rcu: Identify dyntick-idle CPUs on first force_quiescent_state() pass
[deliverable/linux.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53
54 #include "rcutree.h"
55 #include <trace/events/rcu.h>
56
57 #include "rcu.h"
58
59 /* Data structures. */
60
61 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
62
63 #define RCU_STATE_INITIALIZER(structname) { \
64 .level = { &structname##_state.node[0] }, \
65 .levelcnt = { \
66 NUM_RCU_LVL_0, /* root of hierarchy. */ \
67 NUM_RCU_LVL_1, \
68 NUM_RCU_LVL_2, \
69 NUM_RCU_LVL_3, \
70 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71 }, \
72 .fqs_state = RCU_GP_IDLE, \
73 .gpnum = -300, \
74 .completed = -300, \
75 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 .n_force_qs = 0, \
78 .n_force_qs_ngp = 0, \
79 .name = #structname, \
80 }
81
82 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84
85 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87
88 static struct rcu_state *rcu_state;
89
90 /*
91 * The rcu_scheduler_active variable transitions from zero to one just
92 * before the first task is spawned. So when this variable is zero, RCU
93 * can assume that there is but one task, allowing RCU to (for example)
94 * optimized synchronize_sched() to a simple barrier(). When this variable
95 * is one, RCU must actually do all the hard work required to detect real
96 * grace periods. This variable is also used to suppress boot-time false
97 * positives from lockdep-RCU error checking.
98 */
99 int rcu_scheduler_active __read_mostly;
100 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
101
102 /*
103 * The rcu_scheduler_fully_active variable transitions from zero to one
104 * during the early_initcall() processing, which is after the scheduler
105 * is capable of creating new tasks. So RCU processing (for example,
106 * creating tasks for RCU priority boosting) must be delayed until after
107 * rcu_scheduler_fully_active transitions from zero to one. We also
108 * currently delay invocation of any RCU callbacks until after this point.
109 *
110 * It might later prove better for people registering RCU callbacks during
111 * early boot to take responsibility for these callbacks, but one step at
112 * a time.
113 */
114 static int rcu_scheduler_fully_active __read_mostly;
115
116 #ifdef CONFIG_RCU_BOOST
117
118 /*
119 * Control variables for per-CPU and per-rcu_node kthreads. These
120 * handle all flavors of RCU.
121 */
122 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126 DEFINE_PER_CPU(char, rcu_cpu_has_work);
127
128 #endif /* #ifdef CONFIG_RCU_BOOST */
129
130 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131 static void invoke_rcu_core(void);
132 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
133
134 /*
135 * Track the rcutorture test sequence number and the update version
136 * number within a given test. The rcutorture_testseq is incremented
137 * on every rcutorture module load and unload, so has an odd value
138 * when a test is running. The rcutorture_vernum is set to zero
139 * when rcutorture starts and is incremented on each rcutorture update.
140 * These variables enable correlating rcutorture output with the
141 * RCU tracing information.
142 */
143 unsigned long rcutorture_testseq;
144 unsigned long rcutorture_vernum;
145
146 /*
147 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
148 * permit this function to be invoked without holding the root rcu_node
149 * structure's ->lock, but of course results can be subject to change.
150 */
151 static int rcu_gp_in_progress(struct rcu_state *rsp)
152 {
153 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
154 }
155
156 /*
157 * Note a quiescent state. Because we do not need to know
158 * how many quiescent states passed, just if there was at least
159 * one since the start of the grace period, this just sets a flag.
160 * The caller must have disabled preemption.
161 */
162 void rcu_sched_qs(int cpu)
163 {
164 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
165
166 rdp->passed_quiesce_gpnum = rdp->gpnum;
167 barrier();
168 if (rdp->passed_quiesce == 0)
169 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
170 rdp->passed_quiesce = 1;
171 }
172
173 void rcu_bh_qs(int cpu)
174 {
175 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
176
177 rdp->passed_quiesce_gpnum = rdp->gpnum;
178 barrier();
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182 }
183
184 /*
185 * Note a context switch. This is a quiescent state for RCU-sched,
186 * and requires special handling for preemptible RCU.
187 * The caller must have disabled preemption.
188 */
189 void rcu_note_context_switch(int cpu)
190 {
191 trace_rcu_utilization("Start context switch");
192 rcu_sched_qs(cpu);
193 rcu_preempt_note_context_switch(cpu);
194 trace_rcu_utilization("End context switch");
195 }
196 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
197
198 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
199 .dynticks_nesting = DYNTICK_TASK_NESTING,
200 .dynticks = ATOMIC_INIT(1),
201 };
202
203 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
204 static int qhimark = 10000; /* If this many pending, ignore blimit. */
205 static int qlowmark = 100; /* Once only this many pending, use blimit. */
206
207 module_param(blimit, int, 0);
208 module_param(qhimark, int, 0);
209 module_param(qlowmark, int, 0);
210
211 int rcu_cpu_stall_suppress __read_mostly;
212 module_param(rcu_cpu_stall_suppress, int, 0644);
213
214 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
215 static int rcu_pending(int cpu);
216
217 /*
218 * Return the number of RCU-sched batches processed thus far for debug & stats.
219 */
220 long rcu_batches_completed_sched(void)
221 {
222 return rcu_sched_state.completed;
223 }
224 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
225
226 /*
227 * Return the number of RCU BH batches processed thus far for debug & stats.
228 */
229 long rcu_batches_completed_bh(void)
230 {
231 return rcu_bh_state.completed;
232 }
233 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
234
235 /*
236 * Force a quiescent state for RCU BH.
237 */
238 void rcu_bh_force_quiescent_state(void)
239 {
240 force_quiescent_state(&rcu_bh_state, 0);
241 }
242 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
243
244 /*
245 * Record the number of times rcutorture tests have been initiated and
246 * terminated. This information allows the debugfs tracing stats to be
247 * correlated to the rcutorture messages, even when the rcutorture module
248 * is being repeatedly loaded and unloaded. In other words, we cannot
249 * store this state in rcutorture itself.
250 */
251 void rcutorture_record_test_transition(void)
252 {
253 rcutorture_testseq++;
254 rcutorture_vernum = 0;
255 }
256 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
257
258 /*
259 * Record the number of writer passes through the current rcutorture test.
260 * This is also used to correlate debugfs tracing stats with the rcutorture
261 * messages.
262 */
263 void rcutorture_record_progress(unsigned long vernum)
264 {
265 rcutorture_vernum++;
266 }
267 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
268
269 /*
270 * Force a quiescent state for RCU-sched.
271 */
272 void rcu_sched_force_quiescent_state(void)
273 {
274 force_quiescent_state(&rcu_sched_state, 0);
275 }
276 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
277
278 /*
279 * Does the CPU have callbacks ready to be invoked?
280 */
281 static int
282 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
283 {
284 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
285 }
286
287 /*
288 * Does the current CPU require a yet-as-unscheduled grace period?
289 */
290 static int
291 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
292 {
293 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
294 }
295
296 /*
297 * Return the root node of the specified rcu_state structure.
298 */
299 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
300 {
301 return &rsp->node[0];
302 }
303
304 #ifdef CONFIG_SMP
305
306 /*
307 * If the specified CPU is offline, tell the caller that it is in
308 * a quiescent state. Otherwise, whack it with a reschedule IPI.
309 * Grace periods can end up waiting on an offline CPU when that
310 * CPU is in the process of coming online -- it will be added to the
311 * rcu_node bitmasks before it actually makes it online. The same thing
312 * can happen while a CPU is in the process of coming online. Because this
313 * race is quite rare, we check for it after detecting that the grace
314 * period has been delayed rather than checking each and every CPU
315 * each and every time we start a new grace period.
316 */
317 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
318 {
319 /*
320 * If the CPU is offline, it is in a quiescent state. We can
321 * trust its state not to change because interrupts are disabled.
322 */
323 if (cpu_is_offline(rdp->cpu)) {
324 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
325 rdp->offline_fqs++;
326 return 1;
327 }
328
329 /*
330 * The CPU is online, so send it a reschedule IPI. This forces
331 * it through the scheduler, and (inefficiently) also handles cases
332 * where idle loops fail to inform RCU about the CPU being idle.
333 */
334 if (rdp->cpu != smp_processor_id())
335 smp_send_reschedule(rdp->cpu);
336 else
337 set_need_resched();
338 rdp->resched_ipi++;
339 return 0;
340 }
341
342 #endif /* #ifdef CONFIG_SMP */
343
344 /*
345 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
346 *
347 * If the new value of the ->dynticks_nesting counter now is zero,
348 * we really have entered idle, and must do the appropriate accounting.
349 * The caller must have disabled interrupts.
