perf: Fix perf_init_event()
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 static atomic_t nr_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
41
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
45
46 /*
47 * perf event paranoia level:
48 * -1 - not paranoid at all
49 * 0 - disallow raw tracepoint access for unpriv
50 * 1 - disallow cpu events for unpriv
51 * 2 - disallow kernel profiling for unpriv
52 */
53 int sysctl_perf_event_paranoid __read_mostly = 1;
54
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56
57 /*
58 * max perf event sample rate
59 */
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
61
62 static atomic64_t perf_event_id;
63
64 void __weak perf_event_print_debug(void) { }
65
66 void perf_pmu_disable(struct pmu *pmu)
67 {
68 int *count = this_cpu_ptr(pmu->pmu_disable_count);
69 if (!(*count)++)
70 pmu->pmu_disable(pmu);
71 }
72
73 void perf_pmu_enable(struct pmu *pmu)
74 {
75 int *count = this_cpu_ptr(pmu->pmu_disable_count);
76 if (!--(*count))
77 pmu->pmu_enable(pmu);
78 }
79
80 static void perf_pmu_rotate_start(struct pmu *pmu)
81 {
82 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
83
84 if (hrtimer_active(&cpuctx->timer))
85 return;
86
87 __hrtimer_start_range_ns(&cpuctx->timer,
88 ns_to_ktime(cpuctx->timer_interval), 0,
89 HRTIMER_MODE_REL_PINNED, 0);
90 }
91
92 static void perf_pmu_rotate_stop(struct pmu *pmu)
93 {
94 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95
96 hrtimer_cancel(&cpuctx->timer);
97 }
98
99 static void get_ctx(struct perf_event_context *ctx)
100 {
101 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
102 }
103
104 static void free_ctx(struct rcu_head *head)
105 {
106 struct perf_event_context *ctx;
107
108 ctx = container_of(head, struct perf_event_context, rcu_head);
109 kfree(ctx);
110 }
111
112 static void put_ctx(struct perf_event_context *ctx)
113 {
114 if (atomic_dec_and_test(&ctx->refcount)) {
115 if (ctx->parent_ctx)
116 put_ctx(ctx->parent_ctx);
117 if (ctx->task)
118 put_task_struct(ctx->task);
119 call_rcu(&ctx->rcu_head, free_ctx);
120 }
121 }
122
123 static void unclone_ctx(struct perf_event_context *ctx)
124 {
125 if (ctx->parent_ctx) {
126 put_ctx(ctx->parent_ctx);
127 ctx->parent_ctx = NULL;
128 }
129 }
130
131 /*
132 * If we inherit events we want to return the parent event id
133 * to userspace.
134 */
135 static u64 primary_event_id(struct perf_event *event)
136 {
137 u64 id = event->id;
138
139 if (event->parent)
140 id = event->parent->id;
141
142 return id;
143 }
144
145 /*
146 * Get the perf_event_context for a task and lock it.
147 * This has to cope with with the fact that until it is locked,
148 * the context could get moved to another task.
149 */
150 static struct perf_event_context *
151 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
152 {
153 struct perf_event_context *ctx;
154
155 rcu_read_lock();
156 retry:
157 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
158 if (ctx) {
159 /*
160 * If this context is a clone of another, it might
161 * get swapped for another underneath us by
162 * perf_event_task_sched_out, though the
163 * rcu_read_lock() protects us from any context
164 * getting freed. Lock the context and check if it
165 * got swapped before we could get the lock, and retry
166 * if so. If we locked the right context, then it
167 * can't get swapped on us any more.
168 */
169 raw_spin_lock_irqsave(&ctx->lock, *flags);
170 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
171 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
172 goto retry;
173 }
174
175 if (!atomic_inc_not_zero(&ctx->refcount)) {
176 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177 ctx = NULL;
178 }
179 }
180 rcu_read_unlock();
181 return ctx;
182 }
183
184 /*
185 * Get the context for a task and increment its pin_count so it
186 * can't get swapped to another task. This also increments its
187 * reference count so that the context can't get freed.
188 */
189 static struct perf_event_context *
190 perf_pin_task_context(struct task_struct *task, int ctxn)
191 {
192 struct perf_event_context *ctx;
193 unsigned long flags;
194
195 ctx = perf_lock_task_context(task, ctxn, &flags);
196 if (ctx) {
197 ++ctx->pin_count;
198 raw_spin_unlock_irqrestore(&ctx->lock, flags);
199 }
200 return ctx;
201 }
202
203 static void perf_unpin_context(struct perf_event_context *ctx)
204 {
205 unsigned long flags;
206
207 raw_spin_lock_irqsave(&ctx->lock, flags);
208 --ctx->pin_count;
209 raw_spin_unlock_irqrestore(&ctx->lock, flags);
210 put_ctx(ctx);
211 }
212
213 static inline u64 perf_clock(void)
214 {
215 return local_clock();
216 }
217
218 /*
219 * Update the record of the current time in a context.
220 */
221 static void update_context_time(struct perf_event_context *ctx)
222 {
223 u64 now = perf_clock();
224
225 ctx->time += now - ctx->timestamp;
226 ctx->timestamp = now;
227 }
228
229 /*
230 * Update the total_time_enabled and total_time_running fields for a event.
231 */
232 static void update_event_times(struct perf_event *event)
233 {
234 struct perf_event_context *ctx = event->ctx;
235 u64 run_end;
236
237 if (event->state < PERF_EVENT_STATE_INACTIVE ||
238 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
239 return;
240
241 if (ctx->is_active)
242 run_end = ctx->time;
243 else
244 run_end = event->tstamp_stopped;
245
246 event->total_time_enabled = run_end - event->tstamp_enabled;
247
248 if (event->state == PERF_EVENT_STATE_INACTIVE)
249 run_end = event->tstamp_stopped;
250 else
251 run_end = ctx->time;
252
253 event->total_time_running = run_end - event->tstamp_running;
254 }
255
256 /*
257 * Update total_time_enabled and total_time_running for all events in a group.
258 */
259 static void update_group_times(struct perf_event *leader)
260 {
261 struct perf_event *event;
262
263 update_event_times(leader);
264 list_for_each_entry(event, &leader->sibling_list, group_entry)
265 update_event_times(event);
266 }
267
268 static struct list_head *
269 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
270 {
271 if (event->attr.pinned)
272 return &ctx->pinned_groups;
273 else
274 return &ctx->flexible_groups;
275 }
276
277 /*
278 * Add a event from the lists for its context.
279 * Must be called with ctx->mutex and ctx->lock held.
280 */
281 static void
282 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
283 {
284 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
285 event->attach_state |= PERF_ATTACH_CONTEXT;
286
287 /*
288 * If we're a stand alone event or group leader, we go to the context
289 * list, group events are kept attached to the group so that
290 * perf_group_detach can, at all times, locate all siblings.
291 */
292 if (event->group_leader == event) {
293 struct list_head *list;
294
295 if (is_software_event(event))
296 event->group_flags |= PERF_GROUP_SOFTWARE;
297
298 list = ctx_group_list(event, ctx);
299 list_add_tail(&event->group_entry, list);
300 }
301
302 list_add_rcu(&event->event_entry, &ctx->event_list);
303 if (!ctx->nr_events)
304 perf_pmu_rotate_start(ctx->pmu);
305 ctx->nr_events++;
306 if (event->attr.inherit_stat)
307 ctx->nr_stat++;
308 }
309
310 static void perf_group_attach(struct perf_event *event)
311 {
312 struct perf_event *group_leader = event->group_leader;
313
314 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315 event->attach_state |= PERF_ATTACH_GROUP;
316
317 if (group_leader == event)
318 return;
319
320 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321 !is_software_event(event))
322 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
323
324 list_add_tail(&event->group_entry, &group_leader->sibling_list);
325 group_leader->nr_siblings++;
326 }
327
328 /*
329 * Remove a event from the lists for its context.
330 * Must be called with ctx->mutex and ctx->lock held.
331 */
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334 {
335 /*
336 * We can have double detach due to exit/hot-unplug + close.
337 */
338 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339 return;
340
341 event->attach_state &= ~PERF_ATTACH_CONTEXT;
342
343 ctx->nr_events--;
344 if (event->attr.inherit_stat)
345 ctx->nr_stat--;
346
347 list_del_rcu(&event->event_entry);
348
349 if (event->group_leader == event)
350 list_del_init(&event->group_entry);
351
352 update_group_times(event);
353
354 /*
355 * If event was in error state, then keep it
356 * that way, otherwise bogus counts will be
357 * returned on read(). The only way to get out
358 * of error state is by explicit re-enabling
359 * of the event
360 */
361 if (event->state > PERF_EVENT_STATE_OFF)
362 event->state = PERF_EVENT_STATE_OFF;
363 }
364
365 static void perf_group_detach(struct perf_event *event)
366 {
367 struct perf_event *sibling, *tmp;
368 struct list_head *list = NULL;
369
370 /*
371 * We can have double detach due to exit/hot-unplug + close.
372 */
373 if (!(event->attach_state & PERF_ATTACH_GROUP))
374 return;
375
376 event->attach_state &= ~PERF_ATTACH_GROUP;
377
378 /*
379 * If this is a sibling, remove it from its group.
380 */
381 if (event->group_leader != event) {
382 list_del_init(&event->group_entry);
383 event->group_leader->nr_siblings--;
384 return;
385 }
386
387 if (!list_empty(&event->group_entry))
388 list = &event->group_entry;
389
390 /*
391 * If this was a group event with sibling events then
392 * upgrade the siblings to singleton events by adding them
393 * to whatever list we are on.
394 */
395 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396 if (list)
397 list_move_tail(&sibling->group_entry, list);
398 sibling->group_leader = sibling;
399
400 /* Inherit group flags from the previous leader */
401 sibling->group_flags = event->group_flags;
402 }
403 }
404
405 static inline int
406 event_filter_match(struct perf_event *event)
407 {
408 return event->cpu == -1 || event->cpu == smp_processor_id();
409 }
410
411 static void
412 event_sched_out(struct perf_event *event,
413 struct perf_cpu_context *cpuctx,
414 struct perf_event_context *ctx)
415 {
416 u64 delta;
417 /*
418 * An event which could not be activated because of
419 * filter mismatch still needs to have its timings
420 * maintained, otherwise bogus information is return
421 * via read() for time_enabled, time_running:
422 */
423 if (event->state == PERF_EVENT_STATE_INACTIVE
424 && !event_filter_match(event)) {
425 delta = ctx->time - event->tstamp_stopped;
426 event->tstamp_running += delta;
427 event->tstamp_stopped = ctx->time;
428 }
429
430 if (event->state != PERF_EVENT_STATE_ACTIVE)
431 return;
432
433 event->state = PERF_EVENT_STATE_INACTIVE;
434 if (event->pending_disable) {
435 event->pending_disable = 0;
436 event->state = PERF_EVENT_STATE_OFF;
437 }
438 event->tstamp_stopped = ctx->time;
439 event->pmu->del(event, 0);
440 event->oncpu = -1;
441
442 if (!is_software_event(event))
443 cpuctx->active_oncpu--;
444 ctx->nr_active--;
445 if (event->attr.exclusive || !cpuctx->active_oncpu)
446 cpuctx->exclusive = 0;
447 }
448
449 static void
450 group_sched_out(struct perf_event *group_event,
451 struct perf_cpu_context *cpuctx,
452 struct perf_event_context *ctx)
453 {
454 struct perf_event *event;
455 int state = group_event->state;
456
457 event_sched_out(group_event, cpuctx, ctx);
458
459 /*
460 * Schedule out siblings (if any):
461 */
462 list_for_each_entry(event, &group_event->sibling_list, group_entry)
463 event_sched_out(event, cpuctx, ctx);
464
465 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
466 cpuctx->exclusive = 0;
467 }
468
469 static inline struct perf_cpu_context *
470 __get_cpu_context(struct perf_event_context *ctx)
471 {
472 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
473 }
474
475 /*
476 * Cross CPU call to remove a performance event
477 *
478 * We disable the event on the hardware level first. After that we
479 * remove it from the context list.
480 */
481 static void __perf_event_remove_from_context(void *info)
482 {
483 struct perf_event *event = info;
484 struct perf_event_context *ctx = event->ctx;
485 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
486
487 /*
488 * If this is a task context, we need to check whether it is
489 * the current task context of this cpu. If not it has been
490 * scheduled out before the smp call arrived.
491 */
492 if (ctx->task && cpuctx->task_ctx != ctx)
493 return;
494
495 raw_spin_lock(&ctx->lock);
496
497 event_sched_out(event, cpuctx, ctx);
498
499 list_del_event(event, ctx);
500
501 raw_spin_unlock(&ctx->lock);
502 }
503
504
505 /*
506 * Remove the event from a task's (or a CPU's) list of events.
507 *
508 * Must be called with ctx->mutex held.
509 *
510 * CPU events are removed with a smp call. For task events we only
511 * call when the task is on a CPU.
512 *
513 * If event->ctx is a cloned context, callers must make sure that
514 * every task struct that event->ctx->task could possibly point to
515 * remains valid. This is OK when called from perf_release since
516 * that only calls us on the top-level context, which can't be a clone.
517 * When called from perf_event_exit_task, it's OK because the
518 * context has been detached from its task.
519 */
520 static void perf_event_remove_from_context(struct perf_event *event)
521 {
522 struct perf_event_context *ctx = event->ctx;
523 struct task_struct *task = ctx->task;
524
525 if (!task) {
526 /*
527 * Per cpu events are removed via an smp call and
528 * the removal is always successful.
529 */
530 smp_call_function_single(event->cpu,
531 __perf_event_remove_from_context,
532 event, 1);
533 return;
534 }
535
536 retry:
537 task_oncpu_function_call(task, __perf_event_remove_from_context,
538 event);
539
540 raw_spin_lock_irq(&ctx->lock);
541 /*
542 * If the context is active we need to retry the smp call.
543 */
544 if (ctx->nr_active && !list_empty(&event->group_entry)) {
545 raw_spin_unlock_irq(&ctx->lock);
546 goto retry;
547 }
548
549 /*
550 * The lock prevents that this context is scheduled in so we
551 * can remove the event safely, if the call above did not
552 * succeed.
553 */
554 if (!list_empty(&event->group_entry))
555 list_del_event(event, ctx);
556 raw_spin_unlock_irq(&ctx->lock);
557 }
558
559 /*
560 * Cross CPU call to disable a performance event
561 */
562 static void __perf_event_disable(void *info)
563 {
564 struct perf_event *event = info;
565 struct perf_event_context *ctx = event->ctx;
566 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
567
568 /*
569 * If this is a per-task event, need to check whether this
570 * event's task is the current task on this cpu.
571 */
572 if (ctx->task && cpuctx->task_ctx != ctx)
573 return;
574
575 raw_spin_lock(&ctx->lock);
576
577 /*
578 * If the event is on, turn it off.
579 * If it is in error state, leave it in error state.
580 */
581 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
582 update_context_time(ctx);
583 update_group_times(event);
584 if (event == event->group_leader)
585 group_sched_out(event, cpuctx, ctx);
586 else
587 event_sched_out(event, cpuctx, ctx);
588 event->state = PERF_EVENT_STATE_OFF;
589 }
590
591 raw_spin_unlock(&ctx->lock);
592 }
593
594 /*
595 * Disable a event.
596 *
597 * If event->ctx is a cloned context, callers must make sure that
598 * every task struct that event->ctx->task could possibly point to
599 * remains valid. This condition is satisifed when called through
600 * perf_event_for_each_child or perf_event_for_each because they
601 * hold the top-level event's child_mutex, so any descendant that
602 * goes to exit will block in sync_child_event.
603 * When called from perf_pending_event it's OK because event->ctx
604 * is the current context on this CPU and preemption is disabled,
605 * hence we can't get into perf_event_task_sched_out for this context.
606 */
607 void perf_event_disable(struct perf_event *event)
608 {
609 struct perf_event_context *ctx = event->ctx;
610 struct task_struct *task = ctx->task;
611
612 if (!task) {
613 /*
614 * Disable the event on the cpu that it's on
615 */
616 smp_call_function_single(event->cpu, __perf_event_disable,
617 event, 1);
618 return;
619 }
620
621 retry:
622 task_oncpu_function_call(task, __perf_event_disable, event);
623
624 raw_spin_lock_irq(&ctx->lock);
625 /*
626 * If the event is still active, we need to retry the cross-call.
627 */
628 if (event->state == PERF_EVENT_STATE_ACTIVE) {
629 raw_spin_unlock_irq(&ctx->lock);
630 goto retry;
631 }
632
633 /*
634 * Since we have the lock this context can't be scheduled
635 * in, so we can change the state safely.
636 */
637 if (event->state == PERF_EVENT_STATE_INACTIVE) {
638 update_group_times(event);
639 event->state = PERF_EVENT_STATE_OFF;
640 }
641
642 raw_spin_unlock_irq(&ctx->lock);
643 }
644
645 static int
646 event_sched_in(struct perf_event *event,
647 struct perf_cpu_context *cpuctx,
648 struct perf_event_context *ctx)
649 {
650 if (event->state <= PERF_EVENT_STATE_OFF)
651 return 0;
652
653 event->state = PERF_EVENT_STATE_ACTIVE;
654 event->oncpu = smp_processor_id();
655 /*
656 * The new state must be visible before we turn it on in the hardware:
657 */
658 smp_wmb();
659
660 if (event->pmu->add(event, PERF_EF_START)) {
661 event->state = PERF_EVENT_STATE_INACTIVE;
662 event->oncpu = -1;
663 return -EAGAIN;
664 }
665
666 event->tstamp_running += ctx->time - event->tstamp_stopped;
667
668 if (!is_software_event(event))
669 cpuctx->active_oncpu++;
670 ctx->nr_active++;
671
672 if (event->attr.exclusive)
673 cpuctx->exclusive = 1;
674
675 return 0;
676 }
677
678 static int
679 group_sched_in(struct perf_event *group_event,
680 struct perf_cpu_context *cpuctx,
681 struct perf_event_context *ctx)
682 {
683 struct perf_event *event, *partial_group = NULL;
684 struct pmu *pmu = group_event->pmu;
685
686 if (group_event->state == PERF_EVENT_STATE_OFF)
687 return 0;
688
689 pmu->start_txn(pmu);
690
691 if (event_sched_in(group_event, cpuctx, ctx)) {
692 pmu->cancel_txn(pmu);
693 return -EAGAIN;
694 }
695
696 /*
697 * Schedule in siblings as one group (if any):
698 */
699 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
700 if (event_sched_in(event, cpuctx, ctx)) {
701 partial_group = event;
702 goto group_error;
703 }
704 }
705
706 if (!pmu->commit_txn(pmu))
707 return 0;
708
709 group_error:
710 /*
711 * Groups can be scheduled in as one unit only, so undo any
712 * partial group before returning:
713 */
714 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
715 if (event == partial_group)
716 break;
717 event_sched_out(event, cpuctx, ctx);
718 }
719 event_sched_out(group_event, cpuctx, ctx);
720
721 pmu->cancel_txn(pmu);
722
723 return -EAGAIN;
724 }
725
726 /*
727 * Work out whether we can put this event group on the CPU now.
728 */
729 static int group_can_go_on(struct perf_event *event,
730 struct perf_cpu_context *cpuctx,
731 int can_add_hw)
732 {
733 /*
734 * Groups consisting entirely of software events can always go on.
735 */
736 if (event->group_flags & PERF_GROUP_SOFTWARE)
737 return 1;
738 /*
739 * If an exclusive group is already on, no other hardware
740 * events can go on.
741 */
742 if (cpuctx->exclusive)
743 return 0;
744 /*
745 * If this group is exclusive and there are already
746 * events on the CPU, it can't go on.
747 */
748 if (event->attr.exclusive && cpuctx->active_oncpu)
749 return 0;
750 /*
751 * Otherwise, try to add it if all previous groups were able
752 * to go on.
753 */
754 return can_add_hw;
755 }
756
757 static void add_event_to_ctx(struct perf_event *event,
758 struct perf_event_context *ctx)
759 {
760 list_add_event(event, ctx);
761 perf_group_attach(event);
762 event->tstamp_enabled = ctx->time;
763 event->tstamp_running = ctx->time;
764 event->tstamp_stopped = ctx->time;
765 }
766
767 /*
768 * Cross CPU call to install and enable a performance event
769 *
770 * Must be called with ctx->mutex held
771 */
772 static void __perf_install_in_context(void *info)
773 {
774 struct perf_event *event = info;
775 struct perf_event_context *ctx = event->ctx;
776 struct perf_event *leader = event->group_leader;
777 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
778 int err;
779
780 /*
781 * If this is a task context, we need to check whether it is
782 * the current task context of this cpu. If not it has been
783 * scheduled out before the smp call arrived.
784 * Or possibly this is the right context but it isn't
785 * on this cpu because it had no events.
786 */
787 if (ctx->task && cpuctx->task_ctx != ctx) {
788 if (cpuctx->task_ctx || ctx->task != current)
789 return;
790 cpuctx->task_ctx = ctx;
791 }
792
793 raw_spin_lock(&ctx->lock);
794 ctx->is_active = 1;
795 update_context_time(ctx);
796
797 add_event_to_ctx(event, ctx);
798
799 if (event->cpu != -1 && event->cpu != smp_processor_id())
800 goto unlock;
801
802 /*
803 * Don't put the event on if it is disabled or if
804 * it is in a group and the group isn't on.
805 */
806 if (event->state != PERF_EVENT_STATE_INACTIVE ||
807 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
808 goto unlock;
809
810 /*
811 * An exclusive event can't go on if there are already active
812 * hardware events, and no hardware event can go on if there
813 * is already an exclusive event on.
814 */
815 if (!group_can_go_on(event, cpuctx, 1))
816 err = -EEXIST;
817 else
818 err = event_sched_in(event, cpuctx, ctx);
819
820 if (err) {
821 /*
822 * This event couldn't go on. If it is in a group
823 * then we have to pull the whole group off.
824 * If the event group is pinned then put it in error state.
