ARM: 7165/2: PL330: Fix typo in _prepare_ccr()
[deliverable/linux.git] / kernel / rtmutex.c
1 /*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
10 *
11 * See Documentation/rt-mutex-design.txt for details.
12 */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/timer.h>
17
18 #include "rtmutex_common.h"
19
20 /*
21 * lock->owner state tracking:
22 *
23 * lock->owner holds the task_struct pointer of the owner. Bit 0
24 * is used to keep track of the "lock has waiters" state.
25 *
26 * owner bit0
27 * NULL 0 lock is free (fast acquire possible)
28 * NULL 1 lock is free and has waiters and the top waiter
29 * is going to take the lock*
30 * taskpointer 0 lock is held (fast release possible)
31 * taskpointer 1 lock is held and has waiters**
32 *
33 * The fast atomic compare exchange based acquire and release is only
34 * possible when bit 0 of lock->owner is 0.
35 *
36 * (*) It also can be a transitional state when grabbing the lock
37 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
38 * we need to set the bit0 before looking at the lock, and the owner may be
39 * NULL in this small time, hence this can be a transitional state.
40 *
41 * (**) There is a small time when bit 0 is set but there are no
42 * waiters. This can happen when grabbing the lock in the slow path.
43 * To prevent a cmpxchg of the owner releasing the lock, we need to
44 * set this bit before looking at the lock.
45 */
46
47 static void
48 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
49 {
50 unsigned long val = (unsigned long)owner;
51
52 if (rt_mutex_has_waiters(lock))
53 val |= RT_MUTEX_HAS_WAITERS;
54
55 lock->owner = (struct task_struct *)val;
56 }
57
58 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
59 {
60 lock->owner = (struct task_struct *)
61 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
62 }
63
64 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
65 {
66 if (!rt_mutex_has_waiters(lock))
67 clear_rt_mutex_waiters(lock);
68 }
69
70 /*
71 * We can speed up the acquire/release, if the architecture
72 * supports cmpxchg and if there's no debugging state to be set up
73 */
74 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
75 # define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
76 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
77 {
78 unsigned long owner, *p = (unsigned long *) &lock->owner;
79
80 do {
81 owner = *p;
82 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
83 }
84 #else
85 # define rt_mutex_cmpxchg(l,c,n) (0)
86 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
87 {
88 lock->owner = (struct task_struct *)
89 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
90 }
91 #endif
92
93 /*
94 * Calculate task priority from the waiter list priority
95 *
96 * Return task->normal_prio when the waiter list is empty or when
97 * the waiter is not allowed to do priority boosting
98 */
99 int rt_mutex_getprio(struct task_struct *task)
100 {
101 if (likely(!task_has_pi_waiters(task)))
102 return task->normal_prio;
103
104 return min(task_top_pi_waiter(task)->pi_list_entry.prio,
105 task->normal_prio);
106 }
107
108 /*
109 * Adjust the priority of a task, after its pi_waiters got modified.
110 *
111 * This can be both boosting and unboosting. task->pi_lock must be held.
112 */
113 static void __rt_mutex_adjust_prio(struct task_struct *task)
114 {
115 int prio = rt_mutex_getprio(task);
116
117 if (task->prio != prio)
118 rt_mutex_setprio(task, prio);
119 }
120
121 /*
122 * Adjust task priority (undo boosting). Called from the exit path of
123 * rt_mutex_slowunlock() and rt_mutex_slowlock().
124 *
125 * (Note: We do this outside of the protection of lock->wait_lock to
126 * allow the lock to be taken while or before we readjust the priority
127 * of task. We do not use the spin_xx_mutex() variants here as we are
128 * outside of the debug path.)
129 */
130 static void rt_mutex_adjust_prio(struct task_struct *task)
131 {
132 unsigned long flags;
133
134 raw_spin_lock_irqsave(&task->pi_lock, flags);
135 __rt_mutex_adjust_prio(task);
136 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
137 }
138
139 /*
140 * Max number of times we'll walk the boosting chain:
141 */
142 int max_lock_depth = 1024;
143
144 /*
145 * Adjust the priority chain. Also used for deadlock detection.
146 * Decreases task's usage by one - may thus free the task.
147 * Returns 0 or -EDEADLK.
