Merge branch 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[deliverable/linux.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/utsname.h>
47 #include <linux/ctype.h>
48 #include <linux/uio.h>
49
50 #include <asm/uaccess.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54
55 #include "console_cmdline.h"
56 #include "braille.h"
57
58 int console_printk[4] = {
59 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
60 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
61 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
62 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
63 };
64
65 /*
66 * Low level drivers may need that to know if they can schedule in
67 * their unblank() callback or not. So let's export it.
68 */
69 int oops_in_progress;
70 EXPORT_SYMBOL(oops_in_progress);
71
72 /*
73 * console_sem protects the console_drivers list, and also
74 * provides serialisation for access to the entire console
75 * driver system.
76 */
77 static DEFINE_SEMAPHORE(console_sem);
78 struct console *console_drivers;
79 EXPORT_SYMBOL_GPL(console_drivers);
80
81 #ifdef CONFIG_LOCKDEP
82 static struct lockdep_map console_lock_dep_map = {
83 .name = "console_lock"
84 };
85 #endif
86
87 /*
88 * Number of registered extended console drivers.
89 *
90 * If extended consoles are present, in-kernel cont reassembly is disabled
91 * and each fragment is stored as a separate log entry with proper
92 * continuation flag so that every emitted message has full metadata. This
93 * doesn't change the result for regular consoles or /proc/kmsg. For
94 * /dev/kmsg, as long as the reader concatenates messages according to
95 * consecutive continuation flags, the end result should be the same too.
96 */
97 static int nr_ext_console_drivers;
98
99 /*
100 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
101 * macros instead of functions so that _RET_IP_ contains useful information.
102 */
103 #define down_console_sem() do { \
104 down(&console_sem);\
105 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
106 } while (0)
107
108 static int __down_trylock_console_sem(unsigned long ip)
109 {
110 if (down_trylock(&console_sem))
111 return 1;
112 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
113 return 0;
114 }
115 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
116
117 #define up_console_sem() do { \
118 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
119 up(&console_sem);\
120 } while (0)
121
122 /*
123 * This is used for debugging the mess that is the VT code by
124 * keeping track if we have the console semaphore held. It's
125 * definitely not the perfect debug tool (we don't know if _WE_
126 * hold it and are racing, but it helps tracking those weird code
127 * paths in the console code where we end up in places I want
128 * locked without the console sempahore held).
129 */
130 static int console_locked, console_suspended;
131
132 /*
133 * If exclusive_console is non-NULL then only this console is to be printed to.
134 */
135 static struct console *exclusive_console;
136
137 /*
138 * Array of consoles built from command line options (console=)
139 */
140
141 #define MAX_CMDLINECONSOLES 8
142
143 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
144
145 static int selected_console = -1;
146 static int preferred_console = -1;
147 int console_set_on_cmdline;
148 EXPORT_SYMBOL(console_set_on_cmdline);
149
150 /* Flag: console code may call schedule() */
151 static int console_may_schedule;
152
153 /*
154 * The printk log buffer consists of a chain of concatenated variable
155 * length records. Every record starts with a record header, containing
156 * the overall length of the record.
157 *
158 * The heads to the first and last entry in the buffer, as well as the
159 * sequence numbers of these entries are maintained when messages are
160 * stored.
161 *
162 * If the heads indicate available messages, the length in the header
163 * tells the start next message. A length == 0 for the next message
164 * indicates a wrap-around to the beginning of the buffer.
165 *
166 * Every record carries the monotonic timestamp in microseconds, as well as
167 * the standard userspace syslog level and syslog facility. The usual
168 * kernel messages use LOG_KERN; userspace-injected messages always carry
169 * a matching syslog facility, by default LOG_USER. The origin of every
170 * message can be reliably determined that way.
171 *
172 * The human readable log message directly follows the message header. The
173 * length of the message text is stored in the header, the stored message
174 * is not terminated.
175 *
176 * Optionally, a message can carry a dictionary of properties (key/value pairs),
177 * to provide userspace with a machine-readable message context.
178 *
179 * Examples for well-defined, commonly used property names are:
180 * DEVICE=b12:8 device identifier
181 * b12:8 block dev_t
182 * c127:3 char dev_t
183 * n8 netdev ifindex
184 * +sound:card0 subsystem:devname
185 * SUBSYSTEM=pci driver-core subsystem name
186 *
187 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
188 * follows directly after a '=' character. Every property is terminated by
189 * a '\0' character. The last property is not terminated.
190 *
191 * Example of a message structure:
192 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
193 * 0008 34 00 record is 52 bytes long
194 * 000a 0b 00 text is 11 bytes long
195 * 000c 1f 00 dictionary is 23 bytes long
196 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
197 * 0010 69 74 27 73 20 61 20 6c "it's a l"
198 * 69 6e 65 "ine"
199 * 001b 44 45 56 49 43 "DEVIC"
200 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
201 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
202 * 67 "g"
203 * 0032 00 00 00 padding to next message header
204 *
205 * The 'struct printk_log' buffer header must never be directly exported to
206 * userspace, it is a kernel-private implementation detail that might
207 * need to be changed in the future, when the requirements change.
208 *
209 * /dev/kmsg exports the structured data in the following line format:
210 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
211 *
212 * Users of the export format should ignore possible additional values
213 * separated by ',', and find the message after the ';' character.
214 *
215 * The optional key/value pairs are attached as continuation lines starting
216 * with a space character and terminated by a newline. All possible
217 * non-prinatable characters are escaped in the "\xff" notation.
218 */
219
220 enum log_flags {
221 LOG_NOCONS = 1, /* already flushed, do not print to console */
222 LOG_NEWLINE = 2, /* text ended with a newline */
223 LOG_PREFIX = 4, /* text started with a prefix */
224 LOG_CONT = 8, /* text is a fragment of a continuation line */
225 };
226
227 struct printk_log {
228 u64 ts_nsec; /* timestamp in nanoseconds */
229 u16 len; /* length of entire record */
230 u16 text_len; /* length of text buffer */
231 u16 dict_len; /* length of dictionary buffer */
232 u8 facility; /* syslog facility */
233 u8 flags:5; /* internal record flags */
234 u8 level:3; /* syslog level */
235 };
236
237 /*
238 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
239 * within the scheduler's rq lock. It must be released before calling
240 * console_unlock() or anything else that might wake up a process.
241 */
242 static DEFINE_RAW_SPINLOCK(logbuf_lock);
243
244 #ifdef CONFIG_PRINTK
245 DECLARE_WAIT_QUEUE_HEAD(log_wait);
246 /* the next printk record to read by syslog(READ) or /proc/kmsg */
247 static u64 syslog_seq;
248 static u32 syslog_idx;
249 static enum log_flags syslog_prev;
250 static size_t syslog_partial;
251
252 /* index and sequence number of the first record stored in the buffer */
253 static u64 log_first_seq;
254 static u32 log_first_idx;
255
256 /* index and sequence number of the next record to store in the buffer */
257 static u64 log_next_seq;
258 static u32 log_next_idx;
259
260 /* the next printk record to write to the console */
261 static u64 console_seq;
262 static u32 console_idx;
263 static enum log_flags console_prev;
264
265 /* the next printk record to read after the last 'clear' command */
266 static u64 clear_seq;
267 static u32 clear_idx;
268
269 #define PREFIX_MAX 32
270 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
271
272 /* record buffer */
273 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
274 #define LOG_ALIGN 4
275 #else
276 #define LOG_ALIGN __alignof__(struct printk_log)
277 #endif
278 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
279 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
280 static char *log_buf = __log_buf;
281 static u32 log_buf_len = __LOG_BUF_LEN;
282
283 /* Return log buffer address */
284 char *log_buf_addr_get(void)
285 {
286 return log_buf;
287 }
288
289 /* Return log buffer size */
290 u32 log_buf_len_get(void)
291 {
292 return log_buf_len;
293 }
294
295 /* human readable text of the record */
296 static char *log_text(const struct printk_log *msg)
297 {
298 return (char *)msg + sizeof(struct printk_log);
299 }
300
301 /* optional key/value pair dictionary attached to the record */
302 static char *log_dict(const struct printk_log *msg)
303 {
304 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
305 }
306
307 /* get record by index; idx must point to valid msg */
308 static struct printk_log *log_from_idx(u32 idx)
309 {
310 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
311
312 /*
313 * A length == 0 record is the end of buffer marker. Wrap around and
314 * read the message at the start of the buffer.
315 */
316 if (!msg->len)
317 return (struct printk_log *)log_buf;
318 return msg;
319 }
320
321 /* get next record; idx must point to valid msg */
322 static u32 log_next(u32 idx)
323 {
324 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
325
326 /* length == 0 indicates the end of the buffer; wrap */
327 /*
328 * A length == 0 record is the end of buffer marker. Wrap around and
329 * read the message at the start of the buffer as *this* one, and
330 * return the one after that.
331 */
332 if (!msg->len) {
333 msg = (struct printk_log *)log_buf;
334 return msg->len;
335 }
336 return idx + msg->len;
337 }
338
339 /*
340 * Check whether there is enough free space for the given message.
341 *
342 * The same values of first_idx and next_idx mean that the buffer
343 * is either empty or full.
344 *
345 * If the buffer is empty, we must respect the position of the indexes.
346 * They cannot be reset to the beginning of the buffer.
347 */
348 static int logbuf_has_space(u32 msg_size, bool empty)
349 {
350 u32 free;
351
352 if (log_next_idx > log_first_idx || empty)
353 free = max(log_buf_len - log_next_idx, log_first_idx);
354 else
355 free = log_first_idx - log_next_idx;
356
357 /*
358 * We need space also for an empty header that signalizes wrapping
359 * of the buffer.
360 */
361 return free >= msg_size + sizeof(struct printk_log);
362 }
363
364 static int log_make_free_space(u32 msg_size)
365 {
366 while (log_first_seq < log_next_seq) {
367 if (logbuf_has_space(msg_size, false))
368 return 0;
369 /* drop old messages until we have enough contiguous space */
370 log_first_idx = log_next(log_first_idx);
371 log_first_seq++;
372 }
373
374 /* sequence numbers are equal, so the log buffer is empty */
375 if (logbuf_has_space(msg_size, true))
376 return 0;
377
378 return -ENOMEM;
379 }
380
381 /* compute the message size including the padding bytes */
382 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
383 {
384 u32 size;
385
386 size = sizeof(struct printk_log) + text_len + dict_len;
387 *pad_len = (-size) & (LOG_ALIGN - 1);
388 size += *pad_len;
389
390 return size;
391 }
392
393 /*
394 * Define how much of the log buffer we could take at maximum. The value
395 * must be greater than two. Note that only half of the buffer is available
396 * when the index points to the middle.
397 */
398 #define MAX_LOG_TAKE_PART 4
399 static const char trunc_msg[] = "<truncated>";
400
401 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
402 u16 *dict_len, u32 *pad_len)
403 {
404 /*
405 * The message should not take the whole buffer. Otherwise, it might
406 * get removed too soon.
407 */
408 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
409 if (*text_len > max_text_len)
410 *text_len = max_text_len;
411 /* enable the warning message */
412 *trunc_msg_len = strlen(trunc_msg);
413 /* disable the "dict" completely */
414 *dict_len = 0;
415 /* compute the size again, count also the warning message */
416 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
417 }
418
419 /* insert record into the buffer, discard old ones, update heads */
420 static int log_store(int facility, int level,
421 enum log_flags flags, u64 ts_nsec,
422 const char *dict, u16 dict_len,
423 const char *text, u16 text_len)
424 {
425 struct printk_log *msg;
426 u32 size, pad_len;
427 u16 trunc_msg_len = 0;
428
429 /* number of '\0' padding bytes to next message */
430 size = msg_used_size(text_len, dict_len, &pad_len);
431
432 if (log_make_free_space(size)) {
433 /* truncate the message if it is too long for empty buffer */
434 size = truncate_msg(&text_len, &trunc_msg_len,
435 &dict_len, &pad_len);
436 /* survive when the log buffer is too small for trunc_msg */
437 if (log_make_free_space(size))
438 return 0;
439 }
440
441 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
442 /*
443 * This message + an additional empty header does not fit
444 * at the end of the buffer. Add an empty header with len == 0
445 * to signify a wrap around.