350 */
351 static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
352 {
353 if (rdtp->dynticks_nesting) {
354 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
355 return;
356 }
357 trace_rcu_dyntick("Start", oldval, rdtp->dynticks_nesting);
358 if (!is_idle_task(current)) {
359 struct task_struct *idle = idle_task(smp_processor_id());
360
361 trace_rcu_dyntick("Error on entry: not idle task",
362 oldval, rdtp->dynticks_nesting);
363 ftrace_dump(DUMP_ALL);
364 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
365 current->pid, current->comm,
366 idle->pid, idle->comm); /* must be idle task! */
367 }
368 rcu_prepare_for_idle(smp_processor_id());
369 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
370 smp_mb__before_atomic_inc(); /* See above. */
371 atomic_inc(&rdtp->dynticks);
372 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
373 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
374 }
375
376 /**
377 * rcu_idle_enter - inform RCU that current CPU is entering idle
378 *
379 * Enter idle mode, in other words, -leave- the mode in which RCU
380 * read-side critical sections can occur. (Though RCU read-side
381 * critical sections can occur in irq handlers in idle, a possibility
382 * handled by irq_enter() and irq_exit().)
383 *
384 * We crowbar the ->dynticks_nesting field to zero to allow for
385 * the possibility of usermode upcalls having messed up our count
386 * of interrupt nesting level during the prior busy period.
387 */
388 void rcu_idle_enter(void)
389 {
390 unsigned long flags;
391 long long oldval;
392 struct rcu_dynticks *rdtp;
393
394 local_irq_save(flags);
395 rdtp = &__get_cpu_var(rcu_dynticks);
396 oldval = rdtp->dynticks_nesting;
397 rdtp->dynticks_nesting = 0;
398 rcu_idle_enter_common(rdtp, oldval);
399 local_irq_restore(flags);
400 }
401
402 /**
403 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
404 *
405 * Exit from an interrupt handler, which might possibly result in entering
406 * idle mode, in other words, leaving the mode in which read-side critical
407 * sections can occur.
408 *
409 * This code assumes that the idle loop never does anything that might
410 * result in unbalanced calls to irq_enter() and irq_exit(). If your
411 * architecture violates this assumption, RCU will give you what you
412 * deserve, good and hard. But very infrequently and irreproducibly.
413 *
414 * Use things like work queues to work around this limitation.
415 *
416 * You have been warned.
417 */
418 void rcu_irq_exit(void)
419 {
420 unsigned long flags;
421 long long oldval;
422 struct rcu_dynticks *rdtp;
423
424 local_irq_save(flags);
425 rdtp = &__get_cpu_var(rcu_dynticks);
426 oldval = rdtp->dynticks_nesting;
427 rdtp->dynticks_nesting--;
428 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
429 rcu_idle_enter_common(rdtp, oldval);
430 local_irq_restore(flags);
431 }
432
433 /*
434 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
435 *
436 * If the new value of the ->dynticks_nesting counter was previously zero,
437 * we really have exited idle, and must do the appropriate accounting.
438 * The caller must have disabled interrupts.
439 */
440 static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
441 {
442 if (oldval) {
443 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
444 return;
445 }
446 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
447 atomic_inc(&rdtp->dynticks);
448 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
449 smp_mb__after_atomic_inc(); /* See above. */
450 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
451 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
452 if (!is_idle_task(current)) {
453 struct task_struct *idle = idle_task(smp_processor_id());
454
455 trace_rcu_dyntick("Error on exit: not idle task",
456 oldval, rdtp->dynticks_nesting);
457 ftrace_dump(DUMP_ALL);
458 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
459 current->pid, current->comm,
460 idle->pid, idle->comm); /* must be idle task! */
461 }
462 }
463
464 /**
465 * rcu_idle_exit - inform RCU that current CPU is leaving idle
466 *
467 * Exit idle mode, in other words, -enter- the mode in which RCU
468 * read-side critical sections can occur.
469 *
470 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NESTING to
471 * allow for the possibility of usermode upcalls messing up our count
472 * of interrupt nesting level during the busy period that is just
473 * now starting.
474 */
475 void rcu_idle_exit(void)
476 {
477 unsigned long flags;
478 struct rcu_dynticks *rdtp;
479 long long oldval;
480
481 local_irq_save(flags);
482 rdtp = &__get_cpu_var(rcu_dynticks);
483 oldval = rdtp->dynticks_nesting;
484 WARN_ON_ONCE(oldval != 0);
485 rdtp->dynticks_nesting = DYNTICK_TASK_NESTING;
486 rcu_idle_exit_common(rdtp, oldval);
487 local_irq_restore(flags);
488 }
489
490 /**
491 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
492 *
493 * Enter an interrupt handler, which might possibly result in exiting
494 * idle mode, in other words, entering the mode in which read-side critical
495 * sections can occur.
496 *
497 * Note that the Linux kernel is fully capable of entering an interrupt
498 * handler that it never exits, for example when doing upcalls to
499 * user mode! This code assumes that the idle loop never does upcalls to
500 * user mode. If your architecture does do upcalls from the idle loop (or
501 * does anything else that results in unbalanced calls to the irq_enter()
502 * and irq_exit() functions), RCU will give you what you deserve, good
503 * and hard. But very infrequently and irreproducibly.
504 *
505 * Use things like work queues to work around this limitation.
506 *
507 * You have been warned.
508 */
509 void rcu_irq_enter(void)
510 {
511 unsigned long flags;
512 struct rcu_dynticks *rdtp;
513 long long oldval;
514
515 local_irq_save(flags);
516 rdtp = &__get_cpu_var(rcu_dynticks);
517 oldval = rdtp->dynticks_nesting;
518 rdtp->dynticks_nesting++;
519 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
520 rcu_idle_exit_common(rdtp, oldval);
521 local_irq_restore(flags);
522 }
523
524 /**
525 * rcu_nmi_enter - inform RCU of entry to NMI context
526 *
527 * If the CPU was idle with dynamic ticks active, and there is no
528 * irq handler running, this updates rdtp->dynticks_nmi to let the
529 * RCU grace-period handling know that the CPU is active.
530 */
531 void rcu_nmi_enter(void)
532 {
533 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
534
535 if (rdtp->dynticks_nmi_nesting == 0 &&
536 (atomic_read(&rdtp->dynticks) & 0x1))
537 return;
538 rdtp->dynticks_nmi_nesting++;
539 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
540 atomic_inc(&rdtp->dynticks);
541 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
542 smp_mb__after_atomic_inc(); /* See above. */
543 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
544 }
545
546 /**
547 * rcu_nmi_exit - inform RCU of exit from NMI context
548 *
549 * If the CPU was idle with dynamic ticks active, and there is no
550 * irq handler running, this updates rdtp->dynticks_nmi to let the
551 * RCU grace-period handling know that the CPU is no longer active.
552 */
553 void rcu_nmi_exit(void)
554 {
555 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
556
557 if (rdtp->dynticks_nmi_nesting == 0 ||
558 --rdtp->dynticks_nmi_nesting != 0)
559 return;
560 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
561 smp_mb__before_atomic_inc(); /* See above. */
562 atomic_inc(&rdtp->dynticks);
563 smp_mb__after_atomic_inc(); /* Force delay to next write. */
564 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
565 }
566
567 #ifdef CONFIG_PROVE_RCU
568
569 /**
570 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
571 *
572 * If the current CPU is in its idle loop and is neither in an interrupt
573 * or NMI handler, return true.
574 */
575 int rcu_is_cpu_idle(void)
576 {
577 int ret;
578
579 preempt_disable();
580 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
581 preempt_enable();
582 return ret;
583 }
584 EXPORT_SYMBOL(rcu_is_cpu_idle);
585
586 #endif /* #ifdef CONFIG_PROVE_RCU */
587
588 /**
589 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
590 *
591 * If the current CPU is idle or running at a first-level (not nested)
592 * interrupt from idle, return true. The caller must have at least
593 * disabled preemption.
594 */
595 int rcu_is_cpu_rrupt_from_idle(void)
596 {
597 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
598 }
599
600 #ifdef CONFIG_SMP
601
602 /*
603 * Snapshot the specified CPU's dynticks counter so that we can later
604 * credit them with an implicit quiescent state. Return 1 if this CPU
605 * is in dynticks idle mode, which is an extended quiescent state.
606 */
607 static int dyntick_save_progress_counter(struct rcu_data *rdp)
608 {
609 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
610 return (rdp->dynticks_snap & 0x1) == 0;
611 }
612
613 /*
614 * Return true if the specified CPU has passed through a quiescent
615 * state by virtue of being in or having passed through an dynticks
616 * idle state since the last call to dyntick_save_progress_counter()
617 * for this same CPU.
