cgroup: add css_parent()
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 unsigned long delta;
95 ktime_t soft, hard, now;
96
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
103
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110 }
111
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117 void update_rq_clock(struct rq *rq)
118 {
119 s64 delta;
120
121 if (rq->skip_clock_update > 0)
122 return;
123
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127 }
128
129 /*
130 * Debugging: various feature bits
131 */
132
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
139
140 #undef SCHED_FEAT
141
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
144 #name ,
145
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149
150 #undef SCHED_FEAT
151
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164 }
165
166 #ifdef HAVE_JUMP_LABEL
167
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177
178 #undef SCHED_FEAT
179
180 static void sched_feat_disable(int i)
181 {
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184 }
185
186 static void sched_feat_enable(int i)
187 {
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195
196 static int sched_feat_set(char *cmp)
197 {
198 int i;
199 int neg = 0;
200
201 if (strncmp(cmp, "NO_", 3) == 0) {
202 neg = 1;
203 cmp += 3;
204 }
205
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 if (neg) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
211 } else {
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
214 }
215 break;
216 }
217 }
218
219 return i;
220 }
221
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225 {
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
241 return -EINVAL;
242
243 *ppos += cnt;
244
245 return cnt;
246 }
247
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 return single_open(filp, sched_feat_show, NULL);
251 }
252
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
259 };
260
261 static __init int sched_init_debug(void)
262 {
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270
271 /*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277 /*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285 /*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289 unsigned int sysctl_sched_rt_period = 1000000;
290
291 __read_mostly int scheduler_running;
292
293 /*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297 int sysctl_sched_rt_runtime = 950000;
298
299
300
301 /*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 __acquires(rq->lock)
306 {
307 struct rq *rq;
308
309 lockdep_assert_held(&p->pi_lock);
310
311 for (;;) {
312 rq = task_rq(p);
313 raw_spin_lock(&rq->lock);
314 if (likely(rq == task_rq(p)))
315 return rq;
316 raw_spin_unlock(&rq->lock);
317 }
318 }
319
320 /*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 __acquires(p->pi_lock)
325 __acquires(rq->lock)
326 {
327 struct rq *rq;
328
329 for (;;) {
330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 rq = task_rq(p);
332 raw_spin_lock(&rq->lock);
333 if (likely(rq == task_rq(p)))
334 return rq;
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 }
338 }
339
340 static void __task_rq_unlock(struct rq *rq)
341 __releases(rq->lock)
342 {
343 raw_spin_unlock(&rq->lock);
344 }
345
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 __releases(rq->lock)
349 __releases(p->pi_lock)
350 {
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354
355 /*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358 static struct rq *this_rq_lock(void)
359 __acquires(rq->lock)
360 {
361 struct rq *rq;
362
363 local_irq_disable();
364 rq = this_rq();
365 raw_spin_lock(&rq->lock);
366
367 return rq;
368 }
369
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382 static void hrtick_clear(struct rq *rq)
383 {
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386 }
387
388 /*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
393 {
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398 raw_spin_lock(&rq->lock);
399 update_rq_clock(rq);
400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 raw_spin_unlock(&rq->lock);
402
403 return HRTIMER_NORESTART;
404 }
405
406 #ifdef CONFIG_SMP
407 /*
408 * called from hardirq (IPI) context
409 */
410 static void __hrtick_start(void *arg)
411 {
412 struct rq *rq = arg;
413
414 raw_spin_lock(&rq->lock);
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
417 raw_spin_unlock(&rq->lock);
418 }
419
420 /*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430 hrtimer_set_expires(timer, time);
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 rq->hrtick_csd_pending = 1;
437 }
438 }
439
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
452 hrtick_clear(cpu_rq(cpu));
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457 }
458
459 static __init void init_hrtick(void)
460 {
461 hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 HRTIMER_MODE_REL_PINNED, 0);
473 }
474
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
484
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488 #endif
489
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
492 }
493 #else /* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif /* CONFIG_SCHED_HRTICK */
506
507 /*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514 #ifdef CONFIG_SMP
515 void resched_task(struct task_struct *p)
516 {
517 int cpu;
518
519 assert_raw_spin_locked(&task_rq(p)->lock);
520
521 if (test_tsk_need_resched(p))
522 return;
523
524 set_tsk_need_resched(p);
525
526 cpu = task_cpu(p);
527 if (cpu == smp_processor_id())
528 return;
529
530 /* NEED_RESCHED must be visible before we test polling */
531 smp_mb();
532 if (!tsk_is_polling(p))
533 smp_send_reschedule(cpu);
534 }
535
536 void resched_cpu(int cpu)
537 {
538 struct rq *rq = cpu_rq(cpu);
539 unsigned long flags;
540
541 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
542 return;
543 resched_task(cpu_curr(cpu));
544 raw_spin_unlock_irqrestore(&rq->lock, flags);
545 }
546
547 #ifdef CONFIG_NO_HZ_COMMON
548 /*
549 * In the semi idle case, use the nearest busy cpu for migrating timers
550 * from an idle cpu. This is good for power-savings.
551 *
552 * We don't do similar optimization for completely idle system, as
553 * selecting an idle cpu will add more delays to the timers than intended
554 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
555 */
556 int get_nohz_timer_target(void)
557 {
558 int cpu = smp_processor_id();
559 int i;
560 struct sched_domain *sd;
561
562 rcu_read_lock();
563 for_each_domain(cpu, sd) {
564 for_each_cpu(i, sched_domain_span(sd)) {
565 if (!idle_cpu(i)) {
566 cpu = i;
567 goto unlock;
568 }
569 }
570 }
571 unlock:
572 rcu_read_unlock();
573 return cpu;
574 }
575 /*
576 * When add_timer_on() enqueues a timer into the timer wheel of an
577 * idle CPU then this timer might expire before the next timer event
578 * which is scheduled to wake up that CPU. In case of a completely
579 * idle system the next event might even be infinite time into the
580 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
581 * leaves the inner idle loop so the newly added timer is taken into
582 * account when the CPU goes back to idle and evaluates the timer
583 * wheel for the next timer event.
584 */
585 static void wake_up_idle_cpu(int cpu)
586 {
587 struct rq *rq = cpu_rq(cpu);
588
589 if (cpu == smp_processor_id())
590 return;
591
592 /*
593 * This is safe, as this function is called with the timer
594 * wheel base lock of (cpu) held. When the CPU is on the way
595 * to idle and has not yet set rq->curr to idle then it will
596 * be serialized on the timer wheel base lock and take the new
597 * timer into account automatically.
598 */
599 if (rq->curr != rq->idle)
600 return;
601
602 /*
603 * We can set TIF_RESCHED on the idle task of the other CPU
604 * lockless. The worst case is that the other CPU runs the
605 * idle task through an additional NOOP schedule()
606 */
607 set_tsk_need_resched(rq->idle);
608
609 /* NEED_RESCHED must be visible before we test polling */
610 smp_mb();
611 if (!tsk_is_polling(rq->idle))
612 smp_send_reschedule(cpu);
613 }
614
615 static bool wake_up_full_nohz_cpu(int cpu)
616 {
617 if (tick_nohz_full_cpu(cpu)) {
618 if (cpu != smp_processor_id() ||
619 tick_nohz_tick_stopped())
620 smp_send_reschedule(cpu);
621 return true;
622 }
623
624 return false;
625 }
626
627 void wake_up_nohz_cpu(int cpu)
628 {
629 if (!wake_up_full_nohz_cpu(cpu))
630 wake_up_idle_cpu(cpu);
631 }
632
633 static inline bool got_nohz_idle_kick(void)
634 {
635 int cpu = smp_processor_id();
636
637 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
638 return false;
639
640 if (idle_cpu(cpu) && !need_resched())
641 return true;
642
643 /*
644 * We can't run Idle Load Balance on this CPU for this time so we
645 * cancel it and clear NOHZ_BALANCE_KICK
646 */
647 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
648 return false;
649 }
650
651 #else /* CONFIG_NO_HZ_COMMON */
652
653 static inline bool got_nohz_idle_kick(void)
654 {
655 return false;
656 }
657
658 #endif /* CONFIG_NO_HZ_COMMON */
659
660 #ifdef CONFIG_NO_HZ_FULL
661 bool sched_can_stop_tick(void)
662 {
663 struct rq *rq;
664
665 rq = this_rq();
666
667 /* Make sure rq->nr_running update is visible after the IPI */
668 smp_rmb();
669
670 /* More than one running task need preemption */
671 if (rq->nr_running > 1)
672 return false;
673
674 return true;
675 }
676 #endif /* CONFIG_NO_HZ_FULL */
677
678 void sched_avg_update(struct rq *rq)
679 {
680 s64 period = sched_avg_period();
681
682 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
683 /*
684 * Inline assembly required to prevent the compiler
685 * optimising this loop into a divmod call.
686 * See __iter_div_u64_rem() for another example of this.
687 */
688 asm("" : "+rm" (rq->age_stamp));
689 rq->age_stamp += period;
690 rq->rt_avg /= 2;
691 }
692 }
693
694 #else /* !CONFIG_SMP */
695 void resched_task(struct task_struct *p)
696 {
697 assert_raw_spin_locked(&task_rq(p)->lock);
698 set_tsk_need_resched(p);
699 }
700 #endif /* CONFIG_SMP */
701
702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704 /*
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
709 */
710 int walk_tg_tree_from(struct task_group *from,
711 tg_visitor down, tg_visitor up, void *data)
712 {
713 struct task_group *parent, *child;
714 int ret;
715
716 parent = from;
717
718 down:
719 ret = (*down)(parent, data);
720 if (ret)
721 goto out;
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726 up:
727 continue;
728 }
729 ret = (*up)(parent, data);
730 if (ret || parent == from)
731 goto out;
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
737 out:
738 return ret;
739 }
740
741 int tg_nop(struct task_group *tg, void *data)
742 {
743 return 0;
744 }
745 #endif
746
747 static void set_load_weight(struct task_struct *p)
748 {
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
755 if (p->policy == SCHED_IDLE) {
756 load->weight = scale_load(WEIGHT_IDLEPRIO);
757 load->inv_weight = WMULT_IDLEPRIO;
758 return;
759 }
760
761 load->weight = scale_load(prio_to_weight[prio]);
762 load->inv_weight = prio_to_wmult[prio];
763 }
764
765 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766 {
767 update_rq_clock(rq);
768 sched_info_queued(p);
769 p->sched_class->enqueue_task(rq, p, flags);
770 }
771
772 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
773 {
774 update_rq_clock(rq);
775 sched_info_dequeued(p);
776 p->sched_class->dequeue_task(rq, p, flags);
777 }
778
779 void activate_task(struct rq *rq, struct task_struct *p, int flags)
780 {
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible--;
783
784 enqueue_task(rq, p, flags);
785 }
786
787 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788 {
789 if (task_contributes_to_load(p))
790 rq->nr_uninterruptible++;
791
792 dequeue_task(rq, p, flags);
793 }
794
795 static void update_rq_clock_task(struct rq *rq, s64 delta)
796 {
797 /*
798 * In theory, the compile should just see 0 here, and optimize out the call
799 * to sched_rt_avg_update. But I don't trust it...
800 */
801 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802 s64 steal = 0, irq_delta = 0;
803 #endif
804 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
805 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
806
807 /*
808 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809 * this case when a previous update_rq_clock() happened inside a
810 * {soft,}irq region.
811 *
812 * When this happens, we stop ->clock_task and only update the
813 * prev_irq_time stamp to account for the part that fit, so that a next
814 * update will consume the rest. This ensures ->clock_task is
815 * monotonic.
816 *
817 * It does however cause some slight miss-attribution of {soft,}irq
818 * time, a more accurate solution would be to update the irq_time using
819 * the current rq->clock timestamp, except that would require using
820 * atomic ops.
821 */
822 if (irq_delta > delta)
823 irq_delta = delta;
824
825 rq->prev_irq_time += irq_delta;
826 delta -= irq_delta;
827 #endif
828 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829 if (static_key_false((&paravirt_steal_rq_enabled))) {
830 u64 st;
831
832 steal = paravirt_steal_clock(cpu_of(rq));
833 steal -= rq->prev_steal_time_rq;
834
835 if (unlikely(steal > delta))
836 steal = delta;
837
838 st = steal_ticks(steal);
839 steal = st * TICK_NSEC;
840
841 rq->prev_steal_time_rq += steal;
842
843 delta -= steal;
844 }
845 #endif
846
847 rq->clock_task += delta;
848
849 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
850 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
851 sched_rt_avg_update(rq, irq_delta + steal);
852 #endif
853 }
854
855 void sched_set_stop_task(int cpu, struct task_struct *stop)
856 {
857 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
858 struct task_struct *old_stop = cpu_rq(cpu)->stop;
859
860 if (stop) {
861 /*
862 * Make it appear like a SCHED_FIFO task, its something
863 * userspace knows about and won't get confused about.
864 *
865 * Also, it will make PI more or less work without too
866 * much confusion -- but then, stop work should not
867 * rely on PI working anyway.
868 */
869 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
870
871 stop->sched_class = &stop_sched_class;
872 }
873
874 cpu_rq(cpu)->stop = stop;
875
876 if (old_stop) {
877 /*
878 * Reset it back to a normal scheduling class so that
879 * it can die in pieces.
880 */
881 old_stop->sched_class = &rt_sched_class;
882 }
883 }
884
885 /*
886 * __normal_prio - return the priority that is based on the static prio
887 */
888 static inline int __normal_prio(struct task_struct *p)
889 {
890 return p->static_prio;
891 }
892
893 /*
894 * Calculate the expected normal priority: i.e. priority
895 * without taking RT-inheritance into account. Might be
896 * boosted by interactivity modifiers. Changes upon fork,
897 * setprio syscalls, and whenever the interactivity
898 * estimator recalculates.
899 */
900 static inline int normal_prio(struct task_struct *p)
901 {
902 int prio;
903
904 if (task_has_rt_policy(p))
905 prio = MAX_RT_PRIO-1 - p->rt_priority;
906 else
907 prio = __normal_prio(p);
908 return prio;
909 }
910
911 /*
912 * Calculate the current priority, i.e. the priority
913 * taken into account by the scheduler. This value might
914 * be boosted by RT tasks, or might be boosted by
915 * interactivity modifiers. Will be RT if the task got
916 * RT-boosted. If not then it returns p->normal_prio.
917 */
918 static int effective_prio(struct task_struct *p)
919 {
920 p->normal_prio = normal_prio(p);
921 /*
922 * If we are RT tasks or we were boosted to RT priority,
923 * keep the priority unchanged. Otherwise, update priority
924 * to the normal priority:
925 */
926 if (!rt_prio(p->prio))
927 return p->normal_prio;
928 return p->prio;
929 }
930
931 /**
932 * task_curr - is this task currently executing on a CPU?
933 * @p: the task in question.
934 */
935 inline int task_curr(const struct task_struct *p)
936 {
937 return cpu_curr(task_cpu(p)) == p;
938 }
939
940 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
942 int oldprio)
943 {
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio)
949 p->sched_class->prio_changed(rq, p, oldprio);
950 }
951
952 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953 {
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974 rq->skip_clock_update = 1;
975 }
976
977 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
978
979 void register_task_migration_notifier(struct notifier_block *n)
980 {
981 atomic_notifier_chain_register(&task_migration_notifier, n);
982 }
983
984 #ifdef CONFIG_SMP
985 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
986 {
987 #ifdef CONFIG_SCHED_DEBUG
988 /*
989 * We should never call set_task_cpu() on a blocked task,
990 * ttwu() will sort out the placement.
991 */
992 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
993 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
994
995 #ifdef CONFIG_LOCKDEP
996 /*
997 * The caller should hold either p->pi_lock or rq->lock, when changing
998 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
999 *
1000 * sched_move_task() holds both and thus holding either pins the cgroup,
1001 * see task_group().
1002 *
1003 * Furthermore, all task_rq users should acquire both locks, see
1004 * task_rq_lock().
1005 */
1006 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1007 lockdep_is_held(&task_rq(p)->lock)));
1008 #endif
1009 #endif
1010
1011 trace_sched_migrate_task(p, new_cpu);
1012
1013 if (task_cpu(p) != new_cpu) {
1014 struct task_migration_notifier tmn;
1015
1016 if (p->sched_class->migrate_task_rq)
1017 p->sched_class->migrate_task_rq(p, new_cpu);
1018 p->se.nr_migrations++;
1019 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1020
1021 tmn.task = p;
1022 tmn.from_cpu = task_cpu(p);
1023 tmn.to_cpu = new_cpu;
1024
1025 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1026 }
1027
1028 __set_task_cpu(p, new_cpu);
1029 }
1030
1031 struct migration_arg {
1032 struct task_struct *task;
1033 int dest_cpu;
1034 };
1035
1036 static int migration_cpu_stop(void *data);
1037
1038 /*
1039 * wait_task_inactive - wait for a thread to unschedule.
1040 *
1041 * If @match_state is nonzero, it's the @p->state value just checked and
1042 * not expected to change. If it changes, i.e. @p might have woken up,
1043 * then return zero. When we succeed in waiting for @p to be off its CPU,
1044 * we return a positive number (its total switch count). If a second call
1045 * a short while later returns the same number, the caller can be sure that
1046 * @p has remained unscheduled the whole time.
1047 *
1048 * The caller must ensure that the task *will* unschedule sometime soon,
1049 * else this function might spin for a *long* time. This function can't
1050 * be called with interrupts off, or it may introduce deadlock with
1051 * smp_call_function() if an IPI is sent by the same process we are
1052 * waiting to become inactive.
1053 */
1054 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1055 {
1056 unsigned long flags;
1057 int running, on_rq;
1058 unsigned long ncsw;
1059 struct rq *rq;
1060
1061 for (;;) {
1062 /*
1063 * We do the initial early heuristics without holding
1064 * any task-queue locks at all. We'll only try to get
1065 * the runqueue lock when things look like they will
1066 * work out!
1067 */
1068 rq = task_rq(p);
1069
1070 /*
1071 * If the task is actively running on another CPU
1072 * still, just relax and busy-wait without holding
1073 * any locks.
1074 *
1075 * NOTE! Since we don't hold any locks, it's not
1076 * even sure that "rq" stays as the right runqueue!
1077 * But we don't care, since "task_running()" will
1078 * return false if the runqueue has changed and p
1079 * is actually now running somewhere else!
1080 */
1081 while (task_running(rq, p)) {
1082 if (match_state && unlikely(p->state != match_state))
1083 return 0;
1084 cpu_relax();
1085 }
1086
1087 /*
1088 * Ok, time to look more closely! We need the rq
1089 * lock now, to be *sure*. If we're wrong, we'll
1090 * just go back and repeat.
1091 */
1092 rq = task_rq_lock(p, &flags);
1093 trace_sched_wait_task(p);
1094 running = task_running(rq, p);
1095 on_rq = p->on_rq;
1096 ncsw = 0;
1097 if (!match_state || p->state == match_state)
1098 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1099 task_rq_unlock(rq, p, &flags);
1100
1101 /*
1102 * If it changed from the expected state, bail out now.
1103 */
1104 if (unlikely(!ncsw))
1105 break;
1106
1107 /*
1108 * Was it really running after all now that we
1109 * checked with the proper locks actually held?
1110 *
1111 * Oops. Go back and try again..
1112 */
1113 if (unlikely(running)) {
1114 cpu_relax();
1115 continue;
1116 }
1117
1118 /*
1119 * It's not enough that it's not actively running,
1120 * it must be off the runqueue _entirely_, and not
1121 * preempted!
1122 *
1123 * So if it was still runnable (but just not actively
1124 * running right now), it's preempted, and we should
1125 * yield - it could be a while.
1126 */
1127 if (unlikely(on_rq)) {
1128 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1129
1130 set_current_state(TASK_UNINTERRUPTIBLE);
1131 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1132 continue;
1133 }
1134
1135 /*
1136 * Ahh, all good. It wasn't running, and it wasn't
1137 * runnable, which means that it will never become
1138 * running in the future either. We're all done!
1139 */
1140 break;
1141 }
1142
1143 return ncsw;
1144 }
1145
1146 /***
1147 * kick_process - kick a running thread to enter/exit the kernel
1148 * @p: the to-be-kicked thread
1149 *
1150 * Cause a process which is running on another CPU to enter
1151 * kernel-mode, without any delay. (to get signals handled.)
1152 *
1153 * NOTE: this function doesn't have to take the runqueue lock,
1154 * because all it wants to ensure is that the remote task enters
1155 * the kernel. If the IPI races and the task has been migrated
1156 * to another CPU then no harm is done and the purpose has been
1157 * achieved as well.
1158 */
1159 void kick_process(struct task_struct *p)
1160 {
1161 int cpu;
1162
1163 preempt_disable();
1164 cpu = task_cpu(p);
1165 if ((cpu != smp_processor_id()) && task_curr(p))
1166 smp_send_reschedule(cpu);
1167 preempt_enable();
1168 }
1169 EXPORT_SYMBOL_GPL(kick_process);
1170 #endif /* CONFIG_SMP */
1171
1172 #ifdef CONFIG_SMP
1173 /*
1174 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1175 */
1176 static int select_fallback_rq(int cpu, struct task_struct *p)
1177 {
1178 int nid = cpu_to_node(cpu);
1179 const struct cpumask *nodemask = NULL;
1180 enum { cpuset, possible, fail } state = cpuset;
1181 int dest_cpu;
1182
1183 /*
1184 * If the node that the cpu is on has been offlined, cpu_to_node()
1185 * will return -1. There is no cpu on the node, and we should
1186 * select the cpu on the other node.
1187 */
1188 if (nid != -1) {
1189 nodemask = cpumask_of_node(nid);
1190
1191 /* Look for allowed, online CPU in same node. */
1192 for_each_cpu(dest_cpu, nodemask) {
1193 if (!cpu_online(dest_cpu))
1194 continue;
1195 if (!cpu_active(dest_cpu))
1196 continue;
1197 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1198 return dest_cpu;
1199 }
1200 }
1201
1202 for (;;) {
1203 /* Any allowed, online CPU? */
1204 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1205 if (!cpu_online(dest_cpu))
1206 continue;
1207 if (!cpu_active(dest_cpu))
1208 continue;
1209 goto out;
1210 }
1211
1212 switch (state) {
1213 case cpuset:
1214 /* No more Mr. Nice Guy. */
1215 cpuset_cpus_allowed_fallback(p);
1216 state = possible;
1217 break;
1218
1219 case possible:
1220 do_set_cpus_allowed(p, cpu_possible_mask);
1221 state = fail;
1222 break;
1223
1224 case fail:
1225 BUG();
1226 break;
1227 }
1228 }
1229
1230 out:
1231 if (state != cpuset) {
1232 /*
1233 * Don't tell them about moving exiting tasks or
1234 * kernel threads (both mm NULL), since they never
1235 * leave kernel.
1236 */
1237 if (p->mm && printk_ratelimit()) {
1238 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1239 task_pid_nr(p), p->comm, cpu);
1240 }
1241 }
1242
1243 return dest_cpu;
1244 }
1245
1246 /*
1247 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1248 */
1249 static inline
1250 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1251 {
1252 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1253
1254 /*
1255 * In order not to call set_task_cpu() on a blocking task we need
1256 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1257 * cpu.
1258 *
1259 * Since this is common to all placement strategies, this lives here.
1260 *
1261 * [ this allows ->select_task() to simply return task_cpu(p) and
1262 * not worry about this generic constraint ]
1263 */
1264 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1265 !cpu_online(cpu)))
1266 cpu = select_fallback_rq(task_cpu(p), p);
1267
1268 return cpu;
1269 }
1270
1271 static void update_avg(u64 *avg, u64 sample)
1272 {
1273 s64 diff = sample - *avg;
1274 *avg += diff >> 3;
1275 }
1276 #endif
1277
1278 static void
1279 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1280 {
1281 #ifdef CONFIG_SCHEDSTATS
1282 struct rq *rq = this_rq();
1283
1284 #ifdef CONFIG_SMP
1285 int this_cpu = smp_processor_id();
1286
1287 if (cpu == this_cpu) {
1288 schedstat_inc(rq, ttwu_local);
1289 schedstat_inc(p, se.statistics.nr_wakeups_local);
1290 } else {
1291 struct sched_domain *sd;
1292
1293 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1294 rcu_read_lock();
1295 for_each_domain(this_cpu, sd) {
1296 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1297 schedstat_inc(sd, ttwu_wake_remote);
1298 break;
1299 }
1300 }
1301 rcu_read_unlock();
1302 }
1303
1304 if (wake_flags & WF_MIGRATED)
1305 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1306
1307 #endif /* CONFIG_SMP */
1308
1309 schedstat_inc(rq, ttwu_count);
1310 schedstat_inc(p, se.statistics.nr_wakeups);
1311
1312 if (wake_flags & WF_SYNC)
1313 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1314
1315 #endif /* CONFIG_SCHEDSTATS */
1316 }
1317
1318 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1319 {
1320 activate_task(rq, p, en_flags);
1321 p->on_rq = 1;
1322
1323 /* if a worker is waking up, notify workqueue */
1324 if (p->flags & PF_WQ_WORKER)
1325 wq_worker_waking_up(p, cpu_of(rq));
1326 }
1327
1328 /*
1329 * Mark the task runnable and perform wakeup-preemption.
1330 */
1331 static void
1332 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1333 {
1334 check_preempt_curr(rq, p, wake_flags);
1335 trace_sched_wakeup(p, true);
1336
1337 p->state = TASK_RUNNING;
1338 #ifdef CONFIG_SMP
1339 if (p->sched_class->task_woken)
1340 p->sched_class->task_woken(rq, p);
1341
1342 if (rq->idle_stamp) {
1343 u64 delta = rq_clock(rq) - rq->idle_stamp;
1344 u64 max = 2*sysctl_sched_migration_cost;
1345
1346 if (delta > max)
1347 rq->avg_idle = max;
1348 else
1349 update_avg(&rq->avg_idle, delta);
1350 rq->idle_stamp = 0;
1351 }
1352 #endif
1353 }
1354
1355 static void
1356 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1357 {
1358 #ifdef CONFIG_SMP
1359 if (p->sched_contributes_to_load)
1360 rq->nr_uninterruptible--;
1361 #endif
1362
1363 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1364 ttwu_do_wakeup(rq, p, wake_flags);
1365 }
1366
1367 /*
1368 * Called in case the task @p isn't fully descheduled from its runqueue,
1369 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1370 * since all we need to do is flip p->state to TASK_RUNNING, since
1371 * the task is still ->on_rq.
