[PATCH] lockdep: debug_locks check after check_chain_key
[deliverable/linux.git] / kernel / posix-timers.c
1 /*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/slab.h>
37 #include <linux/time.h>
38 #include <linux/mutex.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/semaphore.h>
42 #include <linux/list.h>
43 #include <linux/init.h>
44 #include <linux/compiler.h>
45 #include <linux/idr.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/module.h>
51
52 /*
53 * Management arrays for POSIX timers. Timers are kept in slab memory
54 * Timer ids are allocated by an external routine that keeps track of the
55 * id and the timer. The external interface is:
56 *
57 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
58 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
59 * related it to <ptr>
60 * void idr_remove(struct idr *idp, int id); to release <id>
61 * void idr_init(struct idr *idp); to initialize <idp>
62 * which we supply.
63 * The idr_get_new *may* call slab for more memory so it must not be
64 * called under a spin lock. Likewise idr_remore may release memory
65 * (but it may be ok to do this under a lock...).
66 * idr_find is just a memory look up and is quite fast. A -1 return
67 * indicates that the requested id does not exist.
68 */
69
70 /*
71 * Lets keep our timers in a slab cache :-)
72 */
73 static struct kmem_cache *posix_timers_cache;
74 static struct idr posix_timers_id;
75 static DEFINE_SPINLOCK(idr_lock);
76
77 /*
78 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
79 * SIGEV values. Here we put out an error if this assumption fails.
80 */
81 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
82 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
83 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
84 #endif
85
86
87 /*
88 * The timer ID is turned into a timer address by idr_find().
89 * Verifying a valid ID consists of:
90 *
91 * a) checking that idr_find() returns other than -1.
92 * b) checking that the timer id matches the one in the timer itself.
93 * c) that the timer owner is in the callers thread group.
94 */
95
96 /*
97 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
98 * to implement others. This structure defines the various
99 * clocks and allows the possibility of adding others. We
100 * provide an interface to add clocks to the table and expect
101 * the "arch" code to add at least one clock that is high
102 * resolution. Here we define the standard CLOCK_REALTIME as a
103 * 1/HZ resolution clock.
104 *
105 * RESOLUTION: Clock resolution is used to round up timer and interval
106 * times, NOT to report clock times, which are reported with as
107 * much resolution as the system can muster. In some cases this
108 * resolution may depend on the underlying clock hardware and
109 * may not be quantifiable until run time, and only then is the
110 * necessary code is written. The standard says we should say
111 * something about this issue in the documentation...
112 *
113 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
114 * various clock functions. For clocks that use the standard
115 * system timer code these entries should be NULL. This will
116 * allow dispatch without the overhead of indirect function
117 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
118 * must supply functions here, even if the function just returns
119 * ENOSYS. The standard POSIX timer management code assumes the
120 * following: 1.) The k_itimer struct (sched.h) is used for the
121 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
122 * fields are not modified by timer code.
123 *
124 * At this time all functions EXCEPT clock_nanosleep can be
125 * redirected by the CLOCKS structure. Clock_nanosleep is in
126 * there, but the code ignores it.
127 *
128 * Permissions: It is assumed that the clock_settime() function defined
129 * for each clock will take care of permission checks. Some
130 * clocks may be set able by any user (i.e. local process
131 * clocks) others not. Currently the only set able clock we
132 * have is CLOCK_REALTIME and its high res counter part, both of
133 * which we beg off on and pass to do_sys_settimeofday().
134 */
135
136 static struct k_clock posix_clocks[MAX_CLOCKS];
137
138 /*
139 * These ones are defined below.
140 */
141 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
142 struct timespec __user *rmtp);
143 static void common_timer_get(struct k_itimer *, struct itimerspec *);
144 static int common_timer_set(struct k_itimer *, int,
145 struct itimerspec *, struct itimerspec *);
146 static int common_timer_del(struct k_itimer *timer);
147
148 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
149
150 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
151
152 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
153 {
154 spin_unlock_irqrestore(&timr->it_lock, flags);
155 }
156
157 /*
158 * Call the k_clock hook function if non-null, or the default function.
