Merge tag 'armsoc-cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / kernel / rcu / tree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #ifdef CONFIG_RCU_BOOST
34
35 #include "../locking/rtmutex_common.h"
36
37 /*
38 * Control variables for per-CPU and per-rcu_node kthreads. These
39 * handle all flavors of RCU.
40 */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
46 #else /* #ifdef CONFIG_RCU_BOOST */
47
48 /*
49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50 * all uses are in dead code. Provide a definition to keep the compiler
51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52 * This probably needs to be excluded from -rt builds.
53 */
54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55
56 #endif /* #else #ifdef CONFIG_RCU_BOOST */
57
58 #ifdef CONFIG_RCU_NOCB_CPU
59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
61 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63
64 /*
65 * Check the RCU kernel configuration parameters and print informative
66 * messages about anything out of the ordinary.
67 */
68 static void __init rcu_bootup_announce_oddness(void)
69 {
70 if (IS_ENABLED(CONFIG_RCU_TRACE))
71 pr_info("\tRCU debugfs-based tracing is enabled.\n");
72 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
73 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
74 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
75 RCU_FANOUT);
76 if (rcu_fanout_exact)
77 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
78 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
79 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
80 if (IS_ENABLED(CONFIG_PROVE_RCU))
81 pr_info("\tRCU lockdep checking is enabled.\n");
82 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
83 pr_info("\tRCU torture testing starts during boot.\n");
84 if (RCU_NUM_LVLS >= 4)
85 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
86 if (RCU_FANOUT_LEAF != 16)
87 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
88 RCU_FANOUT_LEAF);
89 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
90 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
91 if (nr_cpu_ids != NR_CPUS)
92 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
93 if (IS_ENABLED(CONFIG_RCU_BOOST))
94 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
95 }
96
97 #ifdef CONFIG_PREEMPT_RCU
98
99 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
100 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
101 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
102
103 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
104 bool wake);
105
106 /*
107 * Tell them what RCU they are running.
108 */
109 static void __init rcu_bootup_announce(void)
110 {
111 pr_info("Preemptible hierarchical RCU implementation.\n");
112 rcu_bootup_announce_oddness();
113 }
114
115 /* Flags for rcu_preempt_ctxt_queue() decision table. */
116 #define RCU_GP_TASKS 0x8
117 #define RCU_EXP_TASKS 0x4
118 #define RCU_GP_BLKD 0x2
119 #define RCU_EXP_BLKD 0x1
120
121 /*
122 * Queues a task preempted within an RCU-preempt read-side critical
123 * section into the appropriate location within the ->blkd_tasks list,
124 * depending on the states of any ongoing normal and expedited grace
125 * periods. The ->gp_tasks pointer indicates which element the normal
126 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
127 * indicates which element the expedited grace period is waiting on (again,
128 * NULL if none). If a grace period is waiting on a given element in the
129 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
130 * adding a task to the tail of the list blocks any grace period that is
131 * already waiting on one of the elements. In contrast, adding a task
132 * to the head of the list won't block any grace period that is already
133 * waiting on one of the elements.
134 *
135 * This queuing is imprecise, and can sometimes make an ongoing grace
136 * period wait for a task that is not strictly speaking blocking it.
137 * Given the choice, we needlessly block a normal grace period rather than
138 * blocking an expedited grace period.
139 *
140 * Note that an endless sequence of expedited grace periods still cannot
141 * indefinitely postpone a normal grace period. Eventually, all of the
142 * fixed number of preempted tasks blocking the normal grace period that are
143 * not also blocking the expedited grace period will resume and complete
144 * their RCU read-side critical sections. At that point, the ->gp_tasks
145 * pointer will equal the ->exp_tasks pointer, at which point the end of
146 * the corresponding expedited grace period will also be the end of the
147 * normal grace period.
148 */
149 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
150 __releases(rnp->lock) /* But leaves rrupts disabled. */
151 {
152 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
153 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
154 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
155 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
156 struct task_struct *t = current;
157
158 /*
159 * Decide where to queue the newly blocked task. In theory,
160 * this could be an if-statement. In practice, when I tried
161 * that, it was quite messy.
162 */
163 switch (blkd_state) {
164 case 0:
165 case RCU_EXP_TASKS:
166 case RCU_EXP_TASKS + RCU_GP_BLKD:
167 case RCU_GP_TASKS:
168 case RCU_GP_TASKS + RCU_EXP_TASKS:
169
170 /*
171 * Blocking neither GP, or first task blocking the normal
172 * GP but not blocking the already-waiting expedited GP.
173 * Queue at the head of the list to avoid unnecessarily
174 * blocking the already-waiting GPs.
175 */
176 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
177 break;
178
179 case RCU_EXP_BLKD:
180 case RCU_GP_BLKD:
181 case RCU_GP_BLKD + RCU_EXP_BLKD:
182 case RCU_GP_TASKS + RCU_EXP_BLKD:
183 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
184 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
185
186 /*
187 * First task arriving that blocks either GP, or first task
188 * arriving that blocks the expedited GP (with the normal
189 * GP already waiting), or a task arriving that blocks
190 * both GPs with both GPs already waiting. Queue at the
191 * tail of the list to avoid any GP waiting on any of the
192 * already queued tasks that are not blocking it.
193 */
194 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
195 break;
196
197 case RCU_EXP_TASKS + RCU_EXP_BLKD:
198 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
199 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
200
201 /*
202 * Second or subsequent task blocking the expedited GP.
203 * The task either does not block the normal GP, or is the
204 * first task blocking the normal GP. Queue just after
205 * the first task blocking the expedited GP.
206 */
207 list_add(&t->rcu_node_entry, rnp->exp_tasks);
208 break;
209
210 case RCU_GP_TASKS + RCU_GP_BLKD:
211 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
212
213 /*
214 * Second or subsequent task blocking the normal GP.
215 * The task does not block the expedited GP. Queue just
216 * after the first task blocking the normal GP.
217 */
218 list_add(&t->rcu_node_entry, rnp->gp_tasks);
219 break;
220
221 default:
222
223 /* Yet another exercise in excessive paranoia. */
224 WARN_ON_ONCE(1);
225 break;
226 }
227
228 /*
229 * We have now queued the task. If it was the first one to
230 * block either grace period, update the ->gp_tasks and/or
231 * ->exp_tasks pointers, respectively, to reference the newly
232 * blocked tasks.
233 */
234 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
235 rnp->gp_tasks = &t->rcu_node_entry;
236 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
237 rnp->exp_tasks = &t->rcu_node_entry;
238 raw_spin_unlock(&rnp->lock); /* rrupts remain disabled. */
239
240 /*
241 * Report the quiescent state for the expedited GP. This expedited
242 * GP should not be able to end until we report, so there should be
243 * no need to check for a subsequent expedited GP. (Though we are
244 * still in a quiescent state in any case.)
245 */
246 if (blkd_state & RCU_EXP_BLKD &&
247 t->rcu_read_unlock_special.b.exp_need_qs) {
248 t->rcu_read_unlock_special.b.exp_need_qs = false;
249 rcu_report_exp_rdp(rdp->rsp, rdp, true);
250 } else {
251 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
252 }
253 }
254
255 /*
256 * Record a preemptible-RCU quiescent state for the specified CPU. Note
257 * that this just means that the task currently running on the CPU is
258 * not in a quiescent state. There might be any number of tasks blocked
259 * while in an RCU read-side critical section.
260 *
261 * As with the other rcu_*_qs() functions, callers to this function
262 * must disable preemption.
263 */
264 static void rcu_preempt_qs(void)
265 {
266 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
267 trace_rcu_grace_period(TPS("rcu_preempt"),
268 __this_cpu_read(rcu_data_p->gpnum),
269 TPS("cpuqs"));
270 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
271 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
272 current->rcu_read_unlock_special.b.need_qs = false;
273 }
274 }
275
276 /*
277 * We have entered the scheduler, and the current task might soon be
278 * context-switched away from. If this task is in an RCU read-side
279 * critical section, we will no longer be able to rely on the CPU to
280 * record that fact, so we enqueue the task on the blkd_tasks list.
281 * The task will dequeue itself when it exits the outermost enclosing
282 * RCU read-side critical section. Therefore, the current grace period
283 * cannot be permitted to complete until the blkd_tasks list entries
284 * predating the current grace period drain, in other words, until
285 * rnp->gp_tasks becomes NULL.
286 *
287 * Caller must disable interrupts.
288 */
289 static void rcu_preempt_note_context_switch(void)
290 {
291 struct task_struct *t = current;
292 struct rcu_data *rdp;
293 struct rcu_node *rnp;
294
295 if (t->rcu_read_lock_nesting > 0 &&
296 !t->rcu_read_unlock_special.b.blocked) {
297
298 /* Possibly blocking in an RCU read-side critical section. */
299 rdp = this_cpu_ptr(rcu_state_p->rda);
300 rnp = rdp->mynode;
301 raw_spin_lock_rcu_node(rnp);
302 t->rcu_read_unlock_special.b.blocked = true;
303 t->rcu_blocked_node = rnp;
304
305 /*
306 * Verify the CPU's sanity, trace the preemption, and
307 * then queue the task as required based on the states
308 * of any ongoing and expedited grace periods.
309 */
310 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
311 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
312 trace_rcu_preempt_task(rdp->rsp->name,
313 t->pid,
314 (rnp->qsmask & rdp->grpmask)
315 ? rnp->gpnum
316 : rnp->gpnum + 1);
317 rcu_preempt_ctxt_queue(rnp, rdp);
318 } else if (t->rcu_read_lock_nesting < 0 &&
319 t->rcu_read_unlock_special.s) {
320
321 /*
322 * Complete exit from RCU read-side critical section on
323 * behalf of preempted instance of __rcu_read_unlock().
324 */
325 rcu_read_unlock_special(t);
326 }
327
328 /*
329 * Either we were not in an RCU read-side critical section to
330 * begin with, or we have now recorded that critical section
331 * globally. Either way, we can now note a quiescent state
332 * for this CPU. Again, if we were in an RCU read-side critical
333 * section, and if that critical section was blocking the current
334 * grace period, then the fact that the task has been enqueued
335 * means that we continue to block the current grace period.
336 */
337 rcu_preempt_qs();
338 }
339
340 /*
341 * Check for preempted RCU readers blocking the current grace period
342 * for the specified rcu_node structure. If the caller needs a reliable
343 * answer, it must hold the rcu_node's ->lock.
344 */
345 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
346 {
347 return rnp->gp_tasks != NULL;
348 }
349
350 /*
351 * Advance a ->blkd_tasks-list pointer to the next entry, instead
352 * returning NULL if at the end of the list.
353 */
354 static struct list_head *rcu_next_node_entry(struct task_struct *t,
355 struct rcu_node *rnp)
356 {
357 struct list_head *np;
358
359 np = t->rcu_node_entry.next;
360 if (np == &rnp->blkd_tasks)
361 np = NULL;
362 return np;
363 }
364
365 /*
366 * Return true if the specified rcu_node structure has tasks that were
367 * preempted within an RCU read-side critical section.
368 */
369 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
370 {
371 return !list_empty(&rnp->blkd_tasks);
372 }
373
374 /*
375 * Handle special cases during rcu_read_unlock(), such as needing to
376 * notify RCU core processing or task having blocked during the RCU
377 * read-side critical section.
