Merge tag 'regulator-v3.13' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[deliverable/linux.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/suspend.h>
59
60 #include "tree.h"
61 #include <trace/events/rcu.h>
62
63 #include "rcu.h"
64
65 MODULE_ALIAS("rcutree");
66 #ifdef MODULE_PARAM_PREFIX
67 #undef MODULE_PARAM_PREFIX
68 #endif
69 #define MODULE_PARAM_PREFIX "rcutree."
70
71 /* Data structures. */
72
73 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
74 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
75
76 /*
77 * In order to export the rcu_state name to the tracing tools, it
78 * needs to be added in the __tracepoint_string section.
79 * This requires defining a separate variable tp_<sname>_varname
80 * that points to the string being used, and this will allow
81 * the tracing userspace tools to be able to decipher the string
82 * address to the matching string.
83 */
84 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
85 static char sname##_varname[] = #sname; \
86 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
87 struct rcu_state sname##_state = { \
88 .level = { &sname##_state.node[0] }, \
89 .call = cr, \
90 .fqs_state = RCU_GP_IDLE, \
91 .gpnum = 0UL - 300UL, \
92 .completed = 0UL - 300UL, \
93 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
94 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
95 .orphan_donetail = &sname##_state.orphan_donelist, \
96 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
97 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
98 .name = sname##_varname, \
99 .abbr = sabbr, \
100 }; \
101 DEFINE_PER_CPU(struct rcu_data, sname##_data)
102
103 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
104 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
105
106 static struct rcu_state *rcu_state;
107 LIST_HEAD(rcu_struct_flavors);
108
109 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
111 module_param(rcu_fanout_leaf, int, 0444);
112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
114 NUM_RCU_LVL_0,
115 NUM_RCU_LVL_1,
116 NUM_RCU_LVL_2,
117 NUM_RCU_LVL_3,
118 NUM_RCU_LVL_4,
119 };
120 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
121
122 /*
123 * The rcu_scheduler_active variable transitions from zero to one just
124 * before the first task is spawned. So when this variable is zero, RCU
125 * can assume that there is but one task, allowing RCU to (for example)
126 * optimize synchronize_sched() to a simple barrier(). When this variable
127 * is one, RCU must actually do all the hard work required to detect real
128 * grace periods. This variable is also used to suppress boot-time false
129 * positives from lockdep-RCU error checking.
130 */
131 int rcu_scheduler_active __read_mostly;
132 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
133
134 /*
135 * The rcu_scheduler_fully_active variable transitions from zero to one
136 * during the early_initcall() processing, which is after the scheduler
137 * is capable of creating new tasks. So RCU processing (for example,
138 * creating tasks for RCU priority boosting) must be delayed until after
139 * rcu_scheduler_fully_active transitions from zero to one. We also
140 * currently delay invocation of any RCU callbacks until after this point.
141 *
142 * It might later prove better for people registering RCU callbacks during
143 * early boot to take responsibility for these callbacks, but one step at
144 * a time.
145 */
146 static int rcu_scheduler_fully_active __read_mostly;
147
148 #ifdef CONFIG_RCU_BOOST
149
150 /*
151 * Control variables for per-CPU and per-rcu_node kthreads. These
152 * handle all flavors of RCU.
153 */
154 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
155 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
156 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
157 DEFINE_PER_CPU(char, rcu_cpu_has_work);
158
159 #endif /* #ifdef CONFIG_RCU_BOOST */
160
161 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
162 static void invoke_rcu_core(void);
163 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
164
165 /*
166 * Track the rcutorture test sequence number and the update version
167 * number within a given test. The rcutorture_testseq is incremented
168 * on every rcutorture module load and unload, so has an odd value
169 * when a test is running. The rcutorture_vernum is set to zero
170 * when rcutorture starts and is incremented on each rcutorture update.
171 * These variables enable correlating rcutorture output with the
172 * RCU tracing information.
173 */
174 unsigned long rcutorture_testseq;
175 unsigned long rcutorture_vernum;
176
177 /*
178 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
179 * permit this function to be invoked without holding the root rcu_node
180 * structure's ->lock, but of course results can be subject to change.
181 */
182 static int rcu_gp_in_progress(struct rcu_state *rsp)
183 {
184 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
185 }
186
187 /*
188 * Note a quiescent state. Because we do not need to know
189 * how many quiescent states passed, just if there was at least
190 * one since the start of the grace period, this just sets a flag.
191 * The caller must have disabled preemption.
192 */
193 void rcu_sched_qs(int cpu)
194 {
195 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
196
197 if (rdp->passed_quiesce == 0)
198 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
199 rdp->passed_quiesce = 1;
200 }
201
202 void rcu_bh_qs(int cpu)
203 {
204 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
205
206 if (rdp->passed_quiesce == 0)
207 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
208 rdp->passed_quiesce = 1;
209 }
210
211 /*
212 * Note a context switch. This is a quiescent state for RCU-sched,
213 * and requires special handling for preemptible RCU.
214 * The caller must have disabled preemption.
215 */
216 void rcu_note_context_switch(int cpu)
217 {
218 trace_rcu_utilization(TPS("Start context switch"));
219 rcu_sched_qs(cpu);
220 rcu_preempt_note_context_switch(cpu);
221 trace_rcu_utilization(TPS("End context switch"));
222 }
223 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
224
225 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
226 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
227 .dynticks = ATOMIC_INIT(1),
228 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
229 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
230 .dynticks_idle = ATOMIC_INIT(1),
231 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
232 };
233
234 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
235 static long qhimark = 10000; /* If this many pending, ignore blimit. */
236 static long qlowmark = 100; /* Once only this many pending, use blimit. */
237
238 module_param(blimit, long, 0444);
239 module_param(qhimark, long, 0444);
240 module_param(qlowmark, long, 0444);
241
242 static ulong jiffies_till_first_fqs = ULONG_MAX;
243 static ulong jiffies_till_next_fqs = ULONG_MAX;
244
245 module_param(jiffies_till_first_fqs, ulong, 0644);
246 module_param(jiffies_till_next_fqs, ulong, 0644);
247
248 static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
249 struct rcu_data *rdp);
250 static void force_qs_rnp(struct rcu_state *rsp,
251 int (*f)(struct rcu_data *rsp, bool *isidle,
252 unsigned long *maxj),
253 bool *isidle, unsigned long *maxj);
254 static void force_quiescent_state(struct rcu_state *rsp);
255 static int rcu_pending(int cpu);
256
257 /*
258 * Return the number of RCU-sched batches processed thus far for debug & stats.
259 */
260 long rcu_batches_completed_sched(void)
261 {
262 return rcu_sched_state.completed;
263 }
264 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
265
266 /*
267 * Return the number of RCU BH batches processed thus far for debug & stats.
268 */
269 long rcu_batches_completed_bh(void)
270 {
271 return rcu_bh_state.completed;
272 }
273 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
274
275 /*
276 * Force a quiescent state for RCU BH.
277 */
278 void rcu_bh_force_quiescent_state(void)
279 {
280 force_quiescent_state(&rcu_bh_state);
281 }
282 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
283
284 /*
285 * Record the number of times rcutorture tests have been initiated and
286 * terminated. This information allows the debugfs tracing stats to be
287 * correlated to the rcutorture messages, even when the rcutorture module
288 * is being repeatedly loaded and unloaded. In other words, we cannot
289 * store this state in rcutorture itself.
290 */
291 void rcutorture_record_test_transition(void)
292 {
293 rcutorture_testseq++;
294 rcutorture_vernum = 0;
295 }
296 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
297
298 /*
299 * Record the number of writer passes through the current rcutorture test.
300 * This is also used to correlate debugfs tracing stats with the rcutorture
301 * messages.
302 */
303 void rcutorture_record_progress(unsigned long vernum)
304 {
305 rcutorture_vernum++;
306 }
307 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
308
309 /*
310 * Force a quiescent state for RCU-sched.
311 */
312 void rcu_sched_force_quiescent_state(void)
313 {
314 force_quiescent_state(&rcu_sched_state);
315 }
316 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
317
318 /*
319 * Does the CPU have callbacks ready to be invoked?
320 */
321 static int
322 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
323 {
324 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
325 rdp->nxttail[RCU_DONE_TAIL] != NULL;
326 }
327
328 /*
329 * Does the current CPU require a not-yet-started grace period?
330 * The caller must have disabled interrupts to prevent races with
331 * normal callback registry.
332 */
333 static int
334 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
335 {
336 int i;
337
338 if (rcu_gp_in_progress(rsp))
339 return 0; /* No, a grace period is already in progress. */
340 if (rcu_nocb_needs_gp(rsp))
341 return 1; /* Yes, a no-CBs CPU needs one. */
342 if (!rdp->nxttail[RCU_NEXT_TAIL])
343 return 0; /* No, this is a no-CBs (or offline) CPU. */
344 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
345 return 1; /* Yes, this CPU has newly registered callbacks. */
346 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
347 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
348 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
349 rdp->nxtcompleted[i]))
350 return 1; /* Yes, CBs for future grace period. */
351 return 0; /* No grace period needed. */
352 }
353
354 /*
355 * Return the root node of the specified rcu_state structure.
356 */
357 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
358 {
359 return &rsp->node[0];
360 }
361
362 /*
363 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
364 *
365 * If the new value of the ->dynticks_nesting counter now is zero,
366 * we really have entered idle, and must do the appropriate accounting.
367 * The caller must have disabled interrupts.
368 */
369 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
370 bool user)
371 {
372 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
373 if (!user && !is_idle_task(current)) {
374 struct task_struct *idle __maybe_unused =
375 idle_task(smp_processor_id());
376
377 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
378 ftrace_dump(DUMP_ORIG);
379 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
380 current->pid, current->comm,
381 idle->pid, idle->comm); /* must be idle task! */
382 }
383 rcu_prepare_for_idle(smp_processor_id());
384 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
385 smp_mb__before_atomic_inc(); /* See above. */
386 atomic_inc(&rdtp->dynticks);
387 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
388 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
389
390 /*
391 * It is illegal to enter an extended quiescent state while
392 * in an RCU read-side critical section.
393 */
394 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
395 "Illegal idle entry in RCU read-side critical section.");
396 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
397 "Illegal idle entry in RCU-bh read-side critical section.");
398 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
399 "Illegal idle entry in RCU-sched read-side critical section.");
400 }
401
402 /*
403 * Enter an RCU extended quiescent state, which can be either the
404 * idle loop or adaptive-tickless usermode execution.
405 */
406 static void rcu_eqs_enter(bool user)
407 {
408 long long oldval;
409 struct rcu_dynticks *rdtp;
410
411 rdtp = this_cpu_ptr(&rcu_dynticks);
412 oldval = rdtp->dynticks_nesting;
413 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
414 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
415 rdtp->dynticks_nesting = 0;
416 else
417 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
418 rcu_eqs_enter_common(rdtp, oldval, user);
419 }
420
421 /**
422 * rcu_idle_enter - inform RCU that current CPU is entering idle
423 *
424 * Enter idle mode, in other words, -leave- the mode in which RCU
425 * read-side critical sections can occur. (Though RCU read-side
426 * critical sections can occur in irq handlers in idle, a possibility
427 * handled by irq_enter() and irq_exit().)
428 *
429 * We crowbar the ->dynticks_nesting field to zero to allow for
430 * the possibility of usermode upcalls having messed up our count
431 * of interrupt nesting level during the prior busy period.
432 */
433 void rcu_idle_enter(void)
434 {
435 unsigned long flags;
436
437 local_irq_save(flags);
438 rcu_eqs_enter(false);
439 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
440 local_irq_restore(flags);
441 }
442 EXPORT_SYMBOL_GPL(rcu_idle_enter);
443
444 #ifdef CONFIG_RCU_USER_QS
445 /**
446 * rcu_user_enter - inform RCU that we are resuming userspace.
447 *
448 * Enter RCU idle mode right before resuming userspace. No use of RCU
449 * is permitted between this call and rcu_user_exit(). This way the
450 * CPU doesn't need to maintain the tick for RCU maintenance purposes
451 * when the CPU runs in userspace.
452 */
453 void rcu_user_enter(void)
454 {
455 rcu_eqs_enter(1);
456 }
457 #endif /* CONFIG_RCU_USER_QS */
458
459 /**
460 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
461 *
462 * Exit from an interrupt handler, which might possibly result in entering
463 * idle mode, in other words, leaving the mode in which read-side critical
464 * sections can occur.
465 *
466 * This code assumes that the idle loop never does anything that might
467 * result in unbalanced calls to irq_enter() and irq_exit(). If your
468 * architecture violates this assumption, RCU will give you what you
469 * deserve, good and hard. But very infrequently and irreproducibly.
470 *
471 * Use things like work queues to work around this limitation.
472 *
473 * You have been warned.
474 */
475 void rcu_irq_exit(void)
476 {
477 unsigned long flags;
478 long long oldval;
479 struct rcu_dynticks *rdtp;
480
481 local_irq_save(flags);
482 rdtp = this_cpu_ptr(&rcu_dynticks);
483 oldval = rdtp->dynticks_nesting;
484 rdtp->dynticks_nesting--;
485 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
486 if (rdtp->dynticks_nesting)
487 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
488 else
489 rcu_eqs_enter_common(rdtp, oldval, true);
490 rcu_sysidle_enter(rdtp, 1);
491 local_irq_restore(flags);
492 }
493
494 /*
495 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
496 *
497 * If the new value of the ->dynticks_nesting counter was previously zero,
498 * we really have exited idle, and must do the appropriate accounting.
499 * The caller must have disabled interrupts.
