c46958e2612143ede81602d05129c064eacfc2e2
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
82 #endif
83
84 #include "sched.h"
85 #include "../workqueue_sched.h"
86 #include "../smpboot.h"
87
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/sched.h>
90
91 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92 {
93 unsigned long delta;
94 ktime_t soft, hard, now;
95
96 for (;;) {
97 if (hrtimer_active(period_timer))
98 break;
99
100 now = hrtimer_cb_get_time(period_timer);
101 hrtimer_forward(period_timer, now, period);
102
103 soft = hrtimer_get_softexpires(period_timer);
104 hard = hrtimer_get_expires(period_timer);
105 delta = ktime_to_ns(ktime_sub(hard, soft));
106 __hrtimer_start_range_ns(period_timer, soft, delta,
107 HRTIMER_MODE_ABS_PINNED, 0);
108 }
109 }
110
111 DEFINE_MUTEX(sched_domains_mutex);
112 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113
114 static void update_rq_clock_task(struct rq *rq, s64 delta);
115
116 void update_rq_clock(struct rq *rq)
117 {
118 s64 delta;
119
120 if (rq->skip_clock_update > 0)
121 return;
122
123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 rq->clock += delta;
125 update_rq_clock_task(rq, delta);
126 }
127
128 /*
129 * Debugging: various feature bits
130 */
131
132 #define SCHED_FEAT(name, enabled) \
133 (1UL << __SCHED_FEAT_##name) * enabled |
134
135 const_debug unsigned int sysctl_sched_features =
136 #include "features.h"
137 0;
138
139 #undef SCHED_FEAT
140
141 #ifdef CONFIG_SCHED_DEBUG
142 #define SCHED_FEAT(name, enabled) \
143 #name ,
144
145 static const char * const sched_feat_names[] = {
146 #include "features.h"
147 };
148
149 #undef SCHED_FEAT
150
151 static int sched_feat_show(struct seq_file *m, void *v)
152 {
153 int i;
154
155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
159 }
160 seq_puts(m, "\n");
161
162 return 0;
163 }
164
165 #ifdef HAVE_JUMP_LABEL
166
167 #define jump_label_key__true STATIC_KEY_INIT_TRUE
168 #define jump_label_key__false STATIC_KEY_INIT_FALSE
169
170 #define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
172
173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 #include "features.h"
175 };
176
177 #undef SCHED_FEAT
178
179 static void sched_feat_disable(int i)
180 {
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
183 }
184
185 static void sched_feat_enable(int i)
186 {
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
189 }
190 #else
191 static void sched_feat_disable(int i) { };
192 static void sched_feat_enable(int i) { };
193 #endif /* HAVE_JUMP_LABEL */
194
195 static ssize_t
196 sched_feat_write(struct file *filp, const char __user *ubuf,
197 size_t cnt, loff_t *ppos)
198 {
199 char buf[64];
200 char *cmp;
201 int neg = 0;
202 int i;
203
204 if (cnt > 63)
205 cnt = 63;
206
207 if (copy_from_user(&buf, ubuf, cnt))
208 return -EFAULT;
209
210 buf[cnt] = 0;
211 cmp = strstrip(buf);
212
213 if (strncmp(cmp, "NO_", 3) == 0) {
214 neg = 1;
215 cmp += 3;
216 }
217
218 for (i = 0; i < __SCHED_FEAT_NR; i++) {
219 if (strcmp(cmp, sched_feat_names[i]) == 0) {
220 if (neg) {
221 sysctl_sched_features &= ~(1UL << i);
222 sched_feat_disable(i);
223 } else {
224 sysctl_sched_features |= (1UL << i);
225 sched_feat_enable(i);
226 }
227 break;
228 }
229 }
230
231 if (i == __SCHED_FEAT_NR)
232 return -EINVAL;
233
234 *ppos += cnt;
235
236 return cnt;
237 }
238
239 static int sched_feat_open(struct inode *inode, struct file *filp)
240 {
241 return single_open(filp, sched_feat_show, NULL);
242 }
243
244 static const struct file_operations sched_feat_fops = {
245 .open = sched_feat_open,
246 .write = sched_feat_write,
247 .read = seq_read,
248 .llseek = seq_lseek,
249 .release = single_release,
250 };
251
252 static __init int sched_init_debug(void)
253 {
254 debugfs_create_file("sched_features", 0644, NULL, NULL,
255 &sched_feat_fops);
256
257 return 0;
258 }
259 late_initcall(sched_init_debug);
260 #endif /* CONFIG_SCHED_DEBUG */
261
262 /*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266 const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
268 /*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
276 /*
277 * period over which we measure -rt task cpu usage in us.
278 * default: 1s
279 */
280 unsigned int sysctl_sched_rt_period = 1000000;
281
282 __read_mostly int scheduler_running;
283
284 /*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288 int sysctl_sched_rt_runtime = 950000;
289
290
291
292 /*
293 * __task_rq_lock - lock the rq @p resides on.
294 */
295 static inline struct rq *__task_rq_lock(struct task_struct *p)
296 __acquires(rq->lock)
297 {
298 struct rq *rq;
299
300 lockdep_assert_held(&p->pi_lock);
301
302 for (;;) {
303 rq = task_rq(p);
304 raw_spin_lock(&rq->lock);
305 if (likely(rq == task_rq(p)))
306 return rq;
307 raw_spin_unlock(&rq->lock);
308 }
309 }
310
311 /*
312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313 */
314 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315 __acquires(p->pi_lock)
316 __acquires(rq->lock)
317 {
318 struct rq *rq;
319
320 for (;;) {
321 raw_spin_lock_irqsave(&p->pi_lock, *flags);
322 rq = task_rq(p);
323 raw_spin_lock(&rq->lock);
324 if (likely(rq == task_rq(p)))
325 return rq;
326 raw_spin_unlock(&rq->lock);
327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328 }
329 }
330
331 static void __task_rq_unlock(struct rq *rq)
332 __releases(rq->lock)
333 {
334 raw_spin_unlock(&rq->lock);
335 }
336
337 static inline void
338 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339 __releases(rq->lock)
340 __releases(p->pi_lock)
341 {
342 raw_spin_unlock(&rq->lock);
343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344 }
345
346 /*
347 * this_rq_lock - lock this runqueue and disable interrupts.
348 */
349 static struct rq *this_rq_lock(void)
350 __acquires(rq->lock)
351 {
352 struct rq *rq;
353
354 local_irq_disable();
355 rq = this_rq();
356 raw_spin_lock(&rq->lock);
357
358 return rq;
359 }
360
361 #ifdef CONFIG_SCHED_HRTICK
362 /*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
372
373 static void hrtick_clear(struct rq *rq)
374 {
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377 }
378
379 /*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
384 {
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389 raw_spin_lock(&rq->lock);
390 update_rq_clock(rq);
391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 raw_spin_unlock(&rq->lock);
393
394 return HRTIMER_NORESTART;
395 }
396
397 #ifdef CONFIG_SMP
398 /*
399 * called from hardirq (IPI) context
400 */
401 static void __hrtick_start(void *arg)
402 {
403 struct rq *rq = arg;
404
405 raw_spin_lock(&rq->lock);
406 hrtimer_restart(&rq->hrtick_timer);
407 rq->hrtick_csd_pending = 0;
408 raw_spin_unlock(&rq->lock);
409 }
410
411 /*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
416 void hrtick_start(struct rq *rq, u64 delay)
417 {
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420
421 hrtimer_set_expires(timer, time);
422
423 if (rq == this_rq()) {
424 hrtimer_restart(timer);
425 } else if (!rq->hrtick_csd_pending) {
426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 rq->hrtick_csd_pending = 1;
428 }
429 }
430
431 static int
432 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433 {
434 int cpu = (int)(long)hcpu;
435
436 switch (action) {
437 case CPU_UP_CANCELED:
438 case CPU_UP_CANCELED_FROZEN:
439 case CPU_DOWN_PREPARE:
440 case CPU_DOWN_PREPARE_FROZEN:
441 case CPU_DEAD:
442 case CPU_DEAD_FROZEN:
443 hrtick_clear(cpu_rq(cpu));
444 return NOTIFY_OK;
445 }
446
447 return NOTIFY_DONE;
448 }
449
450 static __init void init_hrtick(void)
451 {
452 hotcpu_notifier(hotplug_hrtick, 0);
453 }
454 #else
455 /*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
460 void hrtick_start(struct rq *rq, u64 delay)
461 {
462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463 HRTIMER_MODE_REL_PINNED, 0);
464 }
465
466 static inline void init_hrtick(void)
467 {
468 }
469 #endif /* CONFIG_SMP */
470
471 static void init_rq_hrtick(struct rq *rq)
472 {
473 #ifdef CONFIG_SMP
474 rq->hrtick_csd_pending = 0;
475
476 rq->hrtick_csd.flags = 0;
477 rq->hrtick_csd.func = __hrtick_start;
478 rq->hrtick_csd.info = rq;
479 #endif
480
481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 rq->hrtick_timer.function = hrtick;
483 }
484 #else /* CONFIG_SCHED_HRTICK */
485 static inline void hrtick_clear(struct rq *rq)
486 {
487 }
488
489 static inline void init_rq_hrtick(struct rq *rq)
490 {
491 }
492
493 static inline void init_hrtick(void)
494 {
495 }
496 #endif /* CONFIG_SCHED_HRTICK */
497
498 /*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505 #ifdef CONFIG_SMP
506
507 #ifndef tsk_is_polling
508 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509 #endif
510
511 void resched_task(struct task_struct *p)
512 {
513 int cpu;
514
515 assert_raw_spin_locked(&task_rq(p)->lock);
516
517 if (test_tsk_need_resched(p))
518 return;
519
520 set_tsk_need_resched(p);
521
522 cpu = task_cpu(p);
523 if (cpu == smp_processor_id())
524 return;
525
526 /* NEED_RESCHED must be visible before we test polling */
527 smp_mb();
528 if (!tsk_is_polling(p))
529 smp_send_reschedule(cpu);
530 }
531
532 void resched_cpu(int cpu)
533 {
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
537 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538 return;
539 resched_task(cpu_curr(cpu));
540 raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542
543 #ifdef CONFIG_NO_HZ
544 /*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552 int get_nohz_timer_target(void)
553 {
554 int cpu = smp_processor_id();
555 int i;
556 struct sched_domain *sd;
557
558 rcu_read_lock();
559 for_each_domain(cpu, sd) {
560 for_each_cpu(i, sched_domain_span(sd)) {
561 if (!idle_cpu(i)) {
562 cpu = i;
563 goto unlock;
564 }
565 }
566 }
567 unlock:
568 rcu_read_unlock();
569 return cpu;
570 }
571 /*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581 void wake_up_idle_cpu(int cpu)
582 {
583 struct rq *rq = cpu_rq(cpu);
584
585 if (cpu == smp_processor_id())
586 return;
587
588 /*
589 * This is safe, as this function is called with the timer
590 * wheel base lock of (cpu) held. When the CPU is on the way
591 * to idle and has not yet set rq->curr to idle then it will
592 * be serialized on the timer wheel base lock and take the new
593 * timer into account automatically.
594 */
595 if (rq->curr != rq->idle)
596 return;
597
598 /*
599 * We can set TIF_RESCHED on the idle task of the other CPU
600 * lockless. The worst case is that the other CPU runs the
601 * idle task through an additional NOOP schedule()
602 */
603 set_tsk_need_resched(rq->idle);
604
605 /* NEED_RESCHED must be visible before we test polling */
606 smp_mb();
607 if (!tsk_is_polling(rq->idle))
608 smp_send_reschedule(cpu);
609 }
610
611 static inline bool got_nohz_idle_kick(void)
612 {
613 int cpu = smp_processor_id();
614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 }
616
617 #else /* CONFIG_NO_HZ */
618
619 static inline bool got_nohz_idle_kick(void)
620 {
621 return false;
622 }
623
624 #endif /* CONFIG_NO_HZ */
625
626 void sched_avg_update(struct rq *rq)
627 {
628 s64 period = sched_avg_period();
629
630 while ((s64)(rq->clock - rq->age_stamp) > period) {
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
640 }
641
642 #else /* !CONFIG_SMP */
643 void resched_task(struct task_struct *p)
644 {
645 assert_raw_spin_locked(&task_rq(p)->lock);
646 set_tsk_need_resched(p);
647 }
648 #endif /* CONFIG_SMP */
649
650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652 /*
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
657 */
658 int walk_tg_tree_from(struct task_group *from,
659 tg_visitor down, tg_visitor up, void *data)
660 {
661 struct task_group *parent, *child;
662 int ret;
663
664 parent = from;
665
666 down:
667 ret = (*down)(parent, data);
668 if (ret)
669 goto out;
670 list_for_each_entry_rcu(child, &parent->children, siblings) {
671 parent = child;
672 goto down;
673
674 up:
675 continue;
676 }
677 ret = (*up)(parent, data);
678 if (ret || parent == from)
679 goto out;
680
681 child = parent;
682 parent = parent->parent;
683 if (parent)
684 goto up;
685 out:
686 return ret;
687 }
688
689 int tg_nop(struct task_group *tg, void *data)
690 {
691 return 0;
692 }
693 #endif
694
695 static void set_load_weight(struct task_struct *p)
696 {
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
704 load->weight = scale_load(WEIGHT_IDLEPRIO);
705 load->inv_weight = WMULT_IDLEPRIO;
706 return;
707 }
708
709 load->weight = scale_load(prio_to_weight[prio]);
710 load->inv_weight = prio_to_wmult[prio];
711 }
712
713 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714 {
715 update_rq_clock(rq);
716 sched_info_queued(p);
717 p->sched_class->enqueue_task(rq, p, flags);
718 }
719
720 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721 {
722 update_rq_clock(rq);
723 sched_info_dequeued(p);
724 p->sched_class->dequeue_task(rq, p, flags);
725 }
726
727 void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 {
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
732 enqueue_task(rq, p, flags);
733 }
734
735 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 {
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
740 dequeue_task(rq, p, flags);
741 }
742
743 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
744
745 /*
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
755 */
756 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757 static DEFINE_PER_CPU(u64, cpu_softirq_time);
758
759 static DEFINE_PER_CPU(u64, irq_start_time);
760 static int sched_clock_irqtime;
761
762 void enable_sched_clock_irqtime(void)
763 {
764 sched_clock_irqtime = 1;
765 }
766
767 void disable_sched_clock_irqtime(void)
768 {
769 sched_clock_irqtime = 0;
770 }
771
772 #ifndef CONFIG_64BIT
773 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774
775 static inline void irq_time_write_begin(void)
776 {
777 __this_cpu_inc(irq_time_seq.sequence);
778 smp_wmb();
779 }
780
781 static inline void irq_time_write_end(void)
782 {
783 smp_wmb();
784 __this_cpu_inc(irq_time_seq.sequence);
785 }
786
787 static inline u64 irq_time_read(int cpu)
788 {
789 u64 irq_time;
790 unsigned seq;
791
792 do {
793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 irq_time = per_cpu(cpu_softirq_time, cpu) +
795 per_cpu(cpu_hardirq_time, cpu);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797
798 return irq_time;
799 }
800 #else /* CONFIG_64BIT */
801 static inline void irq_time_write_begin(void)
802 {
803 }
804
805 static inline void irq_time_write_end(void)
806 {
807 }
808
809 static inline u64 irq_time_read(int cpu)
810 {
811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812 }
813 #endif /* CONFIG_64BIT */
814
815 /*
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
818 */
819 void account_system_vtime(struct task_struct *curr)
820 {
821 unsigned long flags;
822 s64 delta;
823 int cpu;
824
825 if (!sched_clock_irqtime)
826 return;
827
828 local_irq_save(flags);
829
830 cpu = smp_processor_id();
831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 __this_cpu_add(irq_start_time, delta);
833
834 irq_time_write_begin();
835 /*
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
840 */
841 if (hardirq_count())
842 __this_cpu_add(cpu_hardirq_time, delta);
843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
844 __this_cpu_add(cpu_softirq_time, delta);
845
846 irq_time_write_end();
847 local_irq_restore(flags);
848 }
849 EXPORT_SYMBOL_GPL(account_system_vtime);
850
851 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852
853 #ifdef CONFIG_PARAVIRT
854 static inline u64 steal_ticks(u64 steal)
855 {
856 if (unlikely(steal > NSEC_PER_SEC))
857 return div_u64(steal, TICK_NSEC);
858
859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860 }
861 #endif
862
863 static void update_rq_clock_task(struct rq *rq, s64 delta)
864 {
865 /*
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
868 */
869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal = 0, irq_delta = 0;
871 #endif
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
874
875 /*
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
878 * {soft,}irq region.
879 *
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
883 * monotonic.
884 *
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
888 * atomic ops.
889 */
890 if (irq_delta > delta)
891 irq_delta = delta;
892
893 rq->prev_irq_time += irq_delta;
894 delta -= irq_delta;
895 #endif
896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 if (static_key_false((&paravirt_steal_rq_enabled))) {
898 u64 st;
899
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
902
903 if (unlikely(steal > delta))
904 steal = delta;
905
906 st = steal_ticks(steal);
907 steal = st * TICK_NSEC;
908
909 rq->prev_steal_time_rq += steal;
910
911 delta -= steal;
912 }
913 #endif
914
915 rq->clock_task += delta;
916
917 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 sched_rt_avg_update(rq, irq_delta + steal);
920 #endif
921 }
922
923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
924 static int irqtime_account_hi_update(void)
925 {
926 u64 *cpustat = kcpustat_this_cpu->cpustat;
927 unsigned long flags;
928 u64 latest_ns;
929 int ret = 0;
930
931 local_irq_save(flags);
932 latest_ns = this_cpu_read(cpu_hardirq_time);
933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
934 ret = 1;
935 local_irq_restore(flags);
936 return ret;
937 }
938
939 static int irqtime_account_si_update(void)
940 {
941 u64 *cpustat = kcpustat_this_cpu->cpustat;
942 unsigned long flags;
943 u64 latest_ns;
944 int ret = 0;
945
946 local_irq_save(flags);
947 latest_ns = this_cpu_read(cpu_softirq_time);
948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
949 ret = 1;
950 local_irq_restore(flags);
951 return ret;
952 }
953
954 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
955
956 #define sched_clock_irqtime (0)
957
958 #endif
959
960 void sched_set_stop_task(int cpu, struct task_struct *stop)
961 {
962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 struct task_struct *old_stop = cpu_rq(cpu)->stop;
964
965 if (stop) {
966 /*
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
969 *
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
973 */
974 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975
976 stop->sched_class = &stop_sched_class;
977 }
978
979 cpu_rq(cpu)->stop = stop;
980
981 if (old_stop) {
982 /*
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
985 */
986 old_stop->sched_class = &rt_sched_class;
987 }
988 }
989
990 /*
991 * __normal_prio - return the priority that is based on the static prio
992 */
993 static inline int __normal_prio(struct task_struct *p)
994 {
995 return p->static_prio;
996 }
997
998 /*
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
1005 static inline int normal_prio(struct task_struct *p)
1006 {
1007 int prio;
1008
1009 if (task_has_rt_policy(p))
1010 prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 else
1012 prio = __normal_prio(p);
1013 return prio;
1014 }
1015
1016 /*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
1023 static int effective_prio(struct task_struct *p)
1024 {
1025 p->normal_prio = normal_prio(p);
1026 /*
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1030 */
1031 if (!rt_prio(p->prio))
1032 return p->normal_prio;
1033 return p->prio;
1034 }
1035
1036 /**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1039 */
1040 inline int task_curr(const struct task_struct *p)
1041 {
1042 return cpu_curr(task_cpu(p)) == p;
1043 }
1044
1045 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 const struct sched_class *prev_class,
1047 int oldprio)
1048 {
1049 if (prev_class != p->sched_class) {
1050 if (prev_class->switched_from)
1051 prev_class->switched_from(rq, p);
1052 p->sched_class->switched_to(rq, p);
1053 } else if (oldprio != p->prio)
1054 p->sched_class->prio_changed(rq, p, oldprio);
1055 }
1056
1057 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1058 {
1059 const struct sched_class *class;
1060
1061 if (p->sched_class == rq->curr->sched_class) {
1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 } else {
1064 for_each_class(class) {
1065 if (class == rq->curr->sched_class)
1066 break;
1067 if (class == p->sched_class) {
1068 resched_task(rq->curr);
1069 break;
1070 }
1071 }
1072 }
1073
1074 /*
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1077 */
1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079 rq->skip_clock_update = 1;
1080 }
1081
1082 #ifdef CONFIG_SMP
1083 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1084 {
1085 #ifdef CONFIG_SCHED_DEBUG
1086 /*
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1089 */
1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1092
1093 #ifdef CONFIG_LOCKDEP
1094 /*
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 *
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 * see set_task_rq().
1100 *
1101 * Furthermore, all task_rq users should acquire both locks, see
1102 * task_rq_lock().
1103 */
1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 lockdep_is_held(&task_rq(p)->lock)));
1106 #endif
1107 #endif
1108
1109 trace_sched_migrate_task(p, new_cpu);
1110
1111 if (task_cpu(p) != new_cpu) {
1112 p->se.nr_migrations++;
1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1114 }
1115
1116 __set_task_cpu(p, new_cpu);
1117 }
1118
1119 struct migration_arg {
1120 struct task_struct *task;
1121 int dest_cpu;
1122 };
1123
1124 static int migration_cpu_stop(void *data);
1125
1126 /*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
1142 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1143 {
1144 unsigned long flags;
1145 int running, on_rq;
1146 unsigned long ncsw;
1147 struct rq *rq;
1148
1149 for (;;) {
1150 /*
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1155 */
1156 rq = task_rq(p);
1157
1158 /*
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1162 *
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1168 */
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
1172 cpu_relax();
1173 }
1174
1175 /*
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1179 */
1180 rq = task_rq_lock(p, &flags);
1181 trace_sched_wait_task(p);
1182 running = task_running(rq, p);
1183 on_rq = p->on_rq;
1184 ncsw = 0;
1185 if (!match_state || p->state == match_state)
1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187 task_rq_unlock(rq, p, &flags);
1188
1189 /*
1190 * If it changed from the expected state, bail out now.
1191 */
1192 if (unlikely(!ncsw))
1193 break;
1194
1195 /*
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1198 *
1199 * Oops. Go back and try again..
1200 */
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1204 }
1205
1206 /*
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1210 *
1211 * So if it was still runnable (but just not actively
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1214 */
1215 if (unlikely(on_rq)) {
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220 continue;
1221 }
1222
1223 /*
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1227 */
1228 break;
1229 }
1230
1231 return ncsw;
1232 }
1233
1234 /***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
1241 * NOTE: this function doesn't have to take the runqueue lock,
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
1247 void kick_process(struct task_struct *p)
1248 {
1249 int cpu;
1250
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1256 }
1257 EXPORT_SYMBOL_GPL(kick_process);
1258 #endif /* CONFIG_SMP */
1259
1260 #ifdef CONFIG_SMP
1261 /*
1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1263 */
1264 static int select_fallback_rq(int cpu, struct task_struct *p)
1265 {
1266 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
1269
1270 /* Look for allowed, online CPU in same node. */
1271 for_each_cpu(dest_cpu, nodemask) {
1272 if (!cpu_online(dest_cpu))
1273 continue;
1274 if (!cpu_active(dest_cpu))
1275 continue;
1276 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277 return dest_cpu;
1278 }
1279
1280 for (;;) {
1281 /* Any allowed, online CPU? */
1282 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1283 if (!cpu_online(dest_cpu))
1284 continue;
1285 if (!cpu_active(dest_cpu))
1286 continue;
1287 goto out;
1288 }
1289
1290 switch (state) {
1291 case cpuset:
1292 /* No more Mr. Nice Guy. */
1293 cpuset_cpus_allowed_fallback(p);
1294 state = possible;
1295 break;
1296
1297 case possible:
1298 do_set_cpus_allowed(p, cpu_possible_mask);
1299 state = fail;
1300 break;
1301
1302 case fail:
1303 BUG();
1304 break;
1305 }
1306 }
1307
1308 out:
1309 if (state != cpuset) {
1310 /*
1311 * Don't tell them about moving exiting tasks or
1312 * kernel threads (both mm NULL), since they never
1313 * leave kernel.
1314 */
1315 if (p->mm && printk_ratelimit()) {
1316 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1317 task_pid_nr(p), p->comm, cpu);
1318 }
1319 }
1320
1321 return dest_cpu;
1322 }
1323
1324 /*
1325 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1326 */
1327 static inline
1328 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1329 {
1330 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1331
1332 /*
1333 * In order not to call set_task_cpu() on a blocking task we need
1334 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1335 * cpu.
1336 *
1337 * Since this is common to all placement strategies, this lives here.
1338 *
1339 * [ this allows ->select_task() to simply return task_cpu(p) and
1340 * not worry about this generic constraint ]
1341 */
1342 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1343 !cpu_online(cpu)))
1344 cpu = select_fallback_rq(task_cpu(p), p);
1345
1346 return cpu;
1347 }
1348
1349 static void update_avg(u64 *avg, u64 sample)
1350 {
1351 s64 diff = sample - *avg;
1352 *avg += diff >> 3;
1353 }
1354 #endif
1355
1356 static void
1357 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1358 {
1359 #ifdef CONFIG_SCHEDSTATS
1360 struct rq *rq = this_rq();
1361
1362 #ifdef CONFIG_SMP
1363 int this_cpu = smp_processor_id();
1364
1365 if (cpu == this_cpu) {
1366 schedstat_inc(rq, ttwu_local);
1367 schedstat_inc(p, se.statistics.nr_wakeups_local);
1368 } else {
1369 struct sched_domain *sd;
1370
1371 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1372 rcu_read_lock();
1373 for_each_domain(this_cpu, sd) {
1374 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1375 schedstat_inc(sd, ttwu_wake_remote);
1376 break;
1377 }
1378 }
1379 rcu_read_unlock();
1380 }
1381
1382 if (wake_flags & WF_MIGRATED)
1383 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1384
1385 #endif /* CONFIG_SMP */
1386
1387 schedstat_inc(rq, ttwu_count);
1388 schedstat_inc(p, se.statistics.nr_wakeups);
1389
1390 if (wake_flags & WF_SYNC)
1391 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1392
1393 #endif /* CONFIG_SCHEDSTATS */
1394 }
1395
1396 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1397 {
1398 activate_task(rq, p, en_flags);
1399 p->on_rq = 1;
1400
1401 /* if a worker is waking up, notify workqueue */
1402 if (p->flags & PF_WQ_WORKER)
1403 wq_worker_waking_up(p, cpu_of(rq));
1404 }
1405
1406 /*
1407 * Mark the task runnable and perform wakeup-preemption.
1408 */
1409 static void
1410 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1411 {
1412 trace_sched_wakeup(p, true);
1413 check_preempt_curr(rq, p, wake_flags);
1414
1415 p->state = TASK_RUNNING;
1416 #ifdef CONFIG_SMP
1417 if (p->sched_class->task_woken)
1418 p->sched_class->task_woken(rq, p);
1419
1420 if (rq->idle_stamp) {
1421 u64 delta = rq->clock - rq->idle_stamp;
1422 u64 max = 2*sysctl_sched_migration_cost;
1423
1424 if (delta > max)
1425 rq->avg_idle = max;
1426 else
1427 update_avg(&rq->avg_idle, delta);
1428 rq->idle_stamp = 0;
1429 }
1430 #endif
1431 }
1432
1433 static void
1434 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1435 {
1436 #ifdef CONFIG_SMP
1437 if (p->sched_contributes_to_load)
1438 rq->nr_uninterruptible--;
1439 #endif
1440
1441 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1442 ttwu_do_wakeup(rq, p, wake_flags);
1443 }
1444
1445 /*
1446 * Called in case the task @p isn't fully descheduled from its runqueue,
1447 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1448 * since all we need to do is flip p->state to TASK_RUNNING, since
1449 * the task is still ->on_rq.
