rcu: Detect illegal rcu dereference in extended quiescent state
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53
54 #include "rcutree.h"
55 #include <trace/events/rcu.h>
56
57 #include "rcu.h"
58
59 /* Data structures. */
60
61 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
62
63 #define RCU_STATE_INITIALIZER(structname) { \
64 .level = { &structname##_state.node[0] }, \
65 .levelcnt = { \
66 NUM_RCU_LVL_0, /* root of hierarchy. */ \
67 NUM_RCU_LVL_1, \
68 NUM_RCU_LVL_2, \
69 NUM_RCU_LVL_3, \
70 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71 }, \
72 .fqs_state = RCU_GP_IDLE, \
73 .gpnum = -300, \
74 .completed = -300, \
75 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 .n_force_qs = 0, \
78 .n_force_qs_ngp = 0, \
79 .name = #structname, \
80 }
81
82 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84
85 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87
88 static struct rcu_state *rcu_state;
89
90 /*
91 * The rcu_scheduler_active variable transitions from zero to one just
92 * before the first task is spawned. So when this variable is zero, RCU
93 * can assume that there is but one task, allowing RCU to (for example)
94 * optimized synchronize_sched() to a simple barrier(). When this variable
95 * is one, RCU must actually do all the hard work required to detect real
96 * grace periods. This variable is also used to suppress boot-time false
97 * positives from lockdep-RCU error checking.
98 */
99 int rcu_scheduler_active __read_mostly;
100 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
101
102 /*
103 * The rcu_scheduler_fully_active variable transitions from zero to one
104 * during the early_initcall() processing, which is after the scheduler
105 * is capable of creating new tasks. So RCU processing (for example,
106 * creating tasks for RCU priority boosting) must be delayed until after
107 * rcu_scheduler_fully_active transitions from zero to one. We also
108 * currently delay invocation of any RCU callbacks until after this point.
109 *
110 * It might later prove better for people registering RCU callbacks during
111 * early boot to take responsibility for these callbacks, but one step at
112 * a time.
113 */
114 static int rcu_scheduler_fully_active __read_mostly;
115
116 #ifdef CONFIG_RCU_BOOST
117
118 /*
119 * Control variables for per-CPU and per-rcu_node kthreads. These
120 * handle all flavors of RCU.
121 */
122 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126 DEFINE_PER_CPU(char, rcu_cpu_has_work);
127
128 #endif /* #ifdef CONFIG_RCU_BOOST */
129
130 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131 static void invoke_rcu_core(void);
132 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
133
134 /*
135 * Track the rcutorture test sequence number and the update version
136 * number within a given test. The rcutorture_testseq is incremented
137 * on every rcutorture module load and unload, so has an odd value
138 * when a test is running. The rcutorture_vernum is set to zero
139 * when rcutorture starts and is incremented on each rcutorture update.
140 * These variables enable correlating rcutorture output with the
141 * RCU tracing information.
142 */
143 unsigned long rcutorture_testseq;
144 unsigned long rcutorture_vernum;
145
146 /*
147 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
148 * permit this function to be invoked without holding the root rcu_node
149 * structure's ->lock, but of course results can be subject to change.
150 */
151 static int rcu_gp_in_progress(struct rcu_state *rsp)
152 {
153 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
154 }
155
156 /*
157 * Note a quiescent state. Because we do not need to know
158 * how many quiescent states passed, just if there was at least
159 * one since the start of the grace period, this just sets a flag.
160 * The caller must have disabled preemption.
161 */
162 void rcu_sched_qs(int cpu)
163 {
164 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
165
166 rdp->passed_quiesce_gpnum = rdp->gpnum;
167 barrier();
168 if (rdp->passed_quiesce == 0)
169 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
170 rdp->passed_quiesce = 1;
171 }
172
173 void rcu_bh_qs(int cpu)
174 {
175 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
176
177 rdp->passed_quiesce_gpnum = rdp->gpnum;
178 barrier();
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182 }
183
184 /*
185 * Note a context switch. This is a quiescent state for RCU-sched,
186 * and requires special handling for preemptible RCU.
187 * The caller must have disabled preemption.
188 */
189 void rcu_note_context_switch(int cpu)
190 {
191 trace_rcu_utilization("Start context switch");
192 rcu_sched_qs(cpu);
193 rcu_preempt_note_context_switch(cpu);
194 trace_rcu_utilization("End context switch");
195 }
196 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
197
198 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
199 .dynticks_nesting = LLONG_MAX / 2,
200 .dynticks = ATOMIC_INIT(1),
201 };
202
203 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
204 static int qhimark = 10000; /* If this many pending, ignore blimit. */
205 static int qlowmark = 100; /* Once only this many pending, use blimit. */
206
207 module_param(blimit, int, 0);
208 module_param(qhimark, int, 0);
209 module_param(qlowmark, int, 0);
210
211 int rcu_cpu_stall_suppress __read_mostly;
212 module_param(rcu_cpu_stall_suppress, int, 0644);
213
214 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
215 static int rcu_pending(int cpu);
216
217 /*
218 * Return the number of RCU-sched batches processed thus far for debug & stats.
219 */
220 long rcu_batches_completed_sched(void)
221 {
222 return rcu_sched_state.completed;
223 }
224 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
225
226 /*
227 * Return the number of RCU BH batches processed thus far for debug & stats.
228 */
229 long rcu_batches_completed_bh(void)
230 {
231 return rcu_bh_state.completed;
232 }
233 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
234
235 /*
236 * Force a quiescent state for RCU BH.
237 */
238 void rcu_bh_force_quiescent_state(void)
239 {
240 force_quiescent_state(&rcu_bh_state, 0);
241 }
242 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
243
244 /*
245 * Record the number of times rcutorture tests have been initiated and
246 * terminated. This information allows the debugfs tracing stats to be
247 * correlated to the rcutorture messages, even when the rcutorture module
248 * is being repeatedly loaded and unloaded. In other words, we cannot
249 * store this state in rcutorture itself.
250 */
251 void rcutorture_record_test_transition(void)
252 {
253 rcutorture_testseq++;
254 rcutorture_vernum = 0;
255 }
256 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
257
258 /*
259 * Record the number of writer passes through the current rcutorture test.
260 * This is also used to correlate debugfs tracing stats with the rcutorture
261 * messages.
262 */
263 void rcutorture_record_progress(unsigned long vernum)
264 {
265 rcutorture_vernum++;
266 }
267 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
268
269 /*
270 * Force a quiescent state for RCU-sched.
271 */
272 void rcu_sched_force_quiescent_state(void)
273 {
274 force_quiescent_state(&rcu_sched_state, 0);
275 }
276 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
277
278 /*
279 * Does the CPU have callbacks ready to be invoked?
280 */
281 static int
282 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
283 {
284 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
285 }
286
287 /*
288 * Does the current CPU require a yet-as-unscheduled grace period?
289 */
290 static int
291 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
292 {
293 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
294 }
295
296 /*
297 * Return the root node of the specified rcu_state structure.
298 */
299 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
300 {
301 return &rsp->node[0];
302 }
303
304 #ifdef CONFIG_SMP
305
306 /*
307 * If the specified CPU is offline, tell the caller that it is in
308 * a quiescent state. Otherwise, whack it with a reschedule IPI.
309 * Grace periods can end up waiting on an offline CPU when that
310 * CPU is in the process of coming online -- it will be added to the
311 * rcu_node bitmasks before it actually makes it online. The same thing
312 * can happen while a CPU is in the process of coming online. Because this
313 * race is quite rare, we check for it after detecting that the grace
314 * period has been delayed rather than checking each and every CPU
315 * each and every time we start a new grace period.
316 */
317 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
318 {
319 /*
320 * If the CPU is offline, it is in a quiescent state. We can
321 * trust its state not to change because interrupts are disabled.
322 */
323 if (cpu_is_offline(rdp->cpu)) {
324 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
325 rdp->offline_fqs++;
326 return 1;
327 }
328
329 /*
330 * The CPU is online, so send it a reschedule IPI. This forces
331 * it through the scheduler, and (inefficiently) also handles cases
332 * where idle loops fail to inform RCU about the CPU being idle.
333 */
334 if (rdp->cpu != smp_processor_id())
335 smp_send_reschedule(rdp->cpu);
336 else
337 set_need_resched();
338 rdp->resched_ipi++;
339 return 0;
340 }
341
342 #endif /* #ifdef CONFIG_SMP */
343
344 /*
345 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
346 *
347 * If the new value of the ->dynticks_nesting counter now is zero,
348 * we really have entered idle, and must do the appropriate accounting.
349 * The caller must have disabled interrupts.