159 */
160 #define CLOCK_DISPATCH(clock, call, arglist) \
161 ((clock) < 0 ? posix_cpu_##call arglist : \
162 (posix_clocks[clock].call != NULL \
163 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
164
165 /*
166 * Default clock hook functions when the struct k_clock passed
167 * to register_posix_clock leaves a function pointer null.
168 *
169 * The function common_CALL is the default implementation for
170 * the function pointer CALL in struct k_clock.
171 */
172
173 static inline int common_clock_getres(const clockid_t which_clock,
174 struct timespec *tp)
175 {
176 tp->tv_sec = 0;
177 tp->tv_nsec = posix_clocks[which_clock].res;
178 return 0;
179 }
180
181 /*
182 * Get real time for posix timers
183 */
184 static int common_clock_get(clockid_t which_clock, struct timespec *tp)
185 {
186 ktime_get_real_ts(tp);
187 return 0;
188 }
189
190 static inline int common_clock_set(const clockid_t which_clock,
191 struct timespec *tp)
192 {
193 return do_sys_settimeofday(tp, NULL);
194 }
195
196 static int common_timer_create(struct k_itimer *new_timer)
197 {
198 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
199 return 0;
200 }
201
202 /*
203 * Return nonzero if we know a priori this clockid_t value is bogus.
204 */
205 static inline int invalid_clockid(const clockid_t which_clock)
206 {
207 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
208 return 0;
209 if ((unsigned) which_clock >= MAX_CLOCKS)
210 return 1;
211 if (posix_clocks[which_clock].clock_getres != NULL)
212 return 0;
213 if (posix_clocks[which_clock].res != 0)
214 return 0;
215 return 1;
216 }
217
218 /*
219 * Get monotonic time for posix timers
220 */
221 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
222 {
223 ktime_get_ts(tp);
224 return 0;
225 }
226
227 /*
228 * Initialize everything, well, just everything in Posix clocks/timers ;)
229 */
230 static __init int init_posix_timers(void)
231 {
232 struct k_clock clock_realtime = {
233 .clock_getres = hrtimer_get_res,
234 };
235 struct k_clock clock_monotonic = {
236 .clock_getres = hrtimer_get_res,
237 .clock_get = posix_ktime_get_ts,
238 .clock_set = do_posix_clock_nosettime,
239 };
240
241 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
242 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
243
244 posix_timers_cache = kmem_cache_create("posix_timers_cache",
245 sizeof (struct k_itimer), 0, 0, NULL, NULL);
246 idr_init(&posix_timers_id);
247 return 0;
248 }
249
250 __initcall(init_posix_timers);
251
252 static void schedule_next_timer(struct k_itimer *timr)
253 {
254 struct hrtimer *timer = &timr->it.real.timer;
255
256 if (timr->it.real.interval.tv64 == 0)
257 return;
258
259 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
260 timr->it.real.interval);
261
262 timr->it_overrun_last = timr->it_overrun;
263 timr->it_overrun = -1;
264 ++timr->it_requeue_pending;
265 hrtimer_restart(timer);
266 }
267
268 /*
269 * This function is exported for use by the signal deliver code. It is
270 * called just prior to the info block being released and passes that
271 * block to us. It's function is to update the overrun entry AND to
272 * restart the timer. It should only be called if the timer is to be
273 * restarted (i.e. we have flagged this in the sys_private entry of the
274 * info block).
275 *
276 * To protect aginst the timer going away while the interrupt is queued,
277 * we require that the it_requeue_pending flag be set.
