6f61fd44a5c56e7aa686cad3e164fedd838163b9
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
82 #endif
83
84 #include "sched.h"
85 #include "../workqueue_sched.h"
86
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/sched.h>
89
90 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
91 {
92 unsigned long delta;
93 ktime_t soft, hard, now;
94
95 for (;;) {
96 if (hrtimer_active(period_timer))
97 break;
98
99 now = hrtimer_cb_get_time(period_timer);
100 hrtimer_forward(period_timer, now, period);
101
102 soft = hrtimer_get_softexpires(period_timer);
103 hard = hrtimer_get_expires(period_timer);
104 delta = ktime_to_ns(ktime_sub(hard, soft));
105 __hrtimer_start_range_ns(period_timer, soft, delta,
106 HRTIMER_MODE_ABS_PINNED, 0);
107 }
108 }
109
110 DEFINE_MUTEX(sched_domains_mutex);
111 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
112
113 static void update_rq_clock_task(struct rq *rq, s64 delta);
114
115 void update_rq_clock(struct rq *rq)
116 {
117 s64 delta;
118
119 if (rq->skip_clock_update > 0)
120 return;
121
122 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
123 rq->clock += delta;
124 update_rq_clock_task(rq, delta);
125 }
126
127 /*
128 * Debugging: various feature bits
129 */
130
131 #define SCHED_FEAT(name, enabled) \
132 (1UL << __SCHED_FEAT_##name) * enabled |
133
134 const_debug unsigned int sysctl_sched_features =
135 #include "features.h"
136 0;
137
138 #undef SCHED_FEAT
139
140 #ifdef CONFIG_SCHED_DEBUG
141 #define SCHED_FEAT(name, enabled) \
142 #name ,
143
144 static __read_mostly char *sched_feat_names[] = {
145 #include "features.h"
146 NULL
147 };
148
149 #undef SCHED_FEAT
150
151 static int sched_feat_show(struct seq_file *m, void *v)
152 {
153 int i;
154
155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
159 }
160 seq_puts(m, "\n");
161
162 return 0;
163 }
164
165 #ifdef HAVE_JUMP_LABEL
166
167 #define jump_label_key__true STATIC_KEY_INIT_TRUE
168 #define jump_label_key__false STATIC_KEY_INIT_FALSE
169
170 #define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
172
173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 #include "features.h"
175 };
176
177 #undef SCHED_FEAT
178
179 static void sched_feat_disable(int i)
180 {
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
183 }
184
185 static void sched_feat_enable(int i)
186 {
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
189 }
190 #else
191 static void sched_feat_disable(int i) { };
192 static void sched_feat_enable(int i) { };
193 #endif /* HAVE_JUMP_LABEL */
194
195 static ssize_t
196 sched_feat_write(struct file *filp, const char __user *ubuf,
197 size_t cnt, loff_t *ppos)
198 {
199 char buf[64];
200 char *cmp;
201 int neg = 0;
202 int i;
203
204 if (cnt > 63)
205 cnt = 63;
206
207 if (copy_from_user(&buf, ubuf, cnt))
208 return -EFAULT;
209
210 buf[cnt] = 0;
211 cmp = strstrip(buf);
212
213 if (strncmp(cmp, "NO_", 3) == 0) {
214 neg = 1;
215 cmp += 3;
216 }
217
218 for (i = 0; i < __SCHED_FEAT_NR; i++) {
219 if (strcmp(cmp, sched_feat_names[i]) == 0) {
220 if (neg) {
221 sysctl_sched_features &= ~(1UL << i);
222 sched_feat_disable(i);
223 } else {
224 sysctl_sched_features |= (1UL << i);
225 sched_feat_enable(i);
226 }
227 break;
228 }
229 }
230
231 if (i == __SCHED_FEAT_NR)
232 return -EINVAL;
233
234 *ppos += cnt;
235
236 return cnt;
237 }
238
239 static int sched_feat_open(struct inode *inode, struct file *filp)
240 {
241 return single_open(filp, sched_feat_show, NULL);
242 }
243
244 static const struct file_operations sched_feat_fops = {
245 .open = sched_feat_open,
246 .write = sched_feat_write,
247 .read = seq_read,
248 .llseek = seq_lseek,
249 .release = single_release,
250 };
251
252 static __init int sched_init_debug(void)
253 {
254 debugfs_create_file("sched_features", 0644, NULL, NULL,
255 &sched_feat_fops);
256
257 return 0;
258 }
259 late_initcall(sched_init_debug);
260 #endif /* CONFIG_SCHED_DEBUG */
261
262 /*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266 const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
268 /*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
276 /*
277 * period over which we measure -rt task cpu usage in us.
278 * default: 1s
279 */
280 unsigned int sysctl_sched_rt_period = 1000000;
281
282 __read_mostly int scheduler_running;
283
284 /*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288 int sysctl_sched_rt_runtime = 950000;
289
290
291
292 /*
293 * __task_rq_lock - lock the rq @p resides on.
294 */
295 static inline struct rq *__task_rq_lock(struct task_struct *p)
296 __acquires(rq->lock)
297 {
298 struct rq *rq;
299
300 lockdep_assert_held(&p->pi_lock);
301
302 for (;;) {
303 rq = task_rq(p);
304 raw_spin_lock(&rq->lock);
305 if (likely(rq == task_rq(p)))
306 return rq;
307 raw_spin_unlock(&rq->lock);
308 }
309 }
310
311 /*
312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313 */
314 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315 __acquires(p->pi_lock)
316 __acquires(rq->lock)
317 {
318 struct rq *rq;
319
320 for (;;) {
321 raw_spin_lock_irqsave(&p->pi_lock, *flags);
322 rq = task_rq(p);
323 raw_spin_lock(&rq->lock);
324 if (likely(rq == task_rq(p)))
325 return rq;
326 raw_spin_unlock(&rq->lock);
327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328 }
329 }
330
331 static void __task_rq_unlock(struct rq *rq)
332 __releases(rq->lock)
333 {
334 raw_spin_unlock(&rq->lock);
335 }
336
337 static inline void
338 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339 __releases(rq->lock)
340 __releases(p->pi_lock)
341 {
342 raw_spin_unlock(&rq->lock);
343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344 }
345
346 /*
347 * this_rq_lock - lock this runqueue and disable interrupts.
348 */
349 static struct rq *this_rq_lock(void)
350 __acquires(rq->lock)
351 {
352 struct rq *rq;
353
354 local_irq_disable();
355 rq = this_rq();
356 raw_spin_lock(&rq->lock);
357
358 return rq;
359 }
360
361 #ifdef CONFIG_SCHED_HRTICK
362 /*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
372
373 static void hrtick_clear(struct rq *rq)
374 {
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377 }
378
379 /*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
384 {
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389 raw_spin_lock(&rq->lock);
390 update_rq_clock(rq);
391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 raw_spin_unlock(&rq->lock);
393
394 return HRTIMER_NORESTART;
395 }
396
397 #ifdef CONFIG_SMP
398 /*
399 * called from hardirq (IPI) context
400 */
401 static void __hrtick_start(void *arg)
402 {
403 struct rq *rq = arg;
404
405 raw_spin_lock(&rq->lock);
406 hrtimer_restart(&rq->hrtick_timer);
407 rq->hrtick_csd_pending = 0;
408 raw_spin_unlock(&rq->lock);
409 }
410
411 /*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
416 void hrtick_start(struct rq *rq, u64 delay)
417 {
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420
421 hrtimer_set_expires(timer, time);
422
423 if (rq == this_rq()) {
424 hrtimer_restart(timer);
425 } else if (!rq->hrtick_csd_pending) {
426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 rq->hrtick_csd_pending = 1;
428 }
429 }
430
431 static int
432 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433 {
434 int cpu = (int)(long)hcpu;
435
436 switch (action) {
437 case CPU_UP_CANCELED:
438 case CPU_UP_CANCELED_FROZEN:
439 case CPU_DOWN_PREPARE:
440 case CPU_DOWN_PREPARE_FROZEN:
441 case CPU_DEAD:
442 case CPU_DEAD_FROZEN:
443 hrtick_clear(cpu_rq(cpu));
444 return NOTIFY_OK;
445 }
446
447 return NOTIFY_DONE;
448 }
449
450 static __init void init_hrtick(void)
451 {
452 hotcpu_notifier(hotplug_hrtick, 0);
453 }
454 #else
455 /*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
460 void hrtick_start(struct rq *rq, u64 delay)
461 {
462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463 HRTIMER_MODE_REL_PINNED, 0);
464 }
465
466 static inline void init_hrtick(void)
467 {
468 }
469 #endif /* CONFIG_SMP */
470
471 static void init_rq_hrtick(struct rq *rq)
472 {
473 #ifdef CONFIG_SMP
474 rq->hrtick_csd_pending = 0;
475
476 rq->hrtick_csd.flags = 0;
477 rq->hrtick_csd.func = __hrtick_start;
478 rq->hrtick_csd.info = rq;
479 #endif
480
481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 rq->hrtick_timer.function = hrtick;
483 }
484 #else /* CONFIG_SCHED_HRTICK */
485 static inline void hrtick_clear(struct rq *rq)
486 {
487 }
488
489 static inline void init_rq_hrtick(struct rq *rq)
490 {
491 }
492
493 static inline void init_hrtick(void)
494 {
495 }
496 #endif /* CONFIG_SCHED_HRTICK */
497
498 /*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505 #ifdef CONFIG_SMP
506
507 #ifndef tsk_is_polling
508 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509 #endif
510
511 void resched_task(struct task_struct *p)
512 {
513 int cpu;
514
515 assert_raw_spin_locked(&task_rq(p)->lock);
516
517 if (test_tsk_need_resched(p))
518 return;
519
520 set_tsk_need_resched(p);
521
522 cpu = task_cpu(p);
523 if (cpu == smp_processor_id())
524 return;
525
526 /* NEED_RESCHED must be visible before we test polling */
527 smp_mb();
528 if (!tsk_is_polling(p))
529 smp_send_reschedule(cpu);
530 }
531
532 void resched_cpu(int cpu)
533 {
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
537 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538 return;
539 resched_task(cpu_curr(cpu));
540 raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542
543 #ifdef CONFIG_NO_HZ
544 /*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552 int get_nohz_timer_target(void)
553 {
554 int cpu = smp_processor_id();
555 int i;
556 struct sched_domain *sd;
557
558 rcu_read_lock();
559 for_each_domain(cpu, sd) {
560 for_each_cpu(i, sched_domain_span(sd)) {
561 if (!idle_cpu(i)) {
562 cpu = i;
563 goto unlock;
564 }
565 }
566 }
567 unlock:
568 rcu_read_unlock();
569 return cpu;
570 }
571 /*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581 void wake_up_idle_cpu(int cpu)
582 {
583 struct rq *rq = cpu_rq(cpu);
584
585 if (cpu == smp_processor_id())
586 return;
587
588 /*
589 * This is safe, as this function is called with the timer
590 * wheel base lock of (cpu) held. When the CPU is on the way
591 * to idle and has not yet set rq->curr to idle then it will
592 * be serialized on the timer wheel base lock and take the new
593 * timer into account automatically.
594 */
595 if (rq->curr != rq->idle)
596 return;
597
598 /*
599 * We can set TIF_RESCHED on the idle task of the other CPU
600 * lockless. The worst case is that the other CPU runs the
601 * idle task through an additional NOOP schedule()
602 */
603 set_tsk_need_resched(rq->idle);
604
605 /* NEED_RESCHED must be visible before we test polling */
606 smp_mb();
607 if (!tsk_is_polling(rq->idle))
608 smp_send_reschedule(cpu);
609 }
610
611 static inline bool got_nohz_idle_kick(void)
612 {
613 int cpu = smp_processor_id();
614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 }
616
617 #else /* CONFIG_NO_HZ */
618
619 static inline bool got_nohz_idle_kick(void)
620 {
621 return false;
622 }
623
624 #endif /* CONFIG_NO_HZ */
625
626 void sched_avg_update(struct rq *rq)
627 {
628 s64 period = sched_avg_period();
629
630 while ((s64)(rq->clock - rq->age_stamp) > period) {
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
640 }
641
642 #else /* !CONFIG_SMP */
643 void resched_task(struct task_struct *p)
644 {
645 assert_raw_spin_locked(&task_rq(p)->lock);
646 set_tsk_need_resched(p);
647 }
648 #endif /* CONFIG_SMP */
649
650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652 /*
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
657 */
658 int walk_tg_tree_from(struct task_group *from,
659 tg_visitor down, tg_visitor up, void *data)
660 {
661 struct task_group *parent, *child;
662 int ret;
663
664 parent = from;
665
666 down:
667 ret = (*down)(parent, data);
668 if (ret)
669 goto out;
670 list_for_each_entry_rcu(child, &parent->children, siblings) {
671 parent = child;
672 goto down;
673
674 up:
675 continue;
676 }
677 ret = (*up)(parent, data);
678 if (ret || parent == from)
679 goto out;
680
681 child = parent;
682 parent = parent->parent;
683 if (parent)
684 goto up;
685 out:
686 return ret;
687 }
688
689 int tg_nop(struct task_group *tg, void *data)
690 {
691 return 0;
692 }
693 #endif
694
695 void update_cpu_load(struct rq *this_rq);
696
697 static void set_load_weight(struct task_struct *p)
698 {
699 int prio = p->static_prio - MAX_RT_PRIO;
700 struct load_weight *load = &p->se.load;
701
702 /*
703 * SCHED_IDLE tasks get minimal weight:
704 */
705 if (p->policy == SCHED_IDLE) {
706 load->weight = scale_load(WEIGHT_IDLEPRIO);
707 load->inv_weight = WMULT_IDLEPRIO;
708 return;
709 }
710
711 load->weight = scale_load(prio_to_weight[prio]);
712 load->inv_weight = prio_to_wmult[prio];
713 }
714
715 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
716 {
717 update_rq_clock(rq);
718 sched_info_queued(p);
719 p->sched_class->enqueue_task(rq, p, flags);
720 }
721
722 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
723 {
724 update_rq_clock(rq);
725 sched_info_dequeued(p);
726 p->sched_class->dequeue_task(rq, p, flags);
727 }
728
729 void activate_task(struct rq *rq, struct task_struct *p, int flags)
730 {
731 if (task_contributes_to_load(p))
732 rq->nr_uninterruptible--;
733
734 enqueue_task(rq, p, flags);
735 }
736
737 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
738 {
739 if (task_contributes_to_load(p))
740 rq->nr_uninterruptible++;
741
742 dequeue_task(rq, p, flags);
743 }
744
745 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
746
747 /*
748 * There are no locks covering percpu hardirq/softirq time.
749 * They are only modified in account_system_vtime, on corresponding CPU
750 * with interrupts disabled. So, writes are safe.
751 * They are read and saved off onto struct rq in update_rq_clock().
752 * This may result in other CPU reading this CPU's irq time and can
753 * race with irq/account_system_vtime on this CPU. We would either get old
754 * or new value with a side effect of accounting a slice of irq time to wrong
755 * task when irq is in progress while we read rq->clock. That is a worthy
756 * compromise in place of having locks on each irq in account_system_time.
757 */
758 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
759 static DEFINE_PER_CPU(u64, cpu_softirq_time);
760
761 static DEFINE_PER_CPU(u64, irq_start_time);
762 static int sched_clock_irqtime;
763
764 void enable_sched_clock_irqtime(void)
765 {
766 sched_clock_irqtime = 1;
767 }
768
769 void disable_sched_clock_irqtime(void)
770 {
771 sched_clock_irqtime = 0;
772 }
773
774 #ifndef CONFIG_64BIT
775 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
776
777 static inline void irq_time_write_begin(void)
778 {
779 __this_cpu_inc(irq_time_seq.sequence);
780 smp_wmb();
781 }
782
783 static inline void irq_time_write_end(void)
784 {
785 smp_wmb();
786 __this_cpu_inc(irq_time_seq.sequence);
787 }
788
789 static inline u64 irq_time_read(int cpu)
790 {
791 u64 irq_time;
792 unsigned seq;
793
794 do {
795 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
796 irq_time = per_cpu(cpu_softirq_time, cpu) +
797 per_cpu(cpu_hardirq_time, cpu);
798 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
799
800 return irq_time;
801 }
802 #else /* CONFIG_64BIT */
803 static inline void irq_time_write_begin(void)
804 {
805 }
806
807 static inline void irq_time_write_end(void)
808 {
809 }
810
811 static inline u64 irq_time_read(int cpu)
812 {
813 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
814 }
815 #endif /* CONFIG_64BIT */
816
817 /*
818 * Called before incrementing preempt_count on {soft,}irq_enter
819 * and before decrementing preempt_count on {soft,}irq_exit.
820 */
821 void account_system_vtime(struct task_struct *curr)
822 {
823 unsigned long flags;
824 s64 delta;
825 int cpu;
826
827 if (!sched_clock_irqtime)
828 return;
829
830 local_irq_save(flags);
831
832 cpu = smp_processor_id();
833 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
834 __this_cpu_add(irq_start_time, delta);
835
836 irq_time_write_begin();
837 /*
838 * We do not account for softirq time from ksoftirqd here.
839 * We want to continue accounting softirq time to ksoftirqd thread
840 * in that case, so as not to confuse scheduler with a special task
841 * that do not consume any time, but still wants to run.
842 */
843 if (hardirq_count())
844 __this_cpu_add(cpu_hardirq_time, delta);
845 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
846 __this_cpu_add(cpu_softirq_time, delta);
847
848 irq_time_write_end();
849 local_irq_restore(flags);
850 }
851 EXPORT_SYMBOL_GPL(account_system_vtime);
852
853 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
854
855 #ifdef CONFIG_PARAVIRT
856 static inline u64 steal_ticks(u64 steal)
857 {
858 if (unlikely(steal > NSEC_PER_SEC))
859 return div_u64(steal, TICK_NSEC);
860
861 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
862 }
863 #endif
864
865 static void update_rq_clock_task(struct rq *rq, s64 delta)
866 {
867 /*
868 * In theory, the compile should just see 0 here, and optimize out the call
869 * to sched_rt_avg_update. But I don't trust it...
870 */
871 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
872 s64 steal = 0, irq_delta = 0;
873 #endif
874 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
875 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
876
877 /*
878 * Since irq_time is only updated on {soft,}irq_exit, we might run into
879 * this case when a previous update_rq_clock() happened inside a
880 * {soft,}irq region.
881 *
882 * When this happens, we stop ->clock_task and only update the
883 * prev_irq_time stamp to account for the part that fit, so that a next
884 * update will consume the rest. This ensures ->clock_task is
885 * monotonic.
886 *
887 * It does however cause some slight miss-attribution of {soft,}irq
888 * time, a more accurate solution would be to update the irq_time using
889 * the current rq->clock timestamp, except that would require using
890 * atomic ops.
891 */
892 if (irq_delta > delta)
893 irq_delta = delta;
894
895 rq->prev_irq_time += irq_delta;
896 delta -= irq_delta;
897 #endif
898 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
899 if (static_key_false((&paravirt_steal_rq_enabled))) {
900 u64 st;
901
902 steal = paravirt_steal_clock(cpu_of(rq));
903 steal -= rq->prev_steal_time_rq;
904
905 if (unlikely(steal > delta))
906 steal = delta;
907
908 st = steal_ticks(steal);
909 steal = st * TICK_NSEC;
910
911 rq->prev_steal_time_rq += steal;
912
913 delta -= steal;
914 }
915 #endif
916
917 rq->clock_task += delta;
918
919 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
920 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
921 sched_rt_avg_update(rq, irq_delta + steal);
922 #endif
923 }
924
925 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
926 static int irqtime_account_hi_update(void)
927 {
928 u64 *cpustat = kcpustat_this_cpu->cpustat;
929 unsigned long flags;
930 u64 latest_ns;
931 int ret = 0;
932
933 local_irq_save(flags);
934 latest_ns = this_cpu_read(cpu_hardirq_time);
935 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
936 ret = 1;
937 local_irq_restore(flags);
938 return ret;
939 }
940
941 static int irqtime_account_si_update(void)
942 {
943 u64 *cpustat = kcpustat_this_cpu->cpustat;
944 unsigned long flags;
945 u64 latest_ns;
946 int ret = 0;
947
948 local_irq_save(flags);
949 latest_ns = this_cpu_read(cpu_softirq_time);
950 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
951 ret = 1;
952 local_irq_restore(flags);
953 return ret;
954 }
955
956 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
957
958 #define sched_clock_irqtime (0)
959
960 #endif
961
962 void sched_set_stop_task(int cpu, struct task_struct *stop)
963 {
964 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
965 struct task_struct *old_stop = cpu_rq(cpu)->stop;
966
967 if (stop) {
968 /*
969 * Make it appear like a SCHED_FIFO task, its something
970 * userspace knows about and won't get confused about.
971 *
972 * Also, it will make PI more or less work without too
973 * much confusion -- but then, stop work should not
974 * rely on PI working anyway.
975 */
976 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
977
978 stop->sched_class = &stop_sched_class;
979 }
980
981 cpu_rq(cpu)->stop = stop;
982
983 if (old_stop) {
984 /*
985 * Reset it back to a normal scheduling class so that
986 * it can die in pieces.
987 */
988 old_stop->sched_class = &rt_sched_class;
989 }
990 }
991
992 /*
993 * __normal_prio - return the priority that is based on the static prio
994 */
995 static inline int __normal_prio(struct task_struct *p)
996 {
997 return p->static_prio;
998 }
999
1000 /*
1001 * Calculate the expected normal priority: i.e. priority
1002 * without taking RT-inheritance into account. Might be
1003 * boosted by interactivity modifiers. Changes upon fork,
1004 * setprio syscalls, and whenever the interactivity
1005 * estimator recalculates.
1006 */
1007 static inline int normal_prio(struct task_struct *p)
1008 {
1009 int prio;
1010
1011 if (task_has_rt_policy(p))
1012 prio = MAX_RT_PRIO-1 - p->rt_priority;
1013 else
1014 prio = __normal_prio(p);
1015 return prio;
1016 }
1017
1018 /*
1019 * Calculate the current priority, i.e. the priority
1020 * taken into account by the scheduler. This value might
1021 * be boosted by RT tasks, or might be boosted by
1022 * interactivity modifiers. Will be RT if the task got
1023 * RT-boosted. If not then it returns p->normal_prio.
1024 */
1025 static int effective_prio(struct task_struct *p)
1026 {
1027 p->normal_prio = normal_prio(p);
1028 /*
1029 * If we are RT tasks or we were boosted to RT priority,
1030 * keep the priority unchanged. Otherwise, update priority
1031 * to the normal priority:
1032 */
1033 if (!rt_prio(p->prio))
1034 return p->normal_prio;
1035 return p->prio;
1036 }
1037
1038 /**
1039 * task_curr - is this task currently executing on a CPU?
1040 * @p: the task in question.
1041 */
1042 inline int task_curr(const struct task_struct *p)
1043 {
1044 return cpu_curr(task_cpu(p)) == p;
1045 }
1046
1047 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1048 const struct sched_class *prev_class,
1049 int oldprio)
1050 {
1051 if (prev_class != p->sched_class) {
1052 if (prev_class->switched_from)
1053 prev_class->switched_from(rq, p);
1054 p->sched_class->switched_to(rq, p);
1055 } else if (oldprio != p->prio)
1056 p->sched_class->prio_changed(rq, p, oldprio);
1057 }
1058
1059 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1060 {
1061 const struct sched_class *class;
1062
1063 if (p->sched_class == rq->curr->sched_class) {
1064 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1065 } else {
1066 for_each_class(class) {
1067 if (class == rq->curr->sched_class)
1068 break;
1069 if (class == p->sched_class) {
1070 resched_task(rq->curr);
1071 break;
1072 }
1073 }
1074 }
1075
1076 /*
1077 * A queue event has occurred, and we're going to schedule. In
1078 * this case, we can save a useless back to back clock update.
1079 */
1080 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1081 rq->skip_clock_update = 1;
1082 }
1083
1084 #ifdef CONFIG_SMP
1085 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1086 {
1087 #ifdef CONFIG_SCHED_DEBUG
1088 /*
1089 * We should never call set_task_cpu() on a blocked task,
1090 * ttwu() will sort out the placement.
1091 */
1092 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1093 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1094
1095 #ifdef CONFIG_LOCKDEP
1096 /*
1097 * The caller should hold either p->pi_lock or rq->lock, when changing
1098 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1099 *
1100 * sched_move_task() holds both and thus holding either pins the cgroup,
1101 * see set_task_rq().
1102 *
1103 * Furthermore, all task_rq users should acquire both locks, see
1104 * task_rq_lock().
1105 */
1106 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1107 lockdep_is_held(&task_rq(p)->lock)));
1108 #endif
1109 #endif
1110
1111 trace_sched_migrate_task(p, new_cpu);
1112
1113 if (task_cpu(p) != new_cpu) {
1114 p->se.nr_migrations++;
1115 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1116 }
1117
1118 __set_task_cpu(p, new_cpu);
1119 }
1120
1121 struct migration_arg {
1122 struct task_struct *task;
1123 int dest_cpu;
1124 };
1125
1126 static int migration_cpu_stop(void *data);
1127
1128 /*
1129 * wait_task_inactive - wait for a thread to unschedule.
1130 *
1131 * If @match_state is nonzero, it's the @p->state value just checked and
1132 * not expected to change. If it changes, i.e. @p might have woken up,
1133 * then return zero. When we succeed in waiting for @p to be off its CPU,
1134 * we return a positive number (its total switch count). If a second call
1135 * a short while later returns the same number, the caller can be sure that
1136 * @p has remained unscheduled the whole time.
1137 *
1138 * The caller must ensure that the task *will* unschedule sometime soon,
1139 * else this function might spin for a *long* time. This function can't
1140 * be called with interrupts off, or it may introduce deadlock with
1141 * smp_call_function() if an IPI is sent by the same process we are
1142 * waiting to become inactive.
1143 */
1144 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1145 {
1146 unsigned long flags;
1147 int running, on_rq;
1148 unsigned long ncsw;
1149 struct rq *rq;
1150
1151 for (;;) {
1152 /*
1153 * We do the initial early heuristics without holding
1154 * any task-queue locks at all. We'll only try to get
1155 * the runqueue lock when things look like they will
1156 * work out!
1157 */
1158 rq = task_rq(p);
1159
1160 /*
1161 * If the task is actively running on another CPU
1162 * still, just relax and busy-wait without holding
1163 * any locks.
1164 *
1165 * NOTE! Since we don't hold any locks, it's not
1166 * even sure that "rq" stays as the right runqueue!
1167 * But we don't care, since "task_running()" will
1168 * return false if the runqueue has changed and p
1169 * is actually now running somewhere else!
1170 */
1171 while (task_running(rq, p)) {
1172 if (match_state && unlikely(p->state != match_state))
1173 return 0;
1174 cpu_relax();
1175 }
1176
1177 /*
1178 * Ok, time to look more closely! We need the rq
1179 * lock now, to be *sure*. If we're wrong, we'll
1180 * just go back and repeat.
1181 */
1182 rq = task_rq_lock(p, &flags);
1183 trace_sched_wait_task(p);
1184 running = task_running(rq, p);
1185 on_rq = p->on_rq;
1186 ncsw = 0;
1187 if (!match_state || p->state == match_state)
1188 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1189 task_rq_unlock(rq, p, &flags);
1190
1191 /*
1192 * If it changed from the expected state, bail out now.
1193 */
1194 if (unlikely(!ncsw))
1195 break;
1196
1197 /*
1198 * Was it really running after all now that we
1199 * checked with the proper locks actually held?
1200 *
1201 * Oops. Go back and try again..
1202 */
1203 if (unlikely(running)) {
1204 cpu_relax();
1205 continue;
1206 }
1207
1208 /*
1209 * It's not enough that it's not actively running,
1210 * it must be off the runqueue _entirely_, and not
1211 * preempted!
1212 *
1213 * So if it was still runnable (but just not actively
1214 * running right now), it's preempted, and we should
1215 * yield - it could be a while.
1216 */
1217 if (unlikely(on_rq)) {
1218 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1219
1220 set_current_state(TASK_UNINTERRUPTIBLE);
1221 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1222 continue;
1223 }
1224
1225 /*
1226 * Ahh, all good. It wasn't running, and it wasn't
1227 * runnable, which means that it will never become
1228 * running in the future either. We're all done!
1229 */
1230 break;
1231 }
1232
1233 return ncsw;
1234 }
1235
1236 /***
1237 * kick_process - kick a running thread to enter/exit the kernel
1238 * @p: the to-be-kicked thread
1239 *
1240 * Cause a process which is running on another CPU to enter
1241 * kernel-mode, without any delay. (to get signals handled.)
