Merge branch 'drm-intel-fixes' of git://people.freedesktop.org/~danvet/drm-intel...
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
82 #endif
83
84 #include "sched.h"
85 #include "../workqueue_sched.h"
86 #include "../smpboot.h"
87
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/sched.h>
90
91 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92 {
93 unsigned long delta;
94 ktime_t soft, hard, now;
95
96 for (;;) {
97 if (hrtimer_active(period_timer))
98 break;
99
100 now = hrtimer_cb_get_time(period_timer);
101 hrtimer_forward(period_timer, now, period);
102
103 soft = hrtimer_get_softexpires(period_timer);
104 hard = hrtimer_get_expires(period_timer);
105 delta = ktime_to_ns(ktime_sub(hard, soft));
106 __hrtimer_start_range_ns(period_timer, soft, delta,
107 HRTIMER_MODE_ABS_PINNED, 0);
108 }
109 }
110
111 DEFINE_MUTEX(sched_domains_mutex);
112 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113
114 static void update_rq_clock_task(struct rq *rq, s64 delta);
115
116 void update_rq_clock(struct rq *rq)
117 {
118 s64 delta;
119
120 if (rq->skip_clock_update > 0)
121 return;
122
123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 rq->clock += delta;
125 update_rq_clock_task(rq, delta);
126 }
127
128 /*
129 * Debugging: various feature bits
130 */
131
132 #define SCHED_FEAT(name, enabled) \
133 (1UL << __SCHED_FEAT_##name) * enabled |
134
135 const_debug unsigned int sysctl_sched_features =
136 #include "features.h"
137 0;
138
139 #undef SCHED_FEAT
140
141 #ifdef CONFIG_SCHED_DEBUG
142 #define SCHED_FEAT(name, enabled) \
143 #name ,
144
145 static const char * const sched_feat_names[] = {
146 #include "features.h"
147 };
148
149 #undef SCHED_FEAT
150
151 static int sched_feat_show(struct seq_file *m, void *v)
152 {
153 int i;
154
155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
159 }
160 seq_puts(m, "\n");
161
162 return 0;
163 }
164
165 #ifdef HAVE_JUMP_LABEL
166
167 #define jump_label_key__true STATIC_KEY_INIT_TRUE
168 #define jump_label_key__false STATIC_KEY_INIT_FALSE
169
170 #define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
172
173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 #include "features.h"
175 };
176
177 #undef SCHED_FEAT
178
179 static void sched_feat_disable(int i)
180 {
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
183 }
184
185 static void sched_feat_enable(int i)
186 {
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
189 }
190 #else
191 static void sched_feat_disable(int i) { };
192 static void sched_feat_enable(int i) { };
193 #endif /* HAVE_JUMP_LABEL */
194
195 static ssize_t
196 sched_feat_write(struct file *filp, const char __user *ubuf,
197 size_t cnt, loff_t *ppos)
198 {
199 char buf[64];
200 char *cmp;
201 int neg = 0;
202 int i;
203
204 if (cnt > 63)
205 cnt = 63;
206
207 if (copy_from_user(&buf, ubuf, cnt))
208 return -EFAULT;
209
210 buf[cnt] = 0;
211 cmp = strstrip(buf);
212
213 if (strncmp(cmp, "NO_", 3) == 0) {
214 neg = 1;
215 cmp += 3;
216 }
217
218 for (i = 0; i < __SCHED_FEAT_NR; i++) {
219 if (strcmp(cmp, sched_feat_names[i]) == 0) {
220 if (neg) {
221 sysctl_sched_features &= ~(1UL << i);
222 sched_feat_disable(i);
223 } else {
224 sysctl_sched_features |= (1UL << i);
225 sched_feat_enable(i);
226 }
227 break;
228 }
229 }
230
231 if (i == __SCHED_FEAT_NR)
232 return -EINVAL;
233
234 *ppos += cnt;
235
236 return cnt;
237 }
238
239 static int sched_feat_open(struct inode *inode, struct file *filp)
240 {
241 return single_open(filp, sched_feat_show, NULL);
242 }
243
244 static const struct file_operations sched_feat_fops = {
245 .open = sched_feat_open,
246 .write = sched_feat_write,
247 .read = seq_read,
248 .llseek = seq_lseek,
249 .release = single_release,
250 };
251
252 static __init int sched_init_debug(void)
253 {
254 debugfs_create_file("sched_features", 0644, NULL, NULL,
255 &sched_feat_fops);
256
257 return 0;
258 }
259 late_initcall(sched_init_debug);
260 #endif /* CONFIG_SCHED_DEBUG */
261
262 /*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266 const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
268 /*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
276 /*
277 * period over which we measure -rt task cpu usage in us.
278 * default: 1s
279 */
280 unsigned int sysctl_sched_rt_period = 1000000;
281
282 __read_mostly int scheduler_running;
283
284 /*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288 int sysctl_sched_rt_runtime = 950000;
289
290
291
292 /*
293 * __task_rq_lock - lock the rq @p resides on.
294 */
295 static inline struct rq *__task_rq_lock(struct task_struct *p)
296 __acquires(rq->lock)
297 {
298 struct rq *rq;
299
300 lockdep_assert_held(&p->pi_lock);
301
302 for (;;) {
303 rq = task_rq(p);
304 raw_spin_lock(&rq->lock);
305 if (likely(rq == task_rq(p)))
306 return rq;
307 raw_spin_unlock(&rq->lock);
308 }
309 }
310
311 /*
312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313 */
314 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315 __acquires(p->pi_lock)
316 __acquires(rq->lock)
317 {
318 struct rq *rq;
319
320 for (;;) {
321 raw_spin_lock_irqsave(&p->pi_lock, *flags);
322 rq = task_rq(p);
323 raw_spin_lock(&rq->lock);
324 if (likely(rq == task_rq(p)))
325 return rq;
326 raw_spin_unlock(&rq->lock);
327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328 }
329 }
330
331 static void __task_rq_unlock(struct rq *rq)
332 __releases(rq->lock)
333 {
334 raw_spin_unlock(&rq->lock);
335 }
336
337 static inline void
338 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339 __releases(rq->lock)
340 __releases(p->pi_lock)
341 {
342 raw_spin_unlock(&rq->lock);
343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344 }
345
346 /*
347 * this_rq_lock - lock this runqueue and disable interrupts.
348 */
349 static struct rq *this_rq_lock(void)
350 __acquires(rq->lock)
351 {
352 struct rq *rq;
353
354 local_irq_disable();
355 rq = this_rq();
356 raw_spin_lock(&rq->lock);
357
358 return rq;
359 }
360
361 #ifdef CONFIG_SCHED_HRTICK
362 /*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
372
373 static void hrtick_clear(struct rq *rq)
374 {
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377 }
378
379 /*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
384 {
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389 raw_spin_lock(&rq->lock);
390 update_rq_clock(rq);
391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 raw_spin_unlock(&rq->lock);
393
394 return HRTIMER_NORESTART;
395 }
396
397 #ifdef CONFIG_SMP
398 /*
399 * called from hardirq (IPI) context
400 */
401 static void __hrtick_start(void *arg)
402 {
403 struct rq *rq = arg;
404
405 raw_spin_lock(&rq->lock);
406 hrtimer_restart(&rq->hrtick_timer);
407 rq->hrtick_csd_pending = 0;
408 raw_spin_unlock(&rq->lock);
409 }
410
411 /*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
416 void hrtick_start(struct rq *rq, u64 delay)
417 {
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420
421 hrtimer_set_expires(timer, time);
422
423 if (rq == this_rq()) {
424 hrtimer_restart(timer);
425 } else if (!rq->hrtick_csd_pending) {
426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 rq->hrtick_csd_pending = 1;
428 }
429 }
430
431 static int
432 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433 {
434 int cpu = (int)(long)hcpu;
435
436 switch (action) {
437 case CPU_UP_CANCELED:
438 case CPU_UP_CANCELED_FROZEN:
439 case CPU_DOWN_PREPARE:
440 case CPU_DOWN_PREPARE_FROZEN:
441 case CPU_DEAD:
442 case CPU_DEAD_FROZEN:
443 hrtick_clear(cpu_rq(cpu));
444 return NOTIFY_OK;
445 }
446
447 return NOTIFY_DONE;
448 }
449
450 static __init void init_hrtick(void)
451 {
452 hotcpu_notifier(hotplug_hrtick, 0);
453 }
454 #else
455 /*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
460 void hrtick_start(struct rq *rq, u64 delay)
461 {
462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463 HRTIMER_MODE_REL_PINNED, 0);
464 }
465
466 static inline void init_hrtick(void)
467 {
468 }
469 #endif /* CONFIG_SMP */
470
471 static void init_rq_hrtick(struct rq *rq)
472 {
473 #ifdef CONFIG_SMP
474 rq->hrtick_csd_pending = 0;
475
476 rq->hrtick_csd.flags = 0;
477 rq->hrtick_csd.func = __hrtick_start;
478 rq->hrtick_csd.info = rq;
479 #endif
480
481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 rq->hrtick_timer.function = hrtick;
483 }
484 #else /* CONFIG_SCHED_HRTICK */
485 static inline void hrtick_clear(struct rq *rq)
486 {
487 }
488
489 static inline void init_rq_hrtick(struct rq *rq)
490 {
491 }
492
493 static inline void init_hrtick(void)
494 {
495 }
496 #endif /* CONFIG_SCHED_HRTICK */
497
498 /*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505 #ifdef CONFIG_SMP
506
507 #ifndef tsk_is_polling
508 #define tsk_is_polling(t) 0
509 #endif
510
511 void resched_task(struct task_struct *p)
512 {
513 int cpu;
514
515 assert_raw_spin_locked(&task_rq(p)->lock);
516
517 if (test_tsk_need_resched(p))
518 return;
519
520 set_tsk_need_resched(p);
521
522 cpu = task_cpu(p);
523 if (cpu == smp_processor_id())
524 return;
525
526 /* NEED_RESCHED must be visible before we test polling */
527 smp_mb();
528 if (!tsk_is_polling(p))
529 smp_send_reschedule(cpu);
530 }
531
532 void resched_cpu(int cpu)
533 {
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
537 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538 return;
539 resched_task(cpu_curr(cpu));
540 raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542
543 #ifdef CONFIG_NO_HZ
544 /*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552 int get_nohz_timer_target(void)
553 {
554 int cpu = smp_processor_id();
555 int i;
556 struct sched_domain *sd;
557
558 rcu_read_lock();
559 for_each_domain(cpu, sd) {
560 for_each_cpu(i, sched_domain_span(sd)) {
561 if (!idle_cpu(i)) {
562 cpu = i;
563 goto unlock;
564 }
565 }
566 }
567 unlock:
568 rcu_read_unlock();
569 return cpu;
570 }
571 /*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581 void wake_up_idle_cpu(int cpu)
582 {
583 struct rq *rq = cpu_rq(cpu);
584
585 if (cpu == smp_processor_id())
586 return;
587
588 /*
589 * This is safe, as this function is called with the timer
590 * wheel base lock of (cpu) held. When the CPU is on the way
591 * to idle and has not yet set rq->curr to idle then it will
592 * be serialized on the timer wheel base lock and take the new
593 * timer into account automatically.
594 */
595 if (rq->curr != rq->idle)
596 return;
597
598 /*
599 * We can set TIF_RESCHED on the idle task of the other CPU
600 * lockless. The worst case is that the other CPU runs the
601 * idle task through an additional NOOP schedule()
602 */
603 set_tsk_need_resched(rq->idle);
604
605 /* NEED_RESCHED must be visible before we test polling */
606 smp_mb();
607 if (!tsk_is_polling(rq->idle))
608 smp_send_reschedule(cpu);
609 }
610
611 static inline bool got_nohz_idle_kick(void)
612 {
613 int cpu = smp_processor_id();
614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 }
616
617 #else /* CONFIG_NO_HZ */
618
619 static inline bool got_nohz_idle_kick(void)
620 {
621 return false;
622 }
623
624 #endif /* CONFIG_NO_HZ */
625
626 void sched_avg_update(struct rq *rq)
627 {
628 s64 period = sched_avg_period();
629
630 while ((s64)(rq->clock - rq->age_stamp) > period) {
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
640 }
641
642 #else /* !CONFIG_SMP */
643 void resched_task(struct task_struct *p)
644 {
645 assert_raw_spin_locked(&task_rq(p)->lock);
646 set_tsk_need_resched(p);
647 }
648 #endif /* CONFIG_SMP */
649
650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652 /*
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
657 */
658 int walk_tg_tree_from(struct task_group *from,
659 tg_visitor down, tg_visitor up, void *data)
660 {
661 struct task_group *parent, *child;
662 int ret;
663
664 parent = from;
665
666 down:
667 ret = (*down)(parent, data);
668 if (ret)
669 goto out;
670 list_for_each_entry_rcu(child, &parent->children, siblings) {
671 parent = child;
672 goto down;
673
674 up:
675 continue;
676 }
677 ret = (*up)(parent, data);
678 if (ret || parent == from)
679 goto out;
680
681 child = parent;
682 parent = parent->parent;
683 if (parent)
684 goto up;
685 out:
686 return ret;
687 }
688
689 int tg_nop(struct task_group *tg, void *data)
690 {
691 return 0;
692 }
693 #endif
694
695 static void set_load_weight(struct task_struct *p)
696 {
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
704 load->weight = scale_load(WEIGHT_IDLEPRIO);
705 load->inv_weight = WMULT_IDLEPRIO;
706 return;
707 }
708
709 load->weight = scale_load(prio_to_weight[prio]);
710 load->inv_weight = prio_to_wmult[prio];
711 }
712
713 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714 {
715 update_rq_clock(rq);
716 sched_info_queued(p);
717 p->sched_class->enqueue_task(rq, p, flags);
718 }
719
720 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721 {
722 update_rq_clock(rq);
723 sched_info_dequeued(p);
724 p->sched_class->dequeue_task(rq, p, flags);
725 }
726
727 void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 {
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
732 enqueue_task(rq, p, flags);
733 }
734
735 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 {
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
740 dequeue_task(rq, p, flags);
741 }
742
743 static void update_rq_clock_task(struct rq *rq, s64 delta)
744 {
745 /*
746 * In theory, the compile should just see 0 here, and optimize out the call
747 * to sched_rt_avg_update. But I don't trust it...
748 */
749 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
750 s64 steal = 0, irq_delta = 0;
751 #endif
752 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
753 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
754
755 /*
756 * Since irq_time is only updated on {soft,}irq_exit, we might run into
757 * this case when a previous update_rq_clock() happened inside a
758 * {soft,}irq region.
759 *
760 * When this happens, we stop ->clock_task and only update the
761 * prev_irq_time stamp to account for the part that fit, so that a next
762 * update will consume the rest. This ensures ->clock_task is
763 * monotonic.
764 *
765 * It does however cause some slight miss-attribution of {soft,}irq
766 * time, a more accurate solution would be to update the irq_time using
767 * the current rq->clock timestamp, except that would require using
768 * atomic ops.
769 */
770 if (irq_delta > delta)
771 irq_delta = delta;
772
773 rq->prev_irq_time += irq_delta;
774 delta -= irq_delta;
775 #endif
776 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
777 if (static_key_false((&paravirt_steal_rq_enabled))) {
778 u64 st;
779
780 steal = paravirt_steal_clock(cpu_of(rq));
781 steal -= rq->prev_steal_time_rq;
782
783 if (unlikely(steal > delta))
784 steal = delta;
785
786 st = steal_ticks(steal);
787 steal = st * TICK_NSEC;
788
789 rq->prev_steal_time_rq += steal;
790
791 delta -= steal;
792 }
793 #endif
794
795 rq->clock_task += delta;
796
797 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
799 sched_rt_avg_update(rq, irq_delta + steal);
800 #endif
801 }
802
803 void sched_set_stop_task(int cpu, struct task_struct *stop)
804 {
805 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
806 struct task_struct *old_stop = cpu_rq(cpu)->stop;
807
808 if (stop) {
809 /*
810 * Make it appear like a SCHED_FIFO task, its something
811 * userspace knows about and won't get confused about.
812 *
813 * Also, it will make PI more or less work without too
814 * much confusion -- but then, stop work should not
815 * rely on PI working anyway.
816 */
817 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
818
819 stop->sched_class = &stop_sched_class;
820 }
821
822 cpu_rq(cpu)->stop = stop;
823
824 if (old_stop) {
825 /*
826 * Reset it back to a normal scheduling class so that
827 * it can die in pieces.
828 */
829 old_stop->sched_class = &rt_sched_class;
830 }
831 }
832
833 /*
834 * __normal_prio - return the priority that is based on the static prio
835 */
836 static inline int __normal_prio(struct task_struct *p)
837 {
838 return p->static_prio;
839 }
840
841 /*
842 * Calculate the expected normal priority: i.e. priority
843 * without taking RT-inheritance into account. Might be
844 * boosted by interactivity modifiers. Changes upon fork,
845 * setprio syscalls, and whenever the interactivity
846 * estimator recalculates.