500 */
501 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
502 int user)
503 {
504 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
505 atomic_inc(&rdtp->dynticks);
506 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
507 smp_mb__after_atomic_inc(); /* See above. */
508 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
509 rcu_cleanup_after_idle(smp_processor_id());
510 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
511 if (!user && !is_idle_task(current)) {
512 struct task_struct *idle __maybe_unused =
513 idle_task(smp_processor_id());
514
515 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
516 oldval, rdtp->dynticks_nesting);
517 ftrace_dump(DUMP_ORIG);
518 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
519 current->pid, current->comm,
520 idle->pid, idle->comm); /* must be idle task! */
521 }
522 }
523
524 /*
525 * Exit an RCU extended quiescent state, which can be either the
526 * idle loop or adaptive-tickless usermode execution.
527 */
528 static void rcu_eqs_exit(bool user)
529 {
530 struct rcu_dynticks *rdtp;
531 long long oldval;
532
533 rdtp = this_cpu_ptr(&rcu_dynticks);
534 oldval = rdtp->dynticks_nesting;
535 WARN_ON_ONCE(oldval < 0);
536 if (oldval & DYNTICK_TASK_NEST_MASK)
537 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
538 else
539 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
540 rcu_eqs_exit_common(rdtp, oldval, user);
541 }
542
543 /**
544 * rcu_idle_exit - inform RCU that current CPU is leaving idle
545 *
546 * Exit idle mode, in other words, -enter- the mode in which RCU
547 * read-side critical sections can occur.
548 *
549 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
550 * allow for the possibility of usermode upcalls messing up our count
551 * of interrupt nesting level during the busy period that is just
552 * now starting.
553 */
554 void rcu_idle_exit(void)
555 {
556 unsigned long flags;
557
558 local_irq_save(flags);
559 rcu_eqs_exit(false);
560 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
561 local_irq_restore(flags);
562 }
563 EXPORT_SYMBOL_GPL(rcu_idle_exit);
564
565 #ifdef CONFIG_RCU_USER_QS
566 /**
567 * rcu_user_exit - inform RCU that we are exiting userspace.
568 *
569 * Exit RCU idle mode while entering the kernel because it can
570 * run a RCU read side critical section anytime.
571 */
572 void rcu_user_exit(void)
573 {
574 rcu_eqs_exit(1);
575 }
576 #endif /* CONFIG_RCU_USER_QS */
577
578 /**
579 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
580 *
581 * Enter an interrupt handler, which might possibly result in exiting
582 * idle mode, in other words, entering the mode in which read-side critical
583 * sections can occur.
584 *
585 * Note that the Linux kernel is fully capable of entering an interrupt
586 * handler that it never exits, for example when doing upcalls to
587 * user mode! This code assumes that the idle loop never does upcalls to
588 * user mode. If your architecture does do upcalls from the idle loop (or
589 * does anything else that results in unbalanced calls to the irq_enter()
590 * and irq_exit() functions), RCU will give you what you deserve, good
591 * and hard. But very infrequently and irreproducibly.
592 *
593 * Use things like work queues to work around this limitation.
594 *
595 * You have been warned.
596 */
597 void rcu_irq_enter(void)
598 {
599 unsigned long flags;
600 struct rcu_dynticks *rdtp;
601 long long oldval;
602
603 local_irq_save(flags);
604 rdtp = this_cpu_ptr(&rcu_dynticks);
605 oldval = rdtp->dynticks_nesting;
606 rdtp->dynticks_nesting++;
607 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
608 if (oldval)
609 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
610 else
611 rcu_eqs_exit_common(rdtp, oldval, true);
612 rcu_sysidle_exit(rdtp, 1);
613 local_irq_restore(flags);
614 }
615
616 /**
617 * rcu_nmi_enter - inform RCU of entry to NMI context
618 *
619 * If the CPU was idle with dynamic ticks active, and there is no
620 * irq handler running, this updates rdtp->dynticks_nmi to let the
621 * RCU grace-period handling know that the CPU is active.
622 */
623 void rcu_nmi_enter(void)
624 {
625 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
626
627 if (rdtp->dynticks_nmi_nesting == 0 &&
628 (atomic_read(&rdtp->dynticks) & 0x1))
629 return;
630 rdtp->dynticks_nmi_nesting++;
631 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
632 atomic_inc(&rdtp->dynticks);
633 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
634 smp_mb__after_atomic_inc(); /* See above. */
635 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
636 }
637
638 /**
639 * rcu_nmi_exit - inform RCU of exit from NMI context
640 *
641 * If the CPU was idle with dynamic ticks active, and there is no
642 * irq handler running, this updates rdtp->dynticks_nmi to let the
643 * RCU grace-period handling know that the CPU is no longer active.
644 */
645 void rcu_nmi_exit(void)
646 {
647 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
648
649 if (rdtp->dynticks_nmi_nesting == 0 ||
650 --rdtp->dynticks_nmi_nesting != 0)
651 return;
652 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
653 smp_mb__before_atomic_inc(); /* See above. */
654 atomic_inc(&rdtp->dynticks);
655 smp_mb__after_atomic_inc(); /* Force delay to next write. */
656 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
657 }
658
659 /**
660 * __rcu_is_watching - are RCU read-side critical sections safe?
661 *
662 * Return true if RCU is watching the running CPU, which means that
663 * this CPU can safely enter RCU read-side critical sections. Unlike
664 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
665 * least disabled preemption.
666 */
667 bool __rcu_is_watching(void)
668 {
669 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
670 }
671
672 /**
673 * rcu_is_watching - see if RCU thinks that the current CPU is idle
674 *
675 * If the current CPU is in its idle loop and is neither in an interrupt
676 * or NMI handler, return true.
677 */
678 bool rcu_is_watching(void)
679 {
680 int ret;
681
682 preempt_disable();
683 ret = __rcu_is_watching();
684 preempt_enable();
685 return ret;
686 }
687 EXPORT_SYMBOL_GPL(rcu_is_watching);
688
689 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
690
691 /*
692 * Is the current CPU online? Disable preemption to avoid false positives
693 * that could otherwise happen due to the current CPU number being sampled,
694 * this task being preempted, its old CPU being taken offline, resuming
695 * on some other CPU, then determining that its old CPU is now offline.
696 * It is OK to use RCU on an offline processor during initial boot, hence
697 * the check for rcu_scheduler_fully_active. Note also that it is OK
698 * for a CPU coming online to use RCU for one jiffy prior to marking itself
699 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
700 * offline to continue to use RCU for one jiffy after marking itself
701 * offline in the cpu_online_mask. This leniency is necessary given the
702 * non-atomic nature of the online and offline processing, for example,
703 * the fact that a CPU enters the scheduler after completing the CPU_DYING
704 * notifiers.
705 *
706 * This is also why RCU internally marks CPUs online during the
707 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
708 *
709 * Disable checking if in an NMI handler because we cannot safely report
710 * errors from NMI handlers anyway.
711 */
712 bool rcu_lockdep_current_cpu_online(void)
713 {
714 struct rcu_data *rdp;
715 struct rcu_node *rnp;
716 bool ret;
717
718 if (in_nmi())
719 return 1;
720 preempt_disable();
721 rdp = this_cpu_ptr(&rcu_sched_data);
722 rnp = rdp->mynode;
723 ret = (rdp->grpmask & rnp->qsmaskinit) ||
724 !rcu_scheduler_fully_active;
725 preempt_enable();
726 return ret;
727 }
728 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
729
730 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
731
732 /**
733 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
734 *
735 * If the current CPU is idle or running at a first-level (not nested)
736 * interrupt from idle, return true. The caller must have at least
737 * disabled preemption.
738 */
739 static int rcu_is_cpu_rrupt_from_idle(void)
740 {
741 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
742 }
743
744 /*
745 * Snapshot the specified CPU's dynticks counter so that we can later
746 * credit them with an implicit quiescent state. Return 1 if this CPU
747 * is in dynticks idle mode, which is an extended quiescent state.
748 */
749 static int dyntick_save_progress_counter(struct rcu_data *rdp,
750 bool *isidle, unsigned long *maxj)
751 {
752 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
753 rcu_sysidle_check_cpu(rdp, isidle, maxj);
754 return (rdp->dynticks_snap & 0x1) == 0;
755 }
756
757 /*
758 * Return true if the specified CPU has passed through a quiescent
759 * state by virtue of being in or having passed through an dynticks
760 * idle state since the last call to dyntick_save_progress_counter()
761 * for this same CPU, or by virtue of having been offline.
762 */
763 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
764 bool *isidle, unsigned long *maxj)
765 {
766 unsigned int curr;
767 unsigned int snap;
768
769 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
770 snap = (unsigned int)rdp->dynticks_snap;
771
772 /*
773 * If the CPU passed through or entered a dynticks idle phase with
774 * no active irq/NMI handlers, then we can safely pretend that the CPU
775 * already acknowledged the request to pass through a quiescent
776 * state. Either way, that CPU cannot possibly be in an RCU
777 * read-side critical section that started before the beginning
778 * of the current RCU grace period.
779 */
780 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
781 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
782 rdp->dynticks_fqs++;
783 return 1;
784 }
785
786 /*
787 * Check for the CPU being offline, but only if the grace period
788 * is old enough. We don't need to worry about the CPU changing
789 * state: If we see it offline even once, it has been through a
790 * quiescent state.
791 *
792 * The reason for insisting that the grace period be at least
793 * one jiffy old is that CPUs that are not quite online and that
794 * have just gone offline can still execute RCU read-side critical
795 * sections.
796 */
797 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
798 return 0; /* Grace period is not old enough. */
799 barrier();
800 if (cpu_is_offline(rdp->cpu)) {
801 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
802 rdp->offline_fqs++;
803 return 1;
804 }
805
806 /*
807 * There is a possibility that a CPU in adaptive-ticks state
808 * might run in the kernel with the scheduling-clock tick disabled
809 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
810 * force the CPU to restart the scheduling-clock tick in this
811 * CPU is in this state.
812 */
813 rcu_kick_nohz_cpu(rdp->cpu);
814
815 return 0;
816 }
817
818 static void record_gp_stall_check_time(struct rcu_state *rsp)
819 {
820 unsigned long j = ACCESS_ONCE(jiffies);
821
822 rsp->gp_start = j;
823 smp_wmb(); /* Record start time before stall time. */
824 rsp->jiffies_stall = j + rcu_jiffies_till_stall_check();
825 }
826
827 /*
828 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
829 * for architectures that do not implement trigger_all_cpu_backtrace().
830 * The NMI-triggered stack traces are more accurate because they are
831 * printed by the target CPU.
832 */
833 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
834 {
835 int cpu;
836 unsigned long flags;
837 struct rcu_node *rnp;
838
839 rcu_for_each_leaf_node(rsp, rnp) {
840 raw_spin_lock_irqsave(&rnp->lock, flags);
841 if (rnp->qsmask != 0) {
842 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
843 if (rnp->qsmask & (1UL << cpu))
844 dump_cpu_task(rnp->grplo + cpu);
845 }
846 raw_spin_unlock_irqrestore(&rnp->lock, flags);
847 }
848 }
849
850 static void print_other_cpu_stall(struct rcu_state *rsp)
851 {
852 int cpu;
853 long delta;
854 unsigned long flags;
855 int ndetected = 0;
856 struct rcu_node *rnp = rcu_get_root(rsp);
857 long totqlen = 0;
858
859 /* Only let one CPU complain about others per time interval. */
860
861 raw_spin_lock_irqsave(&rnp->lock, flags);
862 delta = jiffies - rsp->jiffies_stall;
863 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
864 raw_spin_unlock_irqrestore(&rnp->lock, flags);
865 return;
866 }
867 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
868 raw_spin_unlock_irqrestore(&rnp->lock, flags);
869
870 /*
871 * OK, time to rat on our buddy...
872 * See Documentation/RCU/stallwarn.txt for info on how to debug
873 * RCU CPU stall warnings.
874 */
875 pr_err("INFO: %s detected stalls on CPUs/tasks:",
876 rsp->name);
877 print_cpu_stall_info_begin();
878 rcu_for_each_leaf_node(rsp, rnp) {
879 raw_spin_lock_irqsave(&rnp->lock, flags);
880 ndetected += rcu_print_task_stall(rnp);
881 if (rnp->qsmask != 0) {
882 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
883 if (rnp->qsmask & (1UL << cpu)) {
884 print_cpu_stall_info(rsp,
885 rnp->grplo + cpu);
886 ndetected++;
887 }
888 }
889 raw_spin_unlock_irqrestore(&rnp->lock, flags);
890 }
891
892 /*
893 * Now rat on any tasks that got kicked up to the root rcu_node
894 * due to CPU offlining.
895 */
896 rnp = rcu_get_root(rsp);
897 raw_spin_lock_irqsave(&rnp->lock, flags);
898 ndetected += rcu_print_task_stall(rnp);
899 raw_spin_unlock_irqrestore(&rnp->lock, flags);
900
901 print_cpu_stall_info_end();
902 for_each_possible_cpu(cpu)
903 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
904 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
905 smp_processor_id(), (long)(jiffies - rsp->gp_start),
906 rsp->gpnum, rsp->completed, totqlen);
907 if (ndetected == 0)
908 pr_err("INFO: Stall ended before state dump start\n");
909 else if (!trigger_all_cpu_backtrace())
910 rcu_dump_cpu_stacks(rsp);
911
912 /* Complain about tasks blocking the grace period. */
913
914 rcu_print_detail_task_stall(rsp);
915
916 force_quiescent_state(rsp); /* Kick them all. */
917 }
918
919 /*
920 * This function really isn't for public consumption, but RCU is special in
921 * that context switches can allow the state machine to make progress.