350 */
351 static void rcu_idle_enter_common(struct rcu_dynticks *rdtp)
352 {
353 if (rdtp->dynticks_nesting) {
354 trace_rcu_dyntick("--=", rdtp->dynticks_nesting);
355 return;
356 }
357 trace_rcu_dyntick("Start", rdtp->dynticks_nesting);
358 if (!idle_cpu(smp_processor_id())) {
359 WARN_ON_ONCE(1); /* must be idle task! */
360 trace_rcu_dyntick("Error on entry: not idle task",
361 rdtp->dynticks_nesting);
362 ftrace_dump(DUMP_ALL);
363 }
364 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
365 smp_mb__before_atomic_inc(); /* See above. */
366 atomic_inc(&rdtp->dynticks);
367 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
368 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
369 }
370
371 /**
372 * rcu_idle_enter - inform RCU that current CPU is entering idle
373 *
374 * Enter idle mode, in other words, -leave- the mode in which RCU
375 * read-side critical sections can occur. (Though RCU read-side
376 * critical sections can occur in irq handlers in idle, a possibility
377 * handled by irq_enter() and irq_exit().)
378 *
379 * We crowbar the ->dynticks_nesting field to zero to allow for
380 * the possibility of usermode upcalls having messed up our count
381 * of interrupt nesting level during the prior busy period.
382 */
383 void rcu_idle_enter(void)
384 {
385 unsigned long flags;
386 struct rcu_dynticks *rdtp;
387
388 local_irq_save(flags);
389 rdtp = &__get_cpu_var(rcu_dynticks);
390 rdtp->dynticks_nesting = 0;
391 rcu_idle_enter_common(rdtp);
392 local_irq_restore(flags);
393 }
394
395 /**
396 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
397 *
398 * Exit from an interrupt handler, which might possibly result in entering
399 * idle mode, in other words, leaving the mode in which read-side critical
400 * sections can occur.
401 *
402 * This code assumes that the idle loop never does anything that might
403 * result in unbalanced calls to irq_enter() and irq_exit(). If your
404 * architecture violates this assumption, RCU will give you what you
405 * deserve, good and hard. But very infrequently and irreproducibly.
406 *
407 * Use things like work queues to work around this limitation.
408 *
409 * You have been warned.
410 */
411 void rcu_irq_exit(void)
412 {
413 unsigned long flags;
414 struct rcu_dynticks *rdtp;
415
416 local_irq_save(flags);
417 rdtp = &__get_cpu_var(rcu_dynticks);
418 rdtp->dynticks_nesting--;
419 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
420 rcu_idle_enter_common(rdtp);
421 local_irq_restore(flags);
422 }
423
424 /*
425 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
426 *
427 * If the new value of the ->dynticks_nesting counter was previously zero,
428 * we really have exited idle, and must do the appropriate accounting.
429 * The caller must have disabled interrupts.
430 */
431 static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
432 {
433 if (oldval) {
434 trace_rcu_dyntick("++=", rdtp->dynticks_nesting);
435 return;
436 }
437 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
438 atomic_inc(&rdtp->dynticks);
439 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
440 smp_mb__after_atomic_inc(); /* See above. */
441 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
442 trace_rcu_dyntick("End", oldval);
443 if (!idle_cpu(smp_processor_id())) {
444 WARN_ON_ONCE(1); /* must be idle task! */
445 trace_rcu_dyntick("Error on exit: not idle task", oldval);
446 ftrace_dump(DUMP_ALL);
447 }
448 }
449
450 /**
451 * rcu_idle_exit - inform RCU that current CPU is leaving idle
452 *
453 * Exit idle mode, in other words, -enter- the mode in which RCU
454 * read-side critical sections can occur.
455 *
456 * We crowbar the ->dynticks_nesting field to LLONG_MAX/2 to allow for
457 * the possibility of usermode upcalls messing up our count
458 * of interrupt nesting level during the busy period that is just
459 * now starting.
460 */
461 void rcu_idle_exit(void)
462 {
463 unsigned long flags;
464 struct rcu_dynticks *rdtp;
465 long long oldval;
466
467 local_irq_save(flags);
468 rdtp = &__get_cpu_var(rcu_dynticks);
469 oldval = rdtp->dynticks_nesting;
470 WARN_ON_ONCE(oldval != 0);
471 rdtp->dynticks_nesting = LLONG_MAX / 2;
472 rcu_idle_exit_common(rdtp, oldval);
473 local_irq_restore(flags);
474 }
475
476 /**
477 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
478 *
479 * Enter an interrupt handler, which might possibly result in exiting
480 * idle mode, in other words, entering the mode in which read-side critical
481 * sections can occur.
482 *
483 * Note that the Linux kernel is fully capable of entering an interrupt
484 * handler that it never exits, for example when doing upcalls to
485 * user mode! This code assumes that the idle loop never does upcalls to
486 * user mode. If your architecture does do upcalls from the idle loop (or
487 * does anything else that results in unbalanced calls to the irq_enter()
488 * and irq_exit() functions), RCU will give you what you deserve, good
489 * and hard. But very infrequently and irreproducibly.
490 *
491 * Use things like work queues to work around this limitation.
492 *
493 * You have been warned.
494 */
495 void rcu_irq_enter(void)
496 {
497 unsigned long flags;
498 struct rcu_dynticks *rdtp;
499 long long oldval;
500
501 local_irq_save(flags);
502 rdtp = &__get_cpu_var(rcu_dynticks);
503 oldval = rdtp->dynticks_nesting;
504 rdtp->dynticks_nesting++;
505 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
506 rcu_idle_exit_common(rdtp, oldval);
507 local_irq_restore(flags);
508 }
509
510 /**
511 * rcu_nmi_enter - inform RCU of entry to NMI context
512 *
513 * If the CPU was idle with dynamic ticks active, and there is no
514 * irq handler running, this updates rdtp->dynticks_nmi to let the
515 * RCU grace-period handling know that the CPU is active.
516 */
517 void rcu_nmi_enter(void)
518 {
519 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
520
521 if (rdtp->dynticks_nmi_nesting == 0 &&
522 (atomic_read(&rdtp->dynticks) & 0x1))
523 return;
524 rdtp->dynticks_nmi_nesting++;
525 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
526 atomic_inc(&rdtp->dynticks);
527 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
528 smp_mb__after_atomic_inc(); /* See above. */
529 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
530 }
531
532 /**
533 * rcu_nmi_exit - inform RCU of exit from NMI context
534 *
535 * If the CPU was idle with dynamic ticks active, and there is no
536 * irq handler running, this updates rdtp->dynticks_nmi to let the
537 * RCU grace-period handling know that the CPU is no longer active.
538 */
539 void rcu_nmi_exit(void)
540 {
541 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
542
543 if (rdtp->dynticks_nmi_nesting == 0 ||
544 --rdtp->dynticks_nmi_nesting != 0)
545 return;
546 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
547 smp_mb__before_atomic_inc(); /* See above. */
548 atomic_inc(&rdtp->dynticks);
549 smp_mb__after_atomic_inc(); /* Force delay to next write. */
550 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
551 }
552
553 #ifdef CONFIG_PROVE_RCU
554
555 /**
556 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
557 *
558 * If the current CPU is in its idle loop and is neither in an interrupt
559 * or NMI handler, return true.
560 */
561 int rcu_is_cpu_idle(void)
562 {
563 int ret;
564
565 preempt_disable();
566 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
567 preempt_enable();
568 return ret;
569 }
570 EXPORT_SYMBOL(rcu_is_cpu_idle);
571
572 #endif /* #ifdef CONFIG_PROVE_RCU */
573
574 /**
575 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
576 *
577 * If the current CPU is idle or running at a first-level (not nested)
578 * interrupt from idle, return true. The caller must have at least
579 * disabled preemption.
580 */
581 int rcu_is_cpu_rrupt_from_idle(void)
582 {
583 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
584 }
585
586 #ifdef CONFIG_SMP
587
588 /*
589 * Snapshot the specified CPU's dynticks counter so that we can later
590 * credit them with an implicit quiescent state. Return 1 if this CPU
591 * is in dynticks idle mode, which is an extended quiescent state.
592 */
593 static int dyntick_save_progress_counter(struct rcu_data *rdp)
594 {
595 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
596 return 0;
597 }
598
599 /*
600 * Return true if the specified CPU has passed through a quiescent
601 * state by virtue of being in or having passed through an dynticks
602 * idle state since the last call to dyntick_save_progress_counter()
603 * for this same CPU.
604 */
605 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
606 {
607 unsigned int curr;
608 unsigned int snap;
609
610 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
611 snap = (unsigned int)rdp->dynticks_snap;
612
613 /*
614 * If the CPU passed through or entered a dynticks idle phase with
615 * no active irq/NMI handlers, then we can safely pretend that the CPU
616 * already acknowledged the request to pass through a quiescent
617 * state. Either way, that CPU cannot possibly be in an RCU
618 * read-side critical section that started before the beginning
619 * of the current RCU grace period.
