4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
76 #include <asm/switch_to.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
85 #include "../workqueue_sched.h"
86 #include "../smpboot.h"
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/sched.h>
91 void start_bandwidth_timer(struct hrtimer
*period_timer
, ktime_t period
)
94 ktime_t soft
, hard
, now
;
97 if (hrtimer_active(period_timer
))
100 now
= hrtimer_cb_get_time(period_timer
);
101 hrtimer_forward(period_timer
, now
, period
);
103 soft
= hrtimer_get_softexpires(period_timer
);
104 hard
= hrtimer_get_expires(period_timer
);
105 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
106 __hrtimer_start_range_ns(period_timer
, soft
, delta
,
107 HRTIMER_MODE_ABS_PINNED
, 0);
111 DEFINE_MUTEX(sched_domains_mutex
);
112 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
114 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
116 void update_rq_clock(struct rq
*rq
)
120 if (rq
->skip_clock_update
> 0)
123 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
125 update_rq_clock_task(rq
, delta
);
129 * Debugging: various feature bits
132 #define SCHED_FEAT(name, enabled) \
133 (1UL << __SCHED_FEAT_##name) * enabled |
135 const_debug
unsigned int sysctl_sched_features
=
136 #include "features.h"
141 #ifdef CONFIG_SCHED_DEBUG
142 #define SCHED_FEAT(name, enabled) \
145 static const char * const sched_feat_names
[] = {
146 #include "features.h"
151 static int sched_feat_show(struct seq_file
*m
, void *v
)
155 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
156 if (!(sysctl_sched_features
& (1UL << i
)))
158 seq_printf(m
, "%s ", sched_feat_names
[i
]);
165 #ifdef HAVE_JUMP_LABEL
167 #define jump_label_key__true STATIC_KEY_INIT_TRUE
168 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170 #define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
173 struct static_key sched_feat_keys
[__SCHED_FEAT_NR
] = {
174 #include "features.h"
179 static void sched_feat_disable(int i
)
181 if (static_key_enabled(&sched_feat_keys
[i
]))
182 static_key_slow_dec(&sched_feat_keys
[i
]);
185 static void sched_feat_enable(int i
)
187 if (!static_key_enabled(&sched_feat_keys
[i
]))
188 static_key_slow_inc(&sched_feat_keys
[i
]);
191 static void sched_feat_disable(int i
) { };
192 static void sched_feat_enable(int i
) { };
193 #endif /* HAVE_JUMP_LABEL */
196 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
197 size_t cnt
, loff_t
*ppos
)
207 if (copy_from_user(&buf
, ubuf
, cnt
))
213 if (strncmp(cmp
, "NO_", 3) == 0) {
218 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
219 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
221 sysctl_sched_features
&= ~(1UL << i
);
222 sched_feat_disable(i
);
224 sysctl_sched_features
|= (1UL << i
);
225 sched_feat_enable(i
);
231 if (i
== __SCHED_FEAT_NR
)
239 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
241 return single_open(filp
, sched_feat_show
, NULL
);
244 static const struct file_operations sched_feat_fops
= {
245 .open
= sched_feat_open
,
246 .write
= sched_feat_write
,
249 .release
= single_release
,
252 static __init
int sched_init_debug(void)
254 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
259 late_initcall(sched_init_debug
);
260 #endif /* CONFIG_SCHED_DEBUG */
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
266 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
269 * period over which we average the RT time consumption, measured
274 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
277 * period over which we measure -rt task cpu usage in us.
280 unsigned int sysctl_sched_rt_period
= 1000000;
282 __read_mostly
int scheduler_running
;
285 * part of the period that we allow rt tasks to run in us.
288 int sysctl_sched_rt_runtime
= 950000;
293 * __task_rq_lock - lock the rq @p resides on.
295 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
300 lockdep_assert_held(&p
->pi_lock
);
304 raw_spin_lock(&rq
->lock
);
305 if (likely(rq
== task_rq(p
)))
307 raw_spin_unlock(&rq
->lock
);
312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
314 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
315 __acquires(p
->pi_lock
)
321 raw_spin_lock_irqsave(&p
->pi_lock
, *flags
);
323 raw_spin_lock(&rq
->lock
);
324 if (likely(rq
== task_rq(p
)))
326 raw_spin_unlock(&rq
->lock
);
327 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
331 static void __task_rq_unlock(struct rq
*rq
)
334 raw_spin_unlock(&rq
->lock
);
338 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, unsigned long *flags
)
340 __releases(p
->pi_lock
)
342 raw_spin_unlock(&rq
->lock
);
343 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
347 * this_rq_lock - lock this runqueue and disable interrupts.
349 static struct rq
*this_rq_lock(void)
356 raw_spin_lock(&rq
->lock
);
361 #ifdef CONFIG_SCHED_HRTICK
363 * Use HR-timers to deliver accurate preemption points.
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
373 static void hrtick_clear(struct rq
*rq
)
375 if (hrtimer_active(&rq
->hrtick_timer
))
376 hrtimer_cancel(&rq
->hrtick_timer
);
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
383 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
385 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
387 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
389 raw_spin_lock(&rq
->lock
);
391 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
392 raw_spin_unlock(&rq
->lock
);
394 return HRTIMER_NORESTART
;
399 * called from hardirq (IPI) context
401 static void __hrtick_start(void *arg
)
405 raw_spin_lock(&rq
->lock
);
406 hrtimer_restart(&rq
->hrtick_timer
);
407 rq
->hrtick_csd_pending
= 0;
408 raw_spin_unlock(&rq
->lock
);
412 * Called to set the hrtick timer state.
414 * called with rq->lock held and irqs disabled
416 void hrtick_start(struct rq
*rq
, u64 delay
)
418 struct hrtimer
*timer
= &rq
->hrtick_timer
;
419 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
421 hrtimer_set_expires(timer
, time
);
423 if (rq
== this_rq()) {
424 hrtimer_restart(timer
);
425 } else if (!rq
->hrtick_csd_pending
) {
426 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
427 rq
->hrtick_csd_pending
= 1;
432 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
434 int cpu
= (int)(long)hcpu
;
437 case CPU_UP_CANCELED
:
438 case CPU_UP_CANCELED_FROZEN
:
439 case CPU_DOWN_PREPARE
:
440 case CPU_DOWN_PREPARE_FROZEN
:
442 case CPU_DEAD_FROZEN
:
443 hrtick_clear(cpu_rq(cpu
));
450 static __init
void init_hrtick(void)
452 hotcpu_notifier(hotplug_hrtick
, 0);
456 * Called to set the hrtick timer state.
458 * called with rq->lock held and irqs disabled
460 void hrtick_start(struct rq
*rq
, u64 delay
)
462 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
463 HRTIMER_MODE_REL_PINNED
, 0);
466 static inline void init_hrtick(void)
469 #endif /* CONFIG_SMP */
471 static void init_rq_hrtick(struct rq
*rq
)
474 rq
->hrtick_csd_pending
= 0;
476 rq
->hrtick_csd
.flags
= 0;
477 rq
->hrtick_csd
.func
= __hrtick_start
;
478 rq
->hrtick_csd
.info
= rq
;
481 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
482 rq
->hrtick_timer
.function
= hrtick
;
484 #else /* CONFIG_SCHED_HRTICK */
485 static inline void hrtick_clear(struct rq
*rq
)
489 static inline void init_rq_hrtick(struct rq
*rq
)
493 static inline void init_hrtick(void)
496 #endif /* CONFIG_SCHED_HRTICK */
499 * resched_task - mark a task 'to be rescheduled now'.
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
507 #ifndef tsk_is_polling
508 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
511 void resched_task(struct task_struct
*p
)
515 assert_raw_spin_locked(&task_rq(p
)->lock
);
517 if (test_tsk_need_resched(p
))
520 set_tsk_need_resched(p
);
523 if (cpu
== smp_processor_id())
526 /* NEED_RESCHED must be visible before we test polling */
528 if (!tsk_is_polling(p
))
529 smp_send_reschedule(cpu
);
532 void resched_cpu(int cpu
)
534 struct rq
*rq
= cpu_rq(cpu
);
537 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
539 resched_task(cpu_curr(cpu
));
540 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu. This is good for power-savings.
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
552 int get_nohz_timer_target(void)
554 int cpu
= smp_processor_id();
556 struct sched_domain
*sd
;
559 for_each_domain(cpu
, sd
) {
560 for_each_cpu(i
, sched_domain_span(sd
)) {
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
581 void wake_up_idle_cpu(int cpu
)
583 struct rq
*rq
= cpu_rq(cpu
);
585 if (cpu
== smp_processor_id())
589 * This is safe, as this function is called with the timer
590 * wheel base lock of (cpu) held. When the CPU is on the way
591 * to idle and has not yet set rq->curr to idle then it will
592 * be serialized on the timer wheel base lock and take the new
593 * timer into account automatically.
595 if (rq
->curr
!= rq
->idle
)
599 * We can set TIF_RESCHED on the idle task of the other CPU
600 * lockless. The worst case is that the other CPU runs the
601 * idle task through an additional NOOP schedule()
603 set_tsk_need_resched(rq
->idle
);
605 /* NEED_RESCHED must be visible before we test polling */
607 if (!tsk_is_polling(rq
->idle
))
608 smp_send_reschedule(cpu
);
611 static inline bool got_nohz_idle_kick(void)
613 int cpu
= smp_processor_id();
614 return idle_cpu(cpu
) && test_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
));
617 #else /* CONFIG_NO_HZ */
619 static inline bool got_nohz_idle_kick(void)
624 #endif /* CONFIG_NO_HZ */
626 void sched_avg_update(struct rq
*rq
)
628 s64 period
= sched_avg_period();
630 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
636 asm("" : "+rm" (rq
->age_stamp
));
637 rq
->age_stamp
+= period
;
642 #else /* !CONFIG_SMP */
643 void resched_task(struct task_struct
*p
)
645 assert_raw_spin_locked(&task_rq(p
)->lock
);
646 set_tsk_need_resched(p
);
648 #endif /* CONFIG_SMP */
650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
656 * Caller must hold rcu_lock or sufficient equivalent.
658 int walk_tg_tree_from(struct task_group
*from
,
659 tg_visitor down
, tg_visitor up
, void *data
)
661 struct task_group
*parent
, *child
;
667 ret
= (*down
)(parent
, data
);
670 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
677 ret
= (*up
)(parent
, data
);
678 if (ret
|| parent
== from
)
682 parent
= parent
->parent
;
689 int tg_nop(struct task_group
*tg
, void *data
)
695 static void set_load_weight(struct task_struct
*p
)
697 int prio
= p
->static_prio
- MAX_RT_PRIO
;
698 struct load_weight
*load
= &p
->se
.load
;
701 * SCHED_IDLE tasks get minimal weight:
703 if (p
->policy
== SCHED_IDLE
) {
704 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
705 load
->inv_weight
= WMULT_IDLEPRIO
;
709 load
->weight
= scale_load(prio_to_weight
[prio
]);
710 load
->inv_weight
= prio_to_wmult
[prio
];
713 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
716 sched_info_queued(p
);
717 p
->sched_class
->enqueue_task(rq
, p
, flags
);
720 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
723 sched_info_dequeued(p
);
724 p
->sched_class
->dequeue_task(rq
, p
, flags
);
727 void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
729 if (task_contributes_to_load(p
))
730 rq
->nr_uninterruptible
--;
732 enqueue_task(rq
, p
, flags
);
735 void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
737 if (task_contributes_to_load(p
))
738 rq
->nr_uninterruptible
++;
740 dequeue_task(rq
, p
, flags
);
743 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
756 static DEFINE_PER_CPU(u64
, cpu_hardirq_time
);
757 static DEFINE_PER_CPU(u64
, cpu_softirq_time
);
759 static DEFINE_PER_CPU(u64
, irq_start_time
);
760 static int sched_clock_irqtime
;
762 void enable_sched_clock_irqtime(void)
764 sched_clock_irqtime
= 1;
767 void disable_sched_clock_irqtime(void)
769 sched_clock_irqtime
= 0;
773 static DEFINE_PER_CPU(seqcount_t
, irq_time_seq
);
775 static inline void irq_time_write_begin(void)
777 __this_cpu_inc(irq_time_seq
.sequence
);
781 static inline void irq_time_write_end(void)
784 __this_cpu_inc(irq_time_seq
.sequence
);
787 static inline u64
irq_time_read(int cpu
)
793 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
794 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
795 per_cpu(cpu_hardirq_time
, cpu
);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
800 #else /* CONFIG_64BIT */
801 static inline void irq_time_write_begin(void)
805 static inline void irq_time_write_end(void)
809 static inline u64
irq_time_read(int cpu
)
811 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
813 #endif /* CONFIG_64BIT */
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
819 void account_system_vtime(struct task_struct
*curr
)
825 if (!sched_clock_irqtime
)
828 local_irq_save(flags
);
830 cpu
= smp_processor_id();
831 delta
= sched_clock_cpu(cpu
) - __this_cpu_read(irq_start_time
);
832 __this_cpu_add(irq_start_time
, delta
);
834 irq_time_write_begin();
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
842 __this_cpu_add(cpu_hardirq_time
, delta
);
843 else if (in_serving_softirq() && curr
!= this_cpu_ksoftirqd())
844 __this_cpu_add(cpu_softirq_time
, delta
);
846 irq_time_write_end();
847 local_irq_restore(flags
);
849 EXPORT_SYMBOL_GPL(account_system_vtime
);
851 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
853 #ifdef CONFIG_PARAVIRT
854 static inline u64
steal_ticks(u64 steal
)
856 if (unlikely(steal
> NSEC_PER_SEC
))
857 return div_u64(steal
, TICK_NSEC
);
859 return __iter_div_u64_rem(steal
, TICK_NSEC
, &steal
);
863 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal
= 0, irq_delta
= 0;
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
890 if (irq_delta
> delta
)
893 rq
->prev_irq_time
+= irq_delta
;
896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 if (static_key_false((¶virt_steal_rq_enabled
))) {
900 steal
= paravirt_steal_clock(cpu_of(rq
));
901 steal
-= rq
->prev_steal_time_rq
;
903 if (unlikely(steal
> delta
))
906 st
= steal_ticks(steal
);
907 steal
= st
* TICK_NSEC
;
909 rq
->prev_steal_time_rq
+= steal
;
915 rq
->clock_task
+= delta
;
917 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta
+ steal
) && sched_feat(NONTASK_POWER
))
919 sched_rt_avg_update(rq
, irq_delta
+ steal
);
923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
924 static int irqtime_account_hi_update(void)
926 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
931 local_irq_save(flags
);
932 latest_ns
= this_cpu_read(cpu_hardirq_time
);
933 if (nsecs_to_cputime64(latest_ns
) > cpustat
[CPUTIME_IRQ
])
935 local_irq_restore(flags
);
939 static int irqtime_account_si_update(void)
941 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
946 local_irq_save(flags
);
947 latest_ns
= this_cpu_read(cpu_softirq_time
);
948 if (nsecs_to_cputime64(latest_ns
) > cpustat
[CPUTIME_SOFTIRQ
])
950 local_irq_restore(flags
);
954 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
956 #define sched_clock_irqtime (0)
960 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
962 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
963 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
974 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
976 stop
->sched_class
= &stop_sched_class
;
979 cpu_rq(cpu
)->stop
= stop
;
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
986 old_stop
->sched_class
= &rt_sched_class
;
991 * __normal_prio - return the priority that is based on the static prio
993 static inline int __normal_prio(struct task_struct
*p
)
995 return p
->static_prio
;
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1005 static inline int normal_prio(struct task_struct
*p
)
1009 if (task_has_rt_policy(p
))
1010 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1012 prio
= __normal_prio(p
);
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1023 static int effective_prio(struct task_struct
*p
)
1025 p
->normal_prio
= normal_prio(p
);
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1031 if (!rt_prio(p
->prio
))
1032 return p
->normal_prio
;
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1040 inline int task_curr(const struct task_struct
*p
)
1042 return cpu_curr(task_cpu(p
)) == p
;
1045 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1046 const struct sched_class
*prev_class
,
1049 if (prev_class
!= p
->sched_class
) {
1050 if (prev_class
->switched_from
)
1051 prev_class
->switched_from(rq
, p
);
1052 p
->sched_class
->switched_to(rq
, p
);
1053 } else if (oldprio
!= p
->prio
)
1054 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
1057 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
1059 const struct sched_class
*class;
1061 if (p
->sched_class
== rq
->curr
->sched_class
) {
1062 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
1064 for_each_class(class) {
1065 if (class == rq
->curr
->sched_class
)
1067 if (class == p
->sched_class
) {
1068 resched_task(rq
->curr
);
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1078 if (rq
->curr
->on_rq
&& test_tsk_need_resched(rq
->curr
))
1079 rq
->skip_clock_update
= 1;
1083 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1085 #ifdef CONFIG_SCHED_DEBUG
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1090 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
1091 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
1093 #ifdef CONFIG_LOCKDEP
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 * see set_task_rq().
1101 * Furthermore, all task_rq users should acquire both locks, see
1104 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
1105 lockdep_is_held(&task_rq(p
)->lock
)));
1109 trace_sched_migrate_task(p
, new_cpu
);
1111 if (task_cpu(p
) != new_cpu
) {
1112 p
->se
.nr_migrations
++;
1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, NULL
, 0);
1116 __set_task_cpu(p
, new_cpu
);
1119 struct migration_arg
{
1120 struct task_struct
*task
;
1124 static int migration_cpu_stop(void *data
);
1127 * wait_task_inactive - wait for a thread to unschedule.
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1142 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1144 unsigned long flags
;
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1169 while (task_running(rq
, p
)) {
1170 if (match_state
&& unlikely(p
->state
!= match_state
))
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1180 rq
= task_rq_lock(p
, &flags
);
1181 trace_sched_wait_task(p
);
1182 running
= task_running(rq
, p
);
1185 if (!match_state
|| p
->state
== match_state
)
1186 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1187 task_rq_unlock(rq
, p
, &flags
);
1190 * If it changed from the expected state, bail out now.
1192 if (unlikely(!ncsw
))
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1199 * Oops. Go back and try again..
1201 if (unlikely(running
)) {
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1211 * So if it was still runnable (but just not actively
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1215 if (unlikely(on_rq
)) {
1216 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
1218 set_current_state(TASK_UNINTERRUPTIBLE
);
1219 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1241 * NOTE: this function doesn't have to take the runqueue lock,
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1247 void kick_process(struct task_struct
*p
)
1253 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1254 smp_send_reschedule(cpu
);
1257 EXPORT_SYMBOL_GPL(kick_process
);
1258 #endif /* CONFIG_SMP */
1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1264 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
1266 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
1267 enum { cpuset
, possible
, fail
} state
= cpuset
;
1270 /* Look for allowed, online CPU in same node. */
1271 for_each_cpu(dest_cpu
, nodemask
) {
1272 if (!cpu_online(dest_cpu
))
1274 if (!cpu_active(dest_cpu
))
1276 if (cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
1281 /* Any allowed, online CPU? */
1282 for_each_cpu(dest_cpu
, tsk_cpus_allowed(p
)) {
1283 if (!cpu_online(dest_cpu
))
1285 if (!cpu_active(dest_cpu
))
1292 /* No more Mr. Nice Guy. */
1293 cpuset_cpus_allowed_fallback(p
);
1298 do_set_cpus_allowed(p
, cpu_possible_mask
);
1309 if (state
!= cpuset
) {
1311 * Don't tell them about moving exiting tasks or
1312 * kernel threads (both mm NULL), since they never
1315 if (p
->mm
&& printk_ratelimit()) {
1316 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1317 task_pid_nr(p
), p
->comm
, cpu
);
1325 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1328 int select_task_rq(struct task_struct
*p
, int sd_flags
, int wake_flags
)
1330 int cpu
= p
->sched_class
->select_task_rq(p
, sd_flags
, wake_flags
);
1333 * In order not to call set_task_cpu() on a blocking task we need
1334 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1337 * Since this is common to all placement strategies, this lives here.
1339 * [ this allows ->select_task() to simply return task_cpu(p) and
1340 * not worry about this generic constraint ]
1342 if (unlikely(!cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)) ||
1344 cpu
= select_fallback_rq(task_cpu(p
), p
);
1349 static void update_avg(u64
*avg
, u64 sample
)
1351 s64 diff
= sample
- *avg
;
1357 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
1359 #ifdef CONFIG_SCHEDSTATS
1360 struct rq
*rq
= this_rq();
1363 int this_cpu
= smp_processor_id();
1365 if (cpu
== this_cpu
) {
1366 schedstat_inc(rq
, ttwu_local
);
1367 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
1369 struct sched_domain
*sd
;
1371 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
1373 for_each_domain(this_cpu
, sd
) {
1374 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
1375 schedstat_inc(sd
, ttwu_wake_remote
);
1382 if (wake_flags
& WF_MIGRATED
)
1383 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
1385 #endif /* CONFIG_SMP */
1387 schedstat_inc(rq
, ttwu_count
);
1388 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
1390 if (wake_flags
& WF_SYNC
)
1391 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
1393 #endif /* CONFIG_SCHEDSTATS */
1396 static void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
1398 activate_task(rq
, p
, en_flags
);
1401 /* if a worker is waking up, notify workqueue */
1402 if (p
->flags
& PF_WQ_WORKER
)
1403 wq_worker_waking_up(p
, cpu_of(rq
));
1407 * Mark the task runnable and perform wakeup-preemption.
1410 ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1412 trace_sched_wakeup(p
, true);
1413 check_preempt_curr(rq
, p
, wake_flags
);
1415 p
->state
= TASK_RUNNING
;
1417 if (p
->sched_class
->task_woken
)
1418 p
->sched_class
->task_woken(rq
, p
);
1420 if (rq
->idle_stamp
) {
1421 u64 delta
= rq
->clock
- rq
->idle_stamp
;
1422 u64 max
= 2*sysctl_sched_migration_cost
;
1427 update_avg(&rq
->avg_idle
, delta
);
1434 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1437 if (p
->sched_contributes_to_load
)
1438 rq
->nr_uninterruptible
--;
1441 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_WAKING
);
1442 ttwu_do_wakeup(rq
, p
, wake_flags
);
1446 * Called in case the task @p isn't fully descheduled from its runqueue,
1447 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1448 * since all we need to do is flip p->state to TASK_RUNNING, since
1449 * the task is still ->on_rq.
