drbd: Remove unused parameter of wire_flags_to_bio()
[deliverable/linux.git] / kernel / power / snapshot.c
1 /*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <asm/io.h>
36
37 #include "power.h"
38
39 static int swsusp_page_is_free(struct page *);
40 static void swsusp_set_page_forbidden(struct page *);
41 static void swsusp_unset_page_forbidden(struct page *);
42
43 /*
44 * Number of bytes to reserve for memory allocations made by device drivers
45 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46 * cause image creation to fail (tunable via /sys/power/reserved_size).
47 */
48 unsigned long reserved_size;
49
50 void __init hibernate_reserved_size_init(void)
51 {
52 reserved_size = SPARE_PAGES * PAGE_SIZE;
53 }
54
55 /*
56 * Preferred image size in bytes (tunable via /sys/power/image_size).
57 * When it is set to N, swsusp will do its best to ensure the image
58 * size will not exceed N bytes, but if that is impossible, it will
59 * try to create the smallest image possible.
60 */
61 unsigned long image_size;
62
63 void __init hibernate_image_size_init(void)
64 {
65 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
66 }
67
68 /* List of PBEs needed for restoring the pages that were allocated before
69 * the suspend and included in the suspend image, but have also been
70 * allocated by the "resume" kernel, so their contents cannot be written
71 * directly to their "original" page frames.
72 */
73 struct pbe *restore_pblist;
74
75 /* Pointer to an auxiliary buffer (1 page) */
76 static void *buffer;
77
78 /**
79 * @safe_needed - on resume, for storing the PBE list and the image,
80 * we can only use memory pages that do not conflict with the pages
81 * used before suspend. The unsafe pages have PageNosaveFree set
82 * and we count them using unsafe_pages.
83 *
84 * Each allocated image page is marked as PageNosave and PageNosaveFree
85 * so that swsusp_free() can release it.
86 */
87
88 #define PG_ANY 0
89 #define PG_SAFE 1
90 #define PG_UNSAFE_CLEAR 1
91 #define PG_UNSAFE_KEEP 0
92
93 static unsigned int allocated_unsafe_pages;
94
95 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
96 {
97 void *res;
98
99 res = (void *)get_zeroed_page(gfp_mask);
100 if (safe_needed)
101 while (res && swsusp_page_is_free(virt_to_page(res))) {
102 /* The page is unsafe, mark it for swsusp_free() */
103 swsusp_set_page_forbidden(virt_to_page(res));
104 allocated_unsafe_pages++;
105 res = (void *)get_zeroed_page(gfp_mask);
106 }
107 if (res) {
108 swsusp_set_page_forbidden(virt_to_page(res));
109 swsusp_set_page_free(virt_to_page(res));
110 }
111 return res;
112 }
113
114 unsigned long get_safe_page(gfp_t gfp_mask)
115 {
116 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117 }
118
119 static struct page *alloc_image_page(gfp_t gfp_mask)
120 {
121 struct page *page;
122
123 page = alloc_page(gfp_mask);
124 if (page) {
125 swsusp_set_page_forbidden(page);
126 swsusp_set_page_free(page);
127 }
128 return page;
129 }
130
131 /**
132 * free_image_page - free page represented by @addr, allocated with
133 * get_image_page (page flags set by it must be cleared)
134 */
135
136 static inline void free_image_page(void *addr, int clear_nosave_free)
137 {
138 struct page *page;
139
140 BUG_ON(!virt_addr_valid(addr));
141
142 page = virt_to_page(addr);
143
144 swsusp_unset_page_forbidden(page);
145 if (clear_nosave_free)
146 swsusp_unset_page_free(page);
147
148 __free_page(page);
149 }
150
151 /* struct linked_page is used to build chains of pages */
152
153 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
154
155 struct linked_page {
156 struct linked_page *next;
157 char data[LINKED_PAGE_DATA_SIZE];
158 } __attribute__((packed));
159
160 static inline void
161 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162 {
163 while (list) {
164 struct linked_page *lp = list->next;
165
166 free_image_page(list, clear_page_nosave);
167 list = lp;
168 }
169 }
170
171 /**
172 * struct chain_allocator is used for allocating small objects out of
173 * a linked list of pages called 'the chain'.
174 *
175 * The chain grows each time when there is no room for a new object in
176 * the current page. The allocated objects cannot be freed individually.
177 * It is only possible to free them all at once, by freeing the entire
178 * chain.
179 *
180 * NOTE: The chain allocator may be inefficient if the allocated objects
181 * are not much smaller than PAGE_SIZE.
182 */
183
184 struct chain_allocator {
185 struct linked_page *chain; /* the chain */
186 unsigned int used_space; /* total size of objects allocated out
187 * of the current page
188 */
189 gfp_t gfp_mask; /* mask for allocating pages */
190 int safe_needed; /* if set, only "safe" pages are allocated */
191 };
192
193 static void
194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195 {
196 ca->chain = NULL;
197 ca->used_space = LINKED_PAGE_DATA_SIZE;
198 ca->gfp_mask = gfp_mask;
199 ca->safe_needed = safe_needed;
200 }
201
202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203 {
204 void *ret;
205
206 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207 struct linked_page *lp;
208
209 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
210 if (!lp)
211 return NULL;
212
213 lp->next = ca->chain;
214 ca->chain = lp;
215 ca->used_space = 0;
216 }
217 ret = ca->chain->data + ca->used_space;
218 ca->used_space += size;
219 return ret;
220 }
221
222 /**
223 * Data types related to memory bitmaps.
224 *
225 * Memory bitmap is a structure consiting of many linked lists of
226 * objects. The main list's elements are of type struct zone_bitmap
227 * and each of them corresonds to one zone. For each zone bitmap
228 * object there is a list of objects of type struct bm_block that
229 * represent each blocks of bitmap in which information is stored.
230 *
231 * struct memory_bitmap contains a pointer to the main list of zone
232 * bitmap objects, a struct bm_position used for browsing the bitmap,
233 * and a pointer to the list of pages used for allocating all of the
234 * zone bitmap objects and bitmap block objects.
235 *
236 * NOTE: It has to be possible to lay out the bitmap in memory
237 * using only allocations of order 0. Additionally, the bitmap is
238 * designed to work with arbitrary number of zones (this is over the
239 * top for now, but let's avoid making unnecessary assumptions ;-).
240 *
241 * struct zone_bitmap contains a pointer to a list of bitmap block
242 * objects and a pointer to the bitmap block object that has been
243 * most recently used for setting bits. Additionally, it contains the
244 * pfns that correspond to the start and end of the represented zone.
245 *
246 * struct bm_block contains a pointer to the memory page in which
247 * information is stored (in the form of a block of bitmap)
248 * It also contains the pfns that correspond to the start and end of
249 * the represented memory area.