148 */
149 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
150 int deadlock_detect,
151 struct rt_mutex *orig_lock,
152 struct rt_mutex_waiter *orig_waiter,
153 struct task_struct *top_task)
154 {
155 struct rt_mutex *lock;
156 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
157 int detect_deadlock, ret = 0, depth = 0;
158 unsigned long flags;
159
160 detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
161 deadlock_detect);
162
163 /*
164 * The (de)boosting is a step by step approach with a lot of
165 * pitfalls. We want this to be preemptible and we want hold a
166 * maximum of two locks per step. So we have to check
167 * carefully whether things change under us.
168 */
169 again:
170 if (++depth > max_lock_depth) {
171 static int prev_max;
172
173 /*
174 * Print this only once. If the admin changes the limit,
175 * print a new message when reaching the limit again.
176 */
177 if (prev_max != max_lock_depth) {
178 prev_max = max_lock_depth;
179 printk(KERN_WARNING "Maximum lock depth %d reached "
180 "task: %s (%d)\n", max_lock_depth,
181 top_task->comm, task_pid_nr(top_task));
182 }
183 put_task_struct(task);
184
185 return deadlock_detect ? -EDEADLK : 0;
186 }
187 retry:
188 /*
189 * Task can not go away as we did a get_task() before !
190 */
191 raw_spin_lock_irqsave(&task->pi_lock, flags);
192
193 waiter = task->pi_blocked_on;
194 /*
195 * Check whether the end of the boosting chain has been
196 * reached or the state of the chain has changed while we
197 * dropped the locks.
198 */
199 if (!waiter)
200 goto out_unlock_pi;
201
202 /*
203 * Check the orig_waiter state. After we dropped the locks,
204 * the previous owner of the lock might have released the lock.
205 */
206 if (orig_waiter && !rt_mutex_owner(orig_lock))
207 goto out_unlock_pi;
208
209 /*
210 * Drop out, when the task has no waiters. Note,
211 * top_waiter can be NULL, when we are in the deboosting
212 * mode!
213 */
214 if (top_waiter && (!task_has_pi_waiters(task) ||
215 top_waiter != task_top_pi_waiter(task)))
216 goto out_unlock_pi;
217
218 /*
219 * When deadlock detection is off then we check, if further
220 * priority adjustment is necessary.
221 */
222 if (!detect_deadlock && waiter->list_entry.prio == task->prio)
223 goto out_unlock_pi;
224
225 lock = waiter->lock;
226 if (!raw_spin_trylock(&lock->wait_lock)) {
227 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
228 cpu_relax();
229 goto retry;
230 }
231
232 /* Deadlock detection */
233 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
234 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
235 raw_spin_unlock(&lock->wait_lock);
236 ret = deadlock_detect ? -EDEADLK : 0;
237 goto out_unlock_pi;
238 }
239
240 top_waiter = rt_mutex_top_waiter(lock);
241
242 /* Requeue the waiter */
243 plist_del(&waiter->list_entry, &lock->wait_list);
244 waiter->list_entry.prio = task->prio;
245 plist_add(&waiter->list_entry, &lock->wait_list);
246
247 /* Release the task */
248 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
249 if (!rt_mutex_owner(lock)) {
250 /*
251 * If the requeue above changed the top waiter, then we need
252 * to wake the new top waiter up to try to get the lock.
253 */
254
255 if (top_waiter != rt_mutex_top_waiter(lock))
256 wake_up_process(rt_mutex_top_waiter(lock)->task);
257 raw_spin_unlock(&lock->wait_lock);
258 goto out_put_task;
259 }
260 put_task_struct(task);
261
262 /* Grab the next task */
263 task = rt_mutex_owner(lock);
264 get_task_struct(task);
265 raw_spin_lock_irqsave(&task->pi_lock, flags);
266
267 if (waiter == rt_mutex_top_waiter(lock)) {
268 /* Boost the owner */
269 plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
270 waiter->pi_list_entry.prio = waiter->list_entry.prio;
271 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
272 __rt_mutex_adjust_prio(task);
273
274 } else if (top_waiter == waiter) {
275 /* Deboost the owner */
276 plist_del(&waiter->pi_list_entry, &task->pi_waiters);
277 waiter = rt_mutex_top_waiter(lock);
278 waiter->pi_list_entry.prio = waiter->list_entry.prio;
279 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
280 __rt_mutex_adjust_prio(task);
281 }
282
283 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
284
285 top_waiter = rt_mutex_top_waiter(lock);
286 raw_spin_unlock(&lock->wait_lock);
287
288 if (!detect_deadlock && waiter != top_waiter)
289 goto out_put_task;
290
291 goto again;
292
293 out_unlock_pi:
294 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
295 out_put_task:
296 put_task_struct(task);
297
298 return ret;
299 }
300
301 /*
302 * Try to take an rt-mutex
303 *
304 * Must be called with lock->wait_lock held.