446 */
447 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
448 log_next_idx = 0;
449 }
450
451 /* fill message */
452 msg = (struct printk_log *)(log_buf + log_next_idx);
453 memcpy(log_text(msg), text, text_len);
454 msg->text_len = text_len;
455 if (trunc_msg_len) {
456 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
457 msg->text_len += trunc_msg_len;
458 }
459 memcpy(log_dict(msg), dict, dict_len);
460 msg->dict_len = dict_len;
461 msg->facility = facility;
462 msg->level = level & 7;
463 msg->flags = flags & 0x1f;
464 if (ts_nsec > 0)
465 msg->ts_nsec = ts_nsec;
466 else
467 msg->ts_nsec = local_clock();
468 memset(log_dict(msg) + dict_len, 0, pad_len);
469 msg->len = size;
470
471 /* insert message */
472 log_next_idx += msg->len;
473 log_next_seq++;
474
475 return msg->text_len;
476 }
477
478 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
479
480 static int syslog_action_restricted(int type)
481 {
482 if (dmesg_restrict)
483 return 1;
484 /*
485 * Unless restricted, we allow "read all" and "get buffer size"
486 * for everybody.
487 */
488 return type != SYSLOG_ACTION_READ_ALL &&
489 type != SYSLOG_ACTION_SIZE_BUFFER;
490 }
491
492 int check_syslog_permissions(int type, int source)
493 {
494 /*
495 * If this is from /proc/kmsg and we've already opened it, then we've
496 * already done the capabilities checks at open time.
497 */
498 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
499 goto ok;
500
501 if (syslog_action_restricted(type)) {
502 if (capable(CAP_SYSLOG))
503 goto ok;
504 /*
505 * For historical reasons, accept CAP_SYS_ADMIN too, with
506 * a warning.
507 */
508 if (capable(CAP_SYS_ADMIN)) {
509 pr_warn_once("%s (%d): Attempt to access syslog with "
510 "CAP_SYS_ADMIN but no CAP_SYSLOG "
511 "(deprecated).\n",
512 current->comm, task_pid_nr(current));
513 goto ok;
514 }
515 return -EPERM;
516 }
517 ok:
518 return security_syslog(type);
519 }
520
521 static void append_char(char **pp, char *e, char c)
522 {
523 if (*pp < e)
524 *(*pp)++ = c;
525 }
526
527 static ssize_t msg_print_ext_header(char *buf, size_t size,
528 struct printk_log *msg, u64 seq,
529 enum log_flags prev_flags)
530 {
531 u64 ts_usec = msg->ts_nsec;
532 char cont = '-';
533
534 do_div(ts_usec, 1000);
535
536 /*
537 * If we couldn't merge continuation line fragments during the print,
538 * export the stored flags to allow an optional external merge of the
539 * records. Merging the records isn't always neccessarily correct, like
540 * when we hit a race during printing. In most cases though, it produces
541 * better readable output. 'c' in the record flags mark the first
542 * fragment of a line, '+' the following.
543 */
544 if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
545 cont = 'c';
546 else if ((msg->flags & LOG_CONT) ||
547 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
548 cont = '+';
549
550 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
551 (msg->facility << 3) | msg->level, seq, ts_usec, cont);
552 }
553
554 static ssize_t msg_print_ext_body(char *buf, size_t size,
555 char *dict, size_t dict_len,
556 char *text, size_t text_len)
557 {
558 char *p = buf, *e = buf + size;
559 size_t i;
560
561 /* escape non-printable characters */
562 for (i = 0; i < text_len; i++) {
563 unsigned char c = text[i];
564
565 if (c < ' ' || c >= 127 || c == '\\')
566 p += scnprintf(p, e - p, "\\x%02x", c);
567 else
568 append_char(&p, e, c);
569 }
570 append_char(&p, e, '\n');
571
572 if (dict_len) {
573 bool line = true;
574
575 for (i = 0; i < dict_len; i++) {
576 unsigned char c = dict[i];
577
578 if (line) {
579 append_char(&p, e, ' ');
580 line = false;
581 }
582
583 if (c == '\0') {
584 append_char(&p, e, '\n');
585 line = true;
586 continue;
587 }
588
589 if (c < ' ' || c >= 127 || c == '\\') {
590 p += scnprintf(p, e - p, "\\x%02x", c);
591 continue;
592 }
593
594 append_char(&p, e, c);
595 }
596 append_char(&p, e, '\n');
597 }
598
599 return p - buf;
600 }
601
602 /* /dev/kmsg - userspace message inject/listen interface */
603 struct devkmsg_user {
604 u64 seq;
605 u32 idx;
606 enum log_flags prev;
607 struct mutex lock;
608 char buf[CONSOLE_EXT_LOG_MAX];
609 };
610
611 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
612 {
613 char *buf, *line;
614 int i;
615 int level = default_message_loglevel;
616 int facility = 1; /* LOG_USER */
617 size_t len = iov_iter_count(from);
618 ssize_t ret = len;
619
620 if (len > LOG_LINE_MAX)
621 return -EINVAL;
622 buf = kmalloc(len+1, GFP_KERNEL);
623 if (buf == NULL)
624 return -ENOMEM;
625
626 buf[len] = '\0';
627 if (copy_from_iter(buf, len, from) != len) {
628 kfree(buf);
629 return -EFAULT;
630 }
631
632 /*
633 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
634 * the decimal value represents 32bit, the lower 3 bit are the log
635 * level, the rest are the log facility.
636 *
637 * If no prefix or no userspace facility is specified, we
638 * enforce LOG_USER, to be able to reliably distinguish
639 * kernel-generated messages from userspace-injected ones.
640 */
641 line = buf;
642 if (line[0] == '<') {
643 char *endp = NULL;
644
645 i = simple_strtoul(line+1, &endp, 10);
646 if (endp && endp[0] == '>') {
647 level = i & 7;
648 if (i >> 3)
649 facility = i >> 3;
650 endp++;
651 len -= endp - line;
652 line = endp;
653 }
654 }
655
656 printk_emit(facility, level, NULL, 0, "%s", line);
657 kfree(buf);
658 return ret;
659 }
660
661 static ssize_t devkmsg_read(struct file *file, char __user *buf,
662 size_t count, loff_t *ppos)
663 {
664 struct devkmsg_user *user = file->private_data;
665 struct printk_log *msg;
666 size_t len;
667 ssize_t ret;
668
669 if (!user)
670 return -EBADF;
671
672 ret = mutex_lock_interruptible(&user->lock);
673 if (ret)
674 return ret;
675 raw_spin_lock_irq(&logbuf_lock);
676 while (user->seq == log_next_seq) {
677 if (file->f_flags & O_NONBLOCK) {
678 ret = -EAGAIN;
679 raw_spin_unlock_irq(&logbuf_lock);
680 goto out;
681 }
682
683 raw_spin_unlock_irq(&logbuf_lock);
684 ret = wait_event_interruptible(log_wait,
685 user->seq != log_next_seq);
686 if (ret)
687 goto out;
688 raw_spin_lock_irq(&logbuf_lock);
689 }
690
691 if (user->seq < log_first_seq) {
692 /* our last seen message is gone, return error and reset */
693 user->idx = log_first_idx;
694 user->seq = log_first_seq;
695 ret = -EPIPE;
696 raw_spin_unlock_irq(&logbuf_lock);
697 goto out;
698 }
699
700 msg = log_from_idx(user->idx);
701 len = msg_print_ext_header(user->buf, sizeof(user->buf),
702 msg, user->seq, user->prev);
703 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
704 log_dict(msg), msg->dict_len,
705 log_text(msg), msg->text_len);
706
707 user->prev = msg->flags;
708 user->idx = log_next(user->idx);
709 user->seq++;
710 raw_spin_unlock_irq(&logbuf_lock);
711
712 if (len > count) {
713 ret = -EINVAL;
714 goto out;
715 }
716
717 if (copy_to_user(buf, user->buf, len)) {
718 ret = -EFAULT;
719 goto out;
720 }
721 ret = len;
722 out:
723 mutex_unlock(&user->lock);
724 return ret;
725 }
726
727 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
728 {
729 struct devkmsg_user *user = file->private_data;
730 loff_t ret = 0;
731
732 if (!user)
733 return -EBADF;
734 if (offset)
735 return -ESPIPE;
736
737 raw_spin_lock_irq(&logbuf_lock);
738 switch (whence) {
739 case SEEK_SET:
740 /* the first record */
741 user->idx = log_first_idx;
742 user->seq = log_first_seq;
743 break;
744 case SEEK_DATA:
745 /*
746 * The first record after the last SYSLOG_ACTION_CLEAR,
747 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
748 * changes no global state, and does not clear anything.
749 */
750 user->idx = clear_idx;
751 user->seq = clear_seq;
752 break;
753 case SEEK_END:
754 /* after the last record */
755 user->idx = log_next_idx;
756 user->seq = log_next_seq;
757 break;
758 default:
759 ret = -EINVAL;
760 }
761 raw_spin_unlock_irq(&logbuf_lock);
762 return ret;
763 }
764
765 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
766 {
767 struct devkmsg_user *user = file->private_data;
768 int ret = 0;
769
770 if (!user)
771 return POLLERR|POLLNVAL;
772
773 poll_wait(file, &log_wait, wait);
774
775 raw_spin_lock_irq(&logbuf_lock);
776 if (user->seq < log_next_seq) {
777 /* return error when data has vanished underneath us */
778 if (user->seq < log_first_seq)
779 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
780 else
781 ret = POLLIN|POLLRDNORM;
782 }
783 raw_spin_unlock_irq(&logbuf_lock);
784
785 return ret;
786 }
787
788 static int devkmsg_open(struct inode *inode, struct file *file)
789 {
790 struct devkmsg_user *user;
791 int err;
792
793 /* write-only does not need any file context */
794 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
795 return 0;
796
797 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
798 SYSLOG_FROM_READER);
799 if (err)
800 return err;
801
802 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
803 if (!user)
804 return -ENOMEM;
805
806 mutex_init(&user->lock);
807
808 raw_spin_lock_irq(&logbuf_lock);
809 user->idx = log_first_idx;
810 user->seq = log_first_seq;
811 raw_spin_unlock_irq(&logbuf_lock);
812
813 file->private_data = user;
814 return 0;
815 }
816
817 static int devkmsg_release(struct inode *inode, struct file *file)
818 {
819 struct devkmsg_user *user = file->private_data;
820
821 if (!user)
822 return 0;
823
824 mutex_destroy(&user->lock);
825 kfree(user);
826 return 0;
827 }
828
829 const struct file_operations kmsg_fops = {
830 .open = devkmsg_open,
831 .read = devkmsg_read,
832 .write_iter = devkmsg_write,
833 .llseek = devkmsg_llseek,
834 .poll = devkmsg_poll,
835 .release = devkmsg_release,
836 };
837
838 #ifdef CONFIG_KEXEC_CORE
839 /*
840 * This appends the listed symbols to /proc/vmcore
841 *
842 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
843 * obtain access to symbols that are otherwise very difficult to locate. These
844 * symbols are specifically used so that utilities can access and extract the
845 * dmesg log from a vmcore file after a crash.