278 */
279 void do_schedule_next_timer(struct siginfo *info)
280 {
281 struct k_itimer *timr;
282 unsigned long flags;
283
284 timr = lock_timer(info->si_tid, &flags);
285
286 if (timr && timr->it_requeue_pending == info->si_sys_private) {
287 if (timr->it_clock < 0)
288 posix_cpu_timer_schedule(timr);
289 else
290 schedule_next_timer(timr);
291
292 info->si_overrun = timr->it_overrun_last;
293 }
294
295 if (timr)
296 unlock_timer(timr, flags);
297 }
298
299 int posix_timer_event(struct k_itimer *timr,int si_private)
300 {
301 memset(&timr->sigq->info, 0, sizeof(siginfo_t));
302 timr->sigq->info.si_sys_private = si_private;
303 /* Send signal to the process that owns this timer.*/
304
305 timr->sigq->info.si_signo = timr->it_sigev_signo;
306 timr->sigq->info.si_errno = 0;
307 timr->sigq->info.si_code = SI_TIMER;
308 timr->sigq->info.si_tid = timr->it_id;
309 timr->sigq->info.si_value = timr->it_sigev_value;
310
311 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
312 struct task_struct *leader;
313 int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
314 timr->it_process);
315
316 if (likely(ret >= 0))
317 return ret;
318
319 timr->it_sigev_notify = SIGEV_SIGNAL;
320 leader = timr->it_process->group_leader;
321 put_task_struct(timr->it_process);
322 timr->it_process = leader;
323 }
324
325 return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
326 timr->it_process);
327 }
328 EXPORT_SYMBOL_GPL(posix_timer_event);
329
330 /*
331 * This function gets called when a POSIX.1b interval timer expires. It
332 * is used as a callback from the kernel internal timer. The
333 * run_timer_list code ALWAYS calls with interrupts on.
334
335 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
336 */
337 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
338 {
339 struct k_itimer *timr;
340 unsigned long flags;
341 int si_private = 0;
342 enum hrtimer_restart ret = HRTIMER_NORESTART;
343
344 timr = container_of(timer, struct k_itimer, it.real.timer);
345 spin_lock_irqsave(&timr->it_lock, flags);
346
347 if (timr->it.real.interval.tv64 != 0)
348 si_private = ++timr->it_requeue_pending;
349
350 if (posix_timer_event(timr, si_private)) {
351 /*
352 * signal was not sent because of sig_ignor
353 * we will not get a call back to restart it AND
354 * it should be restarted.
355 */
356 if (timr->it.real.interval.tv64 != 0) {
357 timr->it_overrun +=
358 hrtimer_forward(timer,
359 hrtimer_cb_get_time(timer),
360 timr->it.real.interval);
361 ret = HRTIMER_RESTART;
362 ++timr->it_requeue_pending;
363 }
364 }
365
366 unlock_timer(timr, flags);
367 return ret;
368 }
369
370 static struct task_struct * good_sigevent(sigevent_t * event)
371 {
372 struct task_struct *rtn = current->group_leader;
373
374 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
375 (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
376 rtn->tgid != current->tgid ||
377 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
378 return NULL;
379
380 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
381 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
382 return NULL;
383
384 return rtn;
385 }
386
387 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
388 {
389 if ((unsigned) clock_id >= MAX_CLOCKS) {
390 printk("POSIX clock register failed for clock_id %d\n",
391 clock_id);
392 return;
393 }
394
395 posix_clocks[clock_id] = *new_clock;
396 }
397 EXPORT_SYMBOL_GPL(register_posix_clock);
398
399 static struct k_itimer * alloc_posix_timer(void)
400 {
401 struct k_itimer *tmr;
402 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
403 if (!tmr)
404 return tmr;
405 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
406 kmem_cache_free(posix_timers_cache, tmr);
407 tmr = NULL;
408 }
409 return tmr;
410 }
411
412 #define IT_ID_SET 1
413 #define IT_ID_NOT_SET 0
414 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
415 {
416 if (it_id_set) {
417 unsigned long flags;
418 spin_lock_irqsave(&idr_lock, flags);
419 idr_remove(&posix_timers_id, tmr->it_id);
