signal: zap_pid_ns_processes: s/SEND_SIG_NOINFO/SEND_SIG_FORCED/
[deliverable/linux.git] / kernel / rcutree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28
29 #define RCU_KTHREAD_PRIO 1
30
31 #ifdef CONFIG_RCU_BOOST
32 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
33 #else
34 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
35 #endif
36
37 /*
38 * Check the RCU kernel configuration parameters and print informative
39 * messages about anything out of the ordinary. If you like #ifdef, you
40 * will love this function.
41 */
42 static void __init rcu_bootup_announce_oddness(void)
43 {
44 #ifdef CONFIG_RCU_TRACE
45 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
46 #endif
47 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
48 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
49 CONFIG_RCU_FANOUT);
50 #endif
51 #ifdef CONFIG_RCU_FANOUT_EXACT
52 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
53 #endif
54 #ifdef CONFIG_RCU_FAST_NO_HZ
55 printk(KERN_INFO
56 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
57 #endif
58 #ifdef CONFIG_PROVE_RCU
59 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
60 #endif
61 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
62 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
63 #endif
64 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
65 printk(KERN_INFO "\tDump stacks of tasks blocking RCU-preempt GP.\n");
66 #endif
67 #if defined(CONFIG_RCU_CPU_STALL_INFO)
68 printk(KERN_INFO "\tAdditional per-CPU info printed with stalls.\n");
69 #endif
70 #if NUM_RCU_LVL_4 != 0
71 printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
72 #endif
73 }
74
75 #ifdef CONFIG_TREE_PREEMPT_RCU
76
77 struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt);
78 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
79 static struct rcu_state *rcu_state = &rcu_preempt_state;
80
81 static void rcu_read_unlock_special(struct task_struct *t);
82 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
83
84 /*
85 * Tell them what RCU they are running.
86 */
87 static void __init rcu_bootup_announce(void)
88 {
89 printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
90 rcu_bootup_announce_oddness();
91 }
92
93 /*
94 * Return the number of RCU-preempt batches processed thus far
95 * for debug and statistics.
96 */
97 long rcu_batches_completed_preempt(void)
98 {
99 return rcu_preempt_state.completed;
100 }
101 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
102
103 /*
104 * Return the number of RCU batches processed thus far for debug & stats.
105 */
106 long rcu_batches_completed(void)
107 {
108 return rcu_batches_completed_preempt();
109 }
110 EXPORT_SYMBOL_GPL(rcu_batches_completed);
111
112 /*
113 * Force a quiescent state for preemptible RCU.
114 */
115 void rcu_force_quiescent_state(void)
116 {
117 force_quiescent_state(&rcu_preempt_state, 0);
118 }
119 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
120
121 /*
122 * Record a preemptible-RCU quiescent state for the specified CPU. Note
123 * that this just means that the task currently running on the CPU is
124 * not in a quiescent state. There might be any number of tasks blocked
125 * while in an RCU read-side critical section.
126 *
127 * Unlike the other rcu_*_qs() functions, callers to this function
128 * must disable irqs in order to protect the assignment to
129 * ->rcu_read_unlock_special.
130 */
131 static void rcu_preempt_qs(int cpu)
132 {
133 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
134
135 rdp->passed_quiesce_gpnum = rdp->gpnum;
136 barrier();
137 if (rdp->passed_quiesce == 0)
138 trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
139 rdp->passed_quiesce = 1;
140 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
141 }
142
143 /*
144 * We have entered the scheduler, and the current task might soon be
145 * context-switched away from. If this task is in an RCU read-side
146 * critical section, we will no longer be able to rely on the CPU to
147 * record that fact, so we enqueue the task on the blkd_tasks list.
148 * The task will dequeue itself when it exits the outermost enclosing
149 * RCU read-side critical section. Therefore, the current grace period
150 * cannot be permitted to complete until the blkd_tasks list entries
151 * predating the current grace period drain, in other words, until
152 * rnp->gp_tasks becomes NULL.
153 *
154 * Caller must disable preemption.
155 */
156 static void rcu_preempt_note_context_switch(int cpu)
157 {
158 struct task_struct *t = current;
159 unsigned long flags;
160 struct rcu_data *rdp;
161 struct rcu_node *rnp;
162
163 if (t->rcu_read_lock_nesting > 0 &&
164 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
165
166 /* Possibly blocking in an RCU read-side critical section. */
167 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
168 rnp = rdp->mynode;
169 raw_spin_lock_irqsave(&rnp->lock, flags);
170 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
171 t->rcu_blocked_node = rnp;
172
173 /*
174 * If this CPU has already checked in, then this task
175 * will hold up the next grace period rather than the
176 * current grace period. Queue the task accordingly.
177 * If the task is queued for the current grace period
178 * (i.e., this CPU has not yet passed through a quiescent
179 * state for the current grace period), then as long
180 * as that task remains queued, the current grace period
181 * cannot end. Note that there is some uncertainty as
182 * to exactly when the current grace period started.
183 * We take a conservative approach, which can result
184 * in unnecessarily waiting on tasks that started very
185 * slightly after the current grace period began. C'est
186 * la vie!!!
187 *
188 * But first, note that the current CPU must still be
189 * on line!
190 */
191 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
192 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
193 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
194 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
195 rnp->gp_tasks = &t->rcu_node_entry;
196 #ifdef CONFIG_RCU_BOOST
197 if (rnp->boost_tasks != NULL)
198 rnp->boost_tasks = rnp->gp_tasks;
199 #endif /* #ifdef CONFIG_RCU_BOOST */
200 } else {
201 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
202 if (rnp->qsmask & rdp->grpmask)
203 rnp->gp_tasks = &t->rcu_node_entry;
204 }
205 trace_rcu_preempt_task(rdp->rsp->name,
206 t->pid,
207 (rnp->qsmask & rdp->grpmask)
208 ? rnp->gpnum
209 : rnp->gpnum + 1);
210 raw_spin_unlock_irqrestore(&rnp->lock, flags);
211 } else if (t->rcu_read_lock_nesting < 0 &&
212 t->rcu_read_unlock_special) {
213
214 /*
215 * Complete exit from RCU read-side critical section on
216 * behalf of preempted instance of __rcu_read_unlock().
217 */
218 rcu_read_unlock_special(t);
219 }
220
221 /*
222 * Either we were not in an RCU read-side critical section to
223 * begin with, or we have now recorded that critical section
224 * globally. Either way, we can now note a quiescent state
225 * for this CPU. Again, if we were in an RCU read-side critical
226 * section, and if that critical section was blocking the current
227 * grace period, then the fact that the task has been enqueued
228 * means that we continue to block the current grace period.
229 */
230 local_irq_save(flags);
231 rcu_preempt_qs(cpu);
232 local_irq_restore(flags);
233 }
234
235 /*
236 * Tree-preemptible RCU implementation for rcu_read_lock().
237 * Just increment ->rcu_read_lock_nesting, shared state will be updated
238 * if we block.
239 */
240 void __rcu_read_lock(void)
241 {
242 current->rcu_read_lock_nesting++;
243 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
244 }
245 EXPORT_SYMBOL_GPL(__rcu_read_lock);
246
247 /*
248 * Check for preempted RCU readers blocking the current grace period
249 * for the specified rcu_node structure. If the caller needs a reliable
250 * answer, it must hold the rcu_node's ->lock.
251 */
252 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
253 {
254 return rnp->gp_tasks != NULL;
255 }
256
257 /*
258 * Record a quiescent state for all tasks that were previously queued
259 * on the specified rcu_node structure and that were blocking the current
260 * RCU grace period. The caller must hold the specified rnp->lock with
261 * irqs disabled, and this lock is released upon return, but irqs remain
262 * disabled.
263 */
264 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
265 __releases(rnp->lock)
266 {
267 unsigned long mask;
268 struct rcu_node *rnp_p;
269
270 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
271 raw_spin_unlock_irqrestore(&rnp->lock, flags);
272 return; /* Still need more quiescent states! */
273 }
274
275 rnp_p = rnp->parent;
276 if (rnp_p == NULL) {
277 /*
278 * Either there is only one rcu_node in the tree,
279 * or tasks were kicked up to root rcu_node due to
280 * CPUs going offline.
281 */
282 rcu_report_qs_rsp(&rcu_preempt_state, flags);
283 return;
284 }
285
286 /* Report up the rest of the hierarchy. */
287 mask = rnp->grpmask;
288 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
289 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
290 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
291 }
292
293 /*
294 * Advance a ->blkd_tasks-list pointer to the next entry, instead
295 * returning NULL if at the end of the list.
296 */
297 static struct list_head *rcu_next_node_entry(struct task_struct *t,
298 struct rcu_node *rnp)
299 {
300 struct list_head *np;
301
302 np = t->rcu_node_entry.next;
303 if (np == &rnp->blkd_tasks)
304 np = NULL;
305 return np;
306 }
307
308 /*
309 * Handle special cases during rcu_read_unlock(), such as needing to
310 * notify RCU core processing or task having blocked during the RCU
311 * read-side critical section.
