Merge head 'drm-3264' of master.kernel.org:/pub/scm/linux/kernel/git/airlied/drm-2.6
[deliverable/linux.git] / kernel / power / swsusp.c
1 /*
2 * linux/kernel/power/swsusp.c
3 *
4 * This file is to realize architecture-independent
5 * machine suspend feature using pretty near only high-level routines
6 *
7 * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
8 * Copyright (C) 1998,2001-2004 Pavel Machek <pavel@suse.cz>
9 *
10 * This file is released under the GPLv2.
11 *
12 * I'd like to thank the following people for their work:
13 *
14 * Pavel Machek <pavel@ucw.cz>:
15 * Modifications, defectiveness pointing, being with me at the very beginning,
16 * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
17 *
18 * Steve Doddi <dirk@loth.demon.co.uk>:
19 * Support the possibility of hardware state restoring.
20 *
21 * Raph <grey.havens@earthling.net>:
22 * Support for preserving states of network devices and virtual console
23 * (including X and svgatextmode)
24 *
25 * Kurt Garloff <garloff@suse.de>:
26 * Straightened the critical function in order to prevent compilers from
27 * playing tricks with local variables.
28 *
29 * Andreas Mohr <a.mohr@mailto.de>
30 *
31 * Alex Badea <vampire@go.ro>:
32 * Fixed runaway init
33 *
34 * More state savers are welcome. Especially for the scsi layer...
35 *
36 * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
37 */
38
39 #include <linux/module.h>
40 #include <linux/mm.h>
41 #include <linux/suspend.h>
42 #include <linux/smp_lock.h>
43 #include <linux/file.h>
44 #include <linux/utsname.h>
45 #include <linux/version.h>
46 #include <linux/delay.h>
47 #include <linux/reboot.h>
48 #include <linux/bitops.h>
49 #include <linux/vt_kern.h>
50 #include <linux/kbd_kern.h>
51 #include <linux/keyboard.h>
52 #include <linux/spinlock.h>
53 #include <linux/genhd.h>
54 #include <linux/kernel.h>
55 #include <linux/major.h>
56 #include <linux/swap.h>
57 #include <linux/pm.h>
58 #include <linux/device.h>
59 #include <linux/buffer_head.h>
60 #include <linux/swapops.h>
61 #include <linux/bootmem.h>
62 #include <linux/syscalls.h>
63 #include <linux/console.h>
64 #include <linux/highmem.h>
65 #include <linux/bio.h>
66
67 #include <asm/uaccess.h>
68 #include <asm/mmu_context.h>
69 #include <asm/pgtable.h>
70 #include <asm/tlbflush.h>
71 #include <asm/io.h>
72
73 #include "power.h"
74
75 /* References to section boundaries */
76 extern const void __nosave_begin, __nosave_end;
77
78 /* Variables to be preserved over suspend */
79 static int nr_copy_pages_check;
80
81 extern char resume_file[];
82
83 /* Local variables that should not be affected by save */
84 static unsigned int nr_copy_pages __nosavedata = 0;
85
86 /* Suspend pagedir is allocated before final copy, therefore it
87 must be freed after resume
88
89 Warning: this is evil. There are actually two pagedirs at time of
90 resume. One is "pagedir_save", which is empty frame allocated at
91 time of suspend, that must be freed. Second is "pagedir_nosave",
92 allocated at time of resume, that travels through memory not to
93 collide with anything.
94
95 Warning: this is even more evil than it seems. Pagedirs this file
96 talks about are completely different from page directories used by
97 MMU hardware.
98 */
99 suspend_pagedir_t *pagedir_nosave __nosavedata = NULL;
100 static suspend_pagedir_t *pagedir_save;
101
102 #define SWSUSP_SIG "S1SUSPEND"
103
104 static struct swsusp_header {
105 char reserved[PAGE_SIZE - 20 - sizeof(swp_entry_t)];
106 swp_entry_t swsusp_info;
107 char orig_sig[10];
108 char sig[10];
109 } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header;
110
111 static struct swsusp_info swsusp_info;
112
113 /*
114 * XXX: We try to keep some more pages free so that I/O operations succeed
115 * without paging. Might this be more?
116 */
117 #define PAGES_FOR_IO 512
118
119 /*
120 * Saving part...
121 */
122
123 /* We memorize in swapfile_used what swap devices are used for suspension */
124 #define SWAPFILE_UNUSED 0
125 #define SWAPFILE_SUSPEND 1 /* This is the suspending device */
126 #define SWAPFILE_IGNORED 2 /* Those are other swap devices ignored for suspension */
127
128 static unsigned short swapfile_used[MAX_SWAPFILES];
129 static unsigned short root_swap;
130
131 static int mark_swapfiles(swp_entry_t prev)
132 {
133 int error;
134
135 rw_swap_page_sync(READ,
136 swp_entry(root_swap, 0),
137 virt_to_page((unsigned long)&swsusp_header));
138 if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) ||
139 !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) {
140 memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10);
141 memcpy(swsusp_header.sig,SWSUSP_SIG, 10);
142 swsusp_header.swsusp_info = prev;
143 error = rw_swap_page_sync(WRITE,
144 swp_entry(root_swap, 0),
145 virt_to_page((unsigned long)
146 &swsusp_header));
147 } else {
148 pr_debug("swsusp: Partition is not swap space.\n");
149 error = -ENODEV;
150 }
151 return error;
152 }
153
154 /*
155 * Check whether the swap device is the specified resume
156 * device, irrespective of whether they are specified by
157 * identical names.