1372 */
1373 static int ttwu_remote(struct task_struct *p, int wake_flags)
1374 {
1375 struct rq *rq;
1376 int ret = 0;
1377
1378 rq = __task_rq_lock(p);
1379 if (p->on_rq) {
1380 /* check_preempt_curr() may use rq clock */
1381 update_rq_clock(rq);
1382 ttwu_do_wakeup(rq, p, wake_flags);
1383 ret = 1;
1384 }
1385 __task_rq_unlock(rq);
1386
1387 return ret;
1388 }
1389
1390 #ifdef CONFIG_SMP
1391 static void sched_ttwu_pending(void)
1392 {
1393 struct rq *rq = this_rq();
1394 struct llist_node *llist = llist_del_all(&rq->wake_list);
1395 struct task_struct *p;
1396
1397 raw_spin_lock(&rq->lock);
1398
1399 while (llist) {
1400 p = llist_entry(llist, struct task_struct, wake_entry);
1401 llist = llist_next(llist);
1402 ttwu_do_activate(rq, p, 0);
1403 }
1404
1405 raw_spin_unlock(&rq->lock);
1406 }
1407
1408 void scheduler_ipi(void)
1409 {
1410 if (llist_empty(&this_rq()->wake_list)
1411 && !tick_nohz_full_cpu(smp_processor_id())
1412 && !got_nohz_idle_kick())
1413 return;
1414
1415 /*
1416 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1417 * traditionally all their work was done from the interrupt return
1418 * path. Now that we actually do some work, we need to make sure
1419 * we do call them.
1420 *
1421 * Some archs already do call them, luckily irq_enter/exit nest
1422 * properly.
1423 *
1424 * Arguably we should visit all archs and update all handlers,
1425 * however a fair share of IPIs are still resched only so this would
1426 * somewhat pessimize the simple resched case.
1427 */
1428 irq_enter();
1429 tick_nohz_full_check();
1430 sched_ttwu_pending();
1431
1432 /*
1433 * Check if someone kicked us for doing the nohz idle load balance.
1434 */
1435 if (unlikely(got_nohz_idle_kick())) {
1436 this_rq()->idle_balance = 1;
1437 raise_softirq_irqoff(SCHED_SOFTIRQ);
1438 }
1439 irq_exit();
1440 }
1441
1442 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1443 {
1444 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1445 smp_send_reschedule(cpu);
1446 }
1447
1448 bool cpus_share_cache(int this_cpu, int that_cpu)
1449 {
1450 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1451 }
1452 #endif /* CONFIG_SMP */
1453
1454 static void ttwu_queue(struct task_struct *p, int cpu)
1455 {
1456 struct rq *rq = cpu_rq(cpu);
1457
1458 #if defined(CONFIG_SMP)
1459 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1460 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1461 ttwu_queue_remote(p, cpu);
1462 return;
1463 }
1464 #endif
1465
1466 raw_spin_lock(&rq->lock);
1467 ttwu_do_activate(rq, p, 0);
1468 raw_spin_unlock(&rq->lock);
1469 }
1470
1471 /**
1472 * try_to_wake_up - wake up a thread
1473 * @p: the thread to be awakened
1474 * @state: the mask of task states that can be woken
1475 * @wake_flags: wake modifier flags (WF_*)
1476 *
1477 * Put it on the run-queue if it's not already there. The "current"
1478 * thread is always on the run-queue (except when the actual
1479 * re-schedule is in progress), and as such you're allowed to do
1480 * the simpler "current->state = TASK_RUNNING" to mark yourself
1481 * runnable without the overhead of this.
1482 *
1483 * Returns %true if @p was woken up, %false if it was already running
1484 * or @state didn't match @p's state.
1485 */
1486 static int
1487 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1488 {
1489 unsigned long flags;
1490 int cpu, success = 0;
1491
1492 smp_wmb();
1493 raw_spin_lock_irqsave(&p->pi_lock, flags);
1494 if (!(p->state & state))
1495 goto out;
1496
1497 success = 1; /* we're going to change ->state */
1498 cpu = task_cpu(p);
1499
1500 if (p->on_rq && ttwu_remote(p, wake_flags))
1501 goto stat;
1502
1503 #ifdef CONFIG_SMP
1504 /*
1505 * If the owning (remote) cpu is still in the middle of schedule() with
1506 * this task as prev, wait until its done referencing the task.
1507 */
1508 while (p->on_cpu)
1509 cpu_relax();
1510 /*
1511 * Pairs with the smp_wmb() in finish_lock_switch().
1512 */
1513 smp_rmb();
1514
1515 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1516 p->state = TASK_WAKING;
1517
1518 if (p->sched_class->task_waking)
1519 p->sched_class->task_waking(p);
1520
1521 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1522 if (task_cpu(p) != cpu) {
1523 wake_flags |= WF_MIGRATED;
1524 set_task_cpu(p, cpu);
1525 }
1526 #endif /* CONFIG_SMP */
1527
1528 ttwu_queue(p, cpu);
1529 stat:
1530 ttwu_stat(p, cpu, wake_flags);
1531 out:
1532 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1533
1534 return success;
1535 }
1536
1537 /**
1538 * try_to_wake_up_local - try to wake up a local task with rq lock held
1539 * @p: the thread to be awakened
1540 *
1541 * Put @p on the run-queue if it's not already there. The caller must
1542 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1543 * the current task.
1544 */
1545 static void try_to_wake_up_local(struct task_struct *p)
1546 {
1547 struct rq *rq = task_rq(p);
1548
1549 if (WARN_ON_ONCE(rq != this_rq()) ||
1550 WARN_ON_ONCE(p == current))
1551 return;
1552
1553 lockdep_assert_held(&rq->lock);
1554
1555 if (!raw_spin_trylock(&p->pi_lock)) {
1556 raw_spin_unlock(&rq->lock);
1557 raw_spin_lock(&p->pi_lock);
1558 raw_spin_lock(&rq->lock);
1559 }
1560
1561 if (!(p->state & TASK_NORMAL))
1562 goto out;
1563
1564 if (!p->on_rq)
1565 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1566
1567 ttwu_do_wakeup(rq, p, 0);
1568 ttwu_stat(p, smp_processor_id(), 0);
1569 out:
1570 raw_spin_unlock(&p->pi_lock);
1571 }
1572
1573 /**
1574 * wake_up_process - Wake up a specific process
1575 * @p: The process to be woken up.
1576 *
1577 * Attempt to wake up the nominated process and move it to the set of runnable
1578 * processes. Returns 1 if the process was woken up, 0 if it was already
1579 * running.
1580 *
1581 * It may be assumed that this function implies a write memory barrier before
1582 * changing the task state if and only if any tasks are woken up.
1583 */
1584 int wake_up_process(struct task_struct *p)
1585 {
1586 WARN_ON(task_is_stopped_or_traced(p));
1587 return try_to_wake_up(p, TASK_NORMAL, 0);
1588 }
1589 EXPORT_SYMBOL(wake_up_process);
1590
1591 int wake_up_state(struct task_struct *p, unsigned int state)
1592 {
1593 return try_to_wake_up(p, state, 0);
1594 }
1595
1596 /*
1597 * Perform scheduler related setup for a newly forked process p.
1598 * p is forked by current.
1599 *
1600 * __sched_fork() is basic setup used by init_idle() too:
1601 */
1602 static void __sched_fork(struct task_struct *p)
1603 {
1604 p->on_rq = 0;
1605
1606 p->se.on_rq = 0;
1607 p->se.exec_start = 0;
1608 p->se.sum_exec_runtime = 0;
1609 p->se.prev_sum_exec_runtime = 0;
1610 p->se.nr_migrations = 0;
1611 p->se.vruntime = 0;
1612 INIT_LIST_HEAD(&p->se.group_node);
1613
1614 #ifdef CONFIG_SCHEDSTATS
1615 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1616 #endif
1617
1618 INIT_LIST_HEAD(&p->rt.run_list);
1619
1620 #ifdef CONFIG_PREEMPT_NOTIFIERS
1621 INIT_HLIST_HEAD(&p->preempt_notifiers);
1622 #endif
1623
1624 #ifdef CONFIG_NUMA_BALANCING
1625 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1626 p->mm->numa_next_scan = jiffies;
1627 p->mm->numa_next_reset = jiffies;
1628 p->mm->numa_scan_seq = 0;
1629 }
1630
1631 p->node_stamp = 0ULL;
1632 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1633 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1634 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1635 p->numa_work.next = &p->numa_work;
1636 #endif /* CONFIG_NUMA_BALANCING */
1637 }
1638
1639 #ifdef CONFIG_NUMA_BALANCING
1640 #ifdef CONFIG_SCHED_DEBUG
1641 void set_numabalancing_state(bool enabled)
1642 {
1643 if (enabled)
1644 sched_feat_set("NUMA");
1645 else
1646 sched_feat_set("NO_NUMA");
1647 }
1648 #else
1649 __read_mostly bool numabalancing_enabled;
1650
1651 void set_numabalancing_state(bool enabled)
1652 {
1653 numabalancing_enabled = enabled;
1654 }
1655 #endif /* CONFIG_SCHED_DEBUG */
1656 #endif /* CONFIG_NUMA_BALANCING */
1657
1658 /*
1659 * fork()/clone()-time setup:
1660 */
1661 void sched_fork(struct task_struct *p)
1662 {
1663 unsigned long flags;
1664 int cpu = get_cpu();
1665
1666 __sched_fork(p);
1667 /*
1668 * We mark the process as running here. This guarantees that
1669 * nobody will actually run it, and a signal or other external
1670 * event cannot wake it up and insert it on the runqueue either.
1671 */
1672 p->state = TASK_RUNNING;
1673
1674 /*
1675 * Make sure we do not leak PI boosting priority to the child.
1676 */
1677 p->prio = current->normal_prio;
1678
1679 /*
1680 * Revert to default priority/policy on fork if requested.
1681 */
1682 if (unlikely(p->sched_reset_on_fork)) {
1683 if (task_has_rt_policy(p)) {
1684 p->policy = SCHED_NORMAL;
1685 p->static_prio = NICE_TO_PRIO(0);
1686 p->rt_priority = 0;
1687 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1688 p->static_prio = NICE_TO_PRIO(0);
1689
1690 p->prio = p->normal_prio = __normal_prio(p);
1691 set_load_weight(p);
1692
1693 /*
1694 * We don't need the reset flag anymore after the fork. It has
1695 * fulfilled its duty:
1696 */
1697 p->sched_reset_on_fork = 0;
1698 }
1699
1700 if (!rt_prio(p->prio))
1701 p->sched_class = &fair_sched_class;
1702
1703 if (p->sched_class->task_fork)
1704 p->sched_class->task_fork(p);
1705
1706 /*
1707 * The child is not yet in the pid-hash so no cgroup attach races,
1708 * and the cgroup is pinned to this child due to cgroup_fork()
1709 * is ran before sched_fork().
1710 *
1711 * Silence PROVE_RCU.
1712 */
1713 raw_spin_lock_irqsave(&p->pi_lock, flags);
1714 set_task_cpu(p, cpu);
1715 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1716
1717 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1718 if (likely(sched_info_on()))
1719 memset(&p->sched_info, 0, sizeof(p->sched_info));
1720 #endif
1721 #if defined(CONFIG_SMP)
1722 p->on_cpu = 0;
1723 #endif
1724 #ifdef CONFIG_PREEMPT_COUNT
1725 /* Want to start with kernel preemption disabled. */
1726 task_thread_info(p)->preempt_count = 1;
1727 #endif
1728 #ifdef CONFIG_SMP
1729 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1730 #endif
1731
1732 put_cpu();
1733 }
1734
1735 /*
1736 * wake_up_new_task - wake up a newly created task for the first time.
1737 *
1738 * This function will do some initial scheduler statistics housekeeping
1739 * that must be done for every newly created context, then puts the task
1740 * on the runqueue and wakes it.
1741 */
1742 void wake_up_new_task(struct task_struct *p)
1743 {
1744 unsigned long flags;
1745 struct rq *rq;
1746
1747 raw_spin_lock_irqsave(&p->pi_lock, flags);
1748 #ifdef CONFIG_SMP
1749 /*
1750 * Fork balancing, do it here and not earlier because:
1751 * - cpus_allowed can change in the fork path
1752 * - any previously selected cpu might disappear through hotplug
1753 */
1754 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1755 #endif
1756
1757 /* Initialize new task's runnable average */
1758 init_task_runnable_average(p);
1759 rq = __task_rq_lock(p);
1760 activate_task(rq, p, 0);
1761 p->on_rq = 1;
1762 trace_sched_wakeup_new(p, true);
1763 check_preempt_curr(rq, p, WF_FORK);
1764 #ifdef CONFIG_SMP
1765 if (p->sched_class->task_woken)
1766 p->sched_class->task_woken(rq, p);
1767 #endif
1768 task_rq_unlock(rq, p, &flags);
1769 }
1770
1771 #ifdef CONFIG_PREEMPT_NOTIFIERS
1772
1773 /**
1774 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1775 * @notifier: notifier struct to register
1776 */
1777 void preempt_notifier_register(struct preempt_notifier *notifier)
1778 {
1779 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1780 }
1781 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1782
1783 /**
1784 * preempt_notifier_unregister - no longer interested in preemption notifications
1785 * @notifier: notifier struct to unregister
1786 *
1787 * This is safe to call from within a preemption notifier.
1788 */
1789 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1790 {
1791 hlist_del(&notifier->link);
1792 }
1793 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1794
1795 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1796 {
1797 struct preempt_notifier *notifier;
1798
1799 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1800 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1801 }
1802
1803 static void
1804 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1805 struct task_struct *next)
1806 {
1807 struct preempt_notifier *notifier;
1808
1809 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1810 notifier->ops->sched_out(notifier, next);
1811 }
1812
1813 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1814
1815 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1816 {
1817 }
1818
1819 static void
1820 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1821 struct task_struct *next)
1822 {
1823 }
1824
1825 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1826
1827 /**
1828 * prepare_task_switch - prepare to switch tasks
1829 * @rq: the runqueue preparing to switch
1830 * @prev: the current task that is being switched out
1831 * @next: the task we are going to switch to.
1832 *
1833 * This is called with the rq lock held and interrupts off. It must
1834 * be paired with a subsequent finish_task_switch after the context
1835 * switch.
1836 *
1837 * prepare_task_switch sets up locking and calls architecture specific
1838 * hooks.
1839 */
1840 static inline void
1841 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1842 struct task_struct *next)
1843 {
1844 trace_sched_switch(prev, next);
1845 sched_info_switch(prev, next);
1846 perf_event_task_sched_out(prev, next);
1847 fire_sched_out_preempt_notifiers(prev, next);
1848 prepare_lock_switch(rq, next);
1849 prepare_arch_switch(next);
1850 }
1851
1852 /**
1853 * finish_task_switch - clean up after a task-switch
1854 * @rq: runqueue associated with task-switch
1855 * @prev: the thread we just switched away from.
1856 *
1857 * finish_task_switch must be called after the context switch, paired
1858 * with a prepare_task_switch call before the context switch.
1859 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1860 * and do any other architecture-specific cleanup actions.
1861 *
1862 * Note that we may have delayed dropping an mm in context_switch(). If
1863 * so, we finish that here outside of the runqueue lock. (Doing it
1864 * with the lock held can cause deadlocks; see schedule() for
1865 * details.)
1866 */
1867 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1868 __releases(rq->lock)
1869 {
1870 struct mm_struct *mm = rq->prev_mm;
1871 long prev_state;
1872
1873 rq->prev_mm = NULL;
1874
1875 /*
1876 * A task struct has one reference for the use as "current".
1877 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1878 * schedule one last time. The schedule call will never return, and
1879 * the scheduled task must drop that reference.
1880 * The test for TASK_DEAD must occur while the runqueue locks are
1881 * still held, otherwise prev could be scheduled on another cpu, die
1882 * there before we look at prev->state, and then the reference would
1883 * be dropped twice.
1884 * Manfred Spraul <manfred@colorfullife.com>
1885 */
1886 prev_state = prev->state;
1887 vtime_task_switch(prev);
1888 finish_arch_switch(prev);
1889 perf_event_task_sched_in(prev, current);
1890 finish_lock_switch(rq, prev);
1891 finish_arch_post_lock_switch();
1892
1893 fire_sched_in_preempt_notifiers(current);
1894 if (mm)
1895 mmdrop(mm);
1896 if (unlikely(prev_state == TASK_DEAD)) {
1897 /*
1898 * Remove function-return probe instances associated with this
1899 * task and put them back on the free list.
1900 */
1901 kprobe_flush_task(prev);
1902 put_task_struct(prev);
1903 }
1904
1905 tick_nohz_task_switch(current);
1906 }
1907
1908 #ifdef CONFIG_SMP
1909
1910 /* assumes rq->lock is held */
1911 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1912 {
1913 if (prev->sched_class->pre_schedule)
1914 prev->sched_class->pre_schedule(rq, prev);
1915 }
1916
1917 /* rq->lock is NOT held, but preemption is disabled */
1918 static inline void post_schedule(struct rq *rq)
1919 {
1920 if (rq->post_schedule) {
1921 unsigned long flags;
1922
1923 raw_spin_lock_irqsave(&rq->lock, flags);
1924 if (rq->curr->sched_class->post_schedule)
1925 rq->curr->sched_class->post_schedule(rq);
1926 raw_spin_unlock_irqrestore(&rq->lock, flags);
1927
1928 rq->post_schedule = 0;
1929 }
1930 }
1931
1932 #else
1933
1934 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1935 {
1936 }
1937
1938 static inline void post_schedule(struct rq *rq)
1939 {
1940 }
1941
1942 #endif
1943
1944 /**
1945 * schedule_tail - first thing a freshly forked thread must call.
1946 * @prev: the thread we just switched away from.
1947 */
1948 asmlinkage void schedule_tail(struct task_struct *prev)
1949 __releases(rq->lock)
1950 {
1951 struct rq *rq = this_rq();
1952
1953 finish_task_switch(rq, prev);
1954
1955 /*
1956 * FIXME: do we need to worry about rq being invalidated by the
1957 * task_switch?
1958 */
1959 post_schedule(rq);
1960
1961 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1962 /* In this case, finish_task_switch does not reenable preemption */
1963 preempt_enable();
1964 #endif
1965 if (current->set_child_tid)
1966 put_user(task_pid_vnr(current), current->set_child_tid);
1967 }
1968
1969 /*
1970 * context_switch - switch to the new MM and the new
1971 * thread's register state.
1972 */
1973 static inline void
1974 context_switch(struct rq *rq, struct task_struct *prev,
1975 struct task_struct *next)
1976 {
1977 struct mm_struct *mm, *oldmm;
1978
1979 prepare_task_switch(rq, prev, next);
1980
1981 mm = next->mm;
1982 oldmm = prev->active_mm;
1983 /*
1984 * For paravirt, this is coupled with an exit in switch_to to
1985 * combine the page table reload and the switch backend into
1986 * one hypercall.
1987 */
1988 arch_start_context_switch(prev);
1989
1990 if (!mm) {
1991 next->active_mm = oldmm;
1992 atomic_inc(&oldmm->mm_count);
1993 enter_lazy_tlb(oldmm, next);
1994 } else
1995 switch_mm(oldmm, mm, next);
1996
1997 if (!prev->mm) {
1998 prev->active_mm = NULL;
1999 rq->prev_mm = oldmm;
2000 }
2001 /*
2002 * Since the runqueue lock will be released by the next
2003 * task (which is an invalid locking op but in the case
2004 * of the scheduler it's an obvious special-case), so we
2005 * do an early lockdep release here:
2006 */
2007 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2008 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2009 #endif
2010
2011 context_tracking_task_switch(prev, next);
2012 /* Here we just switch the register state and the stack. */
2013 switch_to(prev, next, prev);
2014
2015 barrier();
2016 /*
2017 * this_rq must be evaluated again because prev may have moved
2018 * CPUs since it called schedule(), thus the 'rq' on its stack
2019 * frame will be invalid.
2020 */
2021 finish_task_switch(this_rq(), prev);
2022 }
2023
2024 /*
2025 * nr_running and nr_context_switches:
2026 *
2027 * externally visible scheduler statistics: current number of runnable
2028 * threads, total number of context switches performed since bootup.
2029 */
2030 unsigned long nr_running(void)
2031 {
2032 unsigned long i, sum = 0;
2033
2034 for_each_online_cpu(i)
2035 sum += cpu_rq(i)->nr_running;
2036
2037 return sum;
2038 }
2039
2040 unsigned long long nr_context_switches(void)
2041 {
2042 int i;
2043 unsigned long long sum = 0;
2044
2045 for_each_possible_cpu(i)
2046 sum += cpu_rq(i)->nr_switches;
2047
2048 return sum;
2049 }
2050
2051 unsigned long nr_iowait(void)
2052 {
2053 unsigned long i, sum = 0;
2054
2055 for_each_possible_cpu(i)
2056 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2057
2058 return sum;
2059 }
2060
2061 unsigned long nr_iowait_cpu(int cpu)
2062 {
2063 struct rq *this = cpu_rq(cpu);
2064 return atomic_read(&this->nr_iowait);
2065 }
2066
2067 #ifdef CONFIG_SMP
2068
2069 /*
2070 * sched_exec - execve() is a valuable balancing opportunity, because at
2071 * this point the task has the smallest effective memory and cache footprint.
2072 */
2073 void sched_exec(void)
2074 {
2075 struct task_struct *p = current;
2076 unsigned long flags;
2077 int dest_cpu;
2078
2079 raw_spin_lock_irqsave(&p->pi_lock, flags);
2080 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2081 if (dest_cpu == smp_processor_id())
2082 goto unlock;
2083
2084 if (likely(cpu_active(dest_cpu))) {
2085 struct migration_arg arg = { p, dest_cpu };
2086
2087 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2088 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2089 return;
2090 }
2091 unlock:
2092 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2093 }
2094
2095 #endif
2096
2097 DEFINE_PER_CPU(struct kernel_stat, kstat);
2098 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2099
2100 EXPORT_PER_CPU_SYMBOL(kstat);
2101 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2102
2103 /*
2104 * Return any ns on the sched_clock that have not yet been accounted in
2105 * @p in case that task is currently running.
2106 *
2107 * Called with task_rq_lock() held on @rq.
2108 */
2109 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2110 {
2111 u64 ns = 0;
2112
2113 if (task_current(rq, p)) {
2114 update_rq_clock(rq);
2115 ns = rq_clock_task(rq) - p->se.exec_start;
2116 if ((s64)ns < 0)
2117 ns = 0;
2118 }
2119
2120 return ns;
2121 }
2122
2123 unsigned long long task_delta_exec(struct task_struct *p)
2124 {
2125 unsigned long flags;
2126 struct rq *rq;
2127 u64 ns = 0;
2128
2129 rq = task_rq_lock(p, &flags);
2130 ns = do_task_delta_exec(p, rq);
2131 task_rq_unlock(rq, p, &flags);
2132
2133 return ns;
2134 }
2135
2136 /*
2137 * Return accounted runtime for the task.
2138 * In case the task is currently running, return the runtime plus current's
2139 * pending runtime that have not been accounted yet.
2140 */
2141 unsigned long long task_sched_runtime(struct task_struct *p)
2142 {
2143 unsigned long flags;
2144 struct rq *rq;
2145 u64 ns = 0;
2146
2147 rq = task_rq_lock(p, &flags);
2148 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2149 task_rq_unlock(rq, p, &flags);
2150
2151 return ns;
2152 }
2153
2154 /*
2155 * This function gets called by the timer code, with HZ frequency.
2156 * We call it with interrupts disabled.
2157 */
2158 void scheduler_tick(void)
2159 {
2160 int cpu = smp_processor_id();
2161 struct rq *rq = cpu_rq(cpu);
2162 struct task_struct *curr = rq->curr;
2163
2164 sched_clock_tick();
2165
2166 raw_spin_lock(&rq->lock);
2167 update_rq_clock(rq);
2168 curr->sched_class->task_tick(rq, curr, 0);
2169 update_cpu_load_active(rq);
2170 raw_spin_unlock(&rq->lock);
2171
2172 perf_event_task_tick();
2173
2174 #ifdef CONFIG_SMP
2175 rq->idle_balance = idle_cpu(cpu);
2176 trigger_load_balance(rq, cpu);
2177 #endif
2178 rq_last_tick_reset(rq);
2179 }
2180
2181 #ifdef CONFIG_NO_HZ_FULL
2182 /**
2183 * scheduler_tick_max_deferment
2184 *
2185 * Keep at least one tick per second when a single
2186 * active task is running because the scheduler doesn't
2187 * yet completely support full dynticks environment.
2188 *
2189 * This makes sure that uptime, CFS vruntime, load
2190 * balancing, etc... continue to move forward, even
2191 * with a very low granularity.
2192 */
2193 u64 scheduler_tick_max_deferment(void)
2194 {
2195 struct rq *rq = this_rq();
2196 unsigned long next, now = ACCESS_ONCE(jiffies);
2197
2198 next = rq->last_sched_tick + HZ;
2199
2200 if (time_before_eq(next, now))
2201 return 0;
2202
2203 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2204 }
2205 #endif
2206
2207 notrace unsigned long get_parent_ip(unsigned long addr)
2208 {
2209 if (in_lock_functions(addr)) {
2210 addr = CALLER_ADDR2;
2211 if (in_lock_functions(addr))
2212 addr = CALLER_ADDR3;
2213 }
2214 return addr;
2215 }
2216
2217 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2218 defined(CONFIG_PREEMPT_TRACER))
2219
2220 void __kprobes add_preempt_count(int val)
2221 {
2222 #ifdef CONFIG_DEBUG_PREEMPT
2223 /*
2224 * Underflow?