312 */
313 static noinline void rcu_read_unlock_special(struct task_struct *t)
314 {
315 int empty;
316 int empty_exp;
317 int empty_exp_now;
318 unsigned long flags;
319 struct list_head *np;
320 #ifdef CONFIG_RCU_BOOST
321 struct rt_mutex *rbmp = NULL;
322 #endif /* #ifdef CONFIG_RCU_BOOST */
323 struct rcu_node *rnp;
324 int special;
325
326 /* NMI handlers cannot block and cannot safely manipulate state. */
327 if (in_nmi())
328 return;
329
330 local_irq_save(flags);
331
332 /*
333 * If RCU core is waiting for this CPU to exit critical section,
334 * let it know that we have done so.
335 */
336 special = t->rcu_read_unlock_special;
337 if (special & RCU_READ_UNLOCK_NEED_QS) {
338 rcu_preempt_qs(smp_processor_id());
339 }
340
341 /* Hardware IRQ handlers cannot block. */
342 if (in_irq() || in_serving_softirq()) {
343 local_irq_restore(flags);
344 return;
345 }
346
347 /* Clean up if blocked during RCU read-side critical section. */
348 if (special & RCU_READ_UNLOCK_BLOCKED) {
349 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
350
351 /*
352 * Remove this task from the list it blocked on. The
353 * task can migrate while we acquire the lock, but at
354 * most one time. So at most two passes through loop.
355 */
356 for (;;) {
357 rnp = t->rcu_blocked_node;
358 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
359 if (rnp == t->rcu_blocked_node)
360 break;
361 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
362 }
363 empty = !rcu_preempt_blocked_readers_cgp(rnp);
364 empty_exp = !rcu_preempted_readers_exp(rnp);
365 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
366 np = rcu_next_node_entry(t, rnp);
367 list_del_init(&t->rcu_node_entry);
368 t->rcu_blocked_node = NULL;
369 trace_rcu_unlock_preempted_task("rcu_preempt",
370 rnp->gpnum, t->pid);
371 if (&t->rcu_node_entry == rnp->gp_tasks)
372 rnp->gp_tasks = np;
373 if (&t->rcu_node_entry == rnp->exp_tasks)
374 rnp->exp_tasks = np;
375 #ifdef CONFIG_RCU_BOOST
376 if (&t->rcu_node_entry == rnp->boost_tasks)
377 rnp->boost_tasks = np;
378 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
379 if (t->rcu_boost_mutex) {
380 rbmp = t->rcu_boost_mutex;
381 t->rcu_boost_mutex = NULL;
382 }
383 #endif /* #ifdef CONFIG_RCU_BOOST */
384
385 /*
386 * If this was the last task on the current list, and if
387 * we aren't waiting on any CPUs, report the quiescent state.
388 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
389 * so we must take a snapshot of the expedited state.
390 */
391 empty_exp_now = !rcu_preempted_readers_exp(rnp);
392 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
393 trace_rcu_quiescent_state_report("preempt_rcu",
394 rnp->gpnum,
395 0, rnp->qsmask,
396 rnp->level,
397 rnp->grplo,
398 rnp->grphi,
399 !!rnp->gp_tasks);
400 rcu_report_unblock_qs_rnp(rnp, flags);
401 } else
402 raw_spin_unlock_irqrestore(&rnp->lock, flags);
403
404 #ifdef CONFIG_RCU_BOOST
405 /* Unboost if we were boosted. */
406 if (rbmp)
407 rt_mutex_unlock(rbmp);
408 #endif /* #ifdef CONFIG_RCU_BOOST */
409
410 /*
411 * If this was the last task on the expedited lists,
412 * then we need to report up the rcu_node hierarchy.
413 */
414 if (!empty_exp && empty_exp_now)
415 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
416 } else {
417 local_irq_restore(flags);
418 }
419 }
420
421 /*
422 * Tree-preemptible RCU implementation for rcu_read_unlock().
423 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
424 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
425 * invoke rcu_read_unlock_special() to clean up after a context switch
426 * in an RCU read-side critical section and other special cases.
427 */
428 void __rcu_read_unlock(void)
429 {
430 struct task_struct *t = current;
431
432 if (t->rcu_read_lock_nesting != 1)
433 --t->rcu_read_lock_nesting;
434 else {
435 barrier(); /* critical section before exit code. */
436 t->rcu_read_lock_nesting = INT_MIN;
437 barrier(); /* assign before ->rcu_read_unlock_special load */
438 if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
439 rcu_read_unlock_special(t);
440 barrier(); /* ->rcu_read_unlock_special load before assign */
441 t->rcu_read_lock_nesting = 0;
442 }
443 #ifdef CONFIG_PROVE_LOCKING
444 {
445 int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
446
447 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
448 }
449 #endif /* #ifdef CONFIG_PROVE_LOCKING */
450 }
451 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
452
453 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
454
455 /*
456 * Dump detailed information for all tasks blocking the current RCU
457 * grace period on the specified rcu_node structure.
458 */
459 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
460 {
461 unsigned long flags;
462 struct task_struct *t;
463
464 if (!rcu_preempt_blocked_readers_cgp(rnp))
465 return;
466 raw_spin_lock_irqsave(&rnp->lock, flags);
467 t = list_entry(rnp->gp_tasks,
468 struct task_struct, rcu_node_entry);
469 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
470 sched_show_task(t);
471 raw_spin_unlock_irqrestore(&rnp->lock, flags);
472 }
473
474 /*
475 * Dump detailed information for all tasks blocking the current RCU
476 * grace period.
477 */
478 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
479 {
480 struct rcu_node *rnp = rcu_get_root(rsp);
481
482 rcu_print_detail_task_stall_rnp(rnp);
483 rcu_for_each_leaf_node(rsp, rnp)
484 rcu_print_detail_task_stall_rnp(rnp);
485 }
486
487 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
488
489 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
490 {
491 }
492
493 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
494
495 #ifdef CONFIG_RCU_CPU_STALL_INFO
496
497 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
498 {
499 printk(KERN_ERR "\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
500 rnp->level, rnp->grplo, rnp->grphi);
501 }
502
503 static void rcu_print_task_stall_end(void)
504 {
505 printk(KERN_CONT "\n");
506 }
507
508 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
509
510 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
511 {
512 }
513
514 static void rcu_print_task_stall_end(void)
515 {
516 }
517
518 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
519
520 /*
521 * Scan the current list of tasks blocked within RCU read-side critical
522 * sections, printing out the tid of each.
523 */
524 static int rcu_print_task_stall(struct rcu_node *rnp)
525 {
526 struct task_struct *t;
527 int ndetected = 0;
528
529 if (!rcu_preempt_blocked_readers_cgp(rnp))
530 return 0;
531 rcu_print_task_stall_begin(rnp);
532 t = list_entry(rnp->gp_tasks,
533 struct task_struct, rcu_node_entry);
534 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
535 printk(KERN_CONT " P%d", t->pid);
536 ndetected++;
537 }
538 rcu_print_task_stall_end();
539 return ndetected;
540 }
541
542 /*
543 * Suppress preemptible RCU's CPU stall warnings by pushing the
544 * time of the next stall-warning message comfortably far into the
545 * future.
546 */
547 static void rcu_preempt_stall_reset(void)
548 {
549 rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
550 }
551
552 /*
553 * Check that the list of blocked tasks for the newly completed grace
554 * period is in fact empty. It is a serious bug to complete a grace
555 * period that still has RCU readers blocked! This function must be
556 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
557 * must be held by the caller.
558 *
559 * Also, if there are blocked tasks on the list, they automatically
560 * block the newly created grace period, so set up ->gp_tasks accordingly.
561 */
562 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
563 {
564 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
565 if (!list_empty(&rnp->blkd_tasks))
566 rnp->gp_tasks = rnp->blkd_tasks.next;
567 WARN_ON_ONCE(rnp->qsmask);
568 }
569
570 #ifdef CONFIG_HOTPLUG_CPU
571
572 /*
573 * Handle tasklist migration for case in which all CPUs covered by the
574 * specified rcu_node have gone offline. Move them up to the root
575 * rcu_node. The reason for not just moving them to the immediate
576 * parent is to remove the need for rcu_read_unlock_special() to
577 * make more than two attempts to acquire the target rcu_node's lock.
578 * Returns true if there were tasks blocking the current RCU grace
579 * period.
580 *
581 * Returns 1 if there was previously a task blocking the current grace
582 * period on the specified rcu_node structure.
583 *
584 * The caller must hold rnp->lock with irqs disabled.
585 */
586 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
587 struct rcu_node *rnp,
588 struct rcu_data *rdp)
589 {
590 struct list_head *lp;
591 struct list_head *lp_root;
592 int retval = 0;
593 struct rcu_node *rnp_root = rcu_get_root(rsp);
594 struct task_struct *t;
595
596 if (rnp == rnp_root) {
597 WARN_ONCE(1, "Last CPU thought to be offlined?");
598 return 0; /* Shouldn't happen: at least one CPU online. */
599 }
600
601 /* If we are on an internal node, complain bitterly. */
602 WARN_ON_ONCE(rnp != rdp->mynode);
603
604 /*
605 * Move tasks up to root rcu_node. Don't try to get fancy for
606 * this corner-case operation -- just put this node's tasks
607 * at the head of the root node's list, and update the root node's
608 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
609 * if non-NULL. This might result in waiting for more tasks than
610 * absolutely necessary, but this is a good performance/complexity
611 * tradeoff.