618 */
619 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
620 {
621 unsigned int curr;
622 unsigned int snap;
623
624 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
625 snap = (unsigned int)rdp->dynticks_snap;
626
627 /*
628 * If the CPU passed through or entered a dynticks idle phase with
629 * no active irq/NMI handlers, then we can safely pretend that the CPU
630 * already acknowledged the request to pass through a quiescent
631 * state. Either way, that CPU cannot possibly be in an RCU
632 * read-side critical section that started before the beginning
633 * of the current RCU grace period.
634 */
635 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
636 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
637 rdp->dynticks_fqs++;
638 return 1;
639 }
640
641 /* Go check for the CPU being offline. */
642 return rcu_implicit_offline_qs(rdp);
643 }
644
645 #endif /* #ifdef CONFIG_SMP */
646
647 int rcu_cpu_stall_suppress __read_mostly;
648
649 static void record_gp_stall_check_time(struct rcu_state *rsp)
650 {
651 rsp->gp_start = jiffies;
652 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
653 }
654
655 static void print_other_cpu_stall(struct rcu_state *rsp)
656 {
657 int cpu;
658 long delta;
659 unsigned long flags;
660 int ndetected;
661 struct rcu_node *rnp = rcu_get_root(rsp);
662
663 /* Only let one CPU complain about others per time interval. */
664
665 raw_spin_lock_irqsave(&rnp->lock, flags);
666 delta = jiffies - rsp->jiffies_stall;
667 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
668 raw_spin_unlock_irqrestore(&rnp->lock, flags);
669 return;
670 }
671 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
672
673 /*
674 * Now rat on any tasks that got kicked up to the root rcu_node
675 * due to CPU offlining.
676 */
677 ndetected = rcu_print_task_stall(rnp);
678 raw_spin_unlock_irqrestore(&rnp->lock, flags);
679
680 /*
681 * OK, time to rat on our buddy...
682 * See Documentation/RCU/stallwarn.txt for info on how to debug
683 * RCU CPU stall warnings.
684 */
685 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
686 rsp->name);
687 rcu_for_each_leaf_node(rsp, rnp) {
688 raw_spin_lock_irqsave(&rnp->lock, flags);
689 ndetected += rcu_print_task_stall(rnp);
690 raw_spin_unlock_irqrestore(&rnp->lock, flags);
691 if (rnp->qsmask == 0)
692 continue;
693 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
694 if (rnp->qsmask & (1UL << cpu)) {
695 printk(" %d", rnp->grplo + cpu);
696 ndetected++;
697 }
698 }
699 printk("} (detected by %d, t=%ld jiffies)\n",
700 smp_processor_id(), (long)(jiffies - rsp->gp_start));
701 if (ndetected == 0)
702 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
703 else if (!trigger_all_cpu_backtrace())
704 dump_stack();
705
706 /* If so configured, complain about tasks blocking the grace period. */
707
708 rcu_print_detail_task_stall(rsp);
709
710 force_quiescent_state(rsp, 0); /* Kick them all. */
711 }
712
713 static void print_cpu_stall(struct rcu_state *rsp)
714 {
715 unsigned long flags;
716 struct rcu_node *rnp = rcu_get_root(rsp);
717
718 /*
719 * OK, time to rat on ourselves...
720 * See Documentation/RCU/stallwarn.txt for info on how to debug
721 * RCU CPU stall warnings.
722 */
723 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
724 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
725 if (!trigger_all_cpu_backtrace())
726 dump_stack();
727
728 raw_spin_lock_irqsave(&rnp->lock, flags);
729 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
730 rsp->jiffies_stall =
731 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
732 raw_spin_unlock_irqrestore(&rnp->lock, flags);
733
734 set_need_resched(); /* kick ourselves to get things going. */
735 }
736
737 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
738 {
739 unsigned long j;
740 unsigned long js;
741 struct rcu_node *rnp;
742
743 if (rcu_cpu_stall_suppress)
744 return;
745 j = ACCESS_ONCE(jiffies);
746 js = ACCESS_ONCE(rsp->jiffies_stall);
747 rnp = rdp->mynode;
748 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
749
750 /* We haven't checked in, so go dump stack. */
751 print_cpu_stall(rsp);
752
753 } else if (rcu_gp_in_progress(rsp) &&
754 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
755
756 /* They had a few time units to dump stack, so complain. */
757 print_other_cpu_stall(rsp);
758 }
759 }
760
761 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
762 {
763 rcu_cpu_stall_suppress = 1;
764 return NOTIFY_DONE;
765 }
766
767 /**
768 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
769 *
770 * Set the stall-warning timeout way off into the future, thus preventing
771 * any RCU CPU stall-warning messages from appearing in the current set of
772 * RCU grace periods.
773 *
774 * The caller must disable hard irqs.
775 */
776 void rcu_cpu_stall_reset(void)
777 {
778 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
779 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
780 rcu_preempt_stall_reset();
781 }
782
783 static struct notifier_block rcu_panic_block = {
784 .notifier_call = rcu_panic,
785 };
786
787 static void __init check_cpu_stall_init(void)
788 {
789 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
790 }
791
792 /*
793 * Update CPU-local rcu_data state to record the newly noticed grace period.
794 * This is used both when we started the grace period and when we notice
795 * that someone else started the grace period. The caller must hold the
796 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
797 * and must have irqs disabled.
798 */
799 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
800 {
801 if (rdp->gpnum != rnp->gpnum) {
802 /*
803 * If the current grace period is waiting for this CPU,
804 * set up to detect a quiescent state, otherwise don't
805 * go looking for one.
806 */
807 rdp->gpnum = rnp->gpnum;
808 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
809 if (rnp->qsmask & rdp->grpmask) {
810 rdp->qs_pending = 1;
811 rdp->passed_quiesce = 0;
812 } else
813 rdp->qs_pending = 0;
814 }
815 }
816
817 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
818 {
819 unsigned long flags;
820 struct rcu_node *rnp;
821
822 local_irq_save(flags);
823 rnp = rdp->mynode;
824 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
825 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
826 local_irq_restore(flags);
827 return;
828 }
829 __note_new_gpnum(rsp, rnp, rdp);
830 raw_spin_unlock_irqrestore(&rnp->lock, flags);
831 }
832
833 /*
834 * Did someone else start a new RCU grace period start since we last
835 * checked? Update local state appropriately if so. Must be called
836 * on the CPU corresponding to rdp.
837 */
838 static int
839 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
840 {
841 unsigned long flags;
842 int ret = 0;
843
844 local_irq_save(flags);
845 if (rdp->gpnum != rsp->gpnum) {
846 note_new_gpnum(rsp, rdp);
847 ret = 1;
848 }
849 local_irq_restore(flags);
850 return ret;
851 }
852
853 /*
854 * Advance this CPU's callbacks, but only if the current grace period
855 * has ended. This may be called only from the CPU to whom the rdp
856 * belongs. In addition, the corresponding leaf rcu_node structure's
857 * ->lock must be held by the caller, with irqs disabled.
858 */
859 static void
860 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
861 {
862 /* Did another grace period end? */
863 if (rdp->completed != rnp->completed) {
864
865 /* Advance callbacks. No harm if list empty. */
866 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
867 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
868 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
869
870 /* Remember that we saw this grace-period completion. */
871 rdp->completed = rnp->completed;
872 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
873
874 /*
875 * If we were in an extended quiescent state, we may have
876 * missed some grace periods that others CPUs handled on
877 * our behalf. Catch up with this state to avoid noting
878 * spurious new grace periods. If another grace period
879 * has started, then rnp->gpnum will have advanced, so
880 * we will detect this later on.
881 */
882 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
883 rdp->gpnum = rdp->completed;
884
885 /*
886 * If RCU does not need a quiescent state from this CPU,
887 * then make sure that this CPU doesn't go looking for one.
888 */
889 if ((rnp->qsmask & rdp->grpmask) == 0)
890 rdp->qs_pending = 0;
891 }
892 }
893
894 /*
895 * Advance this CPU's callbacks, but only if the current grace period
896 * has ended. This may be called only from the CPU to whom the rdp
897 * belongs.
898 */
899 static void
900 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
901 {
902 unsigned long flags;
903 struct rcu_node *rnp;
904
905 local_irq_save(flags);
906 rnp = rdp->mynode;
907 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
908 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
909 local_irq_restore(flags);
910 return;
911 }
912 __rcu_process_gp_end(rsp, rnp, rdp);
913 raw_spin_unlock_irqrestore(&rnp->lock, flags);
914 }
915
916 /*
917 * Do per-CPU grace-period initialization for running CPU. The caller
918 * must hold the lock of the leaf rcu_node structure corresponding to
919 * this CPU.