846 */
847 void log_buf_kexec_setup(void)
848 {
849 VMCOREINFO_SYMBOL(log_buf);
850 VMCOREINFO_SYMBOL(log_buf_len);
851 VMCOREINFO_SYMBOL(log_first_idx);
852 VMCOREINFO_SYMBOL(log_next_idx);
853 /*
854 * Export struct printk_log size and field offsets. User space tools can
855 * parse it and detect any changes to structure down the line.
856 */
857 VMCOREINFO_STRUCT_SIZE(printk_log);
858 VMCOREINFO_OFFSET(printk_log, ts_nsec);
859 VMCOREINFO_OFFSET(printk_log, len);
860 VMCOREINFO_OFFSET(printk_log, text_len);
861 VMCOREINFO_OFFSET(printk_log, dict_len);
862 }
863 #endif
864
865 /* requested log_buf_len from kernel cmdline */
866 static unsigned long __initdata new_log_buf_len;
867
868 /* we practice scaling the ring buffer by powers of 2 */
869 static void __init log_buf_len_update(unsigned size)
870 {
871 if (size)
872 size = roundup_pow_of_two(size);
873 if (size > log_buf_len)
874 new_log_buf_len = size;
875 }
876
877 /* save requested log_buf_len since it's too early to process it */
878 static int __init log_buf_len_setup(char *str)
879 {
880 unsigned size = memparse(str, &str);
881
882 log_buf_len_update(size);
883
884 return 0;
885 }
886 early_param("log_buf_len", log_buf_len_setup);
887
888 #ifdef CONFIG_SMP
889 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
890
891 static void __init log_buf_add_cpu(void)
892 {
893 unsigned int cpu_extra;
894
895 /*
896 * archs should set up cpu_possible_bits properly with
897 * set_cpu_possible() after setup_arch() but just in
898 * case lets ensure this is valid.
899 */
900 if (num_possible_cpus() == 1)
901 return;
902
903 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
904
905 /* by default this will only continue through for large > 64 CPUs */
906 if (cpu_extra <= __LOG_BUF_LEN / 2)
907 return;
908
909 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
910 __LOG_CPU_MAX_BUF_LEN);
911 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
912 cpu_extra);
913 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
914
915 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
916 }
917 #else /* !CONFIG_SMP */
918 static inline void log_buf_add_cpu(void) {}
919 #endif /* CONFIG_SMP */
920
921 void __init setup_log_buf(int early)
922 {
923 unsigned long flags;
924 char *new_log_buf;
925 int free;
926
927 if (log_buf != __log_buf)
928 return;
929
930 if (!early && !new_log_buf_len)
931 log_buf_add_cpu();
932
933 if (!new_log_buf_len)
934 return;
935
936 if (early) {
937 new_log_buf =
938 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
939 } else {
940 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
941 LOG_ALIGN);
942 }
943
944 if (unlikely(!new_log_buf)) {
945 pr_err("log_buf_len: %ld bytes not available\n",
946 new_log_buf_len);
947 return;
948 }
949
950 raw_spin_lock_irqsave(&logbuf_lock, flags);
951 log_buf_len = new_log_buf_len;
952 log_buf = new_log_buf;
953 new_log_buf_len = 0;
954 free = __LOG_BUF_LEN - log_next_idx;
955 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
956 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
957
958 pr_info("log_buf_len: %d bytes\n", log_buf_len);
959 pr_info("early log buf free: %d(%d%%)\n",
960 free, (free * 100) / __LOG_BUF_LEN);
961 }
962
963 static bool __read_mostly ignore_loglevel;
964
965 static int __init ignore_loglevel_setup(char *str)
966 {
967 ignore_loglevel = true;
968 pr_info("debug: ignoring loglevel setting.\n");
969
970 return 0;
971 }
972
973 early_param("ignore_loglevel", ignore_loglevel_setup);
974 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
975 MODULE_PARM_DESC(ignore_loglevel,
976 "ignore loglevel setting (prints all kernel messages to the console)");
977
978 #ifdef CONFIG_BOOT_PRINTK_DELAY
979
980 static int boot_delay; /* msecs delay after each printk during bootup */
981 static unsigned long long loops_per_msec; /* based on boot_delay */
982
983 static int __init boot_delay_setup(char *str)
984 {
985 unsigned long lpj;
986
987 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
988 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
989
990 get_option(&str, &boot_delay);
991 if (boot_delay > 10 * 1000)
992 boot_delay = 0;
993
994 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
995 "HZ: %d, loops_per_msec: %llu\n",
996 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
997 return 0;
998 }
999 early_param("boot_delay", boot_delay_setup);
1000
1001 static void boot_delay_msec(int level)
1002 {
1003 unsigned long long k;
1004 unsigned long timeout;
1005
1006 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1007 || (level >= console_loglevel && !ignore_loglevel)) {
1008 return;
1009 }
1010
1011 k = (unsigned long long)loops_per_msec * boot_delay;
1012
1013 timeout = jiffies + msecs_to_jiffies(boot_delay);
1014 while (k) {
1015 k--;
1016 cpu_relax();
1017 /*
1018 * use (volatile) jiffies to prevent
1019 * compiler reduction; loop termination via jiffies
1020 * is secondary and may or may not happen.
1021 */
1022 if (time_after(jiffies, timeout))
1023 break;
1024 touch_nmi_watchdog();
1025 }
1026 }
1027 #else
1028 static inline void boot_delay_msec(int level)
1029 {
1030 }
1031 #endif
1032
1033 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1034 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1035
1036 static size_t print_time(u64 ts, char *buf)
1037 {
1038 unsigned long rem_nsec;
1039
1040 if (!printk_time)
1041 return 0;
1042
1043 rem_nsec = do_div(ts, 1000000000);
1044
1045 if (!buf)
1046 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1047
1048 return sprintf(buf, "[%5lu.%06lu] ",
1049 (unsigned long)ts, rem_nsec / 1000);
1050 }
1051
1052 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1053 {
1054 size_t len = 0;
1055 unsigned int prefix = (msg->facility << 3) | msg->level;
1056
1057 if (syslog) {
1058 if (buf) {
1059 len += sprintf(buf, "<%u>", prefix);
1060 } else {
1061 len += 3;
1062 if (prefix > 999)
1063 len += 3;
1064 else if (prefix > 99)
1065 len += 2;
1066 else if (prefix > 9)
1067 len++;
1068 }
1069 }
1070
1071 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1072 return len;
1073 }
1074
1075 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1076 bool syslog, char *buf, size_t size)
1077 {
1078 const char *text = log_text(msg);
1079 size_t text_size = msg->text_len;
1080 bool prefix = true;
1081 bool newline = true;
1082 size_t len = 0;
1083
1084 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1085 prefix = false;
1086
1087 if (msg->flags & LOG_CONT) {
1088 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1089 prefix = false;
1090
1091 if (!(msg->flags & LOG_NEWLINE))
1092 newline = false;
1093 }
1094
1095 do {
1096 const char *next = memchr(text, '\n', text_size);
1097 size_t text_len;
1098
1099 if (next) {
1100 text_len = next - text;
1101 next++;
1102 text_size -= next - text;
1103 } else {
1104 text_len = text_size;
1105 }
1106
1107 if (buf) {
1108 if (print_prefix(msg, syslog, NULL) +
1109 text_len + 1 >= size - len)
1110 break;
1111
1112 if (prefix)
1113 len += print_prefix(msg, syslog, buf + len);
1114 memcpy(buf + len, text, text_len);
1115 len += text_len;
1116 if (next || newline)
1117 buf[len++] = '\n';
1118 } else {
1119 /* SYSLOG_ACTION_* buffer size only calculation */
1120 if (prefix)
1121 len += print_prefix(msg, syslog, NULL);
1122 len += text_len;
1123 if (next || newline)
1124 len++;
1125 }
1126
1127 prefix = true;
1128 text = next;
1129 } while (text);
1130
1131 return len;
1132 }
1133
1134 static int syslog_print(char __user *buf, int size)
1135 {
1136 char *text;
1137 struct printk_log *msg;
1138 int len = 0;
1139
1140 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1141 if (!text)
1142 return -ENOMEM;
1143
1144 while (size > 0) {
1145 size_t n;
1146 size_t skip;
1147
1148 raw_spin_lock_irq(&logbuf_lock);
1149 if (syslog_seq < log_first_seq) {
1150 /* messages are gone, move to first one */
1151 syslog_seq = log_first_seq;
1152 syslog_idx = log_first_idx;
1153 syslog_prev = 0;
1154 syslog_partial = 0;
1155 }
1156 if (syslog_seq == log_next_seq) {
1157 raw_spin_unlock_irq(&logbuf_lock);
1158 break;
1159 }
1160
1161 skip = syslog_partial;
1162 msg = log_from_idx(syslog_idx);
1163 n = msg_print_text(msg, syslog_prev, true, text,
1164 LOG_LINE_MAX + PREFIX_MAX);
1165 if (n - syslog_partial <= size) {
1166 /* message fits into buffer, move forward */
1167 syslog_idx = log_next(syslog_idx);
1168 syslog_seq++;
1169 syslog_prev = msg->flags;
1170 n -= syslog_partial;
1171 syslog_partial = 0;
1172 } else if (!len){
1173 /* partial read(), remember position */
1174 n = size;
1175 syslog_partial += n;
1176 } else
1177 n = 0;
1178 raw_spin_unlock_irq(&logbuf_lock);
1179
1180 if (!n)
1181 break;
1182
1183 if (copy_to_user(buf, text + skip, n)) {
1184 if (!len)
1185 len = -EFAULT;
1186 break;
1187 }
1188
1189 len += n;
1190 size -= n;
1191 buf += n;
1192 }
1193
1194 kfree(text);
1195 return len;
1196 }
1197
1198 static int syslog_print_all(char __user *buf, int size, bool clear)
1199 {
1200 char *text;
1201 int len = 0;
1202
1203 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1204 if (!text)
1205 return -ENOMEM;
1206
1207 raw_spin_lock_irq(&logbuf_lock);
1208 if (buf) {
1209 u64 next_seq;
1210 u64 seq;
1211 u32 idx;
1212 enum log_flags prev;
1213
1214 if (clear_seq < log_first_seq) {
1215 /* messages are gone, move to first available one */
1216 clear_seq = log_first_seq;
1217 clear_idx = log_first_idx;
1218 }
1219
1220 /*
1221 * Find first record that fits, including all following records,
1222 * into the user-provided buffer for this dump.