612 */
613 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
614 retval |= RCU_OFL_TASKS_NORM_GP;
615 if (rcu_preempted_readers_exp(rnp))
616 retval |= RCU_OFL_TASKS_EXP_GP;
617 lp = &rnp->blkd_tasks;
618 lp_root = &rnp_root->blkd_tasks;
619 while (!list_empty(lp)) {
620 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
621 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
622 list_del(&t->rcu_node_entry);
623 t->rcu_blocked_node = rnp_root;
624 list_add(&t->rcu_node_entry, lp_root);
625 if (&t->rcu_node_entry == rnp->gp_tasks)
626 rnp_root->gp_tasks = rnp->gp_tasks;
627 if (&t->rcu_node_entry == rnp->exp_tasks)
628 rnp_root->exp_tasks = rnp->exp_tasks;
629 #ifdef CONFIG_RCU_BOOST
630 if (&t->rcu_node_entry == rnp->boost_tasks)
631 rnp_root->boost_tasks = rnp->boost_tasks;
632 #endif /* #ifdef CONFIG_RCU_BOOST */
633 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
634 }
635
636 #ifdef CONFIG_RCU_BOOST
637 /* In case root is being boosted and leaf is not. */
638 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
639 if (rnp_root->boost_tasks != NULL &&
640 rnp_root->boost_tasks != rnp_root->gp_tasks)
641 rnp_root->boost_tasks = rnp_root->gp_tasks;
642 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
643 #endif /* #ifdef CONFIG_RCU_BOOST */
644
645 rnp->gp_tasks = NULL;
646 rnp->exp_tasks = NULL;
647 return retval;
648 }
649
650 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
651
652 /*
653 * Do CPU-offline processing for preemptible RCU.
654 */
655 static void rcu_preempt_cleanup_dead_cpu(int cpu)
656 {
657 rcu_cleanup_dead_cpu(cpu, &rcu_preempt_state);
658 }
659
660 /*
661 * Check for a quiescent state from the current CPU. When a task blocks,
662 * the task is recorded in the corresponding CPU's rcu_node structure,
663 * which is checked elsewhere.
664 *
665 * Caller must disable hard irqs.
666 */
667 static void rcu_preempt_check_callbacks(int cpu)
668 {
669 struct task_struct *t = current;
670
671 if (t->rcu_read_lock_nesting == 0) {
672 rcu_preempt_qs(cpu);
673 return;
674 }
675 if (t->rcu_read_lock_nesting > 0 &&
676 per_cpu(rcu_preempt_data, cpu).qs_pending)
677 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
678 }
679
680 /*
681 * Process callbacks for preemptible RCU.
682 */
683 static void rcu_preempt_process_callbacks(void)
684 {
685 __rcu_process_callbacks(&rcu_preempt_state,
686 &__get_cpu_var(rcu_preempt_data));
687 }
688
689 #ifdef CONFIG_RCU_BOOST
690
691 static void rcu_preempt_do_callbacks(void)
692 {
693 rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
694 }
695
696 #endif /* #ifdef CONFIG_RCU_BOOST */
697
698 /*
699 * Queue a preemptible-RCU callback for invocation after a grace period.
700 */
701 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
702 {
703 __call_rcu(head, func, &rcu_preempt_state, 0);
704 }
705 EXPORT_SYMBOL_GPL(call_rcu);
706
707 /*
708 * Queue an RCU callback for lazy invocation after a grace period.
709 * This will likely be later named something like "call_rcu_lazy()",
710 * but this change will require some way of tagging the lazy RCU
711 * callbacks in the list of pending callbacks. Until then, this
712 * function may only be called from __kfree_rcu().
713 */
714 void kfree_call_rcu(struct rcu_head *head,
715 void (*func)(struct rcu_head *rcu))
716 {
717 __call_rcu(head, func, &rcu_preempt_state, 1);
718 }
719 EXPORT_SYMBOL_GPL(kfree_call_rcu);
720
721 /**
722 * synchronize_rcu - wait until a grace period has elapsed.
723 *
724 * Control will return to the caller some time after a full grace
725 * period has elapsed, in other words after all currently executing RCU
726 * read-side critical sections have completed. Note, however, that
727 * upon return from synchronize_rcu(), the caller might well be executing
728 * concurrently with new RCU read-side critical sections that began while
729 * synchronize_rcu() was waiting. RCU read-side critical sections are
730 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
731 */
732 void synchronize_rcu(void)
733 {
734 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
735 !lock_is_held(&rcu_lock_map) &&
736 !lock_is_held(&rcu_sched_lock_map),
737 "Illegal synchronize_rcu() in RCU read-side critical section");
738 if (!rcu_scheduler_active)
739 return;
740 wait_rcu_gp(call_rcu);
741 }
742 EXPORT_SYMBOL_GPL(synchronize_rcu);
743
744 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
745 static long sync_rcu_preempt_exp_count;
746 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
747
748 /*
749 * Return non-zero if there are any tasks in RCU read-side critical
750 * sections blocking the current preemptible-RCU expedited grace period.
751 * If there is no preemptible-RCU expedited grace period currently in
752 * progress, returns zero unconditionally.
753 */
754 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
755 {
756 return rnp->exp_tasks != NULL;
757 }
758
759 /*
760 * return non-zero if there is no RCU expedited grace period in progress
761 * for the specified rcu_node structure, in other words, if all CPUs and
762 * tasks covered by the specified rcu_node structure have done their bit
763 * for the current expedited grace period. Works only for preemptible
764 * RCU -- other RCU implementation use other means.
765 *
766 * Caller must hold sync_rcu_preempt_exp_mutex.
767 */
768 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
769 {
770 return !rcu_preempted_readers_exp(rnp) &&
771 ACCESS_ONCE(rnp->expmask) == 0;
772 }
773
774 /*
775 * Report the exit from RCU read-side critical section for the last task
776 * that queued itself during or before the current expedited preemptible-RCU
777 * grace period. This event is reported either to the rcu_node structure on
778 * which the task was queued or to one of that rcu_node structure's ancestors,
779 * recursively up the tree. (Calm down, calm down, we do the recursion
780 * iteratively!)
781 *
782 * Most callers will set the "wake" flag, but the task initiating the
783 * expedited grace period need not wake itself.
784 *
785 * Caller must hold sync_rcu_preempt_exp_mutex.
786 */
787 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
788 bool wake)
789 {
790 unsigned long flags;
791 unsigned long mask;
792
793 raw_spin_lock_irqsave(&rnp->lock, flags);
794 for (;;) {
795 if (!sync_rcu_preempt_exp_done(rnp)) {
796 raw_spin_unlock_irqrestore(&rnp->lock, flags);
797 break;
798 }
799 if (rnp->parent == NULL) {
800 raw_spin_unlock_irqrestore(&rnp->lock, flags);
801 if (wake)
802 wake_up(&sync_rcu_preempt_exp_wq);
803 break;
804 }
805 mask = rnp->grpmask;
806 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
807 rnp = rnp->parent;
808 raw_spin_lock(&rnp->lock); /* irqs already disabled */
809 rnp->expmask &= ~mask;
810 }
811 }
812
813 /*
814 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
815 * grace period for the specified rcu_node structure. If there are no such
816 * tasks, report it up the rcu_node hierarchy.
817 *
818 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
819 */
820 static void
821 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
822 {
823 unsigned long flags;
824 int must_wait = 0;
825
826 raw_spin_lock_irqsave(&rnp->lock, flags);
827 if (list_empty(&rnp->blkd_tasks))
828 raw_spin_unlock_irqrestore(&rnp->lock, flags);
829 else {
830 rnp->exp_tasks = rnp->blkd_tasks.next;
831 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
832 must_wait = 1;
833 }
834 if (!must_wait)
835 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
836 }
837
838 /**
839 * synchronize_rcu_expedited - Brute-force RCU grace period
840 *
841 * Wait for an RCU-preempt grace period, but expedite it. The basic
842 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
843 * the ->blkd_tasks lists and wait for this list to drain. This consumes
844 * significant time on all CPUs and is unfriendly to real-time workloads,
845 * so is thus not recommended for any sort of common-case code.
846 * In fact, if you are using synchronize_rcu_expedited() in a loop,
847 * please restructure your code to batch your updates, and then Use a
848 * single synchronize_rcu() instead.
849 *
850 * Note that it is illegal to call this function while holding any lock
851 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
852 * to call this function from a CPU-hotplug notifier. Failing to observe
853 * these restriction will result in deadlock.
854 */
855 void synchronize_rcu_expedited(void)
856 {
857 unsigned long flags;
858 struct rcu_node *rnp;
859 struct rcu_state *rsp = &rcu_preempt_state;
860 long snap;
861 int trycount = 0;
862
863 smp_mb(); /* Caller's modifications seen first by other CPUs. */
864 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
865 smp_mb(); /* Above access cannot bleed into critical section. */
866
867 /*
868 * Acquire lock, falling back to synchronize_rcu() if too many
869 * lock-acquisition failures. Of course, if someone does the
870 * expedited grace period for us, just leave.