2225 */
2226 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2227 return;
2228 #endif
2229 preempt_count() += val;
2230 #ifdef CONFIG_DEBUG_PREEMPT
2231 /*
2232 * Spinlock count overflowing soon?
2233 */
2234 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2235 PREEMPT_MASK - 10);
2236 #endif
2237 if (preempt_count() == val)
2238 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2239 }
2240 EXPORT_SYMBOL(add_preempt_count);
2241
2242 void __kprobes sub_preempt_count(int val)
2243 {
2244 #ifdef CONFIG_DEBUG_PREEMPT
2245 /*
2246 * Underflow?
2247 */
2248 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2249 return;
2250 /*
2251 * Is the spinlock portion underflowing?
2252 */
2253 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2254 !(preempt_count() & PREEMPT_MASK)))
2255 return;
2256 #endif
2257
2258 if (preempt_count() == val)
2259 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2260 preempt_count() -= val;
2261 }
2262 EXPORT_SYMBOL(sub_preempt_count);
2263
2264 #endif
2265
2266 /*
2267 * Print scheduling while atomic bug:
2268 */
2269 static noinline void __schedule_bug(struct task_struct *prev)
2270 {
2271 if (oops_in_progress)
2272 return;
2273
2274 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2275 prev->comm, prev->pid, preempt_count());
2276
2277 debug_show_held_locks(prev);
2278 print_modules();
2279 if (irqs_disabled())
2280 print_irqtrace_events(prev);
2281 dump_stack();
2282 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2283 }
2284
2285 /*
2286 * Various schedule()-time debugging checks and statistics:
2287 */
2288 static inline void schedule_debug(struct task_struct *prev)
2289 {
2290 /*
2291 * Test if we are atomic. Since do_exit() needs to call into
2292 * schedule() atomically, we ignore that path for now.
2293 * Otherwise, whine if we are scheduling when we should not be.
2294 */
2295 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2296 __schedule_bug(prev);
2297 rcu_sleep_check();
2298
2299 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2300
2301 schedstat_inc(this_rq(), sched_count);
2302 }
2303
2304 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2305 {
2306 if (prev->on_rq || rq->skip_clock_update < 0)
2307 update_rq_clock(rq);
2308 prev->sched_class->put_prev_task(rq, prev);
2309 }
2310
2311 /*
2312 * Pick up the highest-prio task:
2313 */
2314 static inline struct task_struct *
2315 pick_next_task(struct rq *rq)
2316 {
2317 const struct sched_class *class;
2318 struct task_struct *p;
2319
2320 /*
2321 * Optimization: we know that if all tasks are in
2322 * the fair class we can call that function directly:
2323 */
2324 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2325 p = fair_sched_class.pick_next_task(rq);
2326 if (likely(p))
2327 return p;
2328 }
2329
2330 for_each_class(class) {
2331 p = class->pick_next_task(rq);
2332 if (p)
2333 return p;
2334 }
2335
2336 BUG(); /* the idle class will always have a runnable task */
2337 }
2338
2339 /*
2340 * __schedule() is the main scheduler function.
2341 *
2342 * The main means of driving the scheduler and thus entering this function are:
2343 *
2344 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2345 *
2346 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2347 * paths. For example, see arch/x86/entry_64.S.
2348 *
2349 * To drive preemption between tasks, the scheduler sets the flag in timer
2350 * interrupt handler scheduler_tick().
2351 *
2352 * 3. Wakeups don't really cause entry into schedule(). They add a
2353 * task to the run-queue and that's it.
2354 *
2355 * Now, if the new task added to the run-queue preempts the current
2356 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2357 * called on the nearest possible occasion:
2358 *
2359 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2360 *
2361 * - in syscall or exception context, at the next outmost
2362 * preempt_enable(). (this might be as soon as the wake_up()'s
2363 * spin_unlock()!)
2364 *
2365 * - in IRQ context, return from interrupt-handler to
2366 * preemptible context
2367 *
2368 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2369 * then at the next:
2370 *
2371 * - cond_resched() call
2372 * - explicit schedule() call
2373 * - return from syscall or exception to user-space
2374 * - return from interrupt-handler to user-space
2375 */
2376 static void __sched __schedule(void)
2377 {
2378 struct task_struct *prev, *next;
2379 unsigned long *switch_count;
2380 struct rq *rq;
2381 int cpu;
2382
2383 need_resched:
2384 preempt_disable();
2385 cpu = smp_processor_id();
2386 rq = cpu_rq(cpu);
2387 rcu_note_context_switch(cpu);
2388 prev = rq->curr;
2389
2390 schedule_debug(prev);
2391
2392 if (sched_feat(HRTICK))
2393 hrtick_clear(rq);
2394
2395 raw_spin_lock_irq(&rq->lock);
2396
2397 switch_count = &prev->nivcsw;
2398 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2399 if (unlikely(signal_pending_state(prev->state, prev))) {
2400 prev->state = TASK_RUNNING;
2401 } else {
2402 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2403 prev->on_rq = 0;
2404
2405 /*
2406 * If a worker went to sleep, notify and ask workqueue
2407 * whether it wants to wake up a task to maintain
2408 * concurrency.
2409 */
2410 if (prev->flags & PF_WQ_WORKER) {
2411 struct task_struct *to_wakeup;
2412
2413 to_wakeup = wq_worker_sleeping(prev, cpu);
2414 if (to_wakeup)
2415 try_to_wake_up_local(to_wakeup);
2416 }
2417 }
2418 switch_count = &prev->nvcsw;
2419 }
2420
2421 pre_schedule(rq, prev);
2422
2423 if (unlikely(!rq->nr_running))
2424 idle_balance(cpu, rq);
2425
2426 put_prev_task(rq, prev);
2427 next = pick_next_task(rq);
2428 clear_tsk_need_resched(prev);
2429 rq->skip_clock_update = 0;
2430
2431 if (likely(prev != next)) {
2432 rq->nr_switches++;
2433 rq->curr = next;
2434 ++*switch_count;
2435
2436 context_switch(rq, prev, next); /* unlocks the rq */
2437 /*
2438 * The context switch have flipped the stack from under us
2439 * and restored the local variables which were saved when
2440 * this task called schedule() in the past. prev == current
2441 * is still correct, but it can be moved to another cpu/rq.
2442 */
2443 cpu = smp_processor_id();
2444 rq = cpu_rq(cpu);
2445 } else
2446 raw_spin_unlock_irq(&rq->lock);
2447
2448 post_schedule(rq);
2449
2450 sched_preempt_enable_no_resched();
2451 if (need_resched())
2452 goto need_resched;
2453 }
2454
2455 static inline void sched_submit_work(struct task_struct *tsk)
2456 {
2457 if (!tsk->state || tsk_is_pi_blocked(tsk))
2458 return;
2459 /*
2460 * If we are going to sleep and we have plugged IO queued,
2461 * make sure to submit it to avoid deadlocks.
2462 */
2463 if (blk_needs_flush_plug(tsk))
2464 blk_schedule_flush_plug(tsk);
2465 }
2466
2467 asmlinkage void __sched schedule(void)
2468 {
2469 struct task_struct *tsk = current;
2470
2471 sched_submit_work(tsk);
2472 __schedule();
2473 }
2474 EXPORT_SYMBOL(schedule);
2475
2476 #ifdef CONFIG_CONTEXT_TRACKING
2477 asmlinkage void __sched schedule_user(void)
2478 {
2479 /*
2480 * If we come here after a random call to set_need_resched(),
2481 * or we have been woken up remotely but the IPI has not yet arrived,
2482 * we haven't yet exited the RCU idle mode. Do it here manually until
2483 * we find a better solution.
2484 */
2485 user_exit();
2486 schedule();
2487 user_enter();
2488 }
2489 #endif
2490
2491 /**
2492 * schedule_preempt_disabled - called with preemption disabled
2493 *
2494 * Returns with preemption disabled. Note: preempt_count must be 1
2495 */
2496 void __sched schedule_preempt_disabled(void)
2497 {
2498 sched_preempt_enable_no_resched();
2499 schedule();
2500 preempt_disable();
2501 }
2502
2503 #ifdef CONFIG_PREEMPT
2504 /*
2505 * this is the entry point to schedule() from in-kernel preemption
2506 * off of preempt_enable. Kernel preemptions off return from interrupt
2507 * occur there and call schedule directly.
2508 */
2509 asmlinkage void __sched notrace preempt_schedule(void)
2510 {
2511 struct thread_info *ti = current_thread_info();
2512
2513 /*
2514 * If there is a non-zero preempt_count or interrupts are disabled,
2515 * we do not want to preempt the current task. Just return..
2516 */
2517 if (likely(ti->preempt_count || irqs_disabled()))
2518 return;
2519
2520 do {
2521 add_preempt_count_notrace(PREEMPT_ACTIVE);
2522 __schedule();
2523 sub_preempt_count_notrace(PREEMPT_ACTIVE);
2524
2525 /*
2526 * Check again in case we missed a preemption opportunity
2527 * between schedule and now.
2528 */
2529 barrier();
2530 } while (need_resched());
2531 }
2532 EXPORT_SYMBOL(preempt_schedule);
2533
2534 /*
2535 * this is the entry point to schedule() from kernel preemption
2536 * off of irq context.
2537 * Note, that this is called and return with irqs disabled. This will
2538 * protect us against recursive calling from irq.
2539 */
2540 asmlinkage void __sched preempt_schedule_irq(void)
2541 {
2542 struct thread_info *ti = current_thread_info();
2543 enum ctx_state prev_state;
2544
2545 /* Catch callers which need to be fixed */
2546 BUG_ON(ti->preempt_count || !irqs_disabled());
2547
2548 prev_state = exception_enter();
2549
2550 do {
2551 add_preempt_count(PREEMPT_ACTIVE);
2552 local_irq_enable();
2553 __schedule();
2554 local_irq_disable();
2555 sub_preempt_count(PREEMPT_ACTIVE);
2556
2557 /*
2558 * Check again in case we missed a preemption opportunity
2559 * between schedule and now.
2560 */
2561 barrier();
2562 } while (need_resched());
2563
2564 exception_exit(prev_state);
2565 }
2566
2567 #endif /* CONFIG_PREEMPT */
2568
2569 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2570 void *key)
2571 {
2572 return try_to_wake_up(curr->private, mode, wake_flags);
2573 }
2574 EXPORT_SYMBOL(default_wake_function);
2575
2576 /*
2577 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2578 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2579 * number) then we wake all the non-exclusive tasks and one exclusive task.
2580 *
2581 * There are circumstances in which we can try to wake a task which has already
2582 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2583 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2584 */
2585 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2586 int nr_exclusive, int wake_flags, void *key)
2587 {
2588 wait_queue_t *curr, *next;
2589
2590 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2591 unsigned flags = curr->flags;
2592
2593 if (curr->func(curr, mode, wake_flags, key) &&
2594 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2595 break;
2596 }
2597 }
2598
2599 /**
2600 * __wake_up - wake up threads blocked on a waitqueue.
2601 * @q: the waitqueue
2602 * @mode: which threads
2603 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2604 * @key: is directly passed to the wakeup function
2605 *
2606 * It may be assumed that this function implies a write memory barrier before
2607 * changing the task state if and only if any tasks are woken up.
2608 */
2609 void __wake_up(wait_queue_head_t *q, unsigned int mode,
2610 int nr_exclusive, void *key)
2611 {
2612 unsigned long flags;
2613
2614 spin_lock_irqsave(&q->lock, flags);
2615 __wake_up_common(q, mode, nr_exclusive, 0, key);
2616 spin_unlock_irqrestore(&q->lock, flags);
2617 }
2618 EXPORT_SYMBOL(__wake_up);
2619
2620 /*
2621 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2622 */
2623 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2624 {
2625 __wake_up_common(q, mode, nr, 0, NULL);
2626 }
2627 EXPORT_SYMBOL_GPL(__wake_up_locked);
2628
2629 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2630 {
2631 __wake_up_common(q, mode, 1, 0, key);
2632 }
2633 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2634
2635 /**
2636 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2637 * @q: the waitqueue
2638 * @mode: which threads
2639 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2640 * @key: opaque value to be passed to wakeup targets
2641 *
2642 * The sync wakeup differs that the waker knows that it will schedule
2643 * away soon, so while the target thread will be woken up, it will not
2644 * be migrated to another CPU - ie. the two threads are 'synchronized'
2645 * with each other. This can prevent needless bouncing between CPUs.
2646 *
2647 * On UP it can prevent extra preemption.
2648 *
2649 * It may be assumed that this function implies a write memory barrier before
2650 * changing the task state if and only if any tasks are woken up.
2651 */
2652 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2653 int nr_exclusive, void *key)
2654 {
2655 unsigned long flags;
2656 int wake_flags = WF_SYNC;
2657
2658 if (unlikely(!q))
2659 return;
2660
2661 if (unlikely(!nr_exclusive))
2662 wake_flags = 0;
2663
2664 spin_lock_irqsave(&q->lock, flags);
2665 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2666 spin_unlock_irqrestore(&q->lock, flags);
2667 }
2668 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2669
2670 /*
2671 * __wake_up_sync - see __wake_up_sync_key()
2672 */
2673 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2674 {
2675 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2676 }
2677 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2678
2679 /**
2680 * complete: - signals a single thread waiting on this completion
2681 * @x: holds the state of this particular completion
2682 *
2683 * This will wake up a single thread waiting on this completion. Threads will be
2684 * awakened in the same order in which they were queued.
2685 *
2686 * See also complete_all(), wait_for_completion() and related routines.
2687 *
2688 * It may be assumed that this function implies a write memory barrier before
2689 * changing the task state if and only if any tasks are woken up.
2690 */
2691 void complete(struct completion *x)
2692 {
2693 unsigned long flags;
2694
2695 spin_lock_irqsave(&x->wait.lock, flags);
2696 x->done++;
2697 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2698 spin_unlock_irqrestore(&x->wait.lock, flags);
2699 }
2700 EXPORT_SYMBOL(complete);
2701
2702 /**
2703 * complete_all: - signals all threads waiting on this completion
2704 * @x: holds the state of this particular completion
2705 *
2706 * This will wake up all threads waiting on this particular completion event.
2707 *
2708 * It may be assumed that this function implies a write memory barrier before
2709 * changing the task state if and only if any tasks are woken up.
2710 */
2711 void complete_all(struct completion *x)
2712 {
2713 unsigned long flags;
2714
2715 spin_lock_irqsave(&x->wait.lock, flags);
2716 x->done += UINT_MAX/2;
2717 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2718 spin_unlock_irqrestore(&x->wait.lock, flags);
2719 }
2720 EXPORT_SYMBOL(complete_all);
2721
2722 static inline long __sched
2723 do_wait_for_common(struct completion *x,
2724 long (*action)(long), long timeout, int state)
2725 {
2726 if (!x->done) {
2727 DECLARE_WAITQUEUE(wait, current);
2728
2729 __add_wait_queue_tail_exclusive(&x->wait, &wait);
2730 do {
2731 if (signal_pending_state(state, current)) {
2732 timeout = -ERESTARTSYS;
2733 break;
2734 }
2735 __set_current_state(state);
2736 spin_unlock_irq(&x->wait.lock);
2737 timeout = action(timeout);
2738 spin_lock_irq(&x->wait.lock);
2739 } while (!x->done && timeout);
2740 __remove_wait_queue(&x->wait, &wait);
2741 if (!x->done)
2742 return timeout;
2743 }
2744 x->done--;
2745 return timeout ?: 1;
2746 }
2747
2748 static inline long __sched
2749 __wait_for_common(struct completion *x,
2750 long (*action)(long), long timeout, int state)
2751 {
2752 might_sleep();
2753
2754 spin_lock_irq(&x->wait.lock);
2755 timeout = do_wait_for_common(x, action, timeout, state);
2756 spin_unlock_irq(&x->wait.lock);
2757 return timeout;
2758 }
2759
2760 static long __sched
2761 wait_for_common(struct completion *x, long timeout, int state)
2762 {
2763 return __wait_for_common(x, schedule_timeout, timeout, state);
2764 }
2765
2766 static long __sched
2767 wait_for_common_io(struct completion *x, long timeout, int state)
2768 {
2769 return __wait_for_common(x, io_schedule_timeout, timeout, state);
2770 }
2771
2772 /**
2773 * wait_for_completion: - waits for completion of a task
2774 * @x: holds the state of this particular completion
2775 *
2776 * This waits to be signaled for completion of a specific task. It is NOT
2777 * interruptible and there is no timeout.
2778 *
2779 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2780 * and interrupt capability. Also see complete().
2781 */
2782 void __sched wait_for_completion(struct completion *x)
2783 {
2784 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2785 }
2786 EXPORT_SYMBOL(wait_for_completion);
2787
2788 /**
2789 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2790 * @x: holds the state of this particular completion
2791 * @timeout: timeout value in jiffies
2792 *
2793 * This waits for either a completion of a specific task to be signaled or for a
2794 * specified timeout to expire. The timeout is in jiffies. It is not
2795 * interruptible.
2796 *
2797 * The return value is 0 if timed out, and positive (at least 1, or number of
2798 * jiffies left till timeout) if completed.
2799 */
2800 unsigned long __sched
2801 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2802 {
2803 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2804 }
2805 EXPORT_SYMBOL(wait_for_completion_timeout);
2806
2807 /**
2808 * wait_for_completion_io: - waits for completion of a task
2809 * @x: holds the state of this particular completion
2810 *
2811 * This waits to be signaled for completion of a specific task. It is NOT
2812 * interruptible and there is no timeout. The caller is accounted as waiting
2813 * for IO.
2814 */
2815 void __sched wait_for_completion_io(struct completion *x)
2816 {
2817 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2818 }
2819 EXPORT_SYMBOL(wait_for_completion_io);
2820
2821 /**
2822 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2823 * @x: holds the state of this particular completion
2824 * @timeout: timeout value in jiffies
2825 *
2826 * This waits for either a completion of a specific task to be signaled or for a
2827 * specified timeout to expire. The timeout is in jiffies. It is not
2828 * interruptible. The caller is accounted as waiting for IO.
2829 *
2830 * The return value is 0 if timed out, and positive (at least 1, or number of
2831 * jiffies left till timeout) if completed.
2832 */
2833 unsigned long __sched
2834 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2835 {
2836 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2837 }
2838 EXPORT_SYMBOL(wait_for_completion_io_timeout);
2839
2840 /**
2841 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2842 * @x: holds the state of this particular completion
2843 *
2844 * This waits for completion of a specific task to be signaled. It is
2845 * interruptible.
2846 *
2847 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2848 */
2849 int __sched wait_for_completion_interruptible(struct completion *x)
2850 {
2851 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2852 if (t == -ERESTARTSYS)
2853 return t;
2854 return 0;
2855 }
2856 EXPORT_SYMBOL(wait_for_completion_interruptible);
2857
2858 /**
2859 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2860 * @x: holds the state of this particular completion
2861 * @timeout: timeout value in jiffies
2862 *
2863 * This waits for either a completion of a specific task to be signaled or for a
2864 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2865 *
2866 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2867 * positive (at least 1, or number of jiffies left till timeout) if completed.
2868 */
2869 long __sched
2870 wait_for_completion_interruptible_timeout(struct completion *x,
2871 unsigned long timeout)
2872 {
2873 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2874 }
2875 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2876
2877 /**
2878 * wait_for_completion_killable: - waits for completion of a task (killable)
2879 * @x: holds the state of this particular completion
2880 *
2881 * This waits to be signaled for completion of a specific task. It can be
2882 * interrupted by a kill signal.
2883 *
2884 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2885 */
2886 int __sched wait_for_completion_killable(struct completion *x)
2887 {
2888 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2889 if (t == -ERESTARTSYS)
2890 return t;
2891 return 0;
2892 }
2893 EXPORT_SYMBOL(wait_for_completion_killable);
2894
2895 /**
2896 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2897 * @x: holds the state of this particular completion
2898 * @timeout: timeout value in jiffies
2899 *
2900 * This waits for either a completion of a specific task to be
2901 * signaled or for a specified timeout to expire. It can be
2902 * interrupted by a kill signal. The timeout is in jiffies.
2903 *
2904 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2905 * positive (at least 1, or number of jiffies left till timeout) if completed.
2906 */
2907 long __sched
2908 wait_for_completion_killable_timeout(struct completion *x,
2909 unsigned long timeout)
2910 {
2911 return wait_for_common(x, timeout, TASK_KILLABLE);
2912 }
2913 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2914
2915 /**
2916 * try_wait_for_completion - try to decrement a completion without blocking
2917 * @x: completion structure
2918 *
2919 * Returns: 0 if a decrement cannot be done without blocking
2920 * 1 if a decrement succeeded.
2921 *
2922 * If a completion is being used as a counting completion,
2923 * attempt to decrement the counter without blocking. This
2924 * enables us to avoid waiting if the resource the completion
2925 * is protecting is not available.
2926 */
2927 bool try_wait_for_completion(struct completion *x)
2928 {
2929 unsigned long flags;
2930 int ret = 1;
2931
2932 spin_lock_irqsave(&x->wait.lock, flags);
2933 if (!x->done)
2934 ret = 0;
2935 else
2936 x->done--;
2937 spin_unlock_irqrestore(&x->wait.lock, flags);
2938 return ret;
2939 }
2940 EXPORT_SYMBOL(try_wait_for_completion);
2941
2942 /**
2943 * completion_done - Test to see if a completion has any waiters
2944 * @x: completion structure
2945 *
2946 * Returns: 0 if there are waiters (wait_for_completion() in progress)
2947 * 1 if there are no waiters.
2948 *
2949 */
2950 bool completion_done(struct completion *x)
2951 {
2952 unsigned long flags;
2953 int ret = 1;
2954
2955 spin_lock_irqsave(&x->wait.lock, flags);
2956 if (!x->done)
2957 ret = 0;
2958 spin_unlock_irqrestore(&x->wait.lock, flags);
2959 return ret;
2960 }
2961 EXPORT_SYMBOL(completion_done);
2962
2963 static long __sched
2964 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2965 {
2966 unsigned long flags;
2967 wait_queue_t wait;
2968
2969 init_waitqueue_entry(&wait, current);
2970
2971 __set_current_state(state);
2972
2973 spin_lock_irqsave(&q->lock, flags);
2974 __add_wait_queue(q, &wait);
2975 spin_unlock(&q->lock);
2976 timeout = schedule_timeout(timeout);
2977 spin_lock_irq(&q->lock);
2978 __remove_wait_queue(q, &wait);
2979 spin_unlock_irqrestore(&q->lock, flags);
2980
2981 return timeout;
2982 }
2983
2984 void __sched interruptible_sleep_on(wait_queue_head_t *q)
2985 {
2986 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2987 }
2988 EXPORT_SYMBOL(interruptible_sleep_on);
2989
2990 long __sched
2991 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2992 {
2993 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2994 }
2995 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2996
2997 void __sched sleep_on(wait_queue_head_t *q)
2998 {
2999 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3000 }
3001 EXPORT_SYMBOL(sleep_on);
3002
3003 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3004 {
3005 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3006 }
3007 EXPORT_SYMBOL(sleep_on_timeout);
3008
3009 #ifdef CONFIG_RT_MUTEXES
3010
3011 /*
3012 * rt_mutex_setprio - set the current priority of a task
3013 * @p: task
3014 * @prio: prio value (kernel-internal form)
3015 *
3016 * This function changes the 'effective' priority of a task. It does
3017 * not touch ->normal_prio like __setscheduler().
3018 *
3019 * Used by the rt_mutex code to implement priority inheritance logic.
3020 */
3021 void rt_mutex_setprio(struct task_struct *p, int prio)
3022 {
3023 int oldprio, on_rq, running;
3024 struct rq *rq;
3025 const struct sched_class *prev_class;
3026
3027 BUG_ON(prio < 0 || prio > MAX_PRIO);
3028
3029 rq = __task_rq_lock(p);
3030
3031 /*
3032 * Idle task boosting is a nono in general. There is one
3033 * exception, when PREEMPT_RT and NOHZ is active:
3034 *
3035 * The idle task calls get_next_timer_interrupt() and holds
3036 * the timer wheel base->lock on the CPU and another CPU wants
3037 * to access the timer (probably to cancel it). We can safely
3038 * ignore the boosting request, as the idle CPU runs this code
3039 * with interrupts disabled and will complete the lock
3040 * protected section without being interrupted. So there is no
3041 * real need to boost.
3042 */
3043 if (unlikely(p == rq->idle)) {
3044 WARN_ON(p != rq->curr);
3045 WARN_ON(p->pi_blocked_on);
3046 goto out_unlock;
3047 }
3048
3049 trace_sched_pi_setprio(p, prio);
3050 oldprio = p->prio;
3051 prev_class = p->sched_class;
3052 on_rq = p->on_rq;
3053 running = task_current(rq, p);
3054 if (on_rq)
3055 dequeue_task(rq, p, 0);
3056 if (running)
3057 p->sched_class->put_prev_task(rq, p);
3058
3059 if (rt_prio(prio))
3060 p->sched_class = &rt_sched_class;
3061 else
3062 p->sched_class = &fair_sched_class;
3063
3064 p->prio = prio;
3065
3066 if (running)
3067 p->sched_class->set_curr_task(rq);
3068 if (on_rq)
3069 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3070
3071 check_class_changed(rq, p, prev_class, oldprio);
3072 out_unlock:
3073 __task_rq_unlock(rq);
3074 }
3075 #endif
3076 void set_user_nice(struct task_struct *p, long nice)
3077 {
3078 int old_prio, delta, on_rq;
3079 unsigned long flags;
3080 struct rq *rq;
3081
3082 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3083 return;
3084 /*
3085 * We have to be careful, if called from sys_setpriority(),
3086 * the task might be in the middle of scheduling on another CPU.