378 */
379 void rcu_read_unlock_special(struct task_struct *t)
380 {
381 bool empty_exp;
382 bool empty_norm;
383 bool empty_exp_now;
384 unsigned long flags;
385 struct list_head *np;
386 bool drop_boost_mutex = false;
387 struct rcu_data *rdp;
388 struct rcu_node *rnp;
389 union rcu_special special;
390
391 /* NMI handlers cannot block and cannot safely manipulate state. */
392 if (in_nmi())
393 return;
394
395 local_irq_save(flags);
396
397 /*
398 * If RCU core is waiting for this CPU to exit its critical section,
399 * report the fact that it has exited. Because irqs are disabled,
400 * t->rcu_read_unlock_special cannot change.
401 */
402 special = t->rcu_read_unlock_special;
403 if (special.b.need_qs) {
404 rcu_preempt_qs();
405 t->rcu_read_unlock_special.b.need_qs = false;
406 if (!t->rcu_read_unlock_special.s) {
407 local_irq_restore(flags);
408 return;
409 }
410 }
411
412 /*
413 * Respond to a request for an expedited grace period, but only if
414 * we were not preempted, meaning that we were running on the same
415 * CPU throughout. If we were preempted, the exp_need_qs flag
416 * would have been cleared at the time of the first preemption,
417 * and the quiescent state would be reported when we were dequeued.
418 */
419 if (special.b.exp_need_qs) {
420 WARN_ON_ONCE(special.b.blocked);
421 t->rcu_read_unlock_special.b.exp_need_qs = false;
422 rdp = this_cpu_ptr(rcu_state_p->rda);
423 rcu_report_exp_rdp(rcu_state_p, rdp, true);
424 if (!t->rcu_read_unlock_special.s) {
425 local_irq_restore(flags);
426 return;
427 }
428 }
429
430 /* Hardware IRQ handlers cannot block, complain if they get here. */
431 if (in_irq() || in_serving_softirq()) {
432 lockdep_rcu_suspicious(__FILE__, __LINE__,
433 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
434 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
435 t->rcu_read_unlock_special.s,
436 t->rcu_read_unlock_special.b.blocked,
437 t->rcu_read_unlock_special.b.exp_need_qs,
438 t->rcu_read_unlock_special.b.need_qs);
439 local_irq_restore(flags);
440 return;
441 }
442
443 /* Clean up if blocked during RCU read-side critical section. */
444 if (special.b.blocked) {
445 t->rcu_read_unlock_special.b.blocked = false;
446
447 /*
448 * Remove this task from the list it blocked on. The task
449 * now remains queued on the rcu_node corresponding to the
450 * CPU it first blocked on, so there is no longer any need
451 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
452 */
453 rnp = t->rcu_blocked_node;
454 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
455 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
456 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
457 empty_exp = sync_rcu_preempt_exp_done(rnp);
458 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
459 np = rcu_next_node_entry(t, rnp);
460 list_del_init(&t->rcu_node_entry);
461 t->rcu_blocked_node = NULL;
462 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
463 rnp->gpnum, t->pid);
464 if (&t->rcu_node_entry == rnp->gp_tasks)
465 rnp->gp_tasks = np;
466 if (&t->rcu_node_entry == rnp->exp_tasks)
467 rnp->exp_tasks = np;
468 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
469 if (&t->rcu_node_entry == rnp->boost_tasks)
470 rnp->boost_tasks = np;
471 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
472 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
473 }
474
475 /*
476 * If this was the last task on the current list, and if
477 * we aren't waiting on any CPUs, report the quiescent state.
478 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
479 * so we must take a snapshot of the expedited state.
480 */
481 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
482 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
483 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
484 rnp->gpnum,
485 0, rnp->qsmask,
486 rnp->level,
487 rnp->grplo,
488 rnp->grphi,
489 !!rnp->gp_tasks);
490 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
491 } else {
492 raw_spin_unlock_irqrestore(&rnp->lock, flags);
493 }
494
495 /* Unboost if we were boosted. */
496 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
497 rt_mutex_unlock(&rnp->boost_mtx);
498
499 /*
500 * If this was the last task on the expedited lists,
501 * then we need to report up the rcu_node hierarchy.
502 */
503 if (!empty_exp && empty_exp_now)
504 rcu_report_exp_rnp(rcu_state_p, rnp, true);
505 } else {
506 local_irq_restore(flags);
507 }
508 }
509
510 /*
511 * Dump detailed information for all tasks blocking the current RCU
512 * grace period on the specified rcu_node structure.
513 */
514 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
515 {
516 unsigned long flags;
517 struct task_struct *t;
518
519 raw_spin_lock_irqsave_rcu_node(rnp, flags);
520 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
521 raw_spin_unlock_irqrestore(&rnp->lock, flags);
522 return;
523 }
524 t = list_entry(rnp->gp_tasks->prev,
525 struct task_struct, rcu_node_entry);
526 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
527 sched_show_task(t);
528 raw_spin_unlock_irqrestore(&rnp->lock, flags);
529 }
530
531 /*
532 * Dump detailed information for all tasks blocking the current RCU
533 * grace period.
534 */
535 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
536 {
537 struct rcu_node *rnp = rcu_get_root(rsp);
538
539 rcu_print_detail_task_stall_rnp(rnp);
540 rcu_for_each_leaf_node(rsp, rnp)
541 rcu_print_detail_task_stall_rnp(rnp);
542 }
543
544 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
545 {
546 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
547 rnp->level, rnp->grplo, rnp->grphi);
548 }
549
550 static void rcu_print_task_stall_end(void)
551 {
552 pr_cont("\n");
553 }
554
555 /*
556 * Scan the current list of tasks blocked within RCU read-side critical
557 * sections, printing out the tid of each.
558 */
559 static int rcu_print_task_stall(struct rcu_node *rnp)
560 {
561 struct task_struct *t;
562 int ndetected = 0;
563
564 if (!rcu_preempt_blocked_readers_cgp(rnp))
565 return 0;
566 rcu_print_task_stall_begin(rnp);
567 t = list_entry(rnp->gp_tasks->prev,
568 struct task_struct, rcu_node_entry);
569 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
570 pr_cont(" P%d", t->pid);
571 ndetected++;
572 }
573 rcu_print_task_stall_end();
574 return ndetected;
575 }
576
577 /*
578 * Scan the current list of tasks blocked within RCU read-side critical
579 * sections, printing out the tid of each that is blocking the current
580 * expedited grace period.
581 */
582 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
583 {
584 struct task_struct *t;
585 int ndetected = 0;
586
587 if (!rnp->exp_tasks)
588 return 0;
589 t = list_entry(rnp->exp_tasks->prev,
590 struct task_struct, rcu_node_entry);
591 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
592 pr_cont(" P%d", t->pid);
593 ndetected++;
594 }
595 return ndetected;
596 }
597
598 /*
599 * Check that the list of blocked tasks for the newly completed grace
600 * period is in fact empty. It is a serious bug to complete a grace
601 * period that still has RCU readers blocked! This function must be
602 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
603 * must be held by the caller.
604 *
605 * Also, if there are blocked tasks on the list, they automatically
606 * block the newly created grace period, so set up ->gp_tasks accordingly.
607 */
608 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
609 {
610 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
611 if (rcu_preempt_has_tasks(rnp))
612 rnp->gp_tasks = rnp->blkd_tasks.next;
613 WARN_ON_ONCE(rnp->qsmask);
614 }
615
616 /*
617 * Check for a quiescent state from the current CPU. When a task blocks,
618 * the task is recorded in the corresponding CPU's rcu_node structure,
619 * which is checked elsewhere.
620 *
621 * Caller must disable hard irqs.
622 */
623 static void rcu_preempt_check_callbacks(void)
624 {
625 struct task_struct *t = current;
626
627 if (t->rcu_read_lock_nesting == 0) {
628 rcu_preempt_qs();
629 return;
630 }
631 if (t->rcu_read_lock_nesting > 0 &&
632 __this_cpu_read(rcu_data_p->core_needs_qs) &&
633 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
634 t->rcu_read_unlock_special.b.need_qs = true;
635 }
636
637 #ifdef CONFIG_RCU_BOOST
638
639 static void rcu_preempt_do_callbacks(void)
640 {
641 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
642 }
643
644 #endif /* #ifdef CONFIG_RCU_BOOST */
645
646 /*
647 * Queue a preemptible-RCU callback for invocation after a grace period.
648 */
649 void call_rcu(struct rcu_head *head, rcu_callback_t func)
650 {
651 __call_rcu(head, func, rcu_state_p, -1, 0);
652 }
653 EXPORT_SYMBOL_GPL(call_rcu);
654
655 /**
656 * synchronize_rcu - wait until a grace period has elapsed.
657 *
658 * Control will return to the caller some time after a full grace
659 * period has elapsed, in other words after all currently executing RCU
660 * read-side critical sections have completed. Note, however, that
661 * upon return from synchronize_rcu(), the caller might well be executing
662 * concurrently with new RCU read-side critical sections that began while
663 * synchronize_rcu() was waiting. RCU read-side critical sections are
664 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
665 *
666 * See the description of synchronize_sched() for more detailed information
667 * on memory ordering guarantees.
668 */
669 void synchronize_rcu(void)
670 {
671 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
672 lock_is_held(&rcu_lock_map) ||
673 lock_is_held(&rcu_sched_lock_map),
674 "Illegal synchronize_rcu() in RCU read-side critical section");
675 if (!rcu_scheduler_active)
676 return;
677 if (rcu_gp_is_expedited())
678 synchronize_rcu_expedited();
679 else
680 wait_rcu_gp(call_rcu);
681 }
682 EXPORT_SYMBOL_GPL(synchronize_rcu);
683
684 /*
685 * Remote handler for smp_call_function_single(). If there is an
686 * RCU read-side critical section in effect, request that the
687 * next rcu_read_unlock() record the quiescent state up the
688 * ->expmask fields in the rcu_node tree. Otherwise, immediately
689 * report the quiescent state.
690 */
691 static void sync_rcu_exp_handler(void *info)
692 {
693 struct rcu_data *rdp;
694 struct rcu_state *rsp = info;
695 struct task_struct *t = current;
696
697 /*
698 * Within an RCU read-side critical section, request that the next
699 * rcu_read_unlock() report. Unless this RCU read-side critical
700 * section has already blocked, in which case it is already set
701 * up for the expedited grace period to wait on it.
702 */
703 if (t->rcu_read_lock_nesting > 0 &&
704 !t->rcu_read_unlock_special.b.blocked) {
705 t->rcu_read_unlock_special.b.exp_need_qs = true;
706 return;
707 }
708
709 /*
710 * We are either exiting an RCU read-side critical section (negative
711 * values of t->rcu_read_lock_nesting) or are not in one at all
712 * (zero value of t->rcu_read_lock_nesting). Or we are in an RCU
713 * read-side critical section that blocked before this expedited
714 * grace period started. Either way, we can immediately report
715 * the quiescent state.
716 */
717 rdp = this_cpu_ptr(rsp->rda);
718 rcu_report_exp_rdp(rsp, rdp, true);
719 }
720
721 /**
722 * synchronize_rcu_expedited - Brute-force RCU grace period
723 *
724 * Wait for an RCU-preempt grace period, but expedite it. The basic
725 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
726 * the ->blkd_tasks lists and wait for this list to drain. This consumes
727 * significant time on all CPUs and is unfriendly to real-time workloads,
728 * so is thus not recommended for any sort of common-case code.