825 */
826 if (leader != event)
827 group_sched_out(leader, cpuctx, ctx);
828 if (leader->attr.pinned) {
829 update_group_times(leader);
830 leader->state = PERF_EVENT_STATE_ERROR;
831 }
832 }
833
834 unlock:
835 raw_spin_unlock(&ctx->lock);
836 }
837
838 /*
839 * Attach a performance event to a context
840 *
841 * First we add the event to the list with the hardware enable bit
842 * in event->hw_config cleared.
843 *
844 * If the event is attached to a task which is on a CPU we use a smp
845 * call to enable it in the task context. The task might have been
846 * scheduled away, but we check this in the smp call again.
847 *
848 * Must be called with ctx->mutex held.
849 */
850 static void
851 perf_install_in_context(struct perf_event_context *ctx,
852 struct perf_event *event,
853 int cpu)
854 {
855 struct task_struct *task = ctx->task;
856
857 event->ctx = ctx;
858
859 if (!task) {
860 /*
861 * Per cpu events are installed via an smp call and
862 * the install is always successful.
863 */
864 smp_call_function_single(cpu, __perf_install_in_context,
865 event, 1);
866 return;
867 }
868
869 retry:
870 task_oncpu_function_call(task, __perf_install_in_context,
871 event);
872
873 raw_spin_lock_irq(&ctx->lock);
874 /*
875 * we need to retry the smp call.
876 */
877 if (ctx->is_active && list_empty(&event->group_entry)) {
878 raw_spin_unlock_irq(&ctx->lock);
879 goto retry;
880 }
881
882 /*
883 * The lock prevents that this context is scheduled in so we
884 * can add the event safely, if it the call above did not
885 * succeed.
886 */
887 if (list_empty(&event->group_entry))
888 add_event_to_ctx(event, ctx);
889 raw_spin_unlock_irq(&ctx->lock);
890 }
891
892 /*
893 * Put a event into inactive state and update time fields.
894 * Enabling the leader of a group effectively enables all
895 * the group members that aren't explicitly disabled, so we
896 * have to update their ->tstamp_enabled also.
897 * Note: this works for group members as well as group leaders
898 * since the non-leader members' sibling_lists will be empty.
899 */
900 static void __perf_event_mark_enabled(struct perf_event *event,
901 struct perf_event_context *ctx)
902 {
903 struct perf_event *sub;
904
905 event->state = PERF_EVENT_STATE_INACTIVE;
906 event->tstamp_enabled = ctx->time - event->total_time_enabled;
907 list_for_each_entry(sub, &event->sibling_list, group_entry) {
908 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
909 sub->tstamp_enabled =
910 ctx->time - sub->total_time_enabled;
911 }
912 }
913 }
914
915 /*
916 * Cross CPU call to enable a performance event
917 */
918 static void __perf_event_enable(void *info)
919 {
920 struct perf_event *event = info;
921 struct perf_event_context *ctx = event->ctx;
922 struct perf_event *leader = event->group_leader;
923 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
924 int err;
925
926 /*
927 * If this is a per-task event, need to check whether this
928 * event's task is the current task on this cpu.
929 */
930 if (ctx->task && cpuctx->task_ctx != ctx) {
931 if (cpuctx->task_ctx || ctx->task != current)
932 return;
933 cpuctx->task_ctx = ctx;
934 }
935
936 raw_spin_lock(&ctx->lock);
937 ctx->is_active = 1;
938 update_context_time(ctx);
939
940 if (event->state >= PERF_EVENT_STATE_INACTIVE)
941 goto unlock;
942 __perf_event_mark_enabled(event, ctx);
943
944 if (event->cpu != -1 && event->cpu != smp_processor_id())
945 goto unlock;
946
947 /*
948 * If the event is in a group and isn't the group leader,
949 * then don't put it on unless the group is on.
950 */
951 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
952 goto unlock;
953
954 if (!group_can_go_on(event, cpuctx, 1)) {
955 err = -EEXIST;
956 } else {
957 if (event == leader)
958 err = group_sched_in(event, cpuctx, ctx);
959 else
960 err = event_sched_in(event, cpuctx, ctx);
961 }
962
963 if (err) {
964 /*
965 * If this event can't go on and it's part of a
966 * group, then the whole group has to come off.
967 */
968 if (leader != event)
969 group_sched_out(leader, cpuctx, ctx);
970 if (leader->attr.pinned) {
971 update_group_times(leader);
972 leader->state = PERF_EVENT_STATE_ERROR;
973 }
974 }
975
976 unlock:
977 raw_spin_unlock(&ctx->lock);
978 }
979
980 /*
981 * Enable a event.
982 *
983 * If event->ctx is a cloned context, callers must make sure that
984 * every task struct that event->ctx->task could possibly point to
985 * remains valid. This condition is satisfied when called through
986 * perf_event_for_each_child or perf_event_for_each as described
987 * for perf_event_disable.
988 */
989 void perf_event_enable(struct perf_event *event)
990 {
991 struct perf_event_context *ctx = event->ctx;
992 struct task_struct *task = ctx->task;
993
994 if (!task) {
995 /*
996 * Enable the event on the cpu that it's on
997 */
998 smp_call_function_single(event->cpu, __perf_event_enable,
999 event, 1);
1000 return;
1001 }
1002
1003 raw_spin_lock_irq(&ctx->lock);
1004 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1005 goto out;
1006
1007 /*
1008 * If the event is in error state, clear that first.
1009 * That way, if we see the event in error state below, we
1010 * know that it has gone back into error state, as distinct
1011 * from the task having been scheduled away before the
1012 * cross-call arrived.
1013 */
1014 if (event->state == PERF_EVENT_STATE_ERROR)
1015 event->state = PERF_EVENT_STATE_OFF;
1016
1017 retry:
1018 raw_spin_unlock_irq(&ctx->lock);
1019 task_oncpu_function_call(task, __perf_event_enable, event);
1020
1021 raw_spin_lock_irq(&ctx->lock);
1022
1023 /*
1024 * If the context is active and the event is still off,
1025 * we need to retry the cross-call.
1026 */
1027 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1028 goto retry;
1029
1030 /*
1031 * Since we have the lock this context can't be scheduled
1032 * in, so we can change the state safely.
1033 */
1034 if (event->state == PERF_EVENT_STATE_OFF)
1035 __perf_event_mark_enabled(event, ctx);
1036
1037 out:
1038 raw_spin_unlock_irq(&ctx->lock);
1039 }
1040
1041 static int perf_event_refresh(struct perf_event *event, int refresh)
1042 {
1043 /*
1044 * not supported on inherited events
1045 */
1046 if (event->attr.inherit)
1047 return -EINVAL;
1048
1049 atomic_add(refresh, &event->event_limit);
1050 perf_event_enable(event);
1051
1052 return 0;
1053 }
1054
1055 enum event_type_t {
1056 EVENT_FLEXIBLE = 0x1,
1057 EVENT_PINNED = 0x2,
1058 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1059 };
1060
1061 static void ctx_sched_out(struct perf_event_context *ctx,
1062 struct perf_cpu_context *cpuctx,
1063 enum event_type_t event_type)
1064 {
1065 struct perf_event *event;
1066
1067 raw_spin_lock(&ctx->lock);
1068 perf_pmu_disable(ctx->pmu);
1069 ctx->is_active = 0;
1070 if (likely(!ctx->nr_events))
1071 goto out;
1072 update_context_time(ctx);
1073
1074 if (!ctx->nr_active)
1075 goto out;
1076
1077 if (event_type & EVENT_PINNED) {
1078 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1079 group_sched_out(event, cpuctx, ctx);
1080 }
1081
1082 if (event_type & EVENT_FLEXIBLE) {
1083 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1084 group_sched_out(event, cpuctx, ctx);
1085 }
1086 out:
1087 perf_pmu_enable(ctx->pmu);
1088 raw_spin_unlock(&ctx->lock);
1089 }
1090
1091 /*
1092 * Test whether two contexts are equivalent, i.e. whether they
1093 * have both been cloned from the same version of the same context
1094 * and they both have the same number of enabled events.
1095 * If the number of enabled events is the same, then the set
1096 * of enabled events should be the same, because these are both
1097 * inherited contexts, therefore we can't access individual events
1098 * in them directly with an fd; we can only enable/disable all
1099 * events via prctl, or enable/disable all events in a family
1100 * via ioctl, which will have the same effect on both contexts.
1101 */
1102 static int context_equiv(struct perf_event_context *ctx1,
1103 struct perf_event_context *ctx2)
1104 {
1105 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1106 && ctx1->parent_gen == ctx2->parent_gen
1107 && !ctx1->pin_count && !ctx2->pin_count;
1108 }
1109
1110 static void __perf_event_sync_stat(struct perf_event *event,
1111 struct perf_event *next_event)
1112 {
1113 u64 value;
1114
1115 if (!event->attr.inherit_stat)
1116 return;
1117
1118 /*
1119 * Update the event value, we cannot use perf_event_read()
1120 * because we're in the middle of a context switch and have IRQs
1121 * disabled, which upsets smp_call_function_single(), however
1122 * we know the event must be on the current CPU, therefore we
1123 * don't need to use it.
1124 */
1125 switch (event->state) {
1126 case PERF_EVENT_STATE_ACTIVE:
1127 event->pmu->read(event);
1128 /* fall-through */
1129
1130 case PERF_EVENT_STATE_INACTIVE:
1131 update_event_times(event);
1132 break;
1133
1134 default:
1135 break;
1136 }
1137
1138 /*
1139 * In order to keep per-task stats reliable we need to flip the event
1140 * values when we flip the contexts.
1141 */
1142 value = local64_read(&next_event->count);
1143 value = local64_xchg(&event->count, value);
1144 local64_set(&next_event->count, value);
1145
1146 swap(event->total_time_enabled, next_event->total_time_enabled);
1147 swap(event->total_time_running, next_event->total_time_running);
1148
1149 /*
1150 * Since we swizzled the values, update the user visible data too.
1151 */
1152 perf_event_update_userpage(event);
1153 perf_event_update_userpage(next_event);
1154 }
1155
1156 #define list_next_entry(pos, member) \
1157 list_entry(pos->member.next, typeof(*pos), member)
1158
1159 static void perf_event_sync_stat(struct perf_event_context *ctx,
1160 struct perf_event_context *next_ctx)
1161 {
1162 struct perf_event *event, *next_event;
1163
1164 if (!ctx->nr_stat)
1165 return;
1166
1167 update_context_time(ctx);
1168
1169 event = list_first_entry(&ctx->event_list,
1170 struct perf_event, event_entry);
1171
1172 next_event = list_first_entry(&next_ctx->event_list,
1173 struct perf_event, event_entry);
1174
1175 while (&event->event_entry != &ctx->event_list &&
1176 &next_event->event_entry != &next_ctx->event_list) {
1177
1178 __perf_event_sync_stat(event, next_event);
1179
1180 event = list_next_entry(event, event_entry);
1181 next_event = list_next_entry(next_event, event_entry);
1182 }
1183 }
1184
1185 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1186 struct task_struct *next)
1187 {
1188 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1189 struct perf_event_context *next_ctx;
1190 struct perf_event_context *parent;
1191 struct perf_cpu_context *cpuctx;
1192 int do_switch = 1;
1193
1194 if (likely(!ctx))
1195 return;
1196
1197 cpuctx = __get_cpu_context(ctx);
1198 if (!cpuctx->task_ctx)
1199 return;
1200
1201 rcu_read_lock();
1202 parent = rcu_dereference(ctx->parent_ctx);
1203 next_ctx = next->perf_event_ctxp[ctxn];
1204 if (parent && next_ctx &&
1205 rcu_dereference(next_ctx->parent_ctx) == parent) {
1206 /*
1207 * Looks like the two contexts are clones, so we might be
1208 * able to optimize the context switch. We lock both
1209 * contexts and check that they are clones under the
1210 * lock (including re-checking that neither has been
1211 * uncloned in the meantime). It doesn't matter which
1212 * order we take the locks because no other cpu could
1213 * be trying to lock both of these tasks.
1214 */
1215 raw_spin_lock(&ctx->lock);
1216 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1217 if (context_equiv(ctx, next_ctx)) {
1218 /*
1219 * XXX do we need a memory barrier of sorts
1220 * wrt to rcu_dereference() of perf_event_ctxp
1221 */
1222 task->perf_event_ctxp[ctxn] = next_ctx;
1223 next->perf_event_ctxp[ctxn] = ctx;
1224 ctx->task = next;
1225 next_ctx->task = task;
1226 do_switch = 0;
1227
1228 perf_event_sync_stat(ctx, next_ctx);
1229 }
1230 raw_spin_unlock(&next_ctx->lock);
1231 raw_spin_unlock(&ctx->lock);
1232 }
1233 rcu_read_unlock();
1234
1235 if (do_switch) {
1236 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1237 cpuctx->task_ctx = NULL;
1238 }
1239 }
1240
1241 #define for_each_task_context_nr(ctxn) \
1242 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1243
1244 /*
1245 * Called from scheduler to remove the events of the current task,
1246 * with interrupts disabled.
1247 *
1248 * We stop each event and update the event value in event->count.
1249 *
1250 * This does not protect us against NMI, but disable()
1251 * sets the disabled bit in the control field of event _before_
1252 * accessing the event control register. If a NMI hits, then it will
1253 * not restart the event.
1254 */
1255 void perf_event_task_sched_out(struct task_struct *task,
1256 struct task_struct *next)
1257 {
1258 int ctxn;
1259
1260 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1261
1262 for_each_task_context_nr(ctxn)
1263 perf_event_context_sched_out(task, ctxn, next);
1264 }
1265
1266 static void task_ctx_sched_out(struct perf_event_context *ctx,
1267 enum event_type_t event_type)
1268 {
1269 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1270
1271 if (!cpuctx->task_ctx)
1272 return;
1273
1274 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1275 return;
1276
1277 ctx_sched_out(ctx, cpuctx, event_type);
1278 cpuctx->task_ctx = NULL;
1279 }
1280
1281 /*
1282 * Called with IRQs disabled
1283 */
1284 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1285 {
1286 task_ctx_sched_out(ctx, EVENT_ALL);
1287 }
1288
1289 /*
1290 * Called with IRQs disabled
1291 */
1292 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1293 enum event_type_t event_type)
1294 {
1295 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1296 }
1297
1298 static void
1299 ctx_pinned_sched_in(struct perf_event_context *ctx,
1300 struct perf_cpu_context *cpuctx)
1301 {
1302 struct perf_event *event;
1303
1304 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1305 if (event->state <= PERF_EVENT_STATE_OFF)
1306 continue;
1307 if (event->cpu != -1 && event->cpu != smp_processor_id())
1308 continue;
1309
1310 if (group_can_go_on(event, cpuctx, 1))
1311 group_sched_in(event, cpuctx, ctx);
1312
1313 /*
1314 * If this pinned group hasn't been scheduled,
1315 * put it in error state.
1316 */
1317 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1318 update_group_times(event);
1319 event->state = PERF_EVENT_STATE_ERROR;
1320 }
1321 }
1322 }
1323
1324 static void
1325 ctx_flexible_sched_in(struct perf_event_context *ctx,
1326 struct perf_cpu_context *cpuctx)
1327 {
1328 struct perf_event *event;
1329 int can_add_hw = 1;
1330
1331 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1332 /* Ignore events in OFF or ERROR state */
1333 if (event->state <= PERF_EVENT_STATE_OFF)
1334 continue;
1335 /*
1336 * Listen to the 'cpu' scheduling filter constraint
1337 * of events:
1338 */
1339 if (event->cpu != -1 && event->cpu != smp_processor_id())
1340 continue;
1341
1342 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1343 if (group_sched_in(event, cpuctx, ctx))
1344 can_add_hw = 0;
1345 }
1346 }
1347 }
1348
1349 static void
1350 ctx_sched_in(struct perf_event_context *ctx,
1351 struct perf_cpu_context *cpuctx,
1352 enum event_type_t event_type)
1353 {
1354 raw_spin_lock(&ctx->lock);
1355 ctx->is_active = 1;
1356 if (likely(!ctx->nr_events))
1357 goto out;
1358
1359 ctx->timestamp = perf_clock();
1360
1361 /*
1362 * First go through the list and put on any pinned groups
1363 * in order to give them the best chance of going on.
1364 */
1365 if (event_type & EVENT_PINNED)
1366 ctx_pinned_sched_in(ctx, cpuctx);
1367
1368 /* Then walk through the lower prio flexible groups */
1369 if (event_type & EVENT_FLEXIBLE)
1370 ctx_flexible_sched_in(ctx, cpuctx);
1371
1372 out:
1373 raw_spin_unlock(&ctx->lock);
1374 }
1375
1376 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1377 enum event_type_t event_type)
1378 {
1379 struct perf_event_context *ctx = &cpuctx->ctx;
1380
1381 ctx_sched_in(ctx, cpuctx, event_type);
1382 }
1383
1384 static void task_ctx_sched_in(struct perf_event_context *ctx,
1385 enum event_type_t event_type)
1386 {
1387 struct perf_cpu_context *cpuctx;
1388
1389 cpuctx = __get_cpu_context(ctx);
1390 if (cpuctx->task_ctx == ctx)
1391 return;
1392
1393 ctx_sched_in(ctx, cpuctx, event_type);
1394 cpuctx->task_ctx = ctx;
1395 }
1396
1397 void perf_event_context_sched_in(struct perf_event_context *ctx)
1398 {
1399 struct perf_cpu_context *cpuctx;
1400
1401 cpuctx = __get_cpu_context(ctx);
1402 if (cpuctx->task_ctx == ctx)
1403 return;
1404
1405 perf_pmu_disable(ctx->pmu);
1406 /*
1407 * We want to keep the following priority order:
1408 * cpu pinned (that don't need to move), task pinned,
1409 * cpu flexible, task flexible.
1410 */
1411 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1412
1413 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1414 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1415 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1416
1417 cpuctx->task_ctx = ctx;
1418
1419 /*
1420 * Since these rotations are per-cpu, we need to ensure the
1421 * cpu-context we got scheduled on is actually rotating.
1422 */
1423 perf_pmu_rotate_start(ctx->pmu);
1424 perf_pmu_enable(ctx->pmu);
1425 }
1426
1427 /*
1428 * Called from scheduler to add the events of the current task
1429 * with interrupts disabled.
1430 *
1431 * We restore the event value and then enable it.
1432 *
1433 * This does not protect us against NMI, but enable()
1434 * sets the enabled bit in the control field of event _before_
1435 * accessing the event control register. If a NMI hits, then it will
1436 * keep the event running.
1437 */
1438 void perf_event_task_sched_in(struct task_struct *task)
1439 {
1440 struct perf_event_context *ctx;
1441 int ctxn;
1442
1443 for_each_task_context_nr(ctxn) {
1444 ctx = task->perf_event_ctxp[ctxn];
1445 if (likely(!ctx))
1446 continue;
1447
1448 perf_event_context_sched_in(ctx);
1449 }
1450 }
1451
1452 #define MAX_INTERRUPTS (~0ULL)
1453
1454 static void perf_log_throttle(struct perf_event *event, int enable);
1455
1456 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1457 {
1458 u64 frequency = event->attr.sample_freq;
1459 u64 sec = NSEC_PER_SEC;
1460 u64 divisor, dividend;
1461
1462 int count_fls, nsec_fls, frequency_fls, sec_fls;
1463
1464 count_fls = fls64(count);
1465 nsec_fls = fls64(nsec);
1466 frequency_fls = fls64(frequency);
1467 sec_fls = 30;
1468
1469 /*
1470 * We got @count in @nsec, with a target of sample_freq HZ
1471 * the target period becomes:
1472 *
1473 * @count * 10^9
1474 * period = -------------------
1475 * @nsec * sample_freq
1476 *
1477 */
1478
1479 /*
1480 * Reduce accuracy by one bit such that @a and @b converge
1481 * to a similar magnitude.
1482 */
1483 #define REDUCE_FLS(a, b) \
1484 do { \
1485 if (a##_fls > b##_fls) { \
1486 a >>= 1; \
1487 a##_fls--; \
1488 } else { \
1489 b >>= 1; \
1490 b##_fls--; \
1491 } \
1492 } while (0)
1493
1494 /*
1495 * Reduce accuracy until either term fits in a u64, then proceed with
1496 * the other, so that finally we can do a u64/u64 division.
1497 */
1498 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1499 REDUCE_FLS(nsec, frequency);
1500 REDUCE_FLS(sec, count);
1501 }
1502
1503 if (count_fls + sec_fls > 64) {
1504 divisor = nsec * frequency;
1505
1506 while (count_fls + sec_fls > 64) {
1507 REDUCE_FLS(count, sec);
1508 divisor >>= 1;
1509 }
1510
1511 dividend = count * sec;
1512 } else {
1513 dividend = count * sec;
1514
1515 while (nsec_fls + frequency_fls > 64) {
1516 REDUCE_FLS(nsec, frequency);
1517 dividend >>= 1;
1518 }
1519
1520 divisor = nsec * frequency;
1521 }
1522
1523 if (!divisor)
1524 return dividend;
1525
1526 return div64_u64(dividend, divisor);
1527 }
1528
1529 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1530 {
1531 struct hw_perf_event *hwc = &event->hw;
1532 s64 period, sample_period;
1533 s64 delta;
1534
1535 period = perf_calculate_period(event, nsec, count);
1536
1537 delta = (s64)(period - hwc->sample_period);
1538 delta = (delta + 7) / 8; /* low pass filter */
1539
1540 sample_period = hwc->sample_period + delta;
1541
1542 if (!sample_period)
1543 sample_period = 1;
1544
1545 hwc->sample_period = sample_period;
1546
1547 if (local64_read(&hwc->period_left) > 8*sample_period) {
1548 event->pmu->stop(event, PERF_EF_UPDATE);
1549 local64_set(&hwc->period_left, 0);
1550 event->pmu->start(event, PERF_EF_RELOAD);
1551 }
1552 }
1553
1554 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1555 {
1556 struct perf_event *event;
1557 struct hw_perf_event *hwc;
1558 u64 interrupts, now;
1559 s64 delta;
1560
1561 raw_spin_lock(&ctx->lock);
1562 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1563 if (event->state != PERF_EVENT_STATE_ACTIVE)
1564 continue;
1565
1566 if (event->cpu != -1 && event->cpu != smp_processor_id())
1567 continue;
1568
1569 hwc = &event->hw;
1570
1571 interrupts = hwc->interrupts;
1572 hwc->interrupts = 0;
1573
1574 /*
1575 * unthrottle events on the tick
1576 */
1577 if (interrupts == MAX_INTERRUPTS) {
1578 perf_log_throttle(event, 1);
1579 event->pmu->start(event, 0);
1580 }
1581
1582 if (!event->attr.freq || !event->attr.sample_freq)
1583 continue;
1584
1585 event->pmu->read(event);
1586 now = local64_read(&event->count);
1587 delta = now - hwc->freq_count_stamp;
1588 hwc->freq_count_stamp = now;
1589
1590 if (delta > 0)
1591 perf_adjust_period(event, period, delta);
1592 }
1593 raw_spin_unlock(&ctx->lock);
1594 }
1595
1596 /*
1597 * Round-robin a context's events:
1598 */
1599 static void rotate_ctx(struct perf_event_context *ctx)
1600 {
1601 raw_spin_lock(&ctx->lock);
1602
1603 /* Rotate the first entry last of non-pinned groups */
1604 list_rotate_left(&ctx->flexible_groups);
1605
1606 raw_spin_unlock(&ctx->lock);
1607 }
1608
1609 /*
1610 * Cannot race with ->pmu_rotate_start() because this is ran from hardirq
1611 * context, and ->pmu_rotate_start() is called with irqs disabled (both are
1612 * cpu affine, so there are no SMP races).