922 */
923 extern void resched_cpu(int cpu);
924
925 static void print_cpu_stall(struct rcu_state *rsp)
926 {
927 int cpu;
928 unsigned long flags;
929 struct rcu_node *rnp = rcu_get_root(rsp);
930 long totqlen = 0;
931
932 /*
933 * OK, time to rat on ourselves...
934 * See Documentation/RCU/stallwarn.txt for info on how to debug
935 * RCU CPU stall warnings.
936 */
937 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
938 print_cpu_stall_info_begin();
939 print_cpu_stall_info(rsp, smp_processor_id());
940 print_cpu_stall_info_end();
941 for_each_possible_cpu(cpu)
942 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
943 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
944 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
945 if (!trigger_all_cpu_backtrace())
946 dump_stack();
947
948 raw_spin_lock_irqsave(&rnp->lock, flags);
949 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
950 rsp->jiffies_stall = jiffies +
951 3 * rcu_jiffies_till_stall_check() + 3;
952 raw_spin_unlock_irqrestore(&rnp->lock, flags);
953
954 /*
955 * Attempt to revive the RCU machinery by forcing a context switch.
956 *
957 * A context switch would normally allow the RCU state machine to make
958 * progress and it could be we're stuck in kernel space without context
959 * switches for an entirely unreasonable amount of time.
960 */
961 resched_cpu(smp_processor_id());
962 }
963
964 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
965 {
966 unsigned long completed;
967 unsigned long gpnum;
968 unsigned long gps;
969 unsigned long j;
970 unsigned long js;
971 struct rcu_node *rnp;
972
973 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
974 return;
975 j = ACCESS_ONCE(jiffies);
976
977 /*
978 * Lots of memory barriers to reject false positives.
979 *
980 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
981 * then rsp->gp_start, and finally rsp->completed. These values
982 * are updated in the opposite order with memory barriers (or
983 * equivalent) during grace-period initialization and cleanup.
984 * Now, a false positive can occur if we get an new value of
985 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
986 * the memory barriers, the only way that this can happen is if one
987 * grace period ends and another starts between these two fetches.
988 * Detect this by comparing rsp->completed with the previous fetch
989 * from rsp->gpnum.
990 *
991 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
992 * and rsp->gp_start suffice to forestall false positives.
993 */
994 gpnum = ACCESS_ONCE(rsp->gpnum);
995 smp_rmb(); /* Pick up ->gpnum first... */
996 js = ACCESS_ONCE(rsp->jiffies_stall);
997 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
998 gps = ACCESS_ONCE(rsp->gp_start);
999 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1000 completed = ACCESS_ONCE(rsp->completed);
1001 if (ULONG_CMP_GE(completed, gpnum) ||
1002 ULONG_CMP_LT(j, js) ||
1003 ULONG_CMP_GE(gps, js))
1004 return; /* No stall or GP completed since entering function. */
1005 rnp = rdp->mynode;
1006 if (rcu_gp_in_progress(rsp) &&
1007 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1008
1009 /* We haven't checked in, so go dump stack. */
1010 print_cpu_stall(rsp);
1011
1012 } else if (rcu_gp_in_progress(rsp) &&
1013 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1014
1015 /* They had a few time units to dump stack, so complain. */
1016 print_other_cpu_stall(rsp);
1017 }
1018 }
1019
1020 /**
1021 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1022 *
1023 * Set the stall-warning timeout way off into the future, thus preventing
1024 * any RCU CPU stall-warning messages from appearing in the current set of
1025 * RCU grace periods.
1026 *
1027 * The caller must disable hard irqs.
1028 */
1029 void rcu_cpu_stall_reset(void)
1030 {
1031 struct rcu_state *rsp;
1032
1033 for_each_rcu_flavor(rsp)
1034 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
1035 }
1036
1037 /*
1038 * Initialize the specified rcu_data structure's callback list to empty.
1039 */
1040 static void init_callback_list(struct rcu_data *rdp)
1041 {
1042 int i;
1043
1044 if (init_nocb_callback_list(rdp))
1045 return;
1046 rdp->nxtlist = NULL;
1047 for (i = 0; i < RCU_NEXT_SIZE; i++)
1048 rdp->nxttail[i] = &rdp->nxtlist;
1049 }
1050
1051 /*
1052 * Determine the value that ->completed will have at the end of the
1053 * next subsequent grace period. This is used to tag callbacks so that
1054 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1055 * been dyntick-idle for an extended period with callbacks under the
1056 * influence of RCU_FAST_NO_HZ.
1057 *
1058 * The caller must hold rnp->lock with interrupts disabled.
1059 */
1060 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1061 struct rcu_node *rnp)
1062 {
1063 /*
1064 * If RCU is idle, we just wait for the next grace period.
1065 * But we can only be sure that RCU is idle if we are looking
1066 * at the root rcu_node structure -- otherwise, a new grace
1067 * period might have started, but just not yet gotten around
1068 * to initializing the current non-root rcu_node structure.
1069 */
1070 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1071 return rnp->completed + 1;
1072
1073 /*
1074 * Otherwise, wait for a possible partial grace period and
1075 * then the subsequent full grace period.
1076 */
1077 return rnp->completed + 2;
1078 }
1079
1080 /*
1081 * Trace-event helper function for rcu_start_future_gp() and
1082 * rcu_nocb_wait_gp().
1083 */
1084 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1085 unsigned long c, const char *s)
1086 {
1087 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1088 rnp->completed, c, rnp->level,
1089 rnp->grplo, rnp->grphi, s);
1090 }
1091
1092 /*
1093 * Start some future grace period, as needed to handle newly arrived
1094 * callbacks. The required future grace periods are recorded in each
1095 * rcu_node structure's ->need_future_gp field.
1096 *
1097 * The caller must hold the specified rcu_node structure's ->lock.
1098 */
1099 static unsigned long __maybe_unused
1100 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1101 {
1102 unsigned long c;
1103 int i;
1104 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1105
1106 /*
1107 * Pick up grace-period number for new callbacks. If this
1108 * grace period is already marked as needed, return to the caller.
1109 */
1110 c = rcu_cbs_completed(rdp->rsp, rnp);
1111 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1112 if (rnp->need_future_gp[c & 0x1]) {
1113 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1114 return c;
1115 }
1116
1117 /*
1118 * If either this rcu_node structure or the root rcu_node structure
1119 * believe that a grace period is in progress, then we must wait
1120 * for the one following, which is in "c". Because our request
1121 * will be noticed at the end of the current grace period, we don't
1122 * need to explicitly start one.
1123 */
1124 if (rnp->gpnum != rnp->completed ||
1125 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1126 rnp->need_future_gp[c & 0x1]++;
1127 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1128 return c;
1129 }
1130
1131 /*
1132 * There might be no grace period in progress. If we don't already
1133 * hold it, acquire the root rcu_node structure's lock in order to
1134 * start one (if needed).
1135 */
1136 if (rnp != rnp_root)
1137 raw_spin_lock(&rnp_root->lock);
1138
1139 /*
1140 * Get a new grace-period number. If there really is no grace
1141 * period in progress, it will be smaller than the one we obtained
1142 * earlier. Adjust callbacks as needed. Note that even no-CBs
1143 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1144 */
1145 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1146 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1147 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1148 rdp->nxtcompleted[i] = c;
1149
1150 /*
1151 * If the needed for the required grace period is already
1152 * recorded, trace and leave.
1153 */
1154 if (rnp_root->need_future_gp[c & 0x1]) {
1155 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1156 goto unlock_out;
1157 }
1158
1159 /* Record the need for the future grace period. */
1160 rnp_root->need_future_gp[c & 0x1]++;
1161
1162 /* If a grace period is not already in progress, start one. */
1163 if (rnp_root->gpnum != rnp_root->completed) {
1164 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1165 } else {
1166 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1167 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1168 }
1169 unlock_out:
1170 if (rnp != rnp_root)
1171 raw_spin_unlock(&rnp_root->lock);
1172 return c;
1173 }
1174
1175 /*
1176 * Clean up any old requests for the just-ended grace period. Also return
1177 * whether any additional grace periods have been requested. Also invoke
1178 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1179 * waiting for this grace period to complete.
1180 */
1181 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1182 {
1183 int c = rnp->completed;
1184 int needmore;
1185 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1186
1187 rcu_nocb_gp_cleanup(rsp, rnp);
1188 rnp->need_future_gp[c & 0x1] = 0;
1189 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1190 trace_rcu_future_gp(rnp, rdp, c,
1191 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1192 return needmore;
1193 }
1194
1195 /*
1196 * If there is room, assign a ->completed number to any callbacks on
1197 * this CPU that have not already been assigned. Also accelerate any
1198 * callbacks that were previously assigned a ->completed number that has
1199 * since proven to be too conservative, which can happen if callbacks get
1200 * assigned a ->completed number while RCU is idle, but with reference to
1201 * a non-root rcu_node structure. This function is idempotent, so it does
1202 * not hurt to call it repeatedly.
1203 *
1204 * The caller must hold rnp->lock with interrupts disabled.
1205 */
1206 static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1207 struct rcu_data *rdp)
1208 {
1209 unsigned long c;
1210 int i;
1211
1212 /* If the CPU has no callbacks, nothing to do. */
1213 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1214 return;
1215
1216 /*
1217 * Starting from the sublist containing the callbacks most
1218 * recently assigned a ->completed number and working down, find the
1219 * first sublist that is not assignable to an upcoming grace period.
1220 * Such a sublist has something in it (first two tests) and has
1221 * a ->completed number assigned that will complete sooner than
1222 * the ->completed number for newly arrived callbacks (last test).
1223 *
1224 * The key point is that any later sublist can be assigned the
1225 * same ->completed number as the newly arrived callbacks, which
1226 * means that the callbacks in any of these later sublist can be
1227 * grouped into a single sublist, whether or not they have already
1228 * been assigned a ->completed number.
1229 */
1230 c = rcu_cbs_completed(rsp, rnp);
1231 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1232 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1233 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1234 break;
1235
1236 /*
1237 * If there are no sublist for unassigned callbacks, leave.
1238 * At the same time, advance "i" one sublist, so that "i" will
1239 * index into the sublist where all the remaining callbacks should
1240 * be grouped into.
1241 */
1242 if (++i >= RCU_NEXT_TAIL)
1243 return;
1244
1245 /*
1246 * Assign all subsequent callbacks' ->completed number to the next
1247 * full grace period and group them all in the sublist initially
1248 * indexed by "i".
1249 */
1250 for (; i <= RCU_NEXT_TAIL; i++) {
1251 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1252 rdp->nxtcompleted[i] = c;
1253 }
1254 /* Record any needed additional grace periods. */
1255 rcu_start_future_gp(rnp, rdp);
1256
1257 /* Trace depending on how much we were able to accelerate. */
1258 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1259 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1260 else
1261 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1262 }
1263
1264 /*
1265 * Move any callbacks whose grace period has completed to the
1266 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1267 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1268 * sublist. This function is idempotent, so it does not hurt to
1269 * invoke it repeatedly. As long as it is not invoked -too- often...
1270 *
1271 * The caller must hold rnp->lock with interrupts disabled.
1272 */
1273 static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1274 struct rcu_data *rdp)
1275 {
1276 int i, j;
1277
1278 /* If the CPU has no callbacks, nothing to do. */
1279 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1280 return;
1281
1282 /*
1283 * Find all callbacks whose ->completed numbers indicate that they
1284 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1285 */
1286 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1287 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1288 break;
1289 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1290 }
1291 /* Clean up any sublist tail pointers that were misordered above. */
1292 for (j = RCU_WAIT_TAIL; j < i; j++)
1293 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1294
1295 /* Copy down callbacks to fill in empty sublists. */
1296 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1297 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1298 break;
1299 rdp->nxttail[j] = rdp->nxttail[i];
1300 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1301 }
1302
1303 /* Classify any remaining callbacks. */
1304 rcu_accelerate_cbs(rsp, rnp, rdp);
1305 }
1306
1307 /*
1308 * Update CPU-local rcu_data state to record the beginnings and ends of
1309 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1310 * structure corresponding to the current CPU, and must have irqs disabled.
1311 */
1312 static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1313 {
1314 /* Handle the ends of any preceding grace periods first. */
1315 if (rdp->completed == rnp->completed) {
1316
1317 /* No grace period end, so just accelerate recent callbacks. */
1318 rcu_accelerate_cbs(rsp, rnp, rdp);
1319
1320 } else {
1321
1322 /* Advance callbacks. */
1323 rcu_advance_cbs(rsp, rnp, rdp);
1324
1325 /* Remember that we saw this grace-period completion. */
1326 rdp->completed = rnp->completed;
1327 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1328 }
1329
1330 if (rdp->gpnum != rnp->gpnum) {
1331 /*
1332 * If the current grace period is waiting for this CPU,
1333 * set up to detect a quiescent state, otherwise don't
1334 * go looking for one.
1335 */
1336 rdp->gpnum = rnp->gpnum;
1337 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1338 rdp->passed_quiesce = 0;
1339 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1340 zero_cpu_stall_ticks(rdp);
1341 }
1342 }
1343
1344 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1345 {
1346 unsigned long flags;
1347 struct rcu_node *rnp;
1348
1349 local_irq_save(flags);
1350 rnp = rdp->mynode;
1351 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1352 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1353 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1354 local_irq_restore(flags);
1355 return;
1356 }
1357 __note_gp_changes(rsp, rnp, rdp);
1358 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1359 }
1360
1361 /*
1362 * Initialize a new grace period. Return 0 if no grace period required.