3087 */
3088 rq = task_rq_lock(p, &flags);
3089 /*
3090 * The RT priorities are set via sched_setscheduler(), but we still
3091 * allow the 'normal' nice value to be set - but as expected
3092 * it wont have any effect on scheduling until the task is
3093 * SCHED_FIFO/SCHED_RR:
3094 */
3095 if (task_has_rt_policy(p)) {
3096 p->static_prio = NICE_TO_PRIO(nice);
3097 goto out_unlock;
3098 }
3099 on_rq = p->on_rq;
3100 if (on_rq)
3101 dequeue_task(rq, p, 0);
3102
3103 p->static_prio = NICE_TO_PRIO(nice);
3104 set_load_weight(p);
3105 old_prio = p->prio;
3106 p->prio = effective_prio(p);
3107 delta = p->prio - old_prio;
3108
3109 if (on_rq) {
3110 enqueue_task(rq, p, 0);
3111 /*
3112 * If the task increased its priority or is running and
3113 * lowered its priority, then reschedule its CPU:
3114 */
3115 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3116 resched_task(rq->curr);
3117 }
3118 out_unlock:
3119 task_rq_unlock(rq, p, &flags);
3120 }
3121 EXPORT_SYMBOL(set_user_nice);
3122
3123 /*
3124 * can_nice - check if a task can reduce its nice value
3125 * @p: task
3126 * @nice: nice value
3127 */
3128 int can_nice(const struct task_struct *p, const int nice)
3129 {
3130 /* convert nice value [19,-20] to rlimit style value [1,40] */
3131 int nice_rlim = 20 - nice;
3132
3133 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3134 capable(CAP_SYS_NICE));
3135 }
3136
3137 #ifdef __ARCH_WANT_SYS_NICE
3138
3139 /*
3140 * sys_nice - change the priority of the current process.
3141 * @increment: priority increment
3142 *
3143 * sys_setpriority is a more generic, but much slower function that
3144 * does similar things.
3145 */
3146 SYSCALL_DEFINE1(nice, int, increment)
3147 {
3148 long nice, retval;
3149
3150 /*
3151 * Setpriority might change our priority at the same moment.
3152 * We don't have to worry. Conceptually one call occurs first
3153 * and we have a single winner.
3154 */
3155 if (increment < -40)
3156 increment = -40;
3157 if (increment > 40)
3158 increment = 40;
3159
3160 nice = TASK_NICE(current) + increment;
3161 if (nice < -20)
3162 nice = -20;
3163 if (nice > 19)
3164 nice = 19;
3165
3166 if (increment < 0 && !can_nice(current, nice))
3167 return -EPERM;
3168
3169 retval = security_task_setnice(current, nice);
3170 if (retval)
3171 return retval;
3172
3173 set_user_nice(current, nice);
3174 return 0;
3175 }
3176
3177 #endif
3178
3179 /**
3180 * task_prio - return the priority value of a given task.
3181 * @p: the task in question.
3182 *
3183 * This is the priority value as seen by users in /proc.
3184 * RT tasks are offset by -200. Normal tasks are centered
3185 * around 0, value goes from -16 to +15.
3186 */
3187 int task_prio(const struct task_struct *p)
3188 {
3189 return p->prio - MAX_RT_PRIO;
3190 }
3191
3192 /**
3193 * task_nice - return the nice value of a given task.
3194 * @p: the task in question.
3195 */
3196 int task_nice(const struct task_struct *p)
3197 {
3198 return TASK_NICE(p);
3199 }
3200 EXPORT_SYMBOL(task_nice);
3201
3202 /**
3203 * idle_cpu - is a given cpu idle currently?
3204 * @cpu: the processor in question.
3205 */
3206 int idle_cpu(int cpu)
3207 {
3208 struct rq *rq = cpu_rq(cpu);
3209
3210 if (rq->curr != rq->idle)
3211 return 0;
3212
3213 if (rq->nr_running)
3214 return 0;
3215
3216 #ifdef CONFIG_SMP
3217 if (!llist_empty(&rq->wake_list))
3218 return 0;
3219 #endif
3220
3221 return 1;
3222 }
3223
3224 /**
3225 * idle_task - return the idle task for a given cpu.
3226 * @cpu: the processor in question.
3227 */
3228 struct task_struct *idle_task(int cpu)
3229 {
3230 return cpu_rq(cpu)->idle;
3231 }
3232
3233 /**
3234 * find_process_by_pid - find a process with a matching PID value.
3235 * @pid: the pid in question.
3236 */
3237 static struct task_struct *find_process_by_pid(pid_t pid)
3238 {
3239 return pid ? find_task_by_vpid(pid) : current;
3240 }
3241
3242 /* Actually do priority change: must hold rq lock. */
3243 static void
3244 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3245 {
3246 p->policy = policy;
3247 p->rt_priority = prio;
3248 p->normal_prio = normal_prio(p);
3249 /* we are holding p->pi_lock already */
3250 p->prio = rt_mutex_getprio(p);
3251 if (rt_prio(p->prio))
3252 p->sched_class = &rt_sched_class;
3253 else
3254 p->sched_class = &fair_sched_class;
3255 set_load_weight(p);
3256 }
3257
3258 /*
3259 * check the target process has a UID that matches the current process's
3260 */
3261 static bool check_same_owner(struct task_struct *p)
3262 {
3263 const struct cred *cred = current_cred(), *pcred;
3264 bool match;
3265
3266 rcu_read_lock();
3267 pcred = __task_cred(p);
3268 match = (uid_eq(cred->euid, pcred->euid) ||
3269 uid_eq(cred->euid, pcred->uid));
3270 rcu_read_unlock();
3271 return match;
3272 }
3273
3274 static int __sched_setscheduler(struct task_struct *p, int policy,
3275 const struct sched_param *param, bool user)
3276 {
3277 int retval, oldprio, oldpolicy = -1, on_rq, running;
3278 unsigned long flags;
3279 const struct sched_class *prev_class;
3280 struct rq *rq;
3281 int reset_on_fork;
3282
3283 /* may grab non-irq protected spin_locks */
3284 BUG_ON(in_interrupt());
3285 recheck:
3286 /* double check policy once rq lock held */
3287 if (policy < 0) {
3288 reset_on_fork = p->sched_reset_on_fork;
3289 policy = oldpolicy = p->policy;
3290 } else {
3291 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3292 policy &= ~SCHED_RESET_ON_FORK;
3293
3294 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3295 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3296 policy != SCHED_IDLE)
3297 return -EINVAL;
3298 }
3299
3300 /*
3301 * Valid priorities for SCHED_FIFO and SCHED_RR are
3302 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3303 * SCHED_BATCH and SCHED_IDLE is 0.
3304 */
3305 if (param->sched_priority < 0 ||
3306 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3307 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3308 return -EINVAL;
3309 if (rt_policy(policy) != (param->sched_priority != 0))
3310 return -EINVAL;
3311
3312 /*
3313 * Allow unprivileged RT tasks to decrease priority:
3314 */
3315 if (user && !capable(CAP_SYS_NICE)) {
3316 if (rt_policy(policy)) {
3317 unsigned long rlim_rtprio =
3318 task_rlimit(p, RLIMIT_RTPRIO);
3319
3320 /* can't set/change the rt policy */
3321 if (policy != p->policy && !rlim_rtprio)
3322 return -EPERM;
3323
3324 /* can't increase priority */
3325 if (param->sched_priority > p->rt_priority &&
3326 param->sched_priority > rlim_rtprio)
3327 return -EPERM;
3328 }
3329
3330 /*
3331 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3332 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3333 */
3334 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3335 if (!can_nice(p, TASK_NICE(p)))
3336 return -EPERM;
3337 }
3338
3339 /* can't change other user's priorities */
3340 if (!check_same_owner(p))
3341 return -EPERM;
3342
3343 /* Normal users shall not reset the sched_reset_on_fork flag */
3344 if (p->sched_reset_on_fork && !reset_on_fork)
3345 return -EPERM;
3346 }
3347
3348 if (user) {
3349 retval = security_task_setscheduler(p);
3350 if (retval)
3351 return retval;
3352 }
3353
3354 /*
3355 * make sure no PI-waiters arrive (or leave) while we are
3356 * changing the priority of the task:
3357 *
3358 * To be able to change p->policy safely, the appropriate
3359 * runqueue lock must be held.
3360 */
3361 rq = task_rq_lock(p, &flags);
3362
3363 /*
3364 * Changing the policy of the stop threads its a very bad idea
3365 */
3366 if (p == rq->stop) {
3367 task_rq_unlock(rq, p, &flags);
3368 return -EINVAL;
3369 }
3370
3371 /*
3372 * If not changing anything there's no need to proceed further:
3373 */
3374 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3375 param->sched_priority == p->rt_priority))) {
3376 task_rq_unlock(rq, p, &flags);
3377 return 0;
3378 }
3379
3380 #ifdef CONFIG_RT_GROUP_SCHED
3381 if (user) {
3382 /*
3383 * Do not allow realtime tasks into groups that have no runtime
3384 * assigned.
3385 */
3386 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3387 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3388 !task_group_is_autogroup(task_group(p))) {
3389 task_rq_unlock(rq, p, &flags);
3390 return -EPERM;
3391 }
3392 }
3393 #endif
3394
3395 /* recheck policy now with rq lock held */
3396 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3397 policy = oldpolicy = -1;
3398 task_rq_unlock(rq, p, &flags);
3399 goto recheck;
3400 }
3401 on_rq = p->on_rq;
3402 running = task_current(rq, p);
3403 if (on_rq)
3404 dequeue_task(rq, p, 0);
3405 if (running)
3406 p->sched_class->put_prev_task(rq, p);
3407
3408 p->sched_reset_on_fork = reset_on_fork;
3409
3410 oldprio = p->prio;
3411 prev_class = p->sched_class;
3412 __setscheduler(rq, p, policy, param->sched_priority);
3413
3414 if (running)
3415 p->sched_class->set_curr_task(rq);
3416 if (on_rq)
3417 enqueue_task(rq, p, 0);
3418
3419 check_class_changed(rq, p, prev_class, oldprio);
3420 task_rq_unlock(rq, p, &flags);
3421
3422 rt_mutex_adjust_pi(p);
3423
3424 return 0;
3425 }
3426
3427 /**
3428 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3429 * @p: the task in question.
3430 * @policy: new policy.
3431 * @param: structure containing the new RT priority.
3432 *
3433 * NOTE that the task may be already dead.
3434 */
3435 int sched_setscheduler(struct task_struct *p, int policy,
3436 const struct sched_param *param)
3437 {
3438 return __sched_setscheduler(p, policy, param, true);
3439 }
3440 EXPORT_SYMBOL_GPL(sched_setscheduler);
3441
3442 /**
3443 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3444 * @p: the task in question.
3445 * @policy: new policy.
3446 * @param: structure containing the new RT priority.
3447 *
3448 * Just like sched_setscheduler, only don't bother checking if the
3449 * current context has permission. For example, this is needed in
3450 * stop_machine(): we create temporary high priority worker threads,
3451 * but our caller might not have that capability.
3452 */
3453 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3454 const struct sched_param *param)
3455 {
3456 return __sched_setscheduler(p, policy, param, false);
3457 }
3458
3459 static int
3460 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3461 {
3462 struct sched_param lparam;
3463 struct task_struct *p;
3464 int retval;
3465
3466 if (!param || pid < 0)
3467 return -EINVAL;
3468 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3469 return -EFAULT;
3470
3471 rcu_read_lock();
3472 retval = -ESRCH;
3473 p = find_process_by_pid(pid);
3474 if (p != NULL)
3475 retval = sched_setscheduler(p, policy, &lparam);
3476 rcu_read_unlock();
3477
3478 return retval;
3479 }
3480
3481 /**
3482 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3483 * @pid: the pid in question.
3484 * @policy: new policy.
3485 * @param: structure containing the new RT priority.
3486 */
3487 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3488 struct sched_param __user *, param)
3489 {
3490 /* negative values for policy are not valid */
3491 if (policy < 0)
3492 return -EINVAL;
3493
3494 return do_sched_setscheduler(pid, policy, param);
3495 }
3496
3497 /**
3498 * sys_sched_setparam - set/change the RT priority of a thread
3499 * @pid: the pid in question.
3500 * @param: structure containing the new RT priority.
3501 */
3502 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3503 {
3504 return do_sched_setscheduler(pid, -1, param);
3505 }
3506
3507 /**
3508 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3509 * @pid: the pid in question.
3510 */
3511 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3512 {
3513 struct task_struct *p;
3514 int retval;
3515
3516 if (pid < 0)
3517 return -EINVAL;
3518
3519 retval = -ESRCH;
3520 rcu_read_lock();
3521 p = find_process_by_pid(pid);
3522 if (p) {
3523 retval = security_task_getscheduler(p);
3524 if (!retval)
3525 retval = p->policy
3526 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3527 }
3528 rcu_read_unlock();
3529 return retval;
3530 }
3531
3532 /**
3533 * sys_sched_getparam - get the RT priority of a thread
3534 * @pid: the pid in question.
3535 * @param: structure containing the RT priority.
3536 */
3537 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3538 {
3539 struct sched_param lp;
3540 struct task_struct *p;
3541 int retval;
3542
3543 if (!param || pid < 0)
3544 return -EINVAL;
3545
3546 rcu_read_lock();
3547 p = find_process_by_pid(pid);
3548 retval = -ESRCH;
3549 if (!p)
3550 goto out_unlock;
3551
3552 retval = security_task_getscheduler(p);
3553 if (retval)
3554 goto out_unlock;
3555
3556 lp.sched_priority = p->rt_priority;
3557 rcu_read_unlock();
3558
3559 /*
3560 * This one might sleep, we cannot do it with a spinlock held ...
3561 */
3562 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3563
3564 return retval;
3565
3566 out_unlock:
3567 rcu_read_unlock();
3568 return retval;
3569 }
3570
3571 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3572 {
3573 cpumask_var_t cpus_allowed, new_mask;
3574 struct task_struct *p;
3575 int retval;
3576
3577 get_online_cpus();
3578 rcu_read_lock();
3579
3580 p = find_process_by_pid(pid);
3581 if (!p) {
3582 rcu_read_unlock();
3583 put_online_cpus();
3584 return -ESRCH;
3585 }
3586
3587 /* Prevent p going away */
3588 get_task_struct(p);
3589 rcu_read_unlock();
3590
3591 if (p->flags & PF_NO_SETAFFINITY) {
3592 retval = -EINVAL;
3593 goto out_put_task;
3594 }
3595 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3596 retval = -ENOMEM;
3597 goto out_put_task;
3598 }
3599 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3600 retval = -ENOMEM;
3601 goto out_free_cpus_allowed;
3602 }
3603 retval = -EPERM;
3604 if (!check_same_owner(p)) {
3605 rcu_read_lock();
3606 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3607 rcu_read_unlock();
3608 goto out_unlock;
3609 }
3610 rcu_read_unlock();
3611 }
3612
3613 retval = security_task_setscheduler(p);
3614 if (retval)
3615 goto out_unlock;
3616
3617 cpuset_cpus_allowed(p, cpus_allowed);
3618 cpumask_and(new_mask, in_mask, cpus_allowed);
3619 again:
3620 retval = set_cpus_allowed_ptr(p, new_mask);
3621
3622 if (!retval) {
3623 cpuset_cpus_allowed(p, cpus_allowed);
3624 if (!cpumask_subset(new_mask, cpus_allowed)) {
3625 /*
3626 * We must have raced with a concurrent cpuset
3627 * update. Just reset the cpus_allowed to the
3628 * cpuset's cpus_allowed
3629 */
3630 cpumask_copy(new_mask, cpus_allowed);
3631 goto again;
3632 }
3633 }
3634 out_unlock:
3635 free_cpumask_var(new_mask);
3636 out_free_cpus_allowed:
3637 free_cpumask_var(cpus_allowed);
3638 out_put_task:
3639 put_task_struct(p);
3640 put_online_cpus();
3641 return retval;
3642 }
3643
3644 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3645 struct cpumask *new_mask)
3646 {
3647 if (len < cpumask_size())
3648 cpumask_clear(new_mask);
3649 else if (len > cpumask_size())
3650 len = cpumask_size();
3651
3652 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3653 }
3654
3655 /**
3656 * sys_sched_setaffinity - set the cpu affinity of a process
3657 * @pid: pid of the process
3658 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3659 * @user_mask_ptr: user-space pointer to the new cpu mask
3660 */
3661 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3662 unsigned long __user *, user_mask_ptr)
3663 {
3664 cpumask_var_t new_mask;
3665 int retval;
3666
3667 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3668 return -ENOMEM;
3669
3670 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3671 if (retval == 0)
3672 retval = sched_setaffinity(pid, new_mask);
3673 free_cpumask_var(new_mask);
3674 return retval;
3675 }
3676
3677 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3678 {
3679 struct task_struct *p;
3680 unsigned long flags;
3681 int retval;
3682
3683 get_online_cpus();
3684 rcu_read_lock();
3685
3686 retval = -ESRCH;
3687 p = find_process_by_pid(pid);
3688 if (!p)
3689 goto out_unlock;
3690
3691 retval = security_task_getscheduler(p);
3692 if (retval)
3693 goto out_unlock;
3694
3695 raw_spin_lock_irqsave(&p->pi_lock, flags);
3696 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3697 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3698
3699 out_unlock:
3700 rcu_read_unlock();
3701 put_online_cpus();
3702
3703 return retval;
3704 }
3705
3706 /**
3707 * sys_sched_getaffinity - get the cpu affinity of a process
3708 * @pid: pid of the process
3709 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3710 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3711 */
3712 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3713 unsigned long __user *, user_mask_ptr)
3714 {
3715 int ret;
3716 cpumask_var_t mask;
3717
3718 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3719 return -EINVAL;
3720 if (len & (sizeof(unsigned long)-1))
3721 return -EINVAL;
3722
3723 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3724 return -ENOMEM;
3725
3726 ret = sched_getaffinity(pid, mask);
3727 if (ret == 0) {
3728 size_t retlen = min_t(size_t, len, cpumask_size());
3729
3730 if (copy_to_user(user_mask_ptr, mask, retlen))
3731 ret = -EFAULT;
3732 else
3733 ret = retlen;
3734 }
3735 free_cpumask_var(mask);
3736
3737 return ret;
3738 }
3739
3740 /**
3741 * sys_sched_yield - yield the current processor to other threads.
3742 *
3743 * This function yields the current CPU to other tasks. If there are no
3744 * other threads running on this CPU then this function will return.
3745 */
3746 SYSCALL_DEFINE0(sched_yield)
3747 {
3748 struct rq *rq = this_rq_lock();
3749
3750 schedstat_inc(rq, yld_count);
3751 current->sched_class->yield_task(rq);
3752
3753 /*
3754 * Since we are going to call schedule() anyway, there's
3755 * no need to preempt or enable interrupts:
3756 */
3757 __release(rq->lock);
3758 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3759 do_raw_spin_unlock(&rq->lock);
3760 sched_preempt_enable_no_resched();
3761
3762 schedule();
3763
3764 return 0;
3765 }
3766
3767 static inline int should_resched(void)
3768 {
3769 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3770 }
3771
3772 static void __cond_resched(void)
3773 {
3774 add_preempt_count(PREEMPT_ACTIVE);
3775 __schedule();
3776 sub_preempt_count(PREEMPT_ACTIVE);
3777 }
3778
3779 int __sched _cond_resched(void)
3780 {
3781 if (should_resched()) {
3782 __cond_resched();
3783 return 1;
3784 }
3785 return 0;
3786 }
3787 EXPORT_SYMBOL(_cond_resched);
3788
3789 /*
3790 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3791 * call schedule, and on return reacquire the lock.
3792 *
3793 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3794 * operations here to prevent schedule() from being called twice (once via
3795 * spin_unlock(), once by hand).
3796 */
3797 int __cond_resched_lock(spinlock_t *lock)
3798 {
3799 int resched = should_resched();
3800 int ret = 0;
3801
3802 lockdep_assert_held(lock);
3803
3804 if (spin_needbreak(lock) || resched) {
3805 spin_unlock(lock);
3806 if (resched)
3807 __cond_resched();
3808 else
3809 cpu_relax();
3810 ret = 1;
3811 spin_lock(lock);
3812 }
3813 return ret;
3814 }
3815 EXPORT_SYMBOL(__cond_resched_lock);
3816
3817 int __sched __cond_resched_softirq(void)
3818 {
3819 BUG_ON(!in_softirq());
3820
3821 if (should_resched()) {
3822 local_bh_enable();
3823 __cond_resched();
3824 local_bh_disable();
3825 return 1;
3826 }
3827 return 0;
3828 }
3829 EXPORT_SYMBOL(__cond_resched_softirq);
3830
3831 /**
3832 * yield - yield the current processor to other threads.
3833 *
3834 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3835 *
3836 * The scheduler is at all times free to pick the calling task as the most
3837 * eligible task to run, if removing the yield() call from your code breaks
3838 * it, its already broken.
3839 *
3840 * Typical broken usage is:
3841 *
3842 * while (!event)
3843 * yield();
3844 *
3845 * where one assumes that yield() will let 'the other' process run that will
3846 * make event true. If the current task is a SCHED_FIFO task that will never
3847 * happen. Never use yield() as a progress guarantee!!
3848 *
3849 * If you want to use yield() to wait for something, use wait_event().
3850 * If you want to use yield() to be 'nice' for others, use cond_resched().
3851 * If you still want to use yield(), do not!
3852 */
3853 void __sched yield(void)
3854 {
3855 set_current_state(TASK_RUNNING);
3856 sys_sched_yield();
3857 }
3858 EXPORT_SYMBOL(yield);
3859
3860 /**
3861 * yield_to - yield the current processor to another thread in
3862 * your thread group, or accelerate that thread toward the
3863 * processor it's on.
3864 * @p: target task
3865 * @preempt: whether task preemption is allowed or not
3866 *
3867 * It's the caller's job to ensure that the target task struct
3868 * can't go away on us before we can do any checks.
3869 *
3870 * Returns:
3871 * true (>0) if we indeed boosted the target task.
3872 * false (0) if we failed to boost the target.
3873 * -ESRCH if there's no task to yield to.
3874 */
3875 bool __sched yield_to(struct task_struct *p, bool preempt)
3876 {
3877 struct task_struct *curr = current;
3878 struct rq *rq, *p_rq;
3879 unsigned long flags;
3880 int yielded = 0;
3881
3882 local_irq_save(flags);
3883 rq = this_rq();
3884
3885 again:
3886 p_rq = task_rq(p);
3887 /*
3888 * If we're the only runnable task on the rq and target rq also
3889 * has only one task, there's absolutely no point in yielding.
3890 */
3891 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3892 yielded = -ESRCH;
3893 goto out_irq;
3894 }
3895
3896 double_rq_lock(rq, p_rq);
3897 while (task_rq(p) != p_rq) {
3898 double_rq_unlock(rq, p_rq);
3899 goto again;
3900 }
3901
3902 if (!curr->sched_class->yield_to_task)
3903 goto out_unlock;
3904
3905 if (curr->sched_class != p->sched_class)
3906 goto out_unlock;
3907
3908 if (task_running(p_rq, p) || p->state)
3909 goto out_unlock;
3910
3911 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3912 if (yielded) {
3913 schedstat_inc(rq, yld_count);
3914 /*
3915 * Make p's CPU reschedule; pick_next_entity takes care of
3916 * fairness.
3917 */
3918 if (preempt && rq != p_rq)
3919 resched_task(p_rq->curr);
3920 }
3921
3922 out_unlock:
3923 double_rq_unlock(rq, p_rq);
3924 out_irq:
3925 local_irq_restore(flags);
3926
3927 if (yielded > 0)
3928 schedule();
3929
3930 return yielded;
3931 }
3932 EXPORT_SYMBOL_GPL(yield_to);
3933
3934 /*
3935 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3936 * that process accounting knows that this is a task in IO wait state.
3937 */
3938 void __sched io_schedule(void)
3939 {
3940 struct rq *rq = raw_rq();
3941
3942 delayacct_blkio_start();
3943 atomic_inc(&rq->nr_iowait);
3944 blk_flush_plug(current);
3945 current->in_iowait = 1;
3946 schedule();
3947 current->in_iowait = 0;
3948 atomic_dec(&rq->nr_iowait);
3949 delayacct_blkio_end();
3950 }
3951 EXPORT_SYMBOL(io_schedule);
3952
3953 long __sched io_schedule_timeout(long timeout)
3954 {
3955 struct rq *rq = raw_rq();
3956 long ret;
3957
3958 delayacct_blkio_start();
3959 atomic_inc(&rq->nr_iowait);
3960 blk_flush_plug(current);
3961 current->in_iowait = 1;
3962 ret = schedule_timeout(timeout);
3963 current->in_iowait = 0;
3964 atomic_dec(&rq->nr_iowait);
3965 delayacct_blkio_end();
3966 return ret;
3967 }
3968
3969 /**
3970 * sys_sched_get_priority_max - return maximum RT priority.
3971 * @policy: scheduling class.
3972 *
3973 * this syscall returns the maximum rt_priority that can be used
3974 * by a given scheduling class.
3975 */
3976 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
3977 {
3978 int ret = -EINVAL;
3979
3980 switch (policy) {
3981 case SCHED_FIFO:
3982 case SCHED_RR:
3983 ret = MAX_USER_RT_PRIO-1;
3984 break;
3985 case SCHED_NORMAL:
3986 case SCHED_BATCH:
3987 case SCHED_IDLE:
3988 ret = 0;
3989 break;
3990 }
3991 return ret;
3992 }
3993
3994 /**
3995 * sys_sched_get_priority_min - return minimum RT priority.
3996 * @policy: scheduling class.
