[PATCH] hrtimers: posix-timer: cleanup common_timer_get()
[deliverable/linux.git] / kernel / posix-timers.c
1 /*
2 * linux/kernel/posix_timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/slab.h>
37 #include <linux/time.h>
38 #include <linux/mutex.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/semaphore.h>
42 #include <linux/list.h>
43 #include <linux/init.h>
44 #include <linux/compiler.h>
45 #include <linux/idr.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/module.h>
51
52 /*
53 * Management arrays for POSIX timers. Timers are kept in slab memory
54 * Timer ids are allocated by an external routine that keeps track of the
55 * id and the timer. The external interface is:
56 *
57 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
58 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
59 * related it to <ptr>
60 * void idr_remove(struct idr *idp, int id); to release <id>
61 * void idr_init(struct idr *idp); to initialize <idp>
62 * which we supply.
63 * The idr_get_new *may* call slab for more memory so it must not be
64 * called under a spin lock. Likewise idr_remore may release memory
65 * (but it may be ok to do this under a lock...).
66 * idr_find is just a memory look up and is quite fast. A -1 return
67 * indicates that the requested id does not exist.
68 */
69
70 /*
71 * Lets keep our timers in a slab cache :-)
72 */
73 static kmem_cache_t *posix_timers_cache;
74 static struct idr posix_timers_id;
75 static DEFINE_SPINLOCK(idr_lock);
76
77 /*
78 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
79 * SIGEV values. Here we put out an error if this assumption fails.
80 */
81 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
82 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
83 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
84 #endif
85
86
87 /*
88 * The timer ID is turned into a timer address by idr_find().
89 * Verifying a valid ID consists of:
90 *
91 * a) checking that idr_find() returns other than -1.
92 * b) checking that the timer id matches the one in the timer itself.
93 * c) that the timer owner is in the callers thread group.
94 */
95
96 /*
97 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
98 * to implement others. This structure defines the various
99 * clocks and allows the possibility of adding others. We
100 * provide an interface to add clocks to the table and expect
101 * the "arch" code to add at least one clock that is high
102 * resolution. Here we define the standard CLOCK_REALTIME as a
103 * 1/HZ resolution clock.
104 *
105 * RESOLUTION: Clock resolution is used to round up timer and interval
106 * times, NOT to report clock times, which are reported with as
107 * much resolution as the system can muster. In some cases this
108 * resolution may depend on the underlying clock hardware and
109 * may not be quantifiable until run time, and only then is the
110 * necessary code is written. The standard says we should say
111 * something about this issue in the documentation...
112 *
113 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
114 * various clock functions. For clocks that use the standard
115 * system timer code these entries should be NULL. This will
116 * allow dispatch without the overhead of indirect function
117 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
118 * must supply functions here, even if the function just returns
119 * ENOSYS. The standard POSIX timer management code assumes the
120 * following: 1.) The k_itimer struct (sched.h) is used for the
121 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
122 * fields are not modified by timer code.
123 *
124 * At this time all functions EXCEPT clock_nanosleep can be
125 * redirected by the CLOCKS structure. Clock_nanosleep is in
126 * there, but the code ignores it.
127 *
128 * Permissions: It is assumed that the clock_settime() function defined
129 * for each clock will take care of permission checks. Some
130 * clocks may be set able by any user (i.e. local process
131 * clocks) others not. Currently the only set able clock we
132 * have is CLOCK_REALTIME and its high res counter part, both of
133 * which we beg off on and pass to do_sys_settimeofday().
134 */
135
136 static struct k_clock posix_clocks[MAX_CLOCKS];
137
138 /*
139 * These ones are defined below.
140 */
141 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
142 struct timespec __user *rmtp);
143 static void common_timer_get(struct k_itimer *, struct itimerspec *);
144 static int common_timer_set(struct k_itimer *, int,
145 struct itimerspec *, struct itimerspec *);
146 static int common_timer_del(struct k_itimer *timer);
147
148 static int posix_timer_fn(void *data);
149
150 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
151
152 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
153 {
154 spin_unlock_irqrestore(&timr->it_lock, flags);
155 }
156
157 /*
158 * Call the k_clock hook function if non-null, or the default function.