158 *
159 * (Thus, device inode aliasing is allowed. You can say /dev/hda4
160 * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs]
161 * and they'll be considered the same device. This is *necessary* for
162 * devfs, since the resume code can only recognize the form /dev/hda4,
163 * but the suspend code would see the long name.)
164 */
165 static int is_resume_device(const struct swap_info_struct *swap_info)
166 {
167 struct file *file = swap_info->swap_file;
168 struct inode *inode = file->f_dentry->d_inode;
169
170 return S_ISBLK(inode->i_mode) &&
171 swsusp_resume_device == MKDEV(imajor(inode), iminor(inode));
172 }
173
174 static int swsusp_swap_check(void) /* This is called before saving image */
175 {
176 int i, len;
177
178 len=strlen(resume_file);
179 root_swap = 0xFFFF;
180
181 swap_list_lock();
182 for (i=0; i<MAX_SWAPFILES; i++) {
183 if (swap_info[i].flags == 0) {
184 swapfile_used[i]=SWAPFILE_UNUSED;
185 } else {
186 if (!len) {
187 printk(KERN_WARNING "resume= option should be used to set suspend device" );
188 if (root_swap == 0xFFFF) {
189 swapfile_used[i] = SWAPFILE_SUSPEND;
190 root_swap = i;
191 } else
192 swapfile_used[i] = SWAPFILE_IGNORED;
193 } else {
194 /* we ignore all swap devices that are not the resume_file */
195 if (is_resume_device(&swap_info[i])) {
196 swapfile_used[i] = SWAPFILE_SUSPEND;
197 root_swap = i;
198 } else {
199 swapfile_used[i] = SWAPFILE_IGNORED;
200 }
201 }
202 }
203 }
204 swap_list_unlock();
205 return (root_swap != 0xffff) ? 0 : -ENODEV;
206 }
207
208 /**
209 * This is called after saving image so modification
210 * will be lost after resume... and that's what we want.
211 * we make the device unusable. A new call to
212 * lock_swapdevices can unlock the devices.
213 */
214 static void lock_swapdevices(void)
215 {
216 int i;
217
218 swap_list_lock();
219 for (i = 0; i< MAX_SWAPFILES; i++)
220 if (swapfile_used[i] == SWAPFILE_IGNORED) {
221 swap_info[i].flags ^= 0xFF;
222 }
223 swap_list_unlock();
224 }
225
226 /**
227 * write_swap_page - Write one page to a fresh swap location.
228 * @addr: Address we're writing.
229 * @loc: Place to store the entry we used.
230 *
231 * Allocate a new swap entry and 'sync' it. Note we discard -EIO
232 * errors. That is an artifact left over from swsusp. It did not
233 * check the return of rw_swap_page_sync() at all, since most pages
234 * written back to swap would return -EIO.
235 * This is a partial improvement, since we will at least return other
236 * errors, though we need to eventually fix the damn code.
237 */
238 static int write_page(unsigned long addr, swp_entry_t * loc)
239 {
240 swp_entry_t entry;
241 int error = 0;
242
243 entry = get_swap_page();
244 if (swp_offset(entry) &&
245 swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) {
246 error = rw_swap_page_sync(WRITE, entry,
247 virt_to_page(addr));
248 if (error == -EIO)
249 error = 0;
250 if (!error)
251 *loc = entry;
252 } else
253 error = -ENOSPC;
254 return error;
255 }
256
257 /**
258 * data_free - Free the swap entries used by the saved image.
259 *
260 * Walk the list of used swap entries and free each one.
261 * This is only used for cleanup when suspend fails.
262 */
263 static void data_free(void)
264 {
265 swp_entry_t entry;
266 int i;
267
268 for (i = 0; i < nr_copy_pages; i++) {
269 entry = (pagedir_nosave + i)->swap_address;
270 if (entry.val)
271 swap_free(entry);
272 else
273 break;
274 (pagedir_nosave + i)->swap_address = (swp_entry_t){0};
275 }
276 }
277
278 /**
279 * data_write - Write saved image to swap.
280 *
281 * Walk the list of pages in the image and sync each one to swap.