1450 */
1451 static int ttwu_remote(struct task_struct *p, int wake_flags)
1452 {
1453 struct rq *rq;
1454 int ret = 0;
1455
1456 rq = __task_rq_lock(p);
1457 if (p->on_rq) {
1458 ttwu_do_wakeup(rq, p, wake_flags);
1459 ret = 1;
1460 }
1461 __task_rq_unlock(rq);
1462
1463 return ret;
1464 }
1465
1466 #ifdef CONFIG_SMP
1467 static void sched_ttwu_pending(void)
1468 {
1469 struct rq *rq = this_rq();
1470 struct llist_node *llist = llist_del_all(&rq->wake_list);
1471 struct task_struct *p;
1472
1473 raw_spin_lock(&rq->lock);
1474
1475 while (llist) {
1476 p = llist_entry(llist, struct task_struct, wake_entry);
1477 llist = llist_next(llist);
1478 ttwu_do_activate(rq, p, 0);
1479 }
1480
1481 raw_spin_unlock(&rq->lock);
1482 }
1483
1484 void scheduler_ipi(void)
1485 {
1486 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1487 return;
1488
1489 /*
1490 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1491 * traditionally all their work was done from the interrupt return
1492 * path. Now that we actually do some work, we need to make sure
1493 * we do call them.
1494 *
1495 * Some archs already do call them, luckily irq_enter/exit nest
1496 * properly.
1497 *
1498 * Arguably we should visit all archs and update all handlers,
1499 * however a fair share of IPIs are still resched only so this would
1500 * somewhat pessimize the simple resched case.
1501 */
1502 irq_enter();
1503 sched_ttwu_pending();
1504
1505 /*
1506 * Check if someone kicked us for doing the nohz idle load balance.
1507 */
1508 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1509 this_rq()->idle_balance = 1;
1510 raise_softirq_irqoff(SCHED_SOFTIRQ);
1511 }
1512 irq_exit();
1513 }
1514
1515 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1516 {
1517 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1518 smp_send_reschedule(cpu);
1519 }
1520
1521 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1522 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1523 {
1524 struct rq *rq;
1525 int ret = 0;
1526
1527 rq = __task_rq_lock(p);
1528 if (p->on_cpu) {
1529 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1530 ttwu_do_wakeup(rq, p, wake_flags);
1531 ret = 1;
1532 }
1533 __task_rq_unlock(rq);
1534
1535 return ret;
1536
1537 }
1538 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1539
1540 bool cpus_share_cache(int this_cpu, int that_cpu)
1541 {
1542 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1543 }
1544 #endif /* CONFIG_SMP */
1545
1546 static void ttwu_queue(struct task_struct *p, int cpu)
1547 {
1548 struct rq *rq = cpu_rq(cpu);
1549
1550 #if defined(CONFIG_SMP)
1551 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1552 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1553 ttwu_queue_remote(p, cpu);
1554 return;
1555 }
1556 #endif
1557
1558 raw_spin_lock(&rq->lock);
1559 ttwu_do_activate(rq, p, 0);
1560 raw_spin_unlock(&rq->lock);
1561 }
1562
1563 /**
1564 * try_to_wake_up - wake up a thread
1565 * @p: the thread to be awakened
1566 * @state: the mask of task states that can be woken
1567 * @wake_flags: wake modifier flags (WF_*)
1568 *
1569 * Put it on the run-queue if it's not already there. The "current"
1570 * thread is always on the run-queue (except when the actual
1571 * re-schedule is in progress), and as such you're allowed to do
1572 * the simpler "current->state = TASK_RUNNING" to mark yourself
1573 * runnable without the overhead of this.
1574 *
1575 * Returns %true if @p was woken up, %false if it was already running
1576 * or @state didn't match @p's state.
1577 */
1578 static int
1579 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1580 {
1581 unsigned long flags;
1582 int cpu, success = 0;
1583
1584 smp_wmb();
1585 raw_spin_lock_irqsave(&p->pi_lock, flags);
1586 if (!(p->state & state))
1587 goto out;
1588
1589 success = 1; /* we're going to change ->state */
1590 cpu = task_cpu(p);
1591
1592 if (p->on_rq && ttwu_remote(p, wake_flags))
1593 goto stat;
1594
1595 #ifdef CONFIG_SMP
1596 /*
1597 * If the owning (remote) cpu is still in the middle of schedule() with
1598 * this task as prev, wait until its done referencing the task.
1599 */
1600 while (p->on_cpu) {
1601 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1602 /*
1603 * In case the architecture enables interrupts in
1604 * context_switch(), we cannot busy wait, since that
1605 * would lead to deadlocks when an interrupt hits and
1606 * tries to wake up @prev. So bail and do a complete
1607 * remote wakeup.
1608 */
1609 if (ttwu_activate_remote(p, wake_flags))
1610 goto stat;
1611 #else
1612 cpu_relax();
1613 #endif
1614 }
1615 /*
1616 * Pairs with the smp_wmb() in finish_lock_switch().
1617 */
1618 smp_rmb();
1619
1620 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1621 p->state = TASK_WAKING;
1622
1623 if (p->sched_class->task_waking)
1624 p->sched_class->task_waking(p);
1625
1626 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1627 if (task_cpu(p) != cpu) {
1628 wake_flags |= WF_MIGRATED;
1629 set_task_cpu(p, cpu);
1630 }
1631 #endif /* CONFIG_SMP */
1632
1633 ttwu_queue(p, cpu);
1634 stat:
1635 ttwu_stat(p, cpu, wake_flags);
1636 out:
1637 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1638
1639 return success;
1640 }
1641
1642 /**
1643 * try_to_wake_up_local - try to wake up a local task with rq lock held
1644 * @p: the thread to be awakened
1645 *
1646 * Put @p on the run-queue if it's not already there. The caller must
1647 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1648 * the current task.
1649 */
1650 static void try_to_wake_up_local(struct task_struct *p)
1651 {
1652 struct rq *rq = task_rq(p);
1653
1654 BUG_ON(rq != this_rq());
1655 BUG_ON(p == current);
1656 lockdep_assert_held(&rq->lock);
1657
1658 if (!raw_spin_trylock(&p->pi_lock)) {
1659 raw_spin_unlock(&rq->lock);
1660 raw_spin_lock(&p->pi_lock);
1661 raw_spin_lock(&rq->lock);
1662 }
1663
1664 if (!(p->state & TASK_NORMAL))
1665 goto out;
1666
1667 if (!p->on_rq)
1668 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1669
1670 ttwu_do_wakeup(rq, p, 0);
1671 ttwu_stat(p, smp_processor_id(), 0);
1672 out:
1673 raw_spin_unlock(&p->pi_lock);
1674 }
1675
1676 /**
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1679 *
1680 * Attempt to wake up the nominated process and move it to the set of runnable
1681 * processes. Returns 1 if the process was woken up, 0 if it was already
1682 * running.
1683 *
1684 * It may be assumed that this function implies a write memory barrier before
1685 * changing the task state if and only if any tasks are woken up.
1686 */
1687 int wake_up_process(struct task_struct *p)
1688 {
1689 return try_to_wake_up(p, TASK_ALL, 0);
1690 }
1691 EXPORT_SYMBOL(wake_up_process);
1692
1693 int wake_up_state(struct task_struct *p, unsigned int state)
1694 {
1695 return try_to_wake_up(p, state, 0);
1696 }
1697
1698 /*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704 static void __sched_fork(struct task_struct *p)
1705 {
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
1711 p->se.prev_sum_exec_runtime = 0;
1712 p->se.nr_migrations = 0;
1713 p->se.vruntime = 0;
1714 INIT_LIST_HEAD(&p->se.group_node);
1715
1716 #ifdef CONFIG_SCHEDSTATS
1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718 #endif
1719
1720 INIT_LIST_HEAD(&p->rt.run_list);
1721
1722 #ifdef CONFIG_PREEMPT_NOTIFIERS
1723 INIT_HLIST_HEAD(&p->preempt_notifiers);
1724 #endif
1725 }
1726
1727 /*
1728 * fork()/clone()-time setup:
1729 */
1730 void sched_fork(struct task_struct *p)
1731 {
1732 unsigned long flags;
1733 int cpu = get_cpu();
1734
1735 __sched_fork(p);
1736 /*
1737 * We mark the process as running here. This guarantees that
1738 * nobody will actually run it, and a signal or other external
1739 * event cannot wake it up and insert it on the runqueue either.
1740 */
1741 p->state = TASK_RUNNING;
1742
1743 /*
1744 * Make sure we do not leak PI boosting priority to the child.
1745 */
1746 p->prio = current->normal_prio;
1747
1748 /*
1749 * Revert to default priority/policy on fork if requested.
1750 */
1751 if (unlikely(p->sched_reset_on_fork)) {
1752 if (task_has_rt_policy(p)) {
1753 p->policy = SCHED_NORMAL;
1754 p->static_prio = NICE_TO_PRIO(0);
1755 p->rt_priority = 0;
1756 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1757 p->static_prio = NICE_TO_PRIO(0);
1758
1759 p->prio = p->normal_prio = __normal_prio(p);
1760 set_load_weight(p);
1761
1762 /*
1763 * We don't need the reset flag anymore after the fork. It has
1764 * fulfilled its duty:
1765 */
1766 p->sched_reset_on_fork = 0;
1767 }
1768
1769 if (!rt_prio(p->prio))
1770 p->sched_class = &fair_sched_class;
1771
1772 if (p->sched_class->task_fork)
1773 p->sched_class->task_fork(p);
1774
1775 /*
1776 * The child is not yet in the pid-hash so no cgroup attach races,
1777 * and the cgroup is pinned to this child due to cgroup_fork()
1778 * is ran before sched_fork().
1779 *
1780 * Silence PROVE_RCU.
1781 */
1782 raw_spin_lock_irqsave(&p->pi_lock, flags);
1783 set_task_cpu(p, cpu);
1784 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1785
1786 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1787 if (likely(sched_info_on()))
1788 memset(&p->sched_info, 0, sizeof(p->sched_info));
1789 #endif
1790 #if defined(CONFIG_SMP)
1791 p->on_cpu = 0;
1792 #endif
1793 #ifdef CONFIG_PREEMPT_COUNT
1794 /* Want to start with kernel preemption disabled. */
1795 task_thread_info(p)->preempt_count = 1;
1796 #endif
1797 #ifdef CONFIG_SMP
1798 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1799 #endif
1800
1801 put_cpu();
1802 }
1803
1804 /*
1805 * wake_up_new_task - wake up a newly created task for the first time.
1806 *
1807 * This function will do some initial scheduler statistics housekeeping
1808 * that must be done for every newly created context, then puts the task
1809 * on the runqueue and wakes it.
1810 */
1811 void wake_up_new_task(struct task_struct *p)
1812 {
1813 unsigned long flags;
1814 struct rq *rq;
1815
1816 raw_spin_lock_irqsave(&p->pi_lock, flags);
1817 #ifdef CONFIG_SMP
1818 /*
1819 * Fork balancing, do it here and not earlier because:
1820 * - cpus_allowed can change in the fork path
1821 * - any previously selected cpu might disappear through hotplug
1822 */
1823 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1824 #endif
1825
1826 rq = __task_rq_lock(p);
1827 activate_task(rq, p, 0);
1828 p->on_rq = 1;
1829 trace_sched_wakeup_new(p, true);
1830 check_preempt_curr(rq, p, WF_FORK);
1831 #ifdef CONFIG_SMP
1832 if (p->sched_class->task_woken)
1833 p->sched_class->task_woken(rq, p);
1834 #endif
1835 task_rq_unlock(rq, p, &flags);
1836 }
1837
1838 #ifdef CONFIG_PREEMPT_NOTIFIERS
1839
1840 /**
1841 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1842 * @notifier: notifier struct to register
1843 */
1844 void preempt_notifier_register(struct preempt_notifier *notifier)
1845 {
1846 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1847 }
1848 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1849
1850 /**
1851 * preempt_notifier_unregister - no longer interested in preemption notifications
1852 * @notifier: notifier struct to unregister
1853 *
1854 * This is safe to call from within a preemption notifier.
1855 */
1856 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1857 {
1858 hlist_del(&notifier->link);
1859 }
1860 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1861
1862 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1863 {
1864 struct preempt_notifier *notifier;
1865 struct hlist_node *node;
1866
1867 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1869 }
1870
1871 static void
1872 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873 struct task_struct *next)
1874 {
1875 struct preempt_notifier *notifier;
1876 struct hlist_node *node;
1877
1878 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879 notifier->ops->sched_out(notifier, next);
1880 }
1881
1882 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1883
1884 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1885 {
1886 }
1887
1888 static void
1889 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890 struct task_struct *next)
1891 {
1892 }
1893
1894 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1895
1896 /**
1897 * prepare_task_switch - prepare to switch tasks
1898 * @rq: the runqueue preparing to switch
1899 * @prev: the current task that is being switched out
1900 * @next: the task we are going to switch to.
1901 *
1902 * This is called with the rq lock held and interrupts off. It must
1903 * be paired with a subsequent finish_task_switch after the context
1904 * switch.
1905 *
1906 * prepare_task_switch sets up locking and calls architecture specific
1907 * hooks.
1908 */
1909 static inline void
1910 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911 struct task_struct *next)
1912 {
1913 sched_info_switch(prev, next);
1914 perf_event_task_sched_out(prev, next);
1915 fire_sched_out_preempt_notifiers(prev, next);
1916 prepare_lock_switch(rq, next);
1917 prepare_arch_switch(next);
1918 trace_sched_switch(prev, next);
1919 }
1920
1921 /**
1922 * finish_task_switch - clean up after a task-switch
1923 * @rq: runqueue associated with task-switch
1924 * @prev: the thread we just switched away from.
1925 *
1926 * finish_task_switch must be called after the context switch, paired
1927 * with a prepare_task_switch call before the context switch.
1928 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1929 * and do any other architecture-specific cleanup actions.
1930 *
1931 * Note that we may have delayed dropping an mm in context_switch(). If
1932 * so, we finish that here outside of the runqueue lock. (Doing it
1933 * with the lock held can cause deadlocks; see schedule() for
1934 * details.)
1935 */
1936 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1937 __releases(rq->lock)
1938 {
1939 struct mm_struct *mm = rq->prev_mm;
1940 long prev_state;
1941
1942 rq->prev_mm = NULL;
1943
1944 /*
1945 * A task struct has one reference for the use as "current".
1946 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1947 * schedule one last time. The schedule call will never return, and
1948 * the scheduled task must drop that reference.
1949 * The test for TASK_DEAD must occur while the runqueue locks are
1950 * still held, otherwise prev could be scheduled on another cpu, die
1951 * there before we look at prev->state, and then the reference would
1952 * be dropped twice.
1953 * Manfred Spraul <manfred@colorfullife.com>
1954 */
1955 prev_state = prev->state;
1956 finish_arch_switch(prev);
1957 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1958 local_irq_disable();
1959 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1960 perf_event_task_sched_in(prev, current);
1961 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1962 local_irq_enable();
1963 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1964 finish_lock_switch(rq, prev);
1965 finish_arch_post_lock_switch();
1966
1967 fire_sched_in_preempt_notifiers(current);
1968 if (mm)
1969 mmdrop(mm);
1970 if (unlikely(prev_state == TASK_DEAD)) {
1971 /*
1972 * Remove function-return probe instances associated with this
1973 * task and put them back on the free list.
1974 */
1975 kprobe_flush_task(prev);
1976 put_task_struct(prev);
1977 }
1978 }
1979
1980 #ifdef CONFIG_SMP
1981
1982 /* assumes rq->lock is held */
1983 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1984 {
1985 if (prev->sched_class->pre_schedule)
1986 prev->sched_class->pre_schedule(rq, prev);
1987 }
1988
1989 /* rq->lock is NOT held, but preemption is disabled */
1990 static inline void post_schedule(struct rq *rq)
1991 {
1992 if (rq->post_schedule) {
1993 unsigned long flags;
1994
1995 raw_spin_lock_irqsave(&rq->lock, flags);
1996 if (rq->curr->sched_class->post_schedule)
1997 rq->curr->sched_class->post_schedule(rq);
1998 raw_spin_unlock_irqrestore(&rq->lock, flags);
1999
2000 rq->post_schedule = 0;
2001 }
2002 }
2003
2004 #else
2005
2006 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2007 {
2008 }
2009
2010 static inline void post_schedule(struct rq *rq)
2011 {
2012 }
2013
2014 #endif
2015
2016 /**
2017 * schedule_tail - first thing a freshly forked thread must call.
2018 * @prev: the thread we just switched away from.
2019 */
2020 asmlinkage void schedule_tail(struct task_struct *prev)
2021 __releases(rq->lock)
2022 {
2023 struct rq *rq = this_rq();
2024
2025 finish_task_switch(rq, prev);
2026
2027 /*
2028 * FIXME: do we need to worry about rq being invalidated by the
2029 * task_switch?
2030 */
2031 post_schedule(rq);
2032
2033 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2034 /* In this case, finish_task_switch does not reenable preemption */
2035 preempt_enable();
2036 #endif
2037 if (current->set_child_tid)
2038 put_user(task_pid_vnr(current), current->set_child_tid);
2039 }
2040
2041 /*
2042 * context_switch - switch to the new MM and the new
2043 * thread's register state.
2044 */
2045 static inline void
2046 context_switch(struct rq *rq, struct task_struct *prev,
2047 struct task_struct *next)
2048 {
2049 struct mm_struct *mm, *oldmm;
2050
2051 prepare_task_switch(rq, prev, next);
2052
2053 mm = next->mm;
2054 oldmm = prev->active_mm;
2055 /*
2056 * For paravirt, this is coupled with an exit in switch_to to
2057 * combine the page table reload and the switch backend into
2058 * one hypercall.
2059 */
2060 arch_start_context_switch(prev);
2061
2062 if (!mm) {
2063 next->active_mm = oldmm;
2064 atomic_inc(&oldmm->mm_count);
2065 enter_lazy_tlb(oldmm, next);
2066 } else
2067 switch_mm(oldmm, mm, next);
2068
2069 if (!prev->mm) {
2070 prev->active_mm = NULL;
2071 rq->prev_mm = oldmm;
2072 }
2073 /*
2074 * Since the runqueue lock will be released by the next
2075 * task (which is an invalid locking op but in the case
2076 * of the scheduler it's an obvious special-case), so we
2077 * do an early lockdep release here:
2078 */
2079 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2080 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2081 #endif
2082
2083 /* Here we just switch the register state and the stack. */
2084 rcu_switch_from(prev);
2085 switch_to(prev, next, prev);
2086
2087 barrier();
2088 /*
2089 * this_rq must be evaluated again because prev may have moved
2090 * CPUs since it called schedule(), thus the 'rq' on its stack
2091 * frame will be invalid.
2092 */
2093 finish_task_switch(this_rq(), prev);
2094 }
2095
2096 /*
2097 * nr_running, nr_uninterruptible and nr_context_switches:
2098 *
2099 * externally visible scheduler statistics: current number of runnable
2100 * threads, current number of uninterruptible-sleeping threads, total
2101 * number of context switches performed since bootup.
2102 */
2103 unsigned long nr_running(void)
2104 {
2105 unsigned long i, sum = 0;
2106
2107 for_each_online_cpu(i)
2108 sum += cpu_rq(i)->nr_running;
2109
2110 return sum;
2111 }
2112
2113 unsigned long nr_uninterruptible(void)
2114 {
2115 unsigned long i, sum = 0;
2116
2117 for_each_possible_cpu(i)
2118 sum += cpu_rq(i)->nr_uninterruptible;
2119
2120 /*
2121 * Since we read the counters lockless, it might be slightly
2122 * inaccurate. Do not allow it to go below zero though:
2123 */
2124 if (unlikely((long)sum < 0))
2125 sum = 0;
2126
2127 return sum;
2128 }
2129
2130 unsigned long long nr_context_switches(void)
2131 {
2132 int i;
2133 unsigned long long sum = 0;
2134
2135 for_each_possible_cpu(i)
2136 sum += cpu_rq(i)->nr_switches;
2137
2138 return sum;
2139 }
2140
2141 unsigned long nr_iowait(void)
2142 {
2143 unsigned long i, sum = 0;
2144
2145 for_each_possible_cpu(i)
2146 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2147
2148 return sum;
2149 }
2150
2151 unsigned long nr_iowait_cpu(int cpu)
2152 {
2153 struct rq *this = cpu_rq(cpu);
2154 return atomic_read(&this->nr_iowait);
2155 }
2156
2157 unsigned long this_cpu_load(void)
2158 {
2159 struct rq *this = this_rq();
2160 return this->cpu_load[0];
2161 }
2162
2163
2164 /* Variables and functions for calc_load */
2165 static atomic_long_t calc_load_tasks;
2166 static unsigned long calc_load_update;
2167 unsigned long avenrun[3];
2168 EXPORT_SYMBOL(avenrun);
2169
2170 static long calc_load_fold_active(struct rq *this_rq)
2171 {
2172 long nr_active, delta = 0;
2173
2174 nr_active = this_rq->nr_running;
2175 nr_active += (long) this_rq->nr_uninterruptible;
2176
2177 if (nr_active != this_rq->calc_load_active) {
2178 delta = nr_active - this_rq->calc_load_active;
2179 this_rq->calc_load_active = nr_active;
2180 }
2181
2182 return delta;
2183 }
2184
2185 static unsigned long
2186 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2187 {
2188 load *= exp;
2189 load += active * (FIXED_1 - exp);
2190 load += 1UL << (FSHIFT - 1);
2191 return load >> FSHIFT;
2192 }
2193
2194 #ifdef CONFIG_NO_HZ
2195 /*
2196 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2197 *
2198 * When making the ILB scale, we should try to pull this in as well.
2199 */
2200 static atomic_long_t calc_load_tasks_idle;
2201
2202 void calc_load_account_idle(struct rq *this_rq)
2203 {
2204 long delta;
2205
2206 delta = calc_load_fold_active(this_rq);
2207 if (delta)
2208 atomic_long_add(delta, &calc_load_tasks_idle);
2209 }
2210
2211 static long calc_load_fold_idle(void)
2212 {
2213 long delta = 0;
2214
2215 /*
2216 * Its got a race, we don't care...
2217 */
2218 if (atomic_long_read(&calc_load_tasks_idle))
2219 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2220
2221 return delta;
2222 }
2223
2224 /**
2225 * fixed_power_int - compute: x^n, in O(log n) time
2226 *
2227 * @x: base of the power
2228 * @frac_bits: fractional bits of @x
2229 * @n: power to raise @x to.
2230 *
2231 * By exploiting the relation between the definition of the natural power
2232 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2233 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2234 * (where: n_i \elem {0, 1}, the binary vector representing n),
2235 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2236 * of course trivially computable in O(log_2 n), the length of our binary
2237 * vector.
2238 */
2239 static unsigned long
2240 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2241 {
2242 unsigned long result = 1UL << frac_bits;
2243
2244 if (n) for (;;) {
2245 if (n & 1) {
2246 result *= x;
2247 result += 1UL << (frac_bits - 1);
2248 result >>= frac_bits;
2249 }
2250 n >>= 1;
2251 if (!n)
2252 break;
2253 x *= x;
2254 x += 1UL << (frac_bits - 1);
2255 x >>= frac_bits;
2256 }
2257
2258 return result;
2259 }
2260
2261 /*
2262 * a1 = a0 * e + a * (1 - e)
2263 *
2264 * a2 = a1 * e + a * (1 - e)
2265 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2266 * = a0 * e^2 + a * (1 - e) * (1 + e)
2267 *
2268 * a3 = a2 * e + a * (1 - e)
2269 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2270 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2271 *
2272 * ...
2273 *
2274 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2275 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2276 * = a0 * e^n + a * (1 - e^n)
2277 *
2278 * [1] application of the geometric series:
2279 *
2280 * n 1 - x^(n+1)
2281 * S_n := \Sum x^i = -------------
2282 * i=0 1 - x
2283 */
2284 static unsigned long
2285 calc_load_n(unsigned long load, unsigned long exp,
2286 unsigned long active, unsigned int n)
2287 {
2288
2289 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2290 }
2291
2292 /*
2293 * NO_HZ can leave us missing all per-cpu ticks calling
2294 * calc_load_account_active(), but since an idle CPU folds its delta into
2295 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2296 * in the pending idle delta if our idle period crossed a load cycle boundary.
2297 *
2298 * Once we've updated the global active value, we need to apply the exponential
2299 * weights adjusted to the number of cycles missed.
2300 */
2301 static void calc_global_nohz(void)
2302 {
2303 long delta, active, n;
2304
2305 /*
2306 * If we crossed a calc_load_update boundary, make sure to fold
2307 * any pending idle changes, the respective CPUs might have
2308 * missed the tick driven calc_load_account_active() update
2309 * due to NO_HZ.
2310 */
2311 delta = calc_load_fold_idle();
2312 if (delta)
2313 atomic_long_add(delta, &calc_load_tasks);
2314
2315 /*
2316 * It could be the one fold was all it took, we done!
2317 */
2318 if (time_before(jiffies, calc_load_update + 10))
2319 return;
2320
2321 /*
2322 * Catch-up, fold however many we are behind still
2323 */
2324 delta = jiffies - calc_load_update - 10;
2325 n = 1 + (delta / LOAD_FREQ);
2326
2327 active = atomic_long_read(&calc_load_tasks);
2328 active = active > 0 ? active * FIXED_1 : 0;
2329
2330 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2331 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2332 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2333
2334 calc_load_update += n * LOAD_FREQ;
2335 }
2336 #else
2337 void calc_load_account_idle(struct rq *this_rq)
2338 {
2339 }
2340
2341 static inline long calc_load_fold_idle(void)
2342 {
2343 return 0;
2344 }
2345
2346 static void calc_global_nohz(void)
2347 {
2348 }
2349 #endif
2350
2351 /**
2352 * get_avenrun - get the load average array
2353 * @loads: pointer to dest load array
2354 * @offset: offset to add
2355 * @shift: shift count to shift the result left
2356 *
2357 * These values are estimates at best, so no need for locking.
2358 */
2359 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2360 {
2361 loads[0] = (avenrun[0] + offset) << shift;
2362 loads[1] = (avenrun[1] + offset) << shift;
2363 loads[2] = (avenrun[2] + offset) << shift;
2364 }
2365
2366 /*
2367 * calc_load - update the avenrun load estimates 10 ticks after the
2368 * CPUs have updated calc_load_tasks.
2369 */
2370 void calc_global_load(unsigned long ticks)
2371 {
2372 long active;
2373
2374 if (time_before(jiffies, calc_load_update + 10))
2375 return;
2376
2377 active = atomic_long_read(&calc_load_tasks);
2378 active = active > 0 ? active * FIXED_1 : 0;
2379
2380 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2381 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2382 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2383
2384 calc_load_update += LOAD_FREQ;
2385
2386 /*
2387 * Account one period with whatever state we found before
2388 * folding in the nohz state and ageing the entire idle period.
2389 *
2390 * This avoids loosing a sample when we go idle between
2391 * calc_load_account_active() (10 ticks ago) and now and thus
2392 * under-accounting.
2393 */
2394 calc_global_nohz();
2395 }
2396
2397 /*
2398 * Called from update_cpu_load() to periodically update this CPU's
2399 * active count.
2400 */
2401 static void calc_load_account_active(struct rq *this_rq)
2402 {
2403 long delta;
2404
2405 if (time_before(jiffies, this_rq->calc_load_update))
2406 return;
2407
2408 delta = calc_load_fold_active(this_rq);
2409 delta += calc_load_fold_idle();
2410 if (delta)
2411 atomic_long_add(delta, &calc_load_tasks);
2412
2413 this_rq->calc_load_update += LOAD_FREQ;
2414 }
2415
2416 /*
2417 * The exact cpuload at various idx values, calculated at every tick would be
2418 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2419 *
2420 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2421 * on nth tick when cpu may be busy, then we have:
2422 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2423 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2424 *
2425 * decay_load_missed() below does efficient calculation of
2426 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2427 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2428 *
2429 * The calculation is approximated on a 128 point scale.
2430 * degrade_zero_ticks is the number of ticks after which load at any
2431 * particular idx is approximated to be zero.
2432 * degrade_factor is a precomputed table, a row for each load idx.
2433 * Each column corresponds to degradation factor for a power of two ticks,
2434 * based on 128 point scale.
