sched: Use lockdep-based checking on rcu_dereference()
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50
51 #include "rcutree.h"
52
53 /* Data structures. */
54
55 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
56
57 #define RCU_STATE_INITIALIZER(name) { \
58 .level = { &name.node[0] }, \
59 .levelcnt = { \
60 NUM_RCU_LVL_0, /* root of hierarchy. */ \
61 NUM_RCU_LVL_1, \
62 NUM_RCU_LVL_2, \
63 NUM_RCU_LVL_3, \
64 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
65 }, \
66 .signaled = RCU_GP_IDLE, \
67 .gpnum = -300, \
68 .completed = -300, \
69 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
70 .orphan_cbs_list = NULL, \
71 .orphan_cbs_tail = &name.orphan_cbs_list, \
72 .orphan_qlen = 0, \
73 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76 }
77
78 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
80
81 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
83
84 static int rcu_scheduler_active __read_mostly;
85
86
87 /*
88 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
89 * permit this function to be invoked without holding the root rcu_node
90 * structure's ->lock, but of course results can be subject to change.
91 */
92 static int rcu_gp_in_progress(struct rcu_state *rsp)
93 {
94 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
95 }
96
97 /*
98 * Note a quiescent state. Because we do not need to know
99 * how many quiescent states passed, just if there was at least
100 * one since the start of the grace period, this just sets a flag.
101 */
102 void rcu_sched_qs(int cpu)
103 {
104 struct rcu_data *rdp;
105
106 rdp = &per_cpu(rcu_sched_data, cpu);
107 rdp->passed_quiesc_completed = rdp->gpnum - 1;
108 barrier();
109 rdp->passed_quiesc = 1;
110 rcu_preempt_note_context_switch(cpu);
111 }
112
113 void rcu_bh_qs(int cpu)
114 {
115 struct rcu_data *rdp;
116
117 rdp = &per_cpu(rcu_bh_data, cpu);
118 rdp->passed_quiesc_completed = rdp->gpnum - 1;
119 barrier();
120 rdp->passed_quiesc = 1;
121 }
122
123 #ifdef CONFIG_NO_HZ
124 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
125 .dynticks_nesting = 1,
126 .dynticks = 1,
127 };
128 #endif /* #ifdef CONFIG_NO_HZ */
129
130 static int blimit = 10; /* Maximum callbacks per softirq. */
131 static int qhimark = 10000; /* If this many pending, ignore blimit. */
132 static int qlowmark = 100; /* Once only this many pending, use blimit. */
133
134 module_param(blimit, int, 0);
135 module_param(qhimark, int, 0);
136 module_param(qlowmark, int, 0);
137
138 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
139 static int rcu_pending(int cpu);
140
141 /*
142 * Return the number of RCU-sched batches processed thus far for debug & stats.
143 */
144 long rcu_batches_completed_sched(void)
145 {
146 return rcu_sched_state.completed;
147 }
148 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
149
150 /*
151 * Return the number of RCU BH batches processed thus far for debug & stats.
152 */
153 long rcu_batches_completed_bh(void)
154 {
155 return rcu_bh_state.completed;
156 }
157 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
158
159 /*
160 * Force a quiescent state for RCU BH.
161 */
162 void rcu_bh_force_quiescent_state(void)
163 {
164 force_quiescent_state(&rcu_bh_state, 0);
165 }
166 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
167
168 /*
169 * Force a quiescent state for RCU-sched.
170 */
171 void rcu_sched_force_quiescent_state(void)
172 {
173 force_quiescent_state(&rcu_sched_state, 0);
174 }
175 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
176
177 /*
178 * Does the CPU have callbacks ready to be invoked?
179 */
180 static int
181 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
182 {
183 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
184 }
185
186 /*
187 * Does the current CPU require a yet-as-unscheduled grace period?
188 */
189 static int
190 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
191 {
192 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
193 }
194
195 /*
196 * Return the root node of the specified rcu_state structure.
197 */
198 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
199 {
200 return &rsp->node[0];
201 }
202
203 #ifdef CONFIG_SMP
204
205 /*
206 * If the specified CPU is offline, tell the caller that it is in
207 * a quiescent state. Otherwise, whack it with a reschedule IPI.
208 * Grace periods can end up waiting on an offline CPU when that
209 * CPU is in the process of coming online -- it will be added to the
210 * rcu_node bitmasks before it actually makes it online. The same thing
211 * can happen while a CPU is in the process of coming online. Because this
212 * race is quite rare, we check for it after detecting that the grace
213 * period has been delayed rather than checking each and every CPU
214 * each and every time we start a new grace period.
215 */
216 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
217 {
218 /*
219 * If the CPU is offline, it is in a quiescent state. We can
220 * trust its state not to change because interrupts are disabled.
221 */
222 if (cpu_is_offline(rdp->cpu)) {
223 rdp->offline_fqs++;
224 return 1;
225 }
226
227 /* If preemptable RCU, no point in sending reschedule IPI. */
228 if (rdp->preemptable)
229 return 0;
230
231 /* The CPU is online, so send it a reschedule IPI. */
232 if (rdp->cpu != smp_processor_id())
233 smp_send_reschedule(rdp->cpu);
234 else
235 set_need_resched();
236 rdp->resched_ipi++;
237 return 0;
238 }
239
240 #endif /* #ifdef CONFIG_SMP */
241
242 #ifdef CONFIG_NO_HZ
243
244 /**
245 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
246 *
247 * Enter nohz mode, in other words, -leave- the mode in which RCU
248 * read-side critical sections can occur. (Though RCU read-side
249 * critical sections can occur in irq handlers in nohz mode, a possibility
250 * handled by rcu_irq_enter() and rcu_irq_exit()).
251 */
252 void rcu_enter_nohz(void)
253 {
254 unsigned long flags;
255 struct rcu_dynticks *rdtp;
256
257 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
258 local_irq_save(flags);
259 rdtp = &__get_cpu_var(rcu_dynticks);
260 rdtp->dynticks++;
261 rdtp->dynticks_nesting--;
262 WARN_ON_ONCE(rdtp->dynticks & 0x1);
263 local_irq_restore(flags);
264 }
265
266 /*
267 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
268 *
269 * Exit nohz mode, in other words, -enter- the mode in which RCU
270 * read-side critical sections normally occur.
271 */
272 void rcu_exit_nohz(void)
273 {
274 unsigned long flags;
275 struct rcu_dynticks *rdtp;
276
277 local_irq_save(flags);
278 rdtp = &__get_cpu_var(rcu_dynticks);
279 rdtp->dynticks++;
280 rdtp->dynticks_nesting++;
281 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
282 local_irq_restore(flags);
283 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
284 }
285
286 /**
287 * rcu_nmi_enter - inform RCU of entry to NMI context
288 *
289 * If the CPU was idle with dynamic ticks active, and there is no
290 * irq handler running, this updates rdtp->dynticks_nmi to let the
291 * RCU grace-period handling know that the CPU is active.
292 */
293 void rcu_nmi_enter(void)
294 {
295 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
296
297 if (rdtp->dynticks & 0x1)
298 return;
299 rdtp->dynticks_nmi++;
300 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
301 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
302 }
303
304 /**
305 * rcu_nmi_exit - inform RCU of exit from NMI context
306 *
307 * If the CPU was idle with dynamic ticks active, and there is no
308 * irq handler running, this updates rdtp->dynticks_nmi to let the
309 * RCU grace-period handling know that the CPU is no longer active.
