Merge tag 'virtio-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty...
[deliverable/linux.git] / kernel / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45
46 #include <asm/uaccess.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/printk.h>
50
51 /*
52 * Architectures can override it:
53 */
54 void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...)
55 {
56 }
57
58 /* printk's without a loglevel use this.. */
59 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
60
61 /* We show everything that is MORE important than this.. */
62 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
63 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
64
65 DECLARE_WAIT_QUEUE_HEAD(log_wait);
66
67 int console_printk[4] = {
68 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
69 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
70 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
71 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
72 };
73
74 /*
75 * Low level drivers may need that to know if they can schedule in
76 * their unblank() callback or not. So let's export it.
77 */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80
81 /*
82 * console_sem protects the console_drivers list, and also
83 * provides serialisation for access to the entire console
84 * driver system.
85 */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89
90 /*
91 * This is used for debugging the mess that is the VT code by
92 * keeping track if we have the console semaphore held. It's
93 * definitely not the perfect debug tool (we don't know if _WE_
94 * hold it are racing, but it helps tracking those weird code
95 * path in the console code where we end up in places I want
96 * locked without the console sempahore held
97 */
98 static int console_locked, console_suspended;
99
100 /*
101 * If exclusive_console is non-NULL then only this console is to be printed to.
102 */
103 static struct console *exclusive_console;
104
105 /*
106 * Array of consoles built from command line options (console=)
107 */
108 struct console_cmdline
109 {
110 char name[8]; /* Name of the driver */
111 int index; /* Minor dev. to use */
112 char *options; /* Options for the driver */
113 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
114 char *brl_options; /* Options for braille driver */
115 #endif
116 };
117
118 #define MAX_CMDLINECONSOLES 8
119
120 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
121 static int selected_console = -1;
122 static int preferred_console = -1;
123 int console_set_on_cmdline;
124 EXPORT_SYMBOL(console_set_on_cmdline);
125
126 /* Flag: console code may call schedule() */
127 static int console_may_schedule;
128
129 /*
130 * The printk log buffer consists of a chain of concatenated variable
131 * length records. Every record starts with a record header, containing
132 * the overall length of the record.
133 *
134 * The heads to the first and last entry in the buffer, as well as the
135 * sequence numbers of these both entries are maintained when messages
136 * are stored..
137 *
138 * If the heads indicate available messages, the length in the header
139 * tells the start next message. A length == 0 for the next message
140 * indicates a wrap-around to the beginning of the buffer.
141 *
142 * Every record carries the monotonic timestamp in microseconds, as well as
143 * the standard userspace syslog level and syslog facility. The usual
144 * kernel messages use LOG_KERN; userspace-injected messages always carry
145 * a matching syslog facility, by default LOG_USER. The origin of every
146 * message can be reliably determined that way.
147 *
148 * The human readable log message directly follows the message header. The
149 * length of the message text is stored in the header, the stored message
150 * is not terminated.
151 *
152 * Optionally, a message can carry a dictionary of properties (key/value pairs),
153 * to provide userspace with a machine-readable message context.
154 *
155 * Examples for well-defined, commonly used property names are:
156 * DEVICE=b12:8 device identifier
157 * b12:8 block dev_t
158 * c127:3 char dev_t
159 * n8 netdev ifindex
160 * +sound:card0 subsystem:devname
161 * SUBSYSTEM=pci driver-core subsystem name
162 *
163 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
164 * follows directly after a '=' character. Every property is terminated by
165 * a '\0' character. The last property is not terminated.
166 *
167 * Example of a message structure:
168 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
169 * 0008 34 00 record is 52 bytes long
170 * 000a 0b 00 text is 11 bytes long
171 * 000c 1f 00 dictionary is 23 bytes long
172 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
173 * 0010 69 74 27 73 20 61 20 6c "it's a l"
174 * 69 6e 65 "ine"
175 * 001b 44 45 56 49 43 "DEVIC"
176 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
177 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
178 * 67 "g"
179 * 0032 00 00 00 padding to next message header
180 *
181 * The 'struct log' buffer header must never be directly exported to
182 * userspace, it is a kernel-private implementation detail that might
183 * need to be changed in the future, when the requirements change.
184 *
185 * /dev/kmsg exports the structured data in the following line format:
186 * "level,sequnum,timestamp;<message text>\n"
187 *
188 * The optional key/value pairs are attached as continuation lines starting
189 * with a space character and terminated by a newline. All possible
190 * non-prinatable characters are escaped in the "\xff" notation.
191 *
192 * Users of the export format should ignore possible additional values
193 * separated by ',', and find the message after the ';' character.
194 */
195
196 enum log_flags {
197 LOG_DEFAULT = 0,
198 LOG_NOCONS = 1, /* already flushed, do not print to console */
199 };
200
201 struct log {
202 u64 ts_nsec; /* timestamp in nanoseconds */
203 u16 len; /* length of entire record */
204 u16 text_len; /* length of text buffer */
205 u16 dict_len; /* length of dictionary buffer */
206 u8 facility; /* syslog facility */
207 u8 flags:5; /* internal record flags */
208 u8 level:3; /* syslog level */
209 };
210
211 /*
212 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
213 * used in interesting ways to provide interlocking in console_unlock();
214 */
215 static DEFINE_RAW_SPINLOCK(logbuf_lock);
216
217 /* the next printk record to read by syslog(READ) or /proc/kmsg */
218 static u64 syslog_seq;
219 static u32 syslog_idx;
220
221 /* index and sequence number of the first record stored in the buffer */
222 static u64 log_first_seq;
223 static u32 log_first_idx;
224
225 /* index and sequence number of the next record to store in the buffer */
226 static u64 log_next_seq;
227 #ifdef CONFIG_PRINTK
228 static u32 log_next_idx;
229
230 /* the next printk record to read after the last 'clear' command */
231 static u64 clear_seq;
232 static u32 clear_idx;
233
234 #define LOG_LINE_MAX 1024
235
236 /* record buffer */
237 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
238 #define LOG_ALIGN 4
239 #else
240 #define LOG_ALIGN __alignof__(struct log)
241 #endif
242 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
243 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
244 static char *log_buf = __log_buf;
245 static u32 log_buf_len = __LOG_BUF_LEN;
246
247 /* cpu currently holding logbuf_lock */
248 static volatile unsigned int logbuf_cpu = UINT_MAX;
249
250 /* human readable text of the record */
251 static char *log_text(const struct log *msg)
252 {
253 return (char *)msg + sizeof(struct log);
254 }
255
256 /* optional key/value pair dictionary attached to the record */
257 static char *log_dict(const struct log *msg)
258 {
259 return (char *)msg + sizeof(struct log) + msg->text_len;
260 }
261
262 /* get record by index; idx must point to valid msg */
263 static struct log *log_from_idx(u32 idx)
264 {
265 struct log *msg = (struct log *)(log_buf + idx);
266
267 /*
268 * A length == 0 record is the end of buffer marker. Wrap around and
269 * read the message at the start of the buffer.
270 */
271 if (!msg->len)
272 return (struct log *)log_buf;
273 return msg;
274 }
275
276 /* get next record; idx must point to valid msg */
277 static u32 log_next(u32 idx)
278 {
279 struct log *msg = (struct log *)(log_buf + idx);
280
281 /* length == 0 indicates the end of the buffer; wrap */
282 /*
283 * A length == 0 record is the end of buffer marker. Wrap around and
284 * read the message at the start of the buffer as *this* one, and
285 * return the one after that.
286 */
287 if (!msg->len) {
288 msg = (struct log *)log_buf;
289 return msg->len;
290 }
291 return idx + msg->len;
292 }
293
294 /* insert record into the buffer, discard old ones, update heads */
295 static void log_store(int facility, int level,
296 enum log_flags flags, u64 ts_nsec,
297 const char *dict, u16 dict_len,
298 const char *text, u16 text_len)
299 {
300 struct log *msg;
301 u32 size, pad_len;
302
303 /* number of '\0' padding bytes to next message */
304 size = sizeof(struct log) + text_len + dict_len;
305 pad_len = (-size) & (LOG_ALIGN - 1);
306 size += pad_len;
307
308 while (log_first_seq < log_next_seq) {
309 u32 free;
310
311 if (log_next_idx > log_first_idx)
312 free = max(log_buf_len - log_next_idx, log_first_idx);
313 else
314 free = log_first_idx - log_next_idx;
315
316 if (free > size + sizeof(struct log))
317 break;
318
319 /* drop old messages until we have enough contiuous space */
320 log_first_idx = log_next(log_first_idx);
321 log_first_seq++;
322 }
323
324 if (log_next_idx + size + sizeof(struct log) >= log_buf_len) {
325 /*
326 * This message + an additional empty header does not fit
327 * at the end of the buffer. Add an empty header with len == 0
328 * to signify a wrap around.
329 */
330 memset(log_buf + log_next_idx, 0, sizeof(struct log));
331 log_next_idx = 0;
332 }
333
334 /* fill message */
335 msg = (struct log *)(log_buf + log_next_idx);
336 memcpy(log_text(msg), text, text_len);
337 msg->text_len = text_len;
338 memcpy(log_dict(msg), dict, dict_len);
339 msg->dict_len = dict_len;
340 msg->facility = facility;
341 msg->level = level & 7;
342 msg->flags = flags & 0x1f;
343 if (ts_nsec > 0)
344 msg->ts_nsec = ts_nsec;
345 else
346 msg->ts_nsec = local_clock();
347 memset(log_dict(msg) + dict_len, 0, pad_len);
348 msg->len = sizeof(struct log) + text_len + dict_len + pad_len;
349
350 /* insert message */
351 log_next_idx += msg->len;
352 log_next_seq++;
353 }
354
355 /* /dev/kmsg - userspace message inject/listen interface */
356 struct devkmsg_user {
357 u64 seq;
358 u32 idx;
359 struct mutex lock;
360 char buf[8192];
361 };
362
363 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
364 unsigned long count, loff_t pos)
365 {
366 char *buf, *line;
367 int i;
368 int level = default_message_loglevel;
369 int facility = 1; /* LOG_USER */
370 size_t len = iov_length(iv, count);
371 ssize_t ret = len;
372
373 if (len > LOG_LINE_MAX)
374 return -EINVAL;
375 buf = kmalloc(len+1, GFP_KERNEL);
376 if (buf == NULL)
377 return -ENOMEM;
378
379 line = buf;
380 for (i = 0; i < count; i++) {
381 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len))
382 goto out;
383 line += iv[i].iov_len;
384 }
385
386 /*
387 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
388 * the decimal value represents 32bit, the lower 3 bit are the log
389 * level, the rest are the log facility.