2435 * Example:
2436 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2437 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2438 *
2439 * With this power of 2 load factors, we can degrade the load n times
2440 * by looking at 1 bits in n and doing as many mult/shift instead of
2441 * n mult/shifts needed by the exact degradation.
2442 */
2443 #define DEGRADE_SHIFT 7
2444 static const unsigned char
2445 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2446 static const unsigned char
2447 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2448 {0, 0, 0, 0, 0, 0, 0, 0},
2449 {64, 32, 8, 0, 0, 0, 0, 0},
2450 {96, 72, 40, 12, 1, 0, 0},
2451 {112, 98, 75, 43, 15, 1, 0},
2452 {120, 112, 98, 76, 45, 16, 2} };
2453
2454 /*
2455 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2456 * would be when CPU is idle and so we just decay the old load without
2457 * adding any new load.
2458 */
2459 static unsigned long
2460 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2461 {
2462 int j = 0;
2463
2464 if (!missed_updates)
2465 return load;
2466
2467 if (missed_updates >= degrade_zero_ticks[idx])
2468 return 0;
2469
2470 if (idx == 1)
2471 return load >> missed_updates;
2472
2473 while (missed_updates) {
2474 if (missed_updates % 2)
2475 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2476
2477 missed_updates >>= 1;
2478 j++;
2479 }
2480 return load;
2481 }
2482
2483 /*
2484 * Update rq->cpu_load[] statistics. This function is usually called every
2485 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2486 * every tick. We fix it up based on jiffies.
2487 */
2488 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2489 unsigned long pending_updates)
2490 {
2491 int i, scale;
2492
2493 this_rq->nr_load_updates++;
2494
2495 /* Update our load: */
2496 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2497 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2498 unsigned long old_load, new_load;
2499
2500 /* scale is effectively 1 << i now, and >> i divides by scale */
2501
2502 old_load = this_rq->cpu_load[i];
2503 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2504 new_load = this_load;
2505 /*
2506 * Round up the averaging division if load is increasing. This
2507 * prevents us from getting stuck on 9 if the load is 10, for
2508 * example.
2509 */
2510 if (new_load > old_load)
2511 new_load += scale - 1;
2512
2513 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2514 }
2515
2516 sched_avg_update(this_rq);
2517 }
2518
2519 #ifdef CONFIG_NO_HZ
2520 /*
2521 * There is no sane way to deal with nohz on smp when using jiffies because the
2522 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2523 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2524 *
2525 * Therefore we cannot use the delta approach from the regular tick since that
2526 * would seriously skew the load calculation. However we'll make do for those
2527 * updates happening while idle (nohz_idle_balance) or coming out of idle
2528 * (tick_nohz_idle_exit).
2529 *
2530 * This means we might still be one tick off for nohz periods.
2531 */
2532
2533 /*
2534 * Called from nohz_idle_balance() to update the load ratings before doing the
2535 * idle balance.
2536 */
2537 void update_idle_cpu_load(struct rq *this_rq)
2538 {
2539 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2540 unsigned long load = this_rq->load.weight;
2541 unsigned long pending_updates;
2542
2543 /*
2544 * bail if there's load or we're actually up-to-date.
2545 */
2546 if (load || curr_jiffies == this_rq->last_load_update_tick)
2547 return;
2548
2549 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2550 this_rq->last_load_update_tick = curr_jiffies;
2551
2552 __update_cpu_load(this_rq, load, pending_updates);
2553 }
2554
2555 /*
2556 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2557 */
2558 void update_cpu_load_nohz(void)
2559 {
2560 struct rq *this_rq = this_rq();
2561 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2562 unsigned long pending_updates;
2563
2564 if (curr_jiffies == this_rq->last_load_update_tick)
2565 return;
2566
2567 raw_spin_lock(&this_rq->lock);
2568 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2569 if (pending_updates) {
2570 this_rq->last_load_update_tick = curr_jiffies;
2571 /*
2572 * We were idle, this means load 0, the current load might be
2573 * !0 due to remote wakeups and the sort.
2574 */
2575 __update_cpu_load(this_rq, 0, pending_updates);
2576 }
2577 raw_spin_unlock(&this_rq->lock);
2578 }
2579 #endif /* CONFIG_NO_HZ */
2580
2581 /*
2582 * Called from scheduler_tick()
2583 */
2584 static void update_cpu_load_active(struct rq *this_rq)
2585 {
2586 /*
2587 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2588 */
2589 this_rq->last_load_update_tick = jiffies;
2590 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2591
2592 calc_load_account_active(this_rq);
2593 }
2594
2595 #ifdef CONFIG_SMP
2596
2597 /*
2598 * sched_exec - execve() is a valuable balancing opportunity, because at
2599 * this point the task has the smallest effective memory and cache footprint.
2600 */
2601 void sched_exec(void)
2602 {
2603 struct task_struct *p = current;
2604 unsigned long flags;
2605 int dest_cpu;
2606
2607 raw_spin_lock_irqsave(&p->pi_lock, flags);
2608 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2609 if (dest_cpu == smp_processor_id())
2610 goto unlock;
2611
2612 if (likely(cpu_active(dest_cpu))) {
2613 struct migration_arg arg = { p, dest_cpu };
2614
2615 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2616 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2617 return;
2618 }
2619 unlock:
2620 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2621 }
2622
2623 #endif
2624
2625 DEFINE_PER_CPU(struct kernel_stat, kstat);
2626 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2627
2628 EXPORT_PER_CPU_SYMBOL(kstat);
2629 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2630
2631 /*
2632 * Return any ns on the sched_clock that have not yet been accounted in
2633 * @p in case that task is currently running.
2634 *
2635 * Called with task_rq_lock() held on @rq.
2636 */
2637 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2638 {
2639 u64 ns = 0;
2640
2641 if (task_current(rq, p)) {
2642 update_rq_clock(rq);
2643 ns = rq->clock_task - p->se.exec_start;
2644 if ((s64)ns < 0)
2645 ns = 0;
2646 }
2647
2648 return ns;
2649 }
2650
2651 unsigned long long task_delta_exec(struct task_struct *p)
2652 {
2653 unsigned long flags;
2654 struct rq *rq;
2655 u64 ns = 0;
2656
2657 rq = task_rq_lock(p, &flags);
2658 ns = do_task_delta_exec(p, rq);
2659 task_rq_unlock(rq, p, &flags);
2660
2661 return ns;
2662 }
2663
2664 /*
2665 * Return accounted runtime for the task.
2666 * In case the task is currently running, return the runtime plus current's
2667 * pending runtime that have not been accounted yet.
2668 */
2669 unsigned long long task_sched_runtime(struct task_struct *p)
2670 {
2671 unsigned long flags;
2672 struct rq *rq;
2673 u64 ns = 0;
2674
2675 rq = task_rq_lock(p, &flags);
2676 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2677 task_rq_unlock(rq, p, &flags);
2678
2679 return ns;
2680 }
2681
2682 #ifdef CONFIG_CGROUP_CPUACCT
2683 struct cgroup_subsys cpuacct_subsys;
2684 struct cpuacct root_cpuacct;
2685 #endif
2686
2687 static inline void task_group_account_field(struct task_struct *p, int index,
2688 u64 tmp)
2689 {
2690 #ifdef CONFIG_CGROUP_CPUACCT
2691 struct kernel_cpustat *kcpustat;
2692 struct cpuacct *ca;
2693 #endif
2694 /*
2695 * Since all updates are sure to touch the root cgroup, we
2696 * get ourselves ahead and touch it first. If the root cgroup
2697 * is the only cgroup, then nothing else should be necessary.
2698 *
2699 */
2700 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2701
2702 #ifdef CONFIG_CGROUP_CPUACCT
2703 if (unlikely(!cpuacct_subsys.active))
2704 return;
2705
2706 rcu_read_lock();
2707 ca = task_ca(p);
2708 while (ca && (ca != &root_cpuacct)) {
2709 kcpustat = this_cpu_ptr(ca->cpustat);
2710 kcpustat->cpustat[index] += tmp;
2711 ca = parent_ca(ca);
2712 }
2713 rcu_read_unlock();
2714 #endif
2715 }
2716
2717
2718 /*
2719 * Account user cpu time to a process.
2720 * @p: the process that the cpu time gets accounted to
2721 * @cputime: the cpu time spent in user space since the last update
2722 * @cputime_scaled: cputime scaled by cpu frequency
2723 */
2724 void account_user_time(struct task_struct *p, cputime_t cputime,
2725 cputime_t cputime_scaled)
2726 {
2727 int index;
2728
2729 /* Add user time to process. */
2730 p->utime += cputime;
2731 p->utimescaled += cputime_scaled;
2732 account_group_user_time(p, cputime);
2733
2734 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2735
2736 /* Add user time to cpustat. */
2737 task_group_account_field(p, index, (__force u64) cputime);
2738
2739 /* Account for user time used */
2740 acct_update_integrals(p);
2741 }
2742
2743 /*
2744 * Account guest cpu time to a process.
2745 * @p: the process that the cpu time gets accounted to
2746 * @cputime: the cpu time spent in virtual machine since the last update
2747 * @cputime_scaled: cputime scaled by cpu frequency
2748 */
2749 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2750 cputime_t cputime_scaled)
2751 {
2752 u64 *cpustat = kcpustat_this_cpu->cpustat;
2753
2754 /* Add guest time to process. */
2755 p->utime += cputime;
2756 p->utimescaled += cputime_scaled;
2757 account_group_user_time(p, cputime);
2758 p->gtime += cputime;
2759
2760 /* Add guest time to cpustat. */
2761 if (TASK_NICE(p) > 0) {
2762 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2763 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2764 } else {
2765 cpustat[CPUTIME_USER] += (__force u64) cputime;
2766 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2767 }
2768 }
2769
2770 /*
2771 * Account system cpu time to a process and desired cpustat field
2772 * @p: the process that the cpu time gets accounted to
2773 * @cputime: the cpu time spent in kernel space since the last update
2774 * @cputime_scaled: cputime scaled by cpu frequency
2775 * @target_cputime64: pointer to cpustat field that has to be updated
2776 */
2777 static inline
2778 void __account_system_time(struct task_struct *p, cputime_t cputime,
2779 cputime_t cputime_scaled, int index)
2780 {
2781 /* Add system time to process. */
2782 p->stime += cputime;
2783 p->stimescaled += cputime_scaled;
2784 account_group_system_time(p, cputime);
2785
2786 /* Add system time to cpustat. */
2787 task_group_account_field(p, index, (__force u64) cputime);
2788
2789 /* Account for system time used */
2790 acct_update_integrals(p);
2791 }
2792
2793 /*
2794 * Account system cpu time to a process.
2795 * @p: the process that the cpu time gets accounted to
2796 * @hardirq_offset: the offset to subtract from hardirq_count()
2797 * @cputime: the cpu time spent in kernel space since the last update
2798 * @cputime_scaled: cputime scaled by cpu frequency
2799 */
2800 void account_system_time(struct task_struct *p, int hardirq_offset,
2801 cputime_t cputime, cputime_t cputime_scaled)
2802 {
2803 int index;
2804
2805 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2806 account_guest_time(p, cputime, cputime_scaled);
2807 return;
2808 }
2809
2810 if (hardirq_count() - hardirq_offset)
2811 index = CPUTIME_IRQ;
2812 else if (in_serving_softirq())
2813 index = CPUTIME_SOFTIRQ;
2814 else
2815 index = CPUTIME_SYSTEM;
2816
2817 __account_system_time(p, cputime, cputime_scaled, index);
2818 }
2819
2820 /*
2821 * Account for involuntary wait time.
2822 * @cputime: the cpu time spent in involuntary wait
2823 */
2824 void account_steal_time(cputime_t cputime)
2825 {
2826 u64 *cpustat = kcpustat_this_cpu->cpustat;
2827
2828 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2829 }
2830
2831 /*
2832 * Account for idle time.
2833 * @cputime: the cpu time spent in idle wait
2834 */
2835 void account_idle_time(cputime_t cputime)
2836 {
2837 u64 *cpustat = kcpustat_this_cpu->cpustat;
2838 struct rq *rq = this_rq();
2839
2840 if (atomic_read(&rq->nr_iowait) > 0)
2841 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2842 else
2843 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2844 }
2845
2846 static __always_inline bool steal_account_process_tick(void)
2847 {
2848 #ifdef CONFIG_PARAVIRT
2849 if (static_key_false(&paravirt_steal_enabled)) {
2850 u64 steal, st = 0;
2851
2852 steal = paravirt_steal_clock(smp_processor_id());
2853 steal -= this_rq()->prev_steal_time;
2854
2855 st = steal_ticks(steal);
2856 this_rq()->prev_steal_time += st * TICK_NSEC;
2857
2858 account_steal_time(st);
2859 return st;
2860 }
2861 #endif
2862 return false;
2863 }
2864
2865 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2866
2867 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2868 /*
2869 * Account a tick to a process and cpustat
2870 * @p: the process that the cpu time gets accounted to
2871 * @user_tick: is the tick from userspace
2872 * @rq: the pointer to rq
2873 *
2874 * Tick demultiplexing follows the order
2875 * - pending hardirq update
2876 * - pending softirq update
2877 * - user_time
2878 * - idle_time
2879 * - system time
2880 * - check for guest_time
2881 * - else account as system_time
2882 *
2883 * Check for hardirq is done both for system and user time as there is
2884 * no timer going off while we are on hardirq and hence we may never get an
2885 * opportunity to update it solely in system time.
2886 * p->stime and friends are only updated on system time and not on irq
2887 * softirq as those do not count in task exec_runtime any more.
2888 */
2889 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2890 struct rq *rq)
2891 {
2892 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2893 u64 *cpustat = kcpustat_this_cpu->cpustat;
2894
2895 if (steal_account_process_tick())
2896 return;
2897
2898 if (irqtime_account_hi_update()) {
2899 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2900 } else if (irqtime_account_si_update()) {
2901 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2902 } else if (this_cpu_ksoftirqd() == p) {
2903 /*
2904 * ksoftirqd time do not get accounted in cpu_softirq_time.
2905 * So, we have to handle it separately here.
2906 * Also, p->stime needs to be updated for ksoftirqd.
2907 */
2908 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2909 CPUTIME_SOFTIRQ);
2910 } else if (user_tick) {
2911 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2912 } else if (p == rq->idle) {
2913 account_idle_time(cputime_one_jiffy);
2914 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2915 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2916 } else {
2917 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2918 CPUTIME_SYSTEM);
2919 }
2920 }
2921
2922 static void irqtime_account_idle_ticks(int ticks)
2923 {
2924 int i;
2925 struct rq *rq = this_rq();
2926
2927 for (i = 0; i < ticks; i++)
2928 irqtime_account_process_tick(current, 0, rq);
2929 }
2930 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2931 static void irqtime_account_idle_ticks(int ticks) {}
2932 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2933 struct rq *rq) {}
2934 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2935
2936 /*
2937 * Account a single tick of cpu time.
2938 * @p: the process that the cpu time gets accounted to
2939 * @user_tick: indicates if the tick is a user or a system tick
2940 */
2941 void account_process_tick(struct task_struct *p, int user_tick)
2942 {
2943 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2944 struct rq *rq = this_rq();
2945
2946 if (sched_clock_irqtime) {
2947 irqtime_account_process_tick(p, user_tick, rq);
2948 return;
2949 }
2950
2951 if (steal_account_process_tick())
2952 return;
2953
2954 if (user_tick)
2955 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2956 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2957 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2958 one_jiffy_scaled);
2959 else
2960 account_idle_time(cputime_one_jiffy);
2961 }
2962
2963 /*
2964 * Account multiple ticks of steal time.
2965 * @p: the process from which the cpu time has been stolen
2966 * @ticks: number of stolen ticks
2967 */
2968 void account_steal_ticks(unsigned long ticks)
2969 {
2970 account_steal_time(jiffies_to_cputime(ticks));
2971 }
2972
2973 /*
2974 * Account multiple ticks of idle time.
2975 * @ticks: number of stolen ticks
2976 */
2977 void account_idle_ticks(unsigned long ticks)
2978 {
2979
2980 if (sched_clock_irqtime) {
2981 irqtime_account_idle_ticks(ticks);
2982 return;
2983 }
2984
2985 account_idle_time(jiffies_to_cputime(ticks));
2986 }
2987
2988 #endif
2989
2990 /*
2991 * Use precise platform statistics if available:
2992 */
2993 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2994 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2995 {
2996 *ut = p->utime;
2997 *st = p->stime;
2998 }
2999
3000 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3001 {
3002 struct task_cputime cputime;
3003
3004 thread_group_cputime(p, &cputime);
3005
3006 *ut = cputime.utime;
3007 *st = cputime.stime;
3008 }
3009 #else
3010
3011 #ifndef nsecs_to_cputime
3012 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3013 #endif
3014
3015 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3016 {
3017 cputime_t rtime, utime = p->utime, total = utime + p->stime;
3018
3019 /*
3020 * Use CFS's precise accounting:
3021 */
3022 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3023
3024 if (total) {
3025 u64 temp = (__force u64) rtime;
3026
3027 temp *= (__force u64) utime;
3028 do_div(temp, (__force u32) total);
3029 utime = (__force cputime_t) temp;
3030 } else
3031 utime = rtime;
3032
3033 /*
3034 * Compare with previous values, to keep monotonicity:
3035 */
3036 p->prev_utime = max(p->prev_utime, utime);
3037 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
3038
3039 *ut = p->prev_utime;
3040 *st = p->prev_stime;
3041 }
3042
3043 /*
3044 * Must be called with siglock held.
3045 */
3046 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3047 {
3048 struct signal_struct *sig = p->signal;
3049 struct task_cputime cputime;
3050 cputime_t rtime, utime, total;
3051
3052 thread_group_cputime(p, &cputime);
3053
3054 total = cputime.utime + cputime.stime;
3055 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3056
3057 if (total) {
3058 u64 temp = (__force u64) rtime;
3059
3060 temp *= (__force u64) cputime.utime;
3061 do_div(temp, (__force u32) total);
3062 utime = (__force cputime_t) temp;
3063 } else
3064 utime = rtime;
3065
3066 sig->prev_utime = max(sig->prev_utime, utime);
3067 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3068
3069 *ut = sig->prev_utime;
3070 *st = sig->prev_stime;
3071 }
3072 #endif
3073
3074 /*
3075 * This function gets called by the timer code, with HZ frequency.
3076 * We call it with interrupts disabled.
3077 */
3078 void scheduler_tick(void)
3079 {
3080 int cpu = smp_processor_id();
3081 struct rq *rq = cpu_rq(cpu);
3082 struct task_struct *curr = rq->curr;
3083
3084 sched_clock_tick();
3085
3086 raw_spin_lock(&rq->lock);
3087 update_rq_clock(rq);
3088 update_cpu_load_active(rq);
3089 curr->sched_class->task_tick(rq, curr, 0);
3090 raw_spin_unlock(&rq->lock);
3091
3092 perf_event_task_tick();
3093
3094 #ifdef CONFIG_SMP
3095 rq->idle_balance = idle_cpu(cpu);
3096 trigger_load_balance(rq, cpu);
3097 #endif
3098 }
3099
3100 notrace unsigned long get_parent_ip(unsigned long addr)
3101 {
3102 if (in_lock_functions(addr)) {
3103 addr = CALLER_ADDR2;
3104 if (in_lock_functions(addr))
3105 addr = CALLER_ADDR3;
3106 }
3107 return addr;
3108 }
3109
3110 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3111 defined(CONFIG_PREEMPT_TRACER))
3112
3113 void __kprobes add_preempt_count(int val)
3114 {
3115 #ifdef CONFIG_DEBUG_PREEMPT
3116 /*
3117 * Underflow?
3118 */
3119 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3120 return;
3121 #endif
3122 preempt_count() += val;
3123 #ifdef CONFIG_DEBUG_PREEMPT
3124 /*
3125 * Spinlock count overflowing soon?
3126 */
3127 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3128 PREEMPT_MASK - 10);
3129 #endif
3130 if (preempt_count() == val)
3131 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3132 }
3133 EXPORT_SYMBOL(add_preempt_count);
3134
3135 void __kprobes sub_preempt_count(int val)
3136 {
3137 #ifdef CONFIG_DEBUG_PREEMPT
3138 /*
3139 * Underflow?
3140 */
3141 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3142 return;
3143 /*
3144 * Is the spinlock portion underflowing?
3145 */
3146 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3147 !(preempt_count() & PREEMPT_MASK)))
3148 return;
3149 #endif
3150
3151 if (preempt_count() == val)
3152 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3153 preempt_count() -= val;
3154 }
3155 EXPORT_SYMBOL(sub_preempt_count);
3156
3157 #endif
3158
3159 /*
3160 * Print scheduling while atomic bug:
3161 */
3162 static noinline void __schedule_bug(struct task_struct *prev)
3163 {
3164 if (oops_in_progress)
3165 return;
3166
3167 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3168 prev->comm, prev->pid, preempt_count());
3169
3170 debug_show_held_locks(prev);
3171 print_modules();
3172 if (irqs_disabled())
3173 print_irqtrace_events(prev);
3174 dump_stack();
3175 add_taint(TAINT_WARN);
3176 }
3177
3178 /*
3179 * Various schedule()-time debugging checks and statistics:
3180 */
3181 static inline void schedule_debug(struct task_struct *prev)
3182 {
3183 /*
3184 * Test if we are atomic. Since do_exit() needs to call into
3185 * schedule() atomically, we ignore that path for now.
3186 * Otherwise, whine if we are scheduling when we should not be.
3187 */
3188 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3189 __schedule_bug(prev);
3190 rcu_sleep_check();
3191
3192 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3193
3194 schedstat_inc(this_rq(), sched_count);
3195 }
3196
3197 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3198 {
3199 if (prev->on_rq || rq->skip_clock_update < 0)
3200 update_rq_clock(rq);
3201 prev->sched_class->put_prev_task(rq, prev);
3202 }
3203
3204 /*
3205 * Pick up the highest-prio task:
3206 */
3207 static inline struct task_struct *
3208 pick_next_task(struct rq *rq)
3209 {
3210 const struct sched_class *class;
3211 struct task_struct *p;
3212
3213 /*
3214 * Optimization: we know that if all tasks are in
3215 * the fair class we can call that function directly:
3216 */
3217 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3218 p = fair_sched_class.pick_next_task(rq);
3219 if (likely(p))
3220 return p;
3221 }
3222
3223 for_each_class(class) {
3224 p = class->pick_next_task(rq);
3225 if (p)
3226 return p;
3227 }
3228
3229 BUG(); /* the idle class will always have a runnable task */
3230 }
3231
3232 /*
3233 * __schedule() is the main scheduler function.
3234 */
3235 static void __sched __schedule(void)
3236 {
3237 struct task_struct *prev, *next;
3238 unsigned long *switch_count;
3239 struct rq *rq;
3240 int cpu;
3241
3242 need_resched:
3243 preempt_disable();
3244 cpu = smp_processor_id();
3245 rq = cpu_rq(cpu);
3246 rcu_note_context_switch(cpu);
3247 prev = rq->curr;
3248
3249 schedule_debug(prev);
3250
3251 if (sched_feat(HRTICK))
3252 hrtick_clear(rq);
3253
3254 raw_spin_lock_irq(&rq->lock);
3255
3256 switch_count = &prev->nivcsw;
3257 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3258 if (unlikely(signal_pending_state(prev->state, prev))) {
3259 prev->state = TASK_RUNNING;
3260 } else {
3261 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3262 prev->on_rq = 0;
3263
3264 /*
3265 * If a worker went to sleep, notify and ask workqueue
3266 * whether it wants to wake up a task to maintain
3267 * concurrency.
3268 */
3269 if (prev->flags & PF_WQ_WORKER) {
3270 struct task_struct *to_wakeup;
3271
3272 to_wakeup = wq_worker_sleeping(prev, cpu);
3273 if (to_wakeup)
3274 try_to_wake_up_local(to_wakeup);
3275 }
3276 }
3277 switch_count = &prev->nvcsw;
3278 }
3279
3280 pre_schedule(rq, prev);
3281
3282 if (unlikely(!rq->nr_running))
3283 idle_balance(cpu, rq);
3284
3285 put_prev_task(rq, prev);
3286 next = pick_next_task(rq);
3287 clear_tsk_need_resched(prev);
3288 rq->skip_clock_update = 0;
3289
3290 if (likely(prev != next)) {
3291 rq->nr_switches++;
3292 rq->curr = next;
3293 ++*switch_count;
3294
3295 context_switch(rq, prev, next); /* unlocks the rq */
3296 /*
3297 * The context switch have flipped the stack from under us
3298 * and restored the local variables which were saved when
3299 * this task called schedule() in the past. prev == current
3300 * is still correct, but it can be moved to another cpu/rq.
3301 */
3302 cpu = smp_processor_id();
3303 rq = cpu_rq(cpu);
3304 } else
3305 raw_spin_unlock_irq(&rq->lock);
3306
3307 post_schedule(rq);
3308
3309 sched_preempt_enable_no_resched();
3310 if (need_resched())
3311 goto need_resched;
3312 }
3313
3314 static inline void sched_submit_work(struct task_struct *tsk)
3315 {
3316 if (!tsk->state || tsk_is_pi_blocked(tsk))
3317 return;
3318 /*
3319 * If we are going to sleep and we have plugged IO queued,
3320 * make sure to submit it to avoid deadlocks.
3321 */
3322 if (blk_needs_flush_plug(tsk))
3323 blk_schedule_flush_plug(tsk);
3324 }
3325
3326 asmlinkage void __sched schedule(void)
3327 {
3328 struct task_struct *tsk = current;
3329
3330 sched_submit_work(tsk);
3331 __schedule();
3332 }
3333 EXPORT_SYMBOL(schedule);
3334
3335 /**
3336 * schedule_preempt_disabled - called with preemption disabled
3337 *
3338 * Returns with preemption disabled. Note: preempt_count must be 1
3339 */
3340 void __sched schedule_preempt_disabled(void)
3341 {
3342 sched_preempt_enable_no_resched();
3343 schedule();
3344 preempt_disable();
3345 }
3346
3347 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3348
3349 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3350 {
3351 if (lock->owner != owner)
3352 return false;
3353
3354 /*
3355 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3356 * lock->owner still matches owner, if that fails, owner might
3357 * point to free()d memory, if it still matches, the rcu_read_lock()
3358 * ensures the memory stays valid.
3359 */
3360 barrier();
3361
3362 return owner->on_cpu;
3363 }
3364
3365 /*
3366 * Look out! "owner" is an entirely speculative pointer
3367 * access and not reliable.
3368 */
3369 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3370 {
3371 if (!sched_feat(OWNER_SPIN))
3372 return 0;
3373
3374 rcu_read_lock();
3375 while (owner_running(lock, owner)) {
3376 if (need_resched())
3377 break;
3378
3379 arch_mutex_cpu_relax();
3380 }
3381 rcu_read_unlock();
3382
3383 /*
3384 * We break out the loop above on need_resched() and when the
3385 * owner changed, which is a sign for heavy contention. Return
3386 * success only when lock->owner is NULL.
3387 */
3388 return lock->owner == NULL;
3389 }
3390 #endif
3391
3392 #ifdef CONFIG_PREEMPT
3393 /*
3394 * this is the entry point to schedule() from in-kernel preemption
3395 * off of preempt_enable. Kernel preemptions off return from interrupt
3396 * occur there and call schedule directly.
3397 */
3398 asmlinkage void __sched notrace preempt_schedule(void)
3399 {
3400 struct thread_info *ti = current_thread_info();
3401
3402 /*
3403 * If there is a non-zero preempt_count or interrupts are disabled,
3404 * we do not want to preempt the current task. Just return..
3405 */
3406 if (likely(ti->preempt_count || irqs_disabled()))
3407 return;
3408
3409 do {
3410 add_preempt_count_notrace(PREEMPT_ACTIVE);
3411 __schedule();
3412 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3413
3414 /*
3415 * Check again in case we missed a preemption opportunity
3416 * between schedule and now.
3417 */
3418 barrier();
3419 } while (need_resched());
3420 }
3421 EXPORT_SYMBOL(preempt_schedule);
3422
3423 /*
3424 * this is the entry point to schedule() from kernel preemption
3425 * off of irq context.