871 */
872 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
873 if (trycount++ < 10)
874 udelay(trycount * num_online_cpus());
875 else {
876 synchronize_rcu();
877 return;
878 }
879 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
880 goto mb_ret; /* Others did our work for us. */
881 }
882 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
883 goto unlock_mb_ret; /* Others did our work for us. */
884
885 /* force all RCU readers onto ->blkd_tasks lists. */
886 synchronize_sched_expedited();
887
888 raw_spin_lock_irqsave(&rsp->onofflock, flags);
889
890 /* Initialize ->expmask for all non-leaf rcu_node structures. */
891 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
892 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
893 rnp->expmask = rnp->qsmaskinit;
894 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
895 }
896
897 /* Snapshot current state of ->blkd_tasks lists. */
898 rcu_for_each_leaf_node(rsp, rnp)
899 sync_rcu_preempt_exp_init(rsp, rnp);
900 if (NUM_RCU_NODES > 1)
901 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
902
903 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
904
905 /* Wait for snapshotted ->blkd_tasks lists to drain. */
906 rnp = rcu_get_root(rsp);
907 wait_event(sync_rcu_preempt_exp_wq,
908 sync_rcu_preempt_exp_done(rnp));
909
910 /* Clean up and exit. */
911 smp_mb(); /* ensure expedited GP seen before counter increment. */
912 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
913 unlock_mb_ret:
914 mutex_unlock(&sync_rcu_preempt_exp_mutex);
915 mb_ret:
916 smp_mb(); /* ensure subsequent action seen after grace period. */
917 }
918 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
919
920 /*
921 * Check to see if there is any immediate preemptible-RCU-related work
922 * to be done.
923 */
924 static int rcu_preempt_pending(int cpu)
925 {
926 return __rcu_pending(&rcu_preempt_state,
927 &per_cpu(rcu_preempt_data, cpu));
928 }
929
930 /*
931 * Does preemptible RCU have callbacks on this CPU?
932 */
933 static int rcu_preempt_cpu_has_callbacks(int cpu)
934 {
935 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
936 }
937
938 /**
939 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
940 */
941 void rcu_barrier(void)
942 {
943 _rcu_barrier(&rcu_preempt_state, call_rcu);
944 }
945 EXPORT_SYMBOL_GPL(rcu_barrier);
946
947 /*
948 * Initialize preemptible RCU's per-CPU data.
949 */
950 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
951 {
952 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
953 }
954
955 /*
956 * Move preemptible RCU's callbacks from dying CPU to other online CPU
957 * and record a quiescent state.
958 */
959 static void rcu_preempt_cleanup_dying_cpu(void)
960 {
961 rcu_cleanup_dying_cpu(&rcu_preempt_state);
962 }
963
964 /*
965 * Initialize preemptible RCU's state structures.
966 */
967 static void __init __rcu_init_preempt(void)
968 {
969 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
970 }
971
972 /*
973 * Check for a task exiting while in a preemptible-RCU read-side
974 * critical section, clean up if so. No need to issue warnings,
975 * as debug_check_no_locks_held() already does this if lockdep
976 * is enabled.
977 */
978 void exit_rcu(void)
979 {
980 struct task_struct *t = current;
981
982 if (t->rcu_read_lock_nesting == 0)
983 return;
984 t->rcu_read_lock_nesting = 1;
985 __rcu_read_unlock();
986 }
987
988 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
989
990 static struct rcu_state *rcu_state = &rcu_sched_state;
991
992 /*
993 * Tell them what RCU they are running.
994 */
995 static void __init rcu_bootup_announce(void)
996 {
997 printk(KERN_INFO "Hierarchical RCU implementation.\n");
998 rcu_bootup_announce_oddness();
999 }
1000
1001 /*
1002 * Return the number of RCU batches processed thus far for debug & stats.
1003 */
1004 long rcu_batches_completed(void)
1005 {
1006 return rcu_batches_completed_sched();
1007 }
1008 EXPORT_SYMBOL_GPL(rcu_batches_completed);
1009
1010 /*
1011 * Force a quiescent state for RCU, which, because there is no preemptible
1012 * RCU, becomes the same as rcu-sched.
1013 */
1014 void rcu_force_quiescent_state(void)
1015 {
1016 rcu_sched_force_quiescent_state();
1017 }
1018 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
1019
1020 /*
1021 * Because preemptible RCU does not exist, we never have to check for
1022 * CPUs being in quiescent states.
1023 */
1024 static void rcu_preempt_note_context_switch(int cpu)
1025 {
1026 }
1027
1028 /*
1029 * Because preemptible RCU does not exist, there are never any preempted
1030 * RCU readers.
1031 */
1032 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
1033 {
1034 return 0;
1035 }
1036
1037 #ifdef CONFIG_HOTPLUG_CPU
1038
1039 /* Because preemptible RCU does not exist, no quieting of tasks. */
1040 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1041 {
1042 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1043 }
1044
1045 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1046
1047 /*
1048 * Because preemptible RCU does not exist, we never have to check for
1049 * tasks blocked within RCU read-side critical sections.
1050 */
1051 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1052 {
1053 }
1054
1055 /*
1056 * Because preemptible RCU does not exist, we never have to check for
1057 * tasks blocked within RCU read-side critical sections.
1058 */
1059 static int rcu_print_task_stall(struct rcu_node *rnp)
1060 {
1061 return 0;
1062 }
1063
1064 /*
1065 * Because preemptible RCU does not exist, there is no need to suppress
1066 * its CPU stall warnings.
1067 */
1068 static void rcu_preempt_stall_reset(void)
1069 {
1070 }
1071
1072 /*
1073 * Because there is no preemptible RCU, there can be no readers blocked,
1074 * so there is no need to check for blocked tasks. So check only for
1075 * bogus qsmask values.
1076 */
1077 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1078 {
1079 WARN_ON_ONCE(rnp->qsmask);
1080 }
1081
1082 #ifdef CONFIG_HOTPLUG_CPU
1083
1084 /*
1085 * Because preemptible RCU does not exist, it never needs to migrate
1086 * tasks that were blocked within RCU read-side critical sections, and
1087 * such non-existent tasks cannot possibly have been blocking the current
1088 * grace period.
1089 */
1090 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1091 struct rcu_node *rnp,
1092 struct rcu_data *rdp)
1093 {
1094 return 0;
1095 }
1096
1097 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1098
1099 /*
1100 * Because preemptible RCU does not exist, it never needs CPU-offline
1101 * processing.
1102 */
1103 static void rcu_preempt_cleanup_dead_cpu(int cpu)
1104 {
1105 }
1106
1107 /*
1108 * Because preemptible RCU does not exist, it never has any callbacks
1109 * to check.
1110 */
1111 static void rcu_preempt_check_callbacks(int cpu)
1112 {
1113 }
1114
1115 /*
1116 * Because preemptible RCU does not exist, it never has any callbacks
1117 * to process.
1118 */
1119 static void rcu_preempt_process_callbacks(void)
1120 {
1121 }
1122
1123 /*
1124 * Queue an RCU callback for lazy invocation after a grace period.
1125 * This will likely be later named something like "call_rcu_lazy()",
1126 * but this change will require some way of tagging the lazy RCU
1127 * callbacks in the list of pending callbacks. Until then, this
1128 * function may only be called from __kfree_rcu().
1129 *
1130 * Because there is no preemptible RCU, we use RCU-sched instead.
1131 */
1132 void kfree_call_rcu(struct rcu_head *head,
1133 void (*func)(struct rcu_head *rcu))
1134 {
1135 __call_rcu(head, func, &rcu_sched_state, 1);
1136 }
1137 EXPORT_SYMBOL_GPL(kfree_call_rcu);
1138
1139 /*
1140 * Wait for an rcu-preempt grace period, but make it happen quickly.
1141 * But because preemptible RCU does not exist, map to rcu-sched.
1142 */
1143 void synchronize_rcu_expedited(void)
1144 {
1145 synchronize_sched_expedited();
1146 }
1147 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1148
1149 #ifdef CONFIG_HOTPLUG_CPU
1150
1151 /*
1152 * Because preemptible RCU does not exist, there is never any need to
1153 * report on tasks preempted in RCU read-side critical sections during
1154 * expedited RCU grace periods.
1155 */
1156 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1157 bool wake)
1158 {
1159 }
1160
1161 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1162
1163 /*
1164 * Because preemptible RCU does not exist, it never has any work to do.
1165 */
1166 static int rcu_preempt_pending(int cpu)
1167 {
1168 return 0;
1169 }
1170
1171 /*
1172 * Because preemptible RCU does not exist, it never has callbacks
1173 */
1174 static int rcu_preempt_cpu_has_callbacks(int cpu)
1175 {
1176 return 0;
1177 }
1178
1179 /*
1180 * Because preemptible RCU does not exist, rcu_barrier() is just
1181 * another name for rcu_barrier_sched().
1182 */
1183 void rcu_barrier(void)
1184 {
1185 rcu_barrier_sched();
1186 }
1187 EXPORT_SYMBOL_GPL(rcu_barrier);
1188
1189 /*
1190 * Because preemptible RCU does not exist, there is no per-CPU
1191 * data to initialize.
1192 */
1193 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
1194 {
1195 }
1196
1197 /*
1198 * Because there is no preemptible RCU, there is no cleanup to do.