620 */
621 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
622 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
623 rdp->dynticks_fqs++;
624 return 1;
625 }
626
627 /* Go check for the CPU being offline. */
628 return rcu_implicit_offline_qs(rdp);
629 }
630
631 #endif /* #ifdef CONFIG_SMP */
632
633 int rcu_cpu_stall_suppress __read_mostly;
634
635 static void record_gp_stall_check_time(struct rcu_state *rsp)
636 {
637 rsp->gp_start = jiffies;
638 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
639 }
640
641 static void print_other_cpu_stall(struct rcu_state *rsp)
642 {
643 int cpu;
644 long delta;
645 unsigned long flags;
646 int ndetected;
647 struct rcu_node *rnp = rcu_get_root(rsp);
648
649 /* Only let one CPU complain about others per time interval. */
650
651 raw_spin_lock_irqsave(&rnp->lock, flags);
652 delta = jiffies - rsp->jiffies_stall;
653 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
654 raw_spin_unlock_irqrestore(&rnp->lock, flags);
655 return;
656 }
657 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
658
659 /*
660 * Now rat on any tasks that got kicked up to the root rcu_node
661 * due to CPU offlining.
662 */
663 ndetected = rcu_print_task_stall(rnp);
664 raw_spin_unlock_irqrestore(&rnp->lock, flags);
665
666 /*
667 * OK, time to rat on our buddy...
668 * See Documentation/RCU/stallwarn.txt for info on how to debug
669 * RCU CPU stall warnings.
670 */
671 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
672 rsp->name);
673 rcu_for_each_leaf_node(rsp, rnp) {
674 raw_spin_lock_irqsave(&rnp->lock, flags);
675 ndetected += rcu_print_task_stall(rnp);
676 raw_spin_unlock_irqrestore(&rnp->lock, flags);
677 if (rnp->qsmask == 0)
678 continue;
679 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
680 if (rnp->qsmask & (1UL << cpu)) {
681 printk(" %d", rnp->grplo + cpu);
682 ndetected++;
683 }
684 }
685 printk("} (detected by %d, t=%ld jiffies)\n",
686 smp_processor_id(), (long)(jiffies - rsp->gp_start));
687 if (ndetected == 0)
688 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
689 else if (!trigger_all_cpu_backtrace())
690 dump_stack();
691
692 /* If so configured, complain about tasks blocking the grace period. */
693
694 rcu_print_detail_task_stall(rsp);
695
696 force_quiescent_state(rsp, 0); /* Kick them all. */
697 }
698
699 static void print_cpu_stall(struct rcu_state *rsp)
700 {
701 unsigned long flags;
702 struct rcu_node *rnp = rcu_get_root(rsp);
703
704 /*
705 * OK, time to rat on ourselves...
706 * See Documentation/RCU/stallwarn.txt for info on how to debug
707 * RCU CPU stall warnings.
708 */
709 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
710 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
711 if (!trigger_all_cpu_backtrace())
712 dump_stack();
713
714 raw_spin_lock_irqsave(&rnp->lock, flags);
715 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
716 rsp->jiffies_stall =
717 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
718 raw_spin_unlock_irqrestore(&rnp->lock, flags);
719
720 set_need_resched(); /* kick ourselves to get things going. */
721 }
722
723 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
724 {
725 unsigned long j;
726 unsigned long js;
727 struct rcu_node *rnp;
728
729 if (rcu_cpu_stall_suppress)
730 return;
731 j = ACCESS_ONCE(jiffies);
732 js = ACCESS_ONCE(rsp->jiffies_stall);
733 rnp = rdp->mynode;
734 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
735
736 /* We haven't checked in, so go dump stack. */
737 print_cpu_stall(rsp);
738
739 } else if (rcu_gp_in_progress(rsp) &&
740 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
741
742 /* They had a few time units to dump stack, so complain. */
743 print_other_cpu_stall(rsp);
744 }
745 }
746
747 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
748 {
749 rcu_cpu_stall_suppress = 1;
750 return NOTIFY_DONE;
751 }
752
753 /**
754 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
755 *
756 * Set the stall-warning timeout way off into the future, thus preventing
757 * any RCU CPU stall-warning messages from appearing in the current set of
758 * RCU grace periods.
759 *
760 * The caller must disable hard irqs.
761 */
762 void rcu_cpu_stall_reset(void)
763 {
764 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
765 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
766 rcu_preempt_stall_reset();
767 }
768
769 static struct notifier_block rcu_panic_block = {
770 .notifier_call = rcu_panic,
771 };
772
773 static void __init check_cpu_stall_init(void)
774 {
775 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
776 }
777
778 /*
779 * Update CPU-local rcu_data state to record the newly noticed grace period.
780 * This is used both when we started the grace period and when we notice
781 * that someone else started the grace period. The caller must hold the
782 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
783 * and must have irqs disabled.
784 */
785 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
786 {
787 if (rdp->gpnum != rnp->gpnum) {
788 /*
789 * If the current grace period is waiting for this CPU,
790 * set up to detect a quiescent state, otherwise don't
791 * go looking for one.
792 */
793 rdp->gpnum = rnp->gpnum;
794 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
795 if (rnp->qsmask & rdp->grpmask) {
796 rdp->qs_pending = 1;
797 rdp->passed_quiesce = 0;
798 } else
799 rdp->qs_pending = 0;
800 }
801 }
802
803 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
804 {
805 unsigned long flags;
806 struct rcu_node *rnp;
807
808 local_irq_save(flags);
809 rnp = rdp->mynode;
810 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
811 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
812 local_irq_restore(flags);
813 return;
814 }
815 __note_new_gpnum(rsp, rnp, rdp);
816 raw_spin_unlock_irqrestore(&rnp->lock, flags);
817 }
818
819 /*
820 * Did someone else start a new RCU grace period start since we last
821 * checked? Update local state appropriately if so. Must be called
822 * on the CPU corresponding to rdp.
823 */
824 static int
825 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
826 {
827 unsigned long flags;
828 int ret = 0;
829
830 local_irq_save(flags);
831 if (rdp->gpnum != rsp->gpnum) {
832 note_new_gpnum(rsp, rdp);
833 ret = 1;
834 }
835 local_irq_restore(flags);
836 return ret;
837 }
838
839 /*
840 * Advance this CPU's callbacks, but only if the current grace period
841 * has ended. This may be called only from the CPU to whom the rdp
842 * belongs. In addition, the corresponding leaf rcu_node structure's
843 * ->lock must be held by the caller, with irqs disabled.
844 */
845 static void
846 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
847 {
848 /* Did another grace period end? */
849 if (rdp->completed != rnp->completed) {
850
851 /* Advance callbacks. No harm if list empty. */
852 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
853 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
854 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
855
856 /* Remember that we saw this grace-period completion. */
857 rdp->completed = rnp->completed;
858 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
859
860 /*
861 * If we were in an extended quiescent state, we may have
862 * missed some grace periods that others CPUs handled on
863 * our behalf. Catch up with this state to avoid noting
864 * spurious new grace periods. If another grace period
865 * has started, then rnp->gpnum will have advanced, so
866 * we will detect this later on.
867 */
868 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
869 rdp->gpnum = rdp->completed;
870
871 /*
872 * If RCU does not need a quiescent state from this CPU,
873 * then make sure that this CPU doesn't go looking for one.
874 */
875 if ((rnp->qsmask & rdp->grpmask) == 0)
876 rdp->qs_pending = 0;
877 }
878 }
879
880 /*
881 * Advance this CPU's callbacks, but only if the current grace period
882 * has ended. This may be called only from the CPU to whom the rdp
883 * belongs.
884 */
885 static void
886 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
887 {
888 unsigned long flags;
889 struct rcu_node *rnp;
890
891 local_irq_save(flags);
892 rnp = rdp->mynode;
893 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
894 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
895 local_irq_restore(flags);
896 return;
897 }
898 __rcu_process_gp_end(rsp, rnp, rdp);
899 raw_spin_unlock_irqrestore(&rnp->lock, flags);
900 }
901
902 /*
903 * Do per-CPU grace-period initialization for running CPU. The caller
904 * must hold the lock of the leaf rcu_node structure corresponding to
905 * this CPU.
906 */
907 static void
908 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
909 {
910 /* Prior grace period ended, so advance callbacks for current CPU. */
911 __rcu_process_gp_end(rsp, rnp, rdp);
912
913 /*
914 * Because this CPU just now started the new grace period, we know
915 * that all of its callbacks will be covered by this upcoming grace
916 * period, even the ones that were registered arbitrarily recently.
