Merge branch 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg...
[deliverable/linux.git] / kernel / rcu / tree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #define RCU_KTHREAD_PRIO 1
34
35 #ifdef CONFIG_RCU_BOOST
36 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
37 #else
38 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
39 #endif
40
41 #ifdef CONFIG_RCU_NOCB_CPU
42 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
43 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
44 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
45 static char __initdata nocb_buf[NR_CPUS * 5];
46 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
47
48 /*
49 * Check the RCU kernel configuration parameters and print informative
50 * messages about anything out of the ordinary. If you like #ifdef, you
51 * will love this function.
52 */
53 static void __init rcu_bootup_announce_oddness(void)
54 {
55 #ifdef CONFIG_RCU_TRACE
56 pr_info("\tRCU debugfs-based tracing is enabled.\n");
57 #endif
58 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
59 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
60 CONFIG_RCU_FANOUT);
61 #endif
62 #ifdef CONFIG_RCU_FANOUT_EXACT
63 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
64 #endif
65 #ifdef CONFIG_RCU_FAST_NO_HZ
66 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
67 #endif
68 #ifdef CONFIG_PROVE_RCU
69 pr_info("\tRCU lockdep checking is enabled.\n");
70 #endif
71 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
72 pr_info("\tRCU torture testing starts during boot.\n");
73 #endif
74 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
75 pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
76 #endif
77 #if defined(CONFIG_RCU_CPU_STALL_INFO)
78 pr_info("\tAdditional per-CPU info printed with stalls.\n");
79 #endif
80 #if NUM_RCU_LVL_4 != 0
81 pr_info("\tFour-level hierarchy is enabled.\n");
82 #endif
83 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
84 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
85 if (nr_cpu_ids != NR_CPUS)
86 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
87 #ifdef CONFIG_RCU_NOCB_CPU
88 #ifndef CONFIG_RCU_NOCB_CPU_NONE
89 if (!have_rcu_nocb_mask) {
90 zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
91 have_rcu_nocb_mask = true;
92 }
93 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
94 pr_info("\tOffload RCU callbacks from CPU 0\n");
95 cpumask_set_cpu(0, rcu_nocb_mask);
96 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
97 #ifdef CONFIG_RCU_NOCB_CPU_ALL
98 pr_info("\tOffload RCU callbacks from all CPUs\n");
99 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
100 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
101 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
102 if (have_rcu_nocb_mask) {
103 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
104 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
105 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
106 rcu_nocb_mask);
107 }
108 cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
109 pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
110 if (rcu_nocb_poll)
111 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
112 }
113 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
114 }
115
116 #ifdef CONFIG_TREE_PREEMPT_RCU
117
118 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
119 static struct rcu_state *rcu_state = &rcu_preempt_state;
120
121 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
122
123 /*
124 * Tell them what RCU they are running.
125 */
126 static void __init rcu_bootup_announce(void)
127 {
128 pr_info("Preemptible hierarchical RCU implementation.\n");
129 rcu_bootup_announce_oddness();
130 }
131
132 /*
133 * Return the number of RCU-preempt batches processed thus far
134 * for debug and statistics.
135 */
136 long rcu_batches_completed_preempt(void)
137 {
138 return rcu_preempt_state.completed;
139 }
140 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
141
142 /*
143 * Return the number of RCU batches processed thus far for debug & stats.
144 */
145 long rcu_batches_completed(void)
146 {
147 return rcu_batches_completed_preempt();
148 }
149 EXPORT_SYMBOL_GPL(rcu_batches_completed);
150
151 /*
152 * Force a quiescent state for preemptible RCU.
153 */
154 void rcu_force_quiescent_state(void)
155 {
156 force_quiescent_state(&rcu_preempt_state);
157 }
158 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
159
160 /*
161 * Record a preemptible-RCU quiescent state for the specified CPU. Note
162 * that this just means that the task currently running on the CPU is
163 * not in a quiescent state. There might be any number of tasks blocked
164 * while in an RCU read-side critical section.
165 *
166 * Unlike the other rcu_*_qs() functions, callers to this function
167 * must disable irqs in order to protect the assignment to
168 * ->rcu_read_unlock_special.
169 */
170 static void rcu_preempt_qs(int cpu)
171 {
172 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
173
174 if (rdp->passed_quiesce == 0)
175 trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
176 rdp->passed_quiesce = 1;
177 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
178 }
179
180 /*
181 * We have entered the scheduler, and the current task might soon be
182 * context-switched away from. If this task is in an RCU read-side
183 * critical section, we will no longer be able to rely on the CPU to
184 * record that fact, so we enqueue the task on the blkd_tasks list.
185 * The task will dequeue itself when it exits the outermost enclosing
186 * RCU read-side critical section. Therefore, the current grace period
187 * cannot be permitted to complete until the blkd_tasks list entries
188 * predating the current grace period drain, in other words, until
189 * rnp->gp_tasks becomes NULL.
190 *
191 * Caller must disable preemption.
192 */
193 static void rcu_preempt_note_context_switch(int cpu)
194 {
195 struct task_struct *t = current;
196 unsigned long flags;
197 struct rcu_data *rdp;
198 struct rcu_node *rnp;
199
200 if (t->rcu_read_lock_nesting > 0 &&
201 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
202
203 /* Possibly blocking in an RCU read-side critical section. */
204 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
205 rnp = rdp->mynode;
206 raw_spin_lock_irqsave(&rnp->lock, flags);
207 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
208 t->rcu_blocked_node = rnp;
209
210 /*
211 * If this CPU has already checked in, then this task
212 * will hold up the next grace period rather than the
213 * current grace period. Queue the task accordingly.
214 * If the task is queued for the current grace period
215 * (i.e., this CPU has not yet passed through a quiescent
216 * state for the current grace period), then as long
217 * as that task remains queued, the current grace period
218 * cannot end. Note that there is some uncertainty as
219 * to exactly when the current grace period started.
220 * We take a conservative approach, which can result
221 * in unnecessarily waiting on tasks that started very
222 * slightly after the current grace period began. C'est
223 * la vie!!!
224 *
225 * But first, note that the current CPU must still be
226 * on line!
227 */
228 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
229 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
230 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
231 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
232 rnp->gp_tasks = &t->rcu_node_entry;
233 #ifdef CONFIG_RCU_BOOST
234 if (rnp->boost_tasks != NULL)
235 rnp->boost_tasks = rnp->gp_tasks;
236 #endif /* #ifdef CONFIG_RCU_BOOST */
237 } else {
238 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
239 if (rnp->qsmask & rdp->grpmask)
240 rnp->gp_tasks = &t->rcu_node_entry;
241 }
242 trace_rcu_preempt_task(rdp->rsp->name,
243 t->pid,
244 (rnp->qsmask & rdp->grpmask)
245 ? rnp->gpnum
246 : rnp->gpnum + 1);
247 raw_spin_unlock_irqrestore(&rnp->lock, flags);
248 } else if (t->rcu_read_lock_nesting < 0 &&
249 t->rcu_read_unlock_special) {
250
251 /*
252 * Complete exit from RCU read-side critical section on
253 * behalf of preempted instance of __rcu_read_unlock().
254 */
255 rcu_read_unlock_special(t);
256 }
257
258 /*
259 * Either we were not in an RCU read-side critical section to
260 * begin with, or we have now recorded that critical section
261 * globally. Either way, we can now note a quiescent state
262 * for this CPU. Again, if we were in an RCU read-side critical
263 * section, and if that critical section was blocking the current
264 * grace period, then the fact that the task has been enqueued
265 * means that we continue to block the current grace period.
266 */
267 local_irq_save(flags);
268 rcu_preempt_qs(cpu);
269 local_irq_restore(flags);
270 }
271
272 /*
273 * Check for preempted RCU readers blocking the current grace period
274 * for the specified rcu_node structure. If the caller needs a reliable
275 * answer, it must hold the rcu_node's ->lock.
276 */
277 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
278 {
279 return rnp->gp_tasks != NULL;
280 }
281
282 /*
283 * Record a quiescent state for all tasks that were previously queued
284 * on the specified rcu_node structure and that were blocking the current
285 * RCU grace period. The caller must hold the specified rnp->lock with
286 * irqs disabled, and this lock is released upon return, but irqs remain
287 * disabled.
288 */
289 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
290 __releases(rnp->lock)
291 {
292 unsigned long mask;
293 struct rcu_node *rnp_p;
294
295 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
296 raw_spin_unlock_irqrestore(&rnp->lock, flags);
297 return; /* Still need more quiescent states! */
298 }
299
300 rnp_p = rnp->parent;
301 if (rnp_p == NULL) {
302 /*
303 * Either there is only one rcu_node in the tree,
304 * or tasks were kicked up to root rcu_node due to
305 * CPUs going offline.
306 */
307 rcu_report_qs_rsp(&rcu_preempt_state, flags);
308 return;
309 }
310
311 /* Report up the rest of the hierarchy. */
312 mask = rnp->grpmask;
313 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
314 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
315 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
316 }
317
318 /*
319 * Advance a ->blkd_tasks-list pointer to the next entry, instead
320 * returning NULL if at the end of the list.
321 */
322 static struct list_head *rcu_next_node_entry(struct task_struct *t,
323 struct rcu_node *rnp)
324 {
325 struct list_head *np;
326
327 np = t->rcu_node_entry.next;
328 if (np == &rnp->blkd_tasks)
329 np = NULL;
330 return np;
331 }
332
333 /*
334 * Handle special cases during rcu_read_unlock(), such as needing to
335 * notify RCU core processing or task having blocked during the RCU
336 * read-side critical section.
337 */
338 void rcu_read_unlock_special(struct task_struct *t)
339 {
340 int empty;
341 int empty_exp;
342 int empty_exp_now;
343 unsigned long flags;
344 struct list_head *np;
345 #ifdef CONFIG_RCU_BOOST
346 struct rt_mutex *rbmp = NULL;
347 #endif /* #ifdef CONFIG_RCU_BOOST */
348 struct rcu_node *rnp;
349 int special;
350
351 /* NMI handlers cannot block and cannot safely manipulate state. */
352 if (in_nmi())
353 return;
354
355 local_irq_save(flags);
356
357 /*
358 * If RCU core is waiting for this CPU to exit critical section,
359 * let it know that we have done so.
360 */
361 special = t->rcu_read_unlock_special;
362 if (special & RCU_READ_UNLOCK_NEED_QS) {
363 rcu_preempt_qs(smp_processor_id());
364 }
365
366 /* Hardware IRQ handlers cannot block. */
367 if (in_irq() || in_serving_softirq()) {
368 local_irq_restore(flags);
369 return;
370 }
371
372 /* Clean up if blocked during RCU read-side critical section. */
373 if (special & RCU_READ_UNLOCK_BLOCKED) {
374 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
375
376 /*
377 * Remove this task from the list it blocked on. The
378 * task can migrate while we acquire the lock, but at
379 * most one time. So at most two passes through loop.