920 */
921 static void
922 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
923 {
924 /* Prior grace period ended, so advance callbacks for current CPU. */
925 __rcu_process_gp_end(rsp, rnp, rdp);
926
927 /*
928 * Because this CPU just now started the new grace period, we know
929 * that all of its callbacks will be covered by this upcoming grace
930 * period, even the ones that were registered arbitrarily recently.
931 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
932 *
933 * Other CPUs cannot be sure exactly when the grace period started.
934 * Therefore, their recently registered callbacks must pass through
935 * an additional RCU_NEXT_READY stage, so that they will be handled
936 * by the next RCU grace period.
937 */
938 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
939 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
940
941 /* Set state so that this CPU will detect the next quiescent state. */
942 __note_new_gpnum(rsp, rnp, rdp);
943 }
944
945 /*
946 * Start a new RCU grace period if warranted, re-initializing the hierarchy
947 * in preparation for detecting the next grace period. The caller must hold
948 * the root node's ->lock, which is released before return. Hard irqs must
949 * be disabled.
950 */
951 static void
952 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
953 __releases(rcu_get_root(rsp)->lock)
954 {
955 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
956 struct rcu_node *rnp = rcu_get_root(rsp);
957
958 if (!rcu_scheduler_fully_active ||
959 !cpu_needs_another_gp(rsp, rdp)) {
960 /*
961 * Either the scheduler hasn't yet spawned the first
962 * non-idle task or this CPU does not need another
963 * grace period. Either way, don't start a new grace
964 * period.
965 */
966 raw_spin_unlock_irqrestore(&rnp->lock, flags);
967 return;
968 }
969
970 if (rsp->fqs_active) {
971 /*
972 * This CPU needs a grace period, but force_quiescent_state()
973 * is running. Tell it to start one on this CPU's behalf.
974 */
975 rsp->fqs_need_gp = 1;
976 raw_spin_unlock_irqrestore(&rnp->lock, flags);
977 return;
978 }
979
980 /* Advance to a new grace period and initialize state. */
981 rsp->gpnum++;
982 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
983 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
984 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
985 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
986 record_gp_stall_check_time(rsp);
987
988 /* Special-case the common single-level case. */
989 if (NUM_RCU_NODES == 1) {
990 rcu_preempt_check_blocked_tasks(rnp);
991 rnp->qsmask = rnp->qsmaskinit;
992 rnp->gpnum = rsp->gpnum;
993 rnp->completed = rsp->completed;
994 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state OK */
995 rcu_start_gp_per_cpu(rsp, rnp, rdp);
996 rcu_preempt_boost_start_gp(rnp);
997 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
998 rnp->level, rnp->grplo,
999 rnp->grphi, rnp->qsmask);
1000 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1001 return;
1002 }
1003
1004 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
1005
1006
1007 /* Exclude any concurrent CPU-hotplug operations. */
1008 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1009
1010 /*
1011 * Set the quiescent-state-needed bits in all the rcu_node
1012 * structures for all currently online CPUs in breadth-first
1013 * order, starting from the root rcu_node structure. This
1014 * operation relies on the layout of the hierarchy within the
1015 * rsp->node[] array. Note that other CPUs will access only
1016 * the leaves of the hierarchy, which still indicate that no
1017 * grace period is in progress, at least until the corresponding
1018 * leaf node has been initialized. In addition, we have excluded
1019 * CPU-hotplug operations.
1020 *
1021 * Note that the grace period cannot complete until we finish
1022 * the initialization process, as there will be at least one
1023 * qsmask bit set in the root node until that time, namely the
1024 * one corresponding to this CPU, due to the fact that we have
1025 * irqs disabled.
1026 */
1027 rcu_for_each_node_breadth_first(rsp, rnp) {
1028 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1029 rcu_preempt_check_blocked_tasks(rnp);
1030 rnp->qsmask = rnp->qsmaskinit;
1031 rnp->gpnum = rsp->gpnum;
1032 rnp->completed = rsp->completed;
1033 if (rnp == rdp->mynode)
1034 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1035 rcu_preempt_boost_start_gp(rnp);
1036 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1037 rnp->level, rnp->grplo,
1038 rnp->grphi, rnp->qsmask);
1039 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1040 }
1041
1042 rnp = rcu_get_root(rsp);
1043 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1044 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1045 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1046 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1047 }
1048
1049 /*
1050 * Report a full set of quiescent states to the specified rcu_state
1051 * data structure. This involves cleaning up after the prior grace
1052 * period and letting rcu_start_gp() start up the next grace period
1053 * if one is needed. Note that the caller must hold rnp->lock, as
1054 * required by rcu_start_gp(), which will release it.
1055 */
1056 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1057 __releases(rcu_get_root(rsp)->lock)
1058 {
1059 unsigned long gp_duration;
1060 struct rcu_node *rnp = rcu_get_root(rsp);
1061 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1062
1063 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1064
1065 /*
1066 * Ensure that all grace-period and pre-grace-period activity
1067 * is seen before the assignment to rsp->completed.
1068 */
1069 smp_mb(); /* See above block comment. */
1070 gp_duration = jiffies - rsp->gp_start;
1071 if (gp_duration > rsp->gp_max)
1072 rsp->gp_max = gp_duration;
1073
1074 /*
1075 * We know the grace period is complete, but to everyone else
1076 * it appears to still be ongoing. But it is also the case
1077 * that to everyone else it looks like there is nothing that
1078 * they can do to advance the grace period. It is therefore
1079 * safe for us to drop the lock in order to mark the grace
1080 * period as completed in all of the rcu_node structures.
1081 *
1082 * But if this CPU needs another grace period, it will take
1083 * care of this while initializing the next grace period.
1084 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1085 * because the callbacks have not yet been advanced: Those
1086 * callbacks are waiting on the grace period that just now
1087 * completed.
1088 */
1089 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1090 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1091
1092 /*
1093 * Propagate new ->completed value to rcu_node structures
1094 * so that other CPUs don't have to wait until the start
1095 * of the next grace period to process their callbacks.
1096 */
1097 rcu_for_each_node_breadth_first(rsp, rnp) {
1098 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1099 rnp->completed = rsp->gpnum;
1100 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1101 }
1102 rnp = rcu_get_root(rsp);
1103 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1104 }
1105
1106 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
1107 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1108 rsp->fqs_state = RCU_GP_IDLE;
1109 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1110 }
1111
1112 /*
1113 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1114 * Allows quiescent states for a group of CPUs to be reported at one go
1115 * to the specified rcu_node structure, though all the CPUs in the group
1116 * must be represented by the same rcu_node structure (which need not be
1117 * a leaf rcu_node structure, though it often will be). That structure's
1118 * lock must be held upon entry, and it is released before return.
1119 */
1120 static void
1121 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1122 struct rcu_node *rnp, unsigned long flags)
1123 __releases(rnp->lock)
1124 {
1125 struct rcu_node *rnp_c;
1126
1127 /* Walk up the rcu_node hierarchy. */
1128 for (;;) {
1129 if (!(rnp->qsmask & mask)) {
1130
1131 /* Our bit has already been cleared, so done. */
1132 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1133 return;
1134 }
1135 rnp->qsmask &= ~mask;
1136 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1137 mask, rnp->qsmask, rnp->level,
1138 rnp->grplo, rnp->grphi,
1139 !!rnp->gp_tasks);
1140 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1141
1142 /* Other bits still set at this level, so done. */
1143 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1144 return;
1145 }
1146 mask = rnp->grpmask;
1147 if (rnp->parent == NULL) {
1148
1149 /* No more levels. Exit loop holding root lock. */
1150
1151 break;
1152 }
1153 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1154 rnp_c = rnp;
1155 rnp = rnp->parent;
1156 raw_spin_lock_irqsave(&rnp->lock, flags);
1157 WARN_ON_ONCE(rnp_c->qsmask);
1158 }
1159
1160 /*
1161 * Get here if we are the last CPU to pass through a quiescent
1162 * state for this grace period. Invoke rcu_report_qs_rsp()
1163 * to clean up and start the next grace period if one is needed.
1164 */
1165 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1166 }
1167
1168 /*
1169 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1170 * structure. This must be either called from the specified CPU, or
1171 * called when the specified CPU is known to be offline (and when it is
1172 * also known that no other CPU is concurrently trying to help the offline
1173 * CPU). The lastcomp argument is used to make sure we are still in the
1174 * grace period of interest. We don't want to end the current grace period
1175 * based on quiescent states detected in an earlier grace period!
1176 */
1177 static void
1178 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1179 {
1180 unsigned long flags;
1181 unsigned long mask;
1182 struct rcu_node *rnp;
1183
1184 rnp = rdp->mynode;
1185 raw_spin_lock_irqsave(&rnp->lock, flags);
1186 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1187
1188 /*
1189 * The grace period in which this quiescent state was
1190 * recorded has ended, so don't report it upwards.
