *event,
1734 struct perf_event_context *ctx)
1735 {
1736 if (!event->attr.enable_on_exec)
1737 return 0;
1738
1739 event->attr.enable_on_exec = 0;
1740 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1741 return 0;
1742
1743 __perf_event_mark_enabled(event, ctx);
1744
1745 return 1;
1746 }
1747
1748 /*
1749 * Enable all of a task's events that have been marked enable-on-exec.
1750 * This expects task == current.
1751 */
1752 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1753 {
1754 struct perf_event *event;
1755 unsigned long flags;
1756 int enabled = 0;
1757 int ret;
1758
1759 local_irq_save(flags);
1760 if (!ctx || !ctx->nr_events)
1761 goto out;
1762
1763 task_ctx_sched_out(ctx, EVENT_ALL);
1764
1765 raw_spin_lock(&ctx->lock);
1766
1767 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1768 ret = event_enable_on_exec(event, ctx);
1769 if (ret)
1770 enabled = 1;
1771 }
1772
1773 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1774 ret = event_enable_on_exec(event, ctx);
1775 if (ret)
1776 enabled = 1;
1777 }
1778
1779 /*
1780 * Unclone this context if we enabled any event.
1781 */
1782 if (enabled)
1783 unclone_ctx(ctx);
1784
1785 raw_spin_unlock(&ctx->lock);
1786
1787 perf_event_context_sched_in(ctx);
1788 out:
1789 local_irq_restore(flags);
1790 }
1791
1792 /*
1793 * Cross CPU call to read the hardware event
1794 */
1795 static void __perf_event_read(void *info)
1796 {
1797 struct perf_event *event = info;
1798 struct perf_event_context *ctx = event->ctx;
1799 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1800
1801 /*
1802 * If this is a task context, we need to check whether it is
1803 * the current task context of this cpu. If not it has been
1804 * scheduled out before the smp call arrived. In that case
1805 * event->count would have been updated to a recent sample
1806 * when the event was scheduled out.
1807 */
1808 if (ctx->task && cpuctx->task_ctx != ctx)
1809 return;
1810
1811 raw_spin_lock(&ctx->lock);
1812 update_context_time(ctx);
1813 update_event_times(event);
1814 raw_spin_unlock(&ctx->lock);
1815
1816 event->pmu->read(event);
1817 }
1818
1819 static inline u64 perf_event_count(struct perf_event *event)
1820 {
1821 return local64_read(&event->count) + atomic64_read(&event->child_count);
1822 }
1823
1824 static u64 perf_event_read(struct perf_event *event)
1825 {
1826 /*
1827 * If event is enabled and currently active on a CPU, update the
1828 * value in the event structure:
1829 */
1830 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1831 smp_call_function_single(event->oncpu,
1832 __perf_event_read, event, 1);
1833 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1834 struct perf_event_context *ctx = event->ctx;
1835 unsigned long flags;
1836
1837 raw_spin_lock_irqsave(&ctx->lock, flags);
1838 /*
1839 * may read while context is not active
1840 * (e.g., thread is blocked), in that case
1841 * we cannot update context time
1842 */
1843 if (ctx->is_active)
1844 update_context_time(ctx);
1845 update_event_times(event);
1846 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1847 }
1848
1849 return perf_event_count(event);
1850 }
1851
1852 /*
1853 * Callchain support
1854 */
1855
1856 struct callchain_cpus_entries {
1857 struct rcu_head rcu_head;
1858 struct perf_callchain_entry *cpu_entries[0];
1859 };
1860
1861 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1862 static atomic_t nr_callchain_events;
1863 static DEFINE_MUTEX(callchain_mutex);
1864 struct callchain_cpus_entries *callchain_cpus_entries;
1865
1866
1867 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1868 struct pt_regs *regs)
1869 {
1870 }
1871
1872 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1873 struct pt_regs *regs)
1874 {
1875 }
1876
1877 static void release_callchain_buffers_rcu(struct rcu_head *head)
1878 {
1879 struct callchain_cpus_entries *entries;
1880 int cpu;
1881
1882 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1883
1884 for_each_possible_cpu(cpu)
1885 kfree(entries->cpu_entries[cpu]);
1886
1887 kfree(entries);
1888 }
1889
1890 static void release_callchain_buffers(void)
1891 {
1892 struct callchain_cpus_entries *entries;
1893
1894 entries = callchain_cpus_entries;
1895 rcu_assign_pointer(callchain_cpus_entries, NULL);
1896 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1897 }
1898
1899 static int alloc_callchain_buffers(void)
1900 {
1901 int cpu;
1902 int size;
1903 struct callchain_cpus_entries *entries;
1904
1905 /*
1906 * We can't use the percpu allocation API for data that can be
1907 * accessed from NMI. Use a temporary manual per cpu allocation
1908 * until that gets sorted out.
1909 */
1910 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1911 num_possible_cpus();
1912
1913 entries = kzalloc(size, GFP_KERNEL);
1914 if (!entries)
1915 return -ENOMEM;
1916
1917 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1918
1919 for_each_possible_cpu(cpu) {
1920 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1921 cpu_to_node(cpu));
1922 if (!entries->cpu_entries[cpu])
1923 goto fail;
1924 }
1925
1926 rcu_assign_pointer(callchain_cpus_entries, entries);
1927
1928 return 0;
1929
1930 fail:
1931 for_each_possible_cpu(cpu)
1932 kfree(entries->cpu_entries[cpu]);
1933 kfree(entries);
1934
1935 return -ENOMEM;
1936 }
1937
1938 static int get_callchain_buffers(void)
1939 {
1940 int err = 0;
1941 int count;
1942
1943 mutex_lock(&callchain_mutex);
1944
1945 count = atomic_inc_return(&nr_callchain_events);
1946 if (WARN_ON_ONCE(count < 1)) {
1947 err = -EINVAL;
1948 goto exit;
1949 }
1950
1951 if (count > 1) {
1952 /* If the allocation failed, give up */
1953 if (!callchain_cpus_entries)
1954 err = -ENOMEM;
1955 goto exit;
1956 }
1957
1958 err = alloc_callchain_buffers();
1959 if (err)
1960 release_callchain_buffers();
1961 exit:
1962 mutex_unlock(&callchain_mutex);
1963
1964 return err;
1965 }
1966
1967 static void put_callchain_buffers(void)
1968 {
1969 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1970 release_callchain_buffers();
1971 mutex_unlock(&callchain_mutex);
1972 }
1973 }
1974
1975 static int get_recursion_context(int *recursion)
1976 {
1977 int rctx;
1978
1979 if (in_nmi())
1980 rctx = 3;
1981 else if (in_irq())
1982 rctx = 2;
1983 else if (in_softirq())
1984 rctx = 1;
1985 else
1986 rctx = 0;
1987
1988 if (recursion[rctx])
1989 return -1;
1990
1991 recursion[rctx]++;
1992 barrier();
1993
1994 return rctx;
1995 }
1996
1997 static inline void put_recursion_context(int *recursion, int rctx)
1998 {
1999 barrier();
2000 recursion[rctx]--;
2001 }
2002
2003 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2004 {
2005 int cpu;
2006 struct callchain_cpus_entries *entries;
2007
2008 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2009 if (*rctx == -1)
2010 return NULL;
2011
2012 entries = rcu_dereference(callchain_cpus_entries);
2013 if (!entries)
2014 return NULL;
2015
2016 cpu = smp_processor_id();
2017
2018 return &entries->cpu_entries[cpu][*rctx];
2019 }
2020
2021 static void
2022 put_callchain_entry(int rctx)
2023 {
2024 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2025 }
2026
2027 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2028 {
2029 int rctx;
2030 struct perf_callchain_entry *entry;
2031
2032
2033 entry = get_callchain_entry(&rctx);
2034 if (rctx == -1)
2035 return NULL;
2036
2037 if (!entry)
2038 goto exit_put;
2039
2040 entry->nr = 0;
2041
2042 if (!user_mode(regs)) {
2043 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2044 perf_callchain_kernel(entry, regs);
2045 if (current->mm)
2046 regs = task_pt_regs(current);
2047 else
2048 regs = NULL;
2049 }
2050
2051 if (regs) {
2052 perf_callchain_store(entry, PERF_CONTEXT_USER);
2053 perf_callchain_user(entry, regs);
2054 }
2055
2056 exit_put:
2057 put_callchain_entry(rctx);
2058
2059 return entry;
2060 }
2061
2062 /*
2063 * Initialize the perf_event context in a task_struct:
2064 */
2065 static void __perf_event_init_context(struct perf_event_context *ctx)
2066 {
2067 raw_spin_lock_init(&ctx->lock);
2068 mutex_init(&ctx->mutex);
2069 INIT_LIST_HEAD(&ctx->pinned_groups);
2070 INIT_LIST_HEAD(&ctx->flexible_groups);
2071 INIT_LIST_HEAD(&ctx->event_list);
2072 atomic_set(&ctx->refcount, 1);
2073 }
2074
2075 static struct perf_event_context *
2076 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2077 {
2078 struct perf_event_context *ctx;
2079
2080 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2081 if (!ctx)
2082 return NULL;
2083
2084 __perf_event_init_context(ctx);
2085 if (task) {
2086 ctx->task = task;
2087 get_task_struct(task);
2088 }
2089 ctx->pmu = pmu;
2090
2091 return ctx;
2092 }
2093
2094 static struct task_struct *
2095 find_lively_task_by_vpid(pid_t vpid)
2096 {
2097 struct task_struct *task;
2098 int err;
2099
2100 rcu_read_lock();
2101 if (!vpid)
2102 task = current;
2103 else
2104 task = find_task_by_vpid(vpid);
2105 if (task)
2106 get_task_struct(task);
2107 rcu_read_unlock();
2108
2109 if (!task)
2110 return ERR_PTR(-ESRCH);
2111
2112 /*
2113 * Can't attach events to a dying task.
2114 */
2115 err = -ESRCH;
2116 if (task->flags & PF_EXITING)
2117 goto errout;
2118
2119 /* Reuse ptrace permission checks for now. */
2120 err = -EACCES;
2121 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2122 goto errout;
2123
2124 return task;
2125 errout:
2126 put_task_struct(task);
2127 return ERR_PTR(err);
2128
2129 }
2130
2131 static struct perf_event_context *
2132 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2133 {
2134 struct perf_event_context *ctx;
2135 struct perf_cpu_context *cpuctx;
2136 unsigned long flags;
2137 int ctxn, err;
2138
2139 if (!task && cpu != -1) {
2140 /* Must be root to operate on a CPU event: */
2141 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2142 return ERR_PTR(-EACCES);
2143
2144 if (cpu < 0 || cpu >= nr_cpumask_bits)
2145 return ERR_PTR(-EINVAL);
2146
2147 /*
2148 * We could be clever and allow to attach a event to an
2149 * offline CPU and activate it when the CPU comes up, but
2150 * that's for later.
2151 */
2152 if (!cpu_online(cpu))
2153 return ERR_PTR(-ENODEV);
2154
2155 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2156 ctx = &cpuctx->ctx;
2157 get_ctx(ctx);
2158
2159 return ctx;
2160 }
2161
2162 err = -EINVAL;
2163 ctxn = pmu->task_ctx_nr;
2164 if (ctxn < 0)
2165 goto errout;
2166
2167 retry:
2168 ctx = perf_lock_task_context(task, ctxn, &flags);
2169 if (ctx) {
2170 unclone_ctx(ctx);
2171 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2172 }
2173
2174 if (!ctx) {
2175 ctx = alloc_perf_context(pmu, task);
2176 err = -ENOMEM;
2177 if (!ctx)
2178 goto errout;
2179
2180 get_ctx(ctx);
2181
2182 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2183 /*
2184 * We raced with some other task; use
2185 * the context they set.
2186 */
2187 put_task_struct(task);
2188 kfree(ctx);
2189 goto retry;
2190 }
2191 }
2192
2193 return ctx;
2194
2195 errout:
2196 return ERR_PTR(err);
2197 }
2198
2199 static void perf_event_free_filter(struct perf_event *event);
2200
2201 static void free_event_rcu(struct rcu_head *head)
2202 {
2203 struct perf_event *event;
2204
2205 event = container_of(head, struct perf_event, rcu_head);
2206 if (event->ns)
2207 put_pid_ns(event->ns);
2208 perf_event_free_filter(event);
2209 kfree(event);
2210 }
2211
2212 static void perf_buffer_put(struct perf_buffer *buffer);
2213
2214 static void free_event(struct perf_event *event)
2215 {
2216 irq_work_sync(&event->pending);
2217
2218 if (!event->parent) {
2219 atomic_dec(&nr_events);
2220 if (event->attr.mmap || event->attr.mmap_data)
2221 atomic_dec(&nr_mmap_events);
2222 if (event->attr.comm)
2223 atomic_dec(&nr_comm_events);
2224 if (event->attr.task)
2225 atomic_dec(&nr_task_events);
2226 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2227 put_callchain_buffers();
2228 }
2229
2230 if (event->buffer) {
2231 perf_buffer_put(event->buffer);
2232 event->buffer = NULL;
2233 }
2234
2235 if (event->destroy)
2236 event->destroy(event);
2237
2238 if (event->ctx)
2239 put_ctx(event->ctx);
2240
2241 call_rcu(&event->rcu_head, free_event_rcu);
2242 }
2243
2244 int perf_event_release_kernel(struct perf_event *event)
2245 {
2246 struct perf_event_context *ctx = event->ctx;
2247
2248 /*
2249 * Remove from the PMU, can't get re-enabled since we got
2250 * here because the last ref went.
2251 */
2252 perf_event_disable(event);
2253
2254 WARN_ON_ONCE(ctx->parent_ctx);
2255 /*
2256 * There are two ways this annotation is useful:
2257 *
2258 * 1) there is a lock recursion from perf_event_exit_task
2259 * see the comment there.
2260 *
2261 * 2) there is a lock-inversion with mmap_sem through
2262 * perf_event_read_group(), which takes faults while
2263 * holding ctx->mutex, however this is called after
2264 * the last filedesc died, so there is no possibility
2265 * to trigger the AB-BA case.
2266 */
2267 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2268 raw_spin_lock_irq(&ctx->lock);
2269 perf_group_detach(event);
2270 list_del_event(event, ctx);
2271 raw_spin_unlock_irq(&ctx->lock);
2272 mutex_unlock(&ctx->mutex);
2273
2274 mutex_lock(&event->owner->perf_event_mutex);
2275 list_del_init(&event->owner_entry);
2276 mutex_unlock(&event->owner->perf_event_mutex);
2277 put_task_struct(event->owner);
2278
2279 free_event(event);
2280
2281 return 0;
2282 }
2283 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2284
2285 /*
2286 * Called when the last reference to the file is gone.