1363 */
1364 static int rcu_gp_init(struct rcu_state *rsp)
1365 {
1366 struct rcu_data *rdp;
1367 struct rcu_node *rnp = rcu_get_root(rsp);
1368
1369 rcu_bind_gp_kthread();
1370 raw_spin_lock_irq(&rnp->lock);
1371 if (rsp->gp_flags == 0) {
1372 /* Spurious wakeup, tell caller to go back to sleep. */
1373 raw_spin_unlock_irq(&rnp->lock);
1374 return 0;
1375 }
1376 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1377
1378 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1379 /*
1380 * Grace period already in progress, don't start another.
1381 * Not supposed to be able to happen.
1382 */
1383 raw_spin_unlock_irq(&rnp->lock);
1384 return 0;
1385 }
1386
1387 /* Advance to a new grace period and initialize state. */
1388 record_gp_stall_check_time(rsp);
1389 smp_wmb(); /* Record GP times before starting GP. */
1390 rsp->gpnum++;
1391 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1392 raw_spin_unlock_irq(&rnp->lock);
1393
1394 /* Exclude any concurrent CPU-hotplug operations. */
1395 mutex_lock(&rsp->onoff_mutex);
1396
1397 /*
1398 * Set the quiescent-state-needed bits in all the rcu_node
1399 * structures for all currently online CPUs in breadth-first order,
1400 * starting from the root rcu_node structure, relying on the layout
1401 * of the tree within the rsp->node[] array. Note that other CPUs
1402 * will access only the leaves of the hierarchy, thus seeing that no
1403 * grace period is in progress, at least until the corresponding
1404 * leaf node has been initialized. In addition, we have excluded
1405 * CPU-hotplug operations.
1406 *
1407 * The grace period cannot complete until the initialization
1408 * process finishes, because this kthread handles both.
1409 */
1410 rcu_for_each_node_breadth_first(rsp, rnp) {
1411 raw_spin_lock_irq(&rnp->lock);
1412 rdp = this_cpu_ptr(rsp->rda);
1413 rcu_preempt_check_blocked_tasks(rnp);
1414 rnp->qsmask = rnp->qsmaskinit;
1415 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1416 WARN_ON_ONCE(rnp->completed != rsp->completed);
1417 ACCESS_ONCE(rnp->completed) = rsp->completed;
1418 if (rnp == rdp->mynode)
1419 __note_gp_changes(rsp, rnp, rdp);
1420 rcu_preempt_boost_start_gp(rnp);
1421 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1422 rnp->level, rnp->grplo,
1423 rnp->grphi, rnp->qsmask);
1424 raw_spin_unlock_irq(&rnp->lock);
1425 #ifdef CONFIG_PROVE_RCU_DELAY
1426 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1427 system_state == SYSTEM_RUNNING)
1428 udelay(200);
1429 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1430 cond_resched();
1431 }
1432
1433 mutex_unlock(&rsp->onoff_mutex);
1434 return 1;
1435 }
1436
1437 /*
1438 * Do one round of quiescent-state forcing.
1439 */
1440 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1441 {
1442 int fqs_state = fqs_state_in;
1443 bool isidle = false;
1444 unsigned long maxj;
1445 struct rcu_node *rnp = rcu_get_root(rsp);
1446
1447 rsp->n_force_qs++;
1448 if (fqs_state == RCU_SAVE_DYNTICK) {
1449 /* Collect dyntick-idle snapshots. */
1450 if (is_sysidle_rcu_state(rsp)) {
1451 isidle = 1;
1452 maxj = jiffies - ULONG_MAX / 4;
1453 }
1454 force_qs_rnp(rsp, dyntick_save_progress_counter,
1455 &isidle, &maxj);
1456 rcu_sysidle_report_gp(rsp, isidle, maxj);
1457 fqs_state = RCU_FORCE_QS;
1458 } else {
1459 /* Handle dyntick-idle and offline CPUs. */
1460 isidle = 0;
1461 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1462 }
1463 /* Clear flag to prevent immediate re-entry. */
1464 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1465 raw_spin_lock_irq(&rnp->lock);
1466 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1467 raw_spin_unlock_irq(&rnp->lock);
1468 }
1469 return fqs_state;
1470 }
1471
1472 /*
1473 * Clean up after the old grace period.
1474 */
1475 static void rcu_gp_cleanup(struct rcu_state *rsp)
1476 {
1477 unsigned long gp_duration;
1478 int nocb = 0;
1479 struct rcu_data *rdp;
1480 struct rcu_node *rnp = rcu_get_root(rsp);
1481
1482 raw_spin_lock_irq(&rnp->lock);
1483 gp_duration = jiffies - rsp->gp_start;
1484 if (gp_duration > rsp->gp_max)
1485 rsp->gp_max = gp_duration;
1486
1487 /*
1488 * We know the grace period is complete, but to everyone else
1489 * it appears to still be ongoing. But it is also the case
1490 * that to everyone else it looks like there is nothing that
1491 * they can do to advance the grace period. It is therefore
1492 * safe for us to drop the lock in order to mark the grace
1493 * period as completed in all of the rcu_node structures.
1494 */
1495 raw_spin_unlock_irq(&rnp->lock);
1496
1497 /*
1498 * Propagate new ->completed value to rcu_node structures so
1499 * that other CPUs don't have to wait until the start of the next
1500 * grace period to process their callbacks. This also avoids
1501 * some nasty RCU grace-period initialization races by forcing
1502 * the end of the current grace period to be completely recorded in
1503 * all of the rcu_node structures before the beginning of the next
1504 * grace period is recorded in any of the rcu_node structures.
1505 */
1506 rcu_for_each_node_breadth_first(rsp, rnp) {
1507 raw_spin_lock_irq(&rnp->lock);
1508 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1509 rdp = this_cpu_ptr(rsp->rda);
1510 if (rnp == rdp->mynode)
1511 __note_gp_changes(rsp, rnp, rdp);
1512 nocb += rcu_future_gp_cleanup(rsp, rnp);
1513 raw_spin_unlock_irq(&rnp->lock);
1514 cond_resched();
1515 }
1516 rnp = rcu_get_root(rsp);
1517 raw_spin_lock_irq(&rnp->lock);
1518 rcu_nocb_gp_set(rnp, nocb);
1519
1520 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1521 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1522 rsp->fqs_state = RCU_GP_IDLE;
1523 rdp = this_cpu_ptr(rsp->rda);
1524 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
1525 if (cpu_needs_another_gp(rsp, rdp)) {
1526 rsp->gp_flags = RCU_GP_FLAG_INIT;
1527 trace_rcu_grace_period(rsp->name,
1528 ACCESS_ONCE(rsp->gpnum),
1529 TPS("newreq"));
1530 }
1531 raw_spin_unlock_irq(&rnp->lock);
1532 }
1533
1534 /*
1535 * Body of kthread that handles grace periods.
1536 */
1537 static int __noreturn rcu_gp_kthread(void *arg)
1538 {
1539 int fqs_state;
1540 int gf;
1541 unsigned long j;
1542 int ret;
1543 struct rcu_state *rsp = arg;
1544 struct rcu_node *rnp = rcu_get_root(rsp);
1545
1546 for (;;) {
1547
1548 /* Handle grace-period start. */
1549 for (;;) {
1550 trace_rcu_grace_period(rsp->name,
1551 ACCESS_ONCE(rsp->gpnum),
1552 TPS("reqwait"));
1553 wait_event_interruptible(rsp->gp_wq,
1554 ACCESS_ONCE(rsp->gp_flags) &
1555 RCU_GP_FLAG_INIT);
1556 if (rcu_gp_init(rsp))
1557 break;
1558 cond_resched();
1559 flush_signals(current);
1560 trace_rcu_grace_period(rsp->name,
1561 ACCESS_ONCE(rsp->gpnum),
1562 TPS("reqwaitsig"));
1563 }
1564
1565 /* Handle quiescent-state forcing. */
1566 fqs_state = RCU_SAVE_DYNTICK;
1567 j = jiffies_till_first_fqs;
1568 if (j > HZ) {
1569 j = HZ;
1570 jiffies_till_first_fqs = HZ;
1571 }
1572 ret = 0;
1573 for (;;) {
1574 if (!ret)
1575 rsp->jiffies_force_qs = jiffies + j;
1576 trace_rcu_grace_period(rsp->name,
1577 ACCESS_ONCE(rsp->gpnum),
1578 TPS("fqswait"));
1579 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1580 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1581 RCU_GP_FLAG_FQS) ||
1582 (!ACCESS_ONCE(rnp->qsmask) &&
1583 !rcu_preempt_blocked_readers_cgp(rnp)),
1584 j);
1585 /* If grace period done, leave loop. */
1586 if (!ACCESS_ONCE(rnp->qsmask) &&
1587 !rcu_preempt_blocked_readers_cgp(rnp))
1588 break;
1589 /* If time for quiescent-state forcing, do it. */
1590 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1591 (gf & RCU_GP_FLAG_FQS)) {
1592 trace_rcu_grace_period(rsp->name,
1593 ACCESS_ONCE(rsp->gpnum),
1594 TPS("fqsstart"));
1595 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1596 trace_rcu_grace_period(rsp->name,
1597 ACCESS_ONCE(rsp->gpnum),
1598 TPS("fqsend"));
1599 cond_resched();
1600 } else {
1601 /* Deal with stray signal. */
1602 cond_resched();
1603 flush_signals(current);
1604 trace_rcu_grace_period(rsp->name,
1605 ACCESS_ONCE(rsp->gpnum),
1606 TPS("fqswaitsig"));
1607 }
1608 j = jiffies_till_next_fqs;
1609 if (j > HZ) {
1610 j = HZ;
1611 jiffies_till_next_fqs = HZ;
1612 } else if (j < 1) {
1613 j = 1;
1614 jiffies_till_next_fqs = 1;
1615 }
1616 }
1617
1618 /* Handle grace-period end. */
1619 rcu_gp_cleanup(rsp);
1620 }
1621 }
1622
1623 static void rsp_wakeup(struct irq_work *work)
1624 {
1625 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1626
1627 /* Wake up rcu_gp_kthread() to start the grace period. */
1628 wake_up(&rsp->gp_wq);
1629 }
1630
1631 /*
1632 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1633 * in preparation for detecting the next grace period. The caller must hold
1634 * the root node's ->lock and hard irqs must be disabled.
1635 *
1636 * Note that it is legal for a dying CPU (which is marked as offline) to
1637 * invoke this function. This can happen when the dying CPU reports its
1638 * quiescent state.
1639 */
1640 static void
1641 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1642 struct rcu_data *rdp)
1643 {
1644 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1645 /*
1646 * Either we have not yet spawned the grace-period
1647 * task, this CPU does not need another grace period,
1648 * or a grace period is already in progress.
1649 * Either way, don't start a new grace period.
1650 */
1651 return;
1652 }
1653 rsp->gp_flags = RCU_GP_FLAG_INIT;
1654 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1655 TPS("newreq"));
1656
1657 /*
1658 * We can't do wakeups while holding the rnp->lock, as that
1659 * could cause possible deadlocks with the rq->lock. Defer
1660 * the wakeup to interrupt context. And don't bother waking
1661 * up the running kthread.
1662 */
1663 if (current != rsp->gp_kthread)
1664 irq_work_queue(&rsp->wakeup_work);
1665 }
1666
1667 /*
1668 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1669 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1670 * is invoked indirectly from rcu_advance_cbs(), which would result in
1671 * endless recursion -- or would do so if it wasn't for the self-deadlock
1672 * that is encountered beforehand.
1673 */
1674 static void
1675 rcu_start_gp(struct rcu_state *rsp)
1676 {
1677 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1678 struct rcu_node *rnp = rcu_get_root(rsp);
1679
1680 /*
1681 * If there is no grace period in progress right now, any
1682 * callbacks we have up to this point will be satisfied by the
1683 * next grace period. Also, advancing the callbacks reduces the
1684 * probability of false positives from cpu_needs_another_gp()
1685 * resulting in pointless grace periods. So, advance callbacks
1686 * then start the grace period!
1687 */
1688 rcu_advance_cbs(rsp, rnp, rdp);
1689 rcu_start_gp_advanced(rsp, rnp, rdp);
1690 }
1691
1692 /*
1693 * Report a full set of quiescent states to the specified rcu_state
1694 * data structure. This involves cleaning up after the prior grace
1695 * period and letting rcu_start_gp() start up the next grace period
1696 * if one is needed. Note that the caller must hold rnp->lock, which
1697 * is released before return.
1698 */
1699 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1700 __releases(rcu_get_root(rsp)->lock)
1701 {
1702 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1703 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1704 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1705 }
1706
1707 /*
1708 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1709 * Allows quiescent states for a group of CPUs to be reported at one go
1710 * to the specified rcu_node structure, though all the CPUs in the group
1711 * must be represented by the same rcu_node structure (which need not be
1712 * a leaf rcu_node structure, though it often will be). That structure's
1713 * lock must be held upon entry, and it is released before return.
1714 */
1715 static void
1716 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1717 struct rcu_node *rnp, unsigned long flags)
1718 __releases(rnp->lock)
1719 {
1720 struct rcu_node *rnp_c;
1721
1722 /* Walk up the rcu_node hierarchy. */
1723 for (;;) {
1724 if (!(rnp->qsmask & mask)) {
1725
1726 /* Our bit has already been cleared, so done. */
1727 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1728 return;
1729 }
1730 rnp->qsmask &= ~mask;
1731 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1732 mask, rnp->qsmask, rnp->level,
1733 rnp->grplo, rnp->grphi,
1734 !!rnp->gp_tasks);
1735 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1736
1737 /* Other bits still set at this level, so done. */
1738 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1739 return;
1740 }
1741 mask = rnp->grpmask;
1742 if (rnp->parent == NULL) {
1743
1744 /* No more levels. Exit loop holding root lock. */
1745
1746 break;
1747 }
1748 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1749 rnp_c = rnp;
1750 rnp = rnp->parent;
1751 raw_spin_lock_irqsave(&rnp->lock, flags);
1752 WARN_ON_ONCE(rnp_c->qsmask);
1753 }
1754
1755 /*
1756 * Get here if we are the last CPU to pass through a quiescent
1757 * state for this grace period. Invoke rcu_report_qs_rsp()
1758 * to clean up and start the next grace period if one is needed.