847 */
848 static inline int normal_prio(struct task_struct *p)
849 {
850 int prio;
851
852 if (task_has_rt_policy(p))
853 prio = MAX_RT_PRIO-1 - p->rt_priority;
854 else
855 prio = __normal_prio(p);
856 return prio;
857 }
858
859 /*
860 * Calculate the current priority, i.e. the priority
861 * taken into account by the scheduler. This value might
862 * be boosted by RT tasks, or might be boosted by
863 * interactivity modifiers. Will be RT if the task got
864 * RT-boosted. If not then it returns p->normal_prio.
865 */
866 static int effective_prio(struct task_struct *p)
867 {
868 p->normal_prio = normal_prio(p);
869 /*
870 * If we are RT tasks or we were boosted to RT priority,
871 * keep the priority unchanged. Otherwise, update priority
872 * to the normal priority:
873 */
874 if (!rt_prio(p->prio))
875 return p->normal_prio;
876 return p->prio;
877 }
878
879 /**
880 * task_curr - is this task currently executing on a CPU?
881 * @p: the task in question.
882 */
883 inline int task_curr(const struct task_struct *p)
884 {
885 return cpu_curr(task_cpu(p)) == p;
886 }
887
888 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
889 const struct sched_class *prev_class,
890 int oldprio)
891 {
892 if (prev_class != p->sched_class) {
893 if (prev_class->switched_from)
894 prev_class->switched_from(rq, p);
895 p->sched_class->switched_to(rq, p);
896 } else if (oldprio != p->prio)
897 p->sched_class->prio_changed(rq, p, oldprio);
898 }
899
900 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901 {
902 const struct sched_class *class;
903
904 if (p->sched_class == rq->curr->sched_class) {
905 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
906 } else {
907 for_each_class(class) {
908 if (class == rq->curr->sched_class)
909 break;
910 if (class == p->sched_class) {
911 resched_task(rq->curr);
912 break;
913 }
914 }
915 }
916
917 /*
918 * A queue event has occurred, and we're going to schedule. In
919 * this case, we can save a useless back to back clock update.
920 */
921 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
922 rq->skip_clock_update = 1;
923 }
924
925 #ifdef CONFIG_SMP
926 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
927 {
928 #ifdef CONFIG_SCHED_DEBUG
929 /*
930 * We should never call set_task_cpu() on a blocked task,
931 * ttwu() will sort out the placement.
932 */
933 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
934 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
935
936 #ifdef CONFIG_LOCKDEP
937 /*
938 * The caller should hold either p->pi_lock or rq->lock, when changing
939 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
940 *
941 * sched_move_task() holds both and thus holding either pins the cgroup,
942 * see task_group().
943 *
944 * Furthermore, all task_rq users should acquire both locks, see
945 * task_rq_lock().
946 */
947 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
948 lockdep_is_held(&task_rq(p)->lock)));
949 #endif
950 #endif
951
952 trace_sched_migrate_task(p, new_cpu);
953
954 if (task_cpu(p) != new_cpu) {
955 p->se.nr_migrations++;
956 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
957 }
958
959 __set_task_cpu(p, new_cpu);
960 }
961
962 struct migration_arg {
963 struct task_struct *task;
964 int dest_cpu;
965 };
966
967 static int migration_cpu_stop(void *data);
968
969 /*
970 * wait_task_inactive - wait for a thread to unschedule.
971 *
972 * If @match_state is nonzero, it's the @p->state value just checked and
973 * not expected to change. If it changes, i.e. @p might have woken up,
974 * then return zero. When we succeed in waiting for @p to be off its CPU,
975 * we return a positive number (its total switch count). If a second call
976 * a short while later returns the same number, the caller can be sure that
977 * @p has remained unscheduled the whole time.
978 *
979 * The caller must ensure that the task *will* unschedule sometime soon,
980 * else this function might spin for a *long* time. This function can't
981 * be called with interrupts off, or it may introduce deadlock with
982 * smp_call_function() if an IPI is sent by the same process we are
983 * waiting to become inactive.
984 */
985 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
986 {
987 unsigned long flags;
988 int running, on_rq;
989 unsigned long ncsw;
990 struct rq *rq;
991
992 for (;;) {
993 /*
994 * We do the initial early heuristics without holding
995 * any task-queue locks at all. We'll only try to get
996 * the runqueue lock when things look like they will
997 * work out!
998 */
999 rq = task_rq(p);
1000
1001 /*
1002 * If the task is actively running on another CPU
1003 * still, just relax and busy-wait without holding
1004 * any locks.
1005 *
1006 * NOTE! Since we don't hold any locks, it's not
1007 * even sure that "rq" stays as the right runqueue!
1008 * But we don't care, since "task_running()" will
1009 * return false if the runqueue has changed and p
1010 * is actually now running somewhere else!
1011 */
1012 while (task_running(rq, p)) {
1013 if (match_state && unlikely(p->state != match_state))
1014 return 0;
1015 cpu_relax();
1016 }
1017
1018 /*
1019 * Ok, time to look more closely! We need the rq
1020 * lock now, to be *sure*. If we're wrong, we'll
1021 * just go back and repeat.
1022 */
1023 rq = task_rq_lock(p, &flags);
1024 trace_sched_wait_task(p);
1025 running = task_running(rq, p);
1026 on_rq = p->on_rq;
1027 ncsw = 0;
1028 if (!match_state || p->state == match_state)
1029 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1030 task_rq_unlock(rq, p, &flags);
1031
1032 /*
1033 * If it changed from the expected state, bail out now.
1034 */
1035 if (unlikely(!ncsw))
1036 break;
1037
1038 /*
1039 * Was it really running after all now that we
1040 * checked with the proper locks actually held?
1041 *
1042 * Oops. Go back and try again..
1043 */
1044 if (unlikely(running)) {
1045 cpu_relax();
1046 continue;
1047 }
1048
1049 /*
1050 * It's not enough that it's not actively running,
1051 * it must be off the runqueue _entirely_, and not
1052 * preempted!
1053 *
1054 * So if it was still runnable (but just not actively
1055 * running right now), it's preempted, and we should
1056 * yield - it could be a while.
1057 */
1058 if (unlikely(on_rq)) {
1059 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1060
1061 set_current_state(TASK_UNINTERRUPTIBLE);
1062 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1063 continue;
1064 }
1065
1066 /*
1067 * Ahh, all good. It wasn't running, and it wasn't
1068 * runnable, which means that it will never become
1069 * running in the future either. We're all done!
1070 */
1071 break;
1072 }
1073
1074 return ncsw;
1075 }
1076
1077 /***
1078 * kick_process - kick a running thread to enter/exit the kernel
1079 * @p: the to-be-kicked thread
1080 *
1081 * Cause a process which is running on another CPU to enter
1082 * kernel-mode, without any delay. (to get signals handled.)
1083 *
1084 * NOTE: this function doesn't have to take the runqueue lock,
1085 * because all it wants to ensure is that the remote task enters
1086 * the kernel. If the IPI races and the task has been migrated
1087 * to another CPU then no harm is done and the purpose has been
1088 * achieved as well.
1089 */
1090 void kick_process(struct task_struct *p)
1091 {
1092 int cpu;
1093
1094 preempt_disable();
1095 cpu = task_cpu(p);
1096 if ((cpu != smp_processor_id()) && task_curr(p))
1097 smp_send_reschedule(cpu);
1098 preempt_enable();
1099 }
1100 EXPORT_SYMBOL_GPL(kick_process);
1101 #endif /* CONFIG_SMP */
1102
1103 #ifdef CONFIG_SMP
1104 /*
1105 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1106 */
1107 static int select_fallback_rq(int cpu, struct task_struct *p)
1108 {
1109 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1110 enum { cpuset, possible, fail } state = cpuset;
1111 int dest_cpu;
1112
1113 /* Look for allowed, online CPU in same node. */
1114 for_each_cpu(dest_cpu, nodemask) {
1115 if (!cpu_online(dest_cpu))
1116 continue;
1117 if (!cpu_active(dest_cpu))
1118 continue;
1119 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1120 return dest_cpu;
1121 }
1122
1123 for (;;) {
1124 /* Any allowed, online CPU? */
1125 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1126 if (!cpu_online(dest_cpu))
1127 continue;
1128 if (!cpu_active(dest_cpu))
1129 continue;
1130 goto out;
1131 }
1132
1133 switch (state) {
1134 case cpuset:
1135 /* No more Mr. Nice Guy. */
1136 cpuset_cpus_allowed_fallback(p);
1137 state = possible;
1138 break;
1139
1140 case possible:
1141 do_set_cpus_allowed(p, cpu_possible_mask);
1142 state = fail;
1143 break;
1144
1145 case fail:
1146 BUG();
1147 break;
1148 }
1149 }
1150
1151 out:
1152 if (state != cpuset) {
1153 /*
1154 * Don't tell them about moving exiting tasks or
1155 * kernel threads (both mm NULL), since they never
1156 * leave kernel.
1157 */
1158 if (p->mm && printk_ratelimit()) {
1159 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1160 task_pid_nr(p), p->comm, cpu);
1161 }
1162 }
1163
1164 return dest_cpu;
1165 }
1166
1167 /*
1168 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1169 */
1170 static inline
1171 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1172 {
1173 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1174
1175 /*
1176 * In order not to call set_task_cpu() on a blocking task we need
1177 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1178 * cpu.
1179 *
1180 * Since this is common to all placement strategies, this lives here.
1181 *
1182 * [ this allows ->select_task() to simply return task_cpu(p) and
1183 * not worry about this generic constraint ]
1184 */
1185 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1186 !cpu_online(cpu)))
1187 cpu = select_fallback_rq(task_cpu(p), p);
1188
1189 return cpu;
1190 }
1191
1192 static void update_avg(u64 *avg, u64 sample)
1193 {
1194 s64 diff = sample - *avg;
1195 *avg += diff >> 3;
1196 }
1197 #endif
1198
1199 static void
1200 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1201 {
1202 #ifdef CONFIG_SCHEDSTATS
1203 struct rq *rq = this_rq();
1204
1205 #ifdef CONFIG_SMP
1206 int this_cpu = smp_processor_id();
1207
1208 if (cpu == this_cpu) {
1209 schedstat_inc(rq, ttwu_local);
1210 schedstat_inc(p, se.statistics.nr_wakeups_local);
1211 } else {
1212 struct sched_domain *sd;
1213
1214 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1215 rcu_read_lock();
1216 for_each_domain(this_cpu, sd) {
1217 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1218 schedstat_inc(sd, ttwu_wake_remote);
1219 break;
1220 }
1221 }
1222 rcu_read_unlock();
1223 }
1224
1225 if (wake_flags & WF_MIGRATED)
1226 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1227
1228 #endif /* CONFIG_SMP */
1229
1230 schedstat_inc(rq, ttwu_count);
1231 schedstat_inc(p, se.statistics.nr_wakeups);
1232
1233 if (wake_flags & WF_SYNC)
1234 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1235
1236 #endif /* CONFIG_SCHEDSTATS */
1237 }
1238
1239 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1240 {
1241 activate_task(rq, p, en_flags);
1242 p->on_rq = 1;
1243
1244 /* if a worker is waking up, notify workqueue */
1245 if (p->flags & PF_WQ_WORKER)
1246 wq_worker_waking_up(p, cpu_of(rq));
1247 }
1248
1249 /*
1250 * Mark the task runnable and perform wakeup-preemption.
1251 */
1252 static void
1253 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1254 {
1255 trace_sched_wakeup(p, true);
1256 check_preempt_curr(rq, p, wake_flags);
1257
1258 p->state = TASK_RUNNING;
1259 #ifdef CONFIG_SMP
1260 if (p->sched_class->task_woken)
1261 p->sched_class->task_woken(rq, p);
1262
1263 if (rq->idle_stamp) {
1264 u64 delta = rq->clock - rq->idle_stamp;
1265 u64 max = 2*sysctl_sched_migration_cost;
1266
1267 if (delta > max)
1268 rq->avg_idle = max;
1269 else
1270 update_avg(&rq->avg_idle, delta);
1271 rq->idle_stamp = 0;
1272 }
1273 #endif
1274 }
1275
1276 static void
1277 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1278 {
1279 #ifdef CONFIG_SMP
1280 if (p->sched_contributes_to_load)
1281 rq->nr_uninterruptible--;
1282 #endif
1283
1284 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1285 ttwu_do_wakeup(rq, p, wake_flags);
1286 }
1287
1288 /*
1289 * Called in case the task @p isn't fully descheduled from its runqueue,
1290 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1291 * since all we need to do is flip p->state to TASK_RUNNING, since
1292 * the task is still ->on_rq.
1293 */
1294 static int ttwu_remote(struct task_struct *p, int wake_flags)
1295 {
1296 struct rq *rq;
1297 int ret = 0;
1298
1299 rq = __task_rq_lock(p);
1300 if (p->on_rq) {
1301 ttwu_do_wakeup(rq, p, wake_flags);
1302 ret = 1;
1303 }
1304 __task_rq_unlock(rq);
1305
1306 return ret;
1307 }
1308
1309 #ifdef CONFIG_SMP
1310 static void sched_ttwu_pending(void)
1311 {
1312 struct rq *rq = this_rq();
1313 struct llist_node *llist = llist_del_all(&rq->wake_list);
1314 struct task_struct *p;
1315
1316 raw_spin_lock(&rq->lock);
1317
1318 while (llist) {
1319 p = llist_entry(llist, struct task_struct, wake_entry);
1320 llist = llist_next(llist);
1321 ttwu_do_activate(rq, p, 0);
1322 }
1323
1324 raw_spin_unlock(&rq->lock);
1325 }
1326
1327 void scheduler_ipi(void)
1328 {
1329 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1330 return;
1331
1332 /*
1333 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1334 * traditionally all their work was done from the interrupt return
1335 * path. Now that we actually do some work, we need to make sure
1336 * we do call them.
1337 *
1338 * Some archs already do call them, luckily irq_enter/exit nest
1339 * properly.
1340 *
1341 * Arguably we should visit all archs and update all handlers,
1342 * however a fair share of IPIs are still resched only so this would
1343 * somewhat pessimize the simple resched case.
1344 */
1345 irq_enter();
1346 sched_ttwu_pending();
1347
1348 /*
1349 * Check if someone kicked us for doing the nohz idle load balance.
1350 */
1351 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1352 this_rq()->idle_balance = 1;
1353 raise_softirq_irqoff(SCHED_SOFTIRQ);
1354 }
1355 irq_exit();
1356 }
1357
1358 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1359 {
1360 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1361 smp_send_reschedule(cpu);
1362 }
1363
1364 bool cpus_share_cache(int this_cpu, int that_cpu)
1365 {
1366 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1367 }
1368 #endif /* CONFIG_SMP */
1369
1370 static void ttwu_queue(struct task_struct *p, int cpu)
1371 {
1372 struct rq *rq = cpu_rq(cpu);
1373
1374 #if defined(CONFIG_SMP)
1375 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1376 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1377 ttwu_queue_remote(p, cpu);
1378 return;
1379 }
1380 #endif
1381
1382 raw_spin_lock(&rq->lock);
1383 ttwu_do_activate(rq, p, 0);
1384 raw_spin_unlock(&rq->lock);
1385 }
1386
1387 /**
1388 * try_to_wake_up - wake up a thread
1389 * @p: the thread to be awakened
1390 * @state: the mask of task states that can be woken
1391 * @wake_flags: wake modifier flags (WF_*)
1392 *
1393 * Put it on the run-queue if it's not already there. The "current"
1394 * thread is always on the run-queue (except when the actual
1395 * re-schedule is in progress), and as such you're allowed to do
1396 * the simpler "current->state = TASK_RUNNING" to mark yourself
1397 * runnable without the overhead of this.
1398 *
1399 * Returns %true if @p was woken up, %false if it was already running
1400 * or @state didn't match @p's state.
1401 */
1402 static int
1403 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1404 {
1405 unsigned long flags;
1406 int cpu, success = 0;
1407
1408 smp_wmb();
1409 raw_spin_lock_irqsave(&p->pi_lock, flags);
1410 if (!(p->state & state))
1411 goto out;
1412
1413 success = 1; /* we're going to change ->state */
1414 cpu = task_cpu(p);
1415
1416 if (p->on_rq && ttwu_remote(p, wake_flags))
1417 goto stat;
1418
1419 #ifdef CONFIG_SMP
1420 /*
1421 * If the owning (remote) cpu is still in the middle of schedule() with
1422 * this task as prev, wait until its done referencing the task.
1423 */
1424 while (p->on_cpu)
1425 cpu_relax();
1426 /*
1427 * Pairs with the smp_wmb() in finish_lock_switch().