2287 */
2288 static int perf_release(struct inode *inode, struct file *file)
2289 {
2290 struct perf_event *event = file->private_data;
2291
2292 file->private_data = NULL;
2293
2294 return perf_event_release_kernel(event);
2295 }
2296
2297 static int perf_event_read_size(struct perf_event *event)
2298 {
2299 int entry = sizeof(u64); /* value */
2300 int size = 0;
2301 int nr = 1;
2302
2303 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2304 size += sizeof(u64);
2305
2306 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2307 size += sizeof(u64);
2308
2309 if (event->attr.read_format & PERF_FORMAT_ID)
2310 entry += sizeof(u64);
2311
2312 if (event->attr.read_format & PERF_FORMAT_GROUP) {
2313 nr += event->group_leader->nr_siblings;
2314 size += sizeof(u64);
2315 }
2316
2317 size += entry * nr;
2318
2319 return size;
2320 }
2321
2322 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2323 {
2324 struct perf_event *child;
2325 u64 total = 0;
2326
2327 *enabled = 0;
2328 *running = 0;
2329
2330 mutex_lock(&event->child_mutex);
2331 total += perf_event_read(event);
2332 *enabled += event->total_time_enabled +
2333 atomic64_read(&event->child_total_time_enabled);
2334 *running += event->total_time_running +
2335 atomic64_read(&event->child_total_time_running);
2336
2337 list_for_each_entry(child, &event->child_list, child_list) {
2338 total += perf_event_read(child);
2339 *enabled += child->total_time_enabled;
2340 *running += child->total_time_running;
2341 }
2342 mutex_unlock(&event->child_mutex);
2343
2344 return total;
2345 }
2346 EXPORT_SYMBOL_GPL(perf_event_read_value);
2347
2348 static int perf_event_read_group(struct perf_event *event,
2349 u64 read_format, char __user *buf)
2350 {
2351 struct perf_event *leader = event->group_leader, *sub;
2352 int n = 0, size = 0, ret = -EFAULT;
2353 struct perf_event_context *ctx = leader->ctx;
2354 u64 values[5];
2355 u64 count, enabled, running;
2356
2357 mutex_lock(&ctx->mutex);
2358 count = perf_event_read_value(leader, &enabled, &running);
2359
2360 values[n++] = 1 + leader->nr_siblings;
2361 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2362 values[n++] = enabled;
2363 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2364 values[n++] = running;
2365 values[n++] = count;
2366 if (read_format & PERF_FORMAT_ID)
2367 values[n++] = primary_event_id(leader);
2368
2369 size = n * sizeof(u64);
2370
2371 if (copy_to_user(buf, values, size))
2372 goto unlock;
2373
2374 ret = size;
2375
2376 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2377 n = 0;
2378
2379 values[n++] = perf_event_read_value(sub, &enabled, &running);
2380 if (read_format & PERF_FORMAT_ID)
2381 values[n++] = primary_event_id(sub);
2382
2383 size = n * sizeof(u64);
2384
2385 if (copy_to_user(buf + ret, values, size)) {
2386 ret = -EFAULT;
2387 goto unlock;
2388 }
2389
2390 ret += size;
2391 }
2392 unlock:
2393 mutex_unlock(&ctx->mutex);
2394
2395 return ret;
2396 }
2397
2398 static int perf_event_read_one(struct perf_event *event,
2399 u64 read_format, char __user *buf)
2400 {
2401 u64 enabled, running;
2402 u64 values[4];
2403 int n = 0;
2404
2405 values[n++] = perf_event_read_value(event, &enabled, &running);
2406 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2407 values[n++] = enabled;
2408 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2409 values[n++] = running;
2410 if (read_format & PERF_FORMAT_ID)
2411 values[n++] = primary_event_id(event);
2412
2413 if (copy_to_user(buf, values, n * sizeof(u64)))
2414 return -EFAULT;
2415
2416 return n * sizeof(u64);
2417 }
2418
2419 /*
2420 * Read the performance event - simple non blocking version for now
2421 */
2422 static ssize_t
2423 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2424 {
2425 u64 read_format = event->attr.read_format;
2426 int ret;
2427
2428 /*
2429 * Return end-of-file for a read on a event that is in
2430 * error state (i.e. because it was pinned but it couldn't be
2431 * scheduled on to the CPU at some point).
2432 */
2433 if (event->state == PERF_EVENT_STATE_ERROR)
2434 return 0;
2435
2436 if (count < perf_event_read_size(event))
2437 return -ENOSPC;
2438
2439 WARN_ON_ONCE(event->ctx->parent_ctx);
2440 if (read_format & PERF_FORMAT_GROUP)
2441 ret = perf_event_read_group(event, read_format, buf);
2442 else
2443 ret = perf_event_read_one(event, read_format, buf);
2444
2445 return ret;
2446 }
2447
2448 static ssize_t
2449 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2450 {
2451 struct perf_event *event = file->private_data;
2452
2453 return perf_read_hw(event, buf, count);
2454 }
2455
2456 static unsigned int perf_poll(struct file *file, poll_table *wait)
2457 {
2458 struct perf_event *event = file->private_data;
2459 struct perf_buffer *buffer;
2460 unsigned int events = POLL_HUP;
2461
2462 rcu_read_lock();
2463 buffer = rcu_dereference(event->buffer);
2464 if (buffer)
2465 events = atomic_xchg(&buffer->poll, 0);
2466 rcu_read_unlock();
2467
2468 poll_wait(file, &event->waitq, wait);
2469
2470 return events;
2471 }
2472
2473 static void perf_event_reset(struct perf_event *event)
2474 {
2475 (void)perf_event_read(event);
2476 local64_set(&event->count, 0);
2477 perf_event_update_userpage(event);
2478 }
2479
2480 /*
2481 * Holding the top-level event's child_mutex means that any
2482 * descendant process that has inherited this event will block
2483 * in sync_child_event if it goes to exit, thus satisfying the
2484 * task existence requirements of perf_event_enable/disable.
2485 */
2486 static void perf_event_for_each_child(struct perf_event *event,
2487 void (*func)(struct perf_event *))
2488 {
2489 struct perf_event *child;
2490
2491 WARN_ON_ONCE(event->ctx->parent_ctx);
2492 mutex_lock(&event->child_mutex);
2493 func(event);
2494 list_for_each_entry(child, &event->child_list, child_list)
2495 func(child);
2496 mutex_unlock(&event->child_mutex);
2497 }
2498
2499 static void perf_event_for_each(struct perf_event *event,
2500 void (*func)(struct perf_event *))
2501 {
2502 struct perf_event_context *ctx = event->ctx;
2503 struct perf_event *sibling;
2504
2505 WARN_ON_ONCE(ctx->parent_ctx);
2506 mutex_lock(&ctx->mutex);
2507 event = event->group_leader;
2508
2509 perf_event_for_each_child(event, func);
2510 func(event);
2511 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2512 perf_event_for_each_child(event, func);
2513 mutex_unlock(&ctx->mutex);
2514 }
2515
2516 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2517 {
2518 struct perf_event_context *ctx = event->ctx;
2519 unsigned long size;
2520 int ret = 0;
2521 u64 value;
2522
2523 if (!event->attr.sample_period)
2524 return -EINVAL;
2525
2526 size = copy_from_user(&value, arg, sizeof(value));
2527 if (size != sizeof(value))
2528 return -EFAULT;
2529
2530 if (!value)
2531 return -EINVAL;
2532
2533 raw_spin_lock_irq(&ctx->lock);
2534 if (event->attr.freq) {
2535 if (value > sysctl_perf_event_sample_rate) {
2536 ret = -EINVAL;
2537 goto unlock;
2538 }
2539
2540 event->attr.sample_freq = value;
2541 } else {
2542 event->attr.sample_period = value;
2543 event->hw.sample_period = value;
2544 }
2545 unlock:
2546 raw_spin_unlock_irq(&ctx->lock);
2547
2548 return ret;
2549 }
2550
2551 static const struct file_operations perf_fops;
2552
2553 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2554 {
2555 struct file *file;
2556
2557 file = fget_light(fd, fput_needed);
2558 if (!file)
2559 return ERR_PTR(-EBADF);
2560
2561 if (file->f_op != &perf_fops) {
2562 fput_light(file, *fput_needed);
2563 *fput_needed = 0;
2564 return ERR_PTR(-EBADF);
2565 }
2566
2567 return file->private_data;
2568 }
2569
2570 static int perf_event_set_output(struct perf_event *event,
2571 struct perf_event *output_event);
2572 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2573
2574 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2575 {
2576 struct perf_event *event = file->private_data;
2577 void (*func)(struct perf_event *);
2578 u32 flags = arg;
2579
2580 switch (cmd) {
2581 case PERF_EVENT_IOC_ENABLE:
2582 func = perf_event_enable;
2583 break;
2584 case PERF_EVENT_IOC_DISABLE:
2585 func = perf_event_disable;
2586 break;
2587 case PERF_EVENT_IOC_RESET:
2588 func = perf_event_reset;
2589 break;
2590
2591 case PERF_EVENT_IOC_REFRESH:
2592 return perf_event_refresh(event, arg);
2593
2594 case PERF_EVENT_IOC_PERIOD:
2595 return perf_event_period(event, (u64 __user *)arg);
2596
2597 case PERF_EVENT_IOC_SET_OUTPUT:
2598 {
2599 struct perf_event *output_event = NULL;
2600 int fput_needed = 0;
2601 int ret;
2602
2603 if (arg != -1) {
2604 output_event = perf_fget_light(arg, &fput_needed);
2605 if (IS_ERR(output_event))
2606 return PTR_ERR(output_event);
2607 }
2608
2609 ret = perf_event_set_output(event, output_event);
2610 if (output_event)
2611 fput_light(output_event->filp, fput_needed);
2612
2613 return ret;
2614 }
2615
2616 case PERF_EVENT_IOC_SET_FILTER:
2617 return perf_event_set_filter(event, (void __user *)arg);
2618
2619 default:
2620 return -ENOTTY;
2621 }
2622
2623 if (flags & PERF_IOC_FLAG_GROUP)
2624 perf_event_for_each(event, func);
2625 else
2626 perf_event_for_each_child(event, func);
2627
2628 return 0;
2629 }
2630
2631 int perf_event_task_enable(void)
2632 {
2633 struct perf_event *event;
2634
2635 mutex_lock(&current->perf_event_mutex);
2636 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2637 perf_event_for_each_child(event, perf_event_enable);
2638 mutex_unlock(&current->perf_event_mutex);
2639
2640 return 0;
2641 }
2642
2643 int perf_event_task_disable(void)
2644 {
2645 struct perf_event *event;
2646
2647 mutex_lock(&current->perf_event_mutex);
2648 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2649 perf_event_for_each_child(event, perf_event_disable);
2650 mutex_unlock(&current->perf_event_mutex);
2651
2652 return 0;
2653 }
2654
2655 #ifndef PERF_EVENT_INDEX_OFFSET
2656 # define PERF_EVENT_INDEX_OFFSET 0
2657 #endif
2658
2659 static int perf_event_index(struct perf_event *event)
2660 {
2661 if (event->hw.state & PERF_HES_STOPPED)
2662 return 0;
2663
2664 if (event->state != PERF_EVENT_STATE_ACTIVE)
2665 return 0;
2666
2667 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2668 }
2669
2670 /*
2671 * Callers need to ensure there can be no nesting of this function, otherwise
2672 * the seqlock logic goes bad. We can not serialize this because the arch
2673 * code calls this from NMI context.
2674 */
2675 void perf_event_update_userpage(struct perf_event *event)
2676 {
2677 struct perf_event_mmap_page *userpg;
2678 struct perf_buffer *buffer;
2679
2680 rcu_read_lock();
2681 buffer = rcu_dereference(event->buffer);
2682 if (!buffer)
2683 goto unlock;
2684
2685 userpg = buffer->user_page;
2686
2687 /*
2688 * Disable preemption so as to not let the corresponding user-space
2689 * spin too long if we get preempted.
2690 */
2691 preempt_disable();
2692 ++userpg->lock;
2693 barrier();
2694 userpg->index = perf_event_index(event);
2695 userpg->offset = perf_event_count(event);
2696 if (event->state == PERF_EVENT_STATE_ACTIVE)
2697 userpg->offset -= local64_read(&event->hw.prev_count);
2698
2699 userpg->time_enabled = event->total_time_enabled +
2700 atomic64_read(&event->child_total_time_enabled);
2701
2702 userpg->time_running = event->total_time_running +
2703 atomic64_read(&event->child_total_time_running);
2704
2705 barrier();
2706 ++userpg->lock;
2707 preempt_enable();
2708 unlock:
2709 rcu_read_unlock();
2710 }
2711
2712 static unsigned long perf_data_size(struct perf_buffer *buffer);
2713
2714 static void
2715 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2716 {
2717 long max_size = perf_data_size(buffer);
2718
2719 if (watermark)
2720 buffer->watermark = min(max_size, watermark);
2721
2722 if (!buffer->watermark)
2723 buffer->watermark = max_size / 2;
2724
2725 if (flags & PERF_BUFFER_WRITABLE)
2726 buffer->writable = 1;
2727
2728 atomic_set(&buffer->refcount, 1);
2729 }
2730
2731 #ifndef CONFIG_PERF_USE_VMALLOC
2732
2733 /*
2734 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2735 */
2736
2737 static struct page *
2738 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2739 {
2740 if (pgoff > buffer->nr_pages)
2741 return NULL;
2742
2743 if (pgoff == 0)
2744 return virt_to_page(buffer->user_page);
2745
2746 return virt_to_page(buffer->data_pages[pgoff - 1]);
2747 }
2748
2749 static void *perf_mmap_alloc_page(int cpu)
2750 {
2751 struct page *page;
2752 int node;
2753
2754 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2755 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2756 if (!page)
2757 return NULL;
2758
2759 return page_address(page);
2760 }
2761
2762 static struct perf_buffer *
2763 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2764 {
2765 struct perf_buffer *buffer;
2766 unsigned long size;
2767 int i;
2768
2769 size = sizeof(struct perf_buffer);
2770 size += nr_pages * sizeof(void *);
2771
2772 buffer = kzalloc(size, GFP_KERNEL);
2773 if (!buffer)
2774 goto fail;
2775
2776 buffer->user_page = perf_mmap_alloc_page(cpu);
2777 if (!buffer->user_page)
2778 goto fail_user_page;
2779
2780 for (i = 0; i < nr_pages; i++) {
2781 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2782 if (!buffer->data_pages[i])
2783 goto fail_data_pages;
2784 }
2785
2786 buffer->nr_pages = nr_pages;
2787
2788 perf_buffer_init(buffer, watermark, flags);
2789
2790 return buffer;
2791
2792 fail_data_pages:
2793 for (i--; i >= 0; i--)
2794 free_page((unsigned long)buffer->data_pages[i]);
2795
2796 free_page((unsigned long)buffer->user_page);
2797
2798 fail_user_page:
2799 kfree(buffer);
2800
2801 fail:
2802 return NULL;
2803 }
2804
2805 static void perf_mmap_free_page(unsigned long addr)
2806 {
2807 struct page *page = virt_to_page((void *)addr);
2808
2809 page->mapping = NULL;
2810 __free_page(page);
2811 }
2812
2813 static void perf_buffer_free(struct perf_buffer *buffer)
2814 {
2815 int i;
2816
2817 perf_mmap_free_page((unsigned long)buffer->user_page);
2818 for (i = 0; i < buffer->nr_pages; i++)
2819 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2820 kfree(buffer);
2821 }
2822
2823 static inline int page_order(struct perf_buffer *buffer)
2824 {
2825 return 0;
2826 }
2827
2828 #else
2829
2830 /*
2831 * Back perf_mmap() with vmalloc memory.
2832 *
2833 * Required for architectures that have d-cache aliasing issues.