1199 */
1200 static void rcu_preempt_cleanup_dying_cpu(void)
1201 {
1202 }
1203
1204 /*
1205 * Because preemptible RCU does not exist, it need not be initialized.
1206 */
1207 static void __init __rcu_init_preempt(void)
1208 {
1209 }
1210
1211 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1212
1213 #ifdef CONFIG_RCU_BOOST
1214
1215 #include "rtmutex_common.h"
1216
1217 #ifdef CONFIG_RCU_TRACE
1218
1219 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1220 {
1221 if (list_empty(&rnp->blkd_tasks))
1222 rnp->n_balk_blkd_tasks++;
1223 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1224 rnp->n_balk_exp_gp_tasks++;
1225 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1226 rnp->n_balk_boost_tasks++;
1227 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1228 rnp->n_balk_notblocked++;
1229 else if (rnp->gp_tasks != NULL &&
1230 ULONG_CMP_LT(jiffies, rnp->boost_time))
1231 rnp->n_balk_notyet++;
1232 else
1233 rnp->n_balk_nos++;
1234 }
1235
1236 #else /* #ifdef CONFIG_RCU_TRACE */
1237
1238 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1239 {
1240 }
1241
1242 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1243
1244 /*
1245 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1246 * or ->boost_tasks, advancing the pointer to the next task in the
1247 * ->blkd_tasks list.
1248 *
1249 * Note that irqs must be enabled: boosting the task can block.
1250 * Returns 1 if there are more tasks needing to be boosted.
1251 */
1252 static int rcu_boost(struct rcu_node *rnp)
1253 {
1254 unsigned long flags;
1255 struct rt_mutex mtx;
1256 struct task_struct *t;
1257 struct list_head *tb;
1258
1259 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1260 return 0; /* Nothing left to boost. */
1261
1262 raw_spin_lock_irqsave(&rnp->lock, flags);
1263
1264 /*
1265 * Recheck under the lock: all tasks in need of boosting
1266 * might exit their RCU read-side critical sections on their own.
1267 */
1268 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1269 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1270 return 0;
1271 }
1272
1273 /*
1274 * Preferentially boost tasks blocking expedited grace periods.
1275 * This cannot starve the normal grace periods because a second
1276 * expedited grace period must boost all blocked tasks, including
1277 * those blocking the pre-existing normal grace period.
1278 */
1279 if (rnp->exp_tasks != NULL) {
1280 tb = rnp->exp_tasks;
1281 rnp->n_exp_boosts++;
1282 } else {
1283 tb = rnp->boost_tasks;
1284 rnp->n_normal_boosts++;
1285 }
1286 rnp->n_tasks_boosted++;
1287
1288 /*
1289 * We boost task t by manufacturing an rt_mutex that appears to
1290 * be held by task t. We leave a pointer to that rt_mutex where
1291 * task t can find it, and task t will release the mutex when it
1292 * exits its outermost RCU read-side critical section. Then
1293 * simply acquiring this artificial rt_mutex will boost task
1294 * t's priority. (Thanks to tglx for suggesting this approach!)
1295 *
1296 * Note that task t must acquire rnp->lock to remove itself from
1297 * the ->blkd_tasks list, which it will do from exit() if from
1298 * nowhere else. We therefore are guaranteed that task t will
1299 * stay around at least until we drop rnp->lock. Note that
1300 * rnp->lock also resolves races between our priority boosting
1301 * and task t's exiting its outermost RCU read-side critical
1302 * section.
1303 */
1304 t = container_of(tb, struct task_struct, rcu_node_entry);
1305 rt_mutex_init_proxy_locked(&mtx, t);
1306 t->rcu_boost_mutex = &mtx;
1307 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1308 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1309 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1310
1311 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1312 ACCESS_ONCE(rnp->boost_tasks) != NULL;
1313 }
1314
1315 /*
1316 * Timer handler to initiate waking up of boost kthreads that
1317 * have yielded the CPU due to excessive numbers of tasks to
1318 * boost. We wake up the per-rcu_node kthread, which in turn
1319 * will wake up the booster kthread.
1320 */
1321 static void rcu_boost_kthread_timer(unsigned long arg)
1322 {
1323 invoke_rcu_node_kthread((struct rcu_node *)arg);
1324 }
1325
1326 /*
1327 * Priority-boosting kthread. One per leaf rcu_node and one for the
1328 * root rcu_node.
1329 */
1330 static int rcu_boost_kthread(void *arg)
1331 {
1332 struct rcu_node *rnp = (struct rcu_node *)arg;
1333 int spincnt = 0;
1334 int more2boost;
1335
1336 trace_rcu_utilization("Start boost kthread@init");
1337 for (;;) {
1338 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1339 trace_rcu_utilization("End boost kthread@rcu_wait");
1340 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1341 trace_rcu_utilization("Start boost kthread@rcu_wait");
1342 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1343 more2boost = rcu_boost(rnp);
1344 if (more2boost)
1345 spincnt++;
1346 else
1347 spincnt = 0;
1348 if (spincnt > 10) {
1349 trace_rcu_utilization("End boost kthread@rcu_yield");
1350 rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
1351 trace_rcu_utilization("Start boost kthread@rcu_yield");
1352 spincnt = 0;
1353 }
1354 }
1355 /* NOTREACHED */
1356 trace_rcu_utilization("End boost kthread@notreached");
1357 return 0;
1358 }
1359
1360 /*
1361 * Check to see if it is time to start boosting RCU readers that are
1362 * blocking the current grace period, and, if so, tell the per-rcu_node
1363 * kthread to start boosting them. If there is an expedited grace
1364 * period in progress, it is always time to boost.
1365 *
1366 * The caller must hold rnp->lock, which this function releases,
1367 * but irqs remain disabled. The ->boost_kthread_task is immortal,
1368 * so we don't need to worry about it going away.
1369 */
1370 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1371 {
1372 struct task_struct *t;
1373
1374 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1375 rnp->n_balk_exp_gp_tasks++;
1376 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1377 return;
1378 }
1379 if (rnp->exp_tasks != NULL ||
1380 (rnp->gp_tasks != NULL &&
1381 rnp->boost_tasks == NULL &&
1382 rnp->qsmask == 0 &&
1383 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1384 if (rnp->exp_tasks == NULL)
1385 rnp->boost_tasks = rnp->gp_tasks;
1386 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1387 t = rnp->boost_kthread_task;
1388 if (t != NULL)
1389 wake_up_process(t);
1390 } else {
1391 rcu_initiate_boost_trace(rnp);
1392 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1393 }
1394 }
1395
1396 /*
1397 * Wake up the per-CPU kthread to invoke RCU callbacks.
1398 */
1399 static void invoke_rcu_callbacks_kthread(void)
1400 {
1401 unsigned long flags;
1402
1403 local_irq_save(flags);
1404 __this_cpu_write(rcu_cpu_has_work, 1);
1405 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1406 current != __this_cpu_read(rcu_cpu_kthread_task))
1407 wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
1408 local_irq_restore(flags);
1409 }
1410
1411 /*
1412 * Is the current CPU running the RCU-callbacks kthread?
1413 * Caller must have preemption disabled.
1414 */
1415 static bool rcu_is_callbacks_kthread(void)
1416 {
1417 return __get_cpu_var(rcu_cpu_kthread_task) == current;
1418 }
1419
1420 /*
1421 * Set the affinity of the boost kthread. The CPU-hotplug locks are
1422 * held, so no one should be messing with the existence of the boost
1423 * kthread.
1424 */
1425 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
1426 cpumask_var_t cm)
1427 {
1428 struct task_struct *t;
1429
1430 t = rnp->boost_kthread_task;
1431 if (t != NULL)
1432 set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
1433 }
1434
1435 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1436
1437 /*
1438 * Do priority-boost accounting for the start of a new grace period.
1439 */
1440 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1441 {
1442 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1443 }
1444
1445 /*
1446 * Create an RCU-boost kthread for the specified node if one does not
1447 * already exist. We only create this kthread for preemptible RCU.
1448 * Returns zero if all is well, a negated errno otherwise.
1449 */
1450 static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1451 struct rcu_node *rnp,
1452 int rnp_index)
1453 {
1454 unsigned long flags;
1455 struct sched_param sp;
1456 struct task_struct *t;
1457
1458 if (&rcu_preempt_state != rsp)
1459 return 0;
1460 rsp->boost = 1;
1461 if (rnp->boost_kthread_task != NULL)
1462 return 0;
1463 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1464 "rcub/%d", rnp_index);
1465 if (IS_ERR(t))
1466 return PTR_ERR(t);
1467 raw_spin_lock_irqsave(&rnp->lock, flags);
1468 rnp->boost_kthread_task = t;
1469 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1470 sp.sched_priority = RCU_BOOST_PRIO;
1471 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1472 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1473 return 0;
1474 }
1475
1476 #ifdef CONFIG_HOTPLUG_CPU
1477
1478 /*
1479 * Stop the RCU's per-CPU kthread when its CPU goes offline,.