305 *
306 * @lock: the lock to be acquired.
307 * @task: the task which wants to acquire the lock
308 * @waiter: the waiter that is queued to the lock's wait list. (could be NULL)
309 */
310 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
311 struct rt_mutex_waiter *waiter)
312 {
313 /*
314 * We have to be careful here if the atomic speedups are
315 * enabled, such that, when
316 * - no other waiter is on the lock
317 * - the lock has been released since we did the cmpxchg
318 * the lock can be released or taken while we are doing the
319 * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
320 *
321 * The atomic acquire/release aware variant of
322 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
323 * the WAITERS bit, the atomic release / acquire can not
324 * happen anymore and lock->wait_lock protects us from the
325 * non-atomic case.
326 *
327 * Note, that this might set lock->owner =
328 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
329 * any more. This is fixed up when we take the ownership.
330 * This is the transitional state explained at the top of this file.
331 */
332 mark_rt_mutex_waiters(lock);
333
334 if (rt_mutex_owner(lock))
335 return 0;
336
337 /*
338 * It will get the lock because of one of these conditions:
339 * 1) there is no waiter
340 * 2) higher priority than waiters
341 * 3) it is top waiter
342 */
343 if (rt_mutex_has_waiters(lock)) {
344 if (task->prio >= rt_mutex_top_waiter(lock)->list_entry.prio) {
345 if (!waiter || waiter != rt_mutex_top_waiter(lock))
346 return 0;
347 }
348 }
349
350 if (waiter || rt_mutex_has_waiters(lock)) {
351 unsigned long flags;
352 struct rt_mutex_waiter *top;
353
354 raw_spin_lock_irqsave(&task->pi_lock, flags);
355
356 /* remove the queued waiter. */
357 if (waiter) {
358 plist_del(&waiter->list_entry, &lock->wait_list);
359 task->pi_blocked_on = NULL;
360 }
361
362 /*
363 * We have to enqueue the top waiter(if it exists) into
364 * task->pi_waiters list.
365 */
366 if (rt_mutex_has_waiters(lock)) {
367 top = rt_mutex_top_waiter(lock);
368 top->pi_list_entry.prio = top->list_entry.prio;
369 plist_add(&top->pi_list_entry, &task->pi_waiters);
370 }
371 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
372 }
373
374 /* We got the lock. */
375 debug_rt_mutex_lock(lock);
376
377 rt_mutex_set_owner(lock, task);
378
379 rt_mutex_deadlock_account_lock(lock, task);
380
381 return 1;
382 }
383
384 /*
385 * Task blocks on lock.
386 *
387 * Prepare waiter and propagate pi chain
388 *
389 * This must be called with lock->wait_lock held.
390 */
391 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
392 struct rt_mutex_waiter *waiter,
393 struct task_struct *task,
394 int detect_deadlock)
395 {
396 struct task_struct *owner = rt_mutex_owner(lock);
397 struct rt_mutex_waiter *top_waiter = waiter;
398 unsigned long flags;
399 int chain_walk = 0, res;
400
401 raw_spin_lock_irqsave(&task->pi_lock, flags);
402 __rt_mutex_adjust_prio(task);
403 waiter->task = task;
404 waiter->lock = lock;
405 plist_node_init(&waiter->list_entry, task->prio);
406 plist_node_init(&waiter->pi_list_entry, task->prio);
407
408 /* Get the top priority waiter on the lock */
409 if (rt_mutex_has_waiters(lock))
410 top_waiter = rt_mutex_top_waiter(lock);
411 plist_add(&waiter->list_entry, &lock->wait_list);
412
413 task->pi_blocked_on = waiter;
414
415 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
416
417 if (!owner)
418 return 0;
419
420 if (waiter == rt_mutex_top_waiter(lock)) {
421 raw_spin_lock_irqsave(&owner->pi_lock, flags);
422 plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
423 plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
424
425 __rt_mutex_adjust_prio(owner);
426 if (owner->pi_blocked_on)
427 chain_walk = 1;
428 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
429 }
430 else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
431 chain_walk = 1;
432
433 if (!chain_walk)
434 return 0;
435
436 /*
437 * The owner can't disappear while holding a lock,
438 * so the owner struct is protected by wait_lock.