2834 */
2835
2836 static inline int page_order(struct perf_buffer *buffer)
2837 {
2838 return buffer->page_order;
2839 }
2840
2841 static struct page *
2842 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2843 {
2844 if (pgoff > (1UL << page_order(buffer)))
2845 return NULL;
2846
2847 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2848 }
2849
2850 static void perf_mmap_unmark_page(void *addr)
2851 {
2852 struct page *page = vmalloc_to_page(addr);
2853
2854 page->mapping = NULL;
2855 }
2856
2857 static void perf_buffer_free_work(struct work_struct *work)
2858 {
2859 struct perf_buffer *buffer;
2860 void *base;
2861 int i, nr;
2862
2863 buffer = container_of(work, struct perf_buffer, work);
2864 nr = 1 << page_order(buffer);
2865
2866 base = buffer->user_page;
2867 for (i = 0; i < nr + 1; i++)
2868 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2869
2870 vfree(base);
2871 kfree(buffer);
2872 }
2873
2874 static void perf_buffer_free(struct perf_buffer *buffer)
2875 {
2876 schedule_work(&buffer->work);
2877 }
2878
2879 static struct perf_buffer *
2880 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2881 {
2882 struct perf_buffer *buffer;
2883 unsigned long size;
2884 void *all_buf;
2885
2886 size = sizeof(struct perf_buffer);
2887 size += sizeof(void *);
2888
2889 buffer = kzalloc(size, GFP_KERNEL);
2890 if (!buffer)
2891 goto fail;
2892
2893 INIT_WORK(&buffer->work, perf_buffer_free_work);
2894
2895 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2896 if (!all_buf)
2897 goto fail_all_buf;
2898
2899 buffer->user_page = all_buf;
2900 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2901 buffer->page_order = ilog2(nr_pages);
2902 buffer->nr_pages = 1;
2903
2904 perf_buffer_init(buffer, watermark, flags);
2905
2906 return buffer;
2907
2908 fail_all_buf:
2909 kfree(buffer);
2910
2911 fail:
2912 return NULL;
2913 }
2914
2915 #endif
2916
2917 static unsigned long perf_data_size(struct perf_buffer *buffer)
2918 {
2919 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2920 }
2921
2922 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2923 {
2924 struct perf_event *event = vma->vm_file->private_data;
2925 struct perf_buffer *buffer;
2926 int ret = VM_FAULT_SIGBUS;
2927
2928 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2929 if (vmf->pgoff == 0)
2930 ret = 0;
2931 return ret;
2932 }
2933
2934 rcu_read_lock();
2935 buffer = rcu_dereference(event->buffer);
2936 if (!buffer)
2937 goto unlock;
2938
2939 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2940 goto unlock;
2941
2942 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2943 if (!vmf->page)
2944 goto unlock;
2945
2946 get_page(vmf->page);
2947 vmf->page->mapping = vma->vm_file->f_mapping;
2948 vmf->page->index = vmf->pgoff;
2949
2950 ret = 0;
2951 unlock:
2952 rcu_read_unlock();
2953
2954 return ret;
2955 }
2956
2957 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2958 {
2959 struct perf_buffer *buffer;
2960
2961 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2962 perf_buffer_free(buffer);
2963 }
2964
2965 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2966 {
2967 struct perf_buffer *buffer;
2968
2969 rcu_read_lock();
2970 buffer = rcu_dereference(event->buffer);
2971 if (buffer) {
2972 if (!atomic_inc_not_zero(&buffer->refcount))
2973 buffer = NULL;
2974 }
2975 rcu_read_unlock();
2976
2977 return buffer;
2978 }
2979
2980 static void perf_buffer_put(struct perf_buffer *buffer)
2981 {
2982 if (!atomic_dec_and_test(&buffer->refcount))
2983 return;
2984
2985 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2986 }
2987
2988 static void perf_mmap_open(struct vm_area_struct *vma)
2989 {
2990 struct perf_event *event = vma->vm_file->private_data;
2991
2992 atomic_inc(&event->mmap_count);
2993 }
2994
2995 static void perf_mmap_close(struct vm_area_struct *vma)
2996 {
2997 struct perf_event *event = vma->vm_file->private_data;
2998
2999 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3000 unsigned long size = perf_data_size(event->buffer);
3001 struct user_struct *user = event->mmap_user;
3002 struct perf_buffer *buffer = event->buffer;
3003
3004 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3005 vma->vm_mm->locked_vm -= event->mmap_locked;
3006 rcu_assign_pointer(event->buffer, NULL);
3007 mutex_unlock(&event->mmap_mutex);
3008
3009 perf_buffer_put(buffer);
3010 free_uid(user);
3011 }
3012 }
3013
3014 static const struct vm_operations_struct perf_mmap_vmops = {
3015 .open = perf_mmap_open,
3016 .close = perf_mmap_close,
3017 .fault = perf_mmap_fault,
3018 .page_mkwrite = perf_mmap_fault,
3019 };
3020
3021 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3022 {
3023 struct perf_event *event = file->private_data;
3024 unsigned long user_locked, user_lock_limit;
3025 struct user_struct *user = current_user();
3026 unsigned long locked, lock_limit;
3027 struct perf_buffer *buffer;
3028 unsigned long vma_size;
3029 unsigned long nr_pages;
3030 long user_extra, extra;
3031 int ret = 0, flags = 0;
3032
3033 /*
3034 * Don't allow mmap() of inherited per-task counters. This would
3035 * create a performance issue due to all children writing to the
3036 * same buffer.
3037 */
3038 if (event->cpu == -1 && event->attr.inherit)
3039 return -EINVAL;
3040
3041 if (!(vma->vm_flags & VM_SHARED))
3042 return -EINVAL;
3043
3044 vma_size = vma->vm_end - vma->vm_start;
3045 nr_pages = (vma_size / PAGE_SIZE) - 1;
3046
3047 /*
3048 * If we have buffer pages ensure they're a power-of-two number, so we
3049 * can do bitmasks instead of modulo.
3050 */
3051 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3052 return -EINVAL;
3053
3054 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3055 return -EINVAL;
3056
3057 if (vma->vm_pgoff != 0)
3058 return -EINVAL;
3059
3060 WARN_ON_ONCE(event->ctx->parent_ctx);
3061 mutex_lock(&event->mmap_mutex);
3062 if (event->buffer) {
3063 if (event->buffer->nr_pages == nr_pages)
3064 atomic_inc(&event->buffer->refcount);
3065 else
3066 ret = -EINVAL;
3067 goto unlock;
3068 }
3069
3070 user_extra = nr_pages + 1;
3071 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3072
3073 /*
3074 * Increase the limit linearly with more CPUs:
3075 */
3076 user_lock_limit *= num_online_cpus();
3077
3078 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3079
3080 extra = 0;
3081 if (user_locked > user_lock_limit)
3082 extra = user_locked - user_lock_limit;
3083
3084 lock_limit = rlimit(RLIMIT_MEMLOCK);
3085 lock_limit >>= PAGE_SHIFT;
3086 locked = vma->vm_mm->locked_vm + extra;
3087
3088 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3089 !capable(CAP_IPC_LOCK)) {
3090 ret = -EPERM;
3091 goto unlock;
3092 }
3093
3094 WARN_ON(event->buffer);
3095
3096 if (vma->vm_flags & VM_WRITE)
3097 flags |= PERF_BUFFER_WRITABLE;
3098
3099 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3100 event->cpu, flags);
3101 if (!buffer) {
3102 ret = -ENOMEM;
3103 goto unlock;
3104 }
3105 rcu_assign_pointer(event->buffer, buffer);
3106
3107 atomic_long_add(user_extra, &user->locked_vm);
3108 event->mmap_locked = extra;
3109 event->mmap_user = get_current_user();
3110 vma->vm_mm->locked_vm += event->mmap_locked;
3111
3112 unlock:
3113 if (!ret)
3114 atomic_inc(&event->mmap_count);
3115 mutex_unlock(&event->mmap_mutex);
3116
3117 vma->vm_flags |= VM_RESERVED;
3118 vma->vm_ops = &perf_mmap_vmops;
3119
3120 return ret;
3121 }
3122
3123 static int perf_fasync(int fd, struct file *filp, int on)
3124 {
3125 struct inode *inode = filp->f_path.dentry->d_inode;
3126 struct perf_event *event = filp->private_data;
3127 int retval;
3128
3129 mutex_lock(&inode->i_mutex);
3130 retval = fasync_helper(fd, filp, on, &event->fasync);
3131 mutex_unlock(&inode->i_mutex);
3132
3133 if (retval < 0)
3134 return retval;
3135
3136 return 0;
3137 }
3138
3139 static const struct file_operations perf_fops = {
3140 .llseek = no_llseek,
3141 .release = perf_release,
3142 .read = perf_read,
3143 .poll = perf_poll,
3144 .unlocked_ioctl = perf_ioctl,
3145 .compat_ioctl = perf_ioctl,
3146 .mmap = perf_mmap,
3147 .fasync = perf_fasync,
3148 };
3149
3150 /*
3151 * Perf event wakeup
3152 *
3153 * If there's data, ensure we set the poll() state and publish everything
3154 * to user-space before waking everybody up.
3155 */
3156
3157 void perf_event_wakeup(struct perf_event *event)
3158 {
3159 wake_up_all(&event->waitq);
3160
3161 if (event->pending_kill) {
3162 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3163 event->pending_kill = 0;
3164 }
3165 }
3166
3167 static void perf_pending_event(struct irq_work *entry)
3168 {
3169 struct perf_event *event = container_of(entry,
3170 struct perf_event, pending);
3171
3172 if (event->pending_disable) {
3173 event->pending_disable = 0;
3174 __perf_event_disable(event);
3175 }
3176
3177 if (event->pending_wakeup) {
3178 event->pending_wakeup = 0;
3179 perf_event_wakeup(event);
3180 }
3181 }
3182
3183 /*
3184 * We assume there is only KVM supporting the callbacks.
3185 * Later on, we might change it to a list if there is
3186 * another virtualization implementation supporting the callbacks.
3187 */
3188 struct perf_guest_info_callbacks *perf_guest_cbs;
3189
3190 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3191 {
3192 perf_guest_cbs = cbs;
3193 return 0;
3194 }
3195 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3196
3197 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3198 {
3199 perf_guest_cbs = NULL;
3200 return 0;
3201 }
3202 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3203
3204 /*
3205 * Output
3206 */
3207 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3208 unsigned long offset, unsigned long head)
3209 {
3210 unsigned long mask;
3211
3212 if (!buffer->writable)
3213 return true;
3214
3215 mask = perf_data_size(buffer) - 1;
3216
3217 offset = (offset - tail) & mask;
3218 head = (head - tail) & mask;
3219
3220 if ((int)(head - offset) < 0)
3221 return false;
3222
3223 return true;
3224 }
3225
3226 static void perf_output_wakeup(struct perf_output_handle *handle)
3227 {
3228 atomic_set(&handle->buffer->poll, POLL_IN);
3229
3230 if (handle->nmi) {
3231 handle->event->pending_wakeup = 1;
3232 irq_work_queue(&handle->event->pending);
3233 } else
3234 perf_event_wakeup(handle->event);
3235 }
3236
3237 /*
3238 * We need to ensure a later event_id doesn't publish a head when a former
3239 * event isn't done writing. However since we need to deal with NMIs we
3240 * cannot fully serialize things.
3241 *
3242 * We only publish the head (and generate a wakeup) when the outer-most
3243 * event completes.
3244 */
3245 static void perf_output_get_handle(struct perf_output_handle *handle)
3246 {
3247 struct perf_buffer *buffer = handle->buffer;
3248
3249 preempt_disable();
3250 local_inc(&buffer->nest);
3251 handle->wakeup = local_read(&buffer->wakeup);
3252 }
3253
3254 static void perf_output_put_handle(struct perf_output_handle *handle)
3255 {
3256 struct perf_buffer *buffer = handle->buffer;
3257 unsigned long head;
3258
3259 again:
3260 head = local_read(&buffer->head);
3261
3262 /*
3263 * IRQ/NMI can happen here, which means we can miss a head update.
3264 */
3265
3266 if (!local_dec_and_test(&buffer->nest))
3267 goto out;
3268
3269 /*
3270 * Publish the known good head. Rely on the full barrier implied
3271 * by atomic_dec_and_test() order the buffer->head read and this
3272 * write.
3273 */
3274 buffer->user_page->data_head = head;
3275
3276 /*
3277 * Now check if we missed an update, rely on the (compiler)
3278 * barrier in atomic_dec_and_test() to re-read buffer->head.
3279 */
3280 if (unlikely(head != local_read(&buffer->head))) {
3281 local_inc(&buffer->nest);
3282 goto again;
3283 }
3284
3285 if (handle->wakeup != local_read(&buffer->wakeup))
3286 perf_output_wakeup(handle);
3287
3288 out:
3289 preempt_enable();
3290 }
3291
3292 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3293 const void *buf, unsigned int len)
3294 {
3295 do {
3296 unsigned long size = min_t(unsigned long, handle->size, len);
3297
3298 memcpy(handle->addr, buf, size);
3299
3300 len -= size;
3301 handle->addr += size;
3302 buf += size;
3303 handle->size -= size;
3304 if (!handle->size) {
3305 struct perf_buffer *buffer = handle->buffer;
3306
3307 handle->page++;
3308 handle->page &= buffer->nr_pages - 1;
3309 handle->addr = buffer->data_pages[handle->page];
3310 handle->size = PAGE_SIZE << page_order(buffer);
3311 }
3312 } while (len);
3313 }
3314
3315 int perf_output_begin(struct perf_output_handle *handle,
3316 struct perf_event *event, unsigned int size,
3317 int nmi, int sample)
3318 {
3319 struct perf_buffer *buffer;
3320 unsigned long tail, offset, head;
3321 int have_lost;
3322 struct {
3323 struct perf_event_header header;
3324 u64 id;
3325 u64 lost;
3326 } lost_event;
3327
3328 rcu_read_lock();
3329 /*
3330 * For inherited events we send all the output towards the parent.
3331 */
3332 if (event->parent)
3333 event = event->parent;
3334
3335 buffer = rcu_dereference(event->buffer);
3336 if (!buffer)
3337 goto out;
3338
3339 handle->buffer = buffer;
3340 handle->event = event;
3341 handle->nmi = nmi;
3342 handle->sample = sample;
3343
3344 if (!buffer->nr_pages)
3345 goto out;
3346
3347 have_lost = local_read(&buffer->lost);
3348 if (have_lost)
3349 size += sizeof(lost_event);
3350
3351 perf_output_get_handle(handle);
3352
3353 do {
3354 /*
3355 * Userspace could choose to issue a mb() before updating the
3356 * tail pointer. So that all reads will be completed before the
3357 * write is issued.
