Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/jk/spufs into...
[deliverable/linux.git] / kernel / posix-timers.c
1 /*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/idr.h>
44 #include <linux/posix-timers.h>
45 #include <linux/syscalls.h>
46 #include <linux/wait.h>
47 #include <linux/workqueue.h>
48 #include <linux/module.h>
49
50 /*
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
54 *
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
66 */
67
68 /*
69 * Lets keep our timers in a slab cache :-)
70 */
71 static struct kmem_cache *posix_timers_cache;
72 static struct idr posix_timers_id;
73 static DEFINE_SPINLOCK(idr_lock);
74
75 /*
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
78 */
79 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82 #endif
83
84
85 /*
86 * The timer ID is turned into a timer address by idr_find().
87 * Verifying a valid ID consists of:
88 *
89 * a) checking that idr_find() returns other than -1.
90 * b) checking that the timer id matches the one in the timer itself.
91 * c) that the timer owner is in the callers thread group.
92 */
93
94 /*
95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96 * to implement others. This structure defines the various
97 * clocks and allows the possibility of adding others. We
98 * provide an interface to add clocks to the table and expect
99 * the "arch" code to add at least one clock that is high
100 * resolution. Here we define the standard CLOCK_REALTIME as a
101 * 1/HZ resolution clock.
102 *
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
110 *
111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112 * various clock functions. For clocks that use the standard
113 * system timer code these entries should be NULL. This will
114 * allow dispatch without the overhead of indirect function
115 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the
119 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
120 * fields are not modified by timer code.
121 *
122 * At this time all functions EXCEPT clock_nanosleep can be
123 * redirected by the CLOCKS structure. Clock_nanosleep is in
124 * there, but the code ignores it.
125 *
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
132 */
133
134 static struct k_clock posix_clocks[MAX_CLOCKS];
135
136 /*
137 * These ones are defined below.
138 */
139 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
140 struct timespec __user *rmtp);
141 static void common_timer_get(struct k_itimer *, struct itimerspec *);
142 static int common_timer_set(struct k_itimer *, int,
143 struct itimerspec *, struct itimerspec *);
144 static int common_timer_del(struct k_itimer *timer);
145
146 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
147
148 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
149
150 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
151 {
152 spin_unlock_irqrestore(&timr->it_lock, flags);
153 }
154
155 /*
156 * Call the k_clock hook function if non-null, or the default function.
157 */
158 #define CLOCK_DISPATCH(clock, call, arglist) \
159 ((clock) < 0 ? posix_cpu_##call arglist : \
160 (posix_clocks[clock].call != NULL \
161 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
162
163 /*
164 * Default clock hook functions when the struct k_clock passed
165 * to register_posix_clock leaves a function pointer null.
166 *
167 * The function common_CALL is the default implementation for
168 * the function pointer CALL in struct k_clock.
169 */
170
171 static inline int common_clock_getres(const clockid_t which_clock,
172 struct timespec *tp)
173 {
174 tp->tv_sec = 0;
175 tp->tv_nsec = posix_clocks[which_clock].res;
176 return 0;
177 }
178
179 /*
180 * Get real time for posix timers
181 */
182 static int common_clock_get(clockid_t which_clock, struct timespec *tp)
183 {
184 ktime_get_real_ts(tp);
185 return 0;
186 }
187
188 static inline int common_clock_set(const clockid_t which_clock,
189 struct timespec *tp)
190 {
191 return do_sys_settimeofday(tp, NULL);
192 }
193
194 static int common_timer_create(struct k_itimer *new_timer)
195 {
196 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
197 return 0;
198 }
199
200 /*
201 * Return nonzero if we know a priori this clockid_t value is bogus.