310 */
311 void rcu_nmi_exit(void)
312 {
313 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
314
315 if (rdtp->dynticks & 0x1)
316 return;
317 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
318 rdtp->dynticks_nmi++;
319 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
320 }
321
322 /**
323 * rcu_irq_enter - inform RCU of entry to hard irq context
324 *
325 * If the CPU was idle with dynamic ticks active, this updates the
326 * rdtp->dynticks to let the RCU handling know that the CPU is active.
327 */
328 void rcu_irq_enter(void)
329 {
330 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
331
332 if (rdtp->dynticks_nesting++)
333 return;
334 rdtp->dynticks++;
335 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
336 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
337 }
338
339 /**
340 * rcu_irq_exit - inform RCU of exit from hard irq context
341 *
342 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
343 * to put let the RCU handling be aware that the CPU is going back to idle
344 * with no ticks.
345 */
346 void rcu_irq_exit(void)
347 {
348 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
349
350 if (--rdtp->dynticks_nesting)
351 return;
352 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
353 rdtp->dynticks++;
354 WARN_ON_ONCE(rdtp->dynticks & 0x1);
355
356 /* If the interrupt queued a callback, get out of dyntick mode. */
357 if (__get_cpu_var(rcu_sched_data).nxtlist ||
358 __get_cpu_var(rcu_bh_data).nxtlist)
359 set_need_resched();
360 }
361
362 #ifdef CONFIG_SMP
363
364 /*
365 * Snapshot the specified CPU's dynticks counter so that we can later
366 * credit them with an implicit quiescent state. Return 1 if this CPU
367 * is in dynticks idle mode, which is an extended quiescent state.
368 */
369 static int dyntick_save_progress_counter(struct rcu_data *rdp)
370 {
371 int ret;
372 int snap;
373 int snap_nmi;
374
375 snap = rdp->dynticks->dynticks;
376 snap_nmi = rdp->dynticks->dynticks_nmi;
377 smp_mb(); /* Order sampling of snap with end of grace period. */
378 rdp->dynticks_snap = snap;
379 rdp->dynticks_nmi_snap = snap_nmi;
380 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
381 if (ret)
382 rdp->dynticks_fqs++;
383 return ret;
384 }
385
386 /*
387 * Return true if the specified CPU has passed through a quiescent
388 * state by virtue of being in or having passed through an dynticks
389 * idle state since the last call to dyntick_save_progress_counter()
390 * for this same CPU.
391 */
392 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
393 {
394 long curr;
395 long curr_nmi;
396 long snap;
397 long snap_nmi;
398
399 curr = rdp->dynticks->dynticks;
400 snap = rdp->dynticks_snap;
401 curr_nmi = rdp->dynticks->dynticks_nmi;
402 snap_nmi = rdp->dynticks_nmi_snap;
403 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
404
405 /*
406 * If the CPU passed through or entered a dynticks idle phase with
407 * no active irq/NMI handlers, then we can safely pretend that the CPU
408 * already acknowledged the request to pass through a quiescent
409 * state. Either way, that CPU cannot possibly be in an RCU
410 * read-side critical section that started before the beginning
411 * of the current RCU grace period.
412 */
413 if ((curr != snap || (curr & 0x1) == 0) &&
414 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
415 rdp->dynticks_fqs++;
416 return 1;
417 }
418
419 /* Go check for the CPU being offline. */
420 return rcu_implicit_offline_qs(rdp);
421 }
422
423 #endif /* #ifdef CONFIG_SMP */
424
425 #else /* #ifdef CONFIG_NO_HZ */
426
427 #ifdef CONFIG_SMP
428
429 static int dyntick_save_progress_counter(struct rcu_data *rdp)
430 {
431 return 0;
432 }
433
434 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
435 {
436 return rcu_implicit_offline_qs(rdp);
437 }
438
439 #endif /* #ifdef CONFIG_SMP */
440
441 #endif /* #else #ifdef CONFIG_NO_HZ */
442
443 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
444
445 static void record_gp_stall_check_time(struct rcu_state *rsp)
446 {
447 rsp->gp_start = jiffies;
448 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
449 }
450
451 static void print_other_cpu_stall(struct rcu_state *rsp)
452 {
453 int cpu;
454 long delta;
455 unsigned long flags;
456 struct rcu_node *rnp = rcu_get_root(rsp);
457
458 /* Only let one CPU complain about others per time interval. */
459
460 spin_lock_irqsave(&rnp->lock, flags);
461 delta = jiffies - rsp->jiffies_stall;
462 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
463 spin_unlock_irqrestore(&rnp->lock, flags);
464 return;
465 }
466 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
467
468 /*
469 * Now rat on any tasks that got kicked up to the root rcu_node
470 * due to CPU offlining.
471 */
472 rcu_print_task_stall(rnp);
473 spin_unlock_irqrestore(&rnp->lock, flags);
474
475 /* OK, time to rat on our buddy... */
476
477 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
478 rcu_for_each_leaf_node(rsp, rnp) {
479 rcu_print_task_stall(rnp);
480 if (rnp->qsmask == 0)
481 continue;
482 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
483 if (rnp->qsmask & (1UL << cpu))
484 printk(" %d", rnp->grplo + cpu);
485 }
486 printk(" (detected by %d, t=%ld jiffies)\n",
487 smp_processor_id(), (long)(jiffies - rsp->gp_start));
488 trigger_all_cpu_backtrace();
489
490 force_quiescent_state(rsp, 0); /* Kick them all. */
491 }
492
493 static void print_cpu_stall(struct rcu_state *rsp)
494 {
495 unsigned long flags;
496 struct rcu_node *rnp = rcu_get_root(rsp);
497
498 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
499 smp_processor_id(), jiffies - rsp->gp_start);
500 trigger_all_cpu_backtrace();
501
502 spin_lock_irqsave(&rnp->lock, flags);
503 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
504 rsp->jiffies_stall =
505 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
506 spin_unlock_irqrestore(&rnp->lock, flags);
507
508 set_need_resched(); /* kick ourselves to get things going. */
509 }
510
511 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
512 {
513 long delta;
514 struct rcu_node *rnp;
515
516 delta = jiffies - rsp->jiffies_stall;
517 rnp = rdp->mynode;
518 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
519
520 /* We haven't checked in, so go dump stack. */
521 print_cpu_stall(rsp);
522
523 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
524
525 /* They had two time units to dump stack, so complain. */
526 print_other_cpu_stall(rsp);
527 }
528 }
529
530 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
531
532 static void record_gp_stall_check_time(struct rcu_state *rsp)
533 {
534 }
535
536 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
537 {
538 }
539
540 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
541
542 /*
543 * Update CPU-local rcu_data state to record the newly noticed grace period.
544 * This is used both when we started the grace period and when we notice
545 * that someone else started the grace period. The caller must hold the
546 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
547 * and must have irqs disabled.
