ac86838227ed2cb37a9b6cd449187dc26550340c
[deliverable/linux.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48
49 #include <asm/uaccess.h>
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/printk.h>
53
54 #include "console_cmdline.h"
55 #include "braille.h"
56
57 int console_printk[4] = {
58 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
59 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
60 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
61 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
62 };
63
64 /* Deferred messaged from sched code are marked by this special level */
65 #define SCHED_MESSAGE_LOGLEVEL -2
66
67 /*
68 * Low level drivers may need that to know if they can schedule in
69 * their unblank() callback or not. So let's export it.
70 */
71 int oops_in_progress;
72 EXPORT_SYMBOL(oops_in_progress);
73
74 /*
75 * console_sem protects the console_drivers list, and also
76 * provides serialisation for access to the entire console
77 * driver system.
78 */
79 static DEFINE_SEMAPHORE(console_sem);
80 struct console *console_drivers;
81 EXPORT_SYMBOL_GPL(console_drivers);
82
83 #ifdef CONFIG_LOCKDEP
84 static struct lockdep_map console_lock_dep_map = {
85 .name = "console_lock"
86 };
87 #endif
88
89 /*
90 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
91 * macros instead of functions so that _RET_IP_ contains useful information.
92 */
93 #define down_console_sem() do { \
94 down(&console_sem);\
95 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
96 } while (0)
97
98 static int __down_trylock_console_sem(unsigned long ip)
99 {
100 if (down_trylock(&console_sem))
101 return 1;
102 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
103 return 0;
104 }
105 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
106
107 #define up_console_sem() do { \
108 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
109 up(&console_sem);\
110 } while (0)
111
112 /*
113 * This is used for debugging the mess that is the VT code by
114 * keeping track if we have the console semaphore held. It's
115 * definitely not the perfect debug tool (we don't know if _WE_
116 * hold it and are racing, but it helps tracking those weird code
117 * paths in the console code where we end up in places I want
118 * locked without the console sempahore held).
119 */
120 static int console_locked, console_suspended;
121
122 /*
123 * If exclusive_console is non-NULL then only this console is to be printed to.
124 */
125 static struct console *exclusive_console;
126
127 /*
128 * Array of consoles built from command line options (console=)
129 */
130
131 #define MAX_CMDLINECONSOLES 8
132
133 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
134
135 static int selected_console = -1;
136 static int preferred_console = -1;
137 int console_set_on_cmdline;
138 EXPORT_SYMBOL(console_set_on_cmdline);
139
140 /* Flag: console code may call schedule() */
141 static int console_may_schedule;
142
143 /*
144 * The printk log buffer consists of a chain of concatenated variable
145 * length records. Every record starts with a record header, containing
146 * the overall length of the record.
147 *
148 * The heads to the first and last entry in the buffer, as well as the
149 * sequence numbers of these entries are maintained when messages are
150 * stored.
151 *
152 * If the heads indicate available messages, the length in the header
153 * tells the start next message. A length == 0 for the next message
154 * indicates a wrap-around to the beginning of the buffer.
155 *
156 * Every record carries the monotonic timestamp in microseconds, as well as
157 * the standard userspace syslog level and syslog facility. The usual
158 * kernel messages use LOG_KERN; userspace-injected messages always carry
159 * a matching syslog facility, by default LOG_USER. The origin of every
160 * message can be reliably determined that way.
161 *
162 * The human readable log message directly follows the message header. The
163 * length of the message text is stored in the header, the stored message
164 * is not terminated.
165 *
166 * Optionally, a message can carry a dictionary of properties (key/value pairs),
167 * to provide userspace with a machine-readable message context.
168 *
169 * Examples for well-defined, commonly used property names are:
170 * DEVICE=b12:8 device identifier
171 * b12:8 block dev_t
172 * c127:3 char dev_t
173 * n8 netdev ifindex
174 * +sound:card0 subsystem:devname
175 * SUBSYSTEM=pci driver-core subsystem name
176 *
177 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
178 * follows directly after a '=' character. Every property is terminated by
179 * a '\0' character. The last property is not terminated.
180 *
181 * Example of a message structure:
182 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
183 * 0008 34 00 record is 52 bytes long
184 * 000a 0b 00 text is 11 bytes long
185 * 000c 1f 00 dictionary is 23 bytes long
186 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
187 * 0010 69 74 27 73 20 61 20 6c "it's a l"
188 * 69 6e 65 "ine"
189 * 001b 44 45 56 49 43 "DEVIC"
190 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
191 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
192 * 67 "g"
193 * 0032 00 00 00 padding to next message header
194 *
195 * The 'struct printk_log' buffer header must never be directly exported to
196 * userspace, it is a kernel-private implementation detail that might
197 * need to be changed in the future, when the requirements change.
198 *
199 * /dev/kmsg exports the structured data in the following line format:
200 * "level,sequnum,timestamp;<message text>\n"
201 *
202 * The optional key/value pairs are attached as continuation lines starting
203 * with a space character and terminated by a newline. All possible
204 * non-prinatable characters are escaped in the "\xff" notation.
205 *
206 * Users of the export format should ignore possible additional values
207 * separated by ',', and find the message after the ';' character.
208 */
209
210 enum log_flags {
211 LOG_NOCONS = 1, /* already flushed, do not print to console */
212 LOG_NEWLINE = 2, /* text ended with a newline */
213 LOG_PREFIX = 4, /* text started with a prefix */
214 LOG_CONT = 8, /* text is a fragment of a continuation line */
215 };
216
217 struct printk_log {
218 u64 ts_nsec; /* timestamp in nanoseconds */
219 u16 len; /* length of entire record */
220 u16 text_len; /* length of text buffer */
221 u16 dict_len; /* length of dictionary buffer */
222 u8 facility; /* syslog facility */
223 u8 flags:5; /* internal record flags */
224 u8 level:3; /* syslog level */
225 };
226
227 /*
228 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
229 * within the scheduler's rq lock. It must be released before calling
230 * console_unlock() or anything else that might wake up a process.
231 */
232 static DEFINE_RAW_SPINLOCK(logbuf_lock);
233
234 #ifdef CONFIG_PRINTK
235 DECLARE_WAIT_QUEUE_HEAD(log_wait);
236 /* the next printk record to read by syslog(READ) or /proc/kmsg */
237 static u64 syslog_seq;
238 static u32 syslog_idx;
239 static enum log_flags syslog_prev;
240 static size_t syslog_partial;
241
242 /* index and sequence number of the first record stored in the buffer */
243 static u64 log_first_seq;
244 static u32 log_first_idx;
245
246 /* index and sequence number of the next record to store in the buffer */
247 static u64 log_next_seq;
248 static u32 log_next_idx;
249
250 /* the next printk record to write to the console */
251 static u64 console_seq;
252 static u32 console_idx;
253 static enum log_flags console_prev;
254
255 /* the next printk record to read after the last 'clear' command */
256 static u64 clear_seq;
257 static u32 clear_idx;
258
259 #define PREFIX_MAX 32
260 #define LOG_LINE_MAX 1024 - PREFIX_MAX
261
262 /* record buffer */
263 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
264 #define LOG_ALIGN 4
265 #else
266 #define LOG_ALIGN __alignof__(struct printk_log)
267 #endif
268 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
269 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
270 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
271 static char *log_buf = __log_buf;
272 static u32 log_buf_len = __LOG_BUF_LEN;
273
274 /* human readable text of the record */
275 static char *log_text(const struct printk_log *msg)
276 {
277 return (char *)msg + sizeof(struct printk_log);
278 }
279
280 /* optional key/value pair dictionary attached to the record */
281 static char *log_dict(const struct printk_log *msg)
282 {
283 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
284 }
285
286 /* get record by index; idx must point to valid msg */
287 static struct printk_log *log_from_idx(u32 idx)
288 {
289 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
290
291 /*
292 * A length == 0 record is the end of buffer marker. Wrap around and
293 * read the message at the start of the buffer.
294 */
295 if (!msg->len)
296 return (struct printk_log *)log_buf;
297 return msg;
298 }
299
300 /* get next record; idx must point to valid msg */
301 static u32 log_next(u32 idx)
302 {
303 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
304
305 /* length == 0 indicates the end of the buffer; wrap */
306 /*
307 * A length == 0 record is the end of buffer marker. Wrap around and
308 * read the message at the start of the buffer as *this* one, and
309 * return the one after that.
310 */
311 if (!msg->len) {
312 msg = (struct printk_log *)log_buf;
313 return msg->len;
314 }
315 return idx + msg->len;
316 }
317
318 /*
319 * Check whether there is enough free space for the given message.
320 *
321 * The same values of first_idx and next_idx mean that the buffer
322 * is either empty or full.
323 *
324 * If the buffer is empty, we must respect the position of the indexes.
325 * They cannot be reset to the beginning of the buffer.
326 */
327 static int logbuf_has_space(u32 msg_size, bool empty)
328 {
329 u32 free;
330
331 if (log_next_idx > log_first_idx || empty)
332 free = max(log_buf_len - log_next_idx, log_first_idx);
333 else
334 free = log_first_idx - log_next_idx;
335
336 /*
337 * We need space also for an empty header that signalizes wrapping
338 * of the buffer.
339 */
340 return free >= msg_size + sizeof(struct printk_log);
341 }
342
343 static int log_make_free_space(u32 msg_size)
344 {
345 while (log_first_seq < log_next_seq) {
346 if (logbuf_has_space(msg_size, false))
347 return 0;
348 /* drop old messages until we have enough contiguous space */
349 log_first_idx = log_next(log_first_idx);
350 log_first_seq++;
351 }
352
353 /* sequence numbers are equal, so the log buffer is empty */
354 if (logbuf_has_space(msg_size, true))
355 return 0;
356
357 return -ENOMEM;
358 }
359
360 /* compute the message size including the padding bytes */
361 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
362 {
363 u32 size;
364
365 size = sizeof(struct printk_log) + text_len + dict_len;
366 *pad_len = (-size) & (LOG_ALIGN - 1);
367 size += *pad_len;
368
369 return size;
370 }
371
372 /*
373 * Define how much of the log buffer we could take at maximum. The value
374 * must be greater than two. Note that only half of the buffer is available
375 * when the index points to the middle.
376 */
377 #define MAX_LOG_TAKE_PART 4
378 static const char trunc_msg[] = "<truncated>";
379
380 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
381 u16 *dict_len, u32 *pad_len)
382 {
383 /*
384 * The message should not take the whole buffer. Otherwise, it might
385 * get removed too soon.
386 */
387 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
388 if (*text_len > max_text_len)
389 *text_len = max_text_len;
390 /* enable the warning message */
391 *trunc_msg_len = strlen(trunc_msg);
392 /* disable the "dict" completely */
393 *dict_len = 0;
394 /* compute the size again, count also the warning message */
395 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
396 }
397
398 /* insert record into the buffer, discard old ones, update heads */
399 static int log_store(int facility, int level,
400 enum log_flags flags, u64 ts_nsec,
401 const char *dict, u16 dict_len,
402 const char *text, u16 text_len)
403 {
404 struct printk_log *msg;
405 u32 size, pad_len;
406 u16 trunc_msg_len = 0;
407
408 /* number of '\0' padding bytes to next message */
409 size = msg_used_size(text_len, dict_len, &pad_len);
410
411 if (log_make_free_space(size)) {
412 /* truncate the message if it is too long for empty buffer */
413 size = truncate_msg(&text_len, &trunc_msg_len,
414 &dict_len, &pad_len);
415 /* survive when the log buffer is too small for trunc_msg */
416 if (log_make_free_space(size))
417 return 0;
418 }
419
420 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
421 /*
422 * This message + an additional empty header does not fit
423 * at the end of the buffer. Add an empty header with len == 0
424 * to signify a wrap around.