1613 */
1614 static enum hrtimer_restart perf_event_context_tick(struct hrtimer *timer)
1615 {
1616 enum hrtimer_restart restart = HRTIMER_NORESTART;
1617 struct perf_cpu_context *cpuctx;
1618 struct perf_event_context *ctx = NULL;
1619 int rotate = 0;
1620
1621 cpuctx = container_of(timer, struct perf_cpu_context, timer);
1622
1623 if (cpuctx->ctx.nr_events) {
1624 restart = HRTIMER_RESTART;
1625 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1626 rotate = 1;
1627 }
1628
1629 ctx = cpuctx->task_ctx;
1630 if (ctx && ctx->nr_events) {
1631 restart = HRTIMER_RESTART;
1632 if (ctx->nr_events != ctx->nr_active)
1633 rotate = 1;
1634 }
1635
1636 perf_pmu_disable(cpuctx->ctx.pmu);
1637 perf_ctx_adjust_freq(&cpuctx->ctx, cpuctx->timer_interval);
1638 if (ctx)
1639 perf_ctx_adjust_freq(ctx, cpuctx->timer_interval);
1640
1641 if (!rotate)
1642 goto done;
1643
1644 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1645 if (ctx)
1646 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1647
1648 rotate_ctx(&cpuctx->ctx);
1649 if (ctx)
1650 rotate_ctx(ctx);
1651
1652 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1653 if (ctx)
1654 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1655
1656 done:
1657 perf_pmu_enable(cpuctx->ctx.pmu);
1658 hrtimer_forward_now(timer, ns_to_ktime(cpuctx->timer_interval));
1659
1660 return restart;
1661 }
1662
1663 static int event_enable_on_exec(struct perf_event *event,
1664 struct perf_event_context *ctx)
1665 {
1666 if (!event->attr.enable_on_exec)
1667 return 0;
1668
1669 event->attr.enable_on_exec = 0;
1670 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1671 return 0;
1672
1673 __perf_event_mark_enabled(event, ctx);
1674
1675 return 1;
1676 }
1677
1678 /*
1679 * Enable all of a task's events that have been marked enable-on-exec.
1680 * This expects task == current.
1681 */
1682 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1683 {
1684 struct perf_event *event;
1685 unsigned long flags;
1686 int enabled = 0;
1687 int ret;
1688
1689 local_irq_save(flags);
1690 if (!ctx || !ctx->nr_events)
1691 goto out;
1692
1693 task_ctx_sched_out(ctx, EVENT_ALL);
1694
1695 raw_spin_lock(&ctx->lock);
1696
1697 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1698 ret = event_enable_on_exec(event, ctx);
1699 if (ret)
1700 enabled = 1;
1701 }
1702
1703 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1704 ret = event_enable_on_exec(event, ctx);
1705 if (ret)
1706 enabled = 1;
1707 }
1708
1709 /*
1710 * Unclone this context if we enabled any event.
1711 */
1712 if (enabled)
1713 unclone_ctx(ctx);
1714
1715 raw_spin_unlock(&ctx->lock);
1716
1717 perf_event_context_sched_in(ctx);
1718 out:
1719 local_irq_restore(flags);
1720 }
1721
1722 /*
1723 * Cross CPU call to read the hardware event
1724 */
1725 static void __perf_event_read(void *info)
1726 {
1727 struct perf_event *event = info;
1728 struct perf_event_context *ctx = event->ctx;
1729 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1730
1731 /*
1732 * If this is a task context, we need to check whether it is
1733 * the current task context of this cpu. If not it has been
1734 * scheduled out before the smp call arrived. In that case
1735 * event->count would have been updated to a recent sample
1736 * when the event was scheduled out.
1737 */
1738 if (ctx->task && cpuctx->task_ctx != ctx)
1739 return;
1740
1741 raw_spin_lock(&ctx->lock);
1742 update_context_time(ctx);
1743 update_event_times(event);
1744 raw_spin_unlock(&ctx->lock);
1745
1746 event->pmu->read(event);
1747 }
1748
1749 static inline u64 perf_event_count(struct perf_event *event)
1750 {
1751 return local64_read(&event->count) + atomic64_read(&event->child_count);
1752 }
1753
1754 static u64 perf_event_read(struct perf_event *event)
1755 {
1756 /*
1757 * If event is enabled and currently active on a CPU, update the
1758 * value in the event structure:
1759 */
1760 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1761 smp_call_function_single(event->oncpu,
1762 __perf_event_read, event, 1);
1763 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1764 struct perf_event_context *ctx = event->ctx;
1765 unsigned long flags;
1766
1767 raw_spin_lock_irqsave(&ctx->lock, flags);
1768 update_context_time(ctx);
1769 update_event_times(event);
1770 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1771 }
1772
1773 return perf_event_count(event);
1774 }
1775
1776 /*
1777 * Callchain support
1778 */
1779
1780 struct callchain_cpus_entries {
1781 struct rcu_head rcu_head;
1782 struct perf_callchain_entry *cpu_entries[0];
1783 };
1784
1785 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1786 static atomic_t nr_callchain_events;
1787 static DEFINE_MUTEX(callchain_mutex);
1788 struct callchain_cpus_entries *callchain_cpus_entries;
1789
1790
1791 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1792 struct pt_regs *regs)
1793 {
1794 }
1795
1796 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1797 struct pt_regs *regs)
1798 {
1799 }
1800
1801 static void release_callchain_buffers_rcu(struct rcu_head *head)
1802 {
1803 struct callchain_cpus_entries *entries;
1804 int cpu;
1805
1806 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1807
1808 for_each_possible_cpu(cpu)
1809 kfree(entries->cpu_entries[cpu]);
1810
1811 kfree(entries);
1812 }
1813
1814 static void release_callchain_buffers(void)
1815 {
1816 struct callchain_cpus_entries *entries;
1817
1818 entries = callchain_cpus_entries;
1819 rcu_assign_pointer(callchain_cpus_entries, NULL);
1820 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1821 }
1822
1823 static int alloc_callchain_buffers(void)
1824 {
1825 int cpu;
1826 int size;
1827 struct callchain_cpus_entries *entries;
1828
1829 /*
1830 * We can't use the percpu allocation API for data that can be
1831 * accessed from NMI. Use a temporary manual per cpu allocation
1832 * until that gets sorted out.
1833 */
1834 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1835 num_possible_cpus();
1836
1837 entries = kzalloc(size, GFP_KERNEL);
1838 if (!entries)
1839 return -ENOMEM;
1840
1841 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1842
1843 for_each_possible_cpu(cpu) {
1844 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1845 cpu_to_node(cpu));
1846 if (!entries->cpu_entries[cpu])
1847 goto fail;
1848 }
1849
1850 rcu_assign_pointer(callchain_cpus_entries, entries);
1851
1852 return 0;
1853
1854 fail:
1855 for_each_possible_cpu(cpu)
1856 kfree(entries->cpu_entries[cpu]);
1857 kfree(entries);
1858
1859 return -ENOMEM;
1860 }
1861
1862 static int get_callchain_buffers(void)
1863 {
1864 int err = 0;
1865 int count;
1866
1867 mutex_lock(&callchain_mutex);
1868
1869 count = atomic_inc_return(&nr_callchain_events);
1870 if (WARN_ON_ONCE(count < 1)) {
1871 err = -EINVAL;
1872 goto exit;
1873 }
1874
1875 if (count > 1) {
1876 /* If the allocation failed, give up */
1877 if (!callchain_cpus_entries)
1878 err = -ENOMEM;
1879 goto exit;
1880 }
1881
1882 err = alloc_callchain_buffers();
1883 if (err)
1884 release_callchain_buffers();
1885 exit:
1886 mutex_unlock(&callchain_mutex);
1887
1888 return err;
1889 }
1890
1891 static void put_callchain_buffers(void)
1892 {
1893 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1894 release_callchain_buffers();
1895 mutex_unlock(&callchain_mutex);
1896 }
1897 }
1898
1899 static int get_recursion_context(int *recursion)
1900 {
1901 int rctx;
1902
1903 if (in_nmi())
1904 rctx = 3;
1905 else if (in_irq())
1906 rctx = 2;
1907 else if (in_softirq())
1908 rctx = 1;
1909 else
1910 rctx = 0;
1911
1912 if (recursion[rctx])
1913 return -1;
1914
1915 recursion[rctx]++;
1916 barrier();
1917
1918 return rctx;
1919 }
1920
1921 static inline void put_recursion_context(int *recursion, int rctx)
1922 {
1923 barrier();
1924 recursion[rctx]--;
1925 }
1926
1927 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1928 {
1929 int cpu;
1930 struct callchain_cpus_entries *entries;
1931
1932 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1933 if (*rctx == -1)
1934 return NULL;
1935
1936 entries = rcu_dereference(callchain_cpus_entries);
1937 if (!entries)
1938 return NULL;
1939
1940 cpu = smp_processor_id();
1941
1942 return &entries->cpu_entries[cpu][*rctx];
1943 }
1944
1945 static void
1946 put_callchain_entry(int rctx)
1947 {
1948 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1949 }
1950
1951 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1952 {
1953 int rctx;
1954 struct perf_callchain_entry *entry;
1955
1956
1957 entry = get_callchain_entry(&rctx);
1958 if (rctx == -1)
1959 return NULL;
1960
1961 if (!entry)
1962 goto exit_put;
1963
1964 entry->nr = 0;
1965
1966 if (!user_mode(regs)) {
1967 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
1968 perf_callchain_kernel(entry, regs);
1969 if (current->mm)
1970 regs = task_pt_regs(current);
1971 else
1972 regs = NULL;
1973 }
1974
1975 if (regs) {
1976 perf_callchain_store(entry, PERF_CONTEXT_USER);
1977 perf_callchain_user(entry, regs);
1978 }
1979
1980 exit_put:
1981 put_callchain_entry(rctx);
1982
1983 return entry;
1984 }
1985
1986 /*
1987 * Initialize the perf_event context in a task_struct:
1988 */
1989 static void __perf_event_init_context(struct perf_event_context *ctx)
1990 {
1991 raw_spin_lock_init(&ctx->lock);
1992 mutex_init(&ctx->mutex);
1993 INIT_LIST_HEAD(&ctx->pinned_groups);
1994 INIT_LIST_HEAD(&ctx->flexible_groups);
1995 INIT_LIST_HEAD(&ctx->event_list);
1996 atomic_set(&ctx->refcount, 1);
1997 }
1998
1999 static struct perf_event_context *
2000 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2001 {
2002 struct perf_event_context *ctx;
2003
2004 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2005 if (!ctx)
2006 return NULL;
2007
2008 __perf_event_init_context(ctx);
2009 if (task) {
2010 ctx->task = task;
2011 get_task_struct(task);
2012 }
2013 ctx->pmu = pmu;
2014
2015 return ctx;
2016 }
2017
2018 static struct perf_event_context *
2019 find_get_context(struct pmu *pmu, pid_t pid, int cpu)
2020 {
2021 struct perf_event_context *ctx;
2022 struct perf_cpu_context *cpuctx;
2023 struct task_struct *task;
2024 unsigned long flags;
2025 int ctxn, err;
2026
2027 if (pid == -1 && cpu != -1) {
2028 /* Must be root to operate on a CPU event: */
2029 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2030 return ERR_PTR(-EACCES);
2031
2032 if (cpu < 0 || cpu >= nr_cpumask_bits)
2033 return ERR_PTR(-EINVAL);
2034
2035 /*
2036 * We could be clever and allow to attach a event to an
2037 * offline CPU and activate it when the CPU comes up, but
2038 * that's for later.
2039 */
2040 if (!cpu_online(cpu))
2041 return ERR_PTR(-ENODEV);
2042
2043 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2044 ctx = &cpuctx->ctx;
2045 get_ctx(ctx);
2046
2047 return ctx;
2048 }
2049
2050 rcu_read_lock();
2051 if (!pid)
2052 task = current;
2053 else
2054 task = find_task_by_vpid(pid);
2055 if (task)
2056 get_task_struct(task);
2057 rcu_read_unlock();
2058
2059 if (!task)
2060 return ERR_PTR(-ESRCH);
2061
2062 /*
2063 * Can't attach events to a dying task.
2064 */
2065 err = -ESRCH;
2066 if (task->flags & PF_EXITING)
2067 goto errout;
2068
2069 /* Reuse ptrace permission checks for now. */
2070 err = -EACCES;
2071 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2072 goto errout;
2073
2074 err = -EINVAL;
2075 ctxn = pmu->task_ctx_nr;
2076 if (ctxn < 0)
2077 goto errout;
2078
2079 retry:
2080 ctx = perf_lock_task_context(task, ctxn, &flags);
2081 if (ctx) {
2082 unclone_ctx(ctx);
2083 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2084 }
2085
2086 if (!ctx) {
2087 ctx = alloc_perf_context(pmu, task);
2088 err = -ENOMEM;
2089 if (!ctx)
2090 goto errout;
2091
2092 get_ctx(ctx);
2093
2094 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2095 /*
2096 * We raced with some other task; use
2097 * the context they set.
2098 */
2099 put_task_struct(task);
2100 kfree(ctx);
2101 goto retry;
2102 }
2103 }
2104
2105 put_task_struct(task);
2106 return ctx;
2107
2108 errout:
2109 put_task_struct(task);
2110 return ERR_PTR(err);
2111 }
2112
2113 static void perf_event_free_filter(struct perf_event *event);
2114
2115 static void free_event_rcu(struct rcu_head *head)
2116 {
2117 struct perf_event *event;
2118
2119 event = container_of(head, struct perf_event, rcu_head);
2120 if (event->ns)
2121 put_pid_ns(event->ns);
2122 perf_event_free_filter(event);
2123 kfree(event);
2124 }
2125
2126 static void perf_pending_sync(struct perf_event *event);
2127 static void perf_buffer_put(struct perf_buffer *buffer);
2128
2129 static void free_event(struct perf_event *event)
2130 {
2131 perf_pending_sync(event);
2132
2133 if (!event->parent) {
2134 atomic_dec(&nr_events);
2135 if (event->attr.mmap || event->attr.mmap_data)
2136 atomic_dec(&nr_mmap_events);
2137 if (event->attr.comm)
2138 atomic_dec(&nr_comm_events);
2139 if (event->attr.task)
2140 atomic_dec(&nr_task_events);
2141 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2142 put_callchain_buffers();
2143 }
2144
2145 if (event->buffer) {
2146 perf_buffer_put(event->buffer);
2147 event->buffer = NULL;
2148 }
2149
2150 if (event->destroy)
2151 event->destroy(event);
2152
2153 put_ctx(event->ctx);
2154 call_rcu(&event->rcu_head, free_event_rcu);
2155 }
2156
2157 int perf_event_release_kernel(struct perf_event *event)
2158 {
2159 struct perf_event_context *ctx = event->ctx;
2160
2161 /*
2162 * Remove from the PMU, can't get re-enabled since we got
2163 * here because the last ref went.
2164 */
2165 perf_event_disable(event);
2166
2167 WARN_ON_ONCE(ctx->parent_ctx);
2168 /*
2169 * There are two ways this annotation is useful:
2170 *
2171 * 1) there is a lock recursion from perf_event_exit_task
2172 * see the comment there.
2173 *
2174 * 2) there is a lock-inversion with mmap_sem through
2175 * perf_event_read_group(), which takes faults while
2176 * holding ctx->mutex, however this is called after
2177 * the last filedesc died, so there is no possibility
2178 * to trigger the AB-BA case.
2179 */
2180 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2181 raw_spin_lock_irq(&ctx->lock);
2182 perf_group_detach(event);
2183 list_del_event(event, ctx);
2184 raw_spin_unlock_irq(&ctx->lock);
2185 mutex_unlock(&ctx->mutex);
2186
2187 mutex_lock(&event->owner->perf_event_mutex);
2188 list_del_init(&event->owner_entry);
2189 mutex_unlock(&event->owner->perf_event_mutex);
2190 put_task_struct(event->owner);
2191
2192 free_event(event);
2193
2194 return 0;
2195 }
2196 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2197
2198 /*
2199 * Called when the last reference to the file is gone.
2200 */
2201 static int perf_release(struct inode *inode, struct file *file)
2202 {
2203 struct perf_event *event = file->private_data;
2204
2205 file->private_data = NULL;
2206
2207 return perf_event_release_kernel(event);
2208 }
2209
2210 static int perf_event_read_size(struct perf_event *event)
2211 {
2212 int entry = sizeof(u64); /* value */
2213 int size = 0;
2214 int nr = 1;
2215
2216 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2217 size += sizeof(u64);
2218
2219 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2220 size += sizeof(u64);
2221
2222 if (event->attr.read_format & PERF_FORMAT_ID)
2223 entry += sizeof(u64);
2224
2225 if (event->attr.read_format & PERF_FORMAT_GROUP) {
2226 nr += event->group_leader->nr_siblings;
2227 size += sizeof(u64);
2228 }
2229
2230 size += entry * nr;
2231
2232 return size;
2233 }
2234
2235 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2236 {
2237 struct perf_event *child;
2238 u64 total = 0;
2239
2240 *enabled = 0;
2241 *running = 0;
2242
2243 mutex_lock(&event->child_mutex);
2244 total += perf_event_read(event);
2245 *enabled += event->total_time_enabled +
2246 atomic64_read(&event->child_total_time_enabled);
2247 *running += event->total_time_running +
2248 atomic64_read(&event->child_total_time_running);
2249
2250 list_for_each_entry(child, &event->child_list, child_list) {
2251 total += perf_event_read(child);
2252 *enabled += child->total_time_enabled;
2253 *running += child->total_time_running;
2254 }
2255 mutex_unlock(&event->child_mutex);
2256
2257 return total;
2258 }
2259 EXPORT_SYMBOL_GPL(perf_event_read_value);
2260
2261 static int perf_event_read_group(struct perf_event *event,
2262 u64 read_format, char __user *buf)
2263 {
2264 struct perf_event *leader = event->group_leader, *sub;
2265 int n = 0, size = 0, ret = -EFAULT;
2266 struct perf_event_context *ctx = leader->ctx;
2267 u64 values[5];
2268 u64 count, enabled, running;
2269
2270 mutex_lock(&ctx->mutex);
2271 count = perf_event_read_value(leader, &enabled, &running);
2272
2273 values[n++] = 1 + leader->nr_siblings;
2274 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2275 values[n++] = enabled;
2276 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2277 values[n++] = running;
2278 values[n++] = count;
2279 if (read_format & PERF_FORMAT_ID)
2280 values[n++] = primary_event_id(leader);
2281
2282 size = n * sizeof(u64);
2283
2284 if (copy_to_user(buf, values, size))
2285 goto unlock;
2286
2287 ret = size;
2288
2289 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2290 n = 0;
2291
2292 values[n++] = perf_event_read_value(sub, &enabled, &running);
2293 if (read_format & PERF_FORMAT_ID)
2294 values[n++] = primary_event_id(sub);
2295
2296 size = n * sizeof(u64);
2297
2298 if (copy_to_user(buf + ret, values, size)) {
2299 ret = -EFAULT;
2300 goto unlock;
2301 }
2302
2303 ret += size;
2304 }
2305 unlock:
2306 mutex_unlock(&ctx->mutex);
2307
2308 return ret;
2309 }
2310
2311 static int perf_event_read_one(struct perf_event *event,
2312 u64 read_format, char __user *buf)
2313 {
2314 u64 enabled, running;
2315 u64 values[4];
2316 int n = 0;
2317
2318 values[n++] = perf_event_read_value(event, &enabled, &running);
2319 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2320 values[n++] = enabled;
2321 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2322 values[n++] = running;
2323 if (read_format & PERF_FORMAT_ID)
2324 values[n++] = primary_event_id(event);
2325
2326 if (copy_to_user(buf, values, n * sizeof(u64)))
2327 return -EFAULT;
2328
2329 return n * sizeof(u64);
2330 }
2331
2332 /*
2333 * Read the performance event - simple non blocking version for now
2334 */
2335 static ssize_t
2336 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2337 {
2338 u64 read_format = event->attr.read_format;
2339 int ret;
2340
2341 /*
2342 * Return end-of-file for a read on a event that is in
2343 * error state (i.e. because it was pinned but it couldn't be
2344 * scheduled on to the CPU at some point).