3426 * Note, that this is called and return with irqs disabled. This will
3427 * protect us against recursive calling from irq.
3428 */
3429 asmlinkage void __sched preempt_schedule_irq(void)
3430 {
3431 struct thread_info *ti = current_thread_info();
3432
3433 /* Catch callers which need to be fixed */
3434 BUG_ON(ti->preempt_count || !irqs_disabled());
3435
3436 do {
3437 add_preempt_count(PREEMPT_ACTIVE);
3438 local_irq_enable();
3439 __schedule();
3440 local_irq_disable();
3441 sub_preempt_count(PREEMPT_ACTIVE);
3442
3443 /*
3444 * Check again in case we missed a preemption opportunity
3445 * between schedule and now.
3446 */
3447 barrier();
3448 } while (need_resched());
3449 }
3450
3451 #endif /* CONFIG_PREEMPT */
3452
3453 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3454 void *key)
3455 {
3456 return try_to_wake_up(curr->private, mode, wake_flags);
3457 }
3458 EXPORT_SYMBOL(default_wake_function);
3459
3460 /*
3461 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3462 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3463 * number) then we wake all the non-exclusive tasks and one exclusive task.
3464 *
3465 * There are circumstances in which we can try to wake a task which has already
3466 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3467 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3468 */
3469 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3470 int nr_exclusive, int wake_flags, void *key)
3471 {
3472 wait_queue_t *curr, *next;
3473
3474 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3475 unsigned flags = curr->flags;
3476
3477 if (curr->func(curr, mode, wake_flags, key) &&
3478 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3479 break;
3480 }
3481 }
3482
3483 /**
3484 * __wake_up - wake up threads blocked on a waitqueue.
3485 * @q: the waitqueue
3486 * @mode: which threads
3487 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3488 * @key: is directly passed to the wakeup function
3489 *
3490 * It may be assumed that this function implies a write memory barrier before
3491 * changing the task state if and only if any tasks are woken up.
3492 */
3493 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3494 int nr_exclusive, void *key)
3495 {
3496 unsigned long flags;
3497
3498 spin_lock_irqsave(&q->lock, flags);
3499 __wake_up_common(q, mode, nr_exclusive, 0, key);
3500 spin_unlock_irqrestore(&q->lock, flags);
3501 }
3502 EXPORT_SYMBOL(__wake_up);
3503
3504 /*
3505 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3506 */
3507 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3508 {
3509 __wake_up_common(q, mode, nr, 0, NULL);
3510 }
3511 EXPORT_SYMBOL_GPL(__wake_up_locked);
3512
3513 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3514 {
3515 __wake_up_common(q, mode, 1, 0, key);
3516 }
3517 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3518
3519 /**
3520 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3521 * @q: the waitqueue
3522 * @mode: which threads
3523 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3524 * @key: opaque value to be passed to wakeup targets
3525 *
3526 * The sync wakeup differs that the waker knows that it will schedule
3527 * away soon, so while the target thread will be woken up, it will not
3528 * be migrated to another CPU - ie. the two threads are 'synchronized'
3529 * with each other. This can prevent needless bouncing between CPUs.
3530 *
3531 * On UP it can prevent extra preemption.
3532 *
3533 * It may be assumed that this function implies a write memory barrier before
3534 * changing the task state if and only if any tasks are woken up.
3535 */
3536 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3537 int nr_exclusive, void *key)
3538 {
3539 unsigned long flags;
3540 int wake_flags = WF_SYNC;
3541
3542 if (unlikely(!q))
3543 return;
3544
3545 if (unlikely(!nr_exclusive))
3546 wake_flags = 0;
3547
3548 spin_lock_irqsave(&q->lock, flags);
3549 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3550 spin_unlock_irqrestore(&q->lock, flags);
3551 }
3552 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3553
3554 /*
3555 * __wake_up_sync - see __wake_up_sync_key()
3556 */
3557 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3558 {
3559 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3560 }
3561 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3562
3563 /**
3564 * complete: - signals a single thread waiting on this completion
3565 * @x: holds the state of this particular completion
3566 *
3567 * This will wake up a single thread waiting on this completion. Threads will be
3568 * awakened in the same order in which they were queued.
3569 *
3570 * See also complete_all(), wait_for_completion() and related routines.
3571 *
3572 * It may be assumed that this function implies a write memory barrier before
3573 * changing the task state if and only if any tasks are woken up.
3574 */
3575 void complete(struct completion *x)
3576 {
3577 unsigned long flags;
3578
3579 spin_lock_irqsave(&x->wait.lock, flags);
3580 x->done++;
3581 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3582 spin_unlock_irqrestore(&x->wait.lock, flags);
3583 }
3584 EXPORT_SYMBOL(complete);
3585
3586 /**
3587 * complete_all: - signals all threads waiting on this completion
3588 * @x: holds the state of this particular completion
3589 *
3590 * This will wake up all threads waiting on this particular completion event.
3591 *
3592 * It may be assumed that this function implies a write memory barrier before
3593 * changing the task state if and only if any tasks are woken up.
3594 */
3595 void complete_all(struct completion *x)
3596 {
3597 unsigned long flags;
3598
3599 spin_lock_irqsave(&x->wait.lock, flags);
3600 x->done += UINT_MAX/2;
3601 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3602 spin_unlock_irqrestore(&x->wait.lock, flags);
3603 }
3604 EXPORT_SYMBOL(complete_all);
3605
3606 static inline long __sched
3607 do_wait_for_common(struct completion *x, long timeout, int state)
3608 {
3609 if (!x->done) {
3610 DECLARE_WAITQUEUE(wait, current);
3611
3612 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3613 do {
3614 if (signal_pending_state(state, current)) {
3615 timeout = -ERESTARTSYS;
3616 break;
3617 }
3618 __set_current_state(state);
3619 spin_unlock_irq(&x->wait.lock);
3620 timeout = schedule_timeout(timeout);
3621 spin_lock_irq(&x->wait.lock);
3622 } while (!x->done && timeout);
3623 __remove_wait_queue(&x->wait, &wait);
3624 if (!x->done)
3625 return timeout;
3626 }
3627 x->done--;
3628 return timeout ?: 1;
3629 }
3630
3631 static long __sched
3632 wait_for_common(struct completion *x, long timeout, int state)
3633 {
3634 might_sleep();
3635
3636 spin_lock_irq(&x->wait.lock);
3637 timeout = do_wait_for_common(x, timeout, state);
3638 spin_unlock_irq(&x->wait.lock);
3639 return timeout;
3640 }
3641
3642 /**
3643 * wait_for_completion: - waits for completion of a task
3644 * @x: holds the state of this particular completion
3645 *
3646 * This waits to be signaled for completion of a specific task. It is NOT
3647 * interruptible and there is no timeout.
3648 *
3649 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3650 * and interrupt capability. Also see complete().
3651 */
3652 void __sched wait_for_completion(struct completion *x)
3653 {
3654 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3655 }
3656 EXPORT_SYMBOL(wait_for_completion);
3657
3658 /**
3659 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3660 * @x: holds the state of this particular completion
3661 * @timeout: timeout value in jiffies
3662 *
3663 * This waits for either a completion of a specific task to be signaled or for a
3664 * specified timeout to expire. The timeout is in jiffies. It is not
3665 * interruptible.
3666 *
3667 * The return value is 0 if timed out, and positive (at least 1, or number of
3668 * jiffies left till timeout) if completed.
3669 */
3670 unsigned long __sched
3671 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3672 {
3673 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3674 }
3675 EXPORT_SYMBOL(wait_for_completion_timeout);
3676
3677 /**
3678 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3679 * @x: holds the state of this particular completion
3680 *
3681 * This waits for completion of a specific task to be signaled. It is
3682 * interruptible.
3683 *
3684 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3685 */
3686 int __sched wait_for_completion_interruptible(struct completion *x)
3687 {
3688 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3689 if (t == -ERESTARTSYS)
3690 return t;
3691 return 0;
3692 }
3693 EXPORT_SYMBOL(wait_for_completion_interruptible);
3694
3695 /**
3696 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3697 * @x: holds the state of this particular completion
3698 * @timeout: timeout value in jiffies
3699 *
3700 * This waits for either a completion of a specific task to be signaled or for a
3701 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3702 *
3703 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3704 * positive (at least 1, or number of jiffies left till timeout) if completed.
3705 */
3706 long __sched
3707 wait_for_completion_interruptible_timeout(struct completion *x,
3708 unsigned long timeout)
3709 {
3710 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3711 }
3712 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3713
3714 /**
3715 * wait_for_completion_killable: - waits for completion of a task (killable)
3716 * @x: holds the state of this particular completion
3717 *
3718 * This waits to be signaled for completion of a specific task. It can be
3719 * interrupted by a kill signal.
3720 *
3721 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3722 */
3723 int __sched wait_for_completion_killable(struct completion *x)
3724 {
3725 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3726 if (t == -ERESTARTSYS)
3727 return t;
3728 return 0;
3729 }
3730 EXPORT_SYMBOL(wait_for_completion_killable);
3731
3732 /**
3733 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3734 * @x: holds the state of this particular completion
3735 * @timeout: timeout value in jiffies
3736 *
3737 * This waits for either a completion of a specific task to be
3738 * signaled or for a specified timeout to expire. It can be
3739 * interrupted by a kill signal. The timeout is in jiffies.
3740 *
3741 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3742 * positive (at least 1, or number of jiffies left till timeout) if completed.
3743 */
3744 long __sched
3745 wait_for_completion_killable_timeout(struct completion *x,
3746 unsigned long timeout)
3747 {
3748 return wait_for_common(x, timeout, TASK_KILLABLE);
3749 }
3750 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3751
3752 /**
3753 * try_wait_for_completion - try to decrement a completion without blocking
3754 * @x: completion structure
3755 *
3756 * Returns: 0 if a decrement cannot be done without blocking
3757 * 1 if a decrement succeeded.
3758 *
3759 * If a completion is being used as a counting completion,
3760 * attempt to decrement the counter without blocking. This
3761 * enables us to avoid waiting if the resource the completion
3762 * is protecting is not available.
3763 */
3764 bool try_wait_for_completion(struct completion *x)
3765 {
3766 unsigned long flags;
3767 int ret = 1;
3768
3769 spin_lock_irqsave(&x->wait.lock, flags);
3770 if (!x->done)
3771 ret = 0;
3772 else
3773 x->done--;
3774 spin_unlock_irqrestore(&x->wait.lock, flags);
3775 return ret;
3776 }
3777 EXPORT_SYMBOL(try_wait_for_completion);
3778
3779 /**
3780 * completion_done - Test to see if a completion has any waiters
3781 * @x: completion structure
3782 *
3783 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3784 * 1 if there are no waiters.
3785 *
3786 */
3787 bool completion_done(struct completion *x)
3788 {
3789 unsigned long flags;
3790 int ret = 1;
3791
3792 spin_lock_irqsave(&x->wait.lock, flags);
3793 if (!x->done)
3794 ret = 0;
3795 spin_unlock_irqrestore(&x->wait.lock, flags);
3796 return ret;
3797 }
3798 EXPORT_SYMBOL(completion_done);
3799
3800 static long __sched
3801 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3802 {
3803 unsigned long flags;
3804 wait_queue_t wait;
3805
3806 init_waitqueue_entry(&wait, current);
3807
3808 __set_current_state(state);
3809
3810 spin_lock_irqsave(&q->lock, flags);
3811 __add_wait_queue(q, &wait);
3812 spin_unlock(&q->lock);
3813 timeout = schedule_timeout(timeout);
3814 spin_lock_irq(&q->lock);
3815 __remove_wait_queue(q, &wait);
3816 spin_unlock_irqrestore(&q->lock, flags);
3817
3818 return timeout;
3819 }
3820
3821 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3822 {
3823 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3824 }
3825 EXPORT_SYMBOL(interruptible_sleep_on);
3826
3827 long __sched
3828 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3829 {
3830 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3831 }
3832 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3833
3834 void __sched sleep_on(wait_queue_head_t *q)
3835 {
3836 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3837 }
3838 EXPORT_SYMBOL(sleep_on);
3839
3840 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3841 {
3842 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3843 }
3844 EXPORT_SYMBOL(sleep_on_timeout);
3845
3846 #ifdef CONFIG_RT_MUTEXES
3847
3848 /*
3849 * rt_mutex_setprio - set the current priority of a task
3850 * @p: task
3851 * @prio: prio value (kernel-internal form)
3852 *
3853 * This function changes the 'effective' priority of a task. It does
3854 * not touch ->normal_prio like __setscheduler().
3855 *
3856 * Used by the rt_mutex code to implement priority inheritance logic.
3857 */
3858 void rt_mutex_setprio(struct task_struct *p, int prio)
3859 {
3860 int oldprio, on_rq, running;
3861 struct rq *rq;
3862 const struct sched_class *prev_class;
3863
3864 BUG_ON(prio < 0 || prio > MAX_PRIO);
3865
3866 rq = __task_rq_lock(p);
3867
3868 /*
3869 * Idle task boosting is a nono in general. There is one
3870 * exception, when PREEMPT_RT and NOHZ is active:
3871 *
3872 * The idle task calls get_next_timer_interrupt() and holds
3873 * the timer wheel base->lock on the CPU and another CPU wants
3874 * to access the timer (probably to cancel it). We can safely
3875 * ignore the boosting request, as the idle CPU runs this code
3876 * with interrupts disabled and will complete the lock
3877 * protected section without being interrupted. So there is no
3878 * real need to boost.
3879 */
3880 if (unlikely(p == rq->idle)) {
3881 WARN_ON(p != rq->curr);
3882 WARN_ON(p->pi_blocked_on);
3883 goto out_unlock;
3884 }
3885
3886 trace_sched_pi_setprio(p, prio);
3887 oldprio = p->prio;
3888 prev_class = p->sched_class;
3889 on_rq = p->on_rq;
3890 running = task_current(rq, p);
3891 if (on_rq)
3892 dequeue_task(rq, p, 0);
3893 if (running)
3894 p->sched_class->put_prev_task(rq, p);
3895
3896 if (rt_prio(prio))
3897 p->sched_class = &rt_sched_class;
3898 else
3899 p->sched_class = &fair_sched_class;
3900
3901 p->prio = prio;
3902
3903 if (running)
3904 p->sched_class->set_curr_task(rq);
3905 if (on_rq)
3906 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3907
3908 check_class_changed(rq, p, prev_class, oldprio);
3909 out_unlock:
3910 __task_rq_unlock(rq);
3911 }
3912 #endif
3913 void set_user_nice(struct task_struct *p, long nice)
3914 {
3915 int old_prio, delta, on_rq;
3916 unsigned long flags;
3917 struct rq *rq;
3918
3919 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3920 return;
3921 /*
3922 * We have to be careful, if called from sys_setpriority(),
3923 * the task might be in the middle of scheduling on another CPU.
3924 */
3925 rq = task_rq_lock(p, &flags);
3926 /*
3927 * The RT priorities are set via sched_setscheduler(), but we still
3928 * allow the 'normal' nice value to be set - but as expected
3929 * it wont have any effect on scheduling until the task is
3930 * SCHED_FIFO/SCHED_RR:
3931 */
3932 if (task_has_rt_policy(p)) {
3933 p->static_prio = NICE_TO_PRIO(nice);
3934 goto out_unlock;
3935 }
3936 on_rq = p->on_rq;
3937 if (on_rq)
3938 dequeue_task(rq, p, 0);
3939
3940 p->static_prio = NICE_TO_PRIO(nice);
3941 set_load_weight(p);
3942 old_prio = p->prio;
3943 p->prio = effective_prio(p);
3944 delta = p->prio - old_prio;
3945
3946 if (on_rq) {
3947 enqueue_task(rq, p, 0);
3948 /*
3949 * If the task increased its priority or is running and
3950 * lowered its priority, then reschedule its CPU:
3951 */
3952 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3953 resched_task(rq->curr);
3954 }
3955 out_unlock:
3956 task_rq_unlock(rq, p, &flags);
3957 }
3958 EXPORT_SYMBOL(set_user_nice);
3959
3960 /*
3961 * can_nice - check if a task can reduce its nice value
3962 * @p: task
3963 * @nice: nice value
3964 */
3965 int can_nice(const struct task_struct *p, const int nice)
3966 {
3967 /* convert nice value [19,-20] to rlimit style value [1,40] */
3968 int nice_rlim = 20 - nice;
3969
3970 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3971 capable(CAP_SYS_NICE));
3972 }
3973
3974 #ifdef __ARCH_WANT_SYS_NICE
3975
3976 /*
3977 * sys_nice - change the priority of the current process.
3978 * @increment: priority increment
3979 *
3980 * sys_setpriority is a more generic, but much slower function that
3981 * does similar things.
3982 */
3983 SYSCALL_DEFINE1(nice, int, increment)
3984 {
3985 long nice, retval;
3986
3987 /*
3988 * Setpriority might change our priority at the same moment.
3989 * We don't have to worry. Conceptually one call occurs first
3990 * and we have a single winner.
3991 */
3992 if (increment < -40)
3993 increment = -40;
3994 if (increment > 40)
3995 increment = 40;
3996
3997 nice = TASK_NICE(current) + increment;
3998 if (nice < -20)
3999 nice = -20;
4000 if (nice > 19)
4001 nice = 19;
4002
4003 if (increment < 0 && !can_nice(current, nice))
4004 return -EPERM;
4005
4006 retval = security_task_setnice(current, nice);
4007 if (retval)
4008 return retval;
4009
4010 set_user_nice(current, nice);
4011 return 0;
4012 }
4013
4014 #endif
4015
4016 /**
4017 * task_prio - return the priority value of a given task.
4018 * @p: the task in question.
4019 *
4020 * This is the priority value as seen by users in /proc.
4021 * RT tasks are offset by -200. Normal tasks are centered
4022 * around 0, value goes from -16 to +15.
4023 */
4024 int task_prio(const struct task_struct *p)
4025 {
4026 return p->prio - MAX_RT_PRIO;
4027 }
4028
4029 /**
4030 * task_nice - return the nice value of a given task.
4031 * @p: the task in question.
4032 */
4033 int task_nice(const struct task_struct *p)
4034 {
4035 return TASK_NICE(p);
4036 }
4037 EXPORT_SYMBOL(task_nice);
4038
4039 /**
4040 * idle_cpu - is a given cpu idle currently?
4041 * @cpu: the processor in question.
4042 */
4043 int idle_cpu(int cpu)
4044 {
4045 struct rq *rq = cpu_rq(cpu);
4046
4047 if (rq->curr != rq->idle)
4048 return 0;
4049
4050 if (rq->nr_running)
4051 return 0;
4052
4053 #ifdef CONFIG_SMP
4054 if (!llist_empty(&rq->wake_list))
4055 return 0;
4056 #endif
4057
4058 return 1;
4059 }
4060
4061 /**
4062 * idle_task - return the idle task for a given cpu.
4063 * @cpu: the processor in question.
4064 */
4065 struct task_struct *idle_task(int cpu)
4066 {
4067 return cpu_rq(cpu)->idle;
4068 }
4069
4070 /**
4071 * find_process_by_pid - find a process with a matching PID value.
4072 * @pid: the pid in question.
4073 */
4074 static struct task_struct *find_process_by_pid(pid_t pid)
4075 {
4076 return pid ? find_task_by_vpid(pid) : current;
4077 }
4078
4079 /* Actually do priority change: must hold rq lock. */
4080 static void
4081 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4082 {
4083 p->policy = policy;
4084 p->rt_priority = prio;
4085 p->normal_prio = normal_prio(p);
4086 /* we are holding p->pi_lock already */
4087 p->prio = rt_mutex_getprio(p);
4088 if (rt_prio(p->prio))
4089 p->sched_class = &rt_sched_class;
4090 else
4091 p->sched_class = &fair_sched_class;
4092 set_load_weight(p);
4093 }
4094
4095 /*
4096 * check the target process has a UID that matches the current process's
4097 */
4098 static bool check_same_owner(struct task_struct *p)
4099 {
4100 const struct cred *cred = current_cred(), *pcred;
4101 bool match;
4102
4103 rcu_read_lock();
4104 pcred = __task_cred(p);
4105 match = (uid_eq(cred->euid, pcred->euid) ||
4106 uid_eq(cred->euid, pcred->uid));
4107 rcu_read_unlock();
4108 return match;
4109 }
4110
4111 static int __sched_setscheduler(struct task_struct *p, int policy,
4112 const struct sched_param *param, bool user)
4113 {
4114 int retval, oldprio, oldpolicy = -1, on_rq, running;
4115 unsigned long flags;
4116 const struct sched_class *prev_class;
4117 struct rq *rq;
4118 int reset_on_fork;
4119
4120 /* may grab non-irq protected spin_locks */
4121 BUG_ON(in_interrupt());
4122 recheck:
4123 /* double check policy once rq lock held */
4124 if (policy < 0) {
4125 reset_on_fork = p->sched_reset_on_fork;
4126 policy = oldpolicy = p->policy;
4127 } else {
4128 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4129 policy &= ~SCHED_RESET_ON_FORK;
4130
4131 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4132 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4133 policy != SCHED_IDLE)
4134 return -EINVAL;
4135 }
4136
4137 /*
4138 * Valid priorities for SCHED_FIFO and SCHED_RR are
4139 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4140 * SCHED_BATCH and SCHED_IDLE is 0.
4141 */
4142 if (param->sched_priority < 0 ||
4143 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4144 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4145 return -EINVAL;
4146 if (rt_policy(policy) != (param->sched_priority != 0))
4147 return -EINVAL;
4148
4149 /*
4150 * Allow unprivileged RT tasks to decrease priority:
4151 */
4152 if (user && !capable(CAP_SYS_NICE)) {
4153 if (rt_policy(policy)) {
4154 unsigned long rlim_rtprio =
4155 task_rlimit(p, RLIMIT_RTPRIO);
4156
4157 /* can't set/change the rt policy */
4158 if (policy != p->policy && !rlim_rtprio)
4159 return -EPERM;
4160
4161 /* can't increase priority */
4162 if (param->sched_priority > p->rt_priority &&
4163 param->sched_priority > rlim_rtprio)
4164 return -EPERM;
4165 }
4166
4167 /*
4168 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4169 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4170 */
4171 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4172 if (!can_nice(p, TASK_NICE(p)))
4173 return -EPERM;
4174 }
4175
4176 /* can't change other user's priorities */
4177 if (!check_same_owner(p))
4178 return -EPERM;
4179
4180 /* Normal users shall not reset the sched_reset_on_fork flag */
4181 if (p->sched_reset_on_fork && !reset_on_fork)
4182 return -EPERM;
4183 }
4184
4185 if (user) {
4186 retval = security_task_setscheduler(p);
4187 if (retval)
4188 return retval;
4189 }
4190
4191 /*
4192 * make sure no PI-waiters arrive (or leave) while we are
4193 * changing the priority of the task:
4194 *
4195 * To be able to change p->policy safely, the appropriate
4196 * runqueue lock must be held.
4197 */
4198 rq = task_rq_lock(p, &flags);
4199
4200 /*
4201 * Changing the policy of the stop threads its a very bad idea
4202 */
4203 if (p == rq->stop) {
4204 task_rq_unlock(rq, p, &flags);
4205 return -EINVAL;
4206 }
4207
4208 /*
4209 * If not changing anything there's no need to proceed further:
4210 */
4211 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4212 param->sched_priority == p->rt_priority))) {
4213
4214 __task_rq_unlock(rq);
4215 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4216 return 0;
4217 }
4218
4219 #ifdef CONFIG_RT_GROUP_SCHED
4220 if (user) {
4221 /*
4222 * Do not allow realtime tasks into groups that have no runtime
4223 * assigned.
4224 */
4225 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4226 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4227 !task_group_is_autogroup(task_group(p))) {
4228 task_rq_unlock(rq, p, &flags);
4229 return -EPERM;
4230 }
4231 }
4232 #endif
4233
4234 /* recheck policy now with rq lock held */
4235 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4236 policy = oldpolicy = -1;
4237 task_rq_unlock(rq, p, &flags);
4238 goto recheck;
4239 }
4240 on_rq = p->on_rq;
4241 running = task_current(rq, p);
4242 if (on_rq)
4243 dequeue_task(rq, p, 0);
4244 if (running)
4245 p->sched_class->put_prev_task(rq, p);
4246
4247 p->sched_reset_on_fork = reset_on_fork;
4248
4249 oldprio = p->prio;
4250 prev_class = p->sched_class;
4251 __setscheduler(rq, p, policy, param->sched_priority);
4252
4253 if (running)
4254 p->sched_class->set_curr_task(rq);
4255 if (on_rq)
4256 enqueue_task(rq, p, 0);
4257
4258 check_class_changed(rq, p, prev_class, oldprio);
4259 task_rq_unlock(rq, p, &flags);
4260
4261 rt_mutex_adjust_pi(p);
4262
4263 return 0;
4264 }
4265
4266 /**
4267 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4268 * @p: the task in question.
4269 * @policy: new policy.
4270 * @param: structure containing the new RT priority.
4271 *
4272 * NOTE that the task may be already dead.
4273 */
4274 int sched_setscheduler(struct task_struct *p, int policy,
4275 const struct sched_param *param)
4276 {
4277 return __sched_setscheduler(p, policy, param, true);
4278 }
4279 EXPORT_SYMBOL_GPL(sched_setscheduler);
4280
4281 /**
4282 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4283 * @p: the task in question.
4284 * @policy: new policy.
4285 * @param: structure containing the new RT priority.
4286 *
4287 * Just like sched_setscheduler, only don't bother checking if the
4288 * current context has permission. For example, this is needed in
4289 * stop_machine(): we create temporary high priority worker threads,
4290 * but our caller might not have that capability.
4291 */
4292 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4293 const struct sched_param *param)
4294 {
4295 return __sched_setscheduler(p, policy, param, false);
4296 }
4297
4298 static int
4299 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4300 {
4301 struct sched_param lparam;
4302 struct task_struct *p;
4303 int retval;
4304
4305 if (!param || pid < 0)
4306 return -EINVAL;
4307 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4308 return -EFAULT;
4309
4310 rcu_read_lock();
4311 retval = -ESRCH;
4312 p = find_process_by_pid(pid);
4313 if (p != NULL)
4314 retval = sched_setscheduler(p, policy, &lparam);
4315 rcu_read_unlock();
4316
4317 return retval;
4318 }
4319
4320 /**
4321 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4322 * @pid: the pid in question.
4323 * @policy: new policy.
4324 * @param: structure containing the new RT priority.
4325 */
4326 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4327 struct sched_param __user *, param)
4328 {
4329 /* negative values for policy are not valid */
4330 if (policy < 0)
4331 return -EINVAL;
4332
4333 return do_sched_setscheduler(pid, policy, param);
4334 }
4335
4336 /**
4337 * sys_sched_setparam - set/change the RT priority of a thread
4338 * @pid: the pid in question.
4339 * @param: structure containing the new RT priority.
4340 */
4341 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4342 {
4343 return do_sched_setscheduler(pid, -1, param);
4344 }
4345
4346 /**
4347 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4348 * @pid: the pid in question.
4349 */
4350 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4351 {
4352 struct task_struct *p;
4353 int retval;
4354
4355 if (pid < 0)
4356 return -EINVAL;
4357
4358 retval = -ESRCH;
4359 rcu_read_lock();
4360 p = find_process_by_pid(pid);
4361 if (p) {
4362 retval = security_task_getscheduler(p);
4363 if (!retval)
4364 retval = p->policy
4365 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4366 }
4367 rcu_read_unlock();
4368 return retval;
4369 }
4370
4371 /**
4372 * sys_sched_getparam - get the RT priority of a thread
4373 * @pid: the pid in question.
4374 * @param: structure containing the RT priority.
4375 */
4376 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4377 {
4378 struct sched_param lp;
4379 struct task_struct *p;
4380 int retval;
4381
4382 if (!param || pid < 0)
4383 return -EINVAL;
4384
4385 rcu_read_lock();
4386 p = find_process_by_pid(pid);
4387 retval = -ESRCH;
4388 if (!p)
4389 goto out_unlock;
4390
4391 retval = security_task_getscheduler(p);
4392 if (retval)
4393 goto out_unlock;
4394
4395 lp.sched_priority = p->rt_priority;
4396 rcu_read_unlock();
4397
4398 /*
4399 * This one might sleep, we cannot do it with a spinlock held ...