380 */
381 for (;;) {
382 rnp = t->rcu_blocked_node;
383 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
384 if (rnp == t->rcu_blocked_node)
385 break;
386 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
387 }
388 empty = !rcu_preempt_blocked_readers_cgp(rnp);
389 empty_exp = !rcu_preempted_readers_exp(rnp);
390 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
391 np = rcu_next_node_entry(t, rnp);
392 list_del_init(&t->rcu_node_entry);
393 t->rcu_blocked_node = NULL;
394 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
395 rnp->gpnum, t->pid);
396 if (&t->rcu_node_entry == rnp->gp_tasks)
397 rnp->gp_tasks = np;
398 if (&t->rcu_node_entry == rnp->exp_tasks)
399 rnp->exp_tasks = np;
400 #ifdef CONFIG_RCU_BOOST
401 if (&t->rcu_node_entry == rnp->boost_tasks)
402 rnp->boost_tasks = np;
403 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
404 if (t->rcu_boost_mutex) {
405 rbmp = t->rcu_boost_mutex;
406 t->rcu_boost_mutex = NULL;
407 }
408 #endif /* #ifdef CONFIG_RCU_BOOST */
409
410 /*
411 * If this was the last task on the current list, and if
412 * we aren't waiting on any CPUs, report the quiescent state.
413 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
414 * so we must take a snapshot of the expedited state.
415 */
416 empty_exp_now = !rcu_preempted_readers_exp(rnp);
417 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
418 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
419 rnp->gpnum,
420 0, rnp->qsmask,
421 rnp->level,
422 rnp->grplo,
423 rnp->grphi,
424 !!rnp->gp_tasks);
425 rcu_report_unblock_qs_rnp(rnp, flags);
426 } else {
427 raw_spin_unlock_irqrestore(&rnp->lock, flags);
428 }
429
430 #ifdef CONFIG_RCU_BOOST
431 /* Unboost if we were boosted. */
432 if (rbmp)
433 rt_mutex_unlock(rbmp);
434 #endif /* #ifdef CONFIG_RCU_BOOST */
435
436 /*
437 * If this was the last task on the expedited lists,
438 * then we need to report up the rcu_node hierarchy.
439 */
440 if (!empty_exp && empty_exp_now)
441 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
442 } else {
443 local_irq_restore(flags);
444 }
445 }
446
447 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
448
449 /*
450 * Dump detailed information for all tasks blocking the current RCU
451 * grace period on the specified rcu_node structure.
452 */
453 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
454 {
455 unsigned long flags;
456 struct task_struct *t;
457
458 raw_spin_lock_irqsave(&rnp->lock, flags);
459 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
460 raw_spin_unlock_irqrestore(&rnp->lock, flags);
461 return;
462 }
463 t = list_entry(rnp->gp_tasks,
464 struct task_struct, rcu_node_entry);
465 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
466 sched_show_task(t);
467 raw_spin_unlock_irqrestore(&rnp->lock, flags);
468 }
469
470 /*
471 * Dump detailed information for all tasks blocking the current RCU
472 * grace period.
473 */
474 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
475 {
476 struct rcu_node *rnp = rcu_get_root(rsp);
477
478 rcu_print_detail_task_stall_rnp(rnp);
479 rcu_for_each_leaf_node(rsp, rnp)
480 rcu_print_detail_task_stall_rnp(rnp);
481 }
482
483 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
484
485 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
486 {
487 }
488
489 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
490
491 #ifdef CONFIG_RCU_CPU_STALL_INFO
492
493 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
494 {
495 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
496 rnp->level, rnp->grplo, rnp->grphi);
497 }
498
499 static void rcu_print_task_stall_end(void)
500 {
501 pr_cont("\n");
502 }
503
504 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
505
506 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
507 {
508 }
509
510 static void rcu_print_task_stall_end(void)
511 {
512 }
513
514 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
515
516 /*
517 * Scan the current list of tasks blocked within RCU read-side critical
518 * sections, printing out the tid of each.
519 */
520 static int rcu_print_task_stall(struct rcu_node *rnp)
521 {
522 struct task_struct *t;
523 int ndetected = 0;
524
525 if (!rcu_preempt_blocked_readers_cgp(rnp))
526 return 0;
527 rcu_print_task_stall_begin(rnp);
528 t = list_entry(rnp->gp_tasks,
529 struct task_struct, rcu_node_entry);
530 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
531 pr_cont(" P%d", t->pid);
532 ndetected++;
533 }
534 rcu_print_task_stall_end();
535 return ndetected;
536 }
537
538 /*
539 * Check that the list of blocked tasks for the newly completed grace
540 * period is in fact empty. It is a serious bug to complete a grace
541 * period that still has RCU readers blocked! This function must be
542 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
543 * must be held by the caller.
544 *
545 * Also, if there are blocked tasks on the list, they automatically
546 * block the newly created grace period, so set up ->gp_tasks accordingly.
547 */
548 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
549 {
550 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
551 if (!list_empty(&rnp->blkd_tasks))
552 rnp->gp_tasks = rnp->blkd_tasks.next;
553 WARN_ON_ONCE(rnp->qsmask);
554 }
555
556 #ifdef CONFIG_HOTPLUG_CPU
557
558 /*
559 * Handle tasklist migration for case in which all CPUs covered by the
560 * specified rcu_node have gone offline. Move them up to the root
561 * rcu_node. The reason for not just moving them to the immediate
562 * parent is to remove the need for rcu_read_unlock_special() to
563 * make more than two attempts to acquire the target rcu_node's lock.
564 * Returns true if there were tasks blocking the current RCU grace
565 * period.
566 *
567 * Returns 1 if there was previously a task blocking the current grace
568 * period on the specified rcu_node structure.
569 *
570 * The caller must hold rnp->lock with irqs disabled.
571 */
572 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
573 struct rcu_node *rnp,
574 struct rcu_data *rdp)
575 {
576 struct list_head *lp;
577 struct list_head *lp_root;
578 int retval = 0;
579 struct rcu_node *rnp_root = rcu_get_root(rsp);
580 struct task_struct *t;
581
582 if (rnp == rnp_root) {
583 WARN_ONCE(1, "Last CPU thought to be offlined?");
584 return 0; /* Shouldn't happen: at least one CPU online. */
585 }
586
587 /* If we are on an internal node, complain bitterly. */
588 WARN_ON_ONCE(rnp != rdp->mynode);
589
590 /*
591 * Move tasks up to root rcu_node. Don't try to get fancy for
592 * this corner-case operation -- just put this node's tasks
593 * at the head of the root node's list, and update the root node's
594 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
595 * if non-NULL. This might result in waiting for more tasks than
596 * absolutely necessary, but this is a good performance/complexity
597 * tradeoff.
598 */
599 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
600 retval |= RCU_OFL_TASKS_NORM_GP;
601 if (rcu_preempted_readers_exp(rnp))
602 retval |= RCU_OFL_TASKS_EXP_GP;
603 lp = &rnp->blkd_tasks;
604 lp_root = &rnp_root->blkd_tasks;
605 while (!list_empty(lp)) {
606 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
607 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
608 list_del(&t->rcu_node_entry);
609 t->rcu_blocked_node = rnp_root;
610 list_add(&t->rcu_node_entry, lp_root);
611 if (&t->rcu_node_entry == rnp->gp_tasks)
612 rnp_root->gp_tasks = rnp->gp_tasks;
613 if (&t->rcu_node_entry == rnp->exp_tasks)
614 rnp_root->exp_tasks = rnp->exp_tasks;
615 #ifdef CONFIG_RCU_BOOST
616 if (&t->rcu_node_entry == rnp->boost_tasks)
617 rnp_root->boost_tasks = rnp->boost_tasks;
618 #endif /* #ifdef CONFIG_RCU_BOOST */
619 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
620 }
621
622 rnp->gp_tasks = NULL;
623 rnp->exp_tasks = NULL;
624 #ifdef CONFIG_RCU_BOOST
625 rnp->boost_tasks = NULL;
626 /*
627 * In case root is being boosted and leaf was not. Make sure
628 * that we boost the tasks blocking the current grace period
629 * in this case.
630 */
631 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
632 if (rnp_root->boost_tasks != NULL &&
633 rnp_root->boost_tasks != rnp_root->gp_tasks &&
634 rnp_root->boost_tasks != rnp_root->exp_tasks)
635 rnp_root->boost_tasks = rnp_root->gp_tasks;
636 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
637 #endif /* #ifdef CONFIG_RCU_BOOST */
638
639 return retval;
640 }
641
642 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
643
644 /*
645 * Check for a quiescent state from the current CPU. When a task blocks,
646 * the task is recorded in the corresponding CPU's rcu_node structure,
647 * which is checked elsewhere.
648 *
649 * Caller must disable hard irqs.
650 */
651 static void rcu_preempt_check_callbacks(int cpu)
652 {
653 struct task_struct *t = current;
654
655 if (t->rcu_read_lock_nesting == 0) {
656 rcu_preempt_qs(cpu);
657 return;
658 }
659 if (t->rcu_read_lock_nesting > 0 &&
660 per_cpu(rcu_preempt_data, cpu).qs_pending)
661 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
662 }
663
664 #ifdef CONFIG_RCU_BOOST
665
666 static void rcu_preempt_do_callbacks(void)
667 {
668 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
669 }
670
671 #endif /* #ifdef CONFIG_RCU_BOOST */
672
673 /*
674 * Queue a preemptible-RCU callback for invocation after a grace period.
675 */
676 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
677 {
678 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
679 }
680 EXPORT_SYMBOL_GPL(call_rcu);
681
682 /*
683 * Queue an RCU callback for lazy invocation after a grace period.
684 * This will likely be later named something like "call_rcu_lazy()",
685 * but this change will require some way of tagging the lazy RCU
686 * callbacks in the list of pending callbacks. Until then, this
687 * function may only be called from __kfree_rcu().
688 */
689 void kfree_call_rcu(struct rcu_head *head,
690 void (*func)(struct rcu_head *rcu))
691 {
692 __call_rcu(head, func, &rcu_preempt_state, -1, 1);
693 }
694 EXPORT_SYMBOL_GPL(kfree_call_rcu);
695
696 /**
697 * synchronize_rcu - wait until a grace period has elapsed.
698 *
699 * Control will return to the caller some time after a full grace
700 * period has elapsed, in other words after all currently executing RCU
701 * read-side critical sections have completed. Note, however, that
702 * upon return from synchronize_rcu(), the caller might well be executing
703 * concurrently with new RCU read-side critical sections that began while
704 * synchronize_rcu() was waiting. RCU read-side critical sections are
705 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
706 *
707 * See the description of synchronize_sched() for more detailed information
708 * on memory ordering guarantees.