439 * Gets dropped in rt_mutex_adjust_prio_chain()!
440 */
441 get_task_struct(owner);
442
443 raw_spin_unlock(&lock->wait_lock);
444
445 res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
446 task);
447
448 raw_spin_lock(&lock->wait_lock);
449
450 return res;
451 }
452
453 /*
454 * Wake up the next waiter on the lock.
455 *
456 * Remove the top waiter from the current tasks waiter list and wake it up.
457 *
458 * Called with lock->wait_lock held.
459 */
460 static void wakeup_next_waiter(struct rt_mutex *lock)
461 {
462 struct rt_mutex_waiter *waiter;
463 unsigned long flags;
464
465 raw_spin_lock_irqsave(&current->pi_lock, flags);
466
467 waiter = rt_mutex_top_waiter(lock);
468
469 /*
470 * Remove it from current->pi_waiters. We do not adjust a
471 * possible priority boost right now. We execute wakeup in the
472 * boosted mode and go back to normal after releasing
473 * lock->wait_lock.
474 */
475 plist_del(&waiter->pi_list_entry, &current->pi_waiters);
476
477 rt_mutex_set_owner(lock, NULL);
478
479 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
480
481 wake_up_process(waiter->task);
482 }
483
484 /*
485 * Remove a waiter from a lock and give up
486 *
487 * Must be called with lock->wait_lock held and
488 * have just failed to try_to_take_rt_mutex().
489 */
490 static void remove_waiter(struct rt_mutex *lock,
491 struct rt_mutex_waiter *waiter)
492 {
493 int first = (waiter == rt_mutex_top_waiter(lock));
494 struct task_struct *owner = rt_mutex_owner(lock);
495 unsigned long flags;
496 int chain_walk = 0;
497
498 raw_spin_lock_irqsave(&current->pi_lock, flags);
499 plist_del(&waiter->list_entry, &lock->wait_list);
500 current->pi_blocked_on = NULL;
501 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
502
503 if (!owner)
504 return;
505
506 if (first) {
507
508 raw_spin_lock_irqsave(&owner->pi_lock, flags);
509
510 plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
511
512 if (rt_mutex_has_waiters(lock)) {
513 struct rt_mutex_waiter *next;
514
515 next = rt_mutex_top_waiter(lock);
516 plist_add(&next->pi_list_entry, &owner->pi_waiters);
517 }
518 __rt_mutex_adjust_prio(owner);
519
520 if (owner->pi_blocked_on)
521 chain_walk = 1;
522
523 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
524 }
525
526 WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
527
528 if (!chain_walk)
529 return;
530
531 /* gets dropped in rt_mutex_adjust_prio_chain()! */
532 get_task_struct(owner);
533
534 raw_spin_unlock(&lock->wait_lock);
535
536 rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
537
538 raw_spin_lock(&lock->wait_lock);
539 }
540
541 /*
542 * Recheck the pi chain, in case we got a priority setting
543 *
544 * Called from sched_setscheduler
545 */
546 void rt_mutex_adjust_pi(struct task_struct *task)
547 {
548 struct rt_mutex_waiter *waiter;
549 unsigned long flags;
550
551 raw_spin_lock_irqsave(&task->pi_lock, flags);
552
553 waiter = task->pi_blocked_on;
554 if (!waiter || waiter->list_entry.prio == task->prio) {
555 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
556 return;
557 }
558
559 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
560
561 /* gets dropped in rt_mutex_adjust_prio_chain()! */
562 get_task_struct(task);
563 rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
564 }
565
566 /**
567 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
568 * @lock: the rt_mutex to take
569 * @state: the state the task should block in (TASK_INTERRUPTIBLE
570 * or TASK_UNINTERRUPTIBLE)
571 * @timeout: the pre-initialized and started timer, or NULL for none
572 * @waiter: the pre-initialized rt_mutex_waiter
573 *
574 * lock->wait_lock must be held by the caller.
575 */
576 static int __sched
577 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
578 struct hrtimer_sleeper *timeout,
579 struct rt_mutex_waiter *waiter)
580 {
581 int ret = 0;
582 int was_disabled;
583
584 for (;;) {
585 /* Try to acquire the lock: */
586 if (try_to_take_rt_mutex(lock, current, waiter))
587 break;
588
589 /*
590 * TASK_INTERRUPTIBLE checks for signals and
591 * timeout. Ignored otherwise.