159 */
160 #define CLOCK_DISPATCH(clock, call, arglist) \
161 ((clock) < 0 ? posix_cpu_##call arglist : \
162 (posix_clocks[clock].call != NULL \
163 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
164
165 /*
166 * Default clock hook functions when the struct k_clock passed
167 * to register_posix_clock leaves a function pointer null.
168 *
169 * The function common_CALL is the default implementation for
170 * the function pointer CALL in struct k_clock.
171 */
172
173 static inline int common_clock_getres(const clockid_t which_clock,
174 struct timespec *tp)
175 {
176 tp->tv_sec = 0;
177 tp->tv_nsec = posix_clocks[which_clock].res;
178 return 0;
179 }
180
181 /*
182 * Get real time for posix timers
183 */
184 static int common_clock_get(clockid_t which_clock, struct timespec *tp)
185 {
186 ktime_get_real_ts(tp);
187 return 0;
188 }
189
190 static inline int common_clock_set(const clockid_t which_clock,
191 struct timespec *tp)
192 {
193 return do_sys_settimeofday(tp, NULL);
194 }
195
196 static int common_timer_create(struct k_itimer *new_timer)
197 {
198 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
199 return 0;
200 }
201
202 /*
203 * Return nonzero if we know a priori this clockid_t value is bogus.
204 */
205 static inline int invalid_clockid(const clockid_t which_clock)
206 {
207 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
208 return 0;
209 if ((unsigned) which_clock >= MAX_CLOCKS)
210 return 1;
211 if (posix_clocks[which_clock].clock_getres != NULL)
212 return 0;
213 if (posix_clocks[which_clock].res != 0)
214 return 0;
215 return 1;
216 }
217
218 /*
219 * Get monotonic time for posix timers
220 */
221 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
222 {
223 ktime_get_ts(tp);
224 return 0;
225 }
226
227 /*
228 * Initialize everything, well, just everything in Posix clocks/timers ;)
229 */
230 static __init int init_posix_timers(void)
231 {
232 struct k_clock clock_realtime = {
233 .clock_getres = hrtimer_get_res,
234 };
235 struct k_clock clock_monotonic = {
236 .clock_getres = hrtimer_get_res,
237 .clock_get = posix_ktime_get_ts,
238 .clock_set = do_posix_clock_nosettime,
239 };
240
241 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
242 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
243
244 posix_timers_cache = kmem_cache_create("posix_timers_cache",
245 sizeof (struct k_itimer), 0, 0, NULL, NULL);
246 idr_init(&posix_timers_id);
247 return 0;
248 }
249
250 __initcall(init_posix_timers);
251
252 static void schedule_next_timer(struct k_itimer *timr)
253 {
254 struct hrtimer *timer = &timr->it.real.timer;
255
256 if (timr->it.real.interval.tv64 == 0)
257 return;
258
259 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
260 timr->it.real.interval);
261
262 timr->it_overrun_last = timr->it_overrun;
263 timr->it_overrun = -1;
264 ++timr->it_requeue_pending;
265 hrtimer_restart(timer);
266 }
267
268 /*
269 * This function is exported for use by the signal deliver code. It is
270 * called just prior to the info block being released and passes that
271 * block to us. It's function is to update the overrun entry AND to
272 * restart the timer. It should only be called if the timer is to be
273 * restarted (i.e. we have flagged this in the sys_private entry of the
274 * info block).
275 *
276 * To protect aginst the timer going away while the interrupt is queued,
277 * we require that the it_requeue_pending flag be set.