4400 */
4401 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4402
4403 return retval;
4404
4405 out_unlock:
4406 rcu_read_unlock();
4407 return retval;
4408 }
4409
4410 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4411 {
4412 cpumask_var_t cpus_allowed, new_mask;
4413 struct task_struct *p;
4414 int retval;
4415
4416 get_online_cpus();
4417 rcu_read_lock();
4418
4419 p = find_process_by_pid(pid);
4420 if (!p) {
4421 rcu_read_unlock();
4422 put_online_cpus();
4423 return -ESRCH;
4424 }
4425
4426 /* Prevent p going away */
4427 get_task_struct(p);
4428 rcu_read_unlock();
4429
4430 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4431 retval = -ENOMEM;
4432 goto out_put_task;
4433 }
4434 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4435 retval = -ENOMEM;
4436 goto out_free_cpus_allowed;
4437 }
4438 retval = -EPERM;
4439 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4440 goto out_unlock;
4441
4442 retval = security_task_setscheduler(p);
4443 if (retval)
4444 goto out_unlock;
4445
4446 cpuset_cpus_allowed(p, cpus_allowed);
4447 cpumask_and(new_mask, in_mask, cpus_allowed);
4448 again:
4449 retval = set_cpus_allowed_ptr(p, new_mask);
4450
4451 if (!retval) {
4452 cpuset_cpus_allowed(p, cpus_allowed);
4453 if (!cpumask_subset(new_mask, cpus_allowed)) {
4454 /*
4455 * We must have raced with a concurrent cpuset
4456 * update. Just reset the cpus_allowed to the
4457 * cpuset's cpus_allowed
4458 */
4459 cpumask_copy(new_mask, cpus_allowed);
4460 goto again;
4461 }
4462 }
4463 out_unlock:
4464 free_cpumask_var(new_mask);
4465 out_free_cpus_allowed:
4466 free_cpumask_var(cpus_allowed);
4467 out_put_task:
4468 put_task_struct(p);
4469 put_online_cpus();
4470 return retval;
4471 }
4472
4473 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4474 struct cpumask *new_mask)
4475 {
4476 if (len < cpumask_size())
4477 cpumask_clear(new_mask);
4478 else if (len > cpumask_size())
4479 len = cpumask_size();
4480
4481 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4482 }
4483
4484 /**
4485 * sys_sched_setaffinity - set the cpu affinity of a process
4486 * @pid: pid of the process
4487 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4488 * @user_mask_ptr: user-space pointer to the new cpu mask
4489 */
4490 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4491 unsigned long __user *, user_mask_ptr)
4492 {
4493 cpumask_var_t new_mask;
4494 int retval;
4495
4496 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4497 return -ENOMEM;
4498
4499 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4500 if (retval == 0)
4501 retval = sched_setaffinity(pid, new_mask);
4502 free_cpumask_var(new_mask);
4503 return retval;
4504 }
4505
4506 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4507 {
4508 struct task_struct *p;
4509 unsigned long flags;
4510 int retval;
4511
4512 get_online_cpus();
4513 rcu_read_lock();
4514
4515 retval = -ESRCH;
4516 p = find_process_by_pid(pid);
4517 if (!p)
4518 goto out_unlock;
4519
4520 retval = security_task_getscheduler(p);
4521 if (retval)
4522 goto out_unlock;
4523
4524 raw_spin_lock_irqsave(&p->pi_lock, flags);
4525 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4526 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4527
4528 out_unlock:
4529 rcu_read_unlock();
4530 put_online_cpus();
4531
4532 return retval;
4533 }
4534
4535 /**
4536 * sys_sched_getaffinity - get the cpu affinity of a process
4537 * @pid: pid of the process
4538 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4539 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4540 */
4541 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4542 unsigned long __user *, user_mask_ptr)
4543 {
4544 int ret;
4545 cpumask_var_t mask;
4546
4547 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4548 return -EINVAL;
4549 if (len & (sizeof(unsigned long)-1))
4550 return -EINVAL;
4551
4552 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4553 return -ENOMEM;
4554
4555 ret = sched_getaffinity(pid, mask);
4556 if (ret == 0) {
4557 size_t retlen = min_t(size_t, len, cpumask_size());
4558
4559 if (copy_to_user(user_mask_ptr, mask, retlen))
4560 ret = -EFAULT;
4561 else
4562 ret = retlen;
4563 }
4564 free_cpumask_var(mask);
4565
4566 return ret;
4567 }
4568
4569 /**
4570 * sys_sched_yield - yield the current processor to other threads.
4571 *
4572 * This function yields the current CPU to other tasks. If there are no
4573 * other threads running on this CPU then this function will return.
4574 */
4575 SYSCALL_DEFINE0(sched_yield)
4576 {
4577 struct rq *rq = this_rq_lock();
4578
4579 schedstat_inc(rq, yld_count);
4580 current->sched_class->yield_task(rq);
4581
4582 /*
4583 * Since we are going to call schedule() anyway, there's
4584 * no need to preempt or enable interrupts:
4585 */
4586 __release(rq->lock);
4587 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4588 do_raw_spin_unlock(&rq->lock);
4589 sched_preempt_enable_no_resched();
4590
4591 schedule();
4592
4593 return 0;
4594 }
4595
4596 static inline int should_resched(void)
4597 {
4598 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4599 }
4600
4601 static void __cond_resched(void)
4602 {
4603 add_preempt_count(PREEMPT_ACTIVE);
4604 __schedule();
4605 sub_preempt_count(PREEMPT_ACTIVE);
4606 }
4607
4608 int __sched _cond_resched(void)
4609 {
4610 if (should_resched()) {
4611 __cond_resched();
4612 return 1;
4613 }
4614 return 0;
4615 }
4616 EXPORT_SYMBOL(_cond_resched);
4617
4618 /*
4619 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4620 * call schedule, and on return reacquire the lock.
4621 *
4622 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4623 * operations here to prevent schedule() from being called twice (once via
4624 * spin_unlock(), once by hand).
4625 */
4626 int __cond_resched_lock(spinlock_t *lock)
4627 {
4628 int resched = should_resched();
4629 int ret = 0;
4630
4631 lockdep_assert_held(lock);
4632
4633 if (spin_needbreak(lock) || resched) {
4634 spin_unlock(lock);
4635 if (resched)
4636 __cond_resched();
4637 else
4638 cpu_relax();
4639 ret = 1;
4640 spin_lock(lock);
4641 }
4642 return ret;
4643 }
4644 EXPORT_SYMBOL(__cond_resched_lock);
4645
4646 int __sched __cond_resched_softirq(void)
4647 {
4648 BUG_ON(!in_softirq());
4649
4650 if (should_resched()) {
4651 local_bh_enable();
4652 __cond_resched();
4653 local_bh_disable();
4654 return 1;
4655 }
4656 return 0;
4657 }
4658 EXPORT_SYMBOL(__cond_resched_softirq);
4659
4660 /**
4661 * yield - yield the current processor to other threads.
4662 *
4663 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4664 *
4665 * The scheduler is at all times free to pick the calling task as the most
4666 * eligible task to run, if removing the yield() call from your code breaks
4667 * it, its already broken.
4668 *
4669 * Typical broken usage is:
4670 *
4671 * while (!event)
4672 * yield();
4673 *
4674 * where one assumes that yield() will let 'the other' process run that will
4675 * make event true. If the current task is a SCHED_FIFO task that will never
4676 * happen. Never use yield() as a progress guarantee!!
4677 *
4678 * If you want to use yield() to wait for something, use wait_event().
4679 * If you want to use yield() to be 'nice' for others, use cond_resched().
4680 * If you still want to use yield(), do not!
4681 */
4682 void __sched yield(void)
4683 {
4684 set_current_state(TASK_RUNNING);
4685 sys_sched_yield();
4686 }
4687 EXPORT_SYMBOL(yield);
4688
4689 /**
4690 * yield_to - yield the current processor to another thread in
4691 * your thread group, or accelerate that thread toward the
4692 * processor it's on.
4693 * @p: target task
4694 * @preempt: whether task preemption is allowed or not
4695 *
4696 * It's the caller's job to ensure that the target task struct
4697 * can't go away on us before we can do any checks.
4698 *
4699 * Returns true if we indeed boosted the target task.
4700 */
4701 bool __sched yield_to(struct task_struct *p, bool preempt)
4702 {
4703 struct task_struct *curr = current;
4704 struct rq *rq, *p_rq;
4705 unsigned long flags;
4706 bool yielded = 0;
4707
4708 local_irq_save(flags);
4709 rq = this_rq();
4710
4711 again:
4712 p_rq = task_rq(p);
4713 double_rq_lock(rq, p_rq);
4714 while (task_rq(p) != p_rq) {
4715 double_rq_unlock(rq, p_rq);
4716 goto again;
4717 }
4718
4719 if (!curr->sched_class->yield_to_task)
4720 goto out;
4721
4722 if (curr->sched_class != p->sched_class)
4723 goto out;
4724
4725 if (task_running(p_rq, p) || p->state)
4726 goto out;
4727
4728 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4729 if (yielded) {
4730 schedstat_inc(rq, yld_count);
4731 /*
4732 * Make p's CPU reschedule; pick_next_entity takes care of
4733 * fairness.
4734 */
4735 if (preempt && rq != p_rq)
4736 resched_task(p_rq->curr);
4737 } else {
4738 /*
4739 * We might have set it in task_yield_fair(), but are
4740 * not going to schedule(), so don't want to skip
4741 * the next update.
4742 */
4743 rq->skip_clock_update = 0;
4744 }
4745
4746 out:
4747 double_rq_unlock(rq, p_rq);
4748 local_irq_restore(flags);
4749
4750 if (yielded)
4751 schedule();
4752
4753 return yielded;
4754 }
4755 EXPORT_SYMBOL_GPL(yield_to);
4756
4757 /*
4758 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4759 * that process accounting knows that this is a task in IO wait state.
4760 */
4761 void __sched io_schedule(void)
4762 {
4763 struct rq *rq = raw_rq();
4764
4765 delayacct_blkio_start();
4766 atomic_inc(&rq->nr_iowait);
4767 blk_flush_plug(current);
4768 current->in_iowait = 1;
4769 schedule();
4770 current->in_iowait = 0;
4771 atomic_dec(&rq->nr_iowait);
4772 delayacct_blkio_end();
4773 }
4774 EXPORT_SYMBOL(io_schedule);
4775
4776 long __sched io_schedule_timeout(long timeout)
4777 {
4778 struct rq *rq = raw_rq();
4779 long ret;
4780
4781 delayacct_blkio_start();
4782 atomic_inc(&rq->nr_iowait);
4783 blk_flush_plug(current);
4784 current->in_iowait = 1;
4785 ret = schedule_timeout(timeout);
4786 current->in_iowait = 0;
4787 atomic_dec(&rq->nr_iowait);
4788 delayacct_blkio_end();
4789 return ret;
4790 }
4791
4792 /**
4793 * sys_sched_get_priority_max - return maximum RT priority.
4794 * @policy: scheduling class.
4795 *
4796 * this syscall returns the maximum rt_priority that can be used
4797 * by a given scheduling class.
4798 */
4799 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4800 {
4801 int ret = -EINVAL;
4802
4803 switch (policy) {
4804 case SCHED_FIFO:
4805 case SCHED_RR:
4806 ret = MAX_USER_RT_PRIO-1;
4807 break;
4808 case SCHED_NORMAL:
4809 case SCHED_BATCH:
4810 case SCHED_IDLE:
4811 ret = 0;
4812 break;
4813 }
4814 return ret;
4815 }
4816
4817 /**
4818 * sys_sched_get_priority_min - return minimum RT priority.
4819 * @policy: scheduling class.
4820 *
4821 * this syscall returns the minimum rt_priority that can be used
4822 * by a given scheduling class.
4823 */
4824 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4825 {
4826 int ret = -EINVAL;
4827
4828 switch (policy) {
4829 case SCHED_FIFO:
4830 case SCHED_RR:
4831 ret = 1;
4832 break;
4833 case SCHED_NORMAL:
4834 case SCHED_BATCH:
4835 case SCHED_IDLE:
4836 ret = 0;
4837 }
4838 return ret;
4839 }
4840
4841 /**
4842 * sys_sched_rr_get_interval - return the default timeslice of a process.
4843 * @pid: pid of the process.
4844 * @interval: userspace pointer to the timeslice value.
4845 *
4846 * this syscall writes the default timeslice value of a given process
4847 * into the user-space timespec buffer. A value of '0' means infinity.
4848 */
4849 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4850 struct timespec __user *, interval)
4851 {
4852 struct task_struct *p;
4853 unsigned int time_slice;
4854 unsigned long flags;
4855 struct rq *rq;
4856 int retval;
4857 struct timespec t;
4858
4859 if (pid < 0)
4860 return -EINVAL;
4861
4862 retval = -ESRCH;
4863 rcu_read_lock();
4864 p = find_process_by_pid(pid);
4865 if (!p)
4866 goto out_unlock;
4867
4868 retval = security_task_getscheduler(p);
4869 if (retval)
4870 goto out_unlock;
4871
4872 rq = task_rq_lock(p, &flags);
4873 time_slice = p->sched_class->get_rr_interval(rq, p);
4874 task_rq_unlock(rq, p, &flags);
4875
4876 rcu_read_unlock();
4877 jiffies_to_timespec(time_slice, &t);
4878 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4879 return retval;
4880
4881 out_unlock:
4882 rcu_read_unlock();
4883 return retval;
4884 }
4885
4886 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4887
4888 void sched_show_task(struct task_struct *p)
4889 {
4890 unsigned long free = 0;
4891 unsigned state;
4892
4893 state = p->state ? __ffs(p->state) + 1 : 0;
4894 printk(KERN_INFO "%-15.15s %c", p->comm,
4895 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4896 #if BITS_PER_LONG == 32
4897 if (state == TASK_RUNNING)
4898 printk(KERN_CONT " running ");
4899 else
4900 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4901 #else
4902 if (state == TASK_RUNNING)
4903 printk(KERN_CONT " running task ");
4904 else
4905 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4906 #endif
4907 #ifdef CONFIG_DEBUG_STACK_USAGE
4908 free = stack_not_used(p);
4909 #endif
4910 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4911 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4912 (unsigned long)task_thread_info(p)->flags);
4913
4914 show_stack(p, NULL);
4915 }
4916
4917 void show_state_filter(unsigned long state_filter)
4918 {
4919 struct task_struct *g, *p;
4920
4921 #if BITS_PER_LONG == 32
4922 printk(KERN_INFO
4923 " task PC stack pid father\n");
4924 #else
4925 printk(KERN_INFO
4926 " task PC stack pid father\n");
4927 #endif
4928 rcu_read_lock();
4929 do_each_thread(g, p) {
4930 /*
4931 * reset the NMI-timeout, listing all files on a slow
4932 * console might take a lot of time:
4933 */
4934 touch_nmi_watchdog();
4935 if (!state_filter || (p->state & state_filter))
4936 sched_show_task(p);
4937 } while_each_thread(g, p);
4938
4939 touch_all_softlockup_watchdogs();
4940
4941 #ifdef CONFIG_SCHED_DEBUG
4942 sysrq_sched_debug_show();
4943 #endif
4944 rcu_read_unlock();
4945 /*
4946 * Only show locks if all tasks are dumped:
4947 */
4948 if (!state_filter)
4949 debug_show_all_locks();
4950 }
4951
4952 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4953 {
4954 idle->sched_class = &idle_sched_class;
4955 }
4956
4957 /**
4958 * init_idle - set up an idle thread for a given CPU
4959 * @idle: task in question
4960 * @cpu: cpu the idle task belongs to
4961 *
4962 * NOTE: this function does not set the idle thread's NEED_RESCHED
4963 * flag, to make booting more robust.
4964 */
4965 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4966 {
4967 struct rq *rq = cpu_rq(cpu);
4968 unsigned long flags;
4969
4970 raw_spin_lock_irqsave(&rq->lock, flags);
4971
4972 __sched_fork(idle);
4973 idle->state = TASK_RUNNING;
4974 idle->se.exec_start = sched_clock();
4975
4976 do_set_cpus_allowed(idle, cpumask_of(cpu));
4977 /*
4978 * We're having a chicken and egg problem, even though we are
4979 * holding rq->lock, the cpu isn't yet set to this cpu so the
4980 * lockdep check in task_group() will fail.
4981 *
4982 * Similar case to sched_fork(). / Alternatively we could
4983 * use task_rq_lock() here and obtain the other rq->lock.
4984 *
4985 * Silence PROVE_RCU
4986 */
4987 rcu_read_lock();
4988 __set_task_cpu(idle, cpu);
4989 rcu_read_unlock();
4990
4991 rq->curr = rq->idle = idle;
4992 #if defined(CONFIG_SMP)
4993 idle->on_cpu = 1;
4994 #endif
4995 raw_spin_unlock_irqrestore(&rq->lock, flags);
4996
4997 /* Set the preempt count _outside_ the spinlocks! */
4998 task_thread_info(idle)->preempt_count = 0;
4999
5000 /*
5001 * The idle tasks have their own, simple scheduling class:
5002 */
5003 idle->sched_class = &idle_sched_class;
5004 ftrace_graph_init_idle_task(idle, cpu);
5005 #if defined(CONFIG_SMP)
5006 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5007 #endif
5008 }
5009
5010 #ifdef CONFIG_SMP
5011 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5012 {
5013 if (p->sched_class && p->sched_class->set_cpus_allowed)
5014 p->sched_class->set_cpus_allowed(p, new_mask);
5015
5016 cpumask_copy(&p->cpus_allowed, new_mask);
5017 p->nr_cpus_allowed = cpumask_weight(new_mask);
5018 }
5019
5020 /*
5021 * This is how migration works:
5022 *
5023 * 1) we invoke migration_cpu_stop() on the target CPU using
5024 * stop_one_cpu().
5025 * 2) stopper starts to run (implicitly forcing the migrated thread
5026 * off the CPU)
5027 * 3) it checks whether the migrated task is still in the wrong runqueue.
5028 * 4) if it's in the wrong runqueue then the migration thread removes
5029 * it and puts it into the right queue.
5030 * 5) stopper completes and stop_one_cpu() returns and the migration
5031 * is done.
5032 */
5033
5034 /*
5035 * Change a given task's CPU affinity. Migrate the thread to a
5036 * proper CPU and schedule it away if the CPU it's executing on
5037 * is removed from the allowed bitmask.
5038 *
5039 * NOTE: the caller must have a valid reference to the task, the
5040 * task must not exit() & deallocate itself prematurely. The
5041 * call is not atomic; no spinlocks may be held.
5042 */
5043 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5044 {
5045 unsigned long flags;
5046 struct rq *rq;
5047 unsigned int dest_cpu;
5048 int ret = 0;
5049
5050 rq = task_rq_lock(p, &flags);
5051
5052 if (cpumask_equal(&p->cpus_allowed, new_mask))
5053 goto out;
5054
5055 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5056 ret = -EINVAL;
5057 goto out;
5058 }
5059
5060 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5061 ret = -EINVAL;
5062 goto out;
5063 }
5064
5065 do_set_cpus_allowed(p, new_mask);
5066
5067 /* Can the task run on the task's current CPU? If so, we're done */
5068 if (cpumask_test_cpu(task_cpu(p), new_mask))
5069 goto out;
5070
5071 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5072 if (p->on_rq) {
5073 struct migration_arg arg = { p, dest_cpu };
5074 /* Need help from migration thread: drop lock and wait. */
5075 task_rq_unlock(rq, p, &flags);
5076 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5077 tlb_migrate_finish(p->mm);
5078 return 0;
5079 }
5080 out:
5081 task_rq_unlock(rq, p, &flags);
5082
5083 return ret;
5084 }
5085 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5086
5087 /*
5088 * Move (not current) task off this cpu, onto dest cpu. We're doing
5089 * this because either it can't run here any more (set_cpus_allowed()
5090 * away from this CPU, or CPU going down), or because we're
5091 * attempting to rebalance this task on exec (sched_exec).
5092 *
5093 * So we race with normal scheduler movements, but that's OK, as long
5094 * as the task is no longer on this CPU.
5095 *
5096 * Returns non-zero if task was successfully migrated.
5097 */
5098 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5099 {
5100 struct rq *rq_dest, *rq_src;
5101 int ret = 0;
5102
5103 if (unlikely(!cpu_active(dest_cpu)))
5104 return ret;
5105
5106 rq_src = cpu_rq(src_cpu);
5107 rq_dest = cpu_rq(dest_cpu);
5108
5109 raw_spin_lock(&p->pi_lock);
5110 double_rq_lock(rq_src, rq_dest);
5111 /* Already moved. */
5112 if (task_cpu(p) != src_cpu)
5113 goto done;
5114 /* Affinity changed (again). */
5115 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5116 goto fail;
5117
5118 /*
5119 * If we're not on a rq, the next wake-up will ensure we're
5120 * placed properly.
5121 */
5122 if (p->on_rq) {
5123 dequeue_task(rq_src, p, 0);
5124 set_task_cpu(p, dest_cpu);
5125 enqueue_task(rq_dest, p, 0);
5126 check_preempt_curr(rq_dest, p, 0);
5127 }
5128 done:
5129 ret = 1;
5130 fail:
5131 double_rq_unlock(rq_src, rq_dest);
5132 raw_spin_unlock(&p->pi_lock);
5133 return ret;
5134 }
5135
5136 /*
5137 * migration_cpu_stop - this will be executed by a highprio stopper thread
5138 * and performs thread migration by bumping thread off CPU then
5139 * 'pushing' onto another runqueue.
5140 */
5141 static int migration_cpu_stop(void *data)
5142 {
5143 struct migration_arg *arg = data;
5144
5145 /*
5146 * The original target cpu might have gone down and we might
5147 * be on another cpu but it doesn't matter.
5148 */
5149 local_irq_disable();
5150 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5151 local_irq_enable();
5152 return 0;
5153 }
5154
5155 #ifdef CONFIG_HOTPLUG_CPU
5156
5157 /*
5158 * Ensures that the idle task is using init_mm right before its cpu goes
5159 * offline.
5160 */
5161 void idle_task_exit(void)
5162 {
5163 struct mm_struct *mm = current->active_mm;
5164
5165 BUG_ON(cpu_online(smp_processor_id()));
5166
5167 if (mm != &init_mm)
5168 switch_mm(mm, &init_mm, current);
5169 mmdrop(mm);
5170 }
5171
5172 /*
5173 * While a dead CPU has no uninterruptible tasks queued at this point,
5174 * it might still have a nonzero ->nr_uninterruptible counter, because
5175 * for performance reasons the counter is not stricly tracking tasks to
5176 * their home CPUs. So we just add the counter to another CPU's counter,
5177 * to keep the global sum constant after CPU-down:
5178 */
5179 static void migrate_nr_uninterruptible(struct rq *rq_src)
5180 {
5181 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5182
5183 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5184 rq_src->nr_uninterruptible = 0;
5185 }
5186
5187 /*
5188 * remove the tasks which were accounted by rq from calc_load_tasks.
5189 */
5190 static void calc_global_load_remove(struct rq *rq)
5191 {
5192 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5193 rq->calc_load_active = 0;
5194 }
5195
5196 /*
5197 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5198 * try_to_wake_up()->select_task_rq().
5199 *
5200 * Called with rq->lock held even though we'er in stop_machine() and
5201 * there's no concurrency possible, we hold the required locks anyway
5202 * because of lock validation efforts.
5203 */
5204 static void migrate_tasks(unsigned int dead_cpu)
5205 {
5206 struct rq *rq = cpu_rq(dead_cpu);
5207 struct task_struct *next, *stop = rq->stop;
5208 int dest_cpu;
5209
5210 /*
5211 * Fudge the rq selection such that the below task selection loop
5212 * doesn't get stuck on the currently eligible stop task.
5213 *
5214 * We're currently inside stop_machine() and the rq is either stuck
5215 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5216 * either way we should never end up calling schedule() until we're
5217 * done here.
5218 */
5219 rq->stop = NULL;
5220
5221 /* Ensure any throttled groups are reachable by pick_next_task */
5222 unthrottle_offline_cfs_rqs(rq);
5223
5224 for ( ; ; ) {
5225 /*
5226 * There's this thread running, bail when that's the only
5227 * remaining thread.
5228 */
5229 if (rq->nr_running == 1)
5230 break;
5231
5232 next = pick_next_task(rq);
5233 BUG_ON(!next);
5234 next->sched_class->put_prev_task(rq, next);
5235
5236 /* Find suitable destination for @next, with force if needed. */
5237 dest_cpu = select_fallback_rq(dead_cpu, next);
5238 raw_spin_unlock(&rq->lock);
5239
5240 __migrate_task(next, dead_cpu, dest_cpu);
5241
5242 raw_spin_lock(&rq->lock);
5243 }
5244
5245 rq->stop = stop;
5246 }
5247
5248 #endif /* CONFIG_HOTPLUG_CPU */
5249
5250 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5251
5252 static struct ctl_table sd_ctl_dir[] = {
5253 {
5254 .procname = "sched_domain",
5255 .mode = 0555,
5256 },
5257 {}
5258 };
5259
5260 static struct ctl_table sd_ctl_root[] = {
5261 {
5262 .procname = "kernel",
5263 .mode = 0555,
5264 .child = sd_ctl_dir,
5265 },
5266 {}
5267 };
5268
5269 static struct ctl_table *sd_alloc_ctl_entry(int n)
5270 {
5271 struct ctl_table *entry =
5272 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5273
5274 return entry;
5275 }
5276
5277 static void sd_free_ctl_entry(struct ctl_table **tablep)
5278 {
5279 struct ctl_table *entry;
5280
5281 /*
5282 * In the intermediate directories, both the child directory and
5283 * procname are dynamically allocated and could fail but the mode
5284 * will always be set. In the lowest directory the names are
5285 * static strings and all have proc handlers.