709 */
710 void synchronize_rcu(void)
711 {
712 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
713 !lock_is_held(&rcu_lock_map) &&
714 !lock_is_held(&rcu_sched_lock_map),
715 "Illegal synchronize_rcu() in RCU read-side critical section");
716 if (!rcu_scheduler_active)
717 return;
718 if (rcu_expedited)
719 synchronize_rcu_expedited();
720 else
721 wait_rcu_gp(call_rcu);
722 }
723 EXPORT_SYMBOL_GPL(synchronize_rcu);
724
725 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
726 static unsigned long sync_rcu_preempt_exp_count;
727 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
728
729 /*
730 * Return non-zero if there are any tasks in RCU read-side critical
731 * sections blocking the current preemptible-RCU expedited grace period.
732 * If there is no preemptible-RCU expedited grace period currently in
733 * progress, returns zero unconditionally.
734 */
735 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
736 {
737 return rnp->exp_tasks != NULL;
738 }
739
740 /*
741 * return non-zero if there is no RCU expedited grace period in progress
742 * for the specified rcu_node structure, in other words, if all CPUs and
743 * tasks covered by the specified rcu_node structure have done their bit
744 * for the current expedited grace period. Works only for preemptible
745 * RCU -- other RCU implementation use other means.
746 *
747 * Caller must hold sync_rcu_preempt_exp_mutex.
748 */
749 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
750 {
751 return !rcu_preempted_readers_exp(rnp) &&
752 ACCESS_ONCE(rnp->expmask) == 0;
753 }
754
755 /*
756 * Report the exit from RCU read-side critical section for the last task
757 * that queued itself during or before the current expedited preemptible-RCU
758 * grace period. This event is reported either to the rcu_node structure on
759 * which the task was queued or to one of that rcu_node structure's ancestors,
760 * recursively up the tree. (Calm down, calm down, we do the recursion
761 * iteratively!)
762 *
763 * Most callers will set the "wake" flag, but the task initiating the
764 * expedited grace period need not wake itself.
765 *
766 * Caller must hold sync_rcu_preempt_exp_mutex.
767 */
768 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
769 bool wake)
770 {
771 unsigned long flags;
772 unsigned long mask;
773
774 raw_spin_lock_irqsave(&rnp->lock, flags);
775 for (;;) {
776 if (!sync_rcu_preempt_exp_done(rnp)) {
777 raw_spin_unlock_irqrestore(&rnp->lock, flags);
778 break;
779 }
780 if (rnp->parent == NULL) {
781 raw_spin_unlock_irqrestore(&rnp->lock, flags);
782 if (wake)
783 wake_up(&sync_rcu_preempt_exp_wq);
784 break;
785 }
786 mask = rnp->grpmask;
787 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
788 rnp = rnp->parent;
789 raw_spin_lock(&rnp->lock); /* irqs already disabled */
790 rnp->expmask &= ~mask;
791 }
792 }
793
794 /*
795 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
796 * grace period for the specified rcu_node structure. If there are no such
797 * tasks, report it up the rcu_node hierarchy.
798 *
799 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
800 * CPU hotplug operations.
801 */
802 static void
803 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
804 {
805 unsigned long flags;
806 int must_wait = 0;
807
808 raw_spin_lock_irqsave(&rnp->lock, flags);
809 if (list_empty(&rnp->blkd_tasks)) {
810 raw_spin_unlock_irqrestore(&rnp->lock, flags);
811 } else {
812 rnp->exp_tasks = rnp->blkd_tasks.next;
813 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
814 must_wait = 1;
815 }
816 if (!must_wait)
817 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
818 }
819
820 /**
821 * synchronize_rcu_expedited - Brute-force RCU grace period
822 *
823 * Wait for an RCU-preempt grace period, but expedite it. The basic
824 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
825 * the ->blkd_tasks lists and wait for this list to drain. This consumes
826 * significant time on all CPUs and is unfriendly to real-time workloads,
827 * so is thus not recommended for any sort of common-case code.
828 * In fact, if you are using synchronize_rcu_expedited() in a loop,
829 * please restructure your code to batch your updates, and then Use a
830 * single synchronize_rcu() instead.
831 *
832 * Note that it is illegal to call this function while holding any lock
833 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
834 * to call this function from a CPU-hotplug notifier. Failing to observe
835 * these restriction will result in deadlock.
836 */
837 void synchronize_rcu_expedited(void)
838 {
839 unsigned long flags;
840 struct rcu_node *rnp;
841 struct rcu_state *rsp = &rcu_preempt_state;
842 unsigned long snap;
843 int trycount = 0;
844
845 smp_mb(); /* Caller's modifications seen first by other CPUs. */
846 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
847 smp_mb(); /* Above access cannot bleed into critical section. */
848
849 /*
850 * Block CPU-hotplug operations. This means that any CPU-hotplug
851 * operation that finds an rcu_node structure with tasks in the
852 * process of being boosted will know that all tasks blocking
853 * this expedited grace period will already be in the process of
854 * being boosted. This simplifies the process of moving tasks
855 * from leaf to root rcu_node structures.
856 */
857 get_online_cpus();
858
859 /*
860 * Acquire lock, falling back to synchronize_rcu() if too many
861 * lock-acquisition failures. Of course, if someone does the
862 * expedited grace period for us, just leave.
863 */
864 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
865 if (ULONG_CMP_LT(snap,
866 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
867 put_online_cpus();
868 goto mb_ret; /* Others did our work for us. */
869 }
870 if (trycount++ < 10) {
871 udelay(trycount * num_online_cpus());
872 } else {
873 put_online_cpus();
874 wait_rcu_gp(call_rcu);
875 return;
876 }
877 }
878 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
879 put_online_cpus();
880 goto unlock_mb_ret; /* Others did our work for us. */
881 }
882
883 /* force all RCU readers onto ->blkd_tasks lists. */
884 synchronize_sched_expedited();
885
886 /* Initialize ->expmask for all non-leaf rcu_node structures. */
887 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
888 raw_spin_lock_irqsave(&rnp->lock, flags);
889 rnp->expmask = rnp->qsmaskinit;
890 raw_spin_unlock_irqrestore(&rnp->lock, flags);
891 }
892
893 /* Snapshot current state of ->blkd_tasks lists. */
894 rcu_for_each_leaf_node(rsp, rnp)
895 sync_rcu_preempt_exp_init(rsp, rnp);
896 if (NUM_RCU_NODES > 1)
897 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
898
899 put_online_cpus();
900
901 /* Wait for snapshotted ->blkd_tasks lists to drain. */
902 rnp = rcu_get_root(rsp);
903 wait_event(sync_rcu_preempt_exp_wq,
904 sync_rcu_preempt_exp_done(rnp));
905
906 /* Clean up and exit. */
907 smp_mb(); /* ensure expedited GP seen before counter increment. */
908 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
909 unlock_mb_ret:
910 mutex_unlock(&sync_rcu_preempt_exp_mutex);
911 mb_ret:
912 smp_mb(); /* ensure subsequent action seen after grace period. */
913 }
914 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
915
916 /**
917 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
918 *
919 * Note that this primitive does not necessarily wait for an RCU grace period
920 * to complete. For example, if there are no RCU callbacks queued anywhere
921 * in the system, then rcu_barrier() is within its rights to return
922 * immediately, without waiting for anything, much less an RCU grace period.
923 */
924 void rcu_barrier(void)
925 {
926 _rcu_barrier(&rcu_preempt_state);
927 }
928 EXPORT_SYMBOL_GPL(rcu_barrier);
929
930 /*
931 * Initialize preemptible RCU's state structures.
932 */
933 static void __init __rcu_init_preempt(void)
934 {
935 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
936 }
937
938 /*
939 * Check for a task exiting while in a preemptible-RCU read-side
940 * critical section, clean up if so. No need to issue warnings,
941 * as debug_check_no_locks_held() already does this if lockdep
942 * is enabled.
943 */
944 void exit_rcu(void)
945 {
946 struct task_struct *t = current;
947
948 if (likely(list_empty(&current->rcu_node_entry)))
949 return;
950 t->rcu_read_lock_nesting = 1;
951 barrier();
952 t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
953 __rcu_read_unlock();
954 }
955
956 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
957
958 static struct rcu_state *rcu_state = &rcu_sched_state;
959
960 /*
961 * Tell them what RCU they are running.
962 */
963 static void __init rcu_bootup_announce(void)
964 {
965 pr_info("Hierarchical RCU implementation.\n");
966 rcu_bootup_announce_oddness();
967 }
968
969 /*
970 * Return the number of RCU batches processed thus far for debug & stats.
971 */
972 long rcu_batches_completed(void)
973 {
974 return rcu_batches_completed_sched();
975 }
976 EXPORT_SYMBOL_GPL(rcu_batches_completed);
977
978 /*
979 * Force a quiescent state for RCU, which, because there is no preemptible
980 * RCU, becomes the same as rcu-sched.
981 */
982 void rcu_force_quiescent_state(void)
983 {
984 rcu_sched_force_quiescent_state();
985 }
986 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
987
988 /*
989 * Because preemptible RCU does not exist, we never have to check for
990 * CPUs being in quiescent states.
991 */
992 static void rcu_preempt_note_context_switch(int cpu)
993 {
994 }
995
996 /*
997 * Because preemptible RCU does not exist, there are never any preempted
998 * RCU readers.
999 */
1000 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
1001 {
1002 return 0;
1003 }
1004
1005 #ifdef CONFIG_HOTPLUG_CPU
1006
1007 /* Because preemptible RCU does not exist, no quieting of tasks. */
1008 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1009 {
1010 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1011 }
1012
1013 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1014
1015 /*
1016 * Because preemptible RCU does not exist, we never have to check for
1017 * tasks blocked within RCU read-side critical sections.
1018 */
1019 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1020 {
1021 }
1022
1023 /*
1024 * Because preemptible RCU does not exist, we never have to check for
1025 * tasks blocked within RCU read-side critical sections.
1026 */
1027 static int rcu_print_task_stall(struct rcu_node *rnp)
1028 {
1029 return 0;
1030 }
1031
1032 /*
1033 * Because there is no preemptible RCU, there can be no readers blocked,
1034 * so there is no need to check for blocked tasks. So check only for
1035 * bogus qsmask values.
1036 */
1037 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1038 {
1039 WARN_ON_ONCE(rnp->qsmask);
1040 }
1041
1042 #ifdef CONFIG_HOTPLUG_CPU
1043
1044 /*
1045 * Because preemptible RCU does not exist, it never needs to migrate
1046 * tasks that were blocked within RCU read-side critical sections, and
1047 * such non-existent tasks cannot possibly have been blocking the current
1048 * grace period.