2345 */
2346 if (event->state == PERF_EVENT_STATE_ERROR)
2347 return 0;
2348
2349 if (count < perf_event_read_size(event))
2350 return -ENOSPC;
2351
2352 WARN_ON_ONCE(event->ctx->parent_ctx);
2353 if (read_format & PERF_FORMAT_GROUP)
2354 ret = perf_event_read_group(event, read_format, buf);
2355 else
2356 ret = perf_event_read_one(event, read_format, buf);
2357
2358 return ret;
2359 }
2360
2361 static ssize_t
2362 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2363 {
2364 struct perf_event *event = file->private_data;
2365
2366 return perf_read_hw(event, buf, count);
2367 }
2368
2369 static unsigned int perf_poll(struct file *file, poll_table *wait)
2370 {
2371 struct perf_event *event = file->private_data;
2372 struct perf_buffer *buffer;
2373 unsigned int events = POLL_HUP;
2374
2375 rcu_read_lock();
2376 buffer = rcu_dereference(event->buffer);
2377 if (buffer)
2378 events = atomic_xchg(&buffer->poll, 0);
2379 rcu_read_unlock();
2380
2381 poll_wait(file, &event->waitq, wait);
2382
2383 return events;
2384 }
2385
2386 static void perf_event_reset(struct perf_event *event)
2387 {
2388 (void)perf_event_read(event);
2389 local64_set(&event->count, 0);
2390 perf_event_update_userpage(event);
2391 }
2392
2393 /*
2394 * Holding the top-level event's child_mutex means that any
2395 * descendant process that has inherited this event will block
2396 * in sync_child_event if it goes to exit, thus satisfying the
2397 * task existence requirements of perf_event_enable/disable.
2398 */
2399 static void perf_event_for_each_child(struct perf_event *event,
2400 void (*func)(struct perf_event *))
2401 {
2402 struct perf_event *child;
2403
2404 WARN_ON_ONCE(event->ctx->parent_ctx);
2405 mutex_lock(&event->child_mutex);
2406 func(event);
2407 list_for_each_entry(child, &event->child_list, child_list)
2408 func(child);
2409 mutex_unlock(&event->child_mutex);
2410 }
2411
2412 static void perf_event_for_each(struct perf_event *event,
2413 void (*func)(struct perf_event *))
2414 {
2415 struct perf_event_context *ctx = event->ctx;
2416 struct perf_event *sibling;
2417
2418 WARN_ON_ONCE(ctx->parent_ctx);
2419 mutex_lock(&ctx->mutex);
2420 event = event->group_leader;
2421
2422 perf_event_for_each_child(event, func);
2423 func(event);
2424 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2425 perf_event_for_each_child(event, func);
2426 mutex_unlock(&ctx->mutex);
2427 }
2428
2429 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2430 {
2431 struct perf_event_context *ctx = event->ctx;
2432 unsigned long size;
2433 int ret = 0;
2434 u64 value;
2435
2436 if (!event->attr.sample_period)
2437 return -EINVAL;
2438
2439 size = copy_from_user(&value, arg, sizeof(value));
2440 if (size != sizeof(value))
2441 return -EFAULT;
2442
2443 if (!value)
2444 return -EINVAL;
2445
2446 raw_spin_lock_irq(&ctx->lock);
2447 if (event->attr.freq) {
2448 if (value > sysctl_perf_event_sample_rate) {
2449 ret = -EINVAL;
2450 goto unlock;
2451 }
2452
2453 event->attr.sample_freq = value;
2454 } else {
2455 event->attr.sample_period = value;
2456 event->hw.sample_period = value;
2457 }
2458 unlock:
2459 raw_spin_unlock_irq(&ctx->lock);
2460
2461 return ret;
2462 }
2463
2464 static const struct file_operations perf_fops;
2465
2466 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2467 {
2468 struct file *file;
2469
2470 file = fget_light(fd, fput_needed);
2471 if (!file)
2472 return ERR_PTR(-EBADF);
2473
2474 if (file->f_op != &perf_fops) {
2475 fput_light(file, *fput_needed);
2476 *fput_needed = 0;
2477 return ERR_PTR(-EBADF);
2478 }
2479
2480 return file->private_data;
2481 }
2482
2483 static int perf_event_set_output(struct perf_event *event,
2484 struct perf_event *output_event);
2485 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2486
2487 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2488 {
2489 struct perf_event *event = file->private_data;
2490 void (*func)(struct perf_event *);
2491 u32 flags = arg;
2492
2493 switch (cmd) {
2494 case PERF_EVENT_IOC_ENABLE:
2495 func = perf_event_enable;
2496 break;
2497 case PERF_EVENT_IOC_DISABLE:
2498 func = perf_event_disable;
2499 break;
2500 case PERF_EVENT_IOC_RESET:
2501 func = perf_event_reset;
2502 break;
2503
2504 case PERF_EVENT_IOC_REFRESH:
2505 return perf_event_refresh(event, arg);
2506
2507 case PERF_EVENT_IOC_PERIOD:
2508 return perf_event_period(event, (u64 __user *)arg);
2509
2510 case PERF_EVENT_IOC_SET_OUTPUT:
2511 {
2512 struct perf_event *output_event = NULL;
2513 int fput_needed = 0;
2514 int ret;
2515
2516 if (arg != -1) {
2517 output_event = perf_fget_light(arg, &fput_needed);
2518 if (IS_ERR(output_event))
2519 return PTR_ERR(output_event);
2520 }
2521
2522 ret = perf_event_set_output(event, output_event);
2523 if (output_event)
2524 fput_light(output_event->filp, fput_needed);
2525
2526 return ret;
2527 }
2528
2529 case PERF_EVENT_IOC_SET_FILTER:
2530 return perf_event_set_filter(event, (void __user *)arg);
2531
2532 default:
2533 return -ENOTTY;
2534 }
2535
2536 if (flags & PERF_IOC_FLAG_GROUP)
2537 perf_event_for_each(event, func);
2538 else
2539 perf_event_for_each_child(event, func);
2540
2541 return 0;
2542 }
2543
2544 int perf_event_task_enable(void)
2545 {
2546 struct perf_event *event;
2547
2548 mutex_lock(&current->perf_event_mutex);
2549 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2550 perf_event_for_each_child(event, perf_event_enable);
2551 mutex_unlock(&current->perf_event_mutex);
2552
2553 return 0;
2554 }
2555
2556 int perf_event_task_disable(void)
2557 {
2558 struct perf_event *event;
2559
2560 mutex_lock(&current->perf_event_mutex);
2561 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2562 perf_event_for_each_child(event, perf_event_disable);
2563 mutex_unlock(&current->perf_event_mutex);
2564
2565 return 0;
2566 }
2567
2568 #ifndef PERF_EVENT_INDEX_OFFSET
2569 # define PERF_EVENT_INDEX_OFFSET 0
2570 #endif
2571
2572 static int perf_event_index(struct perf_event *event)
2573 {
2574 if (event->hw.state & PERF_HES_STOPPED)
2575 return 0;
2576
2577 if (event->state != PERF_EVENT_STATE_ACTIVE)
2578 return 0;
2579
2580 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2581 }
2582
2583 /*
2584 * Callers need to ensure there can be no nesting of this function, otherwise
2585 * the seqlock logic goes bad. We can not serialize this because the arch
2586 * code calls this from NMI context.
2587 */
2588 void perf_event_update_userpage(struct perf_event *event)
2589 {
2590 struct perf_event_mmap_page *userpg;
2591 struct perf_buffer *buffer;
2592
2593 rcu_read_lock();
2594 buffer = rcu_dereference(event->buffer);
2595 if (!buffer)
2596 goto unlock;
2597
2598 userpg = buffer->user_page;
2599
2600 /*
2601 * Disable preemption so as to not let the corresponding user-space
2602 * spin too long if we get preempted.
2603 */
2604 preempt_disable();
2605 ++userpg->lock;
2606 barrier();
2607 userpg->index = perf_event_index(event);
2608 userpg->offset = perf_event_count(event);
2609 if (event->state == PERF_EVENT_STATE_ACTIVE)
2610 userpg->offset -= local64_read(&event->hw.prev_count);
2611
2612 userpg->time_enabled = event->total_time_enabled +
2613 atomic64_read(&event->child_total_time_enabled);
2614
2615 userpg->time_running = event->total_time_running +
2616 atomic64_read(&event->child_total_time_running);
2617
2618 barrier();
2619 ++userpg->lock;
2620 preempt_enable();
2621 unlock:
2622 rcu_read_unlock();
2623 }
2624
2625 static unsigned long perf_data_size(struct perf_buffer *buffer);
2626
2627 static void
2628 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2629 {
2630 long max_size = perf_data_size(buffer);
2631
2632 if (watermark)
2633 buffer->watermark = min(max_size, watermark);
2634
2635 if (!buffer->watermark)
2636 buffer->watermark = max_size / 2;
2637
2638 if (flags & PERF_BUFFER_WRITABLE)
2639 buffer->writable = 1;
2640
2641 atomic_set(&buffer->refcount, 1);
2642 }
2643
2644 #ifndef CONFIG_PERF_USE_VMALLOC
2645
2646 /*
2647 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2648 */
2649
2650 static struct page *
2651 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2652 {
2653 if (pgoff > buffer->nr_pages)
2654 return NULL;
2655
2656 if (pgoff == 0)
2657 return virt_to_page(buffer->user_page);
2658
2659 return virt_to_page(buffer->data_pages[pgoff - 1]);
2660 }
2661
2662 static void *perf_mmap_alloc_page(int cpu)
2663 {
2664 struct page *page;
2665 int node;
2666
2667 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2668 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2669 if (!page)
2670 return NULL;
2671
2672 return page_address(page);
2673 }
2674
2675 static struct perf_buffer *
2676 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2677 {
2678 struct perf_buffer *buffer;
2679 unsigned long size;
2680 int i;
2681
2682 size = sizeof(struct perf_buffer);
2683 size += nr_pages * sizeof(void *);
2684
2685 buffer = kzalloc(size, GFP_KERNEL);
2686 if (!buffer)
2687 goto fail;
2688
2689 buffer->user_page = perf_mmap_alloc_page(cpu);
2690 if (!buffer->user_page)
2691 goto fail_user_page;
2692
2693 for (i = 0; i < nr_pages; i++) {
2694 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2695 if (!buffer->data_pages[i])
2696 goto fail_data_pages;
2697 }
2698
2699 buffer->nr_pages = nr_pages;
2700
2701 perf_buffer_init(buffer, watermark, flags);
2702
2703 return buffer;
2704
2705 fail_data_pages:
2706 for (i--; i >= 0; i--)
2707 free_page((unsigned long)buffer->data_pages[i]);
2708
2709 free_page((unsigned long)buffer->user_page);
2710
2711 fail_user_page:
2712 kfree(buffer);
2713
2714 fail:
2715 return NULL;
2716 }
2717
2718 static void perf_mmap_free_page(unsigned long addr)
2719 {
2720 struct page *page = virt_to_page((void *)addr);
2721
2722 page->mapping = NULL;
2723 __free_page(page);
2724 }
2725
2726 static void perf_buffer_free(struct perf_buffer *buffer)
2727 {
2728 int i;
2729
2730 perf_mmap_free_page((unsigned long)buffer->user_page);
2731 for (i = 0; i < buffer->nr_pages; i++)
2732 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2733 kfree(buffer);
2734 }
2735
2736 static inline int page_order(struct perf_buffer *buffer)
2737 {
2738 return 0;
2739 }
2740
2741 #else
2742
2743 /*
2744 * Back perf_mmap() with vmalloc memory.
2745 *
2746 * Required for architectures that have d-cache aliasing issues.
2747 */
2748
2749 static inline int page_order(struct perf_buffer *buffer)
2750 {
2751 return buffer->page_order;
2752 }
2753
2754 static struct page *
2755 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2756 {
2757 if (pgoff > (1UL << page_order(buffer)))
2758 return NULL;
2759
2760 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2761 }
2762
2763 static void perf_mmap_unmark_page(void *addr)
2764 {
2765 struct page *page = vmalloc_to_page(addr);
2766
2767 page->mapping = NULL;
2768 }
2769
2770 static void perf_buffer_free_work(struct work_struct *work)
2771 {
2772 struct perf_buffer *buffer;
2773 void *base;
2774 int i, nr;
2775
2776 buffer = container_of(work, struct perf_buffer, work);
2777 nr = 1 << page_order(buffer);
2778
2779 base = buffer->user_page;
2780 for (i = 0; i < nr + 1; i++)
2781 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2782
2783 vfree(base);
2784 kfree(buffer);
2785 }
2786
2787 static void perf_buffer_free(struct perf_buffer *buffer)
2788 {
2789 schedule_work(&buffer->work);
2790 }
2791
2792 static struct perf_buffer *
2793 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2794 {
2795 struct perf_buffer *buffer;
2796 unsigned long size;
2797 void *all_buf;
2798
2799 size = sizeof(struct perf_buffer);
2800 size += sizeof(void *);
2801
2802 buffer = kzalloc(size, GFP_KERNEL);
2803 if (!buffer)
2804 goto fail;
2805
2806 INIT_WORK(&buffer->work, perf_buffer_free_work);
2807
2808 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2809 if (!all_buf)
2810 goto fail_all_buf;
2811
2812 buffer->user_page = all_buf;
2813 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2814 buffer->page_order = ilog2(nr_pages);
2815 buffer->nr_pages = 1;
2816
2817 perf_buffer_init(buffer, watermark, flags);
2818
2819 return buffer;
2820
2821 fail_all_buf:
2822 kfree(buffer);
2823
2824 fail:
2825 return NULL;
2826 }
2827
2828 #endif
2829
2830 static unsigned long perf_data_size(struct perf_buffer *buffer)
2831 {
2832 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2833 }
2834
2835 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2836 {
2837 struct perf_event *event = vma->vm_file->private_data;
2838 struct perf_buffer *buffer;
2839 int ret = VM_FAULT_SIGBUS;
2840
2841 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2842 if (vmf->pgoff == 0)
2843 ret = 0;
2844 return ret;
2845 }
2846
2847 rcu_read_lock();
2848 buffer = rcu_dereference(event->buffer);
2849 if (!buffer)
2850 goto unlock;
2851
2852 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2853 goto unlock;
2854
2855 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2856 if (!vmf->page)
2857 goto unlock;
2858
2859 get_page(vmf->page);
2860 vmf->page->mapping = vma->vm_file->f_mapping;
2861 vmf->page->index = vmf->pgoff;
2862
2863 ret = 0;
2864 unlock:
2865 rcu_read_unlock();
2866
2867 return ret;
2868 }
2869
2870 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2871 {
2872 struct perf_buffer *buffer;
2873
2874 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2875 perf_buffer_free(buffer);
2876 }
2877
2878 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2879 {
2880 struct perf_buffer *buffer;
2881
2882 rcu_read_lock();
2883 buffer = rcu_dereference(event->buffer);
2884 if (buffer) {
2885 if (!atomic_inc_not_zero(&buffer->refcount))
2886 buffer = NULL;
2887 }
2888 rcu_read_unlock();
2889
2890 return buffer;
2891 }
2892
2893 static void perf_buffer_put(struct perf_buffer *buffer)
2894 {
2895 if (!atomic_dec_and_test(&buffer->refcount))
2896 return;
2897
2898 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2899 }
2900
2901 static void perf_mmap_open(struct vm_area_struct *vma)
2902 {
2903 struct perf_event *event = vma->vm_file->private_data;
2904
2905 atomic_inc(&event->mmap_count);
2906 }
2907
2908 static void perf_mmap_close(struct vm_area_struct *vma)
2909 {
2910 struct perf_event *event = vma->vm_file->private_data;
2911
2912 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2913 unsigned long size = perf_data_size(event->buffer);
2914 struct user_struct *user = event->mmap_user;
2915 struct perf_buffer *buffer = event->buffer;
2916
2917 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2918 vma->vm_mm->locked_vm -= event->mmap_locked;
2919 rcu_assign_pointer(event->buffer, NULL);
2920 mutex_unlock(&event->mmap_mutex);
2921
2922 perf_buffer_put(buffer);
2923 free_uid(user);
2924 }
2925 }
2926
2927 static const struct vm_operations_struct perf_mmap_vmops = {
2928 .open = perf_mmap_open,
2929 .close = perf_mmap_close,
2930 .fault = perf_mmap_fault,
2931 .page_mkwrite = perf_mmap_fault,
2932 };
2933
2934 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2935 {
2936 struct perf_event *event = file->private_data;
2937 unsigned long user_locked, user_lock_limit;
2938 struct user_struct *user = current_user();
2939 unsigned long locked, lock_limit;
2940 struct perf_buffer *buffer;
2941 unsigned long vma_size;
2942 unsigned long nr_pages;
2943 long user_extra, extra;
2944 int ret = 0, flags = 0;
2945
2946 /*
2947 * Don't allow mmap() of inherited per-task counters. This would
2948 * create a performance issue due to all children writing to the
2949 * same buffer.
2950 */
2951 if (event->cpu == -1 && event->attr.inherit)
2952 return -EINVAL;
2953
2954 if (!(vma->vm_flags & VM_SHARED))
2955 return -EINVAL;
2956
2957 vma_size = vma->vm_end - vma->vm_start;
2958 nr_pages = (vma_size / PAGE_SIZE) - 1;
2959
2960 /*
2961 * If we have buffer pages ensure they're a power-of-two number, so we
2962 * can do bitmasks instead of modulo.
2963 */
2964 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2965 return -EINVAL;
2966
2967 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2968 return -EINVAL;
2969
2970 if (vma->vm_pgoff != 0)
2971 return -EINVAL;
2972
2973 WARN_ON_ONCE(event->ctx->parent_ctx);
2974 mutex_lock(&event->mmap_mutex);
2975 if (event->buffer) {
2976 if (event->buffer->nr_pages == nr_pages)
2977 atomic_inc(&event->buffer->refcount);
2978 else
2979 ret = -EINVAL;
2980 goto unlock;
2981 }
2982
2983 user_extra = nr_pages + 1;
2984 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2985
2986 /*
2987 * Increase the limit linearly with more CPUs:
2988 */
2989 user_lock_limit *= num_online_cpus();
2990
2991 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2992
2993 extra = 0;
2994 if (user_locked > user_lock_limit)
2995 extra = user_locked - user_lock_limit;
2996
2997 lock_limit = rlimit(RLIMIT_MEMLOCK);
2998 lock_limit >>= PAGE_SHIFT;
2999 locked = vma->vm_mm->locked_vm + extra;
3000
3001 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3002 !capable(CAP_IPC_LOCK)) {
3003 ret = -EPERM;
3004 goto unlock;
3005 }
3006
3007 WARN_ON(event->buffer);
3008
3009 if (vma->vm_flags & VM_WRITE)
3010 flags |= PERF_BUFFER_WRITABLE;
3011
3012 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3013 event->cpu, flags);
3014 if (!buffer) {
3015 ret = -ENOMEM;
3016 goto unlock;
3017 }
3018 rcu_assign_pointer(event->buffer, buffer);
3019
3020 atomic_long_add(user_extra, &user->locked_vm);
3021 event->mmap_locked = extra;
3022 event->mmap_user = get_current_user();
3023 vma->vm_mm->locked_vm += event->mmap_locked;
3024
3025 unlock:
3026 if (!ret)
3027 atomic_inc(&event->mmap_count);
3028 mutex_unlock(&event->mmap_mutex);
3029
3030 vma->vm_flags |= VM_RESERVED;
3031 vma->vm_ops = &perf_mmap_vmops;
3032
3033 return ret;
3034 }
3035
3036 static int perf_fasync(int fd, struct file *filp, int on)
3037 {
3038 struct inode *inode = filp->f_path.dentry->d_inode;
3039 struct perf_event *event = filp->private_data;
3040 int retval;
3041
3042 mutex_lock(&inode->i_mutex);
3043 retval = fasync_helper(fd, filp, on, &event->fasync);
3044 mutex_unlock(&inode->i_mutex);
3045
3046 if (retval < 0)
3047 return retval;
3048
3049 return 0;
3050 }
3051
3052 static const struct file_operations perf_fops = {
3053 .llseek = no_llseek,
3054 .release = perf_release,
3055 .read = perf_read,
3056 .poll = perf_poll,
3057 .unlocked_ioctl = perf_ioctl,
3058 .compat_ioctl = perf_ioctl,
3059 .mmap = perf_mmap,
3060 .fasync = perf_fasync,
3061 };
3062
3063 /*
3064 * Perf event wakeup
3065 *
3066 * If there's data, ensure we set the poll() state and publish everything
3067 * to user-space before waking everybody up.
3068 */
3069
3070 void perf_event_wakeup(struct perf_event *event)
3071 {
3072 wake_up_all(&event->waitq);
3073
3074 if (event->pending_kill) {
3075 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3076 event->pending_kill = 0;
3077 }
3078 }
3079
3080 /*
3081 * Pending wakeups
3082 *
3083 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
3084 *
3085 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
3086 * single linked list and use cmpxchg() to add entries lockless.
3087 */
3088
3089 static void perf_pending_event(struct perf_pending_entry *entry)
3090 {
3091 struct perf_event *event = container_of(entry,
3092 struct perf_event, pending);
3093
3094 if (event->pending_disable) {
3095 event->pending_disable = 0;
3096 __perf_event_disable(event);
3097 }
3098
3099 if (event->pending_wakeup) {
3100 event->pending_wakeup = 0;
3101 perf_event_wakeup(event);
3102 }
3103 }
3104
3105 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3106
3107 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3108 PENDING_TAIL,
3109 };
3110
3111 static void perf_pending_queue(struct perf_pending_entry *entry,
3112 void (*func)(struct perf_pending_entry *))
3113 {
3114 struct perf_pending_entry **head;
3115
3116 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3117 return;
3118
3119 entry->func = func;
3120
3121 head = &get_cpu_var(perf_pending_head);
3122
3123 do {
3124 entry->next = *head;
3125 } while (cmpxchg(head, entry->next, entry) != entry->next);
3126
3127 set_perf_event_pending();
3128
3129 put_cpu_var(perf_pending_head);
3130 }
3131
3132 static int __perf_pending_run(void)
3133 {
3134 struct perf_pending_entry *list;
3135 int nr = 0;
3136
3137 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3138 while (list != PENDING_TAIL) {
3139 void (*func)(struct perf_pending_entry *);
3140 struct perf_pending_entry *entry = list;
3141
3142 list = list->next;
3143
3144 func = entry->func;
3145 entry->next = NULL;
3146 /*
3147 * Ensure we observe the unqueue before we issue the wakeup,
3148 * so that we won't be waiting forever.
3149 * -- see perf_not_pending().