917 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
918 *
919 * Other CPUs cannot be sure exactly when the grace period started.
920 * Therefore, their recently registered callbacks must pass through
921 * an additional RCU_NEXT_READY stage, so that they will be handled
922 * by the next RCU grace period.
923 */
924 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
925 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
926
927 /* Set state so that this CPU will detect the next quiescent state. */
928 __note_new_gpnum(rsp, rnp, rdp);
929 }
930
931 /*
932 * Start a new RCU grace period if warranted, re-initializing the hierarchy
933 * in preparation for detecting the next grace period. The caller must hold
934 * the root node's ->lock, which is released before return. Hard irqs must
935 * be disabled.
936 */
937 static void
938 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
939 __releases(rcu_get_root(rsp)->lock)
940 {
941 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
942 struct rcu_node *rnp = rcu_get_root(rsp);
943
944 if (!rcu_scheduler_fully_active ||
945 !cpu_needs_another_gp(rsp, rdp)) {
946 /*
947 * Either the scheduler hasn't yet spawned the first
948 * non-idle task or this CPU does not need another
949 * grace period. Either way, don't start a new grace
950 * period.
951 */
952 raw_spin_unlock_irqrestore(&rnp->lock, flags);
953 return;
954 }
955
956 if (rsp->fqs_active) {
957 /*
958 * This CPU needs a grace period, but force_quiescent_state()
959 * is running. Tell it to start one on this CPU's behalf.
960 */
961 rsp->fqs_need_gp = 1;
962 raw_spin_unlock_irqrestore(&rnp->lock, flags);
963 return;
964 }
965
966 /* Advance to a new grace period and initialize state. */
967 rsp->gpnum++;
968 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
969 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
970 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
971 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
972 record_gp_stall_check_time(rsp);
973
974 /* Special-case the common single-level case. */
975 if (NUM_RCU_NODES == 1) {
976 rcu_preempt_check_blocked_tasks(rnp);
977 rnp->qsmask = rnp->qsmaskinit;
978 rnp->gpnum = rsp->gpnum;
979 rnp->completed = rsp->completed;
980 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state OK */
981 rcu_start_gp_per_cpu(rsp, rnp, rdp);
982 rcu_preempt_boost_start_gp(rnp);
983 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
984 rnp->level, rnp->grplo,
985 rnp->grphi, rnp->qsmask);
986 raw_spin_unlock_irqrestore(&rnp->lock, flags);
987 return;
988 }
989
990 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
991
992
993 /* Exclude any concurrent CPU-hotplug operations. */
994 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
995
996 /*
997 * Set the quiescent-state-needed bits in all the rcu_node
998 * structures for all currently online CPUs in breadth-first
999 * order, starting from the root rcu_node structure. This
1000 * operation relies on the layout of the hierarchy within the
1001 * rsp->node[] array. Note that other CPUs will access only
1002 * the leaves of the hierarchy, which still indicate that no
1003 * grace period is in progress, at least until the corresponding
1004 * leaf node has been initialized. In addition, we have excluded
1005 * CPU-hotplug operations.
1006 *
1007 * Note that the grace period cannot complete until we finish
1008 * the initialization process, as there will be at least one
1009 * qsmask bit set in the root node until that time, namely the
1010 * one corresponding to this CPU, due to the fact that we have
1011 * irqs disabled.
1012 */
1013 rcu_for_each_node_breadth_first(rsp, rnp) {
1014 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1015 rcu_preempt_check_blocked_tasks(rnp);
1016 rnp->qsmask = rnp->qsmaskinit;
1017 rnp->gpnum = rsp->gpnum;
1018 rnp->completed = rsp->completed;
1019 if (rnp == rdp->mynode)
1020 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1021 rcu_preempt_boost_start_gp(rnp);
1022 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1023 rnp->level, rnp->grplo,
1024 rnp->grphi, rnp->qsmask);
1025 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1026 }
1027
1028 rnp = rcu_get_root(rsp);
1029 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1030 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1031 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1032 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1033 }
1034
1035 /*
1036 * Report a full set of quiescent states to the specified rcu_state
1037 * data structure. This involves cleaning up after the prior grace
1038 * period and letting rcu_start_gp() start up the next grace period
1039 * if one is needed. Note that the caller must hold rnp->lock, as
1040 * required by rcu_start_gp(), which will release it.
1041 */
1042 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1043 __releases(rcu_get_root(rsp)->lock)
1044 {
1045 unsigned long gp_duration;
1046 struct rcu_node *rnp = rcu_get_root(rsp);
1047 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1048
1049 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1050
1051 /*
1052 * Ensure that all grace-period and pre-grace-period activity
1053 * is seen before the assignment to rsp->completed.
1054 */
1055 smp_mb(); /* See above block comment. */
1056 gp_duration = jiffies - rsp->gp_start;
1057 if (gp_duration > rsp->gp_max)
1058 rsp->gp_max = gp_duration;
1059
1060 /*
1061 * We know the grace period is complete, but to everyone else
1062 * it appears to still be ongoing. But it is also the case
1063 * that to everyone else it looks like there is nothing that
1064 * they can do to advance the grace period. It is therefore
1065 * safe for us to drop the lock in order to mark the grace
1066 * period as completed in all of the rcu_node structures.
1067 *
1068 * But if this CPU needs another grace period, it will take
1069 * care of this while initializing the next grace period.
1070 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1071 * because the callbacks have not yet been advanced: Those
1072 * callbacks are waiting on the grace period that just now
1073 * completed.
1074 */
1075 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1076 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1077
1078 /*
1079 * Propagate new ->completed value to rcu_node structures
1080 * so that other CPUs don't have to wait until the start
1081 * of the next grace period to process their callbacks.
1082 */
1083 rcu_for_each_node_breadth_first(rsp, rnp) {
1084 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1085 rnp->completed = rsp->gpnum;
1086 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1087 }
1088 rnp = rcu_get_root(rsp);
1089 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1090 }
1091
1092 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
1093 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1094 rsp->fqs_state = RCU_GP_IDLE;
1095 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1096 }
1097
1098 /*
1099 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1100 * Allows quiescent states for a group of CPUs to be reported at one go
1101 * to the specified rcu_node structure, though all the CPUs in the group
1102 * must be represented by the same rcu_node structure (which need not be
1103 * a leaf rcu_node structure, though it often will be). That structure's
1104 * lock must be held upon entry, and it is released before return.
1105 */
1106 static void
1107 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1108 struct rcu_node *rnp, unsigned long flags)
1109 __releases(rnp->lock)
1110 {
1111 struct rcu_node *rnp_c;
1112
1113 /* Walk up the rcu_node hierarchy. */
1114 for (;;) {
1115 if (!(rnp->qsmask & mask)) {
1116
1117 /* Our bit has already been cleared, so done. */
1118 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1119 return;
1120 }
1121 rnp->qsmask &= ~mask;
1122 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1123 mask, rnp->qsmask, rnp->level,
1124 rnp->grplo, rnp->grphi,
1125 !!rnp->gp_tasks);
1126 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1127
1128 /* Other bits still set at this level, so done. */
1129 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1130 return;
1131 }
1132 mask = rnp->grpmask;
1133 if (rnp->parent == NULL) {
1134
1135 /* No more levels. Exit loop holding root lock. */
1136
1137 break;
1138 }
1139 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1140 rnp_c = rnp;
1141 rnp = rnp->parent;
1142 raw_spin_lock_irqsave(&rnp->lock, flags);
1143 WARN_ON_ONCE(rnp_c->qsmask);
1144 }
1145
1146 /*
1147 * Get here if we are the last CPU to pass through a quiescent
1148 * state for this grace period. Invoke rcu_report_qs_rsp()
1149 * to clean up and start the next grace period if one is needed.
1150 */
1151 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1152 }
1153
1154 /*
1155 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1156 * structure. This must be either called from the specified CPU, or
1157 * called when the specified CPU is known to be offline (and when it is
1158 * also known that no other CPU is concurrently trying to help the offline
1159 * CPU). The lastcomp argument is used to make sure we are still in the
1160 * grace period of interest. We don't want to end the current grace period
1161 * based on quiescent states detected in an earlier grace period!
1162 */
1163 static void
1164 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1165 {
1166 unsigned long flags;
1167 unsigned long mask;
1168 struct rcu_node *rnp;
1169
1170 rnp = rdp->mynode;
1171 raw_spin_lock_irqsave(&rnp->lock, flags);
1172 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1173
1174 /*
1175 * The grace period in which this quiescent state was
1176 * recorded has ended, so don't report it upwards.
1177 * We will instead need a new quiescent state that lies
1178 * within the current grace period.