1480 */
1481 static void rcu_stop_cpu_kthread(int cpu)
1482 {
1483 struct task_struct *t;
1484
1485 /* Stop the CPU's kthread. */
1486 t = per_cpu(rcu_cpu_kthread_task, cpu);
1487 if (t != NULL) {
1488 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1489 kthread_stop(t);
1490 }
1491 }
1492
1493 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1494
1495 static void rcu_kthread_do_work(void)
1496 {
1497 rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
1498 rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1499 rcu_preempt_do_callbacks();
1500 }
1501
1502 /*
1503 * Wake up the specified per-rcu_node-structure kthread.
1504 * Because the per-rcu_node kthreads are immortal, we don't need
1505 * to do anything to keep them alive.
1506 */
1507 static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1508 {
1509 struct task_struct *t;
1510
1511 t = rnp->node_kthread_task;
1512 if (t != NULL)
1513 wake_up_process(t);
1514 }
1515
1516 /*
1517 * Set the specified CPU's kthread to run RT or not, as specified by
1518 * the to_rt argument. The CPU-hotplug locks are held, so the task
1519 * is not going away.
1520 */
1521 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1522 {
1523 int policy;
1524 struct sched_param sp;
1525 struct task_struct *t;
1526
1527 t = per_cpu(rcu_cpu_kthread_task, cpu);
1528 if (t == NULL)
1529 return;
1530 if (to_rt) {
1531 policy = SCHED_FIFO;
1532 sp.sched_priority = RCU_KTHREAD_PRIO;
1533 } else {
1534 policy = SCHED_NORMAL;
1535 sp.sched_priority = 0;
1536 }
1537 sched_setscheduler_nocheck(t, policy, &sp);
1538 }
1539
1540 /*
1541 * Timer handler to initiate the waking up of per-CPU kthreads that
1542 * have yielded the CPU due to excess numbers of RCU callbacks.
1543 * We wake up the per-rcu_node kthread, which in turn will wake up
1544 * the booster kthread.
1545 */
1546 static void rcu_cpu_kthread_timer(unsigned long arg)
1547 {
1548 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1549 struct rcu_node *rnp = rdp->mynode;
1550
1551 atomic_or(rdp->grpmask, &rnp->wakemask);
1552 invoke_rcu_node_kthread(rnp);
1553 }
1554
1555 /*
1556 * Drop to non-real-time priority and yield, but only after posting a
1557 * timer that will cause us to regain our real-time priority if we
1558 * remain preempted. Either way, we restore our real-time priority
1559 * before returning.
1560 */
1561 static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1562 {
1563 struct sched_param sp;
1564 struct timer_list yield_timer;
1565 int prio = current->rt_priority;
1566
1567 setup_timer_on_stack(&yield_timer, f, arg);
1568 mod_timer(&yield_timer, jiffies + 2);
1569 sp.sched_priority = 0;
1570 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1571 set_user_nice(current, 19);
1572 schedule();
1573 set_user_nice(current, 0);
1574 sp.sched_priority = prio;
1575 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1576 del_timer(&yield_timer);
1577 }
1578
1579 /*
1580 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1581 * This can happen while the corresponding CPU is either coming online
1582 * or going offline. We cannot wait until the CPU is fully online
1583 * before starting the kthread, because the various notifier functions
1584 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1585 * the corresponding CPU is online.
1586 *
1587 * Return 1 if the kthread needs to stop, 0 otherwise.
1588 *
1589 * Caller must disable bh. This function can momentarily enable it.
1590 */
1591 static int rcu_cpu_kthread_should_stop(int cpu)
1592 {
1593 while (cpu_is_offline(cpu) ||
1594 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1595 smp_processor_id() != cpu) {
1596 if (kthread_should_stop())
1597 return 1;
1598 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1599 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1600 local_bh_enable();
1601 schedule_timeout_uninterruptible(1);
1602 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1603 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1604 local_bh_disable();
1605 }
1606 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1607 return 0;
1608 }
1609
1610 /*
1611 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1612 * RCU softirq used in flavors and configurations of RCU that do not
1613 * support RCU priority boosting.
1614 */
1615 static int rcu_cpu_kthread(void *arg)
1616 {
1617 int cpu = (int)(long)arg;
1618 unsigned long flags;
1619 int spincnt = 0;
1620 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1621 char work;
1622 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1623
1624 trace_rcu_utilization("Start CPU kthread@init");
1625 for (;;) {
1626 *statusp = RCU_KTHREAD_WAITING;
1627 trace_rcu_utilization("End CPU kthread@rcu_wait");
1628 rcu_wait(*workp != 0 || kthread_should_stop());
1629 trace_rcu_utilization("Start CPU kthread@rcu_wait");
1630 local_bh_disable();
1631 if (rcu_cpu_kthread_should_stop(cpu)) {
1632 local_bh_enable();
1633 break;
1634 }
1635 *statusp = RCU_KTHREAD_RUNNING;
1636 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1637 local_irq_save(flags);
1638 work = *workp;
1639 *workp = 0;
1640 local_irq_restore(flags);
1641 if (work)
1642 rcu_kthread_do_work();
1643 local_bh_enable();
1644 if (*workp != 0)
1645 spincnt++;
1646 else
1647 spincnt = 0;
1648 if (spincnt > 10) {
1649 *statusp = RCU_KTHREAD_YIELDING;
1650 trace_rcu_utilization("End CPU kthread@rcu_yield");
1651 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1652 trace_rcu_utilization("Start CPU kthread@rcu_yield");
1653 spincnt = 0;
1654 }
1655 }
1656 *statusp = RCU_KTHREAD_STOPPED;
1657 trace_rcu_utilization("End CPU kthread@term");
1658 return 0;
1659 }
1660
1661 /*
1662 * Spawn a per-CPU kthread, setting up affinity and priority.
1663 * Because the CPU hotplug lock is held, no other CPU will be attempting
1664 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1665 * attempting to access it during boot, but the locking in kthread_bind()
1666 * will enforce sufficient ordering.
1667 *
1668 * Please note that we cannot simply refuse to wake up the per-CPU
1669 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
1670 * which can result in softlockup complaints if the task ends up being
1671 * idle for more than a couple of minutes.
1672 *
1673 * However, please note also that we cannot bind the per-CPU kthread to its
1674 * CPU until that CPU is fully online. We also cannot wait until the
1675 * CPU is fully online before we create its per-CPU kthread, as this would
1676 * deadlock the system when CPU notifiers tried waiting for grace
1677 * periods. So we bind the per-CPU kthread to its CPU only if the CPU
1678 * is online. If its CPU is not yet fully online, then the code in
1679 * rcu_cpu_kthread() will wait until it is fully online, and then do
1680 * the binding.
1681 */
1682 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1683 {
1684 struct sched_param sp;
1685 struct task_struct *t;
1686
1687 if (!rcu_scheduler_fully_active ||
1688 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1689 return 0;
1690 t = kthread_create_on_node(rcu_cpu_kthread,
1691 (void *)(long)cpu,
1692 cpu_to_node(cpu),
1693 "rcuc/%d", cpu);
1694 if (IS_ERR(t))
1695 return PTR_ERR(t);
1696 if (cpu_online(cpu))
1697 kthread_bind(t, cpu);
1698 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1699 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1700 sp.sched_priority = RCU_KTHREAD_PRIO;
1701 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1702 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1703 wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
1704 return 0;
1705 }
1706
1707 /*
1708 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1709 * kthreads when needed. We ignore requests to wake up kthreads
1710 * for offline CPUs, which is OK because force_quiescent_state()
1711 * takes care of this case.
1712 */
1713 static int rcu_node_kthread(void *arg)
1714 {
1715 int cpu;
1716 unsigned long flags;
1717 unsigned long mask;
1718 struct rcu_node *rnp = (struct rcu_node *)arg;
1719 struct sched_param sp;
1720 struct task_struct *t;
1721
1722 for (;;) {
1723 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1724 rcu_wait(atomic_read(&rnp->wakemask) != 0);
1725 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1726 raw_spin_lock_irqsave(&rnp->lock, flags);
1727 mask = atomic_xchg(&rnp->wakemask, 0);
1728 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1729 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1730 if ((mask & 0x1) == 0)
1731 continue;
1732 preempt_disable();
1733 t = per_cpu(rcu_cpu_kthread_task, cpu);
1734 if (!cpu_online(cpu) || t == NULL) {
1735 preempt_enable();
1736 continue;
1737 }
1738 per_cpu(rcu_cpu_has_work, cpu) = 1;
1739 sp.sched_priority = RCU_KTHREAD_PRIO;
1740 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1741 preempt_enable();
1742 }
1743 }
1744 /* NOTREACHED */
1745 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1746 return 0;
1747 }
1748
1749 /*
1750 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1751 * served by the rcu_node in question. The CPU hotplug lock is still
1752 * held, so the value of rnp->qsmaskinit will be stable.
1753 *
1754 * We don't include outgoingcpu in the affinity set, use -1 if there is
1755 * no outgoing CPU. If there are no CPUs left in the affinity set,
1756 * this function allows the kthread to execute on any CPU.
