7a6e69441f75504c5e6dcf19d5accd14aa03feb9
[deliverable/linux.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48 #include <linux/ctype.h>
49
50 #include <asm/uaccess.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54
55 #include "console_cmdline.h"
56 #include "braille.h"
57
58 int console_printk[4] = {
59 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
60 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
61 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
62 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
63 };
64
65 /* Deferred messaged from sched code are marked by this special level */
66 #define SCHED_MESSAGE_LOGLEVEL -2
67
68 /*
69 * Low level drivers may need that to know if they can schedule in
70 * their unblank() callback or not. So let's export it.
71 */
72 int oops_in_progress;
73 EXPORT_SYMBOL(oops_in_progress);
74
75 /*
76 * console_sem protects the console_drivers list, and also
77 * provides serialisation for access to the entire console
78 * driver system.
79 */
80 static DEFINE_SEMAPHORE(console_sem);
81 struct console *console_drivers;
82 EXPORT_SYMBOL_GPL(console_drivers);
83
84 #ifdef CONFIG_LOCKDEP
85 static struct lockdep_map console_lock_dep_map = {
86 .name = "console_lock"
87 };
88 #endif
89
90 /*
91 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
92 * macros instead of functions so that _RET_IP_ contains useful information.
93 */
94 #define down_console_sem() do { \
95 down(&console_sem);\
96 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
97 } while (0)
98
99 static int __down_trylock_console_sem(unsigned long ip)
100 {
101 if (down_trylock(&console_sem))
102 return 1;
103 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
104 return 0;
105 }
106 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
107
108 #define up_console_sem() do { \
109 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
110 up(&console_sem);\
111 } while (0)
112
113 /*
114 * This is used for debugging the mess that is the VT code by
115 * keeping track if we have the console semaphore held. It's
116 * definitely not the perfect debug tool (we don't know if _WE_
117 * hold it and are racing, but it helps tracking those weird code
118 * paths in the console code where we end up in places I want
119 * locked without the console sempahore held).
120 */
121 static int console_locked, console_suspended;
122
123 /*
124 * If exclusive_console is non-NULL then only this console is to be printed to.
125 */
126 static struct console *exclusive_console;
127
128 /*
129 * Array of consoles built from command line options (console=)
130 */
131
132 #define MAX_CMDLINECONSOLES 8
133
134 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
135
136 static int selected_console = -1;
137 static int preferred_console = -1;
138 int console_set_on_cmdline;
139 EXPORT_SYMBOL(console_set_on_cmdline);
140
141 /* Flag: console code may call schedule() */
142 static int console_may_schedule;
143
144 /*
145 * The printk log buffer consists of a chain of concatenated variable
146 * length records. Every record starts with a record header, containing
147 * the overall length of the record.
148 *
149 * The heads to the first and last entry in the buffer, as well as the
150 * sequence numbers of these entries are maintained when messages are
151 * stored.
152 *
153 * If the heads indicate available messages, the length in the header
154 * tells the start next message. A length == 0 for the next message
155 * indicates a wrap-around to the beginning of the buffer.
156 *
157 * Every record carries the monotonic timestamp in microseconds, as well as
158 * the standard userspace syslog level and syslog facility. The usual
159 * kernel messages use LOG_KERN; userspace-injected messages always carry
160 * a matching syslog facility, by default LOG_USER. The origin of every
161 * message can be reliably determined that way.
162 *
163 * The human readable log message directly follows the message header. The
164 * length of the message text is stored in the header, the stored message
165 * is not terminated.
166 *
167 * Optionally, a message can carry a dictionary of properties (key/value pairs),
168 * to provide userspace with a machine-readable message context.
169 *
170 * Examples for well-defined, commonly used property names are:
171 * DEVICE=b12:8 device identifier
172 * b12:8 block dev_t
173 * c127:3 char dev_t
174 * n8 netdev ifindex
175 * +sound:card0 subsystem:devname
176 * SUBSYSTEM=pci driver-core subsystem name
177 *
178 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
179 * follows directly after a '=' character. Every property is terminated by
180 * a '\0' character. The last property is not terminated.
181 *
182 * Example of a message structure:
183 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
184 * 0008 34 00 record is 52 bytes long
185 * 000a 0b 00 text is 11 bytes long
186 * 000c 1f 00 dictionary is 23 bytes long
187 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
188 * 0010 69 74 27 73 20 61 20 6c "it's a l"
189 * 69 6e 65 "ine"
190 * 001b 44 45 56 49 43 "DEVIC"
191 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
192 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
193 * 67 "g"
194 * 0032 00 00 00 padding to next message header
195 *
196 * The 'struct printk_log' buffer header must never be directly exported to
197 * userspace, it is a kernel-private implementation detail that might
198 * need to be changed in the future, when the requirements change.
199 *
200 * /dev/kmsg exports the structured data in the following line format:
201 * "level,sequnum,timestamp;<message text>\n"
202 *
203 * The optional key/value pairs are attached as continuation lines starting
204 * with a space character and terminated by a newline. All possible
205 * non-prinatable characters are escaped in the "\xff" notation.
206 *
207 * Users of the export format should ignore possible additional values
208 * separated by ',', and find the message after the ';' character.
209 */
210
211 enum log_flags {
212 LOG_NOCONS = 1, /* already flushed, do not print to console */
213 LOG_NEWLINE = 2, /* text ended with a newline */
214 LOG_PREFIX = 4, /* text started with a prefix */
215 LOG_CONT = 8, /* text is a fragment of a continuation line */
216 };
217
218 struct printk_log {
219 u64 ts_nsec; /* timestamp in nanoseconds */
220 u16 len; /* length of entire record */
221 u16 text_len; /* length of text buffer */
222 u16 dict_len; /* length of dictionary buffer */
223 u8 facility; /* syslog facility */
224 u8 flags:5; /* internal record flags */
225 u8 level:3; /* syslog level */
226 };
227
228 /*
229 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
230 * within the scheduler's rq lock. It must be released before calling
231 * console_unlock() or anything else that might wake up a process.
232 */
233 static DEFINE_RAW_SPINLOCK(logbuf_lock);
234
235 #ifdef CONFIG_PRINTK
236 DECLARE_WAIT_QUEUE_HEAD(log_wait);
237 /* the next printk record to read by syslog(READ) or /proc/kmsg */
238 static u64 syslog_seq;
239 static u32 syslog_idx;
240 static enum log_flags syslog_prev;
241 static size_t syslog_partial;
242
243 /* index and sequence number of the first record stored in the buffer */
244 static u64 log_first_seq;
245 static u32 log_first_idx;
246
247 /* index and sequence number of the next record to store in the buffer */
248 static u64 log_next_seq;
249 static u32 log_next_idx;
250
251 /* the next printk record to write to the console */
252 static u64 console_seq;
253 static u32 console_idx;
254 static enum log_flags console_prev;
255
256 /* the next printk record to read after the last 'clear' command */
257 static u64 clear_seq;
258 static u32 clear_idx;
259
260 #define PREFIX_MAX 32
261 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
262
263 /* record buffer */
264 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
265 #define LOG_ALIGN 4
266 #else
267 #define LOG_ALIGN __alignof__(struct printk_log)
268 #endif
269 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
270 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
271 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
272 static char *log_buf = __log_buf;
273 static u32 log_buf_len = __LOG_BUF_LEN;
274
275 /* Return log buffer address */
276 char *log_buf_addr_get(void)
277 {
278 return log_buf;
279 }
280
281 /* Return log buffer size */
282 u32 log_buf_len_get(void)
283 {
284 return log_buf_len;
285 }
286
287 /* human readable text of the record */
288 static char *log_text(const struct printk_log *msg)
289 {
290 return (char *)msg + sizeof(struct printk_log);
291 }
292
293 /* optional key/value pair dictionary attached to the record */
294 static char *log_dict(const struct printk_log *msg)
295 {
296 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
297 }
298
299 /* get record by index; idx must point to valid msg */
300 static struct printk_log *log_from_idx(u32 idx)
301 {
302 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
303
304 /*
305 * A length == 0 record is the end of buffer marker. Wrap around and
306 * read the message at the start of the buffer.
307 */
308 if (!msg->len)
309 return (struct printk_log *)log_buf;
310 return msg;
311 }
312
313 /* get next record; idx must point to valid msg */
314 static u32 log_next(u32 idx)
315 {
316 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
317
318 /* length == 0 indicates the end of the buffer; wrap */
319 /*
320 * A length == 0 record is the end of buffer marker. Wrap around and
321 * read the message at the start of the buffer as *this* one, and
322 * return the one after that.
323 */
324 if (!msg->len) {
325 msg = (struct printk_log *)log_buf;
326 return msg->len;
327 }
328 return idx + msg->len;
329 }
330
331 /*
332 * Check whether there is enough free space for the given message.
333 *
334 * The same values of first_idx and next_idx mean that the buffer
335 * is either empty or full.
336 *
337 * If the buffer is empty, we must respect the position of the indexes.
338 * They cannot be reset to the beginning of the buffer.
339 */
340 static int logbuf_has_space(u32 msg_size, bool empty)
341 {
342 u32 free;
343
344 if (log_next_idx > log_first_idx || empty)
345 free = max(log_buf_len - log_next_idx, log_first_idx);
346 else
347 free = log_first_idx - log_next_idx;
348
349 /*
350 * We need space also for an empty header that signalizes wrapping
351 * of the buffer.
352 */
353 return free >= msg_size + sizeof(struct printk_log);
354 }
355
356 static int log_make_free_space(u32 msg_size)
357 {
358 while (log_first_seq < log_next_seq) {
359 if (logbuf_has_space(msg_size, false))
360 return 0;
361 /* drop old messages until we have enough contiguous space */
362 log_first_idx = log_next(log_first_idx);
363 log_first_seq++;
364 }
365
366 /* sequence numbers are equal, so the log buffer is empty */
367 if (logbuf_has_space(msg_size, true))
368 return 0;
369
370 return -ENOMEM;
371 }
372
373 /* compute the message size including the padding bytes */
374 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
375 {
376 u32 size;
377
378 size = sizeof(struct printk_log) + text_len + dict_len;
379 *pad_len = (-size) & (LOG_ALIGN - 1);
380 size += *pad_len;
381
382 return size;
383 }
384
385 /*
386 * Define how much of the log buffer we could take at maximum. The value
387 * must be greater than two. Note that only half of the buffer is available
388 * when the index points to the middle.
389 */
390 #define MAX_LOG_TAKE_PART 4
391 static const char trunc_msg[] = "<truncated>";
392
393 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
394 u16 *dict_len, u32 *pad_len)
395 {
396 /*
397 * The message should not take the whole buffer. Otherwise, it might
398 * get removed too soon.