390 *
391 * If no prefix or no userspace facility is specified, we
392 * enforce LOG_USER, to be able to reliably distinguish
393 * kernel-generated messages from userspace-injected ones.
394 */
395 line = buf;
396 if (line[0] == '<') {
397 char *endp = NULL;
398
399 i = simple_strtoul(line+1, &endp, 10);
400 if (endp && endp[0] == '>') {
401 level = i & 7;
402 if (i >> 3)
403 facility = i >> 3;
404 endp++;
405 len -= endp - line;
406 line = endp;
407 }
408 }
409 line[len] = '\0';
410
411 printk_emit(facility, level, NULL, 0, "%s", line);
412 out:
413 kfree(buf);
414 return ret;
415 }
416
417 static ssize_t devkmsg_read(struct file *file, char __user *buf,
418 size_t count, loff_t *ppos)
419 {
420 struct devkmsg_user *user = file->private_data;
421 struct log *msg;
422 u64 ts_usec;
423 size_t i;
424 size_t len;
425 ssize_t ret;
426
427 if (!user)
428 return -EBADF;
429
430 ret = mutex_lock_interruptible(&user->lock);
431 if (ret)
432 return ret;
433 raw_spin_lock(&logbuf_lock);
434 while (user->seq == log_next_seq) {
435 if (file->f_flags & O_NONBLOCK) {
436 ret = -EAGAIN;
437 raw_spin_unlock(&logbuf_lock);
438 goto out;
439 }
440
441 raw_spin_unlock(&logbuf_lock);
442 ret = wait_event_interruptible(log_wait,
443 user->seq != log_next_seq);
444 if (ret)
445 goto out;
446 raw_spin_lock(&logbuf_lock);
447 }
448
449 if (user->seq < log_first_seq) {
450 /* our last seen message is gone, return error and reset */
451 user->idx = log_first_idx;
452 user->seq = log_first_seq;
453 ret = -EPIPE;
454 raw_spin_unlock(&logbuf_lock);
455 goto out;
456 }
457
458 msg = log_from_idx(user->idx);
459 ts_usec = msg->ts_nsec;
460 do_div(ts_usec, 1000);
461 len = sprintf(user->buf, "%u,%llu,%llu;",
462 (msg->facility << 3) | msg->level, user->seq, ts_usec);
463
464 /* escape non-printable characters */
465 for (i = 0; i < msg->text_len; i++) {
466 unsigned char c = log_text(msg)[i];
467
468 if (c < ' ' || c >= 128)
469 len += sprintf(user->buf + len, "\\x%02x", c);
470 else
471 user->buf[len++] = c;
472 }
473 user->buf[len++] = '\n';
474
475 if (msg->dict_len) {
476 bool line = true;
477
478 for (i = 0; i < msg->dict_len; i++) {
479 unsigned char c = log_dict(msg)[i];
480
481 if (line) {
482 user->buf[len++] = ' ';
483 line = false;
484 }
485
486 if (c == '\0') {
487 user->buf[len++] = '\n';
488 line = true;
489 continue;
490 }
491
492 if (c < ' ' || c >= 128) {
493 len += sprintf(user->buf + len, "\\x%02x", c);
494 continue;
495 }
496
497 user->buf[len++] = c;
498 }
499 user->buf[len++] = '\n';
500 }
501
502 user->idx = log_next(user->idx);
503 user->seq++;
504 raw_spin_unlock(&logbuf_lock);
505
506 if (len > count) {
507 ret = -EINVAL;
508 goto out;
509 }
510
511 if (copy_to_user(buf, user->buf, len)) {
512 ret = -EFAULT;
513 goto out;
514 }
515 ret = len;
516 out:
517 mutex_unlock(&user->lock);
518 return ret;
519 }
520
521 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
522 {
523 struct devkmsg_user *user = file->private_data;
524 loff_t ret = 0;
525
526 if (!user)
527 return -EBADF;
528 if (offset)
529 return -ESPIPE;
530
531 raw_spin_lock(&logbuf_lock);
532 switch (whence) {
533 case SEEK_SET:
534 /* the first record */
535 user->idx = log_first_idx;
536 user->seq = log_first_seq;
537 break;
538 case SEEK_DATA:
539 /*
540 * The first record after the last SYSLOG_ACTION_CLEAR,
541 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
542 * changes no global state, and does not clear anything.
543 */
544 user->idx = clear_idx;
545 user->seq = clear_seq;
546 break;
547 case SEEK_END:
548 /* after the last record */
549 user->idx = log_next_idx;
550 user->seq = log_next_seq;
551 break;
552 default:
553 ret = -EINVAL;
554 }
555 raw_spin_unlock(&logbuf_lock);
556 return ret;
557 }
558
559 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
560 {
561 struct devkmsg_user *user = file->private_data;
562 int ret = 0;
563
564 if (!user)
565 return POLLERR|POLLNVAL;
566
567 poll_wait(file, &log_wait, wait);
568
569 raw_spin_lock(&logbuf_lock);
570 if (user->seq < log_next_seq) {
571 /* return error when data has vanished underneath us */
572 if (user->seq < log_first_seq)
573 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
574 ret = POLLIN|POLLRDNORM;
575 }
576 raw_spin_unlock(&logbuf_lock);
577
578 return ret;
579 }
580
581 static int devkmsg_open(struct inode *inode, struct file *file)
582 {
583 struct devkmsg_user *user;
584 int err;
585
586 /* write-only does not need any file context */
587 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
588 return 0;
589
590 err = security_syslog(SYSLOG_ACTION_READ_ALL);
591 if (err)
592 return err;
593
594 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
595 if (!user)
596 return -ENOMEM;
597
598 mutex_init(&user->lock);
599
600 raw_spin_lock(&logbuf_lock);
601 user->idx = log_first_idx;
602 user->seq = log_first_seq;
603 raw_spin_unlock(&logbuf_lock);
604
605 file->private_data = user;
606 return 0;
607 }
608
609 static int devkmsg_release(struct inode *inode, struct file *file)
610 {
611 struct devkmsg_user *user = file->private_data;
612
613 if (!user)
614 return 0;
615
616 mutex_destroy(&user->lock);
617 kfree(user);
618 return 0;
619 }
620
621 const struct file_operations kmsg_fops = {
622 .open = devkmsg_open,
623 .read = devkmsg_read,
624 .aio_write = devkmsg_writev,
625 .llseek = devkmsg_llseek,
626 .poll = devkmsg_poll,
627 .release = devkmsg_release,
628 };
629
630 #ifdef CONFIG_KEXEC
631 /*
632 * This appends the listed symbols to /proc/vmcoreinfo
633 *
634 * /proc/vmcoreinfo is used by various utiilties, like crash and makedumpfile to
635 * obtain access to symbols that are otherwise very difficult to locate. These
636 * symbols are specifically used so that utilities can access and extract the
637 * dmesg log from a vmcore file after a crash.
638 */
639 void log_buf_kexec_setup(void)
640 {
641 VMCOREINFO_SYMBOL(log_buf);
642 VMCOREINFO_SYMBOL(log_buf_len);
643 VMCOREINFO_SYMBOL(log_first_idx);
644 VMCOREINFO_SYMBOL(log_next_idx);
645 }
646 #endif
647
648 /* requested log_buf_len from kernel cmdline */
649 static unsigned long __initdata new_log_buf_len;
650
651 /* save requested log_buf_len since it's too early to process it */
652 static int __init log_buf_len_setup(char *str)
653 {
654 unsigned size = memparse(str, &str);
655
656 if (size)
657 size = roundup_pow_of_two(size);
658 if (size > log_buf_len)
659 new_log_buf_len = size;
660
661 return 0;
662 }
663 early_param("log_buf_len", log_buf_len_setup);
664
665 void __init setup_log_buf(int early)
666 {
667 unsigned long flags;
668 char *new_log_buf;
669 int free;
670
671 if (!new_log_buf_len)
672 return;
673
674 if (early) {
675 unsigned long mem;
676
677 mem = memblock_alloc(new_log_buf_len, PAGE_SIZE);
678 if (!mem)
679 return;
680 new_log_buf = __va(mem);
681 } else {
682 new_log_buf = alloc_bootmem_nopanic(new_log_buf_len);
683 }
684
685 if (unlikely(!new_log_buf)) {
686 pr_err("log_buf_len: %ld bytes not available\n",
687 new_log_buf_len);
688 return;
689 }
690
691 raw_spin_lock_irqsave(&logbuf_lock, flags);
692 log_buf_len = new_log_buf_len;
693 log_buf = new_log_buf;
694 new_log_buf_len = 0;
695 free = __LOG_BUF_LEN - log_next_idx;
696 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
697 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
698
699 pr_info("log_buf_len: %d\n", log_buf_len);
700 pr_info("early log buf free: %d(%d%%)\n",
701 free, (free * 100) / __LOG_BUF_LEN);
702 }
703
704 #ifdef CONFIG_BOOT_PRINTK_DELAY
705
706 static int boot_delay; /* msecs delay after each printk during bootup */
707 static unsigned long long loops_per_msec; /* based on boot_delay */
708
709 static int __init boot_delay_setup(char *str)
710 {
711 unsigned long lpj;
712
713 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
714 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
715
716 get_option(&str, &boot_delay);
717 if (boot_delay > 10 * 1000)
718 boot_delay = 0;
719
720 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
721 "HZ: %d, loops_per_msec: %llu\n",
722 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
723 return 1;
724 }
725 __setup("boot_delay=", boot_delay_setup);
726
727 static void boot_delay_msec(void)
728 {
729 unsigned long long k;
730 unsigned long timeout;
731
732 if (boot_delay == 0 || system_state != SYSTEM_BOOTING)
733 return;
734
735 k = (unsigned long long)loops_per_msec * boot_delay;
736
737 timeout = jiffies + msecs_to_jiffies(boot_delay);
738 while (k) {
739 k--;
740 cpu_relax();
741 /*
742 * use (volatile) jiffies to prevent
743 * compiler reduction; loop termination via jiffies
744 * is secondary and may or may not happen.