1759 */
1760 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1761 }
1762
1763 /*
1764 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1765 * structure. This must be either called from the specified CPU, or
1766 * called when the specified CPU is known to be offline (and when it is
1767 * also known that no other CPU is concurrently trying to help the offline
1768 * CPU). The lastcomp argument is used to make sure we are still in the
1769 * grace period of interest. We don't want to end the current grace period
1770 * based on quiescent states detected in an earlier grace period!
1771 */
1772 static void
1773 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1774 {
1775 unsigned long flags;
1776 unsigned long mask;
1777 struct rcu_node *rnp;
1778
1779 rnp = rdp->mynode;
1780 raw_spin_lock_irqsave(&rnp->lock, flags);
1781 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1782 rnp->completed == rnp->gpnum) {
1783
1784 /*
1785 * The grace period in which this quiescent state was
1786 * recorded has ended, so don't report it upwards.
1787 * We will instead need a new quiescent state that lies
1788 * within the current grace period.
1789 */
1790 rdp->passed_quiesce = 0; /* need qs for new gp. */
1791 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1792 return;
1793 }
1794 mask = rdp->grpmask;
1795 if ((rnp->qsmask & mask) == 0) {
1796 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1797 } else {
1798 rdp->qs_pending = 0;
1799
1800 /*
1801 * This GP can't end until cpu checks in, so all of our
1802 * callbacks can be processed during the next GP.
1803 */
1804 rcu_accelerate_cbs(rsp, rnp, rdp);
1805
1806 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1807 }
1808 }
1809
1810 /*
1811 * Check to see if there is a new grace period of which this CPU
1812 * is not yet aware, and if so, set up local rcu_data state for it.
1813 * Otherwise, see if this CPU has just passed through its first
1814 * quiescent state for this grace period, and record that fact if so.
1815 */
1816 static void
1817 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1818 {
1819 /* Check for grace-period ends and beginnings. */
1820 note_gp_changes(rsp, rdp);
1821
1822 /*
1823 * Does this CPU still need to do its part for current grace period?
1824 * If no, return and let the other CPUs do their part as well.
1825 */
1826 if (!rdp->qs_pending)
1827 return;
1828
1829 /*
1830 * Was there a quiescent state since the beginning of the grace
1831 * period? If no, then exit and wait for the next call.
1832 */
1833 if (!rdp->passed_quiesce)
1834 return;
1835
1836 /*
1837 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1838 * judge of that).
1839 */
1840 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1841 }
1842
1843 #ifdef CONFIG_HOTPLUG_CPU
1844
1845 /*
1846 * Send the specified CPU's RCU callbacks to the orphanage. The
1847 * specified CPU must be offline, and the caller must hold the
1848 * ->orphan_lock.
1849 */
1850 static void
1851 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1852 struct rcu_node *rnp, struct rcu_data *rdp)
1853 {
1854 /* No-CBs CPUs do not have orphanable callbacks. */
1855 if (rcu_is_nocb_cpu(rdp->cpu))
1856 return;
1857
1858 /*
1859 * Orphan the callbacks. First adjust the counts. This is safe
1860 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1861 * cannot be running now. Thus no memory barrier is required.
1862 */
1863 if (rdp->nxtlist != NULL) {
1864 rsp->qlen_lazy += rdp->qlen_lazy;
1865 rsp->qlen += rdp->qlen;
1866 rdp->n_cbs_orphaned += rdp->qlen;
1867 rdp->qlen_lazy = 0;
1868 ACCESS_ONCE(rdp->qlen) = 0;
1869 }
1870
1871 /*
1872 * Next, move those callbacks still needing a grace period to
1873 * the orphanage, where some other CPU will pick them up.
1874 * Some of the callbacks might have gone partway through a grace
1875 * period, but that is too bad. They get to start over because we
1876 * cannot assume that grace periods are synchronized across CPUs.
1877 * We don't bother updating the ->nxttail[] array yet, instead
1878 * we just reset the whole thing later on.
1879 */
1880 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1881 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1882 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1883 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1884 }
1885
1886 /*
1887 * Then move the ready-to-invoke callbacks to the orphanage,
1888 * where some other CPU will pick them up. These will not be
1889 * required to pass though another grace period: They are done.
1890 */
1891 if (rdp->nxtlist != NULL) {
1892 *rsp->orphan_donetail = rdp->nxtlist;
1893 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1894 }
1895
1896 /* Finally, initialize the rcu_data structure's list to empty. */
1897 init_callback_list(rdp);
1898 }
1899
1900 /*
1901 * Adopt the RCU callbacks from the specified rcu_state structure's
1902 * orphanage. The caller must hold the ->orphan_lock.
1903 */
1904 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1905 {
1906 int i;
1907 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1908
1909 /* No-CBs CPUs are handled specially. */
1910 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1911 return;
1912
1913 /* Do the accounting first. */
1914 rdp->qlen_lazy += rsp->qlen_lazy;
1915 rdp->qlen += rsp->qlen;
1916 rdp->n_cbs_adopted += rsp->qlen;
1917 if (rsp->qlen_lazy != rsp->qlen)
1918 rcu_idle_count_callbacks_posted();
1919 rsp->qlen_lazy = 0;
1920 rsp->qlen = 0;
1921
1922 /*
1923 * We do not need a memory barrier here because the only way we
1924 * can get here if there is an rcu_barrier() in flight is if
1925 * we are the task doing the rcu_barrier().
1926 */
1927
1928 /* First adopt the ready-to-invoke callbacks. */
1929 if (rsp->orphan_donelist != NULL) {
1930 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1931 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1932 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1933 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1934 rdp->nxttail[i] = rsp->orphan_donetail;
1935 rsp->orphan_donelist = NULL;
1936 rsp->orphan_donetail = &rsp->orphan_donelist;
1937 }
1938
1939 /* And then adopt the callbacks that still need a grace period. */
1940 if (rsp->orphan_nxtlist != NULL) {
1941 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1942 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1943 rsp->orphan_nxtlist = NULL;
1944 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1945 }
1946 }
1947
1948 /*
1949 * Trace the fact that this CPU is going offline.
1950 */
1951 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1952 {
1953 RCU_TRACE(unsigned long mask);
1954 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1955 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1956
1957 RCU_TRACE(mask = rdp->grpmask);
1958 trace_rcu_grace_period(rsp->name,
1959 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1960 TPS("cpuofl"));
1961 }
1962
1963 /*
1964 * The CPU has been completely removed, and some other CPU is reporting
1965 * this fact from process context. Do the remainder of the cleanup,
1966 * including orphaning the outgoing CPU's RCU callbacks, and also
1967 * adopting them. There can only be one CPU hotplug operation at a time,
1968 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1969 */
1970 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1971 {
1972 unsigned long flags;
1973 unsigned long mask;
1974 int need_report = 0;
1975 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1976 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1977
1978 /* Adjust any no-longer-needed kthreads. */
1979 rcu_boost_kthread_setaffinity(rnp, -1);
1980
1981 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1982
1983 /* Exclude any attempts to start a new grace period. */
1984 mutex_lock(&rsp->onoff_mutex);
1985 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
1986
1987 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1988 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1989 rcu_adopt_orphan_cbs(rsp);
1990
1991 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1992 mask = rdp->grpmask; /* rnp->grplo is constant. */
1993 do {
1994 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1995 rnp->qsmaskinit &= ~mask;
1996 if (rnp->qsmaskinit != 0) {
1997 if (rnp != rdp->mynode)
1998 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1999 break;
2000 }
2001 if (rnp == rdp->mynode)
2002 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2003 else
2004 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2005 mask = rnp->grpmask;
2006 rnp = rnp->parent;
2007 } while (rnp != NULL);
2008
2009 /*
2010 * We still hold the leaf rcu_node structure lock here, and
2011 * irqs are still disabled. The reason for this subterfuge is
2012 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2013 * held leads to deadlock.
2014 */
2015 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2016 rnp = rdp->mynode;
2017 if (need_report & RCU_OFL_TASKS_NORM_GP)
2018 rcu_report_unblock_qs_rnp(rnp, flags);
2019 else
2020 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2021 if (need_report & RCU_OFL_TASKS_EXP_GP)
2022 rcu_report_exp_rnp(rsp, rnp, true);
2023 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2024 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2025 cpu, rdp->qlen, rdp->nxtlist);
2026 init_callback_list(rdp);
2027 /* Disallow further callbacks on this CPU. */
2028 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2029 mutex_unlock(&rsp->onoff_mutex);
2030 }
2031
2032 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2033
2034 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2035 {
2036 }
2037
2038 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2039 {
2040 }
2041
2042 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2043
2044 /*
2045 * Invoke any RCU callbacks that have made it to the end of their grace
2046 * period. Thottle as specified by rdp->blimit.
2047 */
2048 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2049 {
2050 unsigned long flags;
2051 struct rcu_head *next, *list, **tail;
2052 long bl, count, count_lazy;
2053 int i;
2054
2055 /* If no callbacks are ready, just return. */
2056 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2057 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2058 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2059 need_resched(), is_idle_task(current),
2060 rcu_is_callbacks_kthread());
2061 return;
2062 }
2063
2064 /*
2065 * Extract the list of ready callbacks, disabling to prevent
2066 * races with call_rcu() from interrupt handlers.
2067 */
2068 local_irq_save(flags);
2069 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2070 bl = rdp->blimit;
2071 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2072 list = rdp->nxtlist;
2073 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2074 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2075 tail = rdp->nxttail[RCU_DONE_TAIL];
2076 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2077 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2078 rdp->nxttail[i] = &rdp->nxtlist;
2079 local_irq_restore(flags);
2080
2081 /* Invoke callbacks. */
2082 count = count_lazy = 0;
2083 while (list) {
2084 next = list->next;
2085 prefetch(next);
2086 debug_rcu_head_unqueue(list);
2087 if (__rcu_reclaim(rsp->name, list))
2088 count_lazy++;
2089 list = next;
2090 /* Stop only if limit reached and CPU has something to do. */
2091 if (++count >= bl &&
2092 (need_resched() ||
2093 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2094 break;
2095 }
2096
2097 local_irq_save(flags);
2098 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2099 is_idle_task(current),
2100 rcu_is_callbacks_kthread());
2101
2102 /* Update count, and requeue any remaining callbacks. */
2103 if (list != NULL) {
2104 *tail = rdp->nxtlist;
2105 rdp->nxtlist = list;
2106 for (i = 0; i < RCU_NEXT_SIZE; i++)
2107 if (&rdp->nxtlist == rdp->nxttail[i])
2108 rdp->nxttail[i] = tail;
2109 else
2110 break;
2111 }
2112 smp_mb(); /* List handling before counting for rcu_barrier(). */
2113 rdp->qlen_lazy -= count_lazy;
2114 ACCESS_ONCE(rdp->qlen) -= count;
2115 rdp->n_cbs_invoked += count;
2116
2117 /* Reinstate batch limit if we have worked down the excess. */
2118 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2119 rdp->blimit = blimit;
2120
2121 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2122 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2123 rdp->qlen_last_fqs_check = 0;
2124 rdp->n_force_qs_snap = rsp->n_force_qs;
2125 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2126 rdp->qlen_last_fqs_check = rdp->qlen;
2127 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2128
2129 local_irq_restore(flags);
2130
2131 /* Re-invoke RCU core processing if there are callbacks remaining. */
2132 if (cpu_has_callbacks_ready_to_invoke(rdp))
2133 invoke_rcu_core();
2134 }
2135
2136 /*
2137 * Check to see if this CPU is in a non-context-switch quiescent state
2138 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2139 * Also schedule RCU core processing.
2140 *
2141 * This function must be called from hardirq context. It is normally
2142 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2143 * false, there is no point in invoking rcu_check_callbacks().
2144 */
2145 void rcu_check_callbacks(int cpu, int user)
2146 {
2147 trace_rcu_utilization(TPS("Start scheduler-tick"));
2148 increment_cpu_stall_ticks();
2149 if (user || rcu_is_cpu_rrupt_from_idle()) {
2150
2151 /*
2152 * Get here if this CPU took its interrupt from user
2153 * mode or from the idle loop, and if this is not a
2154 * nested interrupt. In this case, the CPU is in
2155 * a quiescent state, so note it.
2156 *
2157 * No memory barrier is required here because both
2158 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2159 * variables that other CPUs neither access nor modify,
2160 * at least not while the corresponding CPU is online.
2161 */
2162
2163 rcu_sched_qs(cpu);
2164 rcu_bh_qs(cpu);
2165
2166 } else if (!in_softirq()) {
2167
2168 /*
2169 * Get here if this CPU did not take its interrupt from
2170 * softirq, in other words, if it is not interrupting
2171 * a rcu_bh read-side critical section. This is an _bh
2172 * critical section, so note it.
2173 */
2174
2175 rcu_bh_qs(cpu);
2176 }
2177 rcu_preempt_check_callbacks(cpu);
2178 if (rcu_pending(cpu))
2179 invoke_rcu_core();
2180 trace_rcu_utilization(TPS("End scheduler-tick"));
2181 }
2182
2183 /*
2184 * Scan the leaf rcu_node structures, processing dyntick state for any that
2185 * have not yet encountered a quiescent state, using the function specified.
2186 * Also initiate boosting for any threads blocked on the root rcu_node.
2187 *
2188 * The caller must have suppressed start of new grace periods.