548 */
549 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
550 {
551 if (rdp->gpnum != rnp->gpnum) {
552 rdp->qs_pending = 1;
553 rdp->passed_quiesc = 0;
554 rdp->gpnum = rnp->gpnum;
555 }
556 }
557
558 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
559 {
560 unsigned long flags;
561 struct rcu_node *rnp;
562
563 local_irq_save(flags);
564 rnp = rdp->mynode;
565 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
566 !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
567 local_irq_restore(flags);
568 return;
569 }
570 __note_new_gpnum(rsp, rnp, rdp);
571 spin_unlock_irqrestore(&rnp->lock, flags);
572 }
573
574 /*
575 * Did someone else start a new RCU grace period start since we last
576 * checked? Update local state appropriately if so. Must be called
577 * on the CPU corresponding to rdp.
578 */
579 static int
580 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
581 {
582 unsigned long flags;
583 int ret = 0;
584
585 local_irq_save(flags);
586 if (rdp->gpnum != rsp->gpnum) {
587 note_new_gpnum(rsp, rdp);
588 ret = 1;
589 }
590 local_irq_restore(flags);
591 return ret;
592 }
593
594 /*
595 * Advance this CPU's callbacks, but only if the current grace period
596 * has ended. This may be called only from the CPU to whom the rdp
597 * belongs. In addition, the corresponding leaf rcu_node structure's
598 * ->lock must be held by the caller, with irqs disabled.
599 */
600 static void
601 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
602 {
603 /* Did another grace period end? */
604 if (rdp->completed != rnp->completed) {
605
606 /* Advance callbacks. No harm if list empty. */
607 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
608 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
609 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
610
611 /* Remember that we saw this grace-period completion. */
612 rdp->completed = rnp->completed;
613 }
614 }
615
616 /*
617 * Advance this CPU's callbacks, but only if the current grace period
618 * has ended. This may be called only from the CPU to whom the rdp
619 * belongs.
620 */
621 static void
622 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
623 {
624 unsigned long flags;
625 struct rcu_node *rnp;
626
627 local_irq_save(flags);
628 rnp = rdp->mynode;
629 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
630 !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
631 local_irq_restore(flags);
632 return;
633 }
634 __rcu_process_gp_end(rsp, rnp, rdp);
635 spin_unlock_irqrestore(&rnp->lock, flags);
636 }
637
638 /*
639 * Do per-CPU grace-period initialization for running CPU. The caller
640 * must hold the lock of the leaf rcu_node structure corresponding to
641 * this CPU.
642 */
643 static void
644 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
645 {
646 /* Prior grace period ended, so advance callbacks for current CPU. */
647 __rcu_process_gp_end(rsp, rnp, rdp);
648
649 /*
650 * Because this CPU just now started the new grace period, we know
651 * that all of its callbacks will be covered by this upcoming grace
652 * period, even the ones that were registered arbitrarily recently.
653 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
654 *
655 * Other CPUs cannot be sure exactly when the grace period started.
656 * Therefore, their recently registered callbacks must pass through
657 * an additional RCU_NEXT_READY stage, so that they will be handled
658 * by the next RCU grace period.
659 */
660 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
661 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
662
663 /* Set state so that this CPU will detect the next quiescent state. */
664 __note_new_gpnum(rsp, rnp, rdp);
665 }
666
667 /*
668 * Start a new RCU grace period if warranted, re-initializing the hierarchy
669 * in preparation for detecting the next grace period. The caller must hold
670 * the root node's ->lock, which is released before return. Hard irqs must
671 * be disabled.
672 */
673 static void
674 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
675 __releases(rcu_get_root(rsp)->lock)
676 {
677 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
678 struct rcu_node *rnp = rcu_get_root(rsp);
679
680 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
681 if (cpu_needs_another_gp(rsp, rdp))
682 rsp->fqs_need_gp = 1;
683 if (rnp->completed == rsp->completed) {
684 spin_unlock_irqrestore(&rnp->lock, flags);
685 return;
686 }
687 spin_unlock(&rnp->lock); /* irqs remain disabled. */
688
689 /*
690 * Propagate new ->completed value to rcu_node structures
691 * so that other CPUs don't have to wait until the start
692 * of the next grace period to process their callbacks.
693 */
694 rcu_for_each_node_breadth_first(rsp, rnp) {
695 spin_lock(&rnp->lock); /* irqs already disabled. */
696 rnp->completed = rsp->completed;
697 spin_unlock(&rnp->lock); /* irqs remain disabled. */
698 }
699 local_irq_restore(flags);
700 return;
701 }
702
703 /* Advance to a new grace period and initialize state. */
704 rsp->gpnum++;
705 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
706 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
707 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
708 record_gp_stall_check_time(rsp);
709
710 /* Special-case the common single-level case. */
711 if (NUM_RCU_NODES == 1) {
712 rcu_preempt_check_blocked_tasks(rnp);
713 rnp->qsmask = rnp->qsmaskinit;
714 rnp->gpnum = rsp->gpnum;
715 rnp->completed = rsp->completed;
716 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
717 rcu_start_gp_per_cpu(rsp, rnp, rdp);
718 spin_unlock_irqrestore(&rnp->lock, flags);
719 return;
720 }
721
722 spin_unlock(&rnp->lock); /* leave irqs disabled. */
723
724
725 /* Exclude any concurrent CPU-hotplug operations. */
726 spin_lock(&rsp->onofflock); /* irqs already disabled. */
727
728 /*
729 * Set the quiescent-state-needed bits in all the rcu_node
730 * structures for all currently online CPUs in breadth-first
731 * order, starting from the root rcu_node structure. This
732 * operation relies on the layout of the hierarchy within the
733 * rsp->node[] array. Note that other CPUs will access only
734 * the leaves of the hierarchy, which still indicate that no
735 * grace period is in progress, at least until the corresponding
736 * leaf node has been initialized. In addition, we have excluded
737 * CPU-hotplug operations.
738 *
739 * Note that the grace period cannot complete until we finish
740 * the initialization process, as there will be at least one
741 * qsmask bit set in the root node until that time, namely the
742 * one corresponding to this CPU, due to the fact that we have
743 * irqs disabled.
744 */
745 rcu_for_each_node_breadth_first(rsp, rnp) {
746 spin_lock(&rnp->lock); /* irqs already disabled. */
747 rcu_preempt_check_blocked_tasks(rnp);
748 rnp->qsmask = rnp->qsmaskinit;
749 rnp->gpnum = rsp->gpnum;
750 rnp->completed = rsp->completed;
751 if (rnp == rdp->mynode)
752 rcu_start_gp_per_cpu(rsp, rnp, rdp);
753 spin_unlock(&rnp->lock); /* irqs remain disabled. */
754 }
755
756 rnp = rcu_get_root(rsp);
757 spin_lock(&rnp->lock); /* irqs already disabled. */
758 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
759 spin_unlock(&rnp->lock); /* irqs remain disabled. */
760 spin_unlock_irqrestore(&rsp->onofflock, flags);
761 }
762
763 /*
764 * Report a full set of quiescent states to the specified rcu_state
765 * data structure. This involves cleaning up after the prior grace
766 * period and letting rcu_start_gp() start up the next grace period
767 * if one is needed. Note that the caller must hold rnp->lock, as
768 * required by rcu_start_gp(), which will release it.
769 */
770 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
771 __releases(rcu_get_root(rsp)->lock)
772 {
773 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
774 rsp->completed = rsp->gpnum;
775 rsp->signaled = RCU_GP_IDLE;
776 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
777 }
778
779 /*
780 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
781 * Allows quiescent states for a group of CPUs to be reported at one go
782 * to the specified rcu_node structure, though all the CPUs in the group
783 * must be represented by the same rcu_node structure (which need not be
784 * a leaf rcu_node structure, though it often will be). That structure's
785 * lock must be held upon entry, and it is released before return.