1191 * We will instead need a new quiescent state that lies
1192 * within the current grace period.
1193 */
1194 rdp->passed_quiesce = 0; /* need qs for new gp. */
1195 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1196 return;
1197 }
1198 mask = rdp->grpmask;
1199 if ((rnp->qsmask & mask) == 0) {
1200 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1201 } else {
1202 rdp->qs_pending = 0;
1203
1204 /*
1205 * This GP can't end until cpu checks in, so all of our
1206 * callbacks can be processed during the next GP.
1207 */
1208 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1209
1210 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1211 }
1212 }
1213
1214 /*
1215 * Check to see if there is a new grace period of which this CPU
1216 * is not yet aware, and if so, set up local rcu_data state for it.
1217 * Otherwise, see if this CPU has just passed through its first
1218 * quiescent state for this grace period, and record that fact if so.
1219 */
1220 static void
1221 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1222 {
1223 /* If there is now a new grace period, record and return. */
1224 if (check_for_new_grace_period(rsp, rdp))
1225 return;
1226
1227 /*
1228 * Does this CPU still need to do its part for current grace period?
1229 * If no, return and let the other CPUs do their part as well.
1230 */
1231 if (!rdp->qs_pending)
1232 return;
1233
1234 /*
1235 * Was there a quiescent state since the beginning of the grace
1236 * period? If no, then exit and wait for the next call.
1237 */
1238 if (!rdp->passed_quiesce)
1239 return;
1240
1241 /*
1242 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1243 * judge of that).
1244 */
1245 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1246 }
1247
1248 #ifdef CONFIG_HOTPLUG_CPU
1249
1250 /*
1251 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1252 * Synchronization is not required because this function executes
1253 * in stop_machine() context.
1254 */
1255 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1256 {
1257 int i;
1258 /* current DYING CPU is cleared in the cpu_online_mask */
1259 int receive_cpu = cpumask_any(cpu_online_mask);
1260 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1261 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1262
1263 if (rdp->nxtlist == NULL)
1264 return; /* irqs disabled, so comparison is stable. */
1265
1266 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1267 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1268 receive_rdp->qlen += rdp->qlen;
1269 receive_rdp->n_cbs_adopted += rdp->qlen;
1270 rdp->n_cbs_orphaned += rdp->qlen;
1271
1272 rdp->nxtlist = NULL;
1273 for (i = 0; i < RCU_NEXT_SIZE; i++)
1274 rdp->nxttail[i] = &rdp->nxtlist;
1275 rdp->qlen = 0;
1276 }
1277
1278 /*
1279 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1280 * and move all callbacks from the outgoing CPU to the current one.
1281 * There can only be one CPU hotplug operation at a time, so no other
1282 * CPU can be attempting to update rcu_cpu_kthread_task.
1283 */
1284 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1285 {
1286 unsigned long flags;
1287 unsigned long mask;
1288 int need_report = 0;
1289 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1290 struct rcu_node *rnp;
1291
1292 rcu_stop_cpu_kthread(cpu);
1293
1294 /* Exclude any attempts to start a new grace period. */
1295 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1296
1297 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1298 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1299 mask = rdp->grpmask; /* rnp->grplo is constant. */
1300 do {
1301 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1302 rnp->qsmaskinit &= ~mask;
1303 if (rnp->qsmaskinit != 0) {
1304 if (rnp != rdp->mynode)
1305 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1306 else
1307 trace_rcu_grace_period(rsp->name,
1308 rnp->gpnum + 1 -
1309 !!(rnp->qsmask & mask),
1310 "cpuofl");
1311 break;
1312 }
1313 if (rnp == rdp->mynode) {
1314 trace_rcu_grace_period(rsp->name,
1315 rnp->gpnum + 1 -
1316 !!(rnp->qsmask & mask),
1317 "cpuofl");
1318 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1319 } else
1320 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1321 mask = rnp->grpmask;
1322 rnp = rnp->parent;
1323 } while (rnp != NULL);
1324
1325 /*
1326 * We still hold the leaf rcu_node structure lock here, and
1327 * irqs are still disabled. The reason for this subterfuge is
1328 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1329 * held leads to deadlock.
1330 */
1331 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1332 rnp = rdp->mynode;
1333 if (need_report & RCU_OFL_TASKS_NORM_GP)
1334 rcu_report_unblock_qs_rnp(rnp, flags);
1335 else
1336 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1337 if (need_report & RCU_OFL_TASKS_EXP_GP)
1338 rcu_report_exp_rnp(rsp, rnp, true);
1339 rcu_node_kthread_setaffinity(rnp, -1);
1340 }
1341
1342 /*
1343 * Remove the specified CPU from the RCU hierarchy and move any pending
1344 * callbacks that it might have to the current CPU. This code assumes
1345 * that at least one CPU in the system will remain running at all times.
1346 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1347 */
1348 static void rcu_offline_cpu(int cpu)
1349 {
1350 __rcu_offline_cpu(cpu, &rcu_sched_state);
1351 __rcu_offline_cpu(cpu, &rcu_bh_state);
1352 rcu_preempt_offline_cpu(cpu);
1353 }
1354
1355 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1356
1357 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1358 {
1359 }
1360
1361 static void rcu_offline_cpu(int cpu)
1362 {
1363 }
1364
1365 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1366
1367 /*
1368 * Invoke any RCU callbacks that have made it to the end of their grace
1369 * period. Thottle as specified by rdp->blimit.
1370 */
1371 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1372 {
1373 unsigned long flags;
1374 struct rcu_head *next, *list, **tail;
1375 int bl, count;
1376
1377 /* If no callbacks are ready, just return.*/
1378 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1379 trace_rcu_batch_start(rsp->name, 0, 0);
1380 trace_rcu_batch_end(rsp->name, 0);
1381 return;
1382 }
1383
1384 /*
1385 * Extract the list of ready callbacks, disabling to prevent
1386 * races with call_rcu() from interrupt handlers.
1387 */
1388 local_irq_save(flags);
1389 bl = rdp->blimit;
1390 trace_rcu_batch_start(rsp->name, rdp->qlen, bl);
1391 list = rdp->nxtlist;
1392 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1393 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1394 tail = rdp->nxttail[RCU_DONE_TAIL];
1395 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1396 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1397 rdp->nxttail[count] = &rdp->nxtlist;
1398 local_irq_restore(flags);
1399
1400 /* Invoke callbacks. */
1401 count = 0;
1402 while (list) {
1403 next = list->next;
1404 prefetch(next);
1405 debug_rcu_head_unqueue(list);
1406 __rcu_reclaim(rsp->name, list);
1407 list = next;
1408 if (++count >= bl)
1409 break;
1410 }
1411
1412 local_irq_save(flags);
1413 trace_rcu_batch_end(rsp->name, count);
1414
1415 /* Update count, and requeue any remaining callbacks. */
1416 rdp->qlen -= count;
1417 rdp->n_cbs_invoked += count;
1418 if (list != NULL) {
1419 *tail = rdp->nxtlist;
1420 rdp->nxtlist = list;
1421 for (count = 0; count < RCU_NEXT_SIZE; count++)
1422 if (&rdp->nxtlist == rdp->nxttail[count])
1423 rdp->nxttail[count] = tail;
1424 else
1425 break;
1426 }
1427
1428 /* Reinstate batch limit if we have worked down the excess. */
1429 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1430 rdp->blimit = blimit;
1431
1432 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1433 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1434 rdp->qlen_last_fqs_check = 0;
1435 rdp->n_force_qs_snap = rsp->n_force_qs;
1436 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1437 rdp->qlen_last_fqs_check = rdp->qlen;
1438
1439 local_irq_restore(flags);
1440
1441 /* Re-invoke RCU core processing if there are callbacks remaining. */
1442 if (cpu_has_callbacks_ready_to_invoke(rdp))
1443 invoke_rcu_core();
1444 }
1445
1446 /*
1447 * Check to see if this CPU is in a non-context-switch quiescent state
1448 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1449 * Also schedule RCU core processing.
1450 *
1451 * This function must be called from hardirq context. It is normally
1452 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1453 * false, there is no point in invoking rcu_check_callbacks().
1454 */
1455 void rcu_check_callbacks(int cpu, int user)
1456 {
1457 trace_rcu_utilization("Start scheduler-tick");
1458 if (user || rcu_is_cpu_rrupt_from_idle()) {
1459
1460 /*
1461 * Get here if this CPU took its interrupt from user
1462 * mode or from the idle loop, and if this is not a
1463 * nested interrupt. In this case, the CPU is in
1464 * a quiescent state, so note it.
1465 *
1466 * No memory barrier is required here because both
1467 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1468 * variables that other CPUs neither access nor modify,
1469 * at least not while the corresponding CPU is online.