1451 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
1456 rq
= __task_rq_lock(p
);
1458 ttwu_do_wakeup(rq
, p
, wake_flags
);
1461 __task_rq_unlock(rq
);
1467 static void sched_ttwu_pending(void)
1469 struct rq
*rq
= this_rq();
1470 struct llist_node
*llist
= llist_del_all(&rq
->wake_list
);
1471 struct task_struct
*p
;
1473 raw_spin_lock(&rq
->lock
);
1476 p
= llist_entry(llist
, struct task_struct
, wake_entry
);
1477 llist
= llist_next(llist
);
1478 ttwu_do_activate(rq
, p
, 0);
1481 raw_spin_unlock(&rq
->lock
);
1484 void scheduler_ipi(void)
1486 if (llist_empty(&this_rq()->wake_list
) && !got_nohz_idle_kick())
1490 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1491 * traditionally all their work was done from the interrupt return
1492 * path. Now that we actually do some work, we need to make sure
1495 * Some archs already do call them, luckily irq_enter/exit nest
1498 * Arguably we should visit all archs and update all handlers,
1499 * however a fair share of IPIs are still resched only so this would
1500 * somewhat pessimize the simple resched case.
1503 sched_ttwu_pending();
1506 * Check if someone kicked us for doing the nohz idle load balance.
1508 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1509 this_rq()->idle_balance
= 1;
1510 raise_softirq_irqoff(SCHED_SOFTIRQ
);
1515 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
)
1517 if (llist_add(&p
->wake_entry
, &cpu_rq(cpu
)->wake_list
))
1518 smp_send_reschedule(cpu
);
1521 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1522 static int ttwu_activate_remote(struct task_struct
*p
, int wake_flags
)
1527 rq
= __task_rq_lock(p
);
1529 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
1530 ttwu_do_wakeup(rq
, p
, wake_flags
);
1533 __task_rq_unlock(rq
);
1538 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1540 bool cpus_share_cache(int this_cpu
, int that_cpu
)
1542 return per_cpu(sd_llc_id
, this_cpu
) == per_cpu(sd_llc_id
, that_cpu
);
1544 #endif /* CONFIG_SMP */
1546 static void ttwu_queue(struct task_struct
*p
, int cpu
)
1548 struct rq
*rq
= cpu_rq(cpu
);
1550 #if defined(CONFIG_SMP)
1551 if (sched_feat(TTWU_QUEUE
) && !cpus_share_cache(smp_processor_id(), cpu
)) {
1552 sched_clock_cpu(cpu
); /* sync clocks x-cpu */
1553 ttwu_queue_remote(p
, cpu
);
1558 raw_spin_lock(&rq
->lock
);
1559 ttwu_do_activate(rq
, p
, 0);
1560 raw_spin_unlock(&rq
->lock
);
1564 * try_to_wake_up - wake up a thread
1565 * @p: the thread to be awakened
1566 * @state: the mask of task states that can be woken
1567 * @wake_flags: wake modifier flags (WF_*)
1569 * Put it on the run-queue if it's not already there. The "current"
1570 * thread is always on the run-queue (except when the actual
1571 * re-schedule is in progress), and as such you're allowed to do
1572 * the simpler "current->state = TASK_RUNNING" to mark yourself
1573 * runnable without the overhead of this.
1575 * Returns %true if @p was woken up, %false if it was already running
1576 * or @state didn't match @p's state.
1579 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
1581 unsigned long flags
;
1582 int cpu
, success
= 0;
1585 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1586 if (!(p
->state
& state
))
1589 success
= 1; /* we're going to change ->state */
1592 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
1597 * If the owning (remote) cpu is still in the middle of schedule() with
1598 * this task as prev, wait until its done referencing the task.
1601 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1603 * In case the architecture enables interrupts in
1604 * context_switch(), we cannot busy wait, since that
1605 * would lead to deadlocks when an interrupt hits and
1606 * tries to wake up @prev. So bail and do a complete
1609 if (ttwu_activate_remote(p
, wake_flags
))
1616 * Pairs with the smp_wmb() in finish_lock_switch().
1620 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
1621 p
->state
= TASK_WAKING
;
1623 if (p
->sched_class
->task_waking
)
1624 p
->sched_class
->task_waking(p
);
1626 cpu
= select_task_rq(p
, SD_BALANCE_WAKE
, wake_flags
);
1627 if (task_cpu(p
) != cpu
) {
1628 wake_flags
|= WF_MIGRATED
;
1629 set_task_cpu(p
, cpu
);
1631 #endif /* CONFIG_SMP */
1635 ttwu_stat(p
, cpu
, wake_flags
);
1637 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
1643 * try_to_wake_up_local - try to wake up a local task with rq lock held
1644 * @p: the thread to be awakened
1646 * Put @p on the run-queue if it's not already there. The caller must
1647 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1650 static void try_to_wake_up_local(struct task_struct
*p
)
1652 struct rq
*rq
= task_rq(p
);
1654 BUG_ON(rq
!= this_rq());
1655 BUG_ON(p
== current
);
1656 lockdep_assert_held(&rq
->lock
);
1658 if (!raw_spin_trylock(&p
->pi_lock
)) {
1659 raw_spin_unlock(&rq
->lock
);
1660 raw_spin_lock(&p
->pi_lock
);
1661 raw_spin_lock(&rq
->lock
);
1664 if (!(p
->state
& TASK_NORMAL
))
1668 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
1670 ttwu_do_wakeup(rq
, p
, 0);
1671 ttwu_stat(p
, smp_processor_id(), 0);
1673 raw_spin_unlock(&p
->pi_lock
);
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1680 * Attempt to wake up the nominated process and move it to the set of runnable
1681 * processes. Returns 1 if the process was woken up, 0 if it was already
1684 * It may be assumed that this function implies a write memory barrier before
1685 * changing the task state if and only if any tasks are woken up.
1687 int wake_up_process(struct task_struct
*p
)
1689 return try_to_wake_up(p
, TASK_ALL
, 0);
1691 EXPORT_SYMBOL(wake_up_process
);
1693 int wake_up_state(struct task_struct
*p
, unsigned int state
)
1695 return try_to_wake_up(p
, state
, 0);
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1702 * __sched_fork() is basic setup used by init_idle() too:
1704 static void __sched_fork(struct task_struct
*p
)
1709 p
->se
.exec_start
= 0;
1710 p
->se
.sum_exec_runtime
= 0;
1711 p
->se
.prev_sum_exec_runtime
= 0;
1712 p
->se
.nr_migrations
= 0;
1714 INIT_LIST_HEAD(&p
->se
.group_node
);
1716 #ifdef CONFIG_SCHEDSTATS
1717 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
1720 INIT_LIST_HEAD(&p
->rt
.run_list
);
1722 #ifdef CONFIG_PREEMPT_NOTIFIERS
1723 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1728 * fork()/clone()-time setup:
1730 void sched_fork(struct task_struct
*p
)
1732 unsigned long flags
;
1733 int cpu
= get_cpu();
1737 * We mark the process as running here. This guarantees that
1738 * nobody will actually run it, and a signal or other external
1739 * event cannot wake it up and insert it on the runqueue either.
1741 p
->state
= TASK_RUNNING
;
1744 * Make sure we do not leak PI boosting priority to the child.
1746 p
->prio
= current
->normal_prio
;
1749 * Revert to default priority/policy on fork if requested.
1751 if (unlikely(p
->sched_reset_on_fork
)) {
1752 if (task_has_rt_policy(p
)) {
1753 p
->policy
= SCHED_NORMAL
;
1754 p
->static_prio
= NICE_TO_PRIO(0);
1756 } else if (PRIO_TO_NICE(p
->static_prio
) < 0)
1757 p
->static_prio
= NICE_TO_PRIO(0);
1759 p
->prio
= p
->normal_prio
= __normal_prio(p
);
1763 * We don't need the reset flag anymore after the fork. It has
1764 * fulfilled its duty:
1766 p
->sched_reset_on_fork
= 0;
1769 if (!rt_prio(p
->prio
))
1770 p
->sched_class
= &fair_sched_class
;
1772 if (p
->sched_class
->task_fork
)
1773 p
->sched_class
->task_fork(p
);
1776 * The child is not yet in the pid-hash so no cgroup attach races,
1777 * and the cgroup is pinned to this child due to cgroup_fork()
1778 * is ran before sched_fork().
1780 * Silence PROVE_RCU.
1782 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1783 set_task_cpu(p
, cpu
);
1784 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
1786 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1787 if (likely(sched_info_on()))
1788 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1790 #if defined(CONFIG_SMP)
1793 #ifdef CONFIG_PREEMPT_COUNT
1794 /* Want to start with kernel preemption disabled. */
1795 task_thread_info(p
)->preempt_count
= 1;
1798 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
1805 * wake_up_new_task - wake up a newly created task for the first time.
1807 * This function will do some initial scheduler statistics housekeeping
1808 * that must be done for every newly created context, then puts the task
1809 * on the runqueue and wakes it.
1811 void wake_up_new_task(struct task_struct
*p
)
1813 unsigned long flags
;
1816 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1819 * Fork balancing, do it here and not earlier because:
1820 * - cpus_allowed can change in the fork path
1821 * - any previously selected cpu might disappear through hotplug
1823 set_task_cpu(p
, select_task_rq(p
, SD_BALANCE_FORK
, 0));
1826 rq
= __task_rq_lock(p
);
1827 activate_task(rq
, p
, 0);
1829 trace_sched_wakeup_new(p
, true);
1830 check_preempt_curr(rq
, p
, WF_FORK
);
1832 if (p
->sched_class
->task_woken
)
1833 p
->sched_class
->task_woken(rq
, p
);
1835 task_rq_unlock(rq
, p
, &flags
);
1838 #ifdef CONFIG_PREEMPT_NOTIFIERS
1841 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1842 * @notifier: notifier struct to register
1844 void preempt_notifier_register(struct preempt_notifier
*notifier
)
1846 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
1848 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
1851 * preempt_notifier_unregister - no longer interested in preemption notifications
1852 * @notifier: notifier struct to unregister
1854 * This is safe to call from within a preemption notifier.
1856 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
1858 hlist_del(¬ifier
->link
);
1860 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
1862 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1864 struct preempt_notifier
*notifier
;
1865 struct hlist_node
*node
;
1867 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1868 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
1872 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1873 struct task_struct
*next
)
1875 struct preempt_notifier
*notifier
;
1876 struct hlist_node
*node
;
1878 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1879 notifier
->ops
->sched_out(notifier
, next
);
1882 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1884 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1889 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1890 struct task_struct
*next
)
1894 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1897 * prepare_task_switch - prepare to switch tasks
1898 * @rq: the runqueue preparing to switch
1899 * @prev: the current task that is being switched out
1900 * @next: the task we are going to switch to.
1902 * This is called with the rq lock held and interrupts off. It must
1903 * be paired with a subsequent finish_task_switch after the context
1906 * prepare_task_switch sets up locking and calls architecture specific
1910 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
1911 struct task_struct
*next
)
1913 sched_info_switch(prev
, next
);
1914 perf_event_task_sched_out(prev
, next
);
1915 fire_sched_out_preempt_notifiers(prev
, next
);
1916 prepare_lock_switch(rq
, next
);
1917 prepare_arch_switch(next
);
1918 trace_sched_switch(prev
, next
);
1922 * finish_task_switch - clean up after a task-switch
1923 * @rq: runqueue associated with task-switch
1924 * @prev: the thread we just switched away from.
1926 * finish_task_switch must be called after the context switch, paired
1927 * with a prepare_task_switch call before the context switch.
1928 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1929 * and do any other architecture-specific cleanup actions.
1931 * Note that we may have delayed dropping an mm in context_switch(). If
1932 * so, we finish that here outside of the runqueue lock. (Doing it
1933 * with the lock held can cause deadlocks; see schedule() for
1936 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1937 __releases(rq
->lock
)
1939 struct mm_struct
*mm
= rq
->prev_mm
;
1945 * A task struct has one reference for the use as "current".
1946 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1947 * schedule one last time. The schedule call will never return, and
1948 * the scheduled task must drop that reference.
1949 * The test for TASK_DEAD must occur while the runqueue locks are
1950 * still held, otherwise prev could be scheduled on another cpu, die
1951 * there before we look at prev->state, and then the reference would
1953 * Manfred Spraul <manfred@colorfullife.com>
1955 prev_state
= prev
->state
;
1956 finish_arch_switch(prev
);
1957 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1958 local_irq_disable();
1959 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1960 perf_event_task_sched_in(prev
, current
);
1961 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1963 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1964 finish_lock_switch(rq
, prev
);
1965 finish_arch_post_lock_switch();
1967 fire_sched_in_preempt_notifiers(current
);
1970 if (unlikely(prev_state
== TASK_DEAD
)) {
1972 * Remove function-return probe instances associated with this
1973 * task and put them back on the free list.
1975 kprobe_flush_task(prev
);
1976 put_task_struct(prev
);
1982 /* assumes rq->lock is held */
1983 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
1985 if (prev
->sched_class
->pre_schedule
)
1986 prev
->sched_class
->pre_schedule(rq
, prev
);
1989 /* rq->lock is NOT held, but preemption is disabled */
1990 static inline void post_schedule(struct rq
*rq
)
1992 if (rq
->post_schedule
) {
1993 unsigned long flags
;
1995 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1996 if (rq
->curr
->sched_class
->post_schedule
)
1997 rq
->curr
->sched_class
->post_schedule(rq
);
1998 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2000 rq
->post_schedule
= 0;
2006 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2010 static inline void post_schedule(struct rq
*rq
)
2017 * schedule_tail - first thing a freshly forked thread must call.
2018 * @prev: the thread we just switched away from.
2020 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2021 __releases(rq
->lock
)
2023 struct rq
*rq
= this_rq();
2025 finish_task_switch(rq
, prev
);
2028 * FIXME: do we need to worry about rq being invalidated by the
2033 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2034 /* In this case, finish_task_switch does not reenable preemption */
2037 if (current
->set_child_tid
)
2038 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2042 * context_switch - switch to the new MM and the new
2043 * thread's register state.
2046 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2047 struct task_struct
*next
)
2049 struct mm_struct
*mm
, *oldmm
;
2051 prepare_task_switch(rq
, prev
, next
);
2054 oldmm
= prev
->active_mm
;
2056 * For paravirt, this is coupled with an exit in switch_to to
2057 * combine the page table reload and the switch backend into
2060 arch_start_context_switch(prev
);
2063 next
->active_mm
= oldmm
;
2064 atomic_inc(&oldmm
->mm_count
);
2065 enter_lazy_tlb(oldmm
, next
);
2067 switch_mm(oldmm
, mm
, next
);
2070 prev
->active_mm
= NULL
;
2071 rq
->prev_mm
= oldmm
;
2074 * Since the runqueue lock will be released by the next
2075 * task (which is an invalid locking op but in the case
2076 * of the scheduler it's an obvious special-case), so we
2077 * do an early lockdep release here:
2079 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2080 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2083 /* Here we just switch the register state and the stack. */
2084 rcu_switch_from(prev
);
2085 switch_to(prev
, next
, prev
);
2089 * this_rq must be evaluated again because prev may have moved
2090 * CPUs since it called schedule(), thus the 'rq' on its stack
2091 * frame will be invalid.
2093 finish_task_switch(this_rq(), prev
);
2097 * nr_running, nr_uninterruptible and nr_context_switches:
2099 * externally visible scheduler statistics: current number of runnable
2100 * threads, current number of uninterruptible-sleeping threads, total
2101 * number of context switches performed since bootup.
2103 unsigned long nr_running(void)
2105 unsigned long i
, sum
= 0;
2107 for_each_online_cpu(i
)
2108 sum
+= cpu_rq(i
)->nr_running
;
2113 unsigned long nr_uninterruptible(void)
2115 unsigned long i
, sum
= 0;
2117 for_each_possible_cpu(i
)
2118 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2121 * Since we read the counters lockless, it might be slightly
2122 * inaccurate. Do not allow it to go below zero though:
2124 if (unlikely((long)sum
< 0))
2130 unsigned long long nr_context_switches(void)
2133 unsigned long long sum
= 0;
2135 for_each_possible_cpu(i
)
2136 sum
+= cpu_rq(i
)->nr_switches
;
2141 unsigned long nr_iowait(void)
2143 unsigned long i
, sum
= 0;
2145 for_each_possible_cpu(i
)
2146 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2151 unsigned long nr_iowait_cpu(int cpu
)
2153 struct rq
*this = cpu_rq(cpu
);
2154 return atomic_read(&this->nr_iowait
);
2157 unsigned long this_cpu_load(void)
2159 struct rq
*this = this_rq();
2160 return this->cpu_load
[0];
2164 /* Variables and functions for calc_load */
2165 static atomic_long_t calc_load_tasks
;
2166 static unsigned long calc_load_update
;
2167 unsigned long avenrun
[3];
2168 EXPORT_SYMBOL(avenrun
);
2170 static long calc_load_fold_active(struct rq
*this_rq
)
2172 long nr_active
, delta
= 0;
2174 nr_active
= this_rq
->nr_running
;
2175 nr_active
+= (long) this_rq
->nr_uninterruptible
;
2177 if (nr_active
!= this_rq
->calc_load_active
) {
2178 delta
= nr_active
- this_rq
->calc_load_active
;
2179 this_rq
->calc_load_active
= nr_active
;
2185 static unsigned long
2186 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
2189 load
+= active
* (FIXED_1
- exp
);
2190 load
+= 1UL << (FSHIFT
- 1);
2191 return load
>> FSHIFT
;
2196 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2198 * When making the ILB scale, we should try to pull this in as well.
2200 static atomic_long_t calc_load_tasks_idle
;
2202 void calc_load_account_idle(struct rq
*this_rq
)
2206 delta
= calc_load_fold_active(this_rq
);
2208 atomic_long_add(delta
, &calc_load_tasks_idle
);
2211 static long calc_load_fold_idle(void)
2216 * Its got a race, we don't care...
2218 if (atomic_long_read(&calc_load_tasks_idle
))
2219 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
2225 * fixed_power_int - compute: x^n, in O(log n) time
2227 * @x: base of the power
2228 * @frac_bits: fractional bits of @x
2229 * @n: power to raise @x to.
2231 * By exploiting the relation between the definition of the natural power
2232 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2233 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2234 * (where: n_i \elem {0, 1}, the binary vector representing n),
2235 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2236 * of course trivially computable in O(log_2 n), the length of our binary
2239 static unsigned long
2240 fixed_power_int(unsigned long x
, unsigned int frac_bits
, unsigned int n
)
2242 unsigned long result
= 1UL << frac_bits
;
2247 result
+= 1UL << (frac_bits
- 1);
2248 result
>>= frac_bits
;
2254 x
+= 1UL << (frac_bits
- 1);
2262 * a1 = a0 * e + a * (1 - e)
2264 * a2 = a1 * e + a * (1 - e)
2265 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2266 * = a0 * e^2 + a * (1 - e) * (1 + e)
2268 * a3 = a2 * e + a * (1 - e)
2269 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2270 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2274 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2275 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2276 * = a0 * e^n + a * (1 - e^n)
2278 * [1] application of the geometric series:
2281 * S_n := \Sum x^i = -------------
2284 static unsigned long
2285 calc_load_n(unsigned long load
, unsigned long exp
,
2286 unsigned long active
, unsigned int n
)
2289 return calc_load(load
, fixed_power_int(exp
, FSHIFT
, n
), active
);
2293 * NO_HZ can leave us missing all per-cpu ticks calling
2294 * calc_load_account_active(), but since an idle CPU folds its delta into
2295 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2296 * in the pending idle delta if our idle period crossed a load cycle boundary.
2298 * Once we've updated the global active value, we need to apply the exponential
2299 * weights adjusted to the number of cycles missed.
2301 static void calc_global_nohz(void)
2303 long delta
, active
, n
;
2306 * If we crossed a calc_load_update boundary, make sure to fold
2307 * any pending idle changes, the respective CPUs might have
2308 * missed the tick driven calc_load_account_active() update
2311 delta
= calc_load_fold_idle();
2313 atomic_long_add(delta
, &calc_load_tasks
);
2316 * It could be the one fold was all it took, we done!
2318 if (time_before(jiffies
, calc_load_update
+ 10))
2322 * Catch-up, fold however many we are behind still
2324 delta
= jiffies
- calc_load_update
- 10;
2325 n
= 1 + (delta
/ LOAD_FREQ
);
2327 active
= atomic_long_read(&calc_load_tasks
);
2328 active
= active
> 0 ? active
* FIXED_1
: 0;
2330 avenrun
[0] = calc_load_n(avenrun
[0], EXP_1
, active
, n
);
2331 avenrun
[1] = calc_load_n(avenrun
[1], EXP_5
, active
, n
);
2332 avenrun
[2] = calc_load_n(avenrun
[2], EXP_15
, active
, n
);
2334 calc_load_update
+= n
* LOAD_FREQ
;
2337 void calc_load_account_idle(struct rq
*this_rq
)
2341 static inline long calc_load_fold_idle(void)
2346 static void calc_global_nohz(void)
2352 * get_avenrun - get the load average array
2353 * @loads: pointer to dest load array
2354 * @offset: offset to add
2355 * @shift: shift count to shift the result left
2357 * These values are estimates at best, so no need for locking.
2359 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
2361 loads
[0] = (avenrun
[0] + offset
) << shift
;
2362 loads
[1] = (avenrun
[1] + offset
) << shift
;
2363 loads
[2] = (avenrun
[2] + offset
) << shift
;
2367 * calc_load - update the avenrun load estimates 10 ticks after the
2368 * CPUs have updated calc_load_tasks.
2370 void calc_global_load(unsigned long ticks
)
2374 if (time_before(jiffies
, calc_load_update
+ 10))
2377 active
= atomic_long_read(&calc_load_tasks
);
2378 active
= active
> 0 ? active
* FIXED_1
: 0;
2380 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
2381 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
2382 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
2384 calc_load_update
+= LOAD_FREQ
;
2387 * Account one period with whatever state we found before
2388 * folding in the nohz state and ageing the entire idle period.
