Merge tag 'char-misc-3.5-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[deliverable/linux.git] / kernel / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45
46 #include <asm/uaccess.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/printk.h>
50
51 /*
52 * Architectures can override it:
53 */
54 void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...)
55 {
56 }
57
58 /* printk's without a loglevel use this.. */
59 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
60
61 /* We show everything that is MORE important than this.. */
62 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
63 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
64
65 DECLARE_WAIT_QUEUE_HEAD(log_wait);
66
67 int console_printk[4] = {
68 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
69 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
70 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
71 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
72 };
73
74 /*
75 * Low level drivers may need that to know if they can schedule in
76 * their unblank() callback or not. So let's export it.
77 */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80
81 /*
82 * console_sem protects the console_drivers list, and also
83 * provides serialisation for access to the entire console
84 * driver system.
85 */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89
90 /*
91 * This is used for debugging the mess that is the VT code by
92 * keeping track if we have the console semaphore held. It's
93 * definitely not the perfect debug tool (we don't know if _WE_
94 * hold it are racing, but it helps tracking those weird code
95 * path in the console code where we end up in places I want
96 * locked without the console sempahore held
97 */
98 static int console_locked, console_suspended;
99
100 /*
101 * If exclusive_console is non-NULL then only this console is to be printed to.
102 */
103 static struct console *exclusive_console;
104
105 /*
106 * Array of consoles built from command line options (console=)
107 */
108 struct console_cmdline
109 {
110 char name[8]; /* Name of the driver */
111 int index; /* Minor dev. to use */
112 char *options; /* Options for the driver */
113 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
114 char *brl_options; /* Options for braille driver */
115 #endif
116 };
117
118 #define MAX_CMDLINECONSOLES 8
119
120 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
121 static int selected_console = -1;
122 static int preferred_console = -1;
123 int console_set_on_cmdline;
124 EXPORT_SYMBOL(console_set_on_cmdline);
125
126 /* Flag: console code may call schedule() */
127 static int console_may_schedule;
128
129 /*
130 * The printk log buffer consists of a chain of concatenated variable
131 * length records. Every record starts with a record header, containing
132 * the overall length of the record.
133 *
134 * The heads to the first and last entry in the buffer, as well as the
135 * sequence numbers of these both entries are maintained when messages
136 * are stored..
137 *
138 * If the heads indicate available messages, the length in the header
139 * tells the start next message. A length == 0 for the next message
140 * indicates a wrap-around to the beginning of the buffer.
141 *
142 * Every record carries the monotonic timestamp in microseconds, as well as
143 * the standard userspace syslog level and syslog facility. The usual
144 * kernel messages use LOG_KERN; userspace-injected messages always carry
145 * a matching syslog facility, by default LOG_USER. The origin of every
146 * message can be reliably determined that way.
147 *
148 * The human readable log message directly follows the message header. The
149 * length of the message text is stored in the header, the stored message
150 * is not terminated.
151 *
152 * Optionally, a message can carry a dictionary of properties (key/value pairs),
153 * to provide userspace with a machine-readable message context.
154 *
155 * Examples for well-defined, commonly used property names are:
156 * DEVICE=b12:8 device identifier
157 * b12:8 block dev_t
158 * c127:3 char dev_t
159 * n8 netdev ifindex
160 * +sound:card0 subsystem:devname
161 * SUBSYSTEM=pci driver-core subsystem name
162 *
163 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
164 * follows directly after a '=' character. Every property is terminated by
165 * a '\0' character. The last property is not terminated.
166 *
167 * Example of a message structure:
168 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
169 * 0008 34 00 record is 52 bytes long
170 * 000a 0b 00 text is 11 bytes long
171 * 000c 1f 00 dictionary is 23 bytes long
172 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
173 * 0010 69 74 27 73 20 61 20 6c "it's a l"
174 * 69 6e 65 "ine"
175 * 001b 44 45 56 49 43 "DEVIC"
176 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
177 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
178 * 67 "g"
179 * 0032 00 00 00 padding to next message header
180 *
181 * The 'struct log' buffer header must never be directly exported to
182 * userspace, it is a kernel-private implementation detail that might
183 * need to be changed in the future, when the requirements change.
184 *
185 * /dev/kmsg exports the structured data in the following line format:
186 * "level,sequnum,timestamp;<message text>\n"
187 *
188 * The optional key/value pairs are attached as continuation lines starting
189 * with a space character and terminated by a newline. All possible
190 * non-prinatable characters are escaped in the "\xff" notation.
191 *
192 * Users of the export format should ignore possible additional values
193 * separated by ',', and find the message after the ';' character.
194 */
195
196 struct log {
197 u64 ts_nsec; /* timestamp in nanoseconds */
198 u16 len; /* length of entire record */
199 u16 text_len; /* length of text buffer */
200 u16 dict_len; /* length of dictionary buffer */
201 u16 level; /* syslog level + facility */
202 };
203
204 /*
205 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
206 * used in interesting ways to provide interlocking in console_unlock();
207 */
208 static DEFINE_RAW_SPINLOCK(logbuf_lock);
209
210 /* the next printk record to read by syslog(READ) or /proc/kmsg */
211 static u64 syslog_seq;
212 static u32 syslog_idx;
213
214 /* index and sequence number of the first record stored in the buffer */
215 static u64 log_first_seq;
216 static u32 log_first_idx;
217
218 /* index and sequence number of the next record to store in the buffer */
219 static u64 log_next_seq;
220 #ifdef CONFIG_PRINTK
221 static u32 log_next_idx;
222
223 /* the next printk record to read after the last 'clear' command */
224 static u64 clear_seq;
225 static u32 clear_idx;
226
227 #define LOG_LINE_MAX 1024
228
229 /* record buffer */
230 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
231 #define LOG_ALIGN 4
232 #else
233 #define LOG_ALIGN 8
234 #endif
235 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
236 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
237 static char *log_buf = __log_buf;
238 static u32 log_buf_len = __LOG_BUF_LEN;
239
240 /* cpu currently holding logbuf_lock */
241 static volatile unsigned int logbuf_cpu = UINT_MAX;
242
243 /* human readable text of the record */
244 static char *log_text(const struct log *msg)
245 {
246 return (char *)msg + sizeof(struct log);
247 }
248
249 /* optional key/value pair dictionary attached to the record */
250 static char *log_dict(const struct log *msg)
251 {
252 return (char *)msg + sizeof(struct log) + msg->text_len;
253 }
254
255 /* get record by index; idx must point to valid msg */
256 static struct log *log_from_idx(u32 idx)
257 {
258 struct log *msg = (struct log *)(log_buf + idx);
259
260 /*
261 * A length == 0 record is the end of buffer marker. Wrap around and
262 * read the message at the start of the buffer.
263 */
264 if (!msg->len)
265 return (struct log *)log_buf;
266 return msg;
267 }
268
269 /* get next record; idx must point to valid msg */
270 static u32 log_next(u32 idx)
271 {
272 struct log *msg = (struct log *)(log_buf + idx);
273
274 /* length == 0 indicates the end of the buffer; wrap */
275 /*
276 * A length == 0 record is the end of buffer marker. Wrap around and
277 * read the message at the start of the buffer as *this* one, and
278 * return the one after that.
279 */
280 if (!msg->len) {
281 msg = (struct log *)log_buf;
282 return msg->len;
283 }
284 return idx + msg->len;
285 }
286
287 /* insert record into the buffer, discard old ones, update heads */
288 static void log_store(int facility, int level,
289 const char *dict, u16 dict_len,
290 const char *text, u16 text_len)
291 {
292 struct log *msg;
293 u32 size, pad_len;
294
295 /* number of '\0' padding bytes to next message */
296 size = sizeof(struct log) + text_len + dict_len;
297 pad_len = (-size) & (LOG_ALIGN - 1);
298 size += pad_len;
299
300 while (log_first_seq < log_next_seq) {
301 u32 free;
302
303 if (log_next_idx > log_first_idx)
304 free = max(log_buf_len - log_next_idx, log_first_idx);
305 else
306 free = log_first_idx - log_next_idx;
307
308 if (free > size + sizeof(struct log))
309 break;
310
311 /* drop old messages until we have enough contiuous space */
312 log_first_idx = log_next(log_first_idx);
313 log_first_seq++;
314 }
315
316 if (log_next_idx + size + sizeof(struct log) >= log_buf_len) {
317 /*
318 * This message + an additional empty header does not fit
319 * at the end of the buffer. Add an empty header with len == 0
320 * to signify a wrap around.