282 */
283 static int data_write(void)
284 {
285 int error = 0, i = 0;
286 unsigned int mod = nr_copy_pages / 100;
287 struct pbe *p;
288
289 if (!mod)
290 mod = 1;
291
292 printk( "Writing data to swap (%d pages)... ", nr_copy_pages );
293 for_each_pbe (p, pagedir_nosave) {
294 if (!(i%mod))
295 printk( "\b\b\b\b%3d%%", i / mod );
296 if ((error = write_page(p->address, &(p->swap_address))))
297 return error;
298 i++;
299 }
300 printk("\b\b\b\bdone\n");
301 return error;
302 }
303
304 static void dump_info(void)
305 {
306 pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code);
307 pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages);
308 pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname);
309 pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename);
310 pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release);
311 pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version);
312 pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine);
313 pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname);
314 pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus);
315 pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages);
316 pr_debug(" swsusp: Pagedir: %ld Pages\n",swsusp_info.pagedir_pages);
317 }
318
319 static void init_header(void)
320 {
321 memset(&swsusp_info, 0, sizeof(swsusp_info));
322 swsusp_info.version_code = LINUX_VERSION_CODE;
323 swsusp_info.num_physpages = num_physpages;
324 memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname));
325
326 swsusp_info.suspend_pagedir = pagedir_nosave;
327 swsusp_info.cpus = num_online_cpus();
328 swsusp_info.image_pages = nr_copy_pages;
329 }
330
331 static int close_swap(void)
332 {
333 swp_entry_t entry;
334 int error;
335
336 dump_info();
337 error = write_page((unsigned long)&swsusp_info, &entry);
338 if (!error) {
339 printk( "S" );
340 error = mark_swapfiles(entry);
341 printk( "|\n" );
342 }
343 return error;
344 }
345
346 /**
347 * free_pagedir_entries - Free pages used by the page directory.
348 *
349 * This is used during suspend for error recovery.
350 */
351
352 static void free_pagedir_entries(void)
353 {
354 int i;
355
356 for (i = 0; i < swsusp_info.pagedir_pages; i++)
357 swap_free(swsusp_info.pagedir[i]);
358 }
359
360
361 /**
362 * write_pagedir - Write the array of pages holding the page directory.
363 * @last: Last swap entry we write (needed for header).
364 */
365
366 static int write_pagedir(void)
367 {
368 int error = 0;
369 unsigned n = 0;
370 struct pbe * pbe;
371
372 printk( "Writing pagedir...");
373 for_each_pb_page (pbe, pagedir_nosave) {
374 if ((error = write_page((unsigned long)pbe, &swsusp_info.pagedir[n++])))
375 return error;
376 }
377
378 swsusp_info.pagedir_pages = n;
379 printk("done (%u pages)\n", n);
380 return error;
381 }
382
383 /**
384 * write_suspend_image - Write entire image and metadata.
385 *
386 */
387
388 static int write_suspend_image(void)
389 {
390 int error;
391
392 init_header();
393 if ((error = data_write()))
394 goto FreeData;
395
396 if ((error = write_pagedir()))
397 goto FreePagedir;
398
399 if ((error = close_swap()))
400 goto FreePagedir;
401 Done:
402 return error;
403 FreePagedir:
404 free_pagedir_entries();
405 FreeData:
406 data_free();
407 goto Done;
408 }
409
410
411 #ifdef CONFIG_HIGHMEM
412 struct highmem_page {
413 char *data;
414 struct page *page;
415 struct highmem_page *next;
416 };
417
418 static struct highmem_page *highmem_copy;
419
420 static int save_highmem_zone(struct zone *zone)
421 {
422 unsigned long zone_pfn;
423 mark_free_pages(zone);
424 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
425 struct page *page;
426 struct highmem_page *save;
427 void *kaddr;
428 unsigned long pfn = zone_pfn + zone->zone_start_pfn;
429
430 if (!(pfn%1000))
431 printk(".");
432 if (!pfn_valid(pfn))
433 continue;
434 page = pfn_to_page(pfn);
435 /*
436 * This condition results from rvmalloc() sans vmalloc_32()
437 * and architectural memory reservations. This should be
438 * corrected eventually when the cases giving rise to this
439 * are better understood.
440 */
441 if (PageReserved(page)) {
442 printk("highmem reserved page?!\n");
443 continue;
444 }
445 BUG_ON(PageNosave(page));
446 if (PageNosaveFree(page))
447 continue;
448 save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
449 if (!save)
450 return -ENOMEM;
451 save->next = highmem_copy;
452 save->page = page;
453 save->data = (void *) get_zeroed_page(GFP_ATOMIC);
454 if (!save->data) {
455 kfree(save);
456 return -ENOMEM;
457 }
458 kaddr = kmap_atomic(page, KM_USER0);
459 memcpy(save->data, kaddr, PAGE_SIZE);
460 kunmap_atomic(kaddr, KM_USER0);
461 highmem_copy = save;
462 }
463 return 0;
464 }
465 #endif /* CONFIG_HIGHMEM */
466
467
468 static int save_highmem(void)
469 {
470 #ifdef CONFIG_HIGHMEM
471 struct zone *zone;
472 int res = 0;
473
474 pr_debug("swsusp: Saving Highmem\n");
475 for_each_zone (zone) {
476 if (is_highmem(zone))
477 res = save_highmem_zone(zone);
478 if (res)
479 return res;
480 }
481 #endif
482 return 0;
483 }
484
485 static int restore_highmem(void)
486 {
487 #ifdef CONFIG_HIGHMEM
488 printk("swsusp: Restoring Highmem\n");
489 while (highmem_copy) {
490 struct highmem_page *save = highmem_copy;
491 void *kaddr;
492 highmem_copy = save->next;
493
494 kaddr = kmap_atomic(save->page, KM_USER0);
495 memcpy(kaddr, save->data, PAGE_SIZE);
496 kunmap_atomic(kaddr, KM_USER0);
497 free_page((long) save->data);
498 kfree(save);
499 }
500 #endif
501 return 0;
502 }
503
504
505 static int pfn_is_nosave(unsigned long pfn)
506 {
507 unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
508 unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
509 return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
510 }
511
512 /**
513 * saveable - Determine whether a page should be cloned or not.