420 spin_unlock_irqrestore(&idr_lock, flags);
421 }
422 sigqueue_free(tmr->sigq);
423 if (unlikely(tmr->it_process) &&
424 tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
425 put_task_struct(tmr->it_process);
426 kmem_cache_free(posix_timers_cache, tmr);
427 }
428
429 /* Create a POSIX.1b interval timer. */
430
431 asmlinkage long
432 sys_timer_create(const clockid_t which_clock,
433 struct sigevent __user *timer_event_spec,
434 timer_t __user * created_timer_id)
435 {
436 int error = 0;
437 struct k_itimer *new_timer = NULL;
438 int new_timer_id;
439 struct task_struct *process = NULL;
440 unsigned long flags;
441 sigevent_t event;
442 int it_id_set = IT_ID_NOT_SET;
443
444 if (invalid_clockid(which_clock))
445 return -EINVAL;
446
447 new_timer = alloc_posix_timer();
448 if (unlikely(!new_timer))
449 return -EAGAIN;
450
451 spin_lock_init(&new_timer->it_lock);
452 retry:
453 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
454 error = -EAGAIN;
455 goto out;
456 }
457 spin_lock_irq(&idr_lock);
458 error = idr_get_new(&posix_timers_id, (void *) new_timer,
459 &new_timer_id);
460 spin_unlock_irq(&idr_lock);
461 if (error == -EAGAIN)
462 goto retry;
463 else if (error) {
464 /*
465 * Wierd looking, but we return EAGAIN if the IDR is
466 * full (proper POSIX return value for this)
467 */
468 error = -EAGAIN;
469 goto out;
470 }
471
472 it_id_set = IT_ID_SET;
473 new_timer->it_id = (timer_t) new_timer_id;
474 new_timer->it_clock = which_clock;
475 new_timer->it_overrun = -1;
476 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
477 if (error)
478 goto out;
479
480 /*
481 * return the timer_id now. The next step is hard to
482 * back out if there is an error.
483 */
484 if (copy_to_user(created_timer_id,
485 &new_timer_id, sizeof (new_timer_id))) {
486 error = -EFAULT;
487 goto out;
488 }
489 if (timer_event_spec) {
490 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
491 error = -EFAULT;
492 goto out;
493 }
494 new_timer->it_sigev_notify = event.sigev_notify;
495 new_timer->it_sigev_signo = event.sigev_signo;
496 new_timer->it_sigev_value = event.sigev_value;
497
498 read_lock(&tasklist_lock);
499 if ((process = good_sigevent(&event))) {
500 /*
501 * We may be setting up this process for another
502 * thread. It may be exiting. To catch this
503 * case the we check the PF_EXITING flag. If
504 * the flag is not set, the siglock will catch
505 * him before it is too late (in exit_itimers).
506 *
507 * The exec case is a bit more invloved but easy
508 * to code. If the process is in our thread
509 * group (and it must be or we would not allow
510 * it here) and is doing an exec, it will cause
511 * us to be killed. In this case it will wait
512 * for us to die which means we can finish this
513 * linkage with our last gasp. I.e. no code :)
514 */
515 spin_lock_irqsave(&process->sighand->siglock, flags);
516 if (!(process->flags & PF_EXITING)) {
517 new_timer->it_process = process;
518 list_add(&new_timer->list,
519 &process->signal->posix_timers);
520 spin_unlock_irqrestore(&process->sighand->siglock, flags);
521 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
522 get_task_struct(process);
523 } else {
524 spin_unlock_irqrestore(&process->sighand->siglock, flags);
525 process = NULL;
526 }
527 }
528 read_unlock(&tasklist_lock);
529 if (!process) {
530 error = -EINVAL;
531 goto out;
532 }
533 } else {
534 new_timer->it_sigev_notify = SIGEV_SIGNAL;
535 new_timer->it_sigev_signo = SIGALRM;
536 new_timer->it_sigev_value.sival_int = new_timer->it_id;
537 process = current->group_leader;
538 spin_lock_irqsave(&process->sighand->siglock, flags);
539 new_timer->it_process = process;
540 list_add(&new_timer->list, &process->signal->posix_timers);
541 spin_unlock_irqrestore(&process->sighand->siglock, flags);
542 }
543
544 /*
545 * In the case of the timer belonging to another task, after
546 * the task is unlocked, the timer is owned by the other task
547 * and may cease to exist at any time. Don't use or modify
548 * new_timer after the unlock call.