321 */
322 memset(log_buf + log_next_idx, 0, sizeof(struct log));
323 log_next_idx = 0;
324 }
325
326 /* fill message */
327 msg = (struct log *)(log_buf + log_next_idx);
328 memcpy(log_text(msg), text, text_len);
329 msg->text_len = text_len;
330 memcpy(log_dict(msg), dict, dict_len);
331 msg->dict_len = dict_len;
332 msg->level = (facility << 3) | (level & 7);
333 msg->ts_nsec = local_clock();
334 memset(log_dict(msg) + dict_len, 0, pad_len);
335 msg->len = sizeof(struct log) + text_len + dict_len + pad_len;
336
337 /* insert message */
338 log_next_idx += msg->len;
339 log_next_seq++;
340 }
341
342 /* /dev/kmsg - userspace message inject/listen interface */
343 struct devkmsg_user {
344 u64 seq;
345 u32 idx;
346 struct mutex lock;
347 char buf[8192];
348 };
349
350 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
351 unsigned long count, loff_t pos)
352 {
353 char *buf, *line;
354 int i;
355 int level = default_message_loglevel;
356 int facility = 1; /* LOG_USER */
357 size_t len = iov_length(iv, count);
358 ssize_t ret = len;
359
360 if (len > LOG_LINE_MAX)
361 return -EINVAL;
362 buf = kmalloc(len+1, GFP_KERNEL);
363 if (buf == NULL)
364 return -ENOMEM;
365
366 line = buf;
367 for (i = 0; i < count; i++) {
368 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len))
369 goto out;
370 line += iv[i].iov_len;
371 }
372
373 /*
374 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
375 * the decimal value represents 32bit, the lower 3 bit are the log
376 * level, the rest are the log facility.
377 *
378 * If no prefix or no userspace facility is specified, we
379 * enforce LOG_USER, to be able to reliably distinguish
380 * kernel-generated messages from userspace-injected ones.
381 */
382 line = buf;
383 if (line[0] == '<') {
384 char *endp = NULL;
385
386 i = simple_strtoul(line+1, &endp, 10);
387 if (endp && endp[0] == '>') {
388 level = i & 7;
389 if (i >> 3)
390 facility = i >> 3;
391 endp++;
392 len -= endp - line;
393 line = endp;
394 }
395 }
396 line[len] = '\0';
397
398 printk_emit(facility, level, NULL, 0, "%s", line);
399 out:
400 kfree(buf);
401 return ret;
402 }
403
404 static ssize_t devkmsg_read(struct file *file, char __user *buf,
405 size_t count, loff_t *ppos)
406 {
407 struct devkmsg_user *user = file->private_data;
408 struct log *msg;
409 u64 ts_usec;
410 size_t i;
411 size_t len;
412 ssize_t ret;
413
414 if (!user)
415 return -EBADF;
416
417 mutex_lock(&user->lock);
418 raw_spin_lock(&logbuf_lock);
419 while (user->seq == log_next_seq) {
420 if (file->f_flags & O_NONBLOCK) {
421 ret = -EAGAIN;
422 raw_spin_unlock(&logbuf_lock);
423 goto out;
424 }
425
426 raw_spin_unlock(&logbuf_lock);
427 ret = wait_event_interruptible(log_wait,
428 user->seq != log_next_seq);
429 if (ret)
430 goto out;
431 raw_spin_lock(&logbuf_lock);
432 }
433
434 if (user->seq < log_first_seq) {
435 /* our last seen message is gone, return error and reset */
436 user->idx = log_first_idx;
437 user->seq = log_first_seq;
438 ret = -EPIPE;
439 raw_spin_unlock(&logbuf_lock);
440 goto out;
441 }
442
443 msg = log_from_idx(user->idx);
444 ts_usec = msg->ts_nsec;
445 do_div(ts_usec, 1000);
446 len = sprintf(user->buf, "%u,%llu,%llu;",
447 msg->level, user->seq, ts_usec);
448
449 /* escape non-printable characters */
450 for (i = 0; i < msg->text_len; i++) {
451 unsigned char c = log_text(msg)[i];
452
453 if (c < ' ' || c >= 128)
454 len += sprintf(user->buf + len, "\\x%02x", c);
455 else
456 user->buf[len++] = c;
457 }
458 user->buf[len++] = '\n';
459
460 if (msg->dict_len) {
461 bool line = true;
462
463 for (i = 0; i < msg->dict_len; i++) {
464 unsigned char c = log_dict(msg)[i];
465
466 if (line) {
467 user->buf[len++] = ' ';
468 line = false;
469 }
470
471 if (c == '\0') {
472 user->buf[len++] = '\n';
473 line = true;
474 continue;
475 }
476
477 if (c < ' ' || c >= 128) {
478 len += sprintf(user->buf + len, "\\x%02x", c);
479 continue;
480 }
481
482 user->buf[len++] = c;
483 }
484 user->buf[len++] = '\n';
485 }
486
487 user->idx = log_next(user->idx);
488 user->seq++;
489 raw_spin_unlock(&logbuf_lock);
490
491 if (len > count) {
492 ret = -EINVAL;
493 goto out;
494 }
495
496 if (copy_to_user(buf, user->buf, len)) {
497 ret = -EFAULT;
498 goto out;
499 }
500 ret = len;
501 out:
502 mutex_unlock(&user->lock);
503 return ret;
504 }
505
506 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
507 {
508 struct devkmsg_user *user = file->private_data;
509 loff_t ret = 0;
510
511 if (!user)
512 return -EBADF;
513 if (offset)
514 return -ESPIPE;
515
516 raw_spin_lock(&logbuf_lock);
517 switch (whence) {
518 case SEEK_SET:
519 /* the first record */
520 user->idx = log_first_idx;
521 user->seq = log_first_seq;
522 break;
523 case SEEK_DATA:
524 /*
525 * The first record after the last SYSLOG_ACTION_CLEAR,
526 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
527 * changes no global state, and does not clear anything.
528 */
529 user->idx = clear_idx;
530 user->seq = clear_seq;
531 break;
532 case SEEK_END:
533 /* after the last record */
534 user->idx = log_next_idx;
535 user->seq = log_next_seq;
536 break;
537 default:
538 ret = -EINVAL;
539 }
540 raw_spin_unlock(&logbuf_lock);
541 return ret;
542 }
543
544 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
545 {
546 struct devkmsg_user *user = file->private_data;
547 int ret = 0;
548
549 if (!user)
550 return POLLERR|POLLNVAL;
551
552 poll_wait(file, &log_wait, wait);
553
554 raw_spin_lock(&logbuf_lock);
555 if (user->seq < log_next_seq) {
556 /* return error when data has vanished underneath us */
557 if (user->seq < log_first_seq)
558 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
559 ret = POLLIN|POLLRDNORM;
560 }
561 raw_spin_unlock(&logbuf_lock);
562
563 return ret;
564 }
565
566 static int devkmsg_open(struct inode *inode, struct file *file)
567 {
568 struct devkmsg_user *user;
569 int err;
570
571 /* write-only does not need any file context */
572 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
573 return 0;
574
575 err = security_syslog(SYSLOG_ACTION_READ_ALL);
576 if (err)
577 return err;
578
579 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
580 if (!user)
581 return -ENOMEM;
582
583 mutex_init(&user->lock);
584
585 raw_spin_lock(&logbuf_lock);
586 user->idx = log_first_idx;
587 user->seq = log_first_seq;
588 raw_spin_unlock(&logbuf_lock);
589
590 file->private_data = user;
591 return 0;
592 }
593
594 static int devkmsg_release(struct inode *inode, struct file *file)
595 {
596 struct devkmsg_user *user = file->private_data;
597
598 if (!user)
599 return 0;
600
601 mutex_destroy(&user->lock);
602 kfree(user);
603 return 0;
604 }
605
606 const struct file_operations kmsg_fops = {
607 .open = devkmsg_open,
608 .read = devkmsg_read,
609 .aio_write = devkmsg_writev,
610 .llseek = devkmsg_llseek,
611 .poll = devkmsg_poll,
612 .release = devkmsg_release,
613 };
614
615 #ifdef CONFIG_KEXEC
616 /*
617 * This appends the listed symbols to /proc/vmcoreinfo
618 *
619 * /proc/vmcoreinfo is used by various utiilties, like crash and makedumpfile to
620 * obtain access to symbols that are otherwise very difficult to locate. These
621 * symbols are specifically used so that utilities can access and extract the
622 * dmesg log from a vmcore file after a crash.