1242 *
1243 * NOTE: this function doesn't have to take the runqueue lock,
1244 * because all it wants to ensure is that the remote task enters
1245 * the kernel. If the IPI races and the task has been migrated
1246 * to another CPU then no harm is done and the purpose has been
1247 * achieved as well.
1248 */
1249 void kick_process(struct task_struct *p)
1250 {
1251 int cpu;
1252
1253 preempt_disable();
1254 cpu = task_cpu(p);
1255 if ((cpu != smp_processor_id()) && task_curr(p))
1256 smp_send_reschedule(cpu);
1257 preempt_enable();
1258 }
1259 EXPORT_SYMBOL_GPL(kick_process);
1260 #endif /* CONFIG_SMP */
1261
1262 #ifdef CONFIG_SMP
1263 /*
1264 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1265 */
1266 static int select_fallback_rq(int cpu, struct task_struct *p)
1267 {
1268 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1269 enum { cpuset, possible, fail } state = cpuset;
1270 int dest_cpu;
1271
1272 /* Look for allowed, online CPU in same node. */
1273 for_each_cpu(dest_cpu, nodemask) {
1274 if (!cpu_online(dest_cpu))
1275 continue;
1276 if (!cpu_active(dest_cpu))
1277 continue;
1278 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1279 return dest_cpu;
1280 }
1281
1282 for (;;) {
1283 /* Any allowed, online CPU? */
1284 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1285 if (!cpu_online(dest_cpu))
1286 continue;
1287 if (!cpu_active(dest_cpu))
1288 continue;
1289 goto out;
1290 }
1291
1292 switch (state) {
1293 case cpuset:
1294 /* No more Mr. Nice Guy. */
1295 cpuset_cpus_allowed_fallback(p);
1296 state = possible;
1297 break;
1298
1299 case possible:
1300 do_set_cpus_allowed(p, cpu_possible_mask);
1301 state = fail;
1302 break;
1303
1304 case fail:
1305 BUG();
1306 break;
1307 }
1308 }
1309
1310 out:
1311 if (state != cpuset) {
1312 /*
1313 * Don't tell them about moving exiting tasks or
1314 * kernel threads (both mm NULL), since they never
1315 * leave kernel.
1316 */
1317 if (p->mm && printk_ratelimit()) {
1318 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1319 task_pid_nr(p), p->comm, cpu);
1320 }
1321 }
1322
1323 return dest_cpu;
1324 }
1325
1326 /*
1327 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1328 */
1329 static inline
1330 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1331 {
1332 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1333
1334 /*
1335 * In order not to call set_task_cpu() on a blocking task we need
1336 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1337 * cpu.
1338 *
1339 * Since this is common to all placement strategies, this lives here.
1340 *
1341 * [ this allows ->select_task() to simply return task_cpu(p) and
1342 * not worry about this generic constraint ]
1343 */
1344 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1345 !cpu_online(cpu)))
1346 cpu = select_fallback_rq(task_cpu(p), p);
1347
1348 return cpu;
1349 }
1350
1351 static void update_avg(u64 *avg, u64 sample)
1352 {
1353 s64 diff = sample - *avg;
1354 *avg += diff >> 3;
1355 }
1356 #endif
1357
1358 static void
1359 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1360 {
1361 #ifdef CONFIG_SCHEDSTATS
1362 struct rq *rq = this_rq();
1363
1364 #ifdef CONFIG_SMP
1365 int this_cpu = smp_processor_id();
1366
1367 if (cpu == this_cpu) {
1368 schedstat_inc(rq, ttwu_local);
1369 schedstat_inc(p, se.statistics.nr_wakeups_local);
1370 } else {
1371 struct sched_domain *sd;
1372
1373 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1374 rcu_read_lock();
1375 for_each_domain(this_cpu, sd) {
1376 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1377 schedstat_inc(sd, ttwu_wake_remote);
1378 break;
1379 }
1380 }
1381 rcu_read_unlock();
1382 }
1383
1384 if (wake_flags & WF_MIGRATED)
1385 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1386
1387 #endif /* CONFIG_SMP */
1388
1389 schedstat_inc(rq, ttwu_count);
1390 schedstat_inc(p, se.statistics.nr_wakeups);
1391
1392 if (wake_flags & WF_SYNC)
1393 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1394
1395 #endif /* CONFIG_SCHEDSTATS */
1396 }
1397
1398 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1399 {
1400 activate_task(rq, p, en_flags);
1401 p->on_rq = 1;
1402
1403 /* if a worker is waking up, notify workqueue */
1404 if (p->flags & PF_WQ_WORKER)
1405 wq_worker_waking_up(p, cpu_of(rq));
1406 }
1407
1408 /*
1409 * Mark the task runnable and perform wakeup-preemption.
1410 */
1411 static void
1412 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1413 {
1414 trace_sched_wakeup(p, true);
1415 check_preempt_curr(rq, p, wake_flags);
1416
1417 p->state = TASK_RUNNING;
1418 #ifdef CONFIG_SMP
1419 if (p->sched_class->task_woken)
1420 p->sched_class->task_woken(rq, p);
1421
1422 if (rq->idle_stamp) {
1423 u64 delta = rq->clock - rq->idle_stamp;
1424 u64 max = 2*sysctl_sched_migration_cost;
1425
1426 if (delta > max)
1427 rq->avg_idle = max;
1428 else
1429 update_avg(&rq->avg_idle, delta);
1430 rq->idle_stamp = 0;
1431 }
1432 #endif
1433 }
1434
1435 static void
1436 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1437 {
1438 #ifdef CONFIG_SMP
1439 if (p->sched_contributes_to_load)
1440 rq->nr_uninterruptible--;
1441 #endif
1442
1443 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1444 ttwu_do_wakeup(rq, p, wake_flags);
1445 }
1446
1447 /*
1448 * Called in case the task @p isn't fully descheduled from its runqueue,
1449 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1450 * since all we need to do is flip p->state to TASK_RUNNING, since
1451 * the task is still ->on_rq.
1452 */
1453 static int ttwu_remote(struct task_struct *p, int wake_flags)
1454 {
1455 struct rq *rq;
1456 int ret = 0;
1457
1458 rq = __task_rq_lock(p);
1459 if (p->on_rq) {
1460 ttwu_do_wakeup(rq, p, wake_flags);
1461 ret = 1;
1462 }
1463 __task_rq_unlock(rq);
1464
1465 return ret;
1466 }
1467
1468 #ifdef CONFIG_SMP
1469 static void sched_ttwu_pending(void)
1470 {
1471 struct rq *rq = this_rq();
1472 struct llist_node *llist = llist_del_all(&rq->wake_list);
1473 struct task_struct *p;
1474
1475 raw_spin_lock(&rq->lock);
1476
1477 while (llist) {
1478 p = llist_entry(llist, struct task_struct, wake_entry);
1479 llist = llist_next(llist);
1480 ttwu_do_activate(rq, p, 0);
1481 }
1482
1483 raw_spin_unlock(&rq->lock);
1484 }
1485
1486 void scheduler_ipi(void)
1487 {
1488 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1489 return;
1490
1491 /*
1492 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1493 * traditionally all their work was done from the interrupt return
1494 * path. Now that we actually do some work, we need to make sure
1495 * we do call them.
1496 *
1497 * Some archs already do call them, luckily irq_enter/exit nest
1498 * properly.
1499 *
1500 * Arguably we should visit all archs and update all handlers,
1501 * however a fair share of IPIs are still resched only so this would
1502 * somewhat pessimize the simple resched case.
1503 */
1504 irq_enter();
1505 sched_ttwu_pending();
1506
1507 /*
1508 * Check if someone kicked us for doing the nohz idle load balance.
1509 */
1510 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1511 this_rq()->idle_balance = 1;
1512 raise_softirq_irqoff(SCHED_SOFTIRQ);
1513 }
1514 irq_exit();
1515 }
1516
1517 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1518 {
1519 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1520 smp_send_reschedule(cpu);
1521 }
1522
1523 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1524 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1525 {
1526 struct rq *rq;
1527 int ret = 0;
1528
1529 rq = __task_rq_lock(p);
1530 if (p->on_cpu) {
1531 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1532 ttwu_do_wakeup(rq, p, wake_flags);
1533 ret = 1;
1534 }
1535 __task_rq_unlock(rq);
1536
1537 return ret;
1538
1539 }
1540 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1541
1542 bool cpus_share_cache(int this_cpu, int that_cpu)
1543 {
1544 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1545 }
1546 #endif /* CONFIG_SMP */
1547
1548 static void ttwu_queue(struct task_struct *p, int cpu)
1549 {
1550 struct rq *rq = cpu_rq(cpu);
1551
1552 #if defined(CONFIG_SMP)
1553 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1554 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1555 ttwu_queue_remote(p, cpu);
1556 return;
1557 }
1558 #endif
1559
1560 raw_spin_lock(&rq->lock);
1561 ttwu_do_activate(rq, p, 0);
1562 raw_spin_unlock(&rq->lock);
1563 }
1564
1565 /**
1566 * try_to_wake_up - wake up a thread
1567 * @p: the thread to be awakened
1568 * @state: the mask of task states that can be woken
1569 * @wake_flags: wake modifier flags (WF_*)
1570 *
1571 * Put it on the run-queue if it's not already there. The "current"
1572 * thread is always on the run-queue (except when the actual
1573 * re-schedule is in progress), and as such you're allowed to do
1574 * the simpler "current->state = TASK_RUNNING" to mark yourself
1575 * runnable without the overhead of this.
1576 *
1577 * Returns %true if @p was woken up, %false if it was already running
1578 * or @state didn't match @p's state.
1579 */
1580 static int
1581 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1582 {
1583 unsigned long flags;
1584 int cpu, success = 0;
1585
1586 smp_wmb();
1587 raw_spin_lock_irqsave(&p->pi_lock, flags);
1588 if (!(p->state & state))
1589 goto out;
1590
1591 success = 1; /* we're going to change ->state */
1592 cpu = task_cpu(p);
1593
1594 if (p->on_rq && ttwu_remote(p, wake_flags))
1595 goto stat;
1596
1597 #ifdef CONFIG_SMP
1598 /*
1599 * If the owning (remote) cpu is still in the middle of schedule() with
1600 * this task as prev, wait until its done referencing the task.
1601 */
1602 while (p->on_cpu) {
1603 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1604 /*
1605 * In case the architecture enables interrupts in
1606 * context_switch(), we cannot busy wait, since that
1607 * would lead to deadlocks when an interrupt hits and
1608 * tries to wake up @prev. So bail and do a complete
1609 * remote wakeup.
1610 */
1611 if (ttwu_activate_remote(p, wake_flags))
1612 goto stat;
1613 #else
1614 cpu_relax();
1615 #endif
1616 }
1617 /*
1618 * Pairs with the smp_wmb() in finish_lock_switch().
1619 */
1620 smp_rmb();
1621
1622 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1623 p->state = TASK_WAKING;
1624
1625 if (p->sched_class->task_waking)
1626 p->sched_class->task_waking(p);
1627
1628 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1629 if (task_cpu(p) != cpu) {
1630 wake_flags |= WF_MIGRATED;
1631 set_task_cpu(p, cpu);
1632 }
1633 #endif /* CONFIG_SMP */
1634
1635 ttwu_queue(p, cpu);
1636 stat:
1637 ttwu_stat(p, cpu, wake_flags);
1638 out:
1639 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1640
1641 return success;
1642 }
1643
1644 /**
1645 * try_to_wake_up_local - try to wake up a local task with rq lock held
1646 * @p: the thread to be awakened
1647 *
1648 * Put @p on the run-queue if it's not already there. The caller must
1649 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1650 * the current task.
1651 */
1652 static void try_to_wake_up_local(struct task_struct *p)
1653 {
1654 struct rq *rq = task_rq(p);
1655
1656 BUG_ON(rq != this_rq());
1657 BUG_ON(p == current);
1658 lockdep_assert_held(&rq->lock);
1659
1660 if (!raw_spin_trylock(&p->pi_lock)) {
1661 raw_spin_unlock(&rq->lock);
1662 raw_spin_lock(&p->pi_lock);
1663 raw_spin_lock(&rq->lock);
1664 }
1665
1666 if (!(p->state & TASK_NORMAL))
1667 goto out;
1668
1669 if (!p->on_rq)
1670 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1671
1672 ttwu_do_wakeup(rq, p, 0);
1673 ttwu_stat(p, smp_processor_id(), 0);
1674 out:
1675 raw_spin_unlock(&p->pi_lock);
1676 }
1677
1678 /**
1679 * wake_up_process - Wake up a specific process
1680 * @p: The process to be woken up.
1681 *
1682 * Attempt to wake up the nominated process and move it to the set of runnable
1683 * processes. Returns 1 if the process was woken up, 0 if it was already
1684 * running.
1685 *
1686 * It may be assumed that this function implies a write memory barrier before
1687 * changing the task state if and only if any tasks are woken up.
1688 */
1689 int wake_up_process(struct task_struct *p)
1690 {
1691 return try_to_wake_up(p, TASK_ALL, 0);
1692 }
1693 EXPORT_SYMBOL(wake_up_process);
1694
1695 int wake_up_state(struct task_struct *p, unsigned int state)
1696 {
1697 return try_to_wake_up(p, state, 0);
1698 }
1699
1700 /*
1701 * Perform scheduler related setup for a newly forked process p.
1702 * p is forked by current.
1703 *
1704 * __sched_fork() is basic setup used by init_idle() too:
1705 */
1706 static void __sched_fork(struct task_struct *p)
1707 {
1708 p->on_rq = 0;
1709
1710 p->se.on_rq = 0;
1711 p->se.exec_start = 0;
1712 p->se.sum_exec_runtime = 0;
1713 p->se.prev_sum_exec_runtime = 0;
1714 p->se.nr_migrations = 0;
1715 p->se.vruntime = 0;
1716 INIT_LIST_HEAD(&p->se.group_node);
1717
1718 #ifdef CONFIG_SCHEDSTATS
1719 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1720 #endif
1721
1722 INIT_LIST_HEAD(&p->rt.run_list);
1723
1724 #ifdef CONFIG_PREEMPT_NOTIFIERS
1725 INIT_HLIST_HEAD(&p->preempt_notifiers);
1726 #endif
1727 }
1728
1729 /*
1730 * fork()/clone()-time setup:
1731 */
1732 void sched_fork(struct task_struct *p)
1733 {
1734 unsigned long flags;
1735 int cpu = get_cpu();
1736
1737 __sched_fork(p);
1738 /*
1739 * We mark the process as running here. This guarantees that
1740 * nobody will actually run it, and a signal or other external
1741 * event cannot wake it up and insert it on the runqueue either.
1742 */
1743 p->state = TASK_RUNNING;
1744
1745 /*
1746 * Make sure we do not leak PI boosting priority to the child.
1747 */
1748 p->prio = current->normal_prio;
1749
1750 /*
1751 * Revert to default priority/policy on fork if requested.
1752 */
1753 if (unlikely(p->sched_reset_on_fork)) {
1754 if (task_has_rt_policy(p)) {
1755 p->policy = SCHED_NORMAL;
1756 p->static_prio = NICE_TO_PRIO(0);
1757 p->rt_priority = 0;
1758 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1759 p->static_prio = NICE_TO_PRIO(0);
1760
1761 p->prio = p->normal_prio = __normal_prio(p);
1762 set_load_weight(p);
1763
1764 /*
1765 * We don't need the reset flag anymore after the fork. It has
1766 * fulfilled its duty:
1767 */
1768 p->sched_reset_on_fork = 0;
1769 }
1770
1771 if (!rt_prio(p->prio))
1772 p->sched_class = &fair_sched_class;
1773
1774 if (p->sched_class->task_fork)
1775 p->sched_class->task_fork(p);
1776
1777 /*
1778 * The child is not yet in the pid-hash so no cgroup attach races,
1779 * and the cgroup is pinned to this child due to cgroup_fork()
1780 * is ran before sched_fork().
1781 *
1782 * Silence PROVE_RCU.
1783 */
1784 raw_spin_lock_irqsave(&p->pi_lock, flags);
1785 set_task_cpu(p, cpu);
1786 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1787
1788 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1789 if (likely(sched_info_on()))
1790 memset(&p->sched_info, 0, sizeof(p->sched_info));
1791 #endif
1792 #if defined(CONFIG_SMP)
1793 p->on_cpu = 0;
1794 #endif
1795 #ifdef CONFIG_PREEMPT_COUNT
1796 /* Want to start with kernel preemption disabled. */
1797 task_thread_info(p)->preempt_count = 1;
1798 #endif
1799 #ifdef CONFIG_SMP
1800 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1801 #endif
1802
1803 put_cpu();
1804 }
1805
1806 /*
1807 * wake_up_new_task - wake up a newly created task for the first time.
1808 *
1809 * This function will do some initial scheduler statistics housekeeping
1810 * that must be done for every newly created context, then puts the task
1811 * on the runqueue and wakes it.
1812 */
1813 void wake_up_new_task(struct task_struct *p)
1814 {
1815 unsigned long flags;
1816 struct rq *rq;
1817
1818 raw_spin_lock_irqsave(&p->pi_lock, flags);
1819 #ifdef CONFIG_SMP
1820 /*
1821 * Fork balancing, do it here and not earlier because:
1822 * - cpus_allowed can change in the fork path
1823 * - any previously selected cpu might disappear through hotplug
1824 */
1825 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1826 #endif
1827
1828 rq = __task_rq_lock(p);
1829 activate_task(rq, p, 0);
1830 p->on_rq = 1;
1831 trace_sched_wakeup_new(p, true);
1832 check_preempt_curr(rq, p, WF_FORK);
1833 #ifdef CONFIG_SMP
1834 if (p->sched_class->task_woken)
1835 p->sched_class->task_woken(rq, p);
1836 #endif
1837 task_rq_unlock(rq, p, &flags);
1838 }
1839
1840 #ifdef CONFIG_PREEMPT_NOTIFIERS
1841
1842 /**
1843 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1844 * @notifier: notifier struct to register
1845 */
1846 void preempt_notifier_register(struct preempt_notifier *notifier)
1847 {
1848 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1849 }
1850 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1851
1852 /**
1853 * preempt_notifier_unregister - no longer interested in preemption notifications
1854 * @notifier: notifier struct to unregister
1855 *
1856 * This is safe to call from within a preemption notifier.
1857 */
1858 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1859 {
1860 hlist_del(&notifier->link);
1861 }
1862 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1863
1864 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1865 {
1866 struct preempt_notifier *notifier;
1867 struct hlist_node *node;
1868
1869 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1870 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1871 }
1872
1873 static void
1874 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1875 struct task_struct *next)
1876 {
1877 struct preempt_notifier *notifier;
1878 struct hlist_node *node;
1879
1880 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1881 notifier->ops->sched_out(notifier, next);
1882 }
1883
1884 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1885
1886 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1887 {
1888 }
1889
1890 static void
1891 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1892 struct task_struct *next)
1893 {
1894 }
1895
1896 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1897
1898 /**
1899 * prepare_task_switch - prepare to switch tasks
1900 * @rq: the runqueue preparing to switch
1901 * @prev: the current task that is being switched out
1902 * @next: the task we are going to switch to.
1903 *
1904 * This is called with the rq lock held and interrupts off. It must
1905 * be paired with a subsequent finish_task_switch after the context
1906 * switch.
1907 *
1908 * prepare_task_switch sets up locking and calls architecture specific
1909 * hooks.
1910 */
1911 static inline void
1912 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1913 struct task_struct *next)
1914 {
1915 sched_info_switch(prev, next);
1916 perf_event_task_sched_out(prev, next);
1917 fire_sched_out_preempt_notifiers(prev, next);
1918 prepare_lock_switch(rq, next);
1919 prepare_arch_switch(next);
1920 trace_sched_switch(prev, next);
1921 }
1922
1923 /**
1924 * finish_task_switch - clean up after a task-switch
1925 * @rq: runqueue associated with task-switch
1926 * @prev: the thread we just switched away from.
1927 *
1928 * finish_task_switch must be called after the context switch, paired
1929 * with a prepare_task_switch call before the context switch.
1930 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1931 * and do any other architecture-specific cleanup actions.
1932 *
1933 * Note that we may have delayed dropping an mm in context_switch(). If
1934 * so, we finish that here outside of the runqueue lock. (Doing it
1935 * with the lock held can cause deadlocks; see schedule() for
1936 * details.)
1937 */
1938 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1939 __releases(rq->lock)
1940 {
1941 struct mm_struct *mm = rq->prev_mm;
1942 long prev_state;
1943
1944 rq->prev_mm = NULL;
1945
1946 /*
1947 * A task struct has one reference for the use as "current".
1948 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1949 * schedule one last time. The schedule call will never return, and
1950 * the scheduled task must drop that reference.
1951 * The test for TASK_DEAD must occur while the runqueue locks are
1952 * still held, otherwise prev could be scheduled on another cpu, die
1953 * there before we look at prev->state, and then the reference would
1954 * be dropped twice.
1955 * Manfred Spraul <manfred@colorfullife.com>
1956 */
1957 prev_state = prev->state;
1958 finish_arch_switch(prev);
1959 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1960 local_irq_disable();
1961 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1962 perf_event_task_sched_in(prev, current);
1963 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1964 local_irq_enable();
1965 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1966 finish_lock_switch(rq, prev);
1967 finish_arch_post_lock_switch();
1968
1969 fire_sched_in_preempt_notifiers(current);
1970 if (mm)
1971 mmdrop(mm);
1972 if (unlikely(prev_state == TASK_DEAD)) {
1973 /*
1974 * Remove function-return probe instances associated with this
1975 * task and put them back on the free list.
1976 */
1977 kprobe_flush_task(prev);
1978 put_task_struct(prev);
1979 }
1980 }
1981
1982 #ifdef CONFIG_SMP
1983
1984 /* assumes rq->lock is held */
1985 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1986 {
1987 if (prev->sched_class->pre_schedule)
1988 prev->sched_class->pre_schedule(rq, prev);
1989 }
1990
1991 /* rq->lock is NOT held, but preemption is disabled */
1992 static inline void post_schedule(struct rq *rq)
1993 {
1994 if (rq->post_schedule) {
1995 unsigned long flags;
1996
1997 raw_spin_lock_irqsave(&rq->lock, flags);
1998 if (rq->curr->sched_class->post_schedule)
1999 rq->curr->sched_class->post_schedule(rq);
2000 raw_spin_unlock_irqrestore(&rq->lock, flags);
2001
2002 rq->post_schedule = 0;
2003 }
2004 }
2005
2006 #else
2007
2008 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2009 {
2010 }
2011
2012 static inline void post_schedule(struct rq *rq)
2013 {
2014 }
2015
2016 #endif
2017
2018 /**
2019 * schedule_tail - first thing a freshly forked thread must call.
2020 * @prev: the thread we just switched away from.
2021 */
2022 asmlinkage void schedule_tail(struct task_struct *prev)
2023 __releases(rq->lock)
2024 {
2025 struct rq *rq = this_rq();
2026
2027 finish_task_switch(rq, prev);
2028
2029 /*
2030 * FIXME: do we need to worry about rq being invalidated by the
2031 * task_switch?
2032 */
2033 post_schedule(rq);
2034
2035 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2036 /* In this case, finish_task_switch does not reenable preemption */
2037 preempt_enable();
2038 #endif
2039 if (current->set_child_tid)
2040 put_user(task_pid_vnr(current), current->set_child_tid);
2041 }
2042
2043 /*
2044 * context_switch - switch to the new MM and the new
2045 * thread's register state.
2046 */
2047 static inline void
2048 context_switch(struct rq *rq, struct task_struct *prev,
2049 struct task_struct *next)
2050 {
2051 struct mm_struct *mm, *oldmm;
2052
2053 prepare_task_switch(rq, prev, next);
2054
2055 mm = next->mm;
2056 oldmm = prev->active_mm;
2057 /*
2058 * For paravirt, this is coupled with an exit in switch_to to
2059 * combine the page table reload and the switch backend into
2060 * one hypercall.
2061 */
2062 arch_start_context_switch(prev);
2063
2064 if (!mm) {
2065 next->active_mm = oldmm;
2066 atomic_inc(&oldmm->mm_count);
2067 enter_lazy_tlb(oldmm, next);
2068 } else
2069 switch_mm(oldmm, mm, next);
2070
2071 if (!prev->mm) {
2072 prev->active_mm = NULL;
2073 rq->prev_mm = oldmm;
2074 }
2075 /*
2076 * Since the runqueue lock will be released by the next
2077 * task (which is an invalid locking op but in the case
2078 * of the scheduler it's an obvious special-case), so we
2079 * do an early lockdep release here:
2080 */
2081 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2082 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2083 #endif
2084
2085 /* Here we just switch the register state and the stack. */
2086 switch_to(prev, next, prev);
2087
2088 barrier();
2089 /*
2090 * this_rq must be evaluated again because prev may have moved
2091 * CPUs since it called schedule(), thus the 'rq' on its stack
2092 * frame will be invalid.
2093 */
2094 finish_task_switch(this_rq(), prev);
2095 }
2096
2097 /*
2098 * nr_running, nr_uninterruptible and nr_context_switches:
2099 *
2100 * externally visible scheduler statistics: current number of runnable
2101 * threads, current number of uninterruptible-sleeping threads, total
2102 * number of context switches performed since bootup.
2103 */
2104 unsigned long nr_running(void)
2105 {
2106 unsigned long i, sum = 0;
2107
2108 for_each_online_cpu(i)
2109 sum += cpu_rq(i)->nr_running;
2110
2111 return sum;
2112 }
2113
2114 unsigned long nr_uninterruptible(void)
2115 {
2116 unsigned long i, sum = 0;
2117
2118 for_each_possible_cpu(i)
2119 sum += cpu_rq(i)->nr_uninterruptible;
2120
2121 /*
2122 * Since we read the counters lockless, it might be slightly
2123 * inaccurate. Do not allow it to go below zero though:
2124 */
2125 if (unlikely((long)sum < 0))
2126 sum = 0;
2127
2128 return sum;
2129 }
2130
2131 unsigned long long nr_context_switches(void)
2132 {
2133 int i;
2134 unsigned long long sum = 0;
2135
2136 for_each_possible_cpu(i)
2137 sum += cpu_rq(i)->nr_switches;
2138
2139 return sum;
2140 }
2141
2142 unsigned long nr_iowait(void)
2143 {
2144 unsigned long i, sum = 0;
2145
2146 for_each_possible_cpu(i)
2147 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2148
2149 return sum;
2150 }
2151
2152 unsigned long nr_iowait_cpu(int cpu)
2153 {
2154 struct rq *this = cpu_rq(cpu);
2155 return atomic_read(&this->nr_iowait);
2156 }
2157
2158 unsigned long this_cpu_load(void)
2159 {
2160 struct rq *this = this_rq();
2161 return this->cpu_load[0];
2162 }
2163
2164
2165 /* Variables and functions for calc_load */
2166 static atomic_long_t calc_load_tasks;
2167 static unsigned long calc_load_update;
2168 unsigned long avenrun[3];
2169 EXPORT_SYMBOL(avenrun);
2170
2171 static long calc_load_fold_active(struct rq *this_rq)
2172 {
2173 long nr_active, delta = 0;
2174
2175 nr_active = this_rq->nr_running;
2176 nr_active += (long) this_rq->nr_uninterruptible;
2177
2178 if (nr_active != this_rq->calc_load_active) {
2179 delta = nr_active - this_rq->calc_load_active;
2180 this_rq->calc_load_active = nr_active;
2181 }
2182
2183 return delta;
2184 }
2185
2186 static unsigned long
2187 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2188 {
2189 load *= exp;
2190 load += active * (FIXED_1 - exp);
2191 load += 1UL << (FSHIFT - 1);
2192 return load >> FSHIFT;
2193 }
2194
2195 #ifdef CONFIG_NO_HZ
2196 /*
2197 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2198 *
2199 * When making the ILB scale, we should try to pull this in as well.
2200 */
2201 static atomic_long_t calc_load_tasks_idle;
2202
2203 void calc_load_account_idle(struct rq *this_rq)
2204 {
2205 long delta;
2206
2207 delta = calc_load_fold_active(this_rq);
2208 if (delta)
2209 atomic_long_add(delta, &calc_load_tasks_idle);
2210 }
2211
2212 static long calc_load_fold_idle(void)
2213 {
2214 long delta = 0;
2215
2216 /*
2217 * Its got a race, we don't care...
2218 */
2219 if (atomic_long_read(&calc_load_tasks_idle))
2220 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2221
2222 return delta;
2223 }
2224
2225 /**
2226 * fixed_power_int - compute: x^n, in O(log n) time
2227 *
2228 * @x: base of the power
2229 * @frac_bits: fractional bits of @x
2230 * @n: power to raise @x to.
2231 *
2232 * By exploiting the relation between the definition of the natural power
2233 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2234 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2235 * (where: n_i \elem {0, 1}, the binary vector representing n),
2236 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2237 * of course trivially computable in O(log_2 n), the length of our binary
2238 * vector.