1179 */
1180 rdp->passed_quiesce = 0; /* need qs for new gp. */
1181 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1182 return;
1183 }
1184 mask = rdp->grpmask;
1185 if ((rnp->qsmask & mask) == 0) {
1186 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1187 } else {
1188 rdp->qs_pending = 0;
1189
1190 /*
1191 * This GP can't end until cpu checks in, so all of our
1192 * callbacks can be processed during the next GP.
1193 */
1194 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1195
1196 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1197 }
1198 }
1199
1200 /*
1201 * Check to see if there is a new grace period of which this CPU
1202 * is not yet aware, and if so, set up local rcu_data state for it.
1203 * Otherwise, see if this CPU has just passed through its first
1204 * quiescent state for this grace period, and record that fact if so.
1205 */
1206 static void
1207 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1208 {
1209 /* If there is now a new grace period, record and return. */
1210 if (check_for_new_grace_period(rsp, rdp))
1211 return;
1212
1213 /*
1214 * Does this CPU still need to do its part for current grace period?
1215 * If no, return and let the other CPUs do their part as well.
1216 */
1217 if (!rdp->qs_pending)
1218 return;
1219
1220 /*
1221 * Was there a quiescent state since the beginning of the grace
1222 * period? If no, then exit and wait for the next call.
1223 */
1224 if (!rdp->passed_quiesce)
1225 return;
1226
1227 /*
1228 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1229 * judge of that).
1230 */
1231 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1232 }
1233
1234 #ifdef CONFIG_HOTPLUG_CPU
1235
1236 /*
1237 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1238 * Synchronization is not required because this function executes
1239 * in stop_machine() context.
1240 */
1241 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1242 {
1243 int i;
1244 /* current DYING CPU is cleared in the cpu_online_mask */
1245 int receive_cpu = cpumask_any(cpu_online_mask);
1246 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1247 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1248
1249 if (rdp->nxtlist == NULL)
1250 return; /* irqs disabled, so comparison is stable. */
1251
1252 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1253 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1254 receive_rdp->qlen += rdp->qlen;
1255 receive_rdp->n_cbs_adopted += rdp->qlen;
1256 rdp->n_cbs_orphaned += rdp->qlen;
1257
1258 rdp->nxtlist = NULL;
1259 for (i = 0; i < RCU_NEXT_SIZE; i++)
1260 rdp->nxttail[i] = &rdp->nxtlist;
1261 rdp->qlen = 0;
1262 }
1263
1264 /*
1265 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1266 * and move all callbacks from the outgoing CPU to the current one.
1267 * There can only be one CPU hotplug operation at a time, so no other
1268 * CPU can be attempting to update rcu_cpu_kthread_task.
1269 */
1270 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1271 {
1272 unsigned long flags;
1273 unsigned long mask;
1274 int need_report = 0;
1275 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1276 struct rcu_node *rnp;
1277
1278 rcu_stop_cpu_kthread(cpu);
1279
1280 /* Exclude any attempts to start a new grace period. */
1281 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1282
1283 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1284 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1285 mask = rdp->grpmask; /* rnp->grplo is constant. */
1286 do {
1287 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1288 rnp->qsmaskinit &= ~mask;
1289 if (rnp->qsmaskinit != 0) {
1290 if (rnp != rdp->mynode)
1291 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1292 else
1293 trace_rcu_grace_period(rsp->name,
1294 rnp->gpnum + 1 -
1295 !!(rnp->qsmask & mask),
1296 "cpuofl");
1297 break;
1298 }
1299 if (rnp == rdp->mynode) {
1300 trace_rcu_grace_period(rsp->name,
1301 rnp->gpnum + 1 -
1302 !!(rnp->qsmask & mask),
1303 "cpuofl");
1304 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1305 } else
1306 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1307 mask = rnp->grpmask;
1308 rnp = rnp->parent;
1309 } while (rnp != NULL);
1310
1311 /*
1312 * We still hold the leaf rcu_node structure lock here, and
1313 * irqs are still disabled. The reason for this subterfuge is
1314 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1315 * held leads to deadlock.
1316 */
1317 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1318 rnp = rdp->mynode;
1319 if (need_report & RCU_OFL_TASKS_NORM_GP)
1320 rcu_report_unblock_qs_rnp(rnp, flags);
1321 else
1322 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1323 if (need_report & RCU_OFL_TASKS_EXP_GP)
1324 rcu_report_exp_rnp(rsp, rnp, true);
1325 rcu_node_kthread_setaffinity(rnp, -1);
1326 }
1327
1328 /*
1329 * Remove the specified CPU from the RCU hierarchy and move any pending
1330 * callbacks that it might have to the current CPU. This code assumes
1331 * that at least one CPU in the system will remain running at all times.
1332 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1333 */
1334 static void rcu_offline_cpu(int cpu)
1335 {
1336 __rcu_offline_cpu(cpu, &rcu_sched_state);
1337 __rcu_offline_cpu(cpu, &rcu_bh_state);
1338 rcu_preempt_offline_cpu(cpu);
1339 }
1340
1341 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1342
1343 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1344 {
1345 }
1346
1347 static void rcu_offline_cpu(int cpu)
1348 {
1349 }
1350
1351 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1352
1353 /*
1354 * Invoke any RCU callbacks that have made it to the end of their grace
1355 * period. Thottle as specified by rdp->blimit.
1356 */
1357 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1358 {
1359 unsigned long flags;
1360 struct rcu_head *next, *list, **tail;
1361 int bl, count;
1362
1363 /* If no callbacks are ready, just return.*/
1364 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1365 trace_rcu_batch_start(rsp->name, 0, 0);
1366 trace_rcu_batch_end(rsp->name, 0);
1367 return;
1368 }
1369
1370 /*
1371 * Extract the list of ready callbacks, disabling to prevent
1372 * races with call_rcu() from interrupt handlers.
1373 */
1374 local_irq_save(flags);
1375 bl = rdp->blimit;
1376 trace_rcu_batch_start(rsp->name, rdp->qlen, bl);
1377 list = rdp->nxtlist;
1378 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1379 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1380 tail = rdp->nxttail[RCU_DONE_TAIL];
1381 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1382 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1383 rdp->nxttail[count] = &rdp->nxtlist;
1384 local_irq_restore(flags);
1385
1386 /* Invoke callbacks. */
1387 count = 0;
1388 while (list) {
1389 next = list->next;
1390 prefetch(next);
1391 debug_rcu_head_unqueue(list);
1392 __rcu_reclaim(rsp->name, list);
1393 list = next;
1394 if (++count >= bl)
1395 break;
1396 }
1397
1398 local_irq_save(flags);
1399 trace_rcu_batch_end(rsp->name, count);
1400
1401 /* Update count, and requeue any remaining callbacks. */
1402 rdp->qlen -= count;
1403 rdp->n_cbs_invoked += count;
1404 if (list != NULL) {
1405 *tail = rdp->nxtlist;
1406 rdp->nxtlist = list;
1407 for (count = 0; count < RCU_NEXT_SIZE; count++)
1408 if (&rdp->nxtlist == rdp->nxttail[count])
1409 rdp->nxttail[count] = tail;
1410 else
1411 break;
1412 }
1413
1414 /* Reinstate batch limit if we have worked down the excess. */
1415 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1416 rdp->blimit = blimit;
1417
1418 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1419 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1420 rdp->qlen_last_fqs_check = 0;
1421 rdp->n_force_qs_snap = rsp->n_force_qs;
1422 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1423 rdp->qlen_last_fqs_check = rdp->qlen;
1424
1425 local_irq_restore(flags);
1426
1427 /* Re-invoke RCU core processing if there are callbacks remaining. */
1428 if (cpu_has_callbacks_ready_to_invoke(rdp))
1429 invoke_rcu_core();
1430 }
1431
1432 /*
1433 * Check to see if this CPU is in a non-context-switch quiescent state
1434 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1435 * Also schedule RCU core processing.
1436 *
1437 * This function must be called from hardirq context. It is normally
1438 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1439 * false, there is no point in invoking rcu_check_callbacks().
1440 */
1441 void rcu_check_callbacks(int cpu, int user)
1442 {
1443 trace_rcu_utilization("Start scheduler-tick");
1444 if (user || rcu_is_cpu_rrupt_from_idle()) {
1445
1446 /*
1447 * Get here if this CPU took its interrupt from user
1448 * mode or from the idle loop, and if this is not a
1449 * nested interrupt. In this case, the CPU is in
1450 * a quiescent state, so note it.
1451 *
1452 * No memory barrier is required here because both
1453 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1454 * variables that other CPUs neither access nor modify,
1455 * at least not while the corresponding CPU is online.