623 */
624 void log_buf_kexec_setup(void)
625 {
626 VMCOREINFO_SYMBOL(log_buf);
627 VMCOREINFO_SYMBOL(log_buf_len);
628 VMCOREINFO_SYMBOL(log_first_idx);
629 VMCOREINFO_SYMBOL(log_next_idx);
630 }
631 #endif
632
633 /* requested log_buf_len from kernel cmdline */
634 static unsigned long __initdata new_log_buf_len;
635
636 /* save requested log_buf_len since it's too early to process it */
637 static int __init log_buf_len_setup(char *str)
638 {
639 unsigned size = memparse(str, &str);
640
641 if (size)
642 size = roundup_pow_of_two(size);
643 if (size > log_buf_len)
644 new_log_buf_len = size;
645
646 return 0;
647 }
648 early_param("log_buf_len", log_buf_len_setup);
649
650 void __init setup_log_buf(int early)
651 {
652 unsigned long flags;
653 char *new_log_buf;
654 int free;
655
656 if (!new_log_buf_len)
657 return;
658
659 if (early) {
660 unsigned long mem;
661
662 mem = memblock_alloc(new_log_buf_len, PAGE_SIZE);
663 if (!mem)
664 return;
665 new_log_buf = __va(mem);
666 } else {
667 new_log_buf = alloc_bootmem_nopanic(new_log_buf_len);
668 }
669
670 if (unlikely(!new_log_buf)) {
671 pr_err("log_buf_len: %ld bytes not available\n",
672 new_log_buf_len);
673 return;
674 }
675
676 raw_spin_lock_irqsave(&logbuf_lock, flags);
677 log_buf_len = new_log_buf_len;
678 log_buf = new_log_buf;
679 new_log_buf_len = 0;
680 free = __LOG_BUF_LEN - log_next_idx;
681 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
682 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
683
684 pr_info("log_buf_len: %d\n", log_buf_len);
685 pr_info("early log buf free: %d(%d%%)\n",
686 free, (free * 100) / __LOG_BUF_LEN);
687 }
688
689 #ifdef CONFIG_BOOT_PRINTK_DELAY
690
691 static int boot_delay; /* msecs delay after each printk during bootup */
692 static unsigned long long loops_per_msec; /* based on boot_delay */
693
694 static int __init boot_delay_setup(char *str)
695 {
696 unsigned long lpj;
697
698 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
699 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
700
701 get_option(&str, &boot_delay);
702 if (boot_delay > 10 * 1000)
703 boot_delay = 0;
704
705 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
706 "HZ: %d, loops_per_msec: %llu\n",
707 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
708 return 1;
709 }
710 __setup("boot_delay=", boot_delay_setup);
711
712 static void boot_delay_msec(void)
713 {
714 unsigned long long k;
715 unsigned long timeout;
716
717 if (boot_delay == 0 || system_state != SYSTEM_BOOTING)
718 return;
719
720 k = (unsigned long long)loops_per_msec * boot_delay;
721
722 timeout = jiffies + msecs_to_jiffies(boot_delay);
723 while (k) {
724 k--;
725 cpu_relax();
726 /*
727 * use (volatile) jiffies to prevent
728 * compiler reduction; loop termination via jiffies
729 * is secondary and may or may not happen.
730 */
731 if (time_after(jiffies, timeout))
732 break;
733 touch_nmi_watchdog();
734 }
735 }
736 #else
737 static inline void boot_delay_msec(void)
738 {
739 }
740 #endif
741
742 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
743 int dmesg_restrict = 1;
744 #else
745 int dmesg_restrict;
746 #endif
747
748 static int syslog_action_restricted(int type)
749 {
750 if (dmesg_restrict)
751 return 1;
752 /* Unless restricted, we allow "read all" and "get buffer size" for everybody */
753 return type != SYSLOG_ACTION_READ_ALL && type != SYSLOG_ACTION_SIZE_BUFFER;
754 }
755
756 static int check_syslog_permissions(int type, bool from_file)
757 {
758 /*
759 * If this is from /proc/kmsg and we've already opened it, then we've
760 * already done the capabilities checks at open time.
761 */
762 if (from_file && type != SYSLOG_ACTION_OPEN)
763 return 0;
764
765 if (syslog_action_restricted(type)) {
766 if (capable(CAP_SYSLOG))
767 return 0;
768 /* For historical reasons, accept CAP_SYS_ADMIN too, with a warning */
769 if (capable(CAP_SYS_ADMIN)) {
770 printk_once(KERN_WARNING "%s (%d): "
771 "Attempt to access syslog with CAP_SYS_ADMIN "
772 "but no CAP_SYSLOG (deprecated).\n",
773 current->comm, task_pid_nr(current));
774 return 0;
775 }
776 return -EPERM;
777 }
778 return 0;
779 }
780
781 #if defined(CONFIG_PRINTK_TIME)
782 static bool printk_time = 1;
783 #else
784 static bool printk_time;
785 #endif
786 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
787
788 static size_t print_prefix(const struct log *msg, bool syslog, char *buf)
789 {
790 size_t len = 0;
791
792 if (syslog) {
793 if (buf) {
794 len += sprintf(buf, "<%u>", msg->level);
795 } else {
796 len += 3;
797 if (msg->level > 9)
798 len++;
799 if (msg->level > 99)
800 len++;
801 }
802 }
803
804 if (printk_time) {
805 if (buf) {
806 unsigned long long ts = msg->ts_nsec;
807 unsigned long rem_nsec = do_div(ts, 1000000000);
808
809 len += sprintf(buf + len, "[%5lu.%06lu] ",
810 (unsigned long) ts, rem_nsec / 1000);
811 } else {
812 len += 15;
813 }
814 }
815
816 return len;
817 }
818
819 static size_t msg_print_text(const struct log *msg, bool syslog,
820 char *buf, size_t size)
821 {
822 const char *text = log_text(msg);
823 size_t text_size = msg->text_len;
824 size_t len = 0;
825
826 do {
827 const char *next = memchr(text, '\n', text_size);
828 size_t text_len;
829
830 if (next) {
831 text_len = next - text;
832 next++;
833 text_size -= next - text;
834 } else {
835 text_len = text_size;
836 }
837
838 if (buf) {
839 if (print_prefix(msg, syslog, NULL) +
840 text_len + 1>= size - len)
841 break;
842
843 len += print_prefix(msg, syslog, buf + len);
844 memcpy(buf + len, text, text_len);
845 len += text_len;
846 buf[len++] = '\n';
847 } else {
848 /* SYSLOG_ACTION_* buffer size only calculation */
849 len += print_prefix(msg, syslog, NULL);
850 len += text_len + 1;
851 }
852
853 text = next;
854 } while (text);
855
856 return len;
857 }
858
859 static int syslog_print(char __user *buf, int size)
860 {
861 char *text;
862 struct log *msg;
863 int len;
864
865 text = kmalloc(LOG_LINE_MAX, GFP_KERNEL);
866 if (!text)
867 return -ENOMEM;
868
869 raw_spin_lock_irq(&logbuf_lock);
870 if (syslog_seq < log_first_seq) {
871 /* messages are gone, move to first one */
872 syslog_seq = log_first_seq;
873 syslog_idx = log_first_idx;
874 }
875 msg = log_from_idx(syslog_idx);
876 len = msg_print_text(msg, true, text, LOG_LINE_MAX);
877 syslog_idx = log_next(syslog_idx);
878 syslog_seq++;
879 raw_spin_unlock_irq(&logbuf_lock);
880
881 if (len > 0 && copy_to_user(buf, text, len))
882 len = -EFAULT;
883
884 kfree(text);
885 return len;
886 }
887
888 static int syslog_print_all(char __user *buf, int size, bool clear)
889 {
890 char *text;
891 int len = 0;
892
893 text = kmalloc(LOG_LINE_MAX, GFP_KERNEL);
894 if (!text)
895 return -ENOMEM;
896
897 raw_spin_lock_irq(&logbuf_lock);
898 if (buf) {
899 u64 next_seq;
900 u64 seq;
901 u32 idx;
902
903 if (clear_seq < log_first_seq) {
904 /* messages are gone, move to first available one */
905 clear_seq = log_first_seq;
906 clear_idx = log_first_idx;
907 }
908
909 /*
910 * Find first record that fits, including all following records,
911 * into the user-provided buffer for this dump.