399 */
400 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
401 if (*text_len > max_text_len)
402 *text_len = max_text_len;
403 /* enable the warning message */
404 *trunc_msg_len = strlen(trunc_msg);
405 /* disable the "dict" completely */
406 *dict_len = 0;
407 /* compute the size again, count also the warning message */
408 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
409 }
410
411 /* insert record into the buffer, discard old ones, update heads */
412 static int log_store(int facility, int level,
413 enum log_flags flags, u64 ts_nsec,
414 const char *dict, u16 dict_len,
415 const char *text, u16 text_len)
416 {
417 struct printk_log *msg;
418 u32 size, pad_len;
419 u16 trunc_msg_len = 0;
420
421 /* number of '\0' padding bytes to next message */
422 size = msg_used_size(text_len, dict_len, &pad_len);
423
424 if (log_make_free_space(size)) {
425 /* truncate the message if it is too long for empty buffer */
426 size = truncate_msg(&text_len, &trunc_msg_len,
427 &dict_len, &pad_len);
428 /* survive when the log buffer is too small for trunc_msg */
429 if (log_make_free_space(size))
430 return 0;
431 }
432
433 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
434 /*
435 * This message + an additional empty header does not fit
436 * at the end of the buffer. Add an empty header with len == 0
437 * to signify a wrap around.
438 */
439 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
440 log_next_idx = 0;
441 }
442
443 /* fill message */
444 msg = (struct printk_log *)(log_buf + log_next_idx);
445 memcpy(log_text(msg), text, text_len);
446 msg->text_len = text_len;
447 if (trunc_msg_len) {
448 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
449 msg->text_len += trunc_msg_len;
450 }
451 memcpy(log_dict(msg), dict, dict_len);
452 msg->dict_len = dict_len;
453 msg->facility = facility;
454 msg->level = level & 7;
455 msg->flags = flags & 0x1f;
456 if (ts_nsec > 0)
457 msg->ts_nsec = ts_nsec;
458 else
459 msg->ts_nsec = local_clock();
460 memset(log_dict(msg) + dict_len, 0, pad_len);
461 msg->len = size;
462
463 /* insert message */
464 log_next_idx += msg->len;
465 log_next_seq++;
466
467 return msg->text_len;
468 }
469
470 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
471
472 static int syslog_action_restricted(int type)
473 {
474 if (dmesg_restrict)
475 return 1;
476 /*
477 * Unless restricted, we allow "read all" and "get buffer size"
478 * for everybody.
479 */
480 return type != SYSLOG_ACTION_READ_ALL &&
481 type != SYSLOG_ACTION_SIZE_BUFFER;
482 }
483
484 static int check_syslog_permissions(int type, bool from_file)
485 {
486 /*
487 * If this is from /proc/kmsg and we've already opened it, then we've
488 * already done the capabilities checks at open time.
489 */
490 if (from_file && type != SYSLOG_ACTION_OPEN)
491 return 0;
492
493 if (syslog_action_restricted(type)) {
494 if (capable(CAP_SYSLOG))
495 return 0;
496 /*
497 * For historical reasons, accept CAP_SYS_ADMIN too, with
498 * a warning.
499 */
500 if (capable(CAP_SYS_ADMIN)) {
501 pr_warn_once("%s (%d): Attempt to access syslog with "
502 "CAP_SYS_ADMIN but no CAP_SYSLOG "
503 "(deprecated).\n",
504 current->comm, task_pid_nr(current));
505 return 0;
506 }
507 return -EPERM;
508 }
509 return security_syslog(type);
510 }
511
512
513 /* /dev/kmsg - userspace message inject/listen interface */
514 struct devkmsg_user {
515 u64 seq;
516 u32 idx;
517 enum log_flags prev;
518 struct mutex lock;
519 char buf[8192];
520 };
521
522 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
523 {
524 char *buf, *line;
525 int i;
526 int level = default_message_loglevel;
527 int facility = 1; /* LOG_USER */
528 size_t len = iocb->ki_nbytes;
529 ssize_t ret = len;
530
531 if (len > LOG_LINE_MAX)
532 return -EINVAL;
533 buf = kmalloc(len+1, GFP_KERNEL);
534 if (buf == NULL)
535 return -ENOMEM;
536
537 buf[len] = '\0';
538 if (copy_from_iter(buf, len, from) != len) {
539 kfree(buf);
540 return -EFAULT;
541 }
542
543 /*
544 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
545 * the decimal value represents 32bit, the lower 3 bit are the log
546 * level, the rest are the log facility.
547 *
548 * If no prefix or no userspace facility is specified, we
549 * enforce LOG_USER, to be able to reliably distinguish
550 * kernel-generated messages from userspace-injected ones.
551 */
552 line = buf;
553 if (line[0] == '<') {
554 char *endp = NULL;
555
556 i = simple_strtoul(line+1, &endp, 10);
557 if (endp && endp[0] == '>') {
558 level = i & 7;
559 if (i >> 3)
560 facility = i >> 3;
561 endp++;
562 len -= endp - line;
563 line = endp;
564 }
565 }
566
567 printk_emit(facility, level, NULL, 0, "%s", line);
568 kfree(buf);
569 return ret;
570 }
571
572 static ssize_t devkmsg_read(struct file *file, char __user *buf,
573 size_t count, loff_t *ppos)
574 {
575 struct devkmsg_user *user = file->private_data;
576 struct printk_log *msg;
577 u64 ts_usec;
578 size_t i;
579 char cont = '-';
580 size_t len;
581 ssize_t ret;
582
583 if (!user)
584 return -EBADF;
585
586 ret = mutex_lock_interruptible(&user->lock);
587 if (ret)
588 return ret;
589 raw_spin_lock_irq(&logbuf_lock);
590 while (user->seq == log_next_seq) {
591 if (file->f_flags & O_NONBLOCK) {
592 ret = -EAGAIN;
593 raw_spin_unlock_irq(&logbuf_lock);
594 goto out;
595 }
596
597 raw_spin_unlock_irq(&logbuf_lock);
598 ret = wait_event_interruptible(log_wait,
599 user->seq != log_next_seq);
600 if (ret)
601 goto out;
602 raw_spin_lock_irq(&logbuf_lock);
603 }
604
605 if (user->seq < log_first_seq) {
606 /* our last seen message is gone, return error and reset */
607 user->idx = log_first_idx;
608 user->seq = log_first_seq;
609 ret = -EPIPE;
610 raw_spin_unlock_irq(&logbuf_lock);
611 goto out;
612 }
613
614 msg = log_from_idx(user->idx);
615 ts_usec = msg->ts_nsec;
616 do_div(ts_usec, 1000);
617
618 /*
619 * If we couldn't merge continuation line fragments during the print,
620 * export the stored flags to allow an optional external merge of the
621 * records. Merging the records isn't always neccessarily correct, like
622 * when we hit a race during printing. In most cases though, it produces
623 * better readable output. 'c' in the record flags mark the first
624 * fragment of a line, '+' the following.
625 */
626 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
627 cont = 'c';
628 else if ((msg->flags & LOG_CONT) ||
629 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
630 cont = '+';
631
632 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
633 (msg->facility << 3) | msg->level,
634 user->seq, ts_usec, cont);
635 user->prev = msg->flags;
636
637 /* escape non-printable characters */
638 for (i = 0; i < msg->text_len; i++) {
639 unsigned char c = log_text(msg)[i];
640
641 if (c < ' ' || c >= 127 || c == '\\')
642 len += sprintf(user->buf + len, "\\x%02x", c);
643 else
644 user->buf[len++] = c;
645 }
646 user->buf[len++] = '\n';
647
648 if (msg->dict_len) {
649 bool line = true;
650
651 for (i = 0; i < msg->dict_len; i++) {
652 unsigned char c = log_dict(msg)[i];
653
654 if (line) {
655 user->buf[len++] = ' ';
656 line = false;
657 }
658
659 if (c == '\0') {
660 user->buf[len++] = '\n';
661 line = true;
662 continue;
663 }
664
665 if (c < ' ' || c >= 127 || c == '\\') {
666 len += sprintf(user->buf + len, "\\x%02x", c);
667 continue;
668 }
669
670 user->buf[len++] = c;
671 }
672 user->buf[len++] = '\n';
673 }
674
675 user->idx = log_next(user->idx);
676 user->seq++;
677 raw_spin_unlock_irq(&logbuf_lock);
678
679 if (len > count) {
680 ret = -EINVAL;
681 goto out;
682 }
683
684 if (copy_to_user(buf, user->buf, len)) {
685 ret = -EFAULT;
686 goto out;
687 }
688 ret = len;
689 out:
690 mutex_unlock(&user->lock);
691 return ret;
692 }
693
694 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
695 {
696 struct devkmsg_user *user = file->private_data;
697 loff_t ret = 0;
698
699 if (!user)
700 return -EBADF;
701 if (offset)
702 return -ESPIPE;
703
704 raw_spin_lock_irq(&logbuf_lock);
705 switch (whence) {
706 case SEEK_SET:
707 /* the first record */
708 user->idx = log_first_idx;
709 user->seq = log_first_seq;
710 break;
711 case SEEK_DATA:
712 /*
713 * The first record after the last SYSLOG_ACTION_CLEAR,
714 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
715 * changes no global state, and does not clear anything.
716 */
717 user->idx = clear_idx;
718 user->seq = clear_seq;
719 break;
720 case SEEK_END:
721 /* after the last record */
722 user->idx = log_next_idx;
723 user->seq = log_next_seq;
724 break;
725 default:
726 ret = -EINVAL;
727 }
728 raw_spin_unlock_irq(&logbuf_lock);
729 return ret;
730 }
731
732 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
733 {
734 struct devkmsg_user *user = file->private_data;
735 int ret = 0;
736
737 if (!user)
738 return POLLERR|POLLNVAL;
739
740 poll_wait(file, &log_wait, wait);
741
742 raw_spin_lock_irq(&logbuf_lock);
743 if (user->seq < log_next_seq) {
744 /* return error when data has vanished underneath us */
745 if (user->seq < log_first_seq)
746 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
747 else
748 ret = POLLIN|POLLRDNORM;
749 }
750 raw_spin_unlock_irq(&logbuf_lock);
751
752 return ret;
753 }
754
755 static int devkmsg_open(struct inode *inode, struct file *file)
756 {
757 struct devkmsg_user *user;
758 int err;
759
760 /* write-only does not need any file context */
761 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
762 return 0;
763
764 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
765 SYSLOG_FROM_READER);
766 if (err)
767 return err;
768
769 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
770 if (!user)
771 return -ENOMEM;
772
773 mutex_init(&user->lock);
774
775 raw_spin_lock_irq(&logbuf_lock);
776 user->idx = log_first_idx;
777 user->seq = log_first_seq;
778 raw_spin_unlock_irq(&logbuf_lock);
779
780 file->private_data = user;
781 return 0;
782 }
783
784 static int devkmsg_release(struct inode *inode, struct file *file)
785 {
786 struct devkmsg_user *user = file->private_data;
787
788 if (!user)
789 return 0;
790
791 mutex_destroy(&user->lock);
792 kfree(user);
793 return 0;
794 }
795
796 const struct file_operations kmsg_fops = {
797 .open = devkmsg_open,
798 .read = devkmsg_read,
799 .write_iter = devkmsg_write,
800 .llseek = devkmsg_llseek,
801 .poll = devkmsg_poll,
802 .release = devkmsg_release,
803 };
804
805 #ifdef CONFIG_KEXEC
806 /*
807 * This appends the listed symbols to /proc/vmcore
808 *
809 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
810 * obtain access to symbols that are otherwise very difficult to locate. These
811 * symbols are specifically used so that utilities can access and extract the
812 * dmesg log from a vmcore file after a crash.