3150 */
3151 smp_wmb();
3152
3153 func(entry);
3154 nr++;
3155 }
3156
3157 return nr;
3158 }
3159
3160 static inline int perf_not_pending(struct perf_event *event)
3161 {
3162 /*
3163 * If we flush on whatever cpu we run, there is a chance we don't
3164 * need to wait.
3165 */
3166 get_cpu();
3167 __perf_pending_run();
3168 put_cpu();
3169
3170 /*
3171 * Ensure we see the proper queue state before going to sleep
3172 * so that we do not miss the wakeup. -- see perf_pending_handle()
3173 */
3174 smp_rmb();
3175 return event->pending.next == NULL;
3176 }
3177
3178 static void perf_pending_sync(struct perf_event *event)
3179 {
3180 wait_event(event->waitq, perf_not_pending(event));
3181 }
3182
3183 void perf_event_do_pending(void)
3184 {
3185 __perf_pending_run();
3186 }
3187
3188 /*
3189 * We assume there is only KVM supporting the callbacks.
3190 * Later on, we might change it to a list if there is
3191 * another virtualization implementation supporting the callbacks.
3192 */
3193 struct perf_guest_info_callbacks *perf_guest_cbs;
3194
3195 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3196 {
3197 perf_guest_cbs = cbs;
3198 return 0;
3199 }
3200 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3201
3202 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3203 {
3204 perf_guest_cbs = NULL;
3205 return 0;
3206 }
3207 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3208
3209 /*
3210 * Output
3211 */
3212 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3213 unsigned long offset, unsigned long head)
3214 {
3215 unsigned long mask;
3216
3217 if (!buffer->writable)
3218 return true;
3219
3220 mask = perf_data_size(buffer) - 1;
3221
3222 offset = (offset - tail) & mask;
3223 head = (head - tail) & mask;
3224
3225 if ((int)(head - offset) < 0)
3226 return false;
3227
3228 return true;
3229 }
3230
3231 static void perf_output_wakeup(struct perf_output_handle *handle)
3232 {
3233 atomic_set(&handle->buffer->poll, POLL_IN);
3234
3235 if (handle->nmi) {
3236 handle->event->pending_wakeup = 1;
3237 perf_pending_queue(&handle->event->pending,
3238 perf_pending_event);
3239 } else
3240 perf_event_wakeup(handle->event);
3241 }
3242
3243 /*
3244 * We need to ensure a later event_id doesn't publish a head when a former
3245 * event isn't done writing. However since we need to deal with NMIs we
3246 * cannot fully serialize things.
3247 *
3248 * We only publish the head (and generate a wakeup) when the outer-most
3249 * event completes.
3250 */
3251 static void perf_output_get_handle(struct perf_output_handle *handle)
3252 {
3253 struct perf_buffer *buffer = handle->buffer;
3254
3255 preempt_disable();
3256 local_inc(&buffer->nest);
3257 handle->wakeup = local_read(&buffer->wakeup);
3258 }
3259
3260 static void perf_output_put_handle(struct perf_output_handle *handle)
3261 {
3262 struct perf_buffer *buffer = handle->buffer;
3263 unsigned long head;
3264
3265 again:
3266 head = local_read(&buffer->head);
3267
3268 /*
3269 * IRQ/NMI can happen here, which means we can miss a head update.
3270 */
3271
3272 if (!local_dec_and_test(&buffer->nest))
3273 goto out;
3274
3275 /*
3276 * Publish the known good head. Rely on the full barrier implied
3277 * by atomic_dec_and_test() order the buffer->head read and this
3278 * write.
3279 */
3280 buffer->user_page->data_head = head;
3281
3282 /*
3283 * Now check if we missed an update, rely on the (compiler)
3284 * barrier in atomic_dec_and_test() to re-read buffer->head.
3285 */
3286 if (unlikely(head != local_read(&buffer->head))) {
3287 local_inc(&buffer->nest);
3288 goto again;
3289 }
3290
3291 if (handle->wakeup != local_read(&buffer->wakeup))
3292 perf_output_wakeup(handle);
3293
3294 out:
3295 preempt_enable();
3296 }
3297
3298 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3299 const void *buf, unsigned int len)
3300 {
3301 do {
3302 unsigned long size = min_t(unsigned long, handle->size, len);
3303
3304 memcpy(handle->addr, buf, size);
3305
3306 len -= size;
3307 handle->addr += size;
3308 buf += size;
3309 handle->size -= size;
3310 if (!handle->size) {
3311 struct perf_buffer *buffer = handle->buffer;
3312
3313 handle->page++;
3314 handle->page &= buffer->nr_pages - 1;
3315 handle->addr = buffer->data_pages[handle->page];
3316 handle->size = PAGE_SIZE << page_order(buffer);
3317 }
3318 } while (len);
3319 }
3320
3321 int perf_output_begin(struct perf_output_handle *handle,
3322 struct perf_event *event, unsigned int size,
3323 int nmi, int sample)
3324 {
3325 struct perf_buffer *buffer;
3326 unsigned long tail, offset, head;
3327 int have_lost;
3328 struct {
3329 struct perf_event_header header;
3330 u64 id;
3331 u64 lost;
3332 } lost_event;
3333
3334 rcu_read_lock();
3335 /*
3336 * For inherited events we send all the output towards the parent.
3337 */
3338 if (event->parent)
3339 event = event->parent;
3340
3341 buffer = rcu_dereference(event->buffer);
3342 if (!buffer)
3343 goto out;
3344
3345 handle->buffer = buffer;
3346 handle->event = event;
3347 handle->nmi = nmi;
3348 handle->sample = sample;
3349
3350 if (!buffer->nr_pages)
3351 goto out;
3352
3353 have_lost = local_read(&buffer->lost);
3354 if (have_lost)
3355 size += sizeof(lost_event);
3356
3357 perf_output_get_handle(handle);
3358
3359 do {
3360 /*
3361 * Userspace could choose to issue a mb() before updating the
3362 * tail pointer. So that all reads will be completed before the
3363 * write is issued.
3364 */
3365 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3366 smp_rmb();
3367 offset = head = local_read(&buffer->head);
3368 head += size;
3369 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3370 goto fail;
3371 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3372
3373 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3374 local_add(buffer->watermark, &buffer->wakeup);
3375
3376 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3377 handle->page &= buffer->nr_pages - 1;
3378 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3379 handle->addr = buffer->data_pages[handle->page];
3380 handle->addr += handle->size;
3381 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3382
3383 if (have_lost) {
3384 lost_event.header.type = PERF_RECORD_LOST;
3385 lost_event.header.misc = 0;
3386 lost_event.header.size = sizeof(lost_event);
3387 lost_event.id = event->id;
3388 lost_event.lost = local_xchg(&buffer->lost, 0);
3389
3390 perf_output_put(handle, lost_event);
3391 }
3392
3393 return 0;
3394
3395 fail:
3396 local_inc(&buffer->lost);
3397 perf_output_put_handle(handle);
3398 out:
3399 rcu_read_unlock();
3400
3401 return -ENOSPC;
3402 }
3403
3404 void perf_output_end(struct perf_output_handle *handle)
3405 {
3406 struct perf_event *event = handle->event;
3407 struct perf_buffer *buffer = handle->buffer;
3408
3409 int wakeup_events = event->attr.wakeup_events;
3410
3411 if (handle->sample && wakeup_events) {
3412 int events = local_inc_return(&buffer->events);
3413 if (events >= wakeup_events) {
3414 local_sub(wakeup_events, &buffer->events);
3415 local_inc(&buffer->wakeup);
3416 }
3417 }
3418
3419 perf_output_put_handle(handle);
3420 rcu_read_unlock();
3421 }
3422
3423 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3424 {
3425 /*
3426 * only top level events have the pid namespace they were created in
3427 */
3428 if (event->parent)
3429 event = event->parent;
3430
3431 return task_tgid_nr_ns(p, event->ns);
3432 }
3433
3434 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3435 {
3436 /*
3437 * only top level events have the pid namespace they were created in
3438 */
3439 if (event->parent)
3440 event = event->parent;
3441
3442 return task_pid_nr_ns(p, event->ns);
3443 }
3444
3445 static void perf_output_read_one(struct perf_output_handle *handle,
3446 struct perf_event *event)
3447 {
3448 u64 read_format = event->attr.read_format;
3449 u64 values[4];
3450 int n = 0;
3451
3452 values[n++] = perf_event_count(event);
3453 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3454 values[n++] = event->total_time_enabled +
3455 atomic64_read(&event->child_total_time_enabled);
3456 }
3457 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3458 values[n++] = event->total_time_running +
3459 atomic64_read(&event->child_total_time_running);
3460 }
3461 if (read_format & PERF_FORMAT_ID)
3462 values[n++] = primary_event_id(event);
3463
3464 perf_output_copy(handle, values, n * sizeof(u64));
3465 }
3466
3467 /*
3468 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3469 */
3470 static void perf_output_read_group(struct perf_output_handle *handle,
3471 struct perf_event *event)
3472 {
3473 struct perf_event *leader = event->group_leader, *sub;
3474 u64 read_format = event->attr.read_format;
3475 u64 values[5];
3476 int n = 0;
3477
3478 values[n++] = 1 + leader->nr_siblings;
3479
3480 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3481 values[n++] = leader->total_time_enabled;
3482
3483 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3484 values[n++] = leader->total_time_running;
3485
3486 if (leader != event)
3487 leader->pmu->read(leader);
3488
3489 values[n++] = perf_event_count(leader);
3490 if (read_format & PERF_FORMAT_ID)
3491 values[n++] = primary_event_id(leader);
3492
3493 perf_output_copy(handle, values, n * sizeof(u64));
3494
3495 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3496 n = 0;
3497
3498 if (sub != event)
3499 sub->pmu->read(sub);
3500
3501 values[n++] = perf_event_count(sub);
3502 if (read_format & PERF_FORMAT_ID)
3503 values[n++] = primary_event_id(sub);
3504
3505 perf_output_copy(handle, values, n * sizeof(u64));
3506 }
3507 }
3508
3509 static void perf_output_read(struct perf_output_handle *handle,
3510 struct perf_event *event)
3511 {
3512 if (event->attr.read_format & PERF_FORMAT_GROUP)
3513 perf_output_read_group(handle, event);
3514 else
3515 perf_output_read_one(handle, event);
3516 }
3517
3518 void perf_output_sample(struct perf_output_handle *handle,
3519 struct perf_event_header *header,
3520 struct perf_sample_data *data,
3521 struct perf_event *event)
3522 {
3523 u64 sample_type = data->type;
3524
3525 perf_output_put(handle, *header);
3526
3527 if (sample_type & PERF_SAMPLE_IP)
3528 perf_output_put(handle, data->ip);
3529
3530 if (sample_type & PERF_SAMPLE_TID)
3531 perf_output_put(handle, data->tid_entry);
3532
3533 if (sample_type & PERF_SAMPLE_TIME)
3534 perf_output_put(handle, data->time);
3535
3536 if (sample_type & PERF_SAMPLE_ADDR)
3537 perf_output_put(handle, data->addr);
3538
3539 if (sample_type & PERF_SAMPLE_ID)
3540 perf_output_put(handle, data->id);
3541
3542 if (sample_type & PERF_SAMPLE_STREAM_ID)
3543 perf_output_put(handle, data->stream_id);
3544
3545 if (sample_type & PERF_SAMPLE_CPU)
3546 perf_output_put(handle, data->cpu_entry);
3547
3548 if (sample_type & PERF_SAMPLE_PERIOD)
3549 perf_output_put(handle, data->period);
3550
3551 if (sample_type & PERF_SAMPLE_READ)
3552 perf_output_read(handle, event);
3553
3554 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3555 if (data->callchain) {
3556 int size = 1;
3557
3558 if (data->callchain)
3559 size += data->callchain->nr;
3560
3561 size *= sizeof(u64);
3562
3563 perf_output_copy(handle, data->callchain, size);
3564 } else {
3565 u64 nr = 0;
3566 perf_output_put(handle, nr);
3567 }
3568 }
3569
3570 if (sample_type & PERF_SAMPLE_RAW) {
3571 if (data->raw) {
3572 perf_output_put(handle, data->raw->size);
3573 perf_output_copy(handle, data->raw->data,
3574 data->raw->size);
3575 } else {
3576 struct {
3577 u32 size;
3578 u32 data;
3579 } raw = {
3580 .size = sizeof(u32),
3581 .data = 0,
3582 };
3583 perf_output_put(handle, raw);
3584 }
3585 }
3586 }
3587
3588 void perf_prepare_sample(struct perf_event_header *header,
3589 struct perf_sample_data *data,
3590 struct perf_event *event,
3591 struct pt_regs *regs)
3592 {
3593 u64 sample_type = event->attr.sample_type;
3594
3595 data->type = sample_type;
3596
3597 header->type = PERF_RECORD_SAMPLE;
3598 header->size = sizeof(*header);
3599
3600 header->misc = 0;
3601 header->misc |= perf_misc_flags(regs);
3602
3603 if (sample_type & PERF_SAMPLE_IP) {
3604 data->ip = perf_instruction_pointer(regs);
3605
3606 header->size += sizeof(data->ip);
3607 }
3608
3609 if (sample_type & PERF_SAMPLE_TID) {
3610 /* namespace issues */
3611 data->tid_entry.pid = perf_event_pid(event, current);
3612 data->tid_entry.tid = perf_event_tid(event, current);
3613
3614 header->size += sizeof(data->tid_entry);
3615 }
3616
3617 if (sample_type & PERF_SAMPLE_TIME) {
3618 data->time = perf_clock();
3619
3620 header->size += sizeof(data->time);
3621 }
3622
3623 if (sample_type & PERF_SAMPLE_ADDR)
3624 header->size += sizeof(data->addr);
3625
3626 if (sample_type & PERF_SAMPLE_ID) {
3627 data->id = primary_event_id(event);
3628
3629 header->size += sizeof(data->id);
3630 }
3631
3632 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3633 data->stream_id = event->id;
3634
3635 header->size += sizeof(data->stream_id);
3636 }
3637
3638 if (sample_type & PERF_SAMPLE_CPU) {
3639 data->cpu_entry.cpu = raw_smp_processor_id();
3640 data->cpu_entry.reserved = 0;
3641
3642 header->size += sizeof(data->cpu_entry);
3643 }
3644
3645 if (sample_type & PERF_SAMPLE_PERIOD)
3646 header->size += sizeof(data->period);
3647
3648 if (sample_type & PERF_SAMPLE_READ)
3649 header->size += perf_event_read_size(event);
3650
3651 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3652 int size = 1;
3653
3654 data->callchain = perf_callchain(regs);
3655
3656 if (data->callchain)
3657 size += data->callchain->nr;
3658
3659 header->size += size * sizeof(u64);
3660 }
3661
3662 if (sample_type & PERF_SAMPLE_RAW) {
3663 int size = sizeof(u32);
3664
3665 if (data->raw)
3666 size += data->raw->size;
3667 else
3668 size += sizeof(u32);
3669
3670 WARN_ON_ONCE(size & (sizeof(u64)-1));
3671 header->size += size;
3672 }
3673 }
3674
3675 static void perf_event_output(struct perf_event *event, int nmi,
3676 struct perf_sample_data *data,
3677 struct pt_regs *regs)
3678 {
3679 struct perf_output_handle handle;
3680 struct perf_event_header header;
3681
3682 /* protect the callchain buffers */
3683 rcu_read_lock();
3684
3685 perf_prepare_sample(&header, data, event, regs);
3686
3687 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3688 goto exit;
3689
3690 perf_output_sample(&handle, &header, data, event);
3691
3692 perf_output_end(&handle);
3693
3694 exit:
3695 rcu_read_unlock();
3696 }
3697
3698 /*
3699 * read event_id
3700 */
3701
3702 struct perf_read_event {
3703 struct perf_event_header header;
3704
3705 u32 pid;
3706 u32 tid;
3707 };
3708
3709 static void
3710 perf_event_read_event(struct perf_event *event,
3711 struct task_struct *task)
3712 {
3713 struct perf_output_handle handle;
3714 struct perf_read_event read_event = {
3715 .header = {
3716 .type = PERF_RECORD_READ,
3717 .misc = 0,
3718 .size = sizeof(read_event) + perf_event_read_size(event),
3719 },
3720 .pid = perf_event_pid(event, task),
3721 .tid = perf_event_tid(event, task),
3722 };
3723 int ret;
3724
3725 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3726 if (ret)
3727 return;
3728
3729 perf_output_put(&handle, read_event);
3730 perf_output_read(&handle, event);
3731
3732 perf_output_end(&handle);
3733 }
3734
3735 /*
3736 * task tracking -- fork/exit
3737 *
3738 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3739 */
3740
3741 struct perf_task_event {
3742 struct task_struct *task;
3743 struct perf_event_context *task_ctx;
3744
3745 struct {
3746 struct perf_event_header header;
3747
3748 u32 pid;
3749 u32 ppid;
3750 u32 tid;
3751 u32 ptid;
3752 u64 time;
3753 } event_id;
3754 };
3755
3756 static void perf_event_task_output(struct perf_event *event,
3757 struct perf_task_event *task_event)
3758 {
3759 struct perf_output_handle handle;
3760 struct task_struct *task = task_event->task;
3761 int size, ret;
3762
3763 size = task_event->event_id.header.size;
3764 ret = perf_output_begin(&handle, event, size, 0, 0);
3765
3766 if (ret)
3767 return;
3768
3769 task_event->event_id.pid = perf_event_pid(event, task);
3770 task_event->event_id.ppid = perf_event_pid(event, current);
3771
3772 task_event->event_id.tid = perf_event_tid(event, task);
3773 task_event->event_id.ptid = perf_event_tid(event, current);
3774
3775 perf_output_put(&handle, task_event->event_id);
3776
3777 perf_output_end(&handle);
3778 }
3779
3780 static int perf_event_task_match(struct perf_event *event)
3781 {
3782 if (event->state < PERF_EVENT_STATE_INACTIVE)
3783 return 0;
3784
3785 if (event->cpu != -1 && event->cpu != smp_processor_id())
3786 return 0;
3787
3788 if (event->attr.comm || event->attr.mmap ||
3789 event->attr.mmap_data || event->attr.task)
3790 return 1;
3791
3792 return 0;
3793 }
3794
3795 static void perf_event_task_ctx(struct perf_event_context *ctx,
3796 struct perf_task_event *task_event)
3797 {
3798 struct perf_event *event;
3799
3800 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3801 if (perf_event_task_match(event))
3802 perf_event_task_output(event, task_event);
3803 }
3804 }
3805
3806 static void perf_event_task_event(struct perf_task_event *task_event)
3807 {
3808 struct perf_cpu_context *cpuctx;
3809 struct perf_event_context *ctx;
3810 struct pmu *pmu;
3811 int ctxn;
3812
3813 rcu_read_lock_sched();
3814 list_for_each_entry_rcu(pmu, &pmus, entry) {
3815 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3816 perf_event_task_ctx(&cpuctx->ctx, task_event);
3817
3818 ctx = task_event->task_ctx;
3819 if (!ctx) {
3820 ctxn = pmu->task_ctx_nr;
3821 if (ctxn < 0)
3822 continue;
3823 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3824 }
3825 if (ctx)
3826 perf_event_task_ctx(ctx, task_event);
3827 }
3828 rcu_read_unlock_sched();
3829 }
3830
3831 static void perf_event_task(struct task_struct *task,
3832 struct perf_event_context *task_ctx,
3833 int new)
3834 {
3835 struct perf_task_event task_event;
3836
3837 if (!atomic_read(&nr_comm_events) &&
3838 !atomic_read(&nr_mmap_events) &&
3839 !atomic_read(&nr_task_events))
3840 return;
3841
3842 task_event = (struct perf_task_event){
3843 .task = task,
3844 .task_ctx = task_ctx,
3845 .event_id = {
3846 .header = {
3847 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3848 .misc = 0,
3849 .size = sizeof(task_event.event_id),
3850 },
3851 /* .pid */
3852 /* .ppid */
3853 /* .tid */
3854 /* .ptid */
3855 .time = perf_clock(),
3856 },
3857 };
3858
3859 perf_event_task_event(&task_event);
3860 }
3861
3862 void perf_event_fork(struct task_struct *task)
3863 {
3864 perf_event_task(task, NULL, 1);
3865 }
3866
3867 /*
3868 * comm tracking
3869 */
3870
3871 struct perf_comm_event {
3872 struct task_struct *task;
3873 char *comm;
3874 int comm_size;
3875
3876 struct {
3877 struct perf_event_header header;
3878
3879 u32 pid;
3880 u32 tid;
3881 } event_id;
3882 };
3883
3884 static void perf_event_comm_output(struct perf_event *event,
3885 struct perf_comm_event *comm_event)
3886 {
3887 struct perf_output_handle handle;
3888 int size = comm_event->event_id.header.size;
3889 int ret = perf_output_begin(&handle, event, size, 0, 0);
3890
3891 if (ret)
3892 return;
3893
3894 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3895 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3896
3897 perf_output_put(&handle, comm_event->event_id);
3898 perf_output_copy(&handle, comm_event->comm,
3899 comm_event->comm_size);
3900 perf_output_end(&handle);
3901 }
3902
3903 static int perf_event_comm_match(struct perf_event *event)
3904 {
3905 if (event->state < PERF_EVENT_STATE_INACTIVE)
3906 return 0;
3907
3908 if (event->cpu != -1 && event->cpu != smp_processor_id())
3909 return 0;
3910
3911 if (event->attr.comm)
3912 return 1;
3913
3914 return 0;
3915 }
3916
3917 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3918 struct perf_comm_event *comm_event)
3919 {
3920 struct perf_event *event;
3921
3922 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3923 if (perf_event_comm_match(event))
3924 perf_event_comm_output(event, comm_event);
3925 }
3926 }
3927
3928 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3929 {
3930 struct perf_cpu_context *cpuctx;
3931 struct perf_event_context *ctx;
3932 char comm[TASK_COMM_LEN];
3933 unsigned int size;
3934 struct pmu *pmu;
3935 int ctxn;
3936
3937 memset(comm, 0, sizeof(comm));
3938 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3939 size = ALIGN(strlen(comm)+1, sizeof(u64));
3940
3941 comm_event->comm = comm;
3942 comm_event->comm_size = size;
3943
3944 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3945
3946 rcu_read_lock_sched();
3947 list_for_each_entry_rcu(pmu, &pmus, entry) {
3948 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3949 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3950
3951 ctxn = pmu->task_ctx_nr;
3952 if (ctxn < 0)
3953 continue;
3954
3955 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3956 if (ctx)
3957 perf_event_comm_ctx(ctx, comm_event);
3958 }
3959 rcu_read_unlock_sched();
3960 }
3961
3962 void perf_event_comm(struct task_struct *task)
3963 {
3964 struct perf_comm_event comm_event;
3965 struct perf_event_context *ctx;
3966 int ctxn;
3967
3968 for_each_task_context_nr(ctxn) {
3969 ctx = task->perf_event_ctxp[ctxn];
3970 if (!ctx)
3971 continue;
3972
3973 perf_event_enable_on_exec(ctx);
3974 }
3975
3976 if (!atomic_read(&nr_comm_events))
3977 return;
3978
3979 comm_event = (struct perf_comm_event){
3980 .task = task,
3981 /* .comm */
3982 /* .comm_size */
3983 .event_id = {
3984 .header = {
3985 .type = PERF_RECORD_COMM,
3986 .misc = 0,
3987 /* .size */
3988 },
3989 /* .pid */
3990 /* .tid */
3991 },
3992 };
3993
3994 perf_event_comm_event(&comm_event);
3995 }
3996
3997 /*
3998 * mmap tracking
3999 */
4000
4001 struct perf_mmap_event {
4002 struct vm_area_struct *vma;
4003
4004 const char *file_name;
4005 int file_size;
4006
4007 struct {
4008 struct perf_event_header header;
4009
4010 u32 pid;
4011 u32 tid;
4012 u64 start;
4013 u64 len;
4014 u64 pgoff;
4015 } event_id;
4016 };
4017
4018 static void perf_event_mmap_output(struct perf_event *event,
4019 struct perf_mmap_event *mmap_event)
4020 {
4021 struct perf_output_handle handle;
4022 int size = mmap_event->event_id.header.size;
4023 int ret = perf_output_begin(&handle, event, size, 0, 0);
4024
4025 if (ret)
4026 return;
4027
4028 mmap_event->event_id.pid = perf_event_pid(event, current);
4029 mmap_event->event_id.tid = perf_event_tid(event, current);
4030
4031 perf_output_put(&handle, mmap_event->event_id);
4032 perf_output_copy(&handle, mmap_event->file_name,
4033 mmap_event->file_size);
4034 perf_output_end(&handle);
4035 }
4036
4037 static int perf_event_mmap_match(struct perf_event *event,
4038 struct perf_mmap_event *mmap_event,
4039 int executable)
4040 {
4041 if (event->state < PERF_EVENT_STATE_INACTIVE)
4042 return 0;
4043
4044 if (event->cpu != -1 && event->cpu != smp_processor_id())
4045 return 0;
4046
4047 if ((!executable && event->attr.mmap_data) ||
4048 (executable && event->attr.mmap))
4049 return 1;
4050
4051 return 0;
4052 }
4053
4054 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4055 struct perf_mmap_event *mmap_event,
4056 int executable)
4057 {
4058 struct perf_event *event;
4059
4060 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4061 if (perf_event_mmap_match(event, mmap_event, executable))
4062 perf_event_mmap_output(event, mmap_event);
4063 }
4064 }
4065
4066 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4067 {
4068 struct perf_cpu_context *cpuctx;
4069 struct perf_event_context *ctx;
4070 struct vm_area_struct *vma = mmap_event->vma;
4071 struct file *file = vma->vm_file;
4072 unsigned int size;
4073 char tmp[16];
4074 char *buf = NULL;
4075 const char *name;
4076 struct pmu *pmu;
4077 int ctxn;
4078
4079 memset(tmp, 0, sizeof(tmp));
4080
4081 if (file) {
4082 /*
4083 * d_path works from the end of the buffer backwards, so we
4084 * need to add enough zero bytes after the string to handle
4085 * the 64bit alignment we do later.