3358 */
3359 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3360 smp_rmb();
3361 offset = head = local_read(&buffer->head);
3362 head += size;
3363 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3364 goto fail;
3365 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3366
3367 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3368 local_add(buffer->watermark, &buffer->wakeup);
3369
3370 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3371 handle->page &= buffer->nr_pages - 1;
3372 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3373 handle->addr = buffer->data_pages[handle->page];
3374 handle->addr += handle->size;
3375 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3376
3377 if (have_lost) {
3378 lost_event.header.type = PERF_RECORD_LOST;
3379 lost_event.header.misc = 0;
3380 lost_event.header.size = sizeof(lost_event);
3381 lost_event.id = event->id;
3382 lost_event.lost = local_xchg(&buffer->lost, 0);
3383
3384 perf_output_put(handle, lost_event);
3385 }
3386
3387 return 0;
3388
3389 fail:
3390 local_inc(&buffer->lost);
3391 perf_output_put_handle(handle);
3392 out:
3393 rcu_read_unlock();
3394
3395 return -ENOSPC;
3396 }
3397
3398 void perf_output_end(struct perf_output_handle *handle)
3399 {
3400 struct perf_event *event = handle->event;
3401 struct perf_buffer *buffer = handle->buffer;
3402
3403 int wakeup_events = event->attr.wakeup_events;
3404
3405 if (handle->sample && wakeup_events) {
3406 int events = local_inc_return(&buffer->events);
3407 if (events >= wakeup_events) {
3408 local_sub(wakeup_events, &buffer->events);
3409 local_inc(&buffer->wakeup);
3410 }
3411 }
3412
3413 perf_output_put_handle(handle);
3414 rcu_read_unlock();
3415 }
3416
3417 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3418 {
3419 /*
3420 * only top level events have the pid namespace they were created in
3421 */
3422 if (event->parent)
3423 event = event->parent;
3424
3425 return task_tgid_nr_ns(p, event->ns);
3426 }
3427
3428 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3429 {
3430 /*
3431 * only top level events have the pid namespace they were created in
3432 */
3433 if (event->parent)
3434 event = event->parent;
3435
3436 return task_pid_nr_ns(p, event->ns);
3437 }
3438
3439 static void perf_output_read_one(struct perf_output_handle *handle,
3440 struct perf_event *event)
3441 {
3442 u64 read_format = event->attr.read_format;
3443 u64 values[4];
3444 int n = 0;
3445
3446 values[n++] = perf_event_count(event);
3447 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3448 values[n++] = event->total_time_enabled +
3449 atomic64_read(&event->child_total_time_enabled);
3450 }
3451 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3452 values[n++] = event->total_time_running +
3453 atomic64_read(&event->child_total_time_running);
3454 }
3455 if (read_format & PERF_FORMAT_ID)
3456 values[n++] = primary_event_id(event);
3457
3458 perf_output_copy(handle, values, n * sizeof(u64));
3459 }
3460
3461 /*
3462 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3463 */
3464 static void perf_output_read_group(struct perf_output_handle *handle,
3465 struct perf_event *event)
3466 {
3467 struct perf_event *leader = event->group_leader, *sub;
3468 u64 read_format = event->attr.read_format;
3469 u64 values[5];
3470 int n = 0;
3471
3472 values[n++] = 1 + leader->nr_siblings;
3473
3474 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3475 values[n++] = leader->total_time_enabled;
3476
3477 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3478 values[n++] = leader->total_time_running;
3479
3480 if (leader != event)
3481 leader->pmu->read(leader);
3482
3483 values[n++] = perf_event_count(leader);
3484 if (read_format & PERF_FORMAT_ID)
3485 values[n++] = primary_event_id(leader);
3486
3487 perf_output_copy(handle, values, n * sizeof(u64));
3488
3489 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3490 n = 0;
3491
3492 if (sub != event)
3493 sub->pmu->read(sub);
3494
3495 values[n++] = perf_event_count(sub);
3496 if (read_format & PERF_FORMAT_ID)
3497 values[n++] = primary_event_id(sub);
3498
3499 perf_output_copy(handle, values, n * sizeof(u64));
3500 }
3501 }
3502
3503 static void perf_output_read(struct perf_output_handle *handle,
3504 struct perf_event *event)
3505 {
3506 if (event->attr.read_format & PERF_FORMAT_GROUP)
3507 perf_output_read_group(handle, event);
3508 else
3509 perf_output_read_one(handle, event);
3510 }
3511
3512 void perf_output_sample(struct perf_output_handle *handle,
3513 struct perf_event_header *header,
3514 struct perf_sample_data *data,
3515 struct perf_event *event)
3516 {
3517 u64 sample_type = data->type;
3518
3519 perf_output_put(handle, *header);
3520
3521 if (sample_type & PERF_SAMPLE_IP)
3522 perf_output_put(handle, data->ip);
3523
3524 if (sample_type & PERF_SAMPLE_TID)
3525 perf_output_put(handle, data->tid_entry);
3526
3527 if (sample_type & PERF_SAMPLE_TIME)
3528 perf_output_put(handle, data->time);
3529
3530 if (sample_type & PERF_SAMPLE_ADDR)
3531 perf_output_put(handle, data->addr);
3532
3533 if (sample_type & PERF_SAMPLE_ID)
3534 perf_output_put(handle, data->id);
3535
3536 if (sample_type & PERF_SAMPLE_STREAM_ID)
3537 perf_output_put(handle, data->stream_id);
3538
3539 if (sample_type & PERF_SAMPLE_CPU)
3540 perf_output_put(handle, data->cpu_entry);
3541
3542 if (sample_type & PERF_SAMPLE_PERIOD)
3543 perf_output_put(handle, data->period);
3544
3545 if (sample_type & PERF_SAMPLE_READ)
3546 perf_output_read(handle, event);
3547
3548 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3549 if (data->callchain) {
3550 int size = 1;
3551
3552 if (data->callchain)
3553 size += data->callchain->nr;
3554
3555 size *= sizeof(u64);
3556
3557 perf_output_copy(handle, data->callchain, size);
3558 } else {
3559 u64 nr = 0;
3560 perf_output_put(handle, nr);
3561 }
3562 }
3563
3564 if (sample_type & PERF_SAMPLE_RAW) {
3565 if (data->raw) {
3566 perf_output_put(handle, data->raw->size);
3567 perf_output_copy(handle, data->raw->data,
3568 data->raw->size);
3569 } else {
3570 struct {
3571 u32 size;
3572 u32 data;
3573 } raw = {
3574 .size = sizeof(u32),
3575 .data = 0,
3576 };
3577 perf_output_put(handle, raw);
3578 }
3579 }
3580 }
3581
3582 void perf_prepare_sample(struct perf_event_header *header,
3583 struct perf_sample_data *data,
3584 struct perf_event *event,
3585 struct pt_regs *regs)
3586 {
3587 u64 sample_type = event->attr.sample_type;
3588
3589 data->type = sample_type;
3590
3591 header->type = PERF_RECORD_SAMPLE;
3592 header->size = sizeof(*header);
3593
3594 header->misc = 0;
3595 header->misc |= perf_misc_flags(regs);
3596
3597 if (sample_type & PERF_SAMPLE_IP) {
3598 data->ip = perf_instruction_pointer(regs);
3599
3600 header->size += sizeof(data->ip);
3601 }
3602
3603 if (sample_type & PERF_SAMPLE_TID) {
3604 /* namespace issues */
3605 data->tid_entry.pid = perf_event_pid(event, current);
3606 data->tid_entry.tid = perf_event_tid(event, current);
3607
3608 header->size += sizeof(data->tid_entry);
3609 }
3610
3611 if (sample_type & PERF_SAMPLE_TIME) {
3612 data->time = perf_clock();
3613
3614 header->size += sizeof(data->time);
3615 }
3616
3617 if (sample_type & PERF_SAMPLE_ADDR)
3618 header->size += sizeof(data->addr);
3619
3620 if (sample_type & PERF_SAMPLE_ID) {
3621 data->id = primary_event_id(event);
3622
3623 header->size += sizeof(data->id);
3624 }
3625
3626 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3627 data->stream_id = event->id;
3628
3629 header->size += sizeof(data->stream_id);
3630 }
3631
3632 if (sample_type & PERF_SAMPLE_CPU) {
3633 data->cpu_entry.cpu = raw_smp_processor_id();
3634 data->cpu_entry.reserved = 0;
3635
3636 header->size += sizeof(data->cpu_entry);
3637 }
3638
3639 if (sample_type & PERF_SAMPLE_PERIOD)
3640 header->size += sizeof(data->period);
3641
3642 if (sample_type & PERF_SAMPLE_READ)
3643 header->size += perf_event_read_size(event);
3644
3645 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3646 int size = 1;
3647
3648 data->callchain = perf_callchain(regs);
3649
3650 if (data->callchain)
3651 size += data->callchain->nr;
3652
3653 header->size += size * sizeof(u64);
3654 }
3655
3656 if (sample_type & PERF_SAMPLE_RAW) {
3657 int size = sizeof(u32);
3658
3659 if (data->raw)
3660 size += data->raw->size;
3661 else
3662 size += sizeof(u32);
3663
3664 WARN_ON_ONCE(size & (sizeof(u64)-1));
3665 header->size += size;
3666 }
3667 }
3668
3669 static void perf_event_output(struct perf_event *event, int nmi,
3670 struct perf_sample_data *data,
3671 struct pt_regs *regs)
3672 {
3673 struct perf_output_handle handle;
3674 struct perf_event_header header;
3675
3676 /* protect the callchain buffers */
3677 rcu_read_lock();
3678
3679 perf_prepare_sample(&header, data, event, regs);
3680
3681 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3682 goto exit;
3683
3684 perf_output_sample(&handle, &header, data, event);
3685
3686 perf_output_end(&handle);
3687
3688 exit:
3689 rcu_read_unlock();
3690 }
3691
3692 /*
3693 * read event_id
3694 */
3695
3696 struct perf_read_event {
3697 struct perf_event_header header;
3698
3699 u32 pid;
3700 u32 tid;
3701 };
3702
3703 static void
3704 perf_event_read_event(struct perf_event *event,
3705 struct task_struct *task)
3706 {
3707 struct perf_output_handle handle;
3708 struct perf_read_event read_event = {
3709 .header = {
3710 .type = PERF_RECORD_READ,
3711 .misc = 0,
3712 .size = sizeof(read_event) + perf_event_read_size(event),
3713 },
3714 .pid = perf_event_pid(event, task),
3715 .tid = perf_event_tid(event, task),
3716 };
3717 int ret;
3718
3719 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3720 if (ret)
3721 return;
3722
3723 perf_output_put(&handle, read_event);
3724 perf_output_read(&handle, event);
3725
3726 perf_output_end(&handle);
3727 }
3728
3729 /*
3730 * task tracking -- fork/exit
3731 *
3732 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3733 */
3734
3735 struct perf_task_event {
3736 struct task_struct *task;
3737 struct perf_event_context *task_ctx;
3738
3739 struct {
3740 struct perf_event_header header;
3741
3742 u32 pid;
3743 u32 ppid;
3744 u32 tid;
3745 u32 ptid;
3746 u64 time;
3747 } event_id;
3748 };
3749
3750 static void perf_event_task_output(struct perf_event *event,
3751 struct perf_task_event *task_event)
3752 {
3753 struct perf_output_handle handle;
3754 struct task_struct *task = task_event->task;
3755 int size, ret;
3756
3757 size = task_event->event_id.header.size;
3758 ret = perf_output_begin(&handle, event, size, 0, 0);
3759
3760 if (ret)
3761 return;
3762
3763 task_event->event_id.pid = perf_event_pid(event, task);
3764 task_event->event_id.ppid = perf_event_pid(event, current);
3765
3766 task_event->event_id.tid = perf_event_tid(event, task);
3767 task_event->event_id.ptid = perf_event_tid(event, current);
3768
3769 perf_output_put(&handle, task_event->event_id);
3770
3771 perf_output_end(&handle);
3772 }
3773
3774 static int perf_event_task_match(struct perf_event *event)
3775 {
3776 if (event->state < PERF_EVENT_STATE_INACTIVE)
3777 return 0;
3778
3779 if (event->cpu != -1 && event->cpu != smp_processor_id())
3780 return 0;
3781
3782 if (event->attr.comm || event->attr.mmap ||
3783 event->attr.mmap_data || event->attr.task)
3784 return 1;
3785
3786 return 0;
3787 }
3788
3789 static void perf_event_task_ctx(struct perf_event_context *ctx,
3790 struct perf_task_event *task_event)
3791 {
3792 struct perf_event *event;
3793
3794 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3795 if (perf_event_task_match(event))
3796 perf_event_task_output(event, task_event);
3797 }
3798 }
3799
3800 static void perf_event_task_event(struct perf_task_event *task_event)
3801 {
3802 struct perf_cpu_context *cpuctx;
3803 struct perf_event_context *ctx;
3804 struct pmu *pmu;
3805 int ctxn;
3806
3807 rcu_read_lock();
3808 list_for_each_entry_rcu(pmu, &pmus, entry) {
3809 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3810 perf_event_task_ctx(&cpuctx->ctx, task_event);
3811
3812 ctx = task_event->task_ctx;
3813 if (!ctx) {
3814 ctxn = pmu->task_ctx_nr;
3815 if (ctxn < 0)
3816 goto next;
3817 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3818 }
3819 if (ctx)
3820 perf_event_task_ctx(ctx, task_event);
3821 next:
3822 put_cpu_ptr(pmu->pmu_cpu_context);
3823 }
3824 rcu_read_unlock();
3825 }
3826
3827 static void perf_event_task(struct task_struct *task,
3828 struct perf_event_context *task_ctx,
3829 int new)
3830 {
3831 struct perf_task_event task_event;
3832
3833 if (!atomic_read(&nr_comm_events) &&
3834 !atomic_read(&nr_mmap_events) &&
3835 !atomic_read(&nr_task_events))
3836 return;
3837
3838 task_event = (struct perf_task_event){
3839 .task = task,
3840 .task_ctx = task_ctx,
3841 .event_id = {
3842 .header = {
3843 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3844 .misc = 0,
3845 .size = sizeof(task_event.event_id),
3846 },
3847 /* .pid */
3848 /* .ppid */
3849 /* .tid */
3850 /* .ptid */
3851 .time = perf_clock(),
3852 },
3853 };
3854
3855 perf_event_task_event(&task_event);
3856 }
3857
3858 void perf_event_fork(struct task_struct *task)
3859 {
3860 perf_event_task(task, NULL, 1);
3861 }
3862
3863 /*
3864 * comm tracking
3865 */
3866
3867 struct perf_comm_event {
3868 struct task_struct *task;
3869 char *comm;
3870 int comm_size;
3871
3872 struct {
3873 struct perf_event_header header;
3874
3875 u32 pid;
3876 u32 tid;
3877 } event_id;
3878 };
3879
3880 static void perf_event_comm_output(struct perf_event *event,
3881 struct perf_comm_event *comm_event)
3882 {
3883 struct perf_output_handle handle;
3884 int size = comm_event->event_id.header.size;
3885 int ret = perf_output_begin(&handle, event, size, 0, 0);
3886
3887 if (ret)
3888 return;
3889
3890 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3891 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3892
3893 perf_output_put(&handle, comm_event->event_id);
3894 perf_output_copy(&handle, comm_event->comm,
3895 comm_event->comm_size);
3896 perf_output_end(&handle);
3897 }
3898
3899 static int perf_event_comm_match(struct perf_event *event)
3900 {
3901 if (event->state < PERF_EVENT_STATE_INACTIVE)
3902 return 0;
3903
3904 if (event->cpu != -1 && event->cpu != smp_processor_id())
3905 return 0;
3906
3907 if (event->attr.comm)
3908 return 1;
3909
3910 return 0;
3911 }
3912
3913 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3914 struct perf_comm_event *comm_event)
3915 {
3916 struct perf_event *event;
3917
3918 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3919 if (perf_event_comm_match(event))
3920 perf_event_comm_output(event, comm_event);
3921 }
3922 }
3923
3924 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3925 {
3926 struct perf_cpu_context *cpuctx;
3927 struct perf_event_context *ctx;
3928 char comm[TASK_COMM_LEN];
3929 unsigned int size;
3930 struct pmu *pmu;
3931 int ctxn;
3932
3933 memset(comm, 0, sizeof(comm));
3934 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3935 size = ALIGN(strlen(comm)+1, sizeof(u64));
3936
3937 comm_event->comm = comm;
3938 comm_event->comm_size = size;
3939
3940 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3941
3942 rcu_read_lock();
3943 list_for_each_entry_rcu(pmu, &pmus, entry) {
3944 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3945 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3946
3947 ctxn = pmu->task_ctx_nr;
3948 if (ctxn < 0)
3949 goto next;
3950
3951 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3952 if (ctx)
3953 perf_event_comm_ctx(ctx, comm_event);
3954 next:
3955 put_cpu_ptr(pmu->pmu_cpu_context);
3956 }
3957 rcu_read_unlock();
3958 }
3959
3960 void perf_event_comm(struct task_struct *task)
3961 {
3962 struct perf_comm_event comm_event;
3963 struct perf_event_context *ctx;
3964 int ctxn;
3965
3966 for_each_task_context_nr(ctxn) {
3967 ctx = task->perf_event_ctxp[ctxn];
3968 if (!ctx)
3969 continue;
3970
3971 perf_event_enable_on_exec(ctx);
3972 }
3973
3974 if (!atomic_read(&nr_comm_events))
3975 return;
3976
3977 comm_event = (struct perf_comm_event){
3978 .task = task,
3979 /* .comm */
3980 /* .comm_size */
3981 .event_id = {
3982 .header = {
3983 .type = PERF_RECORD_COMM,
3984 .misc = 0,
3985 /* .size */
3986 },
3987 /* .pid */
3988 /* .tid */
3989 },
3990 };
3991
3992 perf_event_comm_event(&comm_event);
3993 }
3994
3995 /*
3996 * mmap tracking
3997 */
3998
3999 struct perf_mmap_event {
4000 struct vm_area_struct *vma;
4001
4002 const char *file_name;
4003 int file_size;
4004
4005 struct {
4006 struct perf_event_header header;
4007
4008 u32 pid;
4009 u32 tid;
4010 u64 start;
4011 u64 len;
4012 u64 pgoff;
4013 } event_id;
4014 };
4015
4016 static void perf_event_mmap_output(struct perf_event *event,
4017 struct perf_mmap_event *mmap_event)
4018 {
4019 struct perf_output_handle handle;
4020 int size = mmap_event->event_id.header.size;
4021 int ret = perf_output_begin(&handle, event, size, 0, 0);
4022
4023 if (ret)
4024 return;
4025
4026 mmap_event->event_id.pid = perf_event_pid(event, current);
4027 mmap_event->event_id.tid = perf_event_tid(event, current);
4028
4029 perf_output_put(&handle, mmap_event->event_id);
4030 perf_output_copy(&handle, mmap_event->file_name,
4031 mmap_event->file_size);
4032 perf_output_end(&handle);
4033 }
4034
4035 static int perf_event_mmap_match(struct perf_event *event,
4036 struct perf_mmap_event *mmap_event,
4037 int executable)
4038 {
4039 if (event->state < PERF_EVENT_STATE_INACTIVE)
4040 return 0;
4041
4042 if (event->cpu != -1 && event->cpu != smp_processor_id())
4043 return 0;
4044
4045 if ((!executable && event->attr.mmap_data) ||
4046 (executable && event->attr.mmap))
4047 return 1;
4048
4049 return 0;
4050 }
4051
4052 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4053 struct perf_mmap_event *mmap_event,
4054 int executable)
4055 {
4056 struct perf_event *event;
4057
4058 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4059 if (perf_event_mmap_match(event, mmap_event, executable))
4060 perf_event_mmap_output(event, mmap_event);
4061 }
4062 }
4063
4064 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4065 {
4066 struct perf_cpu_context *cpuctx;
4067 struct perf_event_context *ctx;
4068 struct vm_area_struct *vma = mmap_event->vma;
4069 struct file *file = vma->vm_file;
4070 unsigned int size;
4071 char tmp[16];
4072 char *buf = NULL;
4073 const char *name;
4074 struct pmu *pmu;
4075 int ctxn;
4076
4077 memset(tmp, 0, sizeof(tmp));
4078
4079 if (file) {
4080 /*
4081 * d_path works from the end of the buffer backwards, so we
4082 * need to add enough zero bytes after the string to handle
4083 * the 64bit alignment we do later.