1456 */
1457
1458 rcu_sched_qs(cpu);
1459 rcu_bh_qs(cpu);
1460
1461 } else if (!in_softirq()) {
1462
1463 /*
1464 * Get here if this CPU did not take its interrupt from
1465 * softirq, in other words, if it is not interrupting
1466 * a rcu_bh read-side critical section. This is an _bh
1467 * critical section, so note it.
1468 */
1469
1470 rcu_bh_qs(cpu);
1471 }
1472 rcu_preempt_check_callbacks(cpu);
1473 if (rcu_pending(cpu))
1474 invoke_rcu_core();
1475 trace_rcu_utilization("End scheduler-tick");
1476 }
1477
1478 #ifdef CONFIG_SMP
1479
1480 /*
1481 * Scan the leaf rcu_node structures, processing dyntick state for any that
1482 * have not yet encountered a quiescent state, using the function specified.
1483 * Also initiate boosting for any threads blocked on the root rcu_node.
1484 *
1485 * The caller must have suppressed start of new grace periods.
1486 */
1487 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1488 {
1489 unsigned long bit;
1490 int cpu;
1491 unsigned long flags;
1492 unsigned long mask;
1493 struct rcu_node *rnp;
1494
1495 rcu_for_each_leaf_node(rsp, rnp) {
1496 mask = 0;
1497 raw_spin_lock_irqsave(&rnp->lock, flags);
1498 if (!rcu_gp_in_progress(rsp)) {
1499 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1500 return;
1501 }
1502 if (rnp->qsmask == 0) {
1503 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1504 continue;
1505 }
1506 cpu = rnp->grplo;
1507 bit = 1;
1508 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1509 if ((rnp->qsmask & bit) != 0 &&
1510 f(per_cpu_ptr(rsp->rda, cpu)))
1511 mask |= bit;
1512 }
1513 if (mask != 0) {
1514
1515 /* rcu_report_qs_rnp() releases rnp->lock. */
1516 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1517 continue;
1518 }
1519 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1520 }
1521 rnp = rcu_get_root(rsp);
1522 if (rnp->qsmask == 0) {
1523 raw_spin_lock_irqsave(&rnp->lock, flags);
1524 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1525 }
1526 }
1527
1528 /*
1529 * Force quiescent states on reluctant CPUs, and also detect which
1530 * CPUs are in dyntick-idle mode.
1531 */
1532 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1533 {
1534 unsigned long flags;
1535 struct rcu_node *rnp = rcu_get_root(rsp);
1536
1537 trace_rcu_utilization("Start fqs");
1538 if (!rcu_gp_in_progress(rsp)) {
1539 trace_rcu_utilization("End fqs");
1540 return; /* No grace period in progress, nothing to force. */
1541 }
1542 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1543 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1544 trace_rcu_utilization("End fqs");
1545 return; /* Someone else is already on the job. */
1546 }
1547 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1548 goto unlock_fqs_ret; /* no emergency and done recently. */
1549 rsp->n_force_qs++;
1550 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1551 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1552 if(!rcu_gp_in_progress(rsp)) {
1553 rsp->n_force_qs_ngp++;
1554 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1555 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1556 }
1557 rsp->fqs_active = 1;
1558 switch (rsp->fqs_state) {
1559 case RCU_GP_IDLE:
1560 case RCU_GP_INIT:
1561
1562 break; /* grace period idle or initializing, ignore. */
1563
1564 case RCU_SAVE_DYNTICK:
1565 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1566 break; /* So gcc recognizes the dead code. */
1567
1568 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1569
1570 /* Record dyntick-idle state. */
1571 force_qs_rnp(rsp, dyntick_save_progress_counter);
1572 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1573 if (rcu_gp_in_progress(rsp))
1574 rsp->fqs_state = RCU_FORCE_QS;
1575 break;
1576
1577 case RCU_FORCE_QS:
1578
1579 /* Check dyntick-idle state, send IPI to laggarts. */
1580 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1581 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1582
1583 /* Leave state in case more forcing is required. */
1584
1585 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1586 break;
1587 }
1588 rsp->fqs_active = 0;
1589 if (rsp->fqs_need_gp) {
1590 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1591 rsp->fqs_need_gp = 0;
1592 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1593 trace_rcu_utilization("End fqs");
1594 return;
1595 }
1596 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1597 unlock_fqs_ret:
1598 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1599 trace_rcu_utilization("End fqs");
1600 }
1601
1602 #else /* #ifdef CONFIG_SMP */
1603
1604 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1605 {
1606 set_need_resched();
1607 }
1608
1609 #endif /* #else #ifdef CONFIG_SMP */
1610
1611 /*
1612 * This does the RCU core processing work for the specified rcu_state
1613 * and rcu_data structures. This may be called only from the CPU to
1614 * whom the rdp belongs.
1615 */
1616 static void
1617 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1618 {
1619 unsigned long flags;
1620
1621 WARN_ON_ONCE(rdp->beenonline == 0);
1622
1623 /*
1624 * If an RCU GP has gone long enough, go check for dyntick
1625 * idle CPUs and, if needed, send resched IPIs.
1626 */
1627 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1628 force_quiescent_state(rsp, 1);
1629
1630 /*
1631 * Advance callbacks in response to end of earlier grace
1632 * period that some other CPU ended.
1633 */
1634 rcu_process_gp_end(rsp, rdp);
1635
1636 /* Update RCU state based on any recent quiescent states. */
1637 rcu_check_quiescent_state(rsp, rdp);
1638
1639 /* Does this CPU require a not-yet-started grace period? */
1640 if (cpu_needs_another_gp(rsp, rdp)) {
1641 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1642 rcu_start_gp(rsp, flags); /* releases above lock */
1643 }
1644
1645 /* If there are callbacks ready, invoke them. */
1646 if (cpu_has_callbacks_ready_to_invoke(rdp))
1647 invoke_rcu_callbacks(rsp, rdp);
1648 }
1649
1650 /*
1651 * Do RCU core processing for the current CPU.
1652 */
1653 static void rcu_process_callbacks(struct softirq_action *unused)
1654 {
1655 trace_rcu_utilization("Start RCU core");
1656 __rcu_process_callbacks(&rcu_sched_state,
1657 &__get_cpu_var(rcu_sched_data));
1658 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1659 rcu_preempt_process_callbacks();
1660 trace_rcu_utilization("End RCU core");
1661 }
1662
1663 /*
1664 * Schedule RCU callback invocation. If the specified type of RCU
1665 * does not support RCU priority boosting, just do a direct call,
1666 * otherwise wake up the per-CPU kernel kthread. Note that because we
1667 * are running on the current CPU with interrupts disabled, the
1668 * rcu_cpu_kthread_task cannot disappear out from under us.
1669 */
1670 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1671 {
1672 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1673 return;
1674 if (likely(!rsp->boost)) {
1675 rcu_do_batch(rsp, rdp);
1676 return;
1677 }
1678 invoke_rcu_callbacks_kthread();
1679 }
1680
1681 static void invoke_rcu_core(void)
1682 {
1683 raise_softirq(RCU_SOFTIRQ);
1684 }
1685
1686 static void
1687 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1688 struct rcu_state *rsp)
1689 {
1690 unsigned long flags;
1691 struct rcu_data *rdp;
1692
1693 debug_rcu_head_queue(head);
1694 head->func = func;
1695 head->next = NULL;
1696
1697 smp_mb(); /* Ensure RCU update seen before callback registry. */
1698
1699 /*
1700 * Opportunistically note grace-period endings and beginnings.
1701 * Note that we might see a beginning right after we see an
1702 * end, but never vice versa, since this CPU has to pass through
1703 * a quiescent state betweentimes.
1704 */
1705 local_irq_save(flags);
1706 rdp = this_cpu_ptr(rsp->rda);
1707
1708 /* Add the callback to our list. */
1709 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1710 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1711 rdp->qlen++;
1712
1713 if (__is_kfree_rcu_offset((unsigned long)func))
1714 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1715 rdp->qlen);
1716 else
1717 trace_rcu_callback(rsp->name, head, rdp->qlen);
1718
1719 /* If interrupts were disabled, don't dive into RCU core. */
1720 if (irqs_disabled_flags(flags)) {
1721 local_irq_restore(flags);
1722 return;
1723 }
1724
1725 /*
1726 * Force the grace period if too many callbacks or too long waiting.
1727 * Enforce hysteresis, and don't invoke force_quiescent_state()
1728 * if some other CPU has recently done so. Also, don't bother
1729 * invoking force_quiescent_state() if the newly enqueued callback
1730 * is the only one waiting for a grace period to complete.