425 */
426 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
427 log_next_idx = 0;
428 }
429
430 /* fill message */
431 msg = (struct printk_log *)(log_buf + log_next_idx);
432 memcpy(log_text(msg), text, text_len);
433 msg->text_len = text_len;
434 if (trunc_msg_len) {
435 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
436 msg->text_len += trunc_msg_len;
437 }
438 memcpy(log_dict(msg), dict, dict_len);
439 msg->dict_len = dict_len;
440 msg->facility = facility;
441 msg->level = level & 7;
442 msg->flags = flags & 0x1f;
443 if (ts_nsec > 0)
444 msg->ts_nsec = ts_nsec;
445 else
446 msg->ts_nsec = local_clock();
447 memset(log_dict(msg) + dict_len, 0, pad_len);
448 msg->len = size;
449
450 /* insert message */
451 log_next_idx += msg->len;
452 log_next_seq++;
453
454 return msg->text_len;
455 }
456
457 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
458
459 static int syslog_action_restricted(int type)
460 {
461 if (dmesg_restrict)
462 return 1;
463 /*
464 * Unless restricted, we allow "read all" and "get buffer size"
465 * for everybody.
466 */
467 return type != SYSLOG_ACTION_READ_ALL &&
468 type != SYSLOG_ACTION_SIZE_BUFFER;
469 }
470
471 static int check_syslog_permissions(int type, bool from_file)
472 {
473 /*
474 * If this is from /proc/kmsg and we've already opened it, then we've
475 * already done the capabilities checks at open time.
476 */
477 if (from_file && type != SYSLOG_ACTION_OPEN)
478 return 0;
479
480 if (syslog_action_restricted(type)) {
481 if (capable(CAP_SYSLOG))
482 return 0;
483 /*
484 * For historical reasons, accept CAP_SYS_ADMIN too, with
485 * a warning.
486 */
487 if (capable(CAP_SYS_ADMIN)) {
488 pr_warn_once("%s (%d): Attempt to access syslog with "
489 "CAP_SYS_ADMIN but no CAP_SYSLOG "
490 "(deprecated).\n",
491 current->comm, task_pid_nr(current));
492 return 0;
493 }
494 return -EPERM;
495 }
496 return security_syslog(type);
497 }
498
499
500 /* /dev/kmsg - userspace message inject/listen interface */
501 struct devkmsg_user {
502 u64 seq;
503 u32 idx;
504 enum log_flags prev;
505 struct mutex lock;
506 char buf[8192];
507 };
508
509 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
510 unsigned long count, loff_t pos)
511 {
512 char *buf, *line;
513 int i;
514 int level = default_message_loglevel;
515 int facility = 1; /* LOG_USER */
516 size_t len = iov_length(iv, count);
517 ssize_t ret = len;
518
519 if (len > LOG_LINE_MAX)
520 return -EINVAL;
521 buf = kmalloc(len+1, GFP_KERNEL);
522 if (buf == NULL)
523 return -ENOMEM;
524
525 line = buf;
526 for (i = 0; i < count; i++) {
527 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
528 ret = -EFAULT;
529 goto out;
530 }
531 line += iv[i].iov_len;
532 }
533
534 /*
535 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
536 * the decimal value represents 32bit, the lower 3 bit are the log
537 * level, the rest are the log facility.
538 *
539 * If no prefix or no userspace facility is specified, we
540 * enforce LOG_USER, to be able to reliably distinguish
541 * kernel-generated messages from userspace-injected ones.
542 */
543 line = buf;
544 if (line[0] == '<') {
545 char *endp = NULL;
546
547 i = simple_strtoul(line+1, &endp, 10);
548 if (endp && endp[0] == '>') {
549 level = i & 7;
550 if (i >> 3)
551 facility = i >> 3;
552 endp++;
553 len -= endp - line;
554 line = endp;
555 }
556 }
557 line[len] = '\0';
558
559 printk_emit(facility, level, NULL, 0, "%s", line);
560 out:
561 kfree(buf);
562 return ret;
563 }
564
565 static ssize_t devkmsg_read(struct file *file, char __user *buf,
566 size_t count, loff_t *ppos)
567 {
568 struct devkmsg_user *user = file->private_data;
569 struct printk_log *msg;
570 u64 ts_usec;
571 size_t i;
572 char cont = '-';
573 size_t len;
574 ssize_t ret;
575
576 if (!user)
577 return -EBADF;
578
579 ret = mutex_lock_interruptible(&user->lock);
580 if (ret)
581 return ret;
582 raw_spin_lock_irq(&logbuf_lock);
583 while (user->seq == log_next_seq) {
584 if (file->f_flags & O_NONBLOCK) {
585 ret = -EAGAIN;
586 raw_spin_unlock_irq(&logbuf_lock);
587 goto out;
588 }
589
590 raw_spin_unlock_irq(&logbuf_lock);
591 ret = wait_event_interruptible(log_wait,
592 user->seq != log_next_seq);
593 if (ret)
594 goto out;
595 raw_spin_lock_irq(&logbuf_lock);
596 }
597
598 if (user->seq < log_first_seq) {
599 /* our last seen message is gone, return error and reset */
600 user->idx = log_first_idx;
601 user->seq = log_first_seq;
602 ret = -EPIPE;
603 raw_spin_unlock_irq(&logbuf_lock);
604 goto out;
605 }
606
607 msg = log_from_idx(user->idx);
608 ts_usec = msg->ts_nsec;
609 do_div(ts_usec, 1000);
610
611 /*
612 * If we couldn't merge continuation line fragments during the print,
613 * export the stored flags to allow an optional external merge of the
614 * records. Merging the records isn't always neccessarily correct, like
615 * when we hit a race during printing. In most cases though, it produces
616 * better readable output. 'c' in the record flags mark the first
617 * fragment of a line, '+' the following.
618 */
619 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
620 cont = 'c';
621 else if ((msg->flags & LOG_CONT) ||
622 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
623 cont = '+';
624
625 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
626 (msg->facility << 3) | msg->level,
627 user->seq, ts_usec, cont);
628 user->prev = msg->flags;
629
630 /* escape non-printable characters */
631 for (i = 0; i < msg->text_len; i++) {
632 unsigned char c = log_text(msg)[i];
633
634 if (c < ' ' || c >= 127 || c == '\\')
635 len += sprintf(user->buf + len, "\\x%02x", c);
636 else
637 user->buf[len++] = c;
638 }
639 user->buf[len++] = '\n';
640
641 if (msg->dict_len) {
642 bool line = true;
643
644 for (i = 0; i < msg->dict_len; i++) {
645 unsigned char c = log_dict(msg)[i];
646
647 if (line) {
648 user->buf[len++] = ' ';
649 line = false;
650 }
651
652 if (c == '\0') {
653 user->buf[len++] = '\n';
654 line = true;
655 continue;
656 }
657
658 if (c < ' ' || c >= 127 || c == '\\') {
659 len += sprintf(user->buf + len, "\\x%02x", c);
660 continue;
661 }
662
663 user->buf[len++] = c;
664 }
665 user->buf[len++] = '\n';
666 }
667
668 user->idx = log_next(user->idx);
669 user->seq++;
670 raw_spin_unlock_irq(&logbuf_lock);
671
672 if (len > count) {
673 ret = -EINVAL;
674 goto out;
675 }
676
677 if (copy_to_user(buf, user->buf, len)) {
678 ret = -EFAULT;
679 goto out;
680 }
681 ret = len;
682 out:
683 mutex_unlock(&user->lock);
684 return ret;
685 }
686
687 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
688 {
689 struct devkmsg_user *user = file->private_data;
690 loff_t ret = 0;
691
692 if (!user)
693 return -EBADF;
694 if (offset)
695 return -ESPIPE;
696
697 raw_spin_lock_irq(&logbuf_lock);
698 switch (whence) {
699 case SEEK_SET:
700 /* the first record */
701 user->idx = log_first_idx;
702 user->seq = log_first_seq;
703 break;
704 case SEEK_DATA:
705 /*
706 * The first record after the last SYSLOG_ACTION_CLEAR,
707 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
708 * changes no global state, and does not clear anything.
709 */
710 user->idx = clear_idx;
711 user->seq = clear_seq;
712 break;
713 case SEEK_END:
714 /* after the last record */
715 user->idx = log_next_idx;
716 user->seq = log_next_seq;
717 break;
718 default:
719 ret = -EINVAL;
720 }
721 raw_spin_unlock_irq(&logbuf_lock);
722 return ret;
723 }
724
725 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
726 {
727 struct devkmsg_user *user = file->private_data;
728 int ret = 0;
729
730 if (!user)
731 return POLLERR|POLLNVAL;
732
733 poll_wait(file, &log_wait, wait);
734
735 raw_spin_lock_irq(&logbuf_lock);
736 if (user->seq < log_next_seq) {
737 /* return error when data has vanished underneath us */
738 if (user->seq < log_first_seq)
739 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
740 else
741 ret = POLLIN|POLLRDNORM;
742 }
743 raw_spin_unlock_irq(&logbuf_lock);
744
745 return ret;
746 }
747
748 static int devkmsg_open(struct inode *inode, struct file *file)
749 {
750 struct devkmsg_user *user;
751 int err;
752
753 /* write-only does not need any file context */
754 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
755 return 0;
756
757 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
758 SYSLOG_FROM_READER);
759 if (err)
760 return err;
761
762 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
763 if (!user)
764 return -ENOMEM;
765
766 mutex_init(&user->lock);
767
768 raw_spin_lock_irq(&logbuf_lock);
769 user->idx = log_first_idx;
770 user->seq = log_first_seq;
771 raw_spin_unlock_irq(&logbuf_lock);
772
773 file->private_data = user;
774 return 0;
775 }
776
777 static int devkmsg_release(struct inode *inode, struct file *file)
778 {
779 struct devkmsg_user *user = file->private_data;
780
781 if (!user)
782 return 0;
783
784 mutex_destroy(&user->lock);
785 kfree(user);
786 return 0;
787 }
788
789 const struct file_operations kmsg_fops = {
790 .open = devkmsg_open,
791 .read = devkmsg_read,
792 .aio_write = devkmsg_writev,
793 .llseek = devkmsg_llseek,
794 .poll = devkmsg_poll,
795 .release = devkmsg_release,
796 };
797
798 #ifdef CONFIG_KEXEC
799 /*
800 * This appends the listed symbols to /proc/vmcore
801 *
802 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
803 * obtain access to symbols that are otherwise very difficult to locate. These
804 * symbols are specifically used so that utilities can access and extract the
805 * dmesg log from a vmcore file after a crash.
806 */
807 void log_buf_kexec_setup(void)
808 {
809 VMCOREINFO_SYMBOL(log_buf);
810 VMCOREINFO_SYMBOL(log_buf_len);
811 VMCOREINFO_SYMBOL(log_first_idx);
812 VMCOREINFO_SYMBOL(log_next_idx);
813 /*
814 * Export struct printk_log size and field offsets. User space tools can
815 * parse it and detect any changes to structure down the line.