4084 */
4085 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4086 if (!buf) {
4087 name = strncpy(tmp, "//enomem", sizeof(tmp));
4088 goto got_name;
4089 }
4090 name = d_path(&file->f_path, buf, PATH_MAX);
4091 if (IS_ERR(name)) {
4092 name = strncpy(tmp, "//toolong", sizeof(tmp));
4093 goto got_name;
4094 }
4095 } else {
4096 if (arch_vma_name(mmap_event->vma)) {
4097 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4098 sizeof(tmp));
4099 goto got_name;
4100 }
4101
4102 if (!vma->vm_mm) {
4103 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4104 goto got_name;
4105 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4106 vma->vm_end >= vma->vm_mm->brk) {
4107 name = strncpy(tmp, "[heap]", sizeof(tmp));
4108 goto got_name;
4109 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4110 vma->vm_end >= vma->vm_mm->start_stack) {
4111 name = strncpy(tmp, "[stack]", sizeof(tmp));
4112 goto got_name;
4113 }
4114
4115 name = strncpy(tmp, "//anon", sizeof(tmp));
4116 goto got_name;
4117 }
4118
4119 got_name:
4120 size = ALIGN(strlen(name)+1, sizeof(u64));
4121
4122 mmap_event->file_name = name;
4123 mmap_event->file_size = size;
4124
4125 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4126
4127 rcu_read_lock();
4128 list_for_each_entry_rcu(pmu, &pmus, entry) {
4129 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4130 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4131 vma->vm_flags & VM_EXEC);
4132
4133 ctxn = pmu->task_ctx_nr;
4134 if (ctxn < 0)
4135 goto next;
4136
4137 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4138 if (ctx) {
4139 perf_event_mmap_ctx(ctx, mmap_event,
4140 vma->vm_flags & VM_EXEC);
4141 }
4142 next:
4143 put_cpu_ptr(pmu->pmu_cpu_context);
4144 }
4145 rcu_read_unlock();
4146
4147 kfree(buf);
4148 }
4149
4150 void perf_event_mmap(struct vm_area_struct *vma)
4151 {
4152 struct perf_mmap_event mmap_event;
4153
4154 if (!atomic_read(&nr_mmap_events))
4155 return;
4156
4157 mmap_event = (struct perf_mmap_event){
4158 .vma = vma,
4159 /* .file_name */
4160 /* .file_size */
4161 .event_id = {
4162 .header = {
4163 .type = PERF_RECORD_MMAP,
4164 .misc = PERF_RECORD_MISC_USER,
4165 /* .size */
4166 },
4167 /* .pid */
4168 /* .tid */
4169 .start = vma->vm_start,
4170 .len = vma->vm_end - vma->vm_start,
4171 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4172 },
4173 };
4174
4175 perf_event_mmap_event(&mmap_event);
4176 }
4177
4178 /*
4179 * IRQ throttle logging
4180 */
4181
4182 static void perf_log_throttle(struct perf_event *event, int enable)
4183 {
4184 struct perf_output_handle handle;
4185 int ret;
4186
4187 struct {
4188 struct perf_event_header header;
4189 u64 time;
4190 u64 id;
4191 u64 stream_id;
4192 } throttle_event = {
4193 .header = {
4194 .type = PERF_RECORD_THROTTLE,
4195 .misc = 0,
4196 .size = sizeof(throttle_event),
4197 },
4198 .time = perf_clock(),
4199 .id = primary_event_id(event),
4200 .stream_id = event->id,
4201 };
4202
4203 if (enable)
4204 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4205
4206 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4207 if (ret)
4208 return;
4209
4210 perf_output_put(&handle, throttle_event);
4211 perf_output_end(&handle);
4212 }
4213
4214 /*
4215 * Generic event overflow handling, sampling.
4216 */
4217
4218 static int __perf_event_overflow(struct perf_event *event, int nmi,
4219 int throttle, struct perf_sample_data *data,
4220 struct pt_regs *regs)
4221 {
4222 int events = atomic_read(&event->event_limit);
4223 struct hw_perf_event *hwc = &event->hw;
4224 int ret = 0;
4225
4226 if (!throttle) {
4227 hwc->interrupts++;
4228 } else {
4229 if (hwc->interrupts != MAX_INTERRUPTS) {
4230 hwc->interrupts++;
4231 if (HZ * hwc->interrupts >
4232 (u64)sysctl_perf_event_sample_rate) {
4233 hwc->interrupts = MAX_INTERRUPTS;
4234 perf_log_throttle(event, 0);
4235 ret = 1;
4236 }
4237 } else {
4238 /*
4239 * Keep re-disabling events even though on the previous
4240 * pass we disabled it - just in case we raced with a
4241 * sched-in and the event got enabled again:
4242 */
4243 ret = 1;
4244 }
4245 }
4246
4247 if (event->attr.freq) {
4248 u64 now = perf_clock();
4249 s64 delta = now - hwc->freq_time_stamp;
4250
4251 hwc->freq_time_stamp = now;
4252
4253 if (delta > 0 && delta < 2*TICK_NSEC)
4254 perf_adjust_period(event, delta, hwc->last_period);
4255 }
4256
4257 /*
4258 * XXX event_limit might not quite work as expected on inherited
4259 * events
4260 */
4261
4262 event->pending_kill = POLL_IN;
4263 if (events && atomic_dec_and_test(&event->event_limit)) {
4264 ret = 1;
4265 event->pending_kill = POLL_HUP;
4266 if (nmi) {
4267 event->pending_disable = 1;
4268 irq_work_queue(&event->pending);
4269 } else
4270 perf_event_disable(event);
4271 }
4272
4273 if (event->overflow_handler)
4274 event->overflow_handler(event, nmi, data, regs);
4275 else
4276 perf_event_output(event, nmi, data, regs);
4277
4278 return ret;
4279 }
4280
4281 int perf_event_overflow(struct perf_event *event, int nmi,
4282 struct perf_sample_data *data,
4283 struct pt_regs *regs)
4284 {
4285 return __perf_event_overflow(event, nmi, 1, data, regs);
4286 }
4287
4288 /*
4289 * Generic software event infrastructure
4290 */
4291
4292 struct swevent_htable {
4293 struct swevent_hlist *swevent_hlist;
4294 struct mutex hlist_mutex;
4295 int hlist_refcount;
4296
4297 /* Recursion avoidance in each contexts */
4298 int recursion[PERF_NR_CONTEXTS];
4299 };
4300
4301 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4302
4303 /*
4304 * We directly increment event->count and keep a second value in
4305 * event->hw.period_left to count intervals. This period event
4306 * is kept in the range [-sample_period, 0] so that we can use the
4307 * sign as trigger.
4308 */
4309
4310 static u64 perf_swevent_set_period(struct perf_event *event)
4311 {
4312 struct hw_perf_event *hwc = &event->hw;
4313 u64 period = hwc->last_period;
4314 u64 nr, offset;
4315 s64 old, val;
4316
4317 hwc->last_period = hwc->sample_period;
4318
4319 again:
4320 old = val = local64_read(&hwc->period_left);
4321 if (val < 0)
4322 return 0;
4323
4324 nr = div64_u64(period + val, period);
4325 offset = nr * period;
4326 val -= offset;
4327 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4328 goto again;
4329
4330 return nr;
4331 }
4332
4333 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4334 int nmi, struct perf_sample_data *data,
4335 struct pt_regs *regs)
4336 {
4337 struct hw_perf_event *hwc = &event->hw;
4338 int throttle = 0;
4339
4340 data->period = event->hw.last_period;
4341 if (!overflow)
4342 overflow = perf_swevent_set_period(event);
4343
4344 if (hwc->interrupts == MAX_INTERRUPTS)
4345 return;
4346
4347 for (; overflow; overflow--) {
4348 if (__perf_event_overflow(event, nmi, throttle,
4349 data, regs)) {
4350 /*
4351 * We inhibit the overflow from happening when
4352 * hwc->interrupts == MAX_INTERRUPTS.
4353 */
4354 break;
4355 }
4356 throttle = 1;
4357 }
4358 }
4359
4360 static void perf_swevent_event(struct perf_event *event, u64 nr,
4361 int nmi, struct perf_sample_data *data,
4362 struct pt_regs *regs)
4363 {
4364 struct hw_perf_event *hwc = &event->hw;
4365
4366 local64_add(nr, &event->count);
4367
4368 if (!regs)
4369 return;
4370
4371 if (!hwc->sample_period)
4372 return;
4373
4374 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4375 return perf_swevent_overflow(event, 1, nmi, data, regs);
4376
4377 if (local64_add_negative(nr, &hwc->period_left))
4378 return;
4379
4380 perf_swevent_overflow(event, 0, nmi, data, regs);
4381 }
4382
4383 static int perf_exclude_event(struct perf_event *event,
4384 struct pt_regs *regs)
4385 {
4386 if (event->hw.state & PERF_HES_STOPPED)
4387 return 0;
4388
4389 if (regs) {
4390 if (event->attr.exclude_user && user_mode(regs))
4391 return 1;
4392
4393 if (event->attr.exclude_kernel && !user_mode(regs))
4394 return 1;
4395 }
4396
4397 return 0;
4398 }
4399
4400 static int perf_swevent_match(struct perf_event *event,
4401 enum perf_type_id type,
4402 u32 event_id,
4403 struct perf_sample_data *data,
4404 struct pt_regs *regs)
4405 {
4406 if (event->attr.type != type)
4407 return 0;
4408
4409 if (event->attr.config != event_id)
4410 return 0;
4411
4412 if (perf_exclude_event(event, regs))
4413 return 0;
4414
4415 return 1;
4416 }
4417
4418 static inline u64 swevent_hash(u64 type, u32 event_id)
4419 {
4420 u64 val = event_id | (type << 32);
4421
4422 return hash_64(val, SWEVENT_HLIST_BITS);
4423 }
4424
4425 static inline struct hlist_head *
4426 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4427 {
4428 u64 hash = swevent_hash(type, event_id);
4429
4430 return &hlist->heads[hash];
4431 }
4432
4433 /* For the read side: events when they trigger */
4434 static inline struct hlist_head *
4435 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4436 {
4437 struct swevent_hlist *hlist;
4438
4439 hlist = rcu_dereference(swhash->swevent_hlist);
4440 if (!hlist)
4441 return NULL;
4442
4443 return __find_swevent_head(hlist, type, event_id);
4444 }
4445
4446 /* For the event head insertion and removal in the hlist */
4447 static inline struct hlist_head *
4448 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4449 {
4450 struct swevent_hlist *hlist;
4451 u32 event_id = event->attr.config;
4452 u64 type = event->attr.type;
4453
4454 /*
4455 * Event scheduling is always serialized against hlist allocation
4456 * and release. Which makes the protected version suitable here.
4457 * The context lock guarantees that.
4458 */
4459 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4460 lockdep_is_held(&event->ctx->lock));
4461 if (!hlist)
4462 return NULL;
4463
4464 return __find_swevent_head(hlist, type, event_id);
4465 }
4466
4467 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4468 u64 nr, int nmi,
4469 struct perf_sample_data *data,
4470 struct pt_regs *regs)
4471 {
4472 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4473 struct perf_event *event;
4474 struct hlist_node *node;
4475 struct hlist_head *head;
4476
4477 rcu_read_lock();
4478 head = find_swevent_head_rcu(swhash, type, event_id);
4479 if (!head)
4480 goto end;
4481
4482 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4483 if (perf_swevent_match(event, type, event_id, data, regs))
4484 perf_swevent_event(event, nr, nmi, data, regs);
4485 }
4486 end:
4487 rcu_read_unlock();
4488 }
4489
4490 int perf_swevent_get_recursion_context(void)
4491 {
4492 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4493
4494 return get_recursion_context(swhash->recursion);
4495 }
4496 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4497
4498 void inline perf_swevent_put_recursion_context(int rctx)
4499 {
4500 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4501
4502 put_recursion_context(swhash->recursion, rctx);
4503 }
4504
4505 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4506 struct pt_regs *regs, u64 addr)
4507 {
4508 struct perf_sample_data data;
4509 int rctx;
4510
4511 preempt_disable_notrace();
4512 rctx = perf_swevent_get_recursion_context();
4513 if (rctx < 0)
4514 return;
4515
4516 perf_sample_data_init(&data, addr);
4517
4518 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4519
4520 perf_swevent_put_recursion_context(rctx);
4521 preempt_enable_notrace();
4522 }
4523
4524 static void perf_swevent_read(struct perf_event *event)
4525 {
4526 }
4527
4528 static int perf_swevent_add(struct perf_event *event, int flags)
4529 {
4530 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4531 struct hw_perf_event *hwc = &event->hw;
4532 struct hlist_head *head;
4533
4534 if (hwc->sample_period) {
4535 hwc->last_period = hwc->sample_period;
4536 perf_swevent_set_period(event);
4537 }
4538
4539 hwc->state = !(flags & PERF_EF_START);
4540
4541 head = find_swevent_head(swhash, event);
4542 if (WARN_ON_ONCE(!head))
4543 return -EINVAL;
4544
4545 hlist_add_head_rcu(&event->hlist_entry, head);
4546
4547 return 0;
4548 }
4549
4550 static void perf_swevent_del(struct perf_event *event, int flags)
4551 {
4552 hlist_del_rcu(&event->hlist_entry);
4553 }
4554
4555 static void perf_swevent_start(struct perf_event *event, int flags)
4556 {
4557 event->hw.state = 0;
4558 }
4559
4560 static void perf_swevent_stop(struct perf_event *event, int flags)
4561 {
4562 event->hw.state = PERF_HES_STOPPED;
4563 }
4564
4565 /* Deref the hlist from the update side */
4566 static inline struct swevent_hlist *
4567 swevent_hlist_deref(struct swevent_htable *swhash)
4568 {
4569 return rcu_dereference_protected(swhash->swevent_hlist,
4570 lockdep_is_held(&swhash->hlist_mutex));
4571 }
4572
4573 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4574 {
4575 struct swevent_hlist *hlist;
4576
4577 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4578 kfree(hlist);
4579 }
4580
4581 static void swevent_hlist_release(struct swevent_htable *swhash)
4582 {
4583 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4584
4585 if (!hlist)
4586 return;
4587
4588 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4589 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4590 }
4591
4592 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4593 {
4594 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4595
4596 mutex_lock(&swhash->hlist_mutex);
4597
4598 if (!--swhash->hlist_refcount)
4599 swevent_hlist_release(swhash);
4600
4601 mutex_unlock(&swhash->hlist_mutex);
4602 }
4603
4604 static void swevent_hlist_put(struct perf_event *event)
4605 {
4606 int cpu;
4607
4608 if (event->cpu != -1) {
4609 swevent_hlist_put_cpu(event, event->cpu);
4610 return;
4611 }
4612
4613 for_each_possible_cpu(cpu)
4614 swevent_hlist_put_cpu(event, cpu);
4615 }
4616
4617 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4618 {
4619 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4620 int err = 0;
4621
4622 mutex_lock(&swhash->hlist_mutex);
4623
4624 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4625 struct swevent_hlist *hlist;
4626
4627 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4628 if (!hlist) {
4629 err = -ENOMEM;
4630 goto exit;
4631 }
4632 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4633 }
4634 swhash->hlist_refcount++;
4635 exit:
4636 mutex_unlock(&swhash->hlist_mutex);
4637
4638 return err;
4639 }
4640
4641 static int swevent_hlist_get(struct perf_event *event)
4642 {
4643 int err;
4644 int cpu, failed_cpu;
4645
4646 if (event->cpu != -1)
4647 return swevent_hlist_get_cpu(event, event->cpu);
4648
4649 get_online_cpus();
4650 for_each_possible_cpu(cpu) {
4651 err = swevent_hlist_get_cpu(event, cpu);
4652 if (err) {
4653 failed_cpu = cpu;
4654 goto fail;
4655 }
4656 }
4657 put_online_cpus();
4658
4659 return 0;
4660 fail:
4661 for_each_possible_cpu(cpu) {
4662 if (cpu == failed_cpu)
4663 break;
4664 swevent_hlist_put_cpu(event, cpu);
4665 }
4666
4667 put_online_cpus();
4668 return err;
4669 }
4670
4671 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4672
4673 static void sw_perf_event_destroy(struct perf_event *event)
4674 {
4675 u64 event_id = event->attr.config;
4676
4677 WARN_ON(event->parent);
4678
4679 atomic_dec(&perf_swevent_enabled[event_id]);
4680 swevent_hlist_put(event);
4681 }
4682
4683 static int perf_swevent_init(struct perf_event *event)
4684 {
4685 int event_id = event->attr.config;
4686
4687 if (event->attr.type != PERF_TYPE_SOFTWARE)
4688 return -ENOENT;
4689
4690 switch (event_id) {
4691 case PERF_COUNT_SW_CPU_CLOCK:
4692 case PERF_COUNT_SW_TASK_CLOCK:
4693 return -ENOENT;
4694
4695 default:
4696 break;
4697 }
4698
4699 if (event_id > PERF_COUNT_SW_MAX)
4700 return -ENOENT;
4701
4702 if (!event->parent) {
4703 int err;
4704
4705 err = swevent_hlist_get(event);
4706 if (err)
4707 return err;
4708
4709 atomic_inc(&perf_swevent_enabled[event_id]);
4710 event->destroy = sw_perf_event_destroy;
4711 }
4712
4713 return 0;
4714 }
4715
4716 static struct pmu perf_swevent = {
4717 .task_ctx_nr = perf_sw_context,
4718
4719 .event_init = perf_swevent_init,
4720 .add = perf_swevent_add,
4721 .del = perf_swevent_del,
4722 .start = perf_swevent_start,
4723 .stop = perf_swevent_stop,
4724 .read = perf_swevent_read,
4725 };
4726
4727 #ifdef CONFIG_EVENT_TRACING
4728
4729 static int perf_tp_filter_match(struct perf_event *event,
4730 struct perf_sample_data *data)
4731 {
4732 void *record = data->raw->data;
4733
4734 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4735 return 1;
4736 return 0;
4737 }
4738
4739 static int perf_tp_event_match(struct perf_event *event,
4740 struct perf_sample_data *data,
4741 struct pt_regs *regs)
4742 {
4743 /*
4744 * All tracepoints are from kernel-space.