813 */
814 void log_buf_kexec_setup(void)
815 {
816 VMCOREINFO_SYMBOL(log_buf);
817 VMCOREINFO_SYMBOL(log_buf_len);
818 VMCOREINFO_SYMBOL(log_first_idx);
819 VMCOREINFO_SYMBOL(log_next_idx);
820 /*
821 * Export struct printk_log size and field offsets. User space tools can
822 * parse it and detect any changes to structure down the line.
823 */
824 VMCOREINFO_STRUCT_SIZE(printk_log);
825 VMCOREINFO_OFFSET(printk_log, ts_nsec);
826 VMCOREINFO_OFFSET(printk_log, len);
827 VMCOREINFO_OFFSET(printk_log, text_len);
828 VMCOREINFO_OFFSET(printk_log, dict_len);
829 }
830 #endif
831
832 /* requested log_buf_len from kernel cmdline */
833 static unsigned long __initdata new_log_buf_len;
834
835 /* we practice scaling the ring buffer by powers of 2 */
836 static void __init log_buf_len_update(unsigned size)
837 {
838 if (size)
839 size = roundup_pow_of_two(size);
840 if (size > log_buf_len)
841 new_log_buf_len = size;
842 }
843
844 /* save requested log_buf_len since it's too early to process it */
845 static int __init log_buf_len_setup(char *str)
846 {
847 unsigned size = memparse(str, &str);
848
849 log_buf_len_update(size);
850
851 return 0;
852 }
853 early_param("log_buf_len", log_buf_len_setup);
854
855 static void __init log_buf_add_cpu(void)
856 {
857 unsigned int cpu_extra;
858
859 /*
860 * archs should set up cpu_possible_bits properly with
861 * set_cpu_possible() after setup_arch() but just in
862 * case lets ensure this is valid.
863 */
864 if (num_possible_cpus() == 1)
865 return;
866
867 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
868
869 /* by default this will only continue through for large > 64 CPUs */
870 if (cpu_extra <= __LOG_BUF_LEN / 2)
871 return;
872
873 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
874 __LOG_CPU_MAX_BUF_LEN);
875 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
876 cpu_extra);
877 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
878
879 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
880 }
881
882 void __init setup_log_buf(int early)
883 {
884 unsigned long flags;
885 char *new_log_buf;
886 int free;
887
888 if (log_buf != __log_buf)
889 return;
890
891 if (!early && !new_log_buf_len)
892 log_buf_add_cpu();
893
894 if (!new_log_buf_len)
895 return;
896
897 if (early) {
898 new_log_buf =
899 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
900 } else {
901 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
902 LOG_ALIGN);
903 }
904
905 if (unlikely(!new_log_buf)) {
906 pr_err("log_buf_len: %ld bytes not available\n",
907 new_log_buf_len);
908 return;
909 }
910
911 raw_spin_lock_irqsave(&logbuf_lock, flags);
912 log_buf_len = new_log_buf_len;
913 log_buf = new_log_buf;
914 new_log_buf_len = 0;
915 free = __LOG_BUF_LEN - log_next_idx;
916 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
917 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
918
919 pr_info("log_buf_len: %d bytes\n", log_buf_len);
920 pr_info("early log buf free: %d(%d%%)\n",
921 free, (free * 100) / __LOG_BUF_LEN);
922 }
923
924 static bool __read_mostly ignore_loglevel;
925
926 static int __init ignore_loglevel_setup(char *str)
927 {
928 ignore_loglevel = true;
929 pr_info("debug: ignoring loglevel setting.\n");
930
931 return 0;
932 }
933
934 early_param("ignore_loglevel", ignore_loglevel_setup);
935 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
936 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
937 "print all kernel messages to the console.");
938
939 #ifdef CONFIG_BOOT_PRINTK_DELAY
940
941 static int boot_delay; /* msecs delay after each printk during bootup */
942 static unsigned long long loops_per_msec; /* based on boot_delay */
943
944 static int __init boot_delay_setup(char *str)
945 {
946 unsigned long lpj;
947
948 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
949 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
950
951 get_option(&str, &boot_delay);
952 if (boot_delay > 10 * 1000)
953 boot_delay = 0;
954
955 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
956 "HZ: %d, loops_per_msec: %llu\n",
957 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
958 return 0;
959 }
960 early_param("boot_delay", boot_delay_setup);
961
962 static void boot_delay_msec(int level)
963 {
964 unsigned long long k;
965 unsigned long timeout;
966
967 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
968 || (level >= console_loglevel && !ignore_loglevel)) {
969 return;
970 }
971
972 k = (unsigned long long)loops_per_msec * boot_delay;
973
974 timeout = jiffies + msecs_to_jiffies(boot_delay);
975 while (k) {
976 k--;
977 cpu_relax();
978 /*
979 * use (volatile) jiffies to prevent
980 * compiler reduction; loop termination via jiffies
981 * is secondary and may or may not happen.
982 */
983 if (time_after(jiffies, timeout))
984 break;
985 touch_nmi_watchdog();
986 }
987 }
988 #else
989 static inline void boot_delay_msec(int level)
990 {
991 }
992 #endif
993
994 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
995 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
996
997 static size_t print_time(u64 ts, char *buf)
998 {
999 unsigned long rem_nsec;
1000
1001 if (!printk_time)
1002 return 0;
1003
1004 rem_nsec = do_div(ts, 1000000000);
1005
1006 if (!buf)
1007 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1008
1009 return sprintf(buf, "[%5lu.%06lu] ",
1010 (unsigned long)ts, rem_nsec / 1000);
1011 }
1012
1013 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1014 {
1015 size_t len = 0;
1016 unsigned int prefix = (msg->facility << 3) | msg->level;
1017
1018 if (syslog) {
1019 if (buf) {
1020 len += sprintf(buf, "<%u>", prefix);
1021 } else {
1022 len += 3;
1023 if (prefix > 999)
1024 len += 3;
1025 else if (prefix > 99)
1026 len += 2;
1027 else if (prefix > 9)
1028 len++;
1029 }
1030 }
1031
1032 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1033 return len;
1034 }
1035
1036 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1037 bool syslog, char *buf, size_t size)
1038 {
1039 const char *text = log_text(msg);
1040 size_t text_size = msg->text_len;
1041 bool prefix = true;
1042 bool newline = true;
1043 size_t len = 0;
1044
1045 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1046 prefix = false;
1047
1048 if (msg->flags & LOG_CONT) {
1049 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1050 prefix = false;
1051
1052 if (!(msg->flags & LOG_NEWLINE))
1053 newline = false;
1054 }
1055
1056 do {
1057 const char *next = memchr(text, '\n', text_size);
1058 size_t text_len;
1059
1060 if (next) {
1061 text_len = next - text;
1062 next++;
1063 text_size -= next - text;
1064 } else {
1065 text_len = text_size;
1066 }
1067
1068 if (buf) {
1069 if (print_prefix(msg, syslog, NULL) +
1070 text_len + 1 >= size - len)
1071 break;
1072
1073 if (prefix)
1074 len += print_prefix(msg, syslog, buf + len);
1075 memcpy(buf + len, text, text_len);
1076 len += text_len;
1077 if (next || newline)
1078 buf[len++] = '\n';
1079 } else {
1080 /* SYSLOG_ACTION_* buffer size only calculation */
1081 if (prefix)
1082 len += print_prefix(msg, syslog, NULL);
1083 len += text_len;
1084 if (next || newline)
1085 len++;
1086 }
1087
1088 prefix = true;
1089 text = next;
1090 } while (text);
1091
1092 return len;
1093 }
1094
1095 static int syslog_print(char __user *buf, int size)
1096 {
1097 char *text;
1098 struct printk_log *msg;
1099 int len = 0;
1100
1101 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1102 if (!text)
1103 return -ENOMEM;
1104
1105 while (size > 0) {
1106 size_t n;
1107 size_t skip;
1108
1109 raw_spin_lock_irq(&logbuf_lock);
1110 if (syslog_seq < log_first_seq) {
1111 /* messages are gone, move to first one */
1112 syslog_seq = log_first_seq;
1113 syslog_idx = log_first_idx;
1114 syslog_prev = 0;
1115 syslog_partial = 0;
1116 }
1117 if (syslog_seq == log_next_seq) {
1118 raw_spin_unlock_irq(&logbuf_lock);
1119 break;
1120 }
1121
1122 skip = syslog_partial;
1123 msg = log_from_idx(syslog_idx);
1124 n = msg_print_text(msg, syslog_prev, true, text,
1125 LOG_LINE_MAX + PREFIX_MAX);
1126 if (n - syslog_partial <= size) {
1127 /* message fits into buffer, move forward */
1128 syslog_idx = log_next(syslog_idx);
1129 syslog_seq++;
1130 syslog_prev = msg->flags;
1131 n -= syslog_partial;
1132 syslog_partial = 0;
1133 } else if (!len){
1134 /* partial read(), remember position */
1135 n = size;
1136 syslog_partial += n;
1137 } else
1138 n = 0;
1139 raw_spin_unlock_irq(&logbuf_lock);
1140
1141 if (!n)
1142 break;
1143
1144 if (copy_to_user(buf, text + skip, n)) {
1145 if (!len)
1146 len = -EFAULT;
1147 break;
1148 }
1149
1150 len += n;
1151 size -= n;
1152 buf += n;
1153 }
1154
1155 kfree(text);
1156 return len;
1157 }
1158
1159 static int syslog_print_all(char __user *buf, int size, bool clear)
1160 {
1161 char *text;
1162 int len = 0;
1163
1164 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1165 if (!text)
1166 return -ENOMEM;
1167
1168 raw_spin_lock_irq(&logbuf_lock);
1169 if (buf) {
1170 u64 next_seq;
1171 u64 seq;
1172 u32 idx;
1173 enum log_flags prev;
1174
1175 if (clear_seq < log_first_seq) {
1176 /* messages are gone, move to first available one */
1177 clear_seq = log_first_seq;
1178 clear_idx = log_first_idx;
1179 }
1180
1181 /*
1182 * Find first record that fits, including all following records,
1183 * into the user-provided buffer for this dump.
