[PATCH] core remove PageReserved
[deliverable/linux.git] / kernel / power / swsusp.c
1 /*
2 * linux/kernel/power/swsusp.c
3 *
4 * This file is to realize architecture-independent
5 * machine suspend feature using pretty near only high-level routines
6 *
7 * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
8 * Copyright (C) 1998,2001-2004 Pavel Machek <pavel@suse.cz>
9 *
10 * This file is released under the GPLv2.
11 *
12 * I'd like to thank the following people for their work:
13 *
14 * Pavel Machek <pavel@ucw.cz>:
15 * Modifications, defectiveness pointing, being with me at the very beginning,
16 * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
17 *
18 * Steve Doddi <dirk@loth.demon.co.uk>:
19 * Support the possibility of hardware state restoring.
20 *
21 * Raph <grey.havens@earthling.net>:
22 * Support for preserving states of network devices and virtual console
23 * (including X and svgatextmode)
24 *
25 * Kurt Garloff <garloff@suse.de>:
26 * Straightened the critical function in order to prevent compilers from
27 * playing tricks with local variables.
28 *
29 * Andreas Mohr <a.mohr@mailto.de>
30 *
31 * Alex Badea <vampire@go.ro>:
32 * Fixed runaway init
33 *
34 * Andreas Steinmetz <ast@domdv.de>:
35 * Added encrypted suspend option
36 *
37 * More state savers are welcome. Especially for the scsi layer...
38 *
39 * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
40 */
41
42 #include <linux/module.h>
43 #include <linux/mm.h>
44 #include <linux/suspend.h>
45 #include <linux/smp_lock.h>
46 #include <linux/file.h>
47 #include <linux/utsname.h>
48 #include <linux/version.h>
49 #include <linux/delay.h>
50 #include <linux/reboot.h>
51 #include <linux/bitops.h>
52 #include <linux/vt_kern.h>
53 #include <linux/kbd_kern.h>
54 #include <linux/keyboard.h>
55 #include <linux/spinlock.h>
56 #include <linux/genhd.h>
57 #include <linux/kernel.h>
58 #include <linux/major.h>
59 #include <linux/swap.h>
60 #include <linux/pm.h>
61 #include <linux/device.h>
62 #include <linux/buffer_head.h>
63 #include <linux/swapops.h>
64 #include <linux/bootmem.h>
65 #include <linux/syscalls.h>
66 #include <linux/console.h>
67 #include <linux/highmem.h>
68 #include <linux/bio.h>
69 #include <linux/mount.h>
70
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/pgtable.h>
74 #include <asm/tlbflush.h>
75 #include <asm/io.h>
76
77 #include <linux/random.h>
78 #include <linux/crypto.h>
79 #include <asm/scatterlist.h>
80
81 #include "power.h"
82
83 #define CIPHER "aes"
84 #define MAXKEY 32
85 #define MAXIV 32
86
87 /* References to section boundaries */
88 extern const void __nosave_begin, __nosave_end;
89
90 /* Variables to be preserved over suspend */
91 static int nr_copy_pages_check;
92
93 extern char resume_file[];
94
95 /* Local variables that should not be affected by save */
96 static unsigned int nr_copy_pages __nosavedata = 0;
97
98 /* Suspend pagedir is allocated before final copy, therefore it
99 must be freed after resume
100
101 Warning: this is evil. There are actually two pagedirs at time of
102 resume. One is "pagedir_save", which is empty frame allocated at
103 time of suspend, that must be freed. Second is "pagedir_nosave",
104 allocated at time of resume, that travels through memory not to
105 collide with anything.
106
107 Warning: this is even more evil than it seems. Pagedirs this file
108 talks about are completely different from page directories used by
109 MMU hardware.
110 */
111 suspend_pagedir_t *pagedir_nosave __nosavedata = NULL;
112 static suspend_pagedir_t *pagedir_save;
113
114 #define SWSUSP_SIG "S1SUSPEND"
115
116 static struct swsusp_header {
117 char reserved[PAGE_SIZE - 20 - MAXKEY - MAXIV - sizeof(swp_entry_t)];
118 u8 key_iv[MAXKEY+MAXIV];
119 swp_entry_t swsusp_info;
120 char orig_sig[10];
121 char sig[10];
122 } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header;
123
124 static struct swsusp_info swsusp_info;
125
126 /*
127 * XXX: We try to keep some more pages free so that I/O operations succeed
128 * without paging. Might this be more?
129 */
130 #define PAGES_FOR_IO 512
131
132 /*
133 * Saving part...