592 */
593 if (unlikely(state == TASK_INTERRUPTIBLE)) {
594 /* Signal pending? */
595 if (signal_pending(current))
596 ret = -EINTR;
597 if (timeout && !timeout->task)
598 ret = -ETIMEDOUT;
599 if (ret)
600 break;
601 }
602
603 raw_spin_unlock(&lock->wait_lock);
604
605 was_disabled = irqs_disabled();
606 if (was_disabled)
607 local_irq_enable();
608
609 debug_rt_mutex_print_deadlock(waiter);
610
611 schedule_rt_mutex(lock);
612
613 if (was_disabled)
614 local_irq_disable();
615
616 raw_spin_lock(&lock->wait_lock);
617 set_current_state(state);
618 }
619
620 return ret;
621 }
622
623 /*
624 * Slow path lock function:
625 */
626 static int __sched
627 rt_mutex_slowlock(struct rt_mutex *lock, int state,
628 struct hrtimer_sleeper *timeout,
629 int detect_deadlock)
630 {
631 struct rt_mutex_waiter waiter;
632 int ret = 0;
633
634 debug_rt_mutex_init_waiter(&waiter);
635
636 raw_spin_lock(&lock->wait_lock);
637
638 /* Try to acquire the lock again: */
639 if (try_to_take_rt_mutex(lock, current, NULL)) {
640 raw_spin_unlock(&lock->wait_lock);
641 return 0;
642 }
643
644 set_current_state(state);
645
646 /* Setup the timer, when timeout != NULL */
647 if (unlikely(timeout)) {
648 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
649 if (!hrtimer_active(&timeout->timer))
650 timeout->task = NULL;
651 }
652
653 ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock);
654
655 if (likely(!ret))
656 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
657
658 set_current_state(TASK_RUNNING);
659
660 if (unlikely(ret))
661 remove_waiter(lock, &waiter);
662
663 /*
664 * try_to_take_rt_mutex() sets the waiter bit
665 * unconditionally. We might have to fix that up.
666 */
667 fixup_rt_mutex_waiters(lock);
668
669 raw_spin_unlock(&lock->wait_lock);
670
671 /* Remove pending timer: */
672 if (unlikely(timeout))
673 hrtimer_cancel(&timeout->timer);
674
675 debug_rt_mutex_free_waiter(&waiter);
676
677 return ret;
678 }
679
680 /*
681 * Slow path try-lock function:
682 */
683 static inline int
684 rt_mutex_slowtrylock(struct rt_mutex *lock)
685 {
686 int ret = 0;
687
688 raw_spin_lock(&lock->wait_lock);
689
690 if (likely(rt_mutex_owner(lock) != current)) {
691
692 ret = try_to_take_rt_mutex(lock, current, NULL);
693 /*
694 * try_to_take_rt_mutex() sets the lock waiters
695 * bit unconditionally. Clean this up.
696 */
697 fixup_rt_mutex_waiters(lock);
698 }
699
700 raw_spin_unlock(&lock->wait_lock);
701
702 return ret;
703 }
704
705 /*
706 * Slow path to release a rt-mutex:
707 */
708 static void __sched
709 rt_mutex_slowunlock(struct rt_mutex *lock)
710 {
711 raw_spin_lock(&lock->wait_lock);
712
713 debug_rt_mutex_unlock(lock);
714
715 rt_mutex_deadlock_account_unlock(current);
716
717 if (!rt_mutex_has_waiters(lock)) {
718 lock->owner = NULL;
719 raw_spin_unlock(&lock->wait_lock);
720 return;
721 }
722
723 wakeup_next_waiter(lock);
724
725 raw_spin_unlock(&lock->wait_lock);
726
727 /* Undo pi boosting if necessary: */
728 rt_mutex_adjust_prio(current);
729 }
730
731 /*
732 * debug aware fast / slowpath lock,trylock,unlock
733 *
734 * The atomic acquire/release ops are compiled away, when either the
735 * architecture does not support cmpxchg or when debugging is enabled.