1049 */
1050 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1051 struct rcu_node *rnp,
1052 struct rcu_data *rdp)
1053 {
1054 return 0;
1055 }
1056
1057 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1058
1059 /*
1060 * Because preemptible RCU does not exist, it never has any callbacks
1061 * to check.
1062 */
1063 static void rcu_preempt_check_callbacks(int cpu)
1064 {
1065 }
1066
1067 /*
1068 * Queue an RCU callback for lazy invocation after a grace period.
1069 * This will likely be later named something like "call_rcu_lazy()",
1070 * but this change will require some way of tagging the lazy RCU
1071 * callbacks in the list of pending callbacks. Until then, this
1072 * function may only be called from __kfree_rcu().
1073 *
1074 * Because there is no preemptible RCU, we use RCU-sched instead.
1075 */
1076 void kfree_call_rcu(struct rcu_head *head,
1077 void (*func)(struct rcu_head *rcu))
1078 {
1079 __call_rcu(head, func, &rcu_sched_state, -1, 1);
1080 }
1081 EXPORT_SYMBOL_GPL(kfree_call_rcu);
1082
1083 /*
1084 * Wait for an rcu-preempt grace period, but make it happen quickly.
1085 * But because preemptible RCU does not exist, map to rcu-sched.
1086 */
1087 void synchronize_rcu_expedited(void)
1088 {
1089 synchronize_sched_expedited();
1090 }
1091 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1092
1093 #ifdef CONFIG_HOTPLUG_CPU
1094
1095 /*
1096 * Because preemptible RCU does not exist, there is never any need to
1097 * report on tasks preempted in RCU read-side critical sections during
1098 * expedited RCU grace periods.
1099 */
1100 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1101 bool wake)
1102 {
1103 }
1104
1105 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1106
1107 /*
1108 * Because preemptible RCU does not exist, rcu_barrier() is just
1109 * another name for rcu_barrier_sched().
1110 */
1111 void rcu_barrier(void)
1112 {
1113 rcu_barrier_sched();
1114 }
1115 EXPORT_SYMBOL_GPL(rcu_barrier);
1116
1117 /*
1118 * Because preemptible RCU does not exist, it need not be initialized.
1119 */
1120 static void __init __rcu_init_preempt(void)
1121 {
1122 }
1123
1124 /*
1125 * Because preemptible RCU does not exist, tasks cannot possibly exit
1126 * while in preemptible RCU read-side critical sections.
1127 */
1128 void exit_rcu(void)
1129 {
1130 }
1131
1132 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1133
1134 #ifdef CONFIG_RCU_BOOST
1135
1136 #include "../locking/rtmutex_common.h"
1137
1138 #ifdef CONFIG_RCU_TRACE
1139
1140 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1141 {
1142 if (list_empty(&rnp->blkd_tasks))
1143 rnp->n_balk_blkd_tasks++;
1144 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1145 rnp->n_balk_exp_gp_tasks++;
1146 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1147 rnp->n_balk_boost_tasks++;
1148 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1149 rnp->n_balk_notblocked++;
1150 else if (rnp->gp_tasks != NULL &&
1151 ULONG_CMP_LT(jiffies, rnp->boost_time))
1152 rnp->n_balk_notyet++;
1153 else
1154 rnp->n_balk_nos++;
1155 }
1156
1157 #else /* #ifdef CONFIG_RCU_TRACE */
1158
1159 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1160 {
1161 }
1162
1163 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1164
1165 static void rcu_wake_cond(struct task_struct *t, int status)
1166 {
1167 /*
1168 * If the thread is yielding, only wake it when this
1169 * is invoked from idle
1170 */
1171 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1172 wake_up_process(t);
1173 }
1174
1175 /*
1176 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1177 * or ->boost_tasks, advancing the pointer to the next task in the
1178 * ->blkd_tasks list.
1179 *
1180 * Note that irqs must be enabled: boosting the task can block.
1181 * Returns 1 if there are more tasks needing to be boosted.
1182 */
1183 static int rcu_boost(struct rcu_node *rnp)
1184 {
1185 unsigned long flags;
1186 struct rt_mutex mtx;
1187 struct task_struct *t;
1188 struct list_head *tb;
1189
1190 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1191 return 0; /* Nothing left to boost. */
1192
1193 raw_spin_lock_irqsave(&rnp->lock, flags);
1194
1195 /*
1196 * Recheck under the lock: all tasks in need of boosting
1197 * might exit their RCU read-side critical sections on their own.
1198 */
1199 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1200 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1201 return 0;
1202 }
1203
1204 /*
1205 * Preferentially boost tasks blocking expedited grace periods.
1206 * This cannot starve the normal grace periods because a second
1207 * expedited grace period must boost all blocked tasks, including
1208 * those blocking the pre-existing normal grace period.
1209 */
1210 if (rnp->exp_tasks != NULL) {
1211 tb = rnp->exp_tasks;
1212 rnp->n_exp_boosts++;
1213 } else {
1214 tb = rnp->boost_tasks;
1215 rnp->n_normal_boosts++;
1216 }
1217 rnp->n_tasks_boosted++;
1218
1219 /*
1220 * We boost task t by manufacturing an rt_mutex that appears to
1221 * be held by task t. We leave a pointer to that rt_mutex where
1222 * task t can find it, and task t will release the mutex when it
1223 * exits its outermost RCU read-side critical section. Then
1224 * simply acquiring this artificial rt_mutex will boost task
1225 * t's priority. (Thanks to tglx for suggesting this approach!)
1226 *
1227 * Note that task t must acquire rnp->lock to remove itself from
1228 * the ->blkd_tasks list, which it will do from exit() if from
1229 * nowhere else. We therefore are guaranteed that task t will
1230 * stay around at least until we drop rnp->lock. Note that
1231 * rnp->lock also resolves races between our priority boosting
1232 * and task t's exiting its outermost RCU read-side critical
1233 * section.
1234 */
1235 t = container_of(tb, struct task_struct, rcu_node_entry);
1236 rt_mutex_init_proxy_locked(&mtx, t);
1237 t->rcu_boost_mutex = &mtx;
1238 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1239 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1240 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1241
1242 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1243 ACCESS_ONCE(rnp->boost_tasks) != NULL;
1244 }
1245
1246 /*
1247 * Priority-boosting kthread. One per leaf rcu_node and one for the
1248 * root rcu_node.
1249 */
1250 static int rcu_boost_kthread(void *arg)
1251 {
1252 struct rcu_node *rnp = (struct rcu_node *)arg;
1253 int spincnt = 0;
1254 int more2boost;
1255
1256 trace_rcu_utilization(TPS("Start boost kthread@init"));
1257 for (;;) {
1258 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1259 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1260 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1261 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1262 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1263 more2boost = rcu_boost(rnp);
1264 if (more2boost)
1265 spincnt++;
1266 else
1267 spincnt = 0;
1268 if (spincnt > 10) {
1269 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1270 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1271 schedule_timeout_interruptible(2);
1272 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1273 spincnt = 0;
1274 }
1275 }
1276 /* NOTREACHED */
1277 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1278 return 0;
1279 }
1280
1281 /*
1282 * Check to see if it is time to start boosting RCU readers that are
1283 * blocking the current grace period, and, if so, tell the per-rcu_node
1284 * kthread to start boosting them. If there is an expedited grace
1285 * period in progress, it is always time to boost.
1286 *
1287 * The caller must hold rnp->lock, which this function releases.
1288 * The ->boost_kthread_task is immortal, so we don't need to worry
1289 * about it going away.
1290 */
1291 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1292 {
1293 struct task_struct *t;
1294
1295 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1296 rnp->n_balk_exp_gp_tasks++;
1297 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1298 return;
1299 }
1300 if (rnp->exp_tasks != NULL ||
1301 (rnp->gp_tasks != NULL &&
1302 rnp->boost_tasks == NULL &&
1303 rnp->qsmask == 0 &&
1304 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1305 if (rnp->exp_tasks == NULL)
1306 rnp->boost_tasks = rnp->gp_tasks;
1307 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1308 t = rnp->boost_kthread_task;
1309 if (t)
1310 rcu_wake_cond(t, rnp->boost_kthread_status);
1311 } else {
1312 rcu_initiate_boost_trace(rnp);
1313 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1314 }
1315 }
1316
1317 /*
1318 * Wake up the per-CPU kthread to invoke RCU callbacks.
1319 */
1320 static void invoke_rcu_callbacks_kthread(void)
1321 {
1322 unsigned long flags;
1323
1324 local_irq_save(flags);
1325 __this_cpu_write(rcu_cpu_has_work, 1);
1326 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1327 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1328 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1329 __this_cpu_read(rcu_cpu_kthread_status));
1330 }
1331 local_irq_restore(flags);
1332 }
1333
1334 /*
1335 * Is the current CPU running the RCU-callbacks kthread?
1336 * Caller must have preemption disabled.
1337 */
1338 static bool rcu_is_callbacks_kthread(void)
1339 {
1340 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1341 }
1342
1343 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1344
1345 /*
1346 * Do priority-boost accounting for the start of a new grace period.
1347 */
1348 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1349 {
1350 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1351 }
1352
1353 /*
1354 * Create an RCU-boost kthread for the specified node if one does not
1355 * already exist. We only create this kthread for preemptible RCU.
1356 * Returns zero if all is well, a negated errno otherwise.
1357 */
1358 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1359 struct rcu_node *rnp)
1360 {
1361 int rnp_index = rnp - &rsp->node[0];
1362 unsigned long flags;
1363 struct sched_param sp;
1364 struct task_struct *t;
1365
1366 if (&rcu_preempt_state != rsp)
1367 return 0;
1368
1369 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1370 return 0;
1371
1372 rsp->boost = 1;
1373 if (rnp->boost_kthread_task != NULL)
1374 return 0;
1375 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1376 "rcub/%d", rnp_index);
1377 if (IS_ERR(t))
1378 return PTR_ERR(t);
1379 raw_spin_lock_irqsave(&rnp->lock, flags);
1380 rnp->boost_kthread_task = t;
1381 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1382 sp.sched_priority = RCU_BOOST_PRIO;
1383 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1384 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1385 return 0;
1386 }
1387
1388 static void rcu_kthread_do_work(void)
1389 {
1390 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1391 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1392 rcu_preempt_do_callbacks();
1393 }
1394
1395 static void rcu_cpu_kthread_setup(unsigned int cpu)
1396 {
1397 struct sched_param sp;
1398
1399 sp.sched_priority = RCU_KTHREAD_PRIO;
1400 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1401 }
1402
1403 static void rcu_cpu_kthread_park(unsigned int cpu)
1404 {
1405 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1406 }
1407
1408 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1409 {
1410 return __this_cpu_read(rcu_cpu_has_work);
1411 }
1412
1413 /*
1414 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1415 * RCU softirq used in flavors and configurations of RCU that do not
1416 * support RCU priority boosting.