5286 */
5287 for (entry = *tablep; entry->mode; entry++) {
5288 if (entry->child)
5289 sd_free_ctl_entry(&entry->child);
5290 if (entry->proc_handler == NULL)
5291 kfree(entry->procname);
5292 }
5293
5294 kfree(*tablep);
5295 *tablep = NULL;
5296 }
5297
5298 static void
5299 set_table_entry(struct ctl_table *entry,
5300 const char *procname, void *data, int maxlen,
5301 umode_t mode, proc_handler *proc_handler)
5302 {
5303 entry->procname = procname;
5304 entry->data = data;
5305 entry->maxlen = maxlen;
5306 entry->mode = mode;
5307 entry->proc_handler = proc_handler;
5308 }
5309
5310 static struct ctl_table *
5311 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5312 {
5313 struct ctl_table *table = sd_alloc_ctl_entry(13);
5314
5315 if (table == NULL)
5316 return NULL;
5317
5318 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5319 sizeof(long), 0644, proc_doulongvec_minmax);
5320 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5321 sizeof(long), 0644, proc_doulongvec_minmax);
5322 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5323 sizeof(int), 0644, proc_dointvec_minmax);
5324 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5325 sizeof(int), 0644, proc_dointvec_minmax);
5326 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5327 sizeof(int), 0644, proc_dointvec_minmax);
5328 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5329 sizeof(int), 0644, proc_dointvec_minmax);
5330 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5331 sizeof(int), 0644, proc_dointvec_minmax);
5332 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5333 sizeof(int), 0644, proc_dointvec_minmax);
5334 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5335 sizeof(int), 0644, proc_dointvec_minmax);
5336 set_table_entry(&table[9], "cache_nice_tries",
5337 &sd->cache_nice_tries,
5338 sizeof(int), 0644, proc_dointvec_minmax);
5339 set_table_entry(&table[10], "flags", &sd->flags,
5340 sizeof(int), 0644, proc_dointvec_minmax);
5341 set_table_entry(&table[11], "name", sd->name,
5342 CORENAME_MAX_SIZE, 0444, proc_dostring);
5343 /* &table[12] is terminator */
5344
5345 return table;
5346 }
5347
5348 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5349 {
5350 struct ctl_table *entry, *table;
5351 struct sched_domain *sd;
5352 int domain_num = 0, i;
5353 char buf[32];
5354
5355 for_each_domain(cpu, sd)
5356 domain_num++;
5357 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5358 if (table == NULL)
5359 return NULL;
5360
5361 i = 0;
5362 for_each_domain(cpu, sd) {
5363 snprintf(buf, 32, "domain%d", i);
5364 entry->procname = kstrdup(buf, GFP_KERNEL);
5365 entry->mode = 0555;
5366 entry->child = sd_alloc_ctl_domain_table(sd);
5367 entry++;
5368 i++;
5369 }
5370 return table;
5371 }
5372
5373 static struct ctl_table_header *sd_sysctl_header;
5374 static void register_sched_domain_sysctl(void)
5375 {
5376 int i, cpu_num = num_possible_cpus();
5377 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5378 char buf[32];
5379
5380 WARN_ON(sd_ctl_dir[0].child);
5381 sd_ctl_dir[0].child = entry;
5382
5383 if (entry == NULL)
5384 return;
5385
5386 for_each_possible_cpu(i) {
5387 snprintf(buf, 32, "cpu%d", i);
5388 entry->procname = kstrdup(buf, GFP_KERNEL);
5389 entry->mode = 0555;
5390 entry->child = sd_alloc_ctl_cpu_table(i);
5391 entry++;
5392 }
5393
5394 WARN_ON(sd_sysctl_header);
5395 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5396 }
5397
5398 /* may be called multiple times per register */
5399 static void unregister_sched_domain_sysctl(void)
5400 {
5401 if (sd_sysctl_header)
5402 unregister_sysctl_table(sd_sysctl_header);
5403 sd_sysctl_header = NULL;
5404 if (sd_ctl_dir[0].child)
5405 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5406 }
5407 #else
5408 static void register_sched_domain_sysctl(void)
5409 {
5410 }
5411 static void unregister_sched_domain_sysctl(void)
5412 {
5413 }
5414 #endif
5415
5416 static void set_rq_online(struct rq *rq)
5417 {
5418 if (!rq->online) {
5419 const struct sched_class *class;
5420
5421 cpumask_set_cpu(rq->cpu, rq->rd->online);
5422 rq->online = 1;
5423
5424 for_each_class(class) {
5425 if (class->rq_online)
5426 class->rq_online(rq);
5427 }
5428 }
5429 }
5430
5431 static void set_rq_offline(struct rq *rq)
5432 {
5433 if (rq->online) {
5434 const struct sched_class *class;
5435
5436 for_each_class(class) {
5437 if (class->rq_offline)
5438 class->rq_offline(rq);
5439 }
5440
5441 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5442 rq->online = 0;
5443 }
5444 }
5445
5446 /*
5447 * migration_call - callback that gets triggered when a CPU is added.
5448 * Here we can start up the necessary migration thread for the new CPU.
5449 */
5450 static int __cpuinit
5451 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5452 {
5453 int cpu = (long)hcpu;
5454 unsigned long flags;
5455 struct rq *rq = cpu_rq(cpu);
5456
5457 switch (action & ~CPU_TASKS_FROZEN) {
5458
5459 case CPU_UP_PREPARE:
5460 rq->calc_load_update = calc_load_update;
5461 break;
5462
5463 case CPU_ONLINE:
5464 /* Update our root-domain */
5465 raw_spin_lock_irqsave(&rq->lock, flags);
5466 if (rq->rd) {
5467 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5468
5469 set_rq_online(rq);
5470 }
5471 raw_spin_unlock_irqrestore(&rq->lock, flags);
5472 break;
5473
5474 #ifdef CONFIG_HOTPLUG_CPU
5475 case CPU_DYING:
5476 sched_ttwu_pending();
5477 /* Update our root-domain */
5478 raw_spin_lock_irqsave(&rq->lock, flags);
5479 if (rq->rd) {
5480 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5481 set_rq_offline(rq);
5482 }
5483 migrate_tasks(cpu);
5484 BUG_ON(rq->nr_running != 1); /* the migration thread */
5485 raw_spin_unlock_irqrestore(&rq->lock, flags);
5486
5487 migrate_nr_uninterruptible(rq);
5488 calc_global_load_remove(rq);
5489 break;
5490 #endif
5491 }
5492
5493 update_max_interval();
5494
5495 return NOTIFY_OK;
5496 }
5497
5498 /*
5499 * Register at high priority so that task migration (migrate_all_tasks)
5500 * happens before everything else. This has to be lower priority than
5501 * the notifier in the perf_event subsystem, though.
5502 */
5503 static struct notifier_block __cpuinitdata migration_notifier = {
5504 .notifier_call = migration_call,
5505 .priority = CPU_PRI_MIGRATION,
5506 };
5507
5508 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5509 unsigned long action, void *hcpu)
5510 {
5511 switch (action & ~CPU_TASKS_FROZEN) {
5512 case CPU_STARTING:
5513 case CPU_DOWN_FAILED:
5514 set_cpu_active((long)hcpu, true);
5515 return NOTIFY_OK;
5516 default:
5517 return NOTIFY_DONE;
5518 }
5519 }
5520
5521 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5522 unsigned long action, void *hcpu)
5523 {
5524 switch (action & ~CPU_TASKS_FROZEN) {
5525 case CPU_DOWN_PREPARE:
5526 set_cpu_active((long)hcpu, false);
5527 return NOTIFY_OK;
5528 default:
5529 return NOTIFY_DONE;
5530 }
5531 }
5532
5533 static int __init migration_init(void)
5534 {
5535 void *cpu = (void *)(long)smp_processor_id();
5536 int err;
5537
5538 /* Initialize migration for the boot CPU */
5539 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5540 BUG_ON(err == NOTIFY_BAD);
5541 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5542 register_cpu_notifier(&migration_notifier);
5543
5544 /* Register cpu active notifiers */
5545 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5546 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5547
5548 return 0;
5549 }
5550 early_initcall(migration_init);
5551 #endif
5552
5553 #ifdef CONFIG_SMP
5554
5555 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5556
5557 #ifdef CONFIG_SCHED_DEBUG
5558
5559 static __read_mostly int sched_domain_debug_enabled;
5560
5561 static int __init sched_domain_debug_setup(char *str)
5562 {
5563 sched_domain_debug_enabled = 1;
5564
5565 return 0;
5566 }
5567 early_param("sched_debug", sched_domain_debug_setup);
5568
5569 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5570 struct cpumask *groupmask)
5571 {
5572 struct sched_group *group = sd->groups;
5573 char str[256];
5574
5575 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5576 cpumask_clear(groupmask);
5577
5578 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5579
5580 if (!(sd->flags & SD_LOAD_BALANCE)) {
5581 printk("does not load-balance\n");
5582 if (sd->parent)
5583 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5584 " has parent");
5585 return -1;
5586 }
5587
5588 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5589
5590 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5591 printk(KERN_ERR "ERROR: domain->span does not contain "
5592 "CPU%d\n", cpu);
5593 }
5594 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5595 printk(KERN_ERR "ERROR: domain->groups does not contain"
5596 " CPU%d\n", cpu);
5597 }
5598
5599 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5600 do {
5601 if (!group) {
5602 printk("\n");
5603 printk(KERN_ERR "ERROR: group is NULL\n");
5604 break;
5605 }
5606
5607 if (!group->sgp->power) {
5608 printk(KERN_CONT "\n");
5609 printk(KERN_ERR "ERROR: domain->cpu_power not "
5610 "set\n");
5611 break;
5612 }
5613
5614 if (!cpumask_weight(sched_group_cpus(group))) {
5615 printk(KERN_CONT "\n");
5616 printk(KERN_ERR "ERROR: empty group\n");
5617 break;
5618 }
5619
5620 if (!(sd->flags & SD_OVERLAP) &&
5621 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5622 printk(KERN_CONT "\n");
5623 printk(KERN_ERR "ERROR: repeated CPUs\n");
5624 break;
5625 }
5626
5627 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5628
5629 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5630
5631 printk(KERN_CONT " %s", str);
5632 if (group->sgp->power != SCHED_POWER_SCALE) {
5633 printk(KERN_CONT " (cpu_power = %d)",
5634 group->sgp->power);
5635 }
5636
5637 group = group->next;
5638 } while (group != sd->groups);
5639 printk(KERN_CONT "\n");
5640
5641 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5642 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5643
5644 if (sd->parent &&
5645 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5646 printk(KERN_ERR "ERROR: parent span is not a superset "
5647 "of domain->span\n");
5648 return 0;
5649 }
5650
5651 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5652 {
5653 int level = 0;
5654
5655 if (!sched_domain_debug_enabled)
5656 return;
5657
5658 if (!sd) {
5659 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5660 return;
5661 }
5662
5663 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5664
5665 for (;;) {
5666 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5667 break;
5668 level++;
5669 sd = sd->parent;
5670 if (!sd)
5671 break;
5672 }
5673 }
5674 #else /* !CONFIG_SCHED_DEBUG */
5675 # define sched_domain_debug(sd, cpu) do { } while (0)
5676 #endif /* CONFIG_SCHED_DEBUG */
5677
5678 static int sd_degenerate(struct sched_domain *sd)
5679 {
5680 if (cpumask_weight(sched_domain_span(sd)) == 1)
5681 return 1;
5682
5683 /* Following flags need at least 2 groups */
5684 if (sd->flags & (SD_LOAD_BALANCE |
5685 SD_BALANCE_NEWIDLE |
5686 SD_BALANCE_FORK |
5687 SD_BALANCE_EXEC |
5688 SD_SHARE_CPUPOWER |
5689 SD_SHARE_PKG_RESOURCES)) {
5690 if (sd->groups != sd->groups->next)
5691 return 0;
5692 }
5693
5694 /* Following flags don't use groups */
5695 if (sd->flags & (SD_WAKE_AFFINE))
5696 return 0;
5697
5698 return 1;
5699 }
5700
5701 static int
5702 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5703 {
5704 unsigned long cflags = sd->flags, pflags = parent->flags;
5705
5706 if (sd_degenerate(parent))
5707 return 1;
5708
5709 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5710 return 0;
5711
5712 /* Flags needing groups don't count if only 1 group in parent */
5713 if (parent->groups == parent->groups->next) {
5714 pflags &= ~(SD_LOAD_BALANCE |
5715 SD_BALANCE_NEWIDLE |
5716 SD_BALANCE_FORK |
5717 SD_BALANCE_EXEC |
5718 SD_SHARE_CPUPOWER |
5719 SD_SHARE_PKG_RESOURCES);
5720 if (nr_node_ids == 1)
5721 pflags &= ~SD_SERIALIZE;
5722 }
5723 if (~cflags & pflags)
5724 return 0;
5725
5726 return 1;
5727 }
5728
5729 static void free_rootdomain(struct rcu_head *rcu)
5730 {
5731 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5732
5733 cpupri_cleanup(&rd->cpupri);
5734 free_cpumask_var(rd->rto_mask);
5735 free_cpumask_var(rd->online);
5736 free_cpumask_var(rd->span);
5737 kfree(rd);
5738 }
5739
5740 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5741 {
5742 struct root_domain *old_rd = NULL;
5743 unsigned long flags;
5744
5745 raw_spin_lock_irqsave(&rq->lock, flags);
5746
5747 if (rq->rd) {
5748 old_rd = rq->rd;
5749
5750 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5751 set_rq_offline(rq);
5752
5753 cpumask_clear_cpu(rq->cpu, old_rd->span);
5754
5755 /*
5756 * If we dont want to free the old_rt yet then
5757 * set old_rd to NULL to skip the freeing later
5758 * in this function:
5759 */
5760 if (!atomic_dec_and_test(&old_rd->refcount))
5761 old_rd = NULL;
5762 }
5763
5764 atomic_inc(&rd->refcount);
5765 rq->rd = rd;
5766
5767 cpumask_set_cpu(rq->cpu, rd->span);
5768 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5769 set_rq_online(rq);
5770
5771 raw_spin_unlock_irqrestore(&rq->lock, flags);
5772
5773 if (old_rd)
5774 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5775 }
5776
5777 static int init_rootdomain(struct root_domain *rd)
5778 {
5779 memset(rd, 0, sizeof(*rd));
5780
5781 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5782 goto out;
5783 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5784 goto free_span;
5785 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5786 goto free_online;
5787
5788 if (cpupri_init(&rd->cpupri) != 0)
5789 goto free_rto_mask;
5790 return 0;
5791
5792 free_rto_mask:
5793 free_cpumask_var(rd->rto_mask);
5794 free_online:
5795 free_cpumask_var(rd->online);
5796 free_span:
5797 free_cpumask_var(rd->span);
5798 out:
5799 return -ENOMEM;
5800 }
5801
5802 /*
5803 * By default the system creates a single root-domain with all cpus as
5804 * members (mimicking the global state we have today).
5805 */
5806 struct root_domain def_root_domain;
5807
5808 static void init_defrootdomain(void)
5809 {
5810 init_rootdomain(&def_root_domain);
5811
5812 atomic_set(&def_root_domain.refcount, 1);
5813 }
5814
5815 static struct root_domain *alloc_rootdomain(void)
5816 {
5817 struct root_domain *rd;
5818
5819 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5820 if (!rd)
5821 return NULL;
5822
5823 if (init_rootdomain(rd) != 0) {
5824 kfree(rd);
5825 return NULL;
5826 }
5827
5828 return rd;
5829 }
5830
5831 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5832 {
5833 struct sched_group *tmp, *first;
5834
5835 if (!sg)
5836 return;
5837
5838 first = sg;
5839 do {
5840 tmp = sg->next;
5841
5842 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5843 kfree(sg->sgp);
5844
5845 kfree(sg);
5846 sg = tmp;
5847 } while (sg != first);
5848 }
5849
5850 static void free_sched_domain(struct rcu_head *rcu)
5851 {
5852 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5853
5854 /*
5855 * If its an overlapping domain it has private groups, iterate and
5856 * nuke them all.
5857 */
5858 if (sd->flags & SD_OVERLAP) {
5859 free_sched_groups(sd->groups, 1);
5860 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5861 kfree(sd->groups->sgp);
5862 kfree(sd->groups);
5863 }
5864 kfree(sd);
5865 }
5866
5867 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5868 {
5869 call_rcu(&sd->rcu, free_sched_domain);
5870 }
5871
5872 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5873 {
5874 for (; sd; sd = sd->parent)
5875 destroy_sched_domain(sd, cpu);
5876 }
5877
5878 /*
5879 * Keep a special pointer to the highest sched_domain that has
5880 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5881 * allows us to avoid some pointer chasing select_idle_sibling().
5882 *
5883 * Also keep a unique ID per domain (we use the first cpu number in
5884 * the cpumask of the domain), this allows us to quickly tell if
5885 * two cpus are in the same cache domain, see cpus_share_cache().
5886 */
5887 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5888 DEFINE_PER_CPU(int, sd_llc_id);
5889
5890 static void update_top_cache_domain(int cpu)
5891 {
5892 struct sched_domain *sd;
5893 int id = cpu;
5894
5895 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5896 if (sd)
5897 id = cpumask_first(sched_domain_span(sd));
5898
5899 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5900 per_cpu(sd_llc_id, cpu) = id;
5901 }
5902
5903 /*
5904 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5905 * hold the hotplug lock.
5906 */
5907 static void
5908 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5909 {
5910 struct rq *rq = cpu_rq(cpu);
5911 struct sched_domain *tmp;
5912
5913 /* Remove the sched domains which do not contribute to scheduling. */
5914 for (tmp = sd; tmp; ) {
5915 struct sched_domain *parent = tmp->parent;
5916 if (!parent)
5917 break;
5918
5919 if (sd_parent_degenerate(tmp, parent)) {
5920 tmp->parent = parent->parent;
5921 if (parent->parent)
5922 parent->parent->child = tmp;
5923 destroy_sched_domain(parent, cpu);
5924 } else
5925 tmp = tmp->parent;
5926 }
5927
5928 if (sd && sd_degenerate(sd)) {
5929 tmp = sd;
5930 sd = sd->parent;
5931 destroy_sched_domain(tmp, cpu);
5932 if (sd)
5933 sd->child = NULL;
5934 }
5935
5936 sched_domain_debug(sd, cpu);
5937
5938 rq_attach_root(rq, rd);
5939 tmp = rq->sd;
5940 rcu_assign_pointer(rq->sd, sd);
5941 destroy_sched_domains(tmp, cpu);
5942
5943 update_top_cache_domain(cpu);
5944 }
5945
5946 /* cpus with isolated domains */
5947 static cpumask_var_t cpu_isolated_map;
5948
5949 /* Setup the mask of cpus configured for isolated domains */
5950 static int __init isolated_cpu_setup(char *str)
5951 {
5952 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5953 cpulist_parse(str, cpu_isolated_map);
5954 return 1;
5955 }
5956
5957 __setup("isolcpus=", isolated_cpu_setup);
5958
5959 static const struct cpumask *cpu_cpu_mask(int cpu)
5960 {
5961 return cpumask_of_node(cpu_to_node(cpu));
5962 }
5963
5964 struct sd_data {
5965 struct sched_domain **__percpu sd;
5966 struct sched_group **__percpu sg;
5967 struct sched_group_power **__percpu sgp;
5968 };
5969
5970 struct s_data {
5971 struct sched_domain ** __percpu sd;
5972 struct root_domain *rd;
5973 };
5974
5975 enum s_alloc {
5976 sa_rootdomain,
5977 sa_sd,
5978 sa_sd_storage,
5979 sa_none,
5980 };
5981
5982 struct sched_domain_topology_level;
5983
5984 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5985 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5986
5987 #define SDTL_OVERLAP 0x01
5988
5989 struct sched_domain_topology_level {
5990 sched_domain_init_f init;
5991 sched_domain_mask_f mask;
5992 int flags;
5993 int numa_level;
5994 struct sd_data data;
5995 };
5996
5997 static int
5998 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5999 {
6000 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6001 const struct cpumask *span = sched_domain_span(sd);
6002 struct cpumask *covered = sched_domains_tmpmask;
6003 struct sd_data *sdd = sd->private;
6004 struct sched_domain *child;
6005 int i;
6006
6007 cpumask_clear(covered);
6008
6009 for_each_cpu(i, span) {
6010 struct cpumask *sg_span;
6011
6012 if (cpumask_test_cpu(i, covered))
6013 continue;
6014
6015 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6016 GFP_KERNEL, cpu_to_node(cpu));
6017
6018 if (!sg)
6019 goto fail;
6020
6021 sg_span = sched_group_cpus(sg);
6022
6023 child = *per_cpu_ptr(sdd->sd, i);
6024 if (child->child) {
6025 child = child->child;
6026 cpumask_copy(sg_span, sched_domain_span(child));
6027 } else
6028 cpumask_set_cpu(i, sg_span);
6029
6030 cpumask_or(covered, covered, sg_span);
6031
6032 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
6033 atomic_inc(&sg->sgp->ref);
6034
6035 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6036 cpumask_first(sg_span) == cpu) {
6037 WARN_ON_ONCE(!cpumask_test_cpu(cpu, sg_span));
6038 groups = sg;
6039 }
6040
6041 if (!first)
6042 first = sg;
6043 if (last)
6044 last->next = sg;
6045 last = sg;
6046 last->next = first;
6047 }
6048 sd->groups = groups;
6049
6050 return 0;
6051
6052 fail:
6053 free_sched_groups(first, 0);
6054
6055 return -ENOMEM;
6056 }
6057
6058 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6059 {
6060 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6061 struct sched_domain *child = sd->child;
6062
6063 if (child)
6064 cpu = cpumask_first(sched_domain_span(child));
6065
6066 if (sg) {
6067 *sg = *per_cpu_ptr(sdd->sg, cpu);
6068 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6069 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6070 }
6071
6072 return cpu;
6073 }
6074
6075 /*
6076 * build_sched_groups will build a circular linked list of the groups
6077 * covered by the given span, and will set each group's ->cpumask correctly,
6078 * and ->cpu_power to 0.
6079 *
6080 * Assumes the sched_domain tree is fully constructed
6081 */
6082 static int
6083 build_sched_groups(struct sched_domain *sd, int cpu)
6084 {
6085 struct sched_group *first = NULL, *last = NULL;
6086 struct sd_data *sdd = sd->private;
6087 const struct cpumask *span = sched_domain_span(sd);
6088 struct cpumask *covered;
6089 int i;
6090
6091 get_group(cpu, sdd, &sd->groups);
6092 atomic_inc(&sd->groups->ref);
6093
6094 if (cpu != cpumask_first(sched_domain_span(sd)))
6095 return 0;
6096
6097 lockdep_assert_held(&sched_domains_mutex);
6098 covered = sched_domains_tmpmask;
6099
6100 cpumask_clear(covered);
6101
6102 for_each_cpu(i, span) {
6103 struct sched_group *sg;
6104 int group = get_group(i, sdd, &sg);
6105 int j;
6106
6107 if (cpumask_test_cpu(i, covered))
6108 continue;
6109
6110 cpumask_clear(sched_group_cpus(sg));
6111 sg->sgp->power = 0;
6112
6113 for_each_cpu(j, span) {
6114 if (get_group(j, sdd, NULL) != group)
6115 continue;
6116
6117 cpumask_set_cpu(j, covered);
6118 cpumask_set_cpu(j, sched_group_cpus(sg));
6119 }
6120
6121 if (!first)
6122 first = sg;
6123 if (last)
6124 last->next = sg;
6125 last = sg;
6126 }
6127 last->next = first;
6128
6129 return 0;
6130 }
6131
6132 /*
6133 * Initialize sched groups cpu_power.
6134 *
6135 * cpu_power indicates the capacity of sched group, which is used while
6136 * distributing the load between different sched groups in a sched domain.
6137 * Typically cpu_power for all the groups in a sched domain will be same unless
6138 * there are asymmetries in the topology. If there are asymmetries, group
6139 * having more cpu_power will pickup more load compared to the group having
6140 * less cpu_power.
6141 */
6142 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6143 {
6144 struct sched_group *sg = sd->groups;
6145
6146 WARN_ON(!sd || !sg);
6147
6148 do {
6149 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6150 sg = sg->next;
6151 } while (sg != sd->groups);
6152
6153 if (cpu != group_first_cpu(sg))
6154 return;
6155
6156 update_group_power(sd, cpu);
6157 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6158 }
6159
6160 int __weak arch_sd_sibling_asym_packing(void)
6161 {
6162 return 0*SD_ASYM_PACKING;
6163 }
6164
6165 /*
6166 * Initializers for schedule domains
6167 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6168 */
6169
6170 #ifdef CONFIG_SCHED_DEBUG
6171 # define SD_INIT_NAME(sd, type) sd->name = #type
6172 #else
6173 # define SD_INIT_NAME(sd, type) do { } while (0)
6174 #endif
6175
6176 #define SD_INIT_FUNC(type) \
6177 static noinline struct sched_domain * \
6178 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6179 { \
6180 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6181 *sd = SD_##type##_INIT; \
6182 SD_INIT_NAME(sd, type); \
6183 sd->private = &tl->data; \
6184 return sd; \
6185 }
6186
6187 SD_INIT_FUNC(CPU)
6188 #ifdef CONFIG_SCHED_SMT
6189 SD_INIT_FUNC(SIBLING)
6190 #endif
6191 #ifdef CONFIG_SCHED_MC
6192 SD_INIT_FUNC(MC)
6193 #endif
6194 #ifdef CONFIG_SCHED_BOOK
6195 SD_INIT_FUNC(BOOK)
6196 #endif
6197
6198 static int default_relax_domain_level = -1;
6199 int sched_domain_level_max;
6200
6201 static int __init setup_relax_domain_level(char *str)
6202 {
6203 unsigned long val;
6204
6205 val = simple_strtoul(str, NULL, 0);
6206 if (val < sched_domain_level_max)
6207 default_relax_domain_level = val;
6208
6209 return 1;
6210 }
6211 __setup("relax_domain_level=", setup_relax_domain_level);
6212
6213 static void set_domain_attribute(struct sched_domain *sd,
6214 struct sched_domain_attr *attr)
6215 {
6216 int request;
6217
6218 if (!attr || attr->relax_domain_level < 0) {
6219 if (default_relax_domain_level < 0)
6220 return;
6221 else
6222 request = default_relax_domain_level;
6223 } else
6224 request = attr->relax_domain_level;
6225 if (request < sd->level) {
6226 /* turn off idle balance on this domain */
6227 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6228 } else {
6229 /* turn on idle balance on this domain */
6230 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6231 }
6232 }
6233
6234 static void __sdt_free(const struct cpumask *cpu_map);
6235 static int __sdt_alloc(const struct cpumask *cpu_map);
6236
6237 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6238 const struct cpumask *cpu_map)
6239 {
6240 switch (what) {
6241 case sa_rootdomain:
6242 if (!atomic_read(&d->rd->refcount))
6243 free_rootdomain(&d->rd->rcu); /* fall through */
6244 case sa_sd:
6245 free_percpu(d->sd); /* fall through */
6246 case sa_sd_storage:
6247 __sdt_free(cpu_map); /* fall through */
6248 case sa_none:
6249 break;
6250 }
6251 }
6252
6253 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6254 const struct cpumask *cpu_map)
6255 {
6256 memset(d, 0, sizeof(*d));
6257
6258 if (__sdt_alloc(cpu_map))
6259 return sa_sd_storage;
6260 d->sd = alloc_percpu(struct sched_domain *);
6261 if (!d->sd)
6262 return sa_sd_storage;
6263 d->rd = alloc_rootdomain();
6264 if (!d->rd)
6265 return sa_sd;
6266 return sa_rootdomain;
6267 }
6268
6269 /*
6270 * NULL the sd_data elements we've used to build the sched_domain and
6271 * sched_group structure so that the subsequent __free_domain_allocs()
6272 * will not free the data we're using.
6273 */
6274 static void claim_allocations(int cpu, struct sched_domain *sd)
6275 {
6276 struct sd_data *sdd = sd->private;
6277
6278 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6279 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6280
6281 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6282 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6283
6284 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6285 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6286 }
6287
6288 #ifdef CONFIG_SCHED_SMT
6289 static const struct cpumask *cpu_smt_mask(int cpu)
6290 {
6291 return topology_thread_cpumask(cpu);
6292 }
6293 #endif
6294
6295 /*
6296 * Topology list, bottom-up.
6297 */
6298 static struct sched_domain_topology_level default_topology[] = {
6299 #ifdef CONFIG_SCHED_SMT
6300 { sd_init_SIBLING, cpu_smt_mask, },
6301 #endif
6302 #ifdef CONFIG_SCHED_MC
6303 { sd_init_MC, cpu_coregroup_mask, },
6304 #endif
6305 #ifdef CONFIG_SCHED_BOOK
6306 { sd_init_BOOK, cpu_book_mask, },
6307 #endif
6308 { sd_init_CPU, cpu_cpu_mask, },
6309 { NULL, },
6310 };
6311
6312 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6313
6314 #ifdef CONFIG_NUMA
6315
6316 static int sched_domains_numa_levels;
6317 static int sched_domains_numa_scale;
6318 static int *sched_domains_numa_distance;
6319 static struct cpumask ***sched_domains_numa_masks;
6320 static int sched_domains_curr_level;
6321
6322 static inline int sd_local_flags(int level)
6323 {
6324 if (sched_domains_numa_distance[level] > REMOTE_DISTANCE)
6325 return 0;
6326
6327 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6328 }
6329
6330 static struct sched_domain *
6331 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6332 {
6333 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6334 int level = tl->numa_level;
6335 int sd_weight = cpumask_weight(
6336 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6337
6338 *sd = (struct sched_domain){
6339 .min_interval = sd_weight,
6340 .max_interval = 2*sd_weight,
6341 .busy_factor = 32,
6342 .imbalance_pct = 125,
6343 .cache_nice_tries = 2,
6344 .busy_idx = 3,
6345 .idle_idx = 2,
6346 .newidle_idx = 0,
6347 .wake_idx = 0,
6348 .forkexec_idx = 0,
6349
6350 .flags = 1*SD_LOAD_BALANCE
6351 | 1*SD_BALANCE_NEWIDLE
6352 | 0*SD_BALANCE_EXEC
6353 | 0*SD_BALANCE_FORK
6354 | 0*SD_BALANCE_WAKE
6355 | 0*SD_WAKE_AFFINE
6356 | 0*SD_PREFER_LOCAL
6357 | 0*SD_SHARE_CPUPOWER
6358 | 0*SD_SHARE_PKG_RESOURCES
6359 | 1*SD_SERIALIZE
6360 | 0*SD_PREFER_SIBLING
6361 | sd_local_flags(level)
6362 ,
6363 .last_balance = jiffies,
6364 .balance_interval = sd_weight,
6365 };
6366 SD_INIT_NAME(sd, NUMA);
6367 sd->private = &tl->data;
6368
6369 /*
6370 * Ugly hack to pass state to sd_numa_mask()...