549 */
550
551 out:
552 if (error)
553 release_posix_timer(new_timer, it_id_set);
554
555 return error;
556 }
557
558 /*
559 * Locking issues: We need to protect the result of the id look up until
560 * we get the timer locked down so it is not deleted under us. The
561 * removal is done under the idr spinlock so we use that here to bridge
562 * the find to the timer lock. To avoid a dead lock, the timer id MUST
563 * be release with out holding the timer lock.
564 */
565 static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
566 {
567 struct k_itimer *timr;
568 /*
569 * Watch out here. We do a irqsave on the idr_lock and pass the
570 * flags part over to the timer lock. Must not let interrupts in
571 * while we are moving the lock.
572 */
573
574 spin_lock_irqsave(&idr_lock, *flags);
575 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
576 if (timr) {
577 spin_lock(&timr->it_lock);
578 spin_unlock(&idr_lock);
579
580 if ((timr->it_id != timer_id) || !(timr->it_process) ||
581 timr->it_process->tgid != current->tgid) {
582 unlock_timer(timr, *flags);
583 timr = NULL;
584 }
585 } else
586 spin_unlock_irqrestore(&idr_lock, *flags);
587
588 return timr;
589 }
590
591 /*
592 * Get the time remaining on a POSIX.1b interval timer. This function
593 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
594 * mess with irq.
595 *
596 * We have a couple of messes to clean up here. First there is the case
597 * of a timer that has a requeue pending. These timers should appear to
598 * be in the timer list with an expiry as if we were to requeue them
599 * now.
600 *
601 * The second issue is the SIGEV_NONE timer which may be active but is
602 * not really ever put in the timer list (to save system resources).
603 * This timer may be expired, and if so, we will do it here. Otherwise
604 * it is the same as a requeue pending timer WRT to what we should
605 * report.
606 */
607 static void
608 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
609 {
610 ktime_t now, remaining, iv;
611 struct hrtimer *timer = &timr->it.real.timer;
612
613 memset(cur_setting, 0, sizeof(struct itimerspec));
614
615 iv = timr->it.real.interval;
616
617 /* interval timer ? */
618 if (iv.tv64)
619 cur_setting->it_interval = ktime_to_timespec(iv);
620 else if (!hrtimer_active(timer) &&
621 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
622 return;
623
624 now = timer->base->get_time();
625
626 /*
627 * When a requeue is pending or this is a SIGEV_NONE
628 * timer move the expiry time forward by intervals, so
629 * expiry is > now.
630 */
631 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
632 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
633 timr->it_overrun += hrtimer_forward(timer, now, iv);
634
635 remaining = ktime_sub(timer->expires, now);
636 /* Return 0 only, when the timer is expired and not pending */
637 if (remaining.tv64 <= 0) {
638 /*
639 * A single shot SIGEV_NONE timer must return 0, when
640 * it is expired !
641 */
642 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
643 cur_setting->it_value.tv_nsec = 1;
644 } else
645 cur_setting->it_value = ktime_to_timespec(remaining);
646 }
647
648 /* Get the time remaining on a POSIX.1b interval timer. */
649 asmlinkage long
650 sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
651 {
652 struct k_itimer *timr;
653 struct itimerspec cur_setting;
654 unsigned long flags;
655
656 timr = lock_timer(timer_id, &flags);
657 if (!timr)
658 return -EINVAL;
659
660 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
661
662 unlock_timer(timr, flags);
663
664 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
665 return -EFAULT;
666
667 return 0;
668 }
669
670 /*
671 * Get the number of overruns of a POSIX.1b interval timer. This is to
672 * be the overrun of the timer last delivered. At the same time we are
673 * accumulating overruns on the next timer. The overrun is frozen when
674 * the signal is delivered, either at the notify time (if the info block
675 * is not queued) or at the actual delivery time (as we are informed by
676 * the call back to do_schedule_next_timer(). So all we need to do is
677 * to pick up the frozen overrun.