816 */
817 VMCOREINFO_STRUCT_SIZE(printk_log);
818 VMCOREINFO_OFFSET(printk_log, ts_nsec);
819 VMCOREINFO_OFFSET(printk_log, len);
820 VMCOREINFO_OFFSET(printk_log, text_len);
821 VMCOREINFO_OFFSET(printk_log, dict_len);
822 }
823 #endif
824
825 /* requested log_buf_len from kernel cmdline */
826 static unsigned long __initdata new_log_buf_len;
827
828 /* we practice scaling the ring buffer by powers of 2 */
829 static void __init log_buf_len_update(unsigned size)
830 {
831 if (size)
832 size = roundup_pow_of_two(size);
833 if (size > log_buf_len)
834 new_log_buf_len = size;
835 }
836
837 /* save requested log_buf_len since it's too early to process it */
838 static int __init log_buf_len_setup(char *str)
839 {
840 unsigned size = memparse(str, &str);
841
842 log_buf_len_update(size);
843
844 return 0;
845 }
846 early_param("log_buf_len", log_buf_len_setup);
847
848 static void __init log_buf_add_cpu(void)
849 {
850 unsigned int cpu_extra;
851
852 /*
853 * archs should set up cpu_possible_bits properly with
854 * set_cpu_possible() after setup_arch() but just in
855 * case lets ensure this is valid.
856 */
857 if (num_possible_cpus() == 1)
858 return;
859
860 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
861
862 /* by default this will only continue through for large > 64 CPUs */
863 if (cpu_extra <= __LOG_BUF_LEN / 2)
864 return;
865
866 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
867 __LOG_CPU_MAX_BUF_LEN);
868 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
869 cpu_extra);
870 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
871
872 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
873 }
874
875 void __init setup_log_buf(int early)
876 {
877 unsigned long flags;
878 char *new_log_buf;
879 int free;
880
881 if (log_buf != __log_buf)
882 return;
883
884 if (!early && !new_log_buf_len)
885 log_buf_add_cpu();
886
887 if (!new_log_buf_len)
888 return;
889
890 if (early) {
891 new_log_buf =
892 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
893 } else {
894 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
895 LOG_ALIGN);
896 }
897
898 if (unlikely(!new_log_buf)) {
899 pr_err("log_buf_len: %ld bytes not available\n",
900 new_log_buf_len);
901 return;
902 }
903
904 raw_spin_lock_irqsave(&logbuf_lock, flags);
905 log_buf_len = new_log_buf_len;
906 log_buf = new_log_buf;
907 new_log_buf_len = 0;
908 free = __LOG_BUF_LEN - log_next_idx;
909 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
910 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
911
912 pr_info("log_buf_len: %d bytes\n", log_buf_len);
913 pr_info("early log buf free: %d(%d%%)\n",
914 free, (free * 100) / __LOG_BUF_LEN);
915 }
916
917 static bool __read_mostly ignore_loglevel;
918
919 static int __init ignore_loglevel_setup(char *str)
920 {
921 ignore_loglevel = 1;
922 pr_info("debug: ignoring loglevel setting.\n");
923
924 return 0;
925 }
926
927 early_param("ignore_loglevel", ignore_loglevel_setup);
928 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
929 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
930 "print all kernel messages to the console.");
931
932 #ifdef CONFIG_BOOT_PRINTK_DELAY
933
934 static int boot_delay; /* msecs delay after each printk during bootup */
935 static unsigned long long loops_per_msec; /* based on boot_delay */
936
937 static int __init boot_delay_setup(char *str)
938 {
939 unsigned long lpj;
940
941 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
942 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
943
944 get_option(&str, &boot_delay);
945 if (boot_delay > 10 * 1000)
946 boot_delay = 0;
947
948 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
949 "HZ: %d, loops_per_msec: %llu\n",
950 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
951 return 0;
952 }
953 early_param("boot_delay", boot_delay_setup);
954
955 static void boot_delay_msec(int level)
956 {
957 unsigned long long k;
958 unsigned long timeout;
959
960 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
961 || (level >= console_loglevel && !ignore_loglevel)) {
962 return;
963 }
964
965 k = (unsigned long long)loops_per_msec * boot_delay;
966
967 timeout = jiffies + msecs_to_jiffies(boot_delay);
968 while (k) {
969 k--;
970 cpu_relax();
971 /*
972 * use (volatile) jiffies to prevent
973 * compiler reduction; loop termination via jiffies
974 * is secondary and may or may not happen.
975 */
976 if (time_after(jiffies, timeout))
977 break;
978 touch_nmi_watchdog();
979 }
980 }
981 #else
982 static inline void boot_delay_msec(int level)
983 {
984 }
985 #endif
986
987 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
988 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
989
990 static size_t print_time(u64 ts, char *buf)
991 {
992 unsigned long rem_nsec;
993
994 if (!printk_time)
995 return 0;
996
997 rem_nsec = do_div(ts, 1000000000);
998
999 if (!buf)
1000 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1001
1002 return sprintf(buf, "[%5lu.%06lu] ",
1003 (unsigned long)ts, rem_nsec / 1000);
1004 }
1005
1006 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1007 {
1008 size_t len = 0;
1009 unsigned int prefix = (msg->facility << 3) | msg->level;
1010
1011 if (syslog) {
1012 if (buf) {
1013 len += sprintf(buf, "<%u>", prefix);
1014 } else {
1015 len += 3;
1016 if (prefix > 999)
1017 len += 3;
1018 else if (prefix > 99)
1019 len += 2;
1020 else if (prefix > 9)
1021 len++;
1022 }
1023 }
1024
1025 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1026 return len;
1027 }
1028
1029 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1030 bool syslog, char *buf, size_t size)
1031 {
1032 const char *text = log_text(msg);
1033 size_t text_size = msg->text_len;
1034 bool prefix = true;
1035 bool newline = true;
1036 size_t len = 0;
1037
1038 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1039 prefix = false;
1040
1041 if (msg->flags & LOG_CONT) {
1042 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1043 prefix = false;
1044
1045 if (!(msg->flags & LOG_NEWLINE))
1046 newline = false;
1047 }
1048
1049 do {
1050 const char *next = memchr(text, '\n', text_size);
1051 size_t text_len;
1052
1053 if (next) {
1054 text_len = next - text;
1055 next++;
1056 text_size -= next - text;
1057 } else {
1058 text_len = text_size;
1059 }
1060
1061 if (buf) {
1062 if (print_prefix(msg, syslog, NULL) +
1063 text_len + 1 >= size - len)
1064 break;
1065
1066 if (prefix)
1067 len += print_prefix(msg, syslog, buf + len);
1068 memcpy(buf + len, text, text_len);
1069 len += text_len;
1070 if (next || newline)
1071 buf[len++] = '\n';
1072 } else {
1073 /* SYSLOG_ACTION_* buffer size only calculation */
1074 if (prefix)
1075 len += print_prefix(msg, syslog, NULL);
1076 len += text_len;
1077 if (next || newline)
1078 len++;
1079 }
1080
1081 prefix = true;
1082 text = next;
1083 } while (text);
1084
1085 return len;
1086 }
1087
1088 static int syslog_print(char __user *buf, int size)
1089 {
1090 char *text;
1091 struct printk_log *msg;
1092 int len = 0;
1093
1094 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1095 if (!text)
1096 return -ENOMEM;
1097
1098 while (size > 0) {
1099 size_t n;
1100 size_t skip;
1101
1102 raw_spin_lock_irq(&logbuf_lock);
1103 if (syslog_seq < log_first_seq) {
1104 /* messages are gone, move to first one */
1105 syslog_seq = log_first_seq;
1106 syslog_idx = log_first_idx;
1107 syslog_prev = 0;
1108 syslog_partial = 0;
1109 }
1110 if (syslog_seq == log_next_seq) {
1111 raw_spin_unlock_irq(&logbuf_lock);
1112 break;
1113 }
1114
1115 skip = syslog_partial;
1116 msg = log_from_idx(syslog_idx);
1117 n = msg_print_text(msg, syslog_prev, true, text,
1118 LOG_LINE_MAX + PREFIX_MAX);
1119 if (n - syslog_partial <= size) {
1120 /* message fits into buffer, move forward */
1121 syslog_idx = log_next(syslog_idx);
1122 syslog_seq++;
1123 syslog_prev = msg->flags;
1124 n -= syslog_partial;
1125 syslog_partial = 0;
1126 } else if (!len){
1127 /* partial read(), remember position */
1128 n = size;
1129 syslog_partial += n;
1130 } else
1131 n = 0;
1132 raw_spin_unlock_irq(&logbuf_lock);
1133
1134 if (!n)
1135 break;
1136
1137 if (copy_to_user(buf, text + skip, n)) {
1138 if (!len)
1139 len = -EFAULT;
1140 break;
1141 }
1142
1143 len += n;
1144 size -= n;
1145 buf += n;
1146 }
1147
1148 kfree(text);
1149 return len;
1150 }
1151
1152 static int syslog_print_all(char __user *buf, int size, bool clear)
1153 {
1154 char *text;
1155 int len = 0;
1156
1157 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1158 if (!text)
1159 return -ENOMEM;
1160
1161 raw_spin_lock_irq(&logbuf_lock);
1162 if (buf) {
1163 u64 next_seq;
1164 u64 seq;
1165 u32 idx;
1166 enum log_flags prev;
1167
1168 if (clear_seq < log_first_seq) {
1169 /* messages are gone, move to first available one */
1170 clear_seq = log_first_seq;
1171 clear_idx = log_first_idx;
1172 }
1173
1174 /*
1175 * Find first record that fits, including all following records,
1176 * into the user-provided buffer for this dump.
