usb: dwc3: add ACPI support
[deliverable/linux.git] / kernel / profile.c
1 /*
2 * linux/kernel/profile.c
3 * Simple profiling. Manages a direct-mapped profile hit count buffer,
4 * with configurable resolution, support for restricting the cpus on
5 * which profiling is done, and switching between cpu time and
6 * schedule() calls via kernel command line parameters passed at boot.
7 *
8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9 * Red Hat, July 2004
10 * Consolidation of architecture support code for profiling,
11 * Nadia Yvette Chambers, Oracle, July 2004
12 * Amortized hit count accounting via per-cpu open-addressed hashtables
13 * to resolve timer interrupt livelocks, Nadia Yvette Chambers,
14 * Oracle, 2004
15 */
16
17 #include <linux/export.h>
18 #include <linux/profile.h>
19 #include <linux/bootmem.h>
20 #include <linux/notifier.h>
21 #include <linux/mm.h>
22 #include <linux/cpumask.h>
23 #include <linux/cpu.h>
24 #include <linux/highmem.h>
25 #include <linux/mutex.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <asm/sections.h>
29 #include <asm/irq_regs.h>
30 #include <asm/ptrace.h>
31
32 struct profile_hit {
33 u32 pc, hits;
34 };
35 #define PROFILE_GRPSHIFT 3
36 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
37 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
38 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
39
40 static atomic_t *prof_buffer;
41 static unsigned long prof_len, prof_shift;
42
43 int prof_on __read_mostly;
44 EXPORT_SYMBOL_GPL(prof_on);
45
46 static cpumask_var_t prof_cpu_mask;
47 #ifdef CONFIG_SMP
48 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
49 static DEFINE_PER_CPU(int, cpu_profile_flip);
50 static DEFINE_MUTEX(profile_flip_mutex);
51 #endif /* CONFIG_SMP */
52
53 int profile_setup(char *str)
54 {
55 static const char schedstr[] = "schedule";
56 static const char sleepstr[] = "sleep";
57 static const char kvmstr[] = "kvm";
58 int par;
59
60 if (!strncmp(str, sleepstr, strlen(sleepstr))) {
61 #ifdef CONFIG_SCHEDSTATS
62 prof_on = SLEEP_PROFILING;
63 if (str[strlen(sleepstr)] == ',')
64 str += strlen(sleepstr) + 1;
65 if (get_option(&str, &par))
66 prof_shift = par;
67 pr_info("kernel sleep profiling enabled (shift: %ld)\n",
68 prof_shift);
69 #else
70 pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
71 #endif /* CONFIG_SCHEDSTATS */
72 } else if (!strncmp(str, schedstr, strlen(schedstr))) {
73 prof_on = SCHED_PROFILING;
74 if (str[strlen(schedstr)] == ',')
75 str += strlen(schedstr) + 1;
76 if (get_option(&str, &par))
77 prof_shift = par;
78 pr_info("kernel schedule profiling enabled (shift: %ld)\n",
79 prof_shift);
80 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
81 prof_on = KVM_PROFILING;
82 if (str[strlen(kvmstr)] == ',')
83 str += strlen(kvmstr) + 1;
84 if (get_option(&str, &par))
85 prof_shift = par;
86 pr_info("kernel KVM profiling enabled (shift: %ld)\n",
87 prof_shift);
88 } else if (get_option(&str, &par)) {
89 prof_shift = par;
90 prof_on = CPU_PROFILING;
91 pr_info("kernel profiling enabled (shift: %ld)\n",
92 prof_shift);
93 }
94 return 1;
95 }
96 __setup("profile=", profile_setup);
97
98
99 int __ref profile_init(void)
100 {
101 int buffer_bytes;
102 if (!prof_on)
103 return 0;
104
105 /* only text is profiled */
106 prof_len = (_etext - _stext) >> prof_shift;
107 buffer_bytes = prof_len*sizeof(atomic_t);
108
109 if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
110 return -ENOMEM;
111
112 cpumask_copy(prof_cpu_mask, cpu_possible_mask);
113
114 prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
115 if (prof_buffer)
116 return 0;
117
118 prof_buffer = alloc_pages_exact(buffer_bytes,
119 GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
120 if (prof_buffer)
121 return 0;
122
123 prof_buffer = vzalloc(buffer_bytes);
124 if (prof_buffer)
125 return 0;
126
127 free_cpumask_var(prof_cpu_mask);
128 return -ENOMEM;
129 }
130
131 /* Profile event notifications */
132
133 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
134 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
135 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
136
137 void profile_task_exit(struct task_struct *task)
138 {
139 blocking_notifier_call_chain(&task_exit_notifier, 0, task);
140 }
141
142 int profile_handoff_task(struct task_struct *task)
143 {
144 int ret;
145 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
146 return (ret == NOTIFY_OK) ? 1 : 0;
147 }
148
149 void profile_munmap(unsigned long addr)
150 {
151 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
152 }
153
154 int task_handoff_register(struct notifier_block *n)
155 {
156 return atomic_notifier_chain_register(&task_free_notifier, n);
157 }
158 EXPORT_SYMBOL_GPL(task_handoff_register);
159