1417 */
1418 static void rcu_cpu_kthread(unsigned int cpu)
1419 {
1420 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1421 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1422 int spincnt;
1423
1424 for (spincnt = 0; spincnt < 10; spincnt++) {
1425 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1426 local_bh_disable();
1427 *statusp = RCU_KTHREAD_RUNNING;
1428 this_cpu_inc(rcu_cpu_kthread_loops);
1429 local_irq_disable();
1430 work = *workp;
1431 *workp = 0;
1432 local_irq_enable();
1433 if (work)
1434 rcu_kthread_do_work();
1435 local_bh_enable();
1436 if (*workp == 0) {
1437 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1438 *statusp = RCU_KTHREAD_WAITING;
1439 return;
1440 }
1441 }
1442 *statusp = RCU_KTHREAD_YIELDING;
1443 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1444 schedule_timeout_interruptible(2);
1445 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1446 *statusp = RCU_KTHREAD_WAITING;
1447 }
1448
1449 /*
1450 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1451 * served by the rcu_node in question. The CPU hotplug lock is still
1452 * held, so the value of rnp->qsmaskinit will be stable.
1453 *
1454 * We don't include outgoingcpu in the affinity set, use -1 if there is
1455 * no outgoing CPU. If there are no CPUs left in the affinity set,
1456 * this function allows the kthread to execute on any CPU.
1457 */
1458 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1459 {
1460 struct task_struct *t = rnp->boost_kthread_task;
1461 unsigned long mask = rnp->qsmaskinit;
1462 cpumask_var_t cm;
1463 int cpu;
1464
1465 if (!t)
1466 return;
1467 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1468 return;
1469 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1470 if ((mask & 0x1) && cpu != outgoingcpu)
1471 cpumask_set_cpu(cpu, cm);
1472 if (cpumask_weight(cm) == 0) {
1473 cpumask_setall(cm);
1474 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1475 cpumask_clear_cpu(cpu, cm);
1476 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1477 }
1478 set_cpus_allowed_ptr(t, cm);
1479 free_cpumask_var(cm);
1480 }
1481
1482 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1483 .store = &rcu_cpu_kthread_task,
1484 .thread_should_run = rcu_cpu_kthread_should_run,
1485 .thread_fn = rcu_cpu_kthread,
1486 .thread_comm = "rcuc/%u",
1487 .setup = rcu_cpu_kthread_setup,
1488 .park = rcu_cpu_kthread_park,
1489 };
1490
1491 /*
1492 * Spawn all kthreads -- called as soon as the scheduler is running.
1493 */
1494 static int __init rcu_spawn_kthreads(void)
1495 {
1496 struct rcu_node *rnp;
1497 int cpu;
1498
1499 rcu_scheduler_fully_active = 1;
1500 for_each_possible_cpu(cpu)
1501 per_cpu(rcu_cpu_has_work, cpu) = 0;
1502 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1503 rnp = rcu_get_root(rcu_state);
1504 (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1505 if (NUM_RCU_NODES > 1) {
1506 rcu_for_each_leaf_node(rcu_state, rnp)
1507 (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1508 }
1509 return 0;
1510 }
1511 early_initcall(rcu_spawn_kthreads);
1512
1513 static void rcu_prepare_kthreads(int cpu)
1514 {
1515 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1516 struct rcu_node *rnp = rdp->mynode;
1517
1518 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1519 if (rcu_scheduler_fully_active)
1520 (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1521 }
1522
1523 #else /* #ifdef CONFIG_RCU_BOOST */
1524
1525 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1526 {
1527 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1528 }
1529
1530 static void invoke_rcu_callbacks_kthread(void)
1531 {
1532 WARN_ON_ONCE(1);
1533 }
1534
1535 static bool rcu_is_callbacks_kthread(void)
1536 {
1537 return false;
1538 }
1539
1540 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1541 {
1542 }
1543
1544 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1545 {
1546 }
1547
1548 static int __init rcu_scheduler_really_started(void)
1549 {
1550 rcu_scheduler_fully_active = 1;
1551 return 0;
1552 }
1553 early_initcall(rcu_scheduler_really_started);
1554
1555 static void rcu_prepare_kthreads(int cpu)
1556 {
1557 }
1558
1559 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1560
1561 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1562
1563 /*
1564 * Check to see if any future RCU-related work will need to be done
1565 * by the current CPU, even if none need be done immediately, returning
1566 * 1 if so. This function is part of the RCU implementation; it is -not-
1567 * an exported member of the RCU API.
1568 *
1569 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1570 * any flavor of RCU.
1571 */
1572 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1573 {
1574 *delta_jiffies = ULONG_MAX;
1575 return rcu_cpu_has_callbacks(cpu, NULL);
1576 }
1577
1578 /*
1579 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1580 * after it.
1581 */
1582 static void rcu_cleanup_after_idle(int cpu)
1583 {
1584 }
1585
1586 /*
1587 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1588 * is nothing.
1589 */
1590 static void rcu_prepare_for_idle(int cpu)
1591 {
1592 }
1593
1594 /*
1595 * Don't bother keeping a running count of the number of RCU callbacks
1596 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1597 */
1598 static void rcu_idle_count_callbacks_posted(void)
1599 {
1600 }
1601
1602 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1603
1604 /*
1605 * This code is invoked when a CPU goes idle, at which point we want
1606 * to have the CPU do everything required for RCU so that it can enter
1607 * the energy-efficient dyntick-idle mode. This is handled by a
1608 * state machine implemented by rcu_prepare_for_idle() below.
1609 *
1610 * The following three proprocessor symbols control this state machine:
1611 *
1612 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1613 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1614 * is sized to be roughly one RCU grace period. Those energy-efficiency
1615 * benchmarkers who might otherwise be tempted to set this to a large
1616 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1617 * system. And if you are -that- concerned about energy efficiency,
1618 * just power the system down and be done with it!
1619 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1620 * permitted to sleep in dyntick-idle mode with only lazy RCU
1621 * callbacks pending. Setting this too high can OOM your system.
1622 *
1623 * The values below work well in practice. If future workloads require
1624 * adjustment, they can be converted into kernel config parameters, though
1625 * making the state machine smarter might be a better option.
1626 */
1627 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1628 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1629
1630 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1631 module_param(rcu_idle_gp_delay, int, 0644);
1632 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1633 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1634
1635 extern int tick_nohz_enabled;
1636
1637 /*
1638 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1639 * only if it has been awhile since the last time we did so. Afterwards,
1640 * if there are any callbacks ready for immediate invocation, return true.
1641 */
1642 static bool rcu_try_advance_all_cbs(void)
1643 {
1644 bool cbs_ready = false;
1645 struct rcu_data *rdp;
1646 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1647 struct rcu_node *rnp;
1648 struct rcu_state *rsp;
1649
1650 /* Exit early if we advanced recently. */
1651 if (jiffies == rdtp->last_advance_all)
1652 return 0;
1653 rdtp->last_advance_all = jiffies;
1654
1655 for_each_rcu_flavor(rsp) {
1656 rdp = this_cpu_ptr(rsp->rda);
1657 rnp = rdp->mynode;
1658
1659 /*
1660 * Don't bother checking unless a grace period has
1661 * completed since we last checked and there are
1662 * callbacks not yet ready to invoke.
1663 */
1664 if (rdp->completed != rnp->completed &&
1665 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1666 note_gp_changes(rsp, rdp);
1667
1668 if (cpu_has_callbacks_ready_to_invoke(rdp))
1669 cbs_ready = true;
1670 }
1671 return cbs_ready;
1672 }
1673
1674 /*
1675 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1676 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1677 * caller to set the timeout based on whether or not there are non-lazy
1678 * callbacks.
1679 *
1680 * The caller must have disabled interrupts.
1681 */
1682 int rcu_needs_cpu(int cpu, unsigned long *dj)
1683 {
1684 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1685
1686 /* Snapshot to detect later posting of non-lazy callback. */
1687 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1688
1689 /* If no callbacks, RCU doesn't need the CPU. */
1690 if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1691 *dj = ULONG_MAX;
1692 return 0;
1693 }
1694
1695 /* Attempt to advance callbacks. */
1696 if (rcu_try_advance_all_cbs()) {
1697 /* Some ready to invoke, so initiate later invocation. */
1698 invoke_rcu_core();
1699 return 1;
1700 }
1701 rdtp->last_accelerate = jiffies;
1702
1703 /* Request timer delay depending on laziness, and round. */
1704 if (!rdtp->all_lazy) {
1705 *dj = round_up(rcu_idle_gp_delay + jiffies,
1706 rcu_idle_gp_delay) - jiffies;
1707 } else {
1708 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1709 }
1710 return 0;
1711 }
1712
1713 /*
1714 * Prepare a CPU for idle from an RCU perspective. The first major task
1715 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1716 * The second major task is to check to see if a non-lazy callback has
1717 * arrived at a CPU that previously had only lazy callbacks. The third
1718 * major task is to accelerate (that is, assign grace-period numbers to)
1719 * any recently arrived callbacks.
1720 *
1721 * The caller must have disabled interrupts.
1722 */
1723 static void rcu_prepare_for_idle(int cpu)
1724 {
1725 struct rcu_data *rdp;
1726 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1727 struct rcu_node *rnp;
1728 struct rcu_state *rsp;
1729 int tne;
1730
1731 /* Handle nohz enablement switches conservatively. */
1732 tne = ACCESS_ONCE(tick_nohz_enabled);
1733 if (tne != rdtp->tick_nohz_enabled_snap) {
1734 if (rcu_cpu_has_callbacks(cpu, NULL))
1735 invoke_rcu_core(); /* force nohz to see update. */
1736 rdtp->tick_nohz_enabled_snap = tne;
1737 return;
1738 }
1739 if (!tne)
1740 return;
1741
1742 /* If this is a no-CBs CPU, no callbacks, just return. */
1743 if (rcu_is_nocb_cpu(cpu))
1744 return;
1745
1746 /*
1747 * If a non-lazy callback arrived at a CPU having only lazy
1748 * callbacks, invoke RCU core for the side-effect of recalculating
1749 * idle duration on re-entry to idle.
1750 */
1751 if (rdtp->all_lazy &&
1752 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1753 rdtp->all_lazy = false;
1754 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1755 invoke_rcu_core();
1756 return;
1757 }
1758
1759 /*
1760 * If we have not yet accelerated this jiffy, accelerate all
1761 * callbacks on this CPU.