1177 */
1178 seq = clear_seq;
1179 idx = clear_idx;
1180 prev = 0;
1181 while (seq < log_next_seq) {
1182 struct printk_log *msg = log_from_idx(idx);
1183
1184 len += msg_print_text(msg, prev, true, NULL, 0);
1185 prev = msg->flags;
1186 idx = log_next(idx);
1187 seq++;
1188 }
1189
1190 /* move first record forward until length fits into the buffer */
1191 seq = clear_seq;
1192 idx = clear_idx;
1193 prev = 0;
1194 while (len > size && seq < log_next_seq) {
1195 struct printk_log *msg = log_from_idx(idx);
1196
1197 len -= msg_print_text(msg, prev, true, NULL, 0);
1198 prev = msg->flags;
1199 idx = log_next(idx);
1200 seq++;
1201 }
1202
1203 /* last message fitting into this dump */
1204 next_seq = log_next_seq;
1205
1206 len = 0;
1207 while (len >= 0 && seq < next_seq) {
1208 struct printk_log *msg = log_from_idx(idx);
1209 int textlen;
1210
1211 textlen = msg_print_text(msg, prev, true, text,
1212 LOG_LINE_MAX + PREFIX_MAX);
1213 if (textlen < 0) {
1214 len = textlen;
1215 break;
1216 }
1217 idx = log_next(idx);
1218 seq++;
1219 prev = msg->flags;
1220
1221 raw_spin_unlock_irq(&logbuf_lock);
1222 if (copy_to_user(buf + len, text, textlen))
1223 len = -EFAULT;
1224 else
1225 len += textlen;
1226 raw_spin_lock_irq(&logbuf_lock);
1227
1228 if (seq < log_first_seq) {
1229 /* messages are gone, move to next one */
1230 seq = log_first_seq;
1231 idx = log_first_idx;
1232 prev = 0;
1233 }
1234 }
1235 }
1236
1237 if (clear) {
1238 clear_seq = log_next_seq;
1239 clear_idx = log_next_idx;
1240 }
1241 raw_spin_unlock_irq(&logbuf_lock);
1242
1243 kfree(text);
1244 return len;
1245 }
1246
1247 int do_syslog(int type, char __user *buf, int len, bool from_file)
1248 {
1249 bool clear = false;
1250 static int saved_console_loglevel = -1;
1251 int error;
1252
1253 error = check_syslog_permissions(type, from_file);
1254 if (error)
1255 goto out;
1256
1257 error = security_syslog(type);
1258 if (error)
1259 return error;
1260
1261 switch (type) {
1262 case SYSLOG_ACTION_CLOSE: /* Close log */
1263 break;
1264 case SYSLOG_ACTION_OPEN: /* Open log */
1265 break;
1266 case SYSLOG_ACTION_READ: /* Read from log */
1267 error = -EINVAL;
1268 if (!buf || len < 0)
1269 goto out;
1270 error = 0;
1271 if (!len)
1272 goto out;
1273 if (!access_ok(VERIFY_WRITE, buf, len)) {
1274 error = -EFAULT;
1275 goto out;
1276 }
1277 error = wait_event_interruptible(log_wait,
1278 syslog_seq != log_next_seq);
1279 if (error)
1280 goto out;
1281 error = syslog_print(buf, len);
1282 break;
1283 /* Read/clear last kernel messages */
1284 case SYSLOG_ACTION_READ_CLEAR:
1285 clear = true;
1286 /* FALL THRU */
1287 /* Read last kernel messages */
1288 case SYSLOG_ACTION_READ_ALL:
1289 error = -EINVAL;
1290 if (!buf || len < 0)
1291 goto out;
1292 error = 0;
1293 if (!len)
1294 goto out;
1295 if (!access_ok(VERIFY_WRITE, buf, len)) {
1296 error = -EFAULT;
1297 goto out;
1298 }
1299 error = syslog_print_all(buf, len, clear);
1300 break;
1301 /* Clear ring buffer */
1302 case SYSLOG_ACTION_CLEAR:
1303 syslog_print_all(NULL, 0, true);
1304 break;
1305 /* Disable logging to console */
1306 case SYSLOG_ACTION_CONSOLE_OFF:
1307 if (saved_console_loglevel == -1)
1308 saved_console_loglevel = console_loglevel;
1309 console_loglevel = minimum_console_loglevel;
1310 break;
1311 /* Enable logging to console */
1312 case SYSLOG_ACTION_CONSOLE_ON:
1313 if (saved_console_loglevel != -1) {
1314 console_loglevel = saved_console_loglevel;
1315 saved_console_loglevel = -1;
1316 }
1317 break;
1318 /* Set level of messages printed to console */
1319 case SYSLOG_ACTION_CONSOLE_LEVEL:
1320 error = -EINVAL;
1321 if (len < 1 || len > 8)
1322 goto out;
1323 if (len < minimum_console_loglevel)
1324 len = minimum_console_loglevel;
1325 console_loglevel = len;
1326 /* Implicitly re-enable logging to console */
1327 saved_console_loglevel = -1;
1328 error = 0;
1329 break;
1330 /* Number of chars in the log buffer */
1331 case SYSLOG_ACTION_SIZE_UNREAD:
1332 raw_spin_lock_irq(&logbuf_lock);
1333 if (syslog_seq < log_first_seq) {
1334 /* messages are gone, move to first one */
1335 syslog_seq = log_first_seq;
1336 syslog_idx = log_first_idx;
1337 syslog_prev = 0;
1338 syslog_partial = 0;
1339 }
1340 if (from_file) {
1341 /*
1342 * Short-cut for poll(/"proc/kmsg") which simply checks
1343 * for pending data, not the size; return the count of
1344 * records, not the length.
1345 */
1346 error = log_next_seq - syslog_seq;
1347 } else {
1348 u64 seq = syslog_seq;
1349 u32 idx = syslog_idx;
1350 enum log_flags prev = syslog_prev;
1351
1352 error = 0;
1353 while (seq < log_next_seq) {
1354 struct printk_log *msg = log_from_idx(idx);
1355
1356 error += msg_print_text(msg, prev, true, NULL, 0);
1357 idx = log_next(idx);
1358 seq++;
1359 prev = msg->flags;
1360 }
1361 error -= syslog_partial;
1362 }
1363 raw_spin_unlock_irq(&logbuf_lock);
1364 break;
1365 /* Size of the log buffer */
1366 case SYSLOG_ACTION_SIZE_BUFFER:
1367 error = log_buf_len;
1368 break;
1369 default:
1370 error = -EINVAL;
1371 break;
1372 }
1373 out:
1374 return error;
1375 }
1376
1377 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1378 {
1379 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1380 }
1381
1382 /*
1383 * Call the console drivers, asking them to write out
1384 * log_buf[start] to log_buf[end - 1].
1385 * The console_lock must be held.
1386 */
1387 static void call_console_drivers(int level, const char *text, size_t len)
1388 {
1389 struct console *con;
1390
1391 trace_console(text, len);
1392
1393 if (level >= console_loglevel && !ignore_loglevel)
1394 return;
1395 if (!console_drivers)
1396 return;
1397
1398 for_each_console(con) {
1399 if (exclusive_console && con != exclusive_console)
1400 continue;
1401 if (!(con->flags & CON_ENABLED))
1402 continue;
1403 if (!con->write)
1404 continue;
1405 if (!cpu_online(smp_processor_id()) &&
1406 !(con->flags & CON_ANYTIME))
1407 continue;
1408 con->write(con, text, len);
1409 }
1410 }
1411
1412 /*
1413 * Zap console related locks when oopsing. Only zap at most once
1414 * every 10 seconds, to leave time for slow consoles to print a
1415 * full oops.
1416 */
1417 static void zap_locks(void)
1418 {
1419 static unsigned long oops_timestamp;
1420
1421 if (time_after_eq(jiffies, oops_timestamp) &&
1422 !time_after(jiffies, oops_timestamp + 30 * HZ))
1423 return;
1424
1425 oops_timestamp = jiffies;
1426
1427 debug_locks_off();
1428 /* If a crash is occurring, make sure we can't deadlock */
1429 raw_spin_lock_init(&logbuf_lock);
1430 /* And make sure that we print immediately */
1431 sema_init(&console_sem, 1);
1432 }
1433
1434 /*
1435 * Check if we have any console that is capable of printing while cpu is
1436 * booting or shutting down. Requires console_sem.
1437 */
1438 static int have_callable_console(void)
1439 {
1440 struct console *con;
1441
1442 for_each_console(con)
1443 if (con->flags & CON_ANYTIME)
1444 return 1;
1445
1446 return 0;
1447 }
1448
1449 /*
1450 * Can we actually use the console at this time on this cpu?
1451 *
1452 * Console drivers may assume that per-cpu resources have
1453 * been allocated. So unless they're explicitly marked as
1454 * being able to cope (CON_ANYTIME) don't call them until
1455 * this CPU is officially up.
1456 */
1457 static inline int can_use_console(unsigned int cpu)
1458 {
1459 return cpu_online(cpu) || have_callable_console();
1460 }
1461
1462 /*
1463 * Try to get console ownership to actually show the kernel
1464 * messages from a 'printk'. Return true (and with the
1465 * console_lock held, and 'console_locked' set) if it
1466 * is successful, false otherwise.
1467 */
1468 static int console_trylock_for_printk(unsigned int cpu)
1469 {
1470 if (!console_trylock())
1471 return 0;
1472 /*
1473 * If we can't use the console, we need to release the console
1474 * semaphore by hand to avoid flushing the buffer. We need to hold the
1475 * console semaphore in order to do this test safely.
1476 */
1477 if (!can_use_console(cpu)) {
1478 console_locked = 0;
1479 up_console_sem();
1480 return 0;
1481 }
1482 return 1;
1483 }
1484
1485 int printk_delay_msec __read_mostly;
1486
1487 static inline void printk_delay(void)
1488 {
1489 if (unlikely(printk_delay_msec)) {
1490 int m = printk_delay_msec;
1491
1492 while (m--) {
1493 mdelay(1);
1494 touch_nmi_watchdog();
1495 }
1496 }
1497 }
1498
1499 /*
1500 * Continuation lines are buffered, and not committed to the record buffer
1501 * until the line is complete, or a race forces it. The line fragments
1502 * though, are printed immediately to the consoles to ensure everything has
1503 * reached the console in case of a kernel crash.
1504 */
1505 static struct cont {
1506 char buf[LOG_LINE_MAX];
1507 size_t len; /* length == 0 means unused buffer */
1508 size_t cons; /* bytes written to console */
1509 struct task_struct *owner; /* task of first print*/
1510 u64 ts_nsec; /* time of first print */
1511 u8 level; /* log level of first message */
1512 u8 facility; /* log facility of first message */
1513 enum log_flags flags; /* prefix, newline flags */
1514 bool flushed:1; /* buffer sealed and committed */
1515 } cont;
1516
1517 static void cont_flush(enum log_flags flags)
1518 {
1519 if (cont.flushed)
1520 return;
1521 if (cont.len == 0)
1522 return;
1523
1524 if (cont.cons) {
1525 /*
1526 * If a fragment of this line was directly flushed to the
1527 * console; wait for the console to pick up the rest of the
1528 * line. LOG_NOCONS suppresses a duplicated output.
1529 */
1530 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1531 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1532 cont.flags = flags;
1533 cont.flushed = true;
1534 } else {
1535 /*
1536 * If no fragment of this line ever reached the console,
1537 * just submit it to the store and free the buffer.