1223 */
1224 seq = clear_seq;
1225 idx = clear_idx;
1226 prev = 0;
1227 while (seq < log_next_seq) {
1228 struct printk_log *msg = log_from_idx(idx);
1229
1230 len += msg_print_text(msg, prev, true, NULL, 0);
1231 prev = msg->flags;
1232 idx = log_next(idx);
1233 seq++;
1234 }
1235
1236 /* move first record forward until length fits into the buffer */
1237 seq = clear_seq;
1238 idx = clear_idx;
1239 prev = 0;
1240 while (len > size && seq < log_next_seq) {
1241 struct printk_log *msg = log_from_idx(idx);
1242
1243 len -= msg_print_text(msg, prev, true, NULL, 0);
1244 prev = msg->flags;
1245 idx = log_next(idx);
1246 seq++;
1247 }
1248
1249 /* last message fitting into this dump */
1250 next_seq = log_next_seq;
1251
1252 len = 0;
1253 while (len >= 0 && seq < next_seq) {
1254 struct printk_log *msg = log_from_idx(idx);
1255 int textlen;
1256
1257 textlen = msg_print_text(msg, prev, true, text,
1258 LOG_LINE_MAX + PREFIX_MAX);
1259 if (textlen < 0) {
1260 len = textlen;
1261 break;
1262 }
1263 idx = log_next(idx);
1264 seq++;
1265 prev = msg->flags;
1266
1267 raw_spin_unlock_irq(&logbuf_lock);
1268 if (copy_to_user(buf + len, text, textlen))
1269 len = -EFAULT;
1270 else
1271 len += textlen;
1272 raw_spin_lock_irq(&logbuf_lock);
1273
1274 if (seq < log_first_seq) {
1275 /* messages are gone, move to next one */
1276 seq = log_first_seq;
1277 idx = log_first_idx;
1278 prev = 0;
1279 }
1280 }
1281 }
1282
1283 if (clear) {
1284 clear_seq = log_next_seq;
1285 clear_idx = log_next_idx;
1286 }
1287 raw_spin_unlock_irq(&logbuf_lock);
1288
1289 kfree(text);
1290 return len;
1291 }
1292
1293 int do_syslog(int type, char __user *buf, int len, int source)
1294 {
1295 bool clear = false;
1296 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1297 int error;
1298
1299 error = check_syslog_permissions(type, source);
1300 if (error)
1301 goto out;
1302
1303 switch (type) {
1304 case SYSLOG_ACTION_CLOSE: /* Close log */
1305 break;
1306 case SYSLOG_ACTION_OPEN: /* Open log */
1307 break;
1308 case SYSLOG_ACTION_READ: /* Read from log */
1309 error = -EINVAL;
1310 if (!buf || len < 0)
1311 goto out;
1312 error = 0;
1313 if (!len)
1314 goto out;
1315 if (!access_ok(VERIFY_WRITE, buf, len)) {
1316 error = -EFAULT;
1317 goto out;
1318 }
1319 error = wait_event_interruptible(log_wait,
1320 syslog_seq != log_next_seq);
1321 if (error)
1322 goto out;
1323 error = syslog_print(buf, len);
1324 break;
1325 /* Read/clear last kernel messages */
1326 case SYSLOG_ACTION_READ_CLEAR:
1327 clear = true;
1328 /* FALL THRU */
1329 /* Read last kernel messages */
1330 case SYSLOG_ACTION_READ_ALL:
1331 error = -EINVAL;
1332 if (!buf || len < 0)
1333 goto out;
1334 error = 0;
1335 if (!len)
1336 goto out;
1337 if (!access_ok(VERIFY_WRITE, buf, len)) {
1338 error = -EFAULT;
1339 goto out;
1340 }
1341 error = syslog_print_all(buf, len, clear);
1342 break;
1343 /* Clear ring buffer */
1344 case SYSLOG_ACTION_CLEAR:
1345 syslog_print_all(NULL, 0, true);
1346 break;
1347 /* Disable logging to console */
1348 case SYSLOG_ACTION_CONSOLE_OFF:
1349 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1350 saved_console_loglevel = console_loglevel;
1351 console_loglevel = minimum_console_loglevel;
1352 break;
1353 /* Enable logging to console */
1354 case SYSLOG_ACTION_CONSOLE_ON:
1355 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1356 console_loglevel = saved_console_loglevel;
1357 saved_console_loglevel = LOGLEVEL_DEFAULT;
1358 }
1359 break;
1360 /* Set level of messages printed to console */
1361 case SYSLOG_ACTION_CONSOLE_LEVEL:
1362 error = -EINVAL;
1363 if (len < 1 || len > 8)
1364 goto out;
1365 if (len < minimum_console_loglevel)
1366 len = minimum_console_loglevel;
1367 console_loglevel = len;
1368 /* Implicitly re-enable logging to console */
1369 saved_console_loglevel = LOGLEVEL_DEFAULT;
1370 error = 0;
1371 break;
1372 /* Number of chars in the log buffer */
1373 case SYSLOG_ACTION_SIZE_UNREAD:
1374 raw_spin_lock_irq(&logbuf_lock);
1375 if (syslog_seq < log_first_seq) {
1376 /* messages are gone, move to first one */
1377 syslog_seq = log_first_seq;
1378 syslog_idx = log_first_idx;
1379 syslog_prev = 0;
1380 syslog_partial = 0;
1381 }
1382 if (source == SYSLOG_FROM_PROC) {
1383 /*
1384 * Short-cut for poll(/"proc/kmsg") which simply checks
1385 * for pending data, not the size; return the count of
1386 * records, not the length.
1387 */
1388 error = log_next_seq - syslog_seq;
1389 } else {
1390 u64 seq = syslog_seq;
1391 u32 idx = syslog_idx;
1392 enum log_flags prev = syslog_prev;
1393
1394 error = 0;
1395 while (seq < log_next_seq) {
1396 struct printk_log *msg = log_from_idx(idx);
1397
1398 error += msg_print_text(msg, prev, true, NULL, 0);
1399 idx = log_next(idx);
1400 seq++;
1401 prev = msg->flags;
1402 }
1403 error -= syslog_partial;
1404 }
1405 raw_spin_unlock_irq(&logbuf_lock);
1406 break;
1407 /* Size of the log buffer */
1408 case SYSLOG_ACTION_SIZE_BUFFER:
1409 error = log_buf_len;
1410 break;
1411 default:
1412 error = -EINVAL;
1413 break;
1414 }
1415 out:
1416 return error;
1417 }
1418
1419 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1420 {
1421 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1422 }
1423
1424 /*
1425 * Call the console drivers, asking them to write out
1426 * log_buf[start] to log_buf[end - 1].
1427 * The console_lock must be held.
1428 */
1429 static void call_console_drivers(int level,
1430 const char *ext_text, size_t ext_len,
1431 const char *text, size_t len)
1432 {
1433 struct console *con;
1434
1435 trace_console(text, len);
1436
1437 if (level >= console_loglevel && !ignore_loglevel)
1438 return;
1439 if (!console_drivers)
1440 return;
1441
1442 for_each_console(con) {
1443 if (exclusive_console && con != exclusive_console)
1444 continue;
1445 if (!(con->flags & CON_ENABLED))
1446 continue;
1447 if (!con->write)
1448 continue;
1449 if (!cpu_online(smp_processor_id()) &&
1450 !(con->flags & CON_ANYTIME))
1451 continue;
1452 if (con->flags & CON_EXTENDED)
1453 con->write(con, ext_text, ext_len);
1454 else
1455 con->write(con, text, len);
1456 }
1457 }
1458
1459 /*
1460 * Zap console related locks when oopsing.
1461 * To leave time for slow consoles to print a full oops,
1462 * only zap at most once every 30 seconds.
1463 */
1464 static void zap_locks(void)
1465 {
1466 static unsigned long oops_timestamp;
1467
1468 if (time_after_eq(jiffies, oops_timestamp) &&
1469 !time_after(jiffies, oops_timestamp + 30 * HZ))
1470 return;
1471
1472 oops_timestamp = jiffies;
1473
1474 debug_locks_off();
1475 /* If a crash is occurring, make sure we can't deadlock */
1476 raw_spin_lock_init(&logbuf_lock);
1477 /* And make sure that we print immediately */
1478 sema_init(&console_sem, 1);
1479 }
1480
1481 /*
1482 * Check if we have any console that is capable of printing while cpu is
1483 * booting or shutting down. Requires console_sem.
1484 */
1485 static int have_callable_console(void)
1486 {
1487 struct console *con;
1488
1489 for_each_console(con)
1490 if (con->flags & CON_ANYTIME)
1491 return 1;
1492
1493 return 0;
1494 }
1495
1496 /*
1497 * Can we actually use the console at this time on this cpu?
1498 *
1499 * Console drivers may assume that per-cpu resources have been allocated. So
1500 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1501 * call them until this CPU is officially up.
1502 */
1503 static inline int can_use_console(unsigned int cpu)
1504 {
1505 return cpu_online(cpu) || have_callable_console();
1506 }
1507
1508 /*
1509 * Try to get console ownership to actually show the kernel
1510 * messages from a 'printk'. Return true (and with the
1511 * console_lock held, and 'console_locked' set) if it
1512 * is successful, false otherwise.
1513 */
1514 static int console_trylock_for_printk(void)
1515 {
1516 unsigned int cpu = smp_processor_id();
1517
1518 if (!console_trylock())
1519 return 0;
1520 /*
1521 * If we can't use the console, we need to release the console
1522 * semaphore by hand to avoid flushing the buffer. We need to hold the
1523 * console semaphore in order to do this test safely.
1524 */
1525 if (!can_use_console(cpu)) {
1526 console_locked = 0;
1527 up_console_sem();
1528 return 0;
1529 }
1530 return 1;
1531 }
1532
1533 int printk_delay_msec __read_mostly;
1534
1535 static inline void printk_delay(void)
1536 {
1537 if (unlikely(printk_delay_msec)) {
1538 int m = printk_delay_msec;
1539
1540 while (m--) {
1541 mdelay(1);
1542 touch_nmi_watchdog();
1543 }
1544 }
1545 }
1546
1547 /*
1548 * Continuation lines are buffered, and not committed to the record buffer
1549 * until the line is complete, or a race forces it. The line fragments
1550 * though, are printed immediately to the consoles to ensure everything has
1551 * reached the console in case of a kernel crash.
1552 */
1553 static struct cont {
1554 char buf[LOG_LINE_MAX];
1555 size_t len; /* length == 0 means unused buffer */
1556 size_t cons; /* bytes written to console */
1557 struct task_struct *owner; /* task of first print*/
1558 u64 ts_nsec; /* time of first print */
1559 u8 level; /* log level of first message */
1560 u8 facility; /* log facility of first message */
1561 enum log_flags flags; /* prefix, newline flags */
1562 bool flushed:1; /* buffer sealed and committed */
1563 } cont;
1564
1565 static void cont_flush(enum log_flags flags)
1566 {
1567 if (cont.flushed)
1568 return;
1569 if (cont.len == 0)
1570 return;
1571
1572 if (cont.cons) {
1573 /*
1574 * If a fragment of this line was directly flushed to the
1575 * console; wait for the console to pick up the rest of the
1576 * line. LOG_NOCONS suppresses a duplicated output.
1577 */
1578 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1579 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1580 cont.flags = flags;
1581 cont.flushed = true;
1582 } else {
1583 /*
1584 * If no fragment of this line ever reached the console,
1585 * just submit it to the store and free the buffer.
1586 */
1587 log_store(cont.facility, cont.level, flags, 0,
1588 NULL, 0, cont.buf, cont.len);
1589 cont.len = 0;
1590 }
1591 }
1592
1593 static bool cont_add(int facility, int level, const char *text, size_t len)
1594 {
1595 if (cont.len && cont.flushed)
1596 return false;
1597
1598 /*
1599 * If ext consoles are present, flush and skip in-kernel
1600 * continuation. See nr_ext_console_drivers definition. Also, if
1601 * the line gets too long, split it up in separate records.