6371 */
6372 sched_domains_curr_level = tl->numa_level;
6373
6374 return sd;
6375 }
6376
6377 static const struct cpumask *sd_numa_mask(int cpu)
6378 {
6379 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6380 }
6381
6382 static void sched_init_numa(void)
6383 {
6384 int next_distance, curr_distance = node_distance(0, 0);
6385 struct sched_domain_topology_level *tl;
6386 int level = 0;
6387 int i, j, k;
6388
6389 sched_domains_numa_scale = curr_distance;
6390 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6391 if (!sched_domains_numa_distance)
6392 return;
6393
6394 /*
6395 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6396 * unique distances in the node_distance() table.
6397 *
6398 * Assumes node_distance(0,j) includes all distances in
6399 * node_distance(i,j) in order to avoid cubic time.
6400 *
6401 * XXX: could be optimized to O(n log n) by using sort()
6402 */
6403 next_distance = curr_distance;
6404 for (i = 0; i < nr_node_ids; i++) {
6405 for (j = 0; j < nr_node_ids; j++) {
6406 int distance = node_distance(0, j);
6407 if (distance > curr_distance &&
6408 (distance < next_distance ||
6409 next_distance == curr_distance))
6410 next_distance = distance;
6411 }
6412 if (next_distance != curr_distance) {
6413 sched_domains_numa_distance[level++] = next_distance;
6414 sched_domains_numa_levels = level;
6415 curr_distance = next_distance;
6416 } else break;
6417 }
6418 /*
6419 * 'level' contains the number of unique distances, excluding the
6420 * identity distance node_distance(i,i).
6421 *
6422 * The sched_domains_nume_distance[] array includes the actual distance
6423 * numbers.
6424 */
6425
6426 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6427 if (!sched_domains_numa_masks)
6428 return;
6429
6430 /*
6431 * Now for each level, construct a mask per node which contains all
6432 * cpus of nodes that are that many hops away from us.
6433 */
6434 for (i = 0; i < level; i++) {
6435 sched_domains_numa_masks[i] =
6436 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6437 if (!sched_domains_numa_masks[i])
6438 return;
6439
6440 for (j = 0; j < nr_node_ids; j++) {
6441 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6442 if (!mask)
6443 return;
6444
6445 sched_domains_numa_masks[i][j] = mask;
6446
6447 for (k = 0; k < nr_node_ids; k++) {
6448 if (node_distance(j, k) > sched_domains_numa_distance[i])
6449 continue;
6450
6451 cpumask_or(mask, mask, cpumask_of_node(k));
6452 }
6453 }
6454 }
6455
6456 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6457 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6458 if (!tl)
6459 return;
6460
6461 /*
6462 * Copy the default topology bits..
6463 */
6464 for (i = 0; default_topology[i].init; i++)
6465 tl[i] = default_topology[i];
6466
6467 /*
6468 * .. and append 'j' levels of NUMA goodness.
6469 */
6470 for (j = 0; j < level; i++, j++) {
6471 tl[i] = (struct sched_domain_topology_level){
6472 .init = sd_numa_init,
6473 .mask = sd_numa_mask,
6474 .flags = SDTL_OVERLAP,
6475 .numa_level = j,
6476 };
6477 }
6478
6479 sched_domain_topology = tl;
6480 }
6481 #else
6482 static inline void sched_init_numa(void)
6483 {
6484 }
6485 #endif /* CONFIG_NUMA */
6486
6487 static int __sdt_alloc(const struct cpumask *cpu_map)
6488 {
6489 struct sched_domain_topology_level *tl;
6490 int j;
6491
6492 for (tl = sched_domain_topology; tl->init; tl++) {
6493 struct sd_data *sdd = &tl->data;
6494
6495 sdd->sd = alloc_percpu(struct sched_domain *);
6496 if (!sdd->sd)
6497 return -ENOMEM;
6498
6499 sdd->sg = alloc_percpu(struct sched_group *);
6500 if (!sdd->sg)
6501 return -ENOMEM;
6502
6503 sdd->sgp = alloc_percpu(struct sched_group_power *);
6504 if (!sdd->sgp)
6505 return -ENOMEM;
6506
6507 for_each_cpu(j, cpu_map) {
6508 struct sched_domain *sd;
6509 struct sched_group *sg;
6510 struct sched_group_power *sgp;
6511
6512 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6513 GFP_KERNEL, cpu_to_node(j));
6514 if (!sd)
6515 return -ENOMEM;
6516
6517 *per_cpu_ptr(sdd->sd, j) = sd;
6518
6519 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6520 GFP_KERNEL, cpu_to_node(j));
6521 if (!sg)
6522 return -ENOMEM;
6523
6524 sg->next = sg;
6525
6526 *per_cpu_ptr(sdd->sg, j) = sg;
6527
6528 sgp = kzalloc_node(sizeof(struct sched_group_power),
6529 GFP_KERNEL, cpu_to_node(j));
6530 if (!sgp)
6531 return -ENOMEM;
6532
6533 *per_cpu_ptr(sdd->sgp, j) = sgp;
6534 }
6535 }
6536
6537 return 0;
6538 }
6539
6540 static void __sdt_free(const struct cpumask *cpu_map)
6541 {
6542 struct sched_domain_topology_level *tl;
6543 int j;
6544
6545 for (tl = sched_domain_topology; tl->init; tl++) {
6546 struct sd_data *sdd = &tl->data;
6547
6548 for_each_cpu(j, cpu_map) {
6549 struct sched_domain *sd;
6550
6551 if (sdd->sd) {
6552 sd = *per_cpu_ptr(sdd->sd, j);
6553 if (sd && (sd->flags & SD_OVERLAP))
6554 free_sched_groups(sd->groups, 0);
6555 kfree(*per_cpu_ptr(sdd->sd, j));
6556 }
6557
6558 if (sdd->sg)
6559 kfree(*per_cpu_ptr(sdd->sg, j));
6560 if (sdd->sgp)
6561 kfree(*per_cpu_ptr(sdd->sgp, j));
6562 }
6563 free_percpu(sdd->sd);
6564 sdd->sd = NULL;
6565 free_percpu(sdd->sg);
6566 sdd->sg = NULL;
6567 free_percpu(sdd->sgp);
6568 sdd->sgp = NULL;
6569 }
6570 }
6571
6572 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6573 struct s_data *d, const struct cpumask *cpu_map,
6574 struct sched_domain_attr *attr, struct sched_domain *child,
6575 int cpu)
6576 {
6577 struct sched_domain *sd = tl->init(tl, cpu);
6578 if (!sd)
6579 return child;
6580
6581 set_domain_attribute(sd, attr);
6582 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6583 if (child) {
6584 sd->level = child->level + 1;
6585 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6586 child->parent = sd;
6587 }
6588 sd->child = child;
6589
6590 return sd;
6591 }
6592
6593 /*
6594 * Build sched domains for a given set of cpus and attach the sched domains
6595 * to the individual cpus
6596 */
6597 static int build_sched_domains(const struct cpumask *cpu_map,
6598 struct sched_domain_attr *attr)
6599 {
6600 enum s_alloc alloc_state = sa_none;
6601 struct sched_domain *sd;
6602 struct s_data d;
6603 int i, ret = -ENOMEM;
6604
6605 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6606 if (alloc_state != sa_rootdomain)
6607 goto error;
6608
6609 /* Set up domains for cpus specified by the cpu_map. */
6610 for_each_cpu(i, cpu_map) {
6611 struct sched_domain_topology_level *tl;
6612
6613 sd = NULL;
6614 for (tl = sched_domain_topology; tl->init; tl++) {
6615 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6616 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6617 sd->flags |= SD_OVERLAP;
6618 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6619 break;
6620 }
6621
6622 while (sd->child)
6623 sd = sd->child;
6624
6625 *per_cpu_ptr(d.sd, i) = sd;
6626 }
6627
6628 /* Build the groups for the domains */
6629 for_each_cpu(i, cpu_map) {
6630 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6631 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6632 if (sd->flags & SD_OVERLAP) {
6633 if (build_overlap_sched_groups(sd, i))
6634 goto error;
6635 } else {
6636 if (build_sched_groups(sd, i))
6637 goto error;
6638 }
6639 }
6640 }
6641
6642 /* Calculate CPU power for physical packages and nodes */
6643 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6644 if (!cpumask_test_cpu(i, cpu_map))
6645 continue;
6646
6647 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6648 claim_allocations(i, sd);
6649 init_sched_groups_power(i, sd);
6650 }
6651 }
6652
6653 /* Attach the domains */
6654 rcu_read_lock();
6655 for_each_cpu(i, cpu_map) {
6656 sd = *per_cpu_ptr(d.sd, i);
6657 cpu_attach_domain(sd, d.rd, i);
6658 }
6659 rcu_read_unlock();
6660
6661 ret = 0;
6662 error:
6663 __free_domain_allocs(&d, alloc_state, cpu_map);
6664 return ret;
6665 }
6666
6667 static cpumask_var_t *doms_cur; /* current sched domains */
6668 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6669 static struct sched_domain_attr *dattr_cur;
6670 /* attribues of custom domains in 'doms_cur' */
6671
6672 /*
6673 * Special case: If a kmalloc of a doms_cur partition (array of
6674 * cpumask) fails, then fallback to a single sched domain,
6675 * as determined by the single cpumask fallback_doms.
6676 */
6677 static cpumask_var_t fallback_doms;
6678
6679 /*
6680 * arch_update_cpu_topology lets virtualized architectures update the
6681 * cpu core maps. It is supposed to return 1 if the topology changed
6682 * or 0 if it stayed the same.
6683 */
6684 int __attribute__((weak)) arch_update_cpu_topology(void)
6685 {
6686 return 0;
6687 }
6688
6689 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6690 {
6691 int i;
6692 cpumask_var_t *doms;
6693
6694 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6695 if (!doms)
6696 return NULL;
6697 for (i = 0; i < ndoms; i++) {
6698 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6699 free_sched_domains(doms, i);
6700 return NULL;
6701 }
6702 }
6703 return doms;
6704 }
6705
6706 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6707 {
6708 unsigned int i;
6709 for (i = 0; i < ndoms; i++)
6710 free_cpumask_var(doms[i]);
6711 kfree(doms);
6712 }
6713
6714 /*
6715 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6716 * For now this just excludes isolated cpus, but could be used to
6717 * exclude other special cases in the future.
6718 */
6719 static int init_sched_domains(const struct cpumask *cpu_map)
6720 {
6721 int err;
6722
6723 arch_update_cpu_topology();
6724 ndoms_cur = 1;
6725 doms_cur = alloc_sched_domains(ndoms_cur);
6726 if (!doms_cur)
6727 doms_cur = &fallback_doms;
6728 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6729 err = build_sched_domains(doms_cur[0], NULL);
6730 register_sched_domain_sysctl();
6731
6732 return err;
6733 }
6734
6735 /*
6736 * Detach sched domains from a group of cpus specified in cpu_map
6737 * These cpus will now be attached to the NULL domain
6738 */
6739 static void detach_destroy_domains(const struct cpumask *cpu_map)
6740 {
6741 int i;
6742
6743 rcu_read_lock();
6744 for_each_cpu(i, cpu_map)
6745 cpu_attach_domain(NULL, &def_root_domain, i);
6746 rcu_read_unlock();
6747 }
6748
6749 /* handle null as "default" */
6750 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6751 struct sched_domain_attr *new, int idx_new)
6752 {
6753 struct sched_domain_attr tmp;
6754
6755 /* fast path */
6756 if (!new && !cur)
6757 return 1;
6758
6759 tmp = SD_ATTR_INIT;
6760 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6761 new ? (new + idx_new) : &tmp,
6762 sizeof(struct sched_domain_attr));
6763 }
6764
6765 /*
6766 * Partition sched domains as specified by the 'ndoms_new'
6767 * cpumasks in the array doms_new[] of cpumasks. This compares
6768 * doms_new[] to the current sched domain partitioning, doms_cur[].
6769 * It destroys each deleted domain and builds each new domain.
6770 *
6771 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6772 * The masks don't intersect (don't overlap.) We should setup one
6773 * sched domain for each mask. CPUs not in any of the cpumasks will
6774 * not be load balanced. If the same cpumask appears both in the
6775 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6776 * it as it is.
6777 *
6778 * The passed in 'doms_new' should be allocated using
6779 * alloc_sched_domains. This routine takes ownership of it and will
6780 * free_sched_domains it when done with it. If the caller failed the
6781 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6782 * and partition_sched_domains() will fallback to the single partition
6783 * 'fallback_doms', it also forces the domains to be rebuilt.
6784 *
6785 * If doms_new == NULL it will be replaced with cpu_online_mask.
6786 * ndoms_new == 0 is a special case for destroying existing domains,
6787 * and it will not create the default domain.
6788 *
6789 * Call with hotplug lock held
6790 */
6791 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6792 struct sched_domain_attr *dattr_new)
6793 {
6794 int i, j, n;
6795 int new_topology;
6796
6797 mutex_lock(&sched_domains_mutex);
6798
6799 /* always unregister in case we don't destroy any domains */
6800 unregister_sched_domain_sysctl();
6801
6802 /* Let architecture update cpu core mappings. */
6803 new_topology = arch_update_cpu_topology();
6804
6805 n = doms_new ? ndoms_new : 0;
6806
6807 /* Destroy deleted domains */
6808 for (i = 0; i < ndoms_cur; i++) {
6809 for (j = 0; j < n && !new_topology; j++) {
6810 if (cpumask_equal(doms_cur[i], doms_new[j])
6811 && dattrs_equal(dattr_cur, i, dattr_new, j))
6812 goto match1;
6813 }
6814 /* no match - a current sched domain not in new doms_new[] */
6815 detach_destroy_domains(doms_cur[i]);
6816 match1:
6817 ;
6818 }
6819
6820 if (doms_new == NULL) {
6821 ndoms_cur = 0;
6822 doms_new = &fallback_doms;
6823 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6824 WARN_ON_ONCE(dattr_new);
6825 }
6826
6827 /* Build new domains */
6828 for (i = 0; i < ndoms_new; i++) {
6829 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6830 if (cpumask_equal(doms_new[i], doms_cur[j])
6831 && dattrs_equal(dattr_new, i, dattr_cur, j))
6832 goto match2;
6833 }
6834 /* no match - add a new doms_new */
6835 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6836 match2:
6837 ;
6838 }
6839
6840 /* Remember the new sched domains */
6841 if (doms_cur != &fallback_doms)
6842 free_sched_domains(doms_cur, ndoms_cur);
6843 kfree(dattr_cur); /* kfree(NULL) is safe */
6844 doms_cur = doms_new;
6845 dattr_cur = dattr_new;
6846 ndoms_cur = ndoms_new;
6847
6848 register_sched_domain_sysctl();
6849
6850 mutex_unlock(&sched_domains_mutex);
6851 }
6852
6853 /*
6854 * Update cpusets according to cpu_active mask. If cpusets are
6855 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6856 * around partition_sched_domains().
6857 */
6858 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6859 void *hcpu)
6860 {
6861 switch (action & ~CPU_TASKS_FROZEN) {
6862 case CPU_ONLINE:
6863 case CPU_DOWN_FAILED:
6864 cpuset_update_active_cpus();
6865 return NOTIFY_OK;
6866 default:
6867 return NOTIFY_DONE;
6868 }
6869 }
6870
6871 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6872 void *hcpu)
6873 {
6874 switch (action & ~CPU_TASKS_FROZEN) {
6875 case CPU_DOWN_PREPARE:
6876 cpuset_update_active_cpus();
6877 return NOTIFY_OK;
6878 default:
6879 return NOTIFY_DONE;
6880 }
6881 }
6882
6883 void __init sched_init_smp(void)
6884 {
6885 cpumask_var_t non_isolated_cpus;
6886
6887 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6888 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6889
6890 sched_init_numa();
6891
6892 get_online_cpus();
6893 mutex_lock(&sched_domains_mutex);
6894 init_sched_domains(cpu_active_mask);
6895 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6896 if (cpumask_empty(non_isolated_cpus))
6897 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6898 mutex_unlock(&sched_domains_mutex);
6899 put_online_cpus();
6900
6901 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6902 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6903
6904 /* RT runtime code needs to handle some hotplug events */
6905 hotcpu_notifier(update_runtime, 0);
6906
6907 init_hrtick();
6908
6909 /* Move init over to a non-isolated CPU */
6910 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6911 BUG();
6912 sched_init_granularity();
6913 free_cpumask_var(non_isolated_cpus);
6914
6915 init_sched_rt_class();
6916 }
6917 #else
6918 void __init sched_init_smp(void)
6919 {
6920 sched_init_granularity();
6921 }
6922 #endif /* CONFIG_SMP */
6923
6924 const_debug unsigned int sysctl_timer_migration = 1;
6925
6926 int in_sched_functions(unsigned long addr)
6927 {
6928 return in_lock_functions(addr) ||
6929 (addr >= (unsigned long)__sched_text_start
6930 && addr < (unsigned long)__sched_text_end);
6931 }
6932
6933 #ifdef CONFIG_CGROUP_SCHED
6934 struct task_group root_task_group;
6935 #endif
6936
6937 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6938
6939 void __init sched_init(void)
6940 {
6941 int i, j;
6942 unsigned long alloc_size = 0, ptr;
6943
6944 #ifdef CONFIG_FAIR_GROUP_SCHED
6945 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6946 #endif
6947 #ifdef CONFIG_RT_GROUP_SCHED
6948 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6949 #endif
6950 #ifdef CONFIG_CPUMASK_OFFSTACK
6951 alloc_size += num_possible_cpus() * cpumask_size();
6952 #endif
6953 if (alloc_size) {
6954 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6955
6956 #ifdef CONFIG_FAIR_GROUP_SCHED
6957 root_task_group.se = (struct sched_entity **)ptr;
6958 ptr += nr_cpu_ids * sizeof(void **);
6959
6960 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6961 ptr += nr_cpu_ids * sizeof(void **);
6962
6963 #endif /* CONFIG_FAIR_GROUP_SCHED */
6964 #ifdef CONFIG_RT_GROUP_SCHED
6965 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6966 ptr += nr_cpu_ids * sizeof(void **);
6967
6968 root_task_group.rt_rq = (struct rt_rq **)ptr;
6969 ptr += nr_cpu_ids * sizeof(void **);
6970
6971 #endif /* CONFIG_RT_GROUP_SCHED */
6972 #ifdef CONFIG_CPUMASK_OFFSTACK
6973 for_each_possible_cpu(i) {
6974 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6975 ptr += cpumask_size();
6976 }
6977 #endif /* CONFIG_CPUMASK_OFFSTACK */
6978 }
6979
6980 #ifdef CONFIG_SMP
6981 init_defrootdomain();
6982 #endif
6983
6984 init_rt_bandwidth(&def_rt_bandwidth,
6985 global_rt_period(), global_rt_runtime());
6986
6987 #ifdef CONFIG_RT_GROUP_SCHED
6988 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6989 global_rt_period(), global_rt_runtime());
6990 #endif /* CONFIG_RT_GROUP_SCHED */
6991
6992 #ifdef CONFIG_CGROUP_SCHED
6993 list_add(&root_task_group.list, &task_groups);
6994 INIT_LIST_HEAD(&root_task_group.children);
6995 INIT_LIST_HEAD(&root_task_group.siblings);
6996 autogroup_init(&init_task);
6997
6998 #endif /* CONFIG_CGROUP_SCHED */
6999
7000 #ifdef CONFIG_CGROUP_CPUACCT
7001 root_cpuacct.cpustat = &kernel_cpustat;
7002 root_cpuacct.cpuusage = alloc_percpu(u64);
7003 /* Too early, not expected to fail */
7004 BUG_ON(!root_cpuacct.cpuusage);
7005 #endif
7006 for_each_possible_cpu(i) {
7007 struct rq *rq;
7008
7009 rq = cpu_rq(i);
7010 raw_spin_lock_init(&rq->lock);
7011 rq->nr_running = 0;
7012 rq->calc_load_active = 0;
7013 rq->calc_load_update = jiffies + LOAD_FREQ;
7014 init_cfs_rq(&rq->cfs);
7015 init_rt_rq(&rq->rt, rq);
7016 #ifdef CONFIG_FAIR_GROUP_SCHED
7017 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7018 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7019 /*
7020 * How much cpu bandwidth does root_task_group get?
7021 *
7022 * In case of task-groups formed thr' the cgroup filesystem, it
7023 * gets 100% of the cpu resources in the system. This overall
7024 * system cpu resource is divided among the tasks of
7025 * root_task_group and its child task-groups in a fair manner,
7026 * based on each entity's (task or task-group's) weight
7027 * (se->load.weight).
7028 *
7029 * In other words, if root_task_group has 10 tasks of weight
7030 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7031 * then A0's share of the cpu resource is:
7032 *
7033 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7034 *
7035 * We achieve this by letting root_task_group's tasks sit
7036 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7037 */
7038 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7039 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7040 #endif /* CONFIG_FAIR_GROUP_SCHED */
7041
7042 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7043 #ifdef CONFIG_RT_GROUP_SCHED
7044 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7045 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7046 #endif
7047
7048 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7049 rq->cpu_load[j] = 0;
7050
7051 rq->last_load_update_tick = jiffies;
7052
7053 #ifdef CONFIG_SMP
7054 rq->sd = NULL;
7055 rq->rd = NULL;
7056 rq->cpu_power = SCHED_POWER_SCALE;
7057 rq->post_schedule = 0;
7058 rq->active_balance = 0;
7059 rq->next_balance = jiffies;
7060 rq->push_cpu = 0;
7061 rq->cpu = i;
7062 rq->online = 0;
7063 rq->idle_stamp = 0;
7064 rq->avg_idle = 2*sysctl_sched_migration_cost;
7065
7066 INIT_LIST_HEAD(&rq->cfs_tasks);
7067
7068 rq_attach_root(rq, &def_root_domain);
7069 #ifdef CONFIG_NO_HZ
7070 rq->nohz_flags = 0;
7071 #endif
7072 #endif
7073 init_rq_hrtick(rq);
7074 atomic_set(&rq->nr_iowait, 0);
7075 }
7076
7077 set_load_weight(&init_task);
7078
7079 #ifdef CONFIG_PREEMPT_NOTIFIERS
7080 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7081 #endif
7082
7083 #ifdef CONFIG_RT_MUTEXES
7084 plist_head_init(&init_task.pi_waiters);
7085 #endif
7086
7087 /*
7088 * The boot idle thread does lazy MMU switching as well:
7089 */
7090 atomic_inc(&init_mm.mm_count);
7091 enter_lazy_tlb(&init_mm, current);
7092
7093 /*
7094 * Make us the idle thread. Technically, schedule() should not be
7095 * called from this thread, however somewhere below it might be,
7096 * but because we are the idle thread, we just pick up running again
7097 * when this runqueue becomes "idle".
7098 */
7099 init_idle(current, smp_processor_id());
7100
7101 calc_load_update = jiffies + LOAD_FREQ;
7102
7103 /*
7104 * During early bootup we pretend to be a normal task:
7105 */
7106 current->sched_class = &fair_sched_class;
7107
7108 #ifdef CONFIG_SMP
7109 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7110 /* May be allocated at isolcpus cmdline parse time */
7111 if (cpu_isolated_map == NULL)
7112 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7113 idle_thread_set_boot_cpu();
7114 #endif
7115 init_sched_fair_class();
7116
7117 scheduler_running = 1;
7118 }
7119
7120 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7121 static inline int preempt_count_equals(int preempt_offset)
7122 {
7123 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7124
7125 return (nested == preempt_offset);
7126 }
7127
7128 void __might_sleep(const char *file, int line, int preempt_offset)
7129 {
7130 static unsigned long prev_jiffy; /* ratelimiting */
7131
7132 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7133 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7134 system_state != SYSTEM_RUNNING || oops_in_progress)
7135 return;
7136 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7137 return;
7138 prev_jiffy = jiffies;
7139
7140 printk(KERN_ERR
7141 "BUG: sleeping function called from invalid context at %s:%d\n",
7142 file, line);
7143 printk(KERN_ERR
7144 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7145 in_atomic(), irqs_disabled(),
7146 current->pid, current->comm);
7147
7148 debug_show_held_locks(current);
7149 if (irqs_disabled())
7150 print_irqtrace_events(current);
7151 dump_stack();
7152 }
7153 EXPORT_SYMBOL(__might_sleep);
7154 #endif
7155
7156 #ifdef CONFIG_MAGIC_SYSRQ
7157 static void normalize_task(struct rq *rq, struct task_struct *p)
7158 {
7159 const struct sched_class *prev_class = p->sched_class;
7160 int old_prio = p->prio;
7161 int on_rq;
7162
7163 on_rq = p->on_rq;
7164 if (on_rq)
7165 dequeue_task(rq, p, 0);
7166 __setscheduler(rq, p, SCHED_NORMAL, 0);
7167 if (on_rq) {
7168 enqueue_task(rq, p, 0);
7169 resched_task(rq->curr);
7170 }
7171
7172 check_class_changed(rq, p, prev_class, old_prio);
7173 }
7174
7175 void normalize_rt_tasks(void)
7176 {
7177 struct task_struct *g, *p;
7178 unsigned long flags;
7179 struct rq *rq;
7180
7181 read_lock_irqsave(&tasklist_lock, flags);
7182 do_each_thread(g, p) {
7183 /*
7184 * Only normalize user tasks:
7185 */
7186 if (!p->mm)
7187 continue;
7188
7189 p->se.exec_start = 0;
7190 #ifdef CONFIG_SCHEDSTATS
7191 p->se.statistics.wait_start = 0;
7192 p->se.statistics.sleep_start = 0;
7193 p->se.statistics.block_start = 0;
7194 #endif
7195
7196 if (!rt_task(p)) {
7197 /*
7198 * Renice negative nice level userspace
7199 * tasks back to 0:
7200 */
7201 if (TASK_NICE(p) < 0 && p->mm)
7202 set_user_nice(p, 0);
7203 continue;
7204 }
7205
7206 raw_spin_lock(&p->pi_lock);
7207 rq = __task_rq_lock(p);
7208
7209 normalize_task(rq, p);
7210
7211 __task_rq_unlock(rq);
7212 raw_spin_unlock(&p->pi_lock);
7213 } while_each_thread(g, p);
7214
7215 read_unlock_irqrestore(&tasklist_lock, flags);
7216 }
7217
7218 #endif /* CONFIG_MAGIC_SYSRQ */
7219
7220 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7221 /*
7222 * These functions are only useful for the IA64 MCA handling, or kdb.
7223 *
7224 * They can only be called when the whole system has been
7225 * stopped - every CPU needs to be quiescent, and no scheduling
7226 * activity can take place. Using them for anything else would
7227 * be a serious bug, and as a result, they aren't even visible
7228 * under any other configuration.
7229 */
7230
7231 /**
7232 * curr_task - return the current task for a given cpu.
7233 * @cpu: the processor in question.
7234 *
7235 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7236 */
7237 struct task_struct *curr_task(int cpu)
7238 {
7239 return cpu_curr(cpu);
7240 }
7241
7242 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7243
7244 #ifdef CONFIG_IA64
7245 /**
7246 * set_curr_task - set the current task for a given cpu.
7247 * @cpu: the processor in question.
7248 * @p: the task pointer to set.