202 */
203 static inline int invalid_clockid(const clockid_t which_clock)
204 {
205 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
206 return 0;
207 if ((unsigned) which_clock >= MAX_CLOCKS)
208 return 1;
209 if (posix_clocks[which_clock].clock_getres != NULL)
210 return 0;
211 if (posix_clocks[which_clock].res != 0)
212 return 0;
213 return 1;
214 }
215
216 /*
217 * Get monotonic time for posix timers
218 */
219 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
220 {
221 ktime_get_ts(tp);
222 return 0;
223 }
224
225 /*
226 * Get monotonic time for posix timers
227 */
228 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
229 {
230 getrawmonotonic(tp);
231 return 0;
232 }
233
234 /*
235 * Initialize everything, well, just everything in Posix clocks/timers ;)
236 */
237 static __init int init_posix_timers(void)
238 {
239 struct k_clock clock_realtime = {
240 .clock_getres = hrtimer_get_res,
241 };
242 struct k_clock clock_monotonic = {
243 .clock_getres = hrtimer_get_res,
244 .clock_get = posix_ktime_get_ts,
245 .clock_set = do_posix_clock_nosettime,
246 };
247 struct k_clock clock_monotonic_raw = {
248 .clock_getres = hrtimer_get_res,
249 .clock_get = posix_get_monotonic_raw,
250 .clock_set = do_posix_clock_nosettime,
251 };
252
253 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
254 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
255 register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
256
257 posix_timers_cache = kmem_cache_create("posix_timers_cache",
258 sizeof (struct k_itimer), 0, SLAB_PANIC,
259 NULL);
260 idr_init(&posix_timers_id);
261 return 0;
262 }
263
264 __initcall(init_posix_timers);
265
266 static void schedule_next_timer(struct k_itimer *timr)
267 {
268 struct hrtimer *timer = &timr->it.real.timer;
269
270 if (timr->it.real.interval.tv64 == 0)
271 return;
272
273 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
274 timer->base->get_time(),
275 timr->it.real.interval);
276
277 timr->it_overrun_last = timr->it_overrun;
278 timr->it_overrun = -1;
279 ++timr->it_requeue_pending;
280 hrtimer_restart(timer);
281 }
282
283 /*
284 * This function is exported for use by the signal deliver code. It is
285 * called just prior to the info block being released and passes that
286 * block to us. It's function is to update the overrun entry AND to
287 * restart the timer. It should only be called if the timer is to be
288 * restarted (i.e. we have flagged this in the sys_private entry of the
289 * info block).
290 *
291 * To protect aginst the timer going away while the interrupt is queued,
292 * we require that the it_requeue_pending flag be set.
293 */
294 void do_schedule_next_timer(struct siginfo *info)
295 {
296 struct k_itimer *timr;
297 unsigned long flags;
298
299 timr = lock_timer(info->si_tid, &flags);
300
301 if (timr && timr->it_requeue_pending == info->si_sys_private) {
302 if (timr->it_clock < 0)
303 posix_cpu_timer_schedule(timr);
304 else
305 schedule_next_timer(timr);
306
307 info->si_overrun += timr->it_overrun_last;
308 }
309
310 if (timr)
311 unlock_timer(timr, flags);
312 }
313
314 int posix_timer_event(struct k_itimer *timr, int si_private)
315 {
316 int shared, ret;
317 /*
318 * FIXME: if ->sigq is queued we can race with
319 * dequeue_signal()->do_schedule_next_timer().
320 *
321 * If dequeue_signal() sees the "right" value of
322 * si_sys_private it calls do_schedule_next_timer().
323 * We re-queue ->sigq and drop ->it_lock().
324 * do_schedule_next_timer() locks the timer
325 * and re-schedules it while ->sigq is pending.
326 * Not really bad, but not that we want.
327 */
328 timr->sigq->info.si_sys_private = si_private;
329
330 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
331 ret = send_sigqueue(timr->sigq, timr->it_process, shared);
332 /* If we failed to send the signal the timer stops. */
333 return ret > 0;
334 }
335 EXPORT_SYMBOL_GPL(posix_timer_event);
336
337 /*
338 * This function gets called when a POSIX.1b interval timer expires. It
339 * is used as a callback from the kernel internal timer. The
340 * run_timer_list code ALWAYS calls with interrupts on.
341
342 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
343 */
344 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
345 {
346 struct k_itimer *timr;
347 unsigned long flags;
348 int si_private = 0;
349 enum hrtimer_restart ret = HRTIMER_NORESTART;
350
351 timr = container_of(timer, struct k_itimer, it.real.timer);
352 spin_lock_irqsave(&timr->it_lock, flags);
353
354 if (timr->it.real.interval.tv64 != 0)
355 si_private = ++timr->it_requeue_pending;
356
357 if (posix_timer_event(timr, si_private)) {
358 /*
359 * signal was not sent because of sig_ignor
360 * we will not get a call back to restart it AND
361 * it should be restarted.
362 */
363 if (timr->it.real.interval.tv64 != 0) {
364 ktime_t now = hrtimer_cb_get_time(timer);
365
366 /*
367 * FIXME: What we really want, is to stop this
368 * timer completely and restart it in case the
369 * SIG_IGN is removed. This is a non trivial
370 * change which involves sighand locking
371 * (sigh !), which we don't want to do late in
372 * the release cycle.