729 * In fact, if you are using synchronize_rcu_expedited() in a loop,
730 * please restructure your code to batch your updates, and then Use a
731 * single synchronize_rcu() instead.
732 */
733 void synchronize_rcu_expedited(void)
734 {
735 struct rcu_node *rnp;
736 struct rcu_node *rnp_unlock;
737 struct rcu_state *rsp = rcu_state_p;
738 unsigned long s;
739
740 /* If expedited grace periods are prohibited, fall back to normal. */
741 if (rcu_gp_is_normal()) {
742 wait_rcu_gp(call_rcu);
743 return;
744 }
745
746 s = rcu_exp_gp_seq_snap(rsp);
747
748 rnp_unlock = exp_funnel_lock(rsp, s);
749 if (rnp_unlock == NULL)
750 return; /* Someone else did our work for us. */
751
752 rcu_exp_gp_seq_start(rsp);
753
754 /* Initialize the rcu_node tree in preparation for the wait. */
755 sync_rcu_exp_select_cpus(rsp, sync_rcu_exp_handler);
756
757 /* Wait for snapshotted ->blkd_tasks lists to drain. */
758 rnp = rcu_get_root(rsp);
759 synchronize_sched_expedited_wait(rsp);
760
761 /* Clean up and exit. */
762 rcu_exp_gp_seq_end(rsp);
763 mutex_unlock(&rnp_unlock->exp_funnel_mutex);
764 }
765 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
766
767 /**
768 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
769 *
770 * Note that this primitive does not necessarily wait for an RCU grace period
771 * to complete. For example, if there are no RCU callbacks queued anywhere
772 * in the system, then rcu_barrier() is within its rights to return
773 * immediately, without waiting for anything, much less an RCU grace period.
774 */
775 void rcu_barrier(void)
776 {
777 _rcu_barrier(rcu_state_p);
778 }
779 EXPORT_SYMBOL_GPL(rcu_barrier);
780
781 /*
782 * Initialize preemptible RCU's state structures.
783 */
784 static void __init __rcu_init_preempt(void)
785 {
786 rcu_init_one(rcu_state_p);
787 }
788
789 /*
790 * Check for a task exiting while in a preemptible-RCU read-side
791 * critical section, clean up if so. No need to issue warnings,
792 * as debug_check_no_locks_held() already does this if lockdep
793 * is enabled.
794 */
795 void exit_rcu(void)
796 {
797 struct task_struct *t = current;
798
799 if (likely(list_empty(&current->rcu_node_entry)))
800 return;
801 t->rcu_read_lock_nesting = 1;
802 barrier();
803 t->rcu_read_unlock_special.b.blocked = true;
804 __rcu_read_unlock();
805 }
806
807 #else /* #ifdef CONFIG_PREEMPT_RCU */
808
809 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
810 static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
811
812 /*
813 * Tell them what RCU they are running.
814 */
815 static void __init rcu_bootup_announce(void)
816 {
817 pr_info("Hierarchical RCU implementation.\n");
818 rcu_bootup_announce_oddness();
819 }
820
821 /*
822 * Because preemptible RCU does not exist, we never have to check for
823 * CPUs being in quiescent states.
824 */
825 static void rcu_preempt_note_context_switch(void)
826 {
827 }
828
829 /*
830 * Because preemptible RCU does not exist, there are never any preempted
831 * RCU readers.
832 */
833 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
834 {
835 return 0;
836 }
837
838 /*
839 * Because there is no preemptible RCU, there can be no readers blocked.
840 */
841 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
842 {
843 return false;
844 }
845
846 /*
847 * Because preemptible RCU does not exist, we never have to check for
848 * tasks blocked within RCU read-side critical sections.
849 */
850 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
851 {
852 }
853
854 /*
855 * Because preemptible RCU does not exist, we never have to check for
856 * tasks blocked within RCU read-side critical sections.
857 */
858 static int rcu_print_task_stall(struct rcu_node *rnp)
859 {
860 return 0;
861 }
862
863 /*
864 * Because preemptible RCU does not exist, we never have to check for
865 * tasks blocked within RCU read-side critical sections that are
866 * blocking the current expedited grace period.
867 */
868 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
869 {
870 return 0;
871 }
872
873 /*
874 * Because there is no preemptible RCU, there can be no readers blocked,
875 * so there is no need to check for blocked tasks. So check only for
876 * bogus qsmask values.
877 */
878 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
879 {
880 WARN_ON_ONCE(rnp->qsmask);
881 }
882
883 /*
884 * Because preemptible RCU does not exist, it never has any callbacks
885 * to check.
886 */
887 static void rcu_preempt_check_callbacks(void)
888 {
889 }
890
891 /*
892 * Wait for an rcu-preempt grace period, but make it happen quickly.
893 * But because preemptible RCU does not exist, map to rcu-sched.
894 */
895 void synchronize_rcu_expedited(void)
896 {
897 synchronize_sched_expedited();
898 }
899 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
900
901 /*
902 * Because preemptible RCU does not exist, rcu_barrier() is just
903 * another name for rcu_barrier_sched().
904 */
905 void rcu_barrier(void)
906 {
907 rcu_barrier_sched();
908 }
909 EXPORT_SYMBOL_GPL(rcu_barrier);
910
911 /*
912 * Because preemptible RCU does not exist, it need not be initialized.
913 */
914 static void __init __rcu_init_preempt(void)
915 {
916 }
917
918 /*
919 * Because preemptible RCU does not exist, tasks cannot possibly exit
920 * while in preemptible RCU read-side critical sections.
921 */
922 void exit_rcu(void)
923 {
924 }
925
926 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
927
928 #ifdef CONFIG_RCU_BOOST
929
930 #include "../locking/rtmutex_common.h"
931
932 #ifdef CONFIG_RCU_TRACE
933
934 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
935 {
936 if (!rcu_preempt_has_tasks(rnp))
937 rnp->n_balk_blkd_tasks++;
938 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
939 rnp->n_balk_exp_gp_tasks++;
940 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
941 rnp->n_balk_boost_tasks++;
942 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
943 rnp->n_balk_notblocked++;
944 else if (rnp->gp_tasks != NULL &&
945 ULONG_CMP_LT(jiffies, rnp->boost_time))
946 rnp->n_balk_notyet++;
947 else
948 rnp->n_balk_nos++;
949 }
950
951 #else /* #ifdef CONFIG_RCU_TRACE */
952
953 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
954 {
955 }
956
957 #endif /* #else #ifdef CONFIG_RCU_TRACE */
958
959 static void rcu_wake_cond(struct task_struct *t, int status)
960 {
961 /*
962 * If the thread is yielding, only wake it when this
963 * is invoked from idle
964 */
965 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
966 wake_up_process(t);
967 }
968
969 /*
970 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
971 * or ->boost_tasks, advancing the pointer to the next task in the
972 * ->blkd_tasks list.
973 *
974 * Note that irqs must be enabled: boosting the task can block.
975 * Returns 1 if there are more tasks needing to be boosted.
976 */
977 static int rcu_boost(struct rcu_node *rnp)
978 {
979 unsigned long flags;
980 struct task_struct *t;
981 struct list_head *tb;
982
983 if (READ_ONCE(rnp->exp_tasks) == NULL &&
984 READ_ONCE(rnp->boost_tasks) == NULL)
985 return 0; /* Nothing left to boost. */
986
987 raw_spin_lock_irqsave_rcu_node(rnp, flags);
988
989 /*
990 * Recheck under the lock: all tasks in need of boosting
991 * might exit their RCU read-side critical sections on their own.
992 */
993 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
994 raw_spin_unlock_irqrestore(&rnp->lock, flags);
995 return 0;
996 }
997
998 /*
999 * Preferentially boost tasks blocking expedited grace periods.
1000 * This cannot starve the normal grace periods because a second
1001 * expedited grace period must boost all blocked tasks, including
1002 * those blocking the pre-existing normal grace period.
1003 */
1004 if (rnp->exp_tasks != NULL) {
1005 tb = rnp->exp_tasks;
1006 rnp->n_exp_boosts++;
1007 } else {
1008 tb = rnp->boost_tasks;
1009 rnp->n_normal_boosts++;
1010 }
1011 rnp->n_tasks_boosted++;
1012
1013 /*
1014 * We boost task t by manufacturing an rt_mutex that appears to
1015 * be held by task t. We leave a pointer to that rt_mutex where
1016 * task t can find it, and task t will release the mutex when it
1017 * exits its outermost RCU read-side critical section. Then
1018 * simply acquiring this artificial rt_mutex will boost task
1019 * t's priority. (Thanks to tglx for suggesting this approach!)
1020 *
1021 * Note that task t must acquire rnp->lock to remove itself from
1022 * the ->blkd_tasks list, which it will do from exit() if from
1023 * nowhere else. We therefore are guaranteed that task t will
1024 * stay around at least until we drop rnp->lock. Note that
1025 * rnp->lock also resolves races between our priority boosting
1026 * and task t's exiting its outermost RCU read-side critical
1027 * section.
1028 */
1029 t = container_of(tb, struct task_struct, rcu_node_entry);
1030 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1031 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1032 /* Lock only for side effect: boosts task t's priority. */
1033 rt_mutex_lock(&rnp->boost_mtx);
1034 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1035
1036 return READ_ONCE(rnp->exp_tasks) != NULL ||
1037 READ_ONCE(rnp->boost_tasks) != NULL;
1038 }
1039
1040 /*
1041 * Priority-boosting kthread, one per leaf rcu_node.
1042 */
1043 static int rcu_boost_kthread(void *arg)
1044 {
1045 struct rcu_node *rnp = (struct rcu_node *)arg;
1046 int spincnt = 0;
1047 int more2boost;
1048
1049 trace_rcu_utilization(TPS("Start boost kthread@init"));
1050 for (;;) {
1051 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1052 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1053 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1054 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1055 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1056 more2boost = rcu_boost(rnp);
1057 if (more2boost)
1058 spincnt++;
1059 else
1060 spincnt = 0;
1061 if (spincnt > 10) {
1062 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1063 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1064 schedule_timeout_interruptible(2);
1065 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1066 spincnt = 0;
1067 }
1068 }
1069 /* NOTREACHED */
1070 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1071 return 0;
1072 }
1073
1074 /*
1075 * Check to see if it is time to start boosting RCU readers that are
1076 * blocking the current grace period, and, if so, tell the per-rcu_node
1077 * kthread to start boosting them. If there is an expedited grace
1078 * period in progress, it is always time to boost.
1079 *
1080 * The caller must hold rnp->lock, which this function releases.
1081 * The ->boost_kthread_task is immortal, so we don't need to worry
1082 * about it going away.
1083 */
1084 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1085 __releases(rnp->lock)
1086 {
1087 struct task_struct *t;
1088
1089 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1090 rnp->n_balk_exp_gp_tasks++;
1091 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1092 return;
1093 }
1094 if (rnp->exp_tasks != NULL ||
1095 (rnp->gp_tasks != NULL &&
1096 rnp->boost_tasks == NULL &&
1097 rnp->qsmask == 0 &&
1098 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1099 if (rnp->exp_tasks == NULL)
1100 rnp->boost_tasks = rnp->gp_tasks;
1101 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1102 t = rnp->boost_kthread_task;
1103 if (t)
1104 rcu_wake_cond(t, rnp->boost_kthread_status);
1105 } else {
1106 rcu_initiate_boost_trace(rnp);
1107 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1108 }
1109 }
1110
1111 /*
1112 * Wake up the per-CPU kthread to invoke RCU callbacks.