160 int task_handoff_unregister(struct notifier_block *n)
161 {
162 return atomic_notifier_chain_unregister(&task_free_notifier, n);
163 }
164 EXPORT_SYMBOL_GPL(task_handoff_unregister);
165
166 int profile_event_register(enum profile_type type, struct notifier_block *n)
167 {
168 int err = -EINVAL;
169
170 switch (type) {
171 case PROFILE_TASK_EXIT:
172 err = blocking_notifier_chain_register(
173 &task_exit_notifier, n);
174 break;
175 case PROFILE_MUNMAP:
176 err = blocking_notifier_chain_register(
177 &munmap_notifier, n);
178 break;
179 }
180
181 return err;
182 }
183 EXPORT_SYMBOL_GPL(profile_event_register);
184
185 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
186 {
187 int err = -EINVAL;
188
189 switch (type) {
190 case PROFILE_TASK_EXIT:
191 err = blocking_notifier_chain_unregister(
192 &task_exit_notifier, n);
193 break;
194 case PROFILE_MUNMAP:
195 err = blocking_notifier_chain_unregister(
196 &munmap_notifier, n);
197 break;
198 }
199
200 return err;
201 }
202 EXPORT_SYMBOL_GPL(profile_event_unregister);
203
204 #ifdef CONFIG_SMP
205 /*
206 * Each cpu has a pair of open-addressed hashtables for pending
207 * profile hits. read_profile() IPI's all cpus to request them
208 * to flip buffers and flushes their contents to prof_buffer itself.
209 * Flip requests are serialized by the profile_flip_mutex. The sole
210 * use of having a second hashtable is for avoiding cacheline
211 * contention that would otherwise happen during flushes of pending
212 * profile hits required for the accuracy of reported profile hits
213 * and so resurrect the interrupt livelock issue.
214 *
215 * The open-addressed hashtables are indexed by profile buffer slot
216 * and hold the number of pending hits to that profile buffer slot on
217 * a cpu in an entry. When the hashtable overflows, all pending hits
218 * are accounted to their corresponding profile buffer slots with
219 * atomic_add() and the hashtable emptied. As numerous pending hits
220 * may be accounted to a profile buffer slot in a hashtable entry,
221 * this amortizes a number of atomic profile buffer increments likely
222 * to be far larger than the number of entries in the hashtable,
223 * particularly given that the number of distinct profile buffer
224 * positions to which hits are accounted during short intervals (e.g.
225 * several seconds) is usually very small. Exclusion from buffer
226 * flipping is provided by interrupt disablement (note that for
227 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
228 * process context).
229 * The hash function is meant to be lightweight as opposed to strong,
230 * and was vaguely inspired by ppc64 firmware-supported inverted
231 * pagetable hash functions, but uses a full hashtable full of finite
232 * collision chains, not just pairs of them.
233 *
234 * -- nyc
235 */
236 static void __profile_flip_buffers(void *unused)
237 {
238 int cpu = smp_processor_id();
239
240 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
241 }
242
243 static void profile_flip_buffers(void)
244 {
245 int i, j, cpu;
246
247 mutex_lock(&profile_flip_mutex);
248 j = per_cpu(cpu_profile_flip, get_cpu());
249 put_cpu();
250 on_each_cpu(__profile_flip_buffers, NULL, 1);
251 for_each_online_cpu(cpu) {
252 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
253 for (i = 0; i < NR_PROFILE_HIT; ++i) {
254 if (!hits[i].hits) {
255 if (hits[i].pc)
256 hits[i].pc = 0;
257 continue;
258 }
259 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
260 hits[i].hits = hits[i].pc = 0;
261 }
262 }
263 mutex_unlock(&profile_flip_mutex);
264 }
265
266 static void profile_discard_flip_buffers(void)
267 {
268 int i, cpu;
269
270 mutex_lock(&profile_flip_mutex);
271 i = per_cpu(cpu_profile_flip, get_cpu());
272 put_cpu();
273 on_each_cpu(__profile_flip_buffers, NULL, 1);
274 for_each_online_cpu(cpu) {
275 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
276 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
277 }
278 mutex_unlock(&profile_flip_mutex);
279 }
280
281 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
282 {
283 unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
284 int i, j, cpu;
285 struct profile_hit *hits;
286
287 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
288 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
289 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
290 cpu = get_cpu();
291 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
292 if (!hits) {
293 put_cpu();
294 return;
295 }
296 /*
297 * We buffer the global profiler buffer into a per-CPU
298 * queue and thus reduce the number of global (and possibly
299 * NUMA-alien) accesses. The write-queue is self-coalescing:
300 */
301 local_irq_save(flags);
302 do {
303 for (j = 0; j < PROFILE_GRPSZ; ++j) {