736 */
737 static inline int
738 rt_mutex_fastlock(struct rt_mutex *lock, int state,
739 int detect_deadlock,
740 int (*slowfn)(struct rt_mutex *lock, int state,
741 struct hrtimer_sleeper *timeout,
742 int detect_deadlock))
743 {
744 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
745 rt_mutex_deadlock_account_lock(lock, current);
746 return 0;
747 } else
748 return slowfn(lock, state, NULL, detect_deadlock);
749 }
750
751 static inline int
752 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
753 struct hrtimer_sleeper *timeout, int detect_deadlock,
754 int (*slowfn)(struct rt_mutex *lock, int state,
755 struct hrtimer_sleeper *timeout,
756 int detect_deadlock))
757 {
758 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
759 rt_mutex_deadlock_account_lock(lock, current);
760 return 0;
761 } else
762 return slowfn(lock, state, timeout, detect_deadlock);
763 }
764
765 static inline int
766 rt_mutex_fasttrylock(struct rt_mutex *lock,
767 int (*slowfn)(struct rt_mutex *lock))
768 {
769 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
770 rt_mutex_deadlock_account_lock(lock, current);
771 return 1;
772 }
773 return slowfn(lock);
774 }
775
776 static inline void
777 rt_mutex_fastunlock(struct rt_mutex *lock,
778 void (*slowfn)(struct rt_mutex *lock))
779 {
780 if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
781 rt_mutex_deadlock_account_unlock(current);
782 else
783 slowfn(lock);
784 }
785
786 /**
787 * rt_mutex_lock - lock a rt_mutex
788 *
789 * @lock: the rt_mutex to be locked
790 */
791 void __sched rt_mutex_lock(struct rt_mutex *lock)
792 {
793 might_sleep();
794
795 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
796 }
797 EXPORT_SYMBOL_GPL(rt_mutex_lock);
798
799 /**
800 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
801 *
802 * @lock: the rt_mutex to be locked
803 * @detect_deadlock: deadlock detection on/off
804 *
805 * Returns:
806 * 0 on success
807 * -EINTR when interrupted by a signal
808 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
809 */
810 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
811 int detect_deadlock)
812 {
813 might_sleep();
814
815 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
816 detect_deadlock, rt_mutex_slowlock);
817 }
818 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
819
820 /**
821 * rt_mutex_timed_lock - lock a rt_mutex interruptible
822 * the timeout structure is provided
823 * by the caller
824 *
825 * @lock: the rt_mutex to be locked
826 * @timeout: timeout structure or NULL (no timeout)
827 * @detect_deadlock: deadlock detection on/off
828 *
829 * Returns:
830 * 0 on success
831 * -EINTR when interrupted by a signal
832 * -ETIMEDOUT when the timeout expired
833 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
834 */
835 int
836 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
837 int detect_deadlock)
838 {
839 might_sleep();
840
841 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
842 detect_deadlock, rt_mutex_slowlock);
843 }
844 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
845
846 /**
847 * rt_mutex_trylock - try to lock a rt_mutex
848 *
849 * @lock: the rt_mutex to be locked
850 *
851 * Returns 1 on success and 0 on contention
852 */
853 int __sched rt_mutex_trylock(struct rt_mutex *lock)
854 {
855 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
856 }
857 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
858
859 /**
860 * rt_mutex_unlock - unlock a rt_mutex
861 *
862 * @lock: the rt_mutex to be unlocked
863 */
864 void __sched rt_mutex_unlock(struct rt_mutex *lock)
865 {
866 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
867 }
868 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
869
870 /**
871 * rt_mutex_destroy - mark a mutex unusable
872 * @lock: the mutex to be destroyed
873 *
874 * This function marks the mutex uninitialized, and any subsequent
875 * use of the mutex is forbidden. The mutex must not be locked when
876 * this function is called.
877 */
878 void rt_mutex_destroy(struct rt_mutex *lock)
879 {
880 WARN_ON(rt_mutex_is_locked(lock));
881 #ifdef CONFIG_DEBUG_RT_MUTEXES
882 lock->magic = NULL;
883 #endif
884 }
885
886 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
887
888 /**
889 * __rt_mutex_init - initialize the rt lock
890 *
891 * @lock: the rt lock to be initialized
892 *
893 * Initialize the rt lock to unlocked state.