1538 */
1539 log_store(cont.facility, cont.level, flags, 0,
1540 NULL, 0, cont.buf, cont.len);
1541 cont.len = 0;
1542 }
1543 }
1544
1545 static bool cont_add(int facility, int level, const char *text, size_t len)
1546 {
1547 if (cont.len && cont.flushed)
1548 return false;
1549
1550 if (cont.len + len > sizeof(cont.buf)) {
1551 /* the line gets too long, split it up in separate records */
1552 cont_flush(LOG_CONT);
1553 return false;
1554 }
1555
1556 if (!cont.len) {
1557 cont.facility = facility;
1558 cont.level = level;
1559 cont.owner = current;
1560 cont.ts_nsec = local_clock();
1561 cont.flags = 0;
1562 cont.cons = 0;
1563 cont.flushed = false;
1564 }
1565
1566 memcpy(cont.buf + cont.len, text, len);
1567 cont.len += len;
1568
1569 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1570 cont_flush(LOG_CONT);
1571
1572 return true;
1573 }
1574
1575 static size_t cont_print_text(char *text, size_t size)
1576 {
1577 size_t textlen = 0;
1578 size_t len;
1579
1580 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1581 textlen += print_time(cont.ts_nsec, text);
1582 size -= textlen;
1583 }
1584
1585 len = cont.len - cont.cons;
1586 if (len > 0) {
1587 if (len+1 > size)
1588 len = size-1;
1589 memcpy(text + textlen, cont.buf + cont.cons, len);
1590 textlen += len;
1591 cont.cons = cont.len;
1592 }
1593
1594 if (cont.flushed) {
1595 if (cont.flags & LOG_NEWLINE)
1596 text[textlen++] = '\n';
1597 /* got everything, release buffer */
1598 cont.len = 0;
1599 }
1600 return textlen;
1601 }
1602
1603 asmlinkage int vprintk_emit(int facility, int level,
1604 const char *dict, size_t dictlen,
1605 const char *fmt, va_list args)
1606 {
1607 static int recursion_bug;
1608 static char textbuf[LOG_LINE_MAX];
1609 char *text = textbuf;
1610 size_t text_len = 0;
1611 enum log_flags lflags = 0;
1612 unsigned long flags;
1613 int this_cpu;
1614 int printed_len = 0;
1615 bool in_sched = false;
1616 /* cpu currently holding logbuf_lock in this function */
1617 static volatile unsigned int logbuf_cpu = UINT_MAX;
1618
1619 if (level == SCHED_MESSAGE_LOGLEVEL) {
1620 level = -1;
1621 in_sched = true;
1622 }
1623
1624 boot_delay_msec(level);
1625 printk_delay();
1626
1627 /* This stops the holder of console_sem just where we want him */
1628 local_irq_save(flags);
1629 this_cpu = smp_processor_id();
1630
1631 /*
1632 * Ouch, printk recursed into itself!
1633 */
1634 if (unlikely(logbuf_cpu == this_cpu)) {
1635 /*
1636 * If a crash is occurring during printk() on this CPU,
1637 * then try to get the crash message out but make sure
1638 * we can't deadlock. Otherwise just return to avoid the
1639 * recursion and return - but flag the recursion so that
1640 * it can be printed at the next appropriate moment:
1641 */
1642 if (!oops_in_progress && !lockdep_recursing(current)) {
1643 recursion_bug = 1;
1644 goto out_restore_irqs;
1645 }
1646 zap_locks();
1647 }
1648
1649 lockdep_off();
1650 raw_spin_lock(&logbuf_lock);
1651 logbuf_cpu = this_cpu;
1652
1653 if (recursion_bug) {
1654 static const char recursion_msg[] =
1655 "BUG: recent printk recursion!";
1656
1657 recursion_bug = 0;
1658 text_len = strlen(recursion_msg);
1659 /* emit KERN_CRIT message */
1660 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1661 NULL, 0, recursion_msg, text_len);
1662 }
1663
1664 /*
1665 * The printf needs to come first; we need the syslog
1666 * prefix which might be passed-in as a parameter.
1667 */
1668 if (in_sched)
1669 text_len = scnprintf(text, sizeof(textbuf),
1670 KERN_WARNING "[sched_delayed] ");
1671
1672 text_len += vscnprintf(text + text_len,
1673 sizeof(textbuf) - text_len, fmt, args);
1674
1675 /* mark and strip a trailing newline */
1676 if (text_len && text[text_len-1] == '\n') {
1677 text_len--;
1678 lflags |= LOG_NEWLINE;
1679 }
1680
1681 /* strip kernel syslog prefix and extract log level or control flags */
1682 if (facility == 0) {
1683 int kern_level = printk_get_level(text);
1684
1685 if (kern_level) {
1686 const char *end_of_header = printk_skip_level(text);
1687 switch (kern_level) {
1688 case '0' ... '7':
1689 if (level == -1)
1690 level = kern_level - '0';
1691 case 'd': /* KERN_DEFAULT */
1692 lflags |= LOG_PREFIX;
1693 }
1694 /*
1695 * No need to check length here because vscnprintf
1696 * put '\0' at the end of the string. Only valid and
1697 * newly printed level is detected.
1698 */
1699 text_len -= end_of_header - text;
1700 text = (char *)end_of_header;
1701 }
1702 }
1703
1704 if (level == -1)
1705 level = default_message_loglevel;
1706
1707 if (dict)
1708 lflags |= LOG_PREFIX|LOG_NEWLINE;
1709
1710 if (!(lflags & LOG_NEWLINE)) {
1711 /*
1712 * Flush the conflicting buffer. An earlier newline was missing,
1713 * or another task also prints continuation lines.
1714 */
1715 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1716 cont_flush(LOG_NEWLINE);
1717
1718 /* buffer line if possible, otherwise store it right away */
1719 if (cont_add(facility, level, text, text_len))
1720 printed_len += text_len;
1721 else
1722 printed_len += log_store(facility, level,
1723 lflags | LOG_CONT, 0,
1724 dict, dictlen, text, text_len);
1725 } else {
1726 bool stored = false;
1727
1728 /*
1729 * If an earlier newline was missing and it was the same task,
1730 * either merge it with the current buffer and flush, or if
1731 * there was a race with interrupts (prefix == true) then just
1732 * flush it out and store this line separately.
1733 * If the preceding printk was from a different task and missed
1734 * a newline, flush and append the newline.
1735 */
1736 if (cont.len) {
1737 if (cont.owner == current && !(lflags & LOG_PREFIX))
1738 stored = cont_add(facility, level, text,
1739 text_len);
1740 cont_flush(LOG_NEWLINE);
1741 }
1742
1743 if (stored)
1744 printed_len += text_len;
1745 else
1746 printed_len += log_store(facility, level, lflags, 0,
1747 dict, dictlen, text, text_len);
1748 }
1749
1750 logbuf_cpu = UINT_MAX;
1751 raw_spin_unlock(&logbuf_lock);
1752
1753 /* If called from the scheduler, we can not call up(). */
1754 if (!in_sched) {
1755 /*
1756 * Try to acquire and then immediately release the console
1757 * semaphore. The release will print out buffers and wake up
1758 * /dev/kmsg and syslog() users.
1759 */
1760 if (console_trylock_for_printk(this_cpu))
1761 console_unlock();
1762 }
1763
1764 lockdep_on();
1765 out_restore_irqs:
1766 local_irq_restore(flags);
1767 return printed_len;
1768 }
1769 EXPORT_SYMBOL(vprintk_emit);
1770
1771 asmlinkage int vprintk(const char *fmt, va_list args)
1772 {
1773 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1774 }
1775 EXPORT_SYMBOL(vprintk);
1776
1777 asmlinkage int printk_emit(int facility, int level,
1778 const char *dict, size_t dictlen,
1779 const char *fmt, ...)
1780 {
1781 va_list args;
1782 int r;
1783
1784 va_start(args, fmt);
1785 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1786 va_end(args);
1787
1788 return r;
1789 }
1790 EXPORT_SYMBOL(printk_emit);
1791
1792 /**
1793 * printk - print a kernel message
1794 * @fmt: format string
1795 *
1796 * This is printk(). It can be called from any context. We want it to work.
1797 *
1798 * We try to grab the console_lock. If we succeed, it's easy - we log the
1799 * output and call the console drivers. If we fail to get the semaphore, we
1800 * place the output into the log buffer and return. The current holder of
1801 * the console_sem will notice the new output in console_unlock(); and will
1802 * send it to the consoles before releasing the lock.
1803 *
1804 * One effect of this deferred printing is that code which calls printk() and
1805 * then changes console_loglevel may break. This is because console_loglevel
1806 * is inspected when the actual printing occurs.
1807 *
1808 * See also:
1809 * printf(3)
1810 *
1811 * See the vsnprintf() documentation for format string extensions over C99.
1812 */
1813 asmlinkage __visible int printk(const char *fmt, ...)
1814 {
1815 va_list args;
1816 int r;
1817
1818 #ifdef CONFIG_KGDB_KDB
1819 if (unlikely(kdb_trap_printk)) {
1820 va_start(args, fmt);
1821 r = vkdb_printf(fmt, args);
1822 va_end(args);
1823 return r;
1824 }
1825 #endif
1826 va_start(args, fmt);
1827 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1828 va_end(args);
1829
1830 return r;
1831 }
1832 EXPORT_SYMBOL(printk);
1833
1834 #else /* CONFIG_PRINTK */
1835
1836 #define LOG_LINE_MAX 0
1837 #define PREFIX_MAX 0
1838 #define LOG_LINE_MAX 0
1839 static u64 syslog_seq;
1840 static u32 syslog_idx;
1841 static u64 console_seq;
1842 static u32 console_idx;
1843 static enum log_flags syslog_prev;
1844 static u64 log_first_seq;
1845 static u32 log_first_idx;
1846 static u64 log_next_seq;
1847 static enum log_flags console_prev;
1848 static struct cont {
1849 size_t len;
1850 size_t cons;
1851 u8 level;
1852 bool flushed:1;
1853 } cont;
1854 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1855 static u32 log_next(u32 idx) { return 0; }
1856 static void call_console_drivers(int level, const char *text, size_t len) {}
1857 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1858 bool syslog, char *buf, size_t size) { return 0; }
1859 static size_t cont_print_text(char *text, size_t size) { return 0; }
1860
1861 #endif /* CONFIG_PRINTK */
1862
1863 #ifdef CONFIG_EARLY_PRINTK
1864 struct console *early_console;
1865
1866 void early_vprintk(const char *fmt, va_list ap)
1867 {
1868 if (early_console) {
1869 char buf[512];
1870 int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1871
1872 early_console->write(early_console, buf, n);
1873 }
1874 }
1875
1876 asmlinkage __visible void early_printk(const char *fmt, ...)
1877 {
1878 va_list ap;
1879
1880 va_start(ap, fmt);
1881 early_vprintk(fmt, ap);
1882 va_end(ap);
1883 }
1884 #endif
1885
1886 static int __add_preferred_console(char *name, int idx, char *options,
1887 char *brl_options)
1888 {
1889 struct console_cmdline *c;
1890 int i;
1891
1892 /*
1893 * See if this tty is not yet registered, and
1894 * if we have a slot free.
1895 */
1896 for (i = 0, c = console_cmdline;
1897 i < MAX_CMDLINECONSOLES && c->name[0];
1898 i++, c++) {
1899 if (strcmp(c->name, name) == 0 && c->index == idx) {
1900 if (!brl_options)
1901 selected_console = i;
1902 return 0;
1903 }
1904 }
1905 if (i == MAX_CMDLINECONSOLES)
1906 return -E2BIG;
1907 if (!brl_options)
1908 selected_console = i;
1909 strlcpy(c->name, name, sizeof(c->name));
1910 c->options = options;
1911 braille_set_options(c, brl_options);
1912
1913 c->index = idx;
1914 return 0;
1915 }
1916 /*
1917 * Set up a console. Called via do_early_param() in init/main.c
1918 * for each "console=" parameter in the boot command line.
1919 */
1920 static int __init console_setup(char *str)
1921 {
1922 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1923 char *s, *options, *brl_options = NULL;
1924 int idx;
1925
1926 if (_braille_console_setup(&str, &brl_options))
1927 return 1;
1928
1929 /*
1930 * Decode str into name, index, options.