745 */
746 if (time_after(jiffies, timeout))
747 break;
748 touch_nmi_watchdog();
749 }
750 }
751 #else
752 static inline void boot_delay_msec(void)
753 {
754 }
755 #endif
756
757 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
758 int dmesg_restrict = 1;
759 #else
760 int dmesg_restrict;
761 #endif
762
763 static int syslog_action_restricted(int type)
764 {
765 if (dmesg_restrict)
766 return 1;
767 /* Unless restricted, we allow "read all" and "get buffer size" for everybody */
768 return type != SYSLOG_ACTION_READ_ALL && type != SYSLOG_ACTION_SIZE_BUFFER;
769 }
770
771 static int check_syslog_permissions(int type, bool from_file)
772 {
773 /*
774 * If this is from /proc/kmsg and we've already opened it, then we've
775 * already done the capabilities checks at open time.
776 */
777 if (from_file && type != SYSLOG_ACTION_OPEN)
778 return 0;
779
780 if (syslog_action_restricted(type)) {
781 if (capable(CAP_SYSLOG))
782 return 0;
783 /* For historical reasons, accept CAP_SYS_ADMIN too, with a warning */
784 if (capable(CAP_SYS_ADMIN)) {
785 printk_once(KERN_WARNING "%s (%d): "
786 "Attempt to access syslog with CAP_SYS_ADMIN "
787 "but no CAP_SYSLOG (deprecated).\n",
788 current->comm, task_pid_nr(current));
789 return 0;
790 }
791 return -EPERM;
792 }
793 return 0;
794 }
795
796 #if defined(CONFIG_PRINTK_TIME)
797 static bool printk_time = 1;
798 #else
799 static bool printk_time;
800 #endif
801 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
802
803 static size_t print_time(u64 ts, char *buf)
804 {
805 unsigned long rem_nsec;
806
807 if (!printk_time)
808 return 0;
809
810 if (!buf)
811 return 15;
812
813 rem_nsec = do_div(ts, 1000000000);
814 return sprintf(buf, "[%5lu.%06lu] ",
815 (unsigned long)ts, rem_nsec / 1000);
816 }
817
818 static size_t print_prefix(const struct log *msg, bool syslog, char *buf)
819 {
820 size_t len = 0;
821
822 if (syslog) {
823 if (buf) {
824 len += sprintf(buf, "<%u>", msg->level);
825 } else {
826 len += 3;
827 if (msg->level > 9)
828 len++;
829 if (msg->level > 99)
830 len++;
831 }
832 }
833
834 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
835 return len;
836 }
837
838 static size_t msg_print_text(const struct log *msg, bool syslog,
839 char *buf, size_t size)
840 {
841 const char *text = log_text(msg);
842 size_t text_size = msg->text_len;
843 size_t len = 0;
844
845 do {
846 const char *next = memchr(text, '\n', text_size);
847 size_t text_len;
848
849 if (next) {
850 text_len = next - text;
851 next++;
852 text_size -= next - text;
853 } else {
854 text_len = text_size;
855 }
856
857 if (buf) {
858 if (print_prefix(msg, syslog, NULL) +
859 text_len + 1>= size - len)
860 break;
861
862 len += print_prefix(msg, syslog, buf + len);
863 memcpy(buf + len, text, text_len);
864 len += text_len;
865 buf[len++] = '\n';
866 } else {
867 /* SYSLOG_ACTION_* buffer size only calculation */
868 len += print_prefix(msg, syslog, NULL);
869 len += text_len + 1;
870 }
871
872 text = next;
873 } while (text);
874
875 return len;
876 }
877
878 static int syslog_print(char __user *buf, int size)
879 {
880 char *text;
881 struct log *msg;
882 int len = 0;
883
884 text = kmalloc(LOG_LINE_MAX, GFP_KERNEL);
885 if (!text)
886 return -ENOMEM;
887
888 while (size > 0) {
889 size_t n;
890
891 raw_spin_lock_irq(&logbuf_lock);
892 if (syslog_seq < log_first_seq) {
893 /* messages are gone, move to first one */
894 syslog_seq = log_first_seq;
895 syslog_idx = log_first_idx;
896 }
897 if (syslog_seq == log_next_seq) {
898 raw_spin_unlock_irq(&logbuf_lock);
899 break;
900 }
901 msg = log_from_idx(syslog_idx);
902 n = msg_print_text(msg, true, text, LOG_LINE_MAX);
903 if (n <= size) {
904 syslog_idx = log_next(syslog_idx);
905 syslog_seq++;
906 } else
907 n = 0;
908 raw_spin_unlock_irq(&logbuf_lock);
909
910 if (!n)
911 break;
912
913 len += n;
914 size -= n;
915 buf += n;
916 n = copy_to_user(buf - n, text, n);
917
918 if (n) {
919 len -= n;
920 if (!len)
921 len = -EFAULT;
922 break;
923 }
924 }
925
926 kfree(text);
927 return len;
928 }
929
930 static int syslog_print_all(char __user *buf, int size, bool clear)
931 {
932 char *text;
933 int len = 0;
934
935 text = kmalloc(LOG_LINE_MAX, GFP_KERNEL);
936 if (!text)
937 return -ENOMEM;
938
939 raw_spin_lock_irq(&logbuf_lock);
940 if (buf) {
941 u64 next_seq;
942 u64 seq;
943 u32 idx;
944
945 if (clear_seq < log_first_seq) {
946 /* messages are gone, move to first available one */
947 clear_seq = log_first_seq;
948 clear_idx = log_first_idx;
949 }
950
951 /*
952 * Find first record that fits, including all following records,
953 * into the user-provided buffer for this dump.
954 */
955 seq = clear_seq;
956 idx = clear_idx;
957 while (seq < log_next_seq) {
958 struct log *msg = log_from_idx(idx);
959
960 len += msg_print_text(msg, true, NULL, 0);
961 idx = log_next(idx);
962 seq++;
963 }
964
965 /* move first record forward until length fits into the buffer */
966 seq = clear_seq;
967 idx = clear_idx;
968 while (len > size && seq < log_next_seq) {
969 struct log *msg = log_from_idx(idx);
970
971 len -= msg_print_text(msg, true, NULL, 0);
972 idx = log_next(idx);
973 seq++;
974 }
975
976 /* last message fitting into this dump */
977 next_seq = log_next_seq;
978
979 len = 0;
980 while (len >= 0 && seq < next_seq) {
981 struct log *msg = log_from_idx(idx);
982 int textlen;
983
984 textlen = msg_print_text(msg, true, text, LOG_LINE_MAX);
985 if (textlen < 0) {
986 len = textlen;
987 break;
988 }
989 idx = log_next(idx);
990 seq++;
991
992 raw_spin_unlock_irq(&logbuf_lock);
993 if (copy_to_user(buf + len, text, textlen))
994 len = -EFAULT;
995 else
996 len += textlen;
997 raw_spin_lock_irq(&logbuf_lock);
998
999 if (seq < log_first_seq) {
1000 /* messages are gone, move to next one */
1001 seq = log_first_seq;
1002 idx = log_first_idx;
1003 }
1004 }
1005 }
1006
1007 if (clear) {
1008 clear_seq = log_next_seq;
1009 clear_idx = log_next_idx;
1010 }
1011 raw_spin_unlock_irq(&logbuf_lock);
1012
1013 kfree(text);
1014 return len;
1015 }
1016
1017 int do_syslog(int type, char __user *buf, int len, bool from_file)
1018 {
1019 bool clear = false;
1020 static int saved_console_loglevel = -1;
1021 static DEFINE_MUTEX(syslog_mutex);
1022 int error;
1023
1024 error = check_syslog_permissions(type, from_file);
1025 if (error)
1026 goto out;
1027
1028 error = security_syslog(type);
1029 if (error)
1030 return error;
1031
1032 switch (type) {
1033 case SYSLOG_ACTION_CLOSE: /* Close log */
1034 break;
1035 case SYSLOG_ACTION_OPEN: /* Open log */
1036 break;
1037 case SYSLOG_ACTION_READ: /* Read from log */
1038 error = -EINVAL;
1039 if (!buf || len < 0)
1040 goto out;
1041 error = 0;
1042 if (!len)
1043 goto out;
1044 if (!access_ok(VERIFY_WRITE, buf, len)) {
1045 error = -EFAULT;
1046 goto out;
1047 }
1048 error = mutex_lock_interruptible(&syslog_mutex);
1049 if (error)
1050 goto out;
1051 error = wait_event_interruptible(log_wait,
1052 syslog_seq != log_next_seq);
1053 if (error) {
1054 mutex_unlock(&syslog_mutex);
1055 goto out;
1056 }
1057 error = syslog_print(buf, len);
1058 mutex_unlock(&syslog_mutex);
1059 break;
1060 /* Read/clear last kernel messages */
1061 case SYSLOG_ACTION_READ_CLEAR:
1062 clear = true;
1063 /* FALL THRU */
1064 /* Read last kernel messages */
1065 case SYSLOG_ACTION_READ_ALL:
1066 error = -EINVAL;
1067 if (!buf || len < 0)
1068 goto out;
1069 error = 0;
1070 if (!len)
1071 goto out;
1072 if (!access_ok(VERIFY_WRITE, buf, len)) {
1073 error = -EFAULT;
1074 goto out;
1075 }
1076 error = syslog_print_all(buf, len, clear);
1077 break;
1078 /* Clear ring buffer */
1079 case SYSLOG_ACTION_CLEAR:
1080 syslog_print_all(NULL, 0, true);
1081 break;
1082 /* Disable logging to console */
1083 case SYSLOG_ACTION_CONSOLE_OFF:
1084 if (saved_console_loglevel == -1)
1085 saved_console_loglevel = console_loglevel;
1086 console_loglevel = minimum_console_loglevel;
1087 break;
1088 /* Enable logging to console */
1089 case SYSLOG_ACTION_CONSOLE_ON:
1090 if (saved_console_loglevel != -1) {
1091 console_loglevel = saved_console_loglevel;
1092 saved_console_loglevel = -1;
1093 }
1094 break;
1095 /* Set level of messages printed to console */
1096 case SYSLOG_ACTION_CONSOLE_LEVEL:
1097 error = -EINVAL;
1098 if (len < 1 || len > 8)
1099 goto out;
1100 if (len < minimum_console_loglevel)
1101 len = minimum_console_loglevel;
1102 console_loglevel = len;
1103 /* Implicitly re-enable logging to console */
1104 saved_console_loglevel = -1;
1105 error = 0;
1106 break;
1107 /* Number of chars in the log buffer */
1108 case SYSLOG_ACTION_SIZE_UNREAD:
1109 raw_spin_lock_irq(&logbuf_lock);
1110 if (syslog_seq < log_first_seq) {
1111 /* messages are gone, move to first one */
1112 syslog_seq = log_first_seq;
1113 syslog_idx = log_first_idx;
1114 }
1115 if (from_file) {
1116 /*
1117 * Short-cut for poll(/"proc/kmsg") which simply checks
1118 * for pending data, not the size; return the count of
1119 * records, not the length.