3997 *
3998 * this syscall returns the minimum rt_priority that can be used
3999 * by a given scheduling class.
4000 */
4001 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4002 {
4003 int ret = -EINVAL;
4004
4005 switch (policy) {
4006 case SCHED_FIFO:
4007 case SCHED_RR:
4008 ret = 1;
4009 break;
4010 case SCHED_NORMAL:
4011 case SCHED_BATCH:
4012 case SCHED_IDLE:
4013 ret = 0;
4014 }
4015 return ret;
4016 }
4017
4018 /**
4019 * sys_sched_rr_get_interval - return the default timeslice of a process.
4020 * @pid: pid of the process.
4021 * @interval: userspace pointer to the timeslice value.
4022 *
4023 * this syscall writes the default timeslice value of a given process
4024 * into the user-space timespec buffer. A value of '0' means infinity.
4025 */
4026 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4027 struct timespec __user *, interval)
4028 {
4029 struct task_struct *p;
4030 unsigned int time_slice;
4031 unsigned long flags;
4032 struct rq *rq;
4033 int retval;
4034 struct timespec t;
4035
4036 if (pid < 0)
4037 return -EINVAL;
4038
4039 retval = -ESRCH;
4040 rcu_read_lock();
4041 p = find_process_by_pid(pid);
4042 if (!p)
4043 goto out_unlock;
4044
4045 retval = security_task_getscheduler(p);
4046 if (retval)
4047 goto out_unlock;
4048
4049 rq = task_rq_lock(p, &flags);
4050 time_slice = p->sched_class->get_rr_interval(rq, p);
4051 task_rq_unlock(rq, p, &flags);
4052
4053 rcu_read_unlock();
4054 jiffies_to_timespec(time_slice, &t);
4055 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4056 return retval;
4057
4058 out_unlock:
4059 rcu_read_unlock();
4060 return retval;
4061 }
4062
4063 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4064
4065 void sched_show_task(struct task_struct *p)
4066 {
4067 unsigned long free = 0;
4068 int ppid;
4069 unsigned state;
4070
4071 state = p->state ? __ffs(p->state) + 1 : 0;
4072 printk(KERN_INFO "%-15.15s %c", p->comm,
4073 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4074 #if BITS_PER_LONG == 32
4075 if (state == TASK_RUNNING)
4076 printk(KERN_CONT " running ");
4077 else
4078 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4079 #else
4080 if (state == TASK_RUNNING)
4081 printk(KERN_CONT " running task ");
4082 else
4083 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4084 #endif
4085 #ifdef CONFIG_DEBUG_STACK_USAGE
4086 free = stack_not_used(p);
4087 #endif
4088 rcu_read_lock();
4089 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4090 rcu_read_unlock();
4091 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4092 task_pid_nr(p), ppid,
4093 (unsigned long)task_thread_info(p)->flags);
4094
4095 print_worker_info(KERN_INFO, p);
4096 show_stack(p, NULL);
4097 }
4098
4099 void show_state_filter(unsigned long state_filter)
4100 {
4101 struct task_struct *g, *p;
4102
4103 #if BITS_PER_LONG == 32
4104 printk(KERN_INFO
4105 " task PC stack pid father\n");
4106 #else
4107 printk(KERN_INFO
4108 " task PC stack pid father\n");
4109 #endif
4110 rcu_read_lock();
4111 do_each_thread(g, p) {
4112 /*
4113 * reset the NMI-timeout, listing all files on a slow
4114 * console might take a lot of time:
4115 */
4116 touch_nmi_watchdog();
4117 if (!state_filter || (p->state & state_filter))
4118 sched_show_task(p);
4119 } while_each_thread(g, p);
4120
4121 touch_all_softlockup_watchdogs();
4122
4123 #ifdef CONFIG_SCHED_DEBUG
4124 sysrq_sched_debug_show();
4125 #endif
4126 rcu_read_unlock();
4127 /*
4128 * Only show locks if all tasks are dumped:
4129 */
4130 if (!state_filter)
4131 debug_show_all_locks();
4132 }
4133
4134 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4135 {
4136 idle->sched_class = &idle_sched_class;
4137 }
4138
4139 /**
4140 * init_idle - set up an idle thread for a given CPU
4141 * @idle: task in question
4142 * @cpu: cpu the idle task belongs to
4143 *
4144 * NOTE: this function does not set the idle thread's NEED_RESCHED
4145 * flag, to make booting more robust.
4146 */
4147 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4148 {
4149 struct rq *rq = cpu_rq(cpu);
4150 unsigned long flags;
4151
4152 raw_spin_lock_irqsave(&rq->lock, flags);
4153
4154 __sched_fork(idle);
4155 idle->state = TASK_RUNNING;
4156 idle->se.exec_start = sched_clock();
4157
4158 do_set_cpus_allowed(idle, cpumask_of(cpu));
4159 /*
4160 * We're having a chicken and egg problem, even though we are
4161 * holding rq->lock, the cpu isn't yet set to this cpu so the
4162 * lockdep check in task_group() will fail.
4163 *
4164 * Similar case to sched_fork(). / Alternatively we could
4165 * use task_rq_lock() here and obtain the other rq->lock.
4166 *
4167 * Silence PROVE_RCU
4168 */
4169 rcu_read_lock();
4170 __set_task_cpu(idle, cpu);
4171 rcu_read_unlock();
4172
4173 rq->curr = rq->idle = idle;
4174 #if defined(CONFIG_SMP)
4175 idle->on_cpu = 1;
4176 #endif
4177 raw_spin_unlock_irqrestore(&rq->lock, flags);
4178
4179 /* Set the preempt count _outside_ the spinlocks! */
4180 task_thread_info(idle)->preempt_count = 0;
4181
4182 /*
4183 * The idle tasks have their own, simple scheduling class:
4184 */
4185 idle->sched_class = &idle_sched_class;
4186 ftrace_graph_init_idle_task(idle, cpu);
4187 vtime_init_idle(idle, cpu);
4188 #if defined(CONFIG_SMP)
4189 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4190 #endif
4191 }
4192
4193 #ifdef CONFIG_SMP
4194 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4195 {
4196 if (p->sched_class && p->sched_class->set_cpus_allowed)
4197 p->sched_class->set_cpus_allowed(p, new_mask);
4198
4199 cpumask_copy(&p->cpus_allowed, new_mask);
4200 p->nr_cpus_allowed = cpumask_weight(new_mask);
4201 }
4202
4203 /*
4204 * This is how migration works:
4205 *
4206 * 1) we invoke migration_cpu_stop() on the target CPU using
4207 * stop_one_cpu().
4208 * 2) stopper starts to run (implicitly forcing the migrated thread
4209 * off the CPU)
4210 * 3) it checks whether the migrated task is still in the wrong runqueue.
4211 * 4) if it's in the wrong runqueue then the migration thread removes
4212 * it and puts it into the right queue.
4213 * 5) stopper completes and stop_one_cpu() returns and the migration
4214 * is done.
4215 */
4216
4217 /*
4218 * Change a given task's CPU affinity. Migrate the thread to a
4219 * proper CPU and schedule it away if the CPU it's executing on
4220 * is removed from the allowed bitmask.
4221 *
4222 * NOTE: the caller must have a valid reference to the task, the
4223 * task must not exit() & deallocate itself prematurely. The
4224 * call is not atomic; no spinlocks may be held.
4225 */
4226 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4227 {
4228 unsigned long flags;
4229 struct rq *rq;
4230 unsigned int dest_cpu;
4231 int ret = 0;
4232
4233 rq = task_rq_lock(p, &flags);
4234
4235 if (cpumask_equal(&p->cpus_allowed, new_mask))
4236 goto out;
4237
4238 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4239 ret = -EINVAL;
4240 goto out;
4241 }
4242
4243 do_set_cpus_allowed(p, new_mask);
4244
4245 /* Can the task run on the task's current CPU? If so, we're done */
4246 if (cpumask_test_cpu(task_cpu(p), new_mask))
4247 goto out;
4248
4249 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4250 if (p->on_rq) {
4251 struct migration_arg arg = { p, dest_cpu };
4252 /* Need help from migration thread: drop lock and wait. */
4253 task_rq_unlock(rq, p, &flags);
4254 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4255 tlb_migrate_finish(p->mm);
4256 return 0;
4257 }
4258 out:
4259 task_rq_unlock(rq, p, &flags);
4260
4261 return ret;
4262 }
4263 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4264
4265 /*
4266 * Move (not current) task off this cpu, onto dest cpu. We're doing
4267 * this because either it can't run here any more (set_cpus_allowed()
4268 * away from this CPU, or CPU going down), or because we're
4269 * attempting to rebalance this task on exec (sched_exec).
4270 *
4271 * So we race with normal scheduler movements, but that's OK, as long
4272 * as the task is no longer on this CPU.
4273 *
4274 * Returns non-zero if task was successfully migrated.
4275 */
4276 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4277 {
4278 struct rq *rq_dest, *rq_src;
4279 int ret = 0;
4280
4281 if (unlikely(!cpu_active(dest_cpu)))
4282 return ret;
4283
4284 rq_src = cpu_rq(src_cpu);
4285 rq_dest = cpu_rq(dest_cpu);
4286
4287 raw_spin_lock(&p->pi_lock);
4288 double_rq_lock(rq_src, rq_dest);
4289 /* Already moved. */
4290 if (task_cpu(p) != src_cpu)
4291 goto done;
4292 /* Affinity changed (again). */
4293 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4294 goto fail;
4295
4296 /*
4297 * If we're not on a rq, the next wake-up will ensure we're
4298 * placed properly.
4299 */
4300 if (p->on_rq) {
4301 dequeue_task(rq_src, p, 0);
4302 set_task_cpu(p, dest_cpu);
4303 enqueue_task(rq_dest, p, 0);
4304 check_preempt_curr(rq_dest, p, 0);
4305 }
4306 done:
4307 ret = 1;
4308 fail:
4309 double_rq_unlock(rq_src, rq_dest);
4310 raw_spin_unlock(&p->pi_lock);
4311 return ret;
4312 }
4313
4314 /*
4315 * migration_cpu_stop - this will be executed by a highprio stopper thread
4316 * and performs thread migration by bumping thread off CPU then
4317 * 'pushing' onto another runqueue.
4318 */
4319 static int migration_cpu_stop(void *data)
4320 {
4321 struct migration_arg *arg = data;
4322
4323 /*
4324 * The original target cpu might have gone down and we might
4325 * be on another cpu but it doesn't matter.
4326 */
4327 local_irq_disable();
4328 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4329 local_irq_enable();
4330 return 0;
4331 }
4332
4333 #ifdef CONFIG_HOTPLUG_CPU
4334
4335 /*
4336 * Ensures that the idle task is using init_mm right before its cpu goes
4337 * offline.
4338 */
4339 void idle_task_exit(void)
4340 {
4341 struct mm_struct *mm = current->active_mm;
4342
4343 BUG_ON(cpu_online(smp_processor_id()));
4344
4345 if (mm != &init_mm)
4346 switch_mm(mm, &init_mm, current);
4347 mmdrop(mm);
4348 }
4349
4350 /*
4351 * Since this CPU is going 'away' for a while, fold any nr_active delta
4352 * we might have. Assumes we're called after migrate_tasks() so that the
4353 * nr_active count is stable.
4354 *
4355 * Also see the comment "Global load-average calculations".
4356 */
4357 static void calc_load_migrate(struct rq *rq)
4358 {
4359 long delta = calc_load_fold_active(rq);
4360 if (delta)
4361 atomic_long_add(delta, &calc_load_tasks);
4362 }
4363
4364 /*
4365 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4366 * try_to_wake_up()->select_task_rq().
4367 *
4368 * Called with rq->lock held even though we'er in stop_machine() and
4369 * there's no concurrency possible, we hold the required locks anyway
4370 * because of lock validation efforts.
4371 */
4372 static void migrate_tasks(unsigned int dead_cpu)
4373 {
4374 struct rq *rq = cpu_rq(dead_cpu);
4375 struct task_struct *next, *stop = rq->stop;
4376 int dest_cpu;
4377
4378 /*
4379 * Fudge the rq selection such that the below task selection loop
4380 * doesn't get stuck on the currently eligible stop task.
4381 *
4382 * We're currently inside stop_machine() and the rq is either stuck
4383 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4384 * either way we should never end up calling schedule() until we're
4385 * done here.
4386 */
4387 rq->stop = NULL;
4388
4389 /*
4390 * put_prev_task() and pick_next_task() sched
4391 * class method both need to have an up-to-date
4392 * value of rq->clock[_task]
4393 */
4394 update_rq_clock(rq);
4395
4396 for ( ; ; ) {
4397 /*
4398 * There's this thread running, bail when that's the only
4399 * remaining thread.
4400 */
4401 if (rq->nr_running == 1)
4402 break;
4403
4404 next = pick_next_task(rq);
4405 BUG_ON(!next);
4406 next->sched_class->put_prev_task(rq, next);
4407
4408 /* Find suitable destination for @next, with force if needed. */
4409 dest_cpu = select_fallback_rq(dead_cpu, next);
4410 raw_spin_unlock(&rq->lock);
4411
4412 __migrate_task(next, dead_cpu, dest_cpu);
4413
4414 raw_spin_lock(&rq->lock);
4415 }
4416
4417 rq->stop = stop;
4418 }
4419
4420 #endif /* CONFIG_HOTPLUG_CPU */
4421
4422 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4423
4424 static struct ctl_table sd_ctl_dir[] = {
4425 {
4426 .procname = "sched_domain",
4427 .mode = 0555,
4428 },
4429 {}
4430 };
4431
4432 static struct ctl_table sd_ctl_root[] = {
4433 {
4434 .procname = "kernel",
4435 .mode = 0555,
4436 .child = sd_ctl_dir,
4437 },
4438 {}
4439 };
4440
4441 static struct ctl_table *sd_alloc_ctl_entry(int n)
4442 {
4443 struct ctl_table *entry =
4444 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4445
4446 return entry;
4447 }
4448
4449 static void sd_free_ctl_entry(struct ctl_table **tablep)
4450 {
4451 struct ctl_table *entry;
4452
4453 /*
4454 * In the intermediate directories, both the child directory and
4455 * procname are dynamically allocated and could fail but the mode
4456 * will always be set. In the lowest directory the names are
4457 * static strings and all have proc handlers.
4458 */
4459 for (entry = *tablep; entry->mode; entry++) {
4460 if (entry->child)
4461 sd_free_ctl_entry(&entry->child);
4462 if (entry->proc_handler == NULL)
4463 kfree(entry->procname);
4464 }
4465
4466 kfree(*tablep);
4467 *tablep = NULL;
4468 }
4469
4470 static int min_load_idx = 0;
4471 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4472
4473 static void
4474 set_table_entry(struct ctl_table *entry,
4475 const char *procname, void *data, int maxlen,
4476 umode_t mode, proc_handler *proc_handler,
4477 bool load_idx)
4478 {
4479 entry->procname = procname;
4480 entry->data = data;
4481 entry->maxlen = maxlen;
4482 entry->mode = mode;
4483 entry->proc_handler = proc_handler;
4484
4485 if (load_idx) {
4486 entry->extra1 = &min_load_idx;
4487 entry->extra2 = &max_load_idx;
4488 }
4489 }
4490
4491 static struct ctl_table *
4492 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4493 {
4494 struct ctl_table *table = sd_alloc_ctl_entry(13);
4495
4496 if (table == NULL)
4497 return NULL;
4498
4499 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4500 sizeof(long), 0644, proc_doulongvec_minmax, false);
4501 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4502 sizeof(long), 0644, proc_doulongvec_minmax, false);
4503 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4504 sizeof(int), 0644, proc_dointvec_minmax, true);
4505 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4506 sizeof(int), 0644, proc_dointvec_minmax, true);
4507 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4508 sizeof(int), 0644, proc_dointvec_minmax, true);
4509 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4510 sizeof(int), 0644, proc_dointvec_minmax, true);
4511 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4512 sizeof(int), 0644, proc_dointvec_minmax, true);
4513 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4514 sizeof(int), 0644, proc_dointvec_minmax, false);
4515 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4516 sizeof(int), 0644, proc_dointvec_minmax, false);
4517 set_table_entry(&table[9], "cache_nice_tries",
4518 &sd->cache_nice_tries,
4519 sizeof(int), 0644, proc_dointvec_minmax, false);
4520 set_table_entry(&table[10], "flags", &sd->flags,
4521 sizeof(int), 0644, proc_dointvec_minmax, false);
4522 set_table_entry(&table[11], "name", sd->name,
4523 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4524 /* &table[12] is terminator */
4525
4526 return table;
4527 }
4528
4529 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4530 {
4531 struct ctl_table *entry, *table;
4532 struct sched_domain *sd;
4533 int domain_num = 0, i;
4534 char buf[32];
4535
4536 for_each_domain(cpu, sd)
4537 domain_num++;
4538 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4539 if (table == NULL)
4540 return NULL;
4541
4542 i = 0;
4543 for_each_domain(cpu, sd) {
4544 snprintf(buf, 32, "domain%d", i);
4545 entry->procname = kstrdup(buf, GFP_KERNEL);
4546 entry->mode = 0555;
4547 entry->child = sd_alloc_ctl_domain_table(sd);
4548 entry++;
4549 i++;
4550 }
4551 return table;
4552 }
4553
4554 static struct ctl_table_header *sd_sysctl_header;
4555 static void register_sched_domain_sysctl(void)
4556 {
4557 int i, cpu_num = num_possible_cpus();
4558 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4559 char buf[32];
4560
4561 WARN_ON(sd_ctl_dir[0].child);
4562 sd_ctl_dir[0].child = entry;
4563
4564 if (entry == NULL)
4565 return;
4566
4567 for_each_possible_cpu(i) {
4568 snprintf(buf, 32, "cpu%d", i);
4569 entry->procname = kstrdup(buf, GFP_KERNEL);
4570 entry->mode = 0555;
4571 entry->child = sd_alloc_ctl_cpu_table(i);
4572 entry++;
4573 }
4574
4575 WARN_ON(sd_sysctl_header);
4576 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4577 }
4578
4579 /* may be called multiple times per register */
4580 static void unregister_sched_domain_sysctl(void)
4581 {
4582 if (sd_sysctl_header)
4583 unregister_sysctl_table(sd_sysctl_header);
4584 sd_sysctl_header = NULL;
4585 if (sd_ctl_dir[0].child)
4586 sd_free_ctl_entry(&sd_ctl_dir[0].child);
4587 }
4588 #else
4589 static void register_sched_domain_sysctl(void)
4590 {
4591 }
4592 static void unregister_sched_domain_sysctl(void)
4593 {
4594 }
4595 #endif
4596
4597 static void set_rq_online(struct rq *rq)
4598 {
4599 if (!rq->online) {
4600 const struct sched_class *class;
4601
4602 cpumask_set_cpu(rq->cpu, rq->rd->online);
4603 rq->online = 1;
4604
4605 for_each_class(class) {
4606 if (class->rq_online)
4607 class->rq_online(rq);
4608 }
4609 }
4610 }
4611
4612 static void set_rq_offline(struct rq *rq)
4613 {
4614 if (rq->online) {
4615 const struct sched_class *class;
4616
4617 for_each_class(class) {
4618 if (class->rq_offline)
4619 class->rq_offline(rq);
4620 }
4621
4622 cpumask_clear_cpu(rq->cpu, rq->rd->online);
4623 rq->online = 0;
4624 }
4625 }
4626
4627 /*
4628 * migration_call - callback that gets triggered when a CPU is added.
4629 * Here we can start up the necessary migration thread for the new CPU.
4630 */
4631 static int __cpuinit
4632 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4633 {
4634 int cpu = (long)hcpu;
4635 unsigned long flags;
4636 struct rq *rq = cpu_rq(cpu);
4637
4638 switch (action & ~CPU_TASKS_FROZEN) {
4639
4640 case CPU_UP_PREPARE:
4641 rq->calc_load_update = calc_load_update;
4642 break;
4643
4644 case CPU_ONLINE:
4645 /* Update our root-domain */
4646 raw_spin_lock_irqsave(&rq->lock, flags);
4647 if (rq->rd) {
4648 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4649
4650 set_rq_online(rq);
4651 }
4652 raw_spin_unlock_irqrestore(&rq->lock, flags);
4653 break;
4654
4655 #ifdef CONFIG_HOTPLUG_CPU
4656 case CPU_DYING:
4657 sched_ttwu_pending();
4658 /* Update our root-domain */
4659 raw_spin_lock_irqsave(&rq->lock, flags);
4660 if (rq->rd) {
4661 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4662 set_rq_offline(rq);
4663 }
4664 migrate_tasks(cpu);
4665 BUG_ON(rq->nr_running != 1); /* the migration thread */
4666 raw_spin_unlock_irqrestore(&rq->lock, flags);
4667 break;
4668
4669 case CPU_DEAD:
4670 calc_load_migrate(rq);
4671 break;
4672 #endif
4673 }
4674
4675 update_max_interval();
4676
4677 return NOTIFY_OK;
4678 }
4679
4680 /*
4681 * Register at high priority so that task migration (migrate_all_tasks)
4682 * happens before everything else. This has to be lower priority than
4683 * the notifier in the perf_event subsystem, though.
4684 */
4685 static struct notifier_block __cpuinitdata migration_notifier = {
4686 .notifier_call = migration_call,
4687 .priority = CPU_PRI_MIGRATION,
4688 };
4689
4690 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
4691 unsigned long action, void *hcpu)
4692 {
4693 switch (action & ~CPU_TASKS_FROZEN) {
4694 case CPU_STARTING:
4695 case CPU_DOWN_FAILED:
4696 set_cpu_active((long)hcpu, true);
4697 return NOTIFY_OK;
4698 default:
4699 return NOTIFY_DONE;
4700 }
4701 }
4702
4703 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
4704 unsigned long action, void *hcpu)
4705 {
4706 switch (action & ~CPU_TASKS_FROZEN) {
4707 case CPU_DOWN_PREPARE:
4708 set_cpu_active((long)hcpu, false);
4709 return NOTIFY_OK;
4710 default:
4711 return NOTIFY_DONE;
4712 }
4713 }
4714
4715 static int __init migration_init(void)
4716 {
4717 void *cpu = (void *)(long)smp_processor_id();
4718 int err;
4719
4720 /* Initialize migration for the boot CPU */
4721 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4722 BUG_ON(err == NOTIFY_BAD);
4723 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4724 register_cpu_notifier(&migration_notifier);
4725
4726 /* Register cpu active notifiers */
4727 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4728 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4729
4730 return 0;
4731 }
4732 early_initcall(migration_init);
4733 #endif
4734
4735 #ifdef CONFIG_SMP
4736
4737 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4738
4739 #ifdef CONFIG_SCHED_DEBUG
4740
4741 static __read_mostly int sched_debug_enabled;
4742
4743 static int __init sched_debug_setup(char *str)
4744 {
4745 sched_debug_enabled = 1;
4746
4747 return 0;
4748 }
4749 early_param("sched_debug", sched_debug_setup);
4750
4751 static inline bool sched_debug(void)
4752 {
4753 return sched_debug_enabled;
4754 }
4755
4756 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4757 struct cpumask *groupmask)
4758 {
4759 struct sched_group *group = sd->groups;
4760 char str[256];
4761
4762 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4763 cpumask_clear(groupmask);
4764
4765 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4766
4767 if (!(sd->flags & SD_LOAD_BALANCE)) {
4768 printk("does not load-balance\n");
4769 if (sd->parent)
4770 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4771 " has parent");
4772 return -1;
4773 }
4774
4775 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4776
4777 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4778 printk(KERN_ERR "ERROR: domain->span does not contain "
4779 "CPU%d\n", cpu);
4780 }
4781 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4782 printk(KERN_ERR "ERROR: domain->groups does not contain"
4783 " CPU%d\n", cpu);
4784 }
4785
4786 printk(KERN_DEBUG "%*s groups:", level + 1, "");
4787 do {
4788 if (!group) {
4789 printk("\n");
4790 printk(KERN_ERR "ERROR: group is NULL\n");
4791 break;
4792 }
4793
4794 /*
4795 * Even though we initialize ->power to something semi-sane,
4796 * we leave power_orig unset. This allows us to detect if
4797 * domain iteration is still funny without causing /0 traps.