1428 */
1429 smp_rmb();
1430
1431 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1432 p->state = TASK_WAKING;
1433
1434 if (p->sched_class->task_waking)
1435 p->sched_class->task_waking(p);
1436
1437 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1438 if (task_cpu(p) != cpu) {
1439 wake_flags |= WF_MIGRATED;
1440 set_task_cpu(p, cpu);
1441 }
1442 #endif /* CONFIG_SMP */
1443
1444 ttwu_queue(p, cpu);
1445 stat:
1446 ttwu_stat(p, cpu, wake_flags);
1447 out:
1448 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1449
1450 return success;
1451 }
1452
1453 /**
1454 * try_to_wake_up_local - try to wake up a local task with rq lock held
1455 * @p: the thread to be awakened
1456 *
1457 * Put @p on the run-queue if it's not already there. The caller must
1458 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1459 * the current task.
1460 */
1461 static void try_to_wake_up_local(struct task_struct *p)
1462 {
1463 struct rq *rq = task_rq(p);
1464
1465 BUG_ON(rq != this_rq());
1466 BUG_ON(p == current);
1467 lockdep_assert_held(&rq->lock);
1468
1469 if (!raw_spin_trylock(&p->pi_lock)) {
1470 raw_spin_unlock(&rq->lock);
1471 raw_spin_lock(&p->pi_lock);
1472 raw_spin_lock(&rq->lock);
1473 }
1474
1475 if (!(p->state & TASK_NORMAL))
1476 goto out;
1477
1478 if (!p->on_rq)
1479 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1480
1481 ttwu_do_wakeup(rq, p, 0);
1482 ttwu_stat(p, smp_processor_id(), 0);
1483 out:
1484 raw_spin_unlock(&p->pi_lock);
1485 }
1486
1487 /**
1488 * wake_up_process - Wake up a specific process
1489 * @p: The process to be woken up.
1490 *
1491 * Attempt to wake up the nominated process and move it to the set of runnable
1492 * processes. Returns 1 if the process was woken up, 0 if it was already
1493 * running.
1494 *
1495 * It may be assumed that this function implies a write memory barrier before
1496 * changing the task state if and only if any tasks are woken up.
1497 */
1498 int wake_up_process(struct task_struct *p)
1499 {
1500 return try_to_wake_up(p, TASK_ALL, 0);
1501 }
1502 EXPORT_SYMBOL(wake_up_process);
1503
1504 int wake_up_state(struct task_struct *p, unsigned int state)
1505 {
1506 return try_to_wake_up(p, state, 0);
1507 }
1508
1509 /*
1510 * Perform scheduler related setup for a newly forked process p.
1511 * p is forked by current.
1512 *
1513 * __sched_fork() is basic setup used by init_idle() too:
1514 */
1515 static void __sched_fork(struct task_struct *p)
1516 {
1517 p->on_rq = 0;
1518
1519 p->se.on_rq = 0;
1520 p->se.exec_start = 0;
1521 p->se.sum_exec_runtime = 0;
1522 p->se.prev_sum_exec_runtime = 0;
1523 p->se.nr_migrations = 0;
1524 p->se.vruntime = 0;
1525 INIT_LIST_HEAD(&p->se.group_node);
1526
1527 #ifdef CONFIG_SCHEDSTATS
1528 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1529 #endif
1530
1531 INIT_LIST_HEAD(&p->rt.run_list);
1532
1533 #ifdef CONFIG_PREEMPT_NOTIFIERS
1534 INIT_HLIST_HEAD(&p->preempt_notifiers);
1535 #endif
1536 }
1537
1538 /*
1539 * fork()/clone()-time setup:
1540 */
1541 void sched_fork(struct task_struct *p)
1542 {
1543 unsigned long flags;
1544 int cpu = get_cpu();
1545
1546 __sched_fork(p);
1547 /*
1548 * We mark the process as running here. This guarantees that
1549 * nobody will actually run it, and a signal or other external
1550 * event cannot wake it up and insert it on the runqueue either.
1551 */
1552 p->state = TASK_RUNNING;
1553
1554 /*
1555 * Make sure we do not leak PI boosting priority to the child.
1556 */
1557 p->prio = current->normal_prio;
1558
1559 /*
1560 * Revert to default priority/policy on fork if requested.
1561 */
1562 if (unlikely(p->sched_reset_on_fork)) {
1563 if (task_has_rt_policy(p)) {
1564 p->policy = SCHED_NORMAL;
1565 p->static_prio = NICE_TO_PRIO(0);
1566 p->rt_priority = 0;
1567 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1568 p->static_prio = NICE_TO_PRIO(0);
1569
1570 p->prio = p->normal_prio = __normal_prio(p);
1571 set_load_weight(p);
1572
1573 /*
1574 * We don't need the reset flag anymore after the fork. It has
1575 * fulfilled its duty:
1576 */
1577 p->sched_reset_on_fork = 0;
1578 }
1579
1580 if (!rt_prio(p->prio))
1581 p->sched_class = &fair_sched_class;
1582
1583 if (p->sched_class->task_fork)
1584 p->sched_class->task_fork(p);
1585
1586 /*
1587 * The child is not yet in the pid-hash so no cgroup attach races,
1588 * and the cgroup is pinned to this child due to cgroup_fork()
1589 * is ran before sched_fork().
1590 *
1591 * Silence PROVE_RCU.
1592 */
1593 raw_spin_lock_irqsave(&p->pi_lock, flags);
1594 set_task_cpu(p, cpu);
1595 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1596
1597 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1598 if (likely(sched_info_on()))
1599 memset(&p->sched_info, 0, sizeof(p->sched_info));
1600 #endif
1601 #if defined(CONFIG_SMP)
1602 p->on_cpu = 0;
1603 #endif
1604 #ifdef CONFIG_PREEMPT_COUNT
1605 /* Want to start with kernel preemption disabled. */
1606 task_thread_info(p)->preempt_count = 1;
1607 #endif
1608 #ifdef CONFIG_SMP
1609 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1610 #endif
1611
1612 put_cpu();
1613 }
1614
1615 /*
1616 * wake_up_new_task - wake up a newly created task for the first time.
1617 *
1618 * This function will do some initial scheduler statistics housekeeping
1619 * that must be done for every newly created context, then puts the task
1620 * on the runqueue and wakes it.
1621 */
1622 void wake_up_new_task(struct task_struct *p)
1623 {
1624 unsigned long flags;
1625 struct rq *rq;
1626
1627 raw_spin_lock_irqsave(&p->pi_lock, flags);
1628 #ifdef CONFIG_SMP
1629 /*
1630 * Fork balancing, do it here and not earlier because:
1631 * - cpus_allowed can change in the fork path
1632 * - any previously selected cpu might disappear through hotplug
1633 */
1634 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1635 #endif
1636
1637 rq = __task_rq_lock(p);
1638 activate_task(rq, p, 0);
1639 p->on_rq = 1;
1640 trace_sched_wakeup_new(p, true);
1641 check_preempt_curr(rq, p, WF_FORK);
1642 #ifdef CONFIG_SMP
1643 if (p->sched_class->task_woken)
1644 p->sched_class->task_woken(rq, p);
1645 #endif
1646 task_rq_unlock(rq, p, &flags);
1647 }
1648
1649 #ifdef CONFIG_PREEMPT_NOTIFIERS
1650
1651 /**
1652 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1653 * @notifier: notifier struct to register
1654 */
1655 void preempt_notifier_register(struct preempt_notifier *notifier)
1656 {
1657 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1658 }
1659 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1660
1661 /**
1662 * preempt_notifier_unregister - no longer interested in preemption notifications
1663 * @notifier: notifier struct to unregister
1664 *
1665 * This is safe to call from within a preemption notifier.
1666 */
1667 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1668 {
1669 hlist_del(&notifier->link);
1670 }
1671 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1672
1673 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1674 {
1675 struct preempt_notifier *notifier;
1676 struct hlist_node *node;
1677
1678 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1679 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1680 }
1681
1682 static void
1683 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1684 struct task_struct *next)
1685 {
1686 struct preempt_notifier *notifier;
1687 struct hlist_node *node;
1688
1689 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1690 notifier->ops->sched_out(notifier, next);
1691 }
1692
1693 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1694
1695 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1696 {
1697 }
1698
1699 static void
1700 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1701 struct task_struct *next)
1702 {
1703 }
1704
1705 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1706
1707 /**
1708 * prepare_task_switch - prepare to switch tasks
1709 * @rq: the runqueue preparing to switch
1710 * @prev: the current task that is being switched out
1711 * @next: the task we are going to switch to.
1712 *
1713 * This is called with the rq lock held and interrupts off. It must
1714 * be paired with a subsequent finish_task_switch after the context
1715 * switch.
1716 *
1717 * prepare_task_switch sets up locking and calls architecture specific
1718 * hooks.
1719 */
1720 static inline void
1721 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1722 struct task_struct *next)
1723 {
1724 trace_sched_switch(prev, next);
1725 sched_info_switch(prev, next);
1726 perf_event_task_sched_out(prev, next);
1727 fire_sched_out_preempt_notifiers(prev, next);
1728 prepare_lock_switch(rq, next);
1729 prepare_arch_switch(next);
1730 }
1731
1732 /**
1733 * finish_task_switch - clean up after a task-switch
1734 * @rq: runqueue associated with task-switch
1735 * @prev: the thread we just switched away from.
1736 *
1737 * finish_task_switch must be called after the context switch, paired
1738 * with a prepare_task_switch call before the context switch.
1739 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1740 * and do any other architecture-specific cleanup actions.
1741 *
1742 * Note that we may have delayed dropping an mm in context_switch(). If
1743 * so, we finish that here outside of the runqueue lock. (Doing it
1744 * with the lock held can cause deadlocks; see schedule() for
1745 * details.)
1746 */
1747 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1748 __releases(rq->lock)
1749 {
1750 struct mm_struct *mm = rq->prev_mm;
1751 long prev_state;
1752
1753 rq->prev_mm = NULL;
1754
1755 /*
1756 * A task struct has one reference for the use as "current".
1757 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1758 * schedule one last time. The schedule call will never return, and
1759 * the scheduled task must drop that reference.
1760 * The test for TASK_DEAD must occur while the runqueue locks are
1761 * still held, otherwise prev could be scheduled on another cpu, die
1762 * there before we look at prev->state, and then the reference would
1763 * be dropped twice.
1764 * Manfred Spraul <manfred@colorfullife.com>
1765 */
1766 prev_state = prev->state;
1767 vtime_task_switch(prev);
1768 finish_arch_switch(prev);
1769 perf_event_task_sched_in(prev, current);
1770 finish_lock_switch(rq, prev);
1771 finish_arch_post_lock_switch();
1772
1773 fire_sched_in_preempt_notifiers(current);
1774 if (mm)
1775 mmdrop(mm);
1776 if (unlikely(prev_state == TASK_DEAD)) {
1777 /*
1778 * Remove function-return probe instances associated with this
1779 * task and put them back on the free list.
1780 */
1781 kprobe_flush_task(prev);
1782 put_task_struct(prev);
1783 }
1784 }
1785
1786 #ifdef CONFIG_SMP
1787
1788 /* assumes rq->lock is held */
1789 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1790 {
1791 if (prev->sched_class->pre_schedule)
1792 prev->sched_class->pre_schedule(rq, prev);
1793 }
1794
1795 /* rq->lock is NOT held, but preemption is disabled */
1796 static inline void post_schedule(struct rq *rq)
1797 {
1798 if (rq->post_schedule) {
1799 unsigned long flags;
1800
1801 raw_spin_lock_irqsave(&rq->lock, flags);
1802 if (rq->curr->sched_class->post_schedule)
1803 rq->curr->sched_class->post_schedule(rq);
1804 raw_spin_unlock_irqrestore(&rq->lock, flags);
1805
1806 rq->post_schedule = 0;
1807 }
1808 }
1809
1810 #else
1811
1812 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1813 {
1814 }
1815
1816 static inline void post_schedule(struct rq *rq)
1817 {
1818 }
1819
1820 #endif
1821
1822 /**
1823 * schedule_tail - first thing a freshly forked thread must call.
1824 * @prev: the thread we just switched away from.
1825 */
1826 asmlinkage void schedule_tail(struct task_struct *prev)
1827 __releases(rq->lock)
1828 {
1829 struct rq *rq = this_rq();
1830
1831 finish_task_switch(rq, prev);
1832
1833 /*
1834 * FIXME: do we need to worry about rq being invalidated by the
1835 * task_switch?
1836 */
1837 post_schedule(rq);
1838
1839 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1840 /* In this case, finish_task_switch does not reenable preemption */
1841 preempt_enable();
1842 #endif
1843 if (current->set_child_tid)
1844 put_user(task_pid_vnr(current), current->set_child_tid);
1845 }
1846
1847 /*
1848 * context_switch - switch to the new MM and the new
1849 * thread's register state.
1850 */
1851 static inline void
1852 context_switch(struct rq *rq, struct task_struct *prev,
1853 struct task_struct *next)
1854 {
1855 struct mm_struct *mm, *oldmm;
1856
1857 prepare_task_switch(rq, prev, next);
1858
1859 mm = next->mm;
1860 oldmm = prev->active_mm;
1861 /*
1862 * For paravirt, this is coupled with an exit in switch_to to
1863 * combine the page table reload and the switch backend into
1864 * one hypercall.
1865 */
1866 arch_start_context_switch(prev);
1867
1868 if (!mm) {
1869 next->active_mm = oldmm;
1870 atomic_inc(&oldmm->mm_count);
1871 enter_lazy_tlb(oldmm, next);
1872 } else
1873 switch_mm(oldmm, mm, next);
1874
1875 if (!prev->mm) {
1876 prev->active_mm = NULL;
1877 rq->prev_mm = oldmm;
1878 }
1879 /*
1880 * Since the runqueue lock will be released by the next
1881 * task (which is an invalid locking op but in the case
1882 * of the scheduler it's an obvious special-case), so we
1883 * do an early lockdep release here:
1884 */
1885 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1886 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1887 #endif
1888
1889 /* Here we just switch the register state and the stack. */
1890 rcu_switch(prev, next);
1891 switch_to(prev, next, prev);
1892
1893 barrier();
1894 /*
1895 * this_rq must be evaluated again because prev may have moved
1896 * CPUs since it called schedule(), thus the 'rq' on its stack
1897 * frame will be invalid.
1898 */
1899 finish_task_switch(this_rq(), prev);
1900 }
1901
1902 /*
1903 * nr_running, nr_uninterruptible and nr_context_switches:
1904 *
1905 * externally visible scheduler statistics: current number of runnable
1906 * threads, current number of uninterruptible-sleeping threads, total
1907 * number of context switches performed since bootup.
1908 */
1909 unsigned long nr_running(void)
1910 {
1911 unsigned long i, sum = 0;
1912
1913 for_each_online_cpu(i)
1914 sum += cpu_rq(i)->nr_running;
1915
1916 return sum;
1917 }
1918
1919 unsigned long nr_uninterruptible(void)
1920 {
1921 unsigned long i, sum = 0;
1922
1923 for_each_possible_cpu(i)
1924 sum += cpu_rq(i)->nr_uninterruptible;
1925
1926 /*
1927 * Since we read the counters lockless, it might be slightly
1928 * inaccurate. Do not allow it to go below zero though:
1929 */
1930 if (unlikely((long)sum < 0))
1931 sum = 0;
1932
1933 return sum;
1934 }
1935
1936 unsigned long long nr_context_switches(void)
1937 {
1938 int i;
1939 unsigned long long sum = 0;
1940
1941 for_each_possible_cpu(i)
1942 sum += cpu_rq(i)->nr_switches;
1943
1944 return sum;
1945 }
1946
1947 unsigned long nr_iowait(void)
1948 {
1949 unsigned long i, sum = 0;
1950
1951 for_each_possible_cpu(i)
1952 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1953
1954 return sum;
1955 }
1956
1957 unsigned long nr_iowait_cpu(int cpu)
1958 {
1959 struct rq *this = cpu_rq(cpu);
1960 return atomic_read(&this->nr_iowait);
1961 }
1962
1963 unsigned long this_cpu_load(void)
1964 {
1965 struct rq *this = this_rq();
1966 return this->cpu_load[0];
1967 }
1968
1969
1970 /*
1971 * Global load-average calculations
1972 *
1973 * We take a distributed and async approach to calculating the global load-avg
1974 * in order to minimize overhead.
1975 *
1976 * The global load average is an exponentially decaying average of nr_running +
1977 * nr_uninterruptible.
1978 *
1979 * Once every LOAD_FREQ:
1980 *
1981 * nr_active = 0;
1982 * for_each_possible_cpu(cpu)
1983 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
1984 *
1985 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
1986 *
1987 * Due to a number of reasons the above turns in the mess below:
1988 *
1989 * - for_each_possible_cpu() is prohibitively expensive on machines with
1990 * serious number of cpus, therefore we need to take a distributed approach
1991 * to calculating nr_active.