4086 */
4087 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4088 if (!buf) {
4089 name = strncpy(tmp, "//enomem", sizeof(tmp));
4090 goto got_name;
4091 }
4092 name = d_path(&file->f_path, buf, PATH_MAX);
4093 if (IS_ERR(name)) {
4094 name = strncpy(tmp, "//toolong", sizeof(tmp));
4095 goto got_name;
4096 }
4097 } else {
4098 if (arch_vma_name(mmap_event->vma)) {
4099 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4100 sizeof(tmp));
4101 goto got_name;
4102 }
4103
4104 if (!vma->vm_mm) {
4105 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4106 goto got_name;
4107 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4108 vma->vm_end >= vma->vm_mm->brk) {
4109 name = strncpy(tmp, "[heap]", sizeof(tmp));
4110 goto got_name;
4111 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4112 vma->vm_end >= vma->vm_mm->start_stack) {
4113 name = strncpy(tmp, "[stack]", sizeof(tmp));
4114 goto got_name;
4115 }
4116
4117 name = strncpy(tmp, "//anon", sizeof(tmp));
4118 goto got_name;
4119 }
4120
4121 got_name:
4122 size = ALIGN(strlen(name)+1, sizeof(u64));
4123
4124 mmap_event->file_name = name;
4125 mmap_event->file_size = size;
4126
4127 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4128
4129 rcu_read_lock_sched();
4130 list_for_each_entry_rcu(pmu, &pmus, entry) {
4131 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
4132 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4133 vma->vm_flags & VM_EXEC);
4134
4135 ctxn = pmu->task_ctx_nr;
4136 if (ctxn < 0)
4137 continue;
4138
4139 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4140 if (ctx) {
4141 perf_event_mmap_ctx(ctx, mmap_event,
4142 vma->vm_flags & VM_EXEC);
4143 }
4144 }
4145 rcu_read_unlock_sched();
4146
4147 kfree(buf);
4148 }
4149
4150 void perf_event_mmap(struct vm_area_struct *vma)
4151 {
4152 struct perf_mmap_event mmap_event;
4153
4154 if (!atomic_read(&nr_mmap_events))
4155 return;
4156
4157 mmap_event = (struct perf_mmap_event){
4158 .vma = vma,
4159 /* .file_name */
4160 /* .file_size */
4161 .event_id = {
4162 .header = {
4163 .type = PERF_RECORD_MMAP,
4164 .misc = PERF_RECORD_MISC_USER,
4165 /* .size */
4166 },
4167 /* .pid */
4168 /* .tid */
4169 .start = vma->vm_start,
4170 .len = vma->vm_end - vma->vm_start,
4171 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4172 },
4173 };
4174
4175 perf_event_mmap_event(&mmap_event);
4176 }
4177
4178 /*
4179 * IRQ throttle logging
4180 */
4181
4182 static void perf_log_throttle(struct perf_event *event, int enable)
4183 {
4184 struct perf_output_handle handle;
4185 int ret;
4186
4187 struct {
4188 struct perf_event_header header;
4189 u64 time;
4190 u64 id;
4191 u64 stream_id;
4192 } throttle_event = {
4193 .header = {
4194 .type = PERF_RECORD_THROTTLE,
4195 .misc = 0,
4196 .size = sizeof(throttle_event),
4197 },
4198 .time = perf_clock(),
4199 .id = primary_event_id(event),
4200 .stream_id = event->id,
4201 };
4202
4203 if (enable)
4204 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4205
4206 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4207 if (ret)
4208 return;
4209
4210 perf_output_put(&handle, throttle_event);
4211 perf_output_end(&handle);
4212 }
4213
4214 /*
4215 * Generic event overflow handling, sampling.
4216 */
4217
4218 static int __perf_event_overflow(struct perf_event *event, int nmi,
4219 int throttle, struct perf_sample_data *data,
4220 struct pt_regs *regs)
4221 {
4222 int events = atomic_read(&event->event_limit);
4223 struct hw_perf_event *hwc = &event->hw;
4224 int ret = 0;
4225
4226 if (!throttle) {
4227 hwc->interrupts++;
4228 } else {
4229 if (hwc->interrupts != MAX_INTERRUPTS) {
4230 hwc->interrupts++;
4231 if (HZ * hwc->interrupts >
4232 (u64)sysctl_perf_event_sample_rate) {
4233 hwc->interrupts = MAX_INTERRUPTS;
4234 perf_log_throttle(event, 0);
4235 ret = 1;
4236 }
4237 } else {
4238 /*
4239 * Keep re-disabling events even though on the previous
4240 * pass we disabled it - just in case we raced with a
4241 * sched-in and the event got enabled again:
4242 */
4243 ret = 1;
4244 }
4245 }
4246
4247 if (event->attr.freq) {
4248 u64 now = perf_clock();
4249 s64 delta = now - hwc->freq_time_stamp;
4250
4251 hwc->freq_time_stamp = now;
4252
4253 if (delta > 0 && delta < 2*TICK_NSEC)
4254 perf_adjust_period(event, delta, hwc->last_period);
4255 }
4256
4257 /*
4258 * XXX event_limit might not quite work as expected on inherited
4259 * events
4260 */
4261
4262 event->pending_kill = POLL_IN;
4263 if (events && atomic_dec_and_test(&event->event_limit)) {
4264 ret = 1;
4265 event->pending_kill = POLL_HUP;
4266 if (nmi) {
4267 event->pending_disable = 1;
4268 perf_pending_queue(&event->pending,
4269 perf_pending_event);
4270 } else
4271 perf_event_disable(event);
4272 }
4273
4274 if (event->overflow_handler)
4275 event->overflow_handler(event, nmi, data, regs);
4276 else
4277 perf_event_output(event, nmi, data, regs);
4278
4279 return ret;
4280 }
4281
4282 int perf_event_overflow(struct perf_event *event, int nmi,
4283 struct perf_sample_data *data,
4284 struct pt_regs *regs)
4285 {
4286 return __perf_event_overflow(event, nmi, 1, data, regs);
4287 }
4288
4289 /*
4290 * Generic software event infrastructure
4291 */
4292
4293 struct swevent_htable {
4294 struct swevent_hlist *swevent_hlist;
4295 struct mutex hlist_mutex;
4296 int hlist_refcount;
4297
4298 /* Recursion avoidance in each contexts */
4299 int recursion[PERF_NR_CONTEXTS];
4300 };
4301
4302 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4303
4304 /*
4305 * We directly increment event->count and keep a second value in
4306 * event->hw.period_left to count intervals. This period event
4307 * is kept in the range [-sample_period, 0] so that we can use the
4308 * sign as trigger.
4309 */
4310
4311 static u64 perf_swevent_set_period(struct perf_event *event)
4312 {
4313 struct hw_perf_event *hwc = &event->hw;
4314 u64 period = hwc->last_period;
4315 u64 nr, offset;
4316 s64 old, val;
4317
4318 hwc->last_period = hwc->sample_period;
4319
4320 again:
4321 old = val = local64_read(&hwc->period_left);
4322 if (val < 0)
4323 return 0;
4324
4325 nr = div64_u64(period + val, period);
4326 offset = nr * period;
4327 val -= offset;
4328 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4329 goto again;
4330
4331 return nr;
4332 }
4333
4334 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4335 int nmi, struct perf_sample_data *data,
4336 struct pt_regs *regs)
4337 {
4338 struct hw_perf_event *hwc = &event->hw;
4339 int throttle = 0;
4340
4341 data->period = event->hw.last_period;
4342 if (!overflow)
4343 overflow = perf_swevent_set_period(event);
4344
4345 if (hwc->interrupts == MAX_INTERRUPTS)
4346 return;
4347
4348 for (; overflow; overflow--) {
4349 if (__perf_event_overflow(event, nmi, throttle,
4350 data, regs)) {
4351 /*
4352 * We inhibit the overflow from happening when
4353 * hwc->interrupts == MAX_INTERRUPTS.
4354 */
4355 break;
4356 }
4357 throttle = 1;
4358 }
4359 }
4360
4361 static void perf_swevent_event(struct perf_event *event, u64 nr,
4362 int nmi, struct perf_sample_data *data,
4363 struct pt_regs *regs)
4364 {
4365 struct hw_perf_event *hwc = &event->hw;
4366
4367 local64_add(nr, &event->count);
4368
4369 if (!regs)
4370 return;
4371
4372 if (!hwc->sample_period)
4373 return;
4374
4375 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4376 return perf_swevent_overflow(event, 1, nmi, data, regs);
4377
4378 if (local64_add_negative(nr, &hwc->period_left))
4379 return;
4380
4381 perf_swevent_overflow(event, 0, nmi, data, regs);
4382 }
4383
4384 static int perf_exclude_event(struct perf_event *event,
4385 struct pt_regs *regs)
4386 {
4387 if (event->hw.state & PERF_HES_STOPPED)
4388 return 0;
4389
4390 if (regs) {
4391 if (event->attr.exclude_user && user_mode(regs))
4392 return 1;
4393
4394 if (event->attr.exclude_kernel && !user_mode(regs))
4395 return 1;
4396 }
4397
4398 return 0;
4399 }
4400
4401 static int perf_swevent_match(struct perf_event *event,
4402 enum perf_type_id type,
4403 u32 event_id,
4404 struct perf_sample_data *data,
4405 struct pt_regs *regs)
4406 {
4407 if (event->attr.type != type)
4408 return 0;
4409
4410 if (event->attr.config != event_id)
4411 return 0;
4412
4413 if (perf_exclude_event(event, regs))
4414 return 0;
4415
4416 return 1;
4417 }
4418
4419 static inline u64 swevent_hash(u64 type, u32 event_id)
4420 {
4421 u64 val = event_id | (type << 32);
4422
4423 return hash_64(val, SWEVENT_HLIST_BITS);
4424 }
4425
4426 static inline struct hlist_head *
4427 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4428 {
4429 u64 hash = swevent_hash(type, event_id);
4430
4431 return &hlist->heads[hash];
4432 }
4433
4434 /* For the read side: events when they trigger */
4435 static inline struct hlist_head *
4436 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4437 {
4438 struct swevent_hlist *hlist;
4439
4440 hlist = rcu_dereference(swhash->swevent_hlist);
4441 if (!hlist)
4442 return NULL;
4443
4444 return __find_swevent_head(hlist, type, event_id);
4445 }
4446
4447 /* For the event head insertion and removal in the hlist */
4448 static inline struct hlist_head *
4449 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4450 {
4451 struct swevent_hlist *hlist;
4452 u32 event_id = event->attr.config;
4453 u64 type = event->attr.type;
4454
4455 /*
4456 * Event scheduling is always serialized against hlist allocation
4457 * and release. Which makes the protected version suitable here.
4458 * The context lock guarantees that.
4459 */
4460 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4461 lockdep_is_held(&event->ctx->lock));
4462 if (!hlist)
4463 return NULL;
4464
4465 return __find_swevent_head(hlist, type, event_id);
4466 }
4467
4468 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4469 u64 nr, int nmi,
4470 struct perf_sample_data *data,
4471 struct pt_regs *regs)
4472 {
4473 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4474 struct perf_event *event;
4475 struct hlist_node *node;
4476 struct hlist_head *head;
4477
4478 rcu_read_lock();
4479 head = find_swevent_head_rcu(swhash, type, event_id);
4480 if (!head)
4481 goto end;
4482
4483 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4484 if (perf_swevent_match(event, type, event_id, data, regs))
4485 perf_swevent_event(event, nr, nmi, data, regs);
4486 }
4487 end:
4488 rcu_read_unlock();
4489 }
4490
4491 int perf_swevent_get_recursion_context(void)
4492 {
4493 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4494
4495 return get_recursion_context(swhash->recursion);
4496 }
4497 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4498
4499 void inline perf_swevent_put_recursion_context(int rctx)
4500 {
4501 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4502
4503 put_recursion_context(swhash->recursion, rctx);
4504 }
4505
4506 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4507 struct pt_regs *regs, u64 addr)
4508 {
4509 struct perf_sample_data data;
4510 int rctx;
4511
4512 preempt_disable_notrace();
4513 rctx = perf_swevent_get_recursion_context();
4514 if (rctx < 0)
4515 return;
4516
4517 perf_sample_data_init(&data, addr);
4518
4519 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4520
4521 perf_swevent_put_recursion_context(rctx);
4522 preempt_enable_notrace();
4523 }
4524
4525 static void perf_swevent_read(struct perf_event *event)
4526 {
4527 }
4528
4529 static int perf_swevent_add(struct perf_event *event, int flags)
4530 {
4531 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4532 struct hw_perf_event *hwc = &event->hw;
4533 struct hlist_head *head;
4534
4535 if (hwc->sample_period) {
4536 hwc->last_period = hwc->sample_period;
4537 perf_swevent_set_period(event);
4538 }
4539
4540 hwc->state = !(flags & PERF_EF_START);
4541
4542 head = find_swevent_head(swhash, event);
4543 if (WARN_ON_ONCE(!head))
4544 return -EINVAL;
4545
4546 hlist_add_head_rcu(&event->hlist_entry, head);
4547
4548 return 0;
4549 }
4550
4551 static void perf_swevent_del(struct perf_event *event, int flags)
4552 {
4553 hlist_del_rcu(&event->hlist_entry);
4554 }
4555
4556 static void perf_swevent_start(struct perf_event *event, int flags)
4557 {
4558 event->hw.state = 0;
4559 }
4560
4561 static void perf_swevent_stop(struct perf_event *event, int flags)
4562 {
4563 event->hw.state = PERF_HES_STOPPED;
4564 }
4565
4566 /* Deref the hlist from the update side */
4567 static inline struct swevent_hlist *
4568 swevent_hlist_deref(struct swevent_htable *swhash)
4569 {
4570 return rcu_dereference_protected(swhash->swevent_hlist,
4571 lockdep_is_held(&swhash->hlist_mutex));
4572 }
4573
4574 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4575 {
4576 struct swevent_hlist *hlist;
4577
4578 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4579 kfree(hlist);
4580 }
4581
4582 static void swevent_hlist_release(struct swevent_htable *swhash)
4583 {
4584 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4585
4586 if (!hlist)
4587 return;
4588
4589 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4590 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4591 }
4592
4593 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4594 {
4595 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4596
4597 mutex_lock(&swhash->hlist_mutex);
4598
4599 if (!--swhash->hlist_refcount)
4600 swevent_hlist_release(swhash);
4601
4602 mutex_unlock(&swhash->hlist_mutex);
4603 }
4604
4605 static void swevent_hlist_put(struct perf_event *event)
4606 {
4607 int cpu;
4608
4609 if (event->cpu != -1) {
4610 swevent_hlist_put_cpu(event, event->cpu);
4611 return;
4612 }
4613
4614 for_each_possible_cpu(cpu)
4615 swevent_hlist_put_cpu(event, cpu);
4616 }
4617
4618 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4619 {
4620 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4621 int err = 0;
4622
4623 mutex_lock(&swhash->hlist_mutex);
4624
4625 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4626 struct swevent_hlist *hlist;
4627
4628 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4629 if (!hlist) {
4630 err = -ENOMEM;
4631 goto exit;
4632 }
4633 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4634 }
4635 swhash->hlist_refcount++;
4636 exit:
4637 mutex_unlock(&swhash->hlist_mutex);
4638
4639 return err;
4640 }
4641
4642 static int swevent_hlist_get(struct perf_event *event)
4643 {
4644 int err;
4645 int cpu, failed_cpu;
4646
4647 if (event->cpu != -1)
4648 return swevent_hlist_get_cpu(event, event->cpu);
4649
4650 get_online_cpus();
4651 for_each_possible_cpu(cpu) {
4652 err = swevent_hlist_get_cpu(event, cpu);
4653 if (err) {
4654 failed_cpu = cpu;
4655 goto fail;
4656 }
4657 }
4658 put_online_cpus();
4659
4660 return 0;
4661 fail:
4662 for_each_possible_cpu(cpu) {
4663 if (cpu == failed_cpu)
4664 break;
4665 swevent_hlist_put_cpu(event, cpu);
4666 }
4667
4668 put_online_cpus();
4669 return err;
4670 }
4671
4672 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4673
4674 static void sw_perf_event_destroy(struct perf_event *event)
4675 {
4676 u64 event_id = event->attr.config;
4677
4678 WARN_ON(event->parent);
4679
4680 atomic_dec(&perf_swevent_enabled[event_id]);
4681 swevent_hlist_put(event);
4682 }
4683
4684 static int perf_swevent_init(struct perf_event *event)
4685 {
4686 int event_id = event->attr.config;
4687
4688 if (event->attr.type != PERF_TYPE_SOFTWARE)
4689 return -ENOENT;
4690
4691 switch (event_id) {
4692 case PERF_COUNT_SW_CPU_CLOCK:
4693 case PERF_COUNT_SW_TASK_CLOCK:
4694 return -ENOENT;
4695
4696 default:
4697 break;
4698 }
4699
4700 if (event_id > PERF_COUNT_SW_MAX)
4701 return -ENOENT;
4702
4703 if (!event->parent) {
4704 int err;
4705
4706 err = swevent_hlist_get(event);
4707 if (err)
4708 return err;
4709
4710 atomic_inc(&perf_swevent_enabled[event_id]);
4711 event->destroy = sw_perf_event_destroy;
4712 }
4713
4714 return 0;
4715 }
4716
4717 static struct pmu perf_swevent = {
4718 .task_ctx_nr = perf_sw_context,
4719
4720 .event_init = perf_swevent_init,
4721 .add = perf_swevent_add,
4722 .del = perf_swevent_del,
4723 .start = perf_swevent_start,
4724 .stop = perf_swevent_stop,
4725 .read = perf_swevent_read,
4726 };
4727
4728 #ifdef CONFIG_EVENT_TRACING
4729
4730 static int perf_tp_filter_match(struct perf_event *event,
4731 struct perf_sample_data *data)
4732 {
4733 void *record = data->raw->data;
4734
4735 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4736 return 1;
4737 return 0;
4738 }
4739
4740 static int perf_tp_event_match(struct perf_event *event,
4741 struct perf_sample_data *data,
4742 struct pt_regs *regs)
4743 {
4744 /*
4745 * All tracepoints are from kernel-space.