250 */
251
252 #define BM_END_OF_MAP (~0UL)
253
254 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
255
256 struct bm_block {
257 struct list_head hook; /* hook into a list of bitmap blocks */
258 unsigned long start_pfn; /* pfn represented by the first bit */
259 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
260 unsigned long *data; /* bitmap representing pages */
261 };
262
263 static inline unsigned long bm_block_bits(struct bm_block *bb)
264 {
265 return bb->end_pfn - bb->start_pfn;
266 }
267
268 /* strcut bm_position is used for browsing memory bitmaps */
269
270 struct bm_position {
271 struct bm_block *block;
272 int bit;
273 };
274
275 struct memory_bitmap {
276 struct list_head blocks; /* list of bitmap blocks */
277 struct linked_page *p_list; /* list of pages used to store zone
278 * bitmap objects and bitmap block
279 * objects
280 */
281 struct bm_position cur; /* most recently used bit position */
282 };
283
284 /* Functions that operate on memory bitmaps */
285
286 static void memory_bm_position_reset(struct memory_bitmap *bm)
287 {
288 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
289 bm->cur.bit = 0;
290 }
291
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293
294 /**
295 * create_bm_block_list - create a list of block bitmap objects
296 * @pages - number of pages to track
297 * @list - list to put the allocated blocks into
298 * @ca - chain allocator to be used for allocating memory
299 */
300 static int create_bm_block_list(unsigned long pages,
301 struct list_head *list,
302 struct chain_allocator *ca)
303 {
304 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
305
306 while (nr_blocks-- > 0) {
307 struct bm_block *bb;
308
309 bb = chain_alloc(ca, sizeof(struct bm_block));
310 if (!bb)
311 return -ENOMEM;
312 list_add(&bb->hook, list);
313 }
314
315 return 0;
316 }
317
318 struct mem_extent {
319 struct list_head hook;
320 unsigned long start;
321 unsigned long end;
322 };
323
324 /**
325 * free_mem_extents - free a list of memory extents
326 * @list - list of extents to empty
327 */
328 static void free_mem_extents(struct list_head *list)
329 {
330 struct mem_extent *ext, *aux;
331
332 list_for_each_entry_safe(ext, aux, list, hook) {
333 list_del(&ext->hook);
334 kfree(ext);
335 }
336 }
337
338 /**
339 * create_mem_extents - create a list of memory extents representing
340 * contiguous ranges of PFNs
341 * @list - list to put the extents into
342 * @gfp_mask - mask to use for memory allocations
343 */
344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
345 {
346 struct zone *zone;
347
348 INIT_LIST_HEAD(list);
349
350 for_each_populated_zone(zone) {
351 unsigned long zone_start, zone_end;
352 struct mem_extent *ext, *cur, *aux;
353
354 zone_start = zone->zone_start_pfn;
355 zone_end = zone_end_pfn(zone);
356
357 list_for_each_entry(ext, list, hook)
358 if (zone_start <= ext->end)
359 break;
360
361 if (&ext->hook == list || zone_end < ext->start) {
362 /* New extent is necessary */
363 struct mem_extent *new_ext;
364
365 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366 if (!new_ext) {
367 free_mem_extents(list);
368 return -ENOMEM;
369 }
370 new_ext->start = zone_start;
371 new_ext->end = zone_end;
372 list_add_tail(&new_ext->hook, &ext->hook);
373 continue;
374 }
375
376 /* Merge this zone's range of PFNs with the existing one */
377 if (zone_start < ext->start)
378 ext->start = zone_start;
379 if (zone_end > ext->end)
380 ext->end = zone_end;
381
382 /* More merging may be possible */
383 cur = ext;
384 list_for_each_entry_safe_continue(cur, aux, list, hook) {
385 if (zone_end < cur->start)
386 break;
387 if (zone_end < cur->end)
388 ext->end = cur->end;
389 list_del(&cur->hook);
390 kfree(cur);
391 }
392 }
393
394 return 0;
395 }
396
397 /**
398 * memory_bm_create - allocate memory for a memory bitmap
399 */
400 static int
401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402 {
403 struct chain_allocator ca;
404 struct list_head mem_extents;
405 struct mem_extent *ext;
406 int error;
407
408 chain_init(&ca, gfp_mask, safe_needed);
409 INIT_LIST_HEAD(&bm->blocks);
410
411 error = create_mem_extents(&mem_extents, gfp_mask);
412 if (error)
413 return error;
414
415 list_for_each_entry(ext, &mem_extents, hook) {
416 struct bm_block *bb;
417 unsigned long pfn = ext->start;
418 unsigned long pages = ext->end - ext->start;
419
420 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
421
422 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423 if (error)
424 goto Error;
425
426 list_for_each_entry_continue(bb, &bm->blocks, hook) {
427 bb->data = get_image_page(gfp_mask, safe_needed);
428 if (!bb->data) {
429 error = -ENOMEM;
430 goto Error;
431 }
432
433 bb->start_pfn = pfn;
434 if (pages >= BM_BITS_PER_BLOCK) {
435 pfn += BM_BITS_PER_BLOCK;
436 pages -= BM_BITS_PER_BLOCK;
437 } else {
438 /* This is executed only once in the loop */
439 pfn += pages;
440 }
441 bb->end_pfn = pfn;
442 }
443 }
444
445 bm->p_list = ca.chain;
446 memory_bm_position_reset(bm);
447 Exit:
448 free_mem_extents(&mem_extents);
449 return error;
450
451 Error:
452 bm->p_list = ca.chain;
453 memory_bm_free(bm, PG_UNSAFE_CLEAR);
454 goto Exit;
455 }
456
457 /**
458 * memory_bm_free - free memory occupied by the memory bitmap @bm
459 */
460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461 {
462 struct bm_block *bb;
463
464 list_for_each_entry(bb, &bm->blocks, hook)
465 if (bb->data)
466 free_image_page(bb->data, clear_nosave_free);
467
468 free_list_of_pages(bm->p_list, clear_nosave_free);
469
470 INIT_LIST_HEAD(&bm->blocks);
471 }
472
473 /**
474 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
475 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
476 * of @bm->cur_zone_bm are updated.
477 */
478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
479 void **addr, unsigned int *bit_nr)
480 {
481 struct bm_block *bb;
482
483 /*
484 * Check if the pfn corresponds to the current bitmap block and find
485 * the block where it fits if this is not the case.
486 */
487 bb = bm->cur.block;
488 if (pfn < bb->start_pfn)
489 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490 if (pfn >= bb->start_pfn)
491 break;
492
493 if (pfn >= bb->end_pfn)
494 list_for_each_entry_continue(bb, &bm->blocks, hook)
495 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496 break;
497
498 if (&bb->hook == &bm->blocks)
499 return -EFAULT;
500
501 /* The block has been found */
502 bm->cur.block = bb;
503 pfn -= bb->start_pfn;
504 bm->cur.bit = pfn + 1;
505 *bit_nr = pfn;
506 *addr = bb->data;
507 return 0;
508 }
509
510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511 {
512 void *addr;
513 unsigned int bit;
514 int error;
515
516 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517 BUG_ON(error);
518 set_bit(bit, addr);
519 }
520
521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522 {
523 void *addr;
524 unsigned int bit;
525 int error;
526
527 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528 if (!error)
529 set_bit(bit, addr);
530 return error;
531 }
532
533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534 {
535 void *addr;
536 unsigned int bit;
537 int error;
538
539 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540 BUG_ON(error);
541 clear_bit(bit, addr);
542 }
543
544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545 {
546 void *addr;
547 unsigned int bit;
548 int error;
549
550 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551 BUG_ON(error);
552 return test_bit(bit, addr);
553 }
554
555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556 {
557 void *addr;
558 unsigned int bit;
559
560 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561 }
562
563 /**
564 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
566 * returned.
567 *
568 * It is required to run memory_bm_position_reset() before the first call to
569 * this function.
570 */
571
572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573 {
574 struct bm_block *bb;
575 int bit;
576
577 bb = bm->cur.block;
578 do {
579 bit = bm->cur.bit;
580 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581 if (bit < bm_block_bits(bb))
582 goto Return_pfn;
583
584 bb = list_entry(bb->hook.next, struct bm_block, hook);
585 bm->cur.block = bb;
586 bm->cur.bit = 0;
587 } while (&bb->hook != &bm->blocks);
588
589 memory_bm_position_reset(bm);
590 return BM_END_OF_MAP;
591
592 Return_pfn:
593 bm->cur.bit = bit + 1;
594 return bb->start_pfn + bit;
595 }
596
597 /**
598 * This structure represents a range of page frames the contents of which
599 * should not be saved during the suspend.
600 */
601
602 struct nosave_region {
603 struct list_head list;
604 unsigned long start_pfn;
605 unsigned long end_pfn;
606 };
607
608 static LIST_HEAD(nosave_regions);
609
610 /**
611 * register_nosave_region - register a range of page frames the contents
612 * of which should not be saved during the suspend (to be used in the early
613 * initialization code)
614 */
615
616 void __init
617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618 int use_kmalloc)
619 {
620 struct nosave_region *region;
621
622 if (start_pfn >= end_pfn)
623 return;
624
625 if (!list_empty(&nosave_regions)) {
626 /* Try to extend the previous region (they should be sorted) */
627 region = list_entry(nosave_regions.prev,
628 struct nosave_region, list);
629 if (region->end_pfn == start_pfn) {
630 region->end_pfn = end_pfn;
631 goto Report;
632 }
633 }
634 if (use_kmalloc) {
635 /* during init, this shouldn't fail */
636 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637 BUG_ON(!region);
638 } else
639 /* This allocation cannot fail */
640 region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
641 region->start_pfn = start_pfn;
642 region->end_pfn = end_pfn;
643 list_add_tail(&region->list, &nosave_regions);
644 Report:
645 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
646 (unsigned long long) start_pfn << PAGE_SHIFT,
647 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
648 }
649
650 /*
651 * Set bits in this map correspond to the page frames the contents of which
652 * should not be saved during the suspend.