1113 */
1114 static void invoke_rcu_callbacks_kthread(void)
1115 {
1116 unsigned long flags;
1117
1118 local_irq_save(flags);
1119 __this_cpu_write(rcu_cpu_has_work, 1);
1120 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1121 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1122 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1123 __this_cpu_read(rcu_cpu_kthread_status));
1124 }
1125 local_irq_restore(flags);
1126 }
1127
1128 /*
1129 * Is the current CPU running the RCU-callbacks kthread?
1130 * Caller must have preemption disabled.
1131 */
1132 static bool rcu_is_callbacks_kthread(void)
1133 {
1134 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1135 }
1136
1137 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1138
1139 /*
1140 * Do priority-boost accounting for the start of a new grace period.
1141 */
1142 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1143 {
1144 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1145 }
1146
1147 /*
1148 * Create an RCU-boost kthread for the specified node if one does not
1149 * already exist. We only create this kthread for preemptible RCU.
1150 * Returns zero if all is well, a negated errno otherwise.
1151 */
1152 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1153 struct rcu_node *rnp)
1154 {
1155 int rnp_index = rnp - &rsp->node[0];
1156 unsigned long flags;
1157 struct sched_param sp;
1158 struct task_struct *t;
1159
1160 if (rcu_state_p != rsp)
1161 return 0;
1162
1163 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1164 return 0;
1165
1166 rsp->boost = 1;
1167 if (rnp->boost_kthread_task != NULL)
1168 return 0;
1169 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1170 "rcub/%d", rnp_index);
1171 if (IS_ERR(t))
1172 return PTR_ERR(t);
1173 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1174 rnp->boost_kthread_task = t;
1175 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1176 sp.sched_priority = kthread_prio;
1177 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1178 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1179 return 0;
1180 }
1181
1182 static void rcu_kthread_do_work(void)
1183 {
1184 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1185 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1186 rcu_preempt_do_callbacks();
1187 }
1188
1189 static void rcu_cpu_kthread_setup(unsigned int cpu)
1190 {
1191 struct sched_param sp;
1192
1193 sp.sched_priority = kthread_prio;
1194 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1195 }
1196
1197 static void rcu_cpu_kthread_park(unsigned int cpu)
1198 {
1199 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1200 }
1201
1202 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1203 {
1204 return __this_cpu_read(rcu_cpu_has_work);
1205 }
1206
1207 /*
1208 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1209 * RCU softirq used in flavors and configurations of RCU that do not
1210 * support RCU priority boosting.
1211 */
1212 static void rcu_cpu_kthread(unsigned int cpu)
1213 {
1214 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1215 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1216 int spincnt;
1217
1218 for (spincnt = 0; spincnt < 10; spincnt++) {
1219 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1220 local_bh_disable();
1221 *statusp = RCU_KTHREAD_RUNNING;
1222 this_cpu_inc(rcu_cpu_kthread_loops);
1223 local_irq_disable();
1224 work = *workp;
1225 *workp = 0;
1226 local_irq_enable();
1227 if (work)
1228 rcu_kthread_do_work();
1229 local_bh_enable();
1230 if (*workp == 0) {
1231 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1232 *statusp = RCU_KTHREAD_WAITING;
1233 return;
1234 }
1235 }
1236 *statusp = RCU_KTHREAD_YIELDING;
1237 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1238 schedule_timeout_interruptible(2);
1239 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1240 *statusp = RCU_KTHREAD_WAITING;
1241 }
1242
1243 /*
1244 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1245 * served by the rcu_node in question. The CPU hotplug lock is still
1246 * held, so the value of rnp->qsmaskinit will be stable.
1247 *
1248 * We don't include outgoingcpu in the affinity set, use -1 if there is
1249 * no outgoing CPU. If there are no CPUs left in the affinity set,
1250 * this function allows the kthread to execute on any CPU.
1251 */
1252 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1253 {
1254 struct task_struct *t = rnp->boost_kthread_task;
1255 unsigned long mask = rcu_rnp_online_cpus(rnp);
1256 cpumask_var_t cm;
1257 int cpu;
1258
1259 if (!t)
1260 return;
1261 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1262 return;
1263 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1264 if ((mask & 0x1) && cpu != outgoingcpu)
1265 cpumask_set_cpu(cpu, cm);
1266 if (cpumask_weight(cm) == 0)
1267 cpumask_setall(cm);
1268 set_cpus_allowed_ptr(t, cm);
1269 free_cpumask_var(cm);
1270 }
1271
1272 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1273 .store = &rcu_cpu_kthread_task,
1274 .thread_should_run = rcu_cpu_kthread_should_run,
1275 .thread_fn = rcu_cpu_kthread,
1276 .thread_comm = "rcuc/%u",
1277 .setup = rcu_cpu_kthread_setup,
1278 .park = rcu_cpu_kthread_park,
1279 };
1280
1281 /*
1282 * Spawn boost kthreads -- called as soon as the scheduler is running.
1283 */
1284 static void __init rcu_spawn_boost_kthreads(void)
1285 {
1286 struct rcu_node *rnp;
1287 int cpu;
1288
1289 for_each_possible_cpu(cpu)
1290 per_cpu(rcu_cpu_has_work, cpu) = 0;
1291 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1292 rcu_for_each_leaf_node(rcu_state_p, rnp)
1293 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1294 }
1295
1296 static void rcu_prepare_kthreads(int cpu)
1297 {
1298 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1299 struct rcu_node *rnp = rdp->mynode;
1300
1301 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1302 if (rcu_scheduler_fully_active)
1303 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1304 }
1305
1306 #else /* #ifdef CONFIG_RCU_BOOST */
1307
1308 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1309 __releases(rnp->lock)
1310 {
1311 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1312 }
1313
1314 static void invoke_rcu_callbacks_kthread(void)
1315 {
1316 WARN_ON_ONCE(1);
1317 }
1318
1319 static bool rcu_is_callbacks_kthread(void)
1320 {
1321 return false;
1322 }
1323
1324 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1325 {
1326 }
1327
1328 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1329 {
1330 }
1331
1332 static void __init rcu_spawn_boost_kthreads(void)
1333 {
1334 }
1335
1336 static void rcu_prepare_kthreads(int cpu)
1337 {
1338 }
1339
1340 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1341
1342 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1343
1344 /*
1345 * Check to see if any future RCU-related work will need to be done
1346 * by the current CPU, even if none need be done immediately, returning
1347 * 1 if so. This function is part of the RCU implementation; it is -not-
1348 * an exported member of the RCU API.
1349 *
1350 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1351 * any flavor of RCU.
1352 */
1353 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1354 {
1355 *nextevt = KTIME_MAX;
1356 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1357 ? 0 : rcu_cpu_has_callbacks(NULL);
1358 }
1359
1360 /*
1361 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1362 * after it.
1363 */
1364 static void rcu_cleanup_after_idle(void)
1365 {
1366 }
1367
1368 /*
1369 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1370 * is nothing.
1371 */
1372 static void rcu_prepare_for_idle(void)
1373 {
1374 }
1375
1376 /*
1377 * Don't bother keeping a running count of the number of RCU callbacks
1378 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1379 */
1380 static void rcu_idle_count_callbacks_posted(void)
1381 {
1382 }
1383
1384 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1385
1386 /*
1387 * This code is invoked when a CPU goes idle, at which point we want
1388 * to have the CPU do everything required for RCU so that it can enter
1389 * the energy-efficient dyntick-idle mode. This is handled by a
1390 * state machine implemented by rcu_prepare_for_idle() below.
1391 *
1392 * The following three proprocessor symbols control this state machine:
1393 *
1394 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1395 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1396 * is sized to be roughly one RCU grace period. Those energy-efficiency
1397 * benchmarkers who might otherwise be tempted to set this to a large
1398 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1399 * system. And if you are -that- concerned about energy efficiency,
1400 * just power the system down and be done with it!
1401 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1402 * permitted to sleep in dyntick-idle mode with only lazy RCU
1403 * callbacks pending. Setting this too high can OOM your system.
1404 *
1405 * The values below work well in practice. If future workloads require
1406 * adjustment, they can be converted into kernel config parameters, though
1407 * making the state machine smarter might be a better option.
1408 */
1409 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1410 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1411
1412 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1413 module_param(rcu_idle_gp_delay, int, 0644);
1414 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1415 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1416
1417 /*
1418 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1419 * only if it has been awhile since the last time we did so. Afterwards,
1420 * if there are any callbacks ready for immediate invocation, return true.
1421 */
1422 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1423 {
1424 bool cbs_ready = false;
1425 struct rcu_data *rdp;
1426 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1427 struct rcu_node *rnp;
1428 struct rcu_state *rsp;
1429
1430 /* Exit early if we advanced recently. */
1431 if (jiffies == rdtp->last_advance_all)
1432 return false;
1433 rdtp->last_advance_all = jiffies;
1434
1435 for_each_rcu_flavor(rsp) {
1436 rdp = this_cpu_ptr(rsp->rda);
1437 rnp = rdp->mynode;
1438
1439 /*
1440 * Don't bother checking unless a grace period has
1441 * completed since we last checked and there are
1442 * callbacks not yet ready to invoke.
1443 */
1444 if ((rdp->completed != rnp->completed ||
1445 unlikely(READ_ONCE(rdp->gpwrap))) &&
1446 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1447 note_gp_changes(rsp, rdp);
1448
1449 if (cpu_has_callbacks_ready_to_invoke(rdp))
1450 cbs_ready = true;
1451 }
1452 return cbs_ready;
1453 }
1454
1455 /*
1456 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1457 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1458 * caller to set the timeout based on whether or not there are non-lazy
1459 * callbacks.
1460 *
1461 * The caller must have disabled interrupts.
1462 */
1463 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1464 {
1465 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1466 unsigned long dj;
1467
1468 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1469 *nextevt = KTIME_MAX;
1470 return 0;
1471 }
1472
1473 /* Snapshot to detect later posting of non-lazy callback. */
1474 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1475
1476 /* If no callbacks, RCU doesn't need the CPU. */
1477 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1478 *nextevt = KTIME_MAX;
1479 return 0;
1480 }
1481
1482 /* Attempt to advance callbacks. */
1483 if (rcu_try_advance_all_cbs()) {
1484 /* Some ready to invoke, so initiate later invocation. */
1485 invoke_rcu_core();
1486 return 1;
1487 }
1488 rdtp->last_accelerate = jiffies;
1489
1490 /* Request timer delay depending on laziness, and round. */
1491 if (!rdtp->all_lazy) {
1492 dj = round_up(rcu_idle_gp_delay + jiffies,
1493 rcu_idle_gp_delay) - jiffies;
1494 } else {
1495 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1496 }
1497 *nextevt = basemono + dj * TICK_NSEC;
1498 return 0;
1499 }
1500
1501 /*
1502 * Prepare a CPU for idle from an RCU perspective. The first major task
1503 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1504 * The second major task is to check to see if a non-lazy callback has
1505 * arrived at a CPU that previously had only lazy callbacks. The third
1506 * major task is to accelerate (that is, assign grace-period numbers to)
1507 * any recently arrived callbacks.
1508 *
1509 * The caller must have disabled interrupts.