1470 */
1471
1472 rcu_sched_qs(cpu);
1473 rcu_bh_qs(cpu);
1474
1475 } else if (!in_softirq()) {
1476
1477 /*
1478 * Get here if this CPU did not take its interrupt from
1479 * softirq, in other words, if it is not interrupting
1480 * a rcu_bh read-side critical section. This is an _bh
1481 * critical section, so note it.
1482 */
1483
1484 rcu_bh_qs(cpu);
1485 }
1486 rcu_preempt_check_callbacks(cpu);
1487 if (rcu_pending(cpu))
1488 invoke_rcu_core();
1489 trace_rcu_utilization("End scheduler-tick");
1490 }
1491
1492 #ifdef CONFIG_SMP
1493
1494 /*
1495 * Scan the leaf rcu_node structures, processing dyntick state for any that
1496 * have not yet encountered a quiescent state, using the function specified.
1497 * Also initiate boosting for any threads blocked on the root rcu_node.
1498 *
1499 * The caller must have suppressed start of new grace periods.
1500 */
1501 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1502 {
1503 unsigned long bit;
1504 int cpu;
1505 unsigned long flags;
1506 unsigned long mask;
1507 struct rcu_node *rnp;
1508
1509 rcu_for_each_leaf_node(rsp, rnp) {
1510 mask = 0;
1511 raw_spin_lock_irqsave(&rnp->lock, flags);
1512 if (!rcu_gp_in_progress(rsp)) {
1513 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1514 return;
1515 }
1516 if (rnp->qsmask == 0) {
1517 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1518 continue;
1519 }
1520 cpu = rnp->grplo;
1521 bit = 1;
1522 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1523 if ((rnp->qsmask & bit) != 0 &&
1524 f(per_cpu_ptr(rsp->rda, cpu)))
1525 mask |= bit;
1526 }
1527 if (mask != 0) {
1528
1529 /* rcu_report_qs_rnp() releases rnp->lock. */
1530 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1531 continue;
1532 }
1533 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1534 }
1535 rnp = rcu_get_root(rsp);
1536 if (rnp->qsmask == 0) {
1537 raw_spin_lock_irqsave(&rnp->lock, flags);
1538 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1539 }
1540 }
1541
1542 /*
1543 * Force quiescent states on reluctant CPUs, and also detect which
1544 * CPUs are in dyntick-idle mode.
1545 */
1546 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1547 {
1548 unsigned long flags;
1549 struct rcu_node *rnp = rcu_get_root(rsp);
1550
1551 trace_rcu_utilization("Start fqs");
1552 if (!rcu_gp_in_progress(rsp)) {
1553 trace_rcu_utilization("End fqs");
1554 return; /* No grace period in progress, nothing to force. */
1555 }
1556 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1557 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1558 trace_rcu_utilization("End fqs");
1559 return; /* Someone else is already on the job. */
1560 }
1561 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1562 goto unlock_fqs_ret; /* no emergency and done recently. */
1563 rsp->n_force_qs++;
1564 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1565 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1566 if(!rcu_gp_in_progress(rsp)) {
1567 rsp->n_force_qs_ngp++;
1568 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1569 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1570 }
1571 rsp->fqs_active = 1;
1572 switch (rsp->fqs_state) {
1573 case RCU_GP_IDLE:
1574 case RCU_GP_INIT:
1575
1576 break; /* grace period idle or initializing, ignore. */
1577
1578 case RCU_SAVE_DYNTICK:
1579 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1580 break; /* So gcc recognizes the dead code. */
1581
1582 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1583
1584 /* Record dyntick-idle state. */
1585 force_qs_rnp(rsp, dyntick_save_progress_counter);
1586 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1587 if (rcu_gp_in_progress(rsp))
1588 rsp->fqs_state = RCU_FORCE_QS;
1589 break;
1590
1591 case RCU_FORCE_QS:
1592
1593 /* Check dyntick-idle state, send IPI to laggarts. */
1594 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1595 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1596
1597 /* Leave state in case more forcing is required. */
1598
1599 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1600 break;
1601 }
1602 rsp->fqs_active = 0;
1603 if (rsp->fqs_need_gp) {
1604 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1605 rsp->fqs_need_gp = 0;
1606 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1607 trace_rcu_utilization("End fqs");
1608 return;
1609 }
1610 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1611 unlock_fqs_ret:
1612 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1613 trace_rcu_utilization("End fqs");
1614 }
1615
1616 #else /* #ifdef CONFIG_SMP */
1617
1618 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1619 {
1620 set_need_resched();
1621 }
1622
1623 #endif /* #else #ifdef CONFIG_SMP */
1624
1625 /*
1626 * This does the RCU core processing work for the specified rcu_state
1627 * and rcu_data structures. This may be called only from the CPU to
1628 * whom the rdp belongs.
1629 */
1630 static void
1631 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1632 {
1633 unsigned long flags;
1634
1635 WARN_ON_ONCE(rdp->beenonline == 0);
1636
1637 /*
1638 * If an RCU GP has gone long enough, go check for dyntick
1639 * idle CPUs and, if needed, send resched IPIs.
1640 */
1641 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1642 force_quiescent_state(rsp, 1);
1643
1644 /*
1645 * Advance callbacks in response to end of earlier grace
1646 * period that some other CPU ended.
1647 */
1648 rcu_process_gp_end(rsp, rdp);
1649
1650 /* Update RCU state based on any recent quiescent states. */
1651 rcu_check_quiescent_state(rsp, rdp);
1652
1653 /* Does this CPU require a not-yet-started grace period? */
1654 if (cpu_needs_another_gp(rsp, rdp)) {
1655 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1656 rcu_start_gp(rsp, flags); /* releases above lock */
1657 }
1658
1659 /* If there are callbacks ready, invoke them. */
1660 if (cpu_has_callbacks_ready_to_invoke(rdp))
1661 invoke_rcu_callbacks(rsp, rdp);
1662 }
1663
1664 /*
1665 * Do RCU core processing for the current CPU.
1666 */
1667 static void rcu_process_callbacks(struct softirq_action *unused)
1668 {
1669 trace_rcu_utilization("Start RCU core");
1670 __rcu_process_callbacks(&rcu_sched_state,
1671 &__get_cpu_var(rcu_sched_data));
1672 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1673 rcu_preempt_process_callbacks();
1674 trace_rcu_utilization("End RCU core");
1675 }
1676
1677 /*
1678 * Schedule RCU callback invocation. If the specified type of RCU
1679 * does not support RCU priority boosting, just do a direct call,
1680 * otherwise wake up the per-CPU kernel kthread. Note that because we
1681 * are running on the current CPU with interrupts disabled, the
1682 * rcu_cpu_kthread_task cannot disappear out from under us.
1683 */
1684 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1685 {
1686 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1687 return;
1688 if (likely(!rsp->boost)) {
1689 rcu_do_batch(rsp, rdp);
1690 return;
1691 }
1692 invoke_rcu_callbacks_kthread();
1693 }
1694
1695 static void invoke_rcu_core(void)
1696 {
1697 raise_softirq(RCU_SOFTIRQ);
1698 }
1699
1700 static void
1701 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1702 struct rcu_state *rsp)
1703 {
1704 unsigned long flags;
1705 struct rcu_data *rdp;
1706
1707 debug_rcu_head_queue(head);
1708 head->func = func;
1709 head->next = NULL;
1710
1711 smp_mb(); /* Ensure RCU update seen before callback registry. */
1712
1713 /*
1714 * Opportunistically note grace-period endings and beginnings.
1715 * Note that we might see a beginning right after we see an
1716 * end, but never vice versa, since this CPU has to pass through
1717 * a quiescent state betweentimes.
1718 */
1719 local_irq_save(flags);
1720 rdp = this_cpu_ptr(rsp->rda);
1721
1722 /* Add the callback to our list. */
1723 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1724 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1725 rdp->qlen++;
1726
1727 if (__is_kfree_rcu_offset((unsigned long)func))
1728 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1729 rdp->qlen);
1730 else
1731 trace_rcu_callback(rsp->name, head, rdp->qlen);
1732
1733 /* If interrupts were disabled, don't dive into RCU core. */
1734 if (irqs_disabled_flags(flags)) {
1735 local_irq_restore(flags);
1736 return;
1737 }
1738
1739 /*
1740 * Force the grace period if too many callbacks or too long waiting.
1741 * Enforce hysteresis, and don't invoke force_quiescent_state()
1742 * if some other CPU has recently done so. Also, don't bother
1743 * invoking force_quiescent_state() if the newly enqueued callback
1744 * is the only one waiting for a grace period to complete.