2189 */
2190 static void force_qs_rnp(struct rcu_state *rsp,
2191 int (*f)(struct rcu_data *rsp, bool *isidle,
2192 unsigned long *maxj),
2193 bool *isidle, unsigned long *maxj)
2194 {
2195 unsigned long bit;
2196 int cpu;
2197 unsigned long flags;
2198 unsigned long mask;
2199 struct rcu_node *rnp;
2200
2201 rcu_for_each_leaf_node(rsp, rnp) {
2202 cond_resched();
2203 mask = 0;
2204 raw_spin_lock_irqsave(&rnp->lock, flags);
2205 if (!rcu_gp_in_progress(rsp)) {
2206 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2207 return;
2208 }
2209 if (rnp->qsmask == 0) {
2210 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2211 continue;
2212 }
2213 cpu = rnp->grplo;
2214 bit = 1;
2215 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2216 if ((rnp->qsmask & bit) != 0) {
2217 if ((rnp->qsmaskinit & bit) != 0)
2218 *isidle = 0;
2219 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2220 mask |= bit;
2221 }
2222 }
2223 if (mask != 0) {
2224
2225 /* rcu_report_qs_rnp() releases rnp->lock. */
2226 rcu_report_qs_rnp(mask, rsp, rnp, flags);
2227 continue;
2228 }
2229 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2230 }
2231 rnp = rcu_get_root(rsp);
2232 if (rnp->qsmask == 0) {
2233 raw_spin_lock_irqsave(&rnp->lock, flags);
2234 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2235 }
2236 }
2237
2238 /*
2239 * Force quiescent states on reluctant CPUs, and also detect which
2240 * CPUs are in dyntick-idle mode.
2241 */
2242 static void force_quiescent_state(struct rcu_state *rsp)
2243 {
2244 unsigned long flags;
2245 bool ret;
2246 struct rcu_node *rnp;
2247 struct rcu_node *rnp_old = NULL;
2248
2249 /* Funnel through hierarchy to reduce memory contention. */
2250 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2251 for (; rnp != NULL; rnp = rnp->parent) {
2252 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2253 !raw_spin_trylock(&rnp->fqslock);
2254 if (rnp_old != NULL)
2255 raw_spin_unlock(&rnp_old->fqslock);
2256 if (ret) {
2257 rsp->n_force_qs_lh++;
2258 return;
2259 }
2260 rnp_old = rnp;
2261 }
2262 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2263
2264 /* Reached the root of the rcu_node tree, acquire lock. */
2265 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2266 raw_spin_unlock(&rnp_old->fqslock);
2267 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2268 rsp->n_force_qs_lh++;
2269 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2270 return; /* Someone beat us to it. */
2271 }
2272 rsp->gp_flags |= RCU_GP_FLAG_FQS;
2273 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2274 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
2275 }
2276
2277 /*
2278 * This does the RCU core processing work for the specified rcu_state
2279 * and rcu_data structures. This may be called only from the CPU to
2280 * whom the rdp belongs.
2281 */
2282 static void
2283 __rcu_process_callbacks(struct rcu_state *rsp)
2284 {
2285 unsigned long flags;
2286 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2287
2288 WARN_ON_ONCE(rdp->beenonline == 0);
2289
2290 /* Update RCU state based on any recent quiescent states. */
2291 rcu_check_quiescent_state(rsp, rdp);
2292
2293 /* Does this CPU require a not-yet-started grace period? */
2294 local_irq_save(flags);
2295 if (cpu_needs_another_gp(rsp, rdp)) {
2296 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2297 rcu_start_gp(rsp);
2298 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2299 } else {
2300 local_irq_restore(flags);
2301 }
2302
2303 /* If there are callbacks ready, invoke them. */
2304 if (cpu_has_callbacks_ready_to_invoke(rdp))
2305 invoke_rcu_callbacks(rsp, rdp);
2306 }
2307
2308 /*
2309 * Do RCU core processing for the current CPU.
2310 */
2311 static void rcu_process_callbacks(struct softirq_action *unused)
2312 {
2313 struct rcu_state *rsp;
2314
2315 if (cpu_is_offline(smp_processor_id()))
2316 return;
2317 trace_rcu_utilization(TPS("Start RCU core"));
2318 for_each_rcu_flavor(rsp)
2319 __rcu_process_callbacks(rsp);
2320 trace_rcu_utilization(TPS("End RCU core"));
2321 }
2322
2323 /*
2324 * Schedule RCU callback invocation. If the specified type of RCU
2325 * does not support RCU priority boosting, just do a direct call,
2326 * otherwise wake up the per-CPU kernel kthread. Note that because we
2327 * are running on the current CPU with interrupts disabled, the
2328 * rcu_cpu_kthread_task cannot disappear out from under us.
2329 */
2330 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2331 {
2332 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2333 return;
2334 if (likely(!rsp->boost)) {
2335 rcu_do_batch(rsp, rdp);
2336 return;
2337 }
2338 invoke_rcu_callbacks_kthread();
2339 }
2340
2341 static void invoke_rcu_core(void)
2342 {
2343 if (cpu_online(smp_processor_id()))
2344 raise_softirq(RCU_SOFTIRQ);
2345 }
2346
2347 /*
2348 * Handle any core-RCU processing required by a call_rcu() invocation.
2349 */
2350 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2351 struct rcu_head *head, unsigned long flags)
2352 {
2353 /*
2354 * If called from an extended quiescent state, invoke the RCU
2355 * core in order to force a re-evaluation of RCU's idleness.
2356 */
2357 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2358 invoke_rcu_core();
2359
2360 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2361 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2362 return;
2363
2364 /*
2365 * Force the grace period if too many callbacks or too long waiting.
2366 * Enforce hysteresis, and don't invoke force_quiescent_state()
2367 * if some other CPU has recently done so. Also, don't bother
2368 * invoking force_quiescent_state() if the newly enqueued callback
2369 * is the only one waiting for a grace period to complete.
2370 */
2371 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2372
2373 /* Are we ignoring a completed grace period? */
2374 note_gp_changes(rsp, rdp);
2375
2376 /* Start a new grace period if one not already started. */
2377 if (!rcu_gp_in_progress(rsp)) {
2378 struct rcu_node *rnp_root = rcu_get_root(rsp);
2379
2380 raw_spin_lock(&rnp_root->lock);
2381 rcu_start_gp(rsp);
2382 raw_spin_unlock(&rnp_root->lock);
2383 } else {
2384 /* Give the grace period a kick. */
2385 rdp->blimit = LONG_MAX;
2386 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2387 *rdp->nxttail[RCU_DONE_TAIL] != head)
2388 force_quiescent_state(rsp);
2389 rdp->n_force_qs_snap = rsp->n_force_qs;
2390 rdp->qlen_last_fqs_check = rdp->qlen;
2391 }
2392 }
2393 }
2394
2395 /*
2396 * RCU callback function to leak a callback.
2397 */
2398 static void rcu_leak_callback(struct rcu_head *rhp)
2399 {
2400 }
2401
2402 /*
2403 * Helper function for call_rcu() and friends. The cpu argument will
2404 * normally be -1, indicating "currently running CPU". It may specify
2405 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2406 * is expected to specify a CPU.
2407 */
2408 static void
2409 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2410 struct rcu_state *rsp, int cpu, bool lazy)
2411 {
2412 unsigned long flags;
2413 struct rcu_data *rdp;
2414
2415 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2416 if (debug_rcu_head_queue(head)) {
2417 /* Probable double call_rcu(), so leak the callback. */
2418 ACCESS_ONCE(head->func) = rcu_leak_callback;
2419 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2420 return;
2421 }
2422 head->func = func;
2423 head->next = NULL;
2424
2425 /*
2426 * Opportunistically note grace-period endings and beginnings.
2427 * Note that we might see a beginning right after we see an
2428 * end, but never vice versa, since this CPU has to pass through
2429 * a quiescent state betweentimes.
2430 */
2431 local_irq_save(flags);
2432 rdp = this_cpu_ptr(rsp->rda);
2433
2434 /* Add the callback to our list. */
2435 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2436 int offline;
2437
2438 if (cpu != -1)
2439 rdp = per_cpu_ptr(rsp->rda, cpu);
2440 offline = !__call_rcu_nocb(rdp, head, lazy);
2441 WARN_ON_ONCE(offline);
2442 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2443 local_irq_restore(flags);
2444 return;
2445 }
2446 ACCESS_ONCE(rdp->qlen)++;
2447 if (lazy)
2448 rdp->qlen_lazy++;
2449 else
2450 rcu_idle_count_callbacks_posted();
2451 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2452 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2453 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2454
2455 if (__is_kfree_rcu_offset((unsigned long)func))
2456 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2457 rdp->qlen_lazy, rdp->qlen);
2458 else
2459 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2460
2461 /* Go handle any RCU core processing required. */
2462 __call_rcu_core(rsp, rdp, head, flags);
2463 local_irq_restore(flags);
2464 }
2465
2466 /*
2467 * Queue an RCU-sched callback for invocation after a grace period.
2468 */
2469 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2470 {
2471 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2472 }
2473 EXPORT_SYMBOL_GPL(call_rcu_sched);
2474
2475 /*
2476 * Queue an RCU callback for invocation after a quicker grace period.
2477 */
2478 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2479 {
2480 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2481 }
2482 EXPORT_SYMBOL_GPL(call_rcu_bh);
2483
2484 /*
2485 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2486 * any blocking grace-period wait automatically implies a grace period
2487 * if there is only one CPU online at any point time during execution
2488 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2489 * occasionally incorrectly indicate that there are multiple CPUs online
2490 * when there was in fact only one the whole time, as this just adds
2491 * some overhead: RCU still operates correctly.
2492 */
2493 static inline int rcu_blocking_is_gp(void)
2494 {
2495 int ret;
2496
2497 might_sleep(); /* Check for RCU read-side critical section. */
2498 preempt_disable();
2499 ret = num_online_cpus() <= 1;
2500 preempt_enable();
2501 return ret;
2502 }
2503
2504 /**
2505 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2506 *
2507 * Control will return to the caller some time after a full rcu-sched
2508 * grace period has elapsed, in other words after all currently executing
2509 * rcu-sched read-side critical sections have completed. These read-side
2510 * critical sections are delimited by rcu_read_lock_sched() and
2511 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2512 * local_irq_disable(), and so on may be used in place of
2513 * rcu_read_lock_sched().
2514 *
2515 * This means that all preempt_disable code sequences, including NMI and
2516 * non-threaded hardware-interrupt handlers, in progress on entry will
2517 * have completed before this primitive returns. However, this does not
2518 * guarantee that softirq handlers will have completed, since in some
2519 * kernels, these handlers can run in process context, and can block.
2520 *
2521 * Note that this guarantee implies further memory-ordering guarantees.
2522 * On systems with more than one CPU, when synchronize_sched() returns,
2523 * each CPU is guaranteed to have executed a full memory barrier since the
2524 * end of its last RCU-sched read-side critical section whose beginning
2525 * preceded the call to synchronize_sched(). In addition, each CPU having
2526 * an RCU read-side critical section that extends beyond the return from
2527 * synchronize_sched() is guaranteed to have executed a full memory barrier
2528 * after the beginning of synchronize_sched() and before the beginning of
2529 * that RCU read-side critical section. Note that these guarantees include
2530 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2531 * that are executing in the kernel.
2532 *
2533 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2534 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2535 * to have executed a full memory barrier during the execution of
2536 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2537 * again only if the system has more than one CPU).
2538 *
2539 * This primitive provides the guarantees made by the (now removed)
2540 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2541 * guarantees that rcu_read_lock() sections will have completed.
2542 * In "classic RCU", these two guarantees happen to be one and
2543 * the same, but can differ in realtime RCU implementations.
2544 */
2545 void synchronize_sched(void)
2546 {
2547 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2548 !lock_is_held(&rcu_lock_map) &&
2549 !lock_is_held(&rcu_sched_lock_map),
2550 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2551 if (rcu_blocking_is_gp())
2552 return;
2553 if (rcu_expedited)
2554 synchronize_sched_expedited();
2555 else
2556 wait_rcu_gp(call_rcu_sched);
2557 }
2558 EXPORT_SYMBOL_GPL(synchronize_sched);
2559
2560 /**
2561 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2562 *
2563 * Control will return to the caller some time after a full rcu_bh grace
2564 * period has elapsed, in other words after all currently executing rcu_bh
2565 * read-side critical sections have completed. RCU read-side critical
2566 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2567 * and may be nested.
2568 *
2569 * See the description of synchronize_sched() for more detailed information
2570 * on memory ordering guarantees.
2571 */
2572 void synchronize_rcu_bh(void)
2573 {
2574 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2575 !lock_is_held(&rcu_lock_map) &&
2576 !lock_is_held(&rcu_sched_lock_map),
2577 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2578 if (rcu_blocking_is_gp())
2579 return;
2580 if (rcu_expedited)
2581 synchronize_rcu_bh_expedited();
2582 else
2583 wait_rcu_gp(call_rcu_bh);
2584 }
2585 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2586
2587 static int synchronize_sched_expedited_cpu_stop(void *data)
2588 {
2589 /*
2590 * There must be a full memory barrier on each affected CPU
2591 * between the time that try_stop_cpus() is called and the
2592 * time that it returns.
2593 *
2594 * In the current initial implementation of cpu_stop, the
2595 * above condition is already met when the control reaches
2596 * this point and the following smp_mb() is not strictly
2597 * necessary. Do smp_mb() anyway for documentation and
2598 * robustness against future implementation changes.