786 */
787 static void
788 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
789 struct rcu_node *rnp, unsigned long flags)
790 __releases(rnp->lock)
791 {
792 struct rcu_node *rnp_c;
793
794 /* Walk up the rcu_node hierarchy. */
795 for (;;) {
796 if (!(rnp->qsmask & mask)) {
797
798 /* Our bit has already been cleared, so done. */
799 spin_unlock_irqrestore(&rnp->lock, flags);
800 return;
801 }
802 rnp->qsmask &= ~mask;
803 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
804
805 /* Other bits still set at this level, so done. */
806 spin_unlock_irqrestore(&rnp->lock, flags);
807 return;
808 }
809 mask = rnp->grpmask;
810 if (rnp->parent == NULL) {
811
812 /* No more levels. Exit loop holding root lock. */
813
814 break;
815 }
816 spin_unlock_irqrestore(&rnp->lock, flags);
817 rnp_c = rnp;
818 rnp = rnp->parent;
819 spin_lock_irqsave(&rnp->lock, flags);
820 WARN_ON_ONCE(rnp_c->qsmask);
821 }
822
823 /*
824 * Get here if we are the last CPU to pass through a quiescent
825 * state for this grace period. Invoke rcu_report_qs_rsp()
826 * to clean up and start the next grace period if one is needed.
827 */
828 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
829 }
830
831 /*
832 * Record a quiescent state for the specified CPU to that CPU's rcu_data
833 * structure. This must be either called from the specified CPU, or
834 * called when the specified CPU is known to be offline (and when it is
835 * also known that no other CPU is concurrently trying to help the offline
836 * CPU). The lastcomp argument is used to make sure we are still in the
837 * grace period of interest. We don't want to end the current grace period
838 * based on quiescent states detected in an earlier grace period!
839 */
840 static void
841 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
842 {
843 unsigned long flags;
844 unsigned long mask;
845 struct rcu_node *rnp;
846
847 rnp = rdp->mynode;
848 spin_lock_irqsave(&rnp->lock, flags);
849 if (lastcomp != rnp->completed) {
850
851 /*
852 * Someone beat us to it for this grace period, so leave.
853 * The race with GP start is resolved by the fact that we
854 * hold the leaf rcu_node lock, so that the per-CPU bits
855 * cannot yet be initialized -- so we would simply find our
856 * CPU's bit already cleared in rcu_report_qs_rnp() if this
857 * race occurred.
858 */
859 rdp->passed_quiesc = 0; /* try again later! */
860 spin_unlock_irqrestore(&rnp->lock, flags);
861 return;
862 }
863 mask = rdp->grpmask;
864 if ((rnp->qsmask & mask) == 0) {
865 spin_unlock_irqrestore(&rnp->lock, flags);
866 } else {
867 rdp->qs_pending = 0;
868
869 /*
870 * This GP can't end until cpu checks in, so all of our
871 * callbacks can be processed during the next GP.
872 */
873 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
874
875 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
876 }
877 }
878
879 /*
880 * Check to see if there is a new grace period of which this CPU
881 * is not yet aware, and if so, set up local rcu_data state for it.
882 * Otherwise, see if this CPU has just passed through its first
883 * quiescent state for this grace period, and record that fact if so.
884 */
885 static void
886 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
887 {
888 /* If there is now a new grace period, record and return. */
889 if (check_for_new_grace_period(rsp, rdp))
890 return;
891
892 /*
893 * Does this CPU still need to do its part for current grace period?
894 * If no, return and let the other CPUs do their part as well.
895 */
896 if (!rdp->qs_pending)
897 return;
898
899 /*
900 * Was there a quiescent state since the beginning of the grace
901 * period? If no, then exit and wait for the next call.
902 */
903 if (!rdp->passed_quiesc)
904 return;
905
906 /*
907 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
908 * judge of that).
909 */
910 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
911 }
912
913 #ifdef CONFIG_HOTPLUG_CPU
914
915 /*
916 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
917 * specified flavor of RCU. The callbacks will be adopted by the next
918 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
919 * comes first. Because this is invoked from the CPU_DYING notifier,
920 * irqs are already disabled.
921 */
922 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
923 {
924 int i;
925 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
926
927 if (rdp->nxtlist == NULL)
928 return; /* irqs disabled, so comparison is stable. */
929 spin_lock(&rsp->onofflock); /* irqs already disabled. */
930 *rsp->orphan_cbs_tail = rdp->nxtlist;
931 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
932 rdp->nxtlist = NULL;
933 for (i = 0; i < RCU_NEXT_SIZE; i++)
934 rdp->nxttail[i] = &rdp->nxtlist;
935 rsp->orphan_qlen += rdp->qlen;
936 rdp->qlen = 0;
937 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
938 }
939
940 /*
941 * Adopt previously orphaned RCU callbacks.
942 */
943 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
944 {
945 unsigned long flags;
946 struct rcu_data *rdp;
947
948 spin_lock_irqsave(&rsp->onofflock, flags);
949 rdp = rsp->rda[smp_processor_id()];
950 if (rsp->orphan_cbs_list == NULL) {
951 spin_unlock_irqrestore(&rsp->onofflock, flags);
952 return;
953 }
954 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
955 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
956 rdp->qlen += rsp->orphan_qlen;
957 rsp->orphan_cbs_list = NULL;
958 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
959 rsp->orphan_qlen = 0;
960 spin_unlock_irqrestore(&rsp->onofflock, flags);
961 }
962
963 /*
964 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
965 * and move all callbacks from the outgoing CPU to the current one.
966 */
967 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
968 {
969 unsigned long flags;
970 unsigned long mask;
971 int need_report = 0;
972 struct rcu_data *rdp = rsp->rda[cpu];
973 struct rcu_node *rnp;
974
975 /* Exclude any attempts to start a new grace period. */
976 spin_lock_irqsave(&rsp->onofflock, flags);
977
978 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
979 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
980 mask = rdp->grpmask; /* rnp->grplo is constant. */
981 do {
982 spin_lock(&rnp->lock); /* irqs already disabled. */
983 rnp->qsmaskinit &= ~mask;
984 if (rnp->qsmaskinit != 0) {
985 if (rnp != rdp->mynode)
986 spin_unlock(&rnp->lock); /* irqs remain disabled. */
987 break;
988 }
989 if (rnp == rdp->mynode)
990 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
991 else
992 spin_unlock(&rnp->lock); /* irqs remain disabled. */
993 mask = rnp->grpmask;
994 rnp = rnp->parent;
995 } while (rnp != NULL);
996
997 /*
998 * We still hold the leaf rcu_node structure lock here, and
999 * irqs are still disabled. The reason for this subterfuge is
1000 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1001 * held leads to deadlock.
1002 */
1003 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1004 rnp = rdp->mynode;
1005 if (need_report & RCU_OFL_TASKS_NORM_GP)
1006 rcu_report_unblock_qs_rnp(rnp, flags);
1007 else
1008 spin_unlock_irqrestore(&rnp->lock, flags);
1009 if (need_report & RCU_OFL_TASKS_EXP_GP)
1010 rcu_report_exp_rnp(rsp, rnp);
1011
1012 rcu_adopt_orphan_cbs(rsp);
1013 }
1014
1015 /*
1016 * Remove the specified CPU from the RCU hierarchy and move any pending
1017 * callbacks that it might have to the current CPU. This code assumes
1018 * that at least one CPU in the system will remain running at all times.