653 */
654 static struct memory_bitmap *forbidden_pages_map;
655
656 /* Set bits in this map correspond to free page frames. */
657 static struct memory_bitmap *free_pages_map;
658
659 /*
660 * Each page frame allocated for creating the image is marked by setting the
661 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
662 */
663
664 void swsusp_set_page_free(struct page *page)
665 {
666 if (free_pages_map)
667 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
668 }
669
670 static int swsusp_page_is_free(struct page *page)
671 {
672 return free_pages_map ?
673 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
674 }
675
676 void swsusp_unset_page_free(struct page *page)
677 {
678 if (free_pages_map)
679 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
680 }
681
682 static void swsusp_set_page_forbidden(struct page *page)
683 {
684 if (forbidden_pages_map)
685 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
686 }
687
688 int swsusp_page_is_forbidden(struct page *page)
689 {
690 return forbidden_pages_map ?
691 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
692 }
693
694 static void swsusp_unset_page_forbidden(struct page *page)
695 {
696 if (forbidden_pages_map)
697 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
698 }
699
700 /**
701 * mark_nosave_pages - set bits corresponding to the page frames the
702 * contents of which should not be saved in a given bitmap.
703 */
704
705 static void mark_nosave_pages(struct memory_bitmap *bm)
706 {
707 struct nosave_region *region;
708
709 if (list_empty(&nosave_regions))
710 return;
711
712 list_for_each_entry(region, &nosave_regions, list) {
713 unsigned long pfn;
714
715 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
716 (unsigned long long) region->start_pfn << PAGE_SHIFT,
717 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
718 - 1);
719
720 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
721 if (pfn_valid(pfn)) {
722 /*
723 * It is safe to ignore the result of
724 * mem_bm_set_bit_check() here, since we won't
725 * touch the PFNs for which the error is
726 * returned anyway.
727 */
728 mem_bm_set_bit_check(bm, pfn);
729 }
730 }
731 }
732
733 /**
734 * create_basic_memory_bitmaps - create bitmaps needed for marking page
735 * frames that should not be saved and free page frames. The pointers
736 * forbidden_pages_map and free_pages_map are only modified if everything
737 * goes well, because we don't want the bits to be used before both bitmaps
738 * are set up.
739 */
740
741 int create_basic_memory_bitmaps(void)
742 {
743 struct memory_bitmap *bm1, *bm2;
744 int error = 0;
745
746 if (forbidden_pages_map && free_pages_map)
747 return 0;
748 else
749 BUG_ON(forbidden_pages_map || free_pages_map);
750
751 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
752 if (!bm1)
753 return -ENOMEM;
754
755 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
756 if (error)
757 goto Free_first_object;
758
759 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
760 if (!bm2)
761 goto Free_first_bitmap;
762
763 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
764 if (error)
765 goto Free_second_object;
766
767 forbidden_pages_map = bm1;
768 free_pages_map = bm2;
769 mark_nosave_pages(forbidden_pages_map);
770
771 pr_debug("PM: Basic memory bitmaps created\n");
772
773 return 0;
774
775 Free_second_object:
776 kfree(bm2);
777 Free_first_bitmap:
778 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
779 Free_first_object:
780 kfree(bm1);
781 return -ENOMEM;
782 }
783
784 /**
785 * free_basic_memory_bitmaps - free memory bitmaps allocated by
786 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
787 * so that the bitmaps themselves are not referred to while they are being
788 * freed.
789 */
790
791 void free_basic_memory_bitmaps(void)
792 {
793 struct memory_bitmap *bm1, *bm2;
794
795 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
796 return;
797
798 bm1 = forbidden_pages_map;
799 bm2 = free_pages_map;
800 forbidden_pages_map = NULL;
801 free_pages_map = NULL;
802 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
803 kfree(bm1);
804 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
805 kfree(bm2);
806
807 pr_debug("PM: Basic memory bitmaps freed\n");
808 }
809
810 /**
811 * snapshot_additional_pages - estimate the number of additional pages
812 * be needed for setting up the suspend image data structures for given
813 * zone (usually the returned value is greater than the exact number)
814 */
815
816 unsigned int snapshot_additional_pages(struct zone *zone)
817 {
818 unsigned int res;
819
820 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
821 res += DIV_ROUND_UP(res * sizeof(struct bm_block),
822 LINKED_PAGE_DATA_SIZE);
823 return 2 * res;
824 }
825
826 #ifdef CONFIG_HIGHMEM
827 /**
828 * count_free_highmem_pages - compute the total number of free highmem
829 * pages, system-wide.
830 */
831
832 static unsigned int count_free_highmem_pages(void)
833 {
834 struct zone *zone;
835 unsigned int cnt = 0;
836
837 for_each_populated_zone(zone)
838 if (is_highmem(zone))
839 cnt += zone_page_state(zone, NR_FREE_PAGES);
840
841 return cnt;
842 }
843
844 /**
845 * saveable_highmem_page - Determine whether a highmem page should be
846 * included in the suspend image.
847 *
848 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
849 * and it isn't a part of a free chunk of pages.
850 */
851 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
852 {
853 struct page *page;
854
855 if (!pfn_valid(pfn))
856 return NULL;
857
858 page = pfn_to_page(pfn);
859 if (page_zone(page) != zone)
860 return NULL;
861
862 BUG_ON(!PageHighMem(page));
863
864 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
865 PageReserved(page))
866 return NULL;
867
868 if (page_is_guard(page))
869 return NULL;
870
871 return page;
872 }
873
874 /**
875 * count_highmem_pages - compute the total number of saveable highmem
876 * pages.
877 */
878
879 static unsigned int count_highmem_pages(void)
880 {
881 struct zone *zone;
882 unsigned int n = 0;
883
884 for_each_populated_zone(zone) {
885 unsigned long pfn, max_zone_pfn;
886
887 if (!is_highmem(zone))
888 continue;
889
890 mark_free_pages(zone);
891 max_zone_pfn = zone_end_pfn(zone);
892 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
893 if (saveable_highmem_page(zone, pfn))
894 n++;
895 }
896 return n;
897 }
898 #else
899 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
900 {
901 return NULL;
902 }
903 #endif /* CONFIG_HIGHMEM */
904
905 /**
906 * saveable_page - Determine whether a non-highmem page should be included
907 * in the suspend image.
908 *
909 * We should save the page if it isn't Nosave, and is not in the range
910 * of pages statically defined as 'unsaveable', and it isn't a part of
911 * a free chunk of pages.
912 */
913 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
914 {
915 struct page *page;
916
917 if (!pfn_valid(pfn))
918 return NULL;
919
920 page = pfn_to_page(pfn);
921 if (page_zone(page) != zone)
922 return NULL;
923
924 BUG_ON(PageHighMem(page));
925
926 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
927 return NULL;
928
929 if (PageReserved(page)
930 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
931 return NULL;
932
933 if (page_is_guard(page))
934 return NULL;
935
936 return page;
937 }
938
939 /**
940 * count_data_pages - compute the total number of saveable non-highmem
941 * pages.
942 */
943
944 static unsigned int count_data_pages(void)
945 {
946 struct zone *zone;
947 unsigned long pfn, max_zone_pfn;
948 unsigned int n = 0;
949
950 for_each_populated_zone(zone) {
951 if (is_highmem(zone))
952 continue;
953
954 mark_free_pages(zone);
955 max_zone_pfn = zone_end_pfn(zone);
956 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
957 if (saveable_page(zone, pfn))
958 n++;
959 }
960 return n;
961 }
962
963 /* This is needed, because copy_page and memcpy are not usable for copying
964 * task structs.
965 */
966 static inline void do_copy_page(long *dst, long *src)
967 {
968 int n;
969
970 for (n = PAGE_SIZE / sizeof(long); n; n--)
971 *dst++ = *src++;
972 }
973
974
975 /**
976 * safe_copy_page - check if the page we are going to copy is marked as
977 * present in the kernel page tables (this always is the case if
978 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
979 * kernel_page_present() always returns 'true').
980 */
981 static void safe_copy_page(void *dst, struct page *s_page)
982 {
983 if (kernel_page_present(s_page)) {
984 do_copy_page(dst, page_address(s_page));
985 } else {
986 kernel_map_pages(s_page, 1, 1);
987 do_copy_page(dst, page_address(s_page));
988 kernel_map_pages(s_page, 1, 0);
989 }
990 }
991
992
993 #ifdef CONFIG_HIGHMEM
994 static inline struct page *
995 page_is_saveable(struct zone *zone, unsigned long pfn)
996 {
997 return is_highmem(zone) ?