1745 */
1746 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1747
1748 /* Are we ignoring a completed grace period? */
1749 rcu_process_gp_end(rsp, rdp);
1750 check_for_new_grace_period(rsp, rdp);
1751
1752 /* Start a new grace period if one not already started. */
1753 if (!rcu_gp_in_progress(rsp)) {
1754 unsigned long nestflag;
1755 struct rcu_node *rnp_root = rcu_get_root(rsp);
1756
1757 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1758 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1759 } else {
1760 /* Give the grace period a kick. */
1761 rdp->blimit = LONG_MAX;
1762 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1763 *rdp->nxttail[RCU_DONE_TAIL] != head)
1764 force_quiescent_state(rsp, 0);
1765 rdp->n_force_qs_snap = rsp->n_force_qs;
1766 rdp->qlen_last_fqs_check = rdp->qlen;
1767 }
1768 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1769 force_quiescent_state(rsp, 1);
1770 local_irq_restore(flags);
1771 }
1772
1773 /*
1774 * Queue an RCU-sched callback for invocation after a grace period.
1775 */
1776 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1777 {
1778 __call_rcu(head, func, &rcu_sched_state);
1779 }
1780 EXPORT_SYMBOL_GPL(call_rcu_sched);
1781
1782 /*
1783 * Queue an RCU for invocation after a quicker grace period.
1784 */
1785 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1786 {
1787 __call_rcu(head, func, &rcu_bh_state);
1788 }
1789 EXPORT_SYMBOL_GPL(call_rcu_bh);
1790
1791 /**
1792 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1793 *
1794 * Control will return to the caller some time after a full rcu-sched
1795 * grace period has elapsed, in other words after all currently executing
1796 * rcu-sched read-side critical sections have completed. These read-side
1797 * critical sections are delimited by rcu_read_lock_sched() and
1798 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1799 * local_irq_disable(), and so on may be used in place of
1800 * rcu_read_lock_sched().
1801 *
1802 * This means that all preempt_disable code sequences, including NMI and
1803 * hardware-interrupt handlers, in progress on entry will have completed
1804 * before this primitive returns. However, this does not guarantee that
1805 * softirq handlers will have completed, since in some kernels, these
1806 * handlers can run in process context, and can block.
1807 *
1808 * This primitive provides the guarantees made by the (now removed)
1809 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1810 * guarantees that rcu_read_lock() sections will have completed.
1811 * In "classic RCU", these two guarantees happen to be one and
1812 * the same, but can differ in realtime RCU implementations.
1813 */
1814 void synchronize_sched(void)
1815 {
1816 if (rcu_blocking_is_gp())
1817 return;
1818 wait_rcu_gp(call_rcu_sched);
1819 }
1820 EXPORT_SYMBOL_GPL(synchronize_sched);
1821
1822 /**
1823 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1824 *
1825 * Control will return to the caller some time after a full rcu_bh grace
1826 * period has elapsed, in other words after all currently executing rcu_bh
1827 * read-side critical sections have completed. RCU read-side critical
1828 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1829 * and may be nested.
1830 */
1831 void synchronize_rcu_bh(void)
1832 {
1833 if (rcu_blocking_is_gp())
1834 return;
1835 wait_rcu_gp(call_rcu_bh);
1836 }
1837 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1838
1839 /*
1840 * Check to see if there is any immediate RCU-related work to be done
1841 * by the current CPU, for the specified type of RCU, returning 1 if so.
1842 * The checks are in order of increasing expense: checks that can be
1843 * carried out against CPU-local state are performed first. However,
1844 * we must check for CPU stalls first, else we might not get a chance.
1845 */
1846 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1847 {
1848 struct rcu_node *rnp = rdp->mynode;
1849
1850 rdp->n_rcu_pending++;
1851
1852 /* Check for CPU stalls, if enabled. */
1853 check_cpu_stall(rsp, rdp);
1854
1855 /* Is the RCU core waiting for a quiescent state from this CPU? */
1856 if (rcu_scheduler_fully_active &&
1857 rdp->qs_pending && !rdp->passed_quiesce) {
1858
1859 /*
1860 * If force_quiescent_state() coming soon and this CPU
1861 * needs a quiescent state, and this is either RCU-sched
1862 * or RCU-bh, force a local reschedule.
1863 */
1864 rdp->n_rp_qs_pending++;
1865 if (!rdp->preemptible &&
1866 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1867 jiffies))
1868 set_need_resched();
1869 } else if (rdp->qs_pending && rdp->passed_quiesce) {
1870 rdp->n_rp_report_qs++;
1871 return 1;
1872 }
1873
1874 /* Does this CPU have callbacks ready to invoke? */
1875 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1876 rdp->n_rp_cb_ready++;
1877 return 1;
1878 }
1879
1880 /* Has RCU gone idle with this CPU needing another grace period? */
1881 if (cpu_needs_another_gp(rsp, rdp)) {
1882 rdp->n_rp_cpu_needs_gp++;
1883 return 1;
1884 }
1885
1886 /* Has another RCU grace period completed? */
1887 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1888 rdp->n_rp_gp_completed++;
1889 return 1;
1890 }
1891
1892 /* Has a new RCU grace period started? */
1893 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1894 rdp->n_rp_gp_started++;
1895 return 1;
1896 }
1897
1898 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1899 if (rcu_gp_in_progress(rsp) &&
1900 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1901 rdp->n_rp_need_fqs++;
1902 return 1;
1903 }
1904
1905 /* nothing to do */
1906 rdp->n_rp_need_nothing++;
1907 return 0;
1908 }
1909
1910 /*
1911 * Check to see if there is any immediate RCU-related work to be done
1912 * by the current CPU, returning 1 if so. This function is part of the
1913 * RCU implementation; it is -not- an exported member of the RCU API.
1914 */
1915 static int rcu_pending(int cpu)
1916 {
1917 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1918 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1919 rcu_preempt_pending(cpu);
1920 }
1921
1922 /*
1923 * Check to see if any future RCU-related work will need to be done
1924 * by the current CPU, even if none need be done immediately, returning
1925 * 1 if so.
1926 */
1927 static int rcu_cpu_has_callbacks(int cpu)
1928 {
1929 /* RCU callbacks either ready or pending? */
1930 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1931 per_cpu(rcu_bh_data, cpu).nxtlist ||
1932 rcu_preempt_needs_cpu(cpu);
1933 }
1934
1935 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1936 static atomic_t rcu_barrier_cpu_count;
1937 static DEFINE_MUTEX(rcu_barrier_mutex);
1938 static struct completion rcu_barrier_completion;
1939
1940 static void rcu_barrier_callback(struct rcu_head *notused)
1941 {
1942 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1943 complete(&rcu_barrier_completion);
1944 }
1945
1946 /*
1947 * Called with preemption disabled, and from cross-cpu IRQ context.
1948 */
1949 static void rcu_barrier_func(void *type)
1950 {
1951 int cpu = smp_processor_id();
1952 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1953 void (*call_rcu_func)(struct rcu_head *head,
1954 void (*func)(struct rcu_head *head));
1955
1956 atomic_inc(&rcu_barrier_cpu_count);
1957 call_rcu_func = type;
1958 call_rcu_func(head, rcu_barrier_callback);
1959 }
1960
1961 /*
1962 * Orchestrate the specified type of RCU barrier, waiting for all
1963 * RCU callbacks of the specified type to complete.
1964 */
1965 static void _rcu_barrier(struct rcu_state *rsp,
1966 void (*call_rcu_func)(struct rcu_head *head,
1967 void (*func)(struct rcu_head *head)))
1968 {
1969 BUG_ON(in_interrupt());
1970 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1971 mutex_lock(&rcu_barrier_mutex);
1972 init_completion(&rcu_barrier_completion);
1973 /*
1974 * Initialize rcu_barrier_cpu_count to 1, then invoke
1975 * rcu_barrier_func() on each CPU, so that each CPU also has
1976 * incremented rcu_barrier_cpu_count. Only then is it safe to
1977 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1978 * might complete its grace period before all of the other CPUs
1979 * did their increment, causing this function to return too
1980 * early. Note that on_each_cpu() disables irqs, which prevents
1981 * any CPUs from coming online or going offline until each online
1982 * CPU has queued its RCU-barrier callback.
1983 */
1984 atomic_set(&rcu_barrier_cpu_count, 1);
1985 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1986 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1987 complete(&rcu_barrier_completion);
1988 wait_for_completion(&rcu_barrier_completion);
1989 mutex_unlock(&rcu_barrier_mutex);
1990 }
1991
1992 /**
1993 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1994 */
1995 void rcu_barrier_bh(void)
1996 {
1997 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1998 }
1999 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2000
2001 /**
2002 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2003 */
2004 void rcu_barrier_sched(void)
2005 {
2006 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2007 }
2008 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2009
2010 /*
2011 * Do boot-time initialization of a CPU's per-CPU RCU data.