4746 */
4747 if (event->attr.exclude_kernel)
4748 return 0;
4749
4750 if (!perf_tp_filter_match(event, data))
4751 return 0;
4752
4753 return 1;
4754 }
4755
4756 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4757 struct pt_regs *regs, struct hlist_head *head, int rctx)
4758 {
4759 struct perf_sample_data data;
4760 struct perf_event *event;
4761 struct hlist_node *node;
4762
4763 struct perf_raw_record raw = {
4764 .size = entry_size,
4765 .data = record,
4766 };
4767
4768 perf_sample_data_init(&data, addr);
4769 data.raw = &raw;
4770
4771 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4772 if (perf_tp_event_match(event, &data, regs))
4773 perf_swevent_event(event, count, 1, &data, regs);
4774 }
4775
4776 perf_swevent_put_recursion_context(rctx);
4777 }
4778 EXPORT_SYMBOL_GPL(perf_tp_event);
4779
4780 static void tp_perf_event_destroy(struct perf_event *event)
4781 {
4782 perf_trace_destroy(event);
4783 }
4784
4785 static int perf_tp_event_init(struct perf_event *event)
4786 {
4787 int err;
4788
4789 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4790 return -ENOENT;
4791
4792 /*
4793 * Raw tracepoint data is a severe data leak, only allow root to
4794 * have these.
4795 */
4796 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4797 perf_paranoid_tracepoint_raw() &&
4798 !capable(CAP_SYS_ADMIN))
4799 return -EPERM;
4800
4801 err = perf_trace_init(event);
4802 if (err)
4803 return err;
4804
4805 event->destroy = tp_perf_event_destroy;
4806
4807 return 0;
4808 }
4809
4810 static struct pmu perf_tracepoint = {
4811 .task_ctx_nr = perf_sw_context,
4812
4813 .event_init = perf_tp_event_init,
4814 .add = perf_trace_add,
4815 .del = perf_trace_del,
4816 .start = perf_swevent_start,
4817 .stop = perf_swevent_stop,
4818 .read = perf_swevent_read,
4819 };
4820
4821 static inline void perf_tp_register(void)
4822 {
4823 perf_pmu_register(&perf_tracepoint);
4824 }
4825
4826 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4827 {
4828 char *filter_str;
4829 int ret;
4830
4831 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4832 return -EINVAL;
4833
4834 filter_str = strndup_user(arg, PAGE_SIZE);
4835 if (IS_ERR(filter_str))
4836 return PTR_ERR(filter_str);
4837
4838 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4839
4840 kfree(filter_str);
4841 return ret;
4842 }
4843
4844 static void perf_event_free_filter(struct perf_event *event)
4845 {
4846 ftrace_profile_free_filter(event);
4847 }
4848
4849 #else
4850
4851 static inline void perf_tp_register(void)
4852 {
4853 }
4854
4855 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4856 {
4857 return -ENOENT;
4858 }
4859
4860 static void perf_event_free_filter(struct perf_event *event)
4861 {
4862 }
4863
4864 #endif /* CONFIG_EVENT_TRACING */
4865
4866 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4867 void perf_bp_event(struct perf_event *bp, void *data)
4868 {
4869 struct perf_sample_data sample;
4870 struct pt_regs *regs = data;
4871
4872 perf_sample_data_init(&sample, bp->attr.bp_addr);
4873
4874 if (!bp->hw.state && !perf_exclude_event(bp, regs))
4875 perf_swevent_event(bp, 1, 1, &sample, regs);
4876 }
4877 #endif
4878
4879 /*
4880 * hrtimer based swevent callback
4881 */
4882
4883 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4884 {
4885 enum hrtimer_restart ret = HRTIMER_RESTART;
4886 struct perf_sample_data data;
4887 struct pt_regs *regs;
4888 struct perf_event *event;
4889 u64 period;
4890
4891 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4892 event->pmu->read(event);
4893
4894 perf_sample_data_init(&data, 0);
4895 data.period = event->hw.last_period;
4896 regs = get_irq_regs();
4897
4898 if (regs && !perf_exclude_event(event, regs)) {
4899 if (!(event->attr.exclude_idle && current->pid == 0))
4900 if (perf_event_overflow(event, 0, &data, regs))
4901 ret = HRTIMER_NORESTART;
4902 }
4903
4904 period = max_t(u64, 10000, event->hw.sample_period);
4905 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4906
4907 return ret;
4908 }
4909
4910 static void perf_swevent_start_hrtimer(struct perf_event *event)
4911 {
4912 struct hw_perf_event *hwc = &event->hw;
4913
4914 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4915 hwc->hrtimer.function = perf_swevent_hrtimer;
4916 if (hwc->sample_period) {
4917 s64 period = local64_read(&hwc->period_left);
4918
4919 if (period) {
4920 if (period < 0)
4921 period = 10000;
4922
4923 local64_set(&hwc->period_left, 0);
4924 } else {
4925 period = max_t(u64, 10000, hwc->sample_period);
4926 }
4927 __hrtimer_start_range_ns(&hwc->hrtimer,
4928 ns_to_ktime(period), 0,
4929 HRTIMER_MODE_REL_PINNED, 0);
4930 }
4931 }
4932
4933 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4934 {
4935 struct hw_perf_event *hwc = &event->hw;
4936
4937 if (hwc->sample_period) {
4938 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4939 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4940
4941 hrtimer_cancel(&hwc->hrtimer);
4942 }
4943 }
4944
4945 /*
4946 * Software event: cpu wall time clock
4947 */
4948
4949 static void cpu_clock_event_update(struct perf_event *event)
4950 {
4951 s64 prev;
4952 u64 now;
4953
4954 now = local_clock();
4955 prev = local64_xchg(&event->hw.prev_count, now);
4956 local64_add(now - prev, &event->count);
4957 }
4958
4959 static void cpu_clock_event_start(struct perf_event *event, int flags)
4960 {
4961 local64_set(&event->hw.prev_count, local_clock());
4962 perf_swevent_start_hrtimer(event);
4963 }
4964
4965 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4966 {
4967 perf_swevent_cancel_hrtimer(event);
4968 cpu_clock_event_update(event);
4969 }
4970
4971 static int cpu_clock_event_add(struct perf_event *event, int flags)
4972 {
4973 if (flags & PERF_EF_START)
4974 cpu_clock_event_start(event, flags);
4975
4976 return 0;
4977 }
4978
4979 static void cpu_clock_event_del(struct perf_event *event, int flags)
4980 {
4981 cpu_clock_event_stop(event, flags);
4982 }
4983
4984 static void cpu_clock_event_read(struct perf_event *event)
4985 {
4986 cpu_clock_event_update(event);
4987 }
4988
4989 static int cpu_clock_event_init(struct perf_event *event)
4990 {
4991 if (event->attr.type != PERF_TYPE_SOFTWARE)
4992 return -ENOENT;
4993
4994 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4995 return -ENOENT;
4996
4997 return 0;
4998 }
4999
5000 static struct pmu perf_cpu_clock = {
5001 .task_ctx_nr = perf_sw_context,
5002
5003 .event_init = cpu_clock_event_init,
5004 .add = cpu_clock_event_add,
5005 .del = cpu_clock_event_del,
5006 .start = cpu_clock_event_start,
5007 .stop = cpu_clock_event_stop,
5008 .read = cpu_clock_event_read,
5009 };
5010
5011 /*
5012 * Software event: task time clock
5013 */
5014
5015 static void task_clock_event_update(struct perf_event *event, u64 now)
5016 {
5017 u64 prev;
5018 s64 delta;
5019
5020 prev = local64_xchg(&event->hw.prev_count, now);
5021 delta = now - prev;
5022 local64_add(delta, &event->count);
5023 }
5024
5025 static void task_clock_event_start(struct perf_event *event, int flags)
5026 {
5027 local64_set(&event->hw.prev_count, event->ctx->time);
5028 perf_swevent_start_hrtimer(event);
5029 }
5030
5031 static void task_clock_event_stop(struct perf_event *event, int flags)
5032 {
5033 perf_swevent_cancel_hrtimer(event);
5034 task_clock_event_update(event, event->ctx->time);
5035 }
5036
5037 static int task_clock_event_add(struct perf_event *event, int flags)
5038 {
5039 if (flags & PERF_EF_START)
5040 task_clock_event_start(event, flags);
5041
5042 return 0;
5043 }
5044
5045 static void task_clock_event_del(struct perf_event *event, int flags)
5046 {
5047 task_clock_event_stop(event, PERF_EF_UPDATE);
5048 }
5049
5050 static void task_clock_event_read(struct perf_event *event)
5051 {
5052 u64 time;
5053
5054 if (!in_nmi()) {
5055 update_context_time(event->ctx);
5056 time = event->ctx->time;
5057 } else {
5058 u64 now = perf_clock();
5059 u64 delta = now - event->ctx->timestamp;
5060 time = event->ctx->time + delta;
5061 }
5062
5063 task_clock_event_update(event, time);
5064 }
5065
5066 static int task_clock_event_init(struct perf_event *event)
5067 {
5068 if (event->attr.type != PERF_TYPE_SOFTWARE)
5069 return -ENOENT;
5070
5071 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5072 return -ENOENT;
5073
5074 return 0;
5075 }
5076
5077 static struct pmu perf_task_clock = {
5078 .task_ctx_nr = perf_sw_context,
5079
5080 .event_init = task_clock_event_init,
5081 .add = task_clock_event_add,
5082 .del = task_clock_event_del,
5083 .start = task_clock_event_start,
5084 .stop = task_clock_event_stop,
5085 .read = task_clock_event_read,
5086 };
5087
5088 static void perf_pmu_nop_void(struct pmu *pmu)
5089 {
5090 }
5091
5092 static int perf_pmu_nop_int(struct pmu *pmu)
5093 {
5094 return 0;
5095 }
5096
5097 static void perf_pmu_start_txn(struct pmu *pmu)
5098 {
5099 perf_pmu_disable(pmu);
5100 }
5101
5102 static int perf_pmu_commit_txn(struct pmu *pmu)
5103 {
5104 perf_pmu_enable(pmu);
5105 return 0;
5106 }
5107
5108 static void perf_pmu_cancel_txn(struct pmu *pmu)
5109 {
5110 perf_pmu_enable(pmu);
5111 }
5112
5113 /*
5114 * Ensures all contexts with the same task_ctx_nr have the same
5115 * pmu_cpu_context too.
5116 */
5117 static void *find_pmu_context(int ctxn)
5118 {
5119 struct pmu *pmu;
5120
5121 if (ctxn < 0)
5122 return NULL;
5123
5124 list_for_each_entry(pmu, &pmus, entry) {
5125 if (pmu->task_ctx_nr == ctxn)
5126 return pmu->pmu_cpu_context;
5127 }
5128
5129 return NULL;
5130 }
5131
5132 static void free_pmu_context(void * __percpu cpu_context)
5133 {
5134 struct pmu *pmu;
5135
5136 mutex_lock(&pmus_lock);
5137 /*
5138 * Like a real lame refcount.
5139 */
5140 list_for_each_entry(pmu, &pmus, entry) {
5141 if (pmu->pmu_cpu_context == cpu_context)
5142 goto out;
5143 }
5144
5145 free_percpu(cpu_context);
5146 out:
5147 mutex_unlock(&pmus_lock);
5148 }
5149
5150 int perf_pmu_register(struct pmu *pmu)
5151 {
5152 int cpu, ret;
5153
5154 mutex_lock(&pmus_lock);
5155 ret = -ENOMEM;
5156 pmu->pmu_disable_count = alloc_percpu(int);
5157 if (!pmu->pmu_disable_count)
5158 goto unlock;
5159
5160 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5161 if (pmu->pmu_cpu_context)
5162 goto got_cpu_context;
5163
5164 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5165 if (!pmu->pmu_cpu_context)
5166 goto free_pdc;
5167
5168 for_each_possible_cpu(cpu) {
5169 struct perf_cpu_context *cpuctx;
5170
5171 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5172 __perf_event_init_context(&cpuctx->ctx);
5173 cpuctx->ctx.pmu = pmu;
5174 cpuctx->timer_interval = TICK_NSEC;
5175 hrtimer_init(&cpuctx->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5176 cpuctx->timer.function = perf_event_context_tick;
5177 }
5178
5179 got_cpu_context:
5180 if (!pmu->start_txn) {
5181 if (pmu->pmu_enable) {
5182 /*
5183 * If we have pmu_enable/pmu_disable calls, install
5184 * transaction stubs that use that to try and batch
5185 * hardware accesses.
5186 */
5187 pmu->start_txn = perf_pmu_start_txn;
5188 pmu->commit_txn = perf_pmu_commit_txn;
5189 pmu->cancel_txn = perf_pmu_cancel_txn;
5190 } else {
5191 pmu->start_txn = perf_pmu_nop_void;
5192 pmu->commit_txn = perf_pmu_nop_int;
5193 pmu->cancel_txn = perf_pmu_nop_void;
5194 }
5195 }
5196
5197 if (!pmu->pmu_enable) {
5198 pmu->pmu_enable = perf_pmu_nop_void;
5199 pmu->pmu_disable = perf_pmu_nop_void;
5200 }
5201
5202 list_add_rcu(&pmu->entry, &pmus);
5203 ret = 0;
5204 unlock:
5205 mutex_unlock(&pmus_lock);
5206
5207 return ret;
5208
5209 free_pdc:
5210 free_percpu(pmu->pmu_disable_count);
5211 goto unlock;
5212 }
5213
5214 void perf_pmu_unregister(struct pmu *pmu)
5215 {
5216 mutex_lock(&pmus_lock);
5217 list_del_rcu(&pmu->entry);
5218 mutex_unlock(&pmus_lock);
5219
5220 /*
5221 * We use the pmu list either under SRCU or preempt_disable,
5222 * synchronize_srcu() implies synchronize_sched() so we're good.
5223 */
5224 synchronize_srcu(&pmus_srcu);
5225
5226 free_percpu(pmu->pmu_disable_count);
5227 free_pmu_context(pmu->pmu_cpu_context);
5228 }
5229
5230 struct pmu *perf_init_event(struct perf_event *event)
5231 {
5232 struct pmu *pmu = NULL;
5233 int idx;
5234
5235 idx = srcu_read_lock(&pmus_srcu);
5236 list_for_each_entry_rcu(pmu, &pmus, entry) {
5237 int ret = pmu->event_init(event);
5238 if (!ret)
5239 goto unlock;
5240
5241 if (ret != -ENOENT) {
5242 pmu = ERR_PTR(ret);
5243 goto unlock;
5244 }
5245 }
5246 pmu = ERR_PTR(-ENOENT);
5247 unlock:
5248 srcu_read_unlock(&pmus_srcu, idx);
5249
5250 return pmu;
5251 }
5252
5253 /*
5254 * Allocate and initialize a event structure
5255 */
5256 static struct perf_event *
5257 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5258 struct perf_event *group_leader,
5259 struct perf_event *parent_event,
5260 perf_overflow_handler_t overflow_handler)
5261 {
5262 struct pmu *pmu;
5263 struct perf_event *event;
5264 struct hw_perf_event *hwc;
5265 long err;
5266
5267 event = kzalloc(sizeof(*event), GFP_KERNEL);
5268 if (!event)
5269 return ERR_PTR(-ENOMEM);
5270
5271 /*
5272 * Single events are their own group leaders, with an
5273 * empty sibling list:
5274 */
5275 if (!group_leader)
5276 group_leader = event;
5277
5278 mutex_init(&event->child_mutex);
5279 INIT_LIST_HEAD(&event->child_list);
5280
5281 INIT_LIST_HEAD(&event->group_entry);
5282 INIT_LIST_HEAD(&event->event_entry);
5283 INIT_LIST_HEAD(&event->sibling_list);
5284 init_waitqueue_head(&event->waitq);
5285
5286 mutex_init(&event->mmap_mutex);
5287
5288 event->cpu = cpu;
5289 event->attr = *attr;
5290 event->group_leader = group_leader;
5291 event->pmu = NULL;
5292 event->oncpu = -1;
5293
5294 event->parent = parent_event;
5295
5296 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5297 event->id = atomic64_inc_return(&perf_event_id);
5298
5299 event->state = PERF_EVENT_STATE_INACTIVE;
5300
5301 if (!overflow_handler && parent_event)
5302 overflow_handler = parent_event->overflow_handler;
5303
5304 event->overflow_handler = overflow_handler;
5305
5306 if (attr->disabled)
5307 event->state = PERF_EVENT_STATE_OFF;
5308
5309 pmu = NULL;
5310
5311 hwc = &event->hw;
5312 hwc->sample_period = attr->sample_period;
5313 if (attr->freq && attr->sample_freq)
5314 hwc->sample_period = 1;
5315 hwc->last_period = hwc->sample_period;
5316
5317 local64_set(&hwc->period_left, hwc->sample_period);
5318
5319 /*
5320 * we currently do not support PERF_FORMAT_GROUP on inherited events
5321 */
5322 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5323 goto done;
5324
5325 pmu = perf_init_event(event);
5326
5327 done:
5328 err = 0;
5329 if (!pmu)
5330 err = -EINVAL;
5331 else if (IS_ERR(pmu))
5332 err = PTR_ERR(pmu);
5333
5334 if (err) {
5335 if (event->ns)
5336 put_pid_ns(event->ns);
5337 kfree(event);
5338 return ERR_PTR(err);
5339 }
5340
5341 event->pmu = pmu;
5342
5343 if (!event->parent) {
5344 atomic_inc(&nr_events);
5345 if (event->attr.mmap || event->attr.mmap_data)
5346 atomic_inc(&nr_mmap_events);
5347 if (event->attr.comm)
5348 atomic_inc(&nr_comm_events);
5349 if (event->attr.task)
5350 atomic_inc(&nr_task_events);
5351 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5352 err = get_callchain_buffers();
5353 if (err) {
5354 free_event(event);
5355 return ERR_PTR(err);
5356 }
5357 }
5358 }
5359
5360 return event;
5361 }
5362
5363 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5364 struct perf_event_attr *attr)
5365 {
5366 u32 size;
5367 int ret;
5368
5369 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5370 return -EFAULT;
5371
5372 /*
5373 * zero the full structure, so that a short copy will be nice.
5374 */
5375 memset(attr, 0, sizeof(*attr));
5376
5377 ret = get_user(size, &uattr->size);
5378 if (ret)
5379 return ret;
5380
5381 if (size > PAGE_SIZE) /* silly large */
5382 goto err_size;
5383
5384 if (!size) /* abi compat */
5385 size = PERF_ATTR_SIZE_VER0;
5386
5387 if (size < PERF_ATTR_SIZE_VER0)
5388 goto err_size;
5389
5390 /*
5391 * If we're handed a bigger struct than we know of,
5392 * ensure all the unknown bits are 0 - i.e. new
5393 * user-space does not rely on any kernel feature
5394 * extensions we dont know about yet.
5395 */
5396 if (size > sizeof(*attr)) {
5397 unsigned char __user *addr;
5398 unsigned char __user *end;
5399 unsigned char val;
5400
5401 addr = (void __user *)uattr + sizeof(*attr);
5402 end = (void __user *)uattr + size;
5403
5404 for (; addr < end; addr++) {
5405 ret = get_user(val, addr);
5406 if (ret)
5407 return ret;
5408 if (val)
5409 goto err_size;
5410 }
5411 size = sizeof(*attr);
5412 }
5413
5414 ret = copy_from_user(attr, uattr, size);
5415 if (ret)
5416 return -EFAULT;
5417
5418 /*
5419 * If the type exists, the corresponding creation will verify
5420 * the attr->config.
5421 */
5422 if (attr->type >= PERF_TYPE_MAX)
5423 return -EINVAL;
5424
5425 if (attr->__reserved_1)
5426 return -EINVAL;
5427
5428 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5429 return -EINVAL;
5430
5431 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5432 return -EINVAL;
5433
5434 out:
5435 return ret;
5436
5437 err_size:
5438 put_user(sizeof(*attr), &uattr->size);
5439 ret = -E2BIG;
5440 goto out;
5441 }
5442
5443 static int
5444 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5445 {
5446 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5447 int ret = -EINVAL;
5448
5449 if (!output_event)
5450 goto set;
5451
5452 /* don't allow circular references */
5453 if (event == output_event)
5454 goto out;
5455
5456 /*
5457 * Don't allow cross-cpu buffers
5458 */
5459 if (output_event->cpu != event->cpu)
5460 goto out;
5461
5462 /*
5463 * If its not a per-cpu buffer, it must be the same task.
5464 */
5465 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5466 goto out;
5467
5468 set:
5469 mutex_lock(&event->mmap_mutex);
5470 /* Can't redirect output if we've got an active mmap() */
5471 if (atomic_read(&event->mmap_count))
5472 goto unlock;
5473
5474 if (output_event) {
5475 /* get the buffer we want to redirect to */
5476 buffer = perf_buffer_get(output_event);
5477 if (!buffer)
5478 goto unlock;
5479 }
5480
5481 old_buffer = event->buffer;
5482 rcu_assign_pointer(event->buffer, buffer);
5483 ret = 0;
5484 unlock:
5485 mutex_unlock(&event->mmap_mutex);
5486
5487 if (old_buffer)
5488 perf_buffer_put(old_buffer);
5489 out:
5490 return ret;
5491 }
5492
5493 /**
5494 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5495 *
5496 * @attr_uptr: event_id type attributes for monitoring/sampling
5497 * @pid: target pid
5498 * @cpu: target cpu
5499 * @group_fd: group leader event fd
5500 */
5501 SYSCALL_DEFINE5(perf_event_open,
5502 struct perf_event_attr __user *, attr_uptr,
5503 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5504 {
5505 struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5506 struct perf_event_attr attr;
5507 struct perf_event_context *ctx;
5508 struct file *event_file = NULL;
5509 struct file *group_file = NULL;
5510 struct pmu *pmu;
5511 int event_fd;
5512 int fput_needed = 0;
5513 int err;
5514
5515 /* for future expandability... */
5516 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5517 return -EINVAL;
5518
5519 err = perf_copy_attr(attr_uptr, &attr);
5520 if (err)
5521 return err;
5522
5523 if (!attr.exclude_kernel) {
5524 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5525 return -EACCES;
5526 }
5527
5528 if (attr.freq) {
5529 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5530 return -EINVAL;
5531 }
5532
5533 event_fd = get_unused_fd_flags(O_RDWR);
5534 if (event_fd < 0)
5535 return event_fd;
5536
5537 event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
5538 if (IS_ERR(event)) {
5539 err = PTR_ERR(event);
5540 goto err_fd;
5541 }
5542
5543 if (group_fd != -1) {
5544 group_leader = perf_fget_light(group_fd, &fput_needed);
5545 if (IS_ERR(group_leader)) {
5546 err = PTR_ERR(group_leader);
5547 goto err_alloc;
5548 }
5549 group_file = group_leader->filp;
5550 if (flags & PERF_FLAG_FD_OUTPUT)
5551 output_event = group_leader;
5552 if (flags & PERF_FLAG_FD_NO_GROUP)
5553 group_leader = NULL;
5554 }
5555
5556 /*
5557 * Special case software events and allow them to be part of
5558 * any hardware group.