134 */
135
136 /* We memorize in swapfile_used what swap devices are used for suspension */
137 #define SWAPFILE_UNUSED 0
138 #define SWAPFILE_SUSPEND 1 /* This is the suspending device */
139 #define SWAPFILE_IGNORED 2 /* Those are other swap devices ignored for suspension */
140
141 static unsigned short swapfile_used[MAX_SWAPFILES];
142 static unsigned short root_swap;
143
144 static int write_page(unsigned long addr, swp_entry_t * loc);
145 static int bio_read_page(pgoff_t page_off, void * page);
146
147 static u8 key_iv[MAXKEY+MAXIV];
148
149 #ifdef CONFIG_SWSUSP_ENCRYPT
150
151 static int crypto_init(int mode, void **mem)
152 {
153 int error = 0;
154 int len;
155 char *modemsg;
156 struct crypto_tfm *tfm;
157
158 modemsg = mode ? "suspend not possible" : "resume not possible";
159
160 tfm = crypto_alloc_tfm(CIPHER, CRYPTO_TFM_MODE_CBC);
161 if(!tfm) {
162 printk(KERN_ERR "swsusp: no tfm, %s\n", modemsg);
163 error = -EINVAL;
164 goto out;
165 }
166
167 if(MAXKEY < crypto_tfm_alg_min_keysize(tfm)) {
168 printk(KERN_ERR "swsusp: key buffer too small, %s\n", modemsg);
169 error = -ENOKEY;
170 goto fail;
171 }
172
173 if (mode)
174 get_random_bytes(key_iv, MAXKEY+MAXIV);
175
176 len = crypto_tfm_alg_max_keysize(tfm);
177 if (len > MAXKEY)
178 len = MAXKEY;
179
180 if (crypto_cipher_setkey(tfm, key_iv, len)) {
181 printk(KERN_ERR "swsusp: key setup failure, %s\n", modemsg);
182 error = -EKEYREJECTED;
183 goto fail;
184 }
185
186 len = crypto_tfm_alg_ivsize(tfm);
187
188 if (MAXIV < len) {
189 printk(KERN_ERR "swsusp: iv buffer too small, %s\n", modemsg);
190 error = -EOVERFLOW;
191 goto fail;
192 }
193
194 crypto_cipher_set_iv(tfm, key_iv+MAXKEY, len);
195
196 *mem=(void *)tfm;
197
198 goto out;
199
200 fail: crypto_free_tfm(tfm);
201 out: return error;
202 }
203
204 static __inline__ void crypto_exit(void *mem)
205 {
206 crypto_free_tfm((struct crypto_tfm *)mem);
207 }
208
209 static __inline__ int crypto_write(struct pbe *p, void *mem)
210 {
211 int error = 0;
212 struct scatterlist src, dst;
213
214 src.page = virt_to_page(p->address);
215 src.offset = 0;
216 src.length = PAGE_SIZE;
217 dst.page = virt_to_page((void *)&swsusp_header);
218 dst.offset = 0;
219 dst.length = PAGE_SIZE;
220
221 error = crypto_cipher_encrypt((struct crypto_tfm *)mem, &dst, &src,
222 PAGE_SIZE);
223
224 if (!error)
225 error = write_page((unsigned long)&swsusp_header,
226 &(p->swap_address));
227 return error;
228 }
229
230 static __inline__ int crypto_read(struct pbe *p, void *mem)
231 {
232 int error = 0;
233 struct scatterlist src, dst;
234
235 error = bio_read_page(swp_offset(p->swap_address), (void *)p->address);
236 if (!error) {
237 src.offset = 0;
238 src.length = PAGE_SIZE;
239 dst.offset = 0;
240 dst.length = PAGE_SIZE;
241 src.page = dst.page = virt_to_page((void *)p->address);
242
243 error = crypto_cipher_decrypt((struct crypto_tfm *)mem, &dst,
244 &src, PAGE_SIZE);
245 }
246 return error;
247 }
248 #else
249 static __inline__ int crypto_init(int mode, void *mem)
250 {
251 return 0;
252 }
253
254 static __inline__ void crypto_exit(void *mem)
255 {
256 }
257
258 static __inline__ int crypto_write(struct pbe *p, void *mem)
259 {
260 return write_page(p->address, &(p->swap_address));
261 }
262
263 static __inline__ int crypto_read(struct pbe *p, void *mem)
264 {
265 return bio_read_page(swp_offset(p->swap_address), (void *)p->address);
266 }
267 #endif
268
269 static int mark_swapfiles(swp_entry_t prev)
270 {
271 int error;
272
273 rw_swap_page_sync(READ,
274 swp_entry(root_swap, 0),
275 virt_to_page((unsigned long)&swsusp_header));
276 if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) ||
277 !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) {
278 memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10);
279 memcpy(swsusp_header.sig,SWSUSP_SIG, 10);
280 memcpy(swsusp_header.key_iv, key_iv, MAXKEY+MAXIV);
281 swsusp_header.swsusp_info = prev;
282 error = rw_swap_page_sync(WRITE,
283 swp_entry(root_swap, 0),
284 virt_to_page((unsigned long)
285 &swsusp_header));
286 } else {
287 pr_debug("swsusp: Partition is not swap space.\n");
288 error = -ENODEV;
289 }
290 return error;
291 }
292
293 /*
294 * Check whether the swap device is the specified resume
295 * device, irrespective of whether they are specified by
296 * identical names.
297 *
298 * (Thus, device inode aliasing is allowed. You can say /dev/hda4
299 * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs]
300 * and they'll be considered the same device. This is *necessary* for
301 * devfs, since the resume code can only recognize the form /dev/hda4,
302 * but the suspend code would see the long name.)
303 */
304 static int is_resume_device(const struct swap_info_struct *swap_info)
305 {
306 struct file *file = swap_info->swap_file;
307 struct inode *inode = file->f_dentry->d_inode;
308
309 return S_ISBLK(inode->i_mode) &&
310 swsusp_resume_device == MKDEV(imajor(inode), iminor(inode));
311 }
312
313 static int swsusp_swap_check(void) /* This is called before saving image */
314 {
315 int i, len;
316
317 len=strlen(resume_file);
318 root_swap = 0xFFFF;
319
320 spin_lock(&swap_lock);
321 for (i=0; i<MAX_SWAPFILES; i++) {
322 if (!(swap_info[i].flags & SWP_WRITEOK)) {
323 swapfile_used[i]=SWAPFILE_UNUSED;
324 } else {
325 if (!len) {
326 printk(KERN_WARNING "resume= option should be used to set suspend device" );
327 if (root_swap == 0xFFFF) {
328 swapfile_used[i] = SWAPFILE_SUSPEND;
329 root_swap = i;
330 } else
331 swapfile_used[i] = SWAPFILE_IGNORED;
332 } else {
333 /* we ignore all swap devices that are not the resume_file */
334 if (is_resume_device(&swap_info[i])) {
335 swapfile_used[i] = SWAPFILE_SUSPEND;
336 root_swap = i;
337 } else {
338 swapfile_used[i] = SWAPFILE_IGNORED;
339 }
340 }
341 }
342 }
343 spin_unlock(&swap_lock);
344 return (root_swap != 0xffff) ? 0 : -ENODEV;
345 }
346
347 /**
348 * This is called after saving image so modification
349 * will be lost after resume... and that's what we want.
350 * we make the device unusable. A new call to
351 * lock_swapdevices can unlock the devices.