1019 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1020 */
1021 static void rcu_offline_cpu(int cpu)
1022 {
1023 __rcu_offline_cpu(cpu, &rcu_sched_state);
1024 __rcu_offline_cpu(cpu, &rcu_bh_state);
1025 rcu_preempt_offline_cpu(cpu);
1026 }
1027
1028 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1029
1030 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
1031 {
1032 }
1033
1034 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1035 {
1036 }
1037
1038 static void rcu_offline_cpu(int cpu)
1039 {
1040 }
1041
1042 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1043
1044 /*
1045 * Invoke any RCU callbacks that have made it to the end of their grace
1046 * period. Thottle as specified by rdp->blimit.
1047 */
1048 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1049 {
1050 unsigned long flags;
1051 struct rcu_head *next, *list, **tail;
1052 int count;
1053
1054 /* If no callbacks are ready, just return.*/
1055 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1056 return;
1057
1058 /*
1059 * Extract the list of ready callbacks, disabling to prevent
1060 * races with call_rcu() from interrupt handlers.
1061 */
1062 local_irq_save(flags);
1063 list = rdp->nxtlist;
1064 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1065 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1066 tail = rdp->nxttail[RCU_DONE_TAIL];
1067 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1068 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1069 rdp->nxttail[count] = &rdp->nxtlist;
1070 local_irq_restore(flags);
1071
1072 /* Invoke callbacks. */
1073 count = 0;
1074 while (list) {
1075 next = list->next;
1076 prefetch(next);
1077 list->func(list);
1078 list = next;
1079 if (++count >= rdp->blimit)
1080 break;
1081 }
1082
1083 local_irq_save(flags);
1084
1085 /* Update count, and requeue any remaining callbacks. */
1086 rdp->qlen -= count;
1087 if (list != NULL) {
1088 *tail = rdp->nxtlist;
1089 rdp->nxtlist = list;
1090 for (count = 0; count < RCU_NEXT_SIZE; count++)
1091 if (&rdp->nxtlist == rdp->nxttail[count])
1092 rdp->nxttail[count] = tail;
1093 else
1094 break;
1095 }
1096
1097 /* Reinstate batch limit if we have worked down the excess. */
1098 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1099 rdp->blimit = blimit;
1100
1101 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1102 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1103 rdp->qlen_last_fqs_check = 0;
1104 rdp->n_force_qs_snap = rsp->n_force_qs;
1105 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1106 rdp->qlen_last_fqs_check = rdp->qlen;
1107
1108 local_irq_restore(flags);
1109
1110 /* Re-raise the RCU softirq if there are callbacks remaining. */
1111 if (cpu_has_callbacks_ready_to_invoke(rdp))
1112 raise_softirq(RCU_SOFTIRQ);
1113 }
1114
1115 /*
1116 * Check to see if this CPU is in a non-context-switch quiescent state
1117 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1118 * Also schedule the RCU softirq handler.
1119 *
1120 * This function must be called with hardirqs disabled. It is normally
1121 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1122 * false, there is no point in invoking rcu_check_callbacks().
1123 */
1124 void rcu_check_callbacks(int cpu, int user)
1125 {
1126 if (!rcu_pending(cpu))
1127 return; /* if nothing for RCU to do. */
1128 if (user ||
1129 (idle_cpu(cpu) && rcu_scheduler_active &&
1130 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1131
1132 /*
1133 * Get here if this CPU took its interrupt from user
1134 * mode or from the idle loop, and if this is not a
1135 * nested interrupt. In this case, the CPU is in
1136 * a quiescent state, so note it.
1137 *
1138 * No memory barrier is required here because both
1139 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1140 * variables that other CPUs neither access nor modify,
1141 * at least not while the corresponding CPU is online.
1142 */
1143
1144 rcu_sched_qs(cpu);
1145 rcu_bh_qs(cpu);
1146
1147 } else if (!in_softirq()) {
1148
1149 /*
1150 * Get here if this CPU did not take its interrupt from
1151 * softirq, in other words, if it is not interrupting
1152 * a rcu_bh read-side critical section. This is an _bh
1153 * critical section, so note it.
1154 */
1155
1156 rcu_bh_qs(cpu);
1157 }
1158 rcu_preempt_check_callbacks(cpu);
1159 raise_softirq(RCU_SOFTIRQ);
1160 }
1161
1162 #ifdef CONFIG_SMP
1163
1164 /*
1165 * Scan the leaf rcu_node structures, processing dyntick state for any that
1166 * have not yet encountered a quiescent state, using the function specified.
1167 * The caller must have suppressed start of new grace periods.
1168 */
1169 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1170 {
1171 unsigned long bit;
1172 int cpu;
1173 unsigned long flags;
1174 unsigned long mask;
1175 struct rcu_node *rnp;
1176
1177 rcu_for_each_leaf_node(rsp, rnp) {
1178 mask = 0;
1179 spin_lock_irqsave(&rnp->lock, flags);
1180 if (!rcu_gp_in_progress(rsp)) {
1181 spin_unlock_irqrestore(&rnp->lock, flags);
1182 return;
1183 }
1184 if (rnp->qsmask == 0) {
1185 spin_unlock_irqrestore(&rnp->lock, flags);
1186 continue;
1187 }
1188 cpu = rnp->grplo;
1189 bit = 1;
1190 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1191 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1192 mask |= bit;
1193 }
1194 if (mask != 0) {
1195
1196 /* rcu_report_qs_rnp() releases rnp->lock. */
1197 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1198 continue;
1199 }
1200 spin_unlock_irqrestore(&rnp->lock, flags);
1201 }
1202 }
1203
1204 /*
1205 * Force quiescent states on reluctant CPUs, and also detect which
1206 * CPUs are in dyntick-idle mode.
1207 */
1208 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1209 {
1210 unsigned long flags;
1211 struct rcu_node *rnp = rcu_get_root(rsp);
1212
1213 if (!rcu_gp_in_progress(rsp))
1214 return; /* No grace period in progress, nothing to force. */
1215 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1216 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1217 return; /* Someone else is already on the job. */
1218 }
1219 if (relaxed &&
1220 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
1221 goto unlock_fqs_ret; /* no emergency and done recently. */
1222 rsp->n_force_qs++;
1223 spin_lock(&rnp->lock); /* irqs already disabled */
1224 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1225 if(!rcu_gp_in_progress(rsp)) {
1226 rsp->n_force_qs_ngp++;
1227 spin_unlock(&rnp->lock); /* irqs remain disabled */
1228 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1229 }
1230 rsp->fqs_active = 1;
1231 switch (rsp->signaled) {
1232 case RCU_GP_IDLE:
1233 case RCU_GP_INIT:
1234
1235 break; /* grace period idle or initializing, ignore. */
1236
1237 case RCU_SAVE_DYNTICK:
1238
1239 spin_unlock(&rnp->lock); /* irqs remain disabled */
1240 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1241 break; /* So gcc recognizes the dead code. */
1242
1243 /* Record dyntick-idle state. */
1244 force_qs_rnp(rsp, dyntick_save_progress_counter);
1245 spin_lock(&rnp->lock); /* irqs already disabled */
1246 if (rcu_gp_in_progress(rsp))
1247 rsp->signaled = RCU_FORCE_QS;
1248 break;
1249
1250 case RCU_FORCE_QS:
1251
1252 /* Check dyntick-idle state, send IPI to laggarts. */
1253 spin_unlock(&rnp->lock); /* irqs remain disabled */
1254 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1255
1256 /* Leave state in case more forcing is required. */
1257
1258 spin_lock(&rnp->lock); /* irqs already disabled */
1259 break;
1260 }
1261 rsp->fqs_active = 0;
1262 if (rsp->fqs_need_gp) {
1263 spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1264 rsp->fqs_need_gp = 0;
1265 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1266 return;
1267 }
1268 spin_unlock(&rnp->lock); /* irqs remain disabled */
1269 unlock_fqs_ret:
1270 spin_unlock_irqrestore(&rsp->fqslock, flags);
1271 }
1272
1273 #else /* #ifdef CONFIG_SMP */
1274
1275 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1276 {
1277 set_need_resched();
1278 }
1279
1280 #endif /* #else #ifdef CONFIG_SMP */
1281
1282 /*
1283 * This does the RCU processing work from softirq context for the
1284 * specified rcu_state and rcu_data structures. This may be called
1285 * only from the CPU to whom the rdp belongs.