4798 */
4799 if (!group->sgp->power_orig) {
4800 printk(KERN_CONT "\n");
4801 printk(KERN_ERR "ERROR: domain->cpu_power not "
4802 "set\n");
4803 break;
4804 }
4805
4806 if (!cpumask_weight(sched_group_cpus(group))) {
4807 printk(KERN_CONT "\n");
4808 printk(KERN_ERR "ERROR: empty group\n");
4809 break;
4810 }
4811
4812 if (!(sd->flags & SD_OVERLAP) &&
4813 cpumask_intersects(groupmask, sched_group_cpus(group))) {
4814 printk(KERN_CONT "\n");
4815 printk(KERN_ERR "ERROR: repeated CPUs\n");
4816 break;
4817 }
4818
4819 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4820
4821 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4822
4823 printk(KERN_CONT " %s", str);
4824 if (group->sgp->power != SCHED_POWER_SCALE) {
4825 printk(KERN_CONT " (cpu_power = %d)",
4826 group->sgp->power);
4827 }
4828
4829 group = group->next;
4830 } while (group != sd->groups);
4831 printk(KERN_CONT "\n");
4832
4833 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4834 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4835
4836 if (sd->parent &&
4837 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4838 printk(KERN_ERR "ERROR: parent span is not a superset "
4839 "of domain->span\n");
4840 return 0;
4841 }
4842
4843 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4844 {
4845 int level = 0;
4846
4847 if (!sched_debug_enabled)
4848 return;
4849
4850 if (!sd) {
4851 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4852 return;
4853 }
4854
4855 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4856
4857 for (;;) {
4858 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4859 break;
4860 level++;
4861 sd = sd->parent;
4862 if (!sd)
4863 break;
4864 }
4865 }
4866 #else /* !CONFIG_SCHED_DEBUG */
4867 # define sched_domain_debug(sd, cpu) do { } while (0)
4868 static inline bool sched_debug(void)
4869 {
4870 return false;
4871 }
4872 #endif /* CONFIG_SCHED_DEBUG */
4873
4874 static int sd_degenerate(struct sched_domain *sd)
4875 {
4876 if (cpumask_weight(sched_domain_span(sd)) == 1)
4877 return 1;
4878
4879 /* Following flags need at least 2 groups */
4880 if (sd->flags & (SD_LOAD_BALANCE |
4881 SD_BALANCE_NEWIDLE |
4882 SD_BALANCE_FORK |
4883 SD_BALANCE_EXEC |
4884 SD_SHARE_CPUPOWER |
4885 SD_SHARE_PKG_RESOURCES)) {
4886 if (sd->groups != sd->groups->next)
4887 return 0;
4888 }
4889
4890 /* Following flags don't use groups */
4891 if (sd->flags & (SD_WAKE_AFFINE))
4892 return 0;
4893
4894 return 1;
4895 }
4896
4897 static int
4898 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4899 {
4900 unsigned long cflags = sd->flags, pflags = parent->flags;
4901
4902 if (sd_degenerate(parent))
4903 return 1;
4904
4905 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4906 return 0;
4907
4908 /* Flags needing groups don't count if only 1 group in parent */
4909 if (parent->groups == parent->groups->next) {
4910 pflags &= ~(SD_LOAD_BALANCE |
4911 SD_BALANCE_NEWIDLE |
4912 SD_BALANCE_FORK |
4913 SD_BALANCE_EXEC |
4914 SD_SHARE_CPUPOWER |
4915 SD_SHARE_PKG_RESOURCES);
4916 if (nr_node_ids == 1)
4917 pflags &= ~SD_SERIALIZE;
4918 }
4919 if (~cflags & pflags)
4920 return 0;
4921
4922 return 1;
4923 }
4924
4925 static void free_rootdomain(struct rcu_head *rcu)
4926 {
4927 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4928
4929 cpupri_cleanup(&rd->cpupri);
4930 free_cpumask_var(rd->rto_mask);
4931 free_cpumask_var(rd->online);
4932 free_cpumask_var(rd->span);
4933 kfree(rd);
4934 }
4935
4936 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4937 {
4938 struct root_domain *old_rd = NULL;
4939 unsigned long flags;
4940
4941 raw_spin_lock_irqsave(&rq->lock, flags);
4942
4943 if (rq->rd) {
4944 old_rd = rq->rd;
4945
4946 if (cpumask_test_cpu(rq->cpu, old_rd->online))
4947 set_rq_offline(rq);
4948
4949 cpumask_clear_cpu(rq->cpu, old_rd->span);
4950
4951 /*
4952 * If we dont want to free the old_rt yet then
4953 * set old_rd to NULL to skip the freeing later
4954 * in this function:
4955 */
4956 if (!atomic_dec_and_test(&old_rd->refcount))
4957 old_rd = NULL;
4958 }
4959
4960 atomic_inc(&rd->refcount);
4961 rq->rd = rd;
4962
4963 cpumask_set_cpu(rq->cpu, rd->span);
4964 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
4965 set_rq_online(rq);
4966
4967 raw_spin_unlock_irqrestore(&rq->lock, flags);
4968
4969 if (old_rd)
4970 call_rcu_sched(&old_rd->rcu, free_rootdomain);
4971 }
4972
4973 static int init_rootdomain(struct root_domain *rd)
4974 {
4975 memset(rd, 0, sizeof(*rd));
4976
4977 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
4978 goto out;
4979 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
4980 goto free_span;
4981 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
4982 goto free_online;
4983
4984 if (cpupri_init(&rd->cpupri) != 0)
4985 goto free_rto_mask;
4986 return 0;
4987
4988 free_rto_mask:
4989 free_cpumask_var(rd->rto_mask);
4990 free_online:
4991 free_cpumask_var(rd->online);
4992 free_span:
4993 free_cpumask_var(rd->span);
4994 out:
4995 return -ENOMEM;
4996 }
4997
4998 /*
4999 * By default the system creates a single root-domain with all cpus as
5000 * members (mimicking the global state we have today).
5001 */
5002 struct root_domain def_root_domain;
5003
5004 static void init_defrootdomain(void)
5005 {
5006 init_rootdomain(&def_root_domain);
5007
5008 atomic_set(&def_root_domain.refcount, 1);
5009 }
5010
5011 static struct root_domain *alloc_rootdomain(void)
5012 {
5013 struct root_domain *rd;
5014
5015 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5016 if (!rd)
5017 return NULL;
5018
5019 if (init_rootdomain(rd) != 0) {
5020 kfree(rd);
5021 return NULL;
5022 }
5023
5024 return rd;
5025 }
5026
5027 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5028 {
5029 struct sched_group *tmp, *first;
5030
5031 if (!sg)
5032 return;
5033
5034 first = sg;
5035 do {
5036 tmp = sg->next;
5037
5038 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5039 kfree(sg->sgp);
5040
5041 kfree(sg);
5042 sg = tmp;
5043 } while (sg != first);
5044 }
5045
5046 static void free_sched_domain(struct rcu_head *rcu)
5047 {
5048 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5049
5050 /*
5051 * If its an overlapping domain it has private groups, iterate and
5052 * nuke them all.
5053 */
5054 if (sd->flags & SD_OVERLAP) {
5055 free_sched_groups(sd->groups, 1);
5056 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5057 kfree(sd->groups->sgp);
5058 kfree(sd->groups);
5059 }
5060 kfree(sd);
5061 }
5062
5063 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5064 {
5065 call_rcu(&sd->rcu, free_sched_domain);
5066 }
5067
5068 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5069 {
5070 for (; sd; sd = sd->parent)
5071 destroy_sched_domain(sd, cpu);
5072 }
5073
5074 /*
5075 * Keep a special pointer to the highest sched_domain that has
5076 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5077 * allows us to avoid some pointer chasing select_idle_sibling().
5078 *
5079 * Also keep a unique ID per domain (we use the first cpu number in
5080 * the cpumask of the domain), this allows us to quickly tell if
5081 * two cpus are in the same cache domain, see cpus_share_cache().
5082 */
5083 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5084 DEFINE_PER_CPU(int, sd_llc_id);
5085
5086 static void update_top_cache_domain(int cpu)
5087 {
5088 struct sched_domain *sd;
5089 int id = cpu;
5090
5091 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5092 if (sd)
5093 id = cpumask_first(sched_domain_span(sd));
5094
5095 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5096 per_cpu(sd_llc_id, cpu) = id;
5097 }
5098
5099 /*
5100 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5101 * hold the hotplug lock.
5102 */
5103 static void
5104 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5105 {
5106 struct rq *rq = cpu_rq(cpu);
5107 struct sched_domain *tmp;
5108
5109 /* Remove the sched domains which do not contribute to scheduling. */
5110 for (tmp = sd; tmp; ) {
5111 struct sched_domain *parent = tmp->parent;
5112 if (!parent)
5113 break;
5114
5115 if (sd_parent_degenerate(tmp, parent)) {
5116 tmp->parent = parent->parent;
5117 if (parent->parent)
5118 parent->parent->child = tmp;
5119 destroy_sched_domain(parent, cpu);
5120 } else
5121 tmp = tmp->parent;
5122 }
5123
5124 if (sd && sd_degenerate(sd)) {
5125 tmp = sd;
5126 sd = sd->parent;
5127 destroy_sched_domain(tmp, cpu);
5128 if (sd)
5129 sd->child = NULL;
5130 }
5131
5132 sched_domain_debug(sd, cpu);
5133
5134 rq_attach_root(rq, rd);
5135 tmp = rq->sd;
5136 rcu_assign_pointer(rq->sd, sd);
5137 destroy_sched_domains(tmp, cpu);
5138
5139 update_top_cache_domain(cpu);
5140 }
5141
5142 /* cpus with isolated domains */
5143 static cpumask_var_t cpu_isolated_map;
5144
5145 /* Setup the mask of cpus configured for isolated domains */
5146 static int __init isolated_cpu_setup(char *str)
5147 {
5148 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5149 cpulist_parse(str, cpu_isolated_map);
5150 return 1;
5151 }
5152
5153 __setup("isolcpus=", isolated_cpu_setup);
5154
5155 static const struct cpumask *cpu_cpu_mask(int cpu)
5156 {
5157 return cpumask_of_node(cpu_to_node(cpu));
5158 }
5159
5160 struct sd_data {
5161 struct sched_domain **__percpu sd;
5162 struct sched_group **__percpu sg;
5163 struct sched_group_power **__percpu sgp;
5164 };
5165
5166 struct s_data {
5167 struct sched_domain ** __percpu sd;
5168 struct root_domain *rd;
5169 };
5170
5171 enum s_alloc {
5172 sa_rootdomain,
5173 sa_sd,
5174 sa_sd_storage,
5175 sa_none,
5176 };
5177
5178 struct sched_domain_topology_level;
5179
5180 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5181 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5182
5183 #define SDTL_OVERLAP 0x01
5184
5185 struct sched_domain_topology_level {
5186 sched_domain_init_f init;
5187 sched_domain_mask_f mask;
5188 int flags;
5189 int numa_level;
5190 struct sd_data data;
5191 };
5192
5193 /*
5194 * Build an iteration mask that can exclude certain CPUs from the upwards
5195 * domain traversal.
5196 *
5197 * Asymmetric node setups can result in situations where the domain tree is of
5198 * unequal depth, make sure to skip domains that already cover the entire
5199 * range.
5200 *
5201 * In that case build_sched_domains() will have terminated the iteration early
5202 * and our sibling sd spans will be empty. Domains should always include the
5203 * cpu they're built on, so check that.
5204 *
5205 */
5206 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5207 {
5208 const struct cpumask *span = sched_domain_span(sd);
5209 struct sd_data *sdd = sd->private;
5210 struct sched_domain *sibling;
5211 int i;
5212
5213 for_each_cpu(i, span) {
5214 sibling = *per_cpu_ptr(sdd->sd, i);
5215 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5216 continue;
5217
5218 cpumask_set_cpu(i, sched_group_mask(sg));
5219 }
5220 }
5221
5222 /*
5223 * Return the canonical balance cpu for this group, this is the first cpu
5224 * of this group that's also in the iteration mask.
5225 */
5226 int group_balance_cpu(struct sched_group *sg)
5227 {
5228 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5229 }
5230
5231 static int
5232 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5233 {
5234 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5235 const struct cpumask *span = sched_domain_span(sd);
5236 struct cpumask *covered = sched_domains_tmpmask;
5237 struct sd_data *sdd = sd->private;
5238 struct sched_domain *child;
5239 int i;
5240
5241 cpumask_clear(covered);
5242
5243 for_each_cpu(i, span) {
5244 struct cpumask *sg_span;
5245
5246 if (cpumask_test_cpu(i, covered))
5247 continue;
5248
5249 child = *per_cpu_ptr(sdd->sd, i);
5250
5251 /* See the comment near build_group_mask(). */
5252 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5253 continue;
5254
5255 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5256 GFP_KERNEL, cpu_to_node(cpu));
5257
5258 if (!sg)
5259 goto fail;
5260
5261 sg_span = sched_group_cpus(sg);
5262 if (child->child) {
5263 child = child->child;
5264 cpumask_copy(sg_span, sched_domain_span(child));
5265 } else
5266 cpumask_set_cpu(i, sg_span);
5267
5268 cpumask_or(covered, covered, sg_span);
5269
5270 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5271 if (atomic_inc_return(&sg->sgp->ref) == 1)
5272 build_group_mask(sd, sg);
5273
5274 /*
5275 * Initialize sgp->power such that even if we mess up the
5276 * domains and no possible iteration will get us here, we won't
5277 * die on a /0 trap.
5278 */
5279 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5280
5281 /*
5282 * Make sure the first group of this domain contains the
5283 * canonical balance cpu. Otherwise the sched_domain iteration
5284 * breaks. See update_sg_lb_stats().
5285 */
5286 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5287 group_balance_cpu(sg) == cpu)
5288 groups = sg;
5289
5290 if (!first)
5291 first = sg;
5292 if (last)
5293 last->next = sg;
5294 last = sg;
5295 last->next = first;
5296 }
5297 sd->groups = groups;
5298
5299 return 0;
5300
5301 fail:
5302 free_sched_groups(first, 0);
5303
5304 return -ENOMEM;
5305 }
5306
5307 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5308 {
5309 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5310 struct sched_domain *child = sd->child;
5311
5312 if (child)
5313 cpu = cpumask_first(sched_domain_span(child));
5314
5315 if (sg) {
5316 *sg = *per_cpu_ptr(sdd->sg, cpu);
5317 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5318 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5319 }
5320
5321 return cpu;
5322 }
5323
5324 /*
5325 * build_sched_groups will build a circular linked list of the groups
5326 * covered by the given span, and will set each group's ->cpumask correctly,
5327 * and ->cpu_power to 0.
5328 *
5329 * Assumes the sched_domain tree is fully constructed
5330 */
5331 static int
5332 build_sched_groups(struct sched_domain *sd, int cpu)
5333 {
5334 struct sched_group *first = NULL, *last = NULL;
5335 struct sd_data *sdd = sd->private;
5336 const struct cpumask *span = sched_domain_span(sd);
5337 struct cpumask *covered;
5338 int i;
5339
5340 get_group(cpu, sdd, &sd->groups);
5341 atomic_inc(&sd->groups->ref);
5342
5343 if (cpu != cpumask_first(span))
5344 return 0;
5345
5346 lockdep_assert_held(&sched_domains_mutex);
5347 covered = sched_domains_tmpmask;
5348
5349 cpumask_clear(covered);
5350
5351 for_each_cpu(i, span) {
5352 struct sched_group *sg;
5353 int group, j;
5354
5355 if (cpumask_test_cpu(i, covered))
5356 continue;
5357
5358 group = get_group(i, sdd, &sg);
5359 cpumask_clear(sched_group_cpus(sg));
5360 sg->sgp->power = 0;
5361 cpumask_setall(sched_group_mask(sg));
5362
5363 for_each_cpu(j, span) {
5364 if (get_group(j, sdd, NULL) != group)
5365 continue;
5366
5367 cpumask_set_cpu(j, covered);
5368 cpumask_set_cpu(j, sched_group_cpus(sg));
5369 }
5370
5371 if (!first)
5372 first = sg;
5373 if (last)
5374 last->next = sg;
5375 last = sg;
5376 }
5377 last->next = first;
5378
5379 return 0;
5380 }
5381
5382 /*
5383 * Initialize sched groups cpu_power.
5384 *
5385 * cpu_power indicates the capacity of sched group, which is used while
5386 * distributing the load between different sched groups in a sched domain.
5387 * Typically cpu_power for all the groups in a sched domain will be same unless
5388 * there are asymmetries in the topology. If there are asymmetries, group
5389 * having more cpu_power will pickup more load compared to the group having
5390 * less cpu_power.
5391 */
5392 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5393 {
5394 struct sched_group *sg = sd->groups;
5395
5396 WARN_ON(!sg);
5397
5398 do {
5399 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5400 sg = sg->next;
5401 } while (sg != sd->groups);
5402
5403 if (cpu != group_balance_cpu(sg))
5404 return;
5405
5406 update_group_power(sd, cpu);
5407 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5408 }
5409
5410 int __weak arch_sd_sibling_asym_packing(void)
5411 {
5412 return 0*SD_ASYM_PACKING;
5413 }
5414
5415 /*
5416 * Initializers for schedule domains
5417 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5418 */
5419
5420 #ifdef CONFIG_SCHED_DEBUG
5421 # define SD_INIT_NAME(sd, type) sd->name = #type
5422 #else
5423 # define SD_INIT_NAME(sd, type) do { } while (0)
5424 #endif
5425
5426 #define SD_INIT_FUNC(type) \
5427 static noinline struct sched_domain * \
5428 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5429 { \
5430 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5431 *sd = SD_##type##_INIT; \
5432 SD_INIT_NAME(sd, type); \
5433 sd->private = &tl->data; \
5434 return sd; \
5435 }
5436
5437 SD_INIT_FUNC(CPU)
5438 #ifdef CONFIG_SCHED_SMT
5439 SD_INIT_FUNC(SIBLING)
5440 #endif
5441 #ifdef CONFIG_SCHED_MC
5442 SD_INIT_FUNC(MC)
5443 #endif
5444 #ifdef CONFIG_SCHED_BOOK
5445 SD_INIT_FUNC(BOOK)
5446 #endif
5447
5448 static int default_relax_domain_level = -1;
5449 int sched_domain_level_max;
5450
5451 static int __init setup_relax_domain_level(char *str)
5452 {
5453 if (kstrtoint(str, 0, &default_relax_domain_level))
5454 pr_warn("Unable to set relax_domain_level\n");
5455
5456 return 1;
5457 }
5458 __setup("relax_domain_level=", setup_relax_domain_level);
5459
5460 static void set_domain_attribute(struct sched_domain *sd,
5461 struct sched_domain_attr *attr)
5462 {
5463 int request;
5464
5465 if (!attr || attr->relax_domain_level < 0) {
5466 if (default_relax_domain_level < 0)
5467 return;
5468 else
5469 request = default_relax_domain_level;
5470 } else
5471 request = attr->relax_domain_level;
5472 if (request < sd->level) {
5473 /* turn off idle balance on this domain */
5474 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5475 } else {
5476 /* turn on idle balance on this domain */
5477 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5478 }
5479 }
5480
5481 static void __sdt_free(const struct cpumask *cpu_map);
5482 static int __sdt_alloc(const struct cpumask *cpu_map);
5483
5484 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5485 const struct cpumask *cpu_map)
5486 {
5487 switch (what) {
5488 case sa_rootdomain:
5489 if (!atomic_read(&d->rd->refcount))
5490 free_rootdomain(&d->rd->rcu); /* fall through */
5491 case sa_sd:
5492 free_percpu(d->sd); /* fall through */
5493 case sa_sd_storage:
5494 __sdt_free(cpu_map); /* fall through */
5495 case sa_none:
5496 break;
5497 }
5498 }
5499
5500 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5501 const struct cpumask *cpu_map)
5502 {
5503 memset(d, 0, sizeof(*d));
5504
5505 if (__sdt_alloc(cpu_map))
5506 return sa_sd_storage;
5507 d->sd = alloc_percpu(struct sched_domain *);
5508 if (!d->sd)
5509 return sa_sd_storage;
5510 d->rd = alloc_rootdomain();
5511 if (!d->rd)
5512 return sa_sd;
5513 return sa_rootdomain;
5514 }
5515
5516 /*
5517 * NULL the sd_data elements we've used to build the sched_domain and
5518 * sched_group structure so that the subsequent __free_domain_allocs()
5519 * will not free the data we're using.
5520 */
5521 static void claim_allocations(int cpu, struct sched_domain *sd)
5522 {
5523 struct sd_data *sdd = sd->private;
5524
5525 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5526 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5527
5528 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5529 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5530
5531 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5532 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5533 }
5534
5535 #ifdef CONFIG_SCHED_SMT
5536 static const struct cpumask *cpu_smt_mask(int cpu)
5537 {
5538 return topology_thread_cpumask(cpu);
5539 }
5540 #endif
5541
5542 /*
5543 * Topology list, bottom-up.
5544 */
5545 static struct sched_domain_topology_level default_topology[] = {
5546 #ifdef CONFIG_SCHED_SMT
5547 { sd_init_SIBLING, cpu_smt_mask, },
5548 #endif
5549 #ifdef CONFIG_SCHED_MC
5550 { sd_init_MC, cpu_coregroup_mask, },
5551 #endif
5552 #ifdef CONFIG_SCHED_BOOK
5553 { sd_init_BOOK, cpu_book_mask, },
5554 #endif
5555 { sd_init_CPU, cpu_cpu_mask, },
5556 { NULL, },
5557 };
5558
5559 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5560
5561 #define for_each_sd_topology(tl) \
5562 for (tl = sched_domain_topology; tl->init; tl++)
5563
5564 #ifdef CONFIG_NUMA
5565
5566 static int sched_domains_numa_levels;
5567 static int *sched_domains_numa_distance;
5568 static struct cpumask ***sched_domains_numa_masks;
5569 static int sched_domains_curr_level;
5570
5571 static inline int sd_local_flags(int level)
5572 {
5573 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5574 return 0;
5575
5576 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5577 }
5578
5579 static struct sched_domain *
5580 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5581 {
5582 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5583 int level = tl->numa_level;
5584 int sd_weight = cpumask_weight(
5585 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5586
5587 *sd = (struct sched_domain){
5588 .min_interval = sd_weight,
5589 .max_interval = 2*sd_weight,
5590 .busy_factor = 32,
5591 .imbalance_pct = 125,
5592 .cache_nice_tries = 2,
5593 .busy_idx = 3,
5594 .idle_idx = 2,
5595 .newidle_idx = 0,
5596 .wake_idx = 0,
5597 .forkexec_idx = 0,
5598
5599 .flags = 1*SD_LOAD_BALANCE
5600 | 1*SD_BALANCE_NEWIDLE
5601 | 0*SD_BALANCE_EXEC
5602 | 0*SD_BALANCE_FORK
5603 | 0*SD_BALANCE_WAKE
5604 | 0*SD_WAKE_AFFINE
5605 | 0*SD_SHARE_CPUPOWER
5606 | 0*SD_SHARE_PKG_RESOURCES
5607 | 1*SD_SERIALIZE
5608 | 0*SD_PREFER_SIBLING
5609 | sd_local_flags(level)
5610 ,
5611 .last_balance = jiffies,
5612 .balance_interval = sd_weight,
5613 };
5614 SD_INIT_NAME(sd, NUMA);
5615 sd->private = &tl->data;
5616
5617 /*
5618 * Ugly hack to pass state to sd_numa_mask()...
5619 */
5620 sched_domains_curr_level = tl->numa_level;
5621
5622 return sd;
5623 }
5624
5625 static const struct cpumask *sd_numa_mask(int cpu)
5626 {
5627 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5628 }
5629
5630 static void sched_numa_warn(const char *str)
5631 {
5632 static int done = false;
5633 int i,j;
5634
5635 if (done)
5636 return;
5637
5638 done = true;
5639
5640 printk(KERN_WARNING "ERROR: %s\n\n", str);
5641
5642 for (i = 0; i < nr_node_ids; i++) {
5643 printk(KERN_WARNING " ");
5644 for (j = 0; j < nr_node_ids; j++)
5645 printk(KERN_CONT "%02d ", node_distance(i,j));
5646 printk(KERN_CONT "\n");
5647 }
5648 printk(KERN_WARNING "\n");
5649 }
5650
5651 static bool find_numa_distance(int distance)
5652 {
5653 int i;
5654
5655 if (distance == node_distance(0, 0))
5656 return true;
5657
5658 for (i = 0; i < sched_domains_numa_levels; i++) {
5659 if (sched_domains_numa_distance[i] == distance)
5660 return true;
5661 }
5662
5663 return false;
5664 }
5665
5666 static void sched_init_numa(void)
5667 {
5668 int next_distance, curr_distance = node_distance(0, 0);
5669 struct sched_domain_topology_level *tl;
5670 int level = 0;
5671 int i, j, k;
5672
5673 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5674 if (!sched_domains_numa_distance)
5675 return;
5676
5677 /*
5678 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5679 * unique distances in the node_distance() table.
5680 *
5681 * Assumes node_distance(0,j) includes all distances in
5682 * node_distance(i,j) in order to avoid cubic time.
5683 */
5684 next_distance = curr_distance;
5685 for (i = 0; i < nr_node_ids; i++) {
5686 for (j = 0; j < nr_node_ids; j++) {
5687 for (k = 0; k < nr_node_ids; k++) {
5688 int distance = node_distance(i, k);
5689
5690 if (distance > curr_distance &&
5691 (distance < next_distance ||
5692 next_distance == curr_distance))
5693 next_distance = distance;
5694
5695 /*
5696 * While not a strong assumption it would be nice to know
5697 * about cases where if node A is connected to B, B is not
5698 * equally connected to A.
5699 */
5700 if (sched_debug() && node_distance(k, i) != distance)
5701 sched_numa_warn("Node-distance not symmetric");
5702
5703 if (sched_debug() && i && !find_numa_distance(distance))
5704 sched_numa_warn("Node-0 not representative");
5705 }
5706 if (next_distance != curr_distance) {
5707 sched_domains_numa_distance[level++] = next_distance;
5708 sched_domains_numa_levels = level;
5709 curr_distance = next_distance;
5710 } else break;
5711 }
5712
5713 /*
5714 * In case of sched_debug() we verify the above assumption.
5715 */
5716 if (!sched_debug())
5717 break;
5718 }
5719 /*
5720 * 'level' contains the number of unique distances, excluding the
5721 * identity distance node_distance(i,i).
5722 *
5723 * The sched_domains_numa_distance[] array includes the actual distance
5724 * numbers.
5725 */
5726
5727 /*
5728 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5729 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5730 * the array will contain less then 'level' members. This could be
5731 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5732 * in other functions.
5733 *
5734 * We reset it to 'level' at the end of this function.
5735 */
5736 sched_domains_numa_levels = 0;
5737
5738 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5739 if (!sched_domains_numa_masks)
5740 return;
5741
5742 /*
5743 * Now for each level, construct a mask per node which contains all
5744 * cpus of nodes that are that many hops away from us.
5745 */
5746 for (i = 0; i < level; i++) {
5747 sched_domains_numa_masks[i] =
5748 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5749 if (!sched_domains_numa_masks[i])
5750 return;
5751
5752 for (j = 0; j < nr_node_ids; j++) {
5753 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5754 if (!mask)
5755 return;
5756
5757 sched_domains_numa_masks[i][j] = mask;
5758
5759 for (k = 0; k < nr_node_ids; k++) {
5760 if (node_distance(j, k) > sched_domains_numa_distance[i])
5761 continue;
5762
5763 cpumask_or(mask, mask, cpumask_of_node(k));
5764 }
5765 }
5766 }
5767
5768 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5769 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5770 if (!tl)
5771 return;
5772
5773 /*
5774 * Copy the default topology bits..