2390 * This avoids loosing a sample when we go idle between
2391 * calc_load_account_active() (10 ticks ago) and now and thus
2398 * Called from update_cpu_load() to periodically update this CPU's
2401 static void calc_load_account_active(struct rq
*this_rq
)
2405 if (time_before(jiffies
, this_rq
->calc_load_update
))
2408 delta
= calc_load_fold_active(this_rq
);
2409 delta
+= calc_load_fold_idle();
2411 atomic_long_add(delta
, &calc_load_tasks
);
2413 this_rq
->calc_load_update
+= LOAD_FREQ
;
2417 * The exact cpuload at various idx values, calculated at every tick would be
2418 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2420 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2421 * on nth tick when cpu may be busy, then we have:
2422 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2423 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2425 * decay_load_missed() below does efficient calculation of
2426 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2427 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2429 * The calculation is approximated on a 128 point scale.
2430 * degrade_zero_ticks is the number of ticks after which load at any
2431 * particular idx is approximated to be zero.
2432 * degrade_factor is a precomputed table, a row for each load idx.
2433 * Each column corresponds to degradation factor for a power of two ticks,
2434 * based on 128 point scale.
2436 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2437 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2439 * With this power of 2 load factors, we can degrade the load n times
2440 * by looking at 1 bits in n and doing as many mult/shift instead of
2441 * n mult/shifts needed by the exact degradation.
2443 #define DEGRADE_SHIFT 7
2444 static const unsigned char
2445 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
2446 static const unsigned char
2447 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
2448 {0, 0, 0, 0, 0, 0, 0, 0},
2449 {64, 32, 8, 0, 0, 0, 0, 0},
2450 {96, 72, 40, 12, 1, 0, 0},
2451 {112, 98, 75, 43, 15, 1, 0},
2452 {120, 112, 98, 76, 45, 16, 2} };
2455 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2456 * would be when CPU is idle and so we just decay the old load without
2457 * adding any new load.
2459 static unsigned long
2460 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
2464 if (!missed_updates
)
2467 if (missed_updates
>= degrade_zero_ticks
[idx
])
2471 return load
>> missed_updates
;
2473 while (missed_updates
) {
2474 if (missed_updates
% 2)
2475 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
2477 missed_updates
>>= 1;
2484 * Update rq->cpu_load[] statistics. This function is usually called every
2485 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2486 * every tick. We fix it up based on jiffies.
2488 static void __update_cpu_load(struct rq
*this_rq
, unsigned long this_load
,
2489 unsigned long pending_updates
)
2493 this_rq
->nr_load_updates
++;
2495 /* Update our load: */
2496 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
2497 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2498 unsigned long old_load
, new_load
;
2500 /* scale is effectively 1 << i now, and >> i divides by scale */
2502 old_load
= this_rq
->cpu_load
[i
];
2503 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
2504 new_load
= this_load
;
2506 * Round up the averaging division if load is increasing. This
2507 * prevents us from getting stuck on 9 if the load is 10, for
2510 if (new_load
> old_load
)
2511 new_load
+= scale
- 1;
2513 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
2516 sched_avg_update(this_rq
);
2521 * There is no sane way to deal with nohz on smp when using jiffies because the
2522 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2523 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2525 * Therefore we cannot use the delta approach from the regular tick since that
2526 * would seriously skew the load calculation. However we'll make do for those
2527 * updates happening while idle (nohz_idle_balance) or coming out of idle
2528 * (tick_nohz_idle_exit).
2530 * This means we might still be one tick off for nohz periods.
2534 * Called from nohz_idle_balance() to update the load ratings before doing the
2537 void update_idle_cpu_load(struct rq
*this_rq
)
2539 unsigned long curr_jiffies
= ACCESS_ONCE(jiffies
);
2540 unsigned long load
= this_rq
->load
.weight
;
2541 unsigned long pending_updates
;
2544 * bail if there's load or we're actually up-to-date.
2546 if (load
|| curr_jiffies
== this_rq
->last_load_update_tick
)
2549 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
2550 this_rq
->last_load_update_tick
= curr_jiffies
;
2552 __update_cpu_load(this_rq
, load
, pending_updates
);
2556 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2558 void update_cpu_load_nohz(void)
2560 struct rq
*this_rq
= this_rq();
2561 unsigned long curr_jiffies
= ACCESS_ONCE(jiffies
);
2562 unsigned long pending_updates
;
2564 if (curr_jiffies
== this_rq
->last_load_update_tick
)
2567 raw_spin_lock(&this_rq
->lock
);
2568 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
2569 if (pending_updates
) {
2570 this_rq
->last_load_update_tick
= curr_jiffies
;
2572 * We were idle, this means load 0, the current load might be
2573 * !0 due to remote wakeups and the sort.
2575 __update_cpu_load(this_rq
, 0, pending_updates
);
2577 raw_spin_unlock(&this_rq
->lock
);
2579 #endif /* CONFIG_NO_HZ */
2582 * Called from scheduler_tick()
2584 static void update_cpu_load_active(struct rq
*this_rq
)
2587 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2589 this_rq
->last_load_update_tick
= jiffies
;
2590 __update_cpu_load(this_rq
, this_rq
->load
.weight
, 1);
2592 calc_load_account_active(this_rq
);
2598 * sched_exec - execve() is a valuable balancing opportunity, because at
2599 * this point the task has the smallest effective memory and cache footprint.
2601 void sched_exec(void)
2603 struct task_struct
*p
= current
;
2604 unsigned long flags
;
2607 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2608 dest_cpu
= p
->sched_class
->select_task_rq(p
, SD_BALANCE_EXEC
, 0);
2609 if (dest_cpu
== smp_processor_id())
2612 if (likely(cpu_active(dest_cpu
))) {
2613 struct migration_arg arg
= { p
, dest_cpu
};
2615 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2616 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
2620 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2625 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2626 DEFINE_PER_CPU(struct kernel_cpustat
, kernel_cpustat
);
2628 EXPORT_PER_CPU_SYMBOL(kstat
);
2629 EXPORT_PER_CPU_SYMBOL(kernel_cpustat
);
2632 * Return any ns on the sched_clock that have not yet been accounted in
2633 * @p in case that task is currently running.
2635 * Called with task_rq_lock() held on @rq.
2637 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
2641 if (task_current(rq
, p
)) {
2642 update_rq_clock(rq
);
2643 ns
= rq
->clock_task
- p
->se
.exec_start
;
2651 unsigned long long task_delta_exec(struct task_struct
*p
)
2653 unsigned long flags
;
2657 rq
= task_rq_lock(p
, &flags
);
2658 ns
= do_task_delta_exec(p
, rq
);
2659 task_rq_unlock(rq
, p
, &flags
);
2665 * Return accounted runtime for the task.
2666 * In case the task is currently running, return the runtime plus current's
2667 * pending runtime that have not been accounted yet.
2669 unsigned long long task_sched_runtime(struct task_struct
*p
)
2671 unsigned long flags
;
2675 rq
= task_rq_lock(p
, &flags
);
2676 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
2677 task_rq_unlock(rq
, p
, &flags
);
2682 #ifdef CONFIG_CGROUP_CPUACCT
2683 struct cgroup_subsys cpuacct_subsys
;
2684 struct cpuacct root_cpuacct
;
2687 static inline void task_group_account_field(struct task_struct
*p
, int index
,
2690 #ifdef CONFIG_CGROUP_CPUACCT
2691 struct kernel_cpustat
*kcpustat
;
2695 * Since all updates are sure to touch the root cgroup, we
2696 * get ourselves ahead and touch it first. If the root cgroup
2697 * is the only cgroup, then nothing else should be necessary.
2700 __get_cpu_var(kernel_cpustat
).cpustat
[index
] += tmp
;
2702 #ifdef CONFIG_CGROUP_CPUACCT
2703 if (unlikely(!cpuacct_subsys
.active
))
2708 while (ca
&& (ca
!= &root_cpuacct
)) {
2709 kcpustat
= this_cpu_ptr(ca
->cpustat
);
2710 kcpustat
->cpustat
[index
] += tmp
;
2719 * Account user cpu time to a process.
2720 * @p: the process that the cpu time gets accounted to
2721 * @cputime: the cpu time spent in user space since the last update
2722 * @cputime_scaled: cputime scaled by cpu frequency
2724 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
2725 cputime_t cputime_scaled
)
2729 /* Add user time to process. */
2730 p
->utime
+= cputime
;
2731 p
->utimescaled
+= cputime_scaled
;
2732 account_group_user_time(p
, cputime
);
2734 index
= (TASK_NICE(p
) > 0) ? CPUTIME_NICE
: CPUTIME_USER
;
2736 /* Add user time to cpustat. */
2737 task_group_account_field(p
, index
, (__force u64
) cputime
);
2739 /* Account for user time used */
2740 acct_update_integrals(p
);
2744 * Account guest cpu time to a process.
2745 * @p: the process that the cpu time gets accounted to
2746 * @cputime: the cpu time spent in virtual machine since the last update
2747 * @cputime_scaled: cputime scaled by cpu frequency
2749 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
2750 cputime_t cputime_scaled
)
2752 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
2754 /* Add guest time to process. */
2755 p
->utime
+= cputime
;
2756 p
->utimescaled
+= cputime_scaled
;
2757 account_group_user_time(p
, cputime
);
2758 p
->gtime
+= cputime
;
2760 /* Add guest time to cpustat. */
2761 if (TASK_NICE(p
) > 0) {
2762 cpustat
[CPUTIME_NICE
] += (__force u64
) cputime
;
2763 cpustat
[CPUTIME_GUEST_NICE
] += (__force u64
) cputime
;
2765 cpustat
[CPUTIME_USER
] += (__force u64
) cputime
;
2766 cpustat
[CPUTIME_GUEST
] += (__force u64
) cputime
;
2771 * Account system cpu time to a process and desired cpustat field
2772 * @p: the process that the cpu time gets accounted to
2773 * @cputime: the cpu time spent in kernel space since the last update
2774 * @cputime_scaled: cputime scaled by cpu frequency
2775 * @target_cputime64: pointer to cpustat field that has to be updated
2778 void __account_system_time(struct task_struct
*p
, cputime_t cputime
,
2779 cputime_t cputime_scaled
, int index
)
2781 /* Add system time to process. */
2782 p
->stime
+= cputime
;
2783 p
->stimescaled
+= cputime_scaled
;
2784 account_group_system_time(p
, cputime
);
2786 /* Add system time to cpustat. */
2787 task_group_account_field(p
, index
, (__force u64
) cputime
);
2789 /* Account for system time used */
2790 acct_update_integrals(p
);
2794 * Account system cpu time to a process.
2795 * @p: the process that the cpu time gets accounted to
2796 * @hardirq_offset: the offset to subtract from hardirq_count()
2797 * @cputime: the cpu time spent in kernel space since the last update
2798 * @cputime_scaled: cputime scaled by cpu frequency
2800 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
2801 cputime_t cputime
, cputime_t cputime_scaled
)
2805 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
2806 account_guest_time(p
, cputime
, cputime_scaled
);
2810 if (hardirq_count() - hardirq_offset
)
2811 index
= CPUTIME_IRQ
;
2812 else if (in_serving_softirq())
2813 index
= CPUTIME_SOFTIRQ
;
2815 index
= CPUTIME_SYSTEM
;
2817 __account_system_time(p
, cputime
, cputime_scaled
, index
);
2821 * Account for involuntary wait time.
2822 * @cputime: the cpu time spent in involuntary wait
2824 void account_steal_time(cputime_t cputime
)
2826 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
2828 cpustat
[CPUTIME_STEAL
] += (__force u64
) cputime
;
2832 * Account for idle time.
2833 * @cputime: the cpu time spent in idle wait
2835 void account_idle_time(cputime_t cputime
)
2837 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
2838 struct rq
*rq
= this_rq();
2840 if (atomic_read(&rq
->nr_iowait
) > 0)
2841 cpustat
[CPUTIME_IOWAIT
] += (__force u64
) cputime
;
2843 cpustat
[CPUTIME_IDLE
] += (__force u64
) cputime
;
2846 static __always_inline
bool steal_account_process_tick(void)
2848 #ifdef CONFIG_PARAVIRT
2849 if (static_key_false(¶virt_steal_enabled
)) {
2852 steal
= paravirt_steal_clock(smp_processor_id());
2853 steal
-= this_rq()->prev_steal_time
;
2855 st
= steal_ticks(steal
);
2856 this_rq()->prev_steal_time
+= st
* TICK_NSEC
;
2858 account_steal_time(st
);
2865 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2867 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2869 * Account a tick to a process and cpustat
2870 * @p: the process that the cpu time gets accounted to
2871 * @user_tick: is the tick from userspace
2872 * @rq: the pointer to rq
2874 * Tick demultiplexing follows the order
2875 * - pending hardirq update
2876 * - pending softirq update
2880 * - check for guest_time
2881 * - else account as system_time
2883 * Check for hardirq is done both for system and user time as there is
2884 * no timer going off while we are on hardirq and hence we may never get an
2885 * opportunity to update it solely in system time.
2886 * p->stime and friends are only updated on system time and not on irq
2887 * softirq as those do not count in task exec_runtime any more.
2889 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
2892 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
2893 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
2895 if (steal_account_process_tick())
2898 if (irqtime_account_hi_update()) {
2899 cpustat
[CPUTIME_IRQ
] += (__force u64
) cputime_one_jiffy
;
2900 } else if (irqtime_account_si_update()) {
2901 cpustat
[CPUTIME_SOFTIRQ
] += (__force u64
) cputime_one_jiffy
;
2902 } else if (this_cpu_ksoftirqd() == p
) {
2904 * ksoftirqd time do not get accounted in cpu_softirq_time.
2905 * So, we have to handle it separately here.
2906 * Also, p->stime needs to be updated for ksoftirqd.
2908 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
2910 } else if (user_tick
) {
2911 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
2912 } else if (p
== rq
->idle
) {
2913 account_idle_time(cputime_one_jiffy
);
2914 } else if (p
->flags
& PF_VCPU
) { /* System time or guest time */
2915 account_guest_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
2917 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
2922 static void irqtime_account_idle_ticks(int ticks
)
2925 struct rq
*rq
= this_rq();
2927 for (i
= 0; i
< ticks
; i
++)
2928 irqtime_account_process_tick(current
, 0, rq
);
2930 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2931 static void irqtime_account_idle_ticks(int ticks
) {}
2932 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
2934 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2937 * Account a single tick of cpu time.
2938 * @p: the process that the cpu time gets accounted to
2939 * @user_tick: indicates if the tick is a user or a system tick
2941 void account_process_tick(struct task_struct
*p
, int user_tick
)
2943 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
2944 struct rq
*rq
= this_rq();
2946 if (sched_clock_irqtime
) {
2947 irqtime_account_process_tick(p
, user_tick
, rq
);
2951 if (steal_account_process_tick())
2955 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
2956 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
2957 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
2960 account_idle_time(cputime_one_jiffy
);
2964 * Account multiple ticks of steal time.
2965 * @p: the process from which the cpu time has been stolen
2966 * @ticks: number of stolen ticks
2968 void account_steal_ticks(unsigned long ticks
)
2970 account_steal_time(jiffies_to_cputime(ticks
));
2974 * Account multiple ticks of idle time.
2975 * @ticks: number of stolen ticks
2977 void account_idle_ticks(unsigned long ticks
)
2980 if (sched_clock_irqtime
) {
2981 irqtime_account_idle_ticks(ticks
);
2985 account_idle_time(jiffies_to_cputime(ticks
));
2991 * Use precise platform statistics if available:
2993 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2994 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3000 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3002 struct task_cputime cputime
;
3004 thread_group_cputime(p
, &cputime
);
3006 *ut
= cputime
.utime
;
3007 *st
= cputime
.stime
;
3011 #ifndef nsecs_to_cputime
3012 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3015 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3017 cputime_t rtime
, utime
= p
->utime
, total
= utime
+ p
->stime
;
3020 * Use CFS's precise accounting:
3022 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
3025 u64 temp
= (__force u64
) rtime
;
3027 temp
*= (__force u64
) utime
;
3028 do_div(temp
, (__force u32
) total
);
3029 utime
= (__force cputime_t
) temp
;
3034 * Compare with previous values, to keep monotonicity:
3036 p
->prev_utime
= max(p
->prev_utime
, utime
);
3037 p
->prev_stime
= max(p
->prev_stime
, rtime
- p
->prev_utime
);
3039 *ut
= p
->prev_utime
;
3040 *st
= p
->prev_stime
;
3044 * Must be called with siglock held.
3046 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3048 struct signal_struct
*sig
= p
->signal
;
3049 struct task_cputime cputime
;
3050 cputime_t rtime
, utime
, total
;
3052 thread_group_cputime(p
, &cputime
);
3054 total
= cputime
.utime
+ cputime
.stime
;
3055 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
3058 u64 temp
= (__force u64
) rtime
;
3060 temp
*= (__force u64
) cputime
.utime
;
3061 do_div(temp
, (__force u32
) total
);
3062 utime
= (__force cputime_t
) temp
;
3066 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
3067 sig
->prev_stime
= max(sig
->prev_stime
, rtime
- sig
->prev_utime
);
3069 *ut
= sig
->prev_utime
;
3070 *st
= sig
->prev_stime
;
3075 * This function gets called by the timer code, with HZ frequency.
3076 * We call it with interrupts disabled.
3078 void scheduler_tick(void)
3080 int cpu
= smp_processor_id();
3081 struct rq
*rq
= cpu_rq(cpu
);
3082 struct task_struct
*curr
= rq
->curr
;
3086 raw_spin_lock(&rq
->lock
);
3087 update_rq_clock(rq
);
3088 update_cpu_load_active(rq
);
3089 curr
->sched_class
->task_tick(rq
, curr
, 0);
3090 raw_spin_unlock(&rq
->lock
);
3092 perf_event_task_tick();
3095 rq
->idle_balance
= idle_cpu(cpu
);
3096 trigger_load_balance(rq
, cpu
);
3100 notrace
unsigned long get_parent_ip(unsigned long addr
)
3102 if (in_lock_functions(addr
)) {
3103 addr
= CALLER_ADDR2
;
3104 if (in_lock_functions(addr
))
3105 addr
= CALLER_ADDR3
;
3110 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3111 defined(CONFIG_PREEMPT_TRACER))
3113 void __kprobes
add_preempt_count(int val
)
3115 #ifdef CONFIG_DEBUG_PREEMPT
3119 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3122 preempt_count() += val
;
3123 #ifdef CONFIG_DEBUG_PREEMPT
3125 * Spinlock count overflowing soon?
3127 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3130 if (preempt_count() == val
)
3131 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3133 EXPORT_SYMBOL(add_preempt_count
);
3135 void __kprobes
sub_preempt_count(int val
)
3137 #ifdef CONFIG_DEBUG_PREEMPT
3141 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3144 * Is the spinlock portion underflowing?
3146 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3147 !(preempt_count() & PREEMPT_MASK
)))
3151 if (preempt_count() == val
)
3152 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3153 preempt_count() -= val
;
3155 EXPORT_SYMBOL(sub_preempt_count
);
3160 * Print scheduling while atomic bug:
3162 static noinline
void __schedule_bug(struct task_struct
*prev
)
3164 if (oops_in_progress
)
3167 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3168 prev
->comm
, prev
->pid
, preempt_count());
3170 debug_show_held_locks(prev
);
3172 if (irqs_disabled())
3173 print_irqtrace_events(prev
);
3175 add_taint(TAINT_WARN
);
3179 * Various schedule()-time debugging checks and statistics:
3181 static inline void schedule_debug(struct task_struct
*prev
)
3184 * Test if we are atomic. Since do_exit() needs to call into
3185 * schedule() atomically, we ignore that path for now.
3186 * Otherwise, whine if we are scheduling when we should not be.
3188 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
3189 __schedule_bug(prev
);
3192 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3194 schedstat_inc(this_rq(), sched_count
);
3197 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
3199 if (prev
->on_rq
|| rq
->skip_clock_update
< 0)
3200 update_rq_clock(rq
);
3201 prev
->sched_class
->put_prev_task(rq
, prev
);
3205 * Pick up the highest-prio task:
3207 static inline struct task_struct
*
3208 pick_next_task(struct rq
*rq
)
3210 const struct sched_class
*class;
3211 struct task_struct
*p
;
3214 * Optimization: we know that if all tasks are in
3215 * the fair class we can call that function directly:
3217 if (likely(rq
->nr_running
== rq
->cfs
.h_nr_running
)) {
3218 p
= fair_sched_class
.pick_next_task(rq
);
3223 for_each_class(class) {
3224 p
= class->pick_next_task(rq
);
3229 BUG(); /* the idle class will always have a runnable task */
3233 * __schedule() is the main scheduler function.
3235 static void __sched
__schedule(void)
3237 struct task_struct
*prev
, *next
;
3238 unsigned long *switch_count
;
3244 cpu
= smp_processor_id();
3246 rcu_note_context_switch(cpu
);
3249 schedule_debug(prev
);
3251 if (sched_feat(HRTICK
))
3254 raw_spin_lock_irq(&rq
->lock
);
3256 switch_count
= &prev
->nivcsw
;
3257 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3258 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
3259 prev
->state
= TASK_RUNNING
;
3261 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
3265 * If a worker went to sleep, notify and ask workqueue
3266 * whether it wants to wake up a task to maintain
3269 if (prev
->flags
& PF_WQ_WORKER
) {
3270 struct task_struct
*to_wakeup
;
3272 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
3274 try_to_wake_up_local(to_wakeup
);
3277 switch_count
= &prev
->nvcsw
;
3280 pre_schedule(rq
, prev
);
3282 if (unlikely(!rq
->nr_running
))
3283 idle_balance(cpu
, rq
);
3285 put_prev_task(rq
, prev
);
3286 next
= pick_next_task(rq
);
3287 clear_tsk_need_resched(prev
);
3288 rq
->skip_clock_update
= 0;
3290 if (likely(prev
!= next
)) {
3295 context_switch(rq
, prev
, next
); /* unlocks the rq */
3297 * The context switch have flipped the stack from under us
3298 * and restored the local variables which were saved when
3299 * this task called schedule() in the past. prev == current
3300 * is still correct, but it can be moved to another cpu/rq.