1120 */
1121 error = log_next_idx - syslog_idx;
1122 } else {
1123 u64 seq;
1124 u32 idx;
1125
1126 error = 0;
1127 seq = syslog_seq;
1128 idx = syslog_idx;
1129 while (seq < log_next_seq) {
1130 struct log *msg = log_from_idx(idx);
1131
1132 error += msg_print_text(msg, true, NULL, 0);
1133 idx = log_next(idx);
1134 seq++;
1135 }
1136 }
1137 raw_spin_unlock_irq(&logbuf_lock);
1138 break;
1139 /* Size of the log buffer */
1140 case SYSLOG_ACTION_SIZE_BUFFER:
1141 error = log_buf_len;
1142 break;
1143 default:
1144 error = -EINVAL;
1145 break;
1146 }
1147 out:
1148 return error;
1149 }
1150
1151 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1152 {
1153 return do_syslog(type, buf, len, SYSLOG_FROM_CALL);
1154 }
1155
1156 #ifdef CONFIG_KGDB_KDB
1157 /* kdb dmesg command needs access to the syslog buffer. do_syslog()
1158 * uses locks so it cannot be used during debugging. Just tell kdb
1159 * where the start and end of the physical and logical logs are. This
1160 * is equivalent to do_syslog(3).
1161 */
1162 void kdb_syslog_data(char *syslog_data[4])
1163 {
1164 syslog_data[0] = log_buf;
1165 syslog_data[1] = log_buf + log_buf_len;
1166 syslog_data[2] = log_buf + log_first_idx;
1167 syslog_data[3] = log_buf + log_next_idx;
1168 }
1169 #endif /* CONFIG_KGDB_KDB */
1170
1171 static bool __read_mostly ignore_loglevel;
1172
1173 static int __init ignore_loglevel_setup(char *str)
1174 {
1175 ignore_loglevel = 1;
1176 printk(KERN_INFO "debug: ignoring loglevel setting.\n");
1177
1178 return 0;
1179 }
1180
1181 early_param("ignore_loglevel", ignore_loglevel_setup);
1182 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1183 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
1184 "print all kernel messages to the console.");
1185
1186 /*
1187 * Call the console drivers, asking them to write out
1188 * log_buf[start] to log_buf[end - 1].
1189 * The console_lock must be held.
1190 */
1191 static void call_console_drivers(int level, const char *text, size_t len)
1192 {
1193 struct console *con;
1194
1195 trace_console(text, 0, len, len);
1196
1197 if (level >= console_loglevel && !ignore_loglevel)
1198 return;
1199 if (!console_drivers)
1200 return;
1201
1202 for_each_console(con) {
1203 if (exclusive_console && con != exclusive_console)
1204 continue;
1205 if (!(con->flags & CON_ENABLED))
1206 continue;
1207 if (!con->write)
1208 continue;
1209 if (!cpu_online(smp_processor_id()) &&
1210 !(con->flags & CON_ANYTIME))
1211 continue;
1212 con->write(con, text, len);
1213 }
1214 }
1215
1216 /*
1217 * Zap console related locks when oopsing. Only zap at most once
1218 * every 10 seconds, to leave time for slow consoles to print a
1219 * full oops.
1220 */
1221 static void zap_locks(void)
1222 {
1223 static unsigned long oops_timestamp;
1224
1225 if (time_after_eq(jiffies, oops_timestamp) &&
1226 !time_after(jiffies, oops_timestamp + 30 * HZ))
1227 return;
1228
1229 oops_timestamp = jiffies;
1230
1231 debug_locks_off();
1232 /* If a crash is occurring, make sure we can't deadlock */
1233 raw_spin_lock_init(&logbuf_lock);
1234 /* And make sure that we print immediately */
1235 sema_init(&console_sem, 1);
1236 }
1237
1238 /* Check if we have any console registered that can be called early in boot. */
1239 static int have_callable_console(void)
1240 {
1241 struct console *con;
1242
1243 for_each_console(con)
1244 if (con->flags & CON_ANYTIME)
1245 return 1;
1246
1247 return 0;
1248 }
1249
1250 /*
1251 * Can we actually use the console at this time on this cpu?
1252 *
1253 * Console drivers may assume that per-cpu resources have
1254 * been allocated. So unless they're explicitly marked as
1255 * being able to cope (CON_ANYTIME) don't call them until
1256 * this CPU is officially up.
1257 */
1258 static inline int can_use_console(unsigned int cpu)
1259 {
1260 return cpu_online(cpu) || have_callable_console();
1261 }
1262
1263 /*
1264 * Try to get console ownership to actually show the kernel
1265 * messages from a 'printk'. Return true (and with the
1266 * console_lock held, and 'console_locked' set) if it
1267 * is successful, false otherwise.
1268 *
1269 * This gets called with the 'logbuf_lock' spinlock held and
1270 * interrupts disabled. It should return with 'lockbuf_lock'
1271 * released but interrupts still disabled.
1272 */
1273 static int console_trylock_for_printk(unsigned int cpu)
1274 __releases(&logbuf_lock)
1275 {
1276 int retval = 0, wake = 0;
1277
1278 if (console_trylock()) {
1279 retval = 1;
1280
1281 /*
1282 * If we can't use the console, we need to release
1283 * the console semaphore by hand to avoid flushing
1284 * the buffer. We need to hold the console semaphore
1285 * in order to do this test safely.
1286 */
1287 if (!can_use_console(cpu)) {
1288 console_locked = 0;
1289 wake = 1;
1290 retval = 0;
1291 }
1292 }
1293 logbuf_cpu = UINT_MAX;
1294 if (wake)
1295 up(&console_sem);
1296 raw_spin_unlock(&logbuf_lock);
1297 return retval;
1298 }
1299
1300 int printk_delay_msec __read_mostly;
1301
1302 static inline void printk_delay(void)
1303 {
1304 if (unlikely(printk_delay_msec)) {
1305 int m = printk_delay_msec;
1306
1307 while (m--) {
1308 mdelay(1);
1309 touch_nmi_watchdog();
1310 }
1311 }
1312 }
1313
1314 /*
1315 * Continuation lines are buffered, and not committed to the record buffer
1316 * until the line is complete, or a race forces it. The line fragments
1317 * though, are printed immediately to the consoles to ensure everything has
1318 * reached the console in case of a kernel crash.
1319 */
1320 static struct cont {
1321 char buf[LOG_LINE_MAX];
1322 size_t len; /* length == 0 means unused buffer */
1323 size_t cons; /* bytes written to console */
1324 struct task_struct *owner; /* task of first print*/
1325 u64 ts_nsec; /* time of first print */
1326 u8 level; /* log level of first message */
1327 u8 facility; /* log level of first message */
1328 bool flushed:1; /* buffer sealed and committed */
1329 } cont;
1330
1331 static void cont_flush(void)
1332 {
1333 if (cont.flushed)
1334 return;
1335 if (cont.len == 0)
1336 return;
1337
1338 log_store(cont.facility, cont.level, LOG_NOCONS, cont.ts_nsec,
1339 NULL, 0, cont.buf, cont.len);
1340
1341 cont.flushed = true;
1342 }
1343
1344 static bool cont_add(int facility, int level, const char *text, size_t len)
1345 {
1346 if (cont.len && cont.flushed)
1347 return false;
1348
1349 if (cont.len + len > sizeof(cont.buf)) {
1350 cont_flush();
1351 return false;
1352 }
1353
1354 if (!cont.len) {
1355 cont.facility = facility;
1356 cont.level = level;
1357 cont.owner = current;
1358 cont.ts_nsec = local_clock();
1359 cont.cons = 0;
1360 cont.flushed = false;
1361 }
1362
1363 memcpy(cont.buf + cont.len, text, len);
1364 cont.len += len;
1365 return true;
1366 }
1367
1368 static size_t cont_print_text(char *text, size_t size)
1369 {
1370 size_t textlen = 0;
1371 size_t len;
1372
1373 if (cont.cons == 0) {
1374 textlen += print_time(cont.ts_nsec, text);
1375 size -= textlen;
1376 }
1377
1378 len = cont.len - cont.cons;
1379 if (len > 0) {
1380 if (len+1 > size)
1381 len = size-1;
1382 memcpy(text + textlen, cont.buf + cont.cons, len);
1383 textlen += len;
1384 cont.cons = cont.len;
1385 }
1386
1387 if (cont.flushed) {
1388 text[textlen++] = '\n';
1389 /* got everything, release buffer */
1390 cont.len = 0;
1391 }
1392 return textlen;
1393 }
1394
1395 asmlinkage int vprintk_emit(int facility, int level,
1396 const char *dict, size_t dictlen,
1397 const char *fmt, va_list args)
1398 {
1399 static int recursion_bug;
1400 static char textbuf[LOG_LINE_MAX];
1401 char *text = textbuf;
1402 size_t text_len;
1403 unsigned long flags;
1404 int this_cpu;
1405 bool newline = false;
1406 bool prefix = false;
1407 int printed_len = 0;
1408
1409 boot_delay_msec();
1410 printk_delay();
1411
1412 /* This stops the holder of console_sem just where we want him */
1413 local_irq_save(flags);
1414 this_cpu = smp_processor_id();
1415
1416 /*
1417 * Ouch, printk recursed into itself!