352 */
353 static void lock_swapdevices(void)
354 {
355 int i;
356
357 spin_lock(&swap_lock);
358 for (i = 0; i< MAX_SWAPFILES; i++)
359 if (swapfile_used[i] == SWAPFILE_IGNORED) {
360 swap_info[i].flags ^= SWP_WRITEOK;
361 }
362 spin_unlock(&swap_lock);
363 }
364
365 /**
366 * write_page - Write one page to a fresh swap location.
367 * @addr: Address we're writing.
368 * @loc: Place to store the entry we used.
369 *
370 * Allocate a new swap entry and 'sync' it. Note we discard -EIO
371 * errors. That is an artifact left over from swsusp. It did not
372 * check the return of rw_swap_page_sync() at all, since most pages
373 * written back to swap would return -EIO.
374 * This is a partial improvement, since we will at least return other
375 * errors, though we need to eventually fix the damn code.
376 */
377 static int write_page(unsigned long addr, swp_entry_t * loc)
378 {
379 swp_entry_t entry;
380 int error = 0;
381
382 entry = get_swap_page();
383 if (swp_offset(entry) &&
384 swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) {
385 error = rw_swap_page_sync(WRITE, entry,
386 virt_to_page(addr));
387 if (error == -EIO)
388 error = 0;
389 if (!error)
390 *loc = entry;
391 } else
392 error = -ENOSPC;
393 return error;
394 }
395
396 /**
397 * data_free - Free the swap entries used by the saved image.
398 *
399 * Walk the list of used swap entries and free each one.
400 * This is only used for cleanup when suspend fails.
401 */
402 static void data_free(void)
403 {
404 swp_entry_t entry;
405 struct pbe * p;
406
407 for_each_pbe(p, pagedir_nosave) {
408 entry = p->swap_address;
409 if (entry.val)
410 swap_free(entry);
411 else
412 break;
413 }
414 }
415
416 /**
417 * data_write - Write saved image to swap.
418 *
419 * Walk the list of pages in the image and sync each one to swap.
420 */
421 static int data_write(void)
422 {
423 int error = 0, i = 0;
424 unsigned int mod = nr_copy_pages / 100;
425 struct pbe *p;
426 void *tfm;
427
428 if ((error = crypto_init(1, &tfm)))
429 return error;
430
431 if (!mod)
432 mod = 1;
433
434 printk( "Writing data to swap (%d pages)... ", nr_copy_pages );
435 for_each_pbe (p, pagedir_nosave) {
436 if (!(i%mod))
437 printk( "\b\b\b\b%3d%%", i / mod );
438 if ((error = crypto_write(p, tfm))) {
439 crypto_exit(tfm);
440 return error;
441 }
442 i++;
443 }
444 printk("\b\b\b\bdone\n");
445 crypto_exit(tfm);
446 return error;
447 }
448
449 static void dump_info(void)
450 {
451 pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code);
452 pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages);
453 pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname);
454 pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename);
455 pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release);
456 pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version);
457 pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine);
458 pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname);
459 pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus);
460 pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages);
461 pr_debug(" swsusp: Pagedir: %ld Pages\n",swsusp_info.pagedir_pages);
462 }
463
464 static void init_header(void)
465 {
466 memset(&swsusp_info, 0, sizeof(swsusp_info));
467 swsusp_info.version_code = LINUX_VERSION_CODE;
468 swsusp_info.num_physpages = num_physpages;
469 memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname));
470
471 swsusp_info.suspend_pagedir = pagedir_nosave;
472 swsusp_info.cpus = num_online_cpus();
473 swsusp_info.image_pages = nr_copy_pages;
474 }
475
476 static int close_swap(void)
477 {
478 swp_entry_t entry;
479 int error;
480
481 dump_info();
482 error = write_page((unsigned long)&swsusp_info, &entry);
483 if (!error) {
484 printk( "S" );
485 error = mark_swapfiles(entry);
486 printk( "|\n" );
487 }
488 return error;
489 }
490
491 /**
492 * free_pagedir_entries - Free pages used by the page directory.
493 *
494 * This is used during suspend for error recovery.
495 */
496
497 static void free_pagedir_entries(void)
498 {
499 int i;
500
501 for (i = 0; i < swsusp_info.pagedir_pages; i++)
502 swap_free(swsusp_info.pagedir[i]);
503 }
504
505
506 /**
507 * write_pagedir - Write the array of pages holding the page directory.
508 * @last: Last swap entry we write (needed for header).
509 */
510
511 static int write_pagedir(void)
512 {
513 int error = 0;
514 unsigned n = 0;
515 struct pbe * pbe;
516
517 printk( "Writing pagedir...");
518 for_each_pb_page (pbe, pagedir_nosave) {
519 if ((error = write_page((unsigned long)pbe, &swsusp_info.pagedir[n++])))
520 return error;
521 }
522
523 swsusp_info.pagedir_pages = n;
524 printk("done (%u pages)\n", n);
525 return error;
526 }
527
528 /**
529 * write_suspend_image - Write entire image and metadata.
530 *
531 */
532 static int write_suspend_image(void)
533 {
534 int error;
535
536 init_header();
537 if ((error = data_write()))
538 goto FreeData;
539
540 if ((error = write_pagedir()))
541 goto FreePagedir;
542
543 if ((error = close_swap()))
544 goto FreePagedir;
545 Done:
546 memset(key_iv, 0, MAXKEY+MAXIV);
547 return error;
548 FreePagedir:
549 free_pagedir_entries();
550 FreeData:
551 data_free();
552 goto Done;
553 }
554
555
556 #ifdef CONFIG_HIGHMEM
557 struct highmem_page {
558 char *data;
559 struct page *page;
560 struct highmem_page *next;
561 };
562
563 static struct highmem_page *highmem_copy;
564
565 static int save_highmem_zone(struct zone *zone)
566 {
567 unsigned long zone_pfn;
568 mark_free_pages(zone);
569 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
570 struct page *page;
571 struct highmem_page *save;
572 void *kaddr;
573 unsigned long pfn = zone_pfn + zone->zone_start_pfn;
574
575 if (!(pfn%1000))
576 printk(".");
577 if (!pfn_valid(pfn))
578 continue;
579 page = pfn_to_page(pfn);
580 /*
581 * PageReserved results from rvmalloc() sans vmalloc_32()
582 * and architectural memory reservations.