5559 */
5560 pmu = event->pmu;
5561 if ((pmu->task_ctx_nr == perf_sw_context) && group_leader)
5562 pmu = group_leader->pmu;
5563
5564 /*
5565 * Get the target context (task or percpu):
5566 */
5567 ctx = find_get_context(pmu, pid, cpu);
5568 if (IS_ERR(ctx)) {
5569 err = PTR_ERR(ctx);
5570 goto err_group_fd;
5571 }
5572
5573 /*
5574 * Look up the group leader (we will attach this event to it):
5575 */
5576 if (group_leader) {
5577 err = -EINVAL;
5578
5579 /*
5580 * Do not allow a recursive hierarchy (this new sibling
5581 * becoming part of another group-sibling):
5582 */
5583 if (group_leader->group_leader != group_leader)
5584 goto err_context;
5585 /*
5586 * Do not allow to attach to a group in a different
5587 * task or CPU context:
5588 */
5589 if (group_leader->ctx != ctx)
5590 goto err_context;
5591 /*
5592 * Only a group leader can be exclusive or pinned
5593 */
5594 if (attr.exclusive || attr.pinned)
5595 goto err_context;
5596 }
5597
5598 if (output_event) {
5599 err = perf_event_set_output(event, output_event);
5600 if (err)
5601 goto err_context;
5602 }
5603
5604 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5605 if (IS_ERR(event_file)) {
5606 err = PTR_ERR(event_file);
5607 goto err_context;
5608 }
5609
5610 event->filp = event_file;
5611 WARN_ON_ONCE(ctx->parent_ctx);
5612 mutex_lock(&ctx->mutex);
5613 perf_install_in_context(ctx, event, cpu);
5614 ++ctx->generation;
5615 mutex_unlock(&ctx->mutex);
5616
5617 event->owner = current;
5618 get_task_struct(current);
5619 mutex_lock(&current->perf_event_mutex);
5620 list_add_tail(&event->owner_entry, &current->perf_event_list);
5621 mutex_unlock(&current->perf_event_mutex);
5622
5623 /*
5624 * Drop the reference on the group_event after placing the
5625 * new event on the sibling_list. This ensures destruction
5626 * of the group leader will find the pointer to itself in
5627 * perf_group_detach().
5628 */
5629 fput_light(group_file, fput_needed);
5630 fd_install(event_fd, event_file);
5631 return event_fd;
5632
5633 err_context:
5634 put_ctx(ctx);
5635 err_group_fd:
5636 fput_light(group_file, fput_needed);
5637 err_alloc:
5638 free_event(event);
5639 err_fd:
5640 put_unused_fd(event_fd);
5641 return err;
5642 }
5643
5644 /**
5645 * perf_event_create_kernel_counter
5646 *
5647 * @attr: attributes of the counter to create
5648 * @cpu: cpu in which the counter is bound
5649 * @pid: task to profile
5650 */
5651 struct perf_event *
5652 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5653 pid_t pid,
5654 perf_overflow_handler_t overflow_handler)
5655 {
5656 struct perf_event_context *ctx;
5657 struct perf_event *event;
5658 int err;
5659
5660 /*
5661 * Get the target context (task or percpu):
5662 */
5663
5664 event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
5665 if (IS_ERR(event)) {
5666 err = PTR_ERR(event);
5667 goto err;
5668 }
5669
5670 ctx = find_get_context(event->pmu, pid, cpu);
5671 if (IS_ERR(ctx)) {
5672 err = PTR_ERR(ctx);
5673 goto err_free;
5674 }
5675
5676 event->filp = NULL;
5677 WARN_ON_ONCE(ctx->parent_ctx);
5678 mutex_lock(&ctx->mutex);
5679 perf_install_in_context(ctx, event, cpu);
5680 ++ctx->generation;
5681 mutex_unlock(&ctx->mutex);
5682
5683 event->owner = current;
5684 get_task_struct(current);
5685 mutex_lock(&current->perf_event_mutex);
5686 list_add_tail(&event->owner_entry, &current->perf_event_list);
5687 mutex_unlock(&current->perf_event_mutex);
5688
5689 return event;
5690
5691 err_free:
5692 free_event(event);
5693 err:
5694 return ERR_PTR(err);
5695 }
5696 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5697
5698 static void sync_child_event(struct perf_event *child_event,
5699 struct task_struct *child)
5700 {
5701 struct perf_event *parent_event = child_event->parent;
5702 u64 child_val;
5703
5704 if (child_event->attr.inherit_stat)
5705 perf_event_read_event(child_event, child);
5706
5707 child_val = perf_event_count(child_event);
5708
5709 /*
5710 * Add back the child's count to the parent's count:
5711 */
5712 atomic64_add(child_val, &parent_event->child_count);
5713 atomic64_add(child_event->total_time_enabled,
5714 &parent_event->child_total_time_enabled);
5715 atomic64_add(child_event->total_time_running,
5716 &parent_event->child_total_time_running);
5717
5718 /*
5719 * Remove this event from the parent's list
5720 */
5721 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5722 mutex_lock(&parent_event->child_mutex);
5723 list_del_init(&child_event->child_list);
5724 mutex_unlock(&parent_event->child_mutex);
5725
5726 /*
5727 * Release the parent event, if this was the last
5728 * reference to it.
5729 */
5730 fput(parent_event->filp);
5731 }
5732
5733 static void
5734 __perf_event_exit_task(struct perf_event *child_event,
5735 struct perf_event_context *child_ctx,
5736 struct task_struct *child)
5737 {
5738 struct perf_event *parent_event;
5739
5740 perf_event_remove_from_context(child_event);
5741
5742 parent_event = child_event->parent;
5743 /*
5744 * It can happen that parent exits first, and has events
5745 * that are still around due to the child reference. These
5746 * events need to be zapped - but otherwise linger.
5747 */
5748 if (parent_event) {
5749 sync_child_event(child_event, child);
5750 free_event(child_event);
5751 }
5752 }
5753
5754 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5755 {
5756 struct perf_event *child_event, *tmp;
5757 struct perf_event_context *child_ctx;
5758 unsigned long flags;
5759
5760 if (likely(!child->perf_event_ctxp[ctxn])) {
5761 perf_event_task(child, NULL, 0);
5762 return;
5763 }
5764
5765 local_irq_save(flags);
5766 /*
5767 * We can't reschedule here because interrupts are disabled,
5768 * and either child is current or it is a task that can't be
5769 * scheduled, so we are now safe from rescheduling changing
5770 * our context.
5771 */
5772 child_ctx = child->perf_event_ctxp[ctxn];
5773 __perf_event_task_sched_out(child_ctx);
5774
5775 /*
5776 * Take the context lock here so that if find_get_context is
5777 * reading child->perf_event_ctxp, we wait until it has
5778 * incremented the context's refcount before we do put_ctx below.
5779 */
5780 raw_spin_lock(&child_ctx->lock);
5781 child->perf_event_ctxp[ctxn] = NULL;
5782 /*
5783 * If this context is a clone; unclone it so it can't get
5784 * swapped to another process while we're removing all
5785 * the events from it.
5786 */
5787 unclone_ctx(child_ctx);
5788 update_context_time(child_ctx);
5789 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5790
5791 /*
5792 * Report the task dead after unscheduling the events so that we
5793 * won't get any samples after PERF_RECORD_EXIT. We can however still
5794 * get a few PERF_RECORD_READ events.
5795 */
5796 perf_event_task(child, child_ctx, 0);
5797
5798 /*
5799 * We can recurse on the same lock type through:
5800 *
5801 * __perf_event_exit_task()
5802 * sync_child_event()
5803 * fput(parent_event->filp)
5804 * perf_release()
5805 * mutex_lock(&ctx->mutex)
5806 *
5807 * But since its the parent context it won't be the same instance.
5808 */
5809 mutex_lock(&child_ctx->mutex);
5810
5811 again:
5812 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5813 group_entry)
5814 __perf_event_exit_task(child_event, child_ctx, child);
5815
5816 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5817 group_entry)
5818 __perf_event_exit_task(child_event, child_ctx, child);
5819
5820 /*
5821 * If the last event was a group event, it will have appended all
5822 * its siblings to the list, but we obtained 'tmp' before that which
5823 * will still point to the list head terminating the iteration.
5824 */
5825 if (!list_empty(&child_ctx->pinned_groups) ||
5826 !list_empty(&child_ctx->flexible_groups))
5827 goto again;
5828
5829 mutex_unlock(&child_ctx->mutex);
5830
5831 put_ctx(child_ctx);
5832 }
5833
5834 /*
5835 * When a child task exits, feed back event values to parent events.
5836 */
5837 void perf_event_exit_task(struct task_struct *child)
5838 {
5839 int ctxn;
5840
5841 for_each_task_context_nr(ctxn)
5842 perf_event_exit_task_context(child, ctxn);
5843 }
5844
5845 static void perf_free_event(struct perf_event *event,
5846 struct perf_event_context *ctx)
5847 {
5848 struct perf_event *parent = event->parent;
5849
5850 if (WARN_ON_ONCE(!parent))
5851 return;
5852
5853 mutex_lock(&parent->child_mutex);
5854 list_del_init(&event->child_list);
5855 mutex_unlock(&parent->child_mutex);
5856
5857 fput(parent->filp);
5858
5859 perf_group_detach(event);
5860 list_del_event(event, ctx);
5861 free_event(event);
5862 }
5863
5864 /*
5865 * free an unexposed, unused context as created by inheritance by
5866 * perf_event_init_task below, used by fork() in case of fail.
5867 */
5868 void perf_event_free_task(struct task_struct *task)
5869 {
5870 struct perf_event_context *ctx;
5871 struct perf_event *event, *tmp;
5872 int ctxn;
5873
5874 for_each_task_context_nr(ctxn) {
5875 ctx = task->perf_event_ctxp[ctxn];
5876 if (!ctx)
5877 continue;
5878
5879 mutex_lock(&ctx->mutex);
5880 again:
5881 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5882 group_entry)
5883 perf_free_event(event, ctx);
5884
5885 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5886 group_entry)
5887 perf_free_event(event, ctx);
5888
5889 if (!list_empty(&ctx->pinned_groups) ||
5890 !list_empty(&ctx->flexible_groups))
5891 goto again;
5892
5893 mutex_unlock(&ctx->mutex);
5894
5895 put_ctx(ctx);
5896 }
5897 }
5898
5899 void perf_event_delayed_put(struct task_struct *task)
5900 {
5901 int ctxn;
5902
5903 for_each_task_context_nr(ctxn)
5904 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5905 }
5906
5907 /*
5908 * inherit a event from parent task to child task:
5909 */
5910 static struct perf_event *
5911 inherit_event(struct perf_event *parent_event,
5912 struct task_struct *parent,
5913 struct perf_event_context *parent_ctx,
5914 struct task_struct *child,
5915 struct perf_event *group_leader,
5916 struct perf_event_context *child_ctx)
5917 {
5918 struct perf_event *child_event;
5919 unsigned long flags;
5920
5921 /*
5922 * Instead of creating recursive hierarchies of events,
5923 * we link inherited events back to the original parent,
5924 * which has a filp for sure, which we use as the reference
5925 * count:
5926 */
5927 if (parent_event->parent)
5928 parent_event = parent_event->parent;
5929
5930 child_event = perf_event_alloc(&parent_event->attr,
5931 parent_event->cpu,
5932 group_leader, parent_event,
5933 NULL);
5934 if (IS_ERR(child_event))
5935 return child_event;
5936 get_ctx(child_ctx);
5937
5938 /*
5939 * Make the child state follow the state of the parent event,
5940 * not its attr.disabled bit. We hold the parent's mutex,
5941 * so we won't race with perf_event_{en, dis}able_family.
5942 */
5943 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5944 child_event->state = PERF_EVENT_STATE_INACTIVE;
5945 else
5946 child_event->state = PERF_EVENT_STATE_OFF;
5947
5948 if (parent_event->attr.freq) {
5949 u64 sample_period = parent_event->hw.sample_period;
5950 struct hw_perf_event *hwc = &child_event->hw;
5951
5952 hwc->sample_period = sample_period;
5953 hwc->last_period = sample_period;
5954
5955 local64_set(&hwc->period_left, sample_period);
5956 }
5957
5958 child_event->ctx = child_ctx;
5959 child_event->overflow_handler = parent_event->overflow_handler;
5960
5961 /*
5962 * Link it up in the child's context:
5963 */
5964 raw_spin_lock_irqsave(&child_ctx->lock, flags);
5965 add_event_to_ctx(child_event, child_ctx);
5966 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5967
5968 /*
5969 * Get a reference to the parent filp - we will fput it
5970 * when the child event exits. This is safe to do because
5971 * we are in the parent and we know that the filp still
5972 * exists and has a nonzero count:
5973 */
5974 atomic_long_inc(&parent_event->filp->f_count);
5975
5976 /*
5977 * Link this into the parent event's child list
5978 */
5979 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5980 mutex_lock(&parent_event->child_mutex);
5981 list_add_tail(&child_event->child_list, &parent_event->child_list);
5982 mutex_unlock(&parent_event->child_mutex);
5983
5984 return child_event;
5985 }
5986
5987 static int inherit_group(struct perf_event *parent_event,
5988 struct task_struct *parent,
5989 struct perf_event_context *parent_ctx,
5990 struct task_struct *child,
5991 struct perf_event_context *child_ctx)
5992 {
5993 struct perf_event *leader;
5994 struct perf_event *sub;
5995 struct perf_event *child_ctr;
5996
5997 leader = inherit_event(parent_event, parent, parent_ctx,
5998 child, NULL, child_ctx);
5999 if (IS_ERR(leader))
6000 return PTR_ERR(leader);
6001 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6002 child_ctr = inherit_event(sub, parent, parent_ctx,
6003 child, leader, child_ctx);
6004 if (IS_ERR(child_ctr))
6005 return PTR_ERR(child_ctr);
6006 }
6007 return 0;
6008 }
6009
6010 static int
6011 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6012 struct perf_event_context *parent_ctx,
6013 struct task_struct *child, int ctxn,
6014 int *inherited_all)
6015 {
6016 int ret;
6017 struct perf_event_context *child_ctx;
6018
6019 if (!event->attr.inherit) {
6020 *inherited_all = 0;
6021 return 0;
6022 }
6023
6024 child_ctx = child->perf_event_ctxp[ctxn];
6025 if (!child_ctx) {
6026 /*
6027 * This is executed from the parent task context, so
6028 * inherit events that have been marked for cloning.
6029 * First allocate and initialize a context for the
6030 * child.
6031 */
6032
6033 child_ctx = alloc_perf_context(event->pmu, child);
6034 if (!child_ctx)
6035 return -ENOMEM;
6036
6037 child->perf_event_ctxp[ctxn] = child_ctx;
6038 }
6039
6040 ret = inherit_group(event, parent, parent_ctx,
6041 child, child_ctx);
6042
6043 if (ret)
6044 *inherited_all = 0;
6045
6046 return ret;
6047 }
6048
6049 /*
6050 * Initialize the perf_event context in task_struct
6051 */
6052 int perf_event_init_context(struct task_struct *child, int ctxn)
6053 {
6054 struct perf_event_context *child_ctx, *parent_ctx;
6055 struct perf_event_context *cloned_ctx;
6056 struct perf_event *event;
6057 struct task_struct *parent = current;
6058 int inherited_all = 1;
6059 int ret = 0;
6060
6061 child->perf_event_ctxp[ctxn] = NULL;
6062
6063 mutex_init(&child->perf_event_mutex);
6064 INIT_LIST_HEAD(&child->perf_event_list);
6065
6066 if (likely(!parent->perf_event_ctxp[ctxn]))
6067 return 0;
6068
6069 /*
6070 * If the parent's context is a clone, pin it so it won't get
6071 * swapped under us.
6072 */
6073 parent_ctx = perf_pin_task_context(parent, ctxn);
6074
6075 /*
6076 * No need to check if parent_ctx != NULL here; since we saw
6077 * it non-NULL earlier, the only reason for it to become NULL
6078 * is if we exit, and since we're currently in the middle of
6079 * a fork we can't be exiting at the same time.
6080 */
6081
6082 /*
6083 * Lock the parent list. No need to lock the child - not PID
6084 * hashed yet and not running, so nobody can access it.
6085 */
6086 mutex_lock(&parent_ctx->mutex);
6087
6088 /*
6089 * We dont have to disable NMIs - we are only looking at
6090 * the list, not manipulating it:
6091 */
6092 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6093 ret = inherit_task_group(event, parent, parent_ctx,
6094 child, ctxn, &inherited_all);
6095 if (ret)
6096 break;
6097 }
6098
6099 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6100 ret = inherit_task_group(event, parent, parent_ctx,
6101 child, ctxn, &inherited_all);
6102 if (ret)
6103 break;
6104 }
6105
6106 child_ctx = child->perf_event_ctxp[ctxn];
6107
6108 if (child_ctx && inherited_all) {
6109 /*
6110 * Mark the child context as a clone of the parent
6111 * context, or of whatever the parent is a clone of.
6112 * Note that if the parent is a clone, it could get
6113 * uncloned at any point, but that doesn't matter
6114 * because the list of events and the generation
6115 * count can't have changed since we took the mutex.
6116 */
6117 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6118 if (cloned_ctx) {
6119 child_ctx->parent_ctx = cloned_ctx;
6120 child_ctx->parent_gen = parent_ctx->parent_gen;
6121 } else {
6122 child_ctx->parent_ctx = parent_ctx;
6123 child_ctx->parent_gen = parent_ctx->generation;
6124 }
6125 get_ctx(child_ctx->parent_ctx);
6126 }
6127
6128 mutex_unlock(&parent_ctx->mutex);
6129
6130 perf_unpin_context(parent_ctx);
6131
6132 return ret;
6133 }
6134
6135 /*
6136 * Initialize the perf_event context in task_struct
6137 */
6138 int perf_event_init_task(struct task_struct *child)
6139 {
6140 int ctxn, ret;
6141
6142 for_each_task_context_nr(ctxn) {
6143 ret = perf_event_init_context(child, ctxn);
6144 if (ret)
6145 return ret;
6146 }
6147
6148 return 0;
6149 }
6150
6151 static void __init perf_event_init_all_cpus(void)
6152 {
6153 struct swevent_htable *swhash;
6154 int cpu;
6155
6156 for_each_possible_cpu(cpu) {
6157 swhash = &per_cpu(swevent_htable, cpu);
6158 mutex_init(&swhash->hlist_mutex);
6159 }
6160 }
6161
6162 static void __cpuinit perf_event_init_cpu(int cpu)
6163 {
6164 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6165
6166 mutex_lock(&swhash->hlist_mutex);
6167 if (swhash->hlist_refcount > 0) {
6168 struct swevent_hlist *hlist;
6169
6170 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6171 WARN_ON(!hlist);
6172 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6173 }
6174 mutex_unlock(&swhash->hlist_mutex);
6175 }
6176
6177 #ifdef CONFIG_HOTPLUG_CPU
6178 static void __perf_event_exit_context(void *__info)
6179 {
6180 struct perf_event_context *ctx = __info;
6181 struct perf_event *event, *tmp;
6182
6183 perf_pmu_rotate_stop(ctx->pmu);
6184
6185 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6186 __perf_event_remove_from_context(event);
6187 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6188 __perf_event_remove_from_context(event);
6189 }
6190
6191 static void perf_event_exit_cpu_context(int cpu)
6192 {
6193 struct perf_event_context *ctx;
6194 struct pmu *pmu;
6195 int idx;
6196
6197 idx = srcu_read_lock(&pmus_srcu);
6198 list_for_each_entry_rcu(pmu, &pmus, entry) {
6199 ctx = &this_cpu_ptr(pmu->pmu_cpu_context)->ctx;
6200
6201 mutex_lock(&ctx->mutex);
6202 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6203 mutex_unlock(&ctx->mutex);
6204 }
6205 srcu_read_unlock(&pmus_srcu, idx);
6206
6207 }
6208
6209 static void perf_event_exit_cpu(int cpu)
6210 {
6211 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6212
6213 mutex_lock(&swhash->hlist_mutex);
6214 swevent_hlist_release(swhash);
6215 mutex_unlock(&swhash->hlist_mutex);
6216
6217 perf_event_exit_cpu_context(cpu);
6218 }
6219 #else
6220 static inline void perf_event_exit_cpu(int cpu) { }
6221 #endif
6222
6223 static int __cpuinit
6224 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6225 {
6226 unsigned int cpu = (long)hcpu;
6227
6228 switch (action & ~CPU_TASKS_FROZEN) {
6229
6230 case CPU_UP_PREPARE:
6231 case CPU_DOWN_FAILED:
6232 perf_event_init_cpu(cpu);
6233 break;
6234
6235 case CPU_UP_CANCELED:
6236 case CPU_DOWN_PREPARE:
6237 perf_event_exit_cpu(cpu);
6238 break;
6239
6240 default:
6241 break;
6242 }
6243
6244 return NOTIFY_OK;
6245 }
6246
6247 void __init perf_event_init(void)
6248 {
6249 perf_event_init_all_cpus();
6250 init_srcu_struct(&pmus_srcu);
6251 perf_pmu_register(&perf_swevent);
6252 perf_pmu_register(&perf_cpu_clock);
6253 perf_pmu_register(&perf_task_clock);
6254 perf_tp_register();
6255 perf_cpu_notifier(perf_cpu_notify);
6256 }
This page took 0.210206 seconds and 6 git commands to generate.