912 */
913 seq = clear_seq;
914 idx = clear_idx;
915 while (seq < log_next_seq) {
916 struct log *msg = log_from_idx(idx);
917
918 len += msg_print_text(msg, true, NULL, 0);
919 idx = log_next(idx);
920 seq++;
921 }
922 seq = clear_seq;
923 idx = clear_idx;
924 while (len > size && seq < log_next_seq) {
925 struct log *msg = log_from_idx(idx);
926
927 len -= msg_print_text(msg, true, NULL, 0);
928 idx = log_next(idx);
929 seq++;
930 }
931
932 /* last message in this dump */
933 next_seq = log_next_seq;
934
935 len = 0;
936 while (len >= 0 && seq < next_seq) {
937 struct log *msg = log_from_idx(idx);
938 int textlen;
939
940 textlen = msg_print_text(msg, true, text, LOG_LINE_MAX);
941 if (textlen < 0) {
942 len = textlen;
943 break;
944 }
945 idx = log_next(idx);
946 seq++;
947
948 raw_spin_unlock_irq(&logbuf_lock);
949 if (copy_to_user(buf + len, text, textlen))
950 len = -EFAULT;
951 else
952 len += textlen;
953 raw_spin_lock_irq(&logbuf_lock);
954
955 if (seq < log_first_seq) {
956 /* messages are gone, move to next one */
957 seq = log_first_seq;
958 idx = log_first_idx;
959 }
960 }
961 }
962
963 if (clear) {
964 clear_seq = log_next_seq;
965 clear_idx = log_next_idx;
966 }
967 raw_spin_unlock_irq(&logbuf_lock);
968
969 kfree(text);
970 return len;
971 }
972
973 int do_syslog(int type, char __user *buf, int len, bool from_file)
974 {
975 bool clear = false;
976 static int saved_console_loglevel = -1;
977 int error;
978
979 error = check_syslog_permissions(type, from_file);
980 if (error)
981 goto out;
982
983 error = security_syslog(type);
984 if (error)
985 return error;
986
987 switch (type) {
988 case SYSLOG_ACTION_CLOSE: /* Close log */
989 break;
990 case SYSLOG_ACTION_OPEN: /* Open log */
991 break;
992 case SYSLOG_ACTION_READ: /* Read from log */
993 error = -EINVAL;
994 if (!buf || len < 0)
995 goto out;
996 error = 0;
997 if (!len)
998 goto out;
999 if (!access_ok(VERIFY_WRITE, buf, len)) {
1000 error = -EFAULT;
1001 goto out;
1002 }
1003 error = wait_event_interruptible(log_wait,
1004 syslog_seq != log_next_seq);
1005 if (error)
1006 goto out;
1007 error = syslog_print(buf, len);
1008 break;
1009 /* Read/clear last kernel messages */
1010 case SYSLOG_ACTION_READ_CLEAR:
1011 clear = true;
1012 /* FALL THRU */
1013 /* Read last kernel messages */
1014 case SYSLOG_ACTION_READ_ALL:
1015 error = -EINVAL;
1016 if (!buf || len < 0)
1017 goto out;
1018 error = 0;
1019 if (!len)
1020 goto out;
1021 if (!access_ok(VERIFY_WRITE, buf, len)) {
1022 error = -EFAULT;
1023 goto out;
1024 }
1025 error = syslog_print_all(buf, len, clear);
1026 break;
1027 /* Clear ring buffer */
1028 case SYSLOG_ACTION_CLEAR:
1029 syslog_print_all(NULL, 0, true);
1030 /* Disable logging to console */
1031 case SYSLOG_ACTION_CONSOLE_OFF:
1032 if (saved_console_loglevel == -1)
1033 saved_console_loglevel = console_loglevel;
1034 console_loglevel = minimum_console_loglevel;
1035 break;
1036 /* Enable logging to console */
1037 case SYSLOG_ACTION_CONSOLE_ON:
1038 if (saved_console_loglevel != -1) {
1039 console_loglevel = saved_console_loglevel;
1040 saved_console_loglevel = -1;
1041 }
1042 break;
1043 /* Set level of messages printed to console */
1044 case SYSLOG_ACTION_CONSOLE_LEVEL:
1045 error = -EINVAL;
1046 if (len < 1 || len > 8)
1047 goto out;
1048 if (len < minimum_console_loglevel)
1049 len = minimum_console_loglevel;
1050 console_loglevel = len;
1051 /* Implicitly re-enable logging to console */
1052 saved_console_loglevel = -1;
1053 error = 0;
1054 break;
1055 /* Number of chars in the log buffer */
1056 case SYSLOG_ACTION_SIZE_UNREAD:
1057 raw_spin_lock_irq(&logbuf_lock);
1058 if (syslog_seq < log_first_seq) {
1059 /* messages are gone, move to first one */
1060 syslog_seq = log_first_seq;
1061 syslog_idx = log_first_idx;
1062 }
1063 if (from_file) {
1064 /*
1065 * Short-cut for poll(/"proc/kmsg") which simply checks
1066 * for pending data, not the size; return the count of
1067 * records, not the length.
1068 */
1069 error = log_next_idx - syslog_idx;
1070 } else {
1071 u64 seq;
1072 u32 idx;
1073
1074 error = 0;
1075 seq = syslog_seq;
1076 idx = syslog_idx;
1077 while (seq < log_next_seq) {
1078 struct log *msg = log_from_idx(idx);
1079
1080 error += msg_print_text(msg, true, NULL, 0);
1081 idx = log_next(idx);
1082 seq++;
1083 }
1084 }
1085 raw_spin_unlock_irq(&logbuf_lock);
1086 break;
1087 /* Size of the log buffer */
1088 case SYSLOG_ACTION_SIZE_BUFFER:
1089 error = log_buf_len;
1090 break;
1091 default:
1092 error = -EINVAL;
1093 break;
1094 }
1095 out:
1096 return error;
1097 }
1098
1099 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1100 {
1101 return do_syslog(type, buf, len, SYSLOG_FROM_CALL);
1102 }
1103
1104 #ifdef CONFIG_KGDB_KDB
1105 /* kdb dmesg command needs access to the syslog buffer. do_syslog()
1106 * uses locks so it cannot be used during debugging. Just tell kdb
1107 * where the start and end of the physical and logical logs are. This
1108 * is equivalent to do_syslog(3).
1109 */
1110 void kdb_syslog_data(char *syslog_data[4])
1111 {
1112 syslog_data[0] = log_buf;
1113 syslog_data[1] = log_buf + log_buf_len;
1114 syslog_data[2] = log_buf + log_first_idx;
1115 syslog_data[3] = log_buf + log_next_idx;
1116 }
1117 #endif /* CONFIG_KGDB_KDB */
1118
1119 static bool __read_mostly ignore_loglevel;
1120
1121 static int __init ignore_loglevel_setup(char *str)
1122 {
1123 ignore_loglevel = 1;
1124 printk(KERN_INFO "debug: ignoring loglevel setting.\n");
1125
1126 return 0;
1127 }
1128
1129 early_param("ignore_loglevel", ignore_loglevel_setup);
1130 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1131 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
1132 "print all kernel messages to the console.");
1133
1134 /*
1135 * Call the console drivers, asking them to write out
1136 * log_buf[start] to log_buf[end - 1].
1137 * The console_lock must be held.
1138 */
1139 static void call_console_drivers(int level, const char *text, size_t len)
1140 {
1141 struct console *con;
1142
1143 trace_console(text, 0, len, len);
1144
1145 if (level >= console_loglevel && !ignore_loglevel)
1146 return;
1147 if (!console_drivers)
1148 return;
1149
1150 for_each_console(con) {
1151 if (exclusive_console && con != exclusive_console)
1152 continue;
1153 if (!(con->flags & CON_ENABLED))
1154 continue;
1155 if (!con->write)
1156 continue;
1157 if (!cpu_online(smp_processor_id()) &&
1158 !(con->flags & CON_ANYTIME))
1159 continue;
1160 con->write(con, text, len);
1161 }
1162 }
1163
1164 /*
1165 * Zap console related locks when oopsing. Only zap at most once
1166 * every 10 seconds, to leave time for slow consoles to print a
1167 * full oops.
1168 */
1169 static void zap_locks(void)
1170 {
1171 static unsigned long oops_timestamp;
1172
1173 if (time_after_eq(jiffies, oops_timestamp) &&
1174 !time_after(jiffies, oops_timestamp + 30 * HZ))
1175 return;
1176
1177 oops_timestamp = jiffies;
1178
1179 debug_locks_off();
1180 /* If a crash is occurring, make sure we can't deadlock */
1181 raw_spin_lock_init(&logbuf_lock);
1182 /* And make sure that we print immediately */
1183 sema_init(&console_sem, 1);
1184 }
1185
1186 /* Check if we have any console registered that can be called early in boot. */
1187 static int have_callable_console(void)
1188 {
1189 struct console *con;
1190
1191 for_each_console(con)
1192 if (con->flags & CON_ANYTIME)
1193 return 1;
1194
1195 return 0;
1196 }
1197
1198 /*
1199 * Can we actually use the console at this time on this cpu?
1200 *
1201 * Console drivers may assume that per-cpu resources have
1202 * been allocated. So unless they're explicitly marked as
1203 * being able to cope (CON_ANYTIME) don't call them until
1204 * this CPU is officially up.
1205 */
1206 static inline int can_use_console(unsigned int cpu)
1207 {
1208 return cpu_online(cpu) || have_callable_console();
1209 }
1210
1211 /*
1212 * Try to get console ownership to actually show the kernel
1213 * messages from a 'printk'. Return true (and with the
1214 * console_lock held, and 'console_locked' set) if it
1215 * is successful, false otherwise.
1216 *
1217 * This gets called with the 'logbuf_lock' spinlock held and
1218 * interrupts disabled. It should return with 'lockbuf_lock'
1219 * released but interrupts still disabled.