1510 */
1511 static void rcu_prepare_for_idle(void)
1512 {
1513 bool needwake;
1514 struct rcu_data *rdp;
1515 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1516 struct rcu_node *rnp;
1517 struct rcu_state *rsp;
1518 int tne;
1519
1520 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1521 rcu_is_nocb_cpu(smp_processor_id()))
1522 return;
1523
1524 /* Handle nohz enablement switches conservatively. */
1525 tne = READ_ONCE(tick_nohz_active);
1526 if (tne != rdtp->tick_nohz_enabled_snap) {
1527 if (rcu_cpu_has_callbacks(NULL))
1528 invoke_rcu_core(); /* force nohz to see update. */
1529 rdtp->tick_nohz_enabled_snap = tne;
1530 return;
1531 }
1532 if (!tne)
1533 return;
1534
1535 /*
1536 * If a non-lazy callback arrived at a CPU having only lazy
1537 * callbacks, invoke RCU core for the side-effect of recalculating
1538 * idle duration on re-entry to idle.
1539 */
1540 if (rdtp->all_lazy &&
1541 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1542 rdtp->all_lazy = false;
1543 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1544 invoke_rcu_core();
1545 return;
1546 }
1547
1548 /*
1549 * If we have not yet accelerated this jiffy, accelerate all
1550 * callbacks on this CPU.
1551 */
1552 if (rdtp->last_accelerate == jiffies)
1553 return;
1554 rdtp->last_accelerate = jiffies;
1555 for_each_rcu_flavor(rsp) {
1556 rdp = this_cpu_ptr(rsp->rda);
1557 if (!*rdp->nxttail[RCU_DONE_TAIL])
1558 continue;
1559 rnp = rdp->mynode;
1560 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1561 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1562 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1563 if (needwake)
1564 rcu_gp_kthread_wake(rsp);
1565 }
1566 }
1567
1568 /*
1569 * Clean up for exit from idle. Attempt to advance callbacks based on
1570 * any grace periods that elapsed while the CPU was idle, and if any
1571 * callbacks are now ready to invoke, initiate invocation.
1572 */
1573 static void rcu_cleanup_after_idle(void)
1574 {
1575 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1576 rcu_is_nocb_cpu(smp_processor_id()))
1577 return;
1578 if (rcu_try_advance_all_cbs())
1579 invoke_rcu_core();
1580 }
1581
1582 /*
1583 * Keep a running count of the number of non-lazy callbacks posted
1584 * on this CPU. This running counter (which is never decremented) allows
1585 * rcu_prepare_for_idle() to detect when something out of the idle loop
1586 * posts a callback, even if an equal number of callbacks are invoked.
1587 * Of course, callbacks should only be posted from within a trace event
1588 * designed to be called from idle or from within RCU_NONIDLE().
1589 */
1590 static void rcu_idle_count_callbacks_posted(void)
1591 {
1592 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1593 }
1594
1595 /*
1596 * Data for flushing lazy RCU callbacks at OOM time.
1597 */
1598 static atomic_t oom_callback_count;
1599 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1600
1601 /*
1602 * RCU OOM callback -- decrement the outstanding count and deliver the
1603 * wake-up if we are the last one.
1604 */
1605 static void rcu_oom_callback(struct rcu_head *rhp)
1606 {
1607 if (atomic_dec_and_test(&oom_callback_count))
1608 wake_up(&oom_callback_wq);
1609 }
1610
1611 /*
1612 * Post an rcu_oom_notify callback on the current CPU if it has at
1613 * least one lazy callback. This will unnecessarily post callbacks
1614 * to CPUs that already have a non-lazy callback at the end of their
1615 * callback list, but this is an infrequent operation, so accept some
1616 * extra overhead to keep things simple.
1617 */
1618 static void rcu_oom_notify_cpu(void *unused)
1619 {
1620 struct rcu_state *rsp;
1621 struct rcu_data *rdp;
1622
1623 for_each_rcu_flavor(rsp) {
1624 rdp = raw_cpu_ptr(rsp->rda);
1625 if (rdp->qlen_lazy != 0) {
1626 atomic_inc(&oom_callback_count);
1627 rsp->call(&rdp->oom_head, rcu_oom_callback);
1628 }
1629 }
1630 }
1631
1632 /*
1633 * If low on memory, ensure that each CPU has a non-lazy callback.
1634 * This will wake up CPUs that have only lazy callbacks, in turn
1635 * ensuring that they free up the corresponding memory in a timely manner.
1636 * Because an uncertain amount of memory will be freed in some uncertain
1637 * timeframe, we do not claim to have freed anything.
1638 */
1639 static int rcu_oom_notify(struct notifier_block *self,
1640 unsigned long notused, void *nfreed)
1641 {
1642 int cpu;
1643
1644 /* Wait for callbacks from earlier instance to complete. */
1645 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1646 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1647
1648 /*
1649 * Prevent premature wakeup: ensure that all increments happen
1650 * before there is a chance of the counter reaching zero.
1651 */
1652 atomic_set(&oom_callback_count, 1);
1653
1654 for_each_online_cpu(cpu) {
1655 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1656 cond_resched_rcu_qs();
1657 }
1658
1659 /* Unconditionally decrement: no need to wake ourselves up. */
1660 atomic_dec(&oom_callback_count);
1661
1662 return NOTIFY_OK;
1663 }
1664
1665 static struct notifier_block rcu_oom_nb = {
1666 .notifier_call = rcu_oom_notify
1667 };
1668
1669 static int __init rcu_register_oom_notifier(void)
1670 {
1671 register_oom_notifier(&rcu_oom_nb);
1672 return 0;
1673 }
1674 early_initcall(rcu_register_oom_notifier);
1675
1676 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1677
1678 #ifdef CONFIG_RCU_FAST_NO_HZ
1679
1680 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1681 {
1682 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1683 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1684
1685 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1686 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1687 ulong2long(nlpd),
1688 rdtp->all_lazy ? 'L' : '.',
1689 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1690 }
1691
1692 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1693
1694 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1695 {
1696 *cp = '\0';
1697 }
1698
1699 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1700
1701 /* Initiate the stall-info list. */
1702 static void print_cpu_stall_info_begin(void)
1703 {
1704 pr_cont("\n");
1705 }
1706
1707 /*
1708 * Print out diagnostic information for the specified stalled CPU.
1709 *
1710 * If the specified CPU is aware of the current RCU grace period
1711 * (flavor specified by rsp), then print the number of scheduling
1712 * clock interrupts the CPU has taken during the time that it has
1713 * been aware. Otherwise, print the number of RCU grace periods
1714 * that this CPU is ignorant of, for example, "1" if the CPU was
1715 * aware of the previous grace period.
1716 *
1717 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1718 */
1719 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1720 {
1721 char fast_no_hz[72];
1722 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1723 struct rcu_dynticks *rdtp = rdp->dynticks;
1724 char *ticks_title;
1725 unsigned long ticks_value;
1726
1727 if (rsp->gpnum == rdp->gpnum) {
1728 ticks_title = "ticks this GP";
1729 ticks_value = rdp->ticks_this_gp;
1730 } else {
1731 ticks_title = "GPs behind";
1732 ticks_value = rsp->gpnum - rdp->gpnum;
1733 }
1734 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1735 pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1736 cpu,
1737 "O."[!!cpu_online(cpu)],
1738 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1739 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1740 ticks_value, ticks_title,
1741 atomic_read(&rdtp->dynticks) & 0xfff,
1742 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1743 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1744 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1745 fast_no_hz);
1746 }
1747
1748 /* Terminate the stall-info list. */
1749 static void print_cpu_stall_info_end(void)
1750 {
1751 pr_err("\t");
1752 }
1753
1754 /* Zero ->ticks_this_gp for all flavors of RCU. */
1755 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1756 {
1757 rdp->ticks_this_gp = 0;
1758 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1759 }
1760
1761 /* Increment ->ticks_this_gp for all flavors of RCU. */
1762 static void increment_cpu_stall_ticks(void)
1763 {
1764 struct rcu_state *rsp;
1765
1766 for_each_rcu_flavor(rsp)
1767 raw_cpu_inc(rsp->rda->ticks_this_gp);
1768 }
1769
1770 #ifdef CONFIG_RCU_NOCB_CPU
1771
1772 /*
1773 * Offload callback processing from the boot-time-specified set of CPUs
1774 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1775 * kthread created that pulls the callbacks from the corresponding CPU,
1776 * waits for a grace period to elapse, and invokes the callbacks.
1777 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1778 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1779 * has been specified, in which case each kthread actively polls its
1780 * CPU. (Which isn't so great for energy efficiency, but which does
1781 * reduce RCU's overhead on that CPU.)
1782 *
1783 * This is intended to be used in conjunction with Frederic Weisbecker's
1784 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1785 * running CPU-bound user-mode computations.
1786 *
1787 * Offloading of callback processing could also in theory be used as
1788 * an energy-efficiency measure because CPUs with no RCU callbacks
1789 * queued are more aggressive about entering dyntick-idle mode.
1790 */
1791
1792
1793 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1794 static int __init rcu_nocb_setup(char *str)
1795 {
1796 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1797 have_rcu_nocb_mask = true;
1798 cpulist_parse(str, rcu_nocb_mask);
1799 return 1;
1800 }
1801 __setup("rcu_nocbs=", rcu_nocb_setup);
1802
1803 static int __init parse_rcu_nocb_poll(char *arg)
1804 {
1805 rcu_nocb_poll = 1;
1806 return 0;
1807 }
1808 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1809
1810 /*
1811 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1812 * grace period.
1813 */
1814 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1815 {
1816 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1817 }
1818
1819 /*
1820 * Set the root rcu_node structure's ->need_future_gp field
1821 * based on the sum of those of all rcu_node structures. This does
1822 * double-count the root rcu_node structure's requests, but this
1823 * is necessary to handle the possibility of a rcu_nocb_kthread()
1824 * having awakened during the time that the rcu_node structures
1825 * were being updated for the end of the previous grace period.
1826 */
1827 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1828 {
1829 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1830 }
1831
1832 static void rcu_init_one_nocb(struct rcu_node *rnp)
1833 {
1834 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1835 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1836 }
1837
1838 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1839 /* Is the specified CPU a no-CBs CPU? */
1840 bool rcu_is_nocb_cpu(int cpu)
1841 {
1842 if (have_rcu_nocb_mask)
1843 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1844 return false;
1845 }
1846 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1847
1848 /*
1849 * Kick the leader kthread for this NOCB group.
1850 */
1851 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1852 {
1853 struct rcu_data *rdp_leader = rdp->nocb_leader;
1854
1855 if (!READ_ONCE(rdp_leader->nocb_kthread))
1856 return;
1857 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1858 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1859 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1860 wake_up(&rdp_leader->nocb_wq);
1861 }
1862 }
1863
1864 /*
1865 * Does the specified CPU need an RCU callback for the specified flavor
1866 * of rcu_barrier()?
1867 */
1868 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1869 {
1870 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1871 unsigned long ret;
1872 #ifdef CONFIG_PROVE_RCU
1873 struct rcu_head *rhp;
1874 #endif /* #ifdef CONFIG_PROVE_RCU */
1875
1876 /*
1877 * Check count of all no-CBs callbacks awaiting invocation.
1878 * There needs to be a barrier before this function is called,
1879 * but associated with a prior determination that no more
1880 * callbacks would be posted. In the worst case, the first
1881 * barrier in _rcu_barrier() suffices (but the caller cannot
1882 * necessarily rely on this, not a substitute for the caller
1883 * getting the concurrency design right!). There must also be
1884 * a barrier between the following load an posting of a callback
1885 * (if a callback is in fact needed). This is associated with an
1886 * atomic_inc() in the caller.