1602 */
1603 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1604 cont_flush(LOG_CONT);
1605 return false;
1606 }
1607
1608 if (!cont.len) {
1609 cont.facility = facility;
1610 cont.level = level;
1611 cont.owner = current;
1612 cont.ts_nsec = local_clock();
1613 cont.flags = 0;
1614 cont.cons = 0;
1615 cont.flushed = false;
1616 }
1617
1618 memcpy(cont.buf + cont.len, text, len);
1619 cont.len += len;
1620
1621 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1622 cont_flush(LOG_CONT);
1623
1624 return true;
1625 }
1626
1627 static size_t cont_print_text(char *text, size_t size)
1628 {
1629 size_t textlen = 0;
1630 size_t len;
1631
1632 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1633 textlen += print_time(cont.ts_nsec, text);
1634 size -= textlen;
1635 }
1636
1637 len = cont.len - cont.cons;
1638 if (len > 0) {
1639 if (len+1 > size)
1640 len = size-1;
1641 memcpy(text + textlen, cont.buf + cont.cons, len);
1642 textlen += len;
1643 cont.cons = cont.len;
1644 }
1645
1646 if (cont.flushed) {
1647 if (cont.flags & LOG_NEWLINE)
1648 text[textlen++] = '\n';
1649 /* got everything, release buffer */
1650 cont.len = 0;
1651 }
1652 return textlen;
1653 }
1654
1655 asmlinkage int vprintk_emit(int facility, int level,
1656 const char *dict, size_t dictlen,
1657 const char *fmt, va_list args)
1658 {
1659 static int recursion_bug;
1660 static char textbuf[LOG_LINE_MAX];
1661 char *text = textbuf;
1662 size_t text_len = 0;
1663 enum log_flags lflags = 0;
1664 unsigned long flags;
1665 int this_cpu;
1666 int printed_len = 0;
1667 bool in_sched = false;
1668 /* cpu currently holding logbuf_lock in this function */
1669 static unsigned int logbuf_cpu = UINT_MAX;
1670
1671 if (level == LOGLEVEL_SCHED) {
1672 level = LOGLEVEL_DEFAULT;
1673 in_sched = true;
1674 }
1675
1676 boot_delay_msec(level);
1677 printk_delay();
1678
1679 /* This stops the holder of console_sem just where we want him */
1680 local_irq_save(flags);
1681 this_cpu = smp_processor_id();
1682
1683 /*
1684 * Ouch, printk recursed into itself!
1685 */
1686 if (unlikely(logbuf_cpu == this_cpu)) {
1687 /*
1688 * If a crash is occurring during printk() on this CPU,
1689 * then try to get the crash message out but make sure
1690 * we can't deadlock. Otherwise just return to avoid the
1691 * recursion and return - but flag the recursion so that
1692 * it can be printed at the next appropriate moment:
1693 */
1694 if (!oops_in_progress && !lockdep_recursing(current)) {
1695 recursion_bug = 1;
1696 local_irq_restore(flags);
1697 return 0;
1698 }
1699 zap_locks();
1700 }
1701
1702 lockdep_off();
1703 raw_spin_lock(&logbuf_lock);
1704 logbuf_cpu = this_cpu;
1705
1706 if (unlikely(recursion_bug)) {
1707 static const char recursion_msg[] =
1708 "BUG: recent printk recursion!";
1709
1710 recursion_bug = 0;
1711 /* emit KERN_CRIT message */
1712 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1713 NULL, 0, recursion_msg,
1714 strlen(recursion_msg));
1715 }
1716
1717 /*
1718 * The printf needs to come first; we need the syslog
1719 * prefix which might be passed-in as a parameter.
1720 */
1721 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1722
1723 /* mark and strip a trailing newline */
1724 if (text_len && text[text_len-1] == '\n') {
1725 text_len--;
1726 lflags |= LOG_NEWLINE;
1727 }
1728
1729 /* strip kernel syslog prefix and extract log level or control flags */
1730 if (facility == 0) {
1731 int kern_level = printk_get_level(text);
1732
1733 if (kern_level) {
1734 const char *end_of_header = printk_skip_level(text);
1735 switch (kern_level) {
1736 case '0' ... '7':
1737 if (level == LOGLEVEL_DEFAULT)
1738 level = kern_level - '0';
1739 /* fallthrough */
1740 case 'd': /* KERN_DEFAULT */
1741 lflags |= LOG_PREFIX;
1742 }
1743 /*
1744 * No need to check length here because vscnprintf
1745 * put '\0' at the end of the string. Only valid and
1746 * newly printed level is detected.
1747 */
1748 text_len -= end_of_header - text;
1749 text = (char *)end_of_header;
1750 }
1751 }
1752
1753 if (level == LOGLEVEL_DEFAULT)
1754 level = default_message_loglevel;
1755
1756 if (dict)
1757 lflags |= LOG_PREFIX|LOG_NEWLINE;
1758
1759 if (!(lflags & LOG_NEWLINE)) {
1760 /*
1761 * Flush the conflicting buffer. An earlier newline was missing,
1762 * or another task also prints continuation lines.
1763 */
1764 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1765 cont_flush(LOG_NEWLINE);
1766
1767 /* buffer line if possible, otherwise store it right away */
1768 if (cont_add(facility, level, text, text_len))
1769 printed_len += text_len;
1770 else
1771 printed_len += log_store(facility, level,
1772 lflags | LOG_CONT, 0,
1773 dict, dictlen, text, text_len);
1774 } else {
1775 bool stored = false;
1776
1777 /*
1778 * If an earlier newline was missing and it was the same task,
1779 * either merge it with the current buffer and flush, or if
1780 * there was a race with interrupts (prefix == true) then just
1781 * flush it out and store this line separately.
1782 * If the preceding printk was from a different task and missed
1783 * a newline, flush and append the newline.
1784 */
1785 if (cont.len) {
1786 if (cont.owner == current && !(lflags & LOG_PREFIX))
1787 stored = cont_add(facility, level, text,
1788 text_len);
1789 cont_flush(LOG_NEWLINE);
1790 }
1791
1792 if (stored)
1793 printed_len += text_len;
1794 else
1795 printed_len += log_store(facility, level, lflags, 0,
1796 dict, dictlen, text, text_len);
1797 }
1798
1799 logbuf_cpu = UINT_MAX;
1800 raw_spin_unlock(&logbuf_lock);
1801 lockdep_on();
1802 local_irq_restore(flags);
1803
1804 /* If called from the scheduler, we can not call up(). */
1805 if (!in_sched) {
1806 lockdep_off();
1807 /*
1808 * Disable preemption to avoid being preempted while holding
1809 * console_sem which would prevent anyone from printing to
1810 * console
1811 */
1812 preempt_disable();
1813
1814 /*
1815 * Try to acquire and then immediately release the console
1816 * semaphore. The release will print out buffers and wake up
1817 * /dev/kmsg and syslog() users.
1818 */
1819 if (console_trylock_for_printk())
1820 console_unlock();
1821 preempt_enable();
1822 lockdep_on();
1823 }
1824
1825 return printed_len;
1826 }
1827 EXPORT_SYMBOL(vprintk_emit);
1828
1829 asmlinkage int vprintk(const char *fmt, va_list args)
1830 {
1831 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1832 }
1833 EXPORT_SYMBOL(vprintk);
1834
1835 asmlinkage int printk_emit(int facility, int level,
1836 const char *dict, size_t dictlen,
1837 const char *fmt, ...)
1838 {
1839 va_list args;
1840 int r;
1841
1842 va_start(args, fmt);
1843 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1844 va_end(args);
1845
1846 return r;
1847 }
1848 EXPORT_SYMBOL(printk_emit);
1849
1850 int vprintk_default(const char *fmt, va_list args)
1851 {
1852 int r;
1853
1854 #ifdef CONFIG_KGDB_KDB
1855 if (unlikely(kdb_trap_printk)) {
1856 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1857 return r;
1858 }
1859 #endif
1860 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1861
1862 return r;
1863 }
1864 EXPORT_SYMBOL_GPL(vprintk_default);
1865
1866 /*
1867 * This allows printk to be diverted to another function per cpu.
1868 * This is useful for calling printk functions from within NMI
1869 * without worrying about race conditions that can lock up the
1870 * box.
1871 */
1872 DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1873
1874 /**
1875 * printk - print a kernel message
1876 * @fmt: format string
1877 *
1878 * This is printk(). It can be called from any context. We want it to work.
1879 *
1880 * We try to grab the console_lock. If we succeed, it's easy - we log the
1881 * output and call the console drivers. If we fail to get the semaphore, we
1882 * place the output into the log buffer and return. The current holder of
1883 * the console_sem will notice the new output in console_unlock(); and will
1884 * send it to the consoles before releasing the lock.
1885 *
1886 * One effect of this deferred printing is that code which calls printk() and
1887 * then changes console_loglevel may break. This is because console_loglevel
1888 * is inspected when the actual printing occurs.
1889 *
1890 * See also:
1891 * printf(3)
1892 *
1893 * See the vsnprintf() documentation for format string extensions over C99.
1894 */
1895 asmlinkage __visible int printk(const char *fmt, ...)
1896 {
1897 printk_func_t vprintk_func;
1898 va_list args;
1899 int r;
1900
1901 va_start(args, fmt);
1902
1903 /*
1904 * If a caller overrides the per_cpu printk_func, then it needs
1905 * to disable preemption when calling printk(). Otherwise
1906 * the printk_func should be set to the default. No need to
1907 * disable preemption here.
1908 */
1909 vprintk_func = this_cpu_read(printk_func);
1910 r = vprintk_func(fmt, args);
1911
1912 va_end(args);
1913
1914 return r;
1915 }
1916 EXPORT_SYMBOL(printk);
1917
1918 #else /* CONFIG_PRINTK */
1919
1920 #define LOG_LINE_MAX 0
1921 #define PREFIX_MAX 0
1922
1923 static u64 syslog_seq;
1924 static u32 syslog_idx;
1925 static u64 console_seq;
1926 static u32 console_idx;
1927 static enum log_flags syslog_prev;
1928 static u64 log_first_seq;
1929 static u32 log_first_idx;
1930 static u64 log_next_seq;
1931 static enum log_flags console_prev;
1932 static struct cont {
1933 size_t len;
1934 size_t cons;
1935 u8 level;
1936 bool flushed:1;
1937 } cont;
1938 static char *log_text(const struct printk_log *msg) { return NULL; }
1939 static char *log_dict(const struct printk_log *msg) { return NULL; }
1940 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1941 static u32 log_next(u32 idx) { return 0; }
1942 static ssize_t msg_print_ext_header(char *buf, size_t size,
1943 struct printk_log *msg, u64 seq,
1944 enum log_flags prev_flags) { return 0; }
1945 static ssize_t msg_print_ext_body(char *buf, size_t size,
1946 char *dict, size_t dict_len,
1947 char *text, size_t text_len) { return 0; }
1948 static void call_console_drivers(int level,
1949 const char *ext_text, size_t ext_len,
1950 const char *text, size_t len) {}
1951 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1952 bool syslog, char *buf, size_t size) { return 0; }
1953 static size_t cont_print_text(char *text, size_t size) { return 0; }
1954
1955 /* Still needs to be defined for users */
1956 DEFINE_PER_CPU(printk_func_t, printk_func);
1957
1958 #endif /* CONFIG_PRINTK */
1959
1960 #ifdef CONFIG_EARLY_PRINTK
1961 struct console *early_console;
1962
1963 asmlinkage __visible void early_printk(const char *fmt, ...)
1964 {
1965 va_list ap;
1966 char buf[512];
1967 int n;
1968
1969 if (!early_console)
1970 return;
1971
1972 va_start(ap, fmt);
1973 n = vscnprintf(buf, sizeof(buf), fmt, ap);
1974 va_end(ap);
1975
1976 early_console->write(early_console, buf, n);
1977 }
1978 #endif
1979
1980 static int __add_preferred_console(char *name, int idx, char *options,
1981 char *brl_options)
1982 {
1983 struct console_cmdline *c;
1984 int i;
1985
1986 /*
1987 * See if this tty is not yet registered, and
1988 * if we have a slot free.