1418 */
1419 if (unlikely(logbuf_cpu == this_cpu)) {
1420 /*
1421 * If a crash is occurring during printk() on this CPU,
1422 * then try to get the crash message out but make sure
1423 * we can't deadlock. Otherwise just return to avoid the
1424 * recursion and return - but flag the recursion so that
1425 * it can be printed at the next appropriate moment:
1426 */
1427 if (!oops_in_progress && !lockdep_recursing(current)) {
1428 recursion_bug = 1;
1429 goto out_restore_irqs;
1430 }
1431 zap_locks();
1432 }
1433
1434 lockdep_off();
1435 raw_spin_lock(&logbuf_lock);
1436 logbuf_cpu = this_cpu;
1437
1438 if (recursion_bug) {
1439 static const char recursion_msg[] =
1440 "BUG: recent printk recursion!";
1441
1442 recursion_bug = 0;
1443 printed_len += strlen(recursion_msg);
1444 /* emit KERN_CRIT message */
1445 log_store(0, 2, LOG_DEFAULT, 0,
1446 NULL, 0, recursion_msg, printed_len);
1447 }
1448
1449 /*
1450 * The printf needs to come first; we need the syslog
1451 * prefix which might be passed-in as a parameter.
1452 */
1453 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1454
1455 /* mark and strip a trailing newline */
1456 if (text_len && text[text_len-1] == '\n') {
1457 text_len--;
1458 newline = true;
1459 }
1460
1461 /* strip syslog prefix and extract log level or control flags */
1462 if (text[0] == '<' && text[1] && text[2] == '>') {
1463 switch (text[1]) {
1464 case '0' ... '7':
1465 if (level == -1)
1466 level = text[1] - '0';
1467 case 'd': /* KERN_DEFAULT */
1468 prefix = true;
1469 case 'c': /* KERN_CONT */
1470 text += 3;
1471 text_len -= 3;
1472 }
1473 }
1474
1475 if (level == -1)
1476 level = default_message_loglevel;
1477
1478 if (dict) {
1479 prefix = true;
1480 newline = true;
1481 }
1482
1483 if (!newline) {
1484 /*
1485 * Flush the conflicting buffer. An earlier newline was missing,
1486 * or another task also prints continuation lines.
1487 */
1488 if (cont.len && (prefix || cont.owner != current))
1489 cont_flush();
1490
1491 /* buffer line if possible, otherwise store it right away */
1492 if (!cont_add(facility, level, text, text_len))
1493 log_store(facility, level, LOG_DEFAULT, 0,
1494 dict, dictlen, text, text_len);
1495 } else {
1496 bool stored = false;
1497
1498 /*
1499 * If an earlier newline was missing and it was the same task,
1500 * either merge it with the current buffer and flush, or if
1501 * there was a race with interrupts (prefix == true) then just
1502 * flush it out and store this line separately.
1503 */
1504 if (cont.len && cont.owner == current) {
1505 if (!prefix)
1506 stored = cont_add(facility, level, text, text_len);
1507 cont_flush();
1508 }
1509
1510 if (!stored)
1511 log_store(facility, level, LOG_DEFAULT, 0,
1512 dict, dictlen, text, text_len);
1513 }
1514 printed_len += text_len;
1515
1516 /*
1517 * Try to acquire and then immediately release the console semaphore.
1518 * The release will print out buffers and wake up /dev/kmsg and syslog()
1519 * users.
1520 *
1521 * The console_trylock_for_printk() function will release 'logbuf_lock'
1522 * regardless of whether it actually gets the console semaphore or not.
1523 */
1524 if (console_trylock_for_printk(this_cpu))
1525 console_unlock();
1526
1527 lockdep_on();
1528 out_restore_irqs:
1529 local_irq_restore(flags);
1530
1531 return printed_len;
1532 }
1533 EXPORT_SYMBOL(vprintk_emit);
1534
1535 asmlinkage int vprintk(const char *fmt, va_list args)
1536 {
1537 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1538 }
1539 EXPORT_SYMBOL(vprintk);
1540
1541 asmlinkage int printk_emit(int facility, int level,
1542 const char *dict, size_t dictlen,
1543 const char *fmt, ...)
1544 {
1545 va_list args;
1546 int r;
1547
1548 va_start(args, fmt);
1549 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1550 va_end(args);
1551
1552 return r;
1553 }
1554 EXPORT_SYMBOL(printk_emit);
1555
1556 /**
1557 * printk - print a kernel message
1558 * @fmt: format string
1559 *
1560 * This is printk(). It can be called from any context. We want it to work.
1561 *
1562 * We try to grab the console_lock. If we succeed, it's easy - we log the
1563 * output and call the console drivers. If we fail to get the semaphore, we
1564 * place the output into the log buffer and return. The current holder of
1565 * the console_sem will notice the new output in console_unlock(); and will
1566 * send it to the consoles before releasing the lock.
1567 *
1568 * One effect of this deferred printing is that code which calls printk() and
1569 * then changes console_loglevel may break. This is because console_loglevel
1570 * is inspected when the actual printing occurs.
1571 *
1572 * See also:
1573 * printf(3)
1574 *
1575 * See the vsnprintf() documentation for format string extensions over C99.
1576 */
1577 asmlinkage int printk(const char *fmt, ...)
1578 {
1579 va_list args;
1580 int r;
1581
1582 #ifdef CONFIG_KGDB_KDB
1583 if (unlikely(kdb_trap_printk)) {
1584 va_start(args, fmt);
1585 r = vkdb_printf(fmt, args);
1586 va_end(args);
1587 return r;
1588 }
1589 #endif
1590 va_start(args, fmt);
1591 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1592 va_end(args);
1593
1594 return r;
1595 }
1596 EXPORT_SYMBOL(printk);
1597
1598 #else
1599
1600 #define LOG_LINE_MAX 0
1601 static struct cont {
1602 size_t len;
1603 size_t cons;
1604 u8 level;
1605 bool flushed:1;
1606 } cont;
1607 static struct log *log_from_idx(u32 idx) { return NULL; }
1608 static u32 log_next(u32 idx) { return 0; }
1609 static void call_console_drivers(int level, const char *text, size_t len) {}
1610 static size_t msg_print_text(const struct log *msg, bool syslog,
1611 char *buf, size_t size) { return 0; }
1612 static size_t cont_print_text(char *text, size_t size) { return 0; }
1613
1614 #endif /* CONFIG_PRINTK */
1615
1616 static int __add_preferred_console(char *name, int idx, char *options,
1617 char *brl_options)
1618 {
1619 struct console_cmdline *c;
1620 int i;
1621
1622 /*
1623 * See if this tty is not yet registered, and
1624 * if we have a slot free.
1625 */
1626 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1627 if (strcmp(console_cmdline[i].name, name) == 0 &&
1628 console_cmdline[i].index == idx) {
1629 if (!brl_options)
1630 selected_console = i;
1631 return 0;
1632 }
1633 if (i == MAX_CMDLINECONSOLES)
1634 return -E2BIG;
1635 if (!brl_options)
1636 selected_console = i;
1637 c = &console_cmdline[i];
1638 strlcpy(c->name, name, sizeof(c->name));
1639 c->options = options;
1640 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1641 c->brl_options = brl_options;
1642 #endif
1643 c->index = idx;
1644 return 0;
1645 }
1646 /*
1647 * Set up a list of consoles. Called from init/main.c
1648 */
1649 static int __init console_setup(char *str)
1650 {
1651 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1652 char *s, *options, *brl_options = NULL;
1653 int idx;
1654
1655 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1656 if (!memcmp(str, "brl,", 4)) {
1657 brl_options = "";
1658 str += 4;
1659 } else if (!memcmp(str, "brl=", 4)) {
1660 brl_options = str + 4;
1661 str = strchr(brl_options, ',');
1662 if (!str) {
1663 printk(KERN_ERR "need port name after brl=\n");
1664 return 1;
1665 }
1666 *(str++) = 0;
1667 }
1668 #endif
1669
1670 /*
1671 * Decode str into name, index, options.
1672 */
1673 if (str[0] >= '0' && str[0] <= '9') {
1674 strcpy(buf, "ttyS");
1675 strncpy(buf + 4, str, sizeof(buf) - 5);
1676 } else {
1677 strncpy(buf, str, sizeof(buf) - 1);
1678 }
1679 buf[sizeof(buf) - 1] = 0;
1680 if ((options = strchr(str, ',')) != NULL)
1681 *(options++) = 0;
1682 #ifdef __sparc__
1683 if (!strcmp(str, "ttya"))
1684 strcpy(buf, "ttyS0");
1685 if (!strcmp(str, "ttyb"))
1686 strcpy(buf, "ttyS1");
1687 #endif
1688 for (s = buf; *s; s++)
1689 if ((*s >= '0' && *s <= '9') || *s == ',')
1690 break;
1691 idx = simple_strtoul(s, NULL, 10);
1692 *s = 0;
1693
1694 __add_preferred_console(buf, idx, options, brl_options);
1695 console_set_on_cmdline = 1;
1696 return 1;
1697 }
1698 __setup("console=", console_setup);
1699
1700 /**
1701 * add_preferred_console - add a device to the list of preferred consoles.