1220 */
1221 static int console_trylock_for_printk(unsigned int cpu)
1222 __releases(&logbuf_lock)
1223 {
1224 int retval = 0, wake = 0;
1225
1226 if (console_trylock()) {
1227 retval = 1;
1228
1229 /*
1230 * If we can't use the console, we need to release
1231 * the console semaphore by hand to avoid flushing
1232 * the buffer. We need to hold the console semaphore
1233 * in order to do this test safely.
1234 */
1235 if (!can_use_console(cpu)) {
1236 console_locked = 0;
1237 wake = 1;
1238 retval = 0;
1239 }
1240 }
1241 logbuf_cpu = UINT_MAX;
1242 if (wake)
1243 up(&console_sem);
1244 raw_spin_unlock(&logbuf_lock);
1245 return retval;
1246 }
1247
1248 int printk_delay_msec __read_mostly;
1249
1250 static inline void printk_delay(void)
1251 {
1252 if (unlikely(printk_delay_msec)) {
1253 int m = printk_delay_msec;
1254
1255 while (m--) {
1256 mdelay(1);
1257 touch_nmi_watchdog();
1258 }
1259 }
1260 }
1261
1262 asmlinkage int vprintk_emit(int facility, int level,
1263 const char *dict, size_t dictlen,
1264 const char *fmt, va_list args)
1265 {
1266 static int recursion_bug;
1267 static char cont_buf[LOG_LINE_MAX];
1268 static size_t cont_len;
1269 static int cont_level;
1270 static struct task_struct *cont_task;
1271 static char textbuf[LOG_LINE_MAX];
1272 char *text = textbuf;
1273 size_t text_len;
1274 unsigned long flags;
1275 int this_cpu;
1276 bool newline = false;
1277 bool prefix = false;
1278 int printed_len = 0;
1279
1280 boot_delay_msec();
1281 printk_delay();
1282
1283 /* This stops the holder of console_sem just where we want him */
1284 local_irq_save(flags);
1285 this_cpu = smp_processor_id();
1286
1287 /*
1288 * Ouch, printk recursed into itself!
1289 */
1290 if (unlikely(logbuf_cpu == this_cpu)) {
1291 /*
1292 * If a crash is occurring during printk() on this CPU,
1293 * then try to get the crash message out but make sure
1294 * we can't deadlock. Otherwise just return to avoid the
1295 * recursion and return - but flag the recursion so that
1296 * it can be printed at the next appropriate moment:
1297 */
1298 if (!oops_in_progress && !lockdep_recursing(current)) {
1299 recursion_bug = 1;
1300 goto out_restore_irqs;
1301 }
1302 zap_locks();
1303 }
1304
1305 lockdep_off();
1306 raw_spin_lock(&logbuf_lock);
1307 logbuf_cpu = this_cpu;
1308
1309 if (recursion_bug) {
1310 static const char recursion_msg[] =
1311 "BUG: recent printk recursion!";
1312
1313 recursion_bug = 0;
1314 printed_len += strlen(recursion_msg);
1315 /* emit KERN_CRIT message */
1316 log_store(0, 2, NULL, 0, recursion_msg, printed_len);
1317 }
1318
1319 /*
1320 * The printf needs to come first; we need the syslog
1321 * prefix which might be passed-in as a parameter.
1322 */
1323 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1324
1325 /* mark and strip a trailing newline */
1326 if (text_len && text[text_len-1] == '\n') {
1327 text_len--;
1328 newline = true;
1329 }
1330
1331 /* strip syslog prefix and extract log level or control flags */
1332 if (text[0] == '<' && text[1] && text[2] == '>') {
1333 switch (text[1]) {
1334 case '0' ... '7':
1335 if (level == -1)
1336 level = text[1] - '0';
1337 case 'd': /* KERN_DEFAULT */
1338 prefix = true;
1339 case 'c': /* KERN_CONT */
1340 text += 3;
1341 text_len -= 3;
1342 }
1343 }
1344
1345 if (level == -1)
1346 level = default_message_loglevel;
1347
1348 if (dict) {
1349 prefix = true;
1350 newline = true;
1351 }
1352
1353 if (!newline) {
1354 if (cont_len && (prefix || cont_task != current)) {
1355 /*
1356 * Flush earlier buffer, which is either from a
1357 * different thread, or when we got a new prefix.
1358 */
1359 log_store(facility, cont_level, NULL, 0, cont_buf, cont_len);
1360 cont_len = 0;
1361 }
1362
1363 if (!cont_len) {
1364 cont_level = level;
1365 cont_task = current;
1366 }
1367
1368 /* buffer or append to earlier buffer from the same thread */
1369 if (cont_len + text_len > sizeof(cont_buf))
1370 text_len = sizeof(cont_buf) - cont_len;
1371 memcpy(cont_buf + cont_len, text, text_len);
1372 cont_len += text_len;
1373 } else {
1374 if (cont_len && cont_task == current) {
1375 if (prefix) {
1376 /*
1377 * New prefix from the same thread; flush. We
1378 * either got no earlier newline, or we race
1379 * with an interrupt.
1380 */
1381 log_store(facility, cont_level,
1382 NULL, 0, cont_buf, cont_len);
1383 cont_len = 0;
1384 }
1385
1386 /* append to the earlier buffer and flush */
1387 if (cont_len + text_len > sizeof(cont_buf))
1388 text_len = sizeof(cont_buf) - cont_len;
1389 memcpy(cont_buf + cont_len, text, text_len);
1390 cont_len += text_len;
1391 log_store(facility, cont_level,
1392 NULL, 0, cont_buf, cont_len);
1393 cont_len = 0;
1394 cont_task = NULL;
1395 printed_len = cont_len;
1396 } else {
1397 /* ordinary single and terminated line */
1398 log_store(facility, level,
1399 dict, dictlen, text, text_len);
1400 printed_len = text_len;
1401 }
1402 }
1403
1404 /*
1405 * Try to acquire and then immediately release the console semaphore.
1406 * The release will print out buffers and wake up /dev/kmsg and syslog()
1407 * users.
1408 *
1409 * The console_trylock_for_printk() function will release 'logbuf_lock'
1410 * regardless of whether it actually gets the console semaphore or not.
1411 */
1412 if (console_trylock_for_printk(this_cpu))
1413 console_unlock();
1414
1415 lockdep_on();
1416 out_restore_irqs:
1417 local_irq_restore(flags);
1418
1419 return printed_len;
1420 }
1421 EXPORT_SYMBOL(vprintk_emit);
1422
1423 asmlinkage int vprintk(const char *fmt, va_list args)
1424 {
1425 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1426 }
1427 EXPORT_SYMBOL(vprintk);
1428
1429 asmlinkage int printk_emit(int facility, int level,
1430 const char *dict, size_t dictlen,
1431 const char *fmt, ...)
1432 {
1433 va_list args;
1434 int r;
1435
1436 va_start(args, fmt);
1437 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1438 va_end(args);
1439
1440 return r;
1441 }
1442 EXPORT_SYMBOL(printk_emit);
1443
1444 /**
1445 * printk - print a kernel message
1446 * @fmt: format string
1447 *
1448 * This is printk(). It can be called from any context. We want it to work.
1449 *
1450 * We try to grab the console_lock. If we succeed, it's easy - we log the
1451 * output and call the console drivers. If we fail to get the semaphore, we
1452 * place the output into the log buffer and return. The current holder of
1453 * the console_sem will notice the new output in console_unlock(); and will
1454 * send it to the consoles before releasing the lock.
1455 *
1456 * One effect of this deferred printing is that code which calls printk() and
1457 * then changes console_loglevel may break. This is because console_loglevel
1458 * is inspected when the actual printing occurs.
1459 *
1460 * See also:
1461 * printf(3)
1462 *
1463 * See the vsnprintf() documentation for format string extensions over C99.
1464 */
1465 asmlinkage int printk(const char *fmt, ...)
1466 {
1467 va_list args;
1468 int r;
1469
1470 #ifdef CONFIG_KGDB_KDB
1471 if (unlikely(kdb_trap_printk)) {
1472 va_start(args, fmt);
1473 r = vkdb_printf(fmt, args);
1474 va_end(args);
1475 return r;
1476 }
1477 #endif
1478 va_start(args, fmt);
1479 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1480 va_end(args);
1481
1482 return r;
1483 }
1484 EXPORT_SYMBOL(printk);
1485
1486 #else
1487
1488 #define LOG_LINE_MAX 0
1489 static struct log *log_from_idx(u32 idx) { return NULL; }
1490 static u32 log_next(u32 idx) { return 0; }
1491 static void call_console_drivers(int level, const char *text, size_t len) {}
1492 static size_t msg_print_text(const struct log *msg, bool syslog,
1493 char *buf, size_t size) { return 0; }
1494
1495 #endif /* CONFIG_PRINTK */
1496
1497 static int __add_preferred_console(char *name, int idx, char *options,
1498 char *brl_options)
1499 {
1500 struct console_cmdline *c;
1501 int i;
1502
1503 /*
1504 * See if this tty is not yet registered, and
1505 * if we have a slot free.