3302 cpu
= smp_processor_id();
3305 raw_spin_unlock_irq(&rq
->lock
);
3309 sched_preempt_enable_no_resched();
3314 static inline void sched_submit_work(struct task_struct
*tsk
)
3316 if (!tsk
->state
|| tsk_is_pi_blocked(tsk
))
3319 * If we are going to sleep and we have plugged IO queued,
3320 * make sure to submit it to avoid deadlocks.
3322 if (blk_needs_flush_plug(tsk
))
3323 blk_schedule_flush_plug(tsk
);
3326 asmlinkage
void __sched
schedule(void)
3328 struct task_struct
*tsk
= current
;
3330 sched_submit_work(tsk
);
3333 EXPORT_SYMBOL(schedule
);
3336 * schedule_preempt_disabled - called with preemption disabled
3338 * Returns with preemption disabled. Note: preempt_count must be 1
3340 void __sched
schedule_preempt_disabled(void)
3342 sched_preempt_enable_no_resched();
3347 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3349 static inline bool owner_running(struct mutex
*lock
, struct task_struct
*owner
)
3351 if (lock
->owner
!= owner
)
3355 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3356 * lock->owner still matches owner, if that fails, owner might
3357 * point to free()d memory, if it still matches, the rcu_read_lock()
3358 * ensures the memory stays valid.
3362 return owner
->on_cpu
;
3366 * Look out! "owner" is an entirely speculative pointer
3367 * access and not reliable.
3369 int mutex_spin_on_owner(struct mutex
*lock
, struct task_struct
*owner
)
3371 if (!sched_feat(OWNER_SPIN
))
3375 while (owner_running(lock
, owner
)) {
3379 arch_mutex_cpu_relax();
3384 * We break out the loop above on need_resched() and when the
3385 * owner changed, which is a sign for heavy contention. Return
3386 * success only when lock->owner is NULL.
3388 return lock
->owner
== NULL
;
3392 #ifdef CONFIG_PREEMPT
3394 * this is the entry point to schedule() from in-kernel preemption
3395 * off of preempt_enable. Kernel preemptions off return from interrupt
3396 * occur there and call schedule directly.
3398 asmlinkage
void __sched notrace
preempt_schedule(void)
3400 struct thread_info
*ti
= current_thread_info();
3403 * If there is a non-zero preempt_count or interrupts are disabled,
3404 * we do not want to preempt the current task. Just return..
3406 if (likely(ti
->preempt_count
|| irqs_disabled()))
3410 add_preempt_count_notrace(PREEMPT_ACTIVE
);
3412 sub_preempt_count_notrace(PREEMPT_ACTIVE
);
3415 * Check again in case we missed a preemption opportunity
3416 * between schedule and now.
3419 } while (need_resched());
3421 EXPORT_SYMBOL(preempt_schedule
);
3424 * this is the entry point to schedule() from kernel preemption
3425 * off of irq context.
3426 * Note, that this is called and return with irqs disabled. This will
3427 * protect us against recursive calling from irq.
3429 asmlinkage
void __sched
preempt_schedule_irq(void)
3431 struct thread_info
*ti
= current_thread_info();
3433 /* Catch callers which need to be fixed */
3434 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3437 add_preempt_count(PREEMPT_ACTIVE
);
3440 local_irq_disable();
3441 sub_preempt_count(PREEMPT_ACTIVE
);
3444 * Check again in case we missed a preemption opportunity
3445 * between schedule and now.
3448 } while (need_resched());
3451 #endif /* CONFIG_PREEMPT */
3453 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
3456 return try_to_wake_up(curr
->private, mode
, wake_flags
);
3458 EXPORT_SYMBOL(default_wake_function
);
3461 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3462 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3463 * number) then we wake all the non-exclusive tasks and one exclusive task.
3465 * There are circumstances in which we can try to wake a task which has already
3466 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3467 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3469 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3470 int nr_exclusive
, int wake_flags
, void *key
)
3472 wait_queue_t
*curr
, *next
;
3474 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3475 unsigned flags
= curr
->flags
;
3477 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
3478 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3484 * __wake_up - wake up threads blocked on a waitqueue.
3486 * @mode: which threads
3487 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3488 * @key: is directly passed to the wakeup function
3490 * It may be assumed that this function implies a write memory barrier before
3491 * changing the task state if and only if any tasks are woken up.
3493 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3494 int nr_exclusive
, void *key
)
3496 unsigned long flags
;
3498 spin_lock_irqsave(&q
->lock
, flags
);
3499 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3500 spin_unlock_irqrestore(&q
->lock
, flags
);
3502 EXPORT_SYMBOL(__wake_up
);
3505 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3507 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
, int nr
)
3509 __wake_up_common(q
, mode
, nr
, 0, NULL
);
3511 EXPORT_SYMBOL_GPL(__wake_up_locked
);
3513 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
3515 __wake_up_common(q
, mode
, 1, 0, key
);
3517 EXPORT_SYMBOL_GPL(__wake_up_locked_key
);
3520 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3522 * @mode: which threads
3523 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3524 * @key: opaque value to be passed to wakeup targets
3526 * The sync wakeup differs that the waker knows that it will schedule
3527 * away soon, so while the target thread will be woken up, it will not
3528 * be migrated to another CPU - ie. the two threads are 'synchronized'
3529 * with each other. This can prevent needless bouncing between CPUs.
3531 * On UP it can prevent extra preemption.
3533 * It may be assumed that this function implies a write memory barrier before
3534 * changing the task state if and only if any tasks are woken up.
3536 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
3537 int nr_exclusive
, void *key
)
3539 unsigned long flags
;
3540 int wake_flags
= WF_SYNC
;
3545 if (unlikely(!nr_exclusive
))
3548 spin_lock_irqsave(&q
->lock
, flags
);
3549 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
3550 spin_unlock_irqrestore(&q
->lock
, flags
);
3552 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
3555 * __wake_up_sync - see __wake_up_sync_key()
3557 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3559 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
3561 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3564 * complete: - signals a single thread waiting on this completion
3565 * @x: holds the state of this particular completion
3567 * This will wake up a single thread waiting on this completion. Threads will be
3568 * awakened in the same order in which they were queued.
3570 * See also complete_all(), wait_for_completion() and related routines.
3572 * It may be assumed that this function implies a write memory barrier before
3573 * changing the task state if and only if any tasks are woken up.
3575 void complete(struct completion
*x
)
3577 unsigned long flags
;
3579 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3581 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
3582 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3584 EXPORT_SYMBOL(complete
);
3587 * complete_all: - signals all threads waiting on this completion
3588 * @x: holds the state of this particular completion
3590 * This will wake up all threads waiting on this particular completion event.
3592 * It may be assumed that this function implies a write memory barrier before
3593 * changing the task state if and only if any tasks are woken up.
3595 void complete_all(struct completion
*x
)
3597 unsigned long flags
;
3599 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3600 x
->done
+= UINT_MAX
/2;
3601 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
3602 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3604 EXPORT_SYMBOL(complete_all
);
3606 static inline long __sched
3607 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
3610 DECLARE_WAITQUEUE(wait
, current
);
3612 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
3614 if (signal_pending_state(state
, current
)) {
3615 timeout
= -ERESTARTSYS
;
3618 __set_current_state(state
);
3619 spin_unlock_irq(&x
->wait
.lock
);
3620 timeout
= schedule_timeout(timeout
);
3621 spin_lock_irq(&x
->wait
.lock
);
3622 } while (!x
->done
&& timeout
);
3623 __remove_wait_queue(&x
->wait
, &wait
);
3628 return timeout
?: 1;
3632 wait_for_common(struct completion
*x
, long timeout
, int state
)
3636 spin_lock_irq(&x
->wait
.lock
);
3637 timeout
= do_wait_for_common(x
, timeout
, state
);
3638 spin_unlock_irq(&x
->wait
.lock
);
3643 * wait_for_completion: - waits for completion of a task
3644 * @x: holds the state of this particular completion
3646 * This waits to be signaled for completion of a specific task. It is NOT
3647 * interruptible and there is no timeout.
3649 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3650 * and interrupt capability. Also see complete().
3652 void __sched
wait_for_completion(struct completion
*x
)
3654 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
3656 EXPORT_SYMBOL(wait_for_completion
);
3659 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3660 * @x: holds the state of this particular completion
3661 * @timeout: timeout value in jiffies
3663 * This waits for either a completion of a specific task to be signaled or for a
3664 * specified timeout to expire. The timeout is in jiffies. It is not
3667 * The return value is 0 if timed out, and positive (at least 1, or number of
3668 * jiffies left till timeout) if completed.
3670 unsigned long __sched
3671 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3673 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
3675 EXPORT_SYMBOL(wait_for_completion_timeout
);
3678 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3679 * @x: holds the state of this particular completion
3681 * This waits for completion of a specific task to be signaled. It is
3684 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3686 int __sched
wait_for_completion_interruptible(struct completion
*x
)
3688 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
3689 if (t
== -ERESTARTSYS
)
3693 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3696 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3697 * @x: holds the state of this particular completion
3698 * @timeout: timeout value in jiffies
3700 * This waits for either a completion of a specific task to be signaled or for a
3701 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3703 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3704 * positive (at least 1, or number of jiffies left till timeout) if completed.
3707 wait_for_completion_interruptible_timeout(struct completion
*x
,
3708 unsigned long timeout
)
3710 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
3712 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3715 * wait_for_completion_killable: - waits for completion of a task (killable)
3716 * @x: holds the state of this particular completion
3718 * This waits to be signaled for completion of a specific task. It can be
3719 * interrupted by a kill signal.
3721 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3723 int __sched
wait_for_completion_killable(struct completion
*x
)
3725 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
3726 if (t
== -ERESTARTSYS
)
3730 EXPORT_SYMBOL(wait_for_completion_killable
);
3733 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3734 * @x: holds the state of this particular completion
3735 * @timeout: timeout value in jiffies
3737 * This waits for either a completion of a specific task to be
3738 * signaled or for a specified timeout to expire. It can be
3739 * interrupted by a kill signal. The timeout is in jiffies.
3741 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3742 * positive (at least 1, or number of jiffies left till timeout) if completed.
3745 wait_for_completion_killable_timeout(struct completion
*x
,
3746 unsigned long timeout
)
3748 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
3750 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
3753 * try_wait_for_completion - try to decrement a completion without blocking
3754 * @x: completion structure
3756 * Returns: 0 if a decrement cannot be done without blocking
3757 * 1 if a decrement succeeded.
3759 * If a completion is being used as a counting completion,
3760 * attempt to decrement the counter without blocking. This
3761 * enables us to avoid waiting if the resource the completion
3762 * is protecting is not available.
3764 bool try_wait_for_completion(struct completion
*x
)
3766 unsigned long flags
;
3769 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3774 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3777 EXPORT_SYMBOL(try_wait_for_completion
);
3780 * completion_done - Test to see if a completion has any waiters
3781 * @x: completion structure
3783 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3784 * 1 if there are no waiters.
3787 bool completion_done(struct completion
*x
)
3789 unsigned long flags
;
3792 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3795 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3798 EXPORT_SYMBOL(completion_done
);
3801 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
3803 unsigned long flags
;
3806 init_waitqueue_entry(&wait
, current
);
3808 __set_current_state(state
);
3810 spin_lock_irqsave(&q
->lock
, flags
);
3811 __add_wait_queue(q
, &wait
);
3812 spin_unlock(&q
->lock
);
3813 timeout
= schedule_timeout(timeout
);
3814 spin_lock_irq(&q
->lock
);
3815 __remove_wait_queue(q
, &wait
);
3816 spin_unlock_irqrestore(&q
->lock
, flags
);
3821 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3823 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3825 EXPORT_SYMBOL(interruptible_sleep_on
);
3828 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3830 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
3832 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3834 void __sched
sleep_on(wait_queue_head_t
*q
)
3836 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3838 EXPORT_SYMBOL(sleep_on
);
3840 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3842 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
3844 EXPORT_SYMBOL(sleep_on_timeout
);
3846 #ifdef CONFIG_RT_MUTEXES
3849 * rt_mutex_setprio - set the current priority of a task
3851 * @prio: prio value (kernel-internal form)
3853 * This function changes the 'effective' priority of a task. It does
3854 * not touch ->normal_prio like __setscheduler().
3856 * Used by the rt_mutex code to implement priority inheritance logic.
3858 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3860 int oldprio
, on_rq
, running
;
3862 const struct sched_class
*prev_class
;
3864 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
3866 rq
= __task_rq_lock(p
);
3869 * Idle task boosting is a nono in general. There is one
3870 * exception, when PREEMPT_RT and NOHZ is active:
3872 * The idle task calls get_next_timer_interrupt() and holds
3873 * the timer wheel base->lock on the CPU and another CPU wants
3874 * to access the timer (probably to cancel it). We can safely
3875 * ignore the boosting request, as the idle CPU runs this code
3876 * with interrupts disabled and will complete the lock
3877 * protected section without being interrupted. So there is no
3878 * real need to boost.
3880 if (unlikely(p
== rq
->idle
)) {
3881 WARN_ON(p
!= rq
->curr
);
3882 WARN_ON(p
->pi_blocked_on
);
3886 trace_sched_pi_setprio(p
, prio
);
3888 prev_class
= p
->sched_class
;
3890 running
= task_current(rq
, p
);
3892 dequeue_task(rq
, p
, 0);
3894 p
->sched_class
->put_prev_task(rq
, p
);
3897 p
->sched_class
= &rt_sched_class
;
3899 p
->sched_class
= &fair_sched_class
;
3904 p
->sched_class
->set_curr_task(rq
);
3906 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
3908 check_class_changed(rq
, p
, prev_class
, oldprio
);
3910 __task_rq_unlock(rq
);
3913 void set_user_nice(struct task_struct
*p
, long nice
)
3915 int old_prio
, delta
, on_rq
;
3916 unsigned long flags
;
3919 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3922 * We have to be careful, if called from sys_setpriority(),
3923 * the task might be in the middle of scheduling on another CPU.
3925 rq
= task_rq_lock(p
, &flags
);
3927 * The RT priorities are set via sched_setscheduler(), but we still
3928 * allow the 'normal' nice value to be set - but as expected
3929 * it wont have any effect on scheduling until the task is
3930 * SCHED_FIFO/SCHED_RR:
3932 if (task_has_rt_policy(p
)) {
3933 p
->static_prio
= NICE_TO_PRIO(nice
);
3938 dequeue_task(rq
, p
, 0);
3940 p
->static_prio
= NICE_TO_PRIO(nice
);
3943 p
->prio
= effective_prio(p
);
3944 delta
= p
->prio
- old_prio
;
3947 enqueue_task(rq
, p
, 0);
3949 * If the task increased its priority or is running and
3950 * lowered its priority, then reschedule its CPU:
3952 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3953 resched_task(rq
->curr
);
3956 task_rq_unlock(rq
, p
, &flags
);
3958 EXPORT_SYMBOL(set_user_nice
);
3961 * can_nice - check if a task can reduce its nice value
3965 int can_nice(const struct task_struct
*p
, const int nice
)
3967 /* convert nice value [19,-20] to rlimit style value [1,40] */
3968 int nice_rlim
= 20 - nice
;
3970 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
3971 capable(CAP_SYS_NICE
));
3974 #ifdef __ARCH_WANT_SYS_NICE
3977 * sys_nice - change the priority of the current process.
3978 * @increment: priority increment
3980 * sys_setpriority is a more generic, but much slower function that
3981 * does similar things.
3983 SYSCALL_DEFINE1(nice
, int, increment
)
3988 * Setpriority might change our priority at the same moment.
3989 * We don't have to worry. Conceptually one call occurs first
3990 * and we have a single winner.
3992 if (increment
< -40)
3997 nice
= TASK_NICE(current
) + increment
;
4003 if (increment
< 0 && !can_nice(current
, nice
))
4006 retval
= security_task_setnice(current
, nice
);
4010 set_user_nice(current
, nice
);
4017 * task_prio - return the priority value of a given task.
4018 * @p: the task in question.
4020 * This is the priority value as seen by users in /proc.
4021 * RT tasks are offset by -200. Normal tasks are centered
4022 * around 0, value goes from -16 to +15.
4024 int task_prio(const struct task_struct
*p
)
4026 return p
->prio
- MAX_RT_PRIO
;
4030 * task_nice - return the nice value of a given task.
4031 * @p: the task in question.
4033 int task_nice(const struct task_struct
*p
)
4035 return TASK_NICE(p
);
4037 EXPORT_SYMBOL(task_nice
);
4040 * idle_cpu - is a given cpu idle currently?
4041 * @cpu: the processor in question.
4043 int idle_cpu(int cpu
)
4045 struct rq
*rq
= cpu_rq(cpu
);
4047 if (rq
->curr
!= rq
->idle
)
4054 if (!llist_empty(&rq
->wake_list
))
4062 * idle_task - return the idle task for a given cpu.
4063 * @cpu: the processor in question.
4065 struct task_struct
*idle_task(int cpu
)
4067 return cpu_rq(cpu
)->idle
;
4071 * find_process_by_pid - find a process with a matching PID value.
4072 * @pid: the pid in question.
4074 static struct task_struct
*find_process_by_pid(pid_t pid
)
4076 return pid
? find_task_by_vpid(pid
) : current
;
4079 /* Actually do priority change: must hold rq lock. */
4081 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4084 p
->rt_priority
= prio
;
4085 p
->normal_prio
= normal_prio(p
);
4086 /* we are holding p->pi_lock already */
4087 p
->prio
= rt_mutex_getprio(p
);
4088 if (rt_prio(p
->prio
))
4089 p
->sched_class
= &rt_sched_class
;
4091 p
->sched_class
= &fair_sched_class
;
4096 * check the target process has a UID that matches the current process's
4098 static bool check_same_owner(struct task_struct
*p
)
4100 const struct cred
*cred
= current_cred(), *pcred
;
4104 pcred
= __task_cred(p
);
4105 match
= (uid_eq(cred
->euid
, pcred
->euid
) ||
4106 uid_eq(cred
->euid
, pcred
->uid
));
4111 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
4112 const struct sched_param
*param
, bool user
)
4114 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4115 unsigned long flags
;
4116 const struct sched_class
*prev_class
;
4120 /* may grab non-irq protected spin_locks */
4121 BUG_ON(in_interrupt());
4123 /* double check policy once rq lock held */
4125 reset_on_fork
= p
->sched_reset_on_fork
;
4126 policy
= oldpolicy
= p
->policy
;
4128 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
4129 policy
&= ~SCHED_RESET_ON_FORK
;
4131 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4132 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4133 policy
!= SCHED_IDLE
)
4138 * Valid priorities for SCHED_FIFO and SCHED_RR are
4139 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4140 * SCHED_BATCH and SCHED_IDLE is 0.
4142 if (param
->sched_priority
< 0 ||
4143 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4144 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4146 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4150 * Allow unprivileged RT tasks to decrease priority:
4152 if (user
&& !capable(CAP_SYS_NICE
)) {
4153 if (rt_policy(policy
)) {
4154 unsigned long rlim_rtprio
=
4155 task_rlimit(p
, RLIMIT_RTPRIO
);
4157 /* can't set/change the rt policy */
4158 if (policy
!= p
->policy
&& !rlim_rtprio
)
4161 /* can't increase priority */
4162 if (param
->sched_priority
> p
->rt_priority
&&
4163 param
->sched_priority
> rlim_rtprio
)
4168 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4169 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4171 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
) {
4172 if (!can_nice(p
, TASK_NICE(p
)))
4176 /* can't change other user's priorities */
4177 if (!check_same_owner(p
))
4180 /* Normal users shall not reset the sched_reset_on_fork flag */
4181 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4186 retval
= security_task_setscheduler(p
);
4192 * make sure no PI-waiters arrive (or leave) while we are
4193 * changing the priority of the task:
4195 * To be able to change p->policy safely, the appropriate
4196 * runqueue lock must be held.
4198 rq
= task_rq_lock(p
, &flags
);
4201 * Changing the policy of the stop threads its a very bad idea
4203 if (p
== rq
->stop
) {
4204 task_rq_unlock(rq
, p
, &flags
);
4209 * If not changing anything there's no need to proceed further:
4211 if (unlikely(policy
== p
->policy
&& (!rt_policy(policy
) ||
4212 param
->sched_priority
== p
->rt_priority
))) {
4214 __task_rq_unlock(rq
);
4215 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4219 #ifdef CONFIG_RT_GROUP_SCHED
4222 * Do not allow realtime tasks into groups that have no runtime
4225 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
4226 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
4227 !task_group_is_autogroup(task_group(p
))) {
4228 task_rq_unlock(rq
, p
, &flags
);
4234 /* recheck policy now with rq lock held */
4235 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4236 policy
= oldpolicy
= -1;
4237 task_rq_unlock(rq
, p
, &flags
);
4241 running
= task_current(rq
, p
);
4243 dequeue_task(rq
, p
, 0);
4245 p
->sched_class
->put_prev_task(rq
, p
);
4247 p
->sched_reset_on_fork
= reset_on_fork
;
4250 prev_class
= p
->sched_class
;
4251 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4254 p
->sched_class
->set_curr_task(rq
);
4256 enqueue_task(rq
, p
, 0);
4258 check_class_changed(rq
, p
, prev_class
, oldprio
);
4259 task_rq_unlock(rq
, p
, &flags
);
4261 rt_mutex_adjust_pi(p
);
4267 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4268 * @p: the task in question.
4269 * @policy: new policy.
4270 * @param: structure containing the new RT priority.
4272 * NOTE that the task may be already dead.
4274 int sched_setscheduler(struct task_struct
*p
, int policy
,
4275 const struct sched_param
*param
)
4277 return __sched_setscheduler(p
, policy
, param
, true);
4279 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4282 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4283 * @p: the task in question.
4284 * @policy: new policy.
4285 * @param: structure containing the new RT priority.
4287 * Just like sched_setscheduler, only don't bother checking if the
4288 * current context has permission. For example, this is needed in
4289 * stop_machine(): we create temporary high priority worker threads,
4290 * but our caller might not have that capability.
4292 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4293 const struct sched_param
*param
)
4295 return __sched_setscheduler(p
, policy
, param
, false);
4299 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4301 struct sched_param lparam
;
4302 struct task_struct
*p
;
4305 if (!param
|| pid
< 0)
4307 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4312 p
= find_process_by_pid(pid
);
4314 retval
= sched_setscheduler(p
, policy
, &lparam
);
4321 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4322 * @pid: the pid in question.