1702 * @name: device name
1703 * @idx: device index
1704 * @options: options for this console
1705 *
1706 * The last preferred console added will be used for kernel messages
1707 * and stdin/out/err for init. Normally this is used by console_setup
1708 * above to handle user-supplied console arguments; however it can also
1709 * be used by arch-specific code either to override the user or more
1710 * commonly to provide a default console (ie from PROM variables) when
1711 * the user has not supplied one.
1712 */
1713 int add_preferred_console(char *name, int idx, char *options)
1714 {
1715 return __add_preferred_console(name, idx, options, NULL);
1716 }
1717
1718 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1719 {
1720 struct console_cmdline *c;
1721 int i;
1722
1723 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1724 if (strcmp(console_cmdline[i].name, name) == 0 &&
1725 console_cmdline[i].index == idx) {
1726 c = &console_cmdline[i];
1727 strlcpy(c->name, name_new, sizeof(c->name));
1728 c->name[sizeof(c->name) - 1] = 0;
1729 c->options = options;
1730 c->index = idx_new;
1731 return i;
1732 }
1733 /* not found */
1734 return -1;
1735 }
1736
1737 bool console_suspend_enabled = 1;
1738 EXPORT_SYMBOL(console_suspend_enabled);
1739
1740 static int __init console_suspend_disable(char *str)
1741 {
1742 console_suspend_enabled = 0;
1743 return 1;
1744 }
1745 __setup("no_console_suspend", console_suspend_disable);
1746 module_param_named(console_suspend, console_suspend_enabled,
1747 bool, S_IRUGO | S_IWUSR);
1748 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1749 " and hibernate operations");
1750
1751 /**
1752 * suspend_console - suspend the console subsystem
1753 *
1754 * This disables printk() while we go into suspend states
1755 */
1756 void suspend_console(void)
1757 {
1758 if (!console_suspend_enabled)
1759 return;
1760 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1761 console_lock();
1762 console_suspended = 1;
1763 up(&console_sem);
1764 }
1765
1766 void resume_console(void)
1767 {
1768 if (!console_suspend_enabled)
1769 return;
1770 down(&console_sem);
1771 console_suspended = 0;
1772 console_unlock();
1773 }
1774
1775 /**
1776 * console_cpu_notify - print deferred console messages after CPU hotplug
1777 * @self: notifier struct
1778 * @action: CPU hotplug event
1779 * @hcpu: unused
1780 *
1781 * If printk() is called from a CPU that is not online yet, the messages
1782 * will be spooled but will not show up on the console. This function is
1783 * called when a new CPU comes online (or fails to come up), and ensures
1784 * that any such output gets printed.
1785 */
1786 static int __cpuinit console_cpu_notify(struct notifier_block *self,
1787 unsigned long action, void *hcpu)
1788 {
1789 switch (action) {
1790 case CPU_ONLINE:
1791 case CPU_DEAD:
1792 case CPU_DYING:
1793 case CPU_DOWN_FAILED:
1794 case CPU_UP_CANCELED:
1795 console_lock();
1796 console_unlock();
1797 }
1798 return NOTIFY_OK;
1799 }
1800
1801 /**
1802 * console_lock - lock the console system for exclusive use.
1803 *
1804 * Acquires a lock which guarantees that the caller has
1805 * exclusive access to the console system and the console_drivers list.
1806 *
1807 * Can sleep, returns nothing.
1808 */
1809 void console_lock(void)
1810 {
1811 BUG_ON(in_interrupt());
1812 down(&console_sem);
1813 if (console_suspended)
1814 return;
1815 console_locked = 1;
1816 console_may_schedule = 1;
1817 }
1818 EXPORT_SYMBOL(console_lock);
1819
1820 /**
1821 * console_trylock - try to lock the console system for exclusive use.
1822 *
1823 * Tried to acquire a lock which guarantees that the caller has
1824 * exclusive access to the console system and the console_drivers list.
1825 *
1826 * returns 1 on success, and 0 on failure to acquire the lock.
1827 */
1828 int console_trylock(void)
1829 {
1830 if (down_trylock(&console_sem))
1831 return 0;
1832 if (console_suspended) {
1833 up(&console_sem);
1834 return 0;
1835 }
1836 console_locked = 1;
1837 console_may_schedule = 0;
1838 return 1;
1839 }
1840 EXPORT_SYMBOL(console_trylock);
1841
1842 int is_console_locked(void)
1843 {
1844 return console_locked;
1845 }
1846
1847 /*
1848 * Delayed printk version, for scheduler-internal messages:
1849 */
1850 #define PRINTK_BUF_SIZE 512
1851
1852 #define PRINTK_PENDING_WAKEUP 0x01
1853 #define PRINTK_PENDING_SCHED 0x02
1854
1855 static DEFINE_PER_CPU(int, printk_pending);
1856 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
1857
1858 void printk_tick(void)
1859 {
1860 if (__this_cpu_read(printk_pending)) {
1861 int pending = __this_cpu_xchg(printk_pending, 0);
1862 if (pending & PRINTK_PENDING_SCHED) {
1863 char *buf = __get_cpu_var(printk_sched_buf);
1864 printk(KERN_WARNING "[sched_delayed] %s", buf);
1865 }
1866 if (pending & PRINTK_PENDING_WAKEUP)
1867 wake_up_interruptible(&log_wait);
1868 }
1869 }
1870
1871 int printk_needs_cpu(int cpu)
1872 {
1873 if (cpu_is_offline(cpu))
1874 printk_tick();
1875 return __this_cpu_read(printk_pending);
1876 }
1877
1878 void wake_up_klogd(void)
1879 {
1880 if (waitqueue_active(&log_wait))
1881 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
1882 }
1883
1884 /* the next printk record to write to the console */
1885 static u64 console_seq;
1886 static u32 console_idx;
1887
1888 /**
1889 * console_unlock - unlock the console system
1890 *
1891 * Releases the console_lock which the caller holds on the console system
1892 * and the console driver list.
1893 *
1894 * While the console_lock was held, console output may have been buffered
1895 * by printk(). If this is the case, console_unlock(); emits
1896 * the output prior to releasing the lock.
1897 *
1898 * If there is output waiting, we wake /dev/kmsg and syslog() users.
1899 *
1900 * console_unlock(); may be called from any context.
1901 */
1902 void console_unlock(void)
1903 {
1904 static char text[LOG_LINE_MAX];
1905 static u64 seen_seq;
1906 unsigned long flags;
1907 bool wake_klogd = false;
1908 bool retry;
1909
1910 if (console_suspended) {
1911 up(&console_sem);
1912 return;
1913 }
1914
1915 console_may_schedule = 0;
1916
1917 /* flush buffered message fragment immediately to console */
1918 raw_spin_lock_irqsave(&logbuf_lock, flags);
1919 if (cont.len && (cont.cons < cont.len || cont.flushed)) {
1920 size_t len;
1921
1922 len = cont_print_text(text, sizeof(text));
1923 raw_spin_unlock(&logbuf_lock);
1924 stop_critical_timings();
1925 call_console_drivers(cont.level, text, len);
1926 start_critical_timings();
1927 local_irq_restore(flags);
1928 } else
1929 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1930
1931 again:
1932 for (;;) {
1933 struct log *msg;
1934 size_t len;
1935 int level;
1936
1937 raw_spin_lock_irqsave(&logbuf_lock, flags);
1938 if (seen_seq != log_next_seq) {
1939 wake_klogd = true;
1940 seen_seq = log_next_seq;
1941 }
1942
1943 if (console_seq < log_first_seq) {
1944 /* messages are gone, move to first one */
1945 console_seq = log_first_seq;
1946 console_idx = log_first_idx;
1947 }
1948 skip:
1949 if (console_seq == log_next_seq)
1950 break;
1951
1952 msg = log_from_idx(console_idx);
1953 if (msg->flags & LOG_NOCONS) {
1954 /*
1955 * Skip record we have buffered and already printed
1956 * directly to the console when we received it.
1957 */
1958 console_idx = log_next(console_idx);
1959 console_seq++;
1960 goto skip;
1961 }
1962
1963 level = msg->level;
1964 len = msg_print_text(msg, false, text, sizeof(text));
1965
1966 console_idx = log_next(console_idx);
1967 console_seq++;
1968 raw_spin_unlock(&logbuf_lock);
1969
1970 stop_critical_timings(); /* don't trace print latency */
1971 call_console_drivers(level, text, len);
1972 start_critical_timings();
1973 local_irq_restore(flags);
1974 }
1975 console_locked = 0;
1976
1977 /* Release the exclusive_console once it is used */
1978 if (unlikely(exclusive_console))
1979 exclusive_console = NULL;
1980
1981 raw_spin_unlock(&logbuf_lock);
1982
1983 up(&console_sem);
1984
1985 /*
1986 * Someone could have filled up the buffer again, so re-check if there's
1987 * something to flush. In case we cannot trylock the console_sem again,
1988 * there's a new owner and the console_unlock() from them will do the
1989 * flush, no worries.
1990 */
1991 raw_spin_lock(&logbuf_lock);
1992 retry = console_seq != log_next_seq;
1993 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1994
1995 if (retry && console_trylock())
1996 goto again;
1997
1998 if (wake_klogd)
1999 wake_up_klogd();
2000 }
2001 EXPORT_SYMBOL(console_unlock);
2002
2003 /**
2004 * console_conditional_schedule - yield the CPU if required
2005 *
2006 * If the console code is currently allowed to sleep, and
2007 * if this CPU should yield the CPU to another task, do
2008 * so here.