583 *
584 * rvmalloc should not cause this, because all implementations
585 * appear to always be using vmalloc_32 on architectures with
586 * highmem. This is a good thing, because we would like to save
587 * rvmalloc pages.
588 *
589 * It appears to be triggered by pages which do not point to
590 * valid memory (see arch/i386/mm/init.c:one_highpage_init(),
591 * which sets PageReserved if the page does not point to valid
592 * RAM.
593 *
594 * XXX: must remove usage of PageReserved!
595 */
596 if (PageReserved(page))
597 continue;
598 BUG_ON(PageNosave(page));
599 if (PageNosaveFree(page))
600 continue;
601 save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
602 if (!save)
603 return -ENOMEM;
604 save->next = highmem_copy;
605 save->page = page;
606 save->data = (void *) get_zeroed_page(GFP_ATOMIC);
607 if (!save->data) {
608 kfree(save);
609 return -ENOMEM;
610 }
611 kaddr = kmap_atomic(page, KM_USER0);
612 memcpy(save->data, kaddr, PAGE_SIZE);
613 kunmap_atomic(kaddr, KM_USER0);
614 highmem_copy = save;
615 }
616 return 0;
617 }
618 #endif /* CONFIG_HIGHMEM */
619
620
621 static int save_highmem(void)
622 {
623 #ifdef CONFIG_HIGHMEM
624 struct zone *zone;
625 int res = 0;
626
627 pr_debug("swsusp: Saving Highmem\n");
628 for_each_zone (zone) {
629 if (is_highmem(zone))
630 res = save_highmem_zone(zone);
631 if (res)
632 return res;
633 }
634 #endif
635 return 0;
636 }
637
638 static int restore_highmem(void)
639 {
640 #ifdef CONFIG_HIGHMEM
641 printk("swsusp: Restoring Highmem\n");
642 while (highmem_copy) {
643 struct highmem_page *save = highmem_copy;
644 void *kaddr;
645 highmem_copy = save->next;
646
647 kaddr = kmap_atomic(save->page, KM_USER0);
648 memcpy(kaddr, save->data, PAGE_SIZE);
649 kunmap_atomic(kaddr, KM_USER0);
650 free_page((long) save->data);
651 kfree(save);
652 }
653 #endif
654 return 0;
655 }
656
657
658 static int pfn_is_nosave(unsigned long pfn)
659 {
660 unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
661 unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
662 return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
663 }
664
665 /**
666 * saveable - Determine whether a page should be cloned or not.
667 * @pfn: The page
668 *
669 * We save a page if it's Reserved, and not in the range of pages
670 * statically defined as 'unsaveable', or if it isn't reserved, and
671 * isn't part of a free chunk of pages.
672 */
673
674 static int saveable(struct zone * zone, unsigned long * zone_pfn)
675 {
676 unsigned long pfn = *zone_pfn + zone->zone_start_pfn;
677 struct page * page;
678
679 if (!pfn_valid(pfn))
680 return 0;
681
682 page = pfn_to_page(pfn);
683 if (PageNosave(page))
684 return 0;
685 if (pfn_is_nosave(pfn)) {
686 pr_debug("[nosave pfn 0x%lx]", pfn);
687 return 0;
688 }
689 if (PageNosaveFree(page))
690 return 0;
691
692 return 1;
693 }
694
695 static void count_data_pages(void)
696 {
697 struct zone *zone;
698 unsigned long zone_pfn;
699
700 nr_copy_pages = 0;
701
702 for_each_zone (zone) {
703 if (is_highmem(zone))
704 continue;
705 mark_free_pages(zone);
706 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
707 nr_copy_pages += saveable(zone, &zone_pfn);
708 }
709 }
710
711
712 static void copy_data_pages(void)
713 {
714 struct zone *zone;
715 unsigned long zone_pfn;
716 struct pbe * pbe = pagedir_nosave;
717
718 pr_debug("copy_data_pages(): pages to copy: %d\n", nr_copy_pages);
719 for_each_zone (zone) {
720 if (is_highmem(zone))
721 continue;
722 mark_free_pages(zone);
723 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
724 if (saveable(zone, &zone_pfn)) {
725 struct page * page;
726 page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
727 BUG_ON(!pbe);
728 pbe->orig_address = (long) page_address(page);
729 /* copy_page is not usable for copying task structs. */
730 memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE);
731 pbe = pbe->next;
732 }
733 }
734 }
735 BUG_ON(pbe);
736 }
737
738
739 /**
740 * calc_nr - Determine the number of pages needed for a pbe list.
741 */
742
743 static int calc_nr(int nr_copy)
744 {
745 return nr_copy + (nr_copy+PBES_PER_PAGE-2)/(PBES_PER_PAGE-1);
746 }
747
748 /**
749 * free_pagedir - free pages allocated with alloc_pagedir()
750 */
751
752 static inline void free_pagedir(struct pbe *pblist)
753 {
754 struct pbe *pbe;
755
756 while (pblist) {
757 pbe = (pblist + PB_PAGE_SKIP)->next;
758 free_page((unsigned long)pblist);
759 pblist = pbe;
760 }
761 }
762
763 /**
764 * fill_pb_page - Create a list of PBEs on a given memory page
765 */
766
767 static inline void fill_pb_page(struct pbe *pbpage)
768 {
769 struct pbe *p;
770
771 p = pbpage;
772 pbpage += PB_PAGE_SKIP;
773 do
774 p->next = p + 1;
775 while (++p < pbpage);
776 }
777
778 /**
779 * create_pbe_list - Create a list of PBEs on top of a given chain
780 * of memory pages allocated with alloc_pagedir()
781 */
782
783 static void create_pbe_list(struct pbe *pblist, unsigned nr_pages)
784 {
785 struct pbe *pbpage, *p;
786 unsigned num = PBES_PER_PAGE;
787
788 for_each_pb_page (pbpage, pblist) {
789 if (num >= nr_pages)
790 break;
791
792 fill_pb_page(pbpage);
793 num += PBES_PER_PAGE;
794 }
795 if (pbpage) {
796 for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++)
797 p->next = p + 1;
798 p->next = NULL;
799 }
800 pr_debug("create_pbe_list(): initialized %d PBEs\n", num);
801 }
802
803 /**
804 * alloc_pagedir - Allocate the page directory.