1762 */
1763 if (rdtp->last_accelerate == jiffies)
1764 return;
1765 rdtp->last_accelerate = jiffies;
1766 for_each_rcu_flavor(rsp) {
1767 rdp = per_cpu_ptr(rsp->rda, cpu);
1768 if (!*rdp->nxttail[RCU_DONE_TAIL])
1769 continue;
1770 rnp = rdp->mynode;
1771 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1772 rcu_accelerate_cbs(rsp, rnp, rdp);
1773 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1774 }
1775 }
1776
1777 /*
1778 * Clean up for exit from idle. Attempt to advance callbacks based on
1779 * any grace periods that elapsed while the CPU was idle, and if any
1780 * callbacks are now ready to invoke, initiate invocation.
1781 */
1782 static void rcu_cleanup_after_idle(int cpu)
1783 {
1784
1785 if (rcu_is_nocb_cpu(cpu))
1786 return;
1787 if (rcu_try_advance_all_cbs())
1788 invoke_rcu_core();
1789 }
1790
1791 /*
1792 * Keep a running count of the number of non-lazy callbacks posted
1793 * on this CPU. This running counter (which is never decremented) allows
1794 * rcu_prepare_for_idle() to detect when something out of the idle loop
1795 * posts a callback, even if an equal number of callbacks are invoked.
1796 * Of course, callbacks should only be posted from within a trace event
1797 * designed to be called from idle or from within RCU_NONIDLE().
1798 */
1799 static void rcu_idle_count_callbacks_posted(void)
1800 {
1801 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1802 }
1803
1804 /*
1805 * Data for flushing lazy RCU callbacks at OOM time.
1806 */
1807 static atomic_t oom_callback_count;
1808 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1809
1810 /*
1811 * RCU OOM callback -- decrement the outstanding count and deliver the
1812 * wake-up if we are the last one.
1813 */
1814 static void rcu_oom_callback(struct rcu_head *rhp)
1815 {
1816 if (atomic_dec_and_test(&oom_callback_count))
1817 wake_up(&oom_callback_wq);
1818 }
1819
1820 /*
1821 * Post an rcu_oom_notify callback on the current CPU if it has at
1822 * least one lazy callback. This will unnecessarily post callbacks
1823 * to CPUs that already have a non-lazy callback at the end of their
1824 * callback list, but this is an infrequent operation, so accept some
1825 * extra overhead to keep things simple.
1826 */
1827 static void rcu_oom_notify_cpu(void *unused)
1828 {
1829 struct rcu_state *rsp;
1830 struct rcu_data *rdp;
1831
1832 for_each_rcu_flavor(rsp) {
1833 rdp = __this_cpu_ptr(rsp->rda);
1834 if (rdp->qlen_lazy != 0) {
1835 atomic_inc(&oom_callback_count);
1836 rsp->call(&rdp->oom_head, rcu_oom_callback);
1837 }
1838 }
1839 }
1840
1841 /*
1842 * If low on memory, ensure that each CPU has a non-lazy callback.
1843 * This will wake up CPUs that have only lazy callbacks, in turn
1844 * ensuring that they free up the corresponding memory in a timely manner.
1845 * Because an uncertain amount of memory will be freed in some uncertain
1846 * timeframe, we do not claim to have freed anything.
1847 */
1848 static int rcu_oom_notify(struct notifier_block *self,
1849 unsigned long notused, void *nfreed)
1850 {
1851 int cpu;
1852
1853 /* Wait for callbacks from earlier instance to complete. */
1854 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1855
1856 /*
1857 * Prevent premature wakeup: ensure that all increments happen
1858 * before there is a chance of the counter reaching zero.
1859 */
1860 atomic_set(&oom_callback_count, 1);
1861
1862 get_online_cpus();
1863 for_each_online_cpu(cpu) {
1864 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1865 cond_resched();
1866 }
1867 put_online_cpus();
1868
1869 /* Unconditionally decrement: no need to wake ourselves up. */
1870 atomic_dec(&oom_callback_count);
1871
1872 return NOTIFY_OK;
1873 }
1874
1875 static struct notifier_block rcu_oom_nb = {
1876 .notifier_call = rcu_oom_notify
1877 };
1878
1879 static int __init rcu_register_oom_notifier(void)
1880 {
1881 register_oom_notifier(&rcu_oom_nb);
1882 return 0;
1883 }
1884 early_initcall(rcu_register_oom_notifier);
1885
1886 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1887
1888 #ifdef CONFIG_RCU_CPU_STALL_INFO
1889
1890 #ifdef CONFIG_RCU_FAST_NO_HZ
1891
1892 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1893 {
1894 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1895 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1896
1897 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1898 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1899 ulong2long(nlpd),
1900 rdtp->all_lazy ? 'L' : '.',
1901 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1902 }
1903
1904 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1905
1906 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1907 {
1908 *cp = '\0';
1909 }
1910
1911 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1912
1913 /* Initiate the stall-info list. */
1914 static void print_cpu_stall_info_begin(void)
1915 {
1916 pr_cont("\n");
1917 }
1918
1919 /*
1920 * Print out diagnostic information for the specified stalled CPU.
1921 *
1922 * If the specified CPU is aware of the current RCU grace period
1923 * (flavor specified by rsp), then print the number of scheduling
1924 * clock interrupts the CPU has taken during the time that it has
1925 * been aware. Otherwise, print the number of RCU grace periods
1926 * that this CPU is ignorant of, for example, "1" if the CPU was
1927 * aware of the previous grace period.
1928 *
1929 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1930 */
1931 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1932 {
1933 char fast_no_hz[72];
1934 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1935 struct rcu_dynticks *rdtp = rdp->dynticks;
1936 char *ticks_title;
1937 unsigned long ticks_value;
1938
1939 if (rsp->gpnum == rdp->gpnum) {
1940 ticks_title = "ticks this GP";
1941 ticks_value = rdp->ticks_this_gp;
1942 } else {
1943 ticks_title = "GPs behind";
1944 ticks_value = rsp->gpnum - rdp->gpnum;
1945 }
1946 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1947 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1948 cpu, ticks_value, ticks_title,
1949 atomic_read(&rdtp->dynticks) & 0xfff,
1950 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1951 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1952 fast_no_hz);
1953 }
1954
1955 /* Terminate the stall-info list. */
1956 static void print_cpu_stall_info_end(void)
1957 {
1958 pr_err("\t");
1959 }
1960
1961 /* Zero ->ticks_this_gp for all flavors of RCU. */
1962 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1963 {
1964 rdp->ticks_this_gp = 0;
1965 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1966 }
1967
1968 /* Increment ->ticks_this_gp for all flavors of RCU. */
1969 static void increment_cpu_stall_ticks(void)
1970 {
1971 struct rcu_state *rsp;
1972
1973 for_each_rcu_flavor(rsp)
1974 __this_cpu_ptr(rsp->rda)->ticks_this_gp++;
1975 }
1976
1977 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1978
1979 static void print_cpu_stall_info_begin(void)
1980 {
1981 pr_cont(" {");
1982 }
1983
1984 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1985 {
1986 pr_cont(" %d", cpu);
1987 }
1988
1989 static void print_cpu_stall_info_end(void)
1990 {
1991 pr_cont("} ");
1992 }
1993
1994 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1995 {
1996 }
1997
1998 static void increment_cpu_stall_ticks(void)
1999 {
2000 }
2001
2002 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
2003
2004 #ifdef CONFIG_RCU_NOCB_CPU
2005
2006 /*
2007 * Offload callback processing from the boot-time-specified set of CPUs
2008 * specified by rcu_nocb_mask. For each CPU in the set, there is a
2009 * kthread created that pulls the callbacks from the corresponding CPU,
2010 * waits for a grace period to elapse, and invokes the callbacks.
2011 * The no-CBs CPUs do a wake_up() on their kthread when they insert
2012 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
2013 * has been specified, in which case each kthread actively polls its
2014 * CPU. (Which isn't so great for energy efficiency, but which does
2015 * reduce RCU's overhead on that CPU.)
2016 *
2017 * This is intended to be used in conjunction with Frederic Weisbecker's
2018 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2019 * running CPU-bound user-mode computations.
2020 *
2021 * Offloading of callback processing could also in theory be used as
2022 * an energy-efficiency measure because CPUs with no RCU callbacks
2023 * queued are more aggressive about entering dyntick-idle mode.
2024 */
2025
2026
2027 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2028 static int __init rcu_nocb_setup(char *str)
2029 {
2030 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2031 have_rcu_nocb_mask = true;
2032 cpulist_parse(str, rcu_nocb_mask);
2033 return 1;
2034 }
2035 __setup("rcu_nocbs=", rcu_nocb_setup);
2036
2037 static int __init parse_rcu_nocb_poll(char *arg)
2038 {
2039 rcu_nocb_poll = 1;
2040 return 0;
2041 }
2042 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2043
2044 /*
2045 * Do any no-CBs CPUs need another grace period?
2046 *
2047 * Interrupts must be disabled. If the caller does not hold the root
2048 * rnp_node structure's ->lock, the results are advisory only.
2049 */
2050 static int rcu_nocb_needs_gp(struct rcu_state *rsp)
2051 {
2052 struct rcu_node *rnp = rcu_get_root(rsp);
2053
2054 return rnp->need_future_gp[(ACCESS_ONCE(rnp->completed) + 1) & 0x1];
2055 }
2056
2057 /*
2058 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2059 * grace period.
2060 */
2061 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2062 {
2063 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2064 }
2065
2066 /*
2067 * Set the root rcu_node structure's ->need_future_gp field
2068 * based on the sum of those of all rcu_node structures. This does
2069 * double-count the root rcu_node structure's requests, but this
2070 * is necessary to handle the possibility of a rcu_nocb_kthread()
2071 * having awakened during the time that the rcu_node structures
2072 * were being updated for the end of the previous grace period.
2073 */
2074 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2075 {
2076 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2077 }
2078
2079 static void rcu_init_one_nocb(struct rcu_node *rnp)
2080 {
2081 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2082 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2083 }
2084
2085 /* Is the specified CPU a no-CPUs CPU? */
2086 bool rcu_is_nocb_cpu(int cpu)
2087 {
2088 if (have_rcu_nocb_mask)
2089 return cpumask_test_cpu(cpu, rcu_nocb_mask);
2090 return false;
2091 }
2092
2093 /*
2094 * Enqueue the specified string of rcu_head structures onto the specified
2095 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2096 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2097 * counts are supplied by rhcount and rhcount_lazy.
2098 *
2099 * If warranted, also wake up the kthread servicing this CPUs queues.