373 *
374 * For now we just let timers with an interval
375 * less than a jiffie expire every jiffie to
376 * avoid softirq starvation in case of SIG_IGN
377 * and a very small interval, which would put
378 * the timer right back on the softirq pending
379 * list. By moving now ahead of time we trick
380 * hrtimer_forward() to expire the timer
381 * later, while we still maintain the overrun
382 * accuracy, but have some inconsistency in
383 * the timer_gettime() case. This is at least
384 * better than a starved softirq. A more
385 * complex fix which solves also another related
386 * inconsistency is already in the pipeline.
387 */
388 #ifdef CONFIG_HIGH_RES_TIMERS
389 {
390 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
391
392 if (timr->it.real.interval.tv64 < kj.tv64)
393 now = ktime_add(now, kj);
394 }
395 #endif
396 timr->it_overrun += (unsigned int)
397 hrtimer_forward(timer, now,
398 timr->it.real.interval);
399 ret = HRTIMER_RESTART;
400 ++timr->it_requeue_pending;
401 }
402 }
403
404 unlock_timer(timr, flags);
405 return ret;
406 }
407
408 static struct task_struct * good_sigevent(sigevent_t * event)
409 {
410 struct task_struct *rtn = current->group_leader;
411
412 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
413 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
414 !same_thread_group(rtn, current) ||
415 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
416 return NULL;
417
418 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
419 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
420 return NULL;
421
422 return rtn;
423 }
424
425 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
426 {
427 if ((unsigned) clock_id >= MAX_CLOCKS) {
428 printk("POSIX clock register failed for clock_id %d\n",
429 clock_id);
430 return;
431 }
432
433 posix_clocks[clock_id] = *new_clock;
434 }
435 EXPORT_SYMBOL_GPL(register_posix_clock);
436
437 static struct k_itimer * alloc_posix_timer(void)
438 {
439 struct k_itimer *tmr;
440 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
441 if (!tmr)
442 return tmr;
443 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
444 kmem_cache_free(posix_timers_cache, tmr);
445 return NULL;
446 }
447 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
448 return tmr;
449 }
450
451 #define IT_ID_SET 1
452 #define IT_ID_NOT_SET 0
453 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
454 {
455 if (it_id_set) {
456 unsigned long flags;
457 spin_lock_irqsave(&idr_lock, flags);
458 idr_remove(&posix_timers_id, tmr->it_id);
459 spin_unlock_irqrestore(&idr_lock, flags);
460 }
461 sigqueue_free(tmr->sigq);
462 kmem_cache_free(posix_timers_cache, tmr);
463 }
464
465 /* Create a POSIX.1b interval timer. */
466
467 asmlinkage long
468 sys_timer_create(const clockid_t which_clock,
469 struct sigevent __user *timer_event_spec,
470 timer_t __user * created_timer_id)
471 {
472 struct k_itimer *new_timer;
473 int error, new_timer_id;
474 struct task_struct *process;
475 sigevent_t event;
476 int it_id_set = IT_ID_NOT_SET;
477
478 if (invalid_clockid(which_clock))
479 return -EINVAL;
480
481 new_timer = alloc_posix_timer();
482 if (unlikely(!new_timer))
483 return -EAGAIN;
484
485 spin_lock_init(&new_timer->it_lock);
486 retry:
487 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
488 error = -EAGAIN;
489 goto out;
490 }
491 spin_lock_irq(&idr_lock);
492 error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
493 spin_unlock_irq(&idr_lock);
494 if (error) {
495 if (error == -EAGAIN)
496 goto retry;
497 /*
498 * Weird looking, but we return EAGAIN if the IDR is
499 * full (proper POSIX return value for this)
500 */
501 error = -EAGAIN;
502 goto out;
503 }
504
505 it_id_set = IT_ID_SET;
506 new_timer->it_id = (timer_t) new_timer_id;
507 new_timer->it_clock = which_clock;
508 new_timer->it_overrun = -1;
509 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
510 if (error)
511 goto out;
512
513 /*
514 * return the timer_id now. The next step is hard to
515 * back out if there is an error.