2239 */
2240 static unsigned long
2241 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2242 {
2243 unsigned long result = 1UL << frac_bits;
2244
2245 if (n) for (;;) {
2246 if (n & 1) {
2247 result *= x;
2248 result += 1UL << (frac_bits - 1);
2249 result >>= frac_bits;
2250 }
2251 n >>= 1;
2252 if (!n)
2253 break;
2254 x *= x;
2255 x += 1UL << (frac_bits - 1);
2256 x >>= frac_bits;
2257 }
2258
2259 return result;
2260 }
2261
2262 /*
2263 * a1 = a0 * e + a * (1 - e)
2264 *
2265 * a2 = a1 * e + a * (1 - e)
2266 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2267 * = a0 * e^2 + a * (1 - e) * (1 + e)
2268 *
2269 * a3 = a2 * e + a * (1 - e)
2270 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2271 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2272 *
2273 * ...
2274 *
2275 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2276 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2277 * = a0 * e^n + a * (1 - e^n)
2278 *
2279 * [1] application of the geometric series:
2280 *
2281 * n 1 - x^(n+1)
2282 * S_n := \Sum x^i = -------------
2283 * i=0 1 - x
2284 */
2285 static unsigned long
2286 calc_load_n(unsigned long load, unsigned long exp,
2287 unsigned long active, unsigned int n)
2288 {
2289
2290 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2291 }
2292
2293 /*
2294 * NO_HZ can leave us missing all per-cpu ticks calling
2295 * calc_load_account_active(), but since an idle CPU folds its delta into
2296 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2297 * in the pending idle delta if our idle period crossed a load cycle boundary.
2298 *
2299 * Once we've updated the global active value, we need to apply the exponential
2300 * weights adjusted to the number of cycles missed.
2301 */
2302 static void calc_global_nohz(void)
2303 {
2304 long delta, active, n;
2305
2306 /*
2307 * If we crossed a calc_load_update boundary, make sure to fold
2308 * any pending idle changes, the respective CPUs might have
2309 * missed the tick driven calc_load_account_active() update
2310 * due to NO_HZ.
2311 */
2312 delta = calc_load_fold_idle();
2313 if (delta)
2314 atomic_long_add(delta, &calc_load_tasks);
2315
2316 /*
2317 * It could be the one fold was all it took, we done!
2318 */
2319 if (time_before(jiffies, calc_load_update + 10))
2320 return;
2321
2322 /*
2323 * Catch-up, fold however many we are behind still
2324 */
2325 delta = jiffies - calc_load_update - 10;
2326 n = 1 + (delta / LOAD_FREQ);
2327
2328 active = atomic_long_read(&calc_load_tasks);
2329 active = active > 0 ? active * FIXED_1 : 0;
2330
2331 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2332 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2333 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2334
2335 calc_load_update += n * LOAD_FREQ;
2336 }
2337 #else
2338 void calc_load_account_idle(struct rq *this_rq)
2339 {
2340 }
2341
2342 static inline long calc_load_fold_idle(void)
2343 {
2344 return 0;
2345 }
2346
2347 static void calc_global_nohz(void)
2348 {
2349 }
2350 #endif
2351
2352 /**
2353 * get_avenrun - get the load average array
2354 * @loads: pointer to dest load array
2355 * @offset: offset to add
2356 * @shift: shift count to shift the result left
2357 *
2358 * These values are estimates at best, so no need for locking.
2359 */
2360 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2361 {
2362 loads[0] = (avenrun[0] + offset) << shift;
2363 loads[1] = (avenrun[1] + offset) << shift;
2364 loads[2] = (avenrun[2] + offset) << shift;
2365 }
2366
2367 /*
2368 * calc_load - update the avenrun load estimates 10 ticks after the
2369 * CPUs have updated calc_load_tasks.
2370 */
2371 void calc_global_load(unsigned long ticks)
2372 {
2373 long active;
2374
2375 if (time_before(jiffies, calc_load_update + 10))
2376 return;
2377
2378 active = atomic_long_read(&calc_load_tasks);
2379 active = active > 0 ? active * FIXED_1 : 0;
2380
2381 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2382 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2383 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2384
2385 calc_load_update += LOAD_FREQ;
2386
2387 /*
2388 * Account one period with whatever state we found before
2389 * folding in the nohz state and ageing the entire idle period.
2390 *
2391 * This avoids loosing a sample when we go idle between
2392 * calc_load_account_active() (10 ticks ago) and now and thus
2393 * under-accounting.
2394 */
2395 calc_global_nohz();
2396 }
2397
2398 /*
2399 * Called from update_cpu_load() to periodically update this CPU's
2400 * active count.
2401 */
2402 static void calc_load_account_active(struct rq *this_rq)
2403 {
2404 long delta;
2405
2406 if (time_before(jiffies, this_rq->calc_load_update))
2407 return;
2408
2409 delta = calc_load_fold_active(this_rq);
2410 delta += calc_load_fold_idle();
2411 if (delta)
2412 atomic_long_add(delta, &calc_load_tasks);
2413
2414 this_rq->calc_load_update += LOAD_FREQ;
2415 }
2416
2417 /*
2418 * The exact cpuload at various idx values, calculated at every tick would be
2419 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2420 *
2421 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2422 * on nth tick when cpu may be busy, then we have:
2423 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2424 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2425 *
2426 * decay_load_missed() below does efficient calculation of
2427 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2428 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2429 *
2430 * The calculation is approximated on a 128 point scale.
2431 * degrade_zero_ticks is the number of ticks after which load at any
2432 * particular idx is approximated to be zero.
2433 * degrade_factor is a precomputed table, a row for each load idx.
2434 * Each column corresponds to degradation factor for a power of two ticks,
2435 * based on 128 point scale.
2436 * Example:
2437 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2438 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2439 *
2440 * With this power of 2 load factors, we can degrade the load n times
2441 * by looking at 1 bits in n and doing as many mult/shift instead of
2442 * n mult/shifts needed by the exact degradation.
2443 */
2444 #define DEGRADE_SHIFT 7
2445 static const unsigned char
2446 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2447 static const unsigned char
2448 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2449 {0, 0, 0, 0, 0, 0, 0, 0},
2450 {64, 32, 8, 0, 0, 0, 0, 0},
2451 {96, 72, 40, 12, 1, 0, 0},
2452 {112, 98, 75, 43, 15, 1, 0},
2453 {120, 112, 98, 76, 45, 16, 2} };
2454
2455 /*
2456 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2457 * would be when CPU is idle and so we just decay the old load without
2458 * adding any new load.
2459 */
2460 static unsigned long
2461 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2462 {
2463 int j = 0;
2464
2465 if (!missed_updates)
2466 return load;
2467
2468 if (missed_updates >= degrade_zero_ticks[idx])
2469 return 0;
2470
2471 if (idx == 1)
2472 return load >> missed_updates;
2473
2474 while (missed_updates) {
2475 if (missed_updates % 2)
2476 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2477
2478 missed_updates >>= 1;
2479 j++;
2480 }
2481 return load;
2482 }
2483
2484 /*
2485 * Update rq->cpu_load[] statistics. This function is usually called every
2486 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2487 * every tick. We fix it up based on jiffies.
2488 */
2489 void update_cpu_load(struct rq *this_rq)
2490 {
2491 unsigned long this_load = this_rq->load.weight;
2492 unsigned long curr_jiffies = jiffies;
2493 unsigned long pending_updates;
2494 int i, scale;
2495
2496 this_rq->nr_load_updates++;
2497
2498 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
2499 if (curr_jiffies == this_rq->last_load_update_tick)
2500 return;
2501
2502 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2503 this_rq->last_load_update_tick = curr_jiffies;
2504
2505 /* Update our load: */
2506 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2507 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2508 unsigned long old_load, new_load;
2509
2510 /* scale is effectively 1 << i now, and >> i divides by scale */
2511
2512 old_load = this_rq->cpu_load[i];
2513 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2514 new_load = this_load;
2515 /*
2516 * Round up the averaging division if load is increasing. This
2517 * prevents us from getting stuck on 9 if the load is 10, for
2518 * example.
2519 */
2520 if (new_load > old_load)
2521 new_load += scale - 1;
2522
2523 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2524 }
2525
2526 sched_avg_update(this_rq);
2527 }
2528
2529 static void update_cpu_load_active(struct rq *this_rq)
2530 {
2531 update_cpu_load(this_rq);
2532
2533 calc_load_account_active(this_rq);
2534 }
2535
2536 #ifdef CONFIG_SMP
2537
2538 /*
2539 * sched_exec - execve() is a valuable balancing opportunity, because at
2540 * this point the task has the smallest effective memory and cache footprint.
2541 */
2542 void sched_exec(void)
2543 {
2544 struct task_struct *p = current;
2545 unsigned long flags;
2546 int dest_cpu;
2547
2548 raw_spin_lock_irqsave(&p->pi_lock, flags);
2549 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2550 if (dest_cpu == smp_processor_id())
2551 goto unlock;
2552
2553 if (likely(cpu_active(dest_cpu))) {
2554 struct migration_arg arg = { p, dest_cpu };
2555
2556 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2557 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2558 return;
2559 }
2560 unlock:
2561 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2562 }
2563
2564 #endif
2565
2566 DEFINE_PER_CPU(struct kernel_stat, kstat);
2567 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2568
2569 EXPORT_PER_CPU_SYMBOL(kstat);
2570 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2571
2572 /*
2573 * Return any ns on the sched_clock that have not yet been accounted in
2574 * @p in case that task is currently running.
2575 *
2576 * Called with task_rq_lock() held on @rq.
2577 */
2578 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2579 {
2580 u64 ns = 0;
2581
2582 if (task_current(rq, p)) {
2583 update_rq_clock(rq);
2584 ns = rq->clock_task - p->se.exec_start;
2585 if ((s64)ns < 0)
2586 ns = 0;
2587 }
2588
2589 return ns;
2590 }
2591
2592 unsigned long long task_delta_exec(struct task_struct *p)
2593 {
2594 unsigned long flags;
2595 struct rq *rq;
2596 u64 ns = 0;
2597
2598 rq = task_rq_lock(p, &flags);
2599 ns = do_task_delta_exec(p, rq);
2600 task_rq_unlock(rq, p, &flags);
2601
2602 return ns;
2603 }
2604
2605 /*
2606 * Return accounted runtime for the task.
2607 * In case the task is currently running, return the runtime plus current's
2608 * pending runtime that have not been accounted yet.
2609 */
2610 unsigned long long task_sched_runtime(struct task_struct *p)
2611 {
2612 unsigned long flags;
2613 struct rq *rq;
2614 u64 ns = 0;
2615
2616 rq = task_rq_lock(p, &flags);
2617 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2618 task_rq_unlock(rq, p, &flags);
2619
2620 return ns;
2621 }
2622
2623 #ifdef CONFIG_CGROUP_CPUACCT
2624 struct cgroup_subsys cpuacct_subsys;
2625 struct cpuacct root_cpuacct;
2626 #endif
2627
2628 static inline void task_group_account_field(struct task_struct *p, int index,
2629 u64 tmp)
2630 {
2631 #ifdef CONFIG_CGROUP_CPUACCT
2632 struct kernel_cpustat *kcpustat;
2633 struct cpuacct *ca;
2634 #endif
2635 /*
2636 * Since all updates are sure to touch the root cgroup, we
2637 * get ourselves ahead and touch it first. If the root cgroup
2638 * is the only cgroup, then nothing else should be necessary.
2639 *
2640 */
2641 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2642
2643 #ifdef CONFIG_CGROUP_CPUACCT
2644 if (unlikely(!cpuacct_subsys.active))
2645 return;
2646
2647 rcu_read_lock();
2648 ca = task_ca(p);
2649 while (ca && (ca != &root_cpuacct)) {
2650 kcpustat = this_cpu_ptr(ca->cpustat);
2651 kcpustat->cpustat[index] += tmp;
2652 ca = parent_ca(ca);
2653 }
2654 rcu_read_unlock();
2655 #endif
2656 }
2657
2658
2659 /*
2660 * Account user cpu time to a process.
2661 * @p: the process that the cpu time gets accounted to
2662 * @cputime: the cpu time spent in user space since the last update
2663 * @cputime_scaled: cputime scaled by cpu frequency
2664 */
2665 void account_user_time(struct task_struct *p, cputime_t cputime,
2666 cputime_t cputime_scaled)
2667 {
2668 int index;
2669
2670 /* Add user time to process. */
2671 p->utime += cputime;
2672 p->utimescaled += cputime_scaled;
2673 account_group_user_time(p, cputime);
2674
2675 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2676
2677 /* Add user time to cpustat. */
2678 task_group_account_field(p, index, (__force u64) cputime);
2679
2680 /* Account for user time used */
2681 acct_update_integrals(p);
2682 }
2683
2684 /*
2685 * Account guest cpu time to a process.
2686 * @p: the process that the cpu time gets accounted to
2687 * @cputime: the cpu time spent in virtual machine since the last update
2688 * @cputime_scaled: cputime scaled by cpu frequency
2689 */
2690 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2691 cputime_t cputime_scaled)
2692 {
2693 u64 *cpustat = kcpustat_this_cpu->cpustat;
2694
2695 /* Add guest time to process. */
2696 p->utime += cputime;
2697 p->utimescaled += cputime_scaled;
2698 account_group_user_time(p, cputime);
2699 p->gtime += cputime;
2700
2701 /* Add guest time to cpustat. */
2702 if (TASK_NICE(p) > 0) {
2703 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2704 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2705 } else {
2706 cpustat[CPUTIME_USER] += (__force u64) cputime;
2707 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2708 }
2709 }
2710
2711 /*
2712 * Account system cpu time to a process and desired cpustat field
2713 * @p: the process that the cpu time gets accounted to
2714 * @cputime: the cpu time spent in kernel space since the last update
2715 * @cputime_scaled: cputime scaled by cpu frequency
2716 * @target_cputime64: pointer to cpustat field that has to be updated
2717 */
2718 static inline
2719 void __account_system_time(struct task_struct *p, cputime_t cputime,
2720 cputime_t cputime_scaled, int index)
2721 {
2722 /* Add system time to process. */
2723 p->stime += cputime;
2724 p->stimescaled += cputime_scaled;
2725 account_group_system_time(p, cputime);
2726
2727 /* Add system time to cpustat. */
2728 task_group_account_field(p, index, (__force u64) cputime);
2729
2730 /* Account for system time used */
2731 acct_update_integrals(p);
2732 }
2733
2734 /*
2735 * Account system cpu time to a process.
2736 * @p: the process that the cpu time gets accounted to
2737 * @hardirq_offset: the offset to subtract from hardirq_count()
2738 * @cputime: the cpu time spent in kernel space since the last update
2739 * @cputime_scaled: cputime scaled by cpu frequency
2740 */
2741 void account_system_time(struct task_struct *p, int hardirq_offset,
2742 cputime_t cputime, cputime_t cputime_scaled)
2743 {
2744 int index;
2745
2746 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2747 account_guest_time(p, cputime, cputime_scaled);
2748 return;
2749 }
2750
2751 if (hardirq_count() - hardirq_offset)
2752 index = CPUTIME_IRQ;
2753 else if (in_serving_softirq())
2754 index = CPUTIME_SOFTIRQ;
2755 else
2756 index = CPUTIME_SYSTEM;
2757
2758 __account_system_time(p, cputime, cputime_scaled, index);
2759 }
2760
2761 /*
2762 * Account for involuntary wait time.
2763 * @cputime: the cpu time spent in involuntary wait
2764 */
2765 void account_steal_time(cputime_t cputime)
2766 {
2767 u64 *cpustat = kcpustat_this_cpu->cpustat;
2768
2769 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2770 }
2771
2772 /*
2773 * Account for idle time.
2774 * @cputime: the cpu time spent in idle wait
2775 */
2776 void account_idle_time(cputime_t cputime)
2777 {
2778 u64 *cpustat = kcpustat_this_cpu->cpustat;
2779 struct rq *rq = this_rq();
2780
2781 if (atomic_read(&rq->nr_iowait) > 0)
2782 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2783 else
2784 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2785 }
2786
2787 static __always_inline bool steal_account_process_tick(void)
2788 {
2789 #ifdef CONFIG_PARAVIRT
2790 if (static_key_false(&paravirt_steal_enabled)) {
2791 u64 steal, st = 0;
2792
2793 steal = paravirt_steal_clock(smp_processor_id());
2794 steal -= this_rq()->prev_steal_time;
2795
2796 st = steal_ticks(steal);
2797 this_rq()->prev_steal_time += st * TICK_NSEC;
2798
2799 account_steal_time(st);
2800 return st;
2801 }
2802 #endif
2803 return false;
2804 }
2805
2806 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2807
2808 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2809 /*
2810 * Account a tick to a process and cpustat
2811 * @p: the process that the cpu time gets accounted to
2812 * @user_tick: is the tick from userspace
2813 * @rq: the pointer to rq
2814 *
2815 * Tick demultiplexing follows the order
2816 * - pending hardirq update
2817 * - pending softirq update
2818 * - user_time
2819 * - idle_time
2820 * - system time
2821 * - check for guest_time
2822 * - else account as system_time
2823 *
2824 * Check for hardirq is done both for system and user time as there is
2825 * no timer going off while we are on hardirq and hence we may never get an
2826 * opportunity to update it solely in system time.
2827 * p->stime and friends are only updated on system time and not on irq
2828 * softirq as those do not count in task exec_runtime any more.
2829 */
2830 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2831 struct rq *rq)
2832 {
2833 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2834 u64 *cpustat = kcpustat_this_cpu->cpustat;
2835
2836 if (steal_account_process_tick())
2837 return;
2838
2839 if (irqtime_account_hi_update()) {
2840 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2841 } else if (irqtime_account_si_update()) {
2842 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2843 } else if (this_cpu_ksoftirqd() == p) {
2844 /*
2845 * ksoftirqd time do not get accounted in cpu_softirq_time.
2846 * So, we have to handle it separately here.
2847 * Also, p->stime needs to be updated for ksoftirqd.
2848 */
2849 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2850 CPUTIME_SOFTIRQ);
2851 } else if (user_tick) {
2852 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2853 } else if (p == rq->idle) {
2854 account_idle_time(cputime_one_jiffy);
2855 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2856 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2857 } else {
2858 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2859 CPUTIME_SYSTEM);
2860 }
2861 }
2862
2863 static void irqtime_account_idle_ticks(int ticks)
2864 {
2865 int i;
2866 struct rq *rq = this_rq();
2867
2868 for (i = 0; i < ticks; i++)
2869 irqtime_account_process_tick(current, 0, rq);
2870 }
2871 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2872 static void irqtime_account_idle_ticks(int ticks) {}
2873 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2874 struct rq *rq) {}
2875 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2876
2877 /*
2878 * Account a single tick of cpu time.
2879 * @p: the process that the cpu time gets accounted to
2880 * @user_tick: indicates if the tick is a user or a system tick
2881 */
2882 void account_process_tick(struct task_struct *p, int user_tick)
2883 {
2884 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2885 struct rq *rq = this_rq();
2886
2887 if (sched_clock_irqtime) {
2888 irqtime_account_process_tick(p, user_tick, rq);
2889 return;
2890 }
2891
2892 if (steal_account_process_tick())
2893 return;
2894
2895 if (user_tick)
2896 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2897 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2898 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2899 one_jiffy_scaled);
2900 else
2901 account_idle_time(cputime_one_jiffy);
2902 }
2903
2904 /*
2905 * Account multiple ticks of steal time.
2906 * @p: the process from which the cpu time has been stolen
2907 * @ticks: number of stolen ticks
2908 */
2909 void account_steal_ticks(unsigned long ticks)
2910 {
2911 account_steal_time(jiffies_to_cputime(ticks));
2912 }
2913
2914 /*
2915 * Account multiple ticks of idle time.
2916 * @ticks: number of stolen ticks
2917 */
2918 void account_idle_ticks(unsigned long ticks)
2919 {
2920
2921 if (sched_clock_irqtime) {
2922 irqtime_account_idle_ticks(ticks);
2923 return;
2924 }
2925
2926 account_idle_time(jiffies_to_cputime(ticks));
2927 }
2928
2929 #endif
2930
2931 /*
2932 * Use precise platform statistics if available:
2933 */
2934 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2935 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2936 {
2937 *ut = p->utime;
2938 *st = p->stime;
2939 }
2940
2941 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2942 {
2943 struct task_cputime cputime;
2944
2945 thread_group_cputime(p, &cputime);
2946
2947 *ut = cputime.utime;
2948 *st = cputime.stime;
2949 }
2950 #else
2951
2952 #ifndef nsecs_to_cputime
2953 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
2954 #endif
2955
2956 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2957 {
2958 cputime_t rtime, utime = p->utime, total = utime + p->stime;
2959
2960 /*
2961 * Use CFS's precise accounting:
2962 */
2963 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2964
2965 if (total) {
2966 u64 temp = (__force u64) rtime;
2967
2968 temp *= (__force u64) utime;
2969 do_div(temp, (__force u32) total);
2970 utime = (__force cputime_t) temp;
2971 } else
2972 utime = rtime;
2973
2974 /*
2975 * Compare with previous values, to keep monotonicity:
2976 */
2977 p->prev_utime = max(p->prev_utime, utime);
2978 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2979
2980 *ut = p->prev_utime;
2981 *st = p->prev_stime;
2982 }
2983
2984 /*
2985 * Must be called with siglock held.
2986 */
2987 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2988 {
2989 struct signal_struct *sig = p->signal;
2990 struct task_cputime cputime;
2991 cputime_t rtime, utime, total;
2992
2993 thread_group_cputime(p, &cputime);
2994
2995 total = cputime.utime + cputime.stime;
2996 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2997
2998 if (total) {
2999 u64 temp = (__force u64) rtime;
3000
3001 temp *= (__force u64) cputime.utime;
3002 do_div(temp, (__force u32) total);
3003 utime = (__force cputime_t) temp;
3004 } else
3005 utime = rtime;
3006
3007 sig->prev_utime = max(sig->prev_utime, utime);
3008 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3009
3010 *ut = sig->prev_utime;
3011 *st = sig->prev_stime;
3012 }
3013 #endif
3014
3015 /*
3016 * This function gets called by the timer code, with HZ frequency.
3017 * We call it with interrupts disabled.
3018 */
3019 void scheduler_tick(void)
3020 {
3021 int cpu = smp_processor_id();
3022 struct rq *rq = cpu_rq(cpu);
3023 struct task_struct *curr = rq->curr;
3024
3025 sched_clock_tick();
3026
3027 raw_spin_lock(&rq->lock);
3028 update_rq_clock(rq);
3029 update_cpu_load_active(rq);
3030 curr->sched_class->task_tick(rq, curr, 0);
3031 raw_spin_unlock(&rq->lock);
3032
3033 perf_event_task_tick();
3034
3035 #ifdef CONFIG_SMP
3036 rq->idle_balance = idle_cpu(cpu);
3037 trigger_load_balance(rq, cpu);
3038 #endif
3039 }
3040
3041 notrace unsigned long get_parent_ip(unsigned long addr)
3042 {
3043 if (in_lock_functions(addr)) {
3044 addr = CALLER_ADDR2;
3045 if (in_lock_functions(addr))
3046 addr = CALLER_ADDR3;
3047 }
3048 return addr;
3049 }
3050
3051 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3052 defined(CONFIG_PREEMPT_TRACER))
3053
3054 void __kprobes add_preempt_count(int val)
3055 {
3056 #ifdef CONFIG_DEBUG_PREEMPT
3057 /*
3058 * Underflow?
3059 */
3060 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3061 return;
3062 #endif
3063 preempt_count() += val;
3064 #ifdef CONFIG_DEBUG_PREEMPT
3065 /*
3066 * Spinlock count overflowing soon?
3067 */
3068 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3069 PREEMPT_MASK - 10);
3070 #endif
3071 if (preempt_count() == val)
3072 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3073 }
3074 EXPORT_SYMBOL(add_preempt_count);
3075
3076 void __kprobes sub_preempt_count(int val)
3077 {
3078 #ifdef CONFIG_DEBUG_PREEMPT
3079 /*
3080 * Underflow?
3081 */
3082 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3083 return;
3084 /*
3085 * Is the spinlock portion underflowing?
3086 */
3087 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3088 !(preempt_count() & PREEMPT_MASK)))
3089 return;
3090 #endif
3091
3092 if (preempt_count() == val)
3093 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3094 preempt_count() -= val;
3095 }
3096 EXPORT_SYMBOL(sub_preempt_count);
3097
3098 #endif
3099
3100 /*
3101 * Print scheduling while atomic bug:
3102 */
3103 static noinline void __schedule_bug(struct task_struct *prev)
3104 {
3105 if (oops_in_progress)
3106 return;
3107
3108 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3109 prev->comm, prev->pid, preempt_count());
3110
3111 debug_show_held_locks(prev);
3112 print_modules();
3113 if (irqs_disabled())
3114 print_irqtrace_events(prev);
3115 dump_stack();
3116 }
3117
3118 /*
3119 * Various schedule()-time debugging checks and statistics:
3120 */
3121 static inline void schedule_debug(struct task_struct *prev)
3122 {
3123 /*
3124 * Test if we are atomic. Since do_exit() needs to call into
3125 * schedule() atomically, we ignore that path for now.
3126 * Otherwise, whine if we are scheduling when we should not be.
3127 */
3128 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3129 __schedule_bug(prev);
3130 rcu_sleep_check();
3131
3132 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3133
3134 schedstat_inc(this_rq(), sched_count);
3135 }
3136
3137 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3138 {
3139 if (prev->on_rq || rq->skip_clock_update < 0)
3140 update_rq_clock(rq);
3141 prev->sched_class->put_prev_task(rq, prev);
3142 }
3143
3144 /*
3145 * Pick up the highest-prio task:
3146 */
3147 static inline struct task_struct *
3148 pick_next_task(struct rq *rq)
3149 {
3150 const struct sched_class *class;
3151 struct task_struct *p;
3152
3153 /*
3154 * Optimization: we know that if all tasks are in
3155 * the fair class we can call that function directly:
3156 */
3157 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3158 p = fair_sched_class.pick_next_task(rq);
3159 if (likely(p))
3160 return p;
3161 }
3162
3163 for_each_class(class) {
3164 p = class->pick_next_task(rq);
3165 if (p)
3166 return p;
3167 }
3168
3169 BUG(); /* the idle class will always have a runnable task */
3170 }
3171
3172 /*
3173 * __schedule() is the main scheduler function.
3174 */
3175 static void __sched __schedule(void)
3176 {
3177 struct task_struct *prev, *next;
3178 unsigned long *switch_count;
3179 struct rq *rq;
3180 int cpu;
3181
3182 need_resched:
3183 preempt_disable();
3184 cpu = smp_processor_id();
3185 rq = cpu_rq(cpu);
3186 rcu_note_context_switch(cpu);
3187 prev = rq->curr;
3188
3189 schedule_debug(prev);
3190
3191 if (sched_feat(HRTICK))
3192 hrtick_clear(rq);
3193
3194 raw_spin_lock_irq(&rq->lock);
3195
3196 switch_count = &prev->nivcsw;
3197 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3198 if (unlikely(signal_pending_state(prev->state, prev))) {
3199 prev->state = TASK_RUNNING;
3200 } else {
3201 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3202 prev->on_rq = 0;
3203
3204 /*
3205 * If a worker went to sleep, notify and ask workqueue
3206 * whether it wants to wake up a task to maintain
3207 * concurrency.
3208 */
3209 if (prev->flags & PF_WQ_WORKER) {
3210 struct task_struct *to_wakeup;
3211
3212 to_wakeup = wq_worker_sleeping(prev, cpu);
3213 if (to_wakeup)
3214 try_to_wake_up_local(to_wakeup);
3215 }
3216 }
3217 switch_count = &prev->nvcsw;
3218 }
3219
3220 pre_schedule(rq, prev);
3221
3222 if (unlikely(!rq->nr_running))
3223 idle_balance(cpu, rq);
3224
3225 put_prev_task(rq, prev);
3226 next = pick_next_task(rq);
3227 clear_tsk_need_resched(prev);
3228 rq->skip_clock_update = 0;
3229
3230 if (likely(prev != next)) {
3231 rq->nr_switches++;
3232 rq->curr = next;
3233 ++*switch_count;
3234
3235 context_switch(rq, prev, next); /* unlocks the rq */
3236 /*
3237 * The context switch have flipped the stack from under us
3238 * and restored the local variables which were saved when
3239 * this task called schedule() in the past. prev == current
3240 * is still correct, but it can be moved to another cpu/rq.