1184 */
1185 seq = clear_seq;
1186 idx = clear_idx;
1187 prev = 0;
1188 while (seq < log_next_seq) {
1189 struct printk_log *msg = log_from_idx(idx);
1190
1191 len += msg_print_text(msg, prev, true, NULL, 0);
1192 prev = msg->flags;
1193 idx = log_next(idx);
1194 seq++;
1195 }
1196
1197 /* move first record forward until length fits into the buffer */
1198 seq = clear_seq;
1199 idx = clear_idx;
1200 prev = 0;
1201 while (len > size && seq < log_next_seq) {
1202 struct printk_log *msg = log_from_idx(idx);
1203
1204 len -= msg_print_text(msg, prev, true, NULL, 0);
1205 prev = msg->flags;
1206 idx = log_next(idx);
1207 seq++;
1208 }
1209
1210 /* last message fitting into this dump */
1211 next_seq = log_next_seq;
1212
1213 len = 0;
1214 while (len >= 0 && seq < next_seq) {
1215 struct printk_log *msg = log_from_idx(idx);
1216 int textlen;
1217
1218 textlen = msg_print_text(msg, prev, true, text,
1219 LOG_LINE_MAX + PREFIX_MAX);
1220 if (textlen < 0) {
1221 len = textlen;
1222 break;
1223 }
1224 idx = log_next(idx);
1225 seq++;
1226 prev = msg->flags;
1227
1228 raw_spin_unlock_irq(&logbuf_lock);
1229 if (copy_to_user(buf + len, text, textlen))
1230 len = -EFAULT;
1231 else
1232 len += textlen;
1233 raw_spin_lock_irq(&logbuf_lock);
1234
1235 if (seq < log_first_seq) {
1236 /* messages are gone, move to next one */
1237 seq = log_first_seq;
1238 idx = log_first_idx;
1239 prev = 0;
1240 }
1241 }
1242 }
1243
1244 if (clear) {
1245 clear_seq = log_next_seq;
1246 clear_idx = log_next_idx;
1247 }
1248 raw_spin_unlock_irq(&logbuf_lock);
1249
1250 kfree(text);
1251 return len;
1252 }
1253
1254 int do_syslog(int type, char __user *buf, int len, bool from_file)
1255 {
1256 bool clear = false;
1257 static int saved_console_loglevel = -1;
1258 int error;
1259
1260 error = check_syslog_permissions(type, from_file);
1261 if (error)
1262 goto out;
1263
1264 error = security_syslog(type);
1265 if (error)
1266 return error;
1267
1268 switch (type) {
1269 case SYSLOG_ACTION_CLOSE: /* Close log */
1270 break;
1271 case SYSLOG_ACTION_OPEN: /* Open log */
1272 break;
1273 case SYSLOG_ACTION_READ: /* Read from log */
1274 error = -EINVAL;
1275 if (!buf || len < 0)
1276 goto out;
1277 error = 0;
1278 if (!len)
1279 goto out;
1280 if (!access_ok(VERIFY_WRITE, buf, len)) {
1281 error = -EFAULT;
1282 goto out;
1283 }
1284 error = wait_event_interruptible(log_wait,
1285 syslog_seq != log_next_seq);
1286 if (error)
1287 goto out;
1288 error = syslog_print(buf, len);
1289 break;
1290 /* Read/clear last kernel messages */
1291 case SYSLOG_ACTION_READ_CLEAR:
1292 clear = true;
1293 /* FALL THRU */
1294 /* Read last kernel messages */
1295 case SYSLOG_ACTION_READ_ALL:
1296 error = -EINVAL;
1297 if (!buf || len < 0)
1298 goto out;
1299 error = 0;
1300 if (!len)
1301 goto out;
1302 if (!access_ok(VERIFY_WRITE, buf, len)) {
1303 error = -EFAULT;
1304 goto out;
1305 }
1306 error = syslog_print_all(buf, len, clear);
1307 break;
1308 /* Clear ring buffer */
1309 case SYSLOG_ACTION_CLEAR:
1310 syslog_print_all(NULL, 0, true);
1311 break;
1312 /* Disable logging to console */
1313 case SYSLOG_ACTION_CONSOLE_OFF:
1314 if (saved_console_loglevel == -1)
1315 saved_console_loglevel = console_loglevel;
1316 console_loglevel = minimum_console_loglevel;
1317 break;
1318 /* Enable logging to console */
1319 case SYSLOG_ACTION_CONSOLE_ON:
1320 if (saved_console_loglevel != -1) {
1321 console_loglevel = saved_console_loglevel;
1322 saved_console_loglevel = -1;
1323 }
1324 break;
1325 /* Set level of messages printed to console */
1326 case SYSLOG_ACTION_CONSOLE_LEVEL:
1327 error = -EINVAL;
1328 if (len < 1 || len > 8)
1329 goto out;
1330 if (len < minimum_console_loglevel)
1331 len = minimum_console_loglevel;
1332 console_loglevel = len;
1333 /* Implicitly re-enable logging to console */
1334 saved_console_loglevel = -1;
1335 error = 0;
1336 break;
1337 /* Number of chars in the log buffer */
1338 case SYSLOG_ACTION_SIZE_UNREAD:
1339 raw_spin_lock_irq(&logbuf_lock);
1340 if (syslog_seq < log_first_seq) {
1341 /* messages are gone, move to first one */
1342 syslog_seq = log_first_seq;
1343 syslog_idx = log_first_idx;
1344 syslog_prev = 0;
1345 syslog_partial = 0;
1346 }
1347 if (from_file) {
1348 /*
1349 * Short-cut for poll(/"proc/kmsg") which simply checks
1350 * for pending data, not the size; return the count of
1351 * records, not the length.
1352 */
1353 error = log_next_seq - syslog_seq;
1354 } else {
1355 u64 seq = syslog_seq;
1356 u32 idx = syslog_idx;
1357 enum log_flags prev = syslog_prev;
1358
1359 error = 0;
1360 while (seq < log_next_seq) {
1361 struct printk_log *msg = log_from_idx(idx);
1362
1363 error += msg_print_text(msg, prev, true, NULL, 0);
1364 idx = log_next(idx);
1365 seq++;
1366 prev = msg->flags;
1367 }
1368 error -= syslog_partial;
1369 }
1370 raw_spin_unlock_irq(&logbuf_lock);
1371 break;
1372 /* Size of the log buffer */
1373 case SYSLOG_ACTION_SIZE_BUFFER:
1374 error = log_buf_len;
1375 break;
1376 default:
1377 error = -EINVAL;
1378 break;
1379 }
1380 out:
1381 return error;
1382 }
1383
1384 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1385 {
1386 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1387 }
1388
1389 /*
1390 * Call the console drivers, asking them to write out
1391 * log_buf[start] to log_buf[end - 1].
1392 * The console_lock must be held.
1393 */
1394 static void call_console_drivers(int level, const char *text, size_t len)
1395 {
1396 struct console *con;
1397
1398 trace_console(text, len);
1399
1400 if (level >= console_loglevel && !ignore_loglevel)
1401 return;
1402 if (!console_drivers)
1403 return;
1404
1405 for_each_console(con) {
1406 if (exclusive_console && con != exclusive_console)
1407 continue;
1408 if (!(con->flags & CON_ENABLED))
1409 continue;
1410 if (!con->write)
1411 continue;
1412 if (!cpu_online(smp_processor_id()) &&
1413 !(con->flags & CON_ANYTIME))
1414 continue;
1415 con->write(con, text, len);
1416 }
1417 }
1418
1419 /*
1420 * Zap console related locks when oopsing. Only zap at most once
1421 * every 10 seconds, to leave time for slow consoles to print a
1422 * full oops.
1423 */
1424 static void zap_locks(void)
1425 {
1426 static unsigned long oops_timestamp;
1427
1428 if (time_after_eq(jiffies, oops_timestamp) &&
1429 !time_after(jiffies, oops_timestamp + 30 * HZ))
1430 return;
1431
1432 oops_timestamp = jiffies;
1433
1434 debug_locks_off();
1435 /* If a crash is occurring, make sure we can't deadlock */
1436 raw_spin_lock_init(&logbuf_lock);
1437 /* And make sure that we print immediately */
1438 sema_init(&console_sem, 1);
1439 }
1440
1441 /*
1442 * Check if we have any console that is capable of printing while cpu is
1443 * booting or shutting down. Requires console_sem.
1444 */
1445 static int have_callable_console(void)
1446 {
1447 struct console *con;
1448
1449 for_each_console(con)
1450 if (con->flags & CON_ANYTIME)
1451 return 1;
1452
1453 return 0;
1454 }
1455
1456 /*
1457 * Can we actually use the console at this time on this cpu?
1458 *
1459 * Console drivers may assume that per-cpu resources have been allocated. So
1460 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1461 * call them until this CPU is officially up.
1462 */
1463 static inline int can_use_console(unsigned int cpu)
1464 {
1465 return cpu_online(cpu) || have_callable_console();
1466 }
1467
1468 /*
1469 * Try to get console ownership to actually show the kernel
1470 * messages from a 'printk'. Return true (and with the
1471 * console_lock held, and 'console_locked' set) if it
1472 * is successful, false otherwise.
1473 */
1474 static int console_trylock_for_printk(void)
1475 {
1476 unsigned int cpu = smp_processor_id();
1477
1478 if (!console_trylock())
1479 return 0;
1480 /*
1481 * If we can't use the console, we need to release the console
1482 * semaphore by hand to avoid flushing the buffer. We need to hold the
1483 * console semaphore in order to do this test safely.
1484 */
1485 if (!can_use_console(cpu)) {
1486 console_locked = 0;
1487 up_console_sem();
1488 return 0;
1489 }
1490 return 1;
1491 }
1492
1493 int printk_delay_msec __read_mostly;
1494
1495 static inline void printk_delay(void)
1496 {
1497 if (unlikely(printk_delay_msec)) {
1498 int m = printk_delay_msec;
1499
1500 while (m--) {
1501 mdelay(1);
1502 touch_nmi_watchdog();
1503 }
1504 }
1505 }
1506
1507 /*
1508 * Continuation lines are buffered, and not committed to the record buffer
1509 * until the line is complete, or a race forces it. The line fragments
1510 * though, are printed immediately to the consoles to ensure everything has
1511 * reached the console in case of a kernel crash.
1512 */
1513 static struct cont {
1514 char buf[LOG_LINE_MAX];
1515 size_t len; /* length == 0 means unused buffer */
1516 size_t cons; /* bytes written to console */
1517 struct task_struct *owner; /* task of first print*/
1518 u64 ts_nsec; /* time of first print */
1519 u8 level; /* log level of first message */
1520 u8 facility; /* log facility of first message */
1521 enum log_flags flags; /* prefix, newline flags */
1522 bool flushed:1; /* buffer sealed and committed */
1523 } cont;
1524
1525 static void cont_flush(enum log_flags flags)
1526 {
1527 if (cont.flushed)
1528 return;
1529 if (cont.len == 0)
1530 return;
1531
1532 if (cont.cons) {
1533 /*
1534 * If a fragment of this line was directly flushed to the
1535 * console; wait for the console to pick up the rest of the
1536 * line. LOG_NOCONS suppresses a duplicated output.
1537 */
1538 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1539 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1540 cont.flags = flags;
1541 cont.flushed = true;
1542 } else {
1543 /*
1544 * If no fragment of this line ever reached the console,
1545 * just submit it to the store and free the buffer.