4323 * @policy: new policy.
4324 * @param: structure containing the new RT priority.
4326 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
4327 struct sched_param __user
*, param
)
4329 /* negative values for policy are not valid */
4333 return do_sched_setscheduler(pid
, policy
, param
);
4337 * sys_sched_setparam - set/change the RT priority of a thread
4338 * @pid: the pid in question.
4339 * @param: structure containing the new RT priority.
4341 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4343 return do_sched_setscheduler(pid
, -1, param
);
4347 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4348 * @pid: the pid in question.
4350 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
4352 struct task_struct
*p
;
4360 p
= find_process_by_pid(pid
);
4362 retval
= security_task_getscheduler(p
);
4365 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
4372 * sys_sched_getparam - get the RT priority of a thread
4373 * @pid: the pid in question.
4374 * @param: structure containing the RT priority.
4376 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4378 struct sched_param lp
;
4379 struct task_struct
*p
;
4382 if (!param
|| pid
< 0)
4386 p
= find_process_by_pid(pid
);
4391 retval
= security_task_getscheduler(p
);
4395 lp
.sched_priority
= p
->rt_priority
;
4399 * This one might sleep, we cannot do it with a spinlock held ...
4401 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4410 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4412 cpumask_var_t cpus_allowed
, new_mask
;
4413 struct task_struct
*p
;
4419 p
= find_process_by_pid(pid
);
4426 /* Prevent p going away */
4430 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
4434 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
4436 goto out_free_cpus_allowed
;
4439 if (!check_same_owner(p
) && !ns_capable(task_user_ns(p
), CAP_SYS_NICE
))
4442 retval
= security_task_setscheduler(p
);
4446 cpuset_cpus_allowed(p
, cpus_allowed
);
4447 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4449 retval
= set_cpus_allowed_ptr(p
, new_mask
);
4452 cpuset_cpus_allowed(p
, cpus_allowed
);
4453 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4455 * We must have raced with a concurrent cpuset
4456 * update. Just reset the cpus_allowed to the
4457 * cpuset's cpus_allowed
4459 cpumask_copy(new_mask
, cpus_allowed
);
4464 free_cpumask_var(new_mask
);
4465 out_free_cpus_allowed
:
4466 free_cpumask_var(cpus_allowed
);
4473 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4474 struct cpumask
*new_mask
)
4476 if (len
< cpumask_size())
4477 cpumask_clear(new_mask
);
4478 else if (len
> cpumask_size())
4479 len
= cpumask_size();
4481 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4485 * sys_sched_setaffinity - set the cpu affinity of a process
4486 * @pid: pid of the process
4487 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4488 * @user_mask_ptr: user-space pointer to the new cpu mask
4490 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4491 unsigned long __user
*, user_mask_ptr
)
4493 cpumask_var_t new_mask
;
4496 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4499 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4501 retval
= sched_setaffinity(pid
, new_mask
);
4502 free_cpumask_var(new_mask
);
4506 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4508 struct task_struct
*p
;
4509 unsigned long flags
;
4516 p
= find_process_by_pid(pid
);
4520 retval
= security_task_getscheduler(p
);
4524 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4525 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
4526 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4536 * sys_sched_getaffinity - get the cpu affinity of a process
4537 * @pid: pid of the process
4538 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4539 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4541 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4542 unsigned long __user
*, user_mask_ptr
)
4547 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4549 if (len
& (sizeof(unsigned long)-1))
4552 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4555 ret
= sched_getaffinity(pid
, mask
);
4557 size_t retlen
= min_t(size_t, len
, cpumask_size());
4559 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4564 free_cpumask_var(mask
);
4570 * sys_sched_yield - yield the current processor to other threads.
4572 * This function yields the current CPU to other tasks. If there are no
4573 * other threads running on this CPU then this function will return.
4575 SYSCALL_DEFINE0(sched_yield
)
4577 struct rq
*rq
= this_rq_lock();
4579 schedstat_inc(rq
, yld_count
);
4580 current
->sched_class
->yield_task(rq
);
4583 * Since we are going to call schedule() anyway, there's
4584 * no need to preempt or enable interrupts:
4586 __release(rq
->lock
);
4587 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4588 do_raw_spin_unlock(&rq
->lock
);
4589 sched_preempt_enable_no_resched();
4596 static inline int should_resched(void)
4598 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
4601 static void __cond_resched(void)
4603 add_preempt_count(PREEMPT_ACTIVE
);
4605 sub_preempt_count(PREEMPT_ACTIVE
);
4608 int __sched
_cond_resched(void)
4610 if (should_resched()) {
4616 EXPORT_SYMBOL(_cond_resched
);
4619 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4620 * call schedule, and on return reacquire the lock.
4622 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4623 * operations here to prevent schedule() from being called twice (once via
4624 * spin_unlock(), once by hand).
4626 int __cond_resched_lock(spinlock_t
*lock
)
4628 int resched
= should_resched();
4631 lockdep_assert_held(lock
);
4633 if (spin_needbreak(lock
) || resched
) {
4644 EXPORT_SYMBOL(__cond_resched_lock
);
4646 int __sched
__cond_resched_softirq(void)
4648 BUG_ON(!in_softirq());
4650 if (should_resched()) {
4658 EXPORT_SYMBOL(__cond_resched_softirq
);
4661 * yield - yield the current processor to other threads.
4663 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4665 * The scheduler is at all times free to pick the calling task as the most
4666 * eligible task to run, if removing the yield() call from your code breaks
4667 * it, its already broken.
4669 * Typical broken usage is:
4674 * where one assumes that yield() will let 'the other' process run that will
4675 * make event true. If the current task is a SCHED_FIFO task that will never
4676 * happen. Never use yield() as a progress guarantee!!
4678 * If you want to use yield() to wait for something, use wait_event().
4679 * If you want to use yield() to be 'nice' for others, use cond_resched().
4680 * If you still want to use yield(), do not!
4682 void __sched
yield(void)
4684 set_current_state(TASK_RUNNING
);
4687 EXPORT_SYMBOL(yield
);
4690 * yield_to - yield the current processor to another thread in
4691 * your thread group, or accelerate that thread toward the
4692 * processor it's on.
4694 * @preempt: whether task preemption is allowed or not
4696 * It's the caller's job to ensure that the target task struct
4697 * can't go away on us before we can do any checks.
4699 * Returns true if we indeed boosted the target task.
4701 bool __sched
yield_to(struct task_struct
*p
, bool preempt
)
4703 struct task_struct
*curr
= current
;
4704 struct rq
*rq
, *p_rq
;
4705 unsigned long flags
;
4708 local_irq_save(flags
);
4713 double_rq_lock(rq
, p_rq
);
4714 while (task_rq(p
) != p_rq
) {
4715 double_rq_unlock(rq
, p_rq
);
4719 if (!curr
->sched_class
->yield_to_task
)
4722 if (curr
->sched_class
!= p
->sched_class
)
4725 if (task_running(p_rq
, p
) || p
->state
)
4728 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
4730 schedstat_inc(rq
, yld_count
);
4732 * Make p's CPU reschedule; pick_next_entity takes care of
4735 if (preempt
&& rq
!= p_rq
)
4736 resched_task(p_rq
->curr
);
4739 * We might have set it in task_yield_fair(), but are
4740 * not going to schedule(), so don't want to skip
4743 rq
->skip_clock_update
= 0;
4747 double_rq_unlock(rq
, p_rq
);
4748 local_irq_restore(flags
);
4755 EXPORT_SYMBOL_GPL(yield_to
);
4758 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4759 * that process accounting knows that this is a task in IO wait state.
4761 void __sched
io_schedule(void)
4763 struct rq
*rq
= raw_rq();
4765 delayacct_blkio_start();
4766 atomic_inc(&rq
->nr_iowait
);
4767 blk_flush_plug(current
);
4768 current
->in_iowait
= 1;
4770 current
->in_iowait
= 0;
4771 atomic_dec(&rq
->nr_iowait
);
4772 delayacct_blkio_end();
4774 EXPORT_SYMBOL(io_schedule
);
4776 long __sched
io_schedule_timeout(long timeout
)
4778 struct rq
*rq
= raw_rq();
4781 delayacct_blkio_start();
4782 atomic_inc(&rq
->nr_iowait
);
4783 blk_flush_plug(current
);
4784 current
->in_iowait
= 1;
4785 ret
= schedule_timeout(timeout
);
4786 current
->in_iowait
= 0;
4787 atomic_dec(&rq
->nr_iowait
);
4788 delayacct_blkio_end();
4793 * sys_sched_get_priority_max - return maximum RT priority.
4794 * @policy: scheduling class.
4796 * this syscall returns the maximum rt_priority that can be used
4797 * by a given scheduling class.
4799 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
4806 ret
= MAX_USER_RT_PRIO
-1;
4818 * sys_sched_get_priority_min - return minimum RT priority.
4819 * @policy: scheduling class.
4821 * this syscall returns the minimum rt_priority that can be used
4822 * by a given scheduling class.
4824 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
4842 * sys_sched_rr_get_interval - return the default timeslice of a process.
4843 * @pid: pid of the process.
4844 * @interval: userspace pointer to the timeslice value.
4846 * this syscall writes the default timeslice value of a given process
4847 * into the user-space timespec buffer. A value of '0' means infinity.
4849 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
4850 struct timespec __user
*, interval
)
4852 struct task_struct
*p
;
4853 unsigned int time_slice
;
4854 unsigned long flags
;
4864 p
= find_process_by_pid(pid
);
4868 retval
= security_task_getscheduler(p
);
4872 rq
= task_rq_lock(p
, &flags
);
4873 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
4874 task_rq_unlock(rq
, p
, &flags
);
4877 jiffies_to_timespec(time_slice
, &t
);
4878 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4886 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
4888 void sched_show_task(struct task_struct
*p
)
4890 unsigned long free
= 0;
4893 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4894 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
4895 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4896 #if BITS_PER_LONG == 32
4897 if (state
== TASK_RUNNING
)
4898 printk(KERN_CONT
" running ");
4900 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
4902 if (state
== TASK_RUNNING
)
4903 printk(KERN_CONT
" running task ");
4905 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
4907 #ifdef CONFIG_DEBUG_STACK_USAGE
4908 free
= stack_not_used(p
);
4910 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
4911 task_pid_nr(p
), task_pid_nr(rcu_dereference(p
->real_parent
)),
4912 (unsigned long)task_thread_info(p
)->flags
);
4914 show_stack(p
, NULL
);
4917 void show_state_filter(unsigned long state_filter
)
4919 struct task_struct
*g
, *p
;
4921 #if BITS_PER_LONG == 32
4923 " task PC stack pid father\n");
4926 " task PC stack pid father\n");
4929 do_each_thread(g
, p
) {
4931 * reset the NMI-timeout, listing all files on a slow
4932 * console might take a lot of time:
4934 touch_nmi_watchdog();
4935 if (!state_filter
|| (p
->state
& state_filter
))
4937 } while_each_thread(g
, p
);
4939 touch_all_softlockup_watchdogs();
4941 #ifdef CONFIG_SCHED_DEBUG
4942 sysrq_sched_debug_show();
4946 * Only show locks if all tasks are dumped:
4949 debug_show_all_locks();
4952 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4954 idle
->sched_class
= &idle_sched_class
;
4958 * init_idle - set up an idle thread for a given CPU
4959 * @idle: task in question
4960 * @cpu: cpu the idle task belongs to
4962 * NOTE: this function does not set the idle thread's NEED_RESCHED
4963 * flag, to make booting more robust.
4965 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4967 struct rq
*rq
= cpu_rq(cpu
);
4968 unsigned long flags
;
4970 raw_spin_lock_irqsave(&rq
->lock
, flags
);
4973 idle
->state
= TASK_RUNNING
;
4974 idle
->se
.exec_start
= sched_clock();
4976 do_set_cpus_allowed(idle
, cpumask_of(cpu
));
4978 * We're having a chicken and egg problem, even though we are
4979 * holding rq->lock, the cpu isn't yet set to this cpu so the
4980 * lockdep check in task_group() will fail.
4982 * Similar case to sched_fork(). / Alternatively we could
4983 * use task_rq_lock() here and obtain the other rq->lock.
4988 __set_task_cpu(idle
, cpu
);
4991 rq
->curr
= rq
->idle
= idle
;
4992 #if defined(CONFIG_SMP)
4995 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
4997 /* Set the preempt count _outside_ the spinlocks! */
4998 task_thread_info(idle
)->preempt_count
= 0;
5001 * The idle tasks have their own, simple scheduling class:
5003 idle
->sched_class
= &idle_sched_class
;
5004 ftrace_graph_init_idle_task(idle
, cpu
);
5005 #if defined(CONFIG_SMP)
5006 sprintf(idle
->comm
, "%s/%d", INIT_TASK_COMM
, cpu
);
5011 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
5013 if (p
->sched_class
&& p
->sched_class
->set_cpus_allowed
)
5014 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5016 cpumask_copy(&p
->cpus_allowed
, new_mask
);
5017 p
->nr_cpus_allowed
= cpumask_weight(new_mask
);
5021 * This is how migration works:
5023 * 1) we invoke migration_cpu_stop() on the target CPU using
5025 * 2) stopper starts to run (implicitly forcing the migrated thread
5027 * 3) it checks whether the migrated task is still in the wrong runqueue.
5028 * 4) if it's in the wrong runqueue then the migration thread removes
5029 * it and puts it into the right queue.
5030 * 5) stopper completes and stop_one_cpu() returns and the migration
5035 * Change a given task's CPU affinity. Migrate the thread to a
5036 * proper CPU and schedule it away if the CPU it's executing on
5037 * is removed from the allowed bitmask.
5039 * NOTE: the caller must have a valid reference to the task, the
5040 * task must not exit() & deallocate itself prematurely. The
5041 * call is not atomic; no spinlocks may be held.
5043 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
5045 unsigned long flags
;
5047 unsigned int dest_cpu
;
5050 rq
= task_rq_lock(p
, &flags
);
5052 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
5055 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
5060 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
)) {
5065 do_set_cpus_allowed(p
, new_mask
);
5067 /* Can the task run on the task's current CPU? If so, we're done */
5068 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
5071 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
5073 struct migration_arg arg
= { p
, dest_cpu
};
5074 /* Need help from migration thread: drop lock and wait. */
5075 task_rq_unlock(rq
, p
, &flags
);
5076 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
5077 tlb_migrate_finish(p
->mm
);
5081 task_rq_unlock(rq
, p
, &flags
);
5085 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5088 * Move (not current) task off this cpu, onto dest cpu. We're doing
5089 * this because either it can't run here any more (set_cpus_allowed()
5090 * away from this CPU, or CPU going down), or because we're
5091 * attempting to rebalance this task on exec (sched_exec).
5093 * So we race with normal scheduler movements, but that's OK, as long
5094 * as the task is no longer on this CPU.
5096 * Returns non-zero if task was successfully migrated.
5098 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5100 struct rq
*rq_dest
, *rq_src
;
5103 if (unlikely(!cpu_active(dest_cpu
)))
5106 rq_src
= cpu_rq(src_cpu
);
5107 rq_dest
= cpu_rq(dest_cpu
);
5109 raw_spin_lock(&p
->pi_lock
);
5110 double_rq_lock(rq_src
, rq_dest
);
5111 /* Already moved. */
5112 if (task_cpu(p
) != src_cpu
)
5114 /* Affinity changed (again). */
5115 if (!cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
5119 * If we're not on a rq, the next wake-up will ensure we're
5123 dequeue_task(rq_src
, p
, 0);
5124 set_task_cpu(p
, dest_cpu
);
5125 enqueue_task(rq_dest
, p
, 0);
5126 check_preempt_curr(rq_dest
, p
, 0);
5131 double_rq_unlock(rq_src
, rq_dest
);
5132 raw_spin_unlock(&p
->pi_lock
);
5137 * migration_cpu_stop - this will be executed by a highprio stopper thread
5138 * and performs thread migration by bumping thread off CPU then
5139 * 'pushing' onto another runqueue.
5141 static int migration_cpu_stop(void *data
)
5143 struct migration_arg
*arg
= data
;
5146 * The original target cpu might have gone down and we might
5147 * be on another cpu but it doesn't matter.
5149 local_irq_disable();
5150 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
5155 #ifdef CONFIG_HOTPLUG_CPU
5158 * Ensures that the idle task is using init_mm right before its cpu goes
5161 void idle_task_exit(void)
5163 struct mm_struct
*mm
= current
->active_mm
;
5165 BUG_ON(cpu_online(smp_processor_id()));
5168 switch_mm(mm
, &init_mm
, current
);
5173 * While a dead CPU has no uninterruptible tasks queued at this point,
5174 * it might still have a nonzero ->nr_uninterruptible counter, because
5175 * for performance reasons the counter is not stricly tracking tasks to
5176 * their home CPUs. So we just add the counter to another CPU's counter,
5177 * to keep the global sum constant after CPU-down:
5179 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5181 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
5183 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5184 rq_src
->nr_uninterruptible
= 0;
5188 * remove the tasks which were accounted by rq from calc_load_tasks.
5190 static void calc_global_load_remove(struct rq
*rq
)
5192 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
5193 rq
->calc_load_active
= 0;
5197 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5198 * try_to_wake_up()->select_task_rq().
5200 * Called with rq->lock held even though we'er in stop_machine() and
5201 * there's no concurrency possible, we hold the required locks anyway
5202 * because of lock validation efforts.
5204 static void migrate_tasks(unsigned int dead_cpu
)
5206 struct rq
*rq
= cpu_rq(dead_cpu
);
5207 struct task_struct
*next
, *stop
= rq
->stop
;
5211 * Fudge the rq selection such that the below task selection loop
5212 * doesn't get stuck on the currently eligible stop task.
5214 * We're currently inside stop_machine() and the rq is either stuck
5215 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5216 * either way we should never end up calling schedule() until we're
5221 /* Ensure any throttled groups are reachable by pick_next_task */
5222 unthrottle_offline_cfs_rqs(rq
);
5226 * There's this thread running, bail when that's the only
5229 if (rq
->nr_running
== 1)
5232 next
= pick_next_task(rq
);
5234 next
->sched_class
->put_prev_task(rq
, next
);
5236 /* Find suitable destination for @next, with force if needed. */
5237 dest_cpu
= select_fallback_rq(dead_cpu
, next
);
5238 raw_spin_unlock(&rq
->lock
);
5240 __migrate_task(next
, dead_cpu
, dest_cpu
);
5242 raw_spin_lock(&rq
->lock
);
5248 #endif /* CONFIG_HOTPLUG_CPU */
5250 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5252 static struct ctl_table sd_ctl_dir
[] = {
5254 .procname
= "sched_domain",
5260 static struct ctl_table sd_ctl_root
[] = {
5262 .procname
= "kernel",
5264 .child
= sd_ctl_dir
,
5269 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5271 struct ctl_table
*entry
=
5272 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5277 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5279 struct ctl_table
*entry
;
5282 * In the intermediate directories, both the child directory and
5283 * procname are dynamically allocated and could fail but the mode
5284 * will always be set. In the lowest directory the names are
5285 * static strings and all have proc handlers.
5287 for (entry
= *tablep
; entry
->mode
; entry
++) {
5289 sd_free_ctl_entry(&entry
->child
);
5290 if (entry
->proc_handler
== NULL
)
5291 kfree(entry
->procname
);
5299 set_table_entry(struct ctl_table
*entry
,
5300 const char *procname
, void *data
, int maxlen
,
5301 umode_t mode
, proc_handler
*proc_handler
)
5303 entry
->procname
= procname
;
5305 entry
->maxlen
= maxlen
;
5307 entry
->proc_handler
= proc_handler
;
5310 static struct ctl_table
*
5311 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5313 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
5318 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5319 sizeof(long), 0644, proc_doulongvec_minmax
);
5320 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5321 sizeof(long), 0644, proc_doulongvec_minmax
);
5322 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5323 sizeof(int), 0644, proc_dointvec_minmax
);
5324 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5325 sizeof(int), 0644, proc_dointvec_minmax
);
5326 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5327 sizeof(int), 0644, proc_dointvec_minmax
);
5328 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5329 sizeof(int), 0644, proc_dointvec_minmax
);
5330 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5331 sizeof(int), 0644, proc_dointvec_minmax
);
5332 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5333 sizeof(int), 0644, proc_dointvec_minmax
);
5334 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5335 sizeof(int), 0644, proc_dointvec_minmax
);
5336 set_table_entry(&table
[9], "cache_nice_tries",
5337 &sd
->cache_nice_tries
,
5338 sizeof(int), 0644, proc_dointvec_minmax
);
5339 set_table_entry(&table
[10], "flags", &sd
->flags
,
5340 sizeof(int), 0644, proc_dointvec_minmax
);
5341 set_table_entry(&table
[11], "name", sd
->name
,
5342 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
5343 /* &table[12] is terminator */
5348 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5350 struct ctl_table
*entry
, *table
;
5351 struct sched_domain
*sd
;
5352 int domain_num
= 0, i
;
5355 for_each_domain(cpu
, sd
)
5357 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5362 for_each_domain(cpu
, sd
) {
5363 snprintf(buf
, 32, "domain%d", i
);
5364 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5366 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5373 static struct ctl_table_header
*sd_sysctl_header
;
5374 static void register_sched_domain_sysctl(void)
5376 int i
, cpu_num
= num_possible_cpus();
5377 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5380 WARN_ON(sd_ctl_dir
[0].child
);
5381 sd_ctl_dir
[0].child
= entry
;
5386 for_each_possible_cpu(i
) {
5387 snprintf(buf
, 32, "cpu%d", i
);
5388 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5390 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5394 WARN_ON(sd_sysctl_header
);
5395 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5398 /* may be called multiple times per register */
5399 static void unregister_sched_domain_sysctl(void)
5401 if (sd_sysctl_header
)
5402 unregister_sysctl_table(sd_sysctl_header
);
5403 sd_sysctl_header
= NULL
;
5404 if (sd_ctl_dir
[0].child
)
5405 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5408 static void register_sched_domain_sysctl(void)
5411 static void unregister_sched_domain_sysctl(void)
5416 static void set_rq_online(struct rq
*rq
)
5419 const struct sched_class
*class;
5421 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5424 for_each_class(class) {
5425 if (class->rq_online
)
5426 class->rq_online(rq
);
5431 static void set_rq_offline(struct rq
*rq
)
5434 const struct sched_class
*class;
5436 for_each_class(class) {
5437 if (class->rq_offline
)
5438 class->rq_offline(rq
);
5441 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5447 * migration_call - callback that gets triggered when a CPU is added.