2009 *
2010 * Must be called within console_lock();.
2011 */
2012 void __sched console_conditional_schedule(void)
2013 {
2014 if (console_may_schedule)
2015 cond_resched();
2016 }
2017 EXPORT_SYMBOL(console_conditional_schedule);
2018
2019 void console_unblank(void)
2020 {
2021 struct console *c;
2022
2023 /*
2024 * console_unblank can no longer be called in interrupt context unless
2025 * oops_in_progress is set to 1..
2026 */
2027 if (oops_in_progress) {
2028 if (down_trylock(&console_sem) != 0)
2029 return;
2030 } else
2031 console_lock();
2032
2033 console_locked = 1;
2034 console_may_schedule = 0;
2035 for_each_console(c)
2036 if ((c->flags & CON_ENABLED) && c->unblank)
2037 c->unblank();
2038 console_unlock();
2039 }
2040
2041 /*
2042 * Return the console tty driver structure and its associated index
2043 */
2044 struct tty_driver *console_device(int *index)
2045 {
2046 struct console *c;
2047 struct tty_driver *driver = NULL;
2048
2049 console_lock();
2050 for_each_console(c) {
2051 if (!c->device)
2052 continue;
2053 driver = c->device(c, index);
2054 if (driver)
2055 break;
2056 }
2057 console_unlock();
2058 return driver;
2059 }
2060
2061 /*
2062 * Prevent further output on the passed console device so that (for example)
2063 * serial drivers can disable console output before suspending a port, and can
2064 * re-enable output afterwards.
2065 */
2066 void console_stop(struct console *console)
2067 {
2068 console_lock();
2069 console->flags &= ~CON_ENABLED;
2070 console_unlock();
2071 }
2072 EXPORT_SYMBOL(console_stop);
2073
2074 void console_start(struct console *console)
2075 {
2076 console_lock();
2077 console->flags |= CON_ENABLED;
2078 console_unlock();
2079 }
2080 EXPORT_SYMBOL(console_start);
2081
2082 static int __read_mostly keep_bootcon;
2083
2084 static int __init keep_bootcon_setup(char *str)
2085 {
2086 keep_bootcon = 1;
2087 printk(KERN_INFO "debug: skip boot console de-registration.\n");
2088
2089 return 0;
2090 }
2091
2092 early_param("keep_bootcon", keep_bootcon_setup);
2093
2094 /*
2095 * The console driver calls this routine during kernel initialization
2096 * to register the console printing procedure with printk() and to
2097 * print any messages that were printed by the kernel before the
2098 * console driver was initialized.
2099 *
2100 * This can happen pretty early during the boot process (because of
2101 * early_printk) - sometimes before setup_arch() completes - be careful
2102 * of what kernel features are used - they may not be initialised yet.
2103 *
2104 * There are two types of consoles - bootconsoles (early_printk) and
2105 * "real" consoles (everything which is not a bootconsole) which are
2106 * handled differently.
2107 * - Any number of bootconsoles can be registered at any time.
2108 * - As soon as a "real" console is registered, all bootconsoles
2109 * will be unregistered automatically.
2110 * - Once a "real" console is registered, any attempt to register a
2111 * bootconsoles will be rejected
2112 */
2113 void register_console(struct console *newcon)
2114 {
2115 int i;
2116 unsigned long flags;
2117 struct console *bcon = NULL;
2118
2119 /*
2120 * before we register a new CON_BOOT console, make sure we don't
2121 * already have a valid console
2122 */
2123 if (console_drivers && newcon->flags & CON_BOOT) {
2124 /* find the last or real console */
2125 for_each_console(bcon) {
2126 if (!(bcon->flags & CON_BOOT)) {
2127 printk(KERN_INFO "Too late to register bootconsole %s%d\n",
2128 newcon->name, newcon->index);
2129 return;
2130 }
2131 }
2132 }
2133
2134 if (console_drivers && console_drivers->flags & CON_BOOT)
2135 bcon = console_drivers;
2136
2137 if (preferred_console < 0 || bcon || !console_drivers)
2138 preferred_console = selected_console;
2139
2140 if (newcon->early_setup)
2141 newcon->early_setup();
2142
2143 /*
2144 * See if we want to use this console driver. If we
2145 * didn't select a console we take the first one
2146 * that registers here.
2147 */
2148 if (preferred_console < 0) {
2149 if (newcon->index < 0)
2150 newcon->index = 0;
2151 if (newcon->setup == NULL ||
2152 newcon->setup(newcon, NULL) == 0) {
2153 newcon->flags |= CON_ENABLED;
2154 if (newcon->device) {
2155 newcon->flags |= CON_CONSDEV;
2156 preferred_console = 0;
2157 }
2158 }
2159 }
2160
2161 /*
2162 * See if this console matches one we selected on
2163 * the command line.
2164 */
2165 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];
2166 i++) {
2167 if (strcmp(console_cmdline[i].name, newcon->name) != 0)
2168 continue;
2169 if (newcon->index >= 0 &&
2170 newcon->index != console_cmdline[i].index)
2171 continue;
2172 if (newcon->index < 0)
2173 newcon->index = console_cmdline[i].index;
2174 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2175 if (console_cmdline[i].brl_options) {
2176 newcon->flags |= CON_BRL;
2177 braille_register_console(newcon,
2178 console_cmdline[i].index,
2179 console_cmdline[i].options,
2180 console_cmdline[i].brl_options);
2181 return;
2182 }
2183 #endif
2184 if (newcon->setup &&
2185 newcon->setup(newcon, console_cmdline[i].options) != 0)
2186 break;
2187 newcon->flags |= CON_ENABLED;
2188 newcon->index = console_cmdline[i].index;
2189 if (i == selected_console) {
2190 newcon->flags |= CON_CONSDEV;
2191 preferred_console = selected_console;
2192 }
2193 break;
2194 }
2195
2196 if (!(newcon->flags & CON_ENABLED))
2197 return;
2198
2199 /*
2200 * If we have a bootconsole, and are switching to a real console,
2201 * don't print everything out again, since when the boot console, and
2202 * the real console are the same physical device, it's annoying to
2203 * see the beginning boot messages twice
2204 */
2205 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2206 newcon->flags &= ~CON_PRINTBUFFER;
2207
2208 /*
2209 * Put this console in the list - keep the
2210 * preferred driver at the head of the list.
2211 */
2212 console_lock();
2213 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2214 newcon->next = console_drivers;
2215 console_drivers = newcon;
2216 if (newcon->next)
2217 newcon->next->flags &= ~CON_CONSDEV;
2218 } else {
2219 newcon->next = console_drivers->next;
2220 console_drivers->next = newcon;
2221 }
2222 if (newcon->flags & CON_PRINTBUFFER) {
2223 /*
2224 * console_unlock(); will print out the buffered messages
2225 * for us.
2226 */
2227 raw_spin_lock_irqsave(&logbuf_lock, flags);
2228 console_seq = syslog_seq;
2229 console_idx = syslog_idx;
2230 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2231 /*
2232 * We're about to replay the log buffer. Only do this to the
2233 * just-registered console to avoid excessive message spam to
2234 * the already-registered consoles.
2235 */
2236 exclusive_console = newcon;
2237 }
2238 console_unlock();
2239 console_sysfs_notify();
2240
2241 /*
2242 * By unregistering the bootconsoles after we enable the real console
2243 * we get the "console xxx enabled" message on all the consoles -
2244 * boot consoles, real consoles, etc - this is to ensure that end
2245 * users know there might be something in the kernel's log buffer that
2246 * went to the bootconsole (that they do not see on the real console)
2247 */
2248 if (bcon &&
2249 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2250 !keep_bootcon) {
2251 /* we need to iterate through twice, to make sure we print
2252 * everything out, before we unregister the console(s)
2253 */
2254 printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n",
2255 newcon->name, newcon->index);
2256 for_each_console(bcon)
2257 if (bcon->flags & CON_BOOT)
2258 unregister_console(bcon);
2259 } else {
2260 printk(KERN_INFO "%sconsole [%s%d] enabled\n",
2261 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2262 newcon->name, newcon->index);
2263 }
2264 }
2265 EXPORT_SYMBOL(register_console);
2266
2267 int unregister_console(struct console *console)
2268 {
2269 struct console *a, *b;
2270 int res = 1;
2271
2272 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2273 if (console->flags & CON_BRL)
2274 return braille_unregister_console(console);
2275 #endif
2276
2277 console_lock();
2278 if (console_drivers == console) {
2279 console_drivers=console->next;
2280 res = 0;
2281 } else if (console_drivers) {
2282 for (a=console_drivers->next, b=console_drivers ;
2283 a; b=a, a=b->next) {
2284 if (a == console) {
2285 b->next = a->next;
2286 res = 0;
2287 break;
2288 }
2289 }
2290 }
2291
2292 /*
2293 * If this isn't the last console and it has CON_CONSDEV set, we
2294 * need to set it on the next preferred console.
2295 */
2296 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2297 console_drivers->flags |= CON_CONSDEV;
2298
2299 console_unlock();
2300 console_sysfs_notify();
2301 return res;
2302 }
2303 EXPORT_SYMBOL(unregister_console);
2304
2305 static int __init printk_late_init(void)
2306 {
2307 struct console *con;
2308
2309 for_each_console(con) {
2310 if (!keep_bootcon && con->flags & CON_BOOT) {
2311 printk(KERN_INFO "turn off boot console %s%d\n",
2312 con->name, con->index);
2313 unregister_console(con);
2314 }
2315 }
2316 hotcpu_notifier(console_cpu_notify, 0);
2317 return 0;
2318 }
2319 late_initcall(printk_late_init);
2320
2321 #if defined CONFIG_PRINTK
2322
2323 int printk_sched(const char *fmt, ...)