1887 */
1888 ret = atomic_long_read(&rdp->nocb_q_count);
1889
1890 #ifdef CONFIG_PROVE_RCU
1891 rhp = READ_ONCE(rdp->nocb_head);
1892 if (!rhp)
1893 rhp = READ_ONCE(rdp->nocb_gp_head);
1894 if (!rhp)
1895 rhp = READ_ONCE(rdp->nocb_follower_head);
1896
1897 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1898 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1899 rcu_scheduler_fully_active) {
1900 /* RCU callback enqueued before CPU first came online??? */
1901 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1902 cpu, rhp->func);
1903 WARN_ON_ONCE(1);
1904 }
1905 #endif /* #ifdef CONFIG_PROVE_RCU */
1906
1907 return !!ret;
1908 }
1909
1910 /*
1911 * Enqueue the specified string of rcu_head structures onto the specified
1912 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1913 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1914 * counts are supplied by rhcount and rhcount_lazy.
1915 *
1916 * If warranted, also wake up the kthread servicing this CPUs queues.
1917 */
1918 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1919 struct rcu_head *rhp,
1920 struct rcu_head **rhtp,
1921 int rhcount, int rhcount_lazy,
1922 unsigned long flags)
1923 {
1924 int len;
1925 struct rcu_head **old_rhpp;
1926 struct task_struct *t;
1927
1928 /* Enqueue the callback on the nocb list and update counts. */
1929 atomic_long_add(rhcount, &rdp->nocb_q_count);
1930 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1931 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1932 WRITE_ONCE(*old_rhpp, rhp);
1933 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1934 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1935
1936 /* If we are not being polled and there is a kthread, awaken it ... */
1937 t = READ_ONCE(rdp->nocb_kthread);
1938 if (rcu_nocb_poll || !t) {
1939 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1940 TPS("WakeNotPoll"));
1941 return;
1942 }
1943 len = atomic_long_read(&rdp->nocb_q_count);
1944 if (old_rhpp == &rdp->nocb_head) {
1945 if (!irqs_disabled_flags(flags)) {
1946 /* ... if queue was empty ... */
1947 wake_nocb_leader(rdp, false);
1948 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1949 TPS("WakeEmpty"));
1950 } else {
1951 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1952 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1953 TPS("WakeEmptyIsDeferred"));
1954 }
1955 rdp->qlen_last_fqs_check = 0;
1956 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1957 /* ... or if many callbacks queued. */
1958 if (!irqs_disabled_flags(flags)) {
1959 wake_nocb_leader(rdp, true);
1960 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1961 TPS("WakeOvf"));
1962 } else {
1963 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1964 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1965 TPS("WakeOvfIsDeferred"));
1966 }
1967 rdp->qlen_last_fqs_check = LONG_MAX / 2;
1968 } else {
1969 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1970 }
1971 return;
1972 }
1973
1974 /*
1975 * This is a helper for __call_rcu(), which invokes this when the normal
1976 * callback queue is inoperable. If this is not a no-CBs CPU, this
1977 * function returns failure back to __call_rcu(), which can complain
1978 * appropriately.
1979 *
1980 * Otherwise, this function queues the callback where the corresponding
1981 * "rcuo" kthread can find it.
1982 */
1983 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1984 bool lazy, unsigned long flags)
1985 {
1986
1987 if (!rcu_is_nocb_cpu(rdp->cpu))
1988 return false;
1989 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1990 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1991 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1992 (unsigned long)rhp->func,
1993 -atomic_long_read(&rdp->nocb_q_count_lazy),
1994 -atomic_long_read(&rdp->nocb_q_count));
1995 else
1996 trace_rcu_callback(rdp->rsp->name, rhp,
1997 -atomic_long_read(&rdp->nocb_q_count_lazy),
1998 -atomic_long_read(&rdp->nocb_q_count));
1999
2000 /*
2001 * If called from an extended quiescent state with interrupts
2002 * disabled, invoke the RCU core in order to allow the idle-entry
2003 * deferred-wakeup check to function.
2004 */
2005 if (irqs_disabled_flags(flags) &&
2006 !rcu_is_watching() &&
2007 cpu_online(smp_processor_id()))
2008 invoke_rcu_core();
2009
2010 return true;
2011 }
2012
2013 /*
2014 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2015 * not a no-CBs CPU.
2016 */
2017 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2018 struct rcu_data *rdp,
2019 unsigned long flags)
2020 {
2021 long ql = rsp->qlen;
2022 long qll = rsp->qlen_lazy;
2023
2024 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2025 if (!rcu_is_nocb_cpu(smp_processor_id()))
2026 return false;
2027 rsp->qlen = 0;
2028 rsp->qlen_lazy = 0;
2029
2030 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2031 if (rsp->orphan_donelist != NULL) {
2032 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2033 rsp->orphan_donetail, ql, qll, flags);
2034 ql = qll = 0;
2035 rsp->orphan_donelist = NULL;
2036 rsp->orphan_donetail = &rsp->orphan_donelist;
2037 }
2038 if (rsp->orphan_nxtlist != NULL) {
2039 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2040 rsp->orphan_nxttail, ql, qll, flags);
2041 ql = qll = 0;
2042 rsp->orphan_nxtlist = NULL;
2043 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2044 }
2045 return true;
2046 }
2047
2048 /*
2049 * If necessary, kick off a new grace period, and either way wait
2050 * for a subsequent grace period to complete.
2051 */
2052 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2053 {
2054 unsigned long c;
2055 bool d;
2056 unsigned long flags;
2057 bool needwake;
2058 struct rcu_node *rnp = rdp->mynode;
2059
2060 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2061 needwake = rcu_start_future_gp(rnp, rdp, &c);
2062 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2063 if (needwake)
2064 rcu_gp_kthread_wake(rdp->rsp);
2065
2066 /*
2067 * Wait for the grace period. Do so interruptibly to avoid messing
2068 * up the load average.
2069 */
2070 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2071 for (;;) {
2072 wait_event_interruptible(
2073 rnp->nocb_gp_wq[c & 0x1],
2074 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2075 if (likely(d))
2076 break;
2077 WARN_ON(signal_pending(current));
2078 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2079 }
2080 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2081 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2082 }
2083
2084 /*
2085 * Leaders come here to wait for additional callbacks to show up.
2086 * This function does not return until callbacks appear.
2087 */
2088 static void nocb_leader_wait(struct rcu_data *my_rdp)
2089 {
2090 bool firsttime = true;
2091 bool gotcbs;
2092 struct rcu_data *rdp;
2093 struct rcu_head **tail;
2094
2095 wait_again:
2096
2097 /* Wait for callbacks to appear. */
2098 if (!rcu_nocb_poll) {
2099 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2100 wait_event_interruptible(my_rdp->nocb_wq,
2101 !READ_ONCE(my_rdp->nocb_leader_sleep));
2102 /* Memory barrier handled by smp_mb() calls below and repoll. */
2103 } else if (firsttime) {
2104 firsttime = false; /* Don't drown trace log with "Poll"! */
2105 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2106 }
2107
2108 /*
2109 * Each pass through the following loop checks a follower for CBs.
2110 * We are our own first follower. Any CBs found are moved to
2111 * nocb_gp_head, where they await a grace period.
2112 */
2113 gotcbs = false;
2114 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2115 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2116 if (!rdp->nocb_gp_head)
2117 continue; /* No CBs here, try next follower. */
2118
2119 /* Move callbacks to wait-for-GP list, which is empty. */
2120 WRITE_ONCE(rdp->nocb_head, NULL);
2121 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2122 gotcbs = true;
2123 }
2124
2125 /*
2126 * If there were no callbacks, sleep a bit, rescan after a
2127 * memory barrier, and go retry.
2128 */
2129 if (unlikely(!gotcbs)) {
2130 if (!rcu_nocb_poll)
2131 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2132 "WokeEmpty");
2133 WARN_ON(signal_pending(current));
2134 schedule_timeout_interruptible(1);
2135
2136 /* Rescan in case we were a victim of memory ordering. */
2137 my_rdp->nocb_leader_sleep = true;
2138 smp_mb(); /* Ensure _sleep true before scan. */
2139 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2140 if (READ_ONCE(rdp->nocb_head)) {
2141 /* Found CB, so short-circuit next wait. */
2142 my_rdp->nocb_leader_sleep = false;
2143 break;
2144 }
2145 goto wait_again;
2146 }
2147
2148 /* Wait for one grace period. */
2149 rcu_nocb_wait_gp(my_rdp);
2150
2151 /*
2152 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2153 * We set it now, but recheck for new callbacks while
2154 * traversing our follower list.
2155 */
2156 my_rdp->nocb_leader_sleep = true;
2157 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2158
2159 /* Each pass through the following loop wakes a follower, if needed. */
2160 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2161 if (READ_ONCE(rdp->nocb_head))
2162 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2163 if (!rdp->nocb_gp_head)
2164 continue; /* No CBs, so no need to wake follower. */
2165
2166 /* Append callbacks to follower's "done" list. */
2167 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2168 *tail = rdp->nocb_gp_head;
2169 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2170 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2171 /*
2172 * List was empty, wake up the follower.
2173 * Memory barriers supplied by atomic_long_add().
2174 */
2175 wake_up(&rdp->nocb_wq);
2176 }
2177 }
2178
2179 /* If we (the leader) don't have CBs, go wait some more. */
2180 if (!my_rdp->nocb_follower_head)
2181 goto wait_again;
2182 }
2183
2184 /*
2185 * Followers come here to wait for additional callbacks to show up.
2186 * This function does not return until callbacks appear.
2187 */
2188 static void nocb_follower_wait(struct rcu_data *rdp)
2189 {
2190 bool firsttime = true;
2191
2192 for (;;) {
2193 if (!rcu_nocb_poll) {
2194 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2195 "FollowerSleep");
2196 wait_event_interruptible(rdp->nocb_wq,
2197 READ_ONCE(rdp->nocb_follower_head));
2198 } else if (firsttime) {
2199 /* Don't drown trace log with "Poll"! */
2200 firsttime = false;
2201 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2202 }
2203 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2204 /* ^^^ Ensure CB invocation follows _head test. */
2205 return;
2206 }
2207 if (!rcu_nocb_poll)
2208 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2209 "WokeEmpty");
2210 WARN_ON(signal_pending(current));
2211 schedule_timeout_interruptible(1);
2212 }
2213 }
2214
2215 /*
2216 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2217 * callbacks queued by the corresponding no-CBs CPU, however, there is
2218 * an optional leader-follower relationship so that the grace-period
2219 * kthreads don't have to do quite so many wakeups.