1989 */
1990 for (i = 0, c = console_cmdline;
1991 i < MAX_CMDLINECONSOLES && c->name[0];
1992 i++, c++) {
1993 if (strcmp(c->name, name) == 0 && c->index == idx) {
1994 if (!brl_options)
1995 selected_console = i;
1996 return 0;
1997 }
1998 }
1999 if (i == MAX_CMDLINECONSOLES)
2000 return -E2BIG;
2001 if (!brl_options)
2002 selected_console = i;
2003 strlcpy(c->name, name, sizeof(c->name));
2004 c->options = options;
2005 braille_set_options(c, brl_options);
2006
2007 c->index = idx;
2008 return 0;
2009 }
2010 /*
2011 * Set up a console. Called via do_early_param() in init/main.c
2012 * for each "console=" parameter in the boot command line.
2013 */
2014 static int __init console_setup(char *str)
2015 {
2016 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2017 char *s, *options, *brl_options = NULL;
2018 int idx;
2019
2020 if (_braille_console_setup(&str, &brl_options))
2021 return 1;
2022
2023 /*
2024 * Decode str into name, index, options.
2025 */
2026 if (str[0] >= '0' && str[0] <= '9') {
2027 strcpy(buf, "ttyS");
2028 strncpy(buf + 4, str, sizeof(buf) - 5);
2029 } else {
2030 strncpy(buf, str, sizeof(buf) - 1);
2031 }
2032 buf[sizeof(buf) - 1] = 0;
2033 options = strchr(str, ',');
2034 if (options)
2035 *(options++) = 0;
2036 #ifdef __sparc__
2037 if (!strcmp(str, "ttya"))
2038 strcpy(buf, "ttyS0");
2039 if (!strcmp(str, "ttyb"))
2040 strcpy(buf, "ttyS1");
2041 #endif
2042 for (s = buf; *s; s++)
2043 if (isdigit(*s) || *s == ',')
2044 break;
2045 idx = simple_strtoul(s, NULL, 10);
2046 *s = 0;
2047
2048 __add_preferred_console(buf, idx, options, brl_options);
2049 console_set_on_cmdline = 1;
2050 return 1;
2051 }
2052 __setup("console=", console_setup);
2053
2054 /**
2055 * add_preferred_console - add a device to the list of preferred consoles.
2056 * @name: device name
2057 * @idx: device index
2058 * @options: options for this console
2059 *
2060 * The last preferred console added will be used for kernel messages
2061 * and stdin/out/err for init. Normally this is used by console_setup
2062 * above to handle user-supplied console arguments; however it can also
2063 * be used by arch-specific code either to override the user or more
2064 * commonly to provide a default console (ie from PROM variables) when
2065 * the user has not supplied one.
2066 */
2067 int add_preferred_console(char *name, int idx, char *options)
2068 {
2069 return __add_preferred_console(name, idx, options, NULL);
2070 }
2071
2072 bool console_suspend_enabled = true;
2073 EXPORT_SYMBOL(console_suspend_enabled);
2074
2075 static int __init console_suspend_disable(char *str)
2076 {
2077 console_suspend_enabled = false;
2078 return 1;
2079 }
2080 __setup("no_console_suspend", console_suspend_disable);
2081 module_param_named(console_suspend, console_suspend_enabled,
2082 bool, S_IRUGO | S_IWUSR);
2083 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2084 " and hibernate operations");
2085
2086 /**
2087 * suspend_console - suspend the console subsystem
2088 *
2089 * This disables printk() while we go into suspend states
2090 */
2091 void suspend_console(void)
2092 {
2093 if (!console_suspend_enabled)
2094 return;
2095 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2096 console_lock();
2097 console_suspended = 1;
2098 up_console_sem();
2099 }
2100
2101 void resume_console(void)
2102 {
2103 if (!console_suspend_enabled)
2104 return;
2105 down_console_sem();
2106 console_suspended = 0;
2107 console_unlock();
2108 }
2109
2110 /**
2111 * console_cpu_notify - print deferred console messages after CPU hotplug
2112 * @self: notifier struct
2113 * @action: CPU hotplug event
2114 * @hcpu: unused
2115 *
2116 * If printk() is called from a CPU that is not online yet, the messages
2117 * will be spooled but will not show up on the console. This function is
2118 * called when a new CPU comes online (or fails to come up), and ensures
2119 * that any such output gets printed.
2120 */
2121 static int console_cpu_notify(struct notifier_block *self,
2122 unsigned long action, void *hcpu)
2123 {
2124 switch (action) {
2125 case CPU_ONLINE:
2126 case CPU_DEAD:
2127 case CPU_DOWN_FAILED:
2128 case CPU_UP_CANCELED:
2129 console_lock();
2130 console_unlock();
2131 }
2132 return NOTIFY_OK;
2133 }
2134
2135 /**
2136 * console_lock - lock the console system for exclusive use.
2137 *
2138 * Acquires a lock which guarantees that the caller has
2139 * exclusive access to the console system and the console_drivers list.
2140 *
2141 * Can sleep, returns nothing.
2142 */
2143 void console_lock(void)
2144 {
2145 might_sleep();
2146
2147 down_console_sem();
2148 if (console_suspended)
2149 return;
2150 console_locked = 1;
2151 console_may_schedule = 1;
2152 }
2153 EXPORT_SYMBOL(console_lock);
2154
2155 /**
2156 * console_trylock - try to lock the console system for exclusive use.
2157 *
2158 * Try to acquire a lock which guarantees that the caller has exclusive
2159 * access to the console system and the console_drivers list.
2160 *
2161 * returns 1 on success, and 0 on failure to acquire the lock.
2162 */
2163 int console_trylock(void)
2164 {
2165 if (down_trylock_console_sem())
2166 return 0;
2167 if (console_suspended) {
2168 up_console_sem();
2169 return 0;
2170 }
2171 console_locked = 1;
2172 console_may_schedule = 0;
2173 return 1;
2174 }
2175 EXPORT_SYMBOL(console_trylock);
2176
2177 int is_console_locked(void)
2178 {
2179 return console_locked;
2180 }
2181
2182 static void console_cont_flush(char *text, size_t size)
2183 {
2184 unsigned long flags;
2185 size_t len;
2186
2187 raw_spin_lock_irqsave(&logbuf_lock, flags);
2188
2189 if (!cont.len)
2190 goto out;
2191
2192 /*
2193 * We still queue earlier records, likely because the console was
2194 * busy. The earlier ones need to be printed before this one, we
2195 * did not flush any fragment so far, so just let it queue up.
2196 */
2197 if (console_seq < log_next_seq && !cont.cons)
2198 goto out;
2199
2200 len = cont_print_text(text, size);
2201 raw_spin_unlock(&logbuf_lock);
2202 stop_critical_timings();
2203 call_console_drivers(cont.level, NULL, 0, text, len);
2204 start_critical_timings();
2205 local_irq_restore(flags);
2206 return;
2207 out:
2208 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2209 }
2210
2211 /**
2212 * console_unlock - unlock the console system
2213 *
2214 * Releases the console_lock which the caller holds on the console system
2215 * and the console driver list.
2216 *
2217 * While the console_lock was held, console output may have been buffered
2218 * by printk(). If this is the case, console_unlock(); emits
2219 * the output prior to releasing the lock.
2220 *
2221 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2222 *
2223 * console_unlock(); may be called from any context.
2224 */
2225 void console_unlock(void)
2226 {
2227 static char ext_text[CONSOLE_EXT_LOG_MAX];
2228 static char text[LOG_LINE_MAX + PREFIX_MAX];
2229 static u64 seen_seq;
2230 unsigned long flags;
2231 bool wake_klogd = false;
2232 bool retry;
2233
2234 if (console_suspended) {
2235 up_console_sem();
2236 return;
2237 }
2238
2239 console_may_schedule = 0;
2240
2241 /* flush buffered message fragment immediately to console */
2242 console_cont_flush(text, sizeof(text));
2243 again:
2244 for (;;) {
2245 struct printk_log *msg;
2246 size_t ext_len = 0;
2247 size_t len;
2248 int level;
2249
2250 raw_spin_lock_irqsave(&logbuf_lock, flags);
2251 if (seen_seq != log_next_seq) {
2252 wake_klogd = true;
2253 seen_seq = log_next_seq;
2254 }
2255
2256 if (console_seq < log_first_seq) {
2257 len = sprintf(text, "** %u printk messages dropped ** ",
2258 (unsigned)(log_first_seq - console_seq));
2259
2260 /* messages are gone, move to first one */
2261 console_seq = log_first_seq;
2262 console_idx = log_first_idx;
2263 console_prev = 0;
2264 } else {
2265 len = 0;
2266 }
2267 skip:
2268 if (console_seq == log_next_seq)
2269 break;
2270
2271 msg = log_from_idx(console_idx);
2272 if (msg->flags & LOG_NOCONS) {
2273 /*
2274 * Skip record we have buffered and already printed
2275 * directly to the console when we received it.
2276 */
2277 console_idx = log_next(console_idx);
2278 console_seq++;
2279 /*
2280 * We will get here again when we register a new
2281 * CON_PRINTBUFFER console. Clear the flag so we
2282 * will properly dump everything later.
2283 */
2284 msg->flags &= ~LOG_NOCONS;
2285 console_prev = msg->flags;
2286 goto skip;
2287 }
2288
2289 level = msg->level;
2290 len += msg_print_text(msg, console_prev, false,
2291 text + len, sizeof(text) - len);
2292 if (nr_ext_console_drivers) {
2293 ext_len = msg_print_ext_header(ext_text,
2294 sizeof(ext_text),
2295 msg, console_seq, console_prev);
2296 ext_len += msg_print_ext_body(ext_text + ext_len,
2297 sizeof(ext_text) - ext_len,
2298 log_dict(msg), msg->dict_len,
2299 log_text(msg), msg->text_len);
2300 }
2301 console_idx = log_next(console_idx);
2302 console_seq++;
2303 console_prev = msg->flags;
2304 raw_spin_unlock(&logbuf_lock);
2305
2306 stop_critical_timings(); /* don't trace print latency */
2307 call_console_drivers(level, ext_text, ext_len, text, len);
2308 start_critical_timings();
2309 local_irq_restore(flags);
2310 }
2311 console_locked = 0;
2312
2313 /* Release the exclusive_console once it is used */
2314 if (unlikely(exclusive_console))
2315 exclusive_console = NULL;
2316
2317 raw_spin_unlock(&logbuf_lock);
2318
2319 up_console_sem();
2320
2321 /*
2322 * Someone could have filled up the buffer again, so re-check if there's
2323 * something to flush. In case we cannot trylock the console_sem again,
2324 * there's a new owner and the console_unlock() from them will do the
2325 * flush, no worries.
2326 */
2327 raw_spin_lock(&logbuf_lock);
2328 retry = console_seq != log_next_seq;
2329 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2330
2331 if (retry && console_trylock())
2332 goto again;
2333
2334 if (wake_klogd)
2335 wake_up_klogd();
2336 }
2337 EXPORT_SYMBOL(console_unlock);
2338
2339 /**
2340 * console_conditional_schedule - yield the CPU if required
2341 *
2342 * If the console code is currently allowed to sleep, and
2343 * if this CPU should yield the CPU to another task, do
2344 * so here.
2345 *
2346 * Must be called within console_lock();.
2347 */
2348 void __sched console_conditional_schedule(void)
2349 {
2350 if (console_may_schedule)
2351 cond_resched();
2352 }
2353 EXPORT_SYMBOL(console_conditional_schedule);
2354
2355 void console_unblank(void)
2356 {
2357 struct console *c;
2358
2359 /*
2360 * console_unblank can no longer be called in interrupt context unless
2361 * oops_in_progress is set to 1..