278 */
279 void do_schedule_next_timer(struct siginfo *info)
280 {
281 struct k_itimer *timr;
282 unsigned long flags;
283
284 timr = lock_timer(info->si_tid, &flags);
285
286 if (timr && timr->it_requeue_pending == info->si_sys_private) {
287 if (timr->it_clock < 0)
288 posix_cpu_timer_schedule(timr);
289 else
290 schedule_next_timer(timr);
291
292 info->si_overrun = timr->it_overrun_last;
293 }
294
295 if (timr)
296 unlock_timer(timr, flags);
297 }
298
299 int posix_timer_event(struct k_itimer *timr,int si_private)
300 {
301 memset(&timr->sigq->info, 0, sizeof(siginfo_t));
302 timr->sigq->info.si_sys_private = si_private;
303 /* Send signal to the process that owns this timer.*/
304
305 timr->sigq->info.si_signo = timr->it_sigev_signo;
306 timr->sigq->info.si_errno = 0;
307 timr->sigq->info.si_code = SI_TIMER;
308 timr->sigq->info.si_tid = timr->it_id;
309 timr->sigq->info.si_value = timr->it_sigev_value;
310
311 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
312 struct task_struct *leader;
313 int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
314 timr->it_process);
315
316 if (likely(ret >= 0))
317 return ret;
318
319 timr->it_sigev_notify = SIGEV_SIGNAL;
320 leader = timr->it_process->group_leader;
321 put_task_struct(timr->it_process);
322 timr->it_process = leader;
323 }
324
325 return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
326 timr->it_process);
327 }
328 EXPORT_SYMBOL_GPL(posix_timer_event);
329
330 /*
331 * This function gets called when a POSIX.1b interval timer expires. It
332 * is used as a callback from the kernel internal timer. The
333 * run_timer_list code ALWAYS calls with interrupts on.
334
335 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
336 */
337 static int posix_timer_fn(void *data)
338 {
339 struct k_itimer *timr = data;
340 struct hrtimer *timer = &timr->it.real.timer;
341 unsigned long flags;
342 int si_private = 0;
343 int ret = HRTIMER_NORESTART;
344
345 spin_lock_irqsave(&timr->it_lock, flags);
346
347 if (timr->it.real.interval.tv64 != 0)
348 si_private = ++timr->it_requeue_pending;
349
350 if (posix_timer_event(timr, si_private)) {
351 /*
352 * signal was not sent because of sig_ignor
353 * we will not get a call back to restart it AND
354 * it should be restarted.
355 */
356 if (timr->it.real.interval.tv64 != 0) {
357 timr->it_overrun +=
358 hrtimer_forward(timer,
359 timer->base->softirq_time,
360 timr->it.real.interval);
361 ret = HRTIMER_RESTART;
362 ++timr->it_requeue_pending;
363 }
364 }
365
366 unlock_timer(timr, flags);
367 return ret;
368 }
369
370 static struct task_struct * good_sigevent(sigevent_t * event)
371 {
372 struct task_struct *rtn = current->group_leader;
373
374 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
375 (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
376 rtn->tgid != current->tgid ||
377 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
378 return NULL;
379
380 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
381 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
382 return NULL;
383
384 return rtn;
385 }
386
387 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
388 {
389 if ((unsigned) clock_id >= MAX_CLOCKS) {
390 printk("POSIX clock register failed for clock_id %d\n",
391 clock_id);
392 return;
393 }
394
395 posix_clocks[clock_id] = *new_clock;
396 }
397 EXPORT_SYMBOL_GPL(register_posix_clock);
398
399 static struct k_itimer * alloc_posix_timer(void)
400 {
401 struct k_itimer *tmr;
402 tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL);
403 if (!tmr)
404 return tmr;
405 memset(tmr, 0, sizeof (struct k_itimer));
406 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
407 kmem_cache_free(posix_timers_cache, tmr);
408 tmr = NULL;
409 }
410 return tmr;
411 }
412
413 #define IT_ID_SET 1
414 #define IT_ID_NOT_SET 0
415 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
416 {
417 if (it_id_set) {
418 unsigned long flags;
419 spin_lock_irqsave(&idr_lock, flags);
420 idr_remove(&posix_timers_id, tmr->it_id);