1992 *
1993 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
1994 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
1995 *
1996 * So assuming nr_active := 0 when we start out -- true per definition, we
1997 * can simply take per-cpu deltas and fold those into a global accumulate
1998 * to obtain the same result. See calc_load_fold_active().
1999 *
2000 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2001 * across the machine, we assume 10 ticks is sufficient time for every
2002 * cpu to have completed this task.
2003 *
2004 * This places an upper-bound on the IRQ-off latency of the machine. Then
2005 * again, being late doesn't loose the delta, just wrecks the sample.
2006 *
2007 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2008 * this would add another cross-cpu cacheline miss and atomic operation
2009 * to the wakeup path. Instead we increment on whatever cpu the task ran
2010 * when it went into uninterruptible state and decrement on whatever cpu
2011 * did the wakeup. This means that only the sum of nr_uninterruptible over
2012 * all cpus yields the correct result.
2013 *
2014 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2015 */
2016
2017 /* Variables and functions for calc_load */
2018 static atomic_long_t calc_load_tasks;
2019 static unsigned long calc_load_update;
2020 unsigned long avenrun[3];
2021 EXPORT_SYMBOL(avenrun); /* should be removed */
2022
2023 /**
2024 * get_avenrun - get the load average array
2025 * @loads: pointer to dest load array
2026 * @offset: offset to add
2027 * @shift: shift count to shift the result left
2028 *
2029 * These values are estimates at best, so no need for locking.
2030 */
2031 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2032 {
2033 loads[0] = (avenrun[0] + offset) << shift;
2034 loads[1] = (avenrun[1] + offset) << shift;
2035 loads[2] = (avenrun[2] + offset) << shift;
2036 }
2037
2038 static long calc_load_fold_active(struct rq *this_rq)
2039 {
2040 long nr_active, delta = 0;
2041
2042 nr_active = this_rq->nr_running;
2043 nr_active += (long) this_rq->nr_uninterruptible;
2044
2045 if (nr_active != this_rq->calc_load_active) {
2046 delta = nr_active - this_rq->calc_load_active;
2047 this_rq->calc_load_active = nr_active;
2048 }
2049
2050 return delta;
2051 }
2052
2053 /*
2054 * a1 = a0 * e + a * (1 - e)
2055 */
2056 static unsigned long
2057 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2058 {
2059 load *= exp;
2060 load += active * (FIXED_1 - exp);
2061 load += 1UL << (FSHIFT - 1);
2062 return load >> FSHIFT;
2063 }
2064
2065 #ifdef CONFIG_NO_HZ
2066 /*
2067 * Handle NO_HZ for the global load-average.
2068 *
2069 * Since the above described distributed algorithm to compute the global
2070 * load-average relies on per-cpu sampling from the tick, it is affected by
2071 * NO_HZ.
2072 *
2073 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2074 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2075 * when we read the global state.
2076 *
2077 * Obviously reality has to ruin such a delightfully simple scheme:
2078 *
2079 * - When we go NO_HZ idle during the window, we can negate our sample
2080 * contribution, causing under-accounting.
2081 *
2082 * We avoid this by keeping two idle-delta counters and flipping them
2083 * when the window starts, thus separating old and new NO_HZ load.
2084 *
2085 * The only trick is the slight shift in index flip for read vs write.
2086 *
2087 * 0s 5s 10s 15s
2088 * +10 +10 +10 +10
2089 * |-|-----------|-|-----------|-|-----------|-|
2090 * r:0 0 1 1 0 0 1 1 0
2091 * w:0 1 1 0 0 1 1 0 0
2092 *
2093 * This ensures we'll fold the old idle contribution in this window while
2094 * accumlating the new one.
2095 *
2096 * - When we wake up from NO_HZ idle during the window, we push up our
2097 * contribution, since we effectively move our sample point to a known
2098 * busy state.
2099 *
2100 * This is solved by pushing the window forward, and thus skipping the
2101 * sample, for this cpu (effectively using the idle-delta for this cpu which
2102 * was in effect at the time the window opened). This also solves the issue
2103 * of having to deal with a cpu having been in NOHZ idle for multiple
2104 * LOAD_FREQ intervals.
2105 *
2106 * When making the ILB scale, we should try to pull this in as well.
2107 */
2108 static atomic_long_t calc_load_idle[2];
2109 static int calc_load_idx;
2110
2111 static inline int calc_load_write_idx(void)
2112 {
2113 int idx = calc_load_idx;
2114
2115 /*
2116 * See calc_global_nohz(), if we observe the new index, we also
2117 * need to observe the new update time.
2118 */
2119 smp_rmb();
2120
2121 /*
2122 * If the folding window started, make sure we start writing in the
2123 * next idle-delta.
2124 */
2125 if (!time_before(jiffies, calc_load_update))
2126 idx++;
2127
2128 return idx & 1;
2129 }
2130
2131 static inline int calc_load_read_idx(void)
2132 {
2133 return calc_load_idx & 1;
2134 }
2135
2136 void calc_load_enter_idle(void)
2137 {
2138 struct rq *this_rq = this_rq();
2139 long delta;
2140
2141 /*
2142 * We're going into NOHZ mode, if there's any pending delta, fold it
2143 * into the pending idle delta.
2144 */
2145 delta = calc_load_fold_active(this_rq);
2146 if (delta) {
2147 int idx = calc_load_write_idx();
2148 atomic_long_add(delta, &calc_load_idle[idx]);
2149 }
2150 }
2151
2152 void calc_load_exit_idle(void)
2153 {
2154 struct rq *this_rq = this_rq();
2155
2156 /*
2157 * If we're still before the sample window, we're done.
2158 */
2159 if (time_before(jiffies, this_rq->calc_load_update))
2160 return;
2161
2162 /*
2163 * We woke inside or after the sample window, this means we're already
2164 * accounted through the nohz accounting, so skip the entire deal and
2165 * sync up for the next window.
2166 */
2167 this_rq->calc_load_update = calc_load_update;
2168 if (time_before(jiffies, this_rq->calc_load_update + 10))
2169 this_rq->calc_load_update += LOAD_FREQ;
2170 }
2171
2172 static long calc_load_fold_idle(void)
2173 {
2174 int idx = calc_load_read_idx();
2175 long delta = 0;
2176
2177 if (atomic_long_read(&calc_load_idle[idx]))
2178 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2179
2180 return delta;
2181 }
2182
2183 /**
2184 * fixed_power_int - compute: x^n, in O(log n) time
2185 *
2186 * @x: base of the power
2187 * @frac_bits: fractional bits of @x
2188 * @n: power to raise @x to.
2189 *
2190 * By exploiting the relation between the definition of the natural power
2191 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2192 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2193 * (where: n_i \elem {0, 1}, the binary vector representing n),
2194 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2195 * of course trivially computable in O(log_2 n), the length of our binary
2196 * vector.
2197 */
2198 static unsigned long
2199 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2200 {
2201 unsigned long result = 1UL << frac_bits;
2202
2203 if (n) for (;;) {
2204 if (n & 1) {
2205 result *= x;
2206 result += 1UL << (frac_bits - 1);
2207 result >>= frac_bits;
2208 }
2209 n >>= 1;
2210 if (!n)
2211 break;
2212 x *= x;
2213 x += 1UL << (frac_bits - 1);
2214 x >>= frac_bits;
2215 }
2216
2217 return result;
2218 }
2219
2220 /*
2221 * a1 = a0 * e + a * (1 - e)
2222 *
2223 * a2 = a1 * e + a * (1 - e)
2224 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2225 * = a0 * e^2 + a * (1 - e) * (1 + e)
2226 *
2227 * a3 = a2 * e + a * (1 - e)
2228 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2229 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2230 *
2231 * ...
2232 *
2233 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2234 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2235 * = a0 * e^n + a * (1 - e^n)
2236 *
2237 * [1] application of the geometric series:
2238 *
2239 * n 1 - x^(n+1)
2240 * S_n := \Sum x^i = -------------
2241 * i=0 1 - x
2242 */
2243 static unsigned long
2244 calc_load_n(unsigned long load, unsigned long exp,
2245 unsigned long active, unsigned int n)
2246 {
2247
2248 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2249 }
2250
2251 /*
2252 * NO_HZ can leave us missing all per-cpu ticks calling
2253 * calc_load_account_active(), but since an idle CPU folds its delta into
2254 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2255 * in the pending idle delta if our idle period crossed a load cycle boundary.
2256 *
2257 * Once we've updated the global active value, we need to apply the exponential
2258 * weights adjusted to the number of cycles missed.
2259 */
2260 static void calc_global_nohz(void)
2261 {
2262 long delta, active, n;
2263
2264 if (!time_before(jiffies, calc_load_update + 10)) {
2265 /*
2266 * Catch-up, fold however many we are behind still
2267 */
2268 delta = jiffies - calc_load_update - 10;
2269 n = 1 + (delta / LOAD_FREQ);
2270
2271 active = atomic_long_read(&calc_load_tasks);
2272 active = active > 0 ? active * FIXED_1 : 0;
2273
2274 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2275 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2276 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2277
2278 calc_load_update += n * LOAD_FREQ;
2279 }
2280
2281 /*
2282 * Flip the idle index...
2283 *
2284 * Make sure we first write the new time then flip the index, so that
2285 * calc_load_write_idx() will see the new time when it reads the new
2286 * index, this avoids a double flip messing things up.
2287 */
2288 smp_wmb();
2289 calc_load_idx++;
2290 }
2291 #else /* !CONFIG_NO_HZ */
2292
2293 static inline long calc_load_fold_idle(void) { return 0; }
2294 static inline void calc_global_nohz(void) { }
2295
2296 #endif /* CONFIG_NO_HZ */
2297
2298 /*
2299 * calc_load - update the avenrun load estimates 10 ticks after the
2300 * CPUs have updated calc_load_tasks.
2301 */
2302 void calc_global_load(unsigned long ticks)
2303 {
2304 long active, delta;
2305
2306 if (time_before(jiffies, calc_load_update + 10))
2307 return;
2308
2309 /*
2310 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2311 */
2312 delta = calc_load_fold_idle();
2313 if (delta)
2314 atomic_long_add(delta, &calc_load_tasks);
2315
2316 active = atomic_long_read(&calc_load_tasks);
2317 active = active > 0 ? active * FIXED_1 : 0;
2318
2319 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2320 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2321 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2322
2323 calc_load_update += LOAD_FREQ;
2324
2325 /*
2326 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2327 */
2328 calc_global_nohz();
2329 }
2330
2331 /*
2332 * Called from update_cpu_load() to periodically update this CPU's
2333 * active count.
2334 */
2335 static void calc_load_account_active(struct rq *this_rq)
2336 {
2337 long delta;
2338
2339 if (time_before(jiffies, this_rq->calc_load_update))
2340 return;
2341
2342 delta = calc_load_fold_active(this_rq);
2343 if (delta)
2344 atomic_long_add(delta, &calc_load_tasks);
2345
2346 this_rq->calc_load_update += LOAD_FREQ;
2347 }
2348
2349 /*
2350 * End of global load-average stuff
2351 */
2352
2353 /*
2354 * The exact cpuload at various idx values, calculated at every tick would be
2355 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2356 *
2357 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2358 * on nth tick when cpu may be busy, then we have:
2359 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2360 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2361 *
2362 * decay_load_missed() below does efficient calculation of
2363 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2364 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2365 *
2366 * The calculation is approximated on a 128 point scale.
2367 * degrade_zero_ticks is the number of ticks after which load at any
2368 * particular idx is approximated to be zero.
2369 * degrade_factor is a precomputed table, a row for each load idx.
2370 * Each column corresponds to degradation factor for a power of two ticks,
2371 * based on 128 point scale.
2372 * Example:
2373 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2374 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2375 *
2376 * With this power of 2 load factors, we can degrade the load n times
2377 * by looking at 1 bits in n and doing as many mult/shift instead of
2378 * n mult/shifts needed by the exact degradation.
2379 */
2380 #define DEGRADE_SHIFT 7
2381 static const unsigned char
2382 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2383 static const unsigned char
2384 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2385 {0, 0, 0, 0, 0, 0, 0, 0},
2386 {64, 32, 8, 0, 0, 0, 0, 0},
2387 {96, 72, 40, 12, 1, 0, 0},
2388 {112, 98, 75, 43, 15, 1, 0},
2389 {120, 112, 98, 76, 45, 16, 2} };
2390
2391 /*
2392 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2393 * would be when CPU is idle and so we just decay the old load without
2394 * adding any new load.
2395 */
2396 static unsigned long
2397 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2398 {
2399 int j = 0;
2400
2401 if (!missed_updates)
2402 return load;
2403
2404 if (missed_updates >= degrade_zero_ticks[idx])
2405 return 0;
2406
2407 if (idx == 1)
2408 return load >> missed_updates;
2409
2410 while (missed_updates) {
2411 if (missed_updates % 2)
2412 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2413
2414 missed_updates >>= 1;
2415 j++;
2416 }
2417 return load;
2418 }
2419
2420 /*
2421 * Update rq->cpu_load[] statistics. This function is usually called every
2422 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2423 * every tick. We fix it up based on jiffies.
2424 */
2425 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2426 unsigned long pending_updates)
2427 {
2428 int i, scale;
2429
2430 this_rq->nr_load_updates++;
2431
2432 /* Update our load: */
2433 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2434 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2435 unsigned long old_load, new_load;
2436
2437 /* scale is effectively 1 << i now, and >> i divides by scale */
2438
2439 old_load = this_rq->cpu_load[i];
2440 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2441 new_load = this_load;
2442 /*
2443 * Round up the averaging division if load is increasing. This
2444 * prevents us from getting stuck on 9 if the load is 10, for
2445 * example.
2446 */
2447 if (new_load > old_load)
2448 new_load += scale - 1;
2449
2450 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2451 }
2452
2453 sched_avg_update(this_rq);
2454 }
2455
2456 #ifdef CONFIG_NO_HZ
2457 /*
2458 * There is no sane way to deal with nohz on smp when using jiffies because the
2459 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2460 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2461 *
2462 * Therefore we cannot use the delta approach from the regular tick since that
2463 * would seriously skew the load calculation. However we'll make do for those
2464 * updates happening while idle (nohz_idle_balance) or coming out of idle
2465 * (tick_nohz_idle_exit).
2466 *
2467 * This means we might still be one tick off for nohz periods.
2468 */
2469
2470 /*
2471 * Called from nohz_idle_balance() to update the load ratings before doing the
2472 * idle balance.
2473 */
2474 void update_idle_cpu_load(struct rq *this_rq)
2475 {
2476 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2477 unsigned long load = this_rq->load.weight;
2478 unsigned long pending_updates;
2479
2480 /*
2481 * bail if there's load or we're actually up-to-date.
2482 */
2483 if (load || curr_jiffies == this_rq->last_load_update_tick)
2484 return;
2485
2486 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2487 this_rq->last_load_update_tick = curr_jiffies;
2488
2489 __update_cpu_load(this_rq, load, pending_updates);
2490 }
2491
2492 /*
2493 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2494 */
2495 void update_cpu_load_nohz(void)
2496 {
2497 struct rq *this_rq = this_rq();
2498 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2499 unsigned long pending_updates;
2500
2501 if (curr_jiffies == this_rq->last_load_update_tick)
2502 return;
2503
2504 raw_spin_lock(&this_rq->lock);
2505 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2506 if (pending_updates) {
2507 this_rq->last_load_update_tick = curr_jiffies;
2508 /*
2509 * We were idle, this means load 0, the current load might be
2510 * !0 due to remote wakeups and the sort.
2511 */
2512 __update_cpu_load(this_rq, 0, pending_updates);
2513 }
2514 raw_spin_unlock(&this_rq->lock);
2515 }
2516 #endif /* CONFIG_NO_HZ */
2517
2518 /*
2519 * Called from scheduler_tick()
2520 */
2521 static void update_cpu_load_active(struct rq *this_rq)
2522 {
2523 /*
2524 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2525 */
2526 this_rq->last_load_update_tick = jiffies;
2527 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2528
2529 calc_load_account_active(this_rq);
2530 }
2531
2532 #ifdef CONFIG_SMP
2533
2534 /*
2535 * sched_exec - execve() is a valuable balancing opportunity, because at
2536 * this point the task has the smallest effective memory and cache footprint.