1546 */
1547 log_store(cont.facility, cont.level, flags, 0,
1548 NULL, 0, cont.buf, cont.len);
1549 cont.len = 0;
1550 }
1551 }
1552
1553 static bool cont_add(int facility, int level, const char *text, size_t len)
1554 {
1555 if (cont.len && cont.flushed)
1556 return false;
1557
1558 if (cont.len + len > sizeof(cont.buf)) {
1559 /* the line gets too long, split it up in separate records */
1560 cont_flush(LOG_CONT);
1561 return false;
1562 }
1563
1564 if (!cont.len) {
1565 cont.facility = facility;
1566 cont.level = level;
1567 cont.owner = current;
1568 cont.ts_nsec = local_clock();
1569 cont.flags = 0;
1570 cont.cons = 0;
1571 cont.flushed = false;
1572 }
1573
1574 memcpy(cont.buf + cont.len, text, len);
1575 cont.len += len;
1576
1577 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1578 cont_flush(LOG_CONT);
1579
1580 return true;
1581 }
1582
1583 static size_t cont_print_text(char *text, size_t size)
1584 {
1585 size_t textlen = 0;
1586 size_t len;
1587
1588 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1589 textlen += print_time(cont.ts_nsec, text);
1590 size -= textlen;
1591 }
1592
1593 len = cont.len - cont.cons;
1594 if (len > 0) {
1595 if (len+1 > size)
1596 len = size-1;
1597 memcpy(text + textlen, cont.buf + cont.cons, len);
1598 textlen += len;
1599 cont.cons = cont.len;
1600 }
1601
1602 if (cont.flushed) {
1603 if (cont.flags & LOG_NEWLINE)
1604 text[textlen++] = '\n';
1605 /* got everything, release buffer */
1606 cont.len = 0;
1607 }
1608 return textlen;
1609 }
1610
1611 asmlinkage int vprintk_emit(int facility, int level,
1612 const char *dict, size_t dictlen,
1613 const char *fmt, va_list args)
1614 {
1615 static int recursion_bug;
1616 static char textbuf[LOG_LINE_MAX];
1617 char *text = textbuf;
1618 size_t text_len = 0;
1619 enum log_flags lflags = 0;
1620 unsigned long flags;
1621 int this_cpu;
1622 int printed_len = 0;
1623 bool in_sched = false;
1624 /* cpu currently holding logbuf_lock in this function */
1625 static volatile unsigned int logbuf_cpu = UINT_MAX;
1626
1627 if (level == SCHED_MESSAGE_LOGLEVEL) {
1628 level = -1;
1629 in_sched = true;
1630 }
1631
1632 boot_delay_msec(level);
1633 printk_delay();
1634
1635 /* This stops the holder of console_sem just where we want him */
1636 local_irq_save(flags);
1637 this_cpu = smp_processor_id();
1638
1639 /*
1640 * Ouch, printk recursed into itself!
1641 */
1642 if (unlikely(logbuf_cpu == this_cpu)) {
1643 /*
1644 * If a crash is occurring during printk() on this CPU,
1645 * then try to get the crash message out but make sure
1646 * we can't deadlock. Otherwise just return to avoid the
1647 * recursion and return - but flag the recursion so that
1648 * it can be printed at the next appropriate moment:
1649 */
1650 if (!oops_in_progress && !lockdep_recursing(current)) {
1651 recursion_bug = 1;
1652 local_irq_restore(flags);
1653 return 0;
1654 }
1655 zap_locks();
1656 }
1657
1658 lockdep_off();
1659 raw_spin_lock(&logbuf_lock);
1660 logbuf_cpu = this_cpu;
1661
1662 if (unlikely(recursion_bug)) {
1663 static const char recursion_msg[] =
1664 "BUG: recent printk recursion!";
1665
1666 recursion_bug = 0;
1667 /* emit KERN_CRIT message */
1668 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1669 NULL, 0, recursion_msg,
1670 strlen(recursion_msg));
1671 }
1672
1673 /*
1674 * The printf needs to come first; we need the syslog
1675 * prefix which might be passed-in as a parameter.
1676 */
1677 if (in_sched)
1678 text_len = scnprintf(text, sizeof(textbuf),
1679 KERN_WARNING "[sched_delayed] ");
1680
1681 text_len += vscnprintf(text + text_len,
1682 sizeof(textbuf) - text_len, fmt, args);
1683
1684 /* mark and strip a trailing newline */
1685 if (text_len && text[text_len-1] == '\n') {
1686 text_len--;
1687 lflags |= LOG_NEWLINE;
1688 }
1689
1690 /* strip kernel syslog prefix and extract log level or control flags */
1691 if (facility == 0) {
1692 int kern_level = printk_get_level(text);
1693
1694 if (kern_level) {
1695 const char *end_of_header = printk_skip_level(text);
1696 switch (kern_level) {
1697 case '0' ... '7':
1698 if (level == -1)
1699 level = kern_level - '0';
1700 case 'd': /* KERN_DEFAULT */
1701 lflags |= LOG_PREFIX;
1702 }
1703 /*
1704 * No need to check length here because vscnprintf
1705 * put '\0' at the end of the string. Only valid and
1706 * newly printed level is detected.
1707 */
1708 text_len -= end_of_header - text;
1709 text = (char *)end_of_header;
1710 }
1711 }
1712
1713 if (level == -1)
1714 level = default_message_loglevel;
1715
1716 if (dict)
1717 lflags |= LOG_PREFIX|LOG_NEWLINE;
1718
1719 if (!(lflags & LOG_NEWLINE)) {
1720 /*
1721 * Flush the conflicting buffer. An earlier newline was missing,
1722 * or another task also prints continuation lines.
1723 */
1724 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1725 cont_flush(LOG_NEWLINE);
1726
1727 /* buffer line if possible, otherwise store it right away */
1728 if (cont_add(facility, level, text, text_len))
1729 printed_len += text_len;
1730 else
1731 printed_len += log_store(facility, level,
1732 lflags | LOG_CONT, 0,
1733 dict, dictlen, text, text_len);
1734 } else {
1735 bool stored = false;
1736
1737 /*
1738 * If an earlier newline was missing and it was the same task,
1739 * either merge it with the current buffer and flush, or if
1740 * there was a race with interrupts (prefix == true) then just
1741 * flush it out and store this line separately.
1742 * If the preceding printk was from a different task and missed
1743 * a newline, flush and append the newline.
1744 */
1745 if (cont.len) {
1746 if (cont.owner == current && !(lflags & LOG_PREFIX))
1747 stored = cont_add(facility, level, text,
1748 text_len);
1749 cont_flush(LOG_NEWLINE);
1750 }
1751
1752 if (stored)
1753 printed_len += text_len;
1754 else
1755 printed_len += log_store(facility, level, lflags, 0,
1756 dict, dictlen, text, text_len);
1757 }
1758
1759 logbuf_cpu = UINT_MAX;
1760 raw_spin_unlock(&logbuf_lock);
1761 lockdep_on();
1762 local_irq_restore(flags);
1763
1764 /* If called from the scheduler, we can not call up(). */
1765 if (!in_sched) {
1766 lockdep_off();
1767 /*
1768 * Disable preemption to avoid being preempted while holding
1769 * console_sem which would prevent anyone from printing to
1770 * console
1771 */
1772 preempt_disable();
1773
1774 /*
1775 * Try to acquire and then immediately release the console
1776 * semaphore. The release will print out buffers and wake up
1777 * /dev/kmsg and syslog() users.
1778 */
1779 if (console_trylock_for_printk())
1780 console_unlock();
1781 preempt_enable();
1782 lockdep_on();
1783 }
1784
1785 return printed_len;
1786 }
1787 EXPORT_SYMBOL(vprintk_emit);
1788
1789 asmlinkage int vprintk(const char *fmt, va_list args)
1790 {
1791 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1792 }
1793 EXPORT_SYMBOL(vprintk);
1794
1795 asmlinkage int printk_emit(int facility, int level,
1796 const char *dict, size_t dictlen,
1797 const char *fmt, ...)
1798 {
1799 va_list args;
1800 int r;
1801
1802 va_start(args, fmt);
1803 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1804 va_end(args);
1805
1806 return r;
1807 }
1808 EXPORT_SYMBOL(printk_emit);
1809
1810 /**
1811 * printk - print a kernel message
1812 * @fmt: format string
1813 *
1814 * This is printk(). It can be called from any context. We want it to work.
1815 *
1816 * We try to grab the console_lock. If we succeed, it's easy - we log the
1817 * output and call the console drivers. If we fail to get the semaphore, we
1818 * place the output into the log buffer and return. The current holder of
1819 * the console_sem will notice the new output in console_unlock(); and will
1820 * send it to the consoles before releasing the lock.
1821 *
1822 * One effect of this deferred printing is that code which calls printk() and
1823 * then changes console_loglevel may break. This is because console_loglevel
1824 * is inspected when the actual printing occurs.
1825 *
1826 * See also:
1827 * printf(3)
1828 *
1829 * See the vsnprintf() documentation for format string extensions over C99.
1830 */
1831 asmlinkage __visible int printk(const char *fmt, ...)
1832 {
1833 va_list args;
1834 int r;
1835
1836 #ifdef CONFIG_KGDB_KDB
1837 if (unlikely(kdb_trap_printk)) {
1838 va_start(args, fmt);
1839 r = vkdb_printf(fmt, args);
1840 va_end(args);
1841 return r;
1842 }
1843 #endif
1844 va_start(args, fmt);
1845 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1846 va_end(args);
1847
1848 return r;
1849 }
1850 EXPORT_SYMBOL(printk);
1851
1852 #else /* CONFIG_PRINTK */
1853
1854 #define LOG_LINE_MAX 0
1855 #define PREFIX_MAX 0
1856
1857 static u64 syslog_seq;
1858 static u32 syslog_idx;
1859 static u64 console_seq;
1860 static u32 console_idx;
1861 static enum log_flags syslog_prev;
1862 static u64 log_first_seq;
1863 static u32 log_first_idx;
1864 static u64 log_next_seq;
1865 static enum log_flags console_prev;
1866 static struct cont {
1867 size_t len;
1868 size_t cons;
1869 u8 level;
1870 bool flushed:1;
1871 } cont;
1872 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1873 static u32 log_next(u32 idx) { return 0; }
1874 static void call_console_drivers(int level, const char *text, size_t len) {}
1875 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1876 bool syslog, char *buf, size_t size) { return 0; }
1877 static size_t cont_print_text(char *text, size_t size) { return 0; }
1878
1879 #endif /* CONFIG_PRINTK */
1880
1881 #ifdef CONFIG_EARLY_PRINTK
1882 struct console *early_console;
1883
1884 void early_vprintk(const char *fmt, va_list ap)
1885 {
1886 if (early_console) {
1887 char buf[512];
1888 int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1889
1890 early_console->write(early_console, buf, n);
1891 }
1892 }
1893
1894 asmlinkage __visible void early_printk(const char *fmt, ...)
1895 {
1896 va_list ap;
1897
1898 va_start(ap, fmt);
1899 early_vprintk(fmt, ap);
1900 va_end(ap);
1901 }
1902 #endif
1903
1904 static int __add_preferred_console(char *name, int idx, char *options,
1905 char *brl_options)
1906 {
1907 struct console_cmdline *c;
1908 int i;
1909
1910 /*
1911 * See if this tty is not yet registered, and
1912 * if we have a slot free.
1913 */
1914 for (i = 0, c = console_cmdline;
1915 i < MAX_CMDLINECONSOLES && c->name[0];
1916 i++, c++) {
1917 if (strcmp(c->name, name) == 0 && c->index == idx) {
1918 if (!brl_options)
1919 selected_console = i;
1920 return 0;
1921 }
1922 }
1923 if (i == MAX_CMDLINECONSOLES)
1924 return -E2BIG;
1925 if (!brl_options)
1926 selected_console = i;
1927 strlcpy(c->name, name, sizeof(c->name));
1928 c->options = options;
1929 braille_set_options(c, brl_options);
1930
1931 c->index = idx;
1932 return 0;
1933 }
1934 /*
1935 * Set up a console. Called via do_early_param() in init/main.c
1936 * for each "console=" parameter in the boot command line.
1937 */
1938 static int __init console_setup(char *str)
1939 {
1940 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1941 char *s, *options, *brl_options = NULL;
1942 int idx;
1943
1944 if (_braille_console_setup(&str, &brl_options))
1945 return 1;
1946
1947 /*
1948 * Decode str into name, index, options.