2100 */
2101 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2102 struct rcu_head *rhp,
2103 struct rcu_head **rhtp,
2104 int rhcount, int rhcount_lazy)
2105 {
2106 int len;
2107 struct rcu_head **old_rhpp;
2108 struct task_struct *t;
2109
2110 /* Enqueue the callback on the nocb list and update counts. */
2111 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2112 ACCESS_ONCE(*old_rhpp) = rhp;
2113 atomic_long_add(rhcount, &rdp->nocb_q_count);
2114 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2115
2116 /* If we are not being polled and there is a kthread, awaken it ... */
2117 t = ACCESS_ONCE(rdp->nocb_kthread);
2118 if (rcu_nocb_poll || !t) {
2119 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2120 TPS("WakeNotPoll"));
2121 return;
2122 }
2123 len = atomic_long_read(&rdp->nocb_q_count);
2124 if (old_rhpp == &rdp->nocb_head) {
2125 wake_up(&rdp->nocb_wq); /* ... only if queue was empty ... */
2126 rdp->qlen_last_fqs_check = 0;
2127 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeEmpty"));
2128 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2129 wake_up_process(t); /* ... or if many callbacks queued. */
2130 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2131 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2132 } else {
2133 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2134 }
2135 return;
2136 }
2137
2138 /*
2139 * This is a helper for __call_rcu(), which invokes this when the normal
2140 * callback queue is inoperable. If this is not a no-CBs CPU, this
2141 * function returns failure back to __call_rcu(), which can complain
2142 * appropriately.
2143 *
2144 * Otherwise, this function queues the callback where the corresponding
2145 * "rcuo" kthread can find it.
2146 */
2147 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2148 bool lazy)
2149 {
2150
2151 if (!rcu_is_nocb_cpu(rdp->cpu))
2152 return 0;
2153 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy);
2154 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2155 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2156 (unsigned long)rhp->func,
2157 -atomic_long_read(&rdp->nocb_q_count_lazy),
2158 -atomic_long_read(&rdp->nocb_q_count));
2159 else
2160 trace_rcu_callback(rdp->rsp->name, rhp,
2161 -atomic_long_read(&rdp->nocb_q_count_lazy),
2162 -atomic_long_read(&rdp->nocb_q_count));
2163 return 1;
2164 }
2165
2166 /*
2167 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2168 * not a no-CBs CPU.
2169 */
2170 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2171 struct rcu_data *rdp)
2172 {
2173 long ql = rsp->qlen;
2174 long qll = rsp->qlen_lazy;
2175
2176 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2177 if (!rcu_is_nocb_cpu(smp_processor_id()))
2178 return 0;
2179 rsp->qlen = 0;
2180 rsp->qlen_lazy = 0;
2181
2182 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2183 if (rsp->orphan_donelist != NULL) {
2184 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2185 rsp->orphan_donetail, ql, qll);
2186 ql = qll = 0;
2187 rsp->orphan_donelist = NULL;
2188 rsp->orphan_donetail = &rsp->orphan_donelist;
2189 }
2190 if (rsp->orphan_nxtlist != NULL) {
2191 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2192 rsp->orphan_nxttail, ql, qll);
2193 ql = qll = 0;
2194 rsp->orphan_nxtlist = NULL;
2195 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2196 }
2197 return 1;
2198 }
2199
2200 /*
2201 * If necessary, kick off a new grace period, and either way wait
2202 * for a subsequent grace period to complete.
2203 */
2204 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2205 {
2206 unsigned long c;
2207 bool d;
2208 unsigned long flags;
2209 struct rcu_node *rnp = rdp->mynode;
2210
2211 raw_spin_lock_irqsave(&rnp->lock, flags);
2212 c = rcu_start_future_gp(rnp, rdp);
2213 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2214
2215 /*
2216 * Wait for the grace period. Do so interruptibly to avoid messing
2217 * up the load average.
2218 */
2219 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2220 for (;;) {
2221 wait_event_interruptible(
2222 rnp->nocb_gp_wq[c & 0x1],
2223 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2224 if (likely(d))
2225 break;
2226 flush_signals(current);
2227 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2228 }
2229 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2230 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2231 }
2232
2233 /*
2234 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2235 * callbacks queued by the corresponding no-CBs CPU.
2236 */
2237 static int rcu_nocb_kthread(void *arg)
2238 {
2239 int c, cl;
2240 bool firsttime = 1;
2241 struct rcu_head *list;
2242 struct rcu_head *next;
2243 struct rcu_head **tail;
2244 struct rcu_data *rdp = arg;
2245
2246 /* Each pass through this loop invokes one batch of callbacks */
2247 for (;;) {
2248 /* If not polling, wait for next batch of callbacks. */
2249 if (!rcu_nocb_poll) {
2250 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2251 TPS("Sleep"));
2252 wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
2253 } else if (firsttime) {
2254 firsttime = 0;
2255 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2256 TPS("Poll"));
2257 }
2258 list = ACCESS_ONCE(rdp->nocb_head);
2259 if (!list) {
2260 if (!rcu_nocb_poll)
2261 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2262 TPS("WokeEmpty"));
2263 schedule_timeout_interruptible(1);
2264 flush_signals(current);
2265 continue;
2266 }
2267 firsttime = 1;
2268 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2269 TPS("WokeNonEmpty"));
2270
2271 /*
2272 * Extract queued callbacks, update counts, and wait
2273 * for a grace period to elapse.
2274 */
2275 ACCESS_ONCE(rdp->nocb_head) = NULL;
2276 tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2277 c = atomic_long_xchg(&rdp->nocb_q_count, 0);
2278 cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2279 ACCESS_ONCE(rdp->nocb_p_count) += c;
2280 ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
2281 rcu_nocb_wait_gp(rdp);
2282
2283 /* Each pass through the following loop invokes a callback. */
2284 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2285 c = cl = 0;
2286 while (list) {
2287 next = list->next;
2288 /* Wait for enqueuing to complete, if needed. */
2289 while (next == NULL && &list->next != tail) {
2290 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2291 TPS("WaitQueue"));
2292 schedule_timeout_interruptible(1);
2293 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2294 TPS("WokeQueue"));
2295 next = list->next;
2296 }
2297 debug_rcu_head_unqueue(list);
2298 local_bh_disable();
2299 if (__rcu_reclaim(rdp->rsp->name, list))
2300 cl++;
2301 c++;
2302 local_bh_enable();
2303 list = next;
2304 }
2305 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2306 ACCESS_ONCE(rdp->nocb_p_count) -= c;
2307 ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2308 rdp->n_nocbs_invoked += c;
2309 }
2310 return 0;
2311 }
2312
2313 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2314 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2315 {
2316 rdp->nocb_tail = &rdp->nocb_head;
2317 init_waitqueue_head(&rdp->nocb_wq);
2318 }
2319
2320 /* Create a kthread for each RCU flavor for each no-CBs CPU. */
2321 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2322 {
2323 int cpu;
2324 struct rcu_data *rdp;
2325 struct task_struct *t;
2326
2327 if (rcu_nocb_mask == NULL)
2328 return;
2329 for_each_cpu(cpu, rcu_nocb_mask) {
2330 rdp = per_cpu_ptr(rsp->rda, cpu);
2331 t = kthread_run(rcu_nocb_kthread, rdp,
2332 "rcuo%c/%d", rsp->abbr, cpu);
2333 BUG_ON(IS_ERR(t));
2334 ACCESS_ONCE(rdp->nocb_kthread) = t;
2335 }
2336 }
2337
2338 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2339 static bool init_nocb_callback_list(struct rcu_data *rdp)
2340 {
2341 if (rcu_nocb_mask == NULL ||
2342 !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2343 return false;
2344 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2345 return true;
2346 }
2347
2348 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2349
2350 static int rcu_nocb_needs_gp(struct rcu_state *rsp)
2351 {
2352 return 0;
2353 }
2354
2355 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2356 {
2357 }
2358
2359 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2360 {
2361 }
2362
2363 static void rcu_init_one_nocb(struct rcu_node *rnp)
2364 {
2365 }
2366
2367 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2368 bool lazy)
2369 {
2370 return 0;
2371 }
2372
2373 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2374 struct rcu_data *rdp)
2375 {
2376 return 0;
2377 }
2378
2379 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2380 {
2381 }
2382
2383 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2384 {
2385 }
2386
2387 static bool init_nocb_callback_list(struct rcu_data *rdp)
2388 {
2389 return false;
2390 }
2391
2392 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2393
2394 /*
2395 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2396 * arbitrarily long period of time with the scheduling-clock tick turned
2397 * off. RCU will be paying attention to this CPU because it is in the
2398 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2399 * machine because the scheduling-clock tick has been disabled. Therefore,
2400 * if an adaptive-ticks CPU is failing to respond to the current grace
2401 * period and has not be idle from an RCU perspective, kick it.
2402 */
2403 static void rcu_kick_nohz_cpu(int cpu)
2404 {
2405 #ifdef CONFIG_NO_HZ_FULL
2406 if (tick_nohz_full_cpu(cpu))
2407 smp_send_reschedule(cpu);
2408 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2409 }
2410
2411
2412 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2413
2414 /*
2415 * Define RCU flavor that holds sysidle state. This needs to be the
2416 * most active flavor of RCU.
2417 */
2418 #ifdef CONFIG_PREEMPT_RCU
2419 static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
2420 #else /* #ifdef CONFIG_PREEMPT_RCU */
2421 static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
2422 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2423
2424 static int full_sysidle_state; /* Current system-idle state. */
2425 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2426 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2427 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2428 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2429 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2430
2431 /*
2432 * Invoked to note exit from irq or task transition to idle. Note that
2433 * usermode execution does -not- count as idle here! After all, we want
2434 * to detect full-system idle states, not RCU quiescent states and grace
2435 * periods. The caller must have disabled interrupts.
2436 */
2437 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2438 {
2439 unsigned long j;
2440
2441 /* Adjust nesting, check for fully idle. */
2442 if (irq) {
2443 rdtp->dynticks_idle_nesting--;
2444 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2445 if (rdtp->dynticks_idle_nesting != 0)
2446 return; /* Still not fully idle. */
2447 } else {
2448 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2449 DYNTICK_TASK_NEST_VALUE) {
2450 rdtp->dynticks_idle_nesting = 0;
2451 } else {
2452 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2453 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2454 return; /* Still not fully idle. */
2455 }
2456 }
2457
2458 /* Record start of fully idle period. */
2459 j = jiffies;
2460 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2461 smp_mb__before_atomic_inc();
2462 atomic_inc(&rdtp->dynticks_idle);
2463 smp_mb__after_atomic_inc();
2464 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2465 }
2466
2467 /*
2468 * Unconditionally force exit from full system-idle state. This is
2469 * invoked when a normal CPU exits idle, but must be called separately
2470 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2471 * is that the timekeeping CPU is permitted to take scheduling-clock
2472 * interrupts while the system is in system-idle state, and of course
2473 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2474 * interrupt from any other type of interrupt.