998 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
999 }
1000
1001 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1002 {
1003 struct page *s_page, *d_page;
1004 void *src, *dst;
1005
1006 s_page = pfn_to_page(src_pfn);
1007 d_page = pfn_to_page(dst_pfn);
1008 if (PageHighMem(s_page)) {
1009 src = kmap_atomic(s_page);
1010 dst = kmap_atomic(d_page);
1011 do_copy_page(dst, src);
1012 kunmap_atomic(dst);
1013 kunmap_atomic(src);
1014 } else {
1015 if (PageHighMem(d_page)) {
1016 /* Page pointed to by src may contain some kernel
1017 * data modified by kmap_atomic()
1018 */
1019 safe_copy_page(buffer, s_page);
1020 dst = kmap_atomic(d_page);
1021 copy_page(dst, buffer);
1022 kunmap_atomic(dst);
1023 } else {
1024 safe_copy_page(page_address(d_page), s_page);
1025 }
1026 }
1027 }
1028 #else
1029 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1030
1031 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1032 {
1033 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1034 pfn_to_page(src_pfn));
1035 }
1036 #endif /* CONFIG_HIGHMEM */
1037
1038 static void
1039 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1040 {
1041 struct zone *zone;
1042 unsigned long pfn;
1043
1044 for_each_populated_zone(zone) {
1045 unsigned long max_zone_pfn;
1046
1047 mark_free_pages(zone);
1048 max_zone_pfn = zone_end_pfn(zone);
1049 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1050 if (page_is_saveable(zone, pfn))
1051 memory_bm_set_bit(orig_bm, pfn);
1052 }
1053 memory_bm_position_reset(orig_bm);
1054 memory_bm_position_reset(copy_bm);
1055 for(;;) {
1056 pfn = memory_bm_next_pfn(orig_bm);
1057 if (unlikely(pfn == BM_END_OF_MAP))
1058 break;
1059 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1060 }
1061 }
1062
1063 /* Total number of image pages */
1064 static unsigned int nr_copy_pages;
1065 /* Number of pages needed for saving the original pfns of the image pages */
1066 static unsigned int nr_meta_pages;
1067 /*
1068 * Numbers of normal and highmem page frames allocated for hibernation image
1069 * before suspending devices.
1070 */
1071 unsigned int alloc_normal, alloc_highmem;
1072 /*
1073 * Memory bitmap used for marking saveable pages (during hibernation) or
1074 * hibernation image pages (during restore)
1075 */
1076 static struct memory_bitmap orig_bm;
1077 /*
1078 * Memory bitmap used during hibernation for marking allocated page frames that
1079 * will contain copies of saveable pages. During restore it is initially used
1080 * for marking hibernation image pages, but then the set bits from it are
1081 * duplicated in @orig_bm and it is released. On highmem systems it is next
1082 * used for marking "safe" highmem pages, but it has to be reinitialized for
1083 * this purpose.
1084 */
1085 static struct memory_bitmap copy_bm;
1086
1087 /**
1088 * swsusp_free - free pages allocated for the suspend.
1089 *
1090 * Suspend pages are alocated before the atomic copy is made, so we
1091 * need to release them after the resume.
1092 */
1093
1094 void swsusp_free(void)
1095 {
1096 struct zone *zone;
1097 unsigned long pfn, max_zone_pfn;
1098
1099 for_each_populated_zone(zone) {
1100 max_zone_pfn = zone_end_pfn(zone);
1101 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1102 if (pfn_valid(pfn)) {
1103 struct page *page = pfn_to_page(pfn);
1104
1105 if (swsusp_page_is_forbidden(page) &&
1106 swsusp_page_is_free(page)) {
1107 swsusp_unset_page_forbidden(page);
1108 swsusp_unset_page_free(page);
1109 __free_page(page);
1110 }
1111 }
1112 }
1113 nr_copy_pages = 0;
1114 nr_meta_pages = 0;
1115 restore_pblist = NULL;
1116 buffer = NULL;
1117 alloc_normal = 0;
1118 alloc_highmem = 0;
1119 }
1120
1121 /* Helper functions used for the shrinking of memory. */
1122
1123 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1124
1125 /**
1126 * preallocate_image_pages - Allocate a number of pages for hibernation image
1127 * @nr_pages: Number of page frames to allocate.
1128 * @mask: GFP flags to use for the allocation.
1129 *
1130 * Return value: Number of page frames actually allocated
1131 */
1132 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1133 {
1134 unsigned long nr_alloc = 0;
1135
1136 while (nr_pages > 0) {
1137 struct page *page;
1138
1139 page = alloc_image_page(mask);
1140 if (!page)
1141 break;
1142 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1143 if (PageHighMem(page))
1144 alloc_highmem++;
1145 else
1146 alloc_normal++;
1147 nr_pages--;
1148 nr_alloc++;
1149 }
1150
1151 return nr_alloc;
1152 }
1153
1154 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1155 unsigned long avail_normal)
1156 {
1157 unsigned long alloc;
1158
1159 if (avail_normal <= alloc_normal)
1160 return 0;
1161
1162 alloc = avail_normal - alloc_normal;
1163 if (nr_pages < alloc)
1164 alloc = nr_pages;
1165
1166 return preallocate_image_pages(alloc, GFP_IMAGE);
1167 }
1168
1169 #ifdef CONFIG_HIGHMEM
1170 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1171 {
1172 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1173 }
1174
1175 /**
1176 * __fraction - Compute (an approximation of) x * (multiplier / base)
1177 */
1178 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1179 {
1180 x *= multiplier;
1181 do_div(x, base);
1182 return (unsigned long)x;
1183 }
1184
1185 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1186 unsigned long highmem,
1187 unsigned long total)
1188 {
1189 unsigned long alloc = __fraction(nr_pages, highmem, total);
1190
1191 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1192 }
1193 #else /* CONFIG_HIGHMEM */
1194 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1195 {
1196 return 0;
1197 }
1198
1199 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1200 unsigned long highmem,
1201 unsigned long total)
1202 {
1203 return 0;
1204 }
1205 #endif /* CONFIG_HIGHMEM */
1206
1207 /**
1208 * free_unnecessary_pages - Release preallocated pages not needed for the image
1209 */
1210 static void free_unnecessary_pages(void)
1211 {
1212 unsigned long save, to_free_normal, to_free_highmem;
1213
1214 save = count_data_pages();
1215 if (alloc_normal >= save) {
1216 to_free_normal = alloc_normal - save;
1217 save = 0;
1218 } else {
1219 to_free_normal = 0;
1220 save -= alloc_normal;
1221 }
1222 save += count_highmem_pages();
1223 if (alloc_highmem >= save) {
1224 to_free_highmem = alloc_highmem - save;
1225 } else {
1226 to_free_highmem = 0;
1227 save -= alloc_highmem;
1228 if (to_free_normal > save)
1229 to_free_normal -= save;
1230 else
1231 to_free_normal = 0;
1232 }
1233
1234 memory_bm_position_reset(&copy_bm);
1235
1236 while (to_free_normal > 0 || to_free_highmem > 0) {
1237 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1238 struct page *page = pfn_to_page(pfn);
1239
1240 if (PageHighMem(page)) {
1241 if (!to_free_highmem)
1242 continue;
1243 to_free_highmem--;
1244 alloc_highmem--;
1245 } else {
1246 if (!to_free_normal)
1247 continue;
1248 to_free_normal--;
1249 alloc_normal--;
1250 }
1251 memory_bm_clear_bit(&copy_bm, pfn);
1252 swsusp_unset_page_forbidden(page);
1253 swsusp_unset_page_free(page);
1254 __free_page(page);
1255 }
1256 }
1257
1258 /**
1259 * minimum_image_size - Estimate the minimum acceptable size of an image
1260 * @saveable: Number of saveable pages in the system.
1261 *
1262 * We want to avoid attempting to free too much memory too hard, so estimate the
1263 * minimum acceptable size of a hibernation image to use as the lower limit for
1264 * preallocating memory.
1265 *
1266 * We assume that the minimum image size should be proportional to
1267 *
1268 * [number of saveable pages] - [number of pages that can be freed in theory]
1269 *
1270 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1271 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1272 * minus mapped file pages.