7249 *
7250 * Description: This function must only be used when non-maskable interrupts
7251 * are serviced on a separate stack. It allows the architecture to switch the
7252 * notion of the current task on a cpu in a non-blocking manner. This function
7253 * must be called with all CPU's synchronized, and interrupts disabled, the
7254 * and caller must save the original value of the current task (see
7255 * curr_task() above) and restore that value before reenabling interrupts and
7256 * re-starting the system.
7257 *
7258 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7259 */
7260 void set_curr_task(int cpu, struct task_struct *p)
7261 {
7262 cpu_curr(cpu) = p;
7263 }
7264
7265 #endif
7266
7267 #ifdef CONFIG_CGROUP_SCHED
7268 /* task_group_lock serializes the addition/removal of task groups */
7269 static DEFINE_SPINLOCK(task_group_lock);
7270
7271 static void free_sched_group(struct task_group *tg)
7272 {
7273 free_fair_sched_group(tg);
7274 free_rt_sched_group(tg);
7275 autogroup_free(tg);
7276 kfree(tg);
7277 }
7278
7279 /* allocate runqueue etc for a new task group */
7280 struct task_group *sched_create_group(struct task_group *parent)
7281 {
7282 struct task_group *tg;
7283 unsigned long flags;
7284
7285 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7286 if (!tg)
7287 return ERR_PTR(-ENOMEM);
7288
7289 if (!alloc_fair_sched_group(tg, parent))
7290 goto err;
7291
7292 if (!alloc_rt_sched_group(tg, parent))
7293 goto err;
7294
7295 spin_lock_irqsave(&task_group_lock, flags);
7296 list_add_rcu(&tg->list, &task_groups);
7297
7298 WARN_ON(!parent); /* root should already exist */
7299
7300 tg->parent = parent;
7301 INIT_LIST_HEAD(&tg->children);
7302 list_add_rcu(&tg->siblings, &parent->children);
7303 spin_unlock_irqrestore(&task_group_lock, flags);
7304
7305 return tg;
7306
7307 err:
7308 free_sched_group(tg);
7309 return ERR_PTR(-ENOMEM);
7310 }
7311
7312 /* rcu callback to free various structures associated with a task group */
7313 static void free_sched_group_rcu(struct rcu_head *rhp)
7314 {
7315 /* now it should be safe to free those cfs_rqs */
7316 free_sched_group(container_of(rhp, struct task_group, rcu));
7317 }
7318
7319 /* Destroy runqueue etc associated with a task group */
7320 void sched_destroy_group(struct task_group *tg)
7321 {
7322 unsigned long flags;
7323 int i;
7324
7325 /* end participation in shares distribution */
7326 for_each_possible_cpu(i)
7327 unregister_fair_sched_group(tg, i);
7328
7329 spin_lock_irqsave(&task_group_lock, flags);
7330 list_del_rcu(&tg->list);
7331 list_del_rcu(&tg->siblings);
7332 spin_unlock_irqrestore(&task_group_lock, flags);
7333
7334 /* wait for possible concurrent references to cfs_rqs complete */
7335 call_rcu(&tg->rcu, free_sched_group_rcu);
7336 }
7337
7338 /* change task's runqueue when it moves between groups.
7339 * The caller of this function should have put the task in its new group
7340 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7341 * reflect its new group.
7342 */
7343 void sched_move_task(struct task_struct *tsk)
7344 {
7345 int on_rq, running;
7346 unsigned long flags;
7347 struct rq *rq;
7348
7349 rq = task_rq_lock(tsk, &flags);
7350
7351 running = task_current(rq, tsk);
7352 on_rq = tsk->on_rq;
7353
7354 if (on_rq)
7355 dequeue_task(rq, tsk, 0);
7356 if (unlikely(running))
7357 tsk->sched_class->put_prev_task(rq, tsk);
7358
7359 #ifdef CONFIG_FAIR_GROUP_SCHED
7360 if (tsk->sched_class->task_move_group)
7361 tsk->sched_class->task_move_group(tsk, on_rq);
7362 else
7363 #endif
7364 set_task_rq(tsk, task_cpu(tsk));
7365
7366 if (unlikely(running))
7367 tsk->sched_class->set_curr_task(rq);
7368 if (on_rq)
7369 enqueue_task(rq, tsk, 0);
7370
7371 task_rq_unlock(rq, tsk, &flags);
7372 }
7373 #endif /* CONFIG_CGROUP_SCHED */
7374
7375 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7376 static unsigned long to_ratio(u64 period, u64 runtime)
7377 {
7378 if (runtime == RUNTIME_INF)
7379 return 1ULL << 20;
7380
7381 return div64_u64(runtime << 20, period);
7382 }
7383 #endif
7384
7385 #ifdef CONFIG_RT_GROUP_SCHED
7386 /*
7387 * Ensure that the real time constraints are schedulable.
7388 */
7389 static DEFINE_MUTEX(rt_constraints_mutex);
7390
7391 /* Must be called with tasklist_lock held */
7392 static inline int tg_has_rt_tasks(struct task_group *tg)
7393 {
7394 struct task_struct *g, *p;
7395
7396 do_each_thread(g, p) {
7397 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7398 return 1;
7399 } while_each_thread(g, p);
7400
7401 return 0;
7402 }
7403
7404 struct rt_schedulable_data {
7405 struct task_group *tg;
7406 u64 rt_period;
7407 u64 rt_runtime;
7408 };
7409
7410 static int tg_rt_schedulable(struct task_group *tg, void *data)
7411 {
7412 struct rt_schedulable_data *d = data;
7413 struct task_group *child;
7414 unsigned long total, sum = 0;
7415 u64 period, runtime;
7416
7417 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7418 runtime = tg->rt_bandwidth.rt_runtime;
7419
7420 if (tg == d->tg) {
7421 period = d->rt_period;
7422 runtime = d->rt_runtime;
7423 }
7424
7425 /*
7426 * Cannot have more runtime than the period.
7427 */
7428 if (runtime > period && runtime != RUNTIME_INF)
7429 return -EINVAL;
7430
7431 /*
7432 * Ensure we don't starve existing RT tasks.
7433 */
7434 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7435 return -EBUSY;
7436
7437 total = to_ratio(period, runtime);
7438
7439 /*
7440 * Nobody can have more than the global setting allows.
7441 */
7442 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7443 return -EINVAL;
7444
7445 /*
7446 * The sum of our children's runtime should not exceed our own.
7447 */
7448 list_for_each_entry_rcu(child, &tg->children, siblings) {
7449 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7450 runtime = child->rt_bandwidth.rt_runtime;
7451
7452 if (child == d->tg) {
7453 period = d->rt_period;
7454 runtime = d->rt_runtime;
7455 }
7456
7457 sum += to_ratio(period, runtime);
7458 }
7459
7460 if (sum > total)
7461 return -EINVAL;
7462
7463 return 0;
7464 }
7465
7466 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7467 {
7468 int ret;
7469
7470 struct rt_schedulable_data data = {
7471 .tg = tg,
7472 .rt_period = period,
7473 .rt_runtime = runtime,
7474 };
7475
7476 rcu_read_lock();
7477 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7478 rcu_read_unlock();
7479
7480 return ret;
7481 }
7482
7483 static int tg_set_rt_bandwidth(struct task_group *tg,
7484 u64 rt_period, u64 rt_runtime)
7485 {
7486 int i, err = 0;
7487
7488 mutex_lock(&rt_constraints_mutex);
7489 read_lock(&tasklist_lock);
7490 err = __rt_schedulable(tg, rt_period, rt_runtime);
7491 if (err)
7492 goto unlock;
7493
7494 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7495 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7496 tg->rt_bandwidth.rt_runtime = rt_runtime;
7497
7498 for_each_possible_cpu(i) {
7499 struct rt_rq *rt_rq = tg->rt_rq[i];
7500
7501 raw_spin_lock(&rt_rq->rt_runtime_lock);
7502 rt_rq->rt_runtime = rt_runtime;
7503 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7504 }
7505 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7506 unlock:
7507 read_unlock(&tasklist_lock);
7508 mutex_unlock(&rt_constraints_mutex);
7509
7510 return err;
7511 }
7512
7513 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7514 {
7515 u64 rt_runtime, rt_period;
7516
7517 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7518 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7519 if (rt_runtime_us < 0)
7520 rt_runtime = RUNTIME_INF;
7521
7522 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7523 }
7524
7525 long sched_group_rt_runtime(struct task_group *tg)
7526 {
7527 u64 rt_runtime_us;
7528
7529 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7530 return -1;
7531
7532 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7533 do_div(rt_runtime_us, NSEC_PER_USEC);
7534 return rt_runtime_us;
7535 }
7536
7537 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7538 {
7539 u64 rt_runtime, rt_period;
7540
7541 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7542 rt_runtime = tg->rt_bandwidth.rt_runtime;
7543
7544 if (rt_period == 0)
7545 return -EINVAL;
7546
7547 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7548 }
7549
7550 long sched_group_rt_period(struct task_group *tg)
7551 {
7552 u64 rt_period_us;
7553
7554 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7555 do_div(rt_period_us, NSEC_PER_USEC);
7556 return rt_period_us;
7557 }
7558
7559 static int sched_rt_global_constraints(void)
7560 {
7561 u64 runtime, period;
7562 int ret = 0;
7563
7564 if (sysctl_sched_rt_period <= 0)
7565 return -EINVAL;
7566
7567 runtime = global_rt_runtime();
7568 period = global_rt_period();
7569
7570 /*
7571 * Sanity check on the sysctl variables.
7572 */
7573 if (runtime > period && runtime != RUNTIME_INF)
7574 return -EINVAL;
7575
7576 mutex_lock(&rt_constraints_mutex);
7577 read_lock(&tasklist_lock);
7578 ret = __rt_schedulable(NULL, 0, 0);
7579 read_unlock(&tasklist_lock);
7580 mutex_unlock(&rt_constraints_mutex);
7581
7582 return ret;
7583 }
7584
7585 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7586 {
7587 /* Don't accept realtime tasks when there is no way for them to run */
7588 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7589 return 0;
7590
7591 return 1;
7592 }
7593
7594 #else /* !CONFIG_RT_GROUP_SCHED */
7595 static int sched_rt_global_constraints(void)
7596 {
7597 unsigned long flags;
7598 int i;
7599
7600 if (sysctl_sched_rt_period <= 0)
7601 return -EINVAL;
7602
7603 /*
7604 * There's always some RT tasks in the root group
7605 * -- migration, kstopmachine etc..
7606 */
7607 if (sysctl_sched_rt_runtime == 0)
7608 return -EBUSY;
7609
7610 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7611 for_each_possible_cpu(i) {
7612 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7613
7614 raw_spin_lock(&rt_rq->rt_runtime_lock);
7615 rt_rq->rt_runtime = global_rt_runtime();
7616 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7617 }
7618 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7619
7620 return 0;
7621 }
7622 #endif /* CONFIG_RT_GROUP_SCHED */
7623
7624 int sched_rt_handler(struct ctl_table *table, int write,
7625 void __user *buffer, size_t *lenp,
7626 loff_t *ppos)
7627 {
7628 int ret;
7629 int old_period, old_runtime;
7630 static DEFINE_MUTEX(mutex);
7631
7632 mutex_lock(&mutex);
7633 old_period = sysctl_sched_rt_period;
7634 old_runtime = sysctl_sched_rt_runtime;
7635
7636 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7637
7638 if (!ret && write) {
7639 ret = sched_rt_global_constraints();
7640 if (ret) {
7641 sysctl_sched_rt_period = old_period;
7642 sysctl_sched_rt_runtime = old_runtime;
7643 } else {
7644 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7645 def_rt_bandwidth.rt_period =
7646 ns_to_ktime(global_rt_period());
7647 }
7648 }
7649 mutex_unlock(&mutex);
7650
7651 return ret;
7652 }
7653
7654 #ifdef CONFIG_CGROUP_SCHED
7655
7656 /* return corresponding task_group object of a cgroup */
7657 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7658 {
7659 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7660 struct task_group, css);
7661 }
7662
7663 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7664 {
7665 struct task_group *tg, *parent;
7666
7667 if (!cgrp->parent) {
7668 /* This is early initialization for the top cgroup */
7669 return &root_task_group.css;
7670 }
7671
7672 parent = cgroup_tg(cgrp->parent);
7673 tg = sched_create_group(parent);
7674 if (IS_ERR(tg))
7675 return ERR_PTR(-ENOMEM);
7676
7677 return &tg->css;
7678 }
7679
7680 static void cpu_cgroup_destroy(struct cgroup *cgrp)
7681 {
7682 struct task_group *tg = cgroup_tg(cgrp);
7683
7684 sched_destroy_group(tg);
7685 }
7686
7687 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7688 struct cgroup_taskset *tset)
7689 {
7690 struct task_struct *task;
7691
7692 cgroup_taskset_for_each(task, cgrp, tset) {
7693 #ifdef CONFIG_RT_GROUP_SCHED
7694 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7695 return -EINVAL;
7696 #else
7697 /* We don't support RT-tasks being in separate groups */
7698 if (task->sched_class != &fair_sched_class)
7699 return -EINVAL;
7700 #endif
7701 }
7702 return 0;
7703 }
7704
7705 static void cpu_cgroup_attach(struct cgroup *cgrp,
7706 struct cgroup_taskset *tset)
7707 {
7708 struct task_struct *task;
7709
7710 cgroup_taskset_for_each(task, cgrp, tset)
7711 sched_move_task(task);
7712 }
7713
7714 static void
7715 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7716 struct task_struct *task)
7717 {
7718 /*
7719 * cgroup_exit() is called in the copy_process() failure path.
7720 * Ignore this case since the task hasn't ran yet, this avoids
7721 * trying to poke a half freed task state from generic code.
7722 */
7723 if (!(task->flags & PF_EXITING))
7724 return;
7725
7726 sched_move_task(task);
7727 }
7728
7729 #ifdef CONFIG_FAIR_GROUP_SCHED
7730 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7731 u64 shareval)
7732 {
7733 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7734 }
7735
7736 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7737 {
7738 struct task_group *tg = cgroup_tg(cgrp);
7739
7740 return (u64) scale_load_down(tg->shares);
7741 }
7742
7743 #ifdef CONFIG_CFS_BANDWIDTH
7744 static DEFINE_MUTEX(cfs_constraints_mutex);
7745
7746 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7747 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7748
7749 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7750
7751 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7752 {
7753 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7754 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7755
7756 if (tg == &root_task_group)
7757 return -EINVAL;
7758
7759 /*
7760 * Ensure we have at some amount of bandwidth every period. This is
7761 * to prevent reaching a state of large arrears when throttled via
7762 * entity_tick() resulting in prolonged exit starvation.
7763 */
7764 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7765 return -EINVAL;
7766
7767 /*
7768 * Likewise, bound things on the otherside by preventing insane quota
7769 * periods. This also allows us to normalize in computing quota
7770 * feasibility.
7771 */
7772 if (period > max_cfs_quota_period)
7773 return -EINVAL;
7774
7775 mutex_lock(&cfs_constraints_mutex);
7776 ret = __cfs_schedulable(tg, period, quota);
7777 if (ret)
7778 goto out_unlock;
7779
7780 runtime_enabled = quota != RUNTIME_INF;
7781 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7782 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7783 raw_spin_lock_irq(&cfs_b->lock);
7784 cfs_b->period = ns_to_ktime(period);
7785 cfs_b->quota = quota;
7786
7787 __refill_cfs_bandwidth_runtime(cfs_b);
7788 /* restart the period timer (if active) to handle new period expiry */
7789 if (runtime_enabled && cfs_b->timer_active) {
7790 /* force a reprogram */
7791 cfs_b->timer_active = 0;
7792 __start_cfs_bandwidth(cfs_b);
7793 }
7794 raw_spin_unlock_irq(&cfs_b->lock);
7795
7796 for_each_possible_cpu(i) {
7797 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7798 struct rq *rq = cfs_rq->rq;
7799
7800 raw_spin_lock_irq(&rq->lock);
7801 cfs_rq->runtime_enabled = runtime_enabled;
7802 cfs_rq->runtime_remaining = 0;
7803
7804 if (cfs_rq->throttled)
7805 unthrottle_cfs_rq(cfs_rq);
7806 raw_spin_unlock_irq(&rq->lock);
7807 }
7808 out_unlock:
7809 mutex_unlock(&cfs_constraints_mutex);
7810
7811 return ret;
7812 }
7813
7814 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7815 {
7816 u64 quota, period;
7817
7818 period = ktime_to_ns(tg->cfs_bandwidth.period);
7819 if (cfs_quota_us < 0)
7820 quota = RUNTIME_INF;
7821 else
7822 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7823
7824 return tg_set_cfs_bandwidth(tg, period, quota);
7825 }
7826
7827 long tg_get_cfs_quota(struct task_group *tg)
7828 {
7829 u64 quota_us;
7830
7831 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7832 return -1;
7833
7834 quota_us = tg->cfs_bandwidth.quota;
7835 do_div(quota_us, NSEC_PER_USEC);
7836
7837 return quota_us;
7838 }
7839
7840 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7841 {
7842 u64 quota, period;
7843
7844 period = (u64)cfs_period_us * NSEC_PER_USEC;
7845 quota = tg->cfs_bandwidth.quota;
7846
7847 return tg_set_cfs_bandwidth(tg, period, quota);
7848 }
7849
7850 long tg_get_cfs_period(struct task_group *tg)
7851 {
7852 u64 cfs_period_us;
7853
7854 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7855 do_div(cfs_period_us, NSEC_PER_USEC);
7856
7857 return cfs_period_us;
7858 }
7859
7860 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7861 {
7862 return tg_get_cfs_quota(cgroup_tg(cgrp));
7863 }
7864
7865 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7866 s64 cfs_quota_us)
7867 {
7868 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7869 }
7870
7871 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7872 {
7873 return tg_get_cfs_period(cgroup_tg(cgrp));
7874 }
7875
7876 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7877 u64 cfs_period_us)
7878 {
7879 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7880 }
7881
7882 struct cfs_schedulable_data {
7883 struct task_group *tg;
7884 u64 period, quota;
7885 };
7886
7887 /*
7888 * normalize group quota/period to be quota/max_period
7889 * note: units are usecs
7890 */
7891 static u64 normalize_cfs_quota(struct task_group *tg,
7892 struct cfs_schedulable_data *d)
7893 {
7894 u64 quota, period;
7895
7896 if (tg == d->tg) {
7897 period = d->period;
7898 quota = d->quota;
7899 } else {
7900 period = tg_get_cfs_period(tg);
7901 quota = tg_get_cfs_quota(tg);
7902 }
7903
7904 /* note: these should typically be equivalent */
7905 if (quota == RUNTIME_INF || quota == -1)
7906 return RUNTIME_INF;
7907
7908 return to_ratio(period, quota);
7909 }
7910
7911 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7912 {
7913 struct cfs_schedulable_data *d = data;
7914 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7915 s64 quota = 0, parent_quota = -1;
7916
7917 if (!tg->parent) {
7918 quota = RUNTIME_INF;
7919 } else {
7920 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7921
7922 quota = normalize_cfs_quota(tg, d);
7923 parent_quota = parent_b->hierarchal_quota;
7924
7925 /*
7926 * ensure max(child_quota) <= parent_quota, inherit when no
7927 * limit is set
7928 */
7929 if (quota == RUNTIME_INF)
7930 quota = parent_quota;
7931 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7932 return -EINVAL;
7933 }
7934 cfs_b->hierarchal_quota = quota;
7935
7936 return 0;
7937 }
7938
7939 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7940 {
7941 int ret;
7942 struct cfs_schedulable_data data = {
7943 .tg = tg,
7944 .period = period,
7945 .quota = quota,
7946 };
7947
7948 if (quota != RUNTIME_INF) {
7949 do_div(data.period, NSEC_PER_USEC);
7950 do_div(data.quota, NSEC_PER_USEC);
7951 }
7952
7953 rcu_read_lock();
7954 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7955 rcu_read_unlock();
7956
7957 return ret;
7958 }
7959
7960 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7961 struct cgroup_map_cb *cb)
7962 {
7963 struct task_group *tg = cgroup_tg(cgrp);
7964 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7965
7966 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7967 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7968 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7969
7970 return 0;
7971 }
7972 #endif /* CONFIG_CFS_BANDWIDTH */
7973 #endif /* CONFIG_FAIR_GROUP_SCHED */
7974
7975 #ifdef CONFIG_RT_GROUP_SCHED
7976 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7977 s64 val)
7978 {
7979 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7980 }
7981
7982 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7983 {
7984 return sched_group_rt_runtime(cgroup_tg(cgrp));
7985 }
7986
7987 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7988 u64 rt_period_us)
7989 {
7990 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7991 }
7992
7993 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7994 {
7995 return sched_group_rt_period(cgroup_tg(cgrp));
7996 }
7997 #endif /* CONFIG_RT_GROUP_SCHED */
7998
7999 static struct cftype cpu_files[] = {
8000 #ifdef CONFIG_FAIR_GROUP_SCHED
8001 {
8002 .name = "shares",
8003 .read_u64 = cpu_shares_read_u64,
8004 .write_u64 = cpu_shares_write_u64,
8005 },
8006 #endif
8007 #ifdef CONFIG_CFS_BANDWIDTH
8008 {
8009 .name = "cfs_quota_us",
8010 .read_s64 = cpu_cfs_quota_read_s64,
8011 .write_s64 = cpu_cfs_quota_write_s64,
8012 },
8013 {
8014 .name = "cfs_period_us",
8015 .read_u64 = cpu_cfs_period_read_u64,
8016 .write_u64 = cpu_cfs_period_write_u64,
8017 },
8018 {
8019 .name = "stat",
8020 .read_map = cpu_stats_show,
8021 },
8022 #endif
8023 #ifdef CONFIG_RT_GROUP_SCHED
8024 {
8025 .name = "rt_runtime_us",
8026 .read_s64 = cpu_rt_runtime_read,
8027 .write_s64 = cpu_rt_runtime_write,
8028 },
8029 {
8030 .name = "rt_period_us",
8031 .read_u64 = cpu_rt_period_read_uint,
8032 .write_u64 = cpu_rt_period_write_uint,
8033 },
8034 #endif
8035 { } /* terminate */
8036 };
8037
8038 struct cgroup_subsys cpu_cgroup_subsys = {
8039 .name = "cpu",
8040 .create = cpu_cgroup_create,
8041 .destroy = cpu_cgroup_destroy,
8042 .can_attach = cpu_cgroup_can_attach,
8043 .attach = cpu_cgroup_attach,
8044 .exit = cpu_cgroup_exit,
8045 .subsys_id = cpu_cgroup_subsys_id,
8046 .base_cftypes = cpu_files,
8047 .early_init = 1,
8048 };
8049
8050 #endif /* CONFIG_CGROUP_SCHED */
8051
8052 #ifdef CONFIG_CGROUP_CPUACCT
8053
8054 /*
8055 * CPU accounting code for task groups.
8056 *
8057 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8058 * (balbir@in.ibm.com).
8059 */
8060
8061 /* create a new cpu accounting group */
8062 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8063 {
8064 struct cpuacct *ca;
8065
8066 if (!cgrp->parent)
8067 return &root_cpuacct.css;
8068
8069 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8070 if (!ca)
8071 goto out;
8072
8073 ca->cpuusage = alloc_percpu(u64);
8074 if (!ca->cpuusage)
8075 goto out_free_ca;
8076
8077 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8078 if (!ca->cpustat)
8079 goto out_free_cpuusage;
8080
8081 return &ca->css;
8082
8083 out_free_cpuusage:
8084 free_percpu(ca->cpuusage);
8085 out_free_ca:
8086 kfree(ca);
8087 out:
8088 return ERR_PTR(-ENOMEM);
8089 }
8090
8091 /* destroy an existing cpu accounting group */
8092 static void cpuacct_destroy(struct cgroup *cgrp)
8093 {
8094 struct cpuacct *ca = cgroup_ca(cgrp);
8095
8096 free_percpu(ca->cpustat);
8097 free_percpu(ca->cpuusage);
8098 kfree(ca);
8099 }
8100
8101 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8102 {
8103 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8104 u64 data;
8105
8106 #ifndef CONFIG_64BIT
8107 /*
8108 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8109 */
8110 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8111 data = *cpuusage;
8112 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8113 #else
8114 data = *cpuusage;
8115 #endif
8116
8117 return data;
8118 }
8119
8120 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8121 {
8122 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8123
8124 #ifndef CONFIG_64BIT
8125 /*
8126 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8127 */
8128 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8129 *cpuusage = val;
8130 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8131 #else
8132 *cpuusage = val;
8133 #endif
8134 }
8135
8136 /* return total cpu usage (in nanoseconds) of a group */
8137 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8138 {
8139 struct cpuacct *ca = cgroup_ca(cgrp);
8140 u64 totalcpuusage = 0;
8141 int i;
8142
8143 for_each_present_cpu(i)
8144 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8145
8146 return totalcpuusage;
8147 }
8148
8149 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8150 u64 reset)
8151 {
8152 struct cpuacct *ca = cgroup_ca(cgrp);
8153 int err = 0;
8154 int i;
8155
8156 if (reset) {
8157 err = -EINVAL;
8158 goto out;
8159 }
8160
8161 for_each_present_cpu(i)
8162 cpuacct_cpuusage_write(ca, i, 0);
8163
8164 out:
8165 return err;
8166 }
8167
8168 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8169 struct seq_file *m)
8170 {
8171 struct cpuacct *ca = cgroup_ca(cgroup);
8172 u64 percpu;
8173 int i;
8174
8175 for_each_present_cpu(i) {
8176 percpu = cpuacct_cpuusage_read(ca, i);
8177 seq_printf(m, "%llu ", (unsigned long long) percpu);
8178 }
8179 seq_printf(m, "\n");
8180 return 0;
8181 }
8182
8183 static const char *cpuacct_stat_desc[] = {
8184 [CPUACCT_STAT_USER] = "user",
8185 [CPUACCT_STAT_SYSTEM] = "system",
8186 };
8187
8188 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8189 struct cgroup_map_cb *cb)
8190 {
8191 struct cpuacct *ca = cgroup_ca(cgrp);
8192 int cpu;
8193 s64 val = 0;
8194
8195 for_each_online_cpu(cpu) {
8196 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8197 val += kcpustat->cpustat[CPUTIME_USER];
8198 val += kcpustat->cpustat[CPUTIME_NICE];
8199 }
8200 val = cputime64_to_clock_t(val);
8201 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8202
8203 val = 0;
8204 for_each_online_cpu(cpu) {
8205 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8206 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8207 val += kcpustat->cpustat[CPUTIME_IRQ];
8208 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8209 }
8210
8211 val = cputime64_to_clock_t(val);
8212 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8213
8214 return 0;
8215 }
8216
8217 static struct cftype files[] = {
8218 {
8219 .name = "usage",
8220 .read_u64 = cpuusage_read,
8221 .write_u64 = cpuusage_write,
8222 },
8223 {
8224 .name = "usage_percpu",
8225 .read_seq_string = cpuacct_percpu_seq_read,
8226 },
8227 {
8228 .name = "stat",
8229 .read_map = cpuacct_stats_show,
8230 },
8231 { } /* terminate */
8232 };
8233
8234 /*
8235 * charge this task's execution time to its accounting group.
8236 *
8237 * called with rq->lock held.
8238 */
8239 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8240 {
8241 struct cpuacct *ca;
8242 int cpu;
8243
8244 if (unlikely(!cpuacct_subsys.active))
8245 return;
8246
8247 cpu = task_cpu(tsk);
8248
8249 rcu_read_lock();
8250
8251 ca = task_ca(tsk);
8252
8253 for (; ca; ca = parent_ca(ca)) {
8254 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8255 *cpuusage += cputime;
8256 }
8257
8258 rcu_read_unlock();
8259 }
8260
8261 struct cgroup_subsys cpuacct_subsys = {
8262 .name = "cpuacct",
8263 .create = cpuacct_create,
8264 .destroy = cpuacct_destroy,
8265 .subsys_id = cpuacct_subsys_id,
8266 .base_cftypes = files,
8267 };
8268 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.210717 seconds and 5 git commands to generate.