4745 */
4746 if (event->attr.exclude_kernel)
4747 return 0;
4748
4749 if (!perf_tp_filter_match(event, data))
4750 return 0;
4751
4752 return 1;
4753 }
4754
4755 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4756 struct pt_regs *regs, struct hlist_head *head, int rctx)
4757 {
4758 struct perf_sample_data data;
4759 struct perf_event *event;
4760 struct hlist_node *node;
4761
4762 struct perf_raw_record raw = {
4763 .size = entry_size,
4764 .data = record,
4765 };
4766
4767 perf_sample_data_init(&data, addr);
4768 data.raw = &raw;
4769
4770 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4771 if (perf_tp_event_match(event, &data, regs))
4772 perf_swevent_event(event, count, 1, &data, regs);
4773 }
4774
4775 perf_swevent_put_recursion_context(rctx);
4776 }
4777 EXPORT_SYMBOL_GPL(perf_tp_event);
4778
4779 static void tp_perf_event_destroy(struct perf_event *event)
4780 {
4781 perf_trace_destroy(event);
4782 }
4783
4784 static int perf_tp_event_init(struct perf_event *event)
4785 {
4786 int err;
4787
4788 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4789 return -ENOENT;
4790
4791 /*
4792 * Raw tracepoint data is a severe data leak, only allow root to
4793 * have these.
4794 */
4795 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4796 perf_paranoid_tracepoint_raw() &&
4797 !capable(CAP_SYS_ADMIN))
4798 return -EPERM;
4799
4800 err = perf_trace_init(event);
4801 if (err)
4802 return err;
4803
4804 event->destroy = tp_perf_event_destroy;
4805
4806 return 0;
4807 }
4808
4809 static struct pmu perf_tracepoint = {
4810 .task_ctx_nr = perf_sw_context,
4811
4812 .event_init = perf_tp_event_init,
4813 .add = perf_trace_add,
4814 .del = perf_trace_del,
4815 .start = perf_swevent_start,
4816 .stop = perf_swevent_stop,
4817 .read = perf_swevent_read,
4818 };
4819
4820 static inline void perf_tp_register(void)
4821 {
4822 perf_pmu_register(&perf_tracepoint);
4823 }
4824
4825 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4826 {
4827 char *filter_str;
4828 int ret;
4829
4830 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4831 return -EINVAL;
4832
4833 filter_str = strndup_user(arg, PAGE_SIZE);
4834 if (IS_ERR(filter_str))
4835 return PTR_ERR(filter_str);
4836
4837 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4838
4839 kfree(filter_str);
4840 return ret;
4841 }
4842
4843 static void perf_event_free_filter(struct perf_event *event)
4844 {
4845 ftrace_profile_free_filter(event);
4846 }
4847
4848 #else
4849
4850 static inline void perf_tp_register(void)
4851 {
4852 }
4853
4854 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4855 {
4856 return -ENOENT;
4857 }
4858
4859 static void perf_event_free_filter(struct perf_event *event)
4860 {
4861 }
4862
4863 #endif /* CONFIG_EVENT_TRACING */
4864
4865 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4866 void perf_bp_event(struct perf_event *bp, void *data)
4867 {
4868 struct perf_sample_data sample;
4869 struct pt_regs *regs = data;
4870
4871 perf_sample_data_init(&sample, bp->attr.bp_addr);
4872
4873 if (!bp->hw.state && !perf_exclude_event(bp, regs))
4874 perf_swevent_event(bp, 1, 1, &sample, regs);
4875 }
4876 #endif
4877
4878 /*
4879 * hrtimer based swevent callback
4880 */
4881
4882 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4883 {
4884 enum hrtimer_restart ret = HRTIMER_RESTART;
4885 struct perf_sample_data data;
4886 struct pt_regs *regs;
4887 struct perf_event *event;
4888 u64 period;
4889
4890 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4891 event->pmu->read(event);
4892
4893 perf_sample_data_init(&data, 0);
4894 data.period = event->hw.last_period;
4895 regs = get_irq_regs();
4896
4897 if (regs && !perf_exclude_event(event, regs)) {
4898 if (!(event->attr.exclude_idle && current->pid == 0))
4899 if (perf_event_overflow(event, 0, &data, regs))
4900 ret = HRTIMER_NORESTART;
4901 }
4902
4903 period = max_t(u64, 10000, event->hw.sample_period);
4904 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4905
4906 return ret;
4907 }
4908
4909 static void perf_swevent_start_hrtimer(struct perf_event *event)
4910 {
4911 struct hw_perf_event *hwc = &event->hw;
4912
4913 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4914 hwc->hrtimer.function = perf_swevent_hrtimer;
4915 if (hwc->sample_period) {
4916 s64 period = local64_read(&hwc->period_left);
4917
4918 if (period) {
4919 if (period < 0)
4920 period = 10000;
4921
4922 local64_set(&hwc->period_left, 0);
4923 } else {
4924 period = max_t(u64, 10000, hwc->sample_period);
4925 }
4926 __hrtimer_start_range_ns(&hwc->hrtimer,
4927 ns_to_ktime(period), 0,
4928 HRTIMER_MODE_REL_PINNED, 0);
4929 }
4930 }
4931
4932 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4933 {
4934 struct hw_perf_event *hwc = &event->hw;
4935
4936 if (hwc->sample_period) {
4937 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4938 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4939
4940 hrtimer_cancel(&hwc->hrtimer);
4941 }
4942 }
4943
4944 /*
4945 * Software event: cpu wall time clock
4946 */
4947
4948 static void cpu_clock_event_update(struct perf_event *event)
4949 {
4950 s64 prev;
4951 u64 now;
4952
4953 now = local_clock();
4954 prev = local64_xchg(&event->hw.prev_count, now);
4955 local64_add(now - prev, &event->count);
4956 }
4957
4958 static void cpu_clock_event_start(struct perf_event *event, int flags)
4959 {
4960 local64_set(&event->hw.prev_count, local_clock());
4961 perf_swevent_start_hrtimer(event);
4962 }
4963
4964 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4965 {
4966 perf_swevent_cancel_hrtimer(event);
4967 cpu_clock_event_update(event);
4968 }
4969
4970 static int cpu_clock_event_add(struct perf_event *event, int flags)
4971 {
4972 if (flags & PERF_EF_START)
4973 cpu_clock_event_start(event, flags);
4974
4975 return 0;
4976 }
4977
4978 static void cpu_clock_event_del(struct perf_event *event, int flags)
4979 {
4980 cpu_clock_event_stop(event, flags);
4981 }
4982
4983 static void cpu_clock_event_read(struct perf_event *event)
4984 {
4985 cpu_clock_event_update(event);
4986 }
4987
4988 static int cpu_clock_event_init(struct perf_event *event)
4989 {
4990 if (event->attr.type != PERF_TYPE_SOFTWARE)
4991 return -ENOENT;
4992
4993 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4994 return -ENOENT;
4995
4996 return 0;
4997 }
4998
4999 static struct pmu perf_cpu_clock = {
5000 .task_ctx_nr = perf_sw_context,
5001
5002 .event_init = cpu_clock_event_init,
5003 .add = cpu_clock_event_add,
5004 .del = cpu_clock_event_del,
5005 .start = cpu_clock_event_start,
5006 .stop = cpu_clock_event_stop,
5007 .read = cpu_clock_event_read,
5008 };
5009
5010 /*
5011 * Software event: task time clock
5012 */
5013
5014 static void task_clock_event_update(struct perf_event *event, u64 now)
5015 {
5016 u64 prev;
5017 s64 delta;
5018
5019 prev = local64_xchg(&event->hw.prev_count, now);
5020 delta = now - prev;
5021 local64_add(delta, &event->count);
5022 }
5023
5024 static void task_clock_event_start(struct perf_event *event, int flags)
5025 {
5026 local64_set(&event->hw.prev_count, event->ctx->time);
5027 perf_swevent_start_hrtimer(event);
5028 }
5029
5030 static void task_clock_event_stop(struct perf_event *event, int flags)
5031 {
5032 perf_swevent_cancel_hrtimer(event);
5033 task_clock_event_update(event, event->ctx->time);
5034 }
5035
5036 static int task_clock_event_add(struct perf_event *event, int flags)
5037 {
5038 if (flags & PERF_EF_START)
5039 task_clock_event_start(event, flags);
5040
5041 return 0;
5042 }
5043
5044 static void task_clock_event_del(struct perf_event *event, int flags)
5045 {
5046 task_clock_event_stop(event, PERF_EF_UPDATE);
5047 }
5048
5049 static void task_clock_event_read(struct perf_event *event)
5050 {
5051 u64 time;
5052
5053 if (!in_nmi()) {
5054 update_context_time(event->ctx);
5055 time = event->ctx->time;
5056 } else {
5057 u64 now = perf_clock();
5058 u64 delta = now - event->ctx->timestamp;
5059 time = event->ctx->time + delta;
5060 }
5061
5062 task_clock_event_update(event, time);
5063 }
5064
5065 static int task_clock_event_init(struct perf_event *event)
5066 {
5067 if (event->attr.type != PERF_TYPE_SOFTWARE)
5068 return -ENOENT;
5069
5070 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5071 return -ENOENT;
5072
5073 return 0;
5074 }
5075
5076 static struct pmu perf_task_clock = {
5077 .task_ctx_nr = perf_sw_context,
5078
5079 .event_init = task_clock_event_init,
5080 .add = task_clock_event_add,
5081 .del = task_clock_event_del,
5082 .start = task_clock_event_start,
5083 .stop = task_clock_event_stop,
5084 .read = task_clock_event_read,
5085 };
5086
5087 static void perf_pmu_nop_void(struct pmu *pmu)
5088 {
5089 }
5090
5091 static int perf_pmu_nop_int(struct pmu *pmu)
5092 {
5093 return 0;
5094 }
5095
5096 static void perf_pmu_start_txn(struct pmu *pmu)
5097 {
5098 perf_pmu_disable(pmu);
5099 }
5100
5101 static int perf_pmu_commit_txn(struct pmu *pmu)
5102 {
5103 perf_pmu_enable(pmu);
5104 return 0;
5105 }
5106
5107 static void perf_pmu_cancel_txn(struct pmu *pmu)
5108 {
5109 perf_pmu_enable(pmu);
5110 }
5111
5112 /*
5113 * Ensures all contexts with the same task_ctx_nr have the same
5114 * pmu_cpu_context too.
5115 */
5116 static void *find_pmu_context(int ctxn)
5117 {
5118 struct pmu *pmu;
5119
5120 if (ctxn < 0)
5121 return NULL;
5122
5123 list_for_each_entry(pmu, &pmus, entry) {
5124 if (pmu->task_ctx_nr == ctxn)
5125 return pmu->pmu_cpu_context;
5126 }
5127
5128 return NULL;
5129 }
5130
5131 static void free_pmu_context(void * __percpu cpu_context)
5132 {
5133 struct pmu *pmu;
5134
5135 mutex_lock(&pmus_lock);
5136 /*
5137 * Like a real lame refcount.
5138 */
5139 list_for_each_entry(pmu, &pmus, entry) {
5140 if (pmu->pmu_cpu_context == cpu_context)
5141 goto out;
5142 }
5143
5144 free_percpu(cpu_context);
5145 out:
5146 mutex_unlock(&pmus_lock);
5147 }
5148
5149 int perf_pmu_register(struct pmu *pmu)
5150 {
5151 int cpu, ret;
5152
5153 mutex_lock(&pmus_lock);
5154 ret = -ENOMEM;
5155 pmu->pmu_disable_count = alloc_percpu(int);
5156 if (!pmu->pmu_disable_count)
5157 goto unlock;
5158
5159 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5160 if (pmu->pmu_cpu_context)
5161 goto got_cpu_context;
5162
5163 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5164 if (!pmu->pmu_cpu_context)
5165 goto free_pdc;
5166
5167 for_each_possible_cpu(cpu) {
5168 struct perf_cpu_context *cpuctx;
5169
5170 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5171 __perf_event_init_context(&cpuctx->ctx);
5172 cpuctx->ctx.type = cpu_context;
5173 cpuctx->ctx.pmu = pmu;
5174 cpuctx->jiffies_interval = 1;
5175 INIT_LIST_HEAD(&cpuctx->rotation_list);
5176 }
5177
5178 got_cpu_context:
5179 if (!pmu->start_txn) {
5180 if (pmu->pmu_enable) {
5181 /*
5182 * If we have pmu_enable/pmu_disable calls, install
5183 * transaction stubs that use that to try and batch
5184 * hardware accesses.
5185 */
5186 pmu->start_txn = perf_pmu_start_txn;
5187 pmu->commit_txn = perf_pmu_commit_txn;
5188 pmu->cancel_txn = perf_pmu_cancel_txn;
5189 } else {
5190 pmu->start_txn = perf_pmu_nop_void;
5191 pmu->commit_txn = perf_pmu_nop_int;
5192 pmu->cancel_txn = perf_pmu_nop_void;
5193 }
5194 }
5195
5196 if (!pmu->pmu_enable) {
5197 pmu->pmu_enable = perf_pmu_nop_void;
5198 pmu->pmu_disable = perf_pmu_nop_void;
5199 }
5200
5201 list_add_rcu(&pmu->entry, &pmus);
5202 ret = 0;
5203 unlock:
5204 mutex_unlock(&pmus_lock);
5205
5206 return ret;
5207
5208 free_pdc:
5209 free_percpu(pmu->pmu_disable_count);
5210 goto unlock;
5211 }
5212
5213 void perf_pmu_unregister(struct pmu *pmu)
5214 {
5215 mutex_lock(&pmus_lock);
5216 list_del_rcu(&pmu->entry);
5217 mutex_unlock(&pmus_lock);
5218
5219 /*
5220 * We dereference the pmu list under both SRCU and regular RCU, so
5221 * synchronize against both of those.