3241 */
3242 cpu = smp_processor_id();
3243 rq = cpu_rq(cpu);
3244 } else
3245 raw_spin_unlock_irq(&rq->lock);
3246
3247 post_schedule(rq);
3248
3249 sched_preempt_enable_no_resched();
3250 if (need_resched())
3251 goto need_resched;
3252 }
3253
3254 static inline void sched_submit_work(struct task_struct *tsk)
3255 {
3256 if (!tsk->state || tsk_is_pi_blocked(tsk))
3257 return;
3258 /*
3259 * If we are going to sleep and we have plugged IO queued,
3260 * make sure to submit it to avoid deadlocks.
3261 */
3262 if (blk_needs_flush_plug(tsk))
3263 blk_schedule_flush_plug(tsk);
3264 }
3265
3266 asmlinkage void __sched schedule(void)
3267 {
3268 struct task_struct *tsk = current;
3269
3270 sched_submit_work(tsk);
3271 __schedule();
3272 }
3273 EXPORT_SYMBOL(schedule);
3274
3275 /**
3276 * schedule_preempt_disabled - called with preemption disabled
3277 *
3278 * Returns with preemption disabled. Note: preempt_count must be 1
3279 */
3280 void __sched schedule_preempt_disabled(void)
3281 {
3282 sched_preempt_enable_no_resched();
3283 schedule();
3284 preempt_disable();
3285 }
3286
3287 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3288
3289 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3290 {
3291 if (lock->owner != owner)
3292 return false;
3293
3294 /*
3295 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3296 * lock->owner still matches owner, if that fails, owner might
3297 * point to free()d memory, if it still matches, the rcu_read_lock()
3298 * ensures the memory stays valid.
3299 */
3300 barrier();
3301
3302 return owner->on_cpu;
3303 }
3304
3305 /*
3306 * Look out! "owner" is an entirely speculative pointer
3307 * access and not reliable.
3308 */
3309 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3310 {
3311 if (!sched_feat(OWNER_SPIN))
3312 return 0;
3313
3314 rcu_read_lock();
3315 while (owner_running(lock, owner)) {
3316 if (need_resched())
3317 break;
3318
3319 arch_mutex_cpu_relax();
3320 }
3321 rcu_read_unlock();
3322
3323 /*
3324 * We break out the loop above on need_resched() and when the
3325 * owner changed, which is a sign for heavy contention. Return
3326 * success only when lock->owner is NULL.
3327 */
3328 return lock->owner == NULL;
3329 }
3330 #endif
3331
3332 #ifdef CONFIG_PREEMPT
3333 /*
3334 * this is the entry point to schedule() from in-kernel preemption
3335 * off of preempt_enable. Kernel preemptions off return from interrupt
3336 * occur there and call schedule directly.
3337 */
3338 asmlinkage void __sched notrace preempt_schedule(void)
3339 {
3340 struct thread_info *ti = current_thread_info();
3341
3342 /*
3343 * If there is a non-zero preempt_count or interrupts are disabled,
3344 * we do not want to preempt the current task. Just return..
3345 */
3346 if (likely(ti->preempt_count || irqs_disabled()))
3347 return;
3348
3349 do {
3350 add_preempt_count_notrace(PREEMPT_ACTIVE);
3351 __schedule();
3352 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3353
3354 /*
3355 * Check again in case we missed a preemption opportunity
3356 * between schedule and now.
3357 */
3358 barrier();
3359 } while (need_resched());
3360 }
3361 EXPORT_SYMBOL(preempt_schedule);
3362
3363 /*
3364 * this is the entry point to schedule() from kernel preemption
3365 * off of irq context.
3366 * Note, that this is called and return with irqs disabled. This will
3367 * protect us against recursive calling from irq.
3368 */
3369 asmlinkage void __sched preempt_schedule_irq(void)
3370 {
3371 struct thread_info *ti = current_thread_info();
3372
3373 /* Catch callers which need to be fixed */
3374 BUG_ON(ti->preempt_count || !irqs_disabled());
3375
3376 do {
3377 add_preempt_count(PREEMPT_ACTIVE);
3378 local_irq_enable();
3379 __schedule();
3380 local_irq_disable();
3381 sub_preempt_count(PREEMPT_ACTIVE);
3382
3383 /*
3384 * Check again in case we missed a preemption opportunity
3385 * between schedule and now.
3386 */
3387 barrier();
3388 } while (need_resched());
3389 }
3390
3391 #endif /* CONFIG_PREEMPT */
3392
3393 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3394 void *key)
3395 {
3396 return try_to_wake_up(curr->private, mode, wake_flags);
3397 }
3398 EXPORT_SYMBOL(default_wake_function);
3399
3400 /*
3401 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3402 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3403 * number) then we wake all the non-exclusive tasks and one exclusive task.
3404 *
3405 * There are circumstances in which we can try to wake a task which has already
3406 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3407 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3408 */
3409 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3410 int nr_exclusive, int wake_flags, void *key)
3411 {
3412 wait_queue_t *curr, *next;
3413
3414 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3415 unsigned flags = curr->flags;
3416
3417 if (curr->func(curr, mode, wake_flags, key) &&
3418 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3419 break;
3420 }
3421 }
3422
3423 /**
3424 * __wake_up - wake up threads blocked on a waitqueue.
3425 * @q: the waitqueue
3426 * @mode: which threads
3427 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3428 * @key: is directly passed to the wakeup function
3429 *
3430 * It may be assumed that this function implies a write memory barrier before
3431 * changing the task state if and only if any tasks are woken up.
3432 */
3433 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3434 int nr_exclusive, void *key)
3435 {
3436 unsigned long flags;
3437
3438 spin_lock_irqsave(&q->lock, flags);
3439 __wake_up_common(q, mode, nr_exclusive, 0, key);
3440 spin_unlock_irqrestore(&q->lock, flags);
3441 }
3442 EXPORT_SYMBOL(__wake_up);
3443
3444 /*
3445 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3446 */
3447 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3448 {
3449 __wake_up_common(q, mode, nr, 0, NULL);
3450 }
3451 EXPORT_SYMBOL_GPL(__wake_up_locked);
3452
3453 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3454 {
3455 __wake_up_common(q, mode, 1, 0, key);
3456 }
3457 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3458
3459 /**
3460 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3461 * @q: the waitqueue
3462 * @mode: which threads
3463 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3464 * @key: opaque value to be passed to wakeup targets
3465 *
3466 * The sync wakeup differs that the waker knows that it will schedule
3467 * away soon, so while the target thread will be woken up, it will not
3468 * be migrated to another CPU - ie. the two threads are 'synchronized'
3469 * with each other. This can prevent needless bouncing between CPUs.
3470 *
3471 * On UP it can prevent extra preemption.
3472 *
3473 * It may be assumed that this function implies a write memory barrier before
3474 * changing the task state if and only if any tasks are woken up.
3475 */
3476 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3477 int nr_exclusive, void *key)
3478 {
3479 unsigned long flags;
3480 int wake_flags = WF_SYNC;
3481
3482 if (unlikely(!q))
3483 return;
3484
3485 if (unlikely(!nr_exclusive))
3486 wake_flags = 0;
3487
3488 spin_lock_irqsave(&q->lock, flags);
3489 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3490 spin_unlock_irqrestore(&q->lock, flags);
3491 }
3492 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3493
3494 /*
3495 * __wake_up_sync - see __wake_up_sync_key()
3496 */
3497 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3498 {
3499 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3500 }
3501 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3502
3503 /**
3504 * complete: - signals a single thread waiting on this completion
3505 * @x: holds the state of this particular completion
3506 *
3507 * This will wake up a single thread waiting on this completion. Threads will be
3508 * awakened in the same order in which they were queued.
3509 *
3510 * See also complete_all(), wait_for_completion() and related routines.
3511 *
3512 * It may be assumed that this function implies a write memory barrier before
3513 * changing the task state if and only if any tasks are woken up.
3514 */
3515 void complete(struct completion *x)
3516 {
3517 unsigned long flags;
3518
3519 spin_lock_irqsave(&x->wait.lock, flags);
3520 x->done++;
3521 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3522 spin_unlock_irqrestore(&x->wait.lock, flags);
3523 }
3524 EXPORT_SYMBOL(complete);
3525
3526 /**
3527 * complete_all: - signals all threads waiting on this completion
3528 * @x: holds the state of this particular completion
3529 *
3530 * This will wake up all threads waiting on this particular completion event.
3531 *
3532 * It may be assumed that this function implies a write memory barrier before
3533 * changing the task state if and only if any tasks are woken up.
3534 */
3535 void complete_all(struct completion *x)
3536 {
3537 unsigned long flags;
3538
3539 spin_lock_irqsave(&x->wait.lock, flags);
3540 x->done += UINT_MAX/2;
3541 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3542 spin_unlock_irqrestore(&x->wait.lock, flags);
3543 }
3544 EXPORT_SYMBOL(complete_all);
3545
3546 static inline long __sched
3547 do_wait_for_common(struct completion *x, long timeout, int state)
3548 {
3549 if (!x->done) {
3550 DECLARE_WAITQUEUE(wait, current);
3551
3552 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3553 do {
3554 if (signal_pending_state(state, current)) {
3555 timeout = -ERESTARTSYS;
3556 break;
3557 }
3558 __set_current_state(state);
3559 spin_unlock_irq(&x->wait.lock);
3560 timeout = schedule_timeout(timeout);
3561 spin_lock_irq(&x->wait.lock);
3562 } while (!x->done && timeout);
3563 __remove_wait_queue(&x->wait, &wait);
3564 if (!x->done)
3565 return timeout;
3566 }
3567 x->done--;
3568 return timeout ?: 1;
3569 }
3570
3571 static long __sched
3572 wait_for_common(struct completion *x, long timeout, int state)
3573 {
3574 might_sleep();
3575
3576 spin_lock_irq(&x->wait.lock);
3577 timeout = do_wait_for_common(x, timeout, state);
3578 spin_unlock_irq(&x->wait.lock);
3579 return timeout;
3580 }
3581
3582 /**
3583 * wait_for_completion: - waits for completion of a task
3584 * @x: holds the state of this particular completion
3585 *
3586 * This waits to be signaled for completion of a specific task. It is NOT
3587 * interruptible and there is no timeout.
3588 *
3589 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3590 * and interrupt capability. Also see complete().
3591 */
3592 void __sched wait_for_completion(struct completion *x)
3593 {
3594 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3595 }
3596 EXPORT_SYMBOL(wait_for_completion);
3597
3598 /**
3599 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3600 * @x: holds the state of this particular completion
3601 * @timeout: timeout value in jiffies
3602 *
3603 * This waits for either a completion of a specific task to be signaled or for a
3604 * specified timeout to expire. The timeout is in jiffies. It is not
3605 * interruptible.
3606 *
3607 * The return value is 0 if timed out, and positive (at least 1, or number of
3608 * jiffies left till timeout) if completed.
3609 */
3610 unsigned long __sched
3611 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3612 {
3613 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3614 }
3615 EXPORT_SYMBOL(wait_for_completion_timeout);
3616
3617 /**
3618 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3619 * @x: holds the state of this particular completion
3620 *
3621 * This waits for completion of a specific task to be signaled. It is
3622 * interruptible.
3623 *
3624 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3625 */
3626 int __sched wait_for_completion_interruptible(struct completion *x)
3627 {
3628 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3629 if (t == -ERESTARTSYS)
3630 return t;
3631 return 0;
3632 }
3633 EXPORT_SYMBOL(wait_for_completion_interruptible);
3634
3635 /**
3636 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3637 * @x: holds the state of this particular completion
3638 * @timeout: timeout value in jiffies
3639 *
3640 * This waits for either a completion of a specific task to be signaled or for a
3641 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3642 *
3643 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3644 * positive (at least 1, or number of jiffies left till timeout) if completed.
3645 */
3646 long __sched
3647 wait_for_completion_interruptible_timeout(struct completion *x,
3648 unsigned long timeout)
3649 {
3650 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3651 }
3652 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3653
3654 /**
3655 * wait_for_completion_killable: - waits for completion of a task (killable)
3656 * @x: holds the state of this particular completion
3657 *
3658 * This waits to be signaled for completion of a specific task. It can be
3659 * interrupted by a kill signal.
3660 *
3661 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3662 */
3663 int __sched wait_for_completion_killable(struct completion *x)
3664 {
3665 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3666 if (t == -ERESTARTSYS)
3667 return t;
3668 return 0;
3669 }
3670 EXPORT_SYMBOL(wait_for_completion_killable);
3671
3672 /**
3673 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3674 * @x: holds the state of this particular completion
3675 * @timeout: timeout value in jiffies
3676 *
3677 * This waits for either a completion of a specific task to be
3678 * signaled or for a specified timeout to expire. It can be
3679 * interrupted by a kill signal. The timeout is in jiffies.
3680 *
3681 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3682 * positive (at least 1, or number of jiffies left till timeout) if completed.
3683 */
3684 long __sched
3685 wait_for_completion_killable_timeout(struct completion *x,
3686 unsigned long timeout)
3687 {
3688 return wait_for_common(x, timeout, TASK_KILLABLE);
3689 }
3690 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3691
3692 /**
3693 * try_wait_for_completion - try to decrement a completion without blocking
3694 * @x: completion structure
3695 *
3696 * Returns: 0 if a decrement cannot be done without blocking
3697 * 1 if a decrement succeeded.
3698 *
3699 * If a completion is being used as a counting completion,
3700 * attempt to decrement the counter without blocking. This
3701 * enables us to avoid waiting if the resource the completion
3702 * is protecting is not available.
3703 */
3704 bool try_wait_for_completion(struct completion *x)
3705 {
3706 unsigned long flags;
3707 int ret = 1;
3708
3709 spin_lock_irqsave(&x->wait.lock, flags);
3710 if (!x->done)
3711 ret = 0;
3712 else
3713 x->done--;
3714 spin_unlock_irqrestore(&x->wait.lock, flags);
3715 return ret;
3716 }
3717 EXPORT_SYMBOL(try_wait_for_completion);
3718
3719 /**
3720 * completion_done - Test to see if a completion has any waiters
3721 * @x: completion structure
3722 *
3723 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3724 * 1 if there are no waiters.
3725 *
3726 */
3727 bool completion_done(struct completion *x)
3728 {
3729 unsigned long flags;
3730 int ret = 1;
3731
3732 spin_lock_irqsave(&x->wait.lock, flags);
3733 if (!x->done)
3734 ret = 0;
3735 spin_unlock_irqrestore(&x->wait.lock, flags);
3736 return ret;
3737 }
3738 EXPORT_SYMBOL(completion_done);
3739
3740 static long __sched
3741 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3742 {
3743 unsigned long flags;
3744 wait_queue_t wait;
3745
3746 init_waitqueue_entry(&wait, current);
3747
3748 __set_current_state(state);
3749
3750 spin_lock_irqsave(&q->lock, flags);
3751 __add_wait_queue(q, &wait);
3752 spin_unlock(&q->lock);
3753 timeout = schedule_timeout(timeout);
3754 spin_lock_irq(&q->lock);
3755 __remove_wait_queue(q, &wait);
3756 spin_unlock_irqrestore(&q->lock, flags);
3757
3758 return timeout;
3759 }
3760
3761 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3762 {
3763 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3764 }
3765 EXPORT_SYMBOL(interruptible_sleep_on);
3766
3767 long __sched
3768 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3769 {
3770 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3771 }
3772 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3773
3774 void __sched sleep_on(wait_queue_head_t *q)
3775 {
3776 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3777 }
3778 EXPORT_SYMBOL(sleep_on);
3779
3780 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3781 {
3782 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3783 }
3784 EXPORT_SYMBOL(sleep_on_timeout);
3785
3786 #ifdef CONFIG_RT_MUTEXES
3787
3788 /*
3789 * rt_mutex_setprio - set the current priority of a task
3790 * @p: task
3791 * @prio: prio value (kernel-internal form)
3792 *
3793 * This function changes the 'effective' priority of a task. It does
3794 * not touch ->normal_prio like __setscheduler().
3795 *
3796 * Used by the rt_mutex code to implement priority inheritance logic.
3797 */
3798 void rt_mutex_setprio(struct task_struct *p, int prio)
3799 {
3800 int oldprio, on_rq, running;
3801 struct rq *rq;
3802 const struct sched_class *prev_class;
3803
3804 BUG_ON(prio < 0 || prio > MAX_PRIO);
3805
3806 rq = __task_rq_lock(p);
3807
3808 /*
3809 * Idle task boosting is a nono in general. There is one
3810 * exception, when PREEMPT_RT and NOHZ is active:
3811 *
3812 * The idle task calls get_next_timer_interrupt() and holds
3813 * the timer wheel base->lock on the CPU and another CPU wants
3814 * to access the timer (probably to cancel it). We can safely
3815 * ignore the boosting request, as the idle CPU runs this code
3816 * with interrupts disabled and will complete the lock
3817 * protected section without being interrupted. So there is no
3818 * real need to boost.
3819 */
3820 if (unlikely(p == rq->idle)) {
3821 WARN_ON(p != rq->curr);
3822 WARN_ON(p->pi_blocked_on);
3823 goto out_unlock;
3824 }
3825
3826 trace_sched_pi_setprio(p, prio);
3827 oldprio = p->prio;
3828 prev_class = p->sched_class;
3829 on_rq = p->on_rq;
3830 running = task_current(rq, p);
3831 if (on_rq)
3832 dequeue_task(rq, p, 0);
3833 if (running)
3834 p->sched_class->put_prev_task(rq, p);
3835
3836 if (rt_prio(prio))
3837 p->sched_class = &rt_sched_class;
3838 else
3839 p->sched_class = &fair_sched_class;
3840
3841 p->prio = prio;
3842
3843 if (running)
3844 p->sched_class->set_curr_task(rq);
3845 if (on_rq)
3846 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3847
3848 check_class_changed(rq, p, prev_class, oldprio);
3849 out_unlock:
3850 __task_rq_unlock(rq);
3851 }
3852 #endif
3853 void set_user_nice(struct task_struct *p, long nice)
3854 {
3855 int old_prio, delta, on_rq;
3856 unsigned long flags;
3857 struct rq *rq;
3858
3859 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3860 return;
3861 /*
3862 * We have to be careful, if called from sys_setpriority(),
3863 * the task might be in the middle of scheduling on another CPU.
3864 */
3865 rq = task_rq_lock(p, &flags);
3866 /*
3867 * The RT priorities are set via sched_setscheduler(), but we still
3868 * allow the 'normal' nice value to be set - but as expected
3869 * it wont have any effect on scheduling until the task is
3870 * SCHED_FIFO/SCHED_RR:
3871 */
3872 if (task_has_rt_policy(p)) {
3873 p->static_prio = NICE_TO_PRIO(nice);
3874 goto out_unlock;
3875 }
3876 on_rq = p->on_rq;
3877 if (on_rq)
3878 dequeue_task(rq, p, 0);
3879
3880 p->static_prio = NICE_TO_PRIO(nice);
3881 set_load_weight(p);
3882 old_prio = p->prio;
3883 p->prio = effective_prio(p);
3884 delta = p->prio - old_prio;
3885
3886 if (on_rq) {
3887 enqueue_task(rq, p, 0);
3888 /*
3889 * If the task increased its priority or is running and
3890 * lowered its priority, then reschedule its CPU:
3891 */
3892 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3893 resched_task(rq->curr);
3894 }
3895 out_unlock:
3896 task_rq_unlock(rq, p, &flags);
3897 }
3898 EXPORT_SYMBOL(set_user_nice);
3899
3900 /*
3901 * can_nice - check if a task can reduce its nice value
3902 * @p: task
3903 * @nice: nice value
3904 */
3905 int can_nice(const struct task_struct *p, const int nice)
3906 {
3907 /* convert nice value [19,-20] to rlimit style value [1,40] */
3908 int nice_rlim = 20 - nice;
3909
3910 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3911 capable(CAP_SYS_NICE));
3912 }
3913
3914 #ifdef __ARCH_WANT_SYS_NICE
3915
3916 /*
3917 * sys_nice - change the priority of the current process.
3918 * @increment: priority increment
3919 *
3920 * sys_setpriority is a more generic, but much slower function that
3921 * does similar things.
3922 */
3923 SYSCALL_DEFINE1(nice, int, increment)
3924 {
3925 long nice, retval;
3926
3927 /*
3928 * Setpriority might change our priority at the same moment.
3929 * We don't have to worry. Conceptually one call occurs first
3930 * and we have a single winner.
3931 */
3932 if (increment < -40)
3933 increment = -40;
3934 if (increment > 40)
3935 increment = 40;
3936
3937 nice = TASK_NICE(current) + increment;
3938 if (nice < -20)
3939 nice = -20;
3940 if (nice > 19)
3941 nice = 19;
3942
3943 if (increment < 0 && !can_nice(current, nice))
3944 return -EPERM;
3945
3946 retval = security_task_setnice(current, nice);
3947 if (retval)
3948 return retval;
3949
3950 set_user_nice(current, nice);
3951 return 0;
3952 }
3953
3954 #endif
3955
3956 /**
3957 * task_prio - return the priority value of a given task.
3958 * @p: the task in question.
3959 *
3960 * This is the priority value as seen by users in /proc.
3961 * RT tasks are offset by -200. Normal tasks are centered
3962 * around 0, value goes from -16 to +15.
3963 */
3964 int task_prio(const struct task_struct *p)
3965 {
3966 return p->prio - MAX_RT_PRIO;
3967 }
3968
3969 /**
3970 * task_nice - return the nice value of a given task.
3971 * @p: the task in question.
3972 */
3973 int task_nice(const struct task_struct *p)
3974 {
3975 return TASK_NICE(p);
3976 }
3977 EXPORT_SYMBOL(task_nice);
3978
3979 /**
3980 * idle_cpu - is a given cpu idle currently?
3981 * @cpu: the processor in question.
3982 */
3983 int idle_cpu(int cpu)
3984 {
3985 struct rq *rq = cpu_rq(cpu);
3986
3987 if (rq->curr != rq->idle)
3988 return 0;
3989
3990 if (rq->nr_running)
3991 return 0;
3992
3993 #ifdef CONFIG_SMP
3994 if (!llist_empty(&rq->wake_list))
3995 return 0;
3996 #endif
3997
3998 return 1;
3999 }
4000
4001 /**
4002 * idle_task - return the idle task for a given cpu.
4003 * @cpu: the processor in question.
4004 */
4005 struct task_struct *idle_task(int cpu)
4006 {
4007 return cpu_rq(cpu)->idle;
4008 }
4009
4010 /**
4011 * find_process_by_pid - find a process with a matching PID value.
4012 * @pid: the pid in question.
4013 */
4014 static struct task_struct *find_process_by_pid(pid_t pid)
4015 {
4016 return pid ? find_task_by_vpid(pid) : current;
4017 }
4018
4019 /* Actually do priority change: must hold rq lock. */
4020 static void
4021 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4022 {
4023 p->policy = policy;
4024 p->rt_priority = prio;
4025 p->normal_prio = normal_prio(p);
4026 /* we are holding p->pi_lock already */
4027 p->prio = rt_mutex_getprio(p);
4028 if (rt_prio(p->prio))
4029 p->sched_class = &rt_sched_class;
4030 else
4031 p->sched_class = &fair_sched_class;
4032 set_load_weight(p);
4033 }
4034
4035 /*
4036 * check the target process has a UID that matches the current process's
4037 */
4038 static bool check_same_owner(struct task_struct *p)
4039 {
4040 const struct cred *cred = current_cred(), *pcred;
4041 bool match;
4042
4043 rcu_read_lock();
4044 pcred = __task_cred(p);
4045 if (cred->user->user_ns == pcred->user->user_ns)
4046 match = (cred->euid == pcred->euid ||
4047 cred->euid == pcred->uid);
4048 else
4049 match = false;
4050 rcu_read_unlock();
4051 return match;
4052 }
4053
4054 static int __sched_setscheduler(struct task_struct *p, int policy,
4055 const struct sched_param *param, bool user)
4056 {
4057 int retval, oldprio, oldpolicy = -1, on_rq, running;
4058 unsigned long flags;
4059 const struct sched_class *prev_class;
4060 struct rq *rq;
4061 int reset_on_fork;
4062
4063 /* may grab non-irq protected spin_locks */
4064 BUG_ON(in_interrupt());
4065 recheck:
4066 /* double check policy once rq lock held */
4067 if (policy < 0) {
4068 reset_on_fork = p->sched_reset_on_fork;
4069 policy = oldpolicy = p->policy;
4070 } else {
4071 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4072 policy &= ~SCHED_RESET_ON_FORK;
4073
4074 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4075 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4076 policy != SCHED_IDLE)
4077 return -EINVAL;
4078 }
4079
4080 /*
4081 * Valid priorities for SCHED_FIFO and SCHED_RR are
4082 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4083 * SCHED_BATCH and SCHED_IDLE is 0.
4084 */
4085 if (param->sched_priority < 0 ||
4086 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4087 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4088 return -EINVAL;
4089 if (rt_policy(policy) != (param->sched_priority != 0))
4090 return -EINVAL;
4091
4092 /*
4093 * Allow unprivileged RT tasks to decrease priority:
4094 */
4095 if (user && !capable(CAP_SYS_NICE)) {
4096 if (rt_policy(policy)) {
4097 unsigned long rlim_rtprio =
4098 task_rlimit(p, RLIMIT_RTPRIO);
4099
4100 /* can't set/change the rt policy */
4101 if (policy != p->policy && !rlim_rtprio)
4102 return -EPERM;
4103
4104 /* can't increase priority */
4105 if (param->sched_priority > p->rt_priority &&
4106 param->sched_priority > rlim_rtprio)
4107 return -EPERM;
4108 }
4109
4110 /*
4111 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4112 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4113 */
4114 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4115 if (!can_nice(p, TASK_NICE(p)))
4116 return -EPERM;
4117 }
4118
4119 /* can't change other user's priorities */
4120 if (!check_same_owner(p))
4121 return -EPERM;
4122
4123 /* Normal users shall not reset the sched_reset_on_fork flag */
4124 if (p->sched_reset_on_fork && !reset_on_fork)
4125 return -EPERM;
4126 }
4127
4128 if (user) {
4129 retval = security_task_setscheduler(p);
4130 if (retval)
4131 return retval;
4132 }
4133
4134 /*
4135 * make sure no PI-waiters arrive (or leave) while we are
4136 * changing the priority of the task:
4137 *
4138 * To be able to change p->policy safely, the appropriate
4139 * runqueue lock must be held.
4140 */
4141 rq = task_rq_lock(p, &flags);
4142
4143 /*
4144 * Changing the policy of the stop threads its a very bad idea
4145 */
4146 if (p == rq->stop) {
4147 task_rq_unlock(rq, p, &flags);
4148 return -EINVAL;
4149 }
4150
4151 /*
4152 * If not changing anything there's no need to proceed further:
4153 */
4154 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4155 param->sched_priority == p->rt_priority))) {
4156
4157 __task_rq_unlock(rq);
4158 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4159 return 0;
4160 }
4161
4162 #ifdef CONFIG_RT_GROUP_SCHED
4163 if (user) {
4164 /*
4165 * Do not allow realtime tasks into groups that have no runtime
4166 * assigned.
4167 */
4168 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4169 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4170 !task_group_is_autogroup(task_group(p))) {
4171 task_rq_unlock(rq, p, &flags);
4172 return -EPERM;
4173 }
4174 }
4175 #endif
4176
4177 /* recheck policy now with rq lock held */
4178 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4179 policy = oldpolicy = -1;
4180 task_rq_unlock(rq, p, &flags);
4181 goto recheck;
4182 }
4183 on_rq = p->on_rq;
4184 running = task_current(rq, p);
4185 if (on_rq)
4186 dequeue_task(rq, p, 0);
4187 if (running)
4188 p->sched_class->put_prev_task(rq, p);
4189
4190 p->sched_reset_on_fork = reset_on_fork;
4191
4192 oldprio = p->prio;
4193 prev_class = p->sched_class;
4194 __setscheduler(rq, p, policy, param->sched_priority);
4195
4196 if (running)
4197 p->sched_class->set_curr_task(rq);
4198 if (on_rq)
4199 enqueue_task(rq, p, 0);
4200
4201 check_class_changed(rq, p, prev_class, oldprio);
4202 task_rq_unlock(rq, p, &flags);
4203
4204 rt_mutex_adjust_pi(p);
4205
4206 return 0;
4207 }
4208
4209 /**
4210 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4211 * @p: the task in question.
4212 * @policy: new policy.
4213 * @param: structure containing the new RT priority.
4214 *
4215 * NOTE that the task may be already dead.
4216 */
4217 int sched_setscheduler(struct task_struct *p, int policy,
4218 const struct sched_param *param)
4219 {
4220 return __sched_setscheduler(p, policy, param, true);
4221 }
4222 EXPORT_SYMBOL_GPL(sched_setscheduler);
4223
4224 /**
4225 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4226 * @p: the task in question.