1949 */
1950 if (str[0] >= '0' && str[0] <= '9') {
1951 strcpy(buf, "ttyS");
1952 strncpy(buf + 4, str, sizeof(buf) - 5);
1953 } else {
1954 strncpy(buf, str, sizeof(buf) - 1);
1955 }
1956 buf[sizeof(buf) - 1] = 0;
1957 options = strchr(str, ',');
1958 if (options)
1959 *(options++) = 0;
1960 #ifdef __sparc__
1961 if (!strcmp(str, "ttya"))
1962 strcpy(buf, "ttyS0");
1963 if (!strcmp(str, "ttyb"))
1964 strcpy(buf, "ttyS1");
1965 #endif
1966 for (s = buf; *s; s++)
1967 if (isdigit(*s) || *s == ',')
1968 break;
1969 idx = simple_strtoul(s, NULL, 10);
1970 *s = 0;
1971
1972 __add_preferred_console(buf, idx, options, brl_options);
1973 console_set_on_cmdline = 1;
1974 return 1;
1975 }
1976 __setup("console=", console_setup);
1977
1978 /**
1979 * add_preferred_console - add a device to the list of preferred consoles.
1980 * @name: device name
1981 * @idx: device index
1982 * @options: options for this console
1983 *
1984 * The last preferred console added will be used for kernel messages
1985 * and stdin/out/err for init. Normally this is used by console_setup
1986 * above to handle user-supplied console arguments; however it can also
1987 * be used by arch-specific code either to override the user or more
1988 * commonly to provide a default console (ie from PROM variables) when
1989 * the user has not supplied one.
1990 */
1991 int add_preferred_console(char *name, int idx, char *options)
1992 {
1993 return __add_preferred_console(name, idx, options, NULL);
1994 }
1995
1996 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1997 {
1998 struct console_cmdline *c;
1999 int i;
2000
2001 for (i = 0, c = console_cmdline;
2002 i < MAX_CMDLINECONSOLES && c->name[0];
2003 i++, c++)
2004 if (strcmp(c->name, name) == 0 && c->index == idx) {
2005 strlcpy(c->name, name_new, sizeof(c->name));
2006 c->options = options;
2007 c->index = idx_new;
2008 return i;
2009 }
2010 /* not found */
2011 return -1;
2012 }
2013
2014 bool console_suspend_enabled = true;
2015 EXPORT_SYMBOL(console_suspend_enabled);
2016
2017 static int __init console_suspend_disable(char *str)
2018 {
2019 console_suspend_enabled = false;
2020 return 1;
2021 }
2022 __setup("no_console_suspend", console_suspend_disable);
2023 module_param_named(console_suspend, console_suspend_enabled,
2024 bool, S_IRUGO | S_IWUSR);
2025 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2026 " and hibernate operations");
2027
2028 /**
2029 * suspend_console - suspend the console subsystem
2030 *
2031 * This disables printk() while we go into suspend states
2032 */
2033 void suspend_console(void)
2034 {
2035 if (!console_suspend_enabled)
2036 return;
2037 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2038 console_lock();
2039 console_suspended = 1;
2040 up_console_sem();
2041 }
2042
2043 void resume_console(void)
2044 {
2045 if (!console_suspend_enabled)
2046 return;
2047 down_console_sem();
2048 console_suspended = 0;
2049 console_unlock();
2050 }
2051
2052 /**
2053 * console_cpu_notify - print deferred console messages after CPU hotplug
2054 * @self: notifier struct
2055 * @action: CPU hotplug event
2056 * @hcpu: unused
2057 *
2058 * If printk() is called from a CPU that is not online yet, the messages
2059 * will be spooled but will not show up on the console. This function is
2060 * called when a new CPU comes online (or fails to come up), and ensures
2061 * that any such output gets printed.
2062 */
2063 static int console_cpu_notify(struct notifier_block *self,
2064 unsigned long action, void *hcpu)
2065 {
2066 switch (action) {
2067 case CPU_ONLINE:
2068 case CPU_DEAD:
2069 case CPU_DOWN_FAILED:
2070 case CPU_UP_CANCELED:
2071 console_lock();
2072 console_unlock();
2073 }
2074 return NOTIFY_OK;
2075 }
2076
2077 /**
2078 * console_lock - lock the console system for exclusive use.
2079 *
2080 * Acquires a lock which guarantees that the caller has
2081 * exclusive access to the console system and the console_drivers list.
2082 *
2083 * Can sleep, returns nothing.
2084 */
2085 void console_lock(void)
2086 {
2087 might_sleep();
2088
2089 down_console_sem();
2090 if (console_suspended)
2091 return;
2092 console_locked = 1;
2093 console_may_schedule = 1;
2094 }
2095 EXPORT_SYMBOL(console_lock);
2096
2097 /**
2098 * console_trylock - try to lock the console system for exclusive use.
2099 *
2100 * Try to acquire a lock which guarantees that the caller has exclusive
2101 * access to the console system and the console_drivers list.
2102 *
2103 * returns 1 on success, and 0 on failure to acquire the lock.
2104 */
2105 int console_trylock(void)
2106 {
2107 if (down_trylock_console_sem())
2108 return 0;
2109 if (console_suspended) {
2110 up_console_sem();
2111 return 0;
2112 }
2113 console_locked = 1;
2114 console_may_schedule = 0;
2115 return 1;
2116 }
2117 EXPORT_SYMBOL(console_trylock);
2118
2119 int is_console_locked(void)
2120 {
2121 return console_locked;
2122 }
2123
2124 static void console_cont_flush(char *text, size_t size)
2125 {
2126 unsigned long flags;
2127 size_t len;
2128
2129 raw_spin_lock_irqsave(&logbuf_lock, flags);
2130
2131 if (!cont.len)
2132 goto out;
2133
2134 /*
2135 * We still queue earlier records, likely because the console was
2136 * busy. The earlier ones need to be printed before this one, we
2137 * did not flush any fragment so far, so just let it queue up.
2138 */
2139 if (console_seq < log_next_seq && !cont.cons)
2140 goto out;
2141
2142 len = cont_print_text(text, size);
2143 raw_spin_unlock(&logbuf_lock);
2144 stop_critical_timings();
2145 call_console_drivers(cont.level, text, len);
2146 start_critical_timings();
2147 local_irq_restore(flags);
2148 return;
2149 out:
2150 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2151 }
2152
2153 /**
2154 * console_unlock - unlock the console system
2155 *
2156 * Releases the console_lock which the caller holds on the console system
2157 * and the console driver list.
2158 *
2159 * While the console_lock was held, console output may have been buffered
2160 * by printk(). If this is the case, console_unlock(); emits
2161 * the output prior to releasing the lock.
2162 *
2163 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2164 *
2165 * console_unlock(); may be called from any context.
2166 */
2167 void console_unlock(void)
2168 {
2169 static char text[LOG_LINE_MAX + PREFIX_MAX];
2170 static u64 seen_seq;
2171 unsigned long flags;
2172 bool wake_klogd = false;
2173 bool retry;
2174
2175 if (console_suspended) {
2176 up_console_sem();
2177 return;
2178 }
2179
2180 console_may_schedule = 0;
2181
2182 /* flush buffered message fragment immediately to console */
2183 console_cont_flush(text, sizeof(text));
2184 again:
2185 for (;;) {
2186 struct printk_log *msg;
2187 size_t len;
2188 int level;
2189
2190 raw_spin_lock_irqsave(&logbuf_lock, flags);
2191 if (seen_seq != log_next_seq) {
2192 wake_klogd = true;
2193 seen_seq = log_next_seq;
2194 }
2195
2196 if (console_seq < log_first_seq) {
2197 len = sprintf(text, "** %u printk messages dropped ** ",
2198 (unsigned)(log_first_seq - console_seq));
2199
2200 /* messages are gone, move to first one */
2201 console_seq = log_first_seq;
2202 console_idx = log_first_idx;
2203 console_prev = 0;
2204 } else {
2205 len = 0;
2206 }
2207 skip:
2208 if (console_seq == log_next_seq)
2209 break;
2210
2211 msg = log_from_idx(console_idx);
2212 if (msg->flags & LOG_NOCONS) {
2213 /*
2214 * Skip record we have buffered and already printed
2215 * directly to the console when we received it.
2216 */
2217 console_idx = log_next(console_idx);
2218 console_seq++;
2219 /*
2220 * We will get here again when we register a new
2221 * CON_PRINTBUFFER console. Clear the flag so we
2222 * will properly dump everything later.
2223 */
2224 msg->flags &= ~LOG_NOCONS;
2225 console_prev = msg->flags;
2226 goto skip;
2227 }
2228
2229 level = msg->level;
2230 len += msg_print_text(msg, console_prev, false,
2231 text + len, sizeof(text) - len);
2232 console_idx = log_next(console_idx);
2233 console_seq++;
2234 console_prev = msg->flags;
2235 raw_spin_unlock(&logbuf_lock);
2236
2237 stop_critical_timings(); /* don't trace print latency */
2238 call_console_drivers(level, text, len);
2239 start_critical_timings();
2240 local_irq_restore(flags);
2241 }
2242 console_locked = 0;
2243
2244 /* Release the exclusive_console once it is used */
2245 if (unlikely(exclusive_console))
2246 exclusive_console = NULL;
2247
2248 raw_spin_unlock(&logbuf_lock);
2249
2250 up_console_sem();
2251
2252 /*
2253 * Someone could have filled up the buffer again, so re-check if there's
2254 * something to flush. In case we cannot trylock the console_sem again,
2255 * there's a new owner and the console_unlock() from them will do the
2256 * flush, no worries.
2257 */
2258 raw_spin_lock(&logbuf_lock);
2259 retry = console_seq != log_next_seq;
2260 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2261
2262 if (retry && console_trylock())
2263 goto again;
2264
2265 if (wake_klogd)
2266 wake_up_klogd();
2267 }
2268 EXPORT_SYMBOL(console_unlock);
2269
2270 /**
2271 * console_conditional_schedule - yield the CPU if required
2272 *
2273 * If the console code is currently allowed to sleep, and
2274 * if this CPU should yield the CPU to another task, do
2275 * so here.
2276 *
2277 * Must be called within console_lock();.
2278 */
2279 void __sched console_conditional_schedule(void)
2280 {
2281 if (console_may_schedule)
2282 cond_resched();
2283 }
2284 EXPORT_SYMBOL(console_conditional_schedule);
2285
2286 void console_unblank(void)
2287 {
2288 struct console *c;
2289
2290 /*
2291 * console_unblank can no longer be called in interrupt context unless
2292 * oops_in_progress is set to 1..
2293 */
2294 if (oops_in_progress) {
2295 if (down_trylock_console_sem() != 0)
2296 return;
2297 } else
2298 console_lock();
2299
2300 console_locked = 1;
2301 console_may_schedule = 0;
2302 for_each_console(c)
2303 if ((c->flags & CON_ENABLED) && c->unblank)
2304 c->unblank();
2305 console_unlock();
2306 }
2307
2308 /*
2309 * Return the console tty driver structure and its associated index
2310 */
2311 struct tty_driver *console_device(int *index)
2312 {
2313 struct console *c;
2314 struct tty_driver *driver = NULL;
2315
2316 console_lock();
2317 for_each_console(c) {
2318 if (!c->device)
2319 continue;
2320 driver = c->device(c, index);
2321 if (driver)
2322 break;
2323 }
2324 console_unlock();
2325 return driver;
2326 }
2327
2328 /*
2329 * Prevent further output on the passed console device so that (for example)
2330 * serial drivers can disable console output before suspending a port, and can
2331 * re-enable output afterwards.