516 */
517 if (copy_to_user(created_timer_id,
518 &new_timer_id, sizeof (new_timer_id))) {
519 error = -EFAULT;
520 goto out;
521 }
522 if (timer_event_spec) {
523 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
524 error = -EFAULT;
525 goto out;
526 }
527 rcu_read_lock();
528 process = good_sigevent(&event);
529 if (process)
530 get_task_struct(process);
531 rcu_read_unlock();
532 if (!process) {
533 error = -EINVAL;
534 goto out;
535 }
536 } else {
537 event.sigev_notify = SIGEV_SIGNAL;
538 event.sigev_signo = SIGALRM;
539 event.sigev_value.sival_int = new_timer->it_id;
540 process = current->group_leader;
541 get_task_struct(process);
542 }
543
544 new_timer->it_sigev_notify = event.sigev_notify;
545 new_timer->sigq->info.si_signo = event.sigev_signo;
546 new_timer->sigq->info.si_value = event.sigev_value;
547 new_timer->sigq->info.si_tid = new_timer->it_id;
548 new_timer->sigq->info.si_code = SI_TIMER;
549
550 spin_lock_irq(&current->sighand->siglock);
551 new_timer->it_process = process;
552 list_add(&new_timer->list, &current->signal->posix_timers);
553 spin_unlock_irq(&current->sighand->siglock);
554
555 return 0;
556 /*
557 * In the case of the timer belonging to another task, after
558 * the task is unlocked, the timer is owned by the other task
559 * and may cease to exist at any time. Don't use or modify
560 * new_timer after the unlock call.
561 */
562 out:
563 release_posix_timer(new_timer, it_id_set);
564 return error;
565 }
566
567 /*
568 * Locking issues: We need to protect the result of the id look up until
569 * we get the timer locked down so it is not deleted under us. The
570 * removal is done under the idr spinlock so we use that here to bridge
571 * the find to the timer lock. To avoid a dead lock, the timer id MUST
572 * be release with out holding the timer lock.
573 */
574 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags)
575 {
576 struct k_itimer *timr;
577 /*
578 * Watch out here. We do a irqsave on the idr_lock and pass the
579 * flags part over to the timer lock. Must not let interrupts in
580 * while we are moving the lock.
581 */
582 spin_lock_irqsave(&idr_lock, *flags);
583 timr = idr_find(&posix_timers_id, (int)timer_id);
584 if (timr) {
585 spin_lock(&timr->it_lock);
586 if (timr->it_process &&
587 same_thread_group(timr->it_process, current)) {
588 spin_unlock(&idr_lock);
589 return timr;
590 }
591 spin_unlock(&timr->it_lock);
592 }
593 spin_unlock_irqrestore(&idr_lock, *flags);
594
595 return NULL;
596 }
597
598 /*
599 * Get the time remaining on a POSIX.1b interval timer. This function
600 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
601 * mess with irq.
602 *
603 * We have a couple of messes to clean up here. First there is the case
604 * of a timer that has a requeue pending. These timers should appear to
605 * be in the timer list with an expiry as if we were to requeue them
606 * now.
607 *
608 * The second issue is the SIGEV_NONE timer which may be active but is
609 * not really ever put in the timer list (to save system resources).
610 * This timer may be expired, and if so, we will do it here. Otherwise
611 * it is the same as a requeue pending timer WRT to what we should
612 * report.
613 */
614 static void
615 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
616 {
617 ktime_t now, remaining, iv;
618 struct hrtimer *timer = &timr->it.real.timer;
619
620 memset(cur_setting, 0, sizeof(struct itimerspec));
621
622 iv = timr->it.real.interval;
623
624 /* interval timer ? */
625 if (iv.tv64)
626 cur_setting->it_interval = ktime_to_timespec(iv);
627 else if (!hrtimer_active(timer) &&
628 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
629 return;
630
631 now = timer->base->get_time();
632
633 /*
634 * When a requeue is pending or this is a SIGEV_NONE
635 * timer move the expiry time forward by intervals, so
636 * expiry is > now.
637 */
638 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
639 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
640 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
641
642 remaining = ktime_sub(hrtimer_get_expires(timer), now);
643 /* Return 0 only, when the timer is expired and not pending */
644 if (remaining.tv64 <= 0) {
645 /*
646 * A single shot SIGEV_NONE timer must return 0, when
647 * it is expired !