1931 */
1932 if (str[0] >= '0' && str[0] <= '9') {
1933 strcpy(buf, "ttyS");
1934 strncpy(buf + 4, str, sizeof(buf) - 5);
1935 } else {
1936 strncpy(buf, str, sizeof(buf) - 1);
1937 }
1938 buf[sizeof(buf) - 1] = 0;
1939 if ((options = strchr(str, ',')) != NULL)
1940 *(options++) = 0;
1941 #ifdef __sparc__
1942 if (!strcmp(str, "ttya"))
1943 strcpy(buf, "ttyS0");
1944 if (!strcmp(str, "ttyb"))
1945 strcpy(buf, "ttyS1");
1946 #endif
1947 for (s = buf; *s; s++)
1948 if ((*s >= '0' && *s <= '9') || *s == ',')
1949 break;
1950 idx = simple_strtoul(s, NULL, 10);
1951 *s = 0;
1952
1953 __add_preferred_console(buf, idx, options, brl_options);
1954 console_set_on_cmdline = 1;
1955 return 1;
1956 }
1957 __setup("console=", console_setup);
1958
1959 /**
1960 * add_preferred_console - add a device to the list of preferred consoles.
1961 * @name: device name
1962 * @idx: device index
1963 * @options: options for this console
1964 *
1965 * The last preferred console added will be used for kernel messages
1966 * and stdin/out/err for init. Normally this is used by console_setup
1967 * above to handle user-supplied console arguments; however it can also
1968 * be used by arch-specific code either to override the user or more
1969 * commonly to provide a default console (ie from PROM variables) when
1970 * the user has not supplied one.
1971 */
1972 int add_preferred_console(char *name, int idx, char *options)
1973 {
1974 return __add_preferred_console(name, idx, options, NULL);
1975 }
1976
1977 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1978 {
1979 struct console_cmdline *c;
1980 int i;
1981
1982 for (i = 0, c = console_cmdline;
1983 i < MAX_CMDLINECONSOLES && c->name[0];
1984 i++, c++)
1985 if (strcmp(c->name, name) == 0 && c->index == idx) {
1986 strlcpy(c->name, name_new, sizeof(c->name));
1987 c->name[sizeof(c->name) - 1] = 0;
1988 c->options = options;
1989 c->index = idx_new;
1990 return i;
1991 }
1992 /* not found */
1993 return -1;
1994 }
1995
1996 bool console_suspend_enabled = 1;
1997 EXPORT_SYMBOL(console_suspend_enabled);
1998
1999 static int __init console_suspend_disable(char *str)
2000 {
2001 console_suspend_enabled = 0;
2002 return 1;
2003 }
2004 __setup("no_console_suspend", console_suspend_disable);
2005 module_param_named(console_suspend, console_suspend_enabled,
2006 bool, S_IRUGO | S_IWUSR);
2007 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2008 " and hibernate operations");
2009
2010 /**
2011 * suspend_console - suspend the console subsystem
2012 *
2013 * This disables printk() while we go into suspend states
2014 */
2015 void suspend_console(void)
2016 {
2017 if (!console_suspend_enabled)
2018 return;
2019 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2020 console_lock();
2021 console_suspended = 1;
2022 up_console_sem();
2023 }
2024
2025 void resume_console(void)
2026 {
2027 if (!console_suspend_enabled)
2028 return;
2029 down_console_sem();
2030 console_suspended = 0;
2031 console_unlock();
2032 }
2033
2034 /**
2035 * console_cpu_notify - print deferred console messages after CPU hotplug
2036 * @self: notifier struct
2037 * @action: CPU hotplug event
2038 * @hcpu: unused
2039 *
2040 * If printk() is called from a CPU that is not online yet, the messages
2041 * will be spooled but will not show up on the console. This function is
2042 * called when a new CPU comes online (or fails to come up), and ensures
2043 * that any such output gets printed.
2044 */
2045 static int console_cpu_notify(struct notifier_block *self,
2046 unsigned long action, void *hcpu)
2047 {
2048 switch (action) {
2049 case CPU_ONLINE:
2050 case CPU_DEAD:
2051 case CPU_DOWN_FAILED:
2052 case CPU_UP_CANCELED:
2053 console_lock();
2054 console_unlock();
2055 }
2056 return NOTIFY_OK;
2057 }
2058
2059 /**
2060 * console_lock - lock the console system for exclusive use.
2061 *
2062 * Acquires a lock which guarantees that the caller has
2063 * exclusive access to the console system and the console_drivers list.
2064 *
2065 * Can sleep, returns nothing.
2066 */
2067 void console_lock(void)
2068 {
2069 might_sleep();
2070
2071 down_console_sem();
2072 if (console_suspended)
2073 return;
2074 console_locked = 1;
2075 console_may_schedule = 1;
2076 }
2077 EXPORT_SYMBOL(console_lock);
2078
2079 /**
2080 * console_trylock - try to lock the console system for exclusive use.
2081 *
2082 * Try to acquire a lock which guarantees that the caller has exclusive
2083 * access to the console system and the console_drivers list.
2084 *
2085 * returns 1 on success, and 0 on failure to acquire the lock.
2086 */
2087 int console_trylock(void)
2088 {
2089 if (down_trylock_console_sem())
2090 return 0;
2091 if (console_suspended) {
2092 up_console_sem();
2093 return 0;
2094 }
2095 console_locked = 1;
2096 console_may_schedule = 0;
2097 return 1;
2098 }
2099 EXPORT_SYMBOL(console_trylock);
2100
2101 int is_console_locked(void)
2102 {
2103 return console_locked;
2104 }
2105
2106 static void console_cont_flush(char *text, size_t size)
2107 {
2108 unsigned long flags;
2109 size_t len;
2110
2111 raw_spin_lock_irqsave(&logbuf_lock, flags);
2112
2113 if (!cont.len)
2114 goto out;
2115
2116 /*
2117 * We still queue earlier records, likely because the console was
2118 * busy. The earlier ones need to be printed before this one, we
2119 * did not flush any fragment so far, so just let it queue up.
2120 */
2121 if (console_seq < log_next_seq && !cont.cons)
2122 goto out;
2123
2124 len = cont_print_text(text, size);
2125 raw_spin_unlock(&logbuf_lock);
2126 stop_critical_timings();
2127 call_console_drivers(cont.level, text, len);
2128 start_critical_timings();
2129 local_irq_restore(flags);
2130 return;
2131 out:
2132 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2133 }
2134
2135 /**
2136 * console_unlock - unlock the console system
2137 *
2138 * Releases the console_lock which the caller holds on the console system
2139 * and the console driver list.
2140 *
2141 * While the console_lock was held, console output may have been buffered
2142 * by printk(). If this is the case, console_unlock(); emits
2143 * the output prior to releasing the lock.
2144 *
2145 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2146 *
2147 * console_unlock(); may be called from any context.
2148 */
2149 void console_unlock(void)
2150 {
2151 static char text[LOG_LINE_MAX + PREFIX_MAX];
2152 static u64 seen_seq;
2153 unsigned long flags;
2154 bool wake_klogd = false;
2155 bool retry;
2156
2157 if (console_suspended) {
2158 up_console_sem();
2159 return;
2160 }
2161
2162 console_may_schedule = 0;
2163
2164 /* flush buffered message fragment immediately to console */
2165 console_cont_flush(text, sizeof(text));
2166 again:
2167 for (;;) {
2168 struct printk_log *msg;
2169 size_t len;
2170 int level;
2171
2172 raw_spin_lock_irqsave(&logbuf_lock, flags);
2173 if (seen_seq != log_next_seq) {
2174 wake_klogd = true;
2175 seen_seq = log_next_seq;
2176 }
2177
2178 if (console_seq < log_first_seq) {
2179 len = sprintf(text, "** %u printk messages dropped ** ",
2180 (unsigned)(log_first_seq - console_seq));
2181
2182 /* messages are gone, move to first one */
2183 console_seq = log_first_seq;
2184 console_idx = log_first_idx;
2185 console_prev = 0;
2186 } else {
2187 len = 0;
2188 }
2189 skip:
2190 if (console_seq == log_next_seq)
2191 break;
2192
2193 msg = log_from_idx(console_idx);
2194 if (msg->flags & LOG_NOCONS) {
2195 /*
2196 * Skip record we have buffered and already printed
2197 * directly to the console when we received it.
2198 */
2199 console_idx = log_next(console_idx);
2200 console_seq++;
2201 /*
2202 * We will get here again when we register a new
2203 * CON_PRINTBUFFER console. Clear the flag so we
2204 * will properly dump everything later.
2205 */
2206 msg->flags &= ~LOG_NOCONS;
2207 console_prev = msg->flags;
2208 goto skip;
2209 }
2210
2211 level = msg->level;
2212 len += msg_print_text(msg, console_prev, false,
2213 text + len, sizeof(text) - len);
2214 console_idx = log_next(console_idx);
2215 console_seq++;
2216 console_prev = msg->flags;
2217 raw_spin_unlock(&logbuf_lock);
2218
2219 stop_critical_timings(); /* don't trace print latency */
2220 call_console_drivers(level, text, len);
2221 start_critical_timings();
2222 local_irq_restore(flags);
2223 }
2224 console_locked = 0;
2225
2226 /* Release the exclusive_console once it is used */
2227 if (unlikely(exclusive_console))
2228 exclusive_console = NULL;
2229
2230 raw_spin_unlock(&logbuf_lock);
2231
2232 up_console_sem();
2233
2234 /*
2235 * Someone could have filled up the buffer again, so re-check if there's
2236 * something to flush. In case we cannot trylock the console_sem again,
2237 * there's a new owner and the console_unlock() from them will do the
2238 * flush, no worries.
2239 */
2240 raw_spin_lock(&logbuf_lock);
2241 retry = console_seq != log_next_seq;
2242 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2243
2244 if (retry && console_trylock())
2245 goto again;
2246
2247 if (wake_klogd)
2248 wake_up_klogd();
2249 }
2250 EXPORT_SYMBOL(console_unlock);
2251
2252 /**
2253 * console_conditional_schedule - yield the CPU if required
2254 *
2255 * If the console code is currently allowed to sleep, and
2256 * if this CPU should yield the CPU to another task, do
2257 * so here.
2258 *
2259 * Must be called within console_lock();.
2260 */
2261 void __sched console_conditional_schedule(void)
2262 {
2263 if (console_may_schedule)
2264 cond_resched();
2265 }
2266 EXPORT_SYMBOL(console_conditional_schedule);
2267
2268 void console_unblank(void)
2269 {
2270 struct console *c;
2271
2272 /*
2273 * console_unblank can no longer be called in interrupt context unless
2274 * oops_in_progress is set to 1..
2275 */
2276 if (oops_in_progress) {
2277 if (down_trylock_console_sem() != 0)
2278 return;
2279 } else
2280 console_lock();
2281
2282 console_locked = 1;
2283 console_may_schedule = 0;
2284 for_each_console(c)
2285 if ((c->flags & CON_ENABLED) && c->unblank)
2286 c->unblank();
2287 console_unlock();
2288 }
2289
2290 /*
2291 * Return the console tty driver structure and its associated index
2292 */
2293 struct tty_driver *console_device(int *index)
2294 {
2295 struct console *c;
2296 struct tty_driver *driver = NULL;
2297
2298 console_lock();
2299 for_each_console(c) {
2300 if (!c->device)
2301 continue;
2302 driver = c->device(c, index);
2303 if (driver)
2304 break;
2305 }
2306 console_unlock();
2307 return driver;
2308 }
2309
2310 /*
2311 * Prevent further output on the passed console device so that (for example)
2312 * serial drivers can disable console output before suspending a port, and can
2313 * re-enable output afterwards.