805 *
806 * First, determine exactly how many pages we need and
807 * allocate them.
808 *
809 * We arrange the pages in a chain: each page is an array of PBES_PER_PAGE
810 * struct pbe elements (pbes) and the last element in the page points
811 * to the next page.
812 *
813 * On each page we set up a list of struct_pbe elements.
814 */
815
816 static struct pbe * alloc_pagedir(unsigned nr_pages)
817 {
818 unsigned num;
819 struct pbe *pblist, *pbe;
820
821 if (!nr_pages)
822 return NULL;
823
824 pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages);
825 pblist = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
826 for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages;
827 pbe = pbe->next, num += PBES_PER_PAGE) {
828 pbe += PB_PAGE_SKIP;
829 pbe->next = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
830 }
831 if (!pbe) { /* get_zeroed_page() failed */
832 free_pagedir(pblist);
833 pblist = NULL;
834 }
835 return pblist;
836 }
837
838 /**
839 * free_image_pages - Free pages allocated for snapshot
840 */
841
842 static void free_image_pages(void)
843 {
844 struct pbe * p;
845
846 for_each_pbe (p, pagedir_save) {
847 if (p->address) {
848 ClearPageNosave(virt_to_page(p->address));
849 free_page(p->address);
850 p->address = 0;
851 }
852 }
853 }
854
855 /**
856 * alloc_image_pages - Allocate pages for the snapshot.
857 */
858
859 static int alloc_image_pages(void)
860 {
861 struct pbe * p;
862
863 for_each_pbe (p, pagedir_save) {
864 p->address = get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
865 if (!p->address)
866 return -ENOMEM;
867 SetPageNosave(virt_to_page(p->address));
868 }
869 return 0;
870 }
871
872 /* Free pages we allocated for suspend. Suspend pages are alocated
873 * before atomic copy, so we need to free them after resume.
874 */
875 void swsusp_free(void)
876 {
877 BUG_ON(PageNosave(virt_to_page(pagedir_save)));
878 BUG_ON(PageNosaveFree(virt_to_page(pagedir_save)));
879 free_image_pages();
880 free_pagedir(pagedir_save);
881 }
882
883
884 /**
885 * enough_free_mem - Make sure we enough free memory to snapshot.
886 *
887 * Returns TRUE or FALSE after checking the number of available
888 * free pages.
889 */
890
891 static int enough_free_mem(void)
892 {
893 if (nr_free_pages() < (nr_copy_pages + PAGES_FOR_IO)) {
894 pr_debug("swsusp: Not enough free pages: Have %d\n",
895 nr_free_pages());
896 return 0;
897 }
898 return 1;
899 }
900
901
902 /**
903 * enough_swap - Make sure we have enough swap to save the image.
904 *
905 * Returns TRUE or FALSE after checking the total amount of swap
906 * space avaiable.
907 *
908 * FIXME: si_swapinfo(&i) returns all swap devices information.
909 * We should only consider resume_device.
910 */
911
912 static int enough_swap(void)
913 {
914 struct sysinfo i;
915
916 si_swapinfo(&i);
917 if (i.freeswap < (nr_copy_pages + PAGES_FOR_IO)) {
918 pr_debug("swsusp: Not enough swap. Need %ld\n",i.freeswap);
919 return 0;
920 }
921 return 1;
922 }
923
924 static int swsusp_alloc(void)
925 {
926 int error;
927
928 pagedir_nosave = NULL;
929 nr_copy_pages = calc_nr(nr_copy_pages);
930 nr_copy_pages_check = nr_copy_pages;
931
932 pr_debug("suspend: (pages needed: %d + %d free: %d)\n",
933 nr_copy_pages, PAGES_FOR_IO, nr_free_pages());
934
935 if (!enough_free_mem())
936 return -ENOMEM;
937
938 if (!enough_swap())
939 return -ENOSPC;
940
941 if (MAX_PBES < nr_copy_pages / PBES_PER_PAGE +
942 !!(nr_copy_pages % PBES_PER_PAGE))
943 return -ENOSPC;
944
945 if (!(pagedir_save = alloc_pagedir(nr_copy_pages))) {
946 printk(KERN_ERR "suspend: Allocating pagedir failed.\n");
947 return -ENOMEM;
948 }
949 create_pbe_list(pagedir_save, nr_copy_pages);
950 pagedir_nosave = pagedir_save;
951 if ((error = alloc_image_pages())) {
952 printk(KERN_ERR "suspend: Allocating image pages failed.\n");
953 swsusp_free();
954 return error;
955 }
956
957 return 0;
958 }
959
960 static int suspend_prepare_image(void)
961 {
962 int error;
963
964 pr_debug("swsusp: critical section: \n");
965 if (save_highmem()) {
966 printk(KERN_CRIT "Suspend machine: Not enough free pages for highmem\n");
967 restore_highmem();
968 return -ENOMEM;
969 }
970
971 drain_local_pages();
972 count_data_pages();
973 printk("swsusp: Need to copy %u pages\n", nr_copy_pages);
974
975 error = swsusp_alloc();
976 if (error)
977 return error;
978
979 /* During allocating of suspend pagedir, new cold pages may appear.
980 * Kill them.
981 */
982 drain_local_pages();
983 copy_data_pages();
984
985 /*
986 * End of critical section. From now on, we can write to memory,
987 * but we should not touch disk. This specially means we must _not_
988 * touch swap space! Except we must write out our image of course.