648 */
649 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
650 cur_setting->it_value.tv_nsec = 1;
651 } else
652 cur_setting->it_value = ktime_to_timespec(remaining);
653 }
654
655 /* Get the time remaining on a POSIX.1b interval timer. */
656 asmlinkage long
657 sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
658 {
659 struct k_itimer *timr;
660 struct itimerspec cur_setting;
661 unsigned long flags;
662
663 timr = lock_timer(timer_id, &flags);
664 if (!timr)
665 return -EINVAL;
666
667 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
668
669 unlock_timer(timr, flags);
670
671 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
672 return -EFAULT;
673
674 return 0;
675 }
676
677 /*
678 * Get the number of overruns of a POSIX.1b interval timer. This is to
679 * be the overrun of the timer last delivered. At the same time we are
680 * accumulating overruns on the next timer. The overrun is frozen when
681 * the signal is delivered, either at the notify time (if the info block
682 * is not queued) or at the actual delivery time (as we are informed by
683 * the call back to do_schedule_next_timer(). So all we need to do is
684 * to pick up the frozen overrun.
685 */
686 asmlinkage long
687 sys_timer_getoverrun(timer_t timer_id)
688 {
689 struct k_itimer *timr;
690 int overrun;
691 unsigned long flags;
692
693 timr = lock_timer(timer_id, &flags);
694 if (!timr)
695 return -EINVAL;
696
697 overrun = timr->it_overrun_last;
698 unlock_timer(timr, flags);
699
700 return overrun;
701 }
702
703 /* Set a POSIX.1b interval timer. */
704 /* timr->it_lock is taken. */
705 static int
706 common_timer_set(struct k_itimer *timr, int flags,
707 struct itimerspec *new_setting, struct itimerspec *old_setting)
708 {
709 struct hrtimer *timer = &timr->it.real.timer;
710 enum hrtimer_mode mode;
711
712 if (old_setting)
713 common_timer_get(timr, old_setting);
714
715 /* disable the timer */
716 timr->it.real.interval.tv64 = 0;
717 /*
718 * careful here. If smp we could be in the "fire" routine which will
719 * be spinning as we hold the lock. But this is ONLY an SMP issue.
720 */
721 if (hrtimer_try_to_cancel(timer) < 0)
722 return TIMER_RETRY;
723
724 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
725 ~REQUEUE_PENDING;
726 timr->it_overrun_last = 0;
727
728 /* switch off the timer when it_value is zero */
729 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
730 return 0;
731
732 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
733 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
734 timr->it.real.timer.function = posix_timer_fn;
735
736 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
737
738 /* Convert interval */
739 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
740
741 /* SIGEV_NONE timers are not queued ! See common_timer_get */
742 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
743 /* Setup correct expiry time for relative timers */
744 if (mode == HRTIMER_MODE_REL) {
745 hrtimer_add_expires(timer, timer->base->get_time());
746 }
747 return 0;
748 }
749
750 hrtimer_start_expires(timer, mode);
751 return 0;
752 }
753
754 /* Set a POSIX.1b interval timer */
755 asmlinkage long
756 sys_timer_settime(timer_t timer_id, int flags,
757 const struct itimerspec __user *new_setting,
758 struct itimerspec __user *old_setting)
759 {
760 struct k_itimer *timr;
761 struct itimerspec new_spec, old_spec;
762 int error = 0;
763 unsigned long flag;
764 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
765
766 if (!new_setting)
767 return -EINVAL;
768
769 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
770 return -EFAULT;
771
772 if (!timespec_valid(&new_spec.it_interval) ||
773 !timespec_valid(&new_spec.it_value))
774 return -EINVAL;
775 retry:
776 timr = lock_timer(timer_id, &flag);
777 if (!timr)
778 return -EINVAL;
779
780 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
781 (timr, flags, &new_spec, rtn));
782
783 unlock_timer(timr, flag);
784 if (error == TIMER_RETRY) {
785 rtn = NULL; // We already got the old time...
786 goto retry;
787 }
788
789 if (old_setting && !error &&
790 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
791 error = -EFAULT;
792
793 return error;
794 }
795
796 static inline int common_timer_del(struct k_itimer *timer)
797 {
798 timer->it.real.interval.tv64 = 0;
799
800 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
801 return TIMER_RETRY;
802 return 0;
803 }
804
805 static inline int timer_delete_hook(struct k_itimer *timer)
806 {
807 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
808 }
809
810 /* Delete a POSIX.1b interval timer. */
811 asmlinkage long
812 sys_timer_delete(timer_t timer_id)
813 {
814 struct k_itimer *timer;
815 unsigned long flags;
816
817 retry_delete:
818 timer = lock_timer(timer_id, &flags);
819 if (!timer)
820 return -EINVAL;
821
822 if (timer_delete_hook(timer) == TIMER_RETRY) {
823 unlock_timer(timer, flags);
824 goto retry_delete;
825 }
826
827 spin_lock(&current->sighand->siglock);
828 list_del(&timer->list);
829 spin_unlock(&current->sighand->siglock);
830 /*
831 * This keeps any tasks waiting on the spin lock from thinking
832 * they got something (see the lock code above).