1731 */
1732 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1733
1734 /* Are we ignoring a completed grace period? */
1735 rcu_process_gp_end(rsp, rdp);
1736 check_for_new_grace_period(rsp, rdp);
1737
1738 /* Start a new grace period if one not already started. */
1739 if (!rcu_gp_in_progress(rsp)) {
1740 unsigned long nestflag;
1741 struct rcu_node *rnp_root = rcu_get_root(rsp);
1742
1743 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1744 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1745 } else {
1746 /* Give the grace period a kick. */
1747 rdp->blimit = LONG_MAX;
1748 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1749 *rdp->nxttail[RCU_DONE_TAIL] != head)
1750 force_quiescent_state(rsp, 0);
1751 rdp->n_force_qs_snap = rsp->n_force_qs;
1752 rdp->qlen_last_fqs_check = rdp->qlen;
1753 }
1754 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1755 force_quiescent_state(rsp, 1);
1756 local_irq_restore(flags);
1757 }
1758
1759 /*
1760 * Queue an RCU-sched callback for invocation after a grace period.
1761 */
1762 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1763 {
1764 __call_rcu(head, func, &rcu_sched_state);
1765 }
1766 EXPORT_SYMBOL_GPL(call_rcu_sched);
1767
1768 /*
1769 * Queue an RCU for invocation after a quicker grace period.
1770 */
1771 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1772 {
1773 __call_rcu(head, func, &rcu_bh_state);
1774 }
1775 EXPORT_SYMBOL_GPL(call_rcu_bh);
1776
1777 /**
1778 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1779 *
1780 * Control will return to the caller some time after a full rcu-sched
1781 * grace period has elapsed, in other words after all currently executing
1782 * rcu-sched read-side critical sections have completed. These read-side
1783 * critical sections are delimited by rcu_read_lock_sched() and
1784 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1785 * local_irq_disable(), and so on may be used in place of
1786 * rcu_read_lock_sched().
1787 *
1788 * This means that all preempt_disable code sequences, including NMI and
1789 * hardware-interrupt handlers, in progress on entry will have completed
1790 * before this primitive returns. However, this does not guarantee that
1791 * softirq handlers will have completed, since in some kernels, these
1792 * handlers can run in process context, and can block.
1793 *
1794 * This primitive provides the guarantees made by the (now removed)
1795 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1796 * guarantees that rcu_read_lock() sections will have completed.
1797 * In "classic RCU", these two guarantees happen to be one and
1798 * the same, but can differ in realtime RCU implementations.
1799 */
1800 void synchronize_sched(void)
1801 {
1802 if (rcu_blocking_is_gp())
1803 return;
1804 wait_rcu_gp(call_rcu_sched);
1805 }
1806 EXPORT_SYMBOL_GPL(synchronize_sched);
1807
1808 /**
1809 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1810 *
1811 * Control will return to the caller some time after a full rcu_bh grace
1812 * period has elapsed, in other words after all currently executing rcu_bh
1813 * read-side critical sections have completed. RCU read-side critical
1814 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1815 * and may be nested.
1816 */
1817 void synchronize_rcu_bh(void)
1818 {
1819 if (rcu_blocking_is_gp())
1820 return;
1821 wait_rcu_gp(call_rcu_bh);
1822 }
1823 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1824
1825 /*
1826 * Check to see if there is any immediate RCU-related work to be done
1827 * by the current CPU, for the specified type of RCU, returning 1 if so.
1828 * The checks are in order of increasing expense: checks that can be
1829 * carried out against CPU-local state are performed first. However,
1830 * we must check for CPU stalls first, else we might not get a chance.
1831 */
1832 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1833 {
1834 struct rcu_node *rnp = rdp->mynode;
1835
1836 rdp->n_rcu_pending++;
1837
1838 /* Check for CPU stalls, if enabled. */
1839 check_cpu_stall(rsp, rdp);
1840
1841 /* Is the RCU core waiting for a quiescent state from this CPU? */
1842 if (rcu_scheduler_fully_active &&
1843 rdp->qs_pending && !rdp->passed_quiesce) {
1844
1845 /*
1846 * If force_quiescent_state() coming soon and this CPU
1847 * needs a quiescent state, and this is either RCU-sched
1848 * or RCU-bh, force a local reschedule.
1849 */
1850 rdp->n_rp_qs_pending++;
1851 if (!rdp->preemptible &&
1852 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1853 jiffies))
1854 set_need_resched();
1855 } else if (rdp->qs_pending && rdp->passed_quiesce) {
1856 rdp->n_rp_report_qs++;
1857 return 1;
1858 }
1859
1860 /* Does this CPU have callbacks ready to invoke? */
1861 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1862 rdp->n_rp_cb_ready++;
1863 return 1;
1864 }
1865
1866 /* Has RCU gone idle with this CPU needing another grace period? */
1867 if (cpu_needs_another_gp(rsp, rdp)) {
1868 rdp->n_rp_cpu_needs_gp++;
1869 return 1;
1870 }
1871
1872 /* Has another RCU grace period completed? */
1873 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1874 rdp->n_rp_gp_completed++;
1875 return 1;
1876 }
1877
1878 /* Has a new RCU grace period started? */
1879 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1880 rdp->n_rp_gp_started++;
1881 return 1;
1882 }
1883
1884 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1885 if (rcu_gp_in_progress(rsp) &&
1886 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1887 rdp->n_rp_need_fqs++;
1888 return 1;
1889 }
1890
1891 /* nothing to do */
1892 rdp->n_rp_need_nothing++;
1893 return 0;
1894 }
1895
1896 /*
1897 * Check to see if there is any immediate RCU-related work to be done
1898 * by the current CPU, returning 1 if so. This function is part of the
1899 * RCU implementation; it is -not- an exported member of the RCU API.
1900 */
1901 static int rcu_pending(int cpu)
1902 {
1903 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1904 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1905 rcu_preempt_pending(cpu);
1906 }
1907
1908 /*
1909 * Check to see if any future RCU-related work will need to be done
1910 * by the current CPU, even if none need be done immediately, returning
1911 * 1 if so.
1912 */
1913 static int rcu_needs_cpu_quick_check(int cpu)
1914 {
1915 /* RCU callbacks either ready or pending? */
1916 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1917 per_cpu(rcu_bh_data, cpu).nxtlist ||
1918 rcu_preempt_needs_cpu(cpu);
1919 }
1920
1921 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1922 static atomic_t rcu_barrier_cpu_count;
1923 static DEFINE_MUTEX(rcu_barrier_mutex);
1924 static struct completion rcu_barrier_completion;
1925
1926 static void rcu_barrier_callback(struct rcu_head *notused)
1927 {
1928 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1929 complete(&rcu_barrier_completion);
1930 }
1931
1932 /*
1933 * Called with preemption disabled, and from cross-cpu IRQ context.
1934 */
1935 static void rcu_barrier_func(void *type)
1936 {
1937 int cpu = smp_processor_id();
1938 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1939 void (*call_rcu_func)(struct rcu_head *head,
1940 void (*func)(struct rcu_head *head));
1941
1942 atomic_inc(&rcu_barrier_cpu_count);
1943 call_rcu_func = type;
1944 call_rcu_func(head, rcu_barrier_callback);
1945 }
1946
1947 /*
1948 * Orchestrate the specified type of RCU barrier, waiting for all
1949 * RCU callbacks of the specified type to complete.
1950 */
1951 static void _rcu_barrier(struct rcu_state *rsp,
1952 void (*call_rcu_func)(struct rcu_head *head,
1953 void (*func)(struct rcu_head *head)))
1954 {
1955 BUG_ON(in_interrupt());
1956 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1957 mutex_lock(&rcu_barrier_mutex);
1958 init_completion(&rcu_barrier_completion);
1959 /*
1960 * Initialize rcu_barrier_cpu_count to 1, then invoke
1961 * rcu_barrier_func() on each CPU, so that each CPU also has
1962 * incremented rcu_barrier_cpu_count. Only then is it safe to
1963 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1964 * might complete its grace period before all of the other CPUs
1965 * did their increment, causing this function to return too
1966 * early. Note that on_each_cpu() disables irqs, which prevents
1967 * any CPUs from coming online or going offline until each online
1968 * CPU has queued its RCU-barrier callback.
1969 */
1970 atomic_set(&rcu_barrier_cpu_count, 1);
1971 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1972 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1973 complete(&rcu_barrier_completion);
1974 wait_for_completion(&rcu_barrier_completion);
1975 mutex_unlock(&rcu_barrier_mutex);
1976 }
1977
1978 /**
1979 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1980 */
1981 void rcu_barrier_bh(void)
1982 {
1983 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1984 }
1985 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1986
1987 /**
1988 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1989 */
1990 void rcu_barrier_sched(void)
1991 {
1992 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1993 }
1994 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1995
1996 /*
1997 * Do boot-time initialization of a CPU's per-CPU RCU data.