421 spin_unlock_irqrestore(&idr_lock, flags);
422 }
423 sigqueue_free(tmr->sigq);
424 if (unlikely(tmr->it_process) &&
425 tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
426 put_task_struct(tmr->it_process);
427 kmem_cache_free(posix_timers_cache, tmr);
428 }
429
430 /* Create a POSIX.1b interval timer. */
431
432 asmlinkage long
433 sys_timer_create(const clockid_t which_clock,
434 struct sigevent __user *timer_event_spec,
435 timer_t __user * created_timer_id)
436 {
437 int error = 0;
438 struct k_itimer *new_timer = NULL;
439 int new_timer_id;
440 struct task_struct *process = NULL;
441 unsigned long flags;
442 sigevent_t event;
443 int it_id_set = IT_ID_NOT_SET;
444
445 if (invalid_clockid(which_clock))
446 return -EINVAL;
447
448 new_timer = alloc_posix_timer();
449 if (unlikely(!new_timer))
450 return -EAGAIN;
451
452 spin_lock_init(&new_timer->it_lock);
453 retry:
454 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
455 error = -EAGAIN;
456 goto out;
457 }
458 spin_lock_irq(&idr_lock);
459 error = idr_get_new(&posix_timers_id, (void *) new_timer,
460 &new_timer_id);
461 spin_unlock_irq(&idr_lock);
462 if (error == -EAGAIN)
463 goto retry;
464 else if (error) {
465 /*
466 * Wierd looking, but we return EAGAIN if the IDR is
467 * full (proper POSIX return value for this)
468 */
469 error = -EAGAIN;
470 goto out;
471 }
472
473 it_id_set = IT_ID_SET;
474 new_timer->it_id = (timer_t) new_timer_id;
475 new_timer->it_clock = which_clock;
476 new_timer->it_overrun = -1;
477 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
478 if (error)
479 goto out;
480
481 /*
482 * return the timer_id now. The next step is hard to
483 * back out if there is an error.
484 */
485 if (copy_to_user(created_timer_id,
486 &new_timer_id, sizeof (new_timer_id))) {
487 error = -EFAULT;
488 goto out;
489 }
490 if (timer_event_spec) {
491 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
492 error = -EFAULT;
493 goto out;
494 }
495 new_timer->it_sigev_notify = event.sigev_notify;
496 new_timer->it_sigev_signo = event.sigev_signo;
497 new_timer->it_sigev_value = event.sigev_value;
498
499 read_lock(&tasklist_lock);
500 if ((process = good_sigevent(&event))) {
501 /*
502 * We may be setting up this process for another
503 * thread. It may be exiting. To catch this
504 * case the we check the PF_EXITING flag. If
505 * the flag is not set, the siglock will catch
506 * him before it is too late (in exit_itimers).
507 *
508 * The exec case is a bit more invloved but easy
509 * to code. If the process is in our thread
510 * group (and it must be or we would not allow
511 * it here) and is doing an exec, it will cause
512 * us to be killed. In this case it will wait
513 * for us to die which means we can finish this
514 * linkage with our last gasp. I.e. no code :)
515 */
516 spin_lock_irqsave(&process->sighand->siglock, flags);
517 if (!(process->flags & PF_EXITING)) {
518 new_timer->it_process = process;
519 list_add(&new_timer->list,
520 &process->signal->posix_timers);
521 spin_unlock_irqrestore(&process->sighand->siglock, flags);
522 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
523 get_task_struct(process);
524 } else {
525 spin_unlock_irqrestore(&process->sighand->siglock, flags);
526 process = NULL;
527 }
528 }
529 read_unlock(&tasklist_lock);
530 if (!process) {
531 error = -EINVAL;
532 goto out;
533 }
534 } else {
535 new_timer->it_sigev_notify = SIGEV_SIGNAL;
536 new_timer->it_sigev_signo = SIGALRM;
537 new_timer->it_sigev_value.sival_int = new_timer->it_id;
538 process = current->group_leader;
539 spin_lock_irqsave(&process->sighand->siglock, flags);
540 new_timer->it_process = process;
541 list_add(&new_timer->list, &process->signal->posix_timers);
542 spin_unlock_irqrestore(&process->sighand->siglock, flags);
543 }
544
545 /*
546 * In the case of the timer belonging to another task, after
547 * the task is unlocked, the timer is owned by the other task
548 * and may cease to exist at any time. Don't use or modify
549 * new_timer after the unlock call.