833 */
834 put_task_struct(timer->it_process);
835 timer->it_process = NULL;
836
837 unlock_timer(timer, flags);
838 release_posix_timer(timer, IT_ID_SET);
839 return 0;
840 }
841
842 /*
843 * return timer owned by the process, used by exit_itimers
844 */
845 static void itimer_delete(struct k_itimer *timer)
846 {
847 unsigned long flags;
848
849 retry_delete:
850 spin_lock_irqsave(&timer->it_lock, flags);
851
852 if (timer_delete_hook(timer) == TIMER_RETRY) {
853 unlock_timer(timer, flags);
854 goto retry_delete;
855 }
856 list_del(&timer->list);
857 /*
858 * This keeps any tasks waiting on the spin lock from thinking
859 * they got something (see the lock code above).
860 */
861 put_task_struct(timer->it_process);
862 timer->it_process = NULL;
863
864 unlock_timer(timer, flags);
865 release_posix_timer(timer, IT_ID_SET);
866 }
867
868 /*
869 * This is called by do_exit or de_thread, only when there are no more
870 * references to the shared signal_struct.
871 */
872 void exit_itimers(struct signal_struct *sig)
873 {
874 struct k_itimer *tmr;
875
876 while (!list_empty(&sig->posix_timers)) {
877 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
878 itimer_delete(tmr);
879 }
880 }
881
882 /* Not available / possible... functions */
883 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
884 {
885 return -EINVAL;
886 }
887 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
888
889 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
890 struct timespec *t, struct timespec __user *r)
891 {
892 #ifndef ENOTSUP
893 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
894 #else /* parisc does define it separately. */
895 return -ENOTSUP;
896 #endif
897 }
898 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
899
900 asmlinkage long sys_clock_settime(const clockid_t which_clock,
901 const struct timespec __user *tp)
902 {
903 struct timespec new_tp;
904
905 if (invalid_clockid(which_clock))
906 return -EINVAL;
907 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
908 return -EFAULT;
909
910 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
911 }
912
913 asmlinkage long
914 sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
915 {
916 struct timespec kernel_tp;
917 int error;
918
919 if (invalid_clockid(which_clock))
920 return -EINVAL;
921 error = CLOCK_DISPATCH(which_clock, clock_get,
922 (which_clock, &kernel_tp));
923 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
924 error = -EFAULT;
925
926 return error;
927
928 }
929
930 asmlinkage long
931 sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
932 {
933 struct timespec rtn_tp;
934 int error;
935
936 if (invalid_clockid(which_clock))
937 return -EINVAL;
938
939 error = CLOCK_DISPATCH(which_clock, clock_getres,
940 (which_clock, &rtn_tp));
941
942 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
943 error = -EFAULT;
944 }
945
946 return error;
947 }
948
949 /*
950 * nanosleep for monotonic and realtime clocks
951 */
952 static int common_nsleep(const clockid_t which_clock, int flags,
953 struct timespec *tsave, struct timespec __user *rmtp)
954 {
955 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
956 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
957 which_clock);
958 }
959
960 asmlinkage long
961 sys_clock_nanosleep(const clockid_t which_clock, int flags,
962 const struct timespec __user *rqtp,
963 struct timespec __user *rmtp)
964 {
965 struct timespec t;
966
967 if (invalid_clockid(which_clock))
968 return -EINVAL;
969
970 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
971 return -EFAULT;
972
973 if (!timespec_valid(&t))
974 return -EINVAL;
975
976 return CLOCK_DISPATCH(which_clock, nsleep,
977 (which_clock, flags, &t, rmtp));
978 }
979
980 /*
981 * nanosleep_restart for monotonic and realtime clocks
982 */
983 static int common_nsleep_restart(struct restart_block *restart_block)
984 {
985 return hrtimer_nanosleep_restart(restart_block);
986 }
987
988 /*
989 * This will restart clock_nanosleep. This is required only by
990 * compat_clock_nanosleep_restart for now.
991 */
992 long
993 clock_nanosleep_restart(struct restart_block *restart_block)
994 {
995 clockid_t which_clock = restart_block->arg0;
996
997 return CLOCK_DISPATCH(which_clock, nsleep_restart,
998 (restart_block));
999 }
This page took 0.05161 seconds and 5 git commands to generate.