2220 */
2221 static int rcu_nocb_kthread(void *arg)
2222 {
2223 int c, cl;
2224 struct rcu_head *list;
2225 struct rcu_head *next;
2226 struct rcu_head **tail;
2227 struct rcu_data *rdp = arg;
2228
2229 /* Each pass through this loop invokes one batch of callbacks */
2230 for (;;) {
2231 /* Wait for callbacks. */
2232 if (rdp->nocb_leader == rdp)
2233 nocb_leader_wait(rdp);
2234 else
2235 nocb_follower_wait(rdp);
2236
2237 /* Pull the ready-to-invoke callbacks onto local list. */
2238 list = READ_ONCE(rdp->nocb_follower_head);
2239 BUG_ON(!list);
2240 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2241 WRITE_ONCE(rdp->nocb_follower_head, NULL);
2242 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2243
2244 /* Each pass through the following loop invokes a callback. */
2245 trace_rcu_batch_start(rdp->rsp->name,
2246 atomic_long_read(&rdp->nocb_q_count_lazy),
2247 atomic_long_read(&rdp->nocb_q_count), -1);
2248 c = cl = 0;
2249 while (list) {
2250 next = list->next;
2251 /* Wait for enqueuing to complete, if needed. */
2252 while (next == NULL && &list->next != tail) {
2253 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2254 TPS("WaitQueue"));
2255 schedule_timeout_interruptible(1);
2256 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2257 TPS("WokeQueue"));
2258 next = list->next;
2259 }
2260 debug_rcu_head_unqueue(list);
2261 local_bh_disable();
2262 if (__rcu_reclaim(rdp->rsp->name, list))
2263 cl++;
2264 c++;
2265 local_bh_enable();
2266 list = next;
2267 }
2268 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2269 smp_mb__before_atomic(); /* _add after CB invocation. */
2270 atomic_long_add(-c, &rdp->nocb_q_count);
2271 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2272 rdp->n_nocbs_invoked += c;
2273 }
2274 return 0;
2275 }
2276
2277 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2278 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2279 {
2280 return READ_ONCE(rdp->nocb_defer_wakeup);
2281 }
2282
2283 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2284 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2285 {
2286 int ndw;
2287
2288 if (!rcu_nocb_need_deferred_wakeup(rdp))
2289 return;
2290 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2291 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2292 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2293 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2294 }
2295
2296 void __init rcu_init_nohz(void)
2297 {
2298 int cpu;
2299 bool need_rcu_nocb_mask = true;
2300 struct rcu_state *rsp;
2301
2302 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2303 need_rcu_nocb_mask = false;
2304 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2305
2306 #if defined(CONFIG_NO_HZ_FULL)
2307 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2308 need_rcu_nocb_mask = true;
2309 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2310
2311 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2312 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2313 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2314 return;
2315 }
2316 have_rcu_nocb_mask = true;
2317 }
2318 if (!have_rcu_nocb_mask)
2319 return;
2320
2321 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2322 pr_info("\tOffload RCU callbacks from CPU 0\n");
2323 cpumask_set_cpu(0, rcu_nocb_mask);
2324 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2325 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2326 pr_info("\tOffload RCU callbacks from all CPUs\n");
2327 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2328 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2329 #if defined(CONFIG_NO_HZ_FULL)
2330 if (tick_nohz_full_running)
2331 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2332 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2333
2334 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2335 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2336 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2337 rcu_nocb_mask);
2338 }
2339 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2340 cpumask_pr_args(rcu_nocb_mask));
2341 if (rcu_nocb_poll)
2342 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2343
2344 for_each_rcu_flavor(rsp) {
2345 for_each_cpu(cpu, rcu_nocb_mask)
2346 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2347 rcu_organize_nocb_kthreads(rsp);
2348 }
2349 }
2350
2351 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2352 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2353 {
2354 rdp->nocb_tail = &rdp->nocb_head;
2355 init_waitqueue_head(&rdp->nocb_wq);
2356 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2357 }
2358
2359 /*
2360 * If the specified CPU is a no-CBs CPU that does not already have its
2361 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2362 * brought online out of order, this can require re-organizing the
2363 * leader-follower relationships.
2364 */
2365 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2366 {
2367 struct rcu_data *rdp;
2368 struct rcu_data *rdp_last;
2369 struct rcu_data *rdp_old_leader;
2370 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2371 struct task_struct *t;
2372
2373 /*
2374 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2375 * then nothing to do.
2376 */
2377 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2378 return;
2379
2380 /* If we didn't spawn the leader first, reorganize! */
2381 rdp_old_leader = rdp_spawn->nocb_leader;
2382 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2383 rdp_last = NULL;
2384 rdp = rdp_old_leader;
2385 do {
2386 rdp->nocb_leader = rdp_spawn;
2387 if (rdp_last && rdp != rdp_spawn)
2388 rdp_last->nocb_next_follower = rdp;
2389 if (rdp == rdp_spawn) {
2390 rdp = rdp->nocb_next_follower;
2391 } else {
2392 rdp_last = rdp;
2393 rdp = rdp->nocb_next_follower;
2394 rdp_last->nocb_next_follower = NULL;
2395 }
2396 } while (rdp);
2397 rdp_spawn->nocb_next_follower = rdp_old_leader;
2398 }
2399
2400 /* Spawn the kthread for this CPU and RCU flavor. */
2401 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2402 "rcuo%c/%d", rsp->abbr, cpu);
2403 BUG_ON(IS_ERR(t));
2404 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2405 }
2406
2407 /*
2408 * If the specified CPU is a no-CBs CPU that does not already have its
2409 * rcuo kthreads, spawn them.
2410 */
2411 static void rcu_spawn_all_nocb_kthreads(int cpu)
2412 {
2413 struct rcu_state *rsp;
2414
2415 if (rcu_scheduler_fully_active)
2416 for_each_rcu_flavor(rsp)
2417 rcu_spawn_one_nocb_kthread(rsp, cpu);
2418 }
2419
2420 /*
2421 * Once the scheduler is running, spawn rcuo kthreads for all online
2422 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2423 * non-boot CPUs come online -- if this changes, we will need to add
2424 * some mutual exclusion.
2425 */
2426 static void __init rcu_spawn_nocb_kthreads(void)
2427 {
2428 int cpu;
2429
2430 for_each_online_cpu(cpu)
2431 rcu_spawn_all_nocb_kthreads(cpu);
2432 }
2433
2434 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2435 static int rcu_nocb_leader_stride = -1;
2436 module_param(rcu_nocb_leader_stride, int, 0444);
2437
2438 /*
2439 * Initialize leader-follower relationships for all no-CBs CPU.
2440 */
2441 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2442 {
2443 int cpu;
2444 int ls = rcu_nocb_leader_stride;
2445 int nl = 0; /* Next leader. */
2446 struct rcu_data *rdp;
2447 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2448 struct rcu_data *rdp_prev = NULL;
2449
2450 if (!have_rcu_nocb_mask)
2451 return;
2452 if (ls == -1) {
2453 ls = int_sqrt(nr_cpu_ids);
2454 rcu_nocb_leader_stride = ls;
2455 }
2456
2457 /*
2458 * Each pass through this loop sets up one rcu_data structure and
2459 * spawns one rcu_nocb_kthread().
2460 */
2461 for_each_cpu(cpu, rcu_nocb_mask) {
2462 rdp = per_cpu_ptr(rsp->rda, cpu);
2463 if (rdp->cpu >= nl) {
2464 /* New leader, set up for followers & next leader. */
2465 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2466 rdp->nocb_leader = rdp;
2467 rdp_leader = rdp;
2468 } else {
2469 /* Another follower, link to previous leader. */
2470 rdp->nocb_leader = rdp_leader;
2471 rdp_prev->nocb_next_follower = rdp;
2472 }
2473 rdp_prev = rdp;
2474 }
2475 }
2476
2477 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2478 static bool init_nocb_callback_list(struct rcu_data *rdp)
2479 {
2480 if (!rcu_is_nocb_cpu(rdp->cpu))
2481 return false;
2482
2483 /* If there are early-boot callbacks, move them to nocb lists. */
2484 if (rdp->nxtlist) {
2485 rdp->nocb_head = rdp->nxtlist;
2486 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2487 atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2488 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2489 rdp->nxtlist = NULL;
2490 rdp->qlen = 0;
2491 rdp->qlen_lazy = 0;
2492 }
2493 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2494 return true;
2495 }
2496
2497 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2498
2499 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2500 {
2501 WARN_ON_ONCE(1); /* Should be dead code. */
2502 return false;
2503 }
2504
2505 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2506 {
2507 }
2508
2509 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2510 {
2511 }
2512
2513 static void rcu_init_one_nocb(struct rcu_node *rnp)
2514 {
2515 }
2516
2517 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2518 bool lazy, unsigned long flags)
2519 {
2520 return false;
2521 }
2522
2523 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2524 struct rcu_data *rdp,
2525 unsigned long flags)
2526 {
2527 return false;
2528 }
2529
2530 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2531 {
2532 }
2533
2534 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2535 {
2536 return false;
2537 }
2538
2539 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2540 {
2541 }
2542
2543 static void rcu_spawn_all_nocb_kthreads(int cpu)
2544 {
2545 }
2546
2547 static void __init rcu_spawn_nocb_kthreads(void)
2548 {
2549 }
2550
2551 static bool init_nocb_callback_list(struct rcu_data *rdp)
2552 {
2553 return false;
2554 }
2555
2556 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2557
2558 /*
2559 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2560 * arbitrarily long period of time with the scheduling-clock tick turned
2561 * off. RCU will be paying attention to this CPU because it is in the
2562 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2563 * machine because the scheduling-clock tick has been disabled. Therefore,
2564 * if an adaptive-ticks CPU is failing to respond to the current grace
2565 * period and has not be idle from an RCU perspective, kick it.
2566 */
2567 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2568 {
2569 #ifdef CONFIG_NO_HZ_FULL
2570 if (tick_nohz_full_cpu(cpu))
2571 smp_send_reschedule(cpu);
2572 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2573 }
2574
2575
2576 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2577
2578 static int full_sysidle_state; /* Current system-idle state. */
2579 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2580 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2581 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2582 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2583 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2584
2585 /*
2586 * Invoked to note exit from irq or task transition to idle. Note that
2587 * usermode execution does -not- count as idle here! After all, we want
2588 * to detect full-system idle states, not RCU quiescent states and grace
2589 * periods. The caller must have disabled interrupts.
2590 */
2591 static void rcu_sysidle_enter(int irq)
2592 {
2593 unsigned long j;
2594 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2595
2596 /* If there are no nohz_full= CPUs, no need to track this. */
2597 if (!tick_nohz_full_enabled())
2598 return;
2599
2600 /* Adjust nesting, check for fully idle. */
2601 if (irq) {
2602 rdtp->dynticks_idle_nesting--;
2603 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2604 if (rdtp->dynticks_idle_nesting != 0)
2605 return; /* Still not fully idle. */
2606 } else {
2607 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2608 DYNTICK_TASK_NEST_VALUE) {
2609 rdtp->dynticks_idle_nesting = 0;
2610 } else {
2611 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2612 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2613 return; /* Still not fully idle. */
2614 }
2615 }
2616
2617 /* Record start of fully idle period. */
2618 j = jiffies;
2619 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2620 smp_mb__before_atomic();
2621 atomic_inc(&rdtp->dynticks_idle);
2622 smp_mb__after_atomic();
2623 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2624 }
2625
2626 /*
2627 * Unconditionally force exit from full system-idle state. This is
2628 * invoked when a normal CPU exits idle, but must be called separately
2629 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2630 * is that the timekeeping CPU is permitted to take scheduling-clock
2631 * interrupts while the system is in system-idle state, and of course
2632 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2633 * interrupt from any other type of interrupt.
2634 */
2635 void rcu_sysidle_force_exit(void)
2636 {
2637 int oldstate = READ_ONCE(full_sysidle_state);
2638 int newoldstate;
2639
2640 /*
2641 * Each pass through the following loop attempts to exit full
2642 * system-idle state. If contention proves to be a problem,
2643 * a trylock-based contention tree could be used here.