1757 */
1758 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1759 {
1760 cpumask_var_t cm;
1761 int cpu;
1762 unsigned long mask = rnp->qsmaskinit;
1763
1764 if (rnp->node_kthread_task == NULL)
1765 return;
1766 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1767 return;
1768 cpumask_clear(cm);
1769 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1770 if ((mask & 0x1) && cpu != outgoingcpu)
1771 cpumask_set_cpu(cpu, cm);
1772 if (cpumask_weight(cm) == 0) {
1773 cpumask_setall(cm);
1774 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1775 cpumask_clear_cpu(cpu, cm);
1776 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1777 }
1778 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1779 rcu_boost_kthread_setaffinity(rnp, cm);
1780 free_cpumask_var(cm);
1781 }
1782
1783 /*
1784 * Spawn a per-rcu_node kthread, setting priority and affinity.
1785 * Called during boot before online/offline can happen, or, if
1786 * during runtime, with the main CPU-hotplug locks held. So only
1787 * one of these can be executing at a time.
1788 */
1789 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1790 struct rcu_node *rnp)
1791 {
1792 unsigned long flags;
1793 int rnp_index = rnp - &rsp->node[0];
1794 struct sched_param sp;
1795 struct task_struct *t;
1796
1797 if (!rcu_scheduler_fully_active ||
1798 rnp->qsmaskinit == 0)
1799 return 0;
1800 if (rnp->node_kthread_task == NULL) {
1801 t = kthread_create(rcu_node_kthread, (void *)rnp,
1802 "rcun/%d", rnp_index);
1803 if (IS_ERR(t))
1804 return PTR_ERR(t);
1805 raw_spin_lock_irqsave(&rnp->lock, flags);
1806 rnp->node_kthread_task = t;
1807 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1808 sp.sched_priority = 99;
1809 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1810 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1811 }
1812 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1813 }
1814
1815 /*
1816 * Spawn all kthreads -- called as soon as the scheduler is running.
1817 */
1818 static int __init rcu_spawn_kthreads(void)
1819 {
1820 int cpu;
1821 struct rcu_node *rnp;
1822
1823 rcu_scheduler_fully_active = 1;
1824 for_each_possible_cpu(cpu) {
1825 per_cpu(rcu_cpu_has_work, cpu) = 0;
1826 if (cpu_online(cpu))
1827 (void)rcu_spawn_one_cpu_kthread(cpu);
1828 }
1829 rnp = rcu_get_root(rcu_state);
1830 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1831 if (NUM_RCU_NODES > 1) {
1832 rcu_for_each_leaf_node(rcu_state, rnp)
1833 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1834 }
1835 return 0;
1836 }
1837 early_initcall(rcu_spawn_kthreads);
1838
1839 static void __cpuinit rcu_prepare_kthreads(int cpu)
1840 {
1841 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1842 struct rcu_node *rnp = rdp->mynode;
1843
1844 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1845 if (rcu_scheduler_fully_active) {
1846 (void)rcu_spawn_one_cpu_kthread(cpu);
1847 if (rnp->node_kthread_task == NULL)
1848 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1849 }
1850 }
1851
1852 #else /* #ifdef CONFIG_RCU_BOOST */
1853
1854 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1855 {
1856 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1857 }
1858
1859 static void invoke_rcu_callbacks_kthread(void)
1860 {
1861 WARN_ON_ONCE(1);
1862 }
1863
1864 static bool rcu_is_callbacks_kthread(void)
1865 {
1866 return false;
1867 }
1868
1869 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1870 {
1871 }
1872
1873 #ifdef CONFIG_HOTPLUG_CPU
1874
1875 static void rcu_stop_cpu_kthread(int cpu)
1876 {
1877 }
1878
1879 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1880
1881 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1882 {
1883 }
1884
1885 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1886 {
1887 }
1888
1889 static int __init rcu_scheduler_really_started(void)
1890 {
1891 rcu_scheduler_fully_active = 1;
1892 return 0;
1893 }
1894 early_initcall(rcu_scheduler_really_started);
1895
1896 static void __cpuinit rcu_prepare_kthreads(int cpu)
1897 {
1898 }
1899
1900 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1901
1902 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1903
1904 /*
1905 * Check to see if any future RCU-related work will need to be done
1906 * by the current CPU, even if none need be done immediately, returning
1907 * 1 if so. This function is part of the RCU implementation; it is -not-
1908 * an exported member of the RCU API.
1909 *
1910 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1911 * any flavor of RCU.
1912 */
1913 int rcu_needs_cpu(int cpu)
1914 {
1915 return rcu_cpu_has_callbacks(cpu);
1916 }
1917
1918 /*
1919 * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
1920 */
1921 static void rcu_prepare_for_idle_init(int cpu)
1922 {
1923 }
1924
1925 /*
1926 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1927 * after it.
1928 */
1929 static void rcu_cleanup_after_idle(int cpu)
1930 {
1931 }
1932
1933 /*
1934 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1935 * is nothing.
1936 */
1937 static void rcu_prepare_for_idle(int cpu)
1938 {
1939 }
1940
1941 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1942
1943 /*
1944 * This code is invoked when a CPU goes idle, at which point we want
1945 * to have the CPU do everything required for RCU so that it can enter
1946 * the energy-efficient dyntick-idle mode. This is handled by a
1947 * state machine implemented by rcu_prepare_for_idle() below.
1948 *
1949 * The following three proprocessor symbols control this state machine:
1950 *
1951 * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
1952 * to satisfy RCU. Beyond this point, it is better to incur a periodic
1953 * scheduling-clock interrupt than to loop through the state machine
1954 * at full power.
1955 * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
1956 * optional if RCU does not need anything immediately from this
1957 * CPU, even if this CPU still has RCU callbacks queued. The first
1958 * times through the state machine are mandatory: we need to give
1959 * the state machine a chance to communicate a quiescent state
1960 * to the RCU core.
1961 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1962 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1963 * is sized to be roughly one RCU grace period. Those energy-efficiency
1964 * benchmarkers who might otherwise be tempted to set this to a large
1965 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1966 * system. And if you are -that- concerned about energy efficiency,
1967 * just power the system down and be done with it!
1968 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1969 * permitted to sleep in dyntick-idle mode with only lazy RCU
1970 * callbacks pending. Setting this too high can OOM your system.
1971 *
1972 * The values below work well in practice. If future workloads require
1973 * adjustment, they can be converted into kernel config parameters, though
1974 * making the state machine smarter might be a better option.
1975 */
1976 #define RCU_IDLE_FLUSHES 5 /* Number of dyntick-idle tries. */
1977 #define RCU_IDLE_OPT_FLUSHES 3 /* Optional dyntick-idle tries. */
1978 #define RCU_IDLE_GP_DELAY 6 /* Roughly one grace period. */
1979 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1980
1981 static DEFINE_PER_CPU(int, rcu_dyntick_drain);
1982 static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
1983 static DEFINE_PER_CPU(struct hrtimer, rcu_idle_gp_timer);
1984 static ktime_t rcu_idle_gp_wait; /* If some non-lazy callbacks. */
1985 static ktime_t rcu_idle_lazy_gp_wait; /* If only lazy callbacks. */
1986
1987 /*
1988 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
1989 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
1990 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
1991 * enter dyntick-idle mode. Otherwise, if we have recently tried and failed
1992 * to enter dyntick-idle mode, we refuse to try to enter it. After all,
1993 * it is better to incur scheduling-clock interrupts than to spin
1994 * continuously for the same time duration!
1995 */
1996 int rcu_needs_cpu(int cpu)
1997 {
1998 /* If no callbacks, RCU doesn't need the CPU. */
1999 if (!rcu_cpu_has_callbacks(cpu))
2000 return 0;
2001 /* Otherwise, RCU needs the CPU only if it recently tried and failed. */
2002 return per_cpu(rcu_dyntick_holdoff, cpu) == jiffies;
2003 }
2004
2005 /*
2006 * Does the specified flavor of RCU have non-lazy callbacks pending on
2007 * the specified CPU? Both RCU flavor and CPU are specified by the
2008 * rcu_data structure.
2009 */
2010 static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data *rdp)
2011 {
2012 return rdp->qlen != rdp->qlen_lazy;
2013 }
2014
2015 #ifdef CONFIG_TREE_PREEMPT_RCU
2016
2017 /*
2018 * Are there non-lazy RCU-preempt callbacks? (There cannot be if there
2019 * is no RCU-preempt in the kernel.)
2020 */
2021 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
2022 {
2023 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
2024
2025 return __rcu_cpu_has_nonlazy_callbacks(rdp);
2026 }
2027
2028 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2029
2030 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
2031 {
2032 return 0;
2033 }
2034
2035 #endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */
2036
2037 /*
2038 * Does any flavor of RCU have non-lazy callbacks on the specified CPU?
2039 */
2040 static bool rcu_cpu_has_nonlazy_callbacks(int cpu)
2041 {
2042 return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data, cpu)) ||
2043 __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data, cpu)) ||
2044 rcu_preempt_cpu_has_nonlazy_callbacks(cpu);
2045 }
2046
2047 /*
2048 * Timer handler used to force CPU to start pushing its remaining RCU
2049 * callbacks in the case where it entered dyntick-idle mode with callbacks
2050 * pending. The hander doesn't really need to do anything because the
2051 * real work is done upon re-entry to idle, or by the next scheduling-clock
2052 * interrupt should idle not be re-entered.