1273 */
1274 static unsigned long minimum_image_size(unsigned long saveable)
1275 {
1276 unsigned long size;
1277
1278 size = global_page_state(NR_SLAB_RECLAIMABLE)
1279 + global_page_state(NR_ACTIVE_ANON)
1280 + global_page_state(NR_INACTIVE_ANON)
1281 + global_page_state(NR_ACTIVE_FILE)
1282 + global_page_state(NR_INACTIVE_FILE)
1283 - global_page_state(NR_FILE_MAPPED);
1284
1285 return saveable <= size ? 0 : saveable - size;
1286 }
1287
1288 /**
1289 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1290 *
1291 * To create a hibernation image it is necessary to make a copy of every page
1292 * frame in use. We also need a number of page frames to be free during
1293 * hibernation for allocations made while saving the image and for device
1294 * drivers, in case they need to allocate memory from their hibernation
1295 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1296 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1297 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1298 * total number of available page frames and allocate at least
1299 *
1300 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1301 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1302 *
1303 * of them, which corresponds to the maximum size of a hibernation image.
1304 *
1305 * If image_size is set below the number following from the above formula,
1306 * the preallocation of memory is continued until the total number of saveable
1307 * pages in the system is below the requested image size or the minimum
1308 * acceptable image size returned by minimum_image_size(), whichever is greater.
1309 */
1310 int hibernate_preallocate_memory(void)
1311 {
1312 struct zone *zone;
1313 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1314 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1315 struct timeval start, stop;
1316 int error;
1317
1318 printk(KERN_INFO "PM: Preallocating image memory... ");
1319 do_gettimeofday(&start);
1320
1321 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1322 if (error)
1323 goto err_out;
1324
1325 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1326 if (error)
1327 goto err_out;
1328
1329 alloc_normal = 0;
1330 alloc_highmem = 0;
1331
1332 /* Count the number of saveable data pages. */
1333 save_highmem = count_highmem_pages();
1334 saveable = count_data_pages();
1335
1336 /*
1337 * Compute the total number of page frames we can use (count) and the
1338 * number of pages needed for image metadata (size).
1339 */
1340 count = saveable;
1341 saveable += save_highmem;
1342 highmem = save_highmem;
1343 size = 0;
1344 for_each_populated_zone(zone) {
1345 size += snapshot_additional_pages(zone);
1346 if (is_highmem(zone))
1347 highmem += zone_page_state(zone, NR_FREE_PAGES);
1348 else
1349 count += zone_page_state(zone, NR_FREE_PAGES);
1350 }
1351 avail_normal = count;
1352 count += highmem;
1353 count -= totalreserve_pages;
1354
1355 /* Add number of pages required for page keys (s390 only). */
1356 size += page_key_additional_pages(saveable);
1357
1358 /* Compute the maximum number of saveable pages to leave in memory. */
1359 max_size = (count - (size + PAGES_FOR_IO)) / 2
1360 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1361 /* Compute the desired number of image pages specified by image_size. */
1362 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1363 if (size > max_size)
1364 size = max_size;
1365 /*
1366 * If the desired number of image pages is at least as large as the
1367 * current number of saveable pages in memory, allocate page frames for
1368 * the image and we're done.
1369 */
1370 if (size >= saveable) {
1371 pages = preallocate_image_highmem(save_highmem);
1372 pages += preallocate_image_memory(saveable - pages, avail_normal);
1373 goto out;
1374 }
1375
1376 /* Estimate the minimum size of the image. */
1377 pages = minimum_image_size(saveable);
1378 /*
1379 * To avoid excessive pressure on the normal zone, leave room in it to
1380 * accommodate an image of the minimum size (unless it's already too
1381 * small, in which case don't preallocate pages from it at all).
1382 */
1383 if (avail_normal > pages)
1384 avail_normal -= pages;
1385 else
1386 avail_normal = 0;
1387 if (size < pages)
1388 size = min_t(unsigned long, pages, max_size);
1389
1390 /*
1391 * Let the memory management subsystem know that we're going to need a
1392 * large number of page frames to allocate and make it free some memory.
1393 * NOTE: If this is not done, performance will be hurt badly in some
1394 * test cases.
1395 */
1396 shrink_all_memory(saveable - size);
1397
1398 /*
1399 * The number of saveable pages in memory was too high, so apply some
1400 * pressure to decrease it. First, make room for the largest possible
1401 * image and fail if that doesn't work. Next, try to decrease the size
1402 * of the image as much as indicated by 'size' using allocations from
1403 * highmem and non-highmem zones separately.
1404 */
1405 pages_highmem = preallocate_image_highmem(highmem / 2);
1406 alloc = count - max_size;
1407 if (alloc > pages_highmem)
1408 alloc -= pages_highmem;
1409 else
1410 alloc = 0;
1411 pages = preallocate_image_memory(alloc, avail_normal);
1412 if (pages < alloc) {
1413 /* We have exhausted non-highmem pages, try highmem. */
1414 alloc -= pages;
1415 pages += pages_highmem;
1416 pages_highmem = preallocate_image_highmem(alloc);
1417 if (pages_highmem < alloc)
1418 goto err_out;
1419 pages += pages_highmem;
1420 /*
1421 * size is the desired number of saveable pages to leave in
1422 * memory, so try to preallocate (all memory - size) pages.
1423 */
1424 alloc = (count - pages) - size;
1425 pages += preallocate_image_highmem(alloc);
1426 } else {
1427 /*
1428 * There are approximately max_size saveable pages at this point
1429 * and we want to reduce this number down to size.
1430 */
1431 alloc = max_size - size;
1432 size = preallocate_highmem_fraction(alloc, highmem, count);
1433 pages_highmem += size;
1434 alloc -= size;
1435 size = preallocate_image_memory(alloc, avail_normal);
1436 pages_highmem += preallocate_image_highmem(alloc - size);
1437 pages += pages_highmem + size;
1438 }
1439
1440 /*
1441 * We only need as many page frames for the image as there are saveable
1442 * pages in memory, but we have allocated more. Release the excessive
1443 * ones now.
1444 */
1445 free_unnecessary_pages();
1446
1447 out:
1448 do_gettimeofday(&stop);
1449 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1450 swsusp_show_speed(&start, &stop, pages, "Allocated");
1451
1452 return 0;
1453
1454 err_out:
1455 printk(KERN_CONT "\n");
1456 swsusp_free();
1457 return -ENOMEM;
1458 }
1459
1460 #ifdef CONFIG_HIGHMEM
1461 /**
1462 * count_pages_for_highmem - compute the number of non-highmem pages
1463 * that will be necessary for creating copies of highmem pages.
1464 */
1465
1466 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1467 {
1468 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1469
1470 if (free_highmem >= nr_highmem)
1471 nr_highmem = 0;
1472 else
1473 nr_highmem -= free_highmem;
1474
1475 return nr_highmem;
1476 }
1477 #else
1478 static unsigned int
1479 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1480 #endif /* CONFIG_HIGHMEM */
1481
1482 /**
1483 * enough_free_mem - Make sure we have enough free memory for the
1484 * snapshot image.
1485 */
1486
1487 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1488 {
1489 struct zone *zone;
1490 unsigned int free = alloc_normal;
1491
1492 for_each_populated_zone(zone)
1493 if (!is_highmem(zone))
1494 free += zone_page_state(zone, NR_FREE_PAGES);
1495
1496 nr_pages += count_pages_for_highmem(nr_highmem);
1497 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1498 nr_pages, PAGES_FOR_IO, free);
1499
1500 return free > nr_pages + PAGES_FOR_IO;
1501 }
1502
1503 #ifdef CONFIG_HIGHMEM
1504 /**
1505 * get_highmem_buffer - if there are some highmem pages in the suspend
1506 * image, we may need the buffer to copy them and/or load their data.
1507 */
1508
1509 static inline int get_highmem_buffer(int safe_needed)
1510 {
1511 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1512 return buffer ? 0 : -ENOMEM;
1513 }
1514
1515 /**
1516 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1517 * Try to allocate as many pages as needed, but if the number of free
1518 * highmem pages is lesser than that, allocate them all.
1519 */
1520
1521 static inline unsigned int
1522 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1523 {
1524 unsigned int to_alloc = count_free_highmem_pages();
1525
1526 if (to_alloc > nr_highmem)
1527 to_alloc = nr_highmem;
1528
1529 nr_highmem -= to_alloc;
1530 while (to_alloc-- > 0) {
1531 struct page *page;
1532
1533 page = alloc_image_page(__GFP_HIGHMEM);
1534 memory_bm_set_bit(bm, page_to_pfn(page));
1535 }
1536 return nr_highmem;
1537 }
1538 #else
1539 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1540
1541 static inline unsigned int
1542 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1543 #endif /* CONFIG_HIGHMEM */
1544
1545 /**
1546 * swsusp_alloc - allocate memory for the suspend image
1547 *
1548 * We first try to allocate as many highmem pages as there are
1549 * saveable highmem pages in the system. If that fails, we allocate
1550 * non-highmem pages for the copies of the remaining highmem ones.