1506 */
1507 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1508 if (strcmp(console_cmdline[i].name, name) == 0 &&
1509 console_cmdline[i].index == idx) {
1510 if (!brl_options)
1511 selected_console = i;
1512 return 0;
1513 }
1514 if (i == MAX_CMDLINECONSOLES)
1515 return -E2BIG;
1516 if (!brl_options)
1517 selected_console = i;
1518 c = &console_cmdline[i];
1519 strlcpy(c->name, name, sizeof(c->name));
1520 c->options = options;
1521 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1522 c->brl_options = brl_options;
1523 #endif
1524 c->index = idx;
1525 return 0;
1526 }
1527 /*
1528 * Set up a list of consoles. Called from init/main.c
1529 */
1530 static int __init console_setup(char *str)
1531 {
1532 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1533 char *s, *options, *brl_options = NULL;
1534 int idx;
1535
1536 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1537 if (!memcmp(str, "brl,", 4)) {
1538 brl_options = "";
1539 str += 4;
1540 } else if (!memcmp(str, "brl=", 4)) {
1541 brl_options = str + 4;
1542 str = strchr(brl_options, ',');
1543 if (!str) {
1544 printk(KERN_ERR "need port name after brl=\n");
1545 return 1;
1546 }
1547 *(str++) = 0;
1548 }
1549 #endif
1550
1551 /*
1552 * Decode str into name, index, options.
1553 */
1554 if (str[0] >= '0' && str[0] <= '9') {
1555 strcpy(buf, "ttyS");
1556 strncpy(buf + 4, str, sizeof(buf) - 5);
1557 } else {
1558 strncpy(buf, str, sizeof(buf) - 1);
1559 }
1560 buf[sizeof(buf) - 1] = 0;
1561 if ((options = strchr(str, ',')) != NULL)
1562 *(options++) = 0;
1563 #ifdef __sparc__
1564 if (!strcmp(str, "ttya"))
1565 strcpy(buf, "ttyS0");
1566 if (!strcmp(str, "ttyb"))
1567 strcpy(buf, "ttyS1");
1568 #endif
1569 for (s = buf; *s; s++)
1570 if ((*s >= '0' && *s <= '9') || *s == ',')
1571 break;
1572 idx = simple_strtoul(s, NULL, 10);
1573 *s = 0;
1574
1575 __add_preferred_console(buf, idx, options, brl_options);
1576 console_set_on_cmdline = 1;
1577 return 1;
1578 }
1579 __setup("console=", console_setup);
1580
1581 /**
1582 * add_preferred_console - add a device to the list of preferred consoles.
1583 * @name: device name
1584 * @idx: device index
1585 * @options: options for this console
1586 *
1587 * The last preferred console added will be used for kernel messages
1588 * and stdin/out/err for init. Normally this is used by console_setup
1589 * above to handle user-supplied console arguments; however it can also
1590 * be used by arch-specific code either to override the user or more
1591 * commonly to provide a default console (ie from PROM variables) when
1592 * the user has not supplied one.
1593 */
1594 int add_preferred_console(char *name, int idx, char *options)
1595 {
1596 return __add_preferred_console(name, idx, options, NULL);
1597 }
1598
1599 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1600 {
1601 struct console_cmdline *c;
1602 int i;
1603
1604 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1605 if (strcmp(console_cmdline[i].name, name) == 0 &&
1606 console_cmdline[i].index == idx) {
1607 c = &console_cmdline[i];
1608 strlcpy(c->name, name_new, sizeof(c->name));
1609 c->name[sizeof(c->name) - 1] = 0;
1610 c->options = options;
1611 c->index = idx_new;
1612 return i;
1613 }
1614 /* not found */
1615 return -1;
1616 }
1617
1618 bool console_suspend_enabled = 1;
1619 EXPORT_SYMBOL(console_suspend_enabled);
1620
1621 static int __init console_suspend_disable(char *str)
1622 {
1623 console_suspend_enabled = 0;
1624 return 1;
1625 }
1626 __setup("no_console_suspend", console_suspend_disable);
1627 module_param_named(console_suspend, console_suspend_enabled,
1628 bool, S_IRUGO | S_IWUSR);
1629 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1630 " and hibernate operations");
1631
1632 /**
1633 * suspend_console - suspend the console subsystem
1634 *
1635 * This disables printk() while we go into suspend states
1636 */
1637 void suspend_console(void)
1638 {
1639 if (!console_suspend_enabled)
1640 return;
1641 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1642 console_lock();
1643 console_suspended = 1;
1644 up(&console_sem);
1645 }
1646
1647 void resume_console(void)
1648 {
1649 if (!console_suspend_enabled)
1650 return;
1651 down(&console_sem);
1652 console_suspended = 0;
1653 console_unlock();
1654 }
1655
1656 /**
1657 * console_cpu_notify - print deferred console messages after CPU hotplug
1658 * @self: notifier struct
1659 * @action: CPU hotplug event
1660 * @hcpu: unused
1661 *
1662 * If printk() is called from a CPU that is not online yet, the messages
1663 * will be spooled but will not show up on the console. This function is
1664 * called when a new CPU comes online (or fails to come up), and ensures
1665 * that any such output gets printed.
1666 */
1667 static int __cpuinit console_cpu_notify(struct notifier_block *self,
1668 unsigned long action, void *hcpu)
1669 {
1670 switch (action) {
1671 case CPU_ONLINE:
1672 case CPU_DEAD:
1673 case CPU_DYING:
1674 case CPU_DOWN_FAILED:
1675 case CPU_UP_CANCELED:
1676 console_lock();
1677 console_unlock();
1678 }
1679 return NOTIFY_OK;
1680 }
1681
1682 /**
1683 * console_lock - lock the console system for exclusive use.
1684 *
1685 * Acquires a lock which guarantees that the caller has
1686 * exclusive access to the console system and the console_drivers list.
1687 *
1688 * Can sleep, returns nothing.
1689 */
1690 void console_lock(void)
1691 {
1692 BUG_ON(in_interrupt());
1693 down(&console_sem);
1694 if (console_suspended)
1695 return;
1696 console_locked = 1;
1697 console_may_schedule = 1;
1698 }
1699 EXPORT_SYMBOL(console_lock);
1700
1701 /**
1702 * console_trylock - try to lock the console system for exclusive use.
1703 *
1704 * Tried to acquire a lock which guarantees that the caller has
1705 * exclusive access to the console system and the console_drivers list.
1706 *
1707 * returns 1 on success, and 0 on failure to acquire the lock.
1708 */
1709 int console_trylock(void)
1710 {
1711 if (down_trylock(&console_sem))
1712 return 0;
1713 if (console_suspended) {
1714 up(&console_sem);
1715 return 0;
1716 }
1717 console_locked = 1;
1718 console_may_schedule = 0;
1719 return 1;
1720 }
1721 EXPORT_SYMBOL(console_trylock);
1722
1723 int is_console_locked(void)
1724 {
1725 return console_locked;
1726 }
1727
1728 /*
1729 * Delayed printk version, for scheduler-internal messages:
1730 */
1731 #define PRINTK_BUF_SIZE 512
1732
1733 #define PRINTK_PENDING_WAKEUP 0x01
1734 #define PRINTK_PENDING_SCHED 0x02
1735
1736 static DEFINE_PER_CPU(int, printk_pending);
1737 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
1738
1739 void printk_tick(void)
1740 {
1741 if (__this_cpu_read(printk_pending)) {
1742 int pending = __this_cpu_xchg(printk_pending, 0);
1743 if (pending & PRINTK_PENDING_SCHED) {
1744 char *buf = __get_cpu_var(printk_sched_buf);
1745 printk(KERN_WARNING "[sched_delayed] %s", buf);
1746 }
1747 if (pending & PRINTK_PENDING_WAKEUP)
1748 wake_up_interruptible(&log_wait);
1749 }
1750 }
1751
1752 int printk_needs_cpu(int cpu)
1753 {
1754 if (cpu_is_offline(cpu))
1755 printk_tick();
1756 return __this_cpu_read(printk_pending);
1757 }
1758
1759 void wake_up_klogd(void)
1760 {
1761 if (waitqueue_active(&log_wait))
1762 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
1763 }
1764
1765 /* the next printk record to write to the console */
1766 static u64 console_seq;
1767 static u32 console_idx;
1768
1769 /**
1770 * console_unlock - unlock the console system
1771 *
1772 * Releases the console_lock which the caller holds on the console system
1773 * and the console driver list.