2599 */
2600 smp_mb(); /* See above comment block. */
2601 return 0;
2602 }
2603
2604 /**
2605 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2606 *
2607 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2608 * approach to force the grace period to end quickly. This consumes
2609 * significant time on all CPUs and is unfriendly to real-time workloads,
2610 * so is thus not recommended for any sort of common-case code. In fact,
2611 * if you are using synchronize_sched_expedited() in a loop, please
2612 * restructure your code to batch your updates, and then use a single
2613 * synchronize_sched() instead.
2614 *
2615 * Note that it is illegal to call this function while holding any lock
2616 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2617 * to call this function from a CPU-hotplug notifier. Failing to observe
2618 * these restriction will result in deadlock.
2619 *
2620 * This implementation can be thought of as an application of ticket
2621 * locking to RCU, with sync_sched_expedited_started and
2622 * sync_sched_expedited_done taking on the roles of the halves
2623 * of the ticket-lock word. Each task atomically increments
2624 * sync_sched_expedited_started upon entry, snapshotting the old value,
2625 * then attempts to stop all the CPUs. If this succeeds, then each
2626 * CPU will have executed a context switch, resulting in an RCU-sched
2627 * grace period. We are then done, so we use atomic_cmpxchg() to
2628 * update sync_sched_expedited_done to match our snapshot -- but
2629 * only if someone else has not already advanced past our snapshot.
2630 *
2631 * On the other hand, if try_stop_cpus() fails, we check the value
2632 * of sync_sched_expedited_done. If it has advanced past our
2633 * initial snapshot, then someone else must have forced a grace period
2634 * some time after we took our snapshot. In this case, our work is
2635 * done for us, and we can simply return. Otherwise, we try again,
2636 * but keep our initial snapshot for purposes of checking for someone
2637 * doing our work for us.
2638 *
2639 * If we fail too many times in a row, we fall back to synchronize_sched().
2640 */
2641 void synchronize_sched_expedited(void)
2642 {
2643 long firstsnap, s, snap;
2644 int trycount = 0;
2645 struct rcu_state *rsp = &rcu_sched_state;
2646
2647 /*
2648 * If we are in danger of counter wrap, just do synchronize_sched().
2649 * By allowing sync_sched_expedited_started to advance no more than
2650 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2651 * that more than 3.5 billion CPUs would be required to force a
2652 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2653 * course be required on a 64-bit system.
2654 */
2655 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2656 (ulong)atomic_long_read(&rsp->expedited_done) +
2657 ULONG_MAX / 8)) {
2658 synchronize_sched();
2659 atomic_long_inc(&rsp->expedited_wrap);
2660 return;
2661 }
2662
2663 /*
2664 * Take a ticket. Note that atomic_inc_return() implies a
2665 * full memory barrier.
2666 */
2667 snap = atomic_long_inc_return(&rsp->expedited_start);
2668 firstsnap = snap;
2669 get_online_cpus();
2670 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2671
2672 /*
2673 * Each pass through the following loop attempts to force a
2674 * context switch on each CPU.
2675 */
2676 while (try_stop_cpus(cpu_online_mask,
2677 synchronize_sched_expedited_cpu_stop,
2678 NULL) == -EAGAIN) {
2679 put_online_cpus();
2680 atomic_long_inc(&rsp->expedited_tryfail);
2681
2682 /* Check to see if someone else did our work for us. */
2683 s = atomic_long_read(&rsp->expedited_done);
2684 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2685 /* ensure test happens before caller kfree */
2686 smp_mb__before_atomic_inc(); /* ^^^ */
2687 atomic_long_inc(&rsp->expedited_workdone1);
2688 return;
2689 }
2690
2691 /* No joy, try again later. Or just synchronize_sched(). */
2692 if (trycount++ < 10) {
2693 udelay(trycount * num_online_cpus());
2694 } else {
2695 wait_rcu_gp(call_rcu_sched);
2696 atomic_long_inc(&rsp->expedited_normal);
2697 return;
2698 }
2699
2700 /* Recheck to see if someone else did our work for us. */
2701 s = atomic_long_read(&rsp->expedited_done);
2702 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2703 /* ensure test happens before caller kfree */
2704 smp_mb__before_atomic_inc(); /* ^^^ */
2705 atomic_long_inc(&rsp->expedited_workdone2);
2706 return;
2707 }
2708
2709 /*
2710 * Refetching sync_sched_expedited_started allows later
2711 * callers to piggyback on our grace period. We retry
2712 * after they started, so our grace period works for them,
2713 * and they started after our first try, so their grace
2714 * period works for us.
2715 */
2716 get_online_cpus();
2717 snap = atomic_long_read(&rsp->expedited_start);
2718 smp_mb(); /* ensure read is before try_stop_cpus(). */
2719 }
2720 atomic_long_inc(&rsp->expedited_stoppedcpus);
2721
2722 /*
2723 * Everyone up to our most recent fetch is covered by our grace
2724 * period. Update the counter, but only if our work is still
2725 * relevant -- which it won't be if someone who started later
2726 * than we did already did their update.
2727 */
2728 do {
2729 atomic_long_inc(&rsp->expedited_done_tries);
2730 s = atomic_long_read(&rsp->expedited_done);
2731 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2732 /* ensure test happens before caller kfree */
2733 smp_mb__before_atomic_inc(); /* ^^^ */
2734 atomic_long_inc(&rsp->expedited_done_lost);
2735 break;
2736 }
2737 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2738 atomic_long_inc(&rsp->expedited_done_exit);
2739
2740 put_online_cpus();
2741 }
2742 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2743
2744 /*
2745 * Check to see if there is any immediate RCU-related work to be done
2746 * by the current CPU, for the specified type of RCU, returning 1 if so.
2747 * The checks are in order of increasing expense: checks that can be
2748 * carried out against CPU-local state are performed first. However,
2749 * we must check for CPU stalls first, else we might not get a chance.
2750 */
2751 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2752 {
2753 struct rcu_node *rnp = rdp->mynode;
2754
2755 rdp->n_rcu_pending++;
2756
2757 /* Check for CPU stalls, if enabled. */
2758 check_cpu_stall(rsp, rdp);
2759
2760 /* Is the RCU core waiting for a quiescent state from this CPU? */
2761 if (rcu_scheduler_fully_active &&
2762 rdp->qs_pending && !rdp->passed_quiesce) {
2763 rdp->n_rp_qs_pending++;
2764 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2765 rdp->n_rp_report_qs++;
2766 return 1;
2767 }
2768
2769 /* Does this CPU have callbacks ready to invoke? */
2770 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2771 rdp->n_rp_cb_ready++;
2772 return 1;
2773 }
2774
2775 /* Has RCU gone idle with this CPU needing another grace period? */
2776 if (cpu_needs_another_gp(rsp, rdp)) {
2777 rdp->n_rp_cpu_needs_gp++;
2778 return 1;
2779 }
2780
2781 /* Has another RCU grace period completed? */
2782 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2783 rdp->n_rp_gp_completed++;
2784 return 1;
2785 }
2786
2787 /* Has a new RCU grace period started? */
2788 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2789 rdp->n_rp_gp_started++;
2790 return 1;
2791 }
2792
2793 /* nothing to do */
2794 rdp->n_rp_need_nothing++;
2795 return 0;
2796 }
2797
2798 /*
2799 * Check to see if there is any immediate RCU-related work to be done
2800 * by the current CPU, returning 1 if so. This function is part of the
2801 * RCU implementation; it is -not- an exported member of the RCU API.
2802 */
2803 static int rcu_pending(int cpu)
2804 {
2805 struct rcu_state *rsp;
2806
2807 for_each_rcu_flavor(rsp)
2808 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2809 return 1;
2810 return 0;
2811 }
2812
2813 /*
2814 * Return true if the specified CPU has any callback. If all_lazy is
2815 * non-NULL, store an indication of whether all callbacks are lazy.
2816 * (If there are no callbacks, all of them are deemed to be lazy.)
2817 */
2818 static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
2819 {
2820 bool al = true;
2821 bool hc = false;
2822 struct rcu_data *rdp;
2823 struct rcu_state *rsp;
2824
2825 for_each_rcu_flavor(rsp) {
2826 rdp = per_cpu_ptr(rsp->rda, cpu);
2827 if (!rdp->nxtlist)
2828 continue;
2829 hc = true;
2830 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
2831 al = false;
2832 break;
2833 }
2834 }
2835 if (all_lazy)
2836 *all_lazy = al;
2837 return hc;
2838 }
2839
2840 /*
2841 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2842 * the compiler is expected to optimize this away.
2843 */
2844 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
2845 int cpu, unsigned long done)
2846 {
2847 trace_rcu_barrier(rsp->name, s, cpu,
2848 atomic_read(&rsp->barrier_cpu_count), done);
2849 }
2850
2851 /*
2852 * RCU callback function for _rcu_barrier(). If we are last, wake
2853 * up the task executing _rcu_barrier().
2854 */
2855 static void rcu_barrier_callback(struct rcu_head *rhp)
2856 {
2857 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2858 struct rcu_state *rsp = rdp->rsp;
2859
2860 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2861 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2862 complete(&rsp->barrier_completion);
2863 } else {
2864 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2865 }
2866 }
2867
2868 /*
2869 * Called with preemption disabled, and from cross-cpu IRQ context.
2870 */
2871 static void rcu_barrier_func(void *type)
2872 {
2873 struct rcu_state *rsp = type;
2874 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2875
2876 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2877 atomic_inc(&rsp->barrier_cpu_count);
2878 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2879 }
2880
2881 /*
2882 * Orchestrate the specified type of RCU barrier, waiting for all
2883 * RCU callbacks of the specified type to complete.
2884 */
2885 static void _rcu_barrier(struct rcu_state *rsp)
2886 {
2887 int cpu;
2888 struct rcu_data *rdp;
2889 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2890 unsigned long snap_done;
2891
2892 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2893
2894 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2895 mutex_lock(&rsp->barrier_mutex);
2896
2897 /*
2898 * Ensure that all prior references, including to ->n_barrier_done,
2899 * are ordered before the _rcu_barrier() machinery.
2900 */
2901 smp_mb(); /* See above block comment. */
2902
2903 /*
2904 * Recheck ->n_barrier_done to see if others did our work for us.
2905 * This means checking ->n_barrier_done for an even-to-odd-to-even
2906 * transition. The "if" expression below therefore rounds the old
2907 * value up to the next even number and adds two before comparing.
2908 */
2909 snap_done = rsp->n_barrier_done;
2910 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2911
2912 /*
2913 * If the value in snap is odd, we needed to wait for the current
2914 * rcu_barrier() to complete, then wait for the next one, in other
2915 * words, we need the value of snap_done to be three larger than
2916 * the value of snap. On the other hand, if the value in snap is
2917 * even, we only had to wait for the next rcu_barrier() to complete,
2918 * in other words, we need the value of snap_done to be only two
2919 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
2920 * this for us (thank you, Linus!).
2921 */
2922 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
2923 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2924 smp_mb(); /* caller's subsequent code after above check. */
2925 mutex_unlock(&rsp->barrier_mutex);
2926 return;
2927 }
2928
2929 /*
2930 * Increment ->n_barrier_done to avoid duplicate work. Use
2931 * ACCESS_ONCE() to prevent the compiler from speculating
2932 * the increment to precede the early-exit check.
2933 */
2934 ACCESS_ONCE(rsp->n_barrier_done)++;
2935 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2936 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2937 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2938
2939 /*
2940 * Initialize the count to one rather than to zero in order to
2941 * avoid a too-soon return to zero in case of a short grace period
2942 * (or preemption of this task). Exclude CPU-hotplug operations
2943 * to ensure that no offline CPU has callbacks queued.
2944 */
2945 init_completion(&rsp->barrier_completion);
2946 atomic_set(&rsp->barrier_cpu_count, 1);
2947 get_online_cpus();
2948
2949 /*
2950 * Force each CPU with callbacks to register a new callback.
2951 * When that callback is invoked, we will know that all of the
2952 * corresponding CPU's preceding callbacks have been invoked.
2953 */
2954 for_each_possible_cpu(cpu) {
2955 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
2956 continue;
2957 rdp = per_cpu_ptr(rsp->rda, cpu);
2958 if (rcu_is_nocb_cpu(cpu)) {
2959 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2960 rsp->n_barrier_done);
2961 atomic_inc(&rsp->barrier_cpu_count);
2962 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2963 rsp, cpu, 0);
2964 } else if (ACCESS_ONCE(rdp->qlen)) {
2965 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2966 rsp->n_barrier_done);
2967 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2968 } else {
2969 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2970 rsp->n_barrier_done);
2971 }
2972 }
2973 put_online_cpus();
2974
2975 /*
2976 * Now that we have an rcu_barrier_callback() callback on each
2977 * CPU, and thus each counted, remove the initial count.
2978 */
2979 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2980 complete(&rsp->barrier_completion);
2981
2982 /* Increment ->n_barrier_done to prevent duplicate work. */
2983 smp_mb(); /* Keep increment after above mechanism. */
2984 ACCESS_ONCE(rsp->n_barrier_done)++;
2985 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2986 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2987 smp_mb(); /* Keep increment before caller's subsequent code. */
2988
2989 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2990 wait_for_completion(&rsp->barrier_completion);
2991
2992 /* Other rcu_barrier() invocations can now safely proceed. */
2993 mutex_unlock(&rsp->barrier_mutex);
2994 }
2995
2996 /**
2997 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2998 */
2999 void rcu_barrier_bh(void)
3000 {
3001 _rcu_barrier(&rcu_bh_state);
3002 }
3003 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3004
3005 /**
3006 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3007 */
3008 void rcu_barrier_sched(void)
3009 {
3010 _rcu_barrier(&rcu_sched_state);
3011 }
3012 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3013
3014 /*
3015 * Do boot-time initialization of a CPU's per-CPU RCU data.