514 * @pfn: The page
515 *
516 * We save a page if it's Reserved, and not in the range of pages
517 * statically defined as 'unsaveable', or if it isn't reserved, and
518 * isn't part of a free chunk of pages.
519 */
520
521 static int saveable(struct zone * zone, unsigned long * zone_pfn)
522 {
523 unsigned long pfn = *zone_pfn + zone->zone_start_pfn;
524 struct page * page;
525
526 if (!pfn_valid(pfn))
527 return 0;
528
529 page = pfn_to_page(pfn);
530 BUG_ON(PageReserved(page) && PageNosave(page));
531 if (PageNosave(page))
532 return 0;
533 if (PageReserved(page) && pfn_is_nosave(pfn)) {
534 pr_debug("[nosave pfn 0x%lx]", pfn);
535 return 0;
536 }
537 if (PageNosaveFree(page))
538 return 0;
539
540 return 1;
541 }
542
543 static void count_data_pages(void)
544 {
545 struct zone *zone;
546 unsigned long zone_pfn;
547
548 nr_copy_pages = 0;
549
550 for_each_zone (zone) {
551 if (is_highmem(zone))
552 continue;
553 mark_free_pages(zone);
554 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
555 nr_copy_pages += saveable(zone, &zone_pfn);
556 }
557 }
558
559
560 static void copy_data_pages(void)
561 {
562 struct zone *zone;
563 unsigned long zone_pfn;
564 struct pbe * pbe = pagedir_nosave;
565
566 pr_debug("copy_data_pages(): pages to copy: %d\n", nr_copy_pages);
567 for_each_zone (zone) {
568 if (is_highmem(zone))
569 continue;
570 mark_free_pages(zone);
571 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
572 if (saveable(zone, &zone_pfn)) {
573 struct page * page;
574 page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
575 BUG_ON(!pbe);
576 pbe->orig_address = (long) page_address(page);
577 /* copy_page is not usable for copying task structs. */
578 memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE);
579 pbe = pbe->next;
580 }
581 }
582 }
583 BUG_ON(pbe);
584 }
585
586
587 /**
588 * calc_nr - Determine the number of pages needed for a pbe list.
589 */
590
591 static int calc_nr(int nr_copy)
592 {
593 int extra = 0;
594 int mod = !!(nr_copy % PBES_PER_PAGE);
595 int diff = (nr_copy / PBES_PER_PAGE) + mod;
596
597 do {
598 extra += diff;
599 nr_copy += diff;
600 mod = !!(nr_copy % PBES_PER_PAGE);
601 diff = (nr_copy / PBES_PER_PAGE) + mod - extra;
602 } while (diff > 0);
603
604 return nr_copy;
605 }
606
607 /**
608 * free_pagedir - free pages allocated with alloc_pagedir()
609 */
610
611 static inline void free_pagedir(struct pbe *pblist)
612 {
613 struct pbe *pbe;
614
615 while (pblist) {
616 pbe = (pblist + PB_PAGE_SKIP)->next;
617 free_page((unsigned long)pblist);
618 pblist = pbe;
619 }
620 }
621
622 /**
623 * fill_pb_page - Create a list of PBEs on a given memory page
624 */
625
626 static inline void fill_pb_page(struct pbe *pbpage)
627 {
628 struct pbe *p;
629
630 p = pbpage;
631 pbpage += PB_PAGE_SKIP;
632 do
633 p->next = p + 1;
634 while (++p < pbpage);
635 }
636
637 /**
638 * create_pbe_list - Create a list of PBEs on top of a given chain
639 * of memory pages allocated with alloc_pagedir()
640 */
641
642 static void create_pbe_list(struct pbe *pblist, unsigned nr_pages)
643 {
644 struct pbe *pbpage, *p;
645 unsigned num = PBES_PER_PAGE;
646
647 for_each_pb_page (pbpage, pblist) {
648 if (num >= nr_pages)
649 break;
650
651 fill_pb_page(pbpage);
652 num += PBES_PER_PAGE;
653 }
654 if (pbpage) {
655 for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++)
656 p->next = p + 1;
657 p->next = NULL;
658 }
659 pr_debug("create_pbe_list(): initialized %d PBEs\n", num);
660 }
661
662 /**
663 * alloc_pagedir - Allocate the page directory.
664 *
665 * First, determine exactly how many pages we need and
666 * allocate them.
667 *
668 * We arrange the pages in a chain: each page is an array of PBES_PER_PAGE
669 * struct pbe elements (pbes) and the last element in the page points
670 * to the next page.
671 *
672 * On each page we set up a list of struct_pbe elements.
673 */
674
675 static struct pbe * alloc_pagedir(unsigned nr_pages)
676 {
677 unsigned num;
678 struct pbe *pblist, *pbe;
679
680 if (!nr_pages)
681 return NULL;
682
683 pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages);
684 pblist = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
685 for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages;
686 pbe = pbe->next, num += PBES_PER_PAGE) {
687 pbe += PB_PAGE_SKIP;
688 pbe->next = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
689 }
690 if (!pbe) { /* get_zeroed_page() failed */
691 free_pagedir(pblist);
692 pblist = NULL;
693 }
694 return pblist;
695 }
696
697 /**
698 * free_image_pages - Free pages allocated for snapshot
699 */
700
701 static void free_image_pages(void)
702 {
703 struct pbe * p;
704
705 for_each_pbe (p, pagedir_save) {
706 if (p->address) {
707 ClearPageNosave(virt_to_page(p->address));
708 free_page(p->address);
709 p->address = 0;
710 }
711 }
712 }
713
714 /**
715 * alloc_image_pages - Allocate pages for the snapshot.