2537 */
2538 void sched_exec(void)
2539 {
2540 struct task_struct *p = current;
2541 unsigned long flags;
2542 int dest_cpu;
2543
2544 raw_spin_lock_irqsave(&p->pi_lock, flags);
2545 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2546 if (dest_cpu == smp_processor_id())
2547 goto unlock;
2548
2549 if (likely(cpu_active(dest_cpu))) {
2550 struct migration_arg arg = { p, dest_cpu };
2551
2552 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2553 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2554 return;
2555 }
2556 unlock:
2557 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2558 }
2559
2560 #endif
2561
2562 DEFINE_PER_CPU(struct kernel_stat, kstat);
2563 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2564
2565 EXPORT_PER_CPU_SYMBOL(kstat);
2566 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2567
2568 /*
2569 * Return any ns on the sched_clock that have not yet been accounted in
2570 * @p in case that task is currently running.
2571 *
2572 * Called with task_rq_lock() held on @rq.
2573 */
2574 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2575 {
2576 u64 ns = 0;
2577
2578 if (task_current(rq, p)) {
2579 update_rq_clock(rq);
2580 ns = rq->clock_task - p->se.exec_start;
2581 if ((s64)ns < 0)
2582 ns = 0;
2583 }
2584
2585 return ns;
2586 }
2587
2588 unsigned long long task_delta_exec(struct task_struct *p)
2589 {
2590 unsigned long flags;
2591 struct rq *rq;
2592 u64 ns = 0;
2593
2594 rq = task_rq_lock(p, &flags);
2595 ns = do_task_delta_exec(p, rq);
2596 task_rq_unlock(rq, p, &flags);
2597
2598 return ns;
2599 }
2600
2601 /*
2602 * Return accounted runtime for the task.
2603 * In case the task is currently running, return the runtime plus current's
2604 * pending runtime that have not been accounted yet.
2605 */
2606 unsigned long long task_sched_runtime(struct task_struct *p)
2607 {
2608 unsigned long flags;
2609 struct rq *rq;
2610 u64 ns = 0;
2611
2612 rq = task_rq_lock(p, &flags);
2613 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2614 task_rq_unlock(rq, p, &flags);
2615
2616 return ns;
2617 }
2618
2619 /*
2620 * This function gets called by the timer code, with HZ frequency.
2621 * We call it with interrupts disabled.
2622 */
2623 void scheduler_tick(void)
2624 {
2625 int cpu = smp_processor_id();
2626 struct rq *rq = cpu_rq(cpu);
2627 struct task_struct *curr = rq->curr;
2628
2629 sched_clock_tick();
2630
2631 raw_spin_lock(&rq->lock);
2632 update_rq_clock(rq);
2633 update_cpu_load_active(rq);
2634 curr->sched_class->task_tick(rq, curr, 0);
2635 raw_spin_unlock(&rq->lock);
2636
2637 perf_event_task_tick();
2638
2639 #ifdef CONFIG_SMP
2640 rq->idle_balance = idle_cpu(cpu);
2641 trigger_load_balance(rq, cpu);
2642 #endif
2643 }
2644
2645 notrace unsigned long get_parent_ip(unsigned long addr)
2646 {
2647 if (in_lock_functions(addr)) {
2648 addr = CALLER_ADDR2;
2649 if (in_lock_functions(addr))
2650 addr = CALLER_ADDR3;
2651 }
2652 return addr;
2653 }
2654
2655 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2656 defined(CONFIG_PREEMPT_TRACER))
2657
2658 void __kprobes add_preempt_count(int val)
2659 {
2660 #ifdef CONFIG_DEBUG_PREEMPT
2661 /*
2662 * Underflow?
2663 */
2664 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2665 return;
2666 #endif
2667 preempt_count() += val;
2668 #ifdef CONFIG_DEBUG_PREEMPT
2669 /*
2670 * Spinlock count overflowing soon?
2671 */
2672 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2673 PREEMPT_MASK - 10);
2674 #endif
2675 if (preempt_count() == val)
2676 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2677 }
2678 EXPORT_SYMBOL(add_preempt_count);
2679
2680 void __kprobes sub_preempt_count(int val)
2681 {
2682 #ifdef CONFIG_DEBUG_PREEMPT
2683 /*
2684 * Underflow?
2685 */
2686 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2687 return;
2688 /*
2689 * Is the spinlock portion underflowing?
2690 */
2691 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2692 !(preempt_count() & PREEMPT_MASK)))
2693 return;
2694 #endif
2695
2696 if (preempt_count() == val)
2697 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2698 preempt_count() -= val;
2699 }
2700 EXPORT_SYMBOL(sub_preempt_count);
2701
2702 #endif
2703
2704 /*
2705 * Print scheduling while atomic bug:
2706 */
2707 static noinline void __schedule_bug(struct task_struct *prev)
2708 {
2709 if (oops_in_progress)
2710 return;
2711
2712 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2713 prev->comm, prev->pid, preempt_count());
2714
2715 debug_show_held_locks(prev);
2716 print_modules();
2717 if (irqs_disabled())
2718 print_irqtrace_events(prev);
2719 dump_stack();
2720 add_taint(TAINT_WARN);
2721 }
2722
2723 /*
2724 * Various schedule()-time debugging checks and statistics:
2725 */
2726 static inline void schedule_debug(struct task_struct *prev)
2727 {
2728 /*
2729 * Test if we are atomic. Since do_exit() needs to call into
2730 * schedule() atomically, we ignore that path for now.
2731 * Otherwise, whine if we are scheduling when we should not be.
2732 */
2733 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2734 __schedule_bug(prev);
2735 rcu_sleep_check();
2736
2737 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2738
2739 schedstat_inc(this_rq(), sched_count);
2740 }
2741
2742 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2743 {
2744 if (prev->on_rq || rq->skip_clock_update < 0)
2745 update_rq_clock(rq);
2746 prev->sched_class->put_prev_task(rq, prev);
2747 }
2748
2749 /*
2750 * Pick up the highest-prio task:
2751 */
2752 static inline struct task_struct *
2753 pick_next_task(struct rq *rq)
2754 {
2755 const struct sched_class *class;
2756 struct task_struct *p;
2757
2758 /*
2759 * Optimization: we know that if all tasks are in
2760 * the fair class we can call that function directly:
2761 */
2762 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2763 p = fair_sched_class.pick_next_task(rq);
2764 if (likely(p))
2765 return p;
2766 }
2767
2768 for_each_class(class) {
2769 p = class->pick_next_task(rq);
2770 if (p)
2771 return p;
2772 }
2773
2774 BUG(); /* the idle class will always have a runnable task */
2775 }
2776
2777 /*
2778 * __schedule() is the main scheduler function.
2779 *
2780 * The main means of driving the scheduler and thus entering this function are:
2781 *
2782 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2783 *
2784 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2785 * paths. For example, see arch/x86/entry_64.S.
2786 *
2787 * To drive preemption between tasks, the scheduler sets the flag in timer
2788 * interrupt handler scheduler_tick().
2789 *
2790 * 3. Wakeups don't really cause entry into schedule(). They add a
2791 * task to the run-queue and that's it.
2792 *
2793 * Now, if the new task added to the run-queue preempts the current
2794 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2795 * called on the nearest possible occasion:
2796 *
2797 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2798 *
2799 * - in syscall or exception context, at the next outmost
2800 * preempt_enable(). (this might be as soon as the wake_up()'s
2801 * spin_unlock()!)
2802 *
2803 * - in IRQ context, return from interrupt-handler to
2804 * preemptible context
2805 *
2806 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2807 * then at the next:
2808 *
2809 * - cond_resched() call
2810 * - explicit schedule() call
2811 * - return from syscall or exception to user-space
2812 * - return from interrupt-handler to user-space
2813 */
2814 static void __sched __schedule(void)
2815 {
2816 struct task_struct *prev, *next;
2817 unsigned long *switch_count;
2818 struct rq *rq;
2819 int cpu;
2820
2821 need_resched:
2822 preempt_disable();
2823 cpu = smp_processor_id();
2824 rq = cpu_rq(cpu);
2825 rcu_note_context_switch(cpu);
2826 prev = rq->curr;
2827
2828 schedule_debug(prev);
2829
2830 if (sched_feat(HRTICK))
2831 hrtick_clear(rq);
2832
2833 raw_spin_lock_irq(&rq->lock);
2834
2835 switch_count = &prev->nivcsw;
2836 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2837 if (unlikely(signal_pending_state(prev->state, prev))) {
2838 prev->state = TASK_RUNNING;
2839 } else {
2840 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2841 prev->on_rq = 0;
2842
2843 /*
2844 * If a worker went to sleep, notify and ask workqueue
2845 * whether it wants to wake up a task to maintain
2846 * concurrency.
2847 */
2848 if (prev->flags & PF_WQ_WORKER) {
2849 struct task_struct *to_wakeup;
2850
2851 to_wakeup = wq_worker_sleeping(prev, cpu);
2852 if (to_wakeup)
2853 try_to_wake_up_local(to_wakeup);
2854 }
2855 }
2856 switch_count = &prev->nvcsw;
2857 }
2858
2859 pre_schedule(rq, prev);
2860
2861 if (unlikely(!rq->nr_running))
2862 idle_balance(cpu, rq);
2863
2864 put_prev_task(rq, prev);
2865 next = pick_next_task(rq);
2866 clear_tsk_need_resched(prev);
2867 rq->skip_clock_update = 0;
2868
2869 if (likely(prev != next)) {
2870 rq->nr_switches++;
2871 rq->curr = next;
2872 ++*switch_count;
2873
2874 context_switch(rq, prev, next); /* unlocks the rq */
2875 /*
2876 * The context switch have flipped the stack from under us
2877 * and restored the local variables which were saved when
2878 * this task called schedule() in the past. prev == current
2879 * is still correct, but it can be moved to another cpu/rq.
2880 */
2881 cpu = smp_processor_id();
2882 rq = cpu_rq(cpu);
2883 } else
2884 raw_spin_unlock_irq(&rq->lock);
2885
2886 post_schedule(rq);
2887
2888 sched_preempt_enable_no_resched();
2889 if (need_resched())
2890 goto need_resched;
2891 }
2892
2893 static inline void sched_submit_work(struct task_struct *tsk)
2894 {
2895 if (!tsk->state || tsk_is_pi_blocked(tsk))
2896 return;
2897 /*
2898 * If we are going to sleep and we have plugged IO queued,
2899 * make sure to submit it to avoid deadlocks.
2900 */
2901 if (blk_needs_flush_plug(tsk))
2902 blk_schedule_flush_plug(tsk);
2903 }
2904
2905 asmlinkage void __sched schedule(void)
2906 {
2907 struct task_struct *tsk = current;
2908
2909 sched_submit_work(tsk);
2910 __schedule();
2911 }
2912 EXPORT_SYMBOL(schedule);
2913
2914 #ifdef CONFIG_RCU_USER_QS
2915 asmlinkage void __sched schedule_user(void)
2916 {
2917 /*
2918 * If we come here after a random call to set_need_resched(),
2919 * or we have been woken up remotely but the IPI has not yet arrived,
2920 * we haven't yet exited the RCU idle mode. Do it here manually until
2921 * we find a better solution.
2922 */
2923 rcu_user_exit();
2924 schedule();
2925 rcu_user_enter();
2926 }
2927 #endif
2928
2929 /**
2930 * schedule_preempt_disabled - called with preemption disabled
2931 *
2932 * Returns with preemption disabled. Note: preempt_count must be 1
2933 */
2934 void __sched schedule_preempt_disabled(void)
2935 {
2936 sched_preempt_enable_no_resched();
2937 schedule();
2938 preempt_disable();
2939 }
2940
2941 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2942
2943 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
2944 {
2945 if (lock->owner != owner)
2946 return false;
2947
2948 /*
2949 * Ensure we emit the owner->on_cpu, dereference _after_ checking
2950 * lock->owner still matches owner, if that fails, owner might
2951 * point to free()d memory, if it still matches, the rcu_read_lock()
2952 * ensures the memory stays valid.
2953 */
2954 barrier();
2955
2956 return owner->on_cpu;
2957 }
2958
2959 /*
2960 * Look out! "owner" is an entirely speculative pointer
2961 * access and not reliable.
2962 */
2963 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
2964 {
2965 if (!sched_feat(OWNER_SPIN))
2966 return 0;
2967
2968 rcu_read_lock();
2969 while (owner_running(lock, owner)) {
2970 if (need_resched())
2971 break;
2972
2973 arch_mutex_cpu_relax();
2974 }
2975 rcu_read_unlock();
2976
2977 /*
2978 * We break out the loop above on need_resched() and when the
2979 * owner changed, which is a sign for heavy contention. Return
2980 * success only when lock->owner is NULL.
2981 */
2982 return lock->owner == NULL;
2983 }
2984 #endif
2985
2986 #ifdef CONFIG_PREEMPT
2987 /*
2988 * this is the entry point to schedule() from in-kernel preemption
2989 * off of preempt_enable. Kernel preemptions off return from interrupt
2990 * occur there and call schedule directly.
2991 */
2992 asmlinkage void __sched notrace preempt_schedule(void)
2993 {
2994 struct thread_info *ti = current_thread_info();
2995
2996 /*
2997 * If there is a non-zero preempt_count or interrupts are disabled,
2998 * we do not want to preempt the current task. Just return..
2999 */
3000 if (likely(ti->preempt_count || irqs_disabled()))
3001 return;
3002
3003 do {
3004 add_preempt_count_notrace(PREEMPT_ACTIVE);
3005 __schedule();
3006 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3007
3008 /*
3009 * Check again in case we missed a preemption opportunity
3010 * between schedule and now.
3011 */
3012 barrier();
3013 } while (need_resched());
3014 }
3015 EXPORT_SYMBOL(preempt_schedule);
3016
3017 /*
3018 * this is the entry point to schedule() from kernel preemption
3019 * off of irq context.
3020 * Note, that this is called and return with irqs disabled. This will
3021 * protect us against recursive calling from irq.
3022 */
3023 asmlinkage void __sched preempt_schedule_irq(void)
3024 {
3025 struct thread_info *ti = current_thread_info();
3026
3027 /* Catch callers which need to be fixed */
3028 BUG_ON(ti->preempt_count || !irqs_disabled());
3029
3030 rcu_user_exit();
3031 do {
3032 add_preempt_count(PREEMPT_ACTIVE);
3033 local_irq_enable();
3034 __schedule();
3035 local_irq_disable();
3036 sub_preempt_count(PREEMPT_ACTIVE);
3037
3038 /*
3039 * Check again in case we missed a preemption opportunity
3040 * between schedule and now.
3041 */
3042 barrier();
3043 } while (need_resched());
3044 }
3045
3046 #endif /* CONFIG_PREEMPT */
3047
3048 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3049 void *key)
3050 {
3051 return try_to_wake_up(curr->private, mode, wake_flags);
3052 }
3053 EXPORT_SYMBOL(default_wake_function);
3054
3055 /*
3056 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3057 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3058 * number) then we wake all the non-exclusive tasks and one exclusive task.
3059 *
3060 * There are circumstances in which we can try to wake a task which has already
3061 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3062 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3063 */
3064 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3065 int nr_exclusive, int wake_flags, void *key)
3066 {
3067 wait_queue_t *curr, *next;
3068
3069 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3070 unsigned flags = curr->flags;
3071
3072 if (curr->func(curr, mode, wake_flags, key) &&
3073 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3074 break;
3075 }
3076 }
3077
3078 /**
3079 * __wake_up - wake up threads blocked on a waitqueue.
3080 * @q: the waitqueue
3081 * @mode: which threads
3082 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3083 * @key: is directly passed to the wakeup function
3084 *
3085 * It may be assumed that this function implies a write memory barrier before
3086 * changing the task state if and only if any tasks are woken up.
3087 */
3088 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3089 int nr_exclusive, void *key)
3090 {
3091 unsigned long flags;
3092
3093 spin_lock_irqsave(&q->lock, flags);
3094 __wake_up_common(q, mode, nr_exclusive, 0, key);
3095 spin_unlock_irqrestore(&q->lock, flags);
3096 }
3097 EXPORT_SYMBOL(__wake_up);
3098
3099 /*
3100 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3101 */
3102 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3103 {
3104 __wake_up_common(q, mode, nr, 0, NULL);
3105 }
3106 EXPORT_SYMBOL_GPL(__wake_up_locked);
3107
3108 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3109 {
3110 __wake_up_common(q, mode, 1, 0, key);
3111 }
3112 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3113
3114 /**
3115 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3116 * @q: the waitqueue
3117 * @mode: which threads
3118 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3119 * @key: opaque value to be passed to wakeup targets
3120 *
3121 * The sync wakeup differs that the waker knows that it will schedule
3122 * away soon, so while the target thread will be woken up, it will not
3123 * be migrated to another CPU - ie. the two threads are 'synchronized'
3124 * with each other. This can prevent needless bouncing between CPUs.
3125 *
3126 * On UP it can prevent extra preemption.
3127 *
3128 * It may be assumed that this function implies a write memory barrier before
3129 * changing the task state if and only if any tasks are woken up.