1551 *
1552 * In this approach it is likely that the copies of highmem pages will
1553 * also be located in the high memory, because of the way in which
1554 * copy_data_pages() works.
1555 */
1556
1557 static int
1558 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1559 unsigned int nr_pages, unsigned int nr_highmem)
1560 {
1561 if (nr_highmem > 0) {
1562 if (get_highmem_buffer(PG_ANY))
1563 goto err_out;
1564 if (nr_highmem > alloc_highmem) {
1565 nr_highmem -= alloc_highmem;
1566 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1567 }
1568 }
1569 if (nr_pages > alloc_normal) {
1570 nr_pages -= alloc_normal;
1571 while (nr_pages-- > 0) {
1572 struct page *page;
1573
1574 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1575 if (!page)
1576 goto err_out;
1577 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1578 }
1579 }
1580
1581 return 0;
1582
1583 err_out:
1584 swsusp_free();
1585 return -ENOMEM;
1586 }
1587
1588 asmlinkage int swsusp_save(void)
1589 {
1590 unsigned int nr_pages, nr_highmem;
1591
1592 printk(KERN_INFO "PM: Creating hibernation image:\n");
1593
1594 drain_local_pages(NULL);
1595 nr_pages = count_data_pages();
1596 nr_highmem = count_highmem_pages();
1597 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1598
1599 if (!enough_free_mem(nr_pages, nr_highmem)) {
1600 printk(KERN_ERR "PM: Not enough free memory\n");
1601 return -ENOMEM;
1602 }
1603
1604 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1605 printk(KERN_ERR "PM: Memory allocation failed\n");
1606 return -ENOMEM;
1607 }
1608
1609 /* During allocating of suspend pagedir, new cold pages may appear.
1610 * Kill them.
1611 */
1612 drain_local_pages(NULL);
1613 copy_data_pages(&copy_bm, &orig_bm);
1614
1615 /*
1616 * End of critical section. From now on, we can write to memory,
1617 * but we should not touch disk. This specially means we must _not_
1618 * touch swap space! Except we must write out our image of course.
1619 */
1620
1621 nr_pages += nr_highmem;
1622 nr_copy_pages = nr_pages;
1623 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1624
1625 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1626 nr_pages);
1627
1628 return 0;
1629 }
1630
1631 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1632 static int init_header_complete(struct swsusp_info *info)
1633 {
1634 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1635 info->version_code = LINUX_VERSION_CODE;
1636 return 0;
1637 }
1638
1639 static char *check_image_kernel(struct swsusp_info *info)
1640 {
1641 if (info->version_code != LINUX_VERSION_CODE)
1642 return "kernel version";
1643 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1644 return "system type";
1645 if (strcmp(info->uts.release,init_utsname()->release))
1646 return "kernel release";
1647 if (strcmp(info->uts.version,init_utsname()->version))
1648 return "version";
1649 if (strcmp(info->uts.machine,init_utsname()->machine))
1650 return "machine";
1651 return NULL;
1652 }
1653 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1654
1655 unsigned long snapshot_get_image_size(void)
1656 {
1657 return nr_copy_pages + nr_meta_pages + 1;
1658 }
1659
1660 static int init_header(struct swsusp_info *info)
1661 {
1662 memset(info, 0, sizeof(struct swsusp_info));
1663 info->num_physpages = get_num_physpages();
1664 info->image_pages = nr_copy_pages;
1665 info->pages = snapshot_get_image_size();
1666 info->size = info->pages;
1667 info->size <<= PAGE_SHIFT;
1668 return init_header_complete(info);
1669 }
1670
1671 /**
1672 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1673 * are stored in the array @buf[] (1 page at a time)
1674 */
1675
1676 static inline void
1677 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1678 {
1679 int j;
1680
1681 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1682 buf[j] = memory_bm_next_pfn(bm);
1683 if (unlikely(buf[j] == BM_END_OF_MAP))
1684 break;
1685 /* Save page key for data page (s390 only). */
1686 page_key_read(buf + j);
1687 }
1688 }
1689
1690 /**
1691 * snapshot_read_next - used for reading the system memory snapshot.
1692 *
1693 * On the first call to it @handle should point to a zeroed
1694 * snapshot_handle structure. The structure gets updated and a pointer
1695 * to it should be passed to this function every next time.
1696 *
1697 * On success the function returns a positive number. Then, the caller
1698 * is allowed to read up to the returned number of bytes from the memory
1699 * location computed by the data_of() macro.
1700 *
1701 * The function returns 0 to indicate the end of data stream condition,
1702 * and a negative number is returned on error. In such cases the
1703 * structure pointed to by @handle is not updated and should not be used
1704 * any more.
1705 */
1706
1707 int snapshot_read_next(struct snapshot_handle *handle)
1708 {
1709 if (handle->cur > nr_meta_pages + nr_copy_pages)
1710 return 0;
1711
1712 if (!buffer) {
1713 /* This makes the buffer be freed by swsusp_free() */
1714 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1715 if (!buffer)
1716 return -ENOMEM;
1717 }
1718 if (!handle->cur) {
1719 int error;
1720
1721 error = init_header((struct swsusp_info *)buffer);
1722 if (error)
1723 return error;
1724 handle->buffer = buffer;
1725 memory_bm_position_reset(&orig_bm);
1726 memory_bm_position_reset(&copy_bm);
1727 } else if (handle->cur <= nr_meta_pages) {
1728 clear_page(buffer);
1729 pack_pfns(buffer, &orig_bm);
1730 } else {
1731 struct page *page;
1732
1733 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1734 if (PageHighMem(page)) {
1735 /* Highmem pages are copied to the buffer,
1736 * because we can't return with a kmapped
1737 * highmem page (we may not be called again).
1738 */
1739 void *kaddr;
1740
1741 kaddr = kmap_atomic(page);
1742 copy_page(buffer, kaddr);
1743 kunmap_atomic(kaddr);
1744 handle->buffer = buffer;
1745 } else {
1746 handle->buffer = page_address(page);
1747 }
1748 }
1749 handle->cur++;
1750 return PAGE_SIZE;
1751 }
1752
1753 /**
1754 * mark_unsafe_pages - mark the pages that cannot be used for storing
1755 * the image during resume, because they conflict with the pages that
1756 * had been used before suspend
1757 */
1758
1759 static int mark_unsafe_pages(struct memory_bitmap *bm)
1760 {
1761 struct zone *zone;
1762 unsigned long pfn, max_zone_pfn;
1763
1764 /* Clear page flags */
1765 for_each_populated_zone(zone) {
1766 max_zone_pfn = zone_end_pfn(zone);
1767 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1768 if (pfn_valid(pfn))
1769 swsusp_unset_page_free(pfn_to_page(pfn));
1770 }
1771
1772 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1773 memory_bm_position_reset(bm);
1774 do {
1775 pfn = memory_bm_next_pfn(bm);
1776 if (likely(pfn != BM_END_OF_MAP)) {
1777 if (likely(pfn_valid(pfn)))
1778 swsusp_set_page_free(pfn_to_page(pfn));
1779 else
1780 return -EFAULT;
1781 }
1782 } while (pfn != BM_END_OF_MAP);
1783
1784 allocated_unsafe_pages = 0;
1785
1786 return 0;
1787 }
1788
1789 static void
1790 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1791 {
1792 unsigned long pfn;
1793
1794 memory_bm_position_reset(src);
1795 pfn = memory_bm_next_pfn(src);
1796 while (pfn != BM_END_OF_MAP) {
1797 memory_bm_set_bit(dst, pfn);
1798 pfn = memory_bm_next_pfn(src);
1799 }
1800 }
1801
1802 static int check_header(struct swsusp_info *info)
1803 {
1804 char *reason;
1805
1806 reason = check_image_kernel(info);
1807 if (!reason && info->num_physpages != get_num_physpages())
1808 reason = "memory size";
1809 if (reason) {
1810 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1811 return -EPERM;
1812 }
1813 return 0;
1814 }
1815
1816 /**
1817 * load header - check the image header and copy data from it
1818 */
1819
1820 static int
1821 load_header(struct swsusp_info *info)
1822 {
1823 int error;
1824
1825 restore_pblist = NULL;
1826 error = check_header(info);
1827 if (!error) {
1828 nr_copy_pages = info->image_pages;
1829 nr_meta_pages = info->pages - info->image_pages - 1;
1830 }
1831 return error;
1832 }
1833
1834 /**
1835 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1836 * the corresponding bit in the memory bitmap @bm
1837 */
1838 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1839 {
1840 int j;
1841
1842 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1843 if (unlikely(buf[j] == BM_END_OF_MAP))
1844 break;
1845
1846 /* Extract and buffer page key for data page (s390 only). */
1847 page_key_memorize(buf + j);
1848
1849 if (memory_bm_pfn_present(bm, buf[j]))
1850 memory_bm_set_bit(bm, buf[j]);
1851 else
1852 return -EFAULT;
1853 }
1854
1855 return 0;
1856 }
1857
1858 /* List of "safe" pages that may be used to store data loaded from the suspend
1859 * image
1860 */
1861 static struct linked_page *safe_pages_list;
1862
1863 #ifdef CONFIG_HIGHMEM
1864 /* struct highmem_pbe is used for creating the list of highmem pages that
1865 * should be restored atomically during the resume from disk, because the page
1866 * frames they have occupied before the suspend are in use.