2012 */
2013 static void __init
2014 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2015 {
2016 unsigned long flags;
2017 int i;
2018 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2019 struct rcu_node *rnp = rcu_get_root(rsp);
2020
2021 /* Set up local state, ensuring consistent view of global state. */
2022 raw_spin_lock_irqsave(&rnp->lock, flags);
2023 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2024 rdp->nxtlist = NULL;
2025 for (i = 0; i < RCU_NEXT_SIZE; i++)
2026 rdp->nxttail[i] = &rdp->nxtlist;
2027 rdp->qlen = 0;
2028 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2029 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_NESTING);
2030 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2031 rdp->cpu = cpu;
2032 rdp->rsp = rsp;
2033 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2034 }
2035
2036 /*
2037 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2038 * offline event can be happening at a given time. Note also that we
2039 * can accept some slop in the rsp->completed access due to the fact
2040 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2041 */
2042 static void __cpuinit
2043 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2044 {
2045 unsigned long flags;
2046 unsigned long mask;
2047 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2048 struct rcu_node *rnp = rcu_get_root(rsp);
2049
2050 /* Set up local state, ensuring consistent view of global state. */
2051 raw_spin_lock_irqsave(&rnp->lock, flags);
2052 rdp->beenonline = 1; /* We have now been online. */
2053 rdp->preemptible = preemptible;
2054 rdp->qlen_last_fqs_check = 0;
2055 rdp->n_force_qs_snap = rsp->n_force_qs;
2056 rdp->blimit = blimit;
2057 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_NESTING;
2058 atomic_set(&rdp->dynticks->dynticks,
2059 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2060 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2061
2062 /*
2063 * A new grace period might start here. If so, we won't be part
2064 * of it, but that is OK, as we are currently in a quiescent state.
2065 */
2066
2067 /* Exclude any attempts to start a new GP on large systems. */
2068 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2069
2070 /* Add CPU to rcu_node bitmasks. */
2071 rnp = rdp->mynode;
2072 mask = rdp->grpmask;
2073 do {
2074 /* Exclude any attempts to start a new GP on small systems. */
2075 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2076 rnp->qsmaskinit |= mask;
2077 mask = rnp->grpmask;
2078 if (rnp == rdp->mynode) {
2079 /*
2080 * If there is a grace period in progress, we will
2081 * set up to wait for it next time we run the
2082 * RCU core code.
2083 */
2084 rdp->gpnum = rnp->completed;
2085 rdp->completed = rnp->completed;
2086 rdp->passed_quiesce = 0;
2087 rdp->qs_pending = 0;
2088 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2089 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2090 }
2091 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2092 rnp = rnp->parent;
2093 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2094
2095 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2096 }
2097
2098 static void __cpuinit rcu_prepare_cpu(int cpu)
2099 {
2100 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2101 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2102 rcu_preempt_init_percpu_data(cpu);
2103 }
2104
2105 /*
2106 * Handle CPU online/offline notification events.
2107 */
2108 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2109 unsigned long action, void *hcpu)
2110 {
2111 long cpu = (long)hcpu;
2112 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2113 struct rcu_node *rnp = rdp->mynode;
2114
2115 trace_rcu_utilization("Start CPU hotplug");
2116 switch (action) {
2117 case CPU_UP_PREPARE:
2118 case CPU_UP_PREPARE_FROZEN:
2119 rcu_prepare_cpu(cpu);
2120 rcu_prepare_kthreads(cpu);
2121 break;
2122 case CPU_ONLINE:
2123 case CPU_DOWN_FAILED:
2124 rcu_node_kthread_setaffinity(rnp, -1);
2125 rcu_cpu_kthread_setrt(cpu, 1);
2126 break;
2127 case CPU_DOWN_PREPARE:
2128 rcu_node_kthread_setaffinity(rnp, cpu);
2129 rcu_cpu_kthread_setrt(cpu, 0);
2130 break;
2131 case CPU_DYING:
2132 case CPU_DYING_FROZEN:
2133 /*
2134 * The whole machine is "stopped" except this CPU, so we can
2135 * touch any data without introducing corruption. We send the
2136 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2137 */
2138 rcu_send_cbs_to_online(&rcu_bh_state);
2139 rcu_send_cbs_to_online(&rcu_sched_state);
2140 rcu_preempt_send_cbs_to_online();
2141 break;
2142 case CPU_DEAD:
2143 case CPU_DEAD_FROZEN:
2144 case CPU_UP_CANCELED:
2145 case CPU_UP_CANCELED_FROZEN:
2146 rcu_offline_cpu(cpu);
2147 break;
2148 default:
2149 break;
2150 }
2151 trace_rcu_utilization("End CPU hotplug");
2152 return NOTIFY_OK;
2153 }
2154
2155 /*
2156 * This function is invoked towards the end of the scheduler's initialization
2157 * process. Before this is called, the idle task might contain
2158 * RCU read-side critical sections (during which time, this idle
2159 * task is booting the system). After this function is called, the
2160 * idle tasks are prohibited from containing RCU read-side critical
2161 * sections. This function also enables RCU lockdep checking.
2162 */
2163 void rcu_scheduler_starting(void)
2164 {
2165 WARN_ON(num_online_cpus() != 1);
2166 WARN_ON(nr_context_switches() > 0);
2167 rcu_scheduler_active = 1;
2168 }
2169
2170 /*
2171 * Compute the per-level fanout, either using the exact fanout specified
2172 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2173 */
2174 #ifdef CONFIG_RCU_FANOUT_EXACT
2175 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2176 {
2177 int i;
2178
2179 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2180 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2181 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2182 }
2183 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2184 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2185 {
2186 int ccur;
2187 int cprv;
2188 int i;
2189
2190 cprv = NR_CPUS;
2191 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2192 ccur = rsp->levelcnt[i];
2193 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2194 cprv = ccur;
2195 }
2196 }
2197 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2198
2199 /*
2200 * Helper function for rcu_init() that initializes one rcu_state structure.
2201 */
2202 static void __init rcu_init_one(struct rcu_state *rsp,
2203 struct rcu_data __percpu *rda)
2204 {
2205 static char *buf[] = { "rcu_node_level_0",
2206 "rcu_node_level_1",
2207 "rcu_node_level_2",
2208 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2209 int cpustride = 1;
2210 int i;
2211 int j;
2212 struct rcu_node *rnp;
2213
2214 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2215
2216 /* Initialize the level-tracking arrays. */
2217
2218 for (i = 1; i < NUM_RCU_LVLS; i++)
2219 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2220 rcu_init_levelspread(rsp);
2221
2222 /* Initialize the elements themselves, starting from the leaves. */
2223
2224 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2225 cpustride *= rsp->levelspread[i];
2226 rnp = rsp->level[i];
2227 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2228 raw_spin_lock_init(&rnp->lock);
2229 lockdep_set_class_and_name(&rnp->lock,
2230 &rcu_node_class[i], buf[i]);
2231 rnp->gpnum = 0;
2232 rnp->qsmask = 0;
2233 rnp->qsmaskinit = 0;
2234 rnp->grplo = j * cpustride;
2235 rnp->grphi = (j + 1) * cpustride - 1;
2236 if (rnp->grphi >= NR_CPUS)
2237 rnp->grphi = NR_CPUS - 1;
2238 if (i == 0) {
2239 rnp->grpnum = 0;
2240 rnp->grpmask = 0;
2241 rnp->parent = NULL;
2242 } else {
2243 rnp->grpnum = j % rsp->levelspread[i - 1];
2244 rnp->grpmask = 1UL << rnp->grpnum;
2245 rnp->parent = rsp->level[i - 1] +
2246 j / rsp->levelspread[i - 1];
2247 }
2248 rnp->level = i;
2249 INIT_LIST_HEAD(&rnp->blkd_tasks);
2250 }
2251 }
2252
2253 rsp->rda = rda;
2254 rnp = rsp->level[NUM_RCU_LVLS - 1];
2255 for_each_possible_cpu(i) {
2256 while (i > rnp->grphi)
2257 rnp++;
2258 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2259 rcu_boot_init_percpu_data(i, rsp);
2260 }
2261 }
2262
2263 void __init rcu_init(void)
2264 {
2265 int cpu;
2266
2267 rcu_bootup_announce();
2268 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2269 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2270 __rcu_init_preempt();
2271 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2272
2273 /*
2274 * We don't need protection against CPU-hotplug here because
2275 * this is called early in boot, before either interrupts
2276 * or the scheduler are operational.
2277 */
2278 cpu_notifier(rcu_cpu_notify, 0);
2279 for_each_online_cpu(cpu)
2280 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2281 check_cpu_stall_init();
2282 }
2283
2284 #include "rcutree_plugin.h"
This page took 0.131522 seconds and 6 git commands to generate.