2362 */
2363 if (oops_in_progress) {
2364 if (down_trylock_console_sem() != 0)
2365 return;
2366 } else
2367 console_lock();
2368
2369 console_locked = 1;
2370 console_may_schedule = 0;
2371 for_each_console(c)
2372 if ((c->flags & CON_ENABLED) && c->unblank)
2373 c->unblank();
2374 console_unlock();
2375 }
2376
2377 /*
2378 * Return the console tty driver structure and its associated index
2379 */
2380 struct tty_driver *console_device(int *index)
2381 {
2382 struct console *c;
2383 struct tty_driver *driver = NULL;
2384
2385 console_lock();
2386 for_each_console(c) {
2387 if (!c->device)
2388 continue;
2389 driver = c->device(c, index);
2390 if (driver)
2391 break;
2392 }
2393 console_unlock();
2394 return driver;
2395 }
2396
2397 /*
2398 * Prevent further output on the passed console device so that (for example)
2399 * serial drivers can disable console output before suspending a port, and can
2400 * re-enable output afterwards.
2401 */
2402 void console_stop(struct console *console)
2403 {
2404 console_lock();
2405 console->flags &= ~CON_ENABLED;
2406 console_unlock();
2407 }
2408 EXPORT_SYMBOL(console_stop);
2409
2410 void console_start(struct console *console)
2411 {
2412 console_lock();
2413 console->flags |= CON_ENABLED;
2414 console_unlock();
2415 }
2416 EXPORT_SYMBOL(console_start);
2417
2418 static int __read_mostly keep_bootcon;
2419
2420 static int __init keep_bootcon_setup(char *str)
2421 {
2422 keep_bootcon = 1;
2423 pr_info("debug: skip boot console de-registration.\n");
2424
2425 return 0;
2426 }
2427
2428 early_param("keep_bootcon", keep_bootcon_setup);
2429
2430 /*
2431 * The console driver calls this routine during kernel initialization
2432 * to register the console printing procedure with printk() and to
2433 * print any messages that were printed by the kernel before the
2434 * console driver was initialized.
2435 *
2436 * This can happen pretty early during the boot process (because of
2437 * early_printk) - sometimes before setup_arch() completes - be careful
2438 * of what kernel features are used - they may not be initialised yet.
2439 *
2440 * There are two types of consoles - bootconsoles (early_printk) and
2441 * "real" consoles (everything which is not a bootconsole) which are
2442 * handled differently.
2443 * - Any number of bootconsoles can be registered at any time.
2444 * - As soon as a "real" console is registered, all bootconsoles
2445 * will be unregistered automatically.
2446 * - Once a "real" console is registered, any attempt to register a
2447 * bootconsoles will be rejected
2448 */
2449 void register_console(struct console *newcon)
2450 {
2451 int i;
2452 unsigned long flags;
2453 struct console *bcon = NULL;
2454 struct console_cmdline *c;
2455
2456 if (console_drivers)
2457 for_each_console(bcon)
2458 if (WARN(bcon == newcon,
2459 "console '%s%d' already registered\n",
2460 bcon->name, bcon->index))
2461 return;
2462
2463 /*
2464 * before we register a new CON_BOOT console, make sure we don't
2465 * already have a valid console
2466 */
2467 if (console_drivers && newcon->flags & CON_BOOT) {
2468 /* find the last or real console */
2469 for_each_console(bcon) {
2470 if (!(bcon->flags & CON_BOOT)) {
2471 pr_info("Too late to register bootconsole %s%d\n",
2472 newcon->name, newcon->index);
2473 return;
2474 }
2475 }
2476 }
2477
2478 if (console_drivers && console_drivers->flags & CON_BOOT)
2479 bcon = console_drivers;
2480
2481 if (preferred_console < 0 || bcon || !console_drivers)
2482 preferred_console = selected_console;
2483
2484 /*
2485 * See if we want to use this console driver. If we
2486 * didn't select a console we take the first one
2487 * that registers here.
2488 */
2489 if (preferred_console < 0) {
2490 if (newcon->index < 0)
2491 newcon->index = 0;
2492 if (newcon->setup == NULL ||
2493 newcon->setup(newcon, NULL) == 0) {
2494 newcon->flags |= CON_ENABLED;
2495 if (newcon->device) {
2496 newcon->flags |= CON_CONSDEV;
2497 preferred_console = 0;
2498 }
2499 }
2500 }
2501
2502 /*
2503 * See if this console matches one we selected on
2504 * the command line.
2505 */
2506 for (i = 0, c = console_cmdline;
2507 i < MAX_CMDLINECONSOLES && c->name[0];
2508 i++, c++) {
2509 if (!newcon->match ||
2510 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2511 /* default matching */
2512 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2513 if (strcmp(c->name, newcon->name) != 0)
2514 continue;
2515 if (newcon->index >= 0 &&
2516 newcon->index != c->index)
2517 continue;
2518 if (newcon->index < 0)
2519 newcon->index = c->index;
2520
2521 if (_braille_register_console(newcon, c))
2522 return;
2523
2524 if (newcon->setup &&
2525 newcon->setup(newcon, c->options) != 0)
2526 break;
2527 }
2528
2529 newcon->flags |= CON_ENABLED;
2530 if (i == selected_console) {
2531 newcon->flags |= CON_CONSDEV;
2532 preferred_console = selected_console;
2533 }
2534 break;
2535 }
2536
2537 if (!(newcon->flags & CON_ENABLED))
2538 return;
2539
2540 /*
2541 * If we have a bootconsole, and are switching to a real console,
2542 * don't print everything out again, since when the boot console, and
2543 * the real console are the same physical device, it's annoying to
2544 * see the beginning boot messages twice
2545 */
2546 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2547 newcon->flags &= ~CON_PRINTBUFFER;
2548
2549 /*
2550 * Put this console in the list - keep the
2551 * preferred driver at the head of the list.
2552 */
2553 console_lock();
2554 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2555 newcon->next = console_drivers;
2556 console_drivers = newcon;
2557 if (newcon->next)
2558 newcon->next->flags &= ~CON_CONSDEV;
2559 } else {
2560 newcon->next = console_drivers->next;
2561 console_drivers->next = newcon;
2562 }
2563
2564 if (newcon->flags & CON_EXTENDED)
2565 if (!nr_ext_console_drivers++)
2566 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2567
2568 if (newcon->flags & CON_PRINTBUFFER) {
2569 /*
2570 * console_unlock(); will print out the buffered messages
2571 * for us.
2572 */
2573 raw_spin_lock_irqsave(&logbuf_lock, flags);
2574 console_seq = syslog_seq;
2575 console_idx = syslog_idx;
2576 console_prev = syslog_prev;
2577 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2578 /*
2579 * We're about to replay the log buffer. Only do this to the
2580 * just-registered console to avoid excessive message spam to
2581 * the already-registered consoles.
2582 */
2583 exclusive_console = newcon;
2584 }
2585 console_unlock();
2586 console_sysfs_notify();
2587
2588 /*
2589 * By unregistering the bootconsoles after we enable the real console
2590 * we get the "console xxx enabled" message on all the consoles -
2591 * boot consoles, real consoles, etc - this is to ensure that end
2592 * users know there might be something in the kernel's log buffer that
2593 * went to the bootconsole (that they do not see on the real console)
2594 */
2595 pr_info("%sconsole [%s%d] enabled\n",
2596 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2597 newcon->name, newcon->index);
2598 if (bcon &&
2599 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2600 !keep_bootcon) {
2601 /* We need to iterate through all boot consoles, to make
2602 * sure we print everything out, before we unregister them.
2603 */
2604 for_each_console(bcon)
2605 if (bcon->flags & CON_BOOT)
2606 unregister_console(bcon);
2607 }
2608 }
2609 EXPORT_SYMBOL(register_console);
2610
2611 int unregister_console(struct console *console)
2612 {
2613 struct console *a, *b;
2614 int res;
2615
2616 pr_info("%sconsole [%s%d] disabled\n",
2617 (console->flags & CON_BOOT) ? "boot" : "" ,
2618 console->name, console->index);
2619
2620 res = _braille_unregister_console(console);
2621 if (res)
2622 return res;
2623
2624 res = 1;
2625 console_lock();
2626 if (console_drivers == console) {
2627 console_drivers=console->next;
2628 res = 0;
2629 } else if (console_drivers) {
2630 for (a=console_drivers->next, b=console_drivers ;
2631 a; b=a, a=b->next) {
2632 if (a == console) {
2633 b->next = a->next;
2634 res = 0;
2635 break;
2636 }
2637 }
2638 }
2639
2640 if (!res && (console->flags & CON_EXTENDED))
2641 nr_ext_console_drivers--;
2642
2643 /*
2644 * If this isn't the last console and it has CON_CONSDEV set, we
2645 * need to set it on the next preferred console.
2646 */
2647 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2648 console_drivers->flags |= CON_CONSDEV;
2649
2650 console->flags &= ~CON_ENABLED;
2651 console_unlock();
2652 console_sysfs_notify();
2653 return res;
2654 }
2655 EXPORT_SYMBOL(unregister_console);
2656
2657 static int __init printk_late_init(void)
2658 {
2659 struct console *con;
2660
2661 for_each_console(con) {
2662 if (!keep_bootcon && con->flags & CON_BOOT) {
2663 unregister_console(con);
2664 }
2665 }
2666 hotcpu_notifier(console_cpu_notify, 0);
2667 return 0;
2668 }
2669 late_initcall(printk_late_init);
2670
2671 #if defined CONFIG_PRINTK
2672 /*
2673 * Delayed printk version, for scheduler-internal messages:
2674 */
2675 #define PRINTK_PENDING_WAKEUP 0x01
2676 #define PRINTK_PENDING_OUTPUT 0x02
2677
2678 static DEFINE_PER_CPU(int, printk_pending);
2679
2680 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2681 {
2682 int pending = __this_cpu_xchg(printk_pending, 0);
2683
2684 if (pending & PRINTK_PENDING_OUTPUT) {
2685 /* If trylock fails, someone else is doing the printing */
2686 if (console_trylock())
2687 console_unlock();
2688 }
2689
2690 if (pending & PRINTK_PENDING_WAKEUP)
2691 wake_up_interruptible(&log_wait);
2692 }
2693
2694 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2695 .func = wake_up_klogd_work_func,
2696 .flags = IRQ_WORK_LAZY,
2697 };
2698
2699 void wake_up_klogd(void)
2700 {
2701 preempt_disable();
2702 if (waitqueue_active(&log_wait)) {
2703 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2704 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2705 }
2706 preempt_enable();
2707 }
2708
2709 int printk_deferred(const char *fmt, ...)
2710 {
2711 va_list args;
2712 int r;
2713
2714 preempt_disable();
2715 va_start(args, fmt);
2716 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2717 va_end(args);
2718
2719 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2720 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2721 preempt_enable();
2722
2723 return r;
2724 }
2725
2726 /*
2727 * printk rate limiting, lifted from the networking subsystem.
2728 *
2729 * This enforces a rate limit: not more than 10 kernel messages
2730 * every 5s to make a denial-of-service attack impossible.
2731 */
2732 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2733
2734 int __printk_ratelimit(const char *func)
2735 {
2736 return ___ratelimit(&printk_ratelimit_state, func);
2737 }
2738 EXPORT_SYMBOL(__printk_ratelimit);
2739
2740 /**
2741 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2742 * @caller_jiffies: pointer to caller's state
2743 * @interval_msecs: minimum interval between prints
2744 *
2745 * printk_timed_ratelimit() returns true if more than @interval_msecs
2746 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2747 * returned true.