2332 */
2333 void console_stop(struct console *console)
2334 {
2335 console_lock();
2336 console->flags &= ~CON_ENABLED;
2337 console_unlock();
2338 }
2339 EXPORT_SYMBOL(console_stop);
2340
2341 void console_start(struct console *console)
2342 {
2343 console_lock();
2344 console->flags |= CON_ENABLED;
2345 console_unlock();
2346 }
2347 EXPORT_SYMBOL(console_start);
2348
2349 static int __read_mostly keep_bootcon;
2350
2351 static int __init keep_bootcon_setup(char *str)
2352 {
2353 keep_bootcon = 1;
2354 pr_info("debug: skip boot console de-registration.\n");
2355
2356 return 0;
2357 }
2358
2359 early_param("keep_bootcon", keep_bootcon_setup);
2360
2361 /*
2362 * The console driver calls this routine during kernel initialization
2363 * to register the console printing procedure with printk() and to
2364 * print any messages that were printed by the kernel before the
2365 * console driver was initialized.
2366 *
2367 * This can happen pretty early during the boot process (because of
2368 * early_printk) - sometimes before setup_arch() completes - be careful
2369 * of what kernel features are used - they may not be initialised yet.
2370 *
2371 * There are two types of consoles - bootconsoles (early_printk) and
2372 * "real" consoles (everything which is not a bootconsole) which are
2373 * handled differently.
2374 * - Any number of bootconsoles can be registered at any time.
2375 * - As soon as a "real" console is registered, all bootconsoles
2376 * will be unregistered automatically.
2377 * - Once a "real" console is registered, any attempt to register a
2378 * bootconsoles will be rejected
2379 */
2380 void register_console(struct console *newcon)
2381 {
2382 int i;
2383 unsigned long flags;
2384 struct console *bcon = NULL;
2385 struct console_cmdline *c;
2386
2387 if (console_drivers)
2388 for_each_console(bcon)
2389 if (WARN(bcon == newcon,
2390 "console '%s%d' already registered\n",
2391 bcon->name, bcon->index))
2392 return;
2393
2394 /*
2395 * before we register a new CON_BOOT console, make sure we don't
2396 * already have a valid console
2397 */
2398 if (console_drivers && newcon->flags & CON_BOOT) {
2399 /* find the last or real console */
2400 for_each_console(bcon) {
2401 if (!(bcon->flags & CON_BOOT)) {
2402 pr_info("Too late to register bootconsole %s%d\n",
2403 newcon->name, newcon->index);
2404 return;
2405 }
2406 }
2407 }
2408
2409 if (console_drivers && console_drivers->flags & CON_BOOT)
2410 bcon = console_drivers;
2411
2412 if (preferred_console < 0 || bcon || !console_drivers)
2413 preferred_console = selected_console;
2414
2415 if (newcon->early_setup)
2416 newcon->early_setup();
2417
2418 /*
2419 * See if we want to use this console driver. If we
2420 * didn't select a console we take the first one
2421 * that registers here.
2422 */
2423 if (preferred_console < 0) {
2424 if (newcon->index < 0)
2425 newcon->index = 0;
2426 if (newcon->setup == NULL ||
2427 newcon->setup(newcon, NULL) == 0) {
2428 newcon->flags |= CON_ENABLED;
2429 if (newcon->device) {
2430 newcon->flags |= CON_CONSDEV;
2431 preferred_console = 0;
2432 }
2433 }
2434 }
2435
2436 /*
2437 * See if this console matches one we selected on
2438 * the command line.
2439 */
2440 for (i = 0, c = console_cmdline;
2441 i < MAX_CMDLINECONSOLES && c->name[0];
2442 i++, c++) {
2443 if (strcmp(c->name, newcon->name) != 0)
2444 continue;
2445 if (newcon->index >= 0 &&
2446 newcon->index != c->index)
2447 continue;
2448 if (newcon->index < 0)
2449 newcon->index = c->index;
2450
2451 if (_braille_register_console(newcon, c))
2452 return;
2453
2454 if (newcon->setup &&
2455 newcon->setup(newcon, console_cmdline[i].options) != 0)
2456 break;
2457 newcon->flags |= CON_ENABLED;
2458 newcon->index = c->index;
2459 if (i == selected_console) {
2460 newcon->flags |= CON_CONSDEV;
2461 preferred_console = selected_console;
2462 }
2463 break;
2464 }
2465
2466 if (!(newcon->flags & CON_ENABLED))
2467 return;
2468
2469 /*
2470 * If we have a bootconsole, and are switching to a real console,
2471 * don't print everything out again, since when the boot console, and
2472 * the real console are the same physical device, it's annoying to
2473 * see the beginning boot messages twice
2474 */
2475 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2476 newcon->flags &= ~CON_PRINTBUFFER;
2477
2478 /*
2479 * Put this console in the list - keep the
2480 * preferred driver at the head of the list.
2481 */
2482 console_lock();
2483 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2484 newcon->next = console_drivers;
2485 console_drivers = newcon;
2486 if (newcon->next)
2487 newcon->next->flags &= ~CON_CONSDEV;
2488 } else {
2489 newcon->next = console_drivers->next;
2490 console_drivers->next = newcon;
2491 }
2492 if (newcon->flags & CON_PRINTBUFFER) {
2493 /*
2494 * console_unlock(); will print out the buffered messages
2495 * for us.
2496 */
2497 raw_spin_lock_irqsave(&logbuf_lock, flags);
2498 console_seq = syslog_seq;
2499 console_idx = syslog_idx;
2500 console_prev = syslog_prev;
2501 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2502 /*
2503 * We're about to replay the log buffer. Only do this to the
2504 * just-registered console to avoid excessive message spam to
2505 * the already-registered consoles.
2506 */
2507 exclusive_console = newcon;
2508 }
2509 console_unlock();
2510 console_sysfs_notify();
2511
2512 /*
2513 * By unregistering the bootconsoles after we enable the real console
2514 * we get the "console xxx enabled" message on all the consoles -
2515 * boot consoles, real consoles, etc - this is to ensure that end
2516 * users know there might be something in the kernel's log buffer that
2517 * went to the bootconsole (that they do not see on the real console)
2518 */
2519 pr_info("%sconsole [%s%d] enabled\n",
2520 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2521 newcon->name, newcon->index);
2522 if (bcon &&
2523 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2524 !keep_bootcon) {
2525 /* We need to iterate through all boot consoles, to make
2526 * sure we print everything out, before we unregister them.
2527 */
2528 for_each_console(bcon)
2529 if (bcon->flags & CON_BOOT)
2530 unregister_console(bcon);
2531 }
2532 }
2533 EXPORT_SYMBOL(register_console);
2534
2535 int unregister_console(struct console *console)
2536 {
2537 struct console *a, *b;
2538 int res;
2539
2540 pr_info("%sconsole [%s%d] disabled\n",
2541 (console->flags & CON_BOOT) ? "boot" : "" ,
2542 console->name, console->index);
2543
2544 res = _braille_unregister_console(console);
2545 if (res)
2546 return res;
2547
2548 res = 1;
2549 console_lock();
2550 if (console_drivers == console) {
2551 console_drivers=console->next;
2552 res = 0;
2553 } else if (console_drivers) {
2554 for (a=console_drivers->next, b=console_drivers ;
2555 a; b=a, a=b->next) {
2556 if (a == console) {
2557 b->next = a->next;
2558 res = 0;
2559 break;
2560 }
2561 }
2562 }
2563
2564 /*
2565 * If this isn't the last console and it has CON_CONSDEV set, we
2566 * need to set it on the next preferred console.
2567 */
2568 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2569 console_drivers->flags |= CON_CONSDEV;
2570
2571 console->flags &= ~CON_ENABLED;
2572 console_unlock();
2573 console_sysfs_notify();
2574 return res;
2575 }
2576 EXPORT_SYMBOL(unregister_console);
2577
2578 static int __init printk_late_init(void)
2579 {
2580 struct console *con;
2581
2582 for_each_console(con) {
2583 if (!keep_bootcon && con->flags & CON_BOOT) {
2584 unregister_console(con);
2585 }
2586 }
2587 hotcpu_notifier(console_cpu_notify, 0);
2588 return 0;
2589 }
2590 late_initcall(printk_late_init);
2591
2592 #if defined CONFIG_PRINTK
2593 /*
2594 * Delayed printk version, for scheduler-internal messages:
2595 */
2596 #define PRINTK_PENDING_WAKEUP 0x01
2597 #define PRINTK_PENDING_OUTPUT 0x02
2598
2599 static DEFINE_PER_CPU(int, printk_pending);
2600
2601 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2602 {
2603 int pending = __this_cpu_xchg(printk_pending, 0);
2604
2605 if (pending & PRINTK_PENDING_OUTPUT) {
2606 /* If trylock fails, someone else is doing the printing */
2607 if (console_trylock())
2608 console_unlock();
2609 }
2610
2611 if (pending & PRINTK_PENDING_WAKEUP)
2612 wake_up_interruptible(&log_wait);
2613 }
2614
2615 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2616 .func = wake_up_klogd_work_func,
2617 .flags = IRQ_WORK_LAZY,
2618 };
2619
2620 void wake_up_klogd(void)
2621 {
2622 preempt_disable();
2623 if (waitqueue_active(&log_wait)) {
2624 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2625 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2626 }
2627 preempt_enable();
2628 }
2629
2630 int printk_deferred(const char *fmt, ...)
2631 {
2632 va_list args;
2633 int r;
2634
2635 preempt_disable();
2636 va_start(args, fmt);
2637 r = vprintk_emit(0, SCHED_MESSAGE_LOGLEVEL, NULL, 0, fmt, args);
2638 va_end(args);
2639
2640 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2641 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2642 preempt_enable();
2643
2644 return r;
2645 }
2646
2647 /*
2648 * printk rate limiting, lifted from the networking subsystem.
2649 *
2650 * This enforces a rate limit: not more than 10 kernel messages
2651 * every 5s to make a denial-of-service attack impossible.
2652 */
2653 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2654
2655 int __printk_ratelimit(const char *func)
2656 {
2657 return ___ratelimit(&printk_ratelimit_state, func);
2658 }
2659 EXPORT_SYMBOL(__printk_ratelimit);
2660
2661 /**
2662 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2663 * @caller_jiffies: pointer to caller's state
2664 * @interval_msecs: minimum interval between prints
2665 *
2666 * printk_timed_ratelimit() returns true if more than @interval_msecs
2667 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2668 * returned true.
2669 */
2670 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2671 unsigned int interval_msecs)
2672 {
2673 unsigned long elapsed = jiffies - *caller_jiffies;
2674
2675 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2676 return false;
2677
2678 *caller_jiffies = jiffies;
2679 return true;
2680 }
2681 EXPORT_SYMBOL(printk_timed_ratelimit);
2682
2683 static DEFINE_SPINLOCK(dump_list_lock);
2684 static LIST_HEAD(dump_list);
2685
2686 /**
2687 * kmsg_dump_register - register a kernel log dumper.