5775 */
5776 for (i = 0; default_topology[i].init; i++)
5777 tl[i] = default_topology[i];
5778
5779 /*
5780 * .. and append 'j' levels of NUMA goodness.
5781 */
5782 for (j = 0; j < level; i++, j++) {
5783 tl[i] = (struct sched_domain_topology_level){
5784 .init = sd_numa_init,
5785 .mask = sd_numa_mask,
5786 .flags = SDTL_OVERLAP,
5787 .numa_level = j,
5788 };
5789 }
5790
5791 sched_domain_topology = tl;
5792
5793 sched_domains_numa_levels = level;
5794 }
5795
5796 static void sched_domains_numa_masks_set(int cpu)
5797 {
5798 int i, j;
5799 int node = cpu_to_node(cpu);
5800
5801 for (i = 0; i < sched_domains_numa_levels; i++) {
5802 for (j = 0; j < nr_node_ids; j++) {
5803 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5804 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5805 }
5806 }
5807 }
5808
5809 static void sched_domains_numa_masks_clear(int cpu)
5810 {
5811 int i, j;
5812 for (i = 0; i < sched_domains_numa_levels; i++) {
5813 for (j = 0; j < nr_node_ids; j++)
5814 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5815 }
5816 }
5817
5818 /*
5819 * Update sched_domains_numa_masks[level][node] array when new cpus
5820 * are onlined.
5821 */
5822 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5823 unsigned long action,
5824 void *hcpu)
5825 {
5826 int cpu = (long)hcpu;
5827
5828 switch (action & ~CPU_TASKS_FROZEN) {
5829 case CPU_ONLINE:
5830 sched_domains_numa_masks_set(cpu);
5831 break;
5832
5833 case CPU_DEAD:
5834 sched_domains_numa_masks_clear(cpu);
5835 break;
5836
5837 default:
5838 return NOTIFY_DONE;
5839 }
5840
5841 return NOTIFY_OK;
5842 }
5843 #else
5844 static inline void sched_init_numa(void)
5845 {
5846 }
5847
5848 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5849 unsigned long action,
5850 void *hcpu)
5851 {
5852 return 0;
5853 }
5854 #endif /* CONFIG_NUMA */
5855
5856 static int __sdt_alloc(const struct cpumask *cpu_map)
5857 {
5858 struct sched_domain_topology_level *tl;
5859 int j;
5860
5861 for_each_sd_topology(tl) {
5862 struct sd_data *sdd = &tl->data;
5863
5864 sdd->sd = alloc_percpu(struct sched_domain *);
5865 if (!sdd->sd)
5866 return -ENOMEM;
5867
5868 sdd->sg = alloc_percpu(struct sched_group *);
5869 if (!sdd->sg)
5870 return -ENOMEM;
5871
5872 sdd->sgp = alloc_percpu(struct sched_group_power *);
5873 if (!sdd->sgp)
5874 return -ENOMEM;
5875
5876 for_each_cpu(j, cpu_map) {
5877 struct sched_domain *sd;
5878 struct sched_group *sg;
5879 struct sched_group_power *sgp;
5880
5881 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5882 GFP_KERNEL, cpu_to_node(j));
5883 if (!sd)
5884 return -ENOMEM;
5885
5886 *per_cpu_ptr(sdd->sd, j) = sd;
5887
5888 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5889 GFP_KERNEL, cpu_to_node(j));
5890 if (!sg)
5891 return -ENOMEM;
5892
5893 sg->next = sg;
5894
5895 *per_cpu_ptr(sdd->sg, j) = sg;
5896
5897 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5898 GFP_KERNEL, cpu_to_node(j));
5899 if (!sgp)
5900 return -ENOMEM;
5901
5902 *per_cpu_ptr(sdd->sgp, j) = sgp;
5903 }
5904 }
5905
5906 return 0;
5907 }
5908
5909 static void __sdt_free(const struct cpumask *cpu_map)
5910 {
5911 struct sched_domain_topology_level *tl;
5912 int j;
5913
5914 for_each_sd_topology(tl) {
5915 struct sd_data *sdd = &tl->data;
5916
5917 for_each_cpu(j, cpu_map) {
5918 struct sched_domain *sd;
5919
5920 if (sdd->sd) {
5921 sd = *per_cpu_ptr(sdd->sd, j);
5922 if (sd && (sd->flags & SD_OVERLAP))
5923 free_sched_groups(sd->groups, 0);
5924 kfree(*per_cpu_ptr(sdd->sd, j));
5925 }
5926
5927 if (sdd->sg)
5928 kfree(*per_cpu_ptr(sdd->sg, j));
5929 if (sdd->sgp)
5930 kfree(*per_cpu_ptr(sdd->sgp, j));
5931 }
5932 free_percpu(sdd->sd);
5933 sdd->sd = NULL;
5934 free_percpu(sdd->sg);
5935 sdd->sg = NULL;
5936 free_percpu(sdd->sgp);
5937 sdd->sgp = NULL;
5938 }
5939 }
5940
5941 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5942 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5943 struct sched_domain *child, int cpu)
5944 {
5945 struct sched_domain *sd = tl->init(tl, cpu);
5946 if (!sd)
5947 return child;
5948
5949 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5950 if (child) {
5951 sd->level = child->level + 1;
5952 sched_domain_level_max = max(sched_domain_level_max, sd->level);
5953 child->parent = sd;
5954 sd->child = child;
5955 }
5956 set_domain_attribute(sd, attr);
5957
5958 return sd;
5959 }
5960
5961 /*
5962 * Build sched domains for a given set of cpus and attach the sched domains
5963 * to the individual cpus
5964 */
5965 static int build_sched_domains(const struct cpumask *cpu_map,
5966 struct sched_domain_attr *attr)
5967 {
5968 enum s_alloc alloc_state;
5969 struct sched_domain *sd;
5970 struct s_data d;
5971 int i, ret = -ENOMEM;
5972
5973 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
5974 if (alloc_state != sa_rootdomain)
5975 goto error;
5976
5977 /* Set up domains for cpus specified by the cpu_map. */
5978 for_each_cpu(i, cpu_map) {
5979 struct sched_domain_topology_level *tl;
5980
5981 sd = NULL;
5982 for_each_sd_topology(tl) {
5983 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
5984 if (tl == sched_domain_topology)
5985 *per_cpu_ptr(d.sd, i) = sd;
5986 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
5987 sd->flags |= SD_OVERLAP;
5988 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
5989 break;
5990 }
5991 }
5992
5993 /* Build the groups for the domains */
5994 for_each_cpu(i, cpu_map) {
5995 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5996 sd->span_weight = cpumask_weight(sched_domain_span(sd));
5997 if (sd->flags & SD_OVERLAP) {
5998 if (build_overlap_sched_groups(sd, i))
5999 goto error;
6000 } else {
6001 if (build_sched_groups(sd, i))
6002 goto error;
6003 }
6004 }
6005 }
6006
6007 /* Calculate CPU power for physical packages and nodes */
6008 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6009 if (!cpumask_test_cpu(i, cpu_map))
6010 continue;
6011
6012 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6013 claim_allocations(i, sd);
6014 init_sched_groups_power(i, sd);
6015 }
6016 }
6017
6018 /* Attach the domains */
6019 rcu_read_lock();
6020 for_each_cpu(i, cpu_map) {
6021 sd = *per_cpu_ptr(d.sd, i);
6022 cpu_attach_domain(sd, d.rd, i);
6023 }
6024 rcu_read_unlock();
6025
6026 ret = 0;
6027 error:
6028 __free_domain_allocs(&d, alloc_state, cpu_map);
6029 return ret;
6030 }
6031
6032 static cpumask_var_t *doms_cur; /* current sched domains */
6033 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6034 static struct sched_domain_attr *dattr_cur;
6035 /* attribues of custom domains in 'doms_cur' */
6036
6037 /*
6038 * Special case: If a kmalloc of a doms_cur partition (array of
6039 * cpumask) fails, then fallback to a single sched domain,
6040 * as determined by the single cpumask fallback_doms.
6041 */
6042 static cpumask_var_t fallback_doms;
6043
6044 /*
6045 * arch_update_cpu_topology lets virtualized architectures update the
6046 * cpu core maps. It is supposed to return 1 if the topology changed
6047 * or 0 if it stayed the same.
6048 */
6049 int __attribute__((weak)) arch_update_cpu_topology(void)
6050 {
6051 return 0;
6052 }
6053
6054 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6055 {
6056 int i;
6057 cpumask_var_t *doms;
6058
6059 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6060 if (!doms)
6061 return NULL;
6062 for (i = 0; i < ndoms; i++) {
6063 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6064 free_sched_domains(doms, i);
6065 return NULL;
6066 }
6067 }
6068 return doms;
6069 }
6070
6071 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6072 {
6073 unsigned int i;
6074 for (i = 0; i < ndoms; i++)
6075 free_cpumask_var(doms[i]);
6076 kfree(doms);
6077 }
6078
6079 /*
6080 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6081 * For now this just excludes isolated cpus, but could be used to
6082 * exclude other special cases in the future.
6083 */
6084 static int init_sched_domains(const struct cpumask *cpu_map)
6085 {
6086 int err;
6087
6088 arch_update_cpu_topology();
6089 ndoms_cur = 1;
6090 doms_cur = alloc_sched_domains(ndoms_cur);
6091 if (!doms_cur)
6092 doms_cur = &fallback_doms;
6093 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6094 err = build_sched_domains(doms_cur[0], NULL);
6095 register_sched_domain_sysctl();
6096
6097 return err;
6098 }
6099
6100 /*
6101 * Detach sched domains from a group of cpus specified in cpu_map
6102 * These cpus will now be attached to the NULL domain
6103 */
6104 static void detach_destroy_domains(const struct cpumask *cpu_map)
6105 {
6106 int i;
6107
6108 rcu_read_lock();
6109 for_each_cpu(i, cpu_map)
6110 cpu_attach_domain(NULL, &def_root_domain, i);
6111 rcu_read_unlock();
6112 }
6113
6114 /* handle null as "default" */
6115 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6116 struct sched_domain_attr *new, int idx_new)
6117 {
6118 struct sched_domain_attr tmp;
6119
6120 /* fast path */
6121 if (!new && !cur)
6122 return 1;
6123
6124 tmp = SD_ATTR_INIT;
6125 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6126 new ? (new + idx_new) : &tmp,
6127 sizeof(struct sched_domain_attr));
6128 }
6129
6130 /*
6131 * Partition sched domains as specified by the 'ndoms_new'
6132 * cpumasks in the array doms_new[] of cpumasks. This compares
6133 * doms_new[] to the current sched domain partitioning, doms_cur[].
6134 * It destroys each deleted domain and builds each new domain.
6135 *
6136 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6137 * The masks don't intersect (don't overlap.) We should setup one
6138 * sched domain for each mask. CPUs not in any of the cpumasks will
6139 * not be load balanced. If the same cpumask appears both in the
6140 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6141 * it as it is.
6142 *
6143 * The passed in 'doms_new' should be allocated using
6144 * alloc_sched_domains. This routine takes ownership of it and will
6145 * free_sched_domains it when done with it. If the caller failed the
6146 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6147 * and partition_sched_domains() will fallback to the single partition
6148 * 'fallback_doms', it also forces the domains to be rebuilt.
6149 *
6150 * If doms_new == NULL it will be replaced with cpu_online_mask.
6151 * ndoms_new == 0 is a special case for destroying existing domains,
6152 * and it will not create the default domain.
6153 *
6154 * Call with hotplug lock held
6155 */
6156 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6157 struct sched_domain_attr *dattr_new)
6158 {
6159 int i, j, n;
6160 int new_topology;
6161
6162 mutex_lock(&sched_domains_mutex);
6163
6164 /* always unregister in case we don't destroy any domains */
6165 unregister_sched_domain_sysctl();
6166
6167 /* Let architecture update cpu core mappings. */
6168 new_topology = arch_update_cpu_topology();
6169
6170 n = doms_new ? ndoms_new : 0;
6171
6172 /* Destroy deleted domains */
6173 for (i = 0; i < ndoms_cur; i++) {
6174 for (j = 0; j < n && !new_topology; j++) {
6175 if (cpumask_equal(doms_cur[i], doms_new[j])
6176 && dattrs_equal(dattr_cur, i, dattr_new, j))
6177 goto match1;
6178 }
6179 /* no match - a current sched domain not in new doms_new[] */
6180 detach_destroy_domains(doms_cur[i]);
6181 match1:
6182 ;
6183 }
6184
6185 if (doms_new == NULL) {
6186 ndoms_cur = 0;
6187 doms_new = &fallback_doms;
6188 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6189 WARN_ON_ONCE(dattr_new);
6190 }
6191
6192 /* Build new domains */
6193 for (i = 0; i < ndoms_new; i++) {
6194 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6195 if (cpumask_equal(doms_new[i], doms_cur[j])
6196 && dattrs_equal(dattr_new, i, dattr_cur, j))
6197 goto match2;
6198 }
6199 /* no match - add a new doms_new */
6200 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6201 match2:
6202 ;
6203 }
6204
6205 /* Remember the new sched domains */
6206 if (doms_cur != &fallback_doms)
6207 free_sched_domains(doms_cur, ndoms_cur);
6208 kfree(dattr_cur); /* kfree(NULL) is safe */
6209 doms_cur = doms_new;
6210 dattr_cur = dattr_new;
6211 ndoms_cur = ndoms_new;
6212
6213 register_sched_domain_sysctl();
6214
6215 mutex_unlock(&sched_domains_mutex);
6216 }
6217
6218 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6219
6220 /*
6221 * Update cpusets according to cpu_active mask. If cpusets are
6222 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6223 * around partition_sched_domains().
6224 *
6225 * If we come here as part of a suspend/resume, don't touch cpusets because we
6226 * want to restore it back to its original state upon resume anyway.
6227 */
6228 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6229 void *hcpu)
6230 {
6231 switch (action) {
6232 case CPU_ONLINE_FROZEN:
6233 case CPU_DOWN_FAILED_FROZEN:
6234
6235 /*
6236 * num_cpus_frozen tracks how many CPUs are involved in suspend
6237 * resume sequence. As long as this is not the last online
6238 * operation in the resume sequence, just build a single sched
6239 * domain, ignoring cpusets.
6240 */
6241 num_cpus_frozen--;
6242 if (likely(num_cpus_frozen)) {
6243 partition_sched_domains(1, NULL, NULL);
6244 break;
6245 }
6246
6247 /*
6248 * This is the last CPU online operation. So fall through and
6249 * restore the original sched domains by considering the
6250 * cpuset configurations.
6251 */
6252
6253 case CPU_ONLINE:
6254 case CPU_DOWN_FAILED:
6255 cpuset_update_active_cpus(true);
6256 break;
6257 default:
6258 return NOTIFY_DONE;
6259 }
6260 return NOTIFY_OK;
6261 }
6262
6263 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6264 void *hcpu)
6265 {
6266 switch (action) {
6267 case CPU_DOWN_PREPARE:
6268 cpuset_update_active_cpus(false);
6269 break;
6270 case CPU_DOWN_PREPARE_FROZEN:
6271 num_cpus_frozen++;
6272 partition_sched_domains(1, NULL, NULL);
6273 break;
6274 default:
6275 return NOTIFY_DONE;
6276 }
6277 return NOTIFY_OK;
6278 }
6279
6280 void __init sched_init_smp(void)
6281 {
6282 cpumask_var_t non_isolated_cpus;
6283
6284 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6285 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6286
6287 sched_init_numa();
6288
6289 get_online_cpus();
6290 mutex_lock(&sched_domains_mutex);
6291 init_sched_domains(cpu_active_mask);
6292 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6293 if (cpumask_empty(non_isolated_cpus))
6294 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6295 mutex_unlock(&sched_domains_mutex);
6296 put_online_cpus();
6297
6298 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6299 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6300 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6301
6302 init_hrtick();
6303
6304 /* Move init over to a non-isolated CPU */
6305 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6306 BUG();
6307 sched_init_granularity();
6308 free_cpumask_var(non_isolated_cpus);
6309
6310 init_sched_rt_class();
6311 }
6312 #else
6313 void __init sched_init_smp(void)
6314 {
6315 sched_init_granularity();
6316 }
6317 #endif /* CONFIG_SMP */
6318
6319 const_debug unsigned int sysctl_timer_migration = 1;
6320
6321 int in_sched_functions(unsigned long addr)
6322 {
6323 return in_lock_functions(addr) ||
6324 (addr >= (unsigned long)__sched_text_start
6325 && addr < (unsigned long)__sched_text_end);
6326 }
6327
6328 #ifdef CONFIG_CGROUP_SCHED
6329 /*
6330 * Default task group.
6331 * Every task in system belongs to this group at bootup.
6332 */
6333 struct task_group root_task_group;
6334 LIST_HEAD(task_groups);
6335 #endif
6336
6337 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6338
6339 void __init sched_init(void)
6340 {
6341 int i, j;
6342 unsigned long alloc_size = 0, ptr;
6343
6344 #ifdef CONFIG_FAIR_GROUP_SCHED
6345 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6346 #endif
6347 #ifdef CONFIG_RT_GROUP_SCHED
6348 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6349 #endif
6350 #ifdef CONFIG_CPUMASK_OFFSTACK
6351 alloc_size += num_possible_cpus() * cpumask_size();
6352 #endif
6353 if (alloc_size) {
6354 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6355
6356 #ifdef CONFIG_FAIR_GROUP_SCHED
6357 root_task_group.se = (struct sched_entity **)ptr;
6358 ptr += nr_cpu_ids * sizeof(void **);
6359
6360 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6361 ptr += nr_cpu_ids * sizeof(void **);
6362
6363 #endif /* CONFIG_FAIR_GROUP_SCHED */
6364 #ifdef CONFIG_RT_GROUP_SCHED
6365 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6366 ptr += nr_cpu_ids * sizeof(void **);
6367
6368 root_task_group.rt_rq = (struct rt_rq **)ptr;
6369 ptr += nr_cpu_ids * sizeof(void **);
6370
6371 #endif /* CONFIG_RT_GROUP_SCHED */
6372 #ifdef CONFIG_CPUMASK_OFFSTACK
6373 for_each_possible_cpu(i) {
6374 per_cpu(load_balance_mask, i) = (void *)ptr;
6375 ptr += cpumask_size();
6376 }
6377 #endif /* CONFIG_CPUMASK_OFFSTACK */
6378 }
6379
6380 #ifdef CONFIG_SMP
6381 init_defrootdomain();
6382 #endif
6383
6384 init_rt_bandwidth(&def_rt_bandwidth,
6385 global_rt_period(), global_rt_runtime());
6386
6387 #ifdef CONFIG_RT_GROUP_SCHED
6388 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6389 global_rt_period(), global_rt_runtime());
6390 #endif /* CONFIG_RT_GROUP_SCHED */
6391
6392 #ifdef CONFIG_CGROUP_SCHED
6393 list_add(&root_task_group.list, &task_groups);
6394 INIT_LIST_HEAD(&root_task_group.children);
6395 INIT_LIST_HEAD(&root_task_group.siblings);
6396 autogroup_init(&init_task);
6397
6398 #endif /* CONFIG_CGROUP_SCHED */
6399
6400 for_each_possible_cpu(i) {
6401 struct rq *rq;
6402
6403 rq = cpu_rq(i);
6404 raw_spin_lock_init(&rq->lock);
6405 rq->nr_running = 0;
6406 rq->calc_load_active = 0;
6407 rq->calc_load_update = jiffies + LOAD_FREQ;
6408 init_cfs_rq(&rq->cfs);
6409 init_rt_rq(&rq->rt, rq);
6410 #ifdef CONFIG_FAIR_GROUP_SCHED
6411 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6412 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6413 /*
6414 * How much cpu bandwidth does root_task_group get?
6415 *
6416 * In case of task-groups formed thr' the cgroup filesystem, it
6417 * gets 100% of the cpu resources in the system. This overall
6418 * system cpu resource is divided among the tasks of
6419 * root_task_group and its child task-groups in a fair manner,
6420 * based on each entity's (task or task-group's) weight
6421 * (se->load.weight).
6422 *
6423 * In other words, if root_task_group has 10 tasks of weight
6424 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6425 * then A0's share of the cpu resource is:
6426 *
6427 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6428 *
6429 * We achieve this by letting root_task_group's tasks sit
6430 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6431 */
6432 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6433 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6434 #endif /* CONFIG_FAIR_GROUP_SCHED */
6435
6436 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6437 #ifdef CONFIG_RT_GROUP_SCHED
6438 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6439 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6440 #endif
6441
6442 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6443 rq->cpu_load[j] = 0;
6444
6445 rq->last_load_update_tick = jiffies;
6446
6447 #ifdef CONFIG_SMP
6448 rq->sd = NULL;
6449 rq->rd = NULL;
6450 rq->cpu_power = SCHED_POWER_SCALE;
6451 rq->post_schedule = 0;
6452 rq->active_balance = 0;
6453 rq->next_balance = jiffies;
6454 rq->push_cpu = 0;
6455 rq->cpu = i;
6456 rq->online = 0;
6457 rq->idle_stamp = 0;
6458 rq->avg_idle = 2*sysctl_sched_migration_cost;
6459
6460 INIT_LIST_HEAD(&rq->cfs_tasks);
6461
6462 rq_attach_root(rq, &def_root_domain);
6463 #ifdef CONFIG_NO_HZ_COMMON
6464 rq->nohz_flags = 0;
6465 #endif
6466 #ifdef CONFIG_NO_HZ_FULL
6467 rq->last_sched_tick = 0;
6468 #endif
6469 #endif
6470 init_rq_hrtick(rq);
6471 atomic_set(&rq->nr_iowait, 0);
6472 }
6473
6474 set_load_weight(&init_task);
6475
6476 #ifdef CONFIG_PREEMPT_NOTIFIERS
6477 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6478 #endif
6479
6480 #ifdef CONFIG_RT_MUTEXES
6481 plist_head_init(&init_task.pi_waiters);
6482 #endif
6483
6484 /*
6485 * The boot idle thread does lazy MMU switching as well:
6486 */
6487 atomic_inc(&init_mm.mm_count);
6488 enter_lazy_tlb(&init_mm, current);
6489
6490 /*
6491 * Make us the idle thread. Technically, schedule() should not be
6492 * called from this thread, however somewhere below it might be,
6493 * but because we are the idle thread, we just pick up running again
6494 * when this runqueue becomes "idle".
6495 */
6496 init_idle(current, smp_processor_id());
6497
6498 calc_load_update = jiffies + LOAD_FREQ;
6499
6500 /*
6501 * During early bootup we pretend to be a normal task:
6502 */
6503 current->sched_class = &fair_sched_class;
6504
6505 #ifdef CONFIG_SMP
6506 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6507 /* May be allocated at isolcpus cmdline parse time */
6508 if (cpu_isolated_map == NULL)
6509 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6510 idle_thread_set_boot_cpu();
6511 #endif
6512 init_sched_fair_class();
6513
6514 scheduler_running = 1;
6515 }
6516
6517 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6518 static inline int preempt_count_equals(int preempt_offset)
6519 {
6520 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6521
6522 return (nested == preempt_offset);
6523 }
6524
6525 void __might_sleep(const char *file, int line, int preempt_offset)
6526 {
6527 static unsigned long prev_jiffy; /* ratelimiting */
6528
6529 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6530 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6531 system_state != SYSTEM_RUNNING || oops_in_progress)
6532 return;
6533 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6534 return;
6535 prev_jiffy = jiffies;
6536
6537 printk(KERN_ERR
6538 "BUG: sleeping function called from invalid context at %s:%d\n",
6539 file, line);
6540 printk(KERN_ERR
6541 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6542 in_atomic(), irqs_disabled(),
6543 current->pid, current->comm);
6544
6545 debug_show_held_locks(current);
6546 if (irqs_disabled())
6547 print_irqtrace_events(current);
6548 dump_stack();
6549 }
6550 EXPORT_SYMBOL(__might_sleep);
6551 #endif
6552
6553 #ifdef CONFIG_MAGIC_SYSRQ
6554 static void normalize_task(struct rq *rq, struct task_struct *p)
6555 {
6556 const struct sched_class *prev_class = p->sched_class;
6557 int old_prio = p->prio;
6558 int on_rq;
6559
6560 on_rq = p->on_rq;
6561 if (on_rq)
6562 dequeue_task(rq, p, 0);
6563 __setscheduler(rq, p, SCHED_NORMAL, 0);
6564 if (on_rq) {
6565 enqueue_task(rq, p, 0);
6566 resched_task(rq->curr);
6567 }
6568
6569 check_class_changed(rq, p, prev_class, old_prio);
6570 }
6571
6572 void normalize_rt_tasks(void)
6573 {
6574 struct task_struct *g, *p;
6575 unsigned long flags;
6576 struct rq *rq;
6577
6578 read_lock_irqsave(&tasklist_lock, flags);
6579 do_each_thread(g, p) {
6580 /*
6581 * Only normalize user tasks:
6582 */
6583 if (!p->mm)
6584 continue;
6585
6586 p->se.exec_start = 0;
6587 #ifdef CONFIG_SCHEDSTATS
6588 p->se.statistics.wait_start = 0;
6589 p->se.statistics.sleep_start = 0;
6590 p->se.statistics.block_start = 0;
6591 #endif
6592
6593 if (!rt_task(p)) {
6594 /*
6595 * Renice negative nice level userspace
6596 * tasks back to 0:
6597 */
6598 if (TASK_NICE(p) < 0 && p->mm)
6599 set_user_nice(p, 0);
6600 continue;
6601 }
6602
6603 raw_spin_lock(&p->pi_lock);
6604 rq = __task_rq_lock(p);
6605
6606 normalize_task(rq, p);
6607
6608 __task_rq_unlock(rq);
6609 raw_spin_unlock(&p->pi_lock);
6610 } while_each_thread(g, p);
6611
6612 read_unlock_irqrestore(&tasklist_lock, flags);
6613 }
6614
6615 #endif /* CONFIG_MAGIC_SYSRQ */
6616
6617 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6618 /*
6619 * These functions are only useful for the IA64 MCA handling, or kdb.