2314 */
2315 void console_stop(struct console *console)
2316 {
2317 console_lock();
2318 console->flags &= ~CON_ENABLED;
2319 console_unlock();
2320 }
2321 EXPORT_SYMBOL(console_stop);
2322
2323 void console_start(struct console *console)
2324 {
2325 console_lock();
2326 console->flags |= CON_ENABLED;
2327 console_unlock();
2328 }
2329 EXPORT_SYMBOL(console_start);
2330
2331 static int __read_mostly keep_bootcon;
2332
2333 static int __init keep_bootcon_setup(char *str)
2334 {
2335 keep_bootcon = 1;
2336 pr_info("debug: skip boot console de-registration.\n");
2337
2338 return 0;
2339 }
2340
2341 early_param("keep_bootcon", keep_bootcon_setup);
2342
2343 /*
2344 * The console driver calls this routine during kernel initialization
2345 * to register the console printing procedure with printk() and to
2346 * print any messages that were printed by the kernel before the
2347 * console driver was initialized.
2348 *
2349 * This can happen pretty early during the boot process (because of
2350 * early_printk) - sometimes before setup_arch() completes - be careful
2351 * of what kernel features are used - they may not be initialised yet.
2352 *
2353 * There are two types of consoles - bootconsoles (early_printk) and
2354 * "real" consoles (everything which is not a bootconsole) which are
2355 * handled differently.
2356 * - Any number of bootconsoles can be registered at any time.
2357 * - As soon as a "real" console is registered, all bootconsoles
2358 * will be unregistered automatically.
2359 * - Once a "real" console is registered, any attempt to register a
2360 * bootconsoles will be rejected
2361 */
2362 void register_console(struct console *newcon)
2363 {
2364 int i;
2365 unsigned long flags;
2366 struct console *bcon = NULL;
2367 struct console_cmdline *c;
2368
2369 if (console_drivers)
2370 for_each_console(bcon)
2371 if (WARN(bcon == newcon,
2372 "console '%s%d' already registered\n",
2373 bcon->name, bcon->index))
2374 return;
2375
2376 /*
2377 * before we register a new CON_BOOT console, make sure we don't
2378 * already have a valid console
2379 */
2380 if (console_drivers && newcon->flags & CON_BOOT) {
2381 /* find the last or real console */
2382 for_each_console(bcon) {
2383 if (!(bcon->flags & CON_BOOT)) {
2384 pr_info("Too late to register bootconsole %s%d\n",
2385 newcon->name, newcon->index);
2386 return;
2387 }
2388 }
2389 }
2390
2391 if (console_drivers && console_drivers->flags & CON_BOOT)
2392 bcon = console_drivers;
2393
2394 if (preferred_console < 0 || bcon || !console_drivers)
2395 preferred_console = selected_console;
2396
2397 if (newcon->early_setup)
2398 newcon->early_setup();
2399
2400 /*
2401 * See if we want to use this console driver. If we
2402 * didn't select a console we take the first one
2403 * that registers here.
2404 */
2405 if (preferred_console < 0) {
2406 if (newcon->index < 0)
2407 newcon->index = 0;
2408 if (newcon->setup == NULL ||
2409 newcon->setup(newcon, NULL) == 0) {
2410 newcon->flags |= CON_ENABLED;
2411 if (newcon->device) {
2412 newcon->flags |= CON_CONSDEV;
2413 preferred_console = 0;
2414 }
2415 }
2416 }
2417
2418 /*
2419 * See if this console matches one we selected on
2420 * the command line.
2421 */
2422 for (i = 0, c = console_cmdline;
2423 i < MAX_CMDLINECONSOLES && c->name[0];
2424 i++, c++) {
2425 if (strcmp(c->name, newcon->name) != 0)
2426 continue;
2427 if (newcon->index >= 0 &&
2428 newcon->index != c->index)
2429 continue;
2430 if (newcon->index < 0)
2431 newcon->index = c->index;
2432
2433 if (_braille_register_console(newcon, c))
2434 return;
2435
2436 if (newcon->setup &&
2437 newcon->setup(newcon, console_cmdline[i].options) != 0)
2438 break;
2439 newcon->flags |= CON_ENABLED;
2440 newcon->index = c->index;
2441 if (i == selected_console) {
2442 newcon->flags |= CON_CONSDEV;
2443 preferred_console = selected_console;
2444 }
2445 break;
2446 }
2447
2448 if (!(newcon->flags & CON_ENABLED))
2449 return;
2450
2451 /*
2452 * If we have a bootconsole, and are switching to a real console,
2453 * don't print everything out again, since when the boot console, and
2454 * the real console are the same physical device, it's annoying to
2455 * see the beginning boot messages twice
2456 */
2457 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2458 newcon->flags &= ~CON_PRINTBUFFER;
2459
2460 /*
2461 * Put this console in the list - keep the
2462 * preferred driver at the head of the list.
2463 */
2464 console_lock();
2465 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2466 newcon->next = console_drivers;
2467 console_drivers = newcon;
2468 if (newcon->next)
2469 newcon->next->flags &= ~CON_CONSDEV;
2470 } else {
2471 newcon->next = console_drivers->next;
2472 console_drivers->next = newcon;
2473 }
2474 if (newcon->flags & CON_PRINTBUFFER) {
2475 /*
2476 * console_unlock(); will print out the buffered messages
2477 * for us.
2478 */
2479 raw_spin_lock_irqsave(&logbuf_lock, flags);
2480 console_seq = syslog_seq;
2481 console_idx = syslog_idx;
2482 console_prev = syslog_prev;
2483 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2484 /*
2485 * We're about to replay the log buffer. Only do this to the
2486 * just-registered console to avoid excessive message spam to
2487 * the already-registered consoles.
2488 */
2489 exclusive_console = newcon;
2490 }
2491 console_unlock();
2492 console_sysfs_notify();
2493
2494 /*
2495 * By unregistering the bootconsoles after we enable the real console
2496 * we get the "console xxx enabled" message on all the consoles -
2497 * boot consoles, real consoles, etc - this is to ensure that end
2498 * users know there might be something in the kernel's log buffer that
2499 * went to the bootconsole (that they do not see on the real console)
2500 */
2501 pr_info("%sconsole [%s%d] enabled\n",
2502 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2503 newcon->name, newcon->index);
2504 if (bcon &&
2505 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2506 !keep_bootcon) {
2507 /* We need to iterate through all boot consoles, to make
2508 * sure we print everything out, before we unregister them.
2509 */
2510 for_each_console(bcon)
2511 if (bcon->flags & CON_BOOT)
2512 unregister_console(bcon);
2513 }
2514 }
2515 EXPORT_SYMBOL(register_console);
2516
2517 int unregister_console(struct console *console)
2518 {
2519 struct console *a, *b;
2520 int res;
2521
2522 pr_info("%sconsole [%s%d] disabled\n",
2523 (console->flags & CON_BOOT) ? "boot" : "" ,
2524 console->name, console->index);
2525
2526 res = _braille_unregister_console(console);
2527 if (res)
2528 return res;
2529
2530 res = 1;
2531 console_lock();
2532 if (console_drivers == console) {
2533 console_drivers=console->next;
2534 res = 0;
2535 } else if (console_drivers) {
2536 for (a=console_drivers->next, b=console_drivers ;
2537 a; b=a, a=b->next) {
2538 if (a == console) {
2539 b->next = a->next;
2540 res = 0;
2541 break;
2542 }
2543 }
2544 }
2545
2546 /*
2547 * If this isn't the last console and it has CON_CONSDEV set, we
2548 * need to set it on the next preferred console.
2549 */
2550 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2551 console_drivers->flags |= CON_CONSDEV;
2552
2553 console->flags &= ~CON_ENABLED;
2554 console_unlock();
2555 console_sysfs_notify();
2556 return res;
2557 }
2558 EXPORT_SYMBOL(unregister_console);
2559
2560 static int __init printk_late_init(void)
2561 {
2562 struct console *con;
2563
2564 for_each_console(con) {
2565 if (!keep_bootcon && con->flags & CON_BOOT) {
2566 unregister_console(con);
2567 }
2568 }
2569 hotcpu_notifier(console_cpu_notify, 0);
2570 return 0;
2571 }
2572 late_initcall(printk_late_init);
2573
2574 #if defined CONFIG_PRINTK
2575 /*
2576 * Delayed printk version, for scheduler-internal messages:
2577 */
2578 #define PRINTK_PENDING_WAKEUP 0x01
2579 #define PRINTK_PENDING_OUTPUT 0x02
2580
2581 static DEFINE_PER_CPU(int, printk_pending);
2582
2583 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2584 {
2585 int pending = __this_cpu_xchg(printk_pending, 0);
2586
2587 if (pending & PRINTK_PENDING_OUTPUT) {
2588 /* If trylock fails, someone else is doing the printing */
2589 if (console_trylock())
2590 console_unlock();
2591 }
2592
2593 if (pending & PRINTK_PENDING_WAKEUP)
2594 wake_up_interruptible(&log_wait);
2595 }
2596
2597 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2598 .func = wake_up_klogd_work_func,
2599 .flags = IRQ_WORK_LAZY,
2600 };
2601
2602 void wake_up_klogd(void)
2603 {
2604 preempt_disable();
2605 if (waitqueue_active(&log_wait)) {
2606 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2607 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2608 }
2609 preempt_enable();
2610 }
2611
2612 int printk_deferred(const char *fmt, ...)
2613 {
2614 va_list args;
2615 int r;
2616
2617 preempt_disable();
2618 va_start(args, fmt);
2619 r = vprintk_emit(0, SCHED_MESSAGE_LOGLEVEL, NULL, 0, fmt, args);
2620 va_end(args);
2621
2622 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2623 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2624 preempt_enable();
2625
2626 return r;
2627 }
2628
2629 /*
2630 * printk rate limiting, lifted from the networking subsystem.
2631 *
2632 * This enforces a rate limit: not more than 10 kernel messages
2633 * every 5s to make a denial-of-service attack impossible.
2634 */
2635 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2636
2637 int __printk_ratelimit(const char *func)
2638 {
2639 return ___ratelimit(&printk_ratelimit_state, func);
2640 }
2641 EXPORT_SYMBOL(__printk_ratelimit);
2642
2643 /**
2644 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2645 * @caller_jiffies: pointer to caller's state
2646 * @interval_msecs: minimum interval between prints
2647 *
2648 * printk_timed_ratelimit() returns true if more than @interval_msecs
2649 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2650 * returned true.
2651 */
2652 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2653 unsigned int interval_msecs)
2654 {
2655 if (*caller_jiffies == 0
2656 || !time_in_range(jiffies, *caller_jiffies,
2657 *caller_jiffies
2658 + msecs_to_jiffies(interval_msecs))) {
2659 *caller_jiffies = jiffies;
2660 return true;
2661 }
2662 return false;
2663 }
2664 EXPORT_SYMBOL(printk_timed_ratelimit);
2665
2666 static DEFINE_SPINLOCK(dump_list_lock);
2667 static LIST_HEAD(dump_list);
2668
2669 /**
2670 * kmsg_dump_register - register a kernel log dumper.