3130 */
3131 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3132 int nr_exclusive, void *key)
3133 {
3134 unsigned long flags;
3135 int wake_flags = WF_SYNC;
3136
3137 if (unlikely(!q))
3138 return;
3139
3140 if (unlikely(!nr_exclusive))
3141 wake_flags = 0;
3142
3143 spin_lock_irqsave(&q->lock, flags);
3144 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3145 spin_unlock_irqrestore(&q->lock, flags);
3146 }
3147 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3148
3149 /*
3150 * __wake_up_sync - see __wake_up_sync_key()
3151 */
3152 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3153 {
3154 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3155 }
3156 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3157
3158 /**
3159 * complete: - signals a single thread waiting on this completion
3160 * @x: holds the state of this particular completion
3161 *
3162 * This will wake up a single thread waiting on this completion. Threads will be
3163 * awakened in the same order in which they were queued.
3164 *
3165 * See also complete_all(), wait_for_completion() and related routines.
3166 *
3167 * It may be assumed that this function implies a write memory barrier before
3168 * changing the task state if and only if any tasks are woken up.
3169 */
3170 void complete(struct completion *x)
3171 {
3172 unsigned long flags;
3173
3174 spin_lock_irqsave(&x->wait.lock, flags);
3175 x->done++;
3176 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3177 spin_unlock_irqrestore(&x->wait.lock, flags);
3178 }
3179 EXPORT_SYMBOL(complete);
3180
3181 /**
3182 * complete_all: - signals all threads waiting on this completion
3183 * @x: holds the state of this particular completion
3184 *
3185 * This will wake up all threads waiting on this particular completion event.
3186 *
3187 * It may be assumed that this function implies a write memory barrier before
3188 * changing the task state if and only if any tasks are woken up.
3189 */
3190 void complete_all(struct completion *x)
3191 {
3192 unsigned long flags;
3193
3194 spin_lock_irqsave(&x->wait.lock, flags);
3195 x->done += UINT_MAX/2;
3196 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3197 spin_unlock_irqrestore(&x->wait.lock, flags);
3198 }
3199 EXPORT_SYMBOL(complete_all);
3200
3201 static inline long __sched
3202 do_wait_for_common(struct completion *x, long timeout, int state)
3203 {
3204 if (!x->done) {
3205 DECLARE_WAITQUEUE(wait, current);
3206
3207 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3208 do {
3209 if (signal_pending_state(state, current)) {
3210 timeout = -ERESTARTSYS;
3211 break;
3212 }
3213 __set_current_state(state);
3214 spin_unlock_irq(&x->wait.lock);
3215 timeout = schedule_timeout(timeout);
3216 spin_lock_irq(&x->wait.lock);
3217 } while (!x->done && timeout);
3218 __remove_wait_queue(&x->wait, &wait);
3219 if (!x->done)
3220 return timeout;
3221 }
3222 x->done--;
3223 return timeout ?: 1;
3224 }
3225
3226 static long __sched
3227 wait_for_common(struct completion *x, long timeout, int state)
3228 {
3229 might_sleep();
3230
3231 spin_lock_irq(&x->wait.lock);
3232 timeout = do_wait_for_common(x, timeout, state);
3233 spin_unlock_irq(&x->wait.lock);
3234 return timeout;
3235 }
3236
3237 /**
3238 * wait_for_completion: - waits for completion of a task
3239 * @x: holds the state of this particular completion
3240 *
3241 * This waits to be signaled for completion of a specific task. It is NOT
3242 * interruptible and there is no timeout.
3243 *
3244 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3245 * and interrupt capability. Also see complete().
3246 */
3247 void __sched wait_for_completion(struct completion *x)
3248 {
3249 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3250 }
3251 EXPORT_SYMBOL(wait_for_completion);
3252
3253 /**
3254 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3255 * @x: holds the state of this particular completion
3256 * @timeout: timeout value in jiffies
3257 *
3258 * This waits for either a completion of a specific task to be signaled or for a
3259 * specified timeout to expire. The timeout is in jiffies. It is not
3260 * interruptible.
3261 *
3262 * The return value is 0 if timed out, and positive (at least 1, or number of
3263 * jiffies left till timeout) if completed.
3264 */
3265 unsigned long __sched
3266 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3267 {
3268 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3269 }
3270 EXPORT_SYMBOL(wait_for_completion_timeout);
3271
3272 /**
3273 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3274 * @x: holds the state of this particular completion
3275 *
3276 * This waits for completion of a specific task to be signaled. It is
3277 * interruptible.
3278 *
3279 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3280 */
3281 int __sched wait_for_completion_interruptible(struct completion *x)
3282 {
3283 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3284 if (t == -ERESTARTSYS)
3285 return t;
3286 return 0;
3287 }
3288 EXPORT_SYMBOL(wait_for_completion_interruptible);
3289
3290 /**
3291 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3292 * @x: holds the state of this particular completion
3293 * @timeout: timeout value in jiffies
3294 *
3295 * This waits for either a completion of a specific task to be signaled or for a
3296 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3297 *
3298 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3299 * positive (at least 1, or number of jiffies left till timeout) if completed.
3300 */
3301 long __sched
3302 wait_for_completion_interruptible_timeout(struct completion *x,
3303 unsigned long timeout)
3304 {
3305 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3306 }
3307 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3308
3309 /**
3310 * wait_for_completion_killable: - waits for completion of a task (killable)
3311 * @x: holds the state of this particular completion
3312 *
3313 * This waits to be signaled for completion of a specific task. It can be
3314 * interrupted by a kill signal.
3315 *
3316 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3317 */
3318 int __sched wait_for_completion_killable(struct completion *x)
3319 {
3320 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3321 if (t == -ERESTARTSYS)
3322 return t;
3323 return 0;
3324 }
3325 EXPORT_SYMBOL(wait_for_completion_killable);
3326
3327 /**
3328 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3329 * @x: holds the state of this particular completion
3330 * @timeout: timeout value in jiffies
3331 *
3332 * This waits for either a completion of a specific task to be
3333 * signaled or for a specified timeout to expire. It can be
3334 * interrupted by a kill signal. The timeout is in jiffies.
3335 *
3336 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3337 * positive (at least 1, or number of jiffies left till timeout) if completed.
3338 */
3339 long __sched
3340 wait_for_completion_killable_timeout(struct completion *x,
3341 unsigned long timeout)
3342 {
3343 return wait_for_common(x, timeout, TASK_KILLABLE);
3344 }
3345 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3346
3347 /**
3348 * try_wait_for_completion - try to decrement a completion without blocking
3349 * @x: completion structure
3350 *
3351 * Returns: 0 if a decrement cannot be done without blocking
3352 * 1 if a decrement succeeded.
3353 *
3354 * If a completion is being used as a counting completion,
3355 * attempt to decrement the counter without blocking. This
3356 * enables us to avoid waiting if the resource the completion
3357 * is protecting is not available.
3358 */
3359 bool try_wait_for_completion(struct completion *x)
3360 {
3361 unsigned long flags;
3362 int ret = 1;
3363
3364 spin_lock_irqsave(&x->wait.lock, flags);
3365 if (!x->done)
3366 ret = 0;
3367 else
3368 x->done--;
3369 spin_unlock_irqrestore(&x->wait.lock, flags);
3370 return ret;
3371 }
3372 EXPORT_SYMBOL(try_wait_for_completion);
3373
3374 /**
3375 * completion_done - Test to see if a completion has any waiters
3376 * @x: completion structure
3377 *
3378 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3379 * 1 if there are no waiters.
3380 *
3381 */
3382 bool completion_done(struct completion *x)
3383 {
3384 unsigned long flags;
3385 int ret = 1;
3386
3387 spin_lock_irqsave(&x->wait.lock, flags);
3388 if (!x->done)
3389 ret = 0;
3390 spin_unlock_irqrestore(&x->wait.lock, flags);
3391 return ret;
3392 }
3393 EXPORT_SYMBOL(completion_done);
3394
3395 static long __sched
3396 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3397 {
3398 unsigned long flags;
3399 wait_queue_t wait;
3400
3401 init_waitqueue_entry(&wait, current);
3402
3403 __set_current_state(state);
3404
3405 spin_lock_irqsave(&q->lock, flags);
3406 __add_wait_queue(q, &wait);
3407 spin_unlock(&q->lock);
3408 timeout = schedule_timeout(timeout);
3409 spin_lock_irq(&q->lock);
3410 __remove_wait_queue(q, &wait);
3411 spin_unlock_irqrestore(&q->lock, flags);
3412
3413 return timeout;
3414 }
3415
3416 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3417 {
3418 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3419 }
3420 EXPORT_SYMBOL(interruptible_sleep_on);
3421
3422 long __sched
3423 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3424 {
3425 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3426 }
3427 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3428
3429 void __sched sleep_on(wait_queue_head_t *q)
3430 {
3431 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3432 }
3433 EXPORT_SYMBOL(sleep_on);
3434
3435 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3436 {
3437 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3438 }
3439 EXPORT_SYMBOL(sleep_on_timeout);
3440
3441 #ifdef CONFIG_RT_MUTEXES
3442
3443 /*
3444 * rt_mutex_setprio - set the current priority of a task
3445 * @p: task
3446 * @prio: prio value (kernel-internal form)
3447 *
3448 * This function changes the 'effective' priority of a task. It does
3449 * not touch ->normal_prio like __setscheduler().
3450 *
3451 * Used by the rt_mutex code to implement priority inheritance logic.
3452 */
3453 void rt_mutex_setprio(struct task_struct *p, int prio)
3454 {
3455 int oldprio, on_rq, running;
3456 struct rq *rq;
3457 const struct sched_class *prev_class;
3458
3459 BUG_ON(prio < 0 || prio > MAX_PRIO);
3460
3461 rq = __task_rq_lock(p);
3462
3463 /*
3464 * Idle task boosting is a nono in general. There is one
3465 * exception, when PREEMPT_RT and NOHZ is active:
3466 *
3467 * The idle task calls get_next_timer_interrupt() and holds
3468 * the timer wheel base->lock on the CPU and another CPU wants
3469 * to access the timer (probably to cancel it). We can safely
3470 * ignore the boosting request, as the idle CPU runs this code
3471 * with interrupts disabled and will complete the lock
3472 * protected section without being interrupted. So there is no
3473 * real need to boost.
3474 */
3475 if (unlikely(p == rq->idle)) {
3476 WARN_ON(p != rq->curr);
3477 WARN_ON(p->pi_blocked_on);
3478 goto out_unlock;
3479 }
3480
3481 trace_sched_pi_setprio(p, prio);
3482 oldprio = p->prio;
3483 prev_class = p->sched_class;
3484 on_rq = p->on_rq;
3485 running = task_current(rq, p);
3486 if (on_rq)
3487 dequeue_task(rq, p, 0);
3488 if (running)
3489 p->sched_class->put_prev_task(rq, p);
3490
3491 if (rt_prio(prio))
3492 p->sched_class = &rt_sched_class;
3493 else
3494 p->sched_class = &fair_sched_class;
3495
3496 p->prio = prio;
3497
3498 if (running)
3499 p->sched_class->set_curr_task(rq);
3500 if (on_rq)
3501 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3502
3503 check_class_changed(rq, p, prev_class, oldprio);
3504 out_unlock:
3505 __task_rq_unlock(rq);
3506 }
3507 #endif
3508 void set_user_nice(struct task_struct *p, long nice)
3509 {
3510 int old_prio, delta, on_rq;
3511 unsigned long flags;
3512 struct rq *rq;
3513
3514 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3515 return;
3516 /*
3517 * We have to be careful, if called from sys_setpriority(),
3518 * the task might be in the middle of scheduling on another CPU.
3519 */
3520 rq = task_rq_lock(p, &flags);
3521 /*
3522 * The RT priorities are set via sched_setscheduler(), but we still
3523 * allow the 'normal' nice value to be set - but as expected
3524 * it wont have any effect on scheduling until the task is
3525 * SCHED_FIFO/SCHED_RR:
3526 */
3527 if (task_has_rt_policy(p)) {
3528 p->static_prio = NICE_TO_PRIO(nice);
3529 goto out_unlock;
3530 }
3531 on_rq = p->on_rq;
3532 if (on_rq)
3533 dequeue_task(rq, p, 0);
3534
3535 p->static_prio = NICE_TO_PRIO(nice);
3536 set_load_weight(p);
3537 old_prio = p->prio;
3538 p->prio = effective_prio(p);
3539 delta = p->prio - old_prio;
3540
3541 if (on_rq) {
3542 enqueue_task(rq, p, 0);
3543 /*
3544 * If the task increased its priority or is running and
3545 * lowered its priority, then reschedule its CPU:
3546 */
3547 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3548 resched_task(rq->curr);
3549 }
3550 out_unlock:
3551 task_rq_unlock(rq, p, &flags);
3552 }
3553 EXPORT_SYMBOL(set_user_nice);
3554
3555 /*
3556 * can_nice - check if a task can reduce its nice value
3557 * @p: task
3558 * @nice: nice value
3559 */
3560 int can_nice(const struct task_struct *p, const int nice)
3561 {
3562 /* convert nice value [19,-20] to rlimit style value [1,40] */
3563 int nice_rlim = 20 - nice;
3564
3565 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3566 capable(CAP_SYS_NICE));
3567 }
3568
3569 #ifdef __ARCH_WANT_SYS_NICE
3570
3571 /*
3572 * sys_nice - change the priority of the current process.
3573 * @increment: priority increment
3574 *
3575 * sys_setpriority is a more generic, but much slower function that
3576 * does similar things.
3577 */
3578 SYSCALL_DEFINE1(nice, int, increment)
3579 {
3580 long nice, retval;
3581
3582 /*
3583 * Setpriority might change our priority at the same moment.
3584 * We don't have to worry. Conceptually one call occurs first
3585 * and we have a single winner.
3586 */
3587 if (increment < -40)
3588 increment = -40;
3589 if (increment > 40)
3590 increment = 40;
3591
3592 nice = TASK_NICE(current) + increment;
3593 if (nice < -20)
3594 nice = -20;
3595 if (nice > 19)
3596 nice = 19;
3597
3598 if (increment < 0 && !can_nice(current, nice))
3599 return -EPERM;
3600
3601 retval = security_task_setnice(current, nice);
3602 if (retval)
3603 return retval;
3604
3605 set_user_nice(current, nice);
3606 return 0;
3607 }
3608
3609 #endif
3610
3611 /**
3612 * task_prio - return the priority value of a given task.
3613 * @p: the task in question.
3614 *
3615 * This is the priority value as seen by users in /proc.
3616 * RT tasks are offset by -200. Normal tasks are centered
3617 * around 0, value goes from -16 to +15.
3618 */
3619 int task_prio(const struct task_struct *p)
3620 {
3621 return p->prio - MAX_RT_PRIO;
3622 }
3623
3624 /**
3625 * task_nice - return the nice value of a given task.
3626 * @p: the task in question.
3627 */
3628 int task_nice(const struct task_struct *p)
3629 {
3630 return TASK_NICE(p);
3631 }
3632 EXPORT_SYMBOL(task_nice);
3633
3634 /**
3635 * idle_cpu - is a given cpu idle currently?
3636 * @cpu: the processor in question.
3637 */
3638 int idle_cpu(int cpu)
3639 {
3640 struct rq *rq = cpu_rq(cpu);
3641
3642 if (rq->curr != rq->idle)
3643 return 0;
3644
3645 if (rq->nr_running)
3646 return 0;
3647
3648 #ifdef CONFIG_SMP
3649 if (!llist_empty(&rq->wake_list))
3650 return 0;
3651 #endif
3652
3653 return 1;
3654 }
3655
3656 /**
3657 * idle_task - return the idle task for a given cpu.
3658 * @cpu: the processor in question.
3659 */
3660 struct task_struct *idle_task(int cpu)
3661 {
3662 return cpu_rq(cpu)->idle;
3663 }
3664
3665 /**
3666 * find_process_by_pid - find a process with a matching PID value.
3667 * @pid: the pid in question.