5222 */
5223 synchronize_srcu(&pmus_srcu);
5224 synchronize_rcu();
5225
5226 free_percpu(pmu->pmu_disable_count);
5227 free_pmu_context(pmu->pmu_cpu_context);
5228 }
5229
5230 struct pmu *perf_init_event(struct perf_event *event)
5231 {
5232 struct pmu *pmu = NULL;
5233 int idx;
5234
5235 idx = srcu_read_lock(&pmus_srcu);
5236 list_for_each_entry_rcu(pmu, &pmus, entry) {
5237 int ret = pmu->event_init(event);
5238 if (!ret)
5239 goto unlock;
5240
5241 if (ret != -ENOENT) {
5242 pmu = ERR_PTR(ret);
5243 goto unlock;
5244 }
5245 }
5246 pmu = ERR_PTR(-ENOENT);
5247 unlock:
5248 srcu_read_unlock(&pmus_srcu, idx);
5249
5250 return pmu;
5251 }
5252
5253 /*
5254 * Allocate and initialize a event structure
5255 */
5256 static struct perf_event *
5257 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5258 struct perf_event *group_leader,
5259 struct perf_event *parent_event,
5260 perf_overflow_handler_t overflow_handler)
5261 {
5262 struct pmu *pmu;
5263 struct perf_event *event;
5264 struct hw_perf_event *hwc;
5265 long err;
5266
5267 event = kzalloc(sizeof(*event), GFP_KERNEL);
5268 if (!event)
5269 return ERR_PTR(-ENOMEM);
5270
5271 /*
5272 * Single events are their own group leaders, with an
5273 * empty sibling list:
5274 */
5275 if (!group_leader)
5276 group_leader = event;
5277
5278 mutex_init(&event->child_mutex);
5279 INIT_LIST_HEAD(&event->child_list);
5280
5281 INIT_LIST_HEAD(&event->group_entry);
5282 INIT_LIST_HEAD(&event->event_entry);
5283 INIT_LIST_HEAD(&event->sibling_list);
5284 init_waitqueue_head(&event->waitq);
5285 init_irq_work(&event->pending, perf_pending_event);
5286
5287 mutex_init(&event->mmap_mutex);
5288
5289 event->cpu = cpu;
5290 event->attr = *attr;
5291 event->group_leader = group_leader;
5292 event->pmu = NULL;
5293 event->oncpu = -1;
5294
5295 event->parent = parent_event;
5296
5297 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5298 event->id = atomic64_inc_return(&perf_event_id);
5299
5300 event->state = PERF_EVENT_STATE_INACTIVE;
5301
5302 if (!overflow_handler && parent_event)
5303 overflow_handler = parent_event->overflow_handler;
5304
5305 event->overflow_handler = overflow_handler;
5306
5307 if (attr->disabled)
5308 event->state = PERF_EVENT_STATE_OFF;
5309
5310 pmu = NULL;
5311
5312 hwc = &event->hw;
5313 hwc->sample_period = attr->sample_period;
5314 if (attr->freq && attr->sample_freq)
5315 hwc->sample_period = 1;
5316 hwc->last_period = hwc->sample_period;
5317
5318 local64_set(&hwc->period_left, hwc->sample_period);
5319
5320 /*
5321 * we currently do not support PERF_FORMAT_GROUP on inherited events
5322 */
5323 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5324 goto done;
5325
5326 pmu = perf_init_event(event);
5327
5328 done:
5329 err = 0;
5330 if (!pmu)
5331 err = -EINVAL;
5332 else if (IS_ERR(pmu))
5333 err = PTR_ERR(pmu);
5334
5335 if (err) {
5336 if (event->ns)
5337 put_pid_ns(event->ns);
5338 kfree(event);
5339 return ERR_PTR(err);
5340 }
5341
5342 event->pmu = pmu;
5343
5344 if (!event->parent) {
5345 atomic_inc(&nr_events);
5346 if (event->attr.mmap || event->attr.mmap_data)
5347 atomic_inc(&nr_mmap_events);
5348 if (event->attr.comm)
5349 atomic_inc(&nr_comm_events);
5350 if (event->attr.task)
5351 atomic_inc(&nr_task_events);
5352 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5353 err = get_callchain_buffers();
5354 if (err) {
5355 free_event(event);
5356 return ERR_PTR(err);
5357 }
5358 }
5359 }
5360
5361 return event;
5362 }
5363
5364 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5365 struct perf_event_attr *attr)
5366 {
5367 u32 size;
5368 int ret;
5369
5370 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5371 return -EFAULT;
5372
5373 /*
5374 * zero the full structure, so that a short copy will be nice.
5375 */
5376 memset(attr, 0, sizeof(*attr));
5377
5378 ret = get_user(size, &uattr->size);
5379 if (ret)
5380 return ret;
5381
5382 if (size > PAGE_SIZE) /* silly large */
5383 goto err_size;
5384
5385 if (!size) /* abi compat */
5386 size = PERF_ATTR_SIZE_VER0;
5387
5388 if (size < PERF_ATTR_SIZE_VER0)
5389 goto err_size;
5390
5391 /*
5392 * If we're handed a bigger struct than we know of,
5393 * ensure all the unknown bits are 0 - i.e. new
5394 * user-space does not rely on any kernel feature
5395 * extensions we dont know about yet.
5396 */
5397 if (size > sizeof(*attr)) {
5398 unsigned char __user *addr;
5399 unsigned char __user *end;
5400 unsigned char val;
5401
5402 addr = (void __user *)uattr + sizeof(*attr);
5403 end = (void __user *)uattr + size;
5404
5405 for (; addr < end; addr++) {
5406 ret = get_user(val, addr);
5407 if (ret)
5408 return ret;
5409 if (val)
5410 goto err_size;
5411 }
5412 size = sizeof(*attr);
5413 }
5414
5415 ret = copy_from_user(attr, uattr, size);
5416 if (ret)
5417 return -EFAULT;
5418
5419 /*
5420 * If the type exists, the corresponding creation will verify
5421 * the attr->config.
5422 */
5423 if (attr->type >= PERF_TYPE_MAX)
5424 return -EINVAL;
5425
5426 if (attr->__reserved_1)
5427 return -EINVAL;
5428
5429 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5430 return -EINVAL;
5431
5432 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5433 return -EINVAL;
5434
5435 out:
5436 return ret;
5437
5438 err_size:
5439 put_user(sizeof(*attr), &uattr->size);
5440 ret = -E2BIG;
5441 goto out;
5442 }
5443
5444 static int
5445 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5446 {
5447 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5448 int ret = -EINVAL;
5449
5450 if (!output_event)
5451 goto set;
5452
5453 /* don't allow circular references */
5454 if (event == output_event)
5455 goto out;
5456
5457 /*
5458 * Don't allow cross-cpu buffers
5459 */
5460 if (output_event->cpu != event->cpu)
5461 goto out;
5462
5463 /*
5464 * If its not a per-cpu buffer, it must be the same task.
5465 */
5466 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5467 goto out;
5468
5469 set:
5470 mutex_lock(&event->mmap_mutex);
5471 /* Can't redirect output if we've got an active mmap() */
5472 if (atomic_read(&event->mmap_count))
5473 goto unlock;
5474
5475 if (output_event) {
5476 /* get the buffer we want to redirect to */
5477 buffer = perf_buffer_get(output_event);
5478 if (!buffer)
5479 goto unlock;
5480 }
5481
5482 old_buffer = event->buffer;
5483 rcu_assign_pointer(event->buffer, buffer);
5484 ret = 0;
5485 unlock:
5486 mutex_unlock(&event->mmap_mutex);
5487
5488 if (old_buffer)
5489 perf_buffer_put(old_buffer);
5490 out:
5491 return ret;
5492 }
5493
5494 /**
5495 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5496 *
5497 * @attr_uptr: event_id type attributes for monitoring/sampling
5498 * @pid: target pid
5499 * @cpu: target cpu
5500 * @group_fd: group leader event fd
5501 */
5502 SYSCALL_DEFINE5(perf_event_open,
5503 struct perf_event_attr __user *, attr_uptr,
5504 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5505 {
5506 struct perf_event *group_leader = NULL, *output_event = NULL;
5507 struct perf_event *event, *sibling;
5508 struct perf_event_attr attr;
5509 struct perf_event_context *ctx;
5510 struct file *event_file = NULL;
5511 struct file *group_file = NULL;
5512 struct task_struct *task = NULL;
5513 struct pmu *pmu;
5514 int event_fd;
5515 int move_group = 0;
5516 int fput_needed = 0;
5517 int err;
5518
5519 /* for future expandability... */
5520 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5521 return -EINVAL;
5522
5523 err = perf_copy_attr(attr_uptr, &attr);
5524 if (err)
5525 return err;
5526
5527 if (!attr.exclude_kernel) {
5528 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5529 return -EACCES;
5530 }
5531
5532 if (attr.freq) {
5533 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5534 return -EINVAL;
5535 }
5536
5537 event_fd = get_unused_fd_flags(O_RDWR);
5538 if (event_fd < 0)
5539 return event_fd;
5540
5541 if (group_fd != -1) {
5542 group_leader = perf_fget_light(group_fd, &fput_needed);
5543 if (IS_ERR(group_leader)) {
5544 err = PTR_ERR(group_leader);
5545 goto err_fd;
5546 }
5547 group_file = group_leader->filp;
5548 if (flags & PERF_FLAG_FD_OUTPUT)
5549 output_event = group_leader;
5550 if (flags & PERF_FLAG_FD_NO_GROUP)
5551 group_leader = NULL;
5552 }
5553
5554 if (pid != -1) {
5555 task = find_lively_task_by_vpid(pid);
5556 if (IS_ERR(task)) {
5557 err = PTR_ERR(task);
5558 goto err_group_fd;
5559 }
5560 }
5561
5562 event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
5563 if (IS_ERR(event)) {
5564 err = PTR_ERR(event);
5565 goto err_task;
5566 }
5567
5568 /*
5569 * Special case software events and allow them to be part of
5570 * any hardware group.
5571 */
5572 pmu = event->pmu;
5573
5574 if (group_leader &&
5575 (is_software_event(event) != is_software_event(group_leader))) {
5576 if (is_software_event(event)) {
5577 /*
5578 * If event and group_leader are not both a software
5579 * event, and event is, then group leader is not.
5580 *
5581 * Allow the addition of software events to !software
5582 * groups, this is safe because software events never
5583 * fail to schedule.
5584 */
5585 pmu = group_leader->pmu;
5586 } else if (is_software_event(group_leader) &&
5587 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5588 /*
5589 * In case the group is a pure software group, and we
5590 * try to add a hardware event, move the whole group to
5591 * the hardware context.
5592 */
5593 move_group = 1;
5594 }
5595 }
5596
5597 /*
5598 * Get the target context (task or percpu):
5599 */
5600 ctx = find_get_context(pmu, task, cpu);
5601 if (IS_ERR(ctx)) {
5602 err = PTR_ERR(ctx);
5603 goto err_alloc;
5604 }
5605
5606 /*
5607 * Look up the group leader (we will attach this event to it):
5608 */
5609 if (group_leader) {
5610 err = -EINVAL;
5611
5612 /*
5613 * Do not allow a recursive hierarchy (this new sibling
5614 * becoming part of another group-sibling):
5615 */
5616 if (group_leader->group_leader != group_leader)
5617 goto err_context;
5618 /*
5619 * Do not allow to attach to a group in a different
5620 * task or CPU context:
5621 */
5622 if (move_group) {
5623 if (group_leader->ctx->type != ctx->type)
5624 goto err_context;
5625 } else {
5626 if (group_leader->ctx != ctx)
5627 goto err_context;
5628 }
5629
5630 /*
5631 * Only a group leader can be exclusive or pinned
5632 */
5633 if (attr.exclusive || attr.pinned)
5634 goto err_context;
5635 }
5636
5637 if (output_event) {
5638 err = perf_event_set_output(event, output_event);
5639 if (err)
5640 goto err_context;
5641 }
5642
5643 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5644 if (IS_ERR(event_file)) {
5645 err = PTR_ERR(event_file);
5646 goto err_context;
5647 }
5648
5649 if (move_group) {
5650 struct perf_event_context *gctx = group_leader->ctx;
5651
5652 mutex_lock(&gctx->mutex);
5653 perf_event_remove_from_context(group_leader);
5654 list_for_each_entry(sibling, &group_leader->sibling_list,
5655 group_entry) {
5656 perf_event_remove_from_context(sibling);
5657 put_ctx(gctx);
5658 }
5659 mutex_unlock(&gctx->mutex);
5660 put_ctx(gctx);
5661 }
5662
5663 event->filp = event_file;
5664 WARN_ON_ONCE(ctx->parent_ctx);
5665 mutex_lock(&ctx->mutex);
5666
5667 if (move_group) {
5668 perf_install_in_context(ctx, group_leader, cpu);
5669 get_ctx(ctx);
5670 list_for_each_entry(sibling, &group_leader->sibling_list,
5671 group_entry) {
5672 perf_install_in_context(ctx, sibling, cpu);
5673 get_ctx(ctx);
5674 }
5675 }
5676
5677 perf_install_in_context(ctx, event, cpu);
5678 ++ctx->generation;
5679 mutex_unlock(&ctx->mutex);
5680
5681 event->owner = current;
5682 get_task_struct(current);
5683 mutex_lock(&current->perf_event_mutex);
5684 list_add_tail(&event->owner_entry, &current->perf_event_list);
5685 mutex_unlock(&current->perf_event_mutex);
5686
5687 /*
5688 * Drop the reference on the group_event after placing the
5689 * new event on the sibling_list. This ensures destruction
5690 * of the group leader will find the pointer to itself in
5691 * perf_group_detach().
5692 */
5693 fput_light(group_file, fput_needed);
5694 fd_install(event_fd, event_file);
5695 return event_fd;
5696
5697 err_context:
5698 put_ctx(ctx);
5699 err_alloc:
5700 free_event(event);
5701 err_task:
5702 if (task)
5703 put_task_struct(task);
5704 err_group_fd:
5705 fput_light(group_file, fput_needed);
5706 err_fd:
5707 put_unused_fd(event_fd);
5708 return err;
5709 }
5710
5711 /**
5712 * perf_event_create_kernel_counter
5713 *
5714 * @attr: attributes of the counter to create
5715 * @cpu: cpu in which the counter is bound
5716 * @task: task to profile (NULL for percpu)
5717 */
5718 struct perf_event *
5719 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5720 struct task_struct *task,
5721 perf_overflow_handler_t overflow_handler)
5722 {
5723 struct perf_event_context *ctx;
5724 struct perf_event *event;
5725 int err;
5726
5727 /*
5728 * Get the target context (task or percpu):
5729 */
5730
5731 event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
5732 if (IS_ERR(event)) {
5733 err = PTR_ERR(event);
5734 goto err;
5735 }
5736
5737 ctx = find_get_context(event->pmu, task, cpu);
5738 if (IS_ERR(ctx)) {
5739 err = PTR_ERR(ctx);
5740 goto err_free;
5741 }
5742
5743 event->filp = NULL;
5744 WARN_ON_ONCE(ctx->parent_ctx);
5745 mutex_lock(&ctx->mutex);
5746 perf_install_in_context(ctx, event, cpu);
5747 ++ctx->generation;
5748 mutex_unlock(&ctx->mutex);
5749
5750 event->owner = current;
5751 get_task_struct(current);
5752 mutex_lock(&current->perf_event_mutex);
5753 list_add_tail(&event->owner_entry, &current->perf_event_list);
5754 mutex_unlock(&current->perf_event_mutex);
5755
5756 return event;
5757
5758 err_free:
5759 free_event(event);
5760 err:
5761 return ERR_PTR(err);
5762 }
5763 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5764
5765 static void sync_child_event(struct perf_event *child_event,
5766 struct task_struct *child)
5767 {
5768 struct perf_event *parent_event = child_event->parent;
5769 u64 child_val;
5770
5771 if (child_event->attr.inherit_stat)
5772 perf_event_read_event(child_event, child);
5773
5774 child_val = perf_event_count(child_event);
5775
5776 /*
5777 * Add back the child's count to the parent's count:
5778 */
5779 atomic64_add(child_val, &parent_event->child_count);
5780 atomic64_add(child_event->total_time_enabled,
5781 &parent_event->child_total_time_enabled);
5782 atomic64_add(child_event->total_time_running,
5783 &parent_event->child_total_time_running);
5784
5785 /*
5786 * Remove this event from the parent's list
5787 */
5788 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5789 mutex_lock(&parent_event->child_mutex);
5790 list_del_init(&child_event->child_list);
5791 mutex_unlock(&parent_event->child_mutex);
5792
5793 /*
5794 * Release the parent event, if this was the last
5795 * reference to it.