1867 */
1868 struct highmem_pbe {
1869 struct page *copy_page; /* data is here now */
1870 struct page *orig_page; /* data was here before the suspend */
1871 struct highmem_pbe *next;
1872 };
1873
1874 /* List of highmem PBEs needed for restoring the highmem pages that were
1875 * allocated before the suspend and included in the suspend image, but have
1876 * also been allocated by the "resume" kernel, so their contents cannot be
1877 * written directly to their "original" page frames.
1878 */
1879 static struct highmem_pbe *highmem_pblist;
1880
1881 /**
1882 * count_highmem_image_pages - compute the number of highmem pages in the
1883 * suspend image. The bits in the memory bitmap @bm that correspond to the
1884 * image pages are assumed to be set.
1885 */
1886
1887 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1888 {
1889 unsigned long pfn;
1890 unsigned int cnt = 0;
1891
1892 memory_bm_position_reset(bm);
1893 pfn = memory_bm_next_pfn(bm);
1894 while (pfn != BM_END_OF_MAP) {
1895 if (PageHighMem(pfn_to_page(pfn)))
1896 cnt++;
1897
1898 pfn = memory_bm_next_pfn(bm);
1899 }
1900 return cnt;
1901 }
1902
1903 /**
1904 * prepare_highmem_image - try to allocate as many highmem pages as
1905 * there are highmem image pages (@nr_highmem_p points to the variable
1906 * containing the number of highmem image pages). The pages that are
1907 * "safe" (ie. will not be overwritten when the suspend image is
1908 * restored) have the corresponding bits set in @bm (it must be
1909 * unitialized).
1910 *
1911 * NOTE: This function should not be called if there are no highmem
1912 * image pages.
1913 */
1914
1915 static unsigned int safe_highmem_pages;
1916
1917 static struct memory_bitmap *safe_highmem_bm;
1918
1919 static int
1920 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1921 {
1922 unsigned int to_alloc;
1923
1924 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1925 return -ENOMEM;
1926
1927 if (get_highmem_buffer(PG_SAFE))
1928 return -ENOMEM;
1929
1930 to_alloc = count_free_highmem_pages();
1931 if (to_alloc > *nr_highmem_p)
1932 to_alloc = *nr_highmem_p;
1933 else
1934 *nr_highmem_p = to_alloc;
1935
1936 safe_highmem_pages = 0;
1937 while (to_alloc-- > 0) {
1938 struct page *page;
1939
1940 page = alloc_page(__GFP_HIGHMEM);
1941 if (!swsusp_page_is_free(page)) {
1942 /* The page is "safe", set its bit the bitmap */
1943 memory_bm_set_bit(bm, page_to_pfn(page));
1944 safe_highmem_pages++;
1945 }
1946 /* Mark the page as allocated */
1947 swsusp_set_page_forbidden(page);
1948 swsusp_set_page_free(page);
1949 }
1950 memory_bm_position_reset(bm);
1951 safe_highmem_bm = bm;
1952 return 0;
1953 }
1954
1955 /**
1956 * get_highmem_page_buffer - for given highmem image page find the buffer
1957 * that suspend_write_next() should set for its caller to write to.
1958 *
1959 * If the page is to be saved to its "original" page frame or a copy of
1960 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1961 * the copy of the page is to be made in normal memory, so the address of
1962 * the copy is returned.
1963 *
1964 * If @buffer is returned, the caller of suspend_write_next() will write
1965 * the page's contents to @buffer, so they will have to be copied to the
1966 * right location on the next call to suspend_write_next() and it is done
1967 * with the help of copy_last_highmem_page(). For this purpose, if
1968 * @buffer is returned, @last_highmem page is set to the page to which
1969 * the data will have to be copied from @buffer.
1970 */
1971
1972 static struct page *last_highmem_page;
1973
1974 static void *
1975 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1976 {
1977 struct highmem_pbe *pbe;
1978 void *kaddr;
1979
1980 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1981 /* We have allocated the "original" page frame and we can
1982 * use it directly to store the loaded page.
1983 */
1984 last_highmem_page = page;
1985 return buffer;
1986 }
1987 /* The "original" page frame has not been allocated and we have to
1988 * use a "safe" page frame to store the loaded page.
1989 */
1990 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1991 if (!pbe) {
1992 swsusp_free();
1993 return ERR_PTR(-ENOMEM);
1994 }
1995 pbe->orig_page = page;
1996 if (safe_highmem_pages > 0) {
1997 struct page *tmp;
1998
1999 /* Copy of the page will be stored in high memory */
2000 kaddr = buffer;
2001 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2002 safe_highmem_pages--;
2003 last_highmem_page = tmp;
2004 pbe->copy_page = tmp;
2005 } else {
2006 /* Copy of the page will be stored in normal memory */
2007 kaddr = safe_pages_list;
2008 safe_pages_list = safe_pages_list->next;
2009 pbe->copy_page = virt_to_page(kaddr);
2010 }
2011 pbe->next = highmem_pblist;
2012 highmem_pblist = pbe;
2013 return kaddr;
2014 }
2015
2016 /**
2017 * copy_last_highmem_page - copy the contents of a highmem image from
2018 * @buffer, where the caller of snapshot_write_next() has place them,
2019 * to the right location represented by @last_highmem_page .
2020 */
2021
2022 static void copy_last_highmem_page(void)
2023 {
2024 if (last_highmem_page) {
2025 void *dst;
2026
2027 dst = kmap_atomic(last_highmem_page);
2028 copy_page(dst, buffer);
2029 kunmap_atomic(dst);
2030 last_highmem_page = NULL;
2031 }
2032 }
2033
2034 static inline int last_highmem_page_copied(void)
2035 {
2036 return !last_highmem_page;
2037 }
2038
2039 static inline void free_highmem_data(void)
2040 {
2041 if (safe_highmem_bm)
2042 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2043
2044 if (buffer)
2045 free_image_page(buffer, PG_UNSAFE_CLEAR);
2046 }
2047 #else
2048 static inline int get_safe_write_buffer(void) { return 0; }
2049
2050 static unsigned int
2051 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2052
2053 static inline int
2054 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2055 {
2056 return 0;
2057 }
2058
2059 static inline void *
2060 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2061 {
2062 return ERR_PTR(-EINVAL);
2063 }
2064
2065 static inline void copy_last_highmem_page(void) {}
2066 static inline int last_highmem_page_copied(void) { return 1; }
2067 static inline void free_highmem_data(void) {}
2068 #endif /* CONFIG_HIGHMEM */
2069
2070 /**
2071 * prepare_image - use the memory bitmap @bm to mark the pages that will
2072 * be overwritten in the process of restoring the system memory state
2073 * from the suspend image ("unsafe" pages) and allocate memory for the
2074 * image.
2075 *
2076 * The idea is to allocate a new memory bitmap first and then allocate
2077 * as many pages as needed for the image data, but not to assign these
2078 * pages to specific tasks initially. Instead, we just mark them as
2079 * allocated and create a lists of "safe" pages that will be used
2080 * later. On systems with high memory a list of "safe" highmem pages is
2081 * also created.