3668 */
3669 static struct task_struct *find_process_by_pid(pid_t pid)
3670 {
3671 return pid ? find_task_by_vpid(pid) : current;
3672 }
3673
3674 /* Actually do priority change: must hold rq lock. */
3675 static void
3676 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3677 {
3678 p->policy = policy;
3679 p->rt_priority = prio;
3680 p->normal_prio = normal_prio(p);
3681 /* we are holding p->pi_lock already */
3682 p->prio = rt_mutex_getprio(p);
3683 if (rt_prio(p->prio))
3684 p->sched_class = &rt_sched_class;
3685 else
3686 p->sched_class = &fair_sched_class;
3687 set_load_weight(p);
3688 }
3689
3690 /*
3691 * check the target process has a UID that matches the current process's
3692 */
3693 static bool check_same_owner(struct task_struct *p)
3694 {
3695 const struct cred *cred = current_cred(), *pcred;
3696 bool match;
3697
3698 rcu_read_lock();
3699 pcred = __task_cred(p);
3700 match = (uid_eq(cred->euid, pcred->euid) ||
3701 uid_eq(cred->euid, pcred->uid));
3702 rcu_read_unlock();
3703 return match;
3704 }
3705
3706 static int __sched_setscheduler(struct task_struct *p, int policy,
3707 const struct sched_param *param, bool user)
3708 {
3709 int retval, oldprio, oldpolicy = -1, on_rq, running;
3710 unsigned long flags;
3711 const struct sched_class *prev_class;
3712 struct rq *rq;
3713 int reset_on_fork;
3714
3715 /* may grab non-irq protected spin_locks */
3716 BUG_ON(in_interrupt());
3717 recheck:
3718 /* double check policy once rq lock held */
3719 if (policy < 0) {
3720 reset_on_fork = p->sched_reset_on_fork;
3721 policy = oldpolicy = p->policy;
3722 } else {
3723 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3724 policy &= ~SCHED_RESET_ON_FORK;
3725
3726 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3727 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3728 policy != SCHED_IDLE)
3729 return -EINVAL;
3730 }
3731
3732 /*
3733 * Valid priorities for SCHED_FIFO and SCHED_RR are
3734 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3735 * SCHED_BATCH and SCHED_IDLE is 0.
3736 */
3737 if (param->sched_priority < 0 ||
3738 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3739 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3740 return -EINVAL;
3741 if (rt_policy(policy) != (param->sched_priority != 0))
3742 return -EINVAL;
3743
3744 /*
3745 * Allow unprivileged RT tasks to decrease priority:
3746 */
3747 if (user && !capable(CAP_SYS_NICE)) {
3748 if (rt_policy(policy)) {
3749 unsigned long rlim_rtprio =
3750 task_rlimit(p, RLIMIT_RTPRIO);
3751
3752 /* can't set/change the rt policy */
3753 if (policy != p->policy && !rlim_rtprio)
3754 return -EPERM;
3755
3756 /* can't increase priority */
3757 if (param->sched_priority > p->rt_priority &&
3758 param->sched_priority > rlim_rtprio)
3759 return -EPERM;
3760 }
3761
3762 /*
3763 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3764 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3765 */
3766 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3767 if (!can_nice(p, TASK_NICE(p)))
3768 return -EPERM;
3769 }
3770
3771 /* can't change other user's priorities */
3772 if (!check_same_owner(p))
3773 return -EPERM;
3774
3775 /* Normal users shall not reset the sched_reset_on_fork flag */
3776 if (p->sched_reset_on_fork && !reset_on_fork)
3777 return -EPERM;
3778 }
3779
3780 if (user) {
3781 retval = security_task_setscheduler(p);
3782 if (retval)
3783 return retval;
3784 }
3785
3786 /*
3787 * make sure no PI-waiters arrive (or leave) while we are
3788 * changing the priority of the task:
3789 *
3790 * To be able to change p->policy safely, the appropriate
3791 * runqueue lock must be held.
3792 */
3793 rq = task_rq_lock(p, &flags);
3794
3795 /*
3796 * Changing the policy of the stop threads its a very bad idea
3797 */
3798 if (p == rq->stop) {
3799 task_rq_unlock(rq, p, &flags);
3800 return -EINVAL;
3801 }
3802
3803 /*
3804 * If not changing anything there's no need to proceed further:
3805 */
3806 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3807 param->sched_priority == p->rt_priority))) {
3808 task_rq_unlock(rq, p, &flags);
3809 return 0;
3810 }
3811
3812 #ifdef CONFIG_RT_GROUP_SCHED
3813 if (user) {
3814 /*
3815 * Do not allow realtime tasks into groups that have no runtime
3816 * assigned.
3817 */
3818 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3819 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3820 !task_group_is_autogroup(task_group(p))) {
3821 task_rq_unlock(rq, p, &flags);
3822 return -EPERM;
3823 }
3824 }
3825 #endif
3826
3827 /* recheck policy now with rq lock held */
3828 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3829 policy = oldpolicy = -1;
3830 task_rq_unlock(rq, p, &flags);
3831 goto recheck;
3832 }
3833 on_rq = p->on_rq;
3834 running = task_current(rq, p);
3835 if (on_rq)
3836 dequeue_task(rq, p, 0);
3837 if (running)
3838 p->sched_class->put_prev_task(rq, p);
3839
3840 p->sched_reset_on_fork = reset_on_fork;
3841
3842 oldprio = p->prio;
3843 prev_class = p->sched_class;
3844 __setscheduler(rq, p, policy, param->sched_priority);
3845
3846 if (running)
3847 p->sched_class->set_curr_task(rq);
3848 if (on_rq)
3849 enqueue_task(rq, p, 0);
3850
3851 check_class_changed(rq, p, prev_class, oldprio);
3852 task_rq_unlock(rq, p, &flags);
3853
3854 rt_mutex_adjust_pi(p);
3855
3856 return 0;
3857 }
3858
3859 /**
3860 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3861 * @p: the task in question.
3862 * @policy: new policy.
3863 * @param: structure containing the new RT priority.
3864 *
3865 * NOTE that the task may be already dead.
3866 */
3867 int sched_setscheduler(struct task_struct *p, int policy,
3868 const struct sched_param *param)
3869 {
3870 return __sched_setscheduler(p, policy, param, true);
3871 }
3872 EXPORT_SYMBOL_GPL(sched_setscheduler);
3873
3874 /**
3875 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3876 * @p: the task in question.
3877 * @policy: new policy.
3878 * @param: structure containing the new RT priority.
3879 *
3880 * Just like sched_setscheduler, only don't bother checking if the
3881 * current context has permission. For example, this is needed in
3882 * stop_machine(): we create temporary high priority worker threads,
3883 * but our caller might not have that capability.
3884 */
3885 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3886 const struct sched_param *param)
3887 {
3888 return __sched_setscheduler(p, policy, param, false);
3889 }
3890
3891 static int
3892 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3893 {
3894 struct sched_param lparam;
3895 struct task_struct *p;
3896 int retval;
3897
3898 if (!param || pid < 0)
3899 return -EINVAL;
3900 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3901 return -EFAULT;
3902
3903 rcu_read_lock();
3904 retval = -ESRCH;
3905 p = find_process_by_pid(pid);
3906 if (p != NULL)
3907 retval = sched_setscheduler(p, policy, &lparam);
3908 rcu_read_unlock();
3909
3910 return retval;
3911 }
3912
3913 /**
3914 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3915 * @pid: the pid in question.
3916 * @policy: new policy.
3917 * @param: structure containing the new RT priority.
3918 */
3919 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3920 struct sched_param __user *, param)
3921 {
3922 /* negative values for policy are not valid */
3923 if (policy < 0)
3924 return -EINVAL;
3925
3926 return do_sched_setscheduler(pid, policy, param);
3927 }
3928
3929 /**
3930 * sys_sched_setparam - set/change the RT priority of a thread
3931 * @pid: the pid in question.
3932 * @param: structure containing the new RT priority.
3933 */
3934 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3935 {
3936 return do_sched_setscheduler(pid, -1, param);
3937 }
3938
3939 /**
3940 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3941 * @pid: the pid in question.
3942 */
3943 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3944 {
3945 struct task_struct *p;
3946 int retval;
3947
3948 if (pid < 0)
3949 return -EINVAL;
3950
3951 retval = -ESRCH;
3952 rcu_read_lock();
3953 p = find_process_by_pid(pid);
3954 if (p) {
3955 retval = security_task_getscheduler(p);
3956 if (!retval)
3957 retval = p->policy
3958 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3959 }
3960 rcu_read_unlock();
3961 return retval;
3962 }
3963
3964 /**
3965 * sys_sched_getparam - get the RT priority of a thread
3966 * @pid: the pid in question.
3967 * @param: structure containing the RT priority.
3968 */
3969 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3970 {
3971 struct sched_param lp;
3972 struct task_struct *p;
3973 int retval;
3974
3975 if (!param || pid < 0)
3976 return -EINVAL;
3977
3978 rcu_read_lock();
3979 p = find_process_by_pid(pid);
3980 retval = -ESRCH;
3981 if (!p)
3982 goto out_unlock;
3983
3984 retval = security_task_getscheduler(p);
3985 if (retval)
3986 goto out_unlock;
3987
3988 lp.sched_priority = p->rt_priority;
3989 rcu_read_unlock();
3990
3991 /*
3992 * This one might sleep, we cannot do it with a spinlock held ...
3993 */
3994 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3995
3996 return retval;
3997
3998 out_unlock:
3999 rcu_read_unlock();
4000 return retval;
4001 }
4002
4003 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4004 {
4005 cpumask_var_t cpus_allowed, new_mask;
4006 struct task_struct *p;
4007 int retval;
4008
4009 get_online_cpus();
4010 rcu_read_lock();
4011
4012 p = find_process_by_pid(pid);
4013 if (!p) {
4014 rcu_read_unlock();
4015 put_online_cpus();
4016 return -ESRCH;
4017 }
4018
4019 /* Prevent p going away */
4020 get_task_struct(p);
4021 rcu_read_unlock();
4022
4023 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4024 retval = -ENOMEM;
4025 goto out_put_task;
4026 }
4027 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4028 retval = -ENOMEM;
4029 goto out_free_cpus_allowed;
4030 }
4031 retval = -EPERM;
4032 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4033 goto out_unlock;
4034
4035 retval = security_task_setscheduler(p);
4036 if (retval)
4037 goto out_unlock;
4038
4039 cpuset_cpus_allowed(p, cpus_allowed);
4040 cpumask_and(new_mask, in_mask, cpus_allowed);
4041 again:
4042 retval = set_cpus_allowed_ptr(p, new_mask);
4043
4044 if (!retval) {
4045 cpuset_cpus_allowed(p, cpus_allowed);
4046 if (!cpumask_subset(new_mask, cpus_allowed)) {
4047 /*
4048 * We must have raced with a concurrent cpuset
4049 * update. Just reset the cpus_allowed to the
4050 * cpuset's cpus_allowed
4051 */
4052 cpumask_copy(new_mask, cpus_allowed);
4053 goto again;
4054 }
4055 }
4056 out_unlock:
4057 free_cpumask_var(new_mask);
4058 out_free_cpus_allowed:
4059 free_cpumask_var(cpus_allowed);
4060 out_put_task:
4061 put_task_struct(p);
4062 put_online_cpus();
4063 return retval;
4064 }
4065
4066 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4067 struct cpumask *new_mask)
4068 {
4069 if (len < cpumask_size())
4070 cpumask_clear(new_mask);
4071 else if (len > cpumask_size())
4072 len = cpumask_size();
4073
4074 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4075 }
4076
4077 /**
4078 * sys_sched_setaffinity - set the cpu affinity of a process
4079 * @pid: pid of the process
4080 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4081 * @user_mask_ptr: user-space pointer to the new cpu mask
4082 */
4083 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4084 unsigned long __user *, user_mask_ptr)
4085 {
4086 cpumask_var_t new_mask;
4087 int retval;
4088
4089 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4090 return -ENOMEM;
4091
4092 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4093 if (retval == 0)
4094 retval = sched_setaffinity(pid, new_mask);
4095 free_cpumask_var(new_mask);
4096 return retval;
4097 }
4098
4099 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4100 {
4101 struct task_struct *p;
4102 unsigned long flags;
4103 int retval;
4104
4105 get_online_cpus();
4106 rcu_read_lock();
4107
4108 retval = -ESRCH;
4109 p = find_process_by_pid(pid);
4110 if (!p)
4111 goto out_unlock;
4112
4113 retval = security_task_getscheduler(p);
4114 if (retval)
4115 goto out_unlock;
4116
4117 raw_spin_lock_irqsave(&p->pi_lock, flags);
4118 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4119 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4120
4121 out_unlock:
4122 rcu_read_unlock();
4123 put_online_cpus();
4124
4125 return retval;
4126 }
4127
4128 /**
4129 * sys_sched_getaffinity - get the cpu affinity of a process
4130 * @pid: pid of the process
4131 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4132 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4133 */
4134 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4135 unsigned long __user *, user_mask_ptr)
4136 {
4137 int ret;
4138 cpumask_var_t mask;
4139
4140 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4141 return -EINVAL;
4142 if (len & (sizeof(unsigned long)-1))
4143 return -EINVAL;
4144
4145 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4146 return -ENOMEM;
4147
4148 ret = sched_getaffinity(pid, mask);
4149 if (ret == 0) {
4150 size_t retlen = min_t(size_t, len, cpumask_size());
4151
4152 if (copy_to_user(user_mask_ptr, mask, retlen))
4153 ret = -EFAULT;
4154 else
4155 ret = retlen;
4156 }
4157 free_cpumask_var(mask);
4158
4159 return ret;
4160 }
4161
4162 /**
4163 * sys_sched_yield - yield the current processor to other threads.
4164 *
4165 * This function yields the current CPU to other tasks. If there are no
4166 * other threads running on this CPU then this function will return.
4167 */
4168 SYSCALL_DEFINE0(sched_yield)
4169 {
4170 struct rq *rq = this_rq_lock();
4171
4172 schedstat_inc(rq, yld_count);
4173 current->sched_class->yield_task(rq);
4174
4175 /*
4176 * Since we are going to call schedule() anyway, there's
4177 * no need to preempt or enable interrupts:
4178 */
4179 __release(rq->lock);
4180 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4181 do_raw_spin_unlock(&rq->lock);
4182 sched_preempt_enable_no_resched();
4183
4184 schedule();
4185
4186 return 0;
4187 }
4188
4189 static inline int should_resched(void)
4190 {
4191 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4192 }
4193
4194 static void __cond_resched(void)
4195 {
4196 add_preempt_count(PREEMPT_ACTIVE);
4197 __schedule();
4198 sub_preempt_count(PREEMPT_ACTIVE);
4199 }
4200
4201 int __sched _cond_resched(void)
4202 {
4203 if (should_resched()) {
4204 __cond_resched();
4205 return 1;
4206 }
4207 return 0;
4208 }
4209 EXPORT_SYMBOL(_cond_resched);
4210
4211 /*
4212 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4213 * call schedule, and on return reacquire the lock.
4214 *
4215 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4216 * operations here to prevent schedule() from being called twice (once via
4217 * spin_unlock(), once by hand).
4218 */
4219 int __cond_resched_lock(spinlock_t *lock)
4220 {
4221 int resched = should_resched();
4222 int ret = 0;
4223
4224 lockdep_assert_held(lock);
4225
4226 if (spin_needbreak(lock) || resched) {
4227 spin_unlock(lock);
4228 if (resched)
4229 __cond_resched();
4230 else
4231 cpu_relax();
4232 ret = 1;
4233 spin_lock(lock);
4234 }
4235 return ret;
4236 }
4237 EXPORT_SYMBOL(__cond_resched_lock);
4238
4239 int __sched __cond_resched_softirq(void)
4240 {
4241 BUG_ON(!in_softirq());
4242
4243 if (should_resched()) {
4244 local_bh_enable();
4245 __cond_resched();
4246 local_bh_disable();
4247 return 1;
4248 }
4249 return 0;
4250 }
4251 EXPORT_SYMBOL(__cond_resched_softirq);
4252
4253 /**
4254 * yield - yield the current processor to other threads.
4255 *
4256 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4257 *
4258 * The scheduler is at all times free to pick the calling task as the most
4259 * eligible task to run, if removing the yield() call from your code breaks
4260 * it, its already broken.
4261 *
4262 * Typical broken usage is:
4263 *
4264 * while (!event)
4265 * yield();
4266 *
4267 * where one assumes that yield() will let 'the other' process run that will
4268 * make event true. If the current task is a SCHED_FIFO task that will never
4269 * happen. Never use yield() as a progress guarantee!!
4270 *
4271 * If you want to use yield() to wait for something, use wait_event().
4272 * If you want to use yield() to be 'nice' for others, use cond_resched().
4273 * If you still want to use yield(), do not!
4274 */
4275 void __sched yield(void)
4276 {
4277 set_current_state(TASK_RUNNING);
4278 sys_sched_yield();
4279 }
4280 EXPORT_SYMBOL(yield);
4281
4282 /**
4283 * yield_to - yield the current processor to another thread in
4284 * your thread group, or accelerate that thread toward the
4285 * processor it's on.
4286 * @p: target task
4287 * @preempt: whether task preemption is allowed or not
4288 *
4289 * It's the caller's job to ensure that the target task struct
4290 * can't go away on us before we can do any checks.
4291 *
4292 * Returns true if we indeed boosted the target task.