304 if (hits[i + j].pc == pc) {
305 hits[i + j].hits += nr_hits;
306 goto out;
307 } else if (!hits[i + j].hits) {
308 hits[i + j].pc = pc;
309 hits[i + j].hits = nr_hits;
310 goto out;
311 }
312 }
313 i = (i + secondary) & (NR_PROFILE_HIT - 1);
314 } while (i != primary);
315
316 /*
317 * Add the current hit(s) and flush the write-queue out
318 * to the global buffer:
319 */
320 atomic_add(nr_hits, &prof_buffer[pc]);
321 for (i = 0; i < NR_PROFILE_HIT; ++i) {
322 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
323 hits[i].pc = hits[i].hits = 0;
324 }
325 out:
326 local_irq_restore(flags);
327 put_cpu();
328 }
329
330 static int profile_cpu_callback(struct notifier_block *info,
331 unsigned long action, void *__cpu)
332 {
333 int node, cpu = (unsigned long)__cpu;
334 struct page *page;
335
336 switch (action) {
337 case CPU_UP_PREPARE:
338 case CPU_UP_PREPARE_FROZEN:
339 node = cpu_to_mem(cpu);
340 per_cpu(cpu_profile_flip, cpu) = 0;
341 if (!per_cpu(cpu_profile_hits, cpu)[1]) {
342 page = alloc_pages_exact_node(node,
343 GFP_KERNEL | __GFP_ZERO,
344 0);
345 if (!page)
346 return notifier_from_errno(-ENOMEM);
347 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
348 }
349 if (!per_cpu(cpu_profile_hits, cpu)[0]) {
350 page = alloc_pages_exact_node(node,
351 GFP_KERNEL | __GFP_ZERO,
352 0);
353 if (!page)
354 goto out_free;
355 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
356 }
357 break;
358 out_free:
359 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
360 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
361 __free_page(page);
362 return notifier_from_errno(-ENOMEM);
363 case CPU_ONLINE:
364 case CPU_ONLINE_FROZEN:
365 if (prof_cpu_mask != NULL)
366 cpumask_set_cpu(cpu, prof_cpu_mask);
367 break;
368 case CPU_UP_CANCELED:
369 case CPU_UP_CANCELED_FROZEN:
370 case CPU_DEAD:
371 case CPU_DEAD_FROZEN:
372 if (prof_cpu_mask != NULL)
373 cpumask_clear_cpu(cpu, prof_cpu_mask);
374 if (per_cpu(cpu_profile_hits, cpu)[0]) {
375 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
376 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
377 __free_page(page);
378 }
379 if (per_cpu(cpu_profile_hits, cpu)[1]) {
380 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
381 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
382 __free_page(page);
383 }
384 break;
385 }
386 return NOTIFY_OK;
387 }
388 #else /* !CONFIG_SMP */
389 #define profile_flip_buffers() do { } while (0)
390 #define profile_discard_flip_buffers() do { } while (0)
391 #define profile_cpu_callback NULL
392
393 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
394 {
395 unsigned long pc;
396 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
397 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
398 }
399 #endif /* !CONFIG_SMP */
400
401 void profile_hits(int type, void *__pc, unsigned int nr_hits)
402 {
403 if (prof_on != type || !prof_buffer)
404 return;
405 do_profile_hits(type, __pc, nr_hits);
406 }
407 EXPORT_SYMBOL_GPL(profile_hits);
408
409 void profile_tick(int type)
410 {
411 struct pt_regs *regs = get_irq_regs();
412
413 if (!user_mode(regs) && prof_cpu_mask != NULL &&
414 cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
415 profile_hit(type, (void *)profile_pc(regs));
416 }
417
418 #ifdef CONFIG_PROC_FS
419 #include <linux/proc_fs.h>
420 #include <linux/seq_file.h>
421 #include <asm/uaccess.h>
422
423 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
424 {
425 seq_cpumask(m, prof_cpu_mask);
426 seq_putc(m, '\n');
427 return 0;
428 }
429
430 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
431 {
432 return single_open(file, prof_cpu_mask_proc_show, NULL);
433 }
434
435 static ssize_t prof_cpu_mask_proc_write(struct file *file,
436 const char __user *buffer, size_t count, loff_t *pos)
437 {
438 cpumask_var_t new_value;
439 int err;
440
441 if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
442 return -ENOMEM;
443
444 err = cpumask_parse_user(buffer, count, new_value);
445 if (!err) {
446 cpumask_copy(prof_cpu_mask, new_value);
447 err = count;
448 }
449 free_cpumask_var(new_value);
450 return err;
451 }
452
453 static const struct file_operations prof_cpu_mask_proc_fops = {
454 .open = prof_cpu_mask_proc_open,
455 .read = seq_read,
456 .llseek = seq_lseek,
457 .release = single_release,
458 .write = prof_cpu_mask_proc_write,
459 };
460
461 void create_prof_cpu_mask(void)
462 {
463 /* create /proc/irq/prof_cpu_mask */
464 proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops);
465 }
466
467 /*
468 * This function accesses profiling information. The returned data is
469 * binary: the sampling step and the actual contents of the profile
470 * buffer. Use of the program readprofile is recommended in order to
471 * get meaningful info out of these data.