678 */
679 asmlinkage long
680 sys_timer_getoverrun(timer_t timer_id)
681 {
682 struct k_itimer *timr;
683 int overrun;
684 long flags;
685
686 timr = lock_timer(timer_id, &flags);
687 if (!timr)
688 return -EINVAL;
689
690 overrun = timr->it_overrun_last;
691 unlock_timer(timr, flags);
692
693 return overrun;
694 }
695
696 /* Set a POSIX.1b interval timer. */
697 /* timr->it_lock is taken. */
698 static int
699 common_timer_set(struct k_itimer *timr, int flags,
700 struct itimerspec *new_setting, struct itimerspec *old_setting)
701 {
702 struct hrtimer *timer = &timr->it.real.timer;
703 enum hrtimer_mode mode;
704
705 if (old_setting)
706 common_timer_get(timr, old_setting);
707
708 /* disable the timer */
709 timr->it.real.interval.tv64 = 0;
710 /*
711 * careful here. If smp we could be in the "fire" routine which will
712 * be spinning as we hold the lock. But this is ONLY an SMP issue.
713 */
714 if (hrtimer_try_to_cancel(timer) < 0)
715 return TIMER_RETRY;
716
717 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
718 ~REQUEUE_PENDING;
719 timr->it_overrun_last = 0;
720
721 /* switch off the timer when it_value is zero */
722 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
723 return 0;
724
725 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
726 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
727 timr->it.real.timer.function = posix_timer_fn;
728
729 timer->expires = timespec_to_ktime(new_setting->it_value);
730
731 /* Convert interval */
732 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
733
734 /* SIGEV_NONE timers are not queued ! See common_timer_get */
735 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
736 /* Setup correct expiry time for relative timers */
737 if (mode == HRTIMER_MODE_REL)
738 timer->expires = ktime_add(timer->expires,
739 timer->base->get_time());
740 return 0;
741 }
742
743 hrtimer_start(timer, timer->expires, mode);
744 return 0;
745 }
746
747 /* Set a POSIX.1b interval timer */
748 asmlinkage long
749 sys_timer_settime(timer_t timer_id, int flags,
750 const struct itimerspec __user *new_setting,
751 struct itimerspec __user *old_setting)
752 {
753 struct k_itimer *timr;
754 struct itimerspec new_spec, old_spec;
755 int error = 0;
756 long flag;
757 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
758
759 if (!new_setting)
760 return -EINVAL;
761
762 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
763 return -EFAULT;
764
765 if (!timespec_valid(&new_spec.it_interval) ||
766 !timespec_valid(&new_spec.it_value))
767 return -EINVAL;
768 retry:
769 timr = lock_timer(timer_id, &flag);
770 if (!timr)
771 return -EINVAL;
772
773 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
774 (timr, flags, &new_spec, rtn));
775
776 unlock_timer(timr, flag);
777 if (error == TIMER_RETRY) {
778 rtn = NULL; // We already got the old time...
779 goto retry;
780 }
781
782 if (old_setting && !error &&
783 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
784 error = -EFAULT;
785
786 return error;
787 }
788
789 static inline int common_timer_del(struct k_itimer *timer)
790 {
791 timer->it.real.interval.tv64 = 0;
792
793 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
794 return TIMER_RETRY;
795 return 0;
796 }
797
798 static inline int timer_delete_hook(struct k_itimer *timer)
799 {
800 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
801 }
802
803 /* Delete a POSIX.1b interval timer. */
804 asmlinkage long
805 sys_timer_delete(timer_t timer_id)
806 {
807 struct k_itimer *timer;
808 long flags;
809
810 retry_delete:
811 timer = lock_timer(timer_id, &flags);
812 if (!timer)
813 return -EINVAL;
814
815 if (timer_delete_hook(timer) == TIMER_RETRY) {
816 unlock_timer(timer, flags);
817 goto retry_delete;
818 }
819
820 spin_lock(&current->sighand->siglock);
821 list_del(&timer->list);
822 spin_unlock(&current->sighand->siglock);
823 /*
824 * This keeps any tasks waiting on the spin lock from thinking
825 * they got something (see the lock code above).