6620 *
6621 * They can only be called when the whole system has been
6622 * stopped - every CPU needs to be quiescent, and no scheduling
6623 * activity can take place. Using them for anything else would
6624 * be a serious bug, and as a result, they aren't even visible
6625 * under any other configuration.
6626 */
6627
6628 /**
6629 * curr_task - return the current task for a given cpu.
6630 * @cpu: the processor in question.
6631 *
6632 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6633 */
6634 struct task_struct *curr_task(int cpu)
6635 {
6636 return cpu_curr(cpu);
6637 }
6638
6639 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6640
6641 #ifdef CONFIG_IA64
6642 /**
6643 * set_curr_task - set the current task for a given cpu.
6644 * @cpu: the processor in question.
6645 * @p: the task pointer to set.
6646 *
6647 * Description: This function must only be used when non-maskable interrupts
6648 * are serviced on a separate stack. It allows the architecture to switch the
6649 * notion of the current task on a cpu in a non-blocking manner. This function
6650 * must be called with all CPU's synchronized, and interrupts disabled, the
6651 * and caller must save the original value of the current task (see
6652 * curr_task() above) and restore that value before reenabling interrupts and
6653 * re-starting the system.
6654 *
6655 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6656 */
6657 void set_curr_task(int cpu, struct task_struct *p)
6658 {
6659 cpu_curr(cpu) = p;
6660 }
6661
6662 #endif
6663
6664 #ifdef CONFIG_CGROUP_SCHED
6665 /* task_group_lock serializes the addition/removal of task groups */
6666 static DEFINE_SPINLOCK(task_group_lock);
6667
6668 static void free_sched_group(struct task_group *tg)
6669 {
6670 free_fair_sched_group(tg);
6671 free_rt_sched_group(tg);
6672 autogroup_free(tg);
6673 kfree(tg);
6674 }
6675
6676 /* allocate runqueue etc for a new task group */
6677 struct task_group *sched_create_group(struct task_group *parent)
6678 {
6679 struct task_group *tg;
6680
6681 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6682 if (!tg)
6683 return ERR_PTR(-ENOMEM);
6684
6685 if (!alloc_fair_sched_group(tg, parent))
6686 goto err;
6687
6688 if (!alloc_rt_sched_group(tg, parent))
6689 goto err;
6690
6691 return tg;
6692
6693 err:
6694 free_sched_group(tg);
6695 return ERR_PTR(-ENOMEM);
6696 }
6697
6698 void sched_online_group(struct task_group *tg, struct task_group *parent)
6699 {
6700 unsigned long flags;
6701
6702 spin_lock_irqsave(&task_group_lock, flags);
6703 list_add_rcu(&tg->list, &task_groups);
6704
6705 WARN_ON(!parent); /* root should already exist */
6706
6707 tg->parent = parent;
6708 INIT_LIST_HEAD(&tg->children);
6709 list_add_rcu(&tg->siblings, &parent->children);
6710 spin_unlock_irqrestore(&task_group_lock, flags);
6711 }
6712
6713 /* rcu callback to free various structures associated with a task group */
6714 static void free_sched_group_rcu(struct rcu_head *rhp)
6715 {
6716 /* now it should be safe to free those cfs_rqs */
6717 free_sched_group(container_of(rhp, struct task_group, rcu));
6718 }
6719
6720 /* Destroy runqueue etc associated with a task group */
6721 void sched_destroy_group(struct task_group *tg)
6722 {
6723 /* wait for possible concurrent references to cfs_rqs complete */
6724 call_rcu(&tg->rcu, free_sched_group_rcu);
6725 }
6726
6727 void sched_offline_group(struct task_group *tg)
6728 {
6729 unsigned long flags;
6730 int i;
6731
6732 /* end participation in shares distribution */
6733 for_each_possible_cpu(i)
6734 unregister_fair_sched_group(tg, i);
6735
6736 spin_lock_irqsave(&task_group_lock, flags);
6737 list_del_rcu(&tg->list);
6738 list_del_rcu(&tg->siblings);
6739 spin_unlock_irqrestore(&task_group_lock, flags);
6740 }
6741
6742 /* change task's runqueue when it moves between groups.
6743 * The caller of this function should have put the task in its new group
6744 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6745 * reflect its new group.
6746 */
6747 void sched_move_task(struct task_struct *tsk)
6748 {
6749 struct task_group *tg;
6750 int on_rq, running;
6751 unsigned long flags;
6752 struct rq *rq;
6753
6754 rq = task_rq_lock(tsk, &flags);
6755
6756 running = task_current(rq, tsk);
6757 on_rq = tsk->on_rq;
6758
6759 if (on_rq)
6760 dequeue_task(rq, tsk, 0);
6761 if (unlikely(running))
6762 tsk->sched_class->put_prev_task(rq, tsk);
6763
6764 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
6765 lockdep_is_held(&tsk->sighand->siglock)),
6766 struct task_group, css);
6767 tg = autogroup_task_group(tsk, tg);
6768 tsk->sched_task_group = tg;
6769
6770 #ifdef CONFIG_FAIR_GROUP_SCHED
6771 if (tsk->sched_class->task_move_group)
6772 tsk->sched_class->task_move_group(tsk, on_rq);
6773 else
6774 #endif
6775 set_task_rq(tsk, task_cpu(tsk));
6776
6777 if (unlikely(running))
6778 tsk->sched_class->set_curr_task(rq);
6779 if (on_rq)
6780 enqueue_task(rq, tsk, 0);
6781
6782 task_rq_unlock(rq, tsk, &flags);
6783 }
6784 #endif /* CONFIG_CGROUP_SCHED */
6785
6786 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6787 static unsigned long to_ratio(u64 period, u64 runtime)
6788 {
6789 if (runtime == RUNTIME_INF)
6790 return 1ULL << 20;
6791
6792 return div64_u64(runtime << 20, period);
6793 }
6794 #endif
6795
6796 #ifdef CONFIG_RT_GROUP_SCHED
6797 /*
6798 * Ensure that the real time constraints are schedulable.
6799 */
6800 static DEFINE_MUTEX(rt_constraints_mutex);
6801
6802 /* Must be called with tasklist_lock held */
6803 static inline int tg_has_rt_tasks(struct task_group *tg)
6804 {
6805 struct task_struct *g, *p;
6806
6807 do_each_thread(g, p) {
6808 if (rt_task(p) && task_rq(p)->rt.tg == tg)
6809 return 1;
6810 } while_each_thread(g, p);
6811
6812 return 0;
6813 }
6814
6815 struct rt_schedulable_data {
6816 struct task_group *tg;
6817 u64 rt_period;
6818 u64 rt_runtime;
6819 };
6820
6821 static int tg_rt_schedulable(struct task_group *tg, void *data)
6822 {
6823 struct rt_schedulable_data *d = data;
6824 struct task_group *child;
6825 unsigned long total, sum = 0;
6826 u64 period, runtime;
6827
6828 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6829 runtime = tg->rt_bandwidth.rt_runtime;
6830
6831 if (tg == d->tg) {
6832 period = d->rt_period;
6833 runtime = d->rt_runtime;
6834 }
6835
6836 /*
6837 * Cannot have more runtime than the period.
6838 */
6839 if (runtime > period && runtime != RUNTIME_INF)
6840 return -EINVAL;
6841
6842 /*
6843 * Ensure we don't starve existing RT tasks.
6844 */
6845 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6846 return -EBUSY;
6847
6848 total = to_ratio(period, runtime);
6849
6850 /*
6851 * Nobody can have more than the global setting allows.
6852 */
6853 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6854 return -EINVAL;
6855
6856 /*
6857 * The sum of our children's runtime should not exceed our own.
6858 */
6859 list_for_each_entry_rcu(child, &tg->children, siblings) {
6860 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6861 runtime = child->rt_bandwidth.rt_runtime;
6862
6863 if (child == d->tg) {
6864 period = d->rt_period;
6865 runtime = d->rt_runtime;
6866 }
6867
6868 sum += to_ratio(period, runtime);
6869 }
6870
6871 if (sum > total)
6872 return -EINVAL;
6873
6874 return 0;
6875 }
6876
6877 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6878 {
6879 int ret;
6880
6881 struct rt_schedulable_data data = {
6882 .tg = tg,
6883 .rt_period = period,
6884 .rt_runtime = runtime,
6885 };
6886
6887 rcu_read_lock();
6888 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6889 rcu_read_unlock();
6890
6891 return ret;
6892 }
6893
6894 static int tg_set_rt_bandwidth(struct task_group *tg,
6895 u64 rt_period, u64 rt_runtime)
6896 {
6897 int i, err = 0;
6898
6899 mutex_lock(&rt_constraints_mutex);
6900 read_lock(&tasklist_lock);
6901 err = __rt_schedulable(tg, rt_period, rt_runtime);
6902 if (err)
6903 goto unlock;
6904
6905 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6906 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6907 tg->rt_bandwidth.rt_runtime = rt_runtime;
6908
6909 for_each_possible_cpu(i) {
6910 struct rt_rq *rt_rq = tg->rt_rq[i];
6911
6912 raw_spin_lock(&rt_rq->rt_runtime_lock);
6913 rt_rq->rt_runtime = rt_runtime;
6914 raw_spin_unlock(&rt_rq->rt_runtime_lock);
6915 }
6916 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6917 unlock:
6918 read_unlock(&tasklist_lock);
6919 mutex_unlock(&rt_constraints_mutex);
6920
6921 return err;
6922 }
6923
6924 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6925 {
6926 u64 rt_runtime, rt_period;
6927
6928 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6929 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6930 if (rt_runtime_us < 0)
6931 rt_runtime = RUNTIME_INF;
6932
6933 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6934 }
6935
6936 static long sched_group_rt_runtime(struct task_group *tg)
6937 {
6938 u64 rt_runtime_us;
6939
6940 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6941 return -1;
6942
6943 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6944 do_div(rt_runtime_us, NSEC_PER_USEC);
6945 return rt_runtime_us;
6946 }
6947
6948 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6949 {
6950 u64 rt_runtime, rt_period;
6951
6952 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6953 rt_runtime = tg->rt_bandwidth.rt_runtime;
6954
6955 if (rt_period == 0)
6956 return -EINVAL;
6957
6958 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6959 }
6960
6961 static long sched_group_rt_period(struct task_group *tg)
6962 {
6963 u64 rt_period_us;
6964
6965 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6966 do_div(rt_period_us, NSEC_PER_USEC);
6967 return rt_period_us;
6968 }
6969
6970 static int sched_rt_global_constraints(void)
6971 {
6972 u64 runtime, period;
6973 int ret = 0;
6974
6975 if (sysctl_sched_rt_period <= 0)
6976 return -EINVAL;
6977
6978 runtime = global_rt_runtime();
6979 period = global_rt_period();
6980
6981 /*
6982 * Sanity check on the sysctl variables.
6983 */
6984 if (runtime > period && runtime != RUNTIME_INF)
6985 return -EINVAL;
6986
6987 mutex_lock(&rt_constraints_mutex);
6988 read_lock(&tasklist_lock);
6989 ret = __rt_schedulable(NULL, 0, 0);
6990 read_unlock(&tasklist_lock);
6991 mutex_unlock(&rt_constraints_mutex);
6992
6993 return ret;
6994 }
6995
6996 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6997 {
6998 /* Don't accept realtime tasks when there is no way for them to run */
6999 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7000 return 0;
7001
7002 return 1;
7003 }
7004
7005 #else /* !CONFIG_RT_GROUP_SCHED */
7006 static int sched_rt_global_constraints(void)
7007 {
7008 unsigned long flags;
7009 int i;
7010
7011 if (sysctl_sched_rt_period <= 0)
7012 return -EINVAL;
7013
7014 /*
7015 * There's always some RT tasks in the root group
7016 * -- migration, kstopmachine etc..
7017 */
7018 if (sysctl_sched_rt_runtime == 0)
7019 return -EBUSY;
7020
7021 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7022 for_each_possible_cpu(i) {
7023 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7024
7025 raw_spin_lock(&rt_rq->rt_runtime_lock);
7026 rt_rq->rt_runtime = global_rt_runtime();
7027 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7028 }
7029 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7030
7031 return 0;
7032 }
7033 #endif /* CONFIG_RT_GROUP_SCHED */
7034
7035 int sched_rr_handler(struct ctl_table *table, int write,
7036 void __user *buffer, size_t *lenp,
7037 loff_t *ppos)
7038 {
7039 int ret;
7040 static DEFINE_MUTEX(mutex);
7041
7042 mutex_lock(&mutex);
7043 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7044 /* make sure that internally we keep jiffies */
7045 /* also, writing zero resets timeslice to default */
7046 if (!ret && write) {
7047 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7048 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7049 }
7050 mutex_unlock(&mutex);
7051 return ret;
7052 }
7053
7054 int sched_rt_handler(struct ctl_table *table, int write,
7055 void __user *buffer, size_t *lenp,
7056 loff_t *ppos)
7057 {
7058 int ret;
7059 int old_period, old_runtime;
7060 static DEFINE_MUTEX(mutex);
7061
7062 mutex_lock(&mutex);
7063 old_period = sysctl_sched_rt_period;
7064 old_runtime = sysctl_sched_rt_runtime;
7065
7066 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7067
7068 if (!ret && write) {
7069 ret = sched_rt_global_constraints();
7070 if (ret) {
7071 sysctl_sched_rt_period = old_period;
7072 sysctl_sched_rt_runtime = old_runtime;
7073 } else {
7074 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7075 def_rt_bandwidth.rt_period =
7076 ns_to_ktime(global_rt_period());
7077 }
7078 }
7079 mutex_unlock(&mutex);
7080
7081 return ret;
7082 }
7083
7084 #ifdef CONFIG_CGROUP_SCHED
7085
7086 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7087 {
7088 return css ? container_of(css, struct task_group, css) : NULL;
7089 }
7090
7091 /* return corresponding task_group object of a cgroup */
7092 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7093 {
7094 return css_tg(cgroup_css(cgrp, cpu_cgroup_subsys_id));
7095 }
7096
7097 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7098 {
7099 struct task_group *tg, *parent;
7100
7101 if (!cgrp->parent) {
7102 /* This is early initialization for the top cgroup */
7103 return &root_task_group.css;
7104 }
7105
7106 parent = cgroup_tg(cgrp->parent);
7107 tg = sched_create_group(parent);
7108 if (IS_ERR(tg))
7109 return ERR_PTR(-ENOMEM);
7110
7111 return &tg->css;
7112 }
7113
7114 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7115 {
7116 struct task_group *tg = cgroup_tg(cgrp);
7117 struct task_group *parent = css_tg(css_parent(&tg->css));
7118
7119 if (parent)
7120 sched_online_group(tg, parent);
7121 return 0;
7122 }
7123
7124 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7125 {
7126 struct task_group *tg = cgroup_tg(cgrp);
7127
7128 sched_destroy_group(tg);
7129 }
7130
7131 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7132 {
7133 struct task_group *tg = cgroup_tg(cgrp);
7134
7135 sched_offline_group(tg);
7136 }
7137
7138 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7139 struct cgroup_taskset *tset)
7140 {
7141 struct task_struct *task;
7142
7143 cgroup_taskset_for_each(task, cgrp, tset) {
7144 #ifdef CONFIG_RT_GROUP_SCHED
7145 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7146 return -EINVAL;
7147 #else
7148 /* We don't support RT-tasks being in separate groups */
7149 if (task->sched_class != &fair_sched_class)
7150 return -EINVAL;
7151 #endif
7152 }
7153 return 0;
7154 }
7155
7156 static void cpu_cgroup_attach(struct cgroup *cgrp,
7157 struct cgroup_taskset *tset)
7158 {
7159 struct task_struct *task;
7160
7161 cgroup_taskset_for_each(task, cgrp, tset)
7162 sched_move_task(task);
7163 }
7164
7165 static void
7166 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7167 struct task_struct *task)
7168 {
7169 /*
7170 * cgroup_exit() is called in the copy_process() failure path.
7171 * Ignore this case since the task hasn't ran yet, this avoids
7172 * trying to poke a half freed task state from generic code.
7173 */
7174 if (!(task->flags & PF_EXITING))
7175 return;
7176
7177 sched_move_task(task);
7178 }
7179
7180 #ifdef CONFIG_FAIR_GROUP_SCHED
7181 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7182 u64 shareval)
7183 {
7184 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7185 }
7186
7187 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7188 {
7189 struct task_group *tg = cgroup_tg(cgrp);
7190
7191 return (u64) scale_load_down(tg->shares);
7192 }
7193
7194 #ifdef CONFIG_CFS_BANDWIDTH
7195 static DEFINE_MUTEX(cfs_constraints_mutex);
7196
7197 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7198 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7199
7200 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7201
7202 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7203 {
7204 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7205 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7206
7207 if (tg == &root_task_group)
7208 return -EINVAL;
7209
7210 /*
7211 * Ensure we have at some amount of bandwidth every period. This is
7212 * to prevent reaching a state of large arrears when throttled via
7213 * entity_tick() resulting in prolonged exit starvation.
7214 */
7215 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7216 return -EINVAL;
7217
7218 /*
7219 * Likewise, bound things on the otherside by preventing insane quota
7220 * periods. This also allows us to normalize in computing quota
7221 * feasibility.
7222 */
7223 if (period > max_cfs_quota_period)
7224 return -EINVAL;
7225
7226 mutex_lock(&cfs_constraints_mutex);
7227 ret = __cfs_schedulable(tg, period, quota);
7228 if (ret)
7229 goto out_unlock;
7230
7231 runtime_enabled = quota != RUNTIME_INF;
7232 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7233 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7234 raw_spin_lock_irq(&cfs_b->lock);
7235 cfs_b->period = ns_to_ktime(period);
7236 cfs_b->quota = quota;
7237
7238 __refill_cfs_bandwidth_runtime(cfs_b);
7239 /* restart the period timer (if active) to handle new period expiry */
7240 if (runtime_enabled && cfs_b->timer_active) {
7241 /* force a reprogram */
7242 cfs_b->timer_active = 0;
7243 __start_cfs_bandwidth(cfs_b);
7244 }
7245 raw_spin_unlock_irq(&cfs_b->lock);
7246
7247 for_each_possible_cpu(i) {
7248 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7249 struct rq *rq = cfs_rq->rq;
7250
7251 raw_spin_lock_irq(&rq->lock);
7252 cfs_rq->runtime_enabled = runtime_enabled;
7253 cfs_rq->runtime_remaining = 0;
7254
7255 if (cfs_rq->throttled)
7256 unthrottle_cfs_rq(cfs_rq);
7257 raw_spin_unlock_irq(&rq->lock);
7258 }
7259 out_unlock:
7260 mutex_unlock(&cfs_constraints_mutex);
7261
7262 return ret;
7263 }
7264
7265 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7266 {
7267 u64 quota, period;
7268
7269 period = ktime_to_ns(tg->cfs_bandwidth.period);
7270 if (cfs_quota_us < 0)
7271 quota = RUNTIME_INF;
7272 else
7273 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7274
7275 return tg_set_cfs_bandwidth(tg, period, quota);
7276 }
7277
7278 long tg_get_cfs_quota(struct task_group *tg)
7279 {
7280 u64 quota_us;
7281
7282 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7283 return -1;
7284
7285 quota_us = tg->cfs_bandwidth.quota;
7286 do_div(quota_us, NSEC_PER_USEC);
7287
7288 return quota_us;
7289 }
7290
7291 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7292 {
7293 u64 quota, period;
7294
7295 period = (u64)cfs_period_us * NSEC_PER_USEC;
7296 quota = tg->cfs_bandwidth.quota;
7297
7298 return tg_set_cfs_bandwidth(tg, period, quota);
7299 }
7300
7301 long tg_get_cfs_period(struct task_group *tg)
7302 {
7303 u64 cfs_period_us;
7304
7305 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7306 do_div(cfs_period_us, NSEC_PER_USEC);
7307
7308 return cfs_period_us;
7309 }
7310
7311 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7312 {
7313 return tg_get_cfs_quota(cgroup_tg(cgrp));
7314 }
7315
7316 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7317 s64 cfs_quota_us)
7318 {
7319 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7320 }
7321
7322 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7323 {
7324 return tg_get_cfs_period(cgroup_tg(cgrp));
7325 }
7326
7327 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7328 u64 cfs_period_us)
7329 {
7330 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7331 }
7332
7333 struct cfs_schedulable_data {
7334 struct task_group *tg;
7335 u64 period, quota;
7336 };
7337
7338 /*
7339 * normalize group quota/period to be quota/max_period
7340 * note: units are usecs
7341 */
7342 static u64 normalize_cfs_quota(struct task_group *tg,
7343 struct cfs_schedulable_data *d)
7344 {
7345 u64 quota, period;
7346
7347 if (tg == d->tg) {
7348 period = d->period;
7349 quota = d->quota;
7350 } else {
7351 period = tg_get_cfs_period(tg);
7352 quota = tg_get_cfs_quota(tg);
7353 }
7354
7355 /* note: these should typically be equivalent */
7356 if (quota == RUNTIME_INF || quota == -1)
7357 return RUNTIME_INF;
7358
7359 return to_ratio(period, quota);
7360 }
7361
7362 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7363 {
7364 struct cfs_schedulable_data *d = data;
7365 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7366 s64 quota = 0, parent_quota = -1;
7367
7368 if (!tg->parent) {
7369 quota = RUNTIME_INF;
7370 } else {
7371 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7372
7373 quota = normalize_cfs_quota(tg, d);
7374 parent_quota = parent_b->hierarchal_quota;
7375
7376 /*
7377 * ensure max(child_quota) <= parent_quota, inherit when no
7378 * limit is set
7379 */
7380 if (quota == RUNTIME_INF)
7381 quota = parent_quota;
7382 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7383 return -EINVAL;
7384 }
7385 cfs_b->hierarchal_quota = quota;
7386
7387 return 0;
7388 }
7389
7390 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7391 {
7392 int ret;
7393 struct cfs_schedulable_data data = {
7394 .tg = tg,
7395 .period = period,
7396 .quota = quota,
7397 };
7398
7399 if (quota != RUNTIME_INF) {
7400 do_div(data.period, NSEC_PER_USEC);
7401 do_div(data.quota, NSEC_PER_USEC);
7402 }
7403
7404 rcu_read_lock();
7405 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7406 rcu_read_unlock();
7407
7408 return ret;
7409 }
7410
7411 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7412 struct cgroup_map_cb *cb)
7413 {
7414 struct task_group *tg = cgroup_tg(cgrp);
7415 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7416
7417 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7418 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7419 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7420
7421 return 0;
7422 }
7423 #endif /* CONFIG_CFS_BANDWIDTH */
7424 #endif /* CONFIG_FAIR_GROUP_SCHED */
7425
7426 #ifdef CONFIG_RT_GROUP_SCHED
7427 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7428 s64 val)
7429 {
7430 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7431 }
7432
7433 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7434 {
7435 return sched_group_rt_runtime(cgroup_tg(cgrp));
7436 }
7437
7438 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7439 u64 rt_period_us)
7440 {
7441 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7442 }
7443
7444 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7445 {
7446 return sched_group_rt_period(cgroup_tg(cgrp));
7447 }
7448 #endif /* CONFIG_RT_GROUP_SCHED */
7449
7450 static struct cftype cpu_files[] = {
7451 #ifdef CONFIG_FAIR_GROUP_SCHED
7452 {
7453 .name = "shares",
7454 .read_u64 = cpu_shares_read_u64,
7455 .write_u64 = cpu_shares_write_u64,
7456 },
7457 #endif
7458 #ifdef CONFIG_CFS_BANDWIDTH
7459 {
7460 .name = "cfs_quota_us",
7461 .read_s64 = cpu_cfs_quota_read_s64,
7462 .write_s64 = cpu_cfs_quota_write_s64,
7463 },
7464 {
7465 .name = "cfs_period_us",
7466 .read_u64 = cpu_cfs_period_read_u64,
7467 .write_u64 = cpu_cfs_period_write_u64,
7468 },
7469 {
7470 .name = "stat",
7471 .read_map = cpu_stats_show,
7472 },
7473 #endif
7474 #ifdef CONFIG_RT_GROUP_SCHED
7475 {
7476 .name = "rt_runtime_us",
7477 .read_s64 = cpu_rt_runtime_read,
7478 .write_s64 = cpu_rt_runtime_write,
7479 },
7480 {
7481 .name = "rt_period_us",
7482 .read_u64 = cpu_rt_period_read_uint,
7483 .write_u64 = cpu_rt_period_write_uint,
7484 },
7485 #endif
7486 { } /* terminate */
7487 };
7488
7489 struct cgroup_subsys cpu_cgroup_subsys = {
7490 .name = "cpu",
7491 .css_alloc = cpu_cgroup_css_alloc,
7492 .css_free = cpu_cgroup_css_free,
7493 .css_online = cpu_cgroup_css_online,
7494 .css_offline = cpu_cgroup_css_offline,
7495 .can_attach = cpu_cgroup_can_attach,
7496 .attach = cpu_cgroup_attach,
7497 .exit = cpu_cgroup_exit,
7498 .subsys_id = cpu_cgroup_subsys_id,
7499 .base_cftypes = cpu_files,
7500 .early_init = 1,
7501 };
7502
7503 #endif /* CONFIG_CGROUP_SCHED */
7504
7505 void dump_cpu_task(int cpu)
7506 {
7507 pr_info("Task dump for CPU %d:\n", cpu);
7508 sched_show_task(cpu_curr(cpu));
7509 }
This page took 0.478197 seconds and 5 git commands to generate.