2644 */
2645 while (oldstate > RCU_SYSIDLE_SHORT) {
2646 newoldstate = cmpxchg(&full_sysidle_state,
2647 oldstate, RCU_SYSIDLE_NOT);
2648 if (oldstate == newoldstate &&
2649 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2650 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2651 return; /* We cleared it, done! */
2652 }
2653 oldstate = newoldstate;
2654 }
2655 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2656 }
2657
2658 /*
2659 * Invoked to note entry to irq or task transition from idle. Note that
2660 * usermode execution does -not- count as idle here! The caller must
2661 * have disabled interrupts.
2662 */
2663 static void rcu_sysidle_exit(int irq)
2664 {
2665 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2666
2667 /* If there are no nohz_full= CPUs, no need to track this. */
2668 if (!tick_nohz_full_enabled())
2669 return;
2670
2671 /* Adjust nesting, check for already non-idle. */
2672 if (irq) {
2673 rdtp->dynticks_idle_nesting++;
2674 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2675 if (rdtp->dynticks_idle_nesting != 1)
2676 return; /* Already non-idle. */
2677 } else {
2678 /*
2679 * Allow for irq misnesting. Yes, it really is possible
2680 * to enter an irq handler then never leave it, and maybe
2681 * also vice versa. Handle both possibilities.
2682 */
2683 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2684 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2685 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2686 return; /* Already non-idle. */
2687 } else {
2688 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2689 }
2690 }
2691
2692 /* Record end of idle period. */
2693 smp_mb__before_atomic();
2694 atomic_inc(&rdtp->dynticks_idle);
2695 smp_mb__after_atomic();
2696 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2697
2698 /*
2699 * If we are the timekeeping CPU, we are permitted to be non-idle
2700 * during a system-idle state. This must be the case, because
2701 * the timekeeping CPU has to take scheduling-clock interrupts
2702 * during the time that the system is transitioning to full
2703 * system-idle state. This means that the timekeeping CPU must
2704 * invoke rcu_sysidle_force_exit() directly if it does anything
2705 * more than take a scheduling-clock interrupt.
2706 */
2707 if (smp_processor_id() == tick_do_timer_cpu)
2708 return;
2709
2710 /* Update system-idle state: We are clearly no longer fully idle! */
2711 rcu_sysidle_force_exit();
2712 }
2713
2714 /*
2715 * Check to see if the current CPU is idle. Note that usermode execution
2716 * does not count as idle. The caller must have disabled interrupts,
2717 * and must be running on tick_do_timer_cpu.
2718 */
2719 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2720 unsigned long *maxj)
2721 {
2722 int cur;
2723 unsigned long j;
2724 struct rcu_dynticks *rdtp = rdp->dynticks;
2725
2726 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2727 if (!tick_nohz_full_enabled())
2728 return;
2729
2730 /*
2731 * If some other CPU has already reported non-idle, if this is
2732 * not the flavor of RCU that tracks sysidle state, or if this
2733 * is an offline or the timekeeping CPU, nothing to do.
2734 */
2735 if (!*isidle || rdp->rsp != rcu_state_p ||
2736 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2737 return;
2738 /* Verify affinity of current kthread. */
2739 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2740
2741 /* Pick up current idle and NMI-nesting counter and check. */
2742 cur = atomic_read(&rdtp->dynticks_idle);
2743 if (cur & 0x1) {
2744 *isidle = false; /* We are not idle! */
2745 return;
2746 }
2747 smp_mb(); /* Read counters before timestamps. */
2748
2749 /* Pick up timestamps. */
2750 j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2751 /* If this CPU entered idle more recently, update maxj timestamp. */
2752 if (ULONG_CMP_LT(*maxj, j))
2753 *maxj = j;
2754 }
2755
2756 /*
2757 * Is this the flavor of RCU that is handling full-system idle?
2758 */
2759 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2760 {
2761 return rsp == rcu_state_p;
2762 }
2763
2764 /*
2765 * Return a delay in jiffies based on the number of CPUs, rcu_node
2766 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2767 * systems more time to transition to full-idle state in order to
2768 * avoid the cache thrashing that otherwise occur on the state variable.
2769 * Really small systems (less than a couple of tens of CPUs) should
2770 * instead use a single global atomically incremented counter, and later
2771 * versions of this will automatically reconfigure themselves accordingly.
2772 */
2773 static unsigned long rcu_sysidle_delay(void)
2774 {
2775 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2776 return 0;
2777 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2778 }
2779
2780 /*
2781 * Advance the full-system-idle state. This is invoked when all of
2782 * the non-timekeeping CPUs are idle.
2783 */
2784 static void rcu_sysidle(unsigned long j)
2785 {
2786 /* Check the current state. */
2787 switch (READ_ONCE(full_sysidle_state)) {
2788 case RCU_SYSIDLE_NOT:
2789
2790 /* First time all are idle, so note a short idle period. */
2791 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2792 break;
2793
2794 case RCU_SYSIDLE_SHORT:
2795
2796 /*
2797 * Idle for a bit, time to advance to next state?
2798 * cmpxchg failure means race with non-idle, let them win.
2799 */
2800 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2801 (void)cmpxchg(&full_sysidle_state,
2802 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2803 break;
2804
2805 case RCU_SYSIDLE_LONG:
2806
2807 /*
2808 * Do an additional check pass before advancing to full.
2809 * cmpxchg failure means race with non-idle, let them win.
2810 */
2811 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2812 (void)cmpxchg(&full_sysidle_state,
2813 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2814 break;
2815
2816 default:
2817 break;
2818 }
2819 }
2820
2821 /*
2822 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2823 * back to the beginning.
2824 */
2825 static void rcu_sysidle_cancel(void)
2826 {
2827 smp_mb();
2828 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2829 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2830 }
2831
2832 /*
2833 * Update the sysidle state based on the results of a force-quiescent-state
2834 * scan of the CPUs' dyntick-idle state.
2835 */
2836 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2837 unsigned long maxj, bool gpkt)
2838 {
2839 if (rsp != rcu_state_p)
2840 return; /* Wrong flavor, ignore. */
2841 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2842 return; /* Running state machine from timekeeping CPU. */
2843 if (isidle)
2844 rcu_sysidle(maxj); /* More idle! */
2845 else
2846 rcu_sysidle_cancel(); /* Idle is over. */
2847 }
2848
2849 /*
2850 * Wrapper for rcu_sysidle_report() when called from the grace-period
2851 * kthread's context.
2852 */
2853 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2854 unsigned long maxj)
2855 {
2856 /* If there are no nohz_full= CPUs, no need to track this. */
2857 if (!tick_nohz_full_enabled())
2858 return;
2859
2860 rcu_sysidle_report(rsp, isidle, maxj, true);
2861 }
2862
2863 /* Callback and function for forcing an RCU grace period. */
2864 struct rcu_sysidle_head {
2865 struct rcu_head rh;
2866 int inuse;
2867 };
2868
2869 static void rcu_sysidle_cb(struct rcu_head *rhp)
2870 {
2871 struct rcu_sysidle_head *rshp;
2872
2873 /*
2874 * The following memory barrier is needed to replace the
2875 * memory barriers that would normally be in the memory
2876 * allocator.
2877 */
2878 smp_mb(); /* grace period precedes setting inuse. */
2879
2880 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2881 WRITE_ONCE(rshp->inuse, 0);
2882 }
2883
2884 /*
2885 * Check to see if the system is fully idle, other than the timekeeping CPU.
2886 * The caller must have disabled interrupts. This is not intended to be
2887 * called unless tick_nohz_full_enabled().
2888 */
2889 bool rcu_sys_is_idle(void)
2890 {
2891 static struct rcu_sysidle_head rsh;
2892 int rss = READ_ONCE(full_sysidle_state);
2893
2894 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2895 return false;
2896
2897 /* Handle small-system case by doing a full scan of CPUs. */
2898 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2899 int oldrss = rss - 1;
2900
2901 /*
2902 * One pass to advance to each state up to _FULL.
2903 * Give up if any pass fails to advance the state.
2904 */
2905 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2906 int cpu;
2907 bool isidle = true;
2908 unsigned long maxj = jiffies - ULONG_MAX / 4;
2909 struct rcu_data *rdp;
2910
2911 /* Scan all the CPUs looking for nonidle CPUs. */
2912 for_each_possible_cpu(cpu) {
2913 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2914 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2915 if (!isidle)
2916 break;
2917 }
2918 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2919 oldrss = rss;
2920 rss = READ_ONCE(full_sysidle_state);
2921 }
2922 }
2923
2924 /* If this is the first observation of an idle period, record it. */
2925 if (rss == RCU_SYSIDLE_FULL) {
2926 rss = cmpxchg(&full_sysidle_state,
2927 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2928 return rss == RCU_SYSIDLE_FULL;
2929 }
2930
2931 smp_mb(); /* ensure rss load happens before later caller actions. */
2932
2933 /* If already fully idle, tell the caller (in case of races). */
2934 if (rss == RCU_SYSIDLE_FULL_NOTED)
2935 return true;
2936
2937 /*
2938 * If we aren't there yet, and a grace period is not in flight,
2939 * initiate a grace period. Either way, tell the caller that
2940 * we are not there yet. We use an xchg() rather than an assignment
2941 * to make up for the memory barriers that would otherwise be
2942 * provided by the memory allocator.
2943 */
2944 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2945 !rcu_gp_in_progress(rcu_state_p) &&
2946 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2947 call_rcu(&rsh.rh, rcu_sysidle_cb);
2948 return false;
2949 }
2950
2951 /*
2952 * Initialize dynticks sysidle state for CPUs coming online.
2953 */
2954 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2955 {
2956 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2957 }
2958
2959 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2960
2961 static void rcu_sysidle_enter(int irq)
2962 {
2963 }
2964
2965 static void rcu_sysidle_exit(int irq)
2966 {
2967 }
2968
2969 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2970 unsigned long *maxj)
2971 {
2972 }
2973
2974 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2975 {
2976 return false;
2977 }
2978
2979 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2980 unsigned long maxj)
2981 {
2982 }
2983
2984 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2985 {
2986 }
2987
2988 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2989
2990 /*
2991 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2992 * grace-period kthread will do force_quiescent_state() processing?
2993 * The idea is to avoid waking up RCU core processing on such a
2994 * CPU unless the grace period has extended for too long.
2995 *
2996 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2997 * CONFIG_RCU_NOCB_CPU CPUs.
2998 */
2999 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3000 {
3001 #ifdef CONFIG_NO_HZ_FULL
3002 if (tick_nohz_full_cpu(smp_processor_id()) &&
3003 (!rcu_gp_in_progress(rsp) ||
3004 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
3005 return true;
3006 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3007 return false;
3008 }
3009
3010 /*
3011 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3012 * timekeeping CPU.
3013 */
3014 static void rcu_bind_gp_kthread(void)
3015 {
3016 int __maybe_unused cpu;
3017
3018 if (!tick_nohz_full_enabled())
3019 return;
3020 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3021 cpu = tick_do_timer_cpu;
3022 if (cpu >= 0 && cpu < nr_cpu_ids)
3023 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3024 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3025 housekeeping_affine(current);
3026 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3027 }
3028
3029 /* Record the current task on dyntick-idle entry. */
3030 static void rcu_dynticks_task_enter(void)
3031 {
3032 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3033 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3034 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3035 }
3036
3037 /* Record no current task on dyntick-idle exit. */
3038 static void rcu_dynticks_task_exit(void)
3039 {
3040 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3041 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3042 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3043 }
This page took 0.093024 seconds and 5 git commands to generate.