5796 */
5797 fput(parent_event->filp);
5798 }
5799
5800 static void
5801 __perf_event_exit_task(struct perf_event *child_event,
5802 struct perf_event_context *child_ctx,
5803 struct task_struct *child)
5804 {
5805 struct perf_event *parent_event;
5806
5807 perf_event_remove_from_context(child_event);
5808
5809 parent_event = child_event->parent;
5810 /*
5811 * It can happen that parent exits first, and has events
5812 * that are still around due to the child reference. These
5813 * events need to be zapped - but otherwise linger.
5814 */
5815 if (parent_event) {
5816 sync_child_event(child_event, child);
5817 free_event(child_event);
5818 }
5819 }
5820
5821 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5822 {
5823 struct perf_event *child_event, *tmp;
5824 struct perf_event_context *child_ctx;
5825 unsigned long flags;
5826
5827 if (likely(!child->perf_event_ctxp[ctxn])) {
5828 perf_event_task(child, NULL, 0);
5829 return;
5830 }
5831
5832 local_irq_save(flags);
5833 /*
5834 * We can't reschedule here because interrupts are disabled,
5835 * and either child is current or it is a task that can't be
5836 * scheduled, so we are now safe from rescheduling changing
5837 * our context.
5838 */
5839 child_ctx = child->perf_event_ctxp[ctxn];
5840 __perf_event_task_sched_out(child_ctx);
5841
5842 /*
5843 * Take the context lock here so that if find_get_context is
5844 * reading child->perf_event_ctxp, we wait until it has
5845 * incremented the context's refcount before we do put_ctx below.
5846 */
5847 raw_spin_lock(&child_ctx->lock);
5848 child->perf_event_ctxp[ctxn] = NULL;
5849 /*
5850 * If this context is a clone; unclone it so it can't get
5851 * swapped to another process while we're removing all
5852 * the events from it.
5853 */
5854 unclone_ctx(child_ctx);
5855 update_context_time(child_ctx);
5856 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5857
5858 /*
5859 * Report the task dead after unscheduling the events so that we
5860 * won't get any samples after PERF_RECORD_EXIT. We can however still
5861 * get a few PERF_RECORD_READ events.
5862 */
5863 perf_event_task(child, child_ctx, 0);
5864
5865 /*
5866 * We can recurse on the same lock type through:
5867 *
5868 * __perf_event_exit_task()
5869 * sync_child_event()
5870 * fput(parent_event->filp)
5871 * perf_release()
5872 * mutex_lock(&ctx->mutex)
5873 *
5874 * But since its the parent context it won't be the same instance.
5875 */
5876 mutex_lock(&child_ctx->mutex);
5877
5878 again:
5879 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5880 group_entry)
5881 __perf_event_exit_task(child_event, child_ctx, child);
5882
5883 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5884 group_entry)
5885 __perf_event_exit_task(child_event, child_ctx, child);
5886
5887 /*
5888 * If the last event was a group event, it will have appended all
5889 * its siblings to the list, but we obtained 'tmp' before that which
5890 * will still point to the list head terminating the iteration.
5891 */
5892 if (!list_empty(&child_ctx->pinned_groups) ||
5893 !list_empty(&child_ctx->flexible_groups))
5894 goto again;
5895
5896 mutex_unlock(&child_ctx->mutex);
5897
5898 put_ctx(child_ctx);
5899 }
5900
5901 /*
5902 * When a child task exits, feed back event values to parent events.
5903 */
5904 void perf_event_exit_task(struct task_struct *child)
5905 {
5906 int ctxn;
5907
5908 for_each_task_context_nr(ctxn)
5909 perf_event_exit_task_context(child, ctxn);
5910 }
5911
5912 static void perf_free_event(struct perf_event *event,
5913 struct perf_event_context *ctx)
5914 {
5915 struct perf_event *parent = event->parent;
5916
5917 if (WARN_ON_ONCE(!parent))
5918 return;
5919
5920 mutex_lock(&parent->child_mutex);
5921 list_del_init(&event->child_list);
5922 mutex_unlock(&parent->child_mutex);
5923
5924 fput(parent->filp);
5925
5926 perf_group_detach(event);
5927 list_del_event(event, ctx);
5928 free_event(event);
5929 }
5930
5931 /*
5932 * free an unexposed, unused context as created by inheritance by
5933 * perf_event_init_task below, used by fork() in case of fail.
5934 */
5935 void perf_event_free_task(struct task_struct *task)
5936 {
5937 struct perf_event_context *ctx;
5938 struct perf_event *event, *tmp;
5939 int ctxn;
5940
5941 for_each_task_context_nr(ctxn) {
5942 ctx = task->perf_event_ctxp[ctxn];
5943 if (!ctx)
5944 continue;
5945
5946 mutex_lock(&ctx->mutex);
5947 again:
5948 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5949 group_entry)
5950 perf_free_event(event, ctx);
5951
5952 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5953 group_entry)
5954 perf_free_event(event, ctx);
5955
5956 if (!list_empty(&ctx->pinned_groups) ||
5957 !list_empty(&ctx->flexible_groups))
5958 goto again;
5959
5960 mutex_unlock(&ctx->mutex);
5961
5962 put_ctx(ctx);
5963 }
5964 }
5965
5966 void perf_event_delayed_put(struct task_struct *task)
5967 {
5968 int ctxn;
5969
5970 for_each_task_context_nr(ctxn)
5971 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5972 }
5973
5974 /*
5975 * inherit a event from parent task to child task:
5976 */
5977 static struct perf_event *
5978 inherit_event(struct perf_event *parent_event,
5979 struct task_struct *parent,
5980 struct perf_event_context *parent_ctx,
5981 struct task_struct *child,
5982 struct perf_event *group_leader,
5983 struct perf_event_context *child_ctx)
5984 {
5985 struct perf_event *child_event;
5986 unsigned long flags;
5987
5988 /*
5989 * Instead of creating recursive hierarchies of events,
5990 * we link inherited events back to the original parent,
5991 * which has a filp for sure, which we use as the reference
5992 * count:
5993 */
5994 if (parent_event->parent)
5995 parent_event = parent_event->parent;
5996
5997 child_event = perf_event_alloc(&parent_event->attr,
5998 parent_event->cpu,
5999 group_leader, parent_event,
6000 NULL);
6001 if (IS_ERR(child_event))
6002 return child_event;
6003 get_ctx(child_ctx);
6004
6005 /*
6006 * Make the child state follow the state of the parent event,
6007 * not its attr.disabled bit. We hold the parent's mutex,
6008 * so we won't race with perf_event_{en, dis}able_family.
6009 */
6010 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6011 child_event->state = PERF_EVENT_STATE_INACTIVE;
6012 else
6013 child_event->state = PERF_EVENT_STATE_OFF;
6014
6015 if (parent_event->attr.freq) {
6016 u64 sample_period = parent_event->hw.sample_period;
6017 struct hw_perf_event *hwc = &child_event->hw;
6018
6019 hwc->sample_period = sample_period;
6020 hwc->last_period = sample_period;
6021
6022 local64_set(&hwc->period_left, sample_period);
6023 }
6024
6025 child_event->ctx = child_ctx;
6026 child_event->overflow_handler = parent_event->overflow_handler;
6027
6028 /*
6029 * Link it up in the child's context:
6030 */
6031 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6032 add_event_to_ctx(child_event, child_ctx);
6033 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6034
6035 /*
6036 * Get a reference to the parent filp - we will fput it
6037 * when the child event exits. This is safe to do because
6038 * we are in the parent and we know that the filp still
6039 * exists and has a nonzero count:
6040 */
6041 atomic_long_inc(&parent_event->filp->f_count);
6042
6043 /*
6044 * Link this into the parent event's child list
6045 */
6046 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6047 mutex_lock(&parent_event->child_mutex);
6048 list_add_tail(&child_event->child_list, &parent_event->child_list);
6049 mutex_unlock(&parent_event->child_mutex);
6050
6051 return child_event;
6052 }
6053
6054 static int inherit_group(struct perf_event *parent_event,
6055 struct task_struct *parent,
6056 struct perf_event_context *parent_ctx,
6057 struct task_struct *child,
6058 struct perf_event_context *child_ctx)
6059 {
6060 struct perf_event *leader;
6061 struct perf_event *sub;
6062 struct perf_event *child_ctr;
6063
6064 leader = inherit_event(parent_event, parent, parent_ctx,
6065 child, NULL, child_ctx);
6066 if (IS_ERR(leader))
6067 return PTR_ERR(leader);
6068 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6069 child_ctr = inherit_event(sub, parent, parent_ctx,
6070 child, leader, child_ctx);
6071 if (IS_ERR(child_ctr))
6072 return PTR_ERR(child_ctr);
6073 }
6074 return 0;
6075 }
6076
6077 static int
6078 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6079 struct perf_event_context *parent_ctx,
6080 struct task_struct *child, int ctxn,
6081 int *inherited_all)
6082 {
6083 int ret;
6084 struct perf_event_context *child_ctx;
6085
6086 if (!event->attr.inherit) {
6087 *inherited_all = 0;
6088 return 0;
6089 }
6090
6091 child_ctx = child->perf_event_ctxp[ctxn];
6092 if (!child_ctx) {
6093 /*
6094 * This is executed from the parent task context, so
6095 * inherit events that have been marked for cloning.
6096 * First allocate and initialize a context for the
6097 * child.
6098 */
6099
6100 child_ctx = alloc_perf_context(event->pmu, child);
6101 if (!child_ctx)
6102 return -ENOMEM;
6103
6104 child->perf_event_ctxp[ctxn] = child_ctx;
6105 }
6106
6107 ret = inherit_group(event, parent, parent_ctx,
6108 child, child_ctx);
6109
6110 if (ret)
6111 *inherited_all = 0;
6112
6113 return ret;
6114 }
6115
6116 /*
6117 * Initialize the perf_event context in task_struct
6118 */
6119 int perf_event_init_context(struct task_struct *child, int ctxn)
6120 {
6121 struct perf_event_context *child_ctx, *parent_ctx;
6122 struct perf_event_context *cloned_ctx;
6123 struct perf_event *event;
6124 struct task_struct *parent = current;
6125 int inherited_all = 1;
6126 int ret = 0;
6127
6128 child->perf_event_ctxp[ctxn] = NULL;
6129
6130 mutex_init(&child->perf_event_mutex);
6131 INIT_LIST_HEAD(&child->perf_event_list);
6132
6133 if (likely(!parent->perf_event_ctxp[ctxn]))
6134 return 0;
6135
6136 /*
6137 * If the parent's context is a clone, pin it so it won't get
6138 * swapped under us.
6139 */
6140 parent_ctx = perf_pin_task_context(parent, ctxn);
6141
6142 /*
6143 * No need to check if parent_ctx != NULL here; since we saw
6144 * it non-NULL earlier, the only reason for it to become NULL
6145 * is if we exit, and since we're currently in the middle of
6146 * a fork we can't be exiting at the same time.
6147 */
6148
6149 /*
6150 * Lock the parent list. No need to lock the child - not PID
6151 * hashed yet and not running, so nobody can access it.
6152 */
6153 mutex_lock(&parent_ctx->mutex);
6154
6155 /*
6156 * We dont have to disable NMIs - we are only looking at
6157 * the list, not manipulating it:
6158 */
6159 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6160 ret = inherit_task_group(event, parent, parent_ctx,
6161 child, ctxn, &inherited_all);
6162 if (ret)
6163 break;
6164 }
6165
6166 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6167 ret = inherit_task_group(event, parent, parent_ctx,
6168 child, ctxn, &inherited_all);
6169 if (ret)
6170 break;
6171 }
6172
6173 child_ctx = child->perf_event_ctxp[ctxn];
6174
6175 if (child_ctx && inherited_all) {
6176 /*
6177 * Mark the child context as a clone of the parent
6178 * context, or of whatever the parent is a clone of.
6179 * Note that if the parent is a clone, it could get
6180 * uncloned at any point, but that doesn't matter
6181 * because the list of events and the generation
6182 * count can't have changed since we took the mutex.
6183 */
6184 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6185 if (cloned_ctx) {
6186 child_ctx->parent_ctx = cloned_ctx;
6187 child_ctx->parent_gen = parent_ctx->parent_gen;
6188 } else {
6189 child_ctx->parent_ctx = parent_ctx;
6190 child_ctx->parent_gen = parent_ctx->generation;
6191 }
6192 get_ctx(child_ctx->parent_ctx);
6193 }
6194
6195 mutex_unlock(&parent_ctx->mutex);
6196
6197 perf_unpin_context(parent_ctx);
6198
6199 return ret;
6200 }
6201
6202 /*
6203 * Initialize the perf_event context in task_struct
6204 */
6205 int perf_event_init_task(struct task_struct *child)
6206 {
6207 int ctxn, ret;
6208
6209 for_each_task_context_nr(ctxn) {
6210 ret = perf_event_init_context(child, ctxn);
6211 if (ret)
6212 return ret;
6213 }
6214
6215 return 0;
6216 }
6217
6218 static void __init perf_event_init_all_cpus(void)
6219 {
6220 struct swevent_htable *swhash;
6221 int cpu;
6222
6223 for_each_possible_cpu(cpu) {
6224 swhash = &per_cpu(swevent_htable, cpu);
6225 mutex_init(&swhash->hlist_mutex);
6226 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6227 }
6228 }
6229
6230 static void __cpuinit perf_event_init_cpu(int cpu)
6231 {
6232 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6233
6234 mutex_lock(&swhash->hlist_mutex);
6235 if (swhash->hlist_refcount > 0) {
6236 struct swevent_hlist *hlist;
6237
6238 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6239 WARN_ON(!hlist);
6240 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6241 }
6242 mutex_unlock(&swhash->hlist_mutex);
6243 }
6244
6245 #ifdef CONFIG_HOTPLUG_CPU
6246 static void perf_pmu_rotate_stop(struct pmu *pmu)
6247 {
6248 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6249
6250 WARN_ON(!irqs_disabled());
6251
6252 list_del_init(&cpuctx->rotation_list);
6253 }
6254
6255 static void __perf_event_exit_context(void *__info)
6256 {
6257 struct perf_event_context *ctx = __info;
6258 struct perf_event *event, *tmp;
6259
6260 perf_pmu_rotate_stop(ctx->pmu);
6261
6262 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6263 __perf_event_remove_from_context(event);
6264 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6265 __perf_event_remove_from_context(event);
6266 }
6267
6268 static void perf_event_exit_cpu_context(int cpu)
6269 {
6270 struct perf_event_context *ctx;
6271 struct pmu *pmu;
6272 int idx;
6273
6274 idx = srcu_read_lock(&pmus_srcu);
6275 list_for_each_entry_rcu(pmu, &pmus, entry) {
6276 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6277
6278 mutex_lock(&ctx->mutex);
6279 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6280 mutex_unlock(&ctx->mutex);
6281 }
6282 srcu_read_unlock(&pmus_srcu, idx);
6283 }
6284
6285 static void perf_event_exit_cpu(int cpu)
6286 {
6287 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6288
6289 mutex_lock(&swhash->hlist_mutex);
6290 swevent_hlist_release(swhash);
6291 mutex_unlock(&swhash->hlist_mutex);
6292
6293 perf_event_exit_cpu_context(cpu);
6294 }
6295 #else
6296 static inline void perf_event_exit_cpu(int cpu) { }
6297 #endif
6298
6299 static int __cpuinit
6300 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6301 {
6302 unsigned int cpu = (long)hcpu;
6303
6304 switch (action & ~CPU_TASKS_FROZEN) {
6305
6306 case CPU_UP_PREPARE:
6307 case CPU_DOWN_FAILED:
6308 perf_event_init_cpu(cpu);
6309 break;
6310
6311 case CPU_UP_CANCELED:
6312 case CPU_DOWN_PREPARE:
6313 perf_event_exit_cpu(cpu);
6314 break;
6315
6316 default:
6317 break;
6318 }
6319
6320 return NOTIFY_OK;
6321 }
6322
6323 void __init perf_event_init(void)
6324 {
6325 perf_event_init_all_cpus();
6326 init_srcu_struct(&pmus_srcu);
6327 perf_pmu_register(&perf_swevent);
6328 perf_pmu_register(&perf_cpu_clock);
6329 perf_pmu_register(&perf_task_clock);
6330 perf_tp_register();
6331 perf_cpu_notifier(perf_cpu_notify);
6332 }
This page took 0.233828 seconds and 6 git commands to generate.