2748 */
2749 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2750 unsigned int interval_msecs)
2751 {
2752 unsigned long elapsed = jiffies - *caller_jiffies;
2753
2754 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2755 return false;
2756
2757 *caller_jiffies = jiffies;
2758 return true;
2759 }
2760 EXPORT_SYMBOL(printk_timed_ratelimit);
2761
2762 static DEFINE_SPINLOCK(dump_list_lock);
2763 static LIST_HEAD(dump_list);
2764
2765 /**
2766 * kmsg_dump_register - register a kernel log dumper.
2767 * @dumper: pointer to the kmsg_dumper structure
2768 *
2769 * Adds a kernel log dumper to the system. The dump callback in the
2770 * structure will be called when the kernel oopses or panics and must be
2771 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2772 */
2773 int kmsg_dump_register(struct kmsg_dumper *dumper)
2774 {
2775 unsigned long flags;
2776 int err = -EBUSY;
2777
2778 /* The dump callback needs to be set */
2779 if (!dumper->dump)
2780 return -EINVAL;
2781
2782 spin_lock_irqsave(&dump_list_lock, flags);
2783 /* Don't allow registering multiple times */
2784 if (!dumper->registered) {
2785 dumper->registered = 1;
2786 list_add_tail_rcu(&dumper->list, &dump_list);
2787 err = 0;
2788 }
2789 spin_unlock_irqrestore(&dump_list_lock, flags);
2790
2791 return err;
2792 }
2793 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2794
2795 /**
2796 * kmsg_dump_unregister - unregister a kmsg dumper.
2797 * @dumper: pointer to the kmsg_dumper structure
2798 *
2799 * Removes a dump device from the system. Returns zero on success and
2800 * %-EINVAL otherwise.
2801 */
2802 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2803 {
2804 unsigned long flags;
2805 int err = -EINVAL;
2806
2807 spin_lock_irqsave(&dump_list_lock, flags);
2808 if (dumper->registered) {
2809 dumper->registered = 0;
2810 list_del_rcu(&dumper->list);
2811 err = 0;
2812 }
2813 spin_unlock_irqrestore(&dump_list_lock, flags);
2814 synchronize_rcu();
2815
2816 return err;
2817 }
2818 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2819
2820 static bool always_kmsg_dump;
2821 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2822
2823 /**
2824 * kmsg_dump - dump kernel log to kernel message dumpers.
2825 * @reason: the reason (oops, panic etc) for dumping
2826 *
2827 * Call each of the registered dumper's dump() callback, which can
2828 * retrieve the kmsg records with kmsg_dump_get_line() or
2829 * kmsg_dump_get_buffer().
2830 */
2831 void kmsg_dump(enum kmsg_dump_reason reason)
2832 {
2833 struct kmsg_dumper *dumper;
2834 unsigned long flags;
2835
2836 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2837 return;
2838
2839 rcu_read_lock();
2840 list_for_each_entry_rcu(dumper, &dump_list, list) {
2841 if (dumper->max_reason && reason > dumper->max_reason)
2842 continue;
2843
2844 /* initialize iterator with data about the stored records */
2845 dumper->active = true;
2846
2847 raw_spin_lock_irqsave(&logbuf_lock, flags);
2848 dumper->cur_seq = clear_seq;
2849 dumper->cur_idx = clear_idx;
2850 dumper->next_seq = log_next_seq;
2851 dumper->next_idx = log_next_idx;
2852 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2853
2854 /* invoke dumper which will iterate over records */
2855 dumper->dump(dumper, reason);
2856
2857 /* reset iterator */
2858 dumper->active = false;
2859 }
2860 rcu_read_unlock();
2861 }
2862
2863 /**
2864 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2865 * @dumper: registered kmsg dumper
2866 * @syslog: include the "<4>" prefixes
2867 * @line: buffer to copy the line to
2868 * @size: maximum size of the buffer
2869 * @len: length of line placed into buffer
2870 *
2871 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2872 * record, and copy one record into the provided buffer.
2873 *
2874 * Consecutive calls will return the next available record moving
2875 * towards the end of the buffer with the youngest messages.
2876 *
2877 * A return value of FALSE indicates that there are no more records to
2878 * read.
2879 *
2880 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2881 */
2882 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2883 char *line, size_t size, size_t *len)
2884 {
2885 struct printk_log *msg;
2886 size_t l = 0;
2887 bool ret = false;
2888
2889 if (!dumper->active)
2890 goto out;
2891
2892 if (dumper->cur_seq < log_first_seq) {
2893 /* messages are gone, move to first available one */
2894 dumper->cur_seq = log_first_seq;
2895 dumper->cur_idx = log_first_idx;
2896 }
2897
2898 /* last entry */
2899 if (dumper->cur_seq >= log_next_seq)
2900 goto out;
2901
2902 msg = log_from_idx(dumper->cur_idx);
2903 l = msg_print_text(msg, 0, syslog, line, size);
2904
2905 dumper->cur_idx = log_next(dumper->cur_idx);
2906 dumper->cur_seq++;
2907 ret = true;
2908 out:
2909 if (len)
2910 *len = l;
2911 return ret;
2912 }
2913
2914 /**
2915 * kmsg_dump_get_line - retrieve one kmsg log line
2916 * @dumper: registered kmsg dumper
2917 * @syslog: include the "<4>" prefixes
2918 * @line: buffer to copy the line to
2919 * @size: maximum size of the buffer
2920 * @len: length of line placed into buffer
2921 *
2922 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2923 * record, and copy one record into the provided buffer.
2924 *
2925 * Consecutive calls will return the next available record moving
2926 * towards the end of the buffer with the youngest messages.
2927 *
2928 * A return value of FALSE indicates that there are no more records to
2929 * read.
2930 */
2931 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2932 char *line, size_t size, size_t *len)
2933 {
2934 unsigned long flags;
2935 bool ret;
2936
2937 raw_spin_lock_irqsave(&logbuf_lock, flags);
2938 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2939 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2940
2941 return ret;
2942 }
2943 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2944
2945 /**
2946 * kmsg_dump_get_buffer - copy kmsg log lines
2947 * @dumper: registered kmsg dumper
2948 * @syslog: include the "<4>" prefixes
2949 * @buf: buffer to copy the line to
2950 * @size: maximum size of the buffer
2951 * @len: length of line placed into buffer
2952 *
2953 * Start at the end of the kmsg buffer and fill the provided buffer
2954 * with as many of the the *youngest* kmsg records that fit into it.
2955 * If the buffer is large enough, all available kmsg records will be
2956 * copied with a single call.
2957 *
2958 * Consecutive calls will fill the buffer with the next block of
2959 * available older records, not including the earlier retrieved ones.
2960 *
2961 * A return value of FALSE indicates that there are no more records to
2962 * read.
2963 */
2964 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2965 char *buf, size_t size, size_t *len)
2966 {
2967 unsigned long flags;
2968 u64 seq;
2969 u32 idx;
2970 u64 next_seq;
2971 u32 next_idx;
2972 enum log_flags prev;
2973 size_t l = 0;
2974 bool ret = false;
2975
2976 if (!dumper->active)
2977 goto out;
2978
2979 raw_spin_lock_irqsave(&logbuf_lock, flags);
2980 if (dumper->cur_seq < log_first_seq) {
2981 /* messages are gone, move to first available one */
2982 dumper->cur_seq = log_first_seq;
2983 dumper->cur_idx = log_first_idx;
2984 }
2985
2986 /* last entry */
2987 if (dumper->cur_seq >= dumper->next_seq) {
2988 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2989 goto out;
2990 }
2991
2992 /* calculate length of entire buffer */
2993 seq = dumper->cur_seq;
2994 idx = dumper->cur_idx;
2995 prev = 0;
2996 while (seq < dumper->next_seq) {
2997 struct printk_log *msg = log_from_idx(idx);
2998
2999 l += msg_print_text(msg, prev, true, NULL, 0);
3000 idx = log_next(idx);
3001 seq++;
3002 prev = msg->flags;
3003 }
3004
3005 /* move first record forward until length fits into the buffer */
3006 seq = dumper->cur_seq;
3007 idx = dumper->cur_idx;
3008 prev = 0;
3009 while (l > size && seq < dumper->next_seq) {
3010 struct printk_log *msg = log_from_idx(idx);
3011
3012 l -= msg_print_text(msg, prev, true, NULL, 0);
3013 idx = log_next(idx);
3014 seq++;
3015 prev = msg->flags;
3016 }
3017
3018 /* last message in next interation */
3019 next_seq = seq;
3020 next_idx = idx;
3021
3022 l = 0;
3023 while (seq < dumper->next_seq) {
3024 struct printk_log *msg = log_from_idx(idx);
3025
3026 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3027 idx = log_next(idx);
3028 seq++;
3029 prev = msg->flags;
3030 }
3031
3032 dumper->next_seq = next_seq;
3033 dumper->next_idx = next_idx;
3034 ret = true;
3035 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3036 out:
3037 if (len)
3038 *len = l;
3039 return ret;
3040 }
3041 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3042
3043 /**
3044 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3045 * @dumper: registered kmsg dumper
3046 *
3047 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3048 * kmsg_dump_get_buffer() can be called again and used multiple
3049 * times within the same dumper.dump() callback.
3050 *
3051 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3052 */
3053 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3054 {
3055 dumper->cur_seq = clear_seq;
3056 dumper->cur_idx = clear_idx;
3057 dumper->next_seq = log_next_seq;
3058 dumper->next_idx = log_next_idx;
3059 }
3060
3061 /**
3062 * kmsg_dump_rewind - reset the interator
3063 * @dumper: registered kmsg dumper
3064 *
3065 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3066 * kmsg_dump_get_buffer() can be called again and used multiple
3067 * times within the same dumper.dump() callback.
3068 */
3069 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3070 {
3071 unsigned long flags;
3072
3073 raw_spin_lock_irqsave(&logbuf_lock, flags);
3074 kmsg_dump_rewind_nolock(dumper);
3075 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3076 }
3077 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3078
3079 static char dump_stack_arch_desc_str[128];
3080
3081 /**
3082 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3083 * @fmt: printf-style format string
3084 * @...: arguments for the format string
3085 *
3086 * The configured string will be printed right after utsname during task
3087 * dumps. Usually used to add arch-specific system identifiers. If an
3088 * arch wants to make use of such an ID string, it should initialize this
3089 * as soon as possible during boot.
3090 */
3091 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3092 {
3093 va_list args;
3094
3095 va_start(args, fmt);
3096 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3097 fmt, args);
3098 va_end(args);
3099 }
3100
3101 /**
3102 * dump_stack_print_info - print generic debug info for dump_stack()
3103 * @log_lvl: log level
3104 *
3105 * Arch-specific dump_stack() implementations can use this function to
3106 * print out the same debug information as the generic dump_stack().
3107 */
3108 void dump_stack_print_info(const char *log_lvl)
3109 {
3110 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3111 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3112 print_tainted(), init_utsname()->release,
3113 (int)strcspn(init_utsname()->version, " "),
3114 init_utsname()->version);
3115
3116 if (dump_stack_arch_desc_str[0] != '\0')
3117 printk("%sHardware name: %s\n",
3118 log_lvl, dump_stack_arch_desc_str);
3119
3120 print_worker_info(log_lvl, current);
3121 }
3122
3123 /**
3124 * show_regs_print_info - print generic debug info for show_regs()
3125 * @log_lvl: log level
3126 *
3127 * show_regs() implementations can use this function to print out generic
3128 * debug information.
3129 */
3130 void show_regs_print_info(const char *log_lvl)
3131 {
3132 dump_stack_print_info(log_lvl);
3133
3134 printk("%stask: %p ti: %p task.ti: %p\n",
3135 log_lvl, current, current_thread_info(),
3136 task_thread_info(current));
3137 }
3138
3139 #endif
This page took 0.099202 seconds and 5 git commands to generate.