550 */
551
552 out:
553 if (error)
554 release_posix_timer(new_timer, it_id_set);
555
556 return error;
557 }
558
559 /*
560 * Locking issues: We need to protect the result of the id look up until
561 * we get the timer locked down so it is not deleted under us. The
562 * removal is done under the idr spinlock so we use that here to bridge
563 * the find to the timer lock. To avoid a dead lock, the timer id MUST
564 * be release with out holding the timer lock.
565 */
566 static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
567 {
568 struct k_itimer *timr;
569 /*
570 * Watch out here. We do a irqsave on the idr_lock and pass the
571 * flags part over to the timer lock. Must not let interrupts in
572 * while we are moving the lock.
573 */
574
575 spin_lock_irqsave(&idr_lock, *flags);
576 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
577 if (timr) {
578 spin_lock(&timr->it_lock);
579 spin_unlock(&idr_lock);
580
581 if ((timr->it_id != timer_id) || !(timr->it_process) ||
582 timr->it_process->tgid != current->tgid) {
583 unlock_timer(timr, *flags);
584 timr = NULL;
585 }
586 } else
587 spin_unlock_irqrestore(&idr_lock, *flags);
588
589 return timr;
590 }
591
592 /*
593 * Get the time remaining on a POSIX.1b interval timer. This function
594 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
595 * mess with irq.
596 *
597 * We have a couple of messes to clean up here. First there is the case
598 * of a timer that has a requeue pending. These timers should appear to
599 * be in the timer list with an expiry as if we were to requeue them
600 * now.
601 *
602 * The second issue is the SIGEV_NONE timer which may be active but is
603 * not really ever put in the timer list (to save system resources).
604 * This timer may be expired, and if so, we will do it here. Otherwise
605 * it is the same as a requeue pending timer WRT to what we should
606 * report.
607 */
608 static void
609 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
610 {
611 ktime_t now, remaining, iv;
612 struct hrtimer *timer = &timr->it.real.timer;
613
614 memset(cur_setting, 0, sizeof(struct itimerspec));
615
616 iv = timr->it.real.interval;
617
618 /* interval timer ? */
619 if (iv.tv64)
620 cur_setting->it_interval = ktime_to_timespec(iv);
621 else if (!hrtimer_active(timer) &&
622 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
623 return;
624
625 now = timer->base->get_time();
626
627 /*
628 * When a requeue is pending or this is a SIGEV_NONE
629 * timer move the expiry time forward by intervals, so
630 * expiry is > now.
631 */
632 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
633 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
634 timr->it_overrun += hrtimer_forward(timer, now, iv);
635
636 remaining = ktime_sub(timer->expires, now);
637 /* Return 0 only, when the timer is expired and not pending */
638 if (remaining.tv64 <= 0) {
639 /*
640 * A single shot SIGEV_NONE timer must return 0, when
641 * it is expired !
642 */
643 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
644 cur_setting->it_value.tv_nsec = 1;
645 } else
646 cur_setting->it_value = ktime_to_timespec(remaining);
647 }
648
649 /* Get the time remaining on a POSIX.1b interval timer. */
650 asmlinkage long
651 sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
652 {
653 struct k_itimer *timr;
654 struct itimerspec cur_setting;
655 unsigned long flags;
656
657 timr = lock_timer(timer_id, &flags);
658 if (!timr)
659 return -EINVAL;
660
661 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
662
663 unlock_timer(timr, flags);
664
665 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
666 return -EFAULT;
667
668 return 0;
669 }
670
671 /*
672 * Get the number of overruns of a POSIX.1b interval timer. This is to
673 * be the overrun of the timer last delivered. At the same time we are
674 * accumulating overruns on the next timer. The overrun is frozen when
675 * the signal is delivered, either at the notify time (if the info block
676 * is not queued) or at the actual delivery time (as we are informed by
677 * the call back to do_schedule_next_timer(). So all we need to do is
678 * to pick up the frozen overrun.