4227 * @policy: new policy.
4228 * @param: structure containing the new RT priority.
4229 *
4230 * Just like sched_setscheduler, only don't bother checking if the
4231 * current context has permission. For example, this is needed in
4232 * stop_machine(): we create temporary high priority worker threads,
4233 * but our caller might not have that capability.
4234 */
4235 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4236 const struct sched_param *param)
4237 {
4238 return __sched_setscheduler(p, policy, param, false);
4239 }
4240
4241 static int
4242 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4243 {
4244 struct sched_param lparam;
4245 struct task_struct *p;
4246 int retval;
4247
4248 if (!param || pid < 0)
4249 return -EINVAL;
4250 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4251 return -EFAULT;
4252
4253 rcu_read_lock();
4254 retval = -ESRCH;
4255 p = find_process_by_pid(pid);
4256 if (p != NULL)
4257 retval = sched_setscheduler(p, policy, &lparam);
4258 rcu_read_unlock();
4259
4260 return retval;
4261 }
4262
4263 /**
4264 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4265 * @pid: the pid in question.
4266 * @policy: new policy.
4267 * @param: structure containing the new RT priority.
4268 */
4269 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4270 struct sched_param __user *, param)
4271 {
4272 /* negative values for policy are not valid */
4273 if (policy < 0)
4274 return -EINVAL;
4275
4276 return do_sched_setscheduler(pid, policy, param);
4277 }
4278
4279 /**
4280 * sys_sched_setparam - set/change the RT priority of a thread
4281 * @pid: the pid in question.
4282 * @param: structure containing the new RT priority.
4283 */
4284 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4285 {
4286 return do_sched_setscheduler(pid, -1, param);
4287 }
4288
4289 /**
4290 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4291 * @pid: the pid in question.
4292 */
4293 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4294 {
4295 struct task_struct *p;
4296 int retval;
4297
4298 if (pid < 0)
4299 return -EINVAL;
4300
4301 retval = -ESRCH;
4302 rcu_read_lock();
4303 p = find_process_by_pid(pid);
4304 if (p) {
4305 retval = security_task_getscheduler(p);
4306 if (!retval)
4307 retval = p->policy
4308 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4309 }
4310 rcu_read_unlock();
4311 return retval;
4312 }
4313
4314 /**
4315 * sys_sched_getparam - get the RT priority of a thread
4316 * @pid: the pid in question.
4317 * @param: structure containing the RT priority.
4318 */
4319 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4320 {
4321 struct sched_param lp;
4322 struct task_struct *p;
4323 int retval;
4324
4325 if (!param || pid < 0)
4326 return -EINVAL;
4327
4328 rcu_read_lock();
4329 p = find_process_by_pid(pid);
4330 retval = -ESRCH;
4331 if (!p)
4332 goto out_unlock;
4333
4334 retval = security_task_getscheduler(p);
4335 if (retval)
4336 goto out_unlock;
4337
4338 lp.sched_priority = p->rt_priority;
4339 rcu_read_unlock();
4340
4341 /*
4342 * This one might sleep, we cannot do it with a spinlock held ...
4343 */
4344 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4345
4346 return retval;
4347
4348 out_unlock:
4349 rcu_read_unlock();
4350 return retval;
4351 }
4352
4353 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4354 {
4355 cpumask_var_t cpus_allowed, new_mask;
4356 struct task_struct *p;
4357 int retval;
4358
4359 get_online_cpus();
4360 rcu_read_lock();
4361
4362 p = find_process_by_pid(pid);
4363 if (!p) {
4364 rcu_read_unlock();
4365 put_online_cpus();
4366 return -ESRCH;
4367 }
4368
4369 /* Prevent p going away */
4370 get_task_struct(p);
4371 rcu_read_unlock();
4372
4373 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4374 retval = -ENOMEM;
4375 goto out_put_task;
4376 }
4377 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4378 retval = -ENOMEM;
4379 goto out_free_cpus_allowed;
4380 }
4381 retval = -EPERM;
4382 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4383 goto out_unlock;
4384
4385 retval = security_task_setscheduler(p);
4386 if (retval)
4387 goto out_unlock;
4388
4389 cpuset_cpus_allowed(p, cpus_allowed);
4390 cpumask_and(new_mask, in_mask, cpus_allowed);
4391 again:
4392 retval = set_cpus_allowed_ptr(p, new_mask);
4393
4394 if (!retval) {
4395 cpuset_cpus_allowed(p, cpus_allowed);
4396 if (!cpumask_subset(new_mask, cpus_allowed)) {
4397 /*
4398 * We must have raced with a concurrent cpuset
4399 * update. Just reset the cpus_allowed to the
4400 * cpuset's cpus_allowed
4401 */
4402 cpumask_copy(new_mask, cpus_allowed);
4403 goto again;
4404 }
4405 }
4406 out_unlock:
4407 free_cpumask_var(new_mask);
4408 out_free_cpus_allowed:
4409 free_cpumask_var(cpus_allowed);
4410 out_put_task:
4411 put_task_struct(p);
4412 put_online_cpus();
4413 return retval;
4414 }
4415
4416 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4417 struct cpumask *new_mask)
4418 {
4419 if (len < cpumask_size())
4420 cpumask_clear(new_mask);
4421 else if (len > cpumask_size())
4422 len = cpumask_size();
4423
4424 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4425 }
4426
4427 /**
4428 * sys_sched_setaffinity - set the cpu affinity of a process
4429 * @pid: pid of the process
4430 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4431 * @user_mask_ptr: user-space pointer to the new cpu mask
4432 */
4433 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4434 unsigned long __user *, user_mask_ptr)
4435 {
4436 cpumask_var_t new_mask;
4437 int retval;
4438
4439 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4440 return -ENOMEM;
4441
4442 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4443 if (retval == 0)
4444 retval = sched_setaffinity(pid, new_mask);
4445 free_cpumask_var(new_mask);
4446 return retval;
4447 }
4448
4449 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4450 {
4451 struct task_struct *p;
4452 unsigned long flags;
4453 int retval;
4454
4455 get_online_cpus();
4456 rcu_read_lock();
4457
4458 retval = -ESRCH;
4459 p = find_process_by_pid(pid);
4460 if (!p)
4461 goto out_unlock;
4462
4463 retval = security_task_getscheduler(p);
4464 if (retval)
4465 goto out_unlock;
4466
4467 raw_spin_lock_irqsave(&p->pi_lock, flags);
4468 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4469 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4470
4471 out_unlock:
4472 rcu_read_unlock();
4473 put_online_cpus();
4474
4475 return retval;
4476 }
4477
4478 /**
4479 * sys_sched_getaffinity - get the cpu affinity of a process
4480 * @pid: pid of the process
4481 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4482 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4483 */
4484 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4485 unsigned long __user *, user_mask_ptr)
4486 {
4487 int ret;
4488 cpumask_var_t mask;
4489
4490 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4491 return -EINVAL;
4492 if (len & (sizeof(unsigned long)-1))
4493 return -EINVAL;
4494
4495 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4496 return -ENOMEM;
4497
4498 ret = sched_getaffinity(pid, mask);
4499 if (ret == 0) {
4500 size_t retlen = min_t(size_t, len, cpumask_size());
4501
4502 if (copy_to_user(user_mask_ptr, mask, retlen))
4503 ret = -EFAULT;
4504 else
4505 ret = retlen;
4506 }
4507 free_cpumask_var(mask);
4508
4509 return ret;
4510 }
4511
4512 /**
4513 * sys_sched_yield - yield the current processor to other threads.
4514 *
4515 * This function yields the current CPU to other tasks. If there are no
4516 * other threads running on this CPU then this function will return.
4517 */
4518 SYSCALL_DEFINE0(sched_yield)
4519 {
4520 struct rq *rq = this_rq_lock();
4521
4522 schedstat_inc(rq, yld_count);
4523 current->sched_class->yield_task(rq);
4524
4525 /*
4526 * Since we are going to call schedule() anyway, there's
4527 * no need to preempt or enable interrupts:
4528 */
4529 __release(rq->lock);
4530 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4531 do_raw_spin_unlock(&rq->lock);
4532 sched_preempt_enable_no_resched();
4533
4534 schedule();
4535
4536 return 0;
4537 }
4538
4539 static inline int should_resched(void)
4540 {
4541 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4542 }
4543
4544 static void __cond_resched(void)
4545 {
4546 add_preempt_count(PREEMPT_ACTIVE);
4547 __schedule();
4548 sub_preempt_count(PREEMPT_ACTIVE);
4549 }
4550
4551 int __sched _cond_resched(void)
4552 {
4553 if (should_resched()) {
4554 __cond_resched();
4555 return 1;
4556 }
4557 return 0;
4558 }
4559 EXPORT_SYMBOL(_cond_resched);
4560
4561 /*
4562 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4563 * call schedule, and on return reacquire the lock.
4564 *
4565 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4566 * operations here to prevent schedule() from being called twice (once via
4567 * spin_unlock(), once by hand).
4568 */
4569 int __cond_resched_lock(spinlock_t *lock)
4570 {
4571 int resched = should_resched();
4572 int ret = 0;
4573
4574 lockdep_assert_held(lock);
4575
4576 if (spin_needbreak(lock) || resched) {
4577 spin_unlock(lock);
4578 if (resched)
4579 __cond_resched();
4580 else
4581 cpu_relax();
4582 ret = 1;
4583 spin_lock(lock);
4584 }
4585 return ret;
4586 }
4587 EXPORT_SYMBOL(__cond_resched_lock);
4588
4589 int __sched __cond_resched_softirq(void)
4590 {
4591 BUG_ON(!in_softirq());
4592
4593 if (should_resched()) {
4594 local_bh_enable();
4595 __cond_resched();
4596 local_bh_disable();
4597 return 1;
4598 }
4599 return 0;
4600 }
4601 EXPORT_SYMBOL(__cond_resched_softirq);
4602
4603 /**
4604 * yield - yield the current processor to other threads.
4605 *
4606 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4607 *
4608 * The scheduler is at all times free to pick the calling task as the most
4609 * eligible task to run, if removing the yield() call from your code breaks
4610 * it, its already broken.
4611 *
4612 * Typical broken usage is:
4613 *
4614 * while (!event)
4615 * yield();
4616 *
4617 * where one assumes that yield() will let 'the other' process run that will
4618 * make event true. If the current task is a SCHED_FIFO task that will never
4619 * happen. Never use yield() as a progress guarantee!!
4620 *
4621 * If you want to use yield() to wait for something, use wait_event().
4622 * If you want to use yield() to be 'nice' for others, use cond_resched().
4623 * If you still want to use yield(), do not!
4624 */
4625 void __sched yield(void)
4626 {
4627 set_current_state(TASK_RUNNING);
4628 sys_sched_yield();
4629 }
4630 EXPORT_SYMBOL(yield);
4631
4632 /**
4633 * yield_to - yield the current processor to another thread in
4634 * your thread group, or accelerate that thread toward the
4635 * processor it's on.
4636 * @p: target task
4637 * @preempt: whether task preemption is allowed or not
4638 *
4639 * It's the caller's job to ensure that the target task struct
4640 * can't go away on us before we can do any checks.
4641 *
4642 * Returns true if we indeed boosted the target task.
4643 */
4644 bool __sched yield_to(struct task_struct *p, bool preempt)
4645 {
4646 struct task_struct *curr = current;
4647 struct rq *rq, *p_rq;
4648 unsigned long flags;
4649 bool yielded = 0;
4650
4651 local_irq_save(flags);
4652 rq = this_rq();
4653
4654 again:
4655 p_rq = task_rq(p);
4656 double_rq_lock(rq, p_rq);
4657 while (task_rq(p) != p_rq) {
4658 double_rq_unlock(rq, p_rq);
4659 goto again;
4660 }
4661
4662 if (!curr->sched_class->yield_to_task)
4663 goto out;
4664
4665 if (curr->sched_class != p->sched_class)
4666 goto out;
4667
4668 if (task_running(p_rq, p) || p->state)
4669 goto out;
4670
4671 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4672 if (yielded) {
4673 schedstat_inc(rq, yld_count);
4674 /*
4675 * Make p's CPU reschedule; pick_next_entity takes care of
4676 * fairness.
4677 */
4678 if (preempt && rq != p_rq)
4679 resched_task(p_rq->curr);
4680 } else {
4681 /*
4682 * We might have set it in task_yield_fair(), but are
4683 * not going to schedule(), so don't want to skip
4684 * the next update.
4685 */
4686 rq->skip_clock_update = 0;
4687 }
4688
4689 out:
4690 double_rq_unlock(rq, p_rq);
4691 local_irq_restore(flags);
4692
4693 if (yielded)
4694 schedule();
4695
4696 return yielded;
4697 }
4698 EXPORT_SYMBOL_GPL(yield_to);
4699
4700 /*
4701 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4702 * that process accounting knows that this is a task in IO wait state.
4703 */
4704 void __sched io_schedule(void)
4705 {
4706 struct rq *rq = raw_rq();
4707
4708 delayacct_blkio_start();
4709 atomic_inc(&rq->nr_iowait);
4710 blk_flush_plug(current);
4711 current->in_iowait = 1;
4712 schedule();
4713 current->in_iowait = 0;
4714 atomic_dec(&rq->nr_iowait);
4715 delayacct_blkio_end();
4716 }
4717 EXPORT_SYMBOL(io_schedule);
4718
4719 long __sched io_schedule_timeout(long timeout)
4720 {
4721 struct rq *rq = raw_rq();
4722 long ret;
4723
4724 delayacct_blkio_start();
4725 atomic_inc(&rq->nr_iowait);
4726 blk_flush_plug(current);
4727 current->in_iowait = 1;
4728 ret = schedule_timeout(timeout);
4729 current->in_iowait = 0;
4730 atomic_dec(&rq->nr_iowait);
4731 delayacct_blkio_end();
4732 return ret;
4733 }
4734
4735 /**
4736 * sys_sched_get_priority_max - return maximum RT priority.
4737 * @policy: scheduling class.
4738 *
4739 * this syscall returns the maximum rt_priority that can be used
4740 * by a given scheduling class.
4741 */
4742 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4743 {
4744 int ret = -EINVAL;
4745
4746 switch (policy) {
4747 case SCHED_FIFO:
4748 case SCHED_RR:
4749 ret = MAX_USER_RT_PRIO-1;
4750 break;
4751 case SCHED_NORMAL:
4752 case SCHED_BATCH:
4753 case SCHED_IDLE:
4754 ret = 0;
4755 break;
4756 }
4757 return ret;
4758 }
4759
4760 /**
4761 * sys_sched_get_priority_min - return minimum RT priority.
4762 * @policy: scheduling class.
4763 *
4764 * this syscall returns the minimum rt_priority that can be used
4765 * by a given scheduling class.
4766 */
4767 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4768 {
4769 int ret = -EINVAL;
4770
4771 switch (policy) {
4772 case SCHED_FIFO:
4773 case SCHED_RR:
4774 ret = 1;
4775 break;
4776 case SCHED_NORMAL:
4777 case SCHED_BATCH:
4778 case SCHED_IDLE:
4779 ret = 0;
4780 }
4781 return ret;
4782 }
4783
4784 /**
4785 * sys_sched_rr_get_interval - return the default timeslice of a process.
4786 * @pid: pid of the process.
4787 * @interval: userspace pointer to the timeslice value.
4788 *
4789 * this syscall writes the default timeslice value of a given process
4790 * into the user-space timespec buffer. A value of '0' means infinity.
4791 */
4792 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4793 struct timespec __user *, interval)
4794 {
4795 struct task_struct *p;
4796 unsigned int time_slice;
4797 unsigned long flags;
4798 struct rq *rq;
4799 int retval;
4800 struct timespec t;
4801
4802 if (pid < 0)
4803 return -EINVAL;
4804
4805 retval = -ESRCH;
4806 rcu_read_lock();
4807 p = find_process_by_pid(pid);
4808 if (!p)
4809 goto out_unlock;
4810
4811 retval = security_task_getscheduler(p);
4812 if (retval)
4813 goto out_unlock;
4814
4815 rq = task_rq_lock(p, &flags);
4816 time_slice = p->sched_class->get_rr_interval(rq, p);
4817 task_rq_unlock(rq, p, &flags);
4818
4819 rcu_read_unlock();
4820 jiffies_to_timespec(time_slice, &t);
4821 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4822 return retval;
4823
4824 out_unlock:
4825 rcu_read_unlock();
4826 return retval;
4827 }
4828
4829 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4830
4831 void sched_show_task(struct task_struct *p)
4832 {
4833 unsigned long free = 0;
4834 unsigned state;
4835
4836 state = p->state ? __ffs(p->state) + 1 : 0;
4837 printk(KERN_INFO "%-15.15s %c", p->comm,
4838 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4839 #if BITS_PER_LONG == 32
4840 if (state == TASK_RUNNING)
4841 printk(KERN_CONT " running ");
4842 else
4843 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4844 #else
4845 if (state == TASK_RUNNING)
4846 printk(KERN_CONT " running task ");
4847 else
4848 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4849 #endif
4850 #ifdef CONFIG_DEBUG_STACK_USAGE
4851 free = stack_not_used(p);
4852 #endif
4853 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4854 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4855 (unsigned long)task_thread_info(p)->flags);
4856
4857 show_stack(p, NULL);
4858 }
4859
4860 void show_state_filter(unsigned long state_filter)
4861 {
4862 struct task_struct *g, *p;
4863
4864 #if BITS_PER_LONG == 32
4865 printk(KERN_INFO
4866 " task PC stack pid father\n");
4867 #else
4868 printk(KERN_INFO
4869 " task PC stack pid father\n");
4870 #endif
4871 rcu_read_lock();
4872 do_each_thread(g, p) {
4873 /*
4874 * reset the NMI-timeout, listing all files on a slow
4875 * console might take a lot of time:
4876 */
4877 touch_nmi_watchdog();
4878 if (!state_filter || (p->state & state_filter))
4879 sched_show_task(p);
4880 } while_each_thread(g, p);
4881
4882 touch_all_softlockup_watchdogs();
4883
4884 #ifdef CONFIG_SCHED_DEBUG
4885 sysrq_sched_debug_show();
4886 #endif
4887 rcu_read_unlock();
4888 /*
4889 * Only show locks if all tasks are dumped:
4890 */
4891 if (!state_filter)
4892 debug_show_all_locks();
4893 }
4894
4895 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4896 {
4897 idle->sched_class = &idle_sched_class;
4898 }
4899
4900 /**
4901 * init_idle - set up an idle thread for a given CPU
4902 * @idle: task in question
4903 * @cpu: cpu the idle task belongs to
4904 *
4905 * NOTE: this function does not set the idle thread's NEED_RESCHED
4906 * flag, to make booting more robust.
4907 */
4908 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4909 {
4910 struct rq *rq = cpu_rq(cpu);
4911 unsigned long flags;
4912
4913 raw_spin_lock_irqsave(&rq->lock, flags);
4914
4915 __sched_fork(idle);
4916 idle->state = TASK_RUNNING;
4917 idle->se.exec_start = sched_clock();
4918
4919 do_set_cpus_allowed(idle, cpumask_of(cpu));
4920 /*
4921 * We're having a chicken and egg problem, even though we are
4922 * holding rq->lock, the cpu isn't yet set to this cpu so the
4923 * lockdep check in task_group() will fail.
4924 *
4925 * Similar case to sched_fork(). / Alternatively we could
4926 * use task_rq_lock() here and obtain the other rq->lock.
4927 *
4928 * Silence PROVE_RCU
4929 */
4930 rcu_read_lock();
4931 __set_task_cpu(idle, cpu);
4932 rcu_read_unlock();
4933
4934 rq->curr = rq->idle = idle;
4935 #if defined(CONFIG_SMP)
4936 idle->on_cpu = 1;
4937 #endif
4938 raw_spin_unlock_irqrestore(&rq->lock, flags);
4939
4940 /* Set the preempt count _outside_ the spinlocks! */
4941 task_thread_info(idle)->preempt_count = 0;
4942
4943 /*
4944 * The idle tasks have their own, simple scheduling class:
4945 */
4946 idle->sched_class = &idle_sched_class;
4947 ftrace_graph_init_idle_task(idle, cpu);
4948 #if defined(CONFIG_SMP)
4949 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4950 #endif
4951 }
4952
4953 #ifdef CONFIG_SMP
4954 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4955 {
4956 if (p->sched_class && p->sched_class->set_cpus_allowed)
4957 p->sched_class->set_cpus_allowed(p, new_mask);
4958
4959 cpumask_copy(&p->cpus_allowed, new_mask);
4960 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4961 }
4962
4963 /*
4964 * This is how migration works:
4965 *
4966 * 1) we invoke migration_cpu_stop() on the target CPU using
4967 * stop_one_cpu().
4968 * 2) stopper starts to run (implicitly forcing the migrated thread
4969 * off the CPU)
4970 * 3) it checks whether the migrated task is still in the wrong runqueue.
4971 * 4) if it's in the wrong runqueue then the migration thread removes
4972 * it and puts it into the right queue.
4973 * 5) stopper completes and stop_one_cpu() returns and the migration
4974 * is done.
4975 */
4976
4977 /*
4978 * Change a given task's CPU affinity. Migrate the thread to a
4979 * proper CPU and schedule it away if the CPU it's executing on
4980 * is removed from the allowed bitmask.
4981 *
4982 * NOTE: the caller must have a valid reference to the task, the
4983 * task must not exit() & deallocate itself prematurely. The
4984 * call is not atomic; no spinlocks may be held.
4985 */
4986 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4987 {
4988 unsigned long flags;
4989 struct rq *rq;
4990 unsigned int dest_cpu;
4991 int ret = 0;
4992
4993 rq = task_rq_lock(p, &flags);
4994
4995 if (cpumask_equal(&p->cpus_allowed, new_mask))
4996 goto out;
4997
4998 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4999 ret = -EINVAL;
5000 goto out;
5001 }
5002
5003 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5004 ret = -EINVAL;
5005 goto out;
5006 }
5007
5008 do_set_cpus_allowed(p, new_mask);
5009
5010 /* Can the task run on the task's current CPU? If so, we're done */
5011 if (cpumask_test_cpu(task_cpu(p), new_mask))
5012 goto out;
5013
5014 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5015 if (p->on_rq) {
5016 struct migration_arg arg = { p, dest_cpu };
5017 /* Need help from migration thread: drop lock and wait. */
5018 task_rq_unlock(rq, p, &flags);
5019 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5020 tlb_migrate_finish(p->mm);
5021 return 0;
5022 }
5023 out:
5024 task_rq_unlock(rq, p, &flags);
5025
5026 return ret;
5027 }
5028 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5029
5030 /*
5031 * Move (not current) task off this cpu, onto dest cpu. We're doing
5032 * this because either it can't run here any more (set_cpus_allowed()
5033 * away from this CPU, or CPU going down), or because we're
5034 * attempting to rebalance this task on exec (sched_exec).
5035 *
5036 * So we race with normal scheduler movements, but that's OK, as long
5037 * as the task is no longer on this CPU.
5038 *
5039 * Returns non-zero if task was successfully migrated.
5040 */
5041 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5042 {
5043 struct rq *rq_dest, *rq_src;
5044 int ret = 0;
5045
5046 if (unlikely(!cpu_active(dest_cpu)))
5047 return ret;
5048
5049 rq_src = cpu_rq(src_cpu);
5050 rq_dest = cpu_rq(dest_cpu);
5051
5052 raw_spin_lock(&p->pi_lock);
5053 double_rq_lock(rq_src, rq_dest);
5054 /* Already moved. */
5055 if (task_cpu(p) != src_cpu)
5056 goto done;
5057 /* Affinity changed (again). */
5058 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5059 goto fail;
5060
5061 /*
5062 * If we're not on a rq, the next wake-up will ensure we're
5063 * placed properly.
5064 */
5065 if (p->on_rq) {
5066 dequeue_task(rq_src, p, 0);
5067 set_task_cpu(p, dest_cpu);
5068 enqueue_task(rq_dest, p, 0);
5069 check_preempt_curr(rq_dest, p, 0);
5070 }
5071 done:
5072 ret = 1;
5073 fail:
5074 double_rq_unlock(rq_src, rq_dest);
5075 raw_spin_unlock(&p->pi_lock);
5076 return ret;
5077 }
5078
5079 /*
5080 * migration_cpu_stop - this will be executed by a highprio stopper thread
5081 * and performs thread migration by bumping thread off CPU then
5082 * 'pushing' onto another runqueue.
5083 */
5084 static int migration_cpu_stop(void *data)
5085 {
5086 struct migration_arg *arg = data;
5087
5088 /*
5089 * The original target cpu might have gone down and we might
5090 * be on another cpu but it doesn't matter.
5091 */
5092 local_irq_disable();
5093 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5094 local_irq_enable();
5095 return 0;
5096 }
5097
5098 #ifdef CONFIG_HOTPLUG_CPU
5099
5100 /*
5101 * Ensures that the idle task is using init_mm right before its cpu goes
5102 * offline.
5103 */
5104 void idle_task_exit(void)
5105 {
5106 struct mm_struct *mm = current->active_mm;
5107
5108 BUG_ON(cpu_online(smp_processor_id()));
5109
5110 if (mm != &init_mm)
5111 switch_mm(mm, &init_mm, current);
5112 mmdrop(mm);
5113 }
5114
5115 /*
5116 * While a dead CPU has no uninterruptible tasks queued at this point,
5117 * it might still have a nonzero ->nr_uninterruptible counter, because
5118 * for performance reasons the counter is not stricly tracking tasks to
5119 * their home CPUs. So we just add the counter to another CPU's counter,
5120 * to keep the global sum constant after CPU-down:
5121 */
5122 static void migrate_nr_uninterruptible(struct rq *rq_src)
5123 {
5124 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5125
5126 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5127 rq_src->nr_uninterruptible = 0;
5128 }
5129
5130 /*
5131 * remove the tasks which were accounted by rq from calc_load_tasks.
5132 */
5133 static void calc_global_load_remove(struct rq *rq)
5134 {
5135 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5136 rq->calc_load_active = 0;
5137 }
5138
5139 /*
5140 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5141 * try_to_wake_up()->select_task_rq().
5142 *
5143 * Called with rq->lock held even though we'er in stop_machine() and
5144 * there's no concurrency possible, we hold the required locks anyway
5145 * because of lock validation efforts.
5146 */
5147 static void migrate_tasks(unsigned int dead_cpu)
5148 {
5149 struct rq *rq = cpu_rq(dead_cpu);
5150 struct task_struct *next, *stop = rq->stop;
5151 int dest_cpu;
5152
5153 /*
5154 * Fudge the rq selection such that the below task selection loop
5155 * doesn't get stuck on the currently eligible stop task.
5156 *
5157 * We're currently inside stop_machine() and the rq is either stuck
5158 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5159 * either way we should never end up calling schedule() until we're
5160 * done here.
5161 */
5162 rq->stop = NULL;
5163
5164 /* Ensure any throttled groups are reachable by pick_next_task */
5165 unthrottle_offline_cfs_rqs(rq);
5166
5167 for ( ; ; ) {
5168 /*
5169 * There's this thread running, bail when that's the only
5170 * remaining thread.
5171 */
5172 if (rq->nr_running == 1)
5173 break;
5174
5175 next = pick_next_task(rq);
5176 BUG_ON(!next);
5177 next->sched_class->put_prev_task(rq, next);
5178
5179 /* Find suitable destination for @next, with force if needed. */
5180 dest_cpu = select_fallback_rq(dead_cpu, next);
5181 raw_spin_unlock(&rq->lock);
5182
5183 __migrate_task(next, dead_cpu, dest_cpu);
5184
5185 raw_spin_lock(&rq->lock);
5186 }
5187
5188 rq->stop = stop;
5189 }
5190
5191 #endif /* CONFIG_HOTPLUG_CPU */
5192
5193 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5194
5195 static struct ctl_table sd_ctl_dir[] = {
5196 {
5197 .procname = "sched_domain",
5198 .mode = 0555,
5199 },
5200 {}
5201 };
5202
5203 static struct ctl_table sd_ctl_root[] = {
5204 {
5205 .procname = "kernel",
5206 .mode = 0555,
5207 .child = sd_ctl_dir,
5208 },
5209 {}
5210 };
5211
5212 static struct ctl_table *sd_alloc_ctl_entry(int n)
5213 {
5214 struct ctl_table *entry =
5215 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5216
5217 return entry;
5218 }
5219
5220 static void sd_free_ctl_entry(struct ctl_table **tablep)
5221 {
5222 struct ctl_table *entry;
5223
5224 /*
5225 * In the intermediate directories, both the child directory and
5226 * procname are dynamically allocated and could fail but the mode
5227 * will always be set. In the lowest directory the names are
5228 * static strings and all have proc handlers.