716 */
717
718 static int alloc_image_pages(void)
719 {
720 struct pbe * p;
721
722 for_each_pbe (p, pagedir_save) {
723 p->address = get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
724 if (!p->address)
725 return -ENOMEM;
726 SetPageNosave(virt_to_page(p->address));
727 }
728 return 0;
729 }
730
731 void swsusp_free(void)
732 {
733 BUG_ON(PageNosave(virt_to_page(pagedir_save)));
734 BUG_ON(PageNosaveFree(virt_to_page(pagedir_save)));
735 free_image_pages();
736 free_pagedir(pagedir_save);
737 }
738
739
740 /**
741 * enough_free_mem - Make sure we enough free memory to snapshot.
742 *
743 * Returns TRUE or FALSE after checking the number of available
744 * free pages.
745 */
746
747 static int enough_free_mem(void)
748 {
749 if (nr_free_pages() < (nr_copy_pages + PAGES_FOR_IO)) {
750 pr_debug("swsusp: Not enough free pages: Have %d\n",
751 nr_free_pages());
752 return 0;
753 }
754 return 1;
755 }
756
757
758 /**
759 * enough_swap - Make sure we have enough swap to save the image.
760 *
761 * Returns TRUE or FALSE after checking the total amount of swap
762 * space avaiable.
763 *
764 * FIXME: si_swapinfo(&i) returns all swap devices information.
765 * We should only consider resume_device.
766 */
767
768 static int enough_swap(void)
769 {
770 struct sysinfo i;
771
772 si_swapinfo(&i);
773 if (i.freeswap < (nr_copy_pages + PAGES_FOR_IO)) {
774 pr_debug("swsusp: Not enough swap. Need %ld\n",i.freeswap);
775 return 0;
776 }
777 return 1;
778 }
779
780 static int swsusp_alloc(void)
781 {
782 int error;
783
784 pagedir_nosave = NULL;
785 nr_copy_pages = calc_nr(nr_copy_pages);
786
787 pr_debug("suspend: (pages needed: %d + %d free: %d)\n",
788 nr_copy_pages, PAGES_FOR_IO, nr_free_pages());
789
790 if (!enough_free_mem())
791 return -ENOMEM;
792
793 if (!enough_swap())
794 return -ENOSPC;
795
796 if (!(pagedir_save = alloc_pagedir(nr_copy_pages))) {
797 printk(KERN_ERR "suspend: Allocating pagedir failed.\n");
798 return -ENOMEM;
799 }
800 create_pbe_list(pagedir_save, nr_copy_pages);
801 pagedir_nosave = pagedir_save;
802 if ((error = alloc_image_pages())) {
803 printk(KERN_ERR "suspend: Allocating image pages failed.\n");
804 swsusp_free();
805 return error;
806 }
807
808 nr_copy_pages_check = nr_copy_pages;
809 return 0;
810 }
811
812 static int suspend_prepare_image(void)
813 {
814 int error;
815
816 pr_debug("swsusp: critical section: \n");
817 if (save_highmem()) {
818 printk(KERN_CRIT "Suspend machine: Not enough free pages for highmem\n");
819 restore_highmem();
820 return -ENOMEM;
821 }
822
823 drain_local_pages();
824 count_data_pages();
825 printk("swsusp: Need to copy %u pages\n", nr_copy_pages);
826
827 error = swsusp_alloc();
828 if (error)
829 return error;
830
831 /* During allocating of suspend pagedir, new cold pages may appear.
832 * Kill them.
833 */
834 drain_local_pages();
835 copy_data_pages();
836
837 /*
838 * End of critical section. From now on, we can write to memory,
839 * but we should not touch disk. This specially means we must _not_
840 * touch swap space! Except we must write out our image of course.
841 */
842
843 printk("swsusp: critical section/: done (%d pages copied)\n", nr_copy_pages );
844 return 0;
845 }
846
847
848 /* It is important _NOT_ to umount filesystems at this point. We want
849 * them synced (in case something goes wrong) but we DO not want to mark
850 * filesystem clean: it is not. (And it does not matter, if we resume
851 * correctly, we'll mark system clean, anyway.)
852 */
853 int swsusp_write(void)
854 {
855 int error;
856 device_resume();
857 lock_swapdevices();
858 error = write_suspend_image();
859 /* This will unlock ignored swap devices since writing is finished */
860 lock_swapdevices();
861 return error;
862
863 }
864
865
866 extern asmlinkage int swsusp_arch_suspend(void);
867 extern asmlinkage int swsusp_arch_resume(void);
868
869
870 asmlinkage int swsusp_save(void)
871 {
872 return suspend_prepare_image();
873 }
874
875 int swsusp_suspend(void)
876 {
877 int error;
878 if ((error = arch_prepare_suspend()))
879 return error;
880 local_irq_disable();
881 /* At this point, device_suspend() has been called, but *not*
882 * device_power_down(). We *must* device_power_down() now.