679 */
680 asmlinkage long
681 sys_timer_getoverrun(timer_t timer_id)
682 {
683 struct k_itimer *timr;
684 int overrun;
685 long flags;
686
687 timr = lock_timer(timer_id, &flags);
688 if (!timr)
689 return -EINVAL;
690
691 overrun = timr->it_overrun_last;
692 unlock_timer(timr, flags);
693
694 return overrun;
695 }
696
697 /* Set a POSIX.1b interval timer. */
698 /* timr->it_lock is taken. */
699 static int
700 common_timer_set(struct k_itimer *timr, int flags,
701 struct itimerspec *new_setting, struct itimerspec *old_setting)
702 {
703 struct hrtimer *timer = &timr->it.real.timer;
704 enum hrtimer_mode mode;
705
706 if (old_setting)
707 common_timer_get(timr, old_setting);
708
709 /* disable the timer */
710 timr->it.real.interval.tv64 = 0;
711 /*
712 * careful here. If smp we could be in the "fire" routine which will
713 * be spinning as we hold the lock. But this is ONLY an SMP issue.
714 */
715 if (hrtimer_try_to_cancel(timer) < 0)
716 return TIMER_RETRY;
717
718 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
719 ~REQUEUE_PENDING;
720 timr->it_overrun_last = 0;
721
722 /* switch off the timer when it_value is zero */
723 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
724 return 0;
725
726 mode = flags & TIMER_ABSTIME ? HRTIMER_ABS : HRTIMER_REL;
727 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
728 timr->it.real.timer.data = timr;
729 timr->it.real.timer.function = posix_timer_fn;
730
731 timer->expires = timespec_to_ktime(new_setting->it_value);
732
733 /* Convert interval */
734 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
735
736 /* SIGEV_NONE timers are not queued ! See common_timer_get */
737 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
738 /* Setup correct expiry time for relative timers */
739 if (mode == HRTIMER_REL)
740 timer->expires = ktime_add(timer->expires,
741 timer->base->get_time());
742 return 0;
743 }
744
745 hrtimer_start(timer, timer->expires, mode);
746 return 0;
747 }
748
749 /* Set a POSIX.1b interval timer */
750 asmlinkage long
751 sys_timer_settime(timer_t timer_id, int flags,
752 const struct itimerspec __user *new_setting,
753 struct itimerspec __user *old_setting)
754 {
755 struct k_itimer *timr;
756 struct itimerspec new_spec, old_spec;
757 int error = 0;
758 long flag;
759 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
760
761 if (!new_setting)
762 return -EINVAL;
763
764 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
765 return -EFAULT;
766
767 if (!timespec_valid(&new_spec.it_interval) ||
768 !timespec_valid(&new_spec.it_value))
769 return -EINVAL;
770 retry:
771 timr = lock_timer(timer_id, &flag);
772 if (!timr)
773 return -EINVAL;
774
775 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
776 (timr, flags, &new_spec, rtn));
777
778 unlock_timer(timr, flag);
779 if (error == TIMER_RETRY) {
780 rtn = NULL; // We already got the old time...
781 goto retry;
782 }
783
784 if (old_setting && !error &&
785 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
786 error = -EFAULT;
787
788 return error;
789 }
790
791 static inline int common_timer_del(struct k_itimer *timer)
792 {
793 timer->it.real.interval.tv64 = 0;
794
795 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
796 return TIMER_RETRY;
797 return 0;
798 }
799
800 static inline int timer_delete_hook(struct k_itimer *timer)
801 {
802 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
803 }
804
805 /* Delete a POSIX.1b interval timer. */
806 asmlinkage long
807 sys_timer_delete(timer_t timer_id)
808 {
809 struct k_itimer *timer;
810 long flags;
811
812 retry_delete:
813 timer = lock_timer(timer_id, &flags);
814 if (!timer)
815 return -EINVAL;
816
817 if (timer_delete_hook(timer) == TIMER_RETRY) {
818 unlock_timer(timer, flags);
819 goto retry_delete;
820 }
821
822 spin_lock(&current->sighand->siglock);
823 list_del(&timer->list);
824 spin_unlock(&current->sighand->siglock);
825 /*
826 * This keeps any tasks waiting on the spin lock from thinking
827 * they got something (see the lock code above).