5229 */
5230 for (entry = *tablep; entry->mode; entry++) {
5231 if (entry->child)
5232 sd_free_ctl_entry(&entry->child);
5233 if (entry->proc_handler == NULL)
5234 kfree(entry->procname);
5235 }
5236
5237 kfree(*tablep);
5238 *tablep = NULL;
5239 }
5240
5241 static void
5242 set_table_entry(struct ctl_table *entry,
5243 const char *procname, void *data, int maxlen,
5244 umode_t mode, proc_handler *proc_handler)
5245 {
5246 entry->procname = procname;
5247 entry->data = data;
5248 entry->maxlen = maxlen;
5249 entry->mode = mode;
5250 entry->proc_handler = proc_handler;
5251 }
5252
5253 static struct ctl_table *
5254 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5255 {
5256 struct ctl_table *table = sd_alloc_ctl_entry(13);
5257
5258 if (table == NULL)
5259 return NULL;
5260
5261 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5262 sizeof(long), 0644, proc_doulongvec_minmax);
5263 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5264 sizeof(long), 0644, proc_doulongvec_minmax);
5265 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5266 sizeof(int), 0644, proc_dointvec_minmax);
5267 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5268 sizeof(int), 0644, proc_dointvec_minmax);
5269 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5270 sizeof(int), 0644, proc_dointvec_minmax);
5271 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5272 sizeof(int), 0644, proc_dointvec_minmax);
5273 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5274 sizeof(int), 0644, proc_dointvec_minmax);
5275 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5276 sizeof(int), 0644, proc_dointvec_minmax);
5277 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5278 sizeof(int), 0644, proc_dointvec_minmax);
5279 set_table_entry(&table[9], "cache_nice_tries",
5280 &sd->cache_nice_tries,
5281 sizeof(int), 0644, proc_dointvec_minmax);
5282 set_table_entry(&table[10], "flags", &sd->flags,
5283 sizeof(int), 0644, proc_dointvec_minmax);
5284 set_table_entry(&table[11], "name", sd->name,
5285 CORENAME_MAX_SIZE, 0444, proc_dostring);
5286 /* &table[12] is terminator */
5287
5288 return table;
5289 }
5290
5291 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5292 {
5293 struct ctl_table *entry, *table;
5294 struct sched_domain *sd;
5295 int domain_num = 0, i;
5296 char buf[32];
5297
5298 for_each_domain(cpu, sd)
5299 domain_num++;
5300 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5301 if (table == NULL)
5302 return NULL;
5303
5304 i = 0;
5305 for_each_domain(cpu, sd) {
5306 snprintf(buf, 32, "domain%d", i);
5307 entry->procname = kstrdup(buf, GFP_KERNEL);
5308 entry->mode = 0555;
5309 entry->child = sd_alloc_ctl_domain_table(sd);
5310 entry++;
5311 i++;
5312 }
5313 return table;
5314 }
5315
5316 static struct ctl_table_header *sd_sysctl_header;
5317 static void register_sched_domain_sysctl(void)
5318 {
5319 int i, cpu_num = num_possible_cpus();
5320 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5321 char buf[32];
5322
5323 WARN_ON(sd_ctl_dir[0].child);
5324 sd_ctl_dir[0].child = entry;
5325
5326 if (entry == NULL)
5327 return;
5328
5329 for_each_possible_cpu(i) {
5330 snprintf(buf, 32, "cpu%d", i);
5331 entry->procname = kstrdup(buf, GFP_KERNEL);
5332 entry->mode = 0555;
5333 entry->child = sd_alloc_ctl_cpu_table(i);
5334 entry++;
5335 }
5336
5337 WARN_ON(sd_sysctl_header);
5338 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5339 }
5340
5341 /* may be called multiple times per register */
5342 static void unregister_sched_domain_sysctl(void)
5343 {
5344 if (sd_sysctl_header)
5345 unregister_sysctl_table(sd_sysctl_header);
5346 sd_sysctl_header = NULL;
5347 if (sd_ctl_dir[0].child)
5348 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5349 }
5350 #else
5351 static void register_sched_domain_sysctl(void)
5352 {
5353 }
5354 static void unregister_sched_domain_sysctl(void)
5355 {
5356 }
5357 #endif
5358
5359 static void set_rq_online(struct rq *rq)
5360 {
5361 if (!rq->online) {
5362 const struct sched_class *class;
5363
5364 cpumask_set_cpu(rq->cpu, rq->rd->online);
5365 rq->online = 1;
5366
5367 for_each_class(class) {
5368 if (class->rq_online)
5369 class->rq_online(rq);
5370 }
5371 }
5372 }
5373
5374 static void set_rq_offline(struct rq *rq)
5375 {
5376 if (rq->online) {
5377 const struct sched_class *class;
5378
5379 for_each_class(class) {
5380 if (class->rq_offline)
5381 class->rq_offline(rq);
5382 }
5383
5384 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5385 rq->online = 0;
5386 }
5387 }
5388
5389 /*
5390 * migration_call - callback that gets triggered when a CPU is added.
5391 * Here we can start up the necessary migration thread for the new CPU.
5392 */
5393 static int __cpuinit
5394 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5395 {
5396 int cpu = (long)hcpu;
5397 unsigned long flags;
5398 struct rq *rq = cpu_rq(cpu);
5399
5400 switch (action & ~CPU_TASKS_FROZEN) {
5401
5402 case CPU_UP_PREPARE:
5403 rq->calc_load_update = calc_load_update;
5404 break;
5405
5406 case CPU_ONLINE:
5407 /* Update our root-domain */
5408 raw_spin_lock_irqsave(&rq->lock, flags);
5409 if (rq->rd) {
5410 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5411
5412 set_rq_online(rq);
5413 }
5414 raw_spin_unlock_irqrestore(&rq->lock, flags);
5415 break;
5416
5417 #ifdef CONFIG_HOTPLUG_CPU
5418 case CPU_DYING:
5419 sched_ttwu_pending();
5420 /* Update our root-domain */
5421 raw_spin_lock_irqsave(&rq->lock, flags);
5422 if (rq->rd) {
5423 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5424 set_rq_offline(rq);
5425 }
5426 migrate_tasks(cpu);
5427 BUG_ON(rq->nr_running != 1); /* the migration thread */
5428 raw_spin_unlock_irqrestore(&rq->lock, flags);
5429
5430 migrate_nr_uninterruptible(rq);
5431 calc_global_load_remove(rq);
5432 break;
5433 #endif
5434 }
5435
5436 update_max_interval();
5437
5438 return NOTIFY_OK;
5439 }
5440
5441 /*
5442 * Register at high priority so that task migration (migrate_all_tasks)
5443 * happens before everything else. This has to be lower priority than
5444 * the notifier in the perf_event subsystem, though.
5445 */
5446 static struct notifier_block __cpuinitdata migration_notifier = {
5447 .notifier_call = migration_call,
5448 .priority = CPU_PRI_MIGRATION,
5449 };
5450
5451 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5452 unsigned long action, void *hcpu)
5453 {
5454 switch (action & ~CPU_TASKS_FROZEN) {
5455 case CPU_STARTING:
5456 case CPU_DOWN_FAILED:
5457 set_cpu_active((long)hcpu, true);
5458 return NOTIFY_OK;
5459 default:
5460 return NOTIFY_DONE;
5461 }
5462 }
5463
5464 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5465 unsigned long action, void *hcpu)
5466 {
5467 switch (action & ~CPU_TASKS_FROZEN) {
5468 case CPU_DOWN_PREPARE:
5469 set_cpu_active((long)hcpu, false);
5470 return NOTIFY_OK;
5471 default:
5472 return NOTIFY_DONE;
5473 }
5474 }
5475
5476 static int __init migration_init(void)
5477 {
5478 void *cpu = (void *)(long)smp_processor_id();
5479 int err;
5480
5481 /* Initialize migration for the boot CPU */
5482 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5483 BUG_ON(err == NOTIFY_BAD);
5484 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5485 register_cpu_notifier(&migration_notifier);
5486
5487 /* Register cpu active notifiers */
5488 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5489 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5490
5491 return 0;
5492 }
5493 early_initcall(migration_init);
5494 #endif
5495
5496 #ifdef CONFIG_SMP
5497
5498 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5499
5500 #ifdef CONFIG_SCHED_DEBUG
5501
5502 static __read_mostly int sched_domain_debug_enabled;
5503
5504 static int __init sched_domain_debug_setup(char *str)
5505 {
5506 sched_domain_debug_enabled = 1;
5507
5508 return 0;
5509 }
5510 early_param("sched_debug", sched_domain_debug_setup);
5511
5512 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5513 struct cpumask *groupmask)
5514 {
5515 struct sched_group *group = sd->groups;
5516 char str[256];
5517
5518 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5519 cpumask_clear(groupmask);
5520
5521 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5522
5523 if (!(sd->flags & SD_LOAD_BALANCE)) {
5524 printk("does not load-balance\n");
5525 if (sd->parent)
5526 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5527 " has parent");
5528 return -1;
5529 }
5530
5531 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5532
5533 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5534 printk(KERN_ERR "ERROR: domain->span does not contain "
5535 "CPU%d\n", cpu);
5536 }
5537 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5538 printk(KERN_ERR "ERROR: domain->groups does not contain"
5539 " CPU%d\n", cpu);
5540 }
5541
5542 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5543 do {
5544 if (!group) {
5545 printk("\n");
5546 printk(KERN_ERR "ERROR: group is NULL\n");
5547 break;
5548 }
5549
5550 if (!group->sgp->power) {
5551 printk(KERN_CONT "\n");
5552 printk(KERN_ERR "ERROR: domain->cpu_power not "
5553 "set\n");
5554 break;
5555 }
5556
5557 if (!cpumask_weight(sched_group_cpus(group))) {
5558 printk(KERN_CONT "\n");
5559 printk(KERN_ERR "ERROR: empty group\n");
5560 break;
5561 }
5562
5563 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5564 printk(KERN_CONT "\n");
5565 printk(KERN_ERR "ERROR: repeated CPUs\n");
5566 break;
5567 }
5568
5569 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5570
5571 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5572
5573 printk(KERN_CONT " %s", str);
5574 if (group->sgp->power != SCHED_POWER_SCALE) {
5575 printk(KERN_CONT " (cpu_power = %d)",
5576 group->sgp->power);
5577 }
5578
5579 group = group->next;
5580 } while (group != sd->groups);
5581 printk(KERN_CONT "\n");
5582
5583 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5584 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5585
5586 if (sd->parent &&
5587 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5588 printk(KERN_ERR "ERROR: parent span is not a superset "
5589 "of domain->span\n");
5590 return 0;
5591 }
5592
5593 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5594 {
5595 int level = 0;
5596
5597 if (!sched_domain_debug_enabled)
5598 return;
5599
5600 if (!sd) {
5601 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5602 return;
5603 }
5604
5605 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5606
5607 for (;;) {
5608 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5609 break;
5610 level++;
5611 sd = sd->parent;
5612 if (!sd)
5613 break;
5614 }
5615 }
5616 #else /* !CONFIG_SCHED_DEBUG */
5617 # define sched_domain_debug(sd, cpu) do { } while (0)
5618 #endif /* CONFIG_SCHED_DEBUG */
5619
5620 static int sd_degenerate(struct sched_domain *sd)
5621 {
5622 if (cpumask_weight(sched_domain_span(sd)) == 1)
5623 return 1;
5624
5625 /* Following flags need at least 2 groups */
5626 if (sd->flags & (SD_LOAD_BALANCE |
5627 SD_BALANCE_NEWIDLE |
5628 SD_BALANCE_FORK |
5629 SD_BALANCE_EXEC |
5630 SD_SHARE_CPUPOWER |
5631 SD_SHARE_PKG_RESOURCES)) {
5632 if (sd->groups != sd->groups->next)
5633 return 0;
5634 }
5635
5636 /* Following flags don't use groups */
5637 if (sd->flags & (SD_WAKE_AFFINE))
5638 return 0;
5639
5640 return 1;
5641 }
5642
5643 static int
5644 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5645 {
5646 unsigned long cflags = sd->flags, pflags = parent->flags;
5647
5648 if (sd_degenerate(parent))
5649 return 1;
5650
5651 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5652 return 0;
5653
5654 /* Flags needing groups don't count if only 1 group in parent */
5655 if (parent->groups == parent->groups->next) {
5656 pflags &= ~(SD_LOAD_BALANCE |
5657 SD_BALANCE_NEWIDLE |
5658 SD_BALANCE_FORK |
5659 SD_BALANCE_EXEC |
5660 SD_SHARE_CPUPOWER |
5661 SD_SHARE_PKG_RESOURCES);
5662 if (nr_node_ids == 1)
5663 pflags &= ~SD_SERIALIZE;
5664 }
5665 if (~cflags & pflags)
5666 return 0;
5667
5668 return 1;
5669 }
5670
5671 static void free_rootdomain(struct rcu_head *rcu)
5672 {
5673 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5674
5675 cpupri_cleanup(&rd->cpupri);
5676 free_cpumask_var(rd->rto_mask);
5677 free_cpumask_var(rd->online);
5678 free_cpumask_var(rd->span);
5679 kfree(rd);
5680 }
5681
5682 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5683 {
5684 struct root_domain *old_rd = NULL;
5685 unsigned long flags;
5686
5687 raw_spin_lock_irqsave(&rq->lock, flags);
5688
5689 if (rq->rd) {
5690 old_rd = rq->rd;
5691
5692 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5693 set_rq_offline(rq);
5694
5695 cpumask_clear_cpu(rq->cpu, old_rd->span);
5696
5697 /*
5698 * If we dont want to free the old_rt yet then
5699 * set old_rd to NULL to skip the freeing later
5700 * in this function:
5701 */
5702 if (!atomic_dec_and_test(&old_rd->refcount))
5703 old_rd = NULL;
5704 }
5705
5706 atomic_inc(&rd->refcount);
5707 rq->rd = rd;
5708
5709 cpumask_set_cpu(rq->cpu, rd->span);
5710 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5711 set_rq_online(rq);
5712
5713 raw_spin_unlock_irqrestore(&rq->lock, flags);
5714
5715 if (old_rd)
5716 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5717 }
5718
5719 static int init_rootdomain(struct root_domain *rd)
5720 {
5721 memset(rd, 0, sizeof(*rd));
5722
5723 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5724 goto out;
5725 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5726 goto free_span;
5727 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5728 goto free_online;
5729
5730 if (cpupri_init(&rd->cpupri) != 0)
5731 goto free_rto_mask;
5732 return 0;
5733
5734 free_rto_mask:
5735 free_cpumask_var(rd->rto_mask);
5736 free_online:
5737 free_cpumask_var(rd->online);
5738 free_span:
5739 free_cpumask_var(rd->span);
5740 out:
5741 return -ENOMEM;
5742 }
5743
5744 /*
5745 * By default the system creates a single root-domain with all cpus as
5746 * members (mimicking the global state we have today).
5747 */
5748 struct root_domain def_root_domain;
5749
5750 static void init_defrootdomain(void)
5751 {
5752 init_rootdomain(&def_root_domain);
5753
5754 atomic_set(&def_root_domain.refcount, 1);
5755 }
5756
5757 static struct root_domain *alloc_rootdomain(void)
5758 {
5759 struct root_domain *rd;
5760
5761 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5762 if (!rd)
5763 return NULL;
5764
5765 if (init_rootdomain(rd) != 0) {
5766 kfree(rd);
5767 return NULL;
5768 }
5769
5770 return rd;
5771 }
5772
5773 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5774 {
5775 struct sched_group *tmp, *first;
5776
5777 if (!sg)
5778 return;
5779
5780 first = sg;
5781 do {
5782 tmp = sg->next;
5783
5784 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5785 kfree(sg->sgp);
5786
5787 kfree(sg);
5788 sg = tmp;
5789 } while (sg != first);
5790 }
5791
5792 static void free_sched_domain(struct rcu_head *rcu)
5793 {
5794 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5795
5796 /*
5797 * If its an overlapping domain it has private groups, iterate and
5798 * nuke them all.
5799 */
5800 if (sd->flags & SD_OVERLAP) {
5801 free_sched_groups(sd->groups, 1);
5802 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5803 kfree(sd->groups->sgp);
5804 kfree(sd->groups);
5805 }
5806 kfree(sd);
5807 }
5808
5809 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5810 {
5811 call_rcu(&sd->rcu, free_sched_domain);
5812 }
5813
5814 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5815 {
5816 for (; sd; sd = sd->parent)
5817 destroy_sched_domain(sd, cpu);
5818 }
5819
5820 /*
5821 * Keep a special pointer to the highest sched_domain that has
5822 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5823 * allows us to avoid some pointer chasing select_idle_sibling().
5824 *
5825 * Also keep a unique ID per domain (we use the first cpu number in
5826 * the cpumask of the domain), this allows us to quickly tell if
5827 * two cpus are in the same cache domain, see cpus_share_cache().
5828 */
5829 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5830 DEFINE_PER_CPU(int, sd_llc_id);
5831
5832 static void update_top_cache_domain(int cpu)
5833 {
5834 struct sched_domain *sd;
5835 int id = cpu;
5836
5837 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5838 if (sd)
5839 id = cpumask_first(sched_domain_span(sd));
5840
5841 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5842 per_cpu(sd_llc_id, cpu) = id;
5843 }
5844
5845 /*
5846 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5847 * hold the hotplug lock.
5848 */
5849 static void
5850 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5851 {
5852 struct rq *rq = cpu_rq(cpu);
5853 struct sched_domain *tmp;
5854
5855 /* Remove the sched domains which do not contribute to scheduling. */
5856 for (tmp = sd; tmp; ) {
5857 struct sched_domain *parent = tmp->parent;
5858 if (!parent)
5859 break;
5860
5861 if (sd_parent_degenerate(tmp, parent)) {
5862 tmp->parent = parent->parent;
5863 if (parent->parent)
5864 parent->parent->child = tmp;
5865 destroy_sched_domain(parent, cpu);
5866 } else
5867 tmp = tmp->parent;
5868 }
5869
5870 if (sd && sd_degenerate(sd)) {
5871 tmp = sd;
5872 sd = sd->parent;
5873 destroy_sched_domain(tmp, cpu);
5874 if (sd)
5875 sd->child = NULL;
5876 }
5877
5878 sched_domain_debug(sd, cpu);
5879
5880 rq_attach_root(rq, rd);
5881 tmp = rq->sd;
5882 rcu_assign_pointer(rq->sd, sd);
5883 destroy_sched_domains(tmp, cpu);
5884
5885 update_top_cache_domain(cpu);
5886 }
5887
5888 /* cpus with isolated domains */
5889 static cpumask_var_t cpu_isolated_map;
5890
5891 /* Setup the mask of cpus configured for isolated domains */
5892 static int __init isolated_cpu_setup(char *str)
5893 {
5894 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5895 cpulist_parse(str, cpu_isolated_map);
5896 return 1;
5897 }
5898
5899 __setup("isolcpus=", isolated_cpu_setup);
5900
5901 #ifdef CONFIG_NUMA
5902
5903 /**
5904 * find_next_best_node - find the next node to include in a sched_domain
5905 * @node: node whose sched_domain we're building
5906 * @used_nodes: nodes already in the sched_domain
5907 *
5908 * Find the next node to include in a given scheduling domain. Simply
5909 * finds the closest node not already in the @used_nodes map.
5910 *
5911 * Should use nodemask_t.
5912 */
5913 static int find_next_best_node(int node, nodemask_t *used_nodes)
5914 {
5915 int i, n, val, min_val, best_node = -1;
5916
5917 min_val = INT_MAX;
5918
5919 for (i = 0; i < nr_node_ids; i++) {
5920 /* Start at @node */
5921 n = (node + i) % nr_node_ids;
5922
5923 if (!nr_cpus_node(n))
5924 continue;
5925
5926 /* Skip already used nodes */
5927 if (node_isset(n, *used_nodes))
5928 continue;
5929
5930 /* Simple min distance search */
5931 val = node_distance(node, n);
5932
5933 if (val < min_val) {
5934 min_val = val;
5935 best_node = n;
5936 }
5937 }
5938
5939 if (best_node != -1)
5940 node_set(best_node, *used_nodes);
5941 return best_node;
5942 }
5943
5944 /**
5945 * sched_domain_node_span - get a cpumask for a node's sched_domain
5946 * @node: node whose cpumask we're constructing
5947 * @span: resulting cpumask
5948 *
5949 * Given a node, construct a good cpumask for its sched_domain to span. It
5950 * should be one that prevents unnecessary balancing, but also spreads tasks
5951 * out optimally.
5952 */
5953 static void sched_domain_node_span(int node, struct cpumask *span)
5954 {
5955 nodemask_t used_nodes;
5956 int i;
5957
5958 cpumask_clear(span);
5959 nodes_clear(used_nodes);
5960
5961 cpumask_or(span, span, cpumask_of_node(node));
5962 node_set(node, used_nodes);
5963
5964 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5965 int next_node = find_next_best_node(node, &used_nodes);
5966 if (next_node < 0)
5967 break;
5968 cpumask_or(span, span, cpumask_of_node(next_node));
5969 }
5970 }
5971
5972 static const struct cpumask *cpu_node_mask(int cpu)
5973 {
5974 lockdep_assert_held(&sched_domains_mutex);
5975
5976 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5977
5978 return sched_domains_tmpmask;
5979 }
5980
5981 static const struct cpumask *cpu_allnodes_mask(int cpu)
5982 {
5983 return cpu_possible_mask;
5984 }
5985 #endif /* CONFIG_NUMA */
5986
5987 static const struct cpumask *cpu_cpu_mask(int cpu)
5988 {
5989 return cpumask_of_node(cpu_to_node(cpu));
5990 }
5991
5992 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5993
5994 struct sd_data {
5995 struct sched_domain **__percpu sd;
5996 struct sched_group **__percpu sg;
5997 struct sched_group_power **__percpu sgp;
5998 };
5999
6000 struct s_data {
6001 struct sched_domain ** __percpu sd;
6002 struct root_domain *rd;
6003 };
6004
6005 enum s_alloc {
6006 sa_rootdomain,
6007 sa_sd,
6008 sa_sd_storage,
6009 sa_none,
6010 };
6011
6012 struct sched_domain_topology_level;
6013
6014 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6015 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6016
6017 #define SDTL_OVERLAP 0x01
6018
6019 struct sched_domain_topology_level {
6020 sched_domain_init_f init;
6021 sched_domain_mask_f mask;
6022 int flags;
6023 struct sd_data data;
6024 };
6025
6026 static int
6027 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6028 {
6029 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6030 const struct cpumask *span = sched_domain_span(sd);
6031 struct cpumask *covered = sched_domains_tmpmask;
6032 struct sd_data *sdd = sd->private;
6033 struct sched_domain *child;
6034 int i;
6035
6036 cpumask_clear(covered);
6037
6038 for_each_cpu(i, span) {
6039 struct cpumask *sg_span;
6040
6041 if (cpumask_test_cpu(i, covered))
6042 continue;
6043
6044 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6045 GFP_KERNEL, cpu_to_node(cpu));
6046
6047 if (!sg)
6048 goto fail;
6049
6050 sg_span = sched_group_cpus(sg);
6051
6052 child = *per_cpu_ptr(sdd->sd, i);
6053 if (child->child) {
6054 child = child->child;
6055 cpumask_copy(sg_span, sched_domain_span(child));
6056 } else
6057 cpumask_set_cpu(i, sg_span);
6058
6059 cpumask_or(covered, covered, sg_span);
6060
6061 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6062 atomic_inc(&sg->sgp->ref);
6063
6064 if (cpumask_test_cpu(cpu, sg_span))
6065 groups = sg;
6066
6067 if (!first)
6068 first = sg;
6069 if (last)
6070 last->next = sg;
6071 last = sg;
6072 last->next = first;
6073 }
6074 sd->groups = groups;
6075
6076 return 0;
6077
6078 fail:
6079 free_sched_groups(first, 0);
6080
6081 return -ENOMEM;
6082 }
6083
6084 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6085 {
6086 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6087 struct sched_domain *child = sd->child;
6088
6089 if (child)
6090 cpu = cpumask_first(sched_domain_span(child));
6091
6092 if (sg) {
6093 *sg = *per_cpu_ptr(sdd->sg, cpu);
6094 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6095 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6096 }
6097
6098 return cpu;
6099 }
6100
6101 /*
6102 * build_sched_groups will build a circular linked list of the groups
6103 * covered by the given span, and will set each group's ->cpumask correctly,
6104 * and ->cpu_power to 0.
6105 *
6106 * Assumes the sched_domain tree is fully constructed
6107 */
6108 static int
6109 build_sched_groups(struct sched_domain *sd, int cpu)
6110 {
6111 struct sched_group *first = NULL, *last = NULL;
6112 struct sd_data *sdd = sd->private;
6113 const struct cpumask *span = sched_domain_span(sd);
6114 struct cpumask *covered;
6115 int i;
6116
6117 get_group(cpu, sdd, &sd->groups);
6118 atomic_inc(&sd->groups->ref);
6119
6120 if (cpu != cpumask_first(sched_domain_span(sd)))
6121 return 0;
6122
6123 lockdep_assert_held(&sched_domains_mutex);
6124 covered = sched_domains_tmpmask;
6125
6126 cpumask_clear(covered);
6127
6128 for_each_cpu(i, span) {
6129 struct sched_group *sg;
6130 int group = get_group(i, sdd, &sg);
6131 int j;
6132
6133 if (cpumask_test_cpu(i, covered))
6134 continue;
6135
6136 cpumask_clear(sched_group_cpus(sg));
6137 sg->sgp->power = 0;
6138
6139 for_each_cpu(j, span) {
6140 if (get_group(j, sdd, NULL) != group)
6141 continue;
6142
6143 cpumask_set_cpu(j, covered);
6144 cpumask_set_cpu(j, sched_group_cpus(sg));
6145 }
6146
6147 if (!first)
6148 first = sg;
6149 if (last)
6150 last->next = sg;
6151 last = sg;
6152 }
6153 last->next = first;
6154
6155 return 0;
6156 }
6157
6158 /*
6159 * Initialize sched groups cpu_power.
6160 *
6161 * cpu_power indicates the capacity of sched group, which is used while
6162 * distributing the load between different sched groups in a sched domain.
6163 * Typically cpu_power for all the groups in a sched domain will be same unless
6164 * there are asymmetries in the topology. If there are asymmetries, group
6165 * having more cpu_power will pickup more load compared to the group having
6166 * less cpu_power.
6167 */
6168 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6169 {
6170 struct sched_group *sg = sd->groups;
6171
6172 WARN_ON(!sd || !sg);
6173
6174 do {
6175 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6176 sg = sg->next;
6177 } while (sg != sd->groups);
6178
6179 if (cpu != group_first_cpu(sg))
6180 return;
6181
6182 update_group_power(sd, cpu);
6183 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6184 }
6185
6186 int __weak arch_sd_sibling_asym_packing(void)
6187 {
6188 return 0*SD_ASYM_PACKING;
6189 }
6190
6191 /*
6192 * Initializers for schedule domains
6193 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6194 */
6195
6196 #ifdef CONFIG_SCHED_DEBUG
6197 # define SD_INIT_NAME(sd, type) sd->name = #type
6198 #else
6199 # define SD_INIT_NAME(sd, type) do { } while (0)
6200 #endif
6201
6202 #define SD_INIT_FUNC(type) \
6203 static noinline struct sched_domain * \
6204 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6205 { \
6206 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6207 *sd = SD_##type##_INIT; \
6208 SD_INIT_NAME(sd, type); \
6209 sd->private = &tl->data; \
6210 return sd; \
6211 }
6212
6213 SD_INIT_FUNC(CPU)
6214 #ifdef CONFIG_NUMA
6215 SD_INIT_FUNC(ALLNODES)
6216 SD_INIT_FUNC(NODE)
6217 #endif
6218 #ifdef CONFIG_SCHED_SMT
6219 SD_INIT_FUNC(SIBLING)
6220 #endif
6221 #ifdef CONFIG_SCHED_MC
6222 SD_INIT_FUNC(MC)
6223 #endif
6224 #ifdef CONFIG_SCHED_BOOK
6225 SD_INIT_FUNC(BOOK)
6226 #endif
6227
6228 static int default_relax_domain_level = -1;
6229 int sched_domain_level_max;
6230
6231 static int __init setup_relax_domain_level(char *str)
6232 {
6233 unsigned long val;
6234
6235 val = simple_strtoul(str, NULL, 0);
6236 if (val < sched_domain_level_max)
6237 default_relax_domain_level = val;
6238
6239 return 1;
6240 }
6241 __setup("relax_domain_level=", setup_relax_domain_level);
6242
6243 static void set_domain_attribute(struct sched_domain *sd,
6244 struct sched_domain_attr *attr)
6245 {
6246 int request;
6247
6248 if (!attr || attr->relax_domain_level < 0) {
6249 if (default_relax_domain_level < 0)
6250 return;
6251 else
6252 request = default_relax_domain_level;
6253 } else
6254 request = attr->relax_domain_level;
6255 if (request < sd->level) {
6256 /* turn off idle balance on this domain */
6257 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6258 } else {
6259 /* turn on idle balance on this domain */
6260 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6261 }
6262 }
6263
6264 static void __sdt_free(const struct cpumask *cpu_map);
6265 static int __sdt_alloc(const struct cpumask *cpu_map);
6266
6267 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6268 const struct cpumask *cpu_map)
6269 {
6270 switch (what) {
6271 case sa_rootdomain:
6272 if (!atomic_read(&d->rd->refcount))
6273 free_rootdomain(&d->rd->rcu); /* fall through */
6274 case sa_sd:
6275 free_percpu(d->sd); /* fall through */
6276 case sa_sd_storage:
6277 __sdt_free(cpu_map); /* fall through */
6278 case sa_none:
6279 break;
6280 }
6281 }
6282
6283 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6284 const struct cpumask *cpu_map)
6285 {
6286 memset(d, 0, sizeof(*d));
6287
6288 if (__sdt_alloc(cpu_map))
6289 return sa_sd_storage;
6290 d->sd = alloc_percpu(struct sched_domain *);
6291 if (!d->sd)
6292 return sa_sd_storage;
6293 d->rd = alloc_rootdomain();
6294 if (!d->rd)
6295 return sa_sd;
6296 return sa_rootdomain;
6297 }
6298
6299 /*
6300 * NULL the sd_data elements we've used to build the sched_domain and
6301 * sched_group structure so that the subsequent __free_domain_allocs()
6302 * will not free the data we're using.