2475 */
2476 void rcu_sysidle_force_exit(void)
2477 {
2478 int oldstate = ACCESS_ONCE(full_sysidle_state);
2479 int newoldstate;
2480
2481 /*
2482 * Each pass through the following loop attempts to exit full
2483 * system-idle state. If contention proves to be a problem,
2484 * a trylock-based contention tree could be used here.
2485 */
2486 while (oldstate > RCU_SYSIDLE_SHORT) {
2487 newoldstate = cmpxchg(&full_sysidle_state,
2488 oldstate, RCU_SYSIDLE_NOT);
2489 if (oldstate == newoldstate &&
2490 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2491 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2492 return; /* We cleared it, done! */
2493 }
2494 oldstate = newoldstate;
2495 }
2496 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2497 }
2498
2499 /*
2500 * Invoked to note entry to irq or task transition from idle. Note that
2501 * usermode execution does -not- count as idle here! The caller must
2502 * have disabled interrupts.
2503 */
2504 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2505 {
2506 /* Adjust nesting, check for already non-idle. */
2507 if (irq) {
2508 rdtp->dynticks_idle_nesting++;
2509 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2510 if (rdtp->dynticks_idle_nesting != 1)
2511 return; /* Already non-idle. */
2512 } else {
2513 /*
2514 * Allow for irq misnesting. Yes, it really is possible
2515 * to enter an irq handler then never leave it, and maybe
2516 * also vice versa. Handle both possibilities.
2517 */
2518 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2519 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2520 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2521 return; /* Already non-idle. */
2522 } else {
2523 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2524 }
2525 }
2526
2527 /* Record end of idle period. */
2528 smp_mb__before_atomic_inc();
2529 atomic_inc(&rdtp->dynticks_idle);
2530 smp_mb__after_atomic_inc();
2531 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2532
2533 /*
2534 * If we are the timekeeping CPU, we are permitted to be non-idle
2535 * during a system-idle state. This must be the case, because
2536 * the timekeeping CPU has to take scheduling-clock interrupts
2537 * during the time that the system is transitioning to full
2538 * system-idle state. This means that the timekeeping CPU must
2539 * invoke rcu_sysidle_force_exit() directly if it does anything
2540 * more than take a scheduling-clock interrupt.
2541 */
2542 if (smp_processor_id() == tick_do_timer_cpu)
2543 return;
2544
2545 /* Update system-idle state: We are clearly no longer fully idle! */
2546 rcu_sysidle_force_exit();
2547 }
2548
2549 /*
2550 * Check to see if the current CPU is idle. Note that usermode execution
2551 * does not count as idle. The caller must have disabled interrupts.
2552 */
2553 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2554 unsigned long *maxj)
2555 {
2556 int cur;
2557 unsigned long j;
2558 struct rcu_dynticks *rdtp = rdp->dynticks;
2559
2560 /*
2561 * If some other CPU has already reported non-idle, if this is
2562 * not the flavor of RCU that tracks sysidle state, or if this
2563 * is an offline or the timekeeping CPU, nothing to do.
2564 */
2565 if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2566 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2567 return;
2568 if (rcu_gp_in_progress(rdp->rsp))
2569 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2570
2571 /* Pick up current idle and NMI-nesting counter and check. */
2572 cur = atomic_read(&rdtp->dynticks_idle);
2573 if (cur & 0x1) {
2574 *isidle = false; /* We are not idle! */
2575 return;
2576 }
2577 smp_mb(); /* Read counters before timestamps. */
2578
2579 /* Pick up timestamps. */
2580 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2581 /* If this CPU entered idle more recently, update maxj timestamp. */
2582 if (ULONG_CMP_LT(*maxj, j))
2583 *maxj = j;
2584 }
2585
2586 /*
2587 * Is this the flavor of RCU that is handling full-system idle?
2588 */
2589 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2590 {
2591 return rsp == rcu_sysidle_state;
2592 }
2593
2594 /*
2595 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2596 * timekeeping CPU.
2597 */
2598 static void rcu_bind_gp_kthread(void)
2599 {
2600 int cpu = ACCESS_ONCE(tick_do_timer_cpu);
2601
2602 if (cpu < 0 || cpu >= nr_cpu_ids)
2603 return;
2604 if (raw_smp_processor_id() != cpu)
2605 set_cpus_allowed_ptr(current, cpumask_of(cpu));
2606 }
2607
2608 /*
2609 * Return a delay in jiffies based on the number of CPUs, rcu_node
2610 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2611 * systems more time to transition to full-idle state in order to
2612 * avoid the cache thrashing that otherwise occur on the state variable.
2613 * Really small systems (less than a couple of tens of CPUs) should
2614 * instead use a single global atomically incremented counter, and later
2615 * versions of this will automatically reconfigure themselves accordingly.
2616 */
2617 static unsigned long rcu_sysidle_delay(void)
2618 {
2619 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2620 return 0;
2621 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2622 }
2623
2624 /*
2625 * Advance the full-system-idle state. This is invoked when all of
2626 * the non-timekeeping CPUs are idle.
2627 */
2628 static void rcu_sysidle(unsigned long j)
2629 {
2630 /* Check the current state. */
2631 switch (ACCESS_ONCE(full_sysidle_state)) {
2632 case RCU_SYSIDLE_NOT:
2633
2634 /* First time all are idle, so note a short idle period. */
2635 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2636 break;
2637
2638 case RCU_SYSIDLE_SHORT:
2639
2640 /*
2641 * Idle for a bit, time to advance to next state?
2642 * cmpxchg failure means race with non-idle, let them win.
2643 */
2644 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2645 (void)cmpxchg(&full_sysidle_state,
2646 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2647 break;
2648
2649 case RCU_SYSIDLE_LONG:
2650
2651 /*
2652 * Do an additional check pass before advancing to full.
2653 * cmpxchg failure means race with non-idle, let them win.
2654 */
2655 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2656 (void)cmpxchg(&full_sysidle_state,
2657 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2658 break;
2659
2660 default:
2661 break;
2662 }
2663 }
2664
2665 /*
2666 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2667 * back to the beginning.
2668 */
2669 static void rcu_sysidle_cancel(void)
2670 {
2671 smp_mb();
2672 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2673 }
2674
2675 /*
2676 * Update the sysidle state based on the results of a force-quiescent-state
2677 * scan of the CPUs' dyntick-idle state.
2678 */
2679 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2680 unsigned long maxj, bool gpkt)
2681 {
2682 if (rsp != rcu_sysidle_state)
2683 return; /* Wrong flavor, ignore. */
2684 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2685 return; /* Running state machine from timekeeping CPU. */
2686 if (isidle)
2687 rcu_sysidle(maxj); /* More idle! */
2688 else
2689 rcu_sysidle_cancel(); /* Idle is over. */
2690 }
2691
2692 /*
2693 * Wrapper for rcu_sysidle_report() when called from the grace-period
2694 * kthread's context.
2695 */
2696 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2697 unsigned long maxj)
2698 {
2699 rcu_sysidle_report(rsp, isidle, maxj, true);
2700 }
2701
2702 /* Callback and function for forcing an RCU grace period. */
2703 struct rcu_sysidle_head {
2704 struct rcu_head rh;
2705 int inuse;
2706 };
2707
2708 static void rcu_sysidle_cb(struct rcu_head *rhp)
2709 {
2710 struct rcu_sysidle_head *rshp;
2711
2712 /*
2713 * The following memory barrier is needed to replace the
2714 * memory barriers that would normally be in the memory
2715 * allocator.
2716 */
2717 smp_mb(); /* grace period precedes setting inuse. */
2718
2719 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2720 ACCESS_ONCE(rshp->inuse) = 0;
2721 }
2722
2723 /*
2724 * Check to see if the system is fully idle, other than the timekeeping CPU.
2725 * The caller must have disabled interrupts.
2726 */
2727 bool rcu_sys_is_idle(void)
2728 {
2729 static struct rcu_sysidle_head rsh;
2730 int rss = ACCESS_ONCE(full_sysidle_state);
2731
2732 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2733 return false;
2734
2735 /* Handle small-system case by doing a full scan of CPUs. */
2736 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2737 int oldrss = rss - 1;
2738
2739 /*
2740 * One pass to advance to each state up to _FULL.
2741 * Give up if any pass fails to advance the state.
2742 */
2743 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2744 int cpu;
2745 bool isidle = true;
2746 unsigned long maxj = jiffies - ULONG_MAX / 4;
2747 struct rcu_data *rdp;
2748
2749 /* Scan all the CPUs looking for nonidle CPUs. */
2750 for_each_possible_cpu(cpu) {
2751 rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2752 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2753 if (!isidle)
2754 break;
2755 }
2756 rcu_sysidle_report(rcu_sysidle_state,
2757 isidle, maxj, false);
2758 oldrss = rss;
2759 rss = ACCESS_ONCE(full_sysidle_state);
2760 }
2761 }
2762
2763 /* If this is the first observation of an idle period, record it. */
2764 if (rss == RCU_SYSIDLE_FULL) {
2765 rss = cmpxchg(&full_sysidle_state,
2766 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2767 return rss == RCU_SYSIDLE_FULL;
2768 }
2769
2770 smp_mb(); /* ensure rss load happens before later caller actions. */
2771
2772 /* If already fully idle, tell the caller (in case of races). */
2773 if (rss == RCU_SYSIDLE_FULL_NOTED)
2774 return true;
2775
2776 /*
2777 * If we aren't there yet, and a grace period is not in flight,
2778 * initiate a grace period. Either way, tell the caller that
2779 * we are not there yet. We use an xchg() rather than an assignment
2780 * to make up for the memory barriers that would otherwise be
2781 * provided by the memory allocator.
2782 */
2783 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2784 !rcu_gp_in_progress(rcu_sysidle_state) &&
2785 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2786 call_rcu(&rsh.rh, rcu_sysidle_cb);
2787 return false;
2788 }
2789
2790 /*
2791 * Initialize dynticks sysidle state for CPUs coming online.
2792 */
2793 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2794 {
2795 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2796 }
2797
2798 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2799
2800 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2801 {
2802 }
2803
2804 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2805 {
2806 }
2807
2808 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2809 unsigned long *maxj)
2810 {
2811 }
2812
2813 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2814 {
2815 return false;
2816 }
2817
2818 static void rcu_bind_gp_kthread(void)
2819 {
2820 }
2821
2822 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2823 unsigned long maxj)
2824 {
2825 }
2826
2827 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2828 {
2829 }
2830
2831 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
This page took 0.087458 seconds and 5 git commands to generate.