1286 */
1287 static void
1288 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1289 {
1290 unsigned long flags;
1291
1292 WARN_ON_ONCE(rdp->beenonline == 0);
1293
1294 /*
1295 * If an RCU GP has gone long enough, go check for dyntick
1296 * idle CPUs and, if needed, send resched IPIs.
1297 */
1298 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1299 force_quiescent_state(rsp, 1);
1300
1301 /*
1302 * Advance callbacks in response to end of earlier grace
1303 * period that some other CPU ended.
1304 */
1305 rcu_process_gp_end(rsp, rdp);
1306
1307 /* Update RCU state based on any recent quiescent states. */
1308 rcu_check_quiescent_state(rsp, rdp);
1309
1310 /* Does this CPU require a not-yet-started grace period? */
1311 if (cpu_needs_another_gp(rsp, rdp)) {
1312 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1313 rcu_start_gp(rsp, flags); /* releases above lock */
1314 }
1315
1316 /* If there are callbacks ready, invoke them. */
1317 rcu_do_batch(rsp, rdp);
1318 }
1319
1320 /*
1321 * Do softirq processing for the current CPU.
1322 */
1323 static void rcu_process_callbacks(struct softirq_action *unused)
1324 {
1325 /*
1326 * Memory references from any prior RCU read-side critical sections
1327 * executed by the interrupted code must be seen before any RCU
1328 * grace-period manipulations below.
1329 */
1330 smp_mb(); /* See above block comment. */
1331
1332 __rcu_process_callbacks(&rcu_sched_state,
1333 &__get_cpu_var(rcu_sched_data));
1334 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1335 rcu_preempt_process_callbacks();
1336
1337 /*
1338 * Memory references from any later RCU read-side critical sections
1339 * executed by the interrupted code must be seen after any RCU
1340 * grace-period manipulations above.
1341 */
1342 smp_mb(); /* See above block comment. */
1343 }
1344
1345 static void
1346 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1347 struct rcu_state *rsp)
1348 {
1349 unsigned long flags;
1350 struct rcu_data *rdp;
1351
1352 head->func = func;
1353 head->next = NULL;
1354
1355 smp_mb(); /* Ensure RCU update seen before callback registry. */
1356
1357 /*
1358 * Opportunistically note grace-period endings and beginnings.
1359 * Note that we might see a beginning right after we see an
1360 * end, but never vice versa, since this CPU has to pass through
1361 * a quiescent state betweentimes.
1362 */
1363 local_irq_save(flags);
1364 rdp = rsp->rda[smp_processor_id()];
1365 rcu_process_gp_end(rsp, rdp);
1366 check_for_new_grace_period(rsp, rdp);
1367
1368 /* Add the callback to our list. */
1369 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1370 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1371
1372 /* Start a new grace period if one not already started. */
1373 if (!rcu_gp_in_progress(rsp)) {
1374 unsigned long nestflag;
1375 struct rcu_node *rnp_root = rcu_get_root(rsp);
1376
1377 spin_lock_irqsave(&rnp_root->lock, nestflag);
1378 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1379 }
1380
1381 /*
1382 * Force the grace period if too many callbacks or too long waiting.
1383 * Enforce hysteresis, and don't invoke force_quiescent_state()
1384 * if some other CPU has recently done so. Also, don't bother
1385 * invoking force_quiescent_state() if the newly enqueued callback
1386 * is the only one waiting for a grace period to complete.
1387 */
1388 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1389 rdp->blimit = LONG_MAX;
1390 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1391 *rdp->nxttail[RCU_DONE_TAIL] != head)
1392 force_quiescent_state(rsp, 0);
1393 rdp->n_force_qs_snap = rsp->n_force_qs;
1394 rdp->qlen_last_fqs_check = rdp->qlen;
1395 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1396 force_quiescent_state(rsp, 1);
1397 local_irq_restore(flags);
1398 }
1399
1400 /*
1401 * Queue an RCU-sched callback for invocation after a grace period.
1402 */
1403 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1404 {
1405 __call_rcu(head, func, &rcu_sched_state);
1406 }
1407 EXPORT_SYMBOL_GPL(call_rcu_sched);
1408
1409 /*
1410 * Queue an RCU for invocation after a quicker grace period.
1411 */
1412 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1413 {
1414 __call_rcu(head, func, &rcu_bh_state);
1415 }
1416 EXPORT_SYMBOL_GPL(call_rcu_bh);
1417
1418 /**
1419 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1420 *
1421 * Control will return to the caller some time after a full rcu-sched
1422 * grace period has elapsed, in other words after all currently executing
1423 * rcu-sched read-side critical sections have completed. These read-side
1424 * critical sections are delimited by rcu_read_lock_sched() and
1425 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1426 * local_irq_disable(), and so on may be used in place of
1427 * rcu_read_lock_sched().
1428 *
1429 * This means that all preempt_disable code sequences, including NMI and
1430 * hardware-interrupt handlers, in progress on entry will have completed
1431 * before this primitive returns. However, this does not guarantee that
1432 * softirq handlers will have completed, since in some kernels, these
1433 * handlers can run in process context, and can block.
1434 *
1435 * This primitive provides the guarantees made by the (now removed)
1436 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1437 * guarantees that rcu_read_lock() sections will have completed.
1438 * In "classic RCU", these two guarantees happen to be one and
1439 * the same, but can differ in realtime RCU implementations.
1440 */
1441 void synchronize_sched(void)
1442 {
1443 struct rcu_synchronize rcu;
1444
1445 if (rcu_blocking_is_gp())
1446 return;
1447
1448 init_completion(&rcu.completion);
1449 /* Will wake me after RCU finished. */
1450 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1451 /* Wait for it. */
1452 wait_for_completion(&rcu.completion);
1453 }
1454 EXPORT_SYMBOL_GPL(synchronize_sched);
1455
1456 /**
1457 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1458 *
1459 * Control will return to the caller some time after a full rcu_bh grace
1460 * period has elapsed, in other words after all currently executing rcu_bh
1461 * read-side critical sections have completed. RCU read-side critical
1462 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1463 * and may be nested.