1774 *
1775 * While the console_lock was held, console output may have been buffered
1776 * by printk(). If this is the case, console_unlock(); emits
1777 * the output prior to releasing the lock.
1778 *
1779 * If there is output waiting, we wake /dev/kmsg and syslog() users.
1780 *
1781 * console_unlock(); may be called from any context.
1782 */
1783 void console_unlock(void)
1784 {
1785 static u64 seen_seq;
1786 unsigned long flags;
1787 bool wake_klogd = false;
1788 bool retry;
1789
1790 if (console_suspended) {
1791 up(&console_sem);
1792 return;
1793 }
1794
1795 console_may_schedule = 0;
1796
1797 again:
1798 for (;;) {
1799 struct log *msg;
1800 static char text[LOG_LINE_MAX];
1801 size_t len;
1802 int level;
1803
1804 raw_spin_lock_irqsave(&logbuf_lock, flags);
1805 if (seen_seq != log_next_seq) {
1806 wake_klogd = true;
1807 seen_seq = log_next_seq;
1808 }
1809
1810 if (console_seq < log_first_seq) {
1811 /* messages are gone, move to first one */
1812 console_seq = log_first_seq;
1813 console_idx = log_first_idx;
1814 }
1815
1816 if (console_seq == log_next_seq)
1817 break;
1818
1819 msg = log_from_idx(console_idx);
1820 level = msg->level & 7;
1821
1822 len = msg_print_text(msg, false, text, sizeof(text));
1823
1824 console_idx = log_next(console_idx);
1825 console_seq++;
1826 raw_spin_unlock(&logbuf_lock);
1827
1828 stop_critical_timings(); /* don't trace print latency */
1829 call_console_drivers(level, text, len);
1830 start_critical_timings();
1831 local_irq_restore(flags);
1832 }
1833 console_locked = 0;
1834
1835 /* Release the exclusive_console once it is used */
1836 if (unlikely(exclusive_console))
1837 exclusive_console = NULL;
1838
1839 raw_spin_unlock(&logbuf_lock);
1840
1841 up(&console_sem);
1842
1843 /*
1844 * Someone could have filled up the buffer again, so re-check if there's
1845 * something to flush. In case we cannot trylock the console_sem again,
1846 * there's a new owner and the console_unlock() from them will do the
1847 * flush, no worries.
1848 */
1849 raw_spin_lock(&logbuf_lock);
1850 retry = console_seq != log_next_seq;
1851 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1852
1853 if (retry && console_trylock())
1854 goto again;
1855
1856 if (wake_klogd)
1857 wake_up_klogd();
1858 }
1859 EXPORT_SYMBOL(console_unlock);
1860
1861 /**
1862 * console_conditional_schedule - yield the CPU if required
1863 *
1864 * If the console code is currently allowed to sleep, and
1865 * if this CPU should yield the CPU to another task, do
1866 * so here.
1867 *
1868 * Must be called within console_lock();.
1869 */
1870 void __sched console_conditional_schedule(void)
1871 {
1872 if (console_may_schedule)
1873 cond_resched();
1874 }
1875 EXPORT_SYMBOL(console_conditional_schedule);
1876
1877 void console_unblank(void)
1878 {
1879 struct console *c;
1880
1881 /*
1882 * console_unblank can no longer be called in interrupt context unless
1883 * oops_in_progress is set to 1..
1884 */
1885 if (oops_in_progress) {
1886 if (down_trylock(&console_sem) != 0)
1887 return;
1888 } else
1889 console_lock();
1890
1891 console_locked = 1;
1892 console_may_schedule = 0;
1893 for_each_console(c)
1894 if ((c->flags & CON_ENABLED) && c->unblank)
1895 c->unblank();
1896 console_unlock();
1897 }
1898
1899 /*
1900 * Return the console tty driver structure and its associated index
1901 */
1902 struct tty_driver *console_device(int *index)
1903 {
1904 struct console *c;
1905 struct tty_driver *driver = NULL;
1906
1907 console_lock();
1908 for_each_console(c) {
1909 if (!c->device)
1910 continue;
1911 driver = c->device(c, index);
1912 if (driver)
1913 break;
1914 }
1915 console_unlock();
1916 return driver;
1917 }
1918
1919 /*
1920 * Prevent further output on the passed console device so that (for example)
1921 * serial drivers can disable console output before suspending a port, and can
1922 * re-enable output afterwards.
1923 */
1924 void console_stop(struct console *console)
1925 {
1926 console_lock();
1927 console->flags &= ~CON_ENABLED;
1928 console_unlock();
1929 }
1930 EXPORT_SYMBOL(console_stop);
1931
1932 void console_start(struct console *console)
1933 {
1934 console_lock();
1935 console->flags |= CON_ENABLED;
1936 console_unlock();
1937 }
1938 EXPORT_SYMBOL(console_start);
1939
1940 static int __read_mostly keep_bootcon;
1941
1942 static int __init keep_bootcon_setup(char *str)
1943 {
1944 keep_bootcon = 1;
1945 printk(KERN_INFO "debug: skip boot console de-registration.\n");
1946
1947 return 0;
1948 }
1949
1950 early_param("keep_bootcon", keep_bootcon_setup);
1951
1952 /*
1953 * The console driver calls this routine during kernel initialization
1954 * to register the console printing procedure with printk() and to
1955 * print any messages that were printed by the kernel before the
1956 * console driver was initialized.
1957 *
1958 * This can happen pretty early during the boot process (because of
1959 * early_printk) - sometimes before setup_arch() completes - be careful
1960 * of what kernel features are used - they may not be initialised yet.
1961 *
1962 * There are two types of consoles - bootconsoles (early_printk) and
1963 * "real" consoles (everything which is not a bootconsole) which are
1964 * handled differently.
1965 * - Any number of bootconsoles can be registered at any time.
1966 * - As soon as a "real" console is registered, all bootconsoles
1967 * will be unregistered automatically.
1968 * - Once a "real" console is registered, any attempt to register a
1969 * bootconsoles will be rejected
1970 */
1971 void register_console(struct console *newcon)
1972 {
1973 int i;
1974 unsigned long flags;
1975 struct console *bcon = NULL;
1976
1977 /*
1978 * before we register a new CON_BOOT console, make sure we don't
1979 * already have a valid console
1980 */
1981 if (console_drivers && newcon->flags & CON_BOOT) {
1982 /* find the last or real console */
1983 for_each_console(bcon) {
1984 if (!(bcon->flags & CON_BOOT)) {
1985 printk(KERN_INFO "Too late to register bootconsole %s%d\n",
1986 newcon->name, newcon->index);
1987 return;
1988 }
1989 }
1990 }
1991
1992 if (console_drivers && console_drivers->flags & CON_BOOT)
1993 bcon = console_drivers;
1994
1995 if (preferred_console < 0 || bcon || !console_drivers)
1996 preferred_console = selected_console;
1997
1998 if (newcon->early_setup)
1999 newcon->early_setup();
2000
2001 /*
2002 * See if we want to use this console driver. If we
2003 * didn't select a console we take the first one
2004 * that registers here.
2005 */
2006 if (preferred_console < 0) {
2007 if (newcon->index < 0)
2008 newcon->index = 0;
2009 if (newcon->setup == NULL ||
2010 newcon->setup(newcon, NULL) == 0) {
2011 newcon->flags |= CON_ENABLED;
2012 if (newcon->device) {
2013 newcon->flags |= CON_CONSDEV;
2014 preferred_console = 0;
2015 }
2016 }
2017 }
2018
2019 /*
2020 * See if this console matches one we selected on
2021 * the command line.
2022 */
2023 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];
2024 i++) {
2025 if (strcmp(console_cmdline[i].name, newcon->name) != 0)
2026 continue;
2027 if (newcon->index >= 0 &&
2028 newcon->index != console_cmdline[i].index)
2029 continue;
2030 if (newcon->index < 0)
2031 newcon->index = console_cmdline[i].index;
2032 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2033 if (console_cmdline[i].brl_options) {
2034 newcon->flags |= CON_BRL;
2035 braille_register_console(newcon,
2036 console_cmdline[i].index,
2037 console_cmdline[i].options,
2038 console_cmdline[i].brl_options);
2039 return;
2040 }
2041 #endif
2042 if (newcon->setup &&
2043 newcon->setup(newcon, console_cmdline[i].options) != 0)
2044 break;
2045 newcon->flags |= CON_ENABLED;
2046 newcon->index = console_cmdline[i].index;
2047 if (i == selected_console) {
2048 newcon->flags |= CON_CONSDEV;
2049 preferred_console = selected_console;
2050 }
2051 break;
2052 }
2053
2054 if (!(newcon->flags & CON_ENABLED))
2055 return;
2056
2057 /*
2058 * If we have a bootconsole, and are switching to a real console,
2059 * don't print everything out again, since when the boot console, and
2060 * the real console are the same physical device, it's annoying to
2061 * see the beginning boot messages twice
2062 */
2063 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2064 newcon->flags &= ~CON_PRINTBUFFER;
2065
2066 /*
2067 * Put this console in the list - keep the
2068 * preferred driver at the head of the list.