5448 * Here we can start up the necessary migration thread for the new CPU.
5450 static int __cpuinit
5451 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5453 int cpu
= (long)hcpu
;
5454 unsigned long flags
;
5455 struct rq
*rq
= cpu_rq(cpu
);
5457 switch (action
& ~CPU_TASKS_FROZEN
) {
5459 case CPU_UP_PREPARE
:
5460 rq
->calc_load_update
= calc_load_update
;
5464 /* Update our root-domain */
5465 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5467 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5471 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5474 #ifdef CONFIG_HOTPLUG_CPU
5476 sched_ttwu_pending();
5477 /* Update our root-domain */
5478 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5480 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5484 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
5485 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5487 migrate_nr_uninterruptible(rq
);
5488 calc_global_load_remove(rq
);
5493 update_max_interval();
5499 * Register at high priority so that task migration (migrate_all_tasks)
5500 * happens before everything else. This has to be lower priority than
5501 * the notifier in the perf_event subsystem, though.
5503 static struct notifier_block __cpuinitdata migration_notifier
= {
5504 .notifier_call
= migration_call
,
5505 .priority
= CPU_PRI_MIGRATION
,
5508 static int __cpuinit
sched_cpu_active(struct notifier_block
*nfb
,
5509 unsigned long action
, void *hcpu
)
5511 switch (action
& ~CPU_TASKS_FROZEN
) {
5513 case CPU_DOWN_FAILED
:
5514 set_cpu_active((long)hcpu
, true);
5521 static int __cpuinit
sched_cpu_inactive(struct notifier_block
*nfb
,
5522 unsigned long action
, void *hcpu
)
5524 switch (action
& ~CPU_TASKS_FROZEN
) {
5525 case CPU_DOWN_PREPARE
:
5526 set_cpu_active((long)hcpu
, false);
5533 static int __init
migration_init(void)
5535 void *cpu
= (void *)(long)smp_processor_id();
5538 /* Initialize migration for the boot CPU */
5539 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5540 BUG_ON(err
== NOTIFY_BAD
);
5541 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5542 register_cpu_notifier(&migration_notifier
);
5544 /* Register cpu active notifiers */
5545 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
5546 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
5550 early_initcall(migration_init
);
5555 static cpumask_var_t sched_domains_tmpmask
; /* sched_domains_mutex */
5557 #ifdef CONFIG_SCHED_DEBUG
5559 static __read_mostly
int sched_domain_debug_enabled
;
5561 static int __init
sched_domain_debug_setup(char *str
)
5563 sched_domain_debug_enabled
= 1;
5567 early_param("sched_debug", sched_domain_debug_setup
);
5569 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
5570 struct cpumask
*groupmask
)
5572 struct sched_group
*group
= sd
->groups
;
5575 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
5576 cpumask_clear(groupmask
);
5578 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5580 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5581 printk("does not load-balance\n");
5583 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5588 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
5590 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
5591 printk(KERN_ERR
"ERROR: domain->span does not contain "
5594 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
5595 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5599 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5603 printk(KERN_ERR
"ERROR: group is NULL\n");
5607 if (!group
->sgp
->power
) {
5608 printk(KERN_CONT
"\n");
5609 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5614 if (!cpumask_weight(sched_group_cpus(group
))) {
5615 printk(KERN_CONT
"\n");
5616 printk(KERN_ERR
"ERROR: empty group\n");
5620 if (!(sd
->flags
& SD_OVERLAP
) &&
5621 cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
5622 printk(KERN_CONT
"\n");
5623 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5627 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
5629 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
5631 printk(KERN_CONT
" %s", str
);
5632 if (group
->sgp
->power
!= SCHED_POWER_SCALE
) {
5633 printk(KERN_CONT
" (cpu_power = %d)",
5637 group
= group
->next
;
5638 } while (group
!= sd
->groups
);
5639 printk(KERN_CONT
"\n");
5641 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
5642 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
5645 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
5646 printk(KERN_ERR
"ERROR: parent span is not a superset "
5647 "of domain->span\n");
5651 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5655 if (!sched_domain_debug_enabled
)
5659 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5663 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5666 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
5674 #else /* !CONFIG_SCHED_DEBUG */
5675 # define sched_domain_debug(sd, cpu) do { } while (0)
5676 #endif /* CONFIG_SCHED_DEBUG */
5678 static int sd_degenerate(struct sched_domain
*sd
)
5680 if (cpumask_weight(sched_domain_span(sd
)) == 1)
5683 /* Following flags need at least 2 groups */
5684 if (sd
->flags
& (SD_LOAD_BALANCE
|
5685 SD_BALANCE_NEWIDLE
|
5689 SD_SHARE_PKG_RESOURCES
)) {
5690 if (sd
->groups
!= sd
->groups
->next
)
5694 /* Following flags don't use groups */
5695 if (sd
->flags
& (SD_WAKE_AFFINE
))
5702 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5704 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5706 if (sd_degenerate(parent
))
5709 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
5712 /* Flags needing groups don't count if only 1 group in parent */
5713 if (parent
->groups
== parent
->groups
->next
) {
5714 pflags
&= ~(SD_LOAD_BALANCE
|
5715 SD_BALANCE_NEWIDLE
|
5719 SD_SHARE_PKG_RESOURCES
);
5720 if (nr_node_ids
== 1)
5721 pflags
&= ~SD_SERIALIZE
;
5723 if (~cflags
& pflags
)
5729 static void free_rootdomain(struct rcu_head
*rcu
)
5731 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
5733 cpupri_cleanup(&rd
->cpupri
);
5734 free_cpumask_var(rd
->rto_mask
);
5735 free_cpumask_var(rd
->online
);
5736 free_cpumask_var(rd
->span
);
5740 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
5742 struct root_domain
*old_rd
= NULL
;
5743 unsigned long flags
;
5745 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5750 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
5753 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
5756 * If we dont want to free the old_rt yet then
5757 * set old_rd to NULL to skip the freeing later
5760 if (!atomic_dec_and_test(&old_rd
->refcount
))
5764 atomic_inc(&rd
->refcount
);
5767 cpumask_set_cpu(rq
->cpu
, rd
->span
);
5768 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
5771 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5774 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
5777 static int init_rootdomain(struct root_domain
*rd
)
5779 memset(rd
, 0, sizeof(*rd
));
5781 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
5783 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
5785 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
5788 if (cpupri_init(&rd
->cpupri
) != 0)
5793 free_cpumask_var(rd
->rto_mask
);
5795 free_cpumask_var(rd
->online
);
5797 free_cpumask_var(rd
->span
);
5803 * By default the system creates a single root-domain with all cpus as
5804 * members (mimicking the global state we have today).
5806 struct root_domain def_root_domain
;
5808 static void init_defrootdomain(void)
5810 init_rootdomain(&def_root_domain
);
5812 atomic_set(&def_root_domain
.refcount
, 1);
5815 static struct root_domain
*alloc_rootdomain(void)
5817 struct root_domain
*rd
;
5819 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
5823 if (init_rootdomain(rd
) != 0) {
5831 static void free_sched_groups(struct sched_group
*sg
, int free_sgp
)
5833 struct sched_group
*tmp
, *first
;
5842 if (free_sgp
&& atomic_dec_and_test(&sg
->sgp
->ref
))
5847 } while (sg
!= first
);
5850 static void free_sched_domain(struct rcu_head
*rcu
)
5852 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
5855 * If its an overlapping domain it has private groups, iterate and
5858 if (sd
->flags
& SD_OVERLAP
) {
5859 free_sched_groups(sd
->groups
, 1);
5860 } else if (atomic_dec_and_test(&sd
->groups
->ref
)) {
5861 kfree(sd
->groups
->sgp
);
5867 static void destroy_sched_domain(struct sched_domain
*sd
, int cpu
)
5869 call_rcu(&sd
->rcu
, free_sched_domain
);
5872 static void destroy_sched_domains(struct sched_domain
*sd
, int cpu
)
5874 for (; sd
; sd
= sd
->parent
)
5875 destroy_sched_domain(sd
, cpu
);
5879 * Keep a special pointer to the highest sched_domain that has
5880 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5881 * allows us to avoid some pointer chasing select_idle_sibling().
5883 * Also keep a unique ID per domain (we use the first cpu number in
5884 * the cpumask of the domain), this allows us to quickly tell if
5885 * two cpus are in the same cache domain, see cpus_share_cache().
5887 DEFINE_PER_CPU(struct sched_domain
*, sd_llc
);
5888 DEFINE_PER_CPU(int, sd_llc_id
);
5890 static void update_top_cache_domain(int cpu
)
5892 struct sched_domain
*sd
;
5895 sd
= highest_flag_domain(cpu
, SD_SHARE_PKG_RESOURCES
);
5897 id
= cpumask_first(sched_domain_span(sd
));
5899 rcu_assign_pointer(per_cpu(sd_llc
, cpu
), sd
);
5900 per_cpu(sd_llc_id
, cpu
) = id
;
5904 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5905 * hold the hotplug lock.
5908 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
5910 struct rq
*rq
= cpu_rq(cpu
);
5911 struct sched_domain
*tmp
;
5913 /* Remove the sched domains which do not contribute to scheduling. */
5914 for (tmp
= sd
; tmp
; ) {
5915 struct sched_domain
*parent
= tmp
->parent
;
5919 if (sd_parent_degenerate(tmp
, parent
)) {
5920 tmp
->parent
= parent
->parent
;
5922 parent
->parent
->child
= tmp
;
5923 destroy_sched_domain(parent
, cpu
);
5928 if (sd
&& sd_degenerate(sd
)) {
5931 destroy_sched_domain(tmp
, cpu
);
5936 sched_domain_debug(sd
, cpu
);
5938 rq_attach_root(rq
, rd
);
5940 rcu_assign_pointer(rq
->sd
, sd
);
5941 destroy_sched_domains(tmp
, cpu
);
5943 update_top_cache_domain(cpu
);
5946 /* cpus with isolated domains */
5947 static cpumask_var_t cpu_isolated_map
;
5949 /* Setup the mask of cpus configured for isolated domains */
5950 static int __init
isolated_cpu_setup(char *str
)
5952 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
5953 cpulist_parse(str
, cpu_isolated_map
);
5957 __setup("isolcpus=", isolated_cpu_setup
);
5959 static const struct cpumask
*cpu_cpu_mask(int cpu
)
5961 return cpumask_of_node(cpu_to_node(cpu
));
5965 struct sched_domain
**__percpu sd
;
5966 struct sched_group
**__percpu sg
;
5967 struct sched_group_power
**__percpu sgp
;
5971 struct sched_domain
** __percpu sd
;
5972 struct root_domain
*rd
;
5982 struct sched_domain_topology_level
;
5984 typedef struct sched_domain
*(*sched_domain_init_f
)(struct sched_domain_topology_level
*tl
, int cpu
);
5985 typedef const struct cpumask
*(*sched_domain_mask_f
)(int cpu
);
5987 #define SDTL_OVERLAP 0x01
5989 struct sched_domain_topology_level
{
5990 sched_domain_init_f init
;
5991 sched_domain_mask_f mask
;
5994 struct sd_data data
;
5998 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
6000 struct sched_group
*first
= NULL
, *last
= NULL
, *groups
= NULL
, *sg
;
6001 const struct cpumask
*span
= sched_domain_span(sd
);
6002 struct cpumask
*covered
= sched_domains_tmpmask
;
6003 struct sd_data
*sdd
= sd
->private;
6004 struct sched_domain
*child
;
6007 cpumask_clear(covered
);
6009 for_each_cpu(i
, span
) {
6010 struct cpumask
*sg_span
;
6012 if (cpumask_test_cpu(i
, covered
))
6015 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6016 GFP_KERNEL
, cpu_to_node(cpu
));
6021 sg_span
= sched_group_cpus(sg
);
6023 child
= *per_cpu_ptr(sdd
->sd
, i
);
6025 child
= child
->child
;
6026 cpumask_copy(sg_span
, sched_domain_span(child
));
6028 cpumask_set_cpu(i
, sg_span
);
6030 cpumask_or(covered
, covered
, sg_span
);
6032 sg
->sgp
= *per_cpu_ptr(sdd
->sgp
, i
);
6033 atomic_inc(&sg
->sgp
->ref
);
6035 if ((!groups
&& cpumask_test_cpu(cpu
, sg_span
)) ||
6036 cpumask_first(sg_span
) == cpu
) {
6037 WARN_ON_ONCE(!cpumask_test_cpu(cpu
, sg_span
));
6048 sd
->groups
= groups
;
6053 free_sched_groups(first
, 0);
6058 static int get_group(int cpu
, struct sd_data
*sdd
, struct sched_group
**sg
)
6060 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
6061 struct sched_domain
*child
= sd
->child
;
6064 cpu
= cpumask_first(sched_domain_span(child
));
6067 *sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
6068 (*sg
)->sgp
= *per_cpu_ptr(sdd
->sgp
, cpu
);
6069 atomic_set(&(*sg
)->sgp
->ref
, 1); /* for claim_allocations */
6076 * build_sched_groups will build a circular linked list of the groups
6077 * covered by the given span, and will set each group's ->cpumask correctly,
6078 * and ->cpu_power to 0.
6080 * Assumes the sched_domain tree is fully constructed
6083 build_sched_groups(struct sched_domain
*sd
, int cpu
)
6085 struct sched_group
*first
= NULL
, *last
= NULL
;
6086 struct sd_data
*sdd
= sd
->private;
6087 const struct cpumask
*span
= sched_domain_span(sd
);
6088 struct cpumask
*covered
;
6091 get_group(cpu
, sdd
, &sd
->groups
);
6092 atomic_inc(&sd
->groups
->ref
);
6094 if (cpu
!= cpumask_first(sched_domain_span(sd
)))
6097 lockdep_assert_held(&sched_domains_mutex
);
6098 covered
= sched_domains_tmpmask
;
6100 cpumask_clear(covered
);
6102 for_each_cpu(i
, span
) {
6103 struct sched_group
*sg
;
6104 int group
= get_group(i
, sdd
, &sg
);
6107 if (cpumask_test_cpu(i
, covered
))
6110 cpumask_clear(sched_group_cpus(sg
));
6113 for_each_cpu(j
, span
) {
6114 if (get_group(j
, sdd
, NULL
) != group
)
6117 cpumask_set_cpu(j
, covered
);
6118 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6133 * Initialize sched groups cpu_power.
6135 * cpu_power indicates the capacity of sched group, which is used while
6136 * distributing the load between different sched groups in a sched domain.
6137 * Typically cpu_power for all the groups in a sched domain will be same unless
6138 * there are asymmetries in the topology. If there are asymmetries, group
6139 * having more cpu_power will pickup more load compared to the group having
6142 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6144 struct sched_group
*sg
= sd
->groups
;
6146 WARN_ON(!sd
|| !sg
);
6149 sg
->group_weight
= cpumask_weight(sched_group_cpus(sg
));
6151 } while (sg
!= sd
->groups
);
6153 if (cpu
!= group_first_cpu(sg
))
6156 update_group_power(sd
, cpu
);
6157 atomic_set(&sg
->sgp
->nr_busy_cpus
, sg
->group_weight
);
6160 int __weak
arch_sd_sibling_asym_packing(void)
6162 return 0*SD_ASYM_PACKING
;
6166 * Initializers for schedule domains
6167 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6170 #ifdef CONFIG_SCHED_DEBUG
6171 # define SD_INIT_NAME(sd, type) sd->name = #type
6173 # define SD_INIT_NAME(sd, type) do { } while (0)
6176 #define SD_INIT_FUNC(type) \
6177 static noinline struct sched_domain * \
6178 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6180 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6181 *sd = SD_##type##_INIT; \
6182 SD_INIT_NAME(sd, type); \
6183 sd->private = &tl->data; \
6188 #ifdef CONFIG_SCHED_SMT
6189 SD_INIT_FUNC(SIBLING
)
6191 #ifdef CONFIG_SCHED_MC
6194 #ifdef CONFIG_SCHED_BOOK
6198 static int default_relax_domain_level
= -1;
6199 int sched_domain_level_max
;
6201 static int __init
setup_relax_domain_level(char *str
)
6205 val
= simple_strtoul(str
, NULL
, 0);
6206 if (val
< sched_domain_level_max
)
6207 default_relax_domain_level
= val
;
6211 __setup("relax_domain_level=", setup_relax_domain_level
);
6213 static void set_domain_attribute(struct sched_domain
*sd
,
6214 struct sched_domain_attr
*attr
)
6218 if (!attr
|| attr
->relax_domain_level
< 0) {
6219 if (default_relax_domain_level
< 0)
6222 request
= default_relax_domain_level
;
6224 request
= attr
->relax_domain_level
;
6225 if (request
< sd
->level
) {
6226 /* turn off idle balance on this domain */
6227 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6229 /* turn on idle balance on this domain */
6230 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6234 static void __sdt_free(const struct cpumask
*cpu_map
);
6235 static int __sdt_alloc(const struct cpumask
*cpu_map
);
6237 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
6238 const struct cpumask
*cpu_map
)
6242 if (!atomic_read(&d
->rd
->refcount
))
6243 free_rootdomain(&d
->rd
->rcu
); /* fall through */
6245 free_percpu(d
->sd
); /* fall through */
6247 __sdt_free(cpu_map
); /* fall through */
6253 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
6254 const struct cpumask
*cpu_map
)
6256 memset(d
, 0, sizeof(*d
));
6258 if (__sdt_alloc(cpu_map
))
6259 return sa_sd_storage
;
6260 d
->sd
= alloc_percpu(struct sched_domain
*);
6262 return sa_sd_storage
;
6263 d
->rd
= alloc_rootdomain();
6266 return sa_rootdomain
;
6270 * NULL the sd_data elements we've used to build the sched_domain and
6271 * sched_group structure so that the subsequent __free_domain_allocs()
6272 * will not free the data we're using.
6274 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
6276 struct sd_data
*sdd
= sd
->private;
6278 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
6279 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
6281 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
6282 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
6284 if (atomic_read(&(*per_cpu_ptr(sdd
->sgp
, cpu
))->ref
))
6285 *per_cpu_ptr(sdd
->sgp
, cpu
) = NULL
;
6288 #ifdef CONFIG_SCHED_SMT
6289 static const struct cpumask
*cpu_smt_mask(int cpu
)
6291 return topology_thread_cpumask(cpu
);
6296 * Topology list, bottom-up.
6298 static struct sched_domain_topology_level default_topology
[] = {
6299 #ifdef CONFIG_SCHED_SMT
6300 { sd_init_SIBLING
, cpu_smt_mask
, },
6302 #ifdef CONFIG_SCHED_MC
6303 { sd_init_MC
, cpu_coregroup_mask
, },
6305 #ifdef CONFIG_SCHED_BOOK
6306 { sd_init_BOOK
, cpu_book_mask
, },
6308 { sd_init_CPU
, cpu_cpu_mask
, },
6312 static struct sched_domain_topology_level
*sched_domain_topology
= default_topology
;
6316 static int sched_domains_numa_levels
;
6317 static int sched_domains_numa_scale
;
6318 static int *sched_domains_numa_distance
;
6319 static struct cpumask
***sched_domains_numa_masks
;
6320 static int sched_domains_curr_level
;
6322 static inline int sd_local_flags(int level
)
6324 if (sched_domains_numa_distance
[level
] > REMOTE_DISTANCE
)
6327 return SD_BALANCE_EXEC
| SD_BALANCE_FORK
| SD_WAKE_AFFINE
;
6330 static struct sched_domain
*
6331 sd_numa_init(struct sched_domain_topology_level
*tl
, int cpu
)
6333 struct sched_domain
*sd
= *per_cpu_ptr(tl
->data
.sd
, cpu
);
6334 int level
= tl
->numa_level
;
6335 int sd_weight
= cpumask_weight(
6336 sched_domains_numa_masks
[level
][cpu_to_node(cpu
)]);
6338 *sd
= (struct sched_domain
){
6339 .min_interval
= sd_weight
,
6340 .max_interval
= 2*sd_weight
,
6342 .imbalance_pct
= 125,
6343 .cache_nice_tries
= 2,
6350 .flags
= 1*SD_LOAD_BALANCE
6351 | 1*SD_BALANCE_NEWIDLE
6357 | 0*SD_SHARE_CPUPOWER
6358 | 0*SD_SHARE_PKG_RESOURCES
6360 | 0*SD_PREFER_SIBLING
6361 | sd_local_flags(level
)
6363 .last_balance
= jiffies
,
6364 .balance_interval
= sd_weight
,
6366 SD_INIT_NAME(sd
, NUMA
);
6367 sd
->private = &tl
->data
;
6370 * Ugly hack to pass state to sd_numa_mask()...
6372 sched_domains_curr_level
= tl
->numa_level
;
6377 static const struct cpumask
*sd_numa_mask(int cpu
)
6379 return sched_domains_numa_masks
[sched_domains_curr_level
][cpu_to_node(cpu
)];
6382 static void sched_init_numa(void)
6384 int next_distance
, curr_distance
= node_distance(0, 0);
6385 struct sched_domain_topology_level
*tl
;
6389 sched_domains_numa_scale
= curr_distance
;
6390 sched_domains_numa_distance
= kzalloc(sizeof(int) * nr_node_ids
, GFP_KERNEL
);
6391 if (!sched_domains_numa_distance
)
6395 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6396 * unique distances in the node_distance() table.
6398 * Assumes node_distance(0,j) includes all distances in
6399 * node_distance(i,j) in order to avoid cubic time.
6401 * XXX: could be optimized to O(n log n) by using sort()
6403 next_distance
= curr_distance
;
6404 for (i
= 0; i
< nr_node_ids
; i
++) {
6405 for (j
= 0; j
< nr_node_ids
; j
++) {
6406 int distance
= node_distance(0, j
);
6407 if (distance
> curr_distance
&&
6408 (distance
< next_distance
||
6409 next_distance
== curr_distance
))
6410 next_distance
= distance
;
6412 if (next_distance
!= curr_distance
) {
6413 sched_domains_numa_distance
[level
++] = next_distance
;
6414 sched_domains_numa_levels
= level
;
6415 curr_distance
= next_distance
;
6419 * 'level' contains the number of unique distances, excluding the
6420 * identity distance node_distance(i,i).