4293 */
4294 bool __sched yield_to(struct task_struct *p, bool preempt)
4295 {
4296 struct task_struct *curr = current;
4297 struct rq *rq, *p_rq;
4298 unsigned long flags;
4299 bool yielded = 0;
4300
4301 local_irq_save(flags);
4302 rq = this_rq();
4303
4304 again:
4305 p_rq = task_rq(p);
4306 double_rq_lock(rq, p_rq);
4307 while (task_rq(p) != p_rq) {
4308 double_rq_unlock(rq, p_rq);
4309 goto again;
4310 }
4311
4312 if (!curr->sched_class->yield_to_task)
4313 goto out;
4314
4315 if (curr->sched_class != p->sched_class)
4316 goto out;
4317
4318 if (task_running(p_rq, p) || p->state)
4319 goto out;
4320
4321 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4322 if (yielded) {
4323 schedstat_inc(rq, yld_count);
4324 /*
4325 * Make p's CPU reschedule; pick_next_entity takes care of
4326 * fairness.
4327 */
4328 if (preempt && rq != p_rq)
4329 resched_task(p_rq->curr);
4330 }
4331
4332 out:
4333 double_rq_unlock(rq, p_rq);
4334 local_irq_restore(flags);
4335
4336 if (yielded)
4337 schedule();
4338
4339 return yielded;
4340 }
4341 EXPORT_SYMBOL_GPL(yield_to);
4342
4343 /*
4344 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4345 * that process accounting knows that this is a task in IO wait state.
4346 */
4347 void __sched io_schedule(void)
4348 {
4349 struct rq *rq = raw_rq();
4350
4351 delayacct_blkio_start();
4352 atomic_inc(&rq->nr_iowait);
4353 blk_flush_plug(current);
4354 current->in_iowait = 1;
4355 schedule();
4356 current->in_iowait = 0;
4357 atomic_dec(&rq->nr_iowait);
4358 delayacct_blkio_end();
4359 }
4360 EXPORT_SYMBOL(io_schedule);
4361
4362 long __sched io_schedule_timeout(long timeout)
4363 {
4364 struct rq *rq = raw_rq();
4365 long ret;
4366
4367 delayacct_blkio_start();
4368 atomic_inc(&rq->nr_iowait);
4369 blk_flush_plug(current);
4370 current->in_iowait = 1;
4371 ret = schedule_timeout(timeout);
4372 current->in_iowait = 0;
4373 atomic_dec(&rq->nr_iowait);
4374 delayacct_blkio_end();
4375 return ret;
4376 }
4377
4378 /**
4379 * sys_sched_get_priority_max - return maximum RT priority.
4380 * @policy: scheduling class.
4381 *
4382 * this syscall returns the maximum rt_priority that can be used
4383 * by a given scheduling class.
4384 */
4385 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4386 {
4387 int ret = -EINVAL;
4388
4389 switch (policy) {
4390 case SCHED_FIFO:
4391 case SCHED_RR:
4392 ret = MAX_USER_RT_PRIO-1;
4393 break;
4394 case SCHED_NORMAL:
4395 case SCHED_BATCH:
4396 case SCHED_IDLE:
4397 ret = 0;
4398 break;
4399 }
4400 return ret;
4401 }
4402
4403 /**
4404 * sys_sched_get_priority_min - return minimum RT priority.
4405 * @policy: scheduling class.
4406 *
4407 * this syscall returns the minimum rt_priority that can be used
4408 * by a given scheduling class.
4409 */
4410 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4411 {
4412 int ret = -EINVAL;
4413
4414 switch (policy) {
4415 case SCHED_FIFO:
4416 case SCHED_RR:
4417 ret = 1;
4418 break;
4419 case SCHED_NORMAL:
4420 case SCHED_BATCH:
4421 case SCHED_IDLE:
4422 ret = 0;
4423 }
4424 return ret;
4425 }
4426
4427 /**
4428 * sys_sched_rr_get_interval - return the default timeslice of a process.
4429 * @pid: pid of the process.
4430 * @interval: userspace pointer to the timeslice value.
4431 *
4432 * this syscall writes the default timeslice value of a given process
4433 * into the user-space timespec buffer. A value of '0' means infinity.
4434 */
4435 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4436 struct timespec __user *, interval)
4437 {
4438 struct task_struct *p;
4439 unsigned int time_slice;
4440 unsigned long flags;
4441 struct rq *rq;
4442 int retval;
4443 struct timespec t;
4444
4445 if (pid < 0)
4446 return -EINVAL;
4447
4448 retval = -ESRCH;
4449 rcu_read_lock();
4450 p = find_process_by_pid(pid);
4451 if (!p)
4452 goto out_unlock;
4453
4454 retval = security_task_getscheduler(p);
4455 if (retval)
4456 goto out_unlock;
4457
4458 rq = task_rq_lock(p, &flags);
4459 time_slice = p->sched_class->get_rr_interval(rq, p);
4460 task_rq_unlock(rq, p, &flags);
4461
4462 rcu_read_unlock();
4463 jiffies_to_timespec(time_slice, &t);
4464 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4465 return retval;
4466
4467 out_unlock:
4468 rcu_read_unlock();
4469 return retval;
4470 }
4471
4472 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4473
4474 void sched_show_task(struct task_struct *p)
4475 {
4476 unsigned long free = 0;
4477 unsigned state;
4478
4479 state = p->state ? __ffs(p->state) + 1 : 0;
4480 printk(KERN_INFO "%-15.15s %c", p->comm,
4481 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4482 #if BITS_PER_LONG == 32
4483 if (state == TASK_RUNNING)
4484 printk(KERN_CONT " running ");
4485 else
4486 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4487 #else
4488 if (state == TASK_RUNNING)
4489 printk(KERN_CONT " running task ");
4490 else
4491 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4492 #endif
4493 #ifdef CONFIG_DEBUG_STACK_USAGE
4494 free = stack_not_used(p);
4495 #endif
4496 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4497 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4498 (unsigned long)task_thread_info(p)->flags);
4499
4500 show_stack(p, NULL);
4501 }
4502
4503 void show_state_filter(unsigned long state_filter)
4504 {
4505 struct task_struct *g, *p;
4506
4507 #if BITS_PER_LONG == 32
4508 printk(KERN_INFO
4509 " task PC stack pid father\n");
4510 #else
4511 printk(KERN_INFO
4512 " task PC stack pid father\n");
4513 #endif
4514 rcu_read_lock();
4515 do_each_thread(g, p) {
4516 /*
4517 * reset the NMI-timeout, listing all files on a slow
4518 * console might take a lot of time:
4519 */
4520 touch_nmi_watchdog();
4521 if (!state_filter || (p->state & state_filter))
4522 sched_show_task(p);
4523 } while_each_thread(g, p);
4524
4525 touch_all_softlockup_watchdogs();
4526
4527 #ifdef CONFIG_SCHED_DEBUG
4528 sysrq_sched_debug_show();
4529 #endif
4530 rcu_read_unlock();
4531 /*
4532 * Only show locks if all tasks are dumped:
4533 */
4534 if (!state_filter)
4535 debug_show_all_locks();
4536 }
4537
4538 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4539 {
4540 idle->sched_class = &idle_sched_class;
4541 }
4542
4543 /**
4544 * init_idle - set up an idle thread for a given CPU
4545 * @idle: task in question
4546 * @cpu: cpu the idle task belongs to
4547 *
4548 * NOTE: this function does not set the idle thread's NEED_RESCHED
4549 * flag, to make booting more robust.
4550 */
4551 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4552 {
4553 struct rq *rq = cpu_rq(cpu);
4554 unsigned long flags;
4555
4556 raw_spin_lock_irqsave(&rq->lock, flags);
4557
4558 __sched_fork(idle);
4559 idle->state = TASK_RUNNING;
4560 idle->se.exec_start = sched_clock();
4561
4562 do_set_cpus_allowed(idle, cpumask_of(cpu));
4563 /*
4564 * We're having a chicken and egg problem, even though we are
4565 * holding rq->lock, the cpu isn't yet set to this cpu so the
4566 * lockdep check in task_group() will fail.
4567 *
4568 * Similar case to sched_fork(). / Alternatively we could
4569 * use task_rq_lock() here and obtain the other rq->lock.
4570 *
4571 * Silence PROVE_RCU
4572 */
4573 rcu_read_lock();
4574 __set_task_cpu(idle, cpu);
4575 rcu_read_unlock();
4576
4577 rq->curr = rq->idle = idle;
4578 #if defined(CONFIG_SMP)
4579 idle->on_cpu = 1;
4580 #endif
4581 raw_spin_unlock_irqrestore(&rq->lock, flags);
4582
4583 /* Set the preempt count _outside_ the spinlocks! */
4584 task_thread_info(idle)->preempt_count = 0;
4585
4586 /*
4587 * The idle tasks have their own, simple scheduling class:
4588 */
4589 idle->sched_class = &idle_sched_class;
4590 ftrace_graph_init_idle_task(idle, cpu);
4591 #if defined(CONFIG_SMP)
4592 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4593 #endif
4594 }
4595
4596 #ifdef CONFIG_SMP
4597 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4598 {
4599 if (p->sched_class && p->sched_class->set_cpus_allowed)
4600 p->sched_class->set_cpus_allowed(p, new_mask);
4601
4602 cpumask_copy(&p->cpus_allowed, new_mask);
4603 p->nr_cpus_allowed = cpumask_weight(new_mask);
4604 }
4605
4606 /*
4607 * This is how migration works:
4608 *
4609 * 1) we invoke migration_cpu_stop() on the target CPU using
4610 * stop_one_cpu().
4611 * 2) stopper starts to run (implicitly forcing the migrated thread
4612 * off the CPU)
4613 * 3) it checks whether the migrated task is still in the wrong runqueue.
4614 * 4) if it's in the wrong runqueue then the migration thread removes
4615 * it and puts it into the right queue.
4616 * 5) stopper completes and stop_one_cpu() returns and the migration
4617 * is done.
4618 */
4619
4620 /*
4621 * Change a given task's CPU affinity. Migrate the thread to a
4622 * proper CPU and schedule it away if the CPU it's executing on
4623 * is removed from the allowed bitmask.
4624 *
4625 * NOTE: the caller must have a valid reference to the task, the
4626 * task must not exit() & deallocate itself prematurely. The
4627 * call is not atomic; no spinlocks may be held.
4628 */
4629 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4630 {
4631 unsigned long flags;
4632 struct rq *rq;
4633 unsigned int dest_cpu;
4634 int ret = 0;
4635
4636 rq = task_rq_lock(p, &flags);
4637
4638 if (cpumask_equal(&p->cpus_allowed, new_mask))
4639 goto out;
4640
4641 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4642 ret = -EINVAL;
4643 goto out;
4644 }
4645
4646 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4647 ret = -EINVAL;
4648 goto out;
4649 }
4650
4651 do_set_cpus_allowed(p, new_mask);
4652
4653 /* Can the task run on the task's current CPU? If so, we're done */
4654 if (cpumask_test_cpu(task_cpu(p), new_mask))
4655 goto out;
4656
4657 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4658 if (p->on_rq) {
4659 struct migration_arg arg = { p, dest_cpu };
4660 /* Need help from migration thread: drop lock and wait. */
4661 task_rq_unlock(rq, p, &flags);
4662 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4663 tlb_migrate_finish(p->mm);
4664 return 0;
4665 }
4666 out:
4667 task_rq_unlock(rq, p, &flags);
4668
4669 return ret;
4670 }
4671 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4672
4673 /*
4674 * Move (not current) task off this cpu, onto dest cpu. We're doing
4675 * this because either it can't run here any more (set_cpus_allowed()
4676 * away from this CPU, or CPU going down), or because we're
4677 * attempting to rebalance this task on exec (sched_exec).
4678 *
4679 * So we race with normal scheduler movements, but that's OK, as long
4680 * as the task is no longer on this CPU.
4681 *
4682 * Returns non-zero if task was successfully migrated.
4683 */
4684 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4685 {
4686 struct rq *rq_dest, *rq_src;
4687 int ret = 0;
4688
4689 if (unlikely(!cpu_active(dest_cpu)))
4690 return ret;
4691
4692 rq_src = cpu_rq(src_cpu);
4693 rq_dest = cpu_rq(dest_cpu);
4694
4695 raw_spin_lock(&p->pi_lock);
4696 double_rq_lock(rq_src, rq_dest);
4697 /* Already moved. */
4698 if (task_cpu(p) != src_cpu)
4699 goto done;
4700 /* Affinity changed (again). */
4701 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4702 goto fail;
4703
4704 /*
4705 * If we're not on a rq, the next wake-up will ensure we're
4706 * placed properly.
4707 */
4708 if (p->on_rq) {
4709 dequeue_task(rq_src, p, 0);
4710 set_task_cpu(p, dest_cpu);
4711 enqueue_task(rq_dest, p, 0);
4712 check_preempt_curr(rq_dest, p, 0);
4713 }
4714 done:
4715 ret = 1;
4716 fail:
4717 double_rq_unlock(rq_src, rq_dest);
4718 raw_spin_unlock(&p->pi_lock);
4719 return ret;
4720 }
4721
4722 /*
4723 * migration_cpu_stop - this will be executed by a highprio stopper thread
4724 * and performs thread migration by bumping thread off CPU then
4725 * 'pushing' onto another runqueue.
4726 */
4727 static int migration_cpu_stop(void *data)
4728 {
4729 struct migration_arg *arg = data;
4730
4731 /*
4732 * The original target cpu might have gone down and we might
4733 * be on another cpu but it doesn't matter.
4734 */
4735 local_irq_disable();
4736 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4737 local_irq_enable();
4738 return 0;
4739 }
4740
4741 #ifdef CONFIG_HOTPLUG_CPU
4742
4743 /*
4744 * Ensures that the idle task is using init_mm right before its cpu goes
4745 * offline.
4746 */
4747 void idle_task_exit(void)
4748 {
4749 struct mm_struct *mm = current->active_mm;
4750
4751 BUG_ON(cpu_online(smp_processor_id()));
4752
4753 if (mm != &init_mm)
4754 switch_mm(mm, &init_mm, current);
4755 mmdrop(mm);
4756 }
4757
4758 /*
4759 * Since this CPU is going 'away' for a while, fold any nr_active delta
4760 * we might have. Assumes we're called after migrate_tasks() so that the
4761 * nr_active count is stable.
4762 *
4763 * Also see the comment "Global load-average calculations".
4764 */
4765 static void calc_load_migrate(struct rq *rq)
4766 {
4767 long delta = calc_load_fold_active(rq);
4768 if (delta)
4769 atomic_long_add(delta, &calc_load_tasks);
4770 }
4771
4772 /*
4773 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4774 * try_to_wake_up()->select_task_rq().
4775 *
4776 * Called with rq->lock held even though we'er in stop_machine() and
4777 * there's no concurrency possible, we hold the required locks anyway
4778 * because of lock validation efforts.
4779 */
4780 static void migrate_tasks(unsigned int dead_cpu)
4781 {
4782 struct rq *rq = cpu_rq(dead_cpu);
4783 struct task_struct *next, *stop = rq->stop;
4784 int dest_cpu;
4785
4786 /*
4787 * Fudge the rq selection such that the below task selection loop
4788 * doesn't get stuck on the currently eligible stop task.
4789 *
4790 * We're currently inside stop_machine() and the rq is either stuck
4791 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4792 * either way we should never end up calling schedule() until we're
4793 * done here.
4794 */
4795 rq->stop = NULL;
4796
4797 for ( ; ; ) {
4798 /*
4799 * There's this thread running, bail when that's the only
4800 * remaining thread.
4801 */
4802 if (rq->nr_running == 1)
4803 break;
4804
4805 next = pick_next_task(rq);
4806 BUG_ON(!next);
4807 next->sched_class->put_prev_task(rq, next);
4808
4809 /* Find suitable destination for @next, with force if needed. */
4810 dest_cpu = select_fallback_rq(dead_cpu, next);
4811 raw_spin_unlock(&rq->lock);
4812
4813 __migrate_task(next, dead_cpu, dest_cpu);
4814
4815 raw_spin_lock(&rq->lock);
4816 }
4817
4818 rq->stop = stop;
4819 }
4820
4821 #endif /* CONFIG_HOTPLUG_CPU */
4822
4823 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4824
4825 static struct ctl_table sd_ctl_dir[] = {
4826 {
4827 .procname = "sched_domain",
4828 .mode = 0555,
4829 },
4830 {}
4831 };
4832
4833 static struct ctl_table sd_ctl_root[] = {
4834 {
4835 .procname = "kernel",
4836 .mode = 0555,
4837 .child = sd_ctl_dir,
4838 },
4839 {}
4840 };
4841
4842 static struct ctl_table *sd_alloc_ctl_entry(int n)
4843 {
4844 struct ctl_table *entry =
4845 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4846
4847 return entry;
4848 }
4849
4850 static void sd_free_ctl_entry(struct ctl_table **tablep)
4851 {
4852 struct ctl_table *entry;
4853
4854 /*
4855 * In the intermediate directories, both the child directory and
4856 * procname are dynamically allocated and could fail but the mode
4857 * will always be set. