2 * linux/kernel/profile.c
3 * Simple profiling. Manages a direct-mapped profile hit count buffer,
4 * with configurable resolution, support for restricting the cpus on
5 * which profiling is done, and switching between cpu time and
6 * schedule() calls via kernel command line parameters passed at boot.
8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
10 * Consolidation of architecture support code for profiling,
11 * Nadia Yvette Chambers, Oracle, July 2004
12 * Amortized hit count accounting via per-cpu open-addressed hashtables
13 * to resolve timer interrupt livelocks, Nadia Yvette Chambers,
17 #include <linux/export.h>
18 #include <linux/profile.h>
19 #include <linux/bootmem.h>
20 #include <linux/notifier.h>
22 #include <linux/cpumask.h>
23 #include <linux/cpu.h>
24 #include <linux/highmem.h>
25 #include <linux/mutex.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <asm/sections.h>
29 #include <asm/irq_regs.h>
30 #include <asm/ptrace.h>
35 #define PROFILE_GRPSHIFT 3
36 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
37 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
38 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
40 static atomic_t
*prof_buffer
;
41 static unsigned long prof_len
, prof_shift
;
43 int prof_on __read_mostly
;
44 EXPORT_SYMBOL_GPL(prof_on
);
46 static cpumask_var_t prof_cpu_mask
;
48 static DEFINE_PER_CPU(struct profile_hit
*[2], cpu_profile_hits
);
49 static DEFINE_PER_CPU(int, cpu_profile_flip
);
50 static DEFINE_MUTEX(profile_flip_mutex
);
51 #endif /* CONFIG_SMP */
53 int profile_setup(char *str
)
55 static const char schedstr
[] = "schedule";
56 static const char sleepstr
[] = "sleep";
57 static const char kvmstr
[] = "kvm";
60 if (!strncmp(str
, sleepstr
, strlen(sleepstr
))) {
61 #ifdef CONFIG_SCHEDSTATS
62 prof_on
= SLEEP_PROFILING
;
63 if (str
[strlen(sleepstr
)] == ',')
64 str
+= strlen(sleepstr
) + 1;
65 if (get_option(&str
, &par
))
67 pr_info("kernel sleep profiling enabled (shift: %ld)\n",
70 pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
71 #endif /* CONFIG_SCHEDSTATS */
72 } else if (!strncmp(str
, schedstr
, strlen(schedstr
))) {
73 prof_on
= SCHED_PROFILING
;
74 if (str
[strlen(schedstr
)] == ',')
75 str
+= strlen(schedstr
) + 1;
76 if (get_option(&str
, &par
))
78 pr_info("kernel schedule profiling enabled (shift: %ld)\n",
80 } else if (!strncmp(str
, kvmstr
, strlen(kvmstr
))) {
81 prof_on
= KVM_PROFILING
;
82 if (str
[strlen(kvmstr
)] == ',')
83 str
+= strlen(kvmstr
) + 1;
84 if (get_option(&str
, &par
))
86 pr_info("kernel KVM profiling enabled (shift: %ld)\n",
88 } else if (get_option(&str
, &par
)) {
90 prof_on
= CPU_PROFILING
;
91 pr_info("kernel profiling enabled (shift: %ld)\n",
96 __setup("profile=", profile_setup
);
99 int __ref
profile_init(void)
105 /* only text is profiled */
106 prof_len
= (_etext
- _stext
) >> prof_shift
;
107 buffer_bytes
= prof_len
*sizeof(atomic_t
);
109 if (!alloc_cpumask_var(&prof_cpu_mask
, GFP_KERNEL
))
112 cpumask_copy(prof_cpu_mask
, cpu_possible_mask
);
114 prof_buffer
= kzalloc(buffer_bytes
, GFP_KERNEL
|__GFP_NOWARN
);
118 prof_buffer
= alloc_pages_exact(buffer_bytes
,
119 GFP_KERNEL
|__GFP_ZERO
|__GFP_NOWARN
);
123 prof_buffer
= vzalloc(buffer_bytes
);
127 free_cpumask_var(prof_cpu_mask
);
131 /* Profile event notifications */
133 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier
);
134 static ATOMIC_NOTIFIER_HEAD(task_free_notifier
);
135 static BLOCKING_NOTIFIER_HEAD(munmap_notifier
);
137 void profile_task_exit(struct task_struct
*task
)
139 blocking_notifier_call_chain(&task_exit_notifier
, 0, task
);
142 int profile_handoff_task(struct task_struct
*task
)
145 ret
= atomic_notifier_call_chain(&task_free_notifier
, 0, task
);
146 return (ret
== NOTIFY_OK
) ? 1 : 0;
149 void profile_munmap(unsigned long addr
)
151 blocking_notifier_call_chain(&munmap_notifier
, 0, (void *)addr
);
154 int task_handoff_register(struct notifier_block
*n
)
156 return atomic_notifier_chain_register(&task_free_notifier
, n
);
158 EXPORT_SYMBOL_GPL(task_handoff_register
);
160 int task_handoff_unregister(struct notifier_block
*n
)
162 return atomic_notifier_chain_unregister(&task_free_notifier
, n
);
164 EXPORT_SYMBOL_GPL(task_handoff_unregister
);
166 int profile_event_register(enum profile_type type
, struct notifier_block
*n
)
171 case PROFILE_TASK_EXIT
:
172 err
= blocking_notifier_chain_register(
173 &task_exit_notifier
, n
);
176 err
= blocking_notifier_chain_register(
177 &munmap_notifier
, n
);
183 EXPORT_SYMBOL_GPL(profile_event_register
);
185 int profile_event_unregister(enum profile_type type
, struct notifier_block
*n
)
190 case PROFILE_TASK_EXIT
:
191 err
= blocking_notifier_chain_unregister(
192 &task_exit_notifier
, n
);
195 err
= blocking_notifier_chain_unregister(
196 &munmap_notifier
, n
);
202 EXPORT_SYMBOL_GPL(profile_event_unregister
);
206 * Each cpu has a pair of open-addressed hashtables for pending
207 * profile hits. read_profile() IPI's all cpus to request them
208 * to flip buffers and flushes their contents to prof_buffer itself.
209 * Flip requests are serialized by the profile_flip_mutex. The sole
210 * use of having a second hashtable is for avoiding cacheline
211 * contention that would otherwise happen during flushes of pending
212 * profile hits required for the accuracy of reported profile hits
213 * and so resurrect the interrupt livelock issue.
215 * The open-addressed hashtables are indexed by profile buffer slot
216 * and hold the number of pending hits to that profile buffer slot on
217 * a cpu in an entry. When the hashtable overflows, all pending hits
218 * are accounted to their corresponding profile buffer slots with
219 * atomic_add() and the hashtable emptied. As numerous pending hits
220 * may be accounted to a profile buffer slot in a hashtable entry,
221 * this amortizes a number of atomic profile buffer increments likely
222 * to be far larger than the number of entries in the hashtable,
223 * particularly given that the number of distinct profile buffer
224 * positions to which hits are accounted during short intervals (e.g.
225 * several seconds) is usually very small. Exclusion from buffer
226 * flipping is provided by interrupt disablement (note that for
227 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
229 * The hash function is meant to be lightweight as opposed to strong,
230 * and was vaguely inspired by ppc64 firmware-supported inverted
231 * pagetable hash functions, but uses a full hashtable full of finite
232 * collision chains, not just pairs of them.
236 static void __profile_flip_buffers(void *unused
)
238 int cpu
= smp_processor_id();
240 per_cpu(cpu_profile_flip
, cpu
) = !per_cpu(cpu_profile_flip
, cpu
);
243 static void profile_flip_buffers(void)
247 mutex_lock(&profile_flip_mutex
);
248 j
= per_cpu(cpu_profile_flip
, get_cpu());
250 on_each_cpu(__profile_flip_buffers
, NULL
, 1);
251 for_each_online_cpu(cpu
) {
252 struct profile_hit
*hits
= per_cpu(cpu_profile_hits
, cpu
)[j
];
253 for (i
= 0; i
< NR_PROFILE_HIT
; ++i
) {
259 atomic_add(hits
[i
].hits
, &prof_buffer
[hits
[i
].pc
]);
260 hits
[i
].hits
= hits
[i
].pc
= 0;
263 mutex_unlock(&profile_flip_mutex
);
266 static void profile_discard_flip_buffers(void)
270 mutex_lock(&profile_flip_mutex
);
271 i
= per_cpu(cpu_profile_flip
, get_cpu());
273 on_each_cpu(__profile_flip_buffers
, NULL
, 1);
274 for_each_online_cpu(cpu
) {
275 struct profile_hit
*hits
= per_cpu(cpu_profile_hits
, cpu
)[i
];
276 memset(hits
, 0, NR_PROFILE_HIT
*sizeof(struct profile_hit
));
278 mutex_unlock(&profile_flip_mutex
);
281 static void do_profile_hits(int type
, void *__pc
, unsigned int nr_hits
)
283 unsigned long primary
, secondary
, flags
, pc
= (unsigned long)__pc
;
285 struct profile_hit
*hits
;
287 pc
= min((pc
- (unsigned long)_stext
) >> prof_shift
, prof_len
- 1);
288 i
= primary
= (pc
& (NR_PROFILE_GRP
- 1)) << PROFILE_GRPSHIFT
;
289 secondary
= (~(pc
<< 1) & (NR_PROFILE_GRP
- 1)) << PROFILE_GRPSHIFT
;
291 hits
= per_cpu(cpu_profile_hits
, cpu
)[per_cpu(cpu_profile_flip
, cpu
)];
297 * We buffer the global profiler buffer into a per-CPU
298 * queue and thus reduce the number of global (and possibly
299 * NUMA-alien) accesses. The write-queue is self-coalescing:
301 local_irq_save(flags
);
303 for (j
= 0; j
< PROFILE_GRPSZ
; ++j
) {
304 if (hits
[i
+ j
].pc
== pc
) {
305 hits
[i
+ j
].hits
+= nr_hits
;
307 } else if (!hits
[i
+ j
].hits
) {
309 hits
[i
+ j
].hits
= nr_hits
;
313 i
= (i
+ secondary
) & (NR_PROFILE_HIT
- 1);
314 } while (i
!= primary
);
317 * Add the current hit(s) and flush the write-queue out
318 * to the global buffer:
320 atomic_add(nr_hits
, &prof_buffer
[pc
]);
321 for (i
= 0; i
< NR_PROFILE_HIT
; ++i
) {
322 atomic_add(hits
[i
].hits
, &prof_buffer
[hits
[i
].pc
]);
323 hits
[i
].pc
= hits
[i
].hits
= 0;
326 local_irq_restore(flags
);
330 static int profile_cpu_callback(struct notifier_block
*info
,
331 unsigned long action
, void *__cpu
)
333 int node
, cpu
= (unsigned long)__cpu
;
338 case CPU_UP_PREPARE_FROZEN
:
339 node
= cpu_to_mem(cpu
);
340 per_cpu(cpu_profile_flip
, cpu
) = 0;
341 if (!per_cpu(cpu_profile_hits
, cpu
)[1]) {
342 page
= alloc_pages_exact_node(node
,
343 GFP_KERNEL
| __GFP_ZERO
,
346 return notifier_from_errno(-ENOMEM
);
347 per_cpu(cpu_profile_hits
, cpu
)[1] = page_address(page
);
349 if (!per_cpu(cpu_profile_hits
, cpu
)[0]) {
350 page
= alloc_pages_exact_node(node
,
351 GFP_KERNEL
| __GFP_ZERO
,
355 per_cpu(cpu_profile_hits
, cpu
)[0] = page_address(page
);
359 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[1]);
360 per_cpu(cpu_profile_hits
, cpu
)[1] = NULL
;
362 return notifier_from_errno(-ENOMEM
);
364 case CPU_ONLINE_FROZEN
:
365 if (prof_cpu_mask
!= NULL
)
366 cpumask_set_cpu(cpu
, prof_cpu_mask
);
368 case CPU_UP_CANCELED
:
369 case CPU_UP_CANCELED_FROZEN
:
371 case CPU_DEAD_FROZEN
:
372 if (prof_cpu_mask
!= NULL
)
373 cpumask_clear_cpu(cpu
, prof_cpu_mask
);
374 if (per_cpu(cpu_profile_hits
, cpu
)[0]) {
375 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[0]);
376 per_cpu(cpu_profile_hits
, cpu
)[0] = NULL
;
379 if (per_cpu(cpu_profile_hits
, cpu
)[1]) {
380 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[1]);
381 per_cpu(cpu_profile_hits
, cpu
)[1] = NULL
;
388 #else /* !CONFIG_SMP */
389 #define profile_flip_buffers() do { } while (0)
390 #define profile_discard_flip_buffers() do { } while (0)
391 #define profile_cpu_callback NULL
393 static void do_profile_hits(int type
, void *__pc
, unsigned int nr_hits
)
396 pc
= ((unsigned long)__pc
- (unsigned long)_stext
) >> prof_shift
;
397 atomic_add(nr_hits
, &prof_buffer
[min(pc
, prof_len
- 1)]);
399 #endif /* !CONFIG_SMP */
401 void profile_hits(int type
, void *__pc
, unsigned int nr_hits
)
403 if (prof_on
!= type
|| !prof_buffer
)
405 do_profile_hits(type
, __pc
, nr_hits
);
407 EXPORT_SYMBOL_GPL(profile_hits
);
409 void profile_tick(int type
)
411 struct pt_regs
*regs
= get_irq_regs();
413 if (!user_mode(regs
) && prof_cpu_mask
!= NULL
&&
414 cpumask_test_cpu(smp_processor_id(), prof_cpu_mask
))
415 profile_hit(type
, (void *)profile_pc(regs
));
418 #ifdef CONFIG_PROC_FS
419 #include <linux/proc_fs.h>
420 #include <linux/seq_file.h>
421 #include <asm/uaccess.h>
423 static int prof_cpu_mask_proc_show(struct seq_file
*m
, void *v
)
425 seq_cpumask(m
, prof_cpu_mask
);
430 static int prof_cpu_mask_proc_open(struct inode
*inode
, struct file
*file
)
432 return single_open(file
, prof_cpu_mask_proc_show
, NULL
);
435 static ssize_t
prof_cpu_mask_proc_write(struct file
*file
,
436 const char __user
*buffer
, size_t count
, loff_t
*pos
)
438 cpumask_var_t new_value
;
441 if (!alloc_cpumask_var(&new_value
, GFP_KERNEL
))
444 err
= cpumask_parse_user(buffer
, count
, new_value
);
446 cpumask_copy(prof_cpu_mask
, new_value
);
449 free_cpumask_var(new_value
);
453 static const struct file_operations prof_cpu_mask_proc_fops
= {
454 .open
= prof_cpu_mask_proc_open
,
457 .release
= single_release
,
458 .write
= prof_cpu_mask_proc_write
,
461 void create_prof_cpu_mask(void)
463 /* create /proc/irq/prof_cpu_mask */
464 proc_create("irq/prof_cpu_mask", 0600, NULL
, &prof_cpu_mask_proc_fops
);
468 * This function accesses profiling information. The returned data is
469 * binary: the sampling step and the actual contents of the profile
470 * buffer. Use of the program readprofile is recommended in order to
471 * get meaningful info out of these data.