6303 */
6304 static void claim_allocations(int cpu, struct sched_domain *sd)
6305 {
6306 struct sd_data *sdd = sd->private;
6307
6308 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6309 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6310
6311 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6312 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6313
6314 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6315 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6316 }
6317
6318 #ifdef CONFIG_SCHED_SMT
6319 static const struct cpumask *cpu_smt_mask(int cpu)
6320 {
6321 return topology_thread_cpumask(cpu);
6322 }
6323 #endif
6324
6325 /*
6326 * Topology list, bottom-up.
6327 */
6328 static struct sched_domain_topology_level default_topology[] = {
6329 #ifdef CONFIG_SCHED_SMT
6330 { sd_init_SIBLING, cpu_smt_mask, },
6331 #endif
6332 #ifdef CONFIG_SCHED_MC
6333 { sd_init_MC, cpu_coregroup_mask, },
6334 #endif
6335 #ifdef CONFIG_SCHED_BOOK
6336 { sd_init_BOOK, cpu_book_mask, },
6337 #endif
6338 { sd_init_CPU, cpu_cpu_mask, },
6339 #ifdef CONFIG_NUMA
6340 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6341 { sd_init_ALLNODES, cpu_allnodes_mask, },
6342 #endif
6343 { NULL, },
6344 };
6345
6346 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6347
6348 static int __sdt_alloc(const struct cpumask *cpu_map)
6349 {
6350 struct sched_domain_topology_level *tl;
6351 int j;
6352
6353 for (tl = sched_domain_topology; tl->init; tl++) {
6354 struct sd_data *sdd = &tl->data;
6355
6356 sdd->sd = alloc_percpu(struct sched_domain *);
6357 if (!sdd->sd)
6358 return -ENOMEM;
6359
6360 sdd->sg = alloc_percpu(struct sched_group *);
6361 if (!sdd->sg)
6362 return -ENOMEM;
6363
6364 sdd->sgp = alloc_percpu(struct sched_group_power *);
6365 if (!sdd->sgp)
6366 return -ENOMEM;
6367
6368 for_each_cpu(j, cpu_map) {
6369 struct sched_domain *sd;
6370 struct sched_group *sg;
6371 struct sched_group_power *sgp;
6372
6373 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6374 GFP_KERNEL, cpu_to_node(j));
6375 if (!sd)
6376 return -ENOMEM;
6377
6378 *per_cpu_ptr(sdd->sd, j) = sd;
6379
6380 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6381 GFP_KERNEL, cpu_to_node(j));
6382 if (!sg)
6383 return -ENOMEM;
6384
6385 *per_cpu_ptr(sdd->sg, j) = sg;
6386
6387 sgp = kzalloc_node(sizeof(struct sched_group_power),
6388 GFP_KERNEL, cpu_to_node(j));
6389 if (!sgp)
6390 return -ENOMEM;
6391
6392 *per_cpu_ptr(sdd->sgp, j) = sgp;
6393 }
6394 }
6395
6396 return 0;
6397 }
6398
6399 static void __sdt_free(const struct cpumask *cpu_map)
6400 {
6401 struct sched_domain_topology_level *tl;
6402 int j;
6403
6404 for (tl = sched_domain_topology; tl->init; tl++) {
6405 struct sd_data *sdd = &tl->data;
6406
6407 for_each_cpu(j, cpu_map) {
6408 struct sched_domain *sd;
6409
6410 if (sdd->sd) {
6411 sd = *per_cpu_ptr(sdd->sd, j);
6412 if (sd && (sd->flags & SD_OVERLAP))
6413 free_sched_groups(sd->groups, 0);
6414 kfree(*per_cpu_ptr(sdd->sd, j));
6415 }
6416
6417 if (sdd->sg)
6418 kfree(*per_cpu_ptr(sdd->sg, j));
6419 if (sdd->sgp)
6420 kfree(*per_cpu_ptr(sdd->sgp, j));
6421 }
6422 free_percpu(sdd->sd);
6423 sdd->sd = NULL;
6424 free_percpu(sdd->sg);
6425 sdd->sg = NULL;
6426 free_percpu(sdd->sgp);
6427 sdd->sgp = NULL;
6428 }
6429 }
6430
6431 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6432 struct s_data *d, const struct cpumask *cpu_map,
6433 struct sched_domain_attr *attr, struct sched_domain *child,
6434 int cpu)
6435 {
6436 struct sched_domain *sd = tl->init(tl, cpu);
6437 if (!sd)
6438 return child;
6439
6440 set_domain_attribute(sd, attr);
6441 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6442 if (child) {
6443 sd->level = child->level + 1;
6444 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6445 child->parent = sd;
6446 }
6447 sd->child = child;
6448
6449 return sd;
6450 }
6451
6452 /*
6453 * Build sched domains for a given set of cpus and attach the sched domains
6454 * to the individual cpus
6455 */
6456 static int build_sched_domains(const struct cpumask *cpu_map,
6457 struct sched_domain_attr *attr)
6458 {
6459 enum s_alloc alloc_state = sa_none;
6460 struct sched_domain *sd;
6461 struct s_data d;
6462 int i, ret = -ENOMEM;
6463
6464 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6465 if (alloc_state != sa_rootdomain)
6466 goto error;
6467
6468 /* Set up domains for cpus specified by the cpu_map. */
6469 for_each_cpu(i, cpu_map) {
6470 struct sched_domain_topology_level *tl;
6471
6472 sd = NULL;
6473 for (tl = sched_domain_topology; tl->init; tl++) {
6474 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6475 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6476 sd->flags |= SD_OVERLAP;
6477 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6478 break;
6479 }
6480
6481 while (sd->child)
6482 sd = sd->child;
6483
6484 *per_cpu_ptr(d.sd, i) = sd;
6485 }
6486
6487 /* Build the groups for the domains */
6488 for_each_cpu(i, cpu_map) {
6489 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6490 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6491 if (sd->flags & SD_OVERLAP) {
6492 if (build_overlap_sched_groups(sd, i))
6493 goto error;
6494 } else {
6495 if (build_sched_groups(sd, i))
6496 goto error;
6497 }
6498 }
6499 }
6500
6501 /* Calculate CPU power for physical packages and nodes */
6502 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6503 if (!cpumask_test_cpu(i, cpu_map))
6504 continue;
6505
6506 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6507 claim_allocations(i, sd);
6508 init_sched_groups_power(i, sd);
6509 }
6510 }
6511
6512 /* Attach the domains */
6513 rcu_read_lock();
6514 for_each_cpu(i, cpu_map) {
6515 sd = *per_cpu_ptr(d.sd, i);
6516 cpu_attach_domain(sd, d.rd, i);
6517 }
6518 rcu_read_unlock();
6519
6520 ret = 0;
6521 error:
6522 __free_domain_allocs(&d, alloc_state, cpu_map);
6523 return ret;
6524 }
6525
6526 static cpumask_var_t *doms_cur; /* current sched domains */
6527 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6528 static struct sched_domain_attr *dattr_cur;
6529 /* attribues of custom domains in 'doms_cur' */
6530
6531 /*
6532 * Special case: If a kmalloc of a doms_cur partition (array of
6533 * cpumask) fails, then fallback to a single sched domain,
6534 * as determined by the single cpumask fallback_doms.
6535 */
6536 static cpumask_var_t fallback_doms;
6537
6538 /*
6539 * arch_update_cpu_topology lets virtualized architectures update the
6540 * cpu core maps. It is supposed to return 1 if the topology changed
6541 * or 0 if it stayed the same.
6542 */
6543 int __attribute__((weak)) arch_update_cpu_topology(void)
6544 {
6545 return 0;
6546 }
6547
6548 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6549 {
6550 int i;
6551 cpumask_var_t *doms;
6552
6553 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6554 if (!doms)
6555 return NULL;
6556 for (i = 0; i < ndoms; i++) {
6557 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6558 free_sched_domains(doms, i);
6559 return NULL;
6560 }
6561 }
6562 return doms;
6563 }
6564
6565 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6566 {
6567 unsigned int i;
6568 for (i = 0; i < ndoms; i++)
6569 free_cpumask_var(doms[i]);
6570 kfree(doms);
6571 }
6572
6573 /*
6574 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6575 * For now this just excludes isolated cpus, but could be used to
6576 * exclude other special cases in the future.
6577 */
6578 static int init_sched_domains(const struct cpumask *cpu_map)
6579 {
6580 int err;
6581
6582 arch_update_cpu_topology();
6583 ndoms_cur = 1;
6584 doms_cur = alloc_sched_domains(ndoms_cur);
6585 if (!doms_cur)
6586 doms_cur = &fallback_doms;
6587 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6588 dattr_cur = NULL;
6589 err = build_sched_domains(doms_cur[0], NULL);
6590 register_sched_domain_sysctl();
6591
6592 return err;
6593 }
6594
6595 /*
6596 * Detach sched domains from a group of cpus specified in cpu_map
6597 * These cpus will now be attached to the NULL domain
6598 */
6599 static void detach_destroy_domains(const struct cpumask *cpu_map)
6600 {
6601 int i;
6602
6603 rcu_read_lock();
6604 for_each_cpu(i, cpu_map)
6605 cpu_attach_domain(NULL, &def_root_domain, i);
6606 rcu_read_unlock();
6607 }
6608
6609 /* handle null as "default" */
6610 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6611 struct sched_domain_attr *new, int idx_new)
6612 {
6613 struct sched_domain_attr tmp;
6614
6615 /* fast path */
6616 if (!new && !cur)
6617 return 1;
6618
6619 tmp = SD_ATTR_INIT;
6620 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6621 new ? (new + idx_new) : &tmp,
6622 sizeof(struct sched_domain_attr));
6623 }
6624
6625 /*
6626 * Partition sched domains as specified by the 'ndoms_new'
6627 * cpumasks in the array doms_new[] of cpumasks. This compares
6628 * doms_new[] to the current sched domain partitioning, doms_cur[].
6629 * It destroys each deleted domain and builds each new domain.
6630 *
6631 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6632 * The masks don't intersect (don't overlap.) We should setup one
6633 * sched domain for each mask. CPUs not in any of the cpumasks will
6634 * not be load balanced. If the same cpumask appears both in the
6635 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6636 * it as it is.
6637 *
6638 * The passed in 'doms_new' should be allocated using
6639 * alloc_sched_domains. This routine takes ownership of it and will
6640 * free_sched_domains it when done with it. If the caller failed the
6641 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6642 * and partition_sched_domains() will fallback to the single partition
6643 * 'fallback_doms', it also forces the domains to be rebuilt.
6644 *
6645 * If doms_new == NULL it will be replaced with cpu_online_mask.
6646 * ndoms_new == 0 is a special case for destroying existing domains,
6647 * and it will not create the default domain.
6648 *
6649 * Call with hotplug lock held
6650 */
6651 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6652 struct sched_domain_attr *dattr_new)
6653 {
6654 int i, j, n;
6655 int new_topology;
6656
6657 mutex_lock(&sched_domains_mutex);
6658
6659 /* always unregister in case we don't destroy any domains */
6660 unregister_sched_domain_sysctl();
6661
6662 /* Let architecture update cpu core mappings. */
6663 new_topology = arch_update_cpu_topology();
6664
6665 n = doms_new ? ndoms_new : 0;
6666
6667 /* Destroy deleted domains */
6668 for (i = 0; i < ndoms_cur; i++) {
6669 for (j = 0; j < n && !new_topology; j++) {
6670 if (cpumask_equal(doms_cur[i], doms_new[j])
6671 && dattrs_equal(dattr_cur, i, dattr_new, j))
6672 goto match1;
6673 }
6674 /* no match - a current sched domain not in new doms_new[] */
6675 detach_destroy_domains(doms_cur[i]);
6676 match1:
6677 ;
6678 }
6679
6680 if (doms_new == NULL) {
6681 ndoms_cur = 0;
6682 doms_new = &fallback_doms;
6683 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6684 WARN_ON_ONCE(dattr_new);
6685 }
6686
6687 /* Build new domains */
6688 for (i = 0; i < ndoms_new; i++) {
6689 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6690 if (cpumask_equal(doms_new[i], doms_cur[j])
6691 && dattrs_equal(dattr_new, i, dattr_cur, j))
6692 goto match2;
6693 }
6694 /* no match - add a new doms_new */
6695 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6696 match2:
6697 ;
6698 }
6699
6700 /* Remember the new sched domains */
6701 if (doms_cur != &fallback_doms)
6702 free_sched_domains(doms_cur, ndoms_cur);
6703 kfree(dattr_cur); /* kfree(NULL) is safe */
6704 doms_cur = doms_new;
6705 dattr_cur = dattr_new;
6706 ndoms_cur = ndoms_new;
6707
6708 register_sched_domain_sysctl();
6709
6710 mutex_unlock(&sched_domains_mutex);
6711 }
6712
6713 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6714 static void reinit_sched_domains(void)
6715 {
6716 get_online_cpus();
6717
6718 /* Destroy domains first to force the rebuild */
6719 partition_sched_domains(0, NULL, NULL);
6720
6721 rebuild_sched_domains();
6722 put_online_cpus();
6723 }
6724
6725 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6726 {
6727 unsigned int level = 0;
6728
6729 if (sscanf(buf, "%u", &level) != 1)
6730 return -EINVAL;
6731
6732 /*
6733 * level is always be positive so don't check for
6734 * level < POWERSAVINGS_BALANCE_NONE which is 0
6735 * What happens on 0 or 1 byte write,
6736 * need to check for count as well?
6737 */
6738
6739 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6740 return -EINVAL;
6741
6742 if (smt)
6743 sched_smt_power_savings = level;
6744 else
6745 sched_mc_power_savings = level;
6746
6747 reinit_sched_domains();
6748
6749 return count;
6750 }
6751
6752 #ifdef CONFIG_SCHED_MC
6753 static ssize_t sched_mc_power_savings_show(struct device *dev,
6754 struct device_attribute *attr,
6755 char *buf)
6756 {
6757 return sprintf(buf, "%u\n", sched_mc_power_savings);
6758 }
6759 static ssize_t sched_mc_power_savings_store(struct device *dev,
6760 struct device_attribute *attr,
6761 const char *buf, size_t count)
6762 {
6763 return sched_power_savings_store(buf, count, 0);
6764 }
6765 static DEVICE_ATTR(sched_mc_power_savings, 0644,
6766 sched_mc_power_savings_show,
6767 sched_mc_power_savings_store);
6768 #endif
6769
6770 #ifdef CONFIG_SCHED_SMT
6771 static ssize_t sched_smt_power_savings_show(struct device *dev,
6772 struct device_attribute *attr,
6773 char *buf)
6774 {
6775 return sprintf(buf, "%u\n", sched_smt_power_savings);
6776 }
6777 static ssize_t sched_smt_power_savings_store(struct device *dev,
6778 struct device_attribute *attr,
6779 const char *buf, size_t count)
6780 {
6781 return sched_power_savings_store(buf, count, 1);
6782 }
6783 static DEVICE_ATTR(sched_smt_power_savings, 0644,
6784 sched_smt_power_savings_show,
6785 sched_smt_power_savings_store);
6786 #endif
6787
6788 int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6789 {
6790 int err = 0;
6791
6792 #ifdef CONFIG_SCHED_SMT
6793 if (smt_capable())
6794 err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6795 #endif
6796 #ifdef CONFIG_SCHED_MC
6797 if (!err && mc_capable())
6798 err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6799 #endif
6800 return err;
6801 }
6802 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6803
6804 /*
6805 * Update cpusets according to cpu_active mask. If cpusets are
6806 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6807 * around partition_sched_domains().
6808 */
6809 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6810 void *hcpu)
6811 {
6812 switch (action & ~CPU_TASKS_FROZEN) {
6813 case CPU_ONLINE:
6814 case CPU_DOWN_FAILED:
6815 cpuset_update_active_cpus();
6816 return NOTIFY_OK;
6817 default:
6818 return NOTIFY_DONE;
6819 }
6820 }
6821
6822 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6823 void *hcpu)
6824 {
6825 switch (action & ~CPU_TASKS_FROZEN) {
6826 case CPU_DOWN_PREPARE:
6827 cpuset_update_active_cpus();
6828 return NOTIFY_OK;
6829 default:
6830 return NOTIFY_DONE;
6831 }
6832 }
6833
6834 void __init sched_init_smp(void)
6835 {
6836 cpumask_var_t non_isolated_cpus;
6837
6838 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6839 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6840
6841 get_online_cpus();
6842 mutex_lock(&sched_domains_mutex);
6843 init_sched_domains(cpu_active_mask);
6844 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6845 if (cpumask_empty(non_isolated_cpus))
6846 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6847 mutex_unlock(&sched_domains_mutex);
6848 put_online_cpus();
6849
6850 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6851 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6852
6853 /* RT runtime code needs to handle some hotplug events */
6854 hotcpu_notifier(update_runtime, 0);
6855
6856 init_hrtick();
6857
6858 /* Move init over to a non-isolated CPU */
6859 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6860 BUG();
6861 sched_init_granularity();
6862 free_cpumask_var(non_isolated_cpus);
6863
6864 init_sched_rt_class();
6865 }
6866 #else
6867 void __init sched_init_smp(void)
6868 {
6869 sched_init_granularity();
6870 }
6871 #endif /* CONFIG_SMP */
6872
6873 const_debug unsigned int sysctl_timer_migration = 1;
6874
6875 int in_sched_functions(unsigned long addr)
6876 {
6877 return in_lock_functions(addr) ||
6878 (addr >= (unsigned long)__sched_text_start
6879 && addr < (unsigned long)__sched_text_end);
6880 }
6881
6882 #ifdef CONFIG_CGROUP_SCHED
6883 struct task_group root_task_group;
6884 #endif
6885
6886 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6887
6888 void __init sched_init(void)
6889 {
6890 int i, j;
6891 unsigned long alloc_size = 0, ptr;
6892
6893 #ifdef CONFIG_FAIR_GROUP_SCHED
6894 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6895 #endif
6896 #ifdef CONFIG_RT_GROUP_SCHED
6897 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6898 #endif
6899 #ifdef CONFIG_CPUMASK_OFFSTACK
6900 alloc_size += num_possible_cpus() * cpumask_size();
6901 #endif
6902 if (alloc_size) {
6903 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6904
6905 #ifdef CONFIG_FAIR_GROUP_SCHED
6906 root_task_group.se = (struct sched_entity **)ptr;
6907 ptr += nr_cpu_ids * sizeof(void **);
6908
6909 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6910 ptr += nr_cpu_ids * sizeof(void **);
6911
6912 #endif /* CONFIG_FAIR_GROUP_SCHED */
6913 #ifdef CONFIG_RT_GROUP_SCHED
6914 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6915 ptr += nr_cpu_ids * sizeof(void **);
6916
6917 root_task_group.rt_rq = (struct rt_rq **)ptr;
6918 ptr += nr_cpu_ids * sizeof(void **);
6919
6920 #endif /* CONFIG_RT_GROUP_SCHED */
6921 #ifdef CONFIG_CPUMASK_OFFSTACK
6922 for_each_possible_cpu(i) {
6923 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6924 ptr += cpumask_size();
6925 }
6926 #endif /* CONFIG_CPUMASK_OFFSTACK */
6927 }
6928
6929 #ifdef CONFIG_SMP
6930 init_defrootdomain();
6931 #endif
6932
6933 init_rt_bandwidth(&def_rt_bandwidth,
6934 global_rt_period(), global_rt_runtime());
6935
6936 #ifdef CONFIG_RT_GROUP_SCHED
6937 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6938 global_rt_period(), global_rt_runtime());
6939 #endif /* CONFIG_RT_GROUP_SCHED */
6940
6941 #ifdef CONFIG_CGROUP_SCHED
6942 list_add(&root_task_group.list, &task_groups);
6943 INIT_LIST_HEAD(&root_task_group.children);
6944 INIT_LIST_HEAD(&root_task_group.siblings);
6945 autogroup_init(&init_task);
6946
6947 #endif /* CONFIG_CGROUP_SCHED */
6948
6949 #ifdef CONFIG_CGROUP_CPUACCT
6950 root_cpuacct.cpustat = &kernel_cpustat;
6951 root_cpuacct.cpuusage = alloc_percpu(u64);
6952 /* Too early, not expected to fail */
6953 BUG_ON(!root_cpuacct.cpuusage);
6954 #endif
6955 for_each_possible_cpu(i) {
6956 struct rq *rq;
6957
6958 rq = cpu_rq(i);
6959 raw_spin_lock_init(&rq->lock);
6960 rq->nr_running = 0;
6961 rq->calc_load_active = 0;
6962 rq->calc_load_update = jiffies + LOAD_FREQ;
6963 init_cfs_rq(&rq->cfs);
6964 init_rt_rq(&rq->rt, rq);
6965 #ifdef CONFIG_FAIR_GROUP_SCHED
6966 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6967 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6968 /*
6969 * How much cpu bandwidth does root_task_group get?
6970 *
6971 * In case of task-groups formed thr' the cgroup filesystem, it
6972 * gets 100% of the cpu resources in the system. This overall
6973 * system cpu resource is divided among the tasks of
6974 * root_task_group and its child task-groups in a fair manner,
6975 * based on each entity's (task or task-group's) weight
6976 * (se->load.weight).
6977 *
6978 * In other words, if root_task_group has 10 tasks of weight
6979 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6980 * then A0's share of the cpu resource is:
6981 *
6982 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6983 *
6984 * We achieve this by letting root_task_group's tasks sit
6985 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6986 */
6987 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6988 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6989 #endif /* CONFIG_FAIR_GROUP_SCHED */
6990
6991 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6992 #ifdef CONFIG_RT_GROUP_SCHED
6993 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6994 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6995 #endif
6996
6997 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6998 rq->cpu_load[j] = 0;
6999
7000 rq->last_load_update_tick = jiffies;
7001
7002 #ifdef CONFIG_SMP
7003 rq->sd = NULL;
7004 rq->rd = NULL;
7005 rq->cpu_power = SCHED_POWER_SCALE;
7006 rq->post_schedule = 0;
7007 rq->active_balance = 0;
7008 rq->next_balance = jiffies;
7009 rq->push_cpu = 0;
7010 rq->cpu = i;
7011 rq->online = 0;
7012 rq->idle_stamp = 0;
7013 rq->avg_idle = 2*sysctl_sched_migration_cost;
7014
7015 INIT_LIST_HEAD(&rq->cfs_tasks);
7016
7017 rq_attach_root(rq, &def_root_domain);
7018 #ifdef CONFIG_NO_HZ
7019 rq->nohz_flags = 0;
7020 #endif
7021 #endif
7022 init_rq_hrtick(rq);
7023 atomic_set(&rq->nr_iowait, 0);
7024 }
7025
7026 set_load_weight(&init_task);
7027
7028 #ifdef CONFIG_PREEMPT_NOTIFIERS
7029 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7030 #endif
7031
7032 #ifdef CONFIG_RT_MUTEXES
7033 plist_head_init(&init_task.pi_waiters);
7034 #endif
7035
7036 /*
7037 * The boot idle thread does lazy MMU switching as well:
7038 */
7039 atomic_inc(&init_mm.mm_count);
7040 enter_lazy_tlb(&init_mm, current);
7041
7042 /*
7043 * Make us the idle thread. Technically, schedule() should not be
7044 * called from this thread, however somewhere below it might be,
7045 * but because we are the idle thread, we just pick up running again
7046 * when this runqueue becomes "idle".
7047 */
7048 init_idle(current, smp_processor_id());
7049
7050 calc_load_update = jiffies + LOAD_FREQ;
7051
7052 /*
7053 * During early bootup we pretend to be a normal task:
7054 */
7055 current->sched_class = &fair_sched_class;
7056
7057 #ifdef CONFIG_SMP
7058 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7059 /* May be allocated at isolcpus cmdline parse time */
7060 if (cpu_isolated_map == NULL)
7061 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7062 #endif
7063 init_sched_fair_class();
7064
7065 scheduler_running = 1;
7066 }
7067
7068 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7069 static inline int preempt_count_equals(int preempt_offset)
7070 {
7071 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7072
7073 return (nested == preempt_offset);
7074 }
7075
7076 void __might_sleep(const char *file, int line, int preempt_offset)
7077 {
7078 static unsigned long prev_jiffy; /* ratelimiting */
7079
7080 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7081 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7082 system_state != SYSTEM_RUNNING || oops_in_progress)
7083 return;
7084 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7085 return;
7086 prev_jiffy = jiffies;
7087
7088 printk(KERN_ERR
7089 "BUG: sleeping function called from invalid context at %s:%d\n",
7090 file, line);
7091 printk(KERN_ERR
7092 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7093 in_atomic(), irqs_disabled(),
7094 current->pid, current->comm);
7095
7096 debug_show_held_locks(current);
7097 if (irqs_disabled())
7098 print_irqtrace_events(current);
7099 dump_stack();
7100 }
7101 EXPORT_SYMBOL(__might_sleep);
7102 #endif
7103
7104 #ifdef CONFIG_MAGIC_SYSRQ
7105 static void normalize_task(struct rq *rq, struct task_struct *p)
7106 {
7107 const struct sched_class *prev_class = p->sched_class;
7108 int old_prio = p->prio;
7109 int on_rq;
7110
7111 on_rq = p->on_rq;
7112 if (on_rq)
7113 dequeue_task(rq, p, 0);
7114 __setscheduler(rq, p, SCHED_NORMAL, 0);
7115 if (on_rq) {
7116 enqueue_task(rq, p, 0);
7117 resched_task(rq->curr);
7118 }
7119
7120 check_class_changed(rq, p, prev_class, old_prio);
7121 }
7122
7123 void normalize_rt_tasks(void)
7124 {
7125 struct task_struct *g, *p;
7126 unsigned long flags;
7127 struct rq *rq;
7128
7129 read_lock_irqsave(&tasklist_lock, flags);
7130 do_each_thread(g, p) {
7131 /*
7132 * Only normalize user tasks:
7133 */
7134 if (!p->mm)
7135 continue;
7136
7137 p->se.exec_start = 0;
7138 #ifdef CONFIG_SCHEDSTATS
7139 p->se.statistics.wait_start = 0;
7140 p->se.statistics.sleep_start = 0;
7141 p->se.statistics.block_start = 0;
7142 #endif
7143
7144 if (!rt_task(p)) {
7145 /*
7146 * Renice negative nice level userspace
7147 * tasks back to 0:
7148 */
7149 if (TASK_NICE(p) < 0 && p->mm)
7150 set_user_nice(p, 0);
7151 continue;
7152 }
7153
7154 raw_spin_lock(&p->pi_lock);
7155 rq = __task_rq_lock(p);
7156
7157 normalize_task(rq, p);
7158
7159 __task_rq_unlock(rq);
7160 raw_spin_unlock(&p->pi_lock);
7161 } while_each_thread(g, p);
7162
7163 read_unlock_irqrestore(&tasklist_lock, flags);
7164 }
7165
7166 #endif /* CONFIG_MAGIC_SYSRQ */
7167
7168 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7169 /*
7170 * These functions are only useful for the IA64 MCA handling, or kdb.