3016 */
3017 static void __init
3018 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3019 {
3020 unsigned long flags;
3021 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3022 struct rcu_node *rnp = rcu_get_root(rsp);
3023
3024 /* Set up local state, ensuring consistent view of global state. */
3025 raw_spin_lock_irqsave(&rnp->lock, flags);
3026 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3027 init_callback_list(rdp);
3028 rdp->qlen_lazy = 0;
3029 ACCESS_ONCE(rdp->qlen) = 0;
3030 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3031 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3032 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3033 rdp->cpu = cpu;
3034 rdp->rsp = rsp;
3035 rcu_boot_init_nocb_percpu_data(rdp);
3036 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3037 }
3038
3039 /*
3040 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3041 * offline event can be happening at a given time. Note also that we
3042 * can accept some slop in the rsp->completed access due to the fact
3043 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3044 */
3045 static void
3046 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
3047 {
3048 unsigned long flags;
3049 unsigned long mask;
3050 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3051 struct rcu_node *rnp = rcu_get_root(rsp);
3052
3053 /* Exclude new grace periods. */
3054 mutex_lock(&rsp->onoff_mutex);
3055
3056 /* Set up local state, ensuring consistent view of global state. */
3057 raw_spin_lock_irqsave(&rnp->lock, flags);
3058 rdp->beenonline = 1; /* We have now been online. */
3059 rdp->preemptible = preemptible;
3060 rdp->qlen_last_fqs_check = 0;
3061 rdp->n_force_qs_snap = rsp->n_force_qs;
3062 rdp->blimit = blimit;
3063 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3064 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3065 rcu_sysidle_init_percpu_data(rdp->dynticks);
3066 atomic_set(&rdp->dynticks->dynticks,
3067 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3068 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
3069
3070 /* Add CPU to rcu_node bitmasks. */
3071 rnp = rdp->mynode;
3072 mask = rdp->grpmask;
3073 do {
3074 /* Exclude any attempts to start a new GP on small systems. */
3075 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3076 rnp->qsmaskinit |= mask;
3077 mask = rnp->grpmask;
3078 if (rnp == rdp->mynode) {
3079 /*
3080 * If there is a grace period in progress, we will
3081 * set up to wait for it next time we run the
3082 * RCU core code.
3083 */
3084 rdp->gpnum = rnp->completed;
3085 rdp->completed = rnp->completed;
3086 rdp->passed_quiesce = 0;
3087 rdp->qs_pending = 0;
3088 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3089 }
3090 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3091 rnp = rnp->parent;
3092 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
3093 local_irq_restore(flags);
3094
3095 mutex_unlock(&rsp->onoff_mutex);
3096 }
3097
3098 static void rcu_prepare_cpu(int cpu)
3099 {
3100 struct rcu_state *rsp;
3101
3102 for_each_rcu_flavor(rsp)
3103 rcu_init_percpu_data(cpu, rsp,
3104 strcmp(rsp->name, "rcu_preempt") == 0);
3105 }
3106
3107 /*
3108 * Handle CPU online/offline notification events.
3109 */
3110 static int rcu_cpu_notify(struct notifier_block *self,
3111 unsigned long action, void *hcpu)
3112 {
3113 long cpu = (long)hcpu;
3114 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3115 struct rcu_node *rnp = rdp->mynode;
3116 struct rcu_state *rsp;
3117
3118 trace_rcu_utilization(TPS("Start CPU hotplug"));
3119 switch (action) {
3120 case CPU_UP_PREPARE:
3121 case CPU_UP_PREPARE_FROZEN:
3122 rcu_prepare_cpu(cpu);
3123 rcu_prepare_kthreads(cpu);
3124 break;
3125 case CPU_ONLINE:
3126 case CPU_DOWN_FAILED:
3127 rcu_boost_kthread_setaffinity(rnp, -1);
3128 break;
3129 case CPU_DOWN_PREPARE:
3130 rcu_boost_kthread_setaffinity(rnp, cpu);
3131 break;
3132 case CPU_DYING:
3133 case CPU_DYING_FROZEN:
3134 for_each_rcu_flavor(rsp)
3135 rcu_cleanup_dying_cpu(rsp);
3136 break;
3137 case CPU_DEAD:
3138 case CPU_DEAD_FROZEN:
3139 case CPU_UP_CANCELED:
3140 case CPU_UP_CANCELED_FROZEN:
3141 for_each_rcu_flavor(rsp)
3142 rcu_cleanup_dead_cpu(cpu, rsp);
3143 break;
3144 default:
3145 break;
3146 }
3147 trace_rcu_utilization(TPS("End CPU hotplug"));
3148 return NOTIFY_OK;
3149 }
3150
3151 static int rcu_pm_notify(struct notifier_block *self,
3152 unsigned long action, void *hcpu)
3153 {
3154 switch (action) {
3155 case PM_HIBERNATION_PREPARE:
3156 case PM_SUSPEND_PREPARE:
3157 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3158 rcu_expedited = 1;
3159 break;
3160 case PM_POST_HIBERNATION:
3161 case PM_POST_SUSPEND:
3162 rcu_expedited = 0;
3163 break;
3164 default:
3165 break;
3166 }
3167 return NOTIFY_OK;
3168 }
3169
3170 /*
3171 * Spawn the kthread that handles this RCU flavor's grace periods.
3172 */
3173 static int __init rcu_spawn_gp_kthread(void)
3174 {
3175 unsigned long flags;
3176 struct rcu_node *rnp;
3177 struct rcu_state *rsp;
3178 struct task_struct *t;
3179
3180 for_each_rcu_flavor(rsp) {
3181 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3182 BUG_ON(IS_ERR(t));
3183 rnp = rcu_get_root(rsp);
3184 raw_spin_lock_irqsave(&rnp->lock, flags);
3185 rsp->gp_kthread = t;
3186 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3187 rcu_spawn_nocb_kthreads(rsp);
3188 }
3189 return 0;
3190 }
3191 early_initcall(rcu_spawn_gp_kthread);
3192
3193 /*
3194 * This function is invoked towards the end of the scheduler's initialization
3195 * process. Before this is called, the idle task might contain
3196 * RCU read-side critical sections (during which time, this idle
3197 * task is booting the system). After this function is called, the
3198 * idle tasks are prohibited from containing RCU read-side critical
3199 * sections. This function also enables RCU lockdep checking.
3200 */
3201 void rcu_scheduler_starting(void)
3202 {
3203 WARN_ON(num_online_cpus() != 1);
3204 WARN_ON(nr_context_switches() > 0);
3205 rcu_scheduler_active = 1;
3206 }
3207
3208 /*
3209 * Compute the per-level fanout, either using the exact fanout specified
3210 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3211 */
3212 #ifdef CONFIG_RCU_FANOUT_EXACT
3213 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3214 {
3215 int i;
3216
3217 for (i = rcu_num_lvls - 1; i > 0; i--)
3218 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3219 rsp->levelspread[0] = rcu_fanout_leaf;
3220 }
3221 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3222 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3223 {
3224 int ccur;
3225 int cprv;
3226 int i;
3227
3228 cprv = nr_cpu_ids;
3229 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3230 ccur = rsp->levelcnt[i];
3231 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3232 cprv = ccur;
3233 }
3234 }
3235 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3236
3237 /*
3238 * Helper function for rcu_init() that initializes one rcu_state structure.
3239 */
3240 static void __init rcu_init_one(struct rcu_state *rsp,
3241 struct rcu_data __percpu *rda)
3242 {
3243 static char *buf[] = { "rcu_node_0",
3244 "rcu_node_1",
3245 "rcu_node_2",
3246 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3247 static char *fqs[] = { "rcu_node_fqs_0",
3248 "rcu_node_fqs_1",
3249 "rcu_node_fqs_2",
3250 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3251 int cpustride = 1;
3252 int i;
3253 int j;
3254 struct rcu_node *rnp;
3255
3256 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3257
3258 /* Silence gcc 4.8 warning about array index out of range. */
3259 if (rcu_num_lvls > RCU_NUM_LVLS)
3260 panic("rcu_init_one: rcu_num_lvls overflow");
3261
3262 /* Initialize the level-tracking arrays. */
3263
3264 for (i = 0; i < rcu_num_lvls; i++)
3265 rsp->levelcnt[i] = num_rcu_lvl[i];
3266 for (i = 1; i < rcu_num_lvls; i++)
3267 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3268 rcu_init_levelspread(rsp);
3269
3270 /* Initialize the elements themselves, starting from the leaves. */
3271
3272 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3273 cpustride *= rsp->levelspread[i];
3274 rnp = rsp->level[i];
3275 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3276 raw_spin_lock_init(&rnp->lock);
3277 lockdep_set_class_and_name(&rnp->lock,
3278 &rcu_node_class[i], buf[i]);
3279 raw_spin_lock_init(&rnp->fqslock);
3280 lockdep_set_class_and_name(&rnp->fqslock,
3281 &rcu_fqs_class[i], fqs[i]);
3282 rnp->gpnum = rsp->gpnum;
3283 rnp->completed = rsp->completed;
3284 rnp->qsmask = 0;
3285 rnp->qsmaskinit = 0;
3286 rnp->grplo = j * cpustride;
3287 rnp->grphi = (j + 1) * cpustride - 1;
3288 if (rnp->grphi >= NR_CPUS)
3289 rnp->grphi = NR_CPUS - 1;
3290 if (i == 0) {
3291 rnp->grpnum = 0;
3292 rnp->grpmask = 0;
3293 rnp->parent = NULL;
3294 } else {
3295 rnp->grpnum = j % rsp->levelspread[i - 1];
3296 rnp->grpmask = 1UL << rnp->grpnum;
3297 rnp->parent = rsp->level[i - 1] +
3298 j / rsp->levelspread[i - 1];
3299 }
3300 rnp->level = i;
3301 INIT_LIST_HEAD(&rnp->blkd_tasks);
3302 rcu_init_one_nocb(rnp);
3303 }
3304 }
3305
3306 rsp->rda = rda;
3307 init_waitqueue_head(&rsp->gp_wq);
3308 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
3309 rnp = rsp->level[rcu_num_lvls - 1];
3310 for_each_possible_cpu(i) {
3311 while (i > rnp->grphi)
3312 rnp++;
3313 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3314 rcu_boot_init_percpu_data(i, rsp);
3315 }
3316 list_add(&rsp->flavors, &rcu_struct_flavors);
3317 }
3318
3319 /*
3320 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3321 * replace the definitions in tree.h because those are needed to size
3322 * the ->node array in the rcu_state structure.
3323 */
3324 static void __init rcu_init_geometry(void)
3325 {
3326 ulong d;
3327 int i;
3328 int j;
3329 int n = nr_cpu_ids;
3330 int rcu_capacity[MAX_RCU_LVLS + 1];
3331
3332 /*
3333 * Initialize any unspecified boot parameters.
3334 * The default values of jiffies_till_first_fqs and
3335 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3336 * value, which is a function of HZ, then adding one for each
3337 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3338 */
3339 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3340 if (jiffies_till_first_fqs == ULONG_MAX)
3341 jiffies_till_first_fqs = d;
3342 if (jiffies_till_next_fqs == ULONG_MAX)
3343 jiffies_till_next_fqs = d;
3344
3345 /* If the compile-time values are accurate, just leave. */
3346 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3347 nr_cpu_ids == NR_CPUS)
3348 return;
3349
3350 /*
3351 * Compute number of nodes that can be handled an rcu_node tree
3352 * with the given number of levels. Setting rcu_capacity[0] makes
3353 * some of the arithmetic easier.
3354 */
3355 rcu_capacity[0] = 1;
3356 rcu_capacity[1] = rcu_fanout_leaf;
3357 for (i = 2; i <= MAX_RCU_LVLS; i++)
3358 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3359
3360 /*
3361 * The boot-time rcu_fanout_leaf parameter is only permitted
3362 * to increase the leaf-level fanout, not decrease it. Of course,
3363 * the leaf-level fanout cannot exceed the number of bits in
3364 * the rcu_node masks. Finally, the tree must be able to accommodate
3365 * the configured number of CPUs. Complain and fall back to the
3366 * compile-time values if these limits are exceeded.
3367 */
3368 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3369 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3370 n > rcu_capacity[MAX_RCU_LVLS]) {
3371 WARN_ON(1);
3372 return;
3373 }
3374
3375 /* Calculate the number of rcu_nodes at each level of the tree. */
3376 for (i = 1; i <= MAX_RCU_LVLS; i++)
3377 if (n <= rcu_capacity[i]) {
3378 for (j = 0; j <= i; j++)
3379 num_rcu_lvl[j] =
3380 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3381 rcu_num_lvls = i;
3382 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3383 num_rcu_lvl[j] = 0;
3384 break;
3385 }
3386
3387 /* Calculate the total number of rcu_node structures. */
3388 rcu_num_nodes = 0;
3389 for (i = 0; i <= MAX_RCU_LVLS; i++)
3390 rcu_num_nodes += num_rcu_lvl[i];
3391 rcu_num_nodes -= n;
3392 }
3393
3394 void __init rcu_init(void)
3395 {
3396 int cpu;
3397
3398 rcu_bootup_announce();
3399 rcu_init_geometry();
3400 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3401 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3402 __rcu_init_preempt();
3403 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3404
3405 /*
3406 * We don't need protection against CPU-hotplug here because
3407 * this is called early in boot, before either interrupts
3408 * or the scheduler are operational.
3409 */
3410 cpu_notifier(rcu_cpu_notify, 0);
3411 pm_notifier(rcu_pm_notify, 0);
3412 for_each_online_cpu(cpu)
3413 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3414 }
3415
3416 #include "tree_plugin.h"
This page took 0.141553 seconds and 5 git commands to generate.