894 *
895 * Initializing of a locked rt lock is not allowed
896 */
897 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
898 {
899 lock->owner = NULL;
900 raw_spin_lock_init(&lock->wait_lock);
901 plist_head_init(&lock->wait_list);
902
903 debug_rt_mutex_init(lock, name);
904 }
905 EXPORT_SYMBOL_GPL(__rt_mutex_init);
906
907 /**
908 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
909 * proxy owner
910 *
911 * @lock: the rt_mutex to be locked
912 * @proxy_owner:the task to set as owner
913 *
914 * No locking. Caller has to do serializing itself
915 * Special API call for PI-futex support
916 */
917 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
918 struct task_struct *proxy_owner)
919 {
920 __rt_mutex_init(lock, NULL);
921 debug_rt_mutex_proxy_lock(lock, proxy_owner);
922 rt_mutex_set_owner(lock, proxy_owner);
923 rt_mutex_deadlock_account_lock(lock, proxy_owner);
924 }
925
926 /**
927 * rt_mutex_proxy_unlock - release a lock on behalf of owner
928 *
929 * @lock: the rt_mutex to be locked
930 *
931 * No locking. Caller has to do serializing itself
932 * Special API call for PI-futex support
933 */
934 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
935 struct task_struct *proxy_owner)
936 {
937 debug_rt_mutex_proxy_unlock(lock);
938 rt_mutex_set_owner(lock, NULL);
939 rt_mutex_deadlock_account_unlock(proxy_owner);
940 }
941
942 /**
943 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
944 * @lock: the rt_mutex to take
945 * @waiter: the pre-initialized rt_mutex_waiter
946 * @task: the task to prepare
947 * @detect_deadlock: perform deadlock detection (1) or not (0)
948 *
949 * Returns:
950 * 0 - task blocked on lock
951 * 1 - acquired the lock for task, caller should wake it up
952 * <0 - error
953 *
954 * Special API call for FUTEX_REQUEUE_PI support.
955 */
956 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
957 struct rt_mutex_waiter *waiter,
958 struct task_struct *task, int detect_deadlock)
959 {
960 int ret;
961
962 raw_spin_lock(&lock->wait_lock);
963
964 if (try_to_take_rt_mutex(lock, task, NULL)) {
965 raw_spin_unlock(&lock->wait_lock);
966 return 1;
967 }
968
969 ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock);
970
971 if (ret && !rt_mutex_owner(lock)) {
972 /*
973 * Reset the return value. We might have
974 * returned with -EDEADLK and the owner
975 * released the lock while we were walking the
976 * pi chain. Let the waiter sort it out.
977 */
978 ret = 0;
979 }
980
981 if (unlikely(ret))
982 remove_waiter(lock, waiter);
983
984 raw_spin_unlock(&lock->wait_lock);
985
986 debug_rt_mutex_print_deadlock(waiter);
987
988 return ret;
989 }
990
991 /**
992 * rt_mutex_next_owner - return the next owner of the lock
993 *
994 * @lock: the rt lock query
995 *
996 * Returns the next owner of the lock or NULL
997 *
998 * Caller has to serialize against other accessors to the lock
999 * itself.
1000 *
1001 * Special API call for PI-futex support
1002 */
1003 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1004 {
1005 if (!rt_mutex_has_waiters(lock))
1006 return NULL;
1007
1008 return rt_mutex_top_waiter(lock)->task;
1009 }
1010
1011 /**
1012 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1013 * @lock: the rt_mutex we were woken on
1014 * @to: the timeout, null if none. hrtimer should already have
1015 * been started.
1016 * @waiter: the pre-initialized rt_mutex_waiter
1017 * @detect_deadlock: perform deadlock detection (1) or not (0)
1018 *
1019 * Complete the lock acquisition started our behalf by another thread.
1020 *
1021 * Returns:
1022 * 0 - success
1023 * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK
1024 *
1025 * Special API call for PI-futex requeue support
1026 */
1027 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1028 struct hrtimer_sleeper *to,
1029 struct rt_mutex_waiter *waiter,
1030 int detect_deadlock)
1031 {
1032 int ret;
1033
1034 raw_spin_lock(&lock->wait_lock);
1035
1036 set_current_state(TASK_INTERRUPTIBLE);
1037
1038 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1039
1040 set_current_state(TASK_RUNNING);
1041
1042 if (unlikely(ret))
1043 remove_waiter(lock, waiter);
1044
1045 /*
1046 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1047 * have to fix that up.
1048 */
1049 fixup_rt_mutex_waiters(lock);
1050
1051 raw_spin_unlock(&lock->wait_lock);
1052
1053 return ret;
1054 }
This page took 0.050416 seconds and 5 git commands to generate.