2053 */
2054 static enum hrtimer_restart rcu_idle_gp_timer_func(struct hrtimer *hrtp)
2055 {
2056 trace_rcu_prep_idle("Timer");
2057 return HRTIMER_NORESTART;
2058 }
2059
2060 /*
2061 * Initialize the timer used to pull CPUs out of dyntick-idle mode.
2062 */
2063 static void rcu_prepare_for_idle_init(int cpu)
2064 {
2065 static int firsttime = 1;
2066 struct hrtimer *hrtp = &per_cpu(rcu_idle_gp_timer, cpu);
2067
2068 hrtimer_init(hrtp, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2069 hrtp->function = rcu_idle_gp_timer_func;
2070 if (firsttime) {
2071 unsigned int upj = jiffies_to_usecs(RCU_IDLE_GP_DELAY);
2072
2073 rcu_idle_gp_wait = ns_to_ktime(upj * (u64)1000);
2074 upj = jiffies_to_usecs(RCU_IDLE_LAZY_GP_DELAY);
2075 rcu_idle_lazy_gp_wait = ns_to_ktime(upj * (u64)1000);
2076 firsttime = 0;
2077 }
2078 }
2079
2080 /*
2081 * Clean up for exit from idle. Because we are exiting from idle, there
2082 * is no longer any point to rcu_idle_gp_timer, so cancel it. This will
2083 * do nothing if this timer is not active, so just cancel it unconditionally.
2084 */
2085 static void rcu_cleanup_after_idle(int cpu)
2086 {
2087 hrtimer_cancel(&per_cpu(rcu_idle_gp_timer, cpu));
2088 }
2089
2090 /*
2091 * Check to see if any RCU-related work can be done by the current CPU,
2092 * and if so, schedule a softirq to get it done. This function is part
2093 * of the RCU implementation; it is -not- an exported member of the RCU API.
2094 *
2095 * The idea is for the current CPU to clear out all work required by the
2096 * RCU core for the current grace period, so that this CPU can be permitted
2097 * to enter dyntick-idle mode. In some cases, it will need to be awakened
2098 * at the end of the grace period by whatever CPU ends the grace period.
2099 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
2100 * number of wakeups by a modest integer factor.
2101 *
2102 * Because it is not legal to invoke rcu_process_callbacks() with irqs
2103 * disabled, we do one pass of force_quiescent_state(), then do a
2104 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
2105 * later. The per-cpu rcu_dyntick_drain variable controls the sequencing.
2106 *
2107 * The caller must have disabled interrupts.
2108 */
2109 static void rcu_prepare_for_idle(int cpu)
2110 {
2111 /*
2112 * If there are no callbacks on this CPU, enter dyntick-idle mode.
2113 * Also reset state to avoid prejudicing later attempts.
2114 */
2115 if (!rcu_cpu_has_callbacks(cpu)) {
2116 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
2117 per_cpu(rcu_dyntick_drain, cpu) = 0;
2118 trace_rcu_prep_idle("No callbacks");
2119 return;
2120 }
2121
2122 /*
2123 * If in holdoff mode, just return. We will presumably have
2124 * refrained from disabling the scheduling-clock tick.
2125 */
2126 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies) {
2127 trace_rcu_prep_idle("In holdoff");
2128 return;
2129 }
2130
2131 /* Check and update the rcu_dyntick_drain sequencing. */
2132 if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
2133 /* First time through, initialize the counter. */
2134 per_cpu(rcu_dyntick_drain, cpu) = RCU_IDLE_FLUSHES;
2135 } else if (per_cpu(rcu_dyntick_drain, cpu) <= RCU_IDLE_OPT_FLUSHES &&
2136 !rcu_pending(cpu) &&
2137 !local_softirq_pending()) {
2138 /* Can we go dyntick-idle despite still having callbacks? */
2139 trace_rcu_prep_idle("Dyntick with callbacks");
2140 per_cpu(rcu_dyntick_drain, cpu) = 0;
2141 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
2142 if (rcu_cpu_has_nonlazy_callbacks(cpu))
2143 hrtimer_start(&per_cpu(rcu_idle_gp_timer, cpu),
2144 rcu_idle_gp_wait, HRTIMER_MODE_REL);
2145 else
2146 hrtimer_start(&per_cpu(rcu_idle_gp_timer, cpu),
2147 rcu_idle_lazy_gp_wait, HRTIMER_MODE_REL);
2148 return; /* Nothing more to do immediately. */
2149 } else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
2150 /* We have hit the limit, so time to give up. */
2151 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
2152 trace_rcu_prep_idle("Begin holdoff");
2153 invoke_rcu_core(); /* Force the CPU out of dyntick-idle. */
2154 return;
2155 }
2156
2157 /*
2158 * Do one step of pushing the remaining RCU callbacks through
2159 * the RCU core state machine.
2160 */
2161 #ifdef CONFIG_TREE_PREEMPT_RCU
2162 if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
2163 rcu_preempt_qs(cpu);
2164 force_quiescent_state(&rcu_preempt_state, 0);
2165 }
2166 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2167 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
2168 rcu_sched_qs(cpu);
2169 force_quiescent_state(&rcu_sched_state, 0);
2170 }
2171 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
2172 rcu_bh_qs(cpu);
2173 force_quiescent_state(&rcu_bh_state, 0);
2174 }
2175
2176 /*
2177 * If RCU callbacks are still pending, RCU still needs this CPU.
2178 * So try forcing the callbacks through the grace period.
2179 */
2180 if (rcu_cpu_has_callbacks(cpu)) {
2181 trace_rcu_prep_idle("More callbacks");
2182 invoke_rcu_core();
2183 } else
2184 trace_rcu_prep_idle("Callbacks drained");
2185 }
2186
2187 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
2188
2189 #ifdef CONFIG_RCU_CPU_STALL_INFO
2190
2191 #ifdef CONFIG_RCU_FAST_NO_HZ
2192
2193 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2194 {
2195 struct hrtimer *hrtp = &per_cpu(rcu_idle_gp_timer, cpu);
2196
2197 sprintf(cp, "drain=%d %c timer=%lld",
2198 per_cpu(rcu_dyntick_drain, cpu),
2199 per_cpu(rcu_dyntick_holdoff, cpu) == jiffies ? 'H' : '.',
2200 hrtimer_active(hrtp)
2201 ? ktime_to_us(hrtimer_get_remaining(hrtp))
2202 : -1);
2203 }
2204
2205 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
2206
2207 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2208 {
2209 }
2210
2211 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
2212
2213 /* Initiate the stall-info list. */
2214 static void print_cpu_stall_info_begin(void)
2215 {
2216 printk(KERN_CONT "\n");
2217 }
2218
2219 /*
2220 * Print out diagnostic information for the specified stalled CPU.
2221 *
2222 * If the specified CPU is aware of the current RCU grace period
2223 * (flavor specified by rsp), then print the number of scheduling
2224 * clock interrupts the CPU has taken during the time that it has
2225 * been aware. Otherwise, print the number of RCU grace periods
2226 * that this CPU is ignorant of, for example, "1" if the CPU was
2227 * aware of the previous grace period.
2228 *
2229 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
2230 */
2231 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2232 {
2233 char fast_no_hz[72];
2234 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2235 struct rcu_dynticks *rdtp = rdp->dynticks;
2236 char *ticks_title;
2237 unsigned long ticks_value;
2238
2239 if (rsp->gpnum == rdp->gpnum) {
2240 ticks_title = "ticks this GP";
2241 ticks_value = rdp->ticks_this_gp;
2242 } else {
2243 ticks_title = "GPs behind";
2244 ticks_value = rsp->gpnum - rdp->gpnum;
2245 }
2246 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
2247 printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d %s\n",
2248 cpu, ticks_value, ticks_title,
2249 atomic_read(&rdtp->dynticks) & 0xfff,
2250 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
2251 fast_no_hz);
2252 }
2253
2254 /* Terminate the stall-info list. */
2255 static void print_cpu_stall_info_end(void)
2256 {
2257 printk(KERN_ERR "\t");
2258 }
2259
2260 /* Zero ->ticks_this_gp for all flavors of RCU. */
2261 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2262 {
2263 rdp->ticks_this_gp = 0;
2264 }
2265
2266 /* Increment ->ticks_this_gp for all flavors of RCU. */
2267 static void increment_cpu_stall_ticks(void)
2268 {
2269 __get_cpu_var(rcu_sched_data).ticks_this_gp++;
2270 __get_cpu_var(rcu_bh_data).ticks_this_gp++;
2271 #ifdef CONFIG_TREE_PREEMPT_RCU
2272 __get_cpu_var(rcu_preempt_data).ticks_this_gp++;
2273 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2274 }
2275
2276 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
2277
2278 static void print_cpu_stall_info_begin(void)
2279 {
2280 printk(KERN_CONT " {");
2281 }
2282
2283 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2284 {
2285 printk(KERN_CONT " %d", cpu);
2286 }
2287
2288 static void print_cpu_stall_info_end(void)
2289 {
2290 printk(KERN_CONT "} ");
2291 }
2292
2293 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2294 {
2295 }
2296
2297 static void increment_cpu_stall_ticks(void)
2298 {
2299 }
2300
2301 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
This page took 0.144854 seconds and 5 git commands to generate.