1464 */
1465 void synchronize_rcu_bh(void)
1466 {
1467 struct rcu_synchronize rcu;
1468
1469 if (rcu_blocking_is_gp())
1470 return;
1471
1472 init_completion(&rcu.completion);
1473 /* Will wake me after RCU finished. */
1474 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1475 /* Wait for it. */
1476 wait_for_completion(&rcu.completion);
1477 }
1478 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1479
1480 /*
1481 * Check to see if there is any immediate RCU-related work to be done
1482 * by the current CPU, for the specified type of RCU, returning 1 if so.
1483 * The checks are in order of increasing expense: checks that can be
1484 * carried out against CPU-local state are performed first. However,
1485 * we must check for CPU stalls first, else we might not get a chance.
1486 */
1487 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1488 {
1489 struct rcu_node *rnp = rdp->mynode;
1490
1491 rdp->n_rcu_pending++;
1492
1493 /* Check for CPU stalls, if enabled. */
1494 check_cpu_stall(rsp, rdp);
1495
1496 /* Is the RCU core waiting for a quiescent state from this CPU? */
1497 if (rdp->qs_pending) {
1498 rdp->n_rp_qs_pending++;
1499 return 1;
1500 }
1501
1502 /* Does this CPU have callbacks ready to invoke? */
1503 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1504 rdp->n_rp_cb_ready++;
1505 return 1;
1506 }
1507
1508 /* Has RCU gone idle with this CPU needing another grace period? */
1509 if (cpu_needs_another_gp(rsp, rdp)) {
1510 rdp->n_rp_cpu_needs_gp++;
1511 return 1;
1512 }
1513
1514 /* Has another RCU grace period completed? */
1515 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1516 rdp->n_rp_gp_completed++;
1517 return 1;
1518 }
1519
1520 /* Has a new RCU grace period started? */
1521 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1522 rdp->n_rp_gp_started++;
1523 return 1;
1524 }
1525
1526 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1527 if (rcu_gp_in_progress(rsp) &&
1528 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1529 rdp->n_rp_need_fqs++;
1530 return 1;
1531 }
1532
1533 /* nothing to do */
1534 rdp->n_rp_need_nothing++;
1535 return 0;
1536 }
1537
1538 /*
1539 * Check to see if there is any immediate RCU-related work to be done
1540 * by the current CPU, returning 1 if so. This function is part of the
1541 * RCU implementation; it is -not- an exported member of the RCU API.
1542 */
1543 static int rcu_pending(int cpu)
1544 {
1545 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1546 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1547 rcu_preempt_pending(cpu);
1548 }
1549
1550 /*
1551 * Check to see if any future RCU-related work will need to be done
1552 * by the current CPU, even if none need be done immediately, returning
1553 * 1 if so. This function is part of the RCU implementation; it is -not-
1554 * an exported member of the RCU API.
1555 */
1556 int rcu_needs_cpu(int cpu)
1557 {
1558 /* RCU callbacks either ready or pending? */
1559 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1560 per_cpu(rcu_bh_data, cpu).nxtlist ||
1561 rcu_preempt_needs_cpu(cpu);
1562 }
1563
1564 /*
1565 * This function is invoked towards the end of the scheduler's initialization
1566 * process. Before this is called, the idle task might contain
1567 * RCU read-side critical sections (during which time, this idle
1568 * task is booting the system). After this function is called, the
1569 * idle tasks are prohibited from containing RCU read-side critical
1570 * sections.
1571 */
1572 void rcu_scheduler_starting(void)
1573 {
1574 WARN_ON(num_online_cpus() != 1);
1575 WARN_ON(nr_context_switches() > 0);
1576 rcu_scheduler_active = 1;
1577 }
1578
1579 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1580 static atomic_t rcu_barrier_cpu_count;
1581 static DEFINE_MUTEX(rcu_barrier_mutex);
1582 static struct completion rcu_barrier_completion;
1583
1584 static void rcu_barrier_callback(struct rcu_head *notused)
1585 {
1586 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1587 complete(&rcu_barrier_completion);
1588 }
1589
1590 /*
1591 * Called with preemption disabled, and from cross-cpu IRQ context.
1592 */
1593 static void rcu_barrier_func(void *type)
1594 {
1595 int cpu = smp_processor_id();
1596 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1597 void (*call_rcu_func)(struct rcu_head *head,
1598 void (*func)(struct rcu_head *head));
1599
1600 atomic_inc(&rcu_barrier_cpu_count);
1601 call_rcu_func = type;
1602 call_rcu_func(head, rcu_barrier_callback);
1603 }
1604
1605 /*
1606 * Orchestrate the specified type of RCU barrier, waiting for all
1607 * RCU callbacks of the specified type to complete.
1608 */
1609 static void _rcu_barrier(struct rcu_state *rsp,
1610 void (*call_rcu_func)(struct rcu_head *head,
1611 void (*func)(struct rcu_head *head)))
1612 {
1613 BUG_ON(in_interrupt());
1614 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1615 mutex_lock(&rcu_barrier_mutex);
1616 init_completion(&rcu_barrier_completion);
1617 /*
1618 * Initialize rcu_barrier_cpu_count to 1, then invoke
1619 * rcu_barrier_func() on each CPU, so that each CPU also has
1620 * incremented rcu_barrier_cpu_count. Only then is it safe to
1621 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1622 * might complete its grace period before all of the other CPUs
1623 * did their increment, causing this function to return too
1624 * early.
1625 */
1626 atomic_set(&rcu_barrier_cpu_count, 1);
1627 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1628 rcu_adopt_orphan_cbs(rsp);
1629 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1630 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
1631 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1632 complete(&rcu_barrier_completion);
1633 wait_for_completion(&rcu_barrier_completion);
1634 mutex_unlock(&rcu_barrier_mutex);
1635 }
1636
1637 /**
1638 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1639 */
1640 void rcu_barrier_bh(void)
1641 {
1642 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1643 }
1644 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1645
1646 /**
1647 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1648 */
1649 void rcu_barrier_sched(void)
1650 {
1651 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1652 }
1653 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1654
1655 /*
1656 * Do boot-time initialization of a CPU's per-CPU RCU data.
1657 */
1658 static void __init
1659 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1660 {
1661 unsigned long flags;
1662 int i;
1663 struct rcu_data *rdp = rsp->rda[cpu];
1664 struct rcu_node *rnp = rcu_get_root(rsp);
1665
1666 /* Set up local state, ensuring consistent view of global state. */
1667 spin_lock_irqsave(&rnp->lock, flags);
1668 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1669 rdp->nxtlist = NULL;
1670 for (i = 0; i < RCU_NEXT_SIZE; i++)
1671 rdp->nxttail[i] = &rdp->nxtlist;
1672 rdp->qlen = 0;
1673 #ifdef CONFIG_NO_HZ
1674 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1675 #endif /* #ifdef CONFIG_NO_HZ */
1676 rdp->cpu = cpu;
1677 spin_unlock_irqrestore(&rnp->lock, flags);
1678 }
1679
1680 /*
1681 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1682 * offline event can be happening at a given time. Note also that we
1683 * can accept some slop in the rsp->completed access due to the fact
1684 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1685 */
1686 static void __cpuinit
1687 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1688 {
1689 unsigned long flags;
1690 unsigned long mask;
1691 struct rcu_data *rdp = rsp->rda[cpu];
1692 struct rcu_node *rnp = rcu_get_root(rsp);
1693
1694 /* Set up local state, ensuring consistent view of global state. */
1695 spin_lock_irqsave(&rnp->lock, flags);
1696 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1697 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1698 rdp->beenonline = 1; /* We have now been online. */
1699 rdp->preemptable = preemptable;
1700 rdp->qlen_last_fqs_check = 0;
1701 rdp->n_force_qs_snap = rsp->n_force_qs;
1702 rdp->blimit = blimit;
1703 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1704
1705 /*
1706 * A new grace period might start here. If so, we won't be part
1707 * of it, but that is OK, as we are currently in a quiescent state.