828 */
829 if (timer->it_process) {
830 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
831 put_task_struct(timer->it_process);
832 timer->it_process = NULL;
833 }
834 unlock_timer(timer, flags);
835 release_posix_timer(timer, IT_ID_SET);
836 return 0;
837 }
838
839 /*
840 * return timer owned by the process, used by exit_itimers
841 */
842 static void itimer_delete(struct k_itimer *timer)
843 {
844 unsigned long flags;
845
846 retry_delete:
847 spin_lock_irqsave(&timer->it_lock, flags);
848
849 if (timer_delete_hook(timer) == TIMER_RETRY) {
850 unlock_timer(timer, flags);
851 goto retry_delete;
852 }
853 list_del(&timer->list);
854 /*
855 * This keeps any tasks waiting on the spin lock from thinking
856 * they got something (see the lock code above).
857 */
858 if (timer->it_process) {
859 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
860 put_task_struct(timer->it_process);
861 timer->it_process = NULL;
862 }
863 unlock_timer(timer, flags);
864 release_posix_timer(timer, IT_ID_SET);
865 }
866
867 /*
868 * This is called by do_exit or de_thread, only when there are no more
869 * references to the shared signal_struct.
870 */
871 void exit_itimers(struct signal_struct *sig)
872 {
873 struct k_itimer *tmr;
874
875 while (!list_empty(&sig->posix_timers)) {
876 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
877 itimer_delete(tmr);
878 }
879 }
880
881 /* Not available / possible... functions */
882 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
883 {
884 return -EINVAL;
885 }
886 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
887
888 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
889 struct timespec *t, struct timespec __user *r)
890 {
891 #ifndef ENOTSUP
892 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
893 #else /* parisc does define it separately. */
894 return -ENOTSUP;
895 #endif
896 }
897 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
898
899 asmlinkage long sys_clock_settime(const clockid_t which_clock,
900 const struct timespec __user *tp)
901 {
902 struct timespec new_tp;
903
904 if (invalid_clockid(which_clock))
905 return -EINVAL;
906 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
907 return -EFAULT;
908
909 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
910 }
911
912 asmlinkage long
913 sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
914 {
915 struct timespec kernel_tp;
916 int error;
917
918 if (invalid_clockid(which_clock))
919 return -EINVAL;
920 error = CLOCK_DISPATCH(which_clock, clock_get,
921 (which_clock, &kernel_tp));
922 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
923 error = -EFAULT;
924
925 return error;
926
927 }
928
929 asmlinkage long
930 sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
931 {
932 struct timespec rtn_tp;
933 int error;
934
935 if (invalid_clockid(which_clock))
936 return -EINVAL;
937
938 error = CLOCK_DISPATCH(which_clock, clock_getres,
939 (which_clock, &rtn_tp));
940
941 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
942 error = -EFAULT;
943 }
944
945 return error;
946 }
947
948 /*
949 * nanosleep for monotonic and realtime clocks
950 */
951 static int common_nsleep(const clockid_t which_clock, int flags,
952 struct timespec *tsave, struct timespec __user *rmtp)
953 {
954 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
955 HRTIMER_ABS : HRTIMER_REL, which_clock);
956 }
957
958 asmlinkage long
959 sys_clock_nanosleep(const clockid_t which_clock, int flags,
960 const struct timespec __user *rqtp,
961 struct timespec __user *rmtp)
962 {
963 struct timespec t;
964
965 if (invalid_clockid(which_clock))
966 return -EINVAL;
967
968 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
969 return -EFAULT;
970
971 if (!timespec_valid(&t))
972 return -EINVAL;
973
974 return CLOCK_DISPATCH(which_clock, nsleep,
975 (which_clock, flags, &t, rmtp));
976 }
This page took 0.065073 seconds and 6 git commands to generate.