989 */
990
991 printk("swsusp: critical section/: done (%d pages copied)\n", nr_copy_pages );
992 return 0;
993 }
994
995
996 /* It is important _NOT_ to umount filesystems at this point. We want
997 * them synced (in case something goes wrong) but we DO not want to mark
998 * filesystem clean: it is not. (And it does not matter, if we resume
999 * correctly, we'll mark system clean, anyway.)
1000 */
1001 int swsusp_write(void)
1002 {
1003 int error;
1004 device_resume();
1005 lock_swapdevices();
1006 error = write_suspend_image();
1007 /* This will unlock ignored swap devices since writing is finished */
1008 lock_swapdevices();
1009 return error;
1010
1011 }
1012
1013
1014 extern asmlinkage int swsusp_arch_suspend(void);
1015 extern asmlinkage int swsusp_arch_resume(void);
1016
1017
1018 asmlinkage int swsusp_save(void)
1019 {
1020 return suspend_prepare_image();
1021 }
1022
1023 int swsusp_suspend(void)
1024 {
1025 int error;
1026 if ((error = arch_prepare_suspend()))
1027 return error;
1028 local_irq_disable();
1029 /* At this point, device_suspend() has been called, but *not*
1030 * device_power_down(). We *must* device_power_down() now.
1031 * Otherwise, drivers for some devices (e.g. interrupt controllers)
1032 * become desynchronized with the actual state of the hardware
1033 * at resume time, and evil weirdness ensues.
1034 */
1035 if ((error = device_power_down(PMSG_FREEZE))) {
1036 printk(KERN_ERR "Some devices failed to power down, aborting suspend\n");
1037 local_irq_enable();
1038 return error;
1039 }
1040
1041 if ((error = swsusp_swap_check())) {
1042 printk(KERN_ERR "swsusp: cannot find swap device, try swapon -a.\n");
1043 device_power_up();
1044 local_irq_enable();
1045 return error;
1046 }
1047
1048 save_processor_state();
1049 if ((error = swsusp_arch_suspend()))
1050 printk(KERN_ERR "Error %d suspending\n", error);
1051 /* Restore control flow magically appears here */
1052 restore_processor_state();
1053 BUG_ON (nr_copy_pages_check != nr_copy_pages);
1054 restore_highmem();
1055 device_power_up();
1056 local_irq_enable();
1057 return error;
1058 }
1059
1060 int swsusp_resume(void)
1061 {
1062 int error;
1063 local_irq_disable();
1064 if (device_power_down(PMSG_FREEZE))
1065 printk(KERN_ERR "Some devices failed to power down, very bad\n");
1066 /* We'll ignore saved state, but this gets preempt count (etc) right */
1067 save_processor_state();
1068 error = swsusp_arch_resume();
1069 /* Code below is only ever reached in case of failure. Otherwise
1070 * execution continues at place where swsusp_arch_suspend was called
1071 */
1072 BUG_ON(!error);
1073 restore_processor_state();
1074 restore_highmem();
1075 touch_softlockup_watchdog();
1076 device_power_up();
1077 local_irq_enable();
1078 return error;
1079 }
1080
1081 /**
1082 * On resume, for storing the PBE list and the image,
1083 * we can only use memory pages that do not conflict with the pages
1084 * which had been used before suspend.
1085 *
1086 * We don't know which pages are usable until we allocate them.
1087 *
1088 * Allocated but unusable (ie eaten) memory pages are linked together
1089 * to create a list, so that we can free them easily
1090 *
1091 * We could have used a type other than (void *)
1092 * for this purpose, but ...
1093 */
1094 static void **eaten_memory = NULL;
1095
1096 static inline void eat_page(void *page)
1097 {
1098 void **c;
1099
1100 c = eaten_memory;
1101 eaten_memory = page;
1102 *eaten_memory = c;
1103 }
1104
1105 unsigned long get_usable_page(gfp_t gfp_mask)
1106 {
1107 unsigned long m;
1108
1109 m = get_zeroed_page(gfp_mask);
1110 while (!PageNosaveFree(virt_to_page(m))) {
1111 eat_page((void *)m);
1112 m = get_zeroed_page(gfp_mask);
1113 if (!m)
1114 break;
1115 }
1116 return m;
1117 }
1118
1119 void free_eaten_memory(void)
1120 {
1121 unsigned long m;
1122 void **c;
1123 int i = 0;
1124
1125 c = eaten_memory;
1126 while (c) {
1127 m = (unsigned long)c;
1128 c = *c;
1129 free_page(m);
1130 i++;
1131 }
1132 eaten_memory = NULL;
1133 pr_debug("swsusp: %d unused pages freed\n", i);
1134 }
1135
1136 /**
1137 * check_pagedir - We ensure here that pages that the PBEs point to
1138 * won't collide with pages where we're going to restore from the loaded
1139 * pages later
1140 */
1141
1142 static int check_pagedir(struct pbe *pblist)
1143 {
1144 struct pbe *p;
1145
1146 /* This is necessary, so that we can free allocated pages
1147 * in case of failure
1148 */
1149 for_each_pbe (p, pblist)
1150 p->address = 0UL;
1151
1152 for_each_pbe (p, pblist) {
1153 p->address = get_usable_page(GFP_ATOMIC);
1154 if (!p->address)
1155 return -ENOMEM;
1156 }
1157 return 0;
1158 }
1159
1160 /**
1161 * swsusp_pagedir_relocate - It is possible, that some memory pages
1162 * occupied by the list of PBEs collide with pages where we're going to
1163 * restore from the loaded pages later. We relocate them here.