6422 * The sched_domains_nume_distance[] array includes the actual distance
6426 sched_domains_numa_masks
= kzalloc(sizeof(void *) * level
, GFP_KERNEL
);
6427 if (!sched_domains_numa_masks
)
6431 * Now for each level, construct a mask per node which contains all
6432 * cpus of nodes that are that many hops away from us.
6434 for (i
= 0; i
< level
; i
++) {
6435 sched_domains_numa_masks
[i
] =
6436 kzalloc(nr_node_ids
* sizeof(void *), GFP_KERNEL
);
6437 if (!sched_domains_numa_masks
[i
])
6440 for (j
= 0; j
< nr_node_ids
; j
++) {
6441 struct cpumask
*mask
= kzalloc(cpumask_size(), GFP_KERNEL
);
6445 sched_domains_numa_masks
[i
][j
] = mask
;
6447 for (k
= 0; k
< nr_node_ids
; k
++) {
6448 if (node_distance(j
, k
) > sched_domains_numa_distance
[i
])
6451 cpumask_or(mask
, mask
, cpumask_of_node(k
));
6456 tl
= kzalloc((ARRAY_SIZE(default_topology
) + level
) *
6457 sizeof(struct sched_domain_topology_level
), GFP_KERNEL
);
6462 * Copy the default topology bits..
6464 for (i
= 0; default_topology
[i
].init
; i
++)
6465 tl
[i
] = default_topology
[i
];
6468 * .. and append 'j' levels of NUMA goodness.
6470 for (j
= 0; j
< level
; i
++, j
++) {
6471 tl
[i
] = (struct sched_domain_topology_level
){
6472 .init
= sd_numa_init
,
6473 .mask
= sd_numa_mask
,
6474 .flags
= SDTL_OVERLAP
,
6479 sched_domain_topology
= tl
;
6482 static inline void sched_init_numa(void)
6485 #endif /* CONFIG_NUMA */
6487 static int __sdt_alloc(const struct cpumask
*cpu_map
)
6489 struct sched_domain_topology_level
*tl
;
6492 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
6493 struct sd_data
*sdd
= &tl
->data
;
6495 sdd
->sd
= alloc_percpu(struct sched_domain
*);
6499 sdd
->sg
= alloc_percpu(struct sched_group
*);
6503 sdd
->sgp
= alloc_percpu(struct sched_group_power
*);
6507 for_each_cpu(j
, cpu_map
) {
6508 struct sched_domain
*sd
;
6509 struct sched_group
*sg
;
6510 struct sched_group_power
*sgp
;
6512 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
6513 GFP_KERNEL
, cpu_to_node(j
));
6517 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
6519 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6520 GFP_KERNEL
, cpu_to_node(j
));
6526 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
6528 sgp
= kzalloc_node(sizeof(struct sched_group_power
),
6529 GFP_KERNEL
, cpu_to_node(j
));
6533 *per_cpu_ptr(sdd
->sgp
, j
) = sgp
;
6540 static void __sdt_free(const struct cpumask
*cpu_map
)
6542 struct sched_domain_topology_level
*tl
;
6545 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
6546 struct sd_data
*sdd
= &tl
->data
;
6548 for_each_cpu(j
, cpu_map
) {
6549 struct sched_domain
*sd
;
6552 sd
= *per_cpu_ptr(sdd
->sd
, j
);
6553 if (sd
&& (sd
->flags
& SD_OVERLAP
))
6554 free_sched_groups(sd
->groups
, 0);
6555 kfree(*per_cpu_ptr(sdd
->sd
, j
));
6559 kfree(*per_cpu_ptr(sdd
->sg
, j
));
6561 kfree(*per_cpu_ptr(sdd
->sgp
, j
));
6563 free_percpu(sdd
->sd
);
6565 free_percpu(sdd
->sg
);
6567 free_percpu(sdd
->sgp
);
6572 struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
6573 struct s_data
*d
, const struct cpumask
*cpu_map
,
6574 struct sched_domain_attr
*attr
, struct sched_domain
*child
,
6577 struct sched_domain
*sd
= tl
->init(tl
, cpu
);
6581 set_domain_attribute(sd
, attr
);
6582 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
6584 sd
->level
= child
->level
+ 1;
6585 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
6594 * Build sched domains for a given set of cpus and attach the sched domains
6595 * to the individual cpus
6597 static int build_sched_domains(const struct cpumask
*cpu_map
,
6598 struct sched_domain_attr
*attr
)
6600 enum s_alloc alloc_state
= sa_none
;
6601 struct sched_domain
*sd
;
6603 int i
, ret
= -ENOMEM
;
6605 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
6606 if (alloc_state
!= sa_rootdomain
)
6609 /* Set up domains for cpus specified by the cpu_map. */
6610 for_each_cpu(i
, cpu_map
) {
6611 struct sched_domain_topology_level
*tl
;
6614 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
6615 sd
= build_sched_domain(tl
, &d
, cpu_map
, attr
, sd
, i
);
6616 if (tl
->flags
& SDTL_OVERLAP
|| sched_feat(FORCE_SD_OVERLAP
))
6617 sd
->flags
|= SD_OVERLAP
;
6618 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
6625 *per_cpu_ptr(d
.sd
, i
) = sd
;
6628 /* Build the groups for the domains */
6629 for_each_cpu(i
, cpu_map
) {
6630 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
6631 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
6632 if (sd
->flags
& SD_OVERLAP
) {
6633 if (build_overlap_sched_groups(sd
, i
))
6636 if (build_sched_groups(sd
, i
))
6642 /* Calculate CPU power for physical packages and nodes */
6643 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
6644 if (!cpumask_test_cpu(i
, cpu_map
))
6647 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
6648 claim_allocations(i
, sd
);
6649 init_sched_groups_power(i
, sd
);
6653 /* Attach the domains */
6655 for_each_cpu(i
, cpu_map
) {
6656 sd
= *per_cpu_ptr(d
.sd
, i
);
6657 cpu_attach_domain(sd
, d
.rd
, i
);
6663 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
6667 static cpumask_var_t
*doms_cur
; /* current sched domains */
6668 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6669 static struct sched_domain_attr
*dattr_cur
;
6670 /* attribues of custom domains in 'doms_cur' */
6673 * Special case: If a kmalloc of a doms_cur partition (array of
6674 * cpumask) fails, then fallback to a single sched domain,
6675 * as determined by the single cpumask fallback_doms.
6677 static cpumask_var_t fallback_doms
;
6680 * arch_update_cpu_topology lets virtualized architectures update the
6681 * cpu core maps. It is supposed to return 1 if the topology changed
6682 * or 0 if it stayed the same.
6684 int __attribute__((weak
)) arch_update_cpu_topology(void)
6689 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
6692 cpumask_var_t
*doms
;
6694 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
6697 for (i
= 0; i
< ndoms
; i
++) {
6698 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
6699 free_sched_domains(doms
, i
);
6706 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
6709 for (i
= 0; i
< ndoms
; i
++)
6710 free_cpumask_var(doms
[i
]);
6715 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6716 * For now this just excludes isolated cpus, but could be used to
6717 * exclude other special cases in the future.
6719 static int init_sched_domains(const struct cpumask
*cpu_map
)
6723 arch_update_cpu_topology();
6725 doms_cur
= alloc_sched_domains(ndoms_cur
);
6727 doms_cur
= &fallback_doms
;
6728 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
6729 err
= build_sched_domains(doms_cur
[0], NULL
);
6730 register_sched_domain_sysctl();
6736 * Detach sched domains from a group of cpus specified in cpu_map
6737 * These cpus will now be attached to the NULL domain
6739 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
6744 for_each_cpu(i
, cpu_map
)
6745 cpu_attach_domain(NULL
, &def_root_domain
, i
);
6749 /* handle null as "default" */
6750 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
6751 struct sched_domain_attr
*new, int idx_new
)
6753 struct sched_domain_attr tmp
;
6760 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
6761 new ? (new + idx_new
) : &tmp
,
6762 sizeof(struct sched_domain_attr
));
6766 * Partition sched domains as specified by the 'ndoms_new'
6767 * cpumasks in the array doms_new[] of cpumasks. This compares
6768 * doms_new[] to the current sched domain partitioning, doms_cur[].
6769 * It destroys each deleted domain and builds each new domain.
6771 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6772 * The masks don't intersect (don't overlap.) We should setup one
6773 * sched domain for each mask. CPUs not in any of the cpumasks will
6774 * not be load balanced. If the same cpumask appears both in the
6775 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6778 * The passed in 'doms_new' should be allocated using
6779 * alloc_sched_domains. This routine takes ownership of it and will
6780 * free_sched_domains it when done with it. If the caller failed the
6781 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6782 * and partition_sched_domains() will fallback to the single partition
6783 * 'fallback_doms', it also forces the domains to be rebuilt.
6785 * If doms_new == NULL it will be replaced with cpu_online_mask.
6786 * ndoms_new == 0 is a special case for destroying existing domains,
6787 * and it will not create the default domain.
6789 * Call with hotplug lock held
6791 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
6792 struct sched_domain_attr
*dattr_new
)
6797 mutex_lock(&sched_domains_mutex
);
6799 /* always unregister in case we don't destroy any domains */
6800 unregister_sched_domain_sysctl();
6802 /* Let architecture update cpu core mappings. */
6803 new_topology
= arch_update_cpu_topology();
6805 n
= doms_new
? ndoms_new
: 0;
6807 /* Destroy deleted domains */
6808 for (i
= 0; i
< ndoms_cur
; i
++) {
6809 for (j
= 0; j
< n
&& !new_topology
; j
++) {
6810 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
6811 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
6814 /* no match - a current sched domain not in new doms_new[] */
6815 detach_destroy_domains(doms_cur
[i
]);
6820 if (doms_new
== NULL
) {
6822 doms_new
= &fallback_doms
;
6823 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
6824 WARN_ON_ONCE(dattr_new
);
6827 /* Build new domains */
6828 for (i
= 0; i
< ndoms_new
; i
++) {
6829 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
6830 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
6831 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
6834 /* no match - add a new doms_new */
6835 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
6840 /* Remember the new sched domains */
6841 if (doms_cur
!= &fallback_doms
)
6842 free_sched_domains(doms_cur
, ndoms_cur
);
6843 kfree(dattr_cur
); /* kfree(NULL) is safe */
6844 doms_cur
= doms_new
;
6845 dattr_cur
= dattr_new
;
6846 ndoms_cur
= ndoms_new
;
6848 register_sched_domain_sysctl();
6850 mutex_unlock(&sched_domains_mutex
);
6854 * Update cpusets according to cpu_active mask. If cpusets are
6855 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6856 * around partition_sched_domains().
6858 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
6861 switch (action
& ~CPU_TASKS_FROZEN
) {
6863 case CPU_DOWN_FAILED
:
6864 cpuset_update_active_cpus();
6871 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
6874 switch (action
& ~CPU_TASKS_FROZEN
) {
6875 case CPU_DOWN_PREPARE
:
6876 cpuset_update_active_cpus();
6883 void __init
sched_init_smp(void)
6885 cpumask_var_t non_isolated_cpus
;
6887 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
6888 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
6893 mutex_lock(&sched_domains_mutex
);
6894 init_sched_domains(cpu_active_mask
);
6895 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
6896 if (cpumask_empty(non_isolated_cpus
))
6897 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
6898 mutex_unlock(&sched_domains_mutex
);
6901 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
6902 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
6904 /* RT runtime code needs to handle some hotplug events */
6905 hotcpu_notifier(update_runtime
, 0);
6909 /* Move init over to a non-isolated CPU */
6910 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
6912 sched_init_granularity();
6913 free_cpumask_var(non_isolated_cpus
);
6915 init_sched_rt_class();
6918 void __init
sched_init_smp(void)
6920 sched_init_granularity();
6922 #endif /* CONFIG_SMP */
6924 const_debug
unsigned int sysctl_timer_migration
= 1;
6926 int in_sched_functions(unsigned long addr
)
6928 return in_lock_functions(addr
) ||
6929 (addr
>= (unsigned long)__sched_text_start
6930 && addr
< (unsigned long)__sched_text_end
);
6933 #ifdef CONFIG_CGROUP_SCHED
6934 struct task_group root_task_group
;
6937 DECLARE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
6939 void __init
sched_init(void)
6942 unsigned long alloc_size
= 0, ptr
;
6944 #ifdef CONFIG_FAIR_GROUP_SCHED
6945 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
6947 #ifdef CONFIG_RT_GROUP_SCHED
6948 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
6950 #ifdef CONFIG_CPUMASK_OFFSTACK
6951 alloc_size
+= num_possible_cpus() * cpumask_size();
6954 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
6956 #ifdef CONFIG_FAIR_GROUP_SCHED
6957 root_task_group
.se
= (struct sched_entity
**)ptr
;
6958 ptr
+= nr_cpu_ids
* sizeof(void **);
6960 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
6961 ptr
+= nr_cpu_ids
* sizeof(void **);
6963 #endif /* CONFIG_FAIR_GROUP_SCHED */
6964 #ifdef CONFIG_RT_GROUP_SCHED
6965 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
6966 ptr
+= nr_cpu_ids
* sizeof(void **);
6968 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
6969 ptr
+= nr_cpu_ids
* sizeof(void **);
6971 #endif /* CONFIG_RT_GROUP_SCHED */
6972 #ifdef CONFIG_CPUMASK_OFFSTACK
6973 for_each_possible_cpu(i
) {
6974 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
6975 ptr
+= cpumask_size();
6977 #endif /* CONFIG_CPUMASK_OFFSTACK */
6981 init_defrootdomain();
6984 init_rt_bandwidth(&def_rt_bandwidth
,
6985 global_rt_period(), global_rt_runtime());
6987 #ifdef CONFIG_RT_GROUP_SCHED
6988 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
6989 global_rt_period(), global_rt_runtime());
6990 #endif /* CONFIG_RT_GROUP_SCHED */
6992 #ifdef CONFIG_CGROUP_SCHED
6993 list_add(&root_task_group
.list
, &task_groups
);
6994 INIT_LIST_HEAD(&root_task_group
.children
);
6995 INIT_LIST_HEAD(&root_task_group
.siblings
);
6996 autogroup_init(&init_task
);
6998 #endif /* CONFIG_CGROUP_SCHED */
7000 #ifdef CONFIG_CGROUP_CPUACCT
7001 root_cpuacct
.cpustat
= &kernel_cpustat
;
7002 root_cpuacct
.cpuusage
= alloc_percpu(u64
);
7003 /* Too early, not expected to fail */
7004 BUG_ON(!root_cpuacct
.cpuusage
);
7006 for_each_possible_cpu(i
) {
7010 raw_spin_lock_init(&rq
->lock
);
7012 rq
->calc_load_active
= 0;
7013 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7014 init_cfs_rq(&rq
->cfs
);
7015 init_rt_rq(&rq
->rt
, rq
);
7016 #ifdef CONFIG_FAIR_GROUP_SCHED
7017 root_task_group
.shares
= ROOT_TASK_GROUP_LOAD
;
7018 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7020 * How much cpu bandwidth does root_task_group get?
7022 * In case of task-groups formed thr' the cgroup filesystem, it
7023 * gets 100% of the cpu resources in the system. This overall
7024 * system cpu resource is divided among the tasks of
7025 * root_task_group and its child task-groups in a fair manner,
7026 * based on each entity's (task or task-group's) weight
7027 * (se->load.weight).
7029 * In other words, if root_task_group has 10 tasks of weight
7030 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7031 * then A0's share of the cpu resource is:
7033 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7035 * We achieve this by letting root_task_group's tasks sit
7036 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7038 init_cfs_bandwidth(&root_task_group
.cfs_bandwidth
);
7039 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
7040 #endif /* CONFIG_FAIR_GROUP_SCHED */
7042 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7043 #ifdef CONFIG_RT_GROUP_SCHED
7044 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7045 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
7048 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7049 rq
->cpu_load
[j
] = 0;
7051 rq
->last_load_update_tick
= jiffies
;
7056 rq
->cpu_power
= SCHED_POWER_SCALE
;
7057 rq
->post_schedule
= 0;
7058 rq
->active_balance
= 0;
7059 rq
->next_balance
= jiffies
;
7064 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
7066 INIT_LIST_HEAD(&rq
->cfs_tasks
);
7068 rq_attach_root(rq
, &def_root_domain
);
7074 atomic_set(&rq
->nr_iowait
, 0);
7077 set_load_weight(&init_task
);
7079 #ifdef CONFIG_PREEMPT_NOTIFIERS
7080 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7083 #ifdef CONFIG_RT_MUTEXES
7084 plist_head_init(&init_task
.pi_waiters
);
7088 * The boot idle thread does lazy MMU switching as well:
7090 atomic_inc(&init_mm
.mm_count
);
7091 enter_lazy_tlb(&init_mm
, current
);
7094 * Make us the idle thread. Technically, schedule() should not be
7095 * called from this thread, however somewhere below it might be,
7096 * but because we are the idle thread, we just pick up running again
7097 * when this runqueue becomes "idle".
7099 init_idle(current
, smp_processor_id());
7101 calc_load_update
= jiffies
+ LOAD_FREQ
;
7104 * During early bootup we pretend to be a normal task:
7106 current
->sched_class
= &fair_sched_class
;
7109 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_NOWAIT
);
7110 /* May be allocated at isolcpus cmdline parse time */
7111 if (cpu_isolated_map
== NULL
)
7112 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
7113 idle_thread_set_boot_cpu();
7115 init_sched_fair_class();
7117 scheduler_running
= 1;
7120 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7121 static inline int preempt_count_equals(int preempt_offset
)
7123 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
7125 return (nested
== preempt_offset
);
7128 void __might_sleep(const char *file
, int line
, int preempt_offset
)
7130 static unsigned long prev_jiffy
; /* ratelimiting */
7132 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7133 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
7134 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
7136 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7138 prev_jiffy
= jiffies
;
7141 "BUG: sleeping function called from invalid context at %s:%d\n",
7144 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7145 in_atomic(), irqs_disabled(),
7146 current
->pid
, current
->comm
);
7148 debug_show_held_locks(current
);
7149 if (irqs_disabled())
7150 print_irqtrace_events(current
);
7153 EXPORT_SYMBOL(__might_sleep
);
7156 #ifdef CONFIG_MAGIC_SYSRQ
7157 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7159 const struct sched_class
*prev_class
= p
->sched_class
;
7160 int old_prio
= p
->prio
;
7165 dequeue_task(rq
, p
, 0);
7166 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
7168 enqueue_task(rq
, p
, 0);
7169 resched_task(rq
->curr
);
7172 check_class_changed(rq
, p
, prev_class
, old_prio
);
7175 void normalize_rt_tasks(void)
7177 struct task_struct
*g
, *p
;
7178 unsigned long flags
;
7181 read_lock_irqsave(&tasklist_lock
, flags
);
7182 do_each_thread(g
, p
) {
7184 * Only normalize user tasks:
7189 p
->se
.exec_start
= 0;
7190 #ifdef CONFIG_SCHEDSTATS
7191 p
->se
.statistics
.wait_start
= 0;
7192 p
->se
.statistics
.sleep_start
= 0;
7193 p
->se
.statistics
.block_start
= 0;
7198 * Renice negative nice level userspace
7201 if (TASK_NICE(p
) < 0 && p
->mm
)
7202 set_user_nice(p
, 0);
7206 raw_spin_lock(&p
->pi_lock
);
7207 rq
= __task_rq_lock(p
);
7209 normalize_task(rq
, p
);
7211 __task_rq_unlock(rq
);
7212 raw_spin_unlock(&p
->pi_lock
);
7213 } while_each_thread(g
, p
);
7215 read_unlock_irqrestore(&tasklist_lock
, flags
);
7218 #endif /* CONFIG_MAGIC_SYSRQ */
7220 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7222 * These functions are only useful for the IA64 MCA handling, or kdb.
7224 * They can only be called when the whole system has been
7225 * stopped - every CPU needs to be quiescent, and no scheduling
7226 * activity can take place. Using them for anything else would
7227 * be a serious bug, and as a result, they aren't even visible
7228 * under any other configuration.
7232 * curr_task - return the current task for a given cpu.
7233 * @cpu: the processor in question.
7235 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7237 struct task_struct
*curr_task(int cpu
)
7239 return cpu_curr(cpu
);
7242 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7246 * set_curr_task - set the current task for a given cpu.
7247 * @cpu: the processor in question.
7248 * @p: the task pointer to set.
7250 * Description: This function must only be used when non-maskable interrupts
7251 * are serviced on a separate stack. It allows the architecture to switch the
7252 * notion of the current task on a cpu in a non-blocking manner. This function
7253 * must be called with all CPU's synchronized, and interrupts disabled, the
7254 * and caller must save the original value of the current task (see
7255 * curr_task() above) and restore that value before reenabling interrupts and
7256 * re-starting the system.
7258 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7260 void set_curr_task(int cpu
, struct task_struct
*p
)
7267 #ifdef CONFIG_CGROUP_SCHED
7268 /* task_group_lock serializes the addition/removal of task groups */
7269 static DEFINE_SPINLOCK(task_group_lock
);
7271 static void free_sched_group(struct task_group
*tg
)
7273 free_fair_sched_group(tg
);
7274 free_rt_sched_group(tg
);
7279 /* allocate runqueue etc for a new task group */
7280 struct task_group
*sched_create_group(struct task_group
*parent
)
7282 struct task_group
*tg
;
7283 unsigned long flags
;
7285 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
7287 return ERR_PTR(-ENOMEM
);
7289 if (!alloc_fair_sched_group(tg
, parent
))
7292 if (!alloc_rt_sched_group(tg
, parent
))
7295 spin_lock_irqsave(&task_group_lock
, flags
);
7296 list_add_rcu(&tg
->list
, &task_groups
);
7298 WARN_ON(!parent
); /* root should already exist */
7300 tg
->parent
= parent
;
7301 INIT_LIST_HEAD(&tg
->children
);
7302 list_add_rcu(&tg
->siblings
, &parent
->children
);
7303 spin_unlock_irqrestore(&task_group_lock
, flags
);
7308 free_sched_group(tg
);
7309 return ERR_PTR(-ENOMEM
);
7312 /* rcu callback to free various structures associated with a task group */
7313 static void free_sched_group_rcu(struct rcu_head
*rhp
)
7315 /* now it should be safe to free those cfs_rqs */
7316 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
7319 /* Destroy runqueue etc associated with a task group */
7320 void sched_destroy_group(struct task_group
*tg
)
7322 unsigned long flags
;
7325 /* end participation in shares distribution */
7326 for_each_possible_cpu(i
)
7327 unregister_fair_sched_group(tg
, i
);
7329 spin_lock_irqsave(&task_group_lock
, flags
);
7330 list_del_rcu(&tg
->list
);
7331 list_del_rcu(&tg
->siblings
);
7332 spin_unlock_irqrestore(&task_group_lock
, flags
);
7334 /* wait for possible concurrent references to cfs_rqs complete */
7335 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
7338 /* change task's runqueue when it moves between groups.