472 */
473 static ssize_t
474 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
475 {
476 unsigned long p = *ppos;
477 ssize_t read;
478 char *pnt;
479 unsigned int sample_step = 1 << prof_shift;
480
481 profile_flip_buffers();
482 if (p >= (prof_len+1)*sizeof(unsigned int))
483 return 0;
484 if (count > (prof_len+1)*sizeof(unsigned int) - p)
485 count = (prof_len+1)*sizeof(unsigned int) - p;
486 read = 0;
487
488 while (p < sizeof(unsigned int) && count > 0) {
489 if (put_user(*((char *)(&sample_step)+p), buf))
490 return -EFAULT;
491 buf++; p++; count--; read++;
492 }
493 pnt = (char *)prof_buffer + p - sizeof(atomic_t);
494 if (copy_to_user(buf, (void *)pnt, count))
495 return -EFAULT;
496 read += count;
497 *ppos += read;
498 return read;
499 }
500
501 /*
502 * Writing to /proc/profile resets the counters
503 *
504 * Writing a 'profiling multiplier' value into it also re-sets the profiling
505 * interrupt frequency, on architectures that support this.
506 */
507 static ssize_t write_profile(struct file *file, const char __user *buf,
508 size_t count, loff_t *ppos)
509 {
510 #ifdef CONFIG_SMP
511 extern int setup_profiling_timer(unsigned int multiplier);
512
513 if (count == sizeof(int)) {
514 unsigned int multiplier;
515
516 if (copy_from_user(&multiplier, buf, sizeof(int)))
517 return -EFAULT;
518
519 if (setup_profiling_timer(multiplier))
520 return -EINVAL;
521 }
522 #endif
523 profile_discard_flip_buffers();
524 memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
525 return count;
526 }
527
528 static const struct file_operations proc_profile_operations = {
529 .read = read_profile,
530 .write = write_profile,
531 .llseek = default_llseek,
532 };
533
534 #ifdef CONFIG_SMP
535 static void profile_nop(void *unused)
536 {
537 }
538
539 static int create_hash_tables(void)
540 {
541 int cpu;
542
543 for_each_online_cpu(cpu) {
544 int node = cpu_to_mem(cpu);
545 struct page *page;
546
547 page = alloc_pages_exact_node(node,
548 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
549 0);
550 if (!page)
551 goto out_cleanup;
552 per_cpu(cpu_profile_hits, cpu)[1]
553 = (struct profile_hit *)page_address(page);
554 page = alloc_pages_exact_node(node,
555 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
556 0);
557 if (!page)
558 goto out_cleanup;
559 per_cpu(cpu_profile_hits, cpu)[0]
560 = (struct profile_hit *)page_address(page);
561 }
562 return 0;
563 out_cleanup:
564 prof_on = 0;
565 smp_mb();
566 on_each_cpu(profile_nop, NULL, 1);
567 for_each_online_cpu(cpu) {
568 struct page *page;
569
570 if (per_cpu(cpu_profile_hits, cpu)[0]) {
571 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
572 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
573 __free_page(page);
574 }
575 if (per_cpu(cpu_profile_hits, cpu)[1]) {
576 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
577 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
578 __free_page(page);
579 }
580 }
581 return -1;
582 }
583 #else
584 #define create_hash_tables() ({ 0; })
585 #endif
586
587 int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
588 {
589 struct proc_dir_entry *entry;
590 int err = 0;
591
592 if (!prof_on)
593 return 0;
594
595 cpu_notifier_register_begin();
596
597 if (create_hash_tables()) {
598 err = -ENOMEM;
599 goto out;
600 }
601
602 entry = proc_create("profile", S_IWUSR | S_IRUGO,
603 NULL, &proc_profile_operations);
604 if (!entry)
605 goto out;
606 proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
607 __hotcpu_notifier(profile_cpu_callback, 0);
608
609 out:
610 cpu_notifier_register_done();
611 return err;
612 }
613 subsys_initcall(create_proc_profile);
614 #endif /* CONFIG_PROC_FS */
This page took 0.043715 seconds and 5 git commands to generate.