1164 */
1165
1166 static struct pbe * swsusp_pagedir_relocate(struct pbe *pblist)
1167 {
1168 struct zone *zone;
1169 unsigned long zone_pfn;
1170 struct pbe *pbpage, *tail, *p;
1171 void *m;
1172 int rel = 0, error = 0;
1173
1174 if (!pblist) /* a sanity check */
1175 return NULL;
1176
1177 pr_debug("swsusp: Relocating pagedir (%lu pages to check)\n",
1178 swsusp_info.pagedir_pages);
1179
1180 /* Set page flags */
1181
1182 for_each_zone (zone) {
1183 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
1184 SetPageNosaveFree(pfn_to_page(zone_pfn +
1185 zone->zone_start_pfn));
1186 }
1187
1188 /* Clear orig addresses */
1189
1190 for_each_pbe (p, pblist)
1191 ClearPageNosaveFree(virt_to_page(p->orig_address));
1192
1193 tail = pblist + PB_PAGE_SKIP;
1194
1195 /* Relocate colliding pages */
1196
1197 for_each_pb_page (pbpage, pblist) {
1198 if (!PageNosaveFree(virt_to_page((unsigned long)pbpage))) {
1199 m = (void *)get_usable_page(GFP_ATOMIC | __GFP_COLD);
1200 if (!m) {
1201 error = -ENOMEM;
1202 break;
1203 }
1204 memcpy(m, (void *)pbpage, PAGE_SIZE);
1205 if (pbpage == pblist)
1206 pblist = (struct pbe *)m;
1207 else
1208 tail->next = (struct pbe *)m;
1209
1210 eat_page((void *)pbpage);
1211 pbpage = (struct pbe *)m;
1212
1213 /* We have to link the PBEs again */
1214
1215 for (p = pbpage; p < pbpage + PB_PAGE_SKIP; p++)
1216 if (p->next) /* needed to save the end */
1217 p->next = p + 1;
1218
1219 rel++;
1220 }
1221 tail = pbpage + PB_PAGE_SKIP;
1222 }
1223
1224 if (error) {
1225 printk("\nswsusp: Out of memory\n\n");
1226 free_pagedir(pblist);
1227 free_eaten_memory();
1228 pblist = NULL;
1229 /* Is this even worth handling? It should never ever happen, and we
1230 have just lost user's state, anyway... */
1231 } else
1232 printk("swsusp: Relocated %d pages\n", rel);
1233
1234 return pblist;
1235 }
1236
1237 /*
1238 * Using bio to read from swap.
1239 * This code requires a bit more work than just using buffer heads
1240 * but, it is the recommended way for 2.5/2.6.
1241 * The following are to signal the beginning and end of I/O. Bios
1242 * finish asynchronously, while we want them to happen synchronously.
1243 * A simple atomic_t, and a wait loop take care of this problem.
1244 */
1245
1246 static atomic_t io_done = ATOMIC_INIT(0);
1247
1248 static int end_io(struct bio * bio, unsigned int num, int err)
1249 {
1250 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1251 panic("I/O error reading memory image");
1252 atomic_set(&io_done, 0);
1253 return 0;
1254 }
1255
1256 static struct block_device * resume_bdev;
1257
1258 /**
1259 * submit - submit BIO request.
1260 * @rw: READ or WRITE.
1261 * @off physical offset of page.
1262 * @page: page we're reading or writing.
1263 *
1264 * Straight from the textbook - allocate and initialize the bio.
1265 * If we're writing, make sure the page is marked as dirty.
1266 * Then submit it and wait.
1267 */
1268
1269 static int submit(int rw, pgoff_t page_off, void * page)
1270 {
1271 int error = 0;
1272 struct bio * bio;
1273
1274 bio = bio_alloc(GFP_ATOMIC, 1);
1275 if (!bio)
1276 return -ENOMEM;
1277 bio->bi_sector = page_off * (PAGE_SIZE >> 9);
1278 bio_get(bio);
1279 bio->bi_bdev = resume_bdev;
1280 bio->bi_end_io = end_io;
1281
1282 if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {
1283 printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);
1284 error = -EFAULT;
1285 goto Done;
1286 }
1287
1288 if (rw == WRITE)
1289 bio_set_pages_dirty(bio);
1290
1291 atomic_set(&io_done, 1);
1292 submit_bio(rw | (1 << BIO_RW_SYNC), bio);
1293 while (atomic_read(&io_done))
1294 yield();
1295
1296 Done:
1297 bio_put(bio);
1298 return error;
1299 }
1300
1301 static int bio_read_page(pgoff_t page_off, void * page)
1302 {
1303 return submit(READ, page_off, page);
1304 }
1305
1306 static int bio_write_page(pgoff_t page_off, void * page)
1307 {
1308 return submit(WRITE, page_off, page);
1309 }
1310
1311 /*
1312 * Sanity check if this image makes sense with this kernel/swap context
1313 * I really don't think that it's foolproof but more than nothing..
1314 */
1315
1316 static const char * sanity_check(void)
1317 {
1318 dump_info();
1319 if (swsusp_info.version_code != LINUX_VERSION_CODE)
1320 return "kernel version";
1321 if (swsusp_info.num_physpages != num_physpages)
1322 return "memory size";
1323 if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname))
1324 return "system type";
1325 if (strcmp(swsusp_info.uts.release,system_utsname.release))
1326 return "kernel release";
1327 if (strcmp(swsusp_info.uts.version,system_utsname.version))
1328 return "version";
1329 if (strcmp(swsusp_info.uts.machine,system_utsname.machine))
1330 return "machine";
1331 #if 0
1332 /* We can't use number of online CPUs when we use hotplug to remove them ;-))) */
1333 if (swsusp_info.cpus != num_possible_cpus())
1334 return "number of cpus";
1335 #endif
1336 return NULL;
1337 }
1338
1339
1340 static int check_header(void)
1341 {
1342 const char * reason = NULL;
1343 int error;
1344
1345 if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info)))
1346 return error;
1347
1348 /* Is this same machine? */
1349 if ((reason = sanity_check())) {
1350 printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason);
1351 return -EPERM;
1352 }
1353 nr_copy_pages = swsusp_info.image_pages;
1354 return error;
1355 }
1356
1357 static int check_sig(void)
1358 {
1359 int error;
1360
1361 memset(&swsusp_header, 0, sizeof(swsusp_header));
1362 if ((error = bio_read_page(0, &swsusp_header)))
1363 return error;
1364 if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {
1365 memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);
1366 memcpy(key_iv, swsusp_header.key_iv, MAXKEY+MAXIV);
1367 memset(swsusp_header.key_iv, 0, MAXKEY+MAXIV);
1368
1369 /*
1370 * Reset swap signature now.