7339 * The caller of this function should have put the task in its new group
7340 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7341 * reflect its new group.
7343 void sched_move_task(struct task_struct
*tsk
)
7346 unsigned long flags
;
7349 rq
= task_rq_lock(tsk
, &flags
);
7351 running
= task_current(rq
, tsk
);
7355 dequeue_task(rq
, tsk
, 0);
7356 if (unlikely(running
))
7357 tsk
->sched_class
->put_prev_task(rq
, tsk
);
7359 #ifdef CONFIG_FAIR_GROUP_SCHED
7360 if (tsk
->sched_class
->task_move_group
)
7361 tsk
->sched_class
->task_move_group(tsk
, on_rq
);
7364 set_task_rq(tsk
, task_cpu(tsk
));
7366 if (unlikely(running
))
7367 tsk
->sched_class
->set_curr_task(rq
);
7369 enqueue_task(rq
, tsk
, 0);
7371 task_rq_unlock(rq
, tsk
, &flags
);
7373 #endif /* CONFIG_CGROUP_SCHED */
7375 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7376 static unsigned long to_ratio(u64 period
, u64 runtime
)
7378 if (runtime
== RUNTIME_INF
)
7381 return div64_u64(runtime
<< 20, period
);
7385 #ifdef CONFIG_RT_GROUP_SCHED
7387 * Ensure that the real time constraints are schedulable.
7389 static DEFINE_MUTEX(rt_constraints_mutex
);
7391 /* Must be called with tasklist_lock held */
7392 static inline int tg_has_rt_tasks(struct task_group
*tg
)
7394 struct task_struct
*g
, *p
;
7396 do_each_thread(g
, p
) {
7397 if (rt_task(p
) && task_rq(p
)->rt
.tg
== tg
)
7399 } while_each_thread(g
, p
);
7404 struct rt_schedulable_data
{
7405 struct task_group
*tg
;
7410 static int tg_rt_schedulable(struct task_group
*tg
, void *data
)
7412 struct rt_schedulable_data
*d
= data
;
7413 struct task_group
*child
;
7414 unsigned long total
, sum
= 0;
7415 u64 period
, runtime
;
7417 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7418 runtime
= tg
->rt_bandwidth
.rt_runtime
;
7421 period
= d
->rt_period
;
7422 runtime
= d
->rt_runtime
;
7426 * Cannot have more runtime than the period.
7428 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
7432 * Ensure we don't starve existing RT tasks.
7434 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
7437 total
= to_ratio(period
, runtime
);
7440 * Nobody can have more than the global setting allows.
7442 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
7446 * The sum of our children's runtime should not exceed our own.
7448 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
7449 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
7450 runtime
= child
->rt_bandwidth
.rt_runtime
;
7452 if (child
== d
->tg
) {
7453 period
= d
->rt_period
;
7454 runtime
= d
->rt_runtime
;
7457 sum
+= to_ratio(period
, runtime
);
7466 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
7470 struct rt_schedulable_data data
= {
7472 .rt_period
= period
,
7473 .rt_runtime
= runtime
,
7477 ret
= walk_tg_tree(tg_rt_schedulable
, tg_nop
, &data
);
7483 static int tg_set_rt_bandwidth(struct task_group
*tg
,
7484 u64 rt_period
, u64 rt_runtime
)
7488 mutex_lock(&rt_constraints_mutex
);
7489 read_lock(&tasklist_lock
);
7490 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
7494 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
7495 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
7496 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
7498 for_each_possible_cpu(i
) {
7499 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
7501 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
7502 rt_rq
->rt_runtime
= rt_runtime
;
7503 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
7505 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
7507 read_unlock(&tasklist_lock
);
7508 mutex_unlock(&rt_constraints_mutex
);
7513 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
7515 u64 rt_runtime
, rt_period
;
7517 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7518 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
7519 if (rt_runtime_us
< 0)
7520 rt_runtime
= RUNTIME_INF
;
7522 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
7525 long sched_group_rt_runtime(struct task_group
*tg
)
7529 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
7532 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
7533 do_div(rt_runtime_us
, NSEC_PER_USEC
);
7534 return rt_runtime_us
;
7537 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
7539 u64 rt_runtime
, rt_period
;
7541 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
7542 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7547 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
7550 long sched_group_rt_period(struct task_group
*tg
)
7554 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7555 do_div(rt_period_us
, NSEC_PER_USEC
);
7556 return rt_period_us
;
7559 static int sched_rt_global_constraints(void)
7561 u64 runtime
, period
;
7564 if (sysctl_sched_rt_period
<= 0)
7567 runtime
= global_rt_runtime();
7568 period
= global_rt_period();
7571 * Sanity check on the sysctl variables.
7573 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
7576 mutex_lock(&rt_constraints_mutex
);
7577 read_lock(&tasklist_lock
);
7578 ret
= __rt_schedulable(NULL
, 0, 0);
7579 read_unlock(&tasklist_lock
);
7580 mutex_unlock(&rt_constraints_mutex
);
7585 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
7587 /* Don't accept realtime tasks when there is no way for them to run */
7588 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
7594 #else /* !CONFIG_RT_GROUP_SCHED */
7595 static int sched_rt_global_constraints(void)
7597 unsigned long flags
;
7600 if (sysctl_sched_rt_period
<= 0)
7604 * There's always some RT tasks in the root group
7605 * -- migration, kstopmachine etc..
7607 if (sysctl_sched_rt_runtime
== 0)
7610 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
7611 for_each_possible_cpu(i
) {
7612 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
7614 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
7615 rt_rq
->rt_runtime
= global_rt_runtime();
7616 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
7618 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
7622 #endif /* CONFIG_RT_GROUP_SCHED */
7624 int sched_rt_handler(struct ctl_table
*table
, int write
,
7625 void __user
*buffer
, size_t *lenp
,
7629 int old_period
, old_runtime
;
7630 static DEFINE_MUTEX(mutex
);
7633 old_period
= sysctl_sched_rt_period
;
7634 old_runtime
= sysctl_sched_rt_runtime
;
7636 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
7638 if (!ret
&& write
) {
7639 ret
= sched_rt_global_constraints();
7641 sysctl_sched_rt_period
= old_period
;
7642 sysctl_sched_rt_runtime
= old_runtime
;
7644 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
7645 def_rt_bandwidth
.rt_period
=
7646 ns_to_ktime(global_rt_period());
7649 mutex_unlock(&mutex
);
7654 #ifdef CONFIG_CGROUP_SCHED
7656 /* return corresponding task_group object of a cgroup */
7657 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
7659 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
7660 struct task_group
, css
);
7663 static struct cgroup_subsys_state
*cpu_cgroup_create(struct cgroup
*cgrp
)
7665 struct task_group
*tg
, *parent
;
7667 if (!cgrp
->parent
) {
7668 /* This is early initialization for the top cgroup */
7669 return &root_task_group
.css
;
7672 parent
= cgroup_tg(cgrp
->parent
);
7673 tg
= sched_create_group(parent
);
7675 return ERR_PTR(-ENOMEM
);
7680 static void cpu_cgroup_destroy(struct cgroup
*cgrp
)
7682 struct task_group
*tg
= cgroup_tg(cgrp
);
7684 sched_destroy_group(tg
);
7687 static int cpu_cgroup_can_attach(struct cgroup
*cgrp
,
7688 struct cgroup_taskset
*tset
)
7690 struct task_struct
*task
;
7692 cgroup_taskset_for_each(task
, cgrp
, tset
) {
7693 #ifdef CONFIG_RT_GROUP_SCHED
7694 if (!sched_rt_can_attach(cgroup_tg(cgrp
), task
))
7697 /* We don't support RT-tasks being in separate groups */
7698 if (task
->sched_class
!= &fair_sched_class
)
7705 static void cpu_cgroup_attach(struct cgroup
*cgrp
,
7706 struct cgroup_taskset
*tset
)
7708 struct task_struct
*task
;
7710 cgroup_taskset_for_each(task
, cgrp
, tset
)
7711 sched_move_task(task
);
7715 cpu_cgroup_exit(struct cgroup
*cgrp
, struct cgroup
*old_cgrp
,
7716 struct task_struct
*task
)
7719 * cgroup_exit() is called in the copy_process() failure path.
7720 * Ignore this case since the task hasn't ran yet, this avoids
7721 * trying to poke a half freed task state from generic code.
7723 if (!(task
->flags
& PF_EXITING
))
7726 sched_move_task(task
);
7729 #ifdef CONFIG_FAIR_GROUP_SCHED
7730 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
7733 return sched_group_set_shares(cgroup_tg(cgrp
), scale_load(shareval
));
7736 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
7738 struct task_group
*tg
= cgroup_tg(cgrp
);
7740 return (u64
) scale_load_down(tg
->shares
);
7743 #ifdef CONFIG_CFS_BANDWIDTH
7744 static DEFINE_MUTEX(cfs_constraints_mutex
);
7746 const u64 max_cfs_quota_period
= 1 * NSEC_PER_SEC
; /* 1s */
7747 const u64 min_cfs_quota_period
= 1 * NSEC_PER_MSEC
; /* 1ms */
7749 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
);
7751 static int tg_set_cfs_bandwidth(struct task_group
*tg
, u64 period
, u64 quota
)
7753 int i
, ret
= 0, runtime_enabled
, runtime_was_enabled
;
7754 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
7756 if (tg
== &root_task_group
)
7760 * Ensure we have at some amount of bandwidth every period. This is
7761 * to prevent reaching a state of large arrears when throttled via
7762 * entity_tick() resulting in prolonged exit starvation.
7764 if (quota
< min_cfs_quota_period
|| period
< min_cfs_quota_period
)
7768 * Likewise, bound things on the otherside by preventing insane quota
7769 * periods. This also allows us to normalize in computing quota
7772 if (period
> max_cfs_quota_period
)
7775 mutex_lock(&cfs_constraints_mutex
);
7776 ret
= __cfs_schedulable(tg
, period
, quota
);
7780 runtime_enabled
= quota
!= RUNTIME_INF
;
7781 runtime_was_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
7782 account_cfs_bandwidth_used(runtime_enabled
, runtime_was_enabled
);
7783 raw_spin_lock_irq(&cfs_b
->lock
);
7784 cfs_b
->period
= ns_to_ktime(period
);
7785 cfs_b
->quota
= quota
;
7787 __refill_cfs_bandwidth_runtime(cfs_b
);
7788 /* restart the period timer (if active) to handle new period expiry */
7789 if (runtime_enabled
&& cfs_b
->timer_active
) {
7790 /* force a reprogram */
7791 cfs_b
->timer_active
= 0;
7792 __start_cfs_bandwidth(cfs_b
);
7794 raw_spin_unlock_irq(&cfs_b
->lock
);
7796 for_each_possible_cpu(i
) {
7797 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[i
];
7798 struct rq
*rq
= cfs_rq
->rq
;
7800 raw_spin_lock_irq(&rq
->lock
);
7801 cfs_rq
->runtime_enabled
= runtime_enabled
;
7802 cfs_rq
->runtime_remaining
= 0;
7804 if (cfs_rq
->throttled
)
7805 unthrottle_cfs_rq(cfs_rq
);
7806 raw_spin_unlock_irq(&rq
->lock
);
7809 mutex_unlock(&cfs_constraints_mutex
);
7814 int tg_set_cfs_quota(struct task_group
*tg
, long cfs_quota_us
)
7818 period
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
7819 if (cfs_quota_us
< 0)
7820 quota
= RUNTIME_INF
;
7822 quota
= (u64
)cfs_quota_us
* NSEC_PER_USEC
;
7824 return tg_set_cfs_bandwidth(tg
, period
, quota
);
7827 long tg_get_cfs_quota(struct task_group
*tg
)
7831 if (tg
->cfs_bandwidth
.quota
== RUNTIME_INF
)
7834 quota_us
= tg
->cfs_bandwidth
.quota
;
7835 do_div(quota_us
, NSEC_PER_USEC
);
7840 int tg_set_cfs_period(struct task_group
*tg
, long cfs_period_us
)
7844 period
= (u64
)cfs_period_us
* NSEC_PER_USEC
;
7845 quota
= tg
->cfs_bandwidth
.quota
;
7847 return tg_set_cfs_bandwidth(tg
, period
, quota
);
7850 long tg_get_cfs_period(struct task_group
*tg
)
7854 cfs_period_us
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
7855 do_div(cfs_period_us
, NSEC_PER_USEC
);
7857 return cfs_period_us
;
7860 static s64
cpu_cfs_quota_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
)
7862 return tg_get_cfs_quota(cgroup_tg(cgrp
));
7865 static int cpu_cfs_quota_write_s64(struct cgroup
*cgrp
, struct cftype
*cftype
,
7868 return tg_set_cfs_quota(cgroup_tg(cgrp
), cfs_quota_us
);
7871 static u64
cpu_cfs_period_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
7873 return tg_get_cfs_period(cgroup_tg(cgrp
));
7876 static int cpu_cfs_period_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
7879 return tg_set_cfs_period(cgroup_tg(cgrp
), cfs_period_us
);
7882 struct cfs_schedulable_data
{
7883 struct task_group
*tg
;
7888 * normalize group quota/period to be quota/max_period
7889 * note: units are usecs
7891 static u64
normalize_cfs_quota(struct task_group
*tg
,
7892 struct cfs_schedulable_data
*d
)
7900 period
= tg_get_cfs_period(tg
);
7901 quota
= tg_get_cfs_quota(tg
);
7904 /* note: these should typically be equivalent */
7905 if (quota
== RUNTIME_INF
|| quota
== -1)
7908 return to_ratio(period
, quota
);
7911 static int tg_cfs_schedulable_down(struct task_group
*tg
, void *data
)
7913 struct cfs_schedulable_data
*d
= data
;
7914 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
7915 s64 quota
= 0, parent_quota
= -1;
7918 quota
= RUNTIME_INF
;
7920 struct cfs_bandwidth
*parent_b
= &tg
->parent
->cfs_bandwidth
;
7922 quota
= normalize_cfs_quota(tg
, d
);
7923 parent_quota
= parent_b
->hierarchal_quota
;
7926 * ensure max(child_quota) <= parent_quota, inherit when no
7929 if (quota
== RUNTIME_INF
)
7930 quota
= parent_quota
;
7931 else if (parent_quota
!= RUNTIME_INF
&& quota
> parent_quota
)
7934 cfs_b
->hierarchal_quota
= quota
;
7939 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 quota
)
7942 struct cfs_schedulable_data data
= {
7948 if (quota
!= RUNTIME_INF
) {
7949 do_div(data
.period
, NSEC_PER_USEC
);
7950 do_div(data
.quota
, NSEC_PER_USEC
);
7954 ret
= walk_tg_tree(tg_cfs_schedulable_down
, tg_nop
, &data
);
7960 static int cpu_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
7961 struct cgroup_map_cb
*cb
)
7963 struct task_group
*tg
= cgroup_tg(cgrp
);
7964 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
7966 cb
->fill(cb
, "nr_periods", cfs_b
->nr_periods
);
7967 cb
->fill(cb
, "nr_throttled", cfs_b
->nr_throttled
);
7968 cb
->fill(cb
, "throttled_time", cfs_b
->throttled_time
);
7972 #endif /* CONFIG_CFS_BANDWIDTH */
7973 #endif /* CONFIG_FAIR_GROUP_SCHED */
7975 #ifdef CONFIG_RT_GROUP_SCHED
7976 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
7979 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
7982 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
7984 return sched_group_rt_runtime(cgroup_tg(cgrp
));
7987 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
7990 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
7993 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
7995 return sched_group_rt_period(cgroup_tg(cgrp
));
7997 #endif /* CONFIG_RT_GROUP_SCHED */
7999 static struct cftype cpu_files
[] = {
8000 #ifdef CONFIG_FAIR_GROUP_SCHED
8003 .read_u64
= cpu_shares_read_u64
,
8004 .write_u64
= cpu_shares_write_u64
,
8007 #ifdef CONFIG_CFS_BANDWIDTH
8009 .name
= "cfs_quota_us",
8010 .read_s64
= cpu_cfs_quota_read_s64
,
8011 .write_s64
= cpu_cfs_quota_write_s64
,
8014 .name
= "cfs_period_us",
8015 .read_u64
= cpu_cfs_period_read_u64
,
8016 .write_u64
= cpu_cfs_period_write_u64
,
8020 .read_map
= cpu_stats_show
,
8023 #ifdef CONFIG_RT_GROUP_SCHED
8025 .name
= "rt_runtime_us",
8026 .read_s64
= cpu_rt_runtime_read
,
8027 .write_s64
= cpu_rt_runtime_write
,
8030 .name
= "rt_period_us",
8031 .read_u64
= cpu_rt_period_read_uint
,
8032 .write_u64
= cpu_rt_period_write_uint
,
8038 struct cgroup_subsys cpu_cgroup_subsys
= {
8040 .create
= cpu_cgroup_create
,
8041 .destroy
= cpu_cgroup_destroy
,
8042 .can_attach
= cpu_cgroup_can_attach
,
8043 .attach
= cpu_cgroup_attach
,
8044 .exit
= cpu_cgroup_exit
,
8045 .subsys_id
= cpu_cgroup_subsys_id
,
8046 .base_cftypes
= cpu_files
,
8050 #endif /* CONFIG_CGROUP_SCHED */
8052 #ifdef CONFIG_CGROUP_CPUACCT
8055 * CPU accounting code for task groups.
8057 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8058 * (balbir@in.ibm.com).
8061 /* create a new cpu accounting group */
8062 static struct cgroup_subsys_state
*cpuacct_create(struct cgroup
*cgrp
)
8067 return &root_cpuacct
.css
;
8069 ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8073 ca
->cpuusage
= alloc_percpu(u64
);
8077 ca
->cpustat
= alloc_percpu(struct kernel_cpustat
);
8079 goto out_free_cpuusage
;
8084 free_percpu(ca
->cpuusage
);
8088 return ERR_PTR(-ENOMEM
);
8091 /* destroy an existing cpu accounting group */
8092 static void cpuacct_destroy(struct cgroup
*cgrp
)
8094 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8096 free_percpu(ca
->cpustat
);
8097 free_percpu(ca
->cpuusage
);
8101 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
8103 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8106 #ifndef CONFIG_64BIT
8108 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8110 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8112 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8120 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
8122 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8124 #ifndef CONFIG_64BIT
8126 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8128 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8130 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8136 /* return total cpu usage (in nanoseconds) of a group */
8137 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8139 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8140 u64 totalcpuusage
= 0;
8143 for_each_present_cpu(i
)
8144 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
8146 return totalcpuusage
;
8149 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
8152 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8161 for_each_present_cpu(i
)
8162 cpuacct_cpuusage_write(ca
, i
, 0);
8168 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
8171 struct cpuacct
*ca
= cgroup_ca(cgroup
);
8175 for_each_present_cpu(i
) {
8176 percpu
= cpuacct_cpuusage_read(ca
, i
);
8177 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
8179 seq_printf(m
, "\n");
8183 static const char *cpuacct_stat_desc
[] = {
8184 [CPUACCT_STAT_USER
] = "user",
8185 [CPUACCT_STAT_SYSTEM
] = "system",
8188 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
8189 struct cgroup_map_cb
*cb
)
8191 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8195 for_each_online_cpu(cpu
) {
8196 struct kernel_cpustat
*kcpustat
= per_cpu_ptr(ca
->cpustat
, cpu
);
8197 val
+= kcpustat
->cpustat
[CPUTIME_USER
];
8198 val
+= kcpustat
->cpustat
[CPUTIME_NICE
];
8200 val
= cputime64_to_clock_t(val
);
8201 cb
->fill(cb
, cpuacct_stat_desc
[CPUACCT_STAT_USER
], val
);
8204 for_each_online_cpu(cpu
) {
8205 struct kernel_cpustat
*kcpustat
= per_cpu_ptr(ca
->cpustat
, cpu
);
8206 val
+= kcpustat
->cpustat
[CPUTIME_SYSTEM
];
8207 val
+= kcpustat
->cpustat
[CPUTIME_IRQ
];
8208 val
+= kcpustat
->cpustat
[CPUTIME_SOFTIRQ
];
8211 val
= cputime64_to_clock_t(val
);
8212 cb
->fill(cb
, cpuacct_stat_desc
[CPUACCT_STAT_SYSTEM
], val
);
8217 static struct cftype files
[] = {
8220 .read_u64
= cpuusage_read
,
8221 .write_u64
= cpuusage_write
,
8224 .name
= "usage_percpu",
8225 .read_seq_string
= cpuacct_percpu_seq_read
,
8229 .read_map
= cpuacct_stats_show
,
8235 * charge this task's execution time to its accounting group.
8237 * called with rq->lock held.
8239 void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
8244 if (unlikely(!cpuacct_subsys
.active
))
8247 cpu
= task_cpu(tsk
);
8253 for (; ca
; ca
= parent_ca(ca
)) {
8254 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8255 *cpuusage
+= cputime
;
8261 struct cgroup_subsys cpuacct_subsys
= {
8263 .create
= cpuacct_create
,
8264 .destroy
= cpuacct_destroy
,
8265 .subsys_id
= cpuacct_subsys_id
,
8266 .base_cftypes
= files
,
8268 #endif /* CONFIG_CGROUP_CPUACCT */