883 * Otherwise, drivers for some devices (e.g. interrupt controllers)
884 * become desynchronized with the actual state of the hardware
885 * at resume time, and evil weirdness ensues.
886 */
887 if ((error = device_power_down(PMSG_FREEZE))) {
888 local_irq_enable();
889 return error;
890 }
891
892 if ((error = swsusp_swap_check())) {
893 printk(KERN_ERR "swsusp: FATAL: cannot find swap device, try "
894 "swapon -a!\n");
895 local_irq_enable();
896 return error;
897 }
898
899 save_processor_state();
900 if ((error = swsusp_arch_suspend()))
901 printk("Error %d suspending\n", error);
902 /* Restore control flow magically appears here */
903 restore_processor_state();
904 BUG_ON (nr_copy_pages_check != nr_copy_pages);
905 restore_highmem();
906 device_power_up();
907 local_irq_enable();
908 return error;
909 }
910
911 int swsusp_resume(void)
912 {
913 int error;
914 local_irq_disable();
915 if (device_power_down(PMSG_FREEZE))
916 printk(KERN_ERR "Some devices failed to power down, very bad\n");
917 /* We'll ignore saved state, but this gets preempt count (etc) right */
918 save_processor_state();
919 error = swsusp_arch_resume();
920 /* Code below is only ever reached in case of failure. Otherwise
921 * execution continues at place where swsusp_arch_suspend was called
922 */
923 BUG_ON(!error);
924 restore_processor_state();
925 restore_highmem();
926 device_power_up();
927 local_irq_enable();
928 return error;
929 }
930
931 /**
932 * On resume, for storing the PBE list and the image,
933 * we can only use memory pages that do not conflict with the pages
934 * which had been used before suspend.
935 *
936 * We don't know which pages are usable until we allocate them.
937 *
938 * Allocated but unusable (ie eaten) memory pages are linked together
939 * to create a list, so that we can free them easily
940 *
941 * We could have used a type other than (void *)
942 * for this purpose, but ...
943 */
944 static void **eaten_memory = NULL;
945
946 static inline void eat_page(void *page)
947 {
948 void **c;
949
950 c = eaten_memory;
951 eaten_memory = page;
952 *eaten_memory = c;
953 }
954
955 static unsigned long get_usable_page(unsigned gfp_mask)
956 {
957 unsigned long m;
958
959 m = get_zeroed_page(gfp_mask);
960 while (!PageNosaveFree(virt_to_page(m))) {
961 eat_page((void *)m);
962 m = get_zeroed_page(gfp_mask);
963 if (!m)
964 break;
965 }
966 return m;
967 }
968
969 static void free_eaten_memory(void)
970 {
971 unsigned long m;
972 void **c;
973 int i = 0;
974
975 c = eaten_memory;
976 while (c) {
977 m = (unsigned long)c;
978 c = *c;
979 free_page(m);
980 i++;
981 }
982 eaten_memory = NULL;
983 pr_debug("swsusp: %d unused pages freed\n", i);
984 }
985
986 /**
987 * check_pagedir - We ensure here that pages that the PBEs point to
988 * won't collide with pages where we're going to restore from the loaded
989 * pages later
990 */
991
992 static int check_pagedir(struct pbe *pblist)
993 {
994 struct pbe *p;
995
996 /* This is necessary, so that we can free allocated pages
997 * in case of failure
998 */
999 for_each_pbe (p, pblist)
1000 p->address = 0UL;
1001
1002 for_each_pbe (p, pblist) {
1003 p->address = get_usable_page(GFP_ATOMIC);
1004 if (!p->address)
1005 return -ENOMEM;
1006 }
1007 return 0;
1008 }
1009
1010 /**
1011 * swsusp_pagedir_relocate - It is possible, that some memory pages
1012 * occupied by the list of PBEs collide with pages where we're going to
1013 * restore from the loaded pages later. We relocate them here.
1014 */
1015
1016 static struct pbe * swsusp_pagedir_relocate(struct pbe *pblist)
1017 {
1018 struct zone *zone;
1019 unsigned long zone_pfn;
1020 struct pbe *pbpage, *tail, *p;
1021 void *m;
1022 int rel = 0, error = 0;
1023
1024 if (!pblist) /* a sanity check */
1025 return NULL;
1026
1027 pr_debug("swsusp: Relocating pagedir (%lu pages to check)\n",
1028 swsusp_info.pagedir_pages);
1029
1030 /* Set page flags */
1031
1032 for_each_zone (zone) {
1033 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
1034 SetPageNosaveFree(pfn_to_page(zone_pfn +
1035 zone->zone_start_pfn));
1036 }
1037
1038 /* Clear orig addresses */
1039
1040 for_each_pbe (p, pblist)
1041 ClearPageNosaveFree(virt_to_page(p->orig_address));
1042
1043 tail = pblist + PB_PAGE_SKIP;
1044
1045 /* Relocate colliding pages */
1046
1047 for_each_pb_page (pbpage, pblist) {
1048 if (!PageNosaveFree(virt_to_page((unsigned long)pbpage))) {
1049 m = (void *)get_usable_page(GFP_ATOMIC | __GFP_COLD);
1050 if (!m) {
1051 error = -ENOMEM;
1052 break;
1053 }
1054 memcpy(m, (void *)pbpage, PAGE_SIZE);
1055 if (pbpage == pblist)
1056 pblist = (struct pbe *)m;
1057 else
1058 tail->next = (struct pbe *)m;
1059
1060 eat_page((void *)pbpage);
1061 pbpage = (struct pbe *)m;
1062
1063 /* We have to link the PBEs again */
1064
1065 for (p = pbpage; p < pbpage + PB_PAGE_SKIP; p++)
1066 if (p->next) /* needed to save the end */
1067 p->next = p + 1;
1068
1069 rel++;
1070 }
1071 tail = pbpage + PB_PAGE_SKIP;
1072 }
1073
1074 if (error) {
1075 printk("\nswsusp: Out of memory\n\n");
1076 free_pagedir(pblist);
1077 free_eaten_memory();
1078 pblist = NULL;
1079 }
1080 else
1081 printk("swsusp: Relocated %d pages\n", rel);
1082
1083 return pblist;
1084 }
1085
1086 /*
1087 * Using bio to read from swap.