1371 */
1372 error = bio_write_page(0, &swsusp_header);
1373 } else {
1374 return -EINVAL;
1375 }
1376 if (!error)
1377 pr_debug("swsusp: Signature found, resuming\n");
1378 return error;
1379 }
1380
1381 /**
1382 * data_read - Read image pages from swap.
1383 *
1384 * You do not need to check for overlaps, check_pagedir()
1385 * already did that.
1386 */
1387
1388 static int data_read(struct pbe *pblist)
1389 {
1390 struct pbe * p;
1391 int error = 0;
1392 int i = 0;
1393 int mod = swsusp_info.image_pages / 100;
1394 void *tfm;
1395
1396 if ((error = crypto_init(0, &tfm)))
1397 return error;
1398
1399 if (!mod)
1400 mod = 1;
1401
1402 printk("swsusp: Reading image data (%lu pages): ",
1403 swsusp_info.image_pages);
1404
1405 for_each_pbe (p, pblist) {
1406 if (!(i % mod))
1407 printk("\b\b\b\b%3d%%", i / mod);
1408
1409 if ((error = crypto_read(p, tfm))) {
1410 crypto_exit(tfm);
1411 return error;
1412 }
1413
1414 i++;
1415 }
1416 printk("\b\b\b\bdone\n");
1417 crypto_exit(tfm);
1418 return error;
1419 }
1420
1421 /**
1422 * read_pagedir - Read page backup list pages from swap
1423 */
1424
1425 static int read_pagedir(struct pbe *pblist)
1426 {
1427 struct pbe *pbpage, *p;
1428 unsigned i = 0;
1429 int error;
1430
1431 if (!pblist)
1432 return -EFAULT;
1433
1434 printk("swsusp: Reading pagedir (%lu pages)\n",
1435 swsusp_info.pagedir_pages);
1436
1437 for_each_pb_page (pbpage, pblist) {
1438 unsigned long offset = swp_offset(swsusp_info.pagedir[i++]);
1439
1440 error = -EFAULT;
1441 if (offset) {
1442 p = (pbpage + PB_PAGE_SKIP)->next;
1443 error = bio_read_page(offset, (void *)pbpage);
1444 (pbpage + PB_PAGE_SKIP)->next = p;
1445 }
1446 if (error)
1447 break;
1448 }
1449
1450 if (error)
1451 free_pagedir(pblist);
1452 else
1453 BUG_ON(i != swsusp_info.pagedir_pages);
1454
1455 return error;
1456 }
1457
1458
1459 static int check_suspend_image(void)
1460 {
1461 int error = 0;
1462
1463 if ((error = check_sig()))
1464 return error;
1465
1466 if ((error = check_header()))
1467 return error;
1468
1469 return 0;
1470 }
1471
1472 static int read_suspend_image(void)
1473 {
1474 int error = 0;
1475 struct pbe *p;
1476
1477 if (!(p = alloc_pagedir(nr_copy_pages)))
1478 return -ENOMEM;
1479
1480 if ((error = read_pagedir(p)))
1481 return error;
1482
1483 create_pbe_list(p, nr_copy_pages);
1484
1485 if (!(pagedir_nosave = swsusp_pagedir_relocate(p)))
1486 return -ENOMEM;
1487
1488 /* Allocate memory for the image and read the data from swap */
1489
1490 error = check_pagedir(pagedir_nosave);
1491
1492 if (!error)
1493 error = data_read(pagedir_nosave);
1494
1495 if (error) { /* We fail cleanly */
1496 free_eaten_memory();
1497 for_each_pbe (p, pagedir_nosave)
1498 if (p->address) {
1499 free_page(p->address);
1500 p->address = 0UL;
1501 }
1502 free_pagedir(pagedir_nosave);
1503 }
1504 return error;
1505 }
1506
1507 /**
1508 * swsusp_check - Check for saved image in swap
1509 */
1510
1511 int swsusp_check(void)
1512 {
1513 int error;
1514
1515 resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
1516 if (!IS_ERR(resume_bdev)) {
1517 set_blocksize(resume_bdev, PAGE_SIZE);
1518 error = check_suspend_image();
1519 if (error)
1520 blkdev_put(resume_bdev);
1521 } else
1522 error = PTR_ERR(resume_bdev);
1523
1524 if (!error)
1525 pr_debug("swsusp: resume file found\n");
1526 else
1527 pr_debug("swsusp: Error %d check for resume file\n", error);
1528 return error;
1529 }
1530
1531 /**
1532 * swsusp_read - Read saved image from swap.
1533 */
1534
1535 int swsusp_read(void)
1536 {
1537 int error;
1538
1539 if (IS_ERR(resume_bdev)) {
1540 pr_debug("swsusp: block device not initialised\n");
1541 return PTR_ERR(resume_bdev);
1542 }
1543
1544 error = read_suspend_image();
1545 blkdev_put(resume_bdev);
1546 memset(key_iv, 0, MAXKEY+MAXIV);
1547
1548 if (!error)
1549 pr_debug("swsusp: Reading resume file was successful\n");
1550 else
1551 pr_debug("swsusp: Error %d resuming\n", error);
1552 return error;
1553 }
1554
1555 /**
1556 * swsusp_close - close swap device.
1557 */
1558
1559 void swsusp_close(void)
1560 {
1561 if (IS_ERR(resume_bdev)) {
1562 pr_debug("swsusp: block device not initialised\n");
1563 return;
1564 }
1565
1566 blkdev_put(resume_bdev);
1567 }
This page took 0.065043 seconds and 5 git commands to generate.