474 read_profile(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
476 unsigned long p
= *ppos
;
479 unsigned int sample_step
= 1 << prof_shift
;
481 profile_flip_buffers();
482 if (p
>= (prof_len
+1)*sizeof(unsigned int))
484 if (count
> (prof_len
+1)*sizeof(unsigned int) - p
)
485 count
= (prof_len
+1)*sizeof(unsigned int) - p
;
488 while (p
< sizeof(unsigned int) && count
> 0) {
489 if (put_user(*((char *)(&sample_step
)+p
), buf
))
491 buf
++; p
++; count
--; read
++;
493 pnt
= (char *)prof_buffer
+ p
- sizeof(atomic_t
);
494 if (copy_to_user(buf
, (void *)pnt
, count
))
502 * Writing to /proc/profile resets the counters
504 * Writing a 'profiling multiplier' value into it also re-sets the profiling
505 * interrupt frequency, on architectures that support this.
507 static ssize_t
write_profile(struct file
*file
, const char __user
*buf
,
508 size_t count
, loff_t
*ppos
)
511 extern int setup_profiling_timer(unsigned int multiplier
);
513 if (count
== sizeof(int)) {
514 unsigned int multiplier
;
516 if (copy_from_user(&multiplier
, buf
, sizeof(int)))
519 if (setup_profiling_timer(multiplier
))
523 profile_discard_flip_buffers();
524 memset(prof_buffer
, 0, prof_len
* sizeof(atomic_t
));
528 static const struct file_operations proc_profile_operations
= {
529 .read
= read_profile
,
530 .write
= write_profile
,
531 .llseek
= default_llseek
,
535 static void profile_nop(void *unused
)
539 static int create_hash_tables(void)
543 for_each_online_cpu(cpu
) {
544 int node
= cpu_to_mem(cpu
);
547 page
= alloc_pages_exact_node(node
,
548 GFP_KERNEL
| __GFP_ZERO
| __GFP_THISNODE
,
552 per_cpu(cpu_profile_hits
, cpu
)[1]
553 = (struct profile_hit
*)page_address(page
);
554 page
= alloc_pages_exact_node(node
,
555 GFP_KERNEL
| __GFP_ZERO
| __GFP_THISNODE
,
559 per_cpu(cpu_profile_hits
, cpu
)[0]
560 = (struct profile_hit
*)page_address(page
);
566 on_each_cpu(profile_nop
, NULL
, 1);
567 for_each_online_cpu(cpu
) {
570 if (per_cpu(cpu_profile_hits
, cpu
)[0]) {
571 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[0]);
572 per_cpu(cpu_profile_hits
, cpu
)[0] = NULL
;
575 if (per_cpu(cpu_profile_hits
, cpu
)[1]) {
576 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[1]);
577 per_cpu(cpu_profile_hits
, cpu
)[1] = NULL
;
584 #define create_hash_tables() ({ 0; })
587 int __ref
create_proc_profile(void) /* false positive from hotcpu_notifier */
589 struct proc_dir_entry
*entry
;
595 cpu_notifier_register_begin();
597 if (create_hash_tables()) {
602 entry
= proc_create("profile", S_IWUSR
| S_IRUGO
,
603 NULL
, &proc_profile_operations
);
606 proc_set_size(entry
, (1 + prof_len
) * sizeof(atomic_t
));
607 __hotcpu_notifier(profile_cpu_callback
, 0);
610 cpu_notifier_register_done();
613 subsys_initcall(create_proc_profile
);
614 #endif /* CONFIG_PROC_FS */