2688 * @dumper: pointer to the kmsg_dumper structure
2689 *
2690 * Adds a kernel log dumper to the system. The dump callback in the
2691 * structure will be called when the kernel oopses or panics and must be
2692 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2693 */
2694 int kmsg_dump_register(struct kmsg_dumper *dumper)
2695 {
2696 unsigned long flags;
2697 int err = -EBUSY;
2698
2699 /* The dump callback needs to be set */
2700 if (!dumper->dump)
2701 return -EINVAL;
2702
2703 spin_lock_irqsave(&dump_list_lock, flags);
2704 /* Don't allow registering multiple times */
2705 if (!dumper->registered) {
2706 dumper->registered = 1;
2707 list_add_tail_rcu(&dumper->list, &dump_list);
2708 err = 0;
2709 }
2710 spin_unlock_irqrestore(&dump_list_lock, flags);
2711
2712 return err;
2713 }
2714 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2715
2716 /**
2717 * kmsg_dump_unregister - unregister a kmsg dumper.
2718 * @dumper: pointer to the kmsg_dumper structure
2719 *
2720 * Removes a dump device from the system. Returns zero on success and
2721 * %-EINVAL otherwise.
2722 */
2723 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2724 {
2725 unsigned long flags;
2726 int err = -EINVAL;
2727
2728 spin_lock_irqsave(&dump_list_lock, flags);
2729 if (dumper->registered) {
2730 dumper->registered = 0;
2731 list_del_rcu(&dumper->list);
2732 err = 0;
2733 }
2734 spin_unlock_irqrestore(&dump_list_lock, flags);
2735 synchronize_rcu();
2736
2737 return err;
2738 }
2739 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2740
2741 static bool always_kmsg_dump;
2742 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2743
2744 /**
2745 * kmsg_dump - dump kernel log to kernel message dumpers.
2746 * @reason: the reason (oops, panic etc) for dumping
2747 *
2748 * Call each of the registered dumper's dump() callback, which can
2749 * retrieve the kmsg records with kmsg_dump_get_line() or
2750 * kmsg_dump_get_buffer().
2751 */
2752 void kmsg_dump(enum kmsg_dump_reason reason)
2753 {
2754 struct kmsg_dumper *dumper;
2755 unsigned long flags;
2756
2757 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2758 return;
2759
2760 rcu_read_lock();
2761 list_for_each_entry_rcu(dumper, &dump_list, list) {
2762 if (dumper->max_reason && reason > dumper->max_reason)
2763 continue;
2764
2765 /* initialize iterator with data about the stored records */
2766 dumper->active = true;
2767
2768 raw_spin_lock_irqsave(&logbuf_lock, flags);
2769 dumper->cur_seq = clear_seq;
2770 dumper->cur_idx = clear_idx;
2771 dumper->next_seq = log_next_seq;
2772 dumper->next_idx = log_next_idx;
2773 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2774
2775 /* invoke dumper which will iterate over records */
2776 dumper->dump(dumper, reason);
2777
2778 /* reset iterator */
2779 dumper->active = false;
2780 }
2781 rcu_read_unlock();
2782 }
2783
2784 /**
2785 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2786 * @dumper: registered kmsg dumper
2787 * @syslog: include the "<4>" prefixes
2788 * @line: buffer to copy the line to
2789 * @size: maximum size of the buffer
2790 * @len: length of line placed into buffer
2791 *
2792 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2793 * record, and copy one record into the provided buffer.
2794 *
2795 * Consecutive calls will return the next available record moving
2796 * towards the end of the buffer with the youngest messages.
2797 *
2798 * A return value of FALSE indicates that there are no more records to
2799 * read.
2800 *
2801 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2802 */
2803 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2804 char *line, size_t size, size_t *len)
2805 {
2806 struct printk_log *msg;
2807 size_t l = 0;
2808 bool ret = false;
2809
2810 if (!dumper->active)
2811 goto out;
2812
2813 if (dumper->cur_seq < log_first_seq) {
2814 /* messages are gone, move to first available one */
2815 dumper->cur_seq = log_first_seq;
2816 dumper->cur_idx = log_first_idx;
2817 }
2818
2819 /* last entry */
2820 if (dumper->cur_seq >= log_next_seq)
2821 goto out;
2822
2823 msg = log_from_idx(dumper->cur_idx);
2824 l = msg_print_text(msg, 0, syslog, line, size);
2825
2826 dumper->cur_idx = log_next(dumper->cur_idx);
2827 dumper->cur_seq++;
2828 ret = true;
2829 out:
2830 if (len)
2831 *len = l;
2832 return ret;
2833 }
2834
2835 /**
2836 * kmsg_dump_get_line - retrieve one kmsg log line
2837 * @dumper: registered kmsg dumper
2838 * @syslog: include the "<4>" prefixes
2839 * @line: buffer to copy the line to
2840 * @size: maximum size of the buffer
2841 * @len: length of line placed into buffer
2842 *
2843 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2844 * record, and copy one record into the provided buffer.
2845 *
2846 * Consecutive calls will return the next available record moving
2847 * towards the end of the buffer with the youngest messages.
2848 *
2849 * A return value of FALSE indicates that there are no more records to
2850 * read.
2851 */
2852 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2853 char *line, size_t size, size_t *len)
2854 {
2855 unsigned long flags;
2856 bool ret;
2857
2858 raw_spin_lock_irqsave(&logbuf_lock, flags);
2859 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2860 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2861
2862 return ret;
2863 }
2864 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2865
2866 /**
2867 * kmsg_dump_get_buffer - copy kmsg log lines
2868 * @dumper: registered kmsg dumper
2869 * @syslog: include the "<4>" prefixes
2870 * @buf: buffer to copy the line to
2871 * @size: maximum size of the buffer
2872 * @len: length of line placed into buffer
2873 *
2874 * Start at the end of the kmsg buffer and fill the provided buffer
2875 * with as many of the the *youngest* kmsg records that fit into it.
2876 * If the buffer is large enough, all available kmsg records will be
2877 * copied with a single call.
2878 *
2879 * Consecutive calls will fill the buffer with the next block of
2880 * available older records, not including the earlier retrieved ones.
2881 *
2882 * A return value of FALSE indicates that there are no more records to
2883 * read.
2884 */
2885 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2886 char *buf, size_t size, size_t *len)
2887 {
2888 unsigned long flags;
2889 u64 seq;
2890 u32 idx;
2891 u64 next_seq;
2892 u32 next_idx;
2893 enum log_flags prev;
2894 size_t l = 0;
2895 bool ret = false;
2896
2897 if (!dumper->active)
2898 goto out;
2899
2900 raw_spin_lock_irqsave(&logbuf_lock, flags);
2901 if (dumper->cur_seq < log_first_seq) {
2902 /* messages are gone, move to first available one */
2903 dumper->cur_seq = log_first_seq;
2904 dumper->cur_idx = log_first_idx;
2905 }
2906
2907 /* last entry */
2908 if (dumper->cur_seq >= dumper->next_seq) {
2909 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2910 goto out;
2911 }
2912
2913 /* calculate length of entire buffer */
2914 seq = dumper->cur_seq;
2915 idx = dumper->cur_idx;
2916 prev = 0;
2917 while (seq < dumper->next_seq) {
2918 struct printk_log *msg = log_from_idx(idx);
2919
2920 l += msg_print_text(msg, prev, true, NULL, 0);
2921 idx = log_next(idx);
2922 seq++;
2923 prev = msg->flags;
2924 }
2925
2926 /* move first record forward until length fits into the buffer */
2927 seq = dumper->cur_seq;
2928 idx = dumper->cur_idx;
2929 prev = 0;
2930 while (l > size && seq < dumper->next_seq) {
2931 struct printk_log *msg = log_from_idx(idx);
2932
2933 l -= msg_print_text(msg, prev, true, NULL, 0);
2934 idx = log_next(idx);
2935 seq++;
2936 prev = msg->flags;
2937 }
2938
2939 /* last message in next interation */
2940 next_seq = seq;
2941 next_idx = idx;
2942
2943 l = 0;
2944 while (seq < dumper->next_seq) {
2945 struct printk_log *msg = log_from_idx(idx);
2946
2947 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2948 idx = log_next(idx);
2949 seq++;
2950 prev = msg->flags;
2951 }
2952
2953 dumper->next_seq = next_seq;
2954 dumper->next_idx = next_idx;
2955 ret = true;
2956 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2957 out:
2958 if (len)
2959 *len = l;
2960 return ret;
2961 }
2962 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2963
2964 /**
2965 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2966 * @dumper: registered kmsg dumper
2967 *
2968 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2969 * kmsg_dump_get_buffer() can be called again and used multiple
2970 * times within the same dumper.dump() callback.
2971 *
2972 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2973 */
2974 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2975 {
2976 dumper->cur_seq = clear_seq;
2977 dumper->cur_idx = clear_idx;
2978 dumper->next_seq = log_next_seq;
2979 dumper->next_idx = log_next_idx;
2980 }
2981
2982 /**
2983 * kmsg_dump_rewind - reset the interator
2984 * @dumper: registered kmsg dumper
2985 *
2986 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2987 * kmsg_dump_get_buffer() can be called again and used multiple
2988 * times within the same dumper.dump() callback.
2989 */
2990 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2991 {
2992 unsigned long flags;
2993
2994 raw_spin_lock_irqsave(&logbuf_lock, flags);
2995 kmsg_dump_rewind_nolock(dumper);
2996 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2997 }
2998 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2999
3000 static char dump_stack_arch_desc_str[128];
3001
3002 /**
3003 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3004 * @fmt: printf-style format string
3005 * @...: arguments for the format string
3006 *
3007 * The configured string will be printed right after utsname during task
3008 * dumps. Usually used to add arch-specific system identifiers. If an
3009 * arch wants to make use of such an ID string, it should initialize this
3010 * as soon as possible during boot.
3011 */
3012 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3013 {
3014 va_list args;
3015
3016 va_start(args, fmt);
3017 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3018 fmt, args);
3019 va_end(args);
3020 }
3021
3022 /**
3023 * dump_stack_print_info - print generic debug info for dump_stack()
3024 * @log_lvl: log level
3025 *
3026 * Arch-specific dump_stack() implementations can use this function to
3027 * print out the same debug information as the generic dump_stack().
3028 */
3029 void dump_stack_print_info(const char *log_lvl)
3030 {
3031 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3032 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3033 print_tainted(), init_utsname()->release,
3034 (int)strcspn(init_utsname()->version, " "),
3035 init_utsname()->version);
3036
3037 if (dump_stack_arch_desc_str[0] != '\0')
3038 printk("%sHardware name: %s\n",
3039 log_lvl, dump_stack_arch_desc_str);
3040
3041 print_worker_info(log_lvl, current);
3042 }
3043
3044 /**
3045 * show_regs_print_info - print generic debug info for show_regs()
3046 * @log_lvl: log level
3047 *
3048 * show_regs() implementations can use this function to print out generic
3049 * debug information.
3050 */
3051 void show_regs_print_info(const char *log_lvl)
3052 {
3053 dump_stack_print_info(log_lvl);
3054
3055 printk("%stask: %p ti: %p task.ti: %p\n",
3056 log_lvl, current, current_thread_info(),
3057 task_thread_info(current));
3058 }
3059
3060 #endif
This page took 0.105766 seconds and 4 git commands to generate.