2671 * @dumper: pointer to the kmsg_dumper structure
2672 *
2673 * Adds a kernel log dumper to the system. The dump callback in the
2674 * structure will be called when the kernel oopses or panics and must be
2675 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2676 */
2677 int kmsg_dump_register(struct kmsg_dumper *dumper)
2678 {
2679 unsigned long flags;
2680 int err = -EBUSY;
2681
2682 /* The dump callback needs to be set */
2683 if (!dumper->dump)
2684 return -EINVAL;
2685
2686 spin_lock_irqsave(&dump_list_lock, flags);
2687 /* Don't allow registering multiple times */
2688 if (!dumper->registered) {
2689 dumper->registered = 1;
2690 list_add_tail_rcu(&dumper->list, &dump_list);
2691 err = 0;
2692 }
2693 spin_unlock_irqrestore(&dump_list_lock, flags);
2694
2695 return err;
2696 }
2697 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2698
2699 /**
2700 * kmsg_dump_unregister - unregister a kmsg dumper.
2701 * @dumper: pointer to the kmsg_dumper structure
2702 *
2703 * Removes a dump device from the system. Returns zero on success and
2704 * %-EINVAL otherwise.
2705 */
2706 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2707 {
2708 unsigned long flags;
2709 int err = -EINVAL;
2710
2711 spin_lock_irqsave(&dump_list_lock, flags);
2712 if (dumper->registered) {
2713 dumper->registered = 0;
2714 list_del_rcu(&dumper->list);
2715 err = 0;
2716 }
2717 spin_unlock_irqrestore(&dump_list_lock, flags);
2718 synchronize_rcu();
2719
2720 return err;
2721 }
2722 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2723
2724 static bool always_kmsg_dump;
2725 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2726
2727 /**
2728 * kmsg_dump - dump kernel log to kernel message dumpers.
2729 * @reason: the reason (oops, panic etc) for dumping
2730 *
2731 * Call each of the registered dumper's dump() callback, which can
2732 * retrieve the kmsg records with kmsg_dump_get_line() or
2733 * kmsg_dump_get_buffer().
2734 */
2735 void kmsg_dump(enum kmsg_dump_reason reason)
2736 {
2737 struct kmsg_dumper *dumper;
2738 unsigned long flags;
2739
2740 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2741 return;
2742
2743 rcu_read_lock();
2744 list_for_each_entry_rcu(dumper, &dump_list, list) {
2745 if (dumper->max_reason && reason > dumper->max_reason)
2746 continue;
2747
2748 /* initialize iterator with data about the stored records */
2749 dumper->active = true;
2750
2751 raw_spin_lock_irqsave(&logbuf_lock, flags);
2752 dumper->cur_seq = clear_seq;
2753 dumper->cur_idx = clear_idx;
2754 dumper->next_seq = log_next_seq;
2755 dumper->next_idx = log_next_idx;
2756 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2757
2758 /* invoke dumper which will iterate over records */
2759 dumper->dump(dumper, reason);
2760
2761 /* reset iterator */
2762 dumper->active = false;
2763 }
2764 rcu_read_unlock();
2765 }
2766
2767 /**
2768 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2769 * @dumper: registered kmsg dumper
2770 * @syslog: include the "<4>" prefixes
2771 * @line: buffer to copy the line to
2772 * @size: maximum size of the buffer
2773 * @len: length of line placed into buffer
2774 *
2775 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2776 * record, and copy one record into the provided buffer.
2777 *
2778 * Consecutive calls will return the next available record moving
2779 * towards the end of the buffer with the youngest messages.
2780 *
2781 * A return value of FALSE indicates that there are no more records to
2782 * read.
2783 *
2784 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2785 */
2786 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2787 char *line, size_t size, size_t *len)
2788 {
2789 struct printk_log *msg;
2790 size_t l = 0;
2791 bool ret = false;
2792
2793 if (!dumper->active)
2794 goto out;
2795
2796 if (dumper->cur_seq < log_first_seq) {
2797 /* messages are gone, move to first available one */
2798 dumper->cur_seq = log_first_seq;
2799 dumper->cur_idx = log_first_idx;
2800 }
2801
2802 /* last entry */
2803 if (dumper->cur_seq >= log_next_seq)
2804 goto out;
2805
2806 msg = log_from_idx(dumper->cur_idx);
2807 l = msg_print_text(msg, 0, syslog, line, size);
2808
2809 dumper->cur_idx = log_next(dumper->cur_idx);
2810 dumper->cur_seq++;
2811 ret = true;
2812 out:
2813 if (len)
2814 *len = l;
2815 return ret;
2816 }
2817
2818 /**
2819 * kmsg_dump_get_line - retrieve one kmsg log line
2820 * @dumper: registered kmsg dumper
2821 * @syslog: include the "<4>" prefixes
2822 * @line: buffer to copy the line to
2823 * @size: maximum size of the buffer
2824 * @len: length of line placed into buffer
2825 *
2826 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2827 * record, and copy one record into the provided buffer.
2828 *
2829 * Consecutive calls will return the next available record moving
2830 * towards the end of the buffer with the youngest messages.
2831 *
2832 * A return value of FALSE indicates that there are no more records to
2833 * read.
2834 */
2835 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2836 char *line, size_t size, size_t *len)
2837 {
2838 unsigned long flags;
2839 bool ret;
2840
2841 raw_spin_lock_irqsave(&logbuf_lock, flags);
2842 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2843 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2844
2845 return ret;
2846 }
2847 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2848
2849 /**
2850 * kmsg_dump_get_buffer - copy kmsg log lines
2851 * @dumper: registered kmsg dumper
2852 * @syslog: include the "<4>" prefixes
2853 * @buf: buffer to copy the line to
2854 * @size: maximum size of the buffer
2855 * @len: length of line placed into buffer
2856 *
2857 * Start at the end of the kmsg buffer and fill the provided buffer
2858 * with as many of the the *youngest* kmsg records that fit into it.
2859 * If the buffer is large enough, all available kmsg records will be
2860 * copied with a single call.
2861 *
2862 * Consecutive calls will fill the buffer with the next block of
2863 * available older records, not including the earlier retrieved ones.
2864 *
2865 * A return value of FALSE indicates that there are no more records to
2866 * read.
2867 */
2868 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2869 char *buf, size_t size, size_t *len)
2870 {
2871 unsigned long flags;
2872 u64 seq;
2873 u32 idx;
2874 u64 next_seq;
2875 u32 next_idx;
2876 enum log_flags prev;
2877 size_t l = 0;
2878 bool ret = false;
2879
2880 if (!dumper->active)
2881 goto out;
2882
2883 raw_spin_lock_irqsave(&logbuf_lock, flags);
2884 if (dumper->cur_seq < log_first_seq) {
2885 /* messages are gone, move to first available one */
2886 dumper->cur_seq = log_first_seq;
2887 dumper->cur_idx = log_first_idx;
2888 }
2889
2890 /* last entry */
2891 if (dumper->cur_seq >= dumper->next_seq) {
2892 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2893 goto out;
2894 }
2895
2896 /* calculate length of entire buffer */
2897 seq = dumper->cur_seq;
2898 idx = dumper->cur_idx;
2899 prev = 0;
2900 while (seq < dumper->next_seq) {
2901 struct printk_log *msg = log_from_idx(idx);
2902
2903 l += msg_print_text(msg, prev, true, NULL, 0);
2904 idx = log_next(idx);
2905 seq++;
2906 prev = msg->flags;
2907 }
2908
2909 /* move first record forward until length fits into the buffer */
2910 seq = dumper->cur_seq;
2911 idx = dumper->cur_idx;
2912 prev = 0;
2913 while (l > size && seq < dumper->next_seq) {
2914 struct printk_log *msg = log_from_idx(idx);
2915
2916 l -= msg_print_text(msg, prev, true, NULL, 0);
2917 idx = log_next(idx);
2918 seq++;
2919 prev = msg->flags;
2920 }
2921
2922 /* last message in next interation */
2923 next_seq = seq;
2924 next_idx = idx;
2925
2926 l = 0;
2927 while (seq < dumper->next_seq) {
2928 struct printk_log *msg = log_from_idx(idx);
2929
2930 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2931 idx = log_next(idx);
2932 seq++;
2933 prev = msg->flags;
2934 }
2935
2936 dumper->next_seq = next_seq;
2937 dumper->next_idx = next_idx;
2938 ret = true;
2939 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2940 out:
2941 if (len)
2942 *len = l;
2943 return ret;
2944 }
2945 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2946
2947 /**
2948 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2949 * @dumper: registered kmsg dumper
2950 *
2951 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2952 * kmsg_dump_get_buffer() can be called again and used multiple
2953 * times within the same dumper.dump() callback.
2954 *
2955 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2956 */
2957 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2958 {
2959 dumper->cur_seq = clear_seq;
2960 dumper->cur_idx = clear_idx;
2961 dumper->next_seq = log_next_seq;
2962 dumper->next_idx = log_next_idx;
2963 }
2964
2965 /**
2966 * kmsg_dump_rewind - reset the interator
2967 * @dumper: registered kmsg dumper
2968 *
2969 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2970 * kmsg_dump_get_buffer() can be called again and used multiple
2971 * times within the same dumper.dump() callback.
2972 */
2973 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2974 {
2975 unsigned long flags;
2976
2977 raw_spin_lock_irqsave(&logbuf_lock, flags);
2978 kmsg_dump_rewind_nolock(dumper);
2979 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2980 }
2981 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2982
2983 static char dump_stack_arch_desc_str[128];
2984
2985 /**
2986 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2987 * @fmt: printf-style format string
2988 * @...: arguments for the format string
2989 *
2990 * The configured string will be printed right after utsname during task
2991 * dumps. Usually used to add arch-specific system identifiers. If an
2992 * arch wants to make use of such an ID string, it should initialize this
2993 * as soon as possible during boot.
2994 */
2995 void __init dump_stack_set_arch_desc(const char *fmt, ...)
2996 {
2997 va_list args;
2998
2999 va_start(args, fmt);
3000 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3001 fmt, args);
3002 va_end(args);
3003 }
3004
3005 /**
3006 * dump_stack_print_info - print generic debug info for dump_stack()
3007 * @log_lvl: log level
3008 *
3009 * Arch-specific dump_stack() implementations can use this function to
3010 * print out the same debug information as the generic dump_stack().
3011 */
3012 void dump_stack_print_info(const char *log_lvl)
3013 {
3014 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3015 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3016 print_tainted(), init_utsname()->release,
3017 (int)strcspn(init_utsname()->version, " "),
3018 init_utsname()->version);
3019
3020 if (dump_stack_arch_desc_str[0] != '\0')
3021 printk("%sHardware name: %s\n",
3022 log_lvl, dump_stack_arch_desc_str);
3023
3024 print_worker_info(log_lvl, current);
3025 }
3026
3027 /**
3028 * show_regs_print_info - print generic debug info for show_regs()
3029 * @log_lvl: log level
3030 *
3031 * show_regs() implementations can use this function to print out generic
3032 * debug information.
3033 */
3034 void show_regs_print_info(const char *log_lvl)
3035 {
3036 dump_stack_print_info(log_lvl);
3037
3038 printk("%stask: %p ti: %p task.ti: %p\n",
3039 log_lvl, current, current_thread_info(),
3040 task_thread_info(current));
3041 }
3042
3043 #endif
This page took 0.085883 seconds and 4 git commands to generate.