826 */
827 if (timer->it_process) {
828 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
829 put_task_struct(timer->it_process);
830 timer->it_process = NULL;
831 }
832 unlock_timer(timer, flags);
833 release_posix_timer(timer, IT_ID_SET);
834 return 0;
835 }
836
837 /*
838 * return timer owned by the process, used by exit_itimers
839 */
840 static void itimer_delete(struct k_itimer *timer)
841 {
842 unsigned long flags;
843
844 retry_delete:
845 spin_lock_irqsave(&timer->it_lock, flags);
846
847 if (timer_delete_hook(timer) == TIMER_RETRY) {
848 unlock_timer(timer, flags);
849 goto retry_delete;
850 }
851 list_del(&timer->list);
852 /*
853 * This keeps any tasks waiting on the spin lock from thinking
854 * they got something (see the lock code above).
855 */
856 if (timer->it_process) {
857 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
858 put_task_struct(timer->it_process);
859 timer->it_process = NULL;
860 }
861 unlock_timer(timer, flags);
862 release_posix_timer(timer, IT_ID_SET);
863 }
864
865 /*
866 * This is called by do_exit or de_thread, only when there are no more
867 * references to the shared signal_struct.
868 */
869 void exit_itimers(struct signal_struct *sig)
870 {
871 struct k_itimer *tmr;
872
873 while (!list_empty(&sig->posix_timers)) {
874 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
875 itimer_delete(tmr);
876 }
877 }
878
879 /* Not available / possible... functions */
880 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
881 {
882 return -EINVAL;
883 }
884 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
885
886 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
887 struct timespec *t, struct timespec __user *r)
888 {
889 #ifndef ENOTSUP
890 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
891 #else /* parisc does define it separately. */
892 return -ENOTSUP;
893 #endif
894 }
895 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
896
897 asmlinkage long sys_clock_settime(const clockid_t which_clock,
898 const struct timespec __user *tp)
899 {
900 struct timespec new_tp;
901
902 if (invalid_clockid(which_clock))
903 return -EINVAL;
904 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
905 return -EFAULT;
906
907 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
908 }
909
910 asmlinkage long
911 sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
912 {
913 struct timespec kernel_tp;
914 int error;
915
916 if (invalid_clockid(which_clock))
917 return -EINVAL;
918 error = CLOCK_DISPATCH(which_clock, clock_get,
919 (which_clock, &kernel_tp));
920 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
921 error = -EFAULT;
922
923 return error;
924
925 }
926
927 asmlinkage long
928 sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
929 {
930 struct timespec rtn_tp;
931 int error;
932
933 if (invalid_clockid(which_clock))
934 return -EINVAL;
935
936 error = CLOCK_DISPATCH(which_clock, clock_getres,
937 (which_clock, &rtn_tp));
938
939 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
940 error = -EFAULT;
941 }
942
943 return error;
944 }
945
946 /*
947 * nanosleep for monotonic and realtime clocks
948 */
949 static int common_nsleep(const clockid_t which_clock, int flags,
950 struct timespec *tsave, struct timespec __user *rmtp)
951 {
952 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
953 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
954 which_clock);
955 }
956
957 asmlinkage long
958 sys_clock_nanosleep(const clockid_t which_clock, int flags,
959 const struct timespec __user *rqtp,
960 struct timespec __user *rmtp)
961 {
962 struct timespec t;
963
964 if (invalid_clockid(which_clock))
965 return -EINVAL;
966
967 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
968 return -EFAULT;
969
970 if (!timespec_valid(&t))
971 return -EINVAL;
972
973 return CLOCK_DISPATCH(which_clock, nsleep,
974 (which_clock, flags, &t, rmtp));
975 }
976
977 /*
978 * nanosleep_restart for monotonic and realtime clocks
979 */
980 static int common_nsleep_restart(struct restart_block *restart_block)
981 {
982 return hrtimer_nanosleep_restart(restart_block);
983 }
984
985 /*
986 * This will restart clock_nanosleep. This is required only by
987 * compat_clock_nanosleep_restart for now.
988 */
989 long
990 clock_nanosleep_restart(struct restart_block *restart_block)
991 {
992 clockid_t which_clock = restart_block->arg0;
993
994 return CLOCK_DISPATCH(which_clock, nsleep_restart,
995 (restart_block));
996 }
This page took 0.04981 seconds and 5 git commands to generate.