2324 {
2325 unsigned long flags;
2326 va_list args;
2327 char *buf;
2328 int r;
2329
2330 local_irq_save(flags);
2331 buf = __get_cpu_var(printk_sched_buf);
2332
2333 va_start(args, fmt);
2334 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2335 va_end(args);
2336
2337 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2338 local_irq_restore(flags);
2339
2340 return r;
2341 }
2342
2343 /*
2344 * printk rate limiting, lifted from the networking subsystem.
2345 *
2346 * This enforces a rate limit: not more than 10 kernel messages
2347 * every 5s to make a denial-of-service attack impossible.
2348 */
2349 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2350
2351 int __printk_ratelimit(const char *func)
2352 {
2353 return ___ratelimit(&printk_ratelimit_state, func);
2354 }
2355 EXPORT_SYMBOL(__printk_ratelimit);
2356
2357 /**
2358 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2359 * @caller_jiffies: pointer to caller's state
2360 * @interval_msecs: minimum interval between prints
2361 *
2362 * printk_timed_ratelimit() returns true if more than @interval_msecs
2363 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2364 * returned true.
2365 */
2366 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2367 unsigned int interval_msecs)
2368 {
2369 if (*caller_jiffies == 0
2370 || !time_in_range(jiffies, *caller_jiffies,
2371 *caller_jiffies
2372 + msecs_to_jiffies(interval_msecs))) {
2373 *caller_jiffies = jiffies;
2374 return true;
2375 }
2376 return false;
2377 }
2378 EXPORT_SYMBOL(printk_timed_ratelimit);
2379
2380 static DEFINE_SPINLOCK(dump_list_lock);
2381 static LIST_HEAD(dump_list);
2382
2383 /**
2384 * kmsg_dump_register - register a kernel log dumper.
2385 * @dumper: pointer to the kmsg_dumper structure
2386 *
2387 * Adds a kernel log dumper to the system. The dump callback in the
2388 * structure will be called when the kernel oopses or panics and must be
2389 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2390 */
2391 int kmsg_dump_register(struct kmsg_dumper *dumper)
2392 {
2393 unsigned long flags;
2394 int err = -EBUSY;
2395
2396 /* The dump callback needs to be set */
2397 if (!dumper->dump)
2398 return -EINVAL;
2399
2400 spin_lock_irqsave(&dump_list_lock, flags);
2401 /* Don't allow registering multiple times */
2402 if (!dumper->registered) {
2403 dumper->registered = 1;
2404 list_add_tail_rcu(&dumper->list, &dump_list);
2405 err = 0;
2406 }
2407 spin_unlock_irqrestore(&dump_list_lock, flags);
2408
2409 return err;
2410 }
2411 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2412
2413 /**
2414 * kmsg_dump_unregister - unregister a kmsg dumper.
2415 * @dumper: pointer to the kmsg_dumper structure
2416 *
2417 * Removes a dump device from the system. Returns zero on success and
2418 * %-EINVAL otherwise.
2419 */
2420 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2421 {
2422 unsigned long flags;
2423 int err = -EINVAL;
2424
2425 spin_lock_irqsave(&dump_list_lock, flags);
2426 if (dumper->registered) {
2427 dumper->registered = 0;
2428 list_del_rcu(&dumper->list);
2429 err = 0;
2430 }
2431 spin_unlock_irqrestore(&dump_list_lock, flags);
2432 synchronize_rcu();
2433
2434 return err;
2435 }
2436 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2437
2438 static bool always_kmsg_dump;
2439 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2440
2441 /**
2442 * kmsg_dump - dump kernel log to kernel message dumpers.
2443 * @reason: the reason (oops, panic etc) for dumping
2444 *
2445 * Call each of the registered dumper's dump() callback, which can
2446 * retrieve the kmsg records with kmsg_dump_get_line() or
2447 * kmsg_dump_get_buffer().
2448 */
2449 void kmsg_dump(enum kmsg_dump_reason reason)
2450 {
2451 struct kmsg_dumper *dumper;
2452 unsigned long flags;
2453
2454 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2455 return;
2456
2457 rcu_read_lock();
2458 list_for_each_entry_rcu(dumper, &dump_list, list) {
2459 if (dumper->max_reason && reason > dumper->max_reason)
2460 continue;
2461
2462 /* initialize iterator with data about the stored records */
2463 dumper->active = true;
2464
2465 raw_spin_lock_irqsave(&logbuf_lock, flags);
2466 dumper->cur_seq = clear_seq;
2467 dumper->cur_idx = clear_idx;
2468 dumper->next_seq = log_next_seq;
2469 dumper->next_idx = log_next_idx;
2470 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2471
2472 /* invoke dumper which will iterate over records */
2473 dumper->dump(dumper, reason);
2474
2475 /* reset iterator */
2476 dumper->active = false;
2477 }
2478 rcu_read_unlock();
2479 }
2480
2481 /**
2482 * kmsg_dump_get_line - retrieve one kmsg log line
2483 * @dumper: registered kmsg dumper
2484 * @syslog: include the "<4>" prefixes
2485 * @line: buffer to copy the line to
2486 * @size: maximum size of the buffer
2487 * @len: length of line placed into buffer
2488 *
2489 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2490 * record, and copy one record into the provided buffer.
2491 *
2492 * Consecutive calls will return the next available record moving
2493 * towards the end of the buffer with the youngest messages.
2494 *
2495 * A return value of FALSE indicates that there are no more records to
2496 * read.
2497 */
2498 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2499 char *line, size_t size, size_t *len)
2500 {
2501 unsigned long flags;
2502 struct log *msg;
2503 size_t l = 0;
2504 bool ret = false;
2505
2506 if (!dumper->active)
2507 goto out;
2508
2509 raw_spin_lock_irqsave(&logbuf_lock, flags);
2510 if (dumper->cur_seq < log_first_seq) {
2511 /* messages are gone, move to first available one */
2512 dumper->cur_seq = log_first_seq;
2513 dumper->cur_idx = log_first_idx;
2514 }
2515
2516 /* last entry */
2517 if (dumper->cur_seq >= log_next_seq) {
2518 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2519 goto out;
2520 }
2521
2522 msg = log_from_idx(dumper->cur_idx);
2523 l = msg_print_text(msg, syslog,
2524 line, size);
2525
2526 dumper->cur_idx = log_next(dumper->cur_idx);
2527 dumper->cur_seq++;
2528 ret = true;
2529 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2530 out:
2531 if (len)
2532 *len = l;
2533 return ret;
2534 }
2535 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2536
2537 /**
2538 * kmsg_dump_get_buffer - copy kmsg log lines
2539 * @dumper: registered kmsg dumper
2540 * @syslog: include the "<4>" prefixes
2541 * @buf: buffer to copy the line to
2542 * @size: maximum size of the buffer
2543 * @len: length of line placed into buffer
2544 *
2545 * Start at the end of the kmsg buffer and fill the provided buffer
2546 * with as many of the the *youngest* kmsg records that fit into it.
2547 * If the buffer is large enough, all available kmsg records will be
2548 * copied with a single call.
2549 *
2550 * Consecutive calls will fill the buffer with the next block of
2551 * available older records, not including the earlier retrieved ones.
2552 *
2553 * A return value of FALSE indicates that there are no more records to
2554 * read.
2555 */
2556 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2557 char *buf, size_t size, size_t *len)
2558 {
2559 unsigned long flags;
2560 u64 seq;
2561 u32 idx;
2562 u64 next_seq;
2563 u32 next_idx;
2564 size_t l = 0;
2565 bool ret = false;
2566
2567 if (!dumper->active)
2568 goto out;
2569
2570 raw_spin_lock_irqsave(&logbuf_lock, flags);
2571 if (dumper->cur_seq < log_first_seq) {
2572 /* messages are gone, move to first available one */
2573 dumper->cur_seq = log_first_seq;
2574 dumper->cur_idx = log_first_idx;
2575 }
2576
2577 /* last entry */
2578 if (dumper->cur_seq >= dumper->next_seq) {
2579 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2580 goto out;
2581 }
2582
2583 /* calculate length of entire buffer */
2584 seq = dumper->cur_seq;
2585 idx = dumper->cur_idx;
2586 while (seq < dumper->next_seq) {
2587 struct log *msg = log_from_idx(idx);
2588
2589 l += msg_print_text(msg, true, NULL, 0);
2590 idx = log_next(idx);
2591 seq++;
2592 }
2593
2594 /* move first record forward until length fits into the buffer */
2595 seq = dumper->cur_seq;
2596 idx = dumper->cur_idx;
2597 while (l > size && seq < dumper->next_seq) {
2598 struct log *msg = log_from_idx(idx);
2599
2600 l -= msg_print_text(msg, true, NULL, 0);
2601 idx = log_next(idx);
2602 seq++;
2603 }
2604
2605 /* last message in next interation */
2606 next_seq = seq;
2607 next_idx = idx;
2608
2609 l = 0;
2610 while (seq < dumper->next_seq) {
2611 struct log *msg = log_from_idx(idx);
2612
2613 l += msg_print_text(msg, syslog,
2614 buf + l, size - l);
2615
2616 idx = log_next(idx);
2617 seq++;
2618 }
2619
2620 dumper->next_seq = next_seq;
2621 dumper->next_idx = next_idx;
2622 ret = true;
2623 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2624 out:
2625 if (len)
2626 *len = l;
2627 return ret;
2628 }
2629 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2630
2631 /**
2632 * kmsg_dump_rewind - reset the interator
2633 * @dumper: registered kmsg dumper
2634 *
2635 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2636 * kmsg_dump_get_buffer() can be called again and used multiple
2637 * times within the same dumper.dump() callback.
2638 */
2639 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2640 {
2641 unsigned long flags;
2642
2643 raw_spin_lock_irqsave(&logbuf_lock, flags);
2644 dumper->cur_seq = clear_seq;
2645 dumper->cur_idx = clear_idx;
2646 dumper->next_seq = log_next_seq;
2647 dumper->next_idx = log_next_idx;
2648 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2649 }
2650 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2651 #endif
This page took 0.082946 seconds and 6 git commands to generate.