2069 */
2070 console_lock();
2071 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2072 newcon->next = console_drivers;
2073 console_drivers = newcon;
2074 if (newcon->next)
2075 newcon->next->flags &= ~CON_CONSDEV;
2076 } else {
2077 newcon->next = console_drivers->next;
2078 console_drivers->next = newcon;
2079 }
2080 if (newcon->flags & CON_PRINTBUFFER) {
2081 /*
2082 * console_unlock(); will print out the buffered messages
2083 * for us.
2084 */
2085 raw_spin_lock_irqsave(&logbuf_lock, flags);
2086 console_seq = syslog_seq;
2087 console_idx = syslog_idx;
2088 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2089 /*
2090 * We're about to replay the log buffer. Only do this to the
2091 * just-registered console to avoid excessive message spam to
2092 * the already-registered consoles.
2093 */
2094 exclusive_console = newcon;
2095 }
2096 console_unlock();
2097 console_sysfs_notify();
2098
2099 /*
2100 * By unregistering the bootconsoles after we enable the real console
2101 * we get the "console xxx enabled" message on all the consoles -
2102 * boot consoles, real consoles, etc - this is to ensure that end
2103 * users know there might be something in the kernel's log buffer that
2104 * went to the bootconsole (that they do not see on the real console)
2105 */
2106 if (bcon &&
2107 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2108 !keep_bootcon) {
2109 /* we need to iterate through twice, to make sure we print
2110 * everything out, before we unregister the console(s)
2111 */
2112 printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n",
2113 newcon->name, newcon->index);
2114 for_each_console(bcon)
2115 if (bcon->flags & CON_BOOT)
2116 unregister_console(bcon);
2117 } else {
2118 printk(KERN_INFO "%sconsole [%s%d] enabled\n",
2119 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2120 newcon->name, newcon->index);
2121 }
2122 }
2123 EXPORT_SYMBOL(register_console);
2124
2125 int unregister_console(struct console *console)
2126 {
2127 struct console *a, *b;
2128 int res = 1;
2129
2130 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2131 if (console->flags & CON_BRL)
2132 return braille_unregister_console(console);
2133 #endif
2134
2135 console_lock();
2136 if (console_drivers == console) {
2137 console_drivers=console->next;
2138 res = 0;
2139 } else if (console_drivers) {
2140 for (a=console_drivers->next, b=console_drivers ;
2141 a; b=a, a=b->next) {
2142 if (a == console) {
2143 b->next = a->next;
2144 res = 0;
2145 break;
2146 }
2147 }
2148 }
2149
2150 /*
2151 * If this isn't the last console and it has CON_CONSDEV set, we
2152 * need to set it on the next preferred console.
2153 */
2154 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2155 console_drivers->flags |= CON_CONSDEV;
2156
2157 console_unlock();
2158 console_sysfs_notify();
2159 return res;
2160 }
2161 EXPORT_SYMBOL(unregister_console);
2162
2163 static int __init printk_late_init(void)
2164 {
2165 struct console *con;
2166
2167 for_each_console(con) {
2168 if (!keep_bootcon && con->flags & CON_BOOT) {
2169 printk(KERN_INFO "turn off boot console %s%d\n",
2170 con->name, con->index);
2171 unregister_console(con);
2172 }
2173 }
2174 hotcpu_notifier(console_cpu_notify, 0);
2175 return 0;
2176 }
2177 late_initcall(printk_late_init);
2178
2179 #if defined CONFIG_PRINTK
2180
2181 int printk_sched(const char *fmt, ...)
2182 {
2183 unsigned long flags;
2184 va_list args;
2185 char *buf;
2186 int r;
2187
2188 local_irq_save(flags);
2189 buf = __get_cpu_var(printk_sched_buf);
2190
2191 va_start(args, fmt);
2192 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2193 va_end(args);
2194
2195 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2196 local_irq_restore(flags);
2197
2198 return r;
2199 }
2200
2201 /*
2202 * printk rate limiting, lifted from the networking subsystem.
2203 *
2204 * This enforces a rate limit: not more than 10 kernel messages
2205 * every 5s to make a denial-of-service attack impossible.
2206 */
2207 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2208
2209 int __printk_ratelimit(const char *func)
2210 {
2211 return ___ratelimit(&printk_ratelimit_state, func);
2212 }
2213 EXPORT_SYMBOL(__printk_ratelimit);
2214
2215 /**
2216 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2217 * @caller_jiffies: pointer to caller's state
2218 * @interval_msecs: minimum interval between prints
2219 *
2220 * printk_timed_ratelimit() returns true if more than @interval_msecs
2221 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2222 * returned true.
2223 */
2224 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2225 unsigned int interval_msecs)
2226 {
2227 if (*caller_jiffies == 0
2228 || !time_in_range(jiffies, *caller_jiffies,
2229 *caller_jiffies
2230 + msecs_to_jiffies(interval_msecs))) {
2231 *caller_jiffies = jiffies;
2232 return true;
2233 }
2234 return false;
2235 }
2236 EXPORT_SYMBOL(printk_timed_ratelimit);
2237
2238 static DEFINE_SPINLOCK(dump_list_lock);
2239 static LIST_HEAD(dump_list);
2240
2241 /**
2242 * kmsg_dump_register - register a kernel log dumper.
2243 * @dumper: pointer to the kmsg_dumper structure
2244 *
2245 * Adds a kernel log dumper to the system. The dump callback in the
2246 * structure will be called when the kernel oopses or panics and must be
2247 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2248 */
2249 int kmsg_dump_register(struct kmsg_dumper *dumper)
2250 {
2251 unsigned long flags;
2252 int err = -EBUSY;
2253
2254 /* The dump callback needs to be set */
2255 if (!dumper->dump)
2256 return -EINVAL;
2257
2258 spin_lock_irqsave(&dump_list_lock, flags);
2259 /* Don't allow registering multiple times */
2260 if (!dumper->registered) {
2261 dumper->registered = 1;
2262 list_add_tail_rcu(&dumper->list, &dump_list);
2263 err = 0;
2264 }
2265 spin_unlock_irqrestore(&dump_list_lock, flags);
2266
2267 return err;
2268 }
2269 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2270
2271 /**
2272 * kmsg_dump_unregister - unregister a kmsg dumper.
2273 * @dumper: pointer to the kmsg_dumper structure
2274 *
2275 * Removes a dump device from the system. Returns zero on success and
2276 * %-EINVAL otherwise.
2277 */
2278 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2279 {
2280 unsigned long flags;
2281 int err = -EINVAL;
2282
2283 spin_lock_irqsave(&dump_list_lock, flags);
2284 if (dumper->registered) {
2285 dumper->registered = 0;
2286 list_del_rcu(&dumper->list);
2287 err = 0;
2288 }
2289 spin_unlock_irqrestore(&dump_list_lock, flags);
2290 synchronize_rcu();
2291
2292 return err;
2293 }
2294 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2295
2296 static bool always_kmsg_dump;
2297 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2298
2299 /**
2300 * kmsg_dump - dump kernel log to kernel message dumpers.
2301 * @reason: the reason (oops, panic etc) for dumping
2302 *
2303 * Iterate through each of the dump devices and call the oops/panic
2304 * callbacks with the log buffer.
2305 */
2306 void kmsg_dump(enum kmsg_dump_reason reason)
2307 {
2308 u64 idx;
2309 struct kmsg_dumper *dumper;
2310 const char *s1, *s2;
2311 unsigned long l1, l2;
2312 unsigned long flags;
2313
2314 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2315 return;
2316
2317 /* Theoretically, the log could move on after we do this, but
2318 there's not a lot we can do about that. The new messages
2319 will overwrite the start of what we dump. */
2320
2321 raw_spin_lock_irqsave(&logbuf_lock, flags);
2322 if (syslog_seq < log_first_seq)
2323 idx = syslog_idx;
2324 else
2325 idx = log_first_idx;
2326
2327 if (idx > log_next_idx) {
2328 s1 = log_buf;
2329 l1 = log_next_idx;
2330
2331 s2 = log_buf + idx;
2332 l2 = log_buf_len - idx;
2333 } else {
2334 s1 = "";
2335 l1 = 0;
2336
2337 s2 = log_buf + idx;
2338 l2 = log_next_idx - idx;
2339 }
2340 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2341
2342 rcu_read_lock();
2343 list_for_each_entry_rcu(dumper, &dump_list, list)
2344 dumper->dump(dumper, reason, s1, l1, s2, l2);
2345 rcu_read_unlock();
2346 }
2347 #endif
This page took 0.078019 seconds and 5 git commands to generate.