1708 */
1709
1710 /* Exclude any attempts to start a new GP on large systems. */
1711 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1712
1713 /* Add CPU to rcu_node bitmasks. */
1714 rnp = rdp->mynode;
1715 mask = rdp->grpmask;
1716 do {
1717 /* Exclude any attempts to start a new GP on small systems. */
1718 spin_lock(&rnp->lock); /* irqs already disabled. */
1719 rnp->qsmaskinit |= mask;
1720 mask = rnp->grpmask;
1721 if (rnp == rdp->mynode) {
1722 rdp->gpnum = rnp->completed; /* if GP in progress... */
1723 rdp->completed = rnp->completed;
1724 rdp->passed_quiesc_completed = rnp->completed - 1;
1725 }
1726 spin_unlock(&rnp->lock); /* irqs already disabled. */
1727 rnp = rnp->parent;
1728 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1729
1730 spin_unlock_irqrestore(&rsp->onofflock, flags);
1731 }
1732
1733 static void __cpuinit rcu_online_cpu(int cpu)
1734 {
1735 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1736 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1737 rcu_preempt_init_percpu_data(cpu);
1738 }
1739
1740 /*
1741 * Handle CPU online/offline notification events.
1742 */
1743 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1744 unsigned long action, void *hcpu)
1745 {
1746 long cpu = (long)hcpu;
1747
1748 switch (action) {
1749 case CPU_UP_PREPARE:
1750 case CPU_UP_PREPARE_FROZEN:
1751 rcu_online_cpu(cpu);
1752 break;
1753 case CPU_DYING:
1754 case CPU_DYING_FROZEN:
1755 /*
1756 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
1757 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
1758 * returns, all online cpus have queued rcu_barrier_func().
1759 * The dying CPU clears its cpu_online_mask bit and
1760 * moves all of its RCU callbacks to ->orphan_cbs_list
1761 * in the context of stop_machine(), so subsequent calls
1762 * to _rcu_barrier() will adopt these callbacks and only
1763 * then queue rcu_barrier_func() on all remaining CPUs.
1764 */
1765 rcu_send_cbs_to_orphanage(&rcu_bh_state);
1766 rcu_send_cbs_to_orphanage(&rcu_sched_state);
1767 rcu_preempt_send_cbs_to_orphanage();
1768 break;
1769 case CPU_DEAD:
1770 case CPU_DEAD_FROZEN:
1771 case CPU_UP_CANCELED:
1772 case CPU_UP_CANCELED_FROZEN:
1773 rcu_offline_cpu(cpu);
1774 break;
1775 default:
1776 break;
1777 }
1778 return NOTIFY_OK;
1779 }
1780
1781 /*
1782 * Compute the per-level fanout, either using the exact fanout specified
1783 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1784 */
1785 #ifdef CONFIG_RCU_FANOUT_EXACT
1786 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1787 {
1788 int i;
1789
1790 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1791 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1792 }
1793 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1794 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1795 {
1796 int ccur;
1797 int cprv;
1798 int i;
1799
1800 cprv = NR_CPUS;
1801 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1802 ccur = rsp->levelcnt[i];
1803 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1804 cprv = ccur;
1805 }
1806 }
1807 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1808
1809 /*
1810 * Helper function for rcu_init() that initializes one rcu_state structure.
1811 */
1812 static void __init rcu_init_one(struct rcu_state *rsp)
1813 {
1814 static char *buf[] = { "rcu_node_level_0",
1815 "rcu_node_level_1",
1816 "rcu_node_level_2",
1817 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
1818 int cpustride = 1;
1819 int i;
1820 int j;
1821 struct rcu_node *rnp;
1822
1823 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
1824
1825 /* Initialize the level-tracking arrays. */
1826
1827 for (i = 1; i < NUM_RCU_LVLS; i++)
1828 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1829 rcu_init_levelspread(rsp);
1830
1831 /* Initialize the elements themselves, starting from the leaves. */
1832
1833 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1834 cpustride *= rsp->levelspread[i];
1835 rnp = rsp->level[i];
1836 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1837 spin_lock_init(&rnp->lock);
1838 lockdep_set_class_and_name(&rnp->lock,
1839 &rcu_node_class[i], buf[i]);
1840 rnp->gpnum = 0;
1841 rnp->qsmask = 0;
1842 rnp->qsmaskinit = 0;
1843 rnp->grplo = j * cpustride;
1844 rnp->grphi = (j + 1) * cpustride - 1;
1845 if (rnp->grphi >= NR_CPUS)
1846 rnp->grphi = NR_CPUS - 1;
1847 if (i == 0) {
1848 rnp->grpnum = 0;
1849 rnp->grpmask = 0;
1850 rnp->parent = NULL;
1851 } else {
1852 rnp->grpnum = j % rsp->levelspread[i - 1];
1853 rnp->grpmask = 1UL << rnp->grpnum;
1854 rnp->parent = rsp->level[i - 1] +
1855 j / rsp->levelspread[i - 1];
1856 }
1857 rnp->level = i;
1858 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1859 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1860 INIT_LIST_HEAD(&rnp->blocked_tasks[2]);
1861 INIT_LIST_HEAD(&rnp->blocked_tasks[3]);
1862 }
1863 }
1864 }
1865
1866 /*
1867 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1868 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1869 * structure.
1870 */
1871 #define RCU_INIT_FLAVOR(rsp, rcu_data) \
1872 do { \
1873 int i; \
1874 int j; \
1875 struct rcu_node *rnp; \
1876 \
1877 rcu_init_one(rsp); \
1878 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1879 j = 0; \
1880 for_each_possible_cpu(i) { \
1881 if (i > rnp[j].grphi) \
1882 j++; \
1883 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1884 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1885 rcu_boot_init_percpu_data(i, rsp); \
1886 } \
1887 } while (0)
1888
1889 void __init rcu_init(void)
1890 {
1891 int cpu;
1892
1893 rcu_bootup_announce();
1894 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1895 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1896 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1897 #if NUM_RCU_LVL_4 != 0
1898 printk(KERN_INFO "Experimental four-level hierarchy is enabled.\n");
1899 #endif /* #if NUM_RCU_LVL_4 != 0 */
1900 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1901 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
1902 __rcu_init_preempt();
1903 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1904
1905 /*
1906 * We don't need protection against CPU-hotplug here because
1907 * this is called early in boot, before either interrupts
1908 * or the scheduler are operational.
1909 */
1910 cpu_notifier(rcu_cpu_notify, 0);
1911 for_each_online_cpu(cpu)
1912 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1913 }
1914
1915 #include "rcutree_plugin.h"
This page took 0.070146 seconds and 5 git commands to generate.