1998 */
1999 static void __init
2000 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2001 {
2002 unsigned long flags;
2003 int i;
2004 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2005 struct rcu_node *rnp = rcu_get_root(rsp);
2006
2007 /* Set up local state, ensuring consistent view of global state. */
2008 raw_spin_lock_irqsave(&rnp->lock, flags);
2009 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2010 rdp->nxtlist = NULL;
2011 for (i = 0; i < RCU_NEXT_SIZE; i++)
2012 rdp->nxttail[i] = &rdp->nxtlist;
2013 rdp->qlen = 0;
2014 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2015 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != LLONG_MAX / 2);
2016 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2017 rdp->cpu = cpu;
2018 rdp->rsp = rsp;
2019 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2020 }
2021
2022 /*
2023 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2024 * offline event can be happening at a given time. Note also that we
2025 * can accept some slop in the rsp->completed access due to the fact
2026 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2027 */
2028 static void __cpuinit
2029 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2030 {
2031 unsigned long flags;
2032 unsigned long mask;
2033 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2034 struct rcu_node *rnp = rcu_get_root(rsp);
2035
2036 /* Set up local state, ensuring consistent view of global state. */
2037 raw_spin_lock_irqsave(&rnp->lock, flags);
2038 rdp->beenonline = 1; /* We have now been online. */
2039 rdp->preemptible = preemptible;
2040 rdp->qlen_last_fqs_check = 0;
2041 rdp->n_force_qs_snap = rsp->n_force_qs;
2042 rdp->blimit = blimit;
2043 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != LLONG_MAX / 2);
2044 WARN_ON_ONCE((atomic_read(&rdp->dynticks->dynticks) & 0x1) != 1);
2045 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2046
2047 /*
2048 * A new grace period might start here. If so, we won't be part
2049 * of it, but that is OK, as we are currently in a quiescent state.
2050 */
2051
2052 /* Exclude any attempts to start a new GP on large systems. */
2053 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2054
2055 /* Add CPU to rcu_node bitmasks. */
2056 rnp = rdp->mynode;
2057 mask = rdp->grpmask;
2058 do {
2059 /* Exclude any attempts to start a new GP on small systems. */
2060 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2061 rnp->qsmaskinit |= mask;
2062 mask = rnp->grpmask;
2063 if (rnp == rdp->mynode) {
2064 /*
2065 * If there is a grace period in progress, we will
2066 * set up to wait for it next time we run the
2067 * RCU core code.
2068 */
2069 rdp->gpnum = rnp->completed;
2070 rdp->completed = rnp->completed;
2071 rdp->passed_quiesce = 0;
2072 rdp->qs_pending = 0;
2073 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2074 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2075 }
2076 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2077 rnp = rnp->parent;
2078 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2079
2080 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2081 }
2082
2083 static void __cpuinit rcu_prepare_cpu(int cpu)
2084 {
2085 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2086 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2087 rcu_preempt_init_percpu_data(cpu);
2088 }
2089
2090 /*
2091 * Handle CPU online/offline notification events.
2092 */
2093 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2094 unsigned long action, void *hcpu)
2095 {
2096 long cpu = (long)hcpu;
2097 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2098 struct rcu_node *rnp = rdp->mynode;
2099
2100 trace_rcu_utilization("Start CPU hotplug");
2101 switch (action) {
2102 case CPU_UP_PREPARE:
2103 case CPU_UP_PREPARE_FROZEN:
2104 rcu_prepare_cpu(cpu);
2105 rcu_prepare_kthreads(cpu);
2106 break;
2107 case CPU_ONLINE:
2108 case CPU_DOWN_FAILED:
2109 rcu_node_kthread_setaffinity(rnp, -1);
2110 rcu_cpu_kthread_setrt(cpu, 1);
2111 break;
2112 case CPU_DOWN_PREPARE:
2113 rcu_node_kthread_setaffinity(rnp, cpu);
2114 rcu_cpu_kthread_setrt(cpu, 0);
2115 break;
2116 case CPU_DYING:
2117 case CPU_DYING_FROZEN:
2118 /*
2119 * The whole machine is "stopped" except this CPU, so we can
2120 * touch any data without introducing corruption. We send the
2121 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2122 */
2123 rcu_send_cbs_to_online(&rcu_bh_state);
2124 rcu_send_cbs_to_online(&rcu_sched_state);
2125 rcu_preempt_send_cbs_to_online();
2126 break;
2127 case CPU_DEAD:
2128 case CPU_DEAD_FROZEN:
2129 case CPU_UP_CANCELED:
2130 case CPU_UP_CANCELED_FROZEN:
2131 rcu_offline_cpu(cpu);
2132 break;
2133 default:
2134 break;
2135 }
2136 trace_rcu_utilization("End CPU hotplug");
2137 return NOTIFY_OK;
2138 }
2139
2140 /*
2141 * This function is invoked towards the end of the scheduler's initialization
2142 * process. Before this is called, the idle task might contain
2143 * RCU read-side critical sections (during which time, this idle
2144 * task is booting the system). After this function is called, the
2145 * idle tasks are prohibited from containing RCU read-side critical
2146 * sections. This function also enables RCU lockdep checking.
2147 */
2148 void rcu_scheduler_starting(void)
2149 {
2150 WARN_ON(num_online_cpus() != 1);
2151 WARN_ON(nr_context_switches() > 0);
2152 rcu_scheduler_active = 1;
2153 }
2154
2155 /*
2156 * Compute the per-level fanout, either using the exact fanout specified
2157 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2158 */
2159 #ifdef CONFIG_RCU_FANOUT_EXACT
2160 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2161 {
2162 int i;
2163
2164 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2165 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2166 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2167 }
2168 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2169 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2170 {
2171 int ccur;
2172 int cprv;
2173 int i;
2174
2175 cprv = NR_CPUS;
2176 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2177 ccur = rsp->levelcnt[i];
2178 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2179 cprv = ccur;
2180 }
2181 }
2182 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2183
2184 /*
2185 * Helper function for rcu_init() that initializes one rcu_state structure.
2186 */
2187 static void __init rcu_init_one(struct rcu_state *rsp,
2188 struct rcu_data __percpu *rda)
2189 {
2190 static char *buf[] = { "rcu_node_level_0",
2191 "rcu_node_level_1",
2192 "rcu_node_level_2",
2193 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2194 int cpustride = 1;
2195 int i;
2196 int j;
2197 struct rcu_node *rnp;
2198
2199 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2200
2201 /* Initialize the level-tracking arrays. */
2202
2203 for (i = 1; i < NUM_RCU_LVLS; i++)
2204 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2205 rcu_init_levelspread(rsp);
2206
2207 /* Initialize the elements themselves, starting from the leaves. */
2208
2209 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2210 cpustride *= rsp->levelspread[i];
2211 rnp = rsp->level[i];
2212 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2213 raw_spin_lock_init(&rnp->lock);
2214 lockdep_set_class_and_name(&rnp->lock,
2215 &rcu_node_class[i], buf[i]);
2216 rnp->gpnum = 0;
2217 rnp->qsmask = 0;
2218 rnp->qsmaskinit = 0;
2219 rnp->grplo = j * cpustride;
2220 rnp->grphi = (j + 1) * cpustride - 1;
2221 if (rnp->grphi >= NR_CPUS)
2222 rnp->grphi = NR_CPUS - 1;
2223 if (i == 0) {
2224 rnp->grpnum = 0;
2225 rnp->grpmask = 0;
2226 rnp->parent = NULL;
2227 } else {
2228 rnp->grpnum = j % rsp->levelspread[i - 1];
2229 rnp->grpmask = 1UL << rnp->grpnum;
2230 rnp->parent = rsp->level[i - 1] +
2231 j / rsp->levelspread[i - 1];
2232 }
2233 rnp->level = i;
2234 INIT_LIST_HEAD(&rnp->blkd_tasks);
2235 }
2236 }
2237
2238 rsp->rda = rda;
2239 rnp = rsp->level[NUM_RCU_LVLS - 1];
2240 for_each_possible_cpu(i) {
2241 while (i > rnp->grphi)
2242 rnp++;
2243 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2244 rcu_boot_init_percpu_data(i, rsp);
2245 }
2246 }
2247
2248 void __init rcu_init(void)
2249 {
2250 int cpu;
2251
2252 rcu_bootup_announce();
2253 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2254 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2255 __rcu_init_preempt();
2256 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2257
2258 /*
2259 * We don't need protection against CPU-hotplug here because
2260 * this is called early in boot, before either interrupts
2261 * or the scheduler are operational.
2262 */
2263 cpu_notifier(rcu_cpu_notify, 0);
2264 for_each_online_cpu(cpu)
2265 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2266 check_cpu_stall_init();
2267 }
2268
2269 #include "rcutree_plugin.h"
This page took 0.094223 seconds and 6 git commands to generate.