1088 * This code requires a bit more work than just using buffer heads
1089 * but, it is the recommended way for 2.5/2.6.
1090 * The following are to signal the beginning and end of I/O. Bios
1091 * finish asynchronously, while we want them to happen synchronously.
1092 * A simple atomic_t, and a wait loop take care of this problem.
1093 */
1094
1095 static atomic_t io_done = ATOMIC_INIT(0);
1096
1097 static int end_io(struct bio * bio, unsigned int num, int err)
1098 {
1099 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1100 panic("I/O error reading memory image");
1101 atomic_set(&io_done, 0);
1102 return 0;
1103 }
1104
1105 static struct block_device * resume_bdev;
1106
1107 /**
1108 * submit - submit BIO request.
1109 * @rw: READ or WRITE.
1110 * @off physical offset of page.
1111 * @page: page we're reading or writing.
1112 *
1113 * Straight from the textbook - allocate and initialize the bio.
1114 * If we're writing, make sure the page is marked as dirty.
1115 * Then submit it and wait.
1116 */
1117
1118 static int submit(int rw, pgoff_t page_off, void * page)
1119 {
1120 int error = 0;
1121 struct bio * bio;
1122
1123 bio = bio_alloc(GFP_ATOMIC, 1);
1124 if (!bio)
1125 return -ENOMEM;
1126 bio->bi_sector = page_off * (PAGE_SIZE >> 9);
1127 bio_get(bio);
1128 bio->bi_bdev = resume_bdev;
1129 bio->bi_end_io = end_io;
1130
1131 if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {
1132 printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);
1133 error = -EFAULT;
1134 goto Done;
1135 }
1136
1137 if (rw == WRITE)
1138 bio_set_pages_dirty(bio);
1139
1140 atomic_set(&io_done, 1);
1141 submit_bio(rw | (1 << BIO_RW_SYNC), bio);
1142 while (atomic_read(&io_done))
1143 yield();
1144
1145 Done:
1146 bio_put(bio);
1147 return error;
1148 }
1149
1150 static int bio_read_page(pgoff_t page_off, void * page)
1151 {
1152 return submit(READ, page_off, page);
1153 }
1154
1155 static int bio_write_page(pgoff_t page_off, void * page)
1156 {
1157 return submit(WRITE, page_off, page);
1158 }
1159
1160 /*
1161 * Sanity check if this image makes sense with this kernel/swap context
1162 * I really don't think that it's foolproof but more than nothing..
1163 */
1164
1165 static const char * sanity_check(void)
1166 {
1167 dump_info();
1168 if (swsusp_info.version_code != LINUX_VERSION_CODE)
1169 return "kernel version";
1170 if (swsusp_info.num_physpages != num_physpages)
1171 return "memory size";
1172 if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname))
1173 return "system type";
1174 if (strcmp(swsusp_info.uts.release,system_utsname.release))
1175 return "kernel release";
1176 if (strcmp(swsusp_info.uts.version,system_utsname.version))
1177 return "version";
1178 if (strcmp(swsusp_info.uts.machine,system_utsname.machine))
1179 return "machine";
1180 #if 0
1181 if(swsusp_info.cpus != num_online_cpus())
1182 return "number of cpus";
1183 #endif
1184 return NULL;
1185 }
1186
1187
1188 static int check_header(void)
1189 {
1190 const char * reason = NULL;
1191 int error;
1192
1193 if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info)))
1194 return error;
1195
1196 /* Is this same machine? */
1197 if ((reason = sanity_check())) {
1198 printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason);
1199 return -EPERM;
1200 }
1201 nr_copy_pages = swsusp_info.image_pages;
1202 return error;
1203 }
1204
1205 static int check_sig(void)
1206 {
1207 int error;
1208
1209 memset(&swsusp_header, 0, sizeof(swsusp_header));
1210 if ((error = bio_read_page(0, &swsusp_header)))
1211 return error;
1212 if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {
1213 memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);
1214
1215 /*
1216 * Reset swap signature now.
1217 */
1218 error = bio_write_page(0, &swsusp_header);
1219 } else {
1220 printk(KERN_ERR "swsusp: Suspend partition has wrong signature?\n");
1221 return -EINVAL;
1222 }
1223 if (!error)
1224 pr_debug("swsusp: Signature found, resuming\n");
1225 return error;
1226 }
1227
1228 /**
1229 * data_read - Read image pages from swap.