7171 *
7172 * They can only be called when the whole system has been
7173 * stopped - every CPU needs to be quiescent, and no scheduling
7174 * activity can take place. Using them for anything else would
7175 * be a serious bug, and as a result, they aren't even visible
7176 * under any other configuration.
7177 */
7178
7179 /**
7180 * curr_task - return the current task for a given cpu.
7181 * @cpu: the processor in question.
7182 *
7183 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7184 */
7185 struct task_struct *curr_task(int cpu)
7186 {
7187 return cpu_curr(cpu);
7188 }
7189
7190 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7191
7192 #ifdef CONFIG_IA64
7193 /**
7194 * set_curr_task - set the current task for a given cpu.
7195 * @cpu: the processor in question.
7196 * @p: the task pointer to set.
7197 *
7198 * Description: This function must only be used when non-maskable interrupts
7199 * are serviced on a separate stack. It allows the architecture to switch the
7200 * notion of the current task on a cpu in a non-blocking manner. This function
7201 * must be called with all CPU's synchronized, and interrupts disabled, the
7202 * and caller must save the original value of the current task (see
7203 * curr_task() above) and restore that value before reenabling interrupts and
7204 * re-starting the system.
7205 *
7206 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7207 */
7208 void set_curr_task(int cpu, struct task_struct *p)
7209 {
7210 cpu_curr(cpu) = p;
7211 }
7212
7213 #endif
7214
7215 #ifdef CONFIG_CGROUP_SCHED
7216 /* task_group_lock serializes the addition/removal of task groups */
7217 static DEFINE_SPINLOCK(task_group_lock);
7218
7219 static void free_sched_group(struct task_group *tg)
7220 {
7221 free_fair_sched_group(tg);
7222 free_rt_sched_group(tg);
7223 autogroup_free(tg);
7224 kfree(tg);
7225 }
7226
7227 /* allocate runqueue etc for a new task group */
7228 struct task_group *sched_create_group(struct task_group *parent)
7229 {
7230 struct task_group *tg;
7231 unsigned long flags;
7232
7233 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7234 if (!tg)
7235 return ERR_PTR(-ENOMEM);
7236
7237 if (!alloc_fair_sched_group(tg, parent))
7238 goto err;
7239
7240 if (!alloc_rt_sched_group(tg, parent))
7241 goto err;
7242
7243 spin_lock_irqsave(&task_group_lock, flags);
7244 list_add_rcu(&tg->list, &task_groups);
7245
7246 WARN_ON(!parent); /* root should already exist */
7247
7248 tg->parent = parent;
7249 INIT_LIST_HEAD(&tg->children);
7250 list_add_rcu(&tg->siblings, &parent->children);
7251 spin_unlock_irqrestore(&task_group_lock, flags);
7252
7253 return tg;
7254
7255 err:
7256 free_sched_group(tg);
7257 return ERR_PTR(-ENOMEM);
7258 }
7259
7260 /* rcu callback to free various structures associated with a task group */
7261 static void free_sched_group_rcu(struct rcu_head *rhp)
7262 {
7263 /* now it should be safe to free those cfs_rqs */
7264 free_sched_group(container_of(rhp, struct task_group, rcu));
7265 }
7266
7267 /* Destroy runqueue etc associated with a task group */
7268 void sched_destroy_group(struct task_group *tg)
7269 {
7270 unsigned long flags;
7271 int i;
7272
7273 /* end participation in shares distribution */
7274 for_each_possible_cpu(i)
7275 unregister_fair_sched_group(tg, i);
7276
7277 spin_lock_irqsave(&task_group_lock, flags);
7278 list_del_rcu(&tg->list);
7279 list_del_rcu(&tg->siblings);
7280 spin_unlock_irqrestore(&task_group_lock, flags);
7281
7282 /* wait for possible concurrent references to cfs_rqs complete */
7283 call_rcu(&tg->rcu, free_sched_group_rcu);
7284 }
7285
7286 /* change task's runqueue when it moves between groups.
7287 * The caller of this function should have put the task in its new group
7288 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7289 * reflect its new group.
7290 */
7291 void sched_move_task(struct task_struct *tsk)
7292 {
7293 int on_rq, running;
7294 unsigned long flags;
7295 struct rq *rq;
7296
7297 rq = task_rq_lock(tsk, &flags);
7298
7299 running = task_current(rq, tsk);
7300 on_rq = tsk->on_rq;
7301
7302 if (on_rq)
7303 dequeue_task(rq, tsk, 0);
7304 if (unlikely(running))
7305 tsk->sched_class->put_prev_task(rq, tsk);
7306
7307 #ifdef CONFIG_FAIR_GROUP_SCHED
7308 if (tsk->sched_class->task_move_group)
7309 tsk->sched_class->task_move_group(tsk, on_rq);
7310 else
7311 #endif
7312 set_task_rq(tsk, task_cpu(tsk));
7313
7314 if (unlikely(running))
7315 tsk->sched_class->set_curr_task(rq);
7316 if (on_rq)
7317 enqueue_task(rq, tsk, 0);
7318
7319 task_rq_unlock(rq, tsk, &flags);
7320 }
7321 #endif /* CONFIG_CGROUP_SCHED */
7322
7323 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7324 static unsigned long to_ratio(u64 period, u64 runtime)
7325 {
7326 if (runtime == RUNTIME_INF)
7327 return 1ULL << 20;
7328
7329 return div64_u64(runtime << 20, period);
7330 }
7331 #endif
7332
7333 #ifdef CONFIG_RT_GROUP_SCHED
7334 /*
7335 * Ensure that the real time constraints are schedulable.
7336 */
7337 static DEFINE_MUTEX(rt_constraints_mutex);
7338
7339 /* Must be called with tasklist_lock held */
7340 static inline int tg_has_rt_tasks(struct task_group *tg)
7341 {
7342 struct task_struct *g, *p;
7343
7344 do_each_thread(g, p) {
7345 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7346 return 1;
7347 } while_each_thread(g, p);
7348
7349 return 0;
7350 }
7351
7352 struct rt_schedulable_data {
7353 struct task_group *tg;
7354 u64 rt_period;
7355 u64 rt_runtime;
7356 };
7357
7358 static int tg_rt_schedulable(struct task_group *tg, void *data)
7359 {
7360 struct rt_schedulable_data *d = data;
7361 struct task_group *child;
7362 unsigned long total, sum = 0;
7363 u64 period, runtime;
7364
7365 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7366 runtime = tg->rt_bandwidth.rt_runtime;
7367
7368 if (tg == d->tg) {
7369 period = d->rt_period;
7370 runtime = d->rt_runtime;
7371 }
7372
7373 /*
7374 * Cannot have more runtime than the period.
7375 */
7376 if (runtime > period && runtime != RUNTIME_INF)
7377 return -EINVAL;
7378
7379 /*
7380 * Ensure we don't starve existing RT tasks.
7381 */
7382 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7383 return -EBUSY;
7384
7385 total = to_ratio(period, runtime);
7386
7387 /*
7388 * Nobody can have more than the global setting allows.
7389 */
7390 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7391 return -EINVAL;
7392
7393 /*
7394 * The sum of our children's runtime should not exceed our own.
7395 */
7396 list_for_each_entry_rcu(child, &tg->children, siblings) {
7397 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7398 runtime = child->rt_bandwidth.rt_runtime;
7399
7400 if (child == d->tg) {
7401 period = d->rt_period;
7402 runtime = d->rt_runtime;
7403 }
7404
7405 sum += to_ratio(period, runtime);
7406 }
7407
7408 if (sum > total)
7409 return -EINVAL;
7410
7411 return 0;
7412 }
7413
7414 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7415 {
7416 int ret;
7417
7418 struct rt_schedulable_data data = {
7419 .tg = tg,
7420 .rt_period = period,
7421 .rt_runtime = runtime,
7422 };
7423
7424 rcu_read_lock();
7425 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7426 rcu_read_unlock();
7427
7428 return ret;
7429 }
7430
7431 static int tg_set_rt_bandwidth(struct task_group *tg,
7432 u64 rt_period, u64 rt_runtime)
7433 {
7434 int i, err = 0;
7435
7436 mutex_lock(&rt_constraints_mutex);
7437 read_lock(&tasklist_lock);
7438 err = __rt_schedulable(tg, rt_period, rt_runtime);
7439 if (err)
7440 goto unlock;
7441
7442 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7443 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7444 tg->rt_bandwidth.rt_runtime = rt_runtime;
7445
7446 for_each_possible_cpu(i) {
7447 struct rt_rq *rt_rq = tg->rt_rq[i];
7448
7449 raw_spin_lock(&rt_rq->rt_runtime_lock);
7450 rt_rq->rt_runtime = rt_runtime;
7451 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7452 }
7453 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7454 unlock:
7455 read_unlock(&tasklist_lock);
7456 mutex_unlock(&rt_constraints_mutex);
7457
7458 return err;
7459 }
7460
7461 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7462 {
7463 u64 rt_runtime, rt_period;
7464
7465 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7466 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7467 if (rt_runtime_us < 0)
7468 rt_runtime = RUNTIME_INF;
7469
7470 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7471 }
7472
7473 long sched_group_rt_runtime(struct task_group *tg)
7474 {
7475 u64 rt_runtime_us;
7476
7477 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7478 return -1;
7479
7480 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7481 do_div(rt_runtime_us, NSEC_PER_USEC);
7482 return rt_runtime_us;
7483 }
7484
7485 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7486 {
7487 u64 rt_runtime, rt_period;
7488
7489 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7490 rt_runtime = tg->rt_bandwidth.rt_runtime;
7491
7492 if (rt_period == 0)
7493 return -EINVAL;
7494
7495 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7496 }
7497
7498 long sched_group_rt_period(struct task_group *tg)
7499 {
7500 u64 rt_period_us;
7501
7502 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7503 do_div(rt_period_us, NSEC_PER_USEC);
7504 return rt_period_us;
7505 }
7506
7507 static int sched_rt_global_constraints(void)
7508 {
7509 u64 runtime, period;
7510 int ret = 0;
7511
7512 if (sysctl_sched_rt_period <= 0)
7513 return -EINVAL;
7514
7515 runtime = global_rt_runtime();
7516 period = global_rt_period();
7517
7518 /*
7519 * Sanity check on the sysctl variables.
7520 */
7521 if (runtime > period && runtime != RUNTIME_INF)
7522 return -EINVAL;
7523
7524 mutex_lock(&rt_constraints_mutex);
7525 read_lock(&tasklist_lock);
7526 ret = __rt_schedulable(NULL, 0, 0);
7527 read_unlock(&tasklist_lock);
7528 mutex_unlock(&rt_constraints_mutex);
7529
7530 return ret;
7531 }
7532
7533 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7534 {
7535 /* Don't accept realtime tasks when there is no way for them to run */
7536 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7537 return 0;
7538
7539 return 1;
7540 }
7541
7542 #else /* !CONFIG_RT_GROUP_SCHED */
7543 static int sched_rt_global_constraints(void)
7544 {
7545 unsigned long flags;
7546 int i;
7547
7548 if (sysctl_sched_rt_period <= 0)
7549 return -EINVAL;
7550
7551 /*
7552 * There's always some RT tasks in the root group
7553 * -- migration, kstopmachine etc..
7554 */
7555 if (sysctl_sched_rt_runtime == 0)
7556 return -EBUSY;
7557
7558 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7559 for_each_possible_cpu(i) {
7560 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7561
7562 raw_spin_lock(&rt_rq->rt_runtime_lock);
7563 rt_rq->rt_runtime = global_rt_runtime();
7564 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7565 }
7566 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7567
7568 return 0;
7569 }
7570 #endif /* CONFIG_RT_GROUP_SCHED */
7571
7572 int sched_rt_handler(struct ctl_table *table, int write,
7573 void __user *buffer, size_t *lenp,
7574 loff_t *ppos)
7575 {
7576 int ret;
7577 int old_period, old_runtime;
7578 static DEFINE_MUTEX(mutex);
7579
7580 mutex_lock(&mutex);
7581 old_period = sysctl_sched_rt_period;
7582 old_runtime = sysctl_sched_rt_runtime;
7583
7584 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7585
7586 if (!ret && write) {
7587 ret = sched_rt_global_constraints();
7588 if (ret) {
7589 sysctl_sched_rt_period = old_period;
7590 sysctl_sched_rt_runtime = old_runtime;
7591 } else {
7592 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7593 def_rt_bandwidth.rt_period =
7594 ns_to_ktime(global_rt_period());
7595 }
7596 }
7597 mutex_unlock(&mutex);
7598
7599 return ret;
7600 }
7601
7602 #ifdef CONFIG_CGROUP_SCHED
7603
7604 /* return corresponding task_group object of a cgroup */
7605 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7606 {
7607 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7608 struct task_group, css);
7609 }
7610
7611 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7612 {
7613 struct task_group *tg, *parent;
7614
7615 if (!cgrp->parent) {
7616 /* This is early initialization for the top cgroup */
7617 return &root_task_group.css;
7618 }
7619
7620 parent = cgroup_tg(cgrp->parent);
7621 tg = sched_create_group(parent);
7622 if (IS_ERR(tg))
7623 return ERR_PTR(-ENOMEM);
7624
7625 return &tg->css;
7626 }
7627
7628 static void cpu_cgroup_destroy(struct cgroup *cgrp)
7629 {
7630 struct task_group *tg = cgroup_tg(cgrp);
7631
7632 sched_destroy_group(tg);
7633 }
7634
7635 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7636 struct cgroup_taskset *tset)
7637 {
7638 struct task_struct *task;
7639
7640 cgroup_taskset_for_each(task, cgrp, tset) {
7641 #ifdef CONFIG_RT_GROUP_SCHED
7642 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7643 return -EINVAL;
7644 #else
7645 /* We don't support RT-tasks being in separate groups */
7646 if (task->sched_class != &fair_sched_class)
7647 return -EINVAL;
7648 #endif
7649 }
7650 return 0;
7651 }
7652
7653 static void cpu_cgroup_attach(struct cgroup *cgrp,
7654 struct cgroup_taskset *tset)
7655 {
7656 struct task_struct *task;
7657
7658 cgroup_taskset_for_each(task, cgrp, tset)
7659 sched_move_task(task);
7660 }
7661
7662 static void
7663 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7664 struct task_struct *task)
7665 {
7666 /*
7667 * cgroup_exit() is called in the copy_process() failure path.
7668 * Ignore this case since the task hasn't ran yet, this avoids
7669 * trying to poke a half freed task state from generic code.
7670 */
7671 if (!(task->flags & PF_EXITING))
7672 return;
7673
7674 sched_move_task(task);
7675 }
7676
7677 #ifdef CONFIG_FAIR_GROUP_SCHED
7678 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7679 u64 shareval)
7680 {
7681 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7682 }
7683
7684 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7685 {
7686 struct task_group *tg = cgroup_tg(cgrp);
7687
7688 return (u64) scale_load_down(tg->shares);
7689 }
7690
7691 #ifdef CONFIG_CFS_BANDWIDTH
7692 static DEFINE_MUTEX(cfs_constraints_mutex);
7693
7694 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7695 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7696
7697 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7698
7699 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7700 {
7701 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7702 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7703
7704 if (tg == &root_task_group)
7705 return -EINVAL;
7706
7707 /*
7708 * Ensure we have at some amount of bandwidth every period. This is
7709 * to prevent reaching a state of large arrears when throttled via
7710 * entity_tick() resulting in prolonged exit starvation.
7711 */
7712 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7713 return -EINVAL;
7714
7715 /*
7716 * Likewise, bound things on the otherside by preventing insane quota
7717 * periods. This also allows us to normalize in computing quota
7718 * feasibility.
7719 */
7720 if (period > max_cfs_quota_period)
7721 return -EINVAL;
7722
7723 mutex_lock(&cfs_constraints_mutex);
7724 ret = __cfs_schedulable(tg, period, quota);
7725 if (ret)
7726 goto out_unlock;
7727
7728 runtime_enabled = quota != RUNTIME_INF;
7729 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7730 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7731 raw_spin_lock_irq(&cfs_b->lock);
7732 cfs_b->period = ns_to_ktime(period);
7733 cfs_b->quota = quota;
7734
7735 __refill_cfs_bandwidth_runtime(cfs_b);
7736 /* restart the period timer (if active) to handle new period expiry */
7737 if (runtime_enabled && cfs_b->timer_active) {
7738 /* force a reprogram */
7739 cfs_b->timer_active = 0;
7740 __start_cfs_bandwidth(cfs_b);
7741 }
7742 raw_spin_unlock_irq(&cfs_b->lock);
7743
7744 for_each_possible_cpu(i) {
7745 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7746 struct rq *rq = cfs_rq->rq;
7747
7748 raw_spin_lock_irq(&rq->lock);
7749 cfs_rq->runtime_enabled = runtime_enabled;
7750 cfs_rq->runtime_remaining = 0;
7751
7752 if (cfs_rq->throttled)
7753 unthrottle_cfs_rq(cfs_rq);
7754 raw_spin_unlock_irq(&rq->lock);
7755 }
7756 out_unlock:
7757 mutex_unlock(&cfs_constraints_mutex);
7758
7759 return ret;
7760 }
7761
7762 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7763 {
7764 u64 quota, period;
7765
7766 period = ktime_to_ns(tg->cfs_bandwidth.period);
7767 if (cfs_quota_us < 0)
7768 quota = RUNTIME_INF;
7769 else
7770 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7771
7772 return tg_set_cfs_bandwidth(tg, period, quota);
7773 }
7774
7775 long tg_get_cfs_quota(struct task_group *tg)
7776 {
7777 u64 quota_us;
7778
7779 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7780 return -1;
7781
7782 quota_us = tg->cfs_bandwidth.quota;
7783 do_div(quota_us, NSEC_PER_USEC);
7784
7785 return quota_us;
7786 }
7787
7788 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7789 {
7790 u64 quota, period;
7791
7792 period = (u64)cfs_period_us * NSEC_PER_USEC;
7793 quota = tg->cfs_bandwidth.quota;
7794
7795 return tg_set_cfs_bandwidth(tg, period, quota);
7796 }
7797
7798 long tg_get_cfs_period(struct task_group *tg)
7799 {
7800 u64 cfs_period_us;
7801
7802 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7803 do_div(cfs_period_us, NSEC_PER_USEC);
7804
7805 return cfs_period_us;
7806 }
7807
7808 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7809 {
7810 return tg_get_cfs_quota(cgroup_tg(cgrp));
7811 }
7812
7813 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7814 s64 cfs_quota_us)
7815 {
7816 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7817 }
7818
7819 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7820 {
7821 return tg_get_cfs_period(cgroup_tg(cgrp));
7822 }
7823
7824 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7825 u64 cfs_period_us)
7826 {
7827 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7828 }
7829
7830 struct cfs_schedulable_data {
7831 struct task_group *tg;
7832 u64 period, quota;
7833 };
7834
7835 /*
7836 * normalize group quota/period to be quota/max_period
7837 * note: units are usecs
7838 */
7839 static u64 normalize_cfs_quota(struct task_group *tg,
7840 struct cfs_schedulable_data *d)
7841 {
7842 u64 quota, period;
7843
7844 if (tg == d->tg) {
7845 period = d->period;
7846 quota = d->quota;
7847 } else {
7848 period = tg_get_cfs_period(tg);
7849 quota = tg_get_cfs_quota(tg);
7850 }
7851
7852 /* note: these should typically be equivalent */
7853 if (quota == RUNTIME_INF || quota == -1)
7854 return RUNTIME_INF;
7855
7856 return to_ratio(period, quota);
7857 }
7858
7859 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7860 {
7861 struct cfs_schedulable_data *d = data;
7862 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7863 s64 quota = 0, parent_quota = -1;
7864
7865 if (!tg->parent) {
7866 quota = RUNTIME_INF;
7867 } else {
7868 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7869
7870 quota = normalize_cfs_quota(tg, d);
7871 parent_quota = parent_b->hierarchal_quota;
7872
7873 /*
7874 * ensure max(child_quota) <= parent_quota, inherit when no
7875 * limit is set
7876 */
7877 if (quota == RUNTIME_INF)
7878 quota = parent_quota;
7879 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7880 return -EINVAL;
7881 }
7882 cfs_b->hierarchal_quota = quota;
7883
7884 return 0;
7885 }
7886
7887 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7888 {
7889 int ret;
7890 struct cfs_schedulable_data data = {
7891 .tg = tg,
7892 .period = period,
7893 .quota = quota,
7894 };
7895
7896 if (quota != RUNTIME_INF) {
7897 do_div(data.period, NSEC_PER_USEC);
7898 do_div(data.quota, NSEC_PER_USEC);
7899 }
7900
7901 rcu_read_lock();
7902 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7903 rcu_read_unlock();
7904
7905 return ret;
7906 }
7907
7908 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7909 struct cgroup_map_cb *cb)
7910 {
7911 struct task_group *tg = cgroup_tg(cgrp);
7912 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7913
7914 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7915 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7916 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7917
7918 return 0;
7919 }
7920 #endif /* CONFIG_CFS_BANDWIDTH */
7921 #endif /* CONFIG_FAIR_GROUP_SCHED */
7922
7923 #ifdef CONFIG_RT_GROUP_SCHED
7924 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7925 s64 val)
7926 {
7927 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7928 }
7929
7930 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7931 {
7932 return sched_group_rt_runtime(cgroup_tg(cgrp));
7933 }
7934
7935 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7936 u64 rt_period_us)
7937 {
7938 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7939 }
7940
7941 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7942 {
7943 return sched_group_rt_period(cgroup_tg(cgrp));
7944 }
7945 #endif /* CONFIG_RT_GROUP_SCHED */
7946
7947 static struct cftype cpu_files[] = {
7948 #ifdef CONFIG_FAIR_GROUP_SCHED
7949 {
7950 .name = "shares",
7951 .read_u64 = cpu_shares_read_u64,
7952 .write_u64 = cpu_shares_write_u64,
7953 },
7954 #endif
7955 #ifdef CONFIG_CFS_BANDWIDTH
7956 {
7957 .name = "cfs_quota_us",
7958 .read_s64 = cpu_cfs_quota_read_s64,
7959 .write_s64 = cpu_cfs_quota_write_s64,
7960 },
7961 {
7962 .name = "cfs_period_us",
7963 .read_u64 = cpu_cfs_period_read_u64,
7964 .write_u64 = cpu_cfs_period_write_u64,
7965 },
7966 {
7967 .name = "stat",
7968 .read_map = cpu_stats_show,
7969 },
7970 #endif
7971 #ifdef CONFIG_RT_GROUP_SCHED
7972 {
7973 .name = "rt_runtime_us",
7974 .read_s64 = cpu_rt_runtime_read,
7975 .write_s64 = cpu_rt_runtime_write,
7976 },
7977 {
7978 .name = "rt_period_us",
7979 .read_u64 = cpu_rt_period_read_uint,
7980 .write_u64 = cpu_rt_period_write_uint,
7981 },
7982 #endif
7983 { } /* terminate */
7984 };
7985
7986 struct cgroup_subsys cpu_cgroup_subsys = {
7987 .name = "cpu",
7988 .create = cpu_cgroup_create,
7989 .destroy = cpu_cgroup_destroy,
7990 .can_attach = cpu_cgroup_can_attach,
7991 .attach = cpu_cgroup_attach,
7992 .exit = cpu_cgroup_exit,
7993 .subsys_id = cpu_cgroup_subsys_id,
7994 .base_cftypes = cpu_files,
7995 .early_init = 1,
7996 };
7997
7998 #endif /* CONFIG_CGROUP_SCHED */
7999
8000 #ifdef CONFIG_CGROUP_CPUACCT
8001
8002 /*
8003 * CPU accounting code for task groups.
8004 *
8005 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8006 * (balbir@in.ibm.com).
8007 */
8008
8009 /* create a new cpu accounting group */
8010 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8011 {
8012 struct cpuacct *ca;
8013
8014 if (!cgrp->parent)
8015 return &root_cpuacct.css;
8016
8017 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8018 if (!ca)
8019 goto out;
8020
8021 ca->cpuusage = alloc_percpu(u64);
8022 if (!ca->cpuusage)
8023 goto out_free_ca;
8024
8025 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8026 if (!ca->cpustat)
8027 goto out_free_cpuusage;
8028
8029 return &ca->css;
8030
8031 out_free_cpuusage:
8032 free_percpu(ca->cpuusage);
8033 out_free_ca:
8034 kfree(ca);
8035 out:
8036 return ERR_PTR(-ENOMEM);
8037 }
8038
8039 /* destroy an existing cpu accounting group */
8040 static void cpuacct_destroy(struct cgroup *cgrp)
8041 {
8042 struct cpuacct *ca = cgroup_ca(cgrp);
8043
8044 free_percpu(ca->cpustat);
8045 free_percpu(ca->cpuusage);
8046 kfree(ca);
8047 }
8048
8049 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8050 {
8051 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8052 u64 data;
8053
8054 #ifndef CONFIG_64BIT
8055 /*
8056 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8057 */
8058 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8059 data = *cpuusage;
8060 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8061 #else
8062 data = *cpuusage;
8063 #endif
8064
8065 return data;
8066 }
8067
8068 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8069 {
8070 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8071
8072 #ifndef CONFIG_64BIT
8073 /*
8074 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8075 */
8076 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8077 *cpuusage = val;
8078 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8079 #else
8080 *cpuusage = val;
8081 #endif
8082 }
8083
8084 /* return total cpu usage (in nanoseconds) of a group */
8085 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8086 {
8087 struct cpuacct *ca = cgroup_ca(cgrp);
8088 u64 totalcpuusage = 0;
8089 int i;
8090
8091 for_each_present_cpu(i)
8092 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8093
8094 return totalcpuusage;
8095 }
8096
8097 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8098 u64 reset)
8099 {
8100 struct cpuacct *ca = cgroup_ca(cgrp);
8101 int err = 0;
8102 int i;
8103
8104 if (reset) {
8105 err = -EINVAL;
8106 goto out;
8107 }
8108
8109 for_each_present_cpu(i)
8110 cpuacct_cpuusage_write(ca, i, 0);
8111
8112 out:
8113 return err;
8114 }
8115
8116 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8117 struct seq_file *m)
8118 {
8119 struct cpuacct *ca = cgroup_ca(cgroup);
8120 u64 percpu;
8121 int i;
8122
8123 for_each_present_cpu(i) {
8124 percpu = cpuacct_cpuusage_read(ca, i);
8125 seq_printf(m, "%llu ", (unsigned long long) percpu);
8126 }
8127 seq_printf(m, "\n");
8128 return 0;
8129 }
8130
8131 static const char *cpuacct_stat_desc[] = {
8132 [CPUACCT_STAT_USER] = "user",
8133 [CPUACCT_STAT_SYSTEM] = "system",
8134 };
8135
8136 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8137 struct cgroup_map_cb *cb)
8138 {
8139 struct cpuacct *ca = cgroup_ca(cgrp);
8140 int cpu;
8141 s64 val = 0;
8142
8143 for_each_online_cpu(cpu) {
8144 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8145 val += kcpustat->cpustat[CPUTIME_USER];
8146 val += kcpustat->cpustat[CPUTIME_NICE];
8147 }
8148 val = cputime64_to_clock_t(val);
8149 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8150
8151 val = 0;
8152 for_each_online_cpu(cpu) {
8153 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8154 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8155 val += kcpustat->cpustat[CPUTIME_IRQ];
8156 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8157 }
8158
8159 val = cputime64_to_clock_t(val);
8160 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8161
8162 return 0;
8163 }
8164
8165 static struct cftype files[] = {
8166 {
8167 .name = "usage",
8168 .read_u64 = cpuusage_read,
8169 .write_u64 = cpuusage_write,
8170 },
8171 {
8172 .name = "usage_percpu",
8173 .read_seq_string = cpuacct_percpu_seq_read,
8174 },
8175 {
8176 .name = "stat",
8177 .read_map = cpuacct_stats_show,
8178 },
8179 { } /* terminate */
8180 };
8181
8182 /*
8183 * charge this task's execution time to its accounting group.
8184 *
8185 * called with rq->lock held.
8186 */
8187 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8188 {
8189 struct cpuacct *ca;
8190 int cpu;
8191
8192 if (unlikely(!cpuacct_subsys.active))
8193 return;
8194
8195 cpu = task_cpu(tsk);
8196
8197 rcu_read_lock();
8198
8199 ca = task_ca(tsk);
8200
8201 for (; ca; ca = parent_ca(ca)) {
8202 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8203 *cpuusage += cputime;
8204 }
8205
8206 rcu_read_unlock();
8207 }
8208
8209 struct cgroup_subsys cpuacct_subsys = {
8210 .name = "cpuacct",
8211 .create = cpuacct_create,
8212 .destroy = cpuacct_destroy,
8213 .subsys_id = cpuacct_subsys_id,
8214 .base_cftypes = files,
8215 };
8216 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.382132 seconds and 5 git commands to generate.