2082 */
2083
2084 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2085
2086 static int
2087 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2088 {
2089 unsigned int nr_pages, nr_highmem;
2090 struct linked_page *sp_list, *lp;
2091 int error;
2092
2093 /* If there is no highmem, the buffer will not be necessary */
2094 free_image_page(buffer, PG_UNSAFE_CLEAR);
2095 buffer = NULL;
2096
2097 nr_highmem = count_highmem_image_pages(bm);
2098 error = mark_unsafe_pages(bm);
2099 if (error)
2100 goto Free;
2101
2102 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2103 if (error)
2104 goto Free;
2105
2106 duplicate_memory_bitmap(new_bm, bm);
2107 memory_bm_free(bm, PG_UNSAFE_KEEP);
2108 if (nr_highmem > 0) {
2109 error = prepare_highmem_image(bm, &nr_highmem);
2110 if (error)
2111 goto Free;
2112 }
2113 /* Reserve some safe pages for potential later use.
2114 *
2115 * NOTE: This way we make sure there will be enough safe pages for the
2116 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2117 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2118 */
2119 sp_list = NULL;
2120 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2121 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2122 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2123 while (nr_pages > 0) {
2124 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2125 if (!lp) {
2126 error = -ENOMEM;
2127 goto Free;
2128 }
2129 lp->next = sp_list;
2130 sp_list = lp;
2131 nr_pages--;
2132 }
2133 /* Preallocate memory for the image */
2134 safe_pages_list = NULL;
2135 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2136 while (nr_pages > 0) {
2137 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2138 if (!lp) {
2139 error = -ENOMEM;
2140 goto Free;
2141 }
2142 if (!swsusp_page_is_free(virt_to_page(lp))) {
2143 /* The page is "safe", add it to the list */
2144 lp->next = safe_pages_list;
2145 safe_pages_list = lp;
2146 }
2147 /* Mark the page as allocated */
2148 swsusp_set_page_forbidden(virt_to_page(lp));
2149 swsusp_set_page_free(virt_to_page(lp));
2150 nr_pages--;
2151 }
2152 /* Free the reserved safe pages so that chain_alloc() can use them */
2153 while (sp_list) {
2154 lp = sp_list->next;
2155 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2156 sp_list = lp;
2157 }
2158 return 0;
2159
2160 Free:
2161 swsusp_free();
2162 return error;
2163 }
2164
2165 /**
2166 * get_buffer - compute the address that snapshot_write_next() should
2167 * set for its caller to write to.
2168 */
2169
2170 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2171 {
2172 struct pbe *pbe;
2173 struct page *page;
2174 unsigned long pfn = memory_bm_next_pfn(bm);
2175
2176 if (pfn == BM_END_OF_MAP)
2177 return ERR_PTR(-EFAULT);
2178
2179 page = pfn_to_page(pfn);
2180 if (PageHighMem(page))
2181 return get_highmem_page_buffer(page, ca);
2182
2183 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2184 /* We have allocated the "original" page frame and we can
2185 * use it directly to store the loaded page.
2186 */
2187 return page_address(page);
2188
2189 /* The "original" page frame has not been allocated and we have to
2190 * use a "safe" page frame to store the loaded page.
2191 */
2192 pbe = chain_alloc(ca, sizeof(struct pbe));
2193 if (!pbe) {
2194 swsusp_free();
2195 return ERR_PTR(-ENOMEM);
2196 }
2197 pbe->orig_address = page_address(page);
2198 pbe->address = safe_pages_list;
2199 safe_pages_list = safe_pages_list->next;
2200 pbe->next = restore_pblist;
2201 restore_pblist = pbe;
2202 return pbe->address;
2203 }
2204
2205 /**
2206 * snapshot_write_next - used for writing the system memory snapshot.
2207 *
2208 * On the first call to it @handle should point to a zeroed
2209 * snapshot_handle structure. The structure gets updated and a pointer
2210 * to it should be passed to this function every next time.
2211 *
2212 * On success the function returns a positive number. Then, the caller
2213 * is allowed to write up to the returned number of bytes to the memory
2214 * location computed by the data_of() macro.
2215 *
2216 * The function returns 0 to indicate the "end of file" condition,
2217 * and a negative number is returned on error. In such cases the
2218 * structure pointed to by @handle is not updated and should not be used
2219 * any more.
2220 */
2221
2222 int snapshot_write_next(struct snapshot_handle *handle)
2223 {
2224 static struct chain_allocator ca;
2225 int error = 0;
2226
2227 /* Check if we have already loaded the entire image */
2228 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2229 return 0;
2230
2231 handle->sync_read = 1;
2232
2233 if (!handle->cur) {
2234 if (!buffer)
2235 /* This makes the buffer be freed by swsusp_free() */
2236 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2237
2238 if (!buffer)
2239 return -ENOMEM;
2240
2241 handle->buffer = buffer;
2242 } else if (handle->cur == 1) {
2243 error = load_header(buffer);
2244 if (error)
2245 return error;
2246
2247 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2248 if (error)
2249 return error;
2250
2251 /* Allocate buffer for page keys. */
2252 error = page_key_alloc(nr_copy_pages);
2253 if (error)
2254 return error;
2255
2256 } else if (handle->cur <= nr_meta_pages + 1) {
2257 error = unpack_orig_pfns(buffer, &copy_bm);
2258 if (error)
2259 return error;
2260
2261 if (handle->cur == nr_meta_pages + 1) {
2262 error = prepare_image(&orig_bm, &copy_bm);
2263 if (error)
2264 return error;
2265
2266 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2267 memory_bm_position_reset(&orig_bm);
2268 restore_pblist = NULL;
2269 handle->buffer = get_buffer(&orig_bm, &ca);
2270 handle->sync_read = 0;
2271 if (IS_ERR(handle->buffer))
2272 return PTR_ERR(handle->buffer);
2273 }
2274 } else {
2275 copy_last_highmem_page();
2276 /* Restore page key for data page (s390 only). */
2277 page_key_write(handle->buffer);
2278 handle->buffer = get_buffer(&orig_bm, &ca);
2279 if (IS_ERR(handle->buffer))
2280 return PTR_ERR(handle->buffer);
2281 if (handle->buffer != buffer)
2282 handle->sync_read = 0;
2283 }
2284 handle->cur++;
2285 return PAGE_SIZE;
2286 }
2287
2288 /**
2289 * snapshot_write_finalize - must be called after the last call to
2290 * snapshot_write_next() in case the last page in the image happens
2291 * to be a highmem page and its contents should be stored in the
2292 * highmem. Additionally, it releases the memory that will not be
2293 * used any more.
2294 */
2295
2296 void snapshot_write_finalize(struct snapshot_handle *handle)
2297 {
2298 copy_last_highmem_page();
2299 /* Restore page key for data page (s390 only). */
2300 page_key_write(handle->buffer);
2301 page_key_free();
2302 /* Free only if we have loaded the image entirely */
2303 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2304 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2305 free_highmem_data();
2306 }
2307 }
2308
2309 int snapshot_image_loaded(struct snapshot_handle *handle)
2310 {
2311 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2312 handle->cur <= nr_meta_pages + nr_copy_pages);
2313 }
2314
2315 #ifdef CONFIG_HIGHMEM
2316 /* Assumes that @buf is ready and points to a "safe" page */
2317 static inline void
2318 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2319 {
2320 void *kaddr1, *kaddr2;
2321
2322 kaddr1 = kmap_atomic(p1);
2323 kaddr2 = kmap_atomic(p2);
2324 copy_page(buf, kaddr1);
2325 copy_page(kaddr1, kaddr2);
2326 copy_page(kaddr2, buf);
2327 kunmap_atomic(kaddr2);
2328 kunmap_atomic(kaddr1);
2329 }
2330
2331 /**
2332 * restore_highmem - for each highmem page that was allocated before
2333 * the suspend and included in the suspend image, and also has been
2334 * allocated by the "resume" kernel swap its current (ie. "before
2335 * resume") contents with the previous (ie. "before suspend") one.
2336 *
2337 * If the resume eventually fails, we can call this function once
2338 * again and restore the "before resume" highmem state.
2339 */
2340
2341 int restore_highmem(void)
2342 {
2343 struct highmem_pbe *pbe = highmem_pblist;
2344 void *buf;
2345
2346 if (!pbe)
2347 return 0;
2348
2349 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2350 if (!buf)
2351 return -ENOMEM;
2352
2353 while (pbe) {
2354 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2355 pbe = pbe->next;
2356 }
2357 free_image_page(buf, PG_UNSAFE_CLEAR);
2358 return 0;
2359 }
2360 #endif /* CONFIG_HIGHMEM */
This page took 0.386317 seconds and 5 git commands to generate.