1230 *
1231 * You do not need to check for overlaps, check_pagedir()
1232 * already did that.
1233 */
1234
1235 static int data_read(struct pbe *pblist)
1236 {
1237 struct pbe * p;
1238 int error = 0;
1239 int i = 0;
1240 int mod = swsusp_info.image_pages / 100;
1241
1242 if (!mod)
1243 mod = 1;
1244
1245 printk("swsusp: Reading image data (%lu pages): ",
1246 swsusp_info.image_pages);
1247
1248 for_each_pbe (p, pblist) {
1249 if (!(i % mod))
1250 printk("\b\b\b\b%3d%%", i / mod);
1251
1252 error = bio_read_page(swp_offset(p->swap_address),
1253 (void *)p->address);
1254 if (error)
1255 return error;
1256
1257 i++;
1258 }
1259 printk("\b\b\b\bdone\n");
1260 return error;
1261 }
1262
1263 extern dev_t name_to_dev_t(const char *line);
1264
1265 /**
1266 * read_pagedir - Read page backup list pages from swap
1267 */
1268
1269 static int read_pagedir(struct pbe *pblist)
1270 {
1271 struct pbe *pbpage, *p;
1272 unsigned i = 0;
1273 int error;
1274
1275 if (!pblist)
1276 return -EFAULT;
1277
1278 printk("swsusp: Reading pagedir (%lu pages)\n",
1279 swsusp_info.pagedir_pages);
1280
1281 for_each_pb_page (pbpage, pblist) {
1282 unsigned long offset = swp_offset(swsusp_info.pagedir[i++]);
1283
1284 error = -EFAULT;
1285 if (offset) {
1286 p = (pbpage + PB_PAGE_SKIP)->next;
1287 error = bio_read_page(offset, (void *)pbpage);
1288 (pbpage + PB_PAGE_SKIP)->next = p;
1289 }
1290 if (error)
1291 break;
1292 }
1293
1294 if (error)
1295 free_page((unsigned long)pblist);
1296
1297 BUG_ON(i != swsusp_info.pagedir_pages);
1298
1299 return error;
1300 }
1301
1302
1303 static int check_suspend_image(void)
1304 {
1305 int error = 0;
1306
1307 if ((error = check_sig()))
1308 return error;
1309
1310 if ((error = check_header()))
1311 return error;
1312
1313 return 0;
1314 }
1315
1316 static int read_suspend_image(void)
1317 {
1318 int error = 0;
1319 struct pbe *p;
1320
1321 if (!(p = alloc_pagedir(nr_copy_pages)))
1322 return -ENOMEM;
1323
1324 if ((error = read_pagedir(p)))
1325 return error;
1326
1327 create_pbe_list(p, nr_copy_pages);
1328
1329 if (!(pagedir_nosave = swsusp_pagedir_relocate(p)))
1330 return -ENOMEM;
1331
1332 /* Allocate memory for the image and read the data from swap */
1333
1334 error = check_pagedir(pagedir_nosave);
1335 free_eaten_memory();
1336 if (!error)
1337 error = data_read(pagedir_nosave);
1338
1339 if (error) { /* We fail cleanly */
1340 for_each_pbe (p, pagedir_nosave)
1341 if (p->address) {
1342 free_page(p->address);
1343 p->address = 0UL;
1344 }
1345 free_pagedir(pagedir_nosave);
1346 }
1347 return error;
1348 }
1349
1350 /**
1351 * swsusp_check - Check for saved image in swap
1352 */
1353
1354 int swsusp_check(void)
1355 {
1356 int error;
1357
1358 resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
1359 if (!IS_ERR(resume_bdev)) {
1360 set_blocksize(resume_bdev, PAGE_SIZE);
1361 error = check_suspend_image();
1362 if (error)
1363 blkdev_put(resume_bdev);
1364 } else
1365 error = PTR_ERR(resume_bdev);
1366
1367 if (!error)
1368 pr_debug("swsusp: resume file found\n");
1369 else
1370 pr_debug("swsusp: Error %d check for resume file\n", error);
1371 return error;
1372 }
1373
1374 /**
1375 * swsusp_read - Read saved image from swap.
1376 */
1377
1378 int swsusp_read(void)
1379 {
1380 int error;
1381
1382 if (IS_ERR(resume_bdev)) {
1383 pr_debug("swsusp: block device not initialised\n");
1384 return PTR_ERR(resume_bdev);
1385 }
1386
1387 error = read_suspend_image();
1388 blkdev_put(resume_bdev);
1389
1390 if (!error)
1391 pr_debug("swsusp: Reading resume file was successful\n");
1392 else
1393 pr_debug("swsusp: Error %d resuming\n", error);
1394 return error;
1395 }
1396
1397 /**
1398 * swsusp_close - close swap device.
1399 */
1400
1401 void swsusp_close(void)
1402 {
1403 if (IS_ERR(resume_bdev)) {
1404 pr_debug("swsusp: block device not initialised\n");
1405 return;
1406 }
1407
1408 blkdev_put(resume_bdev);
1409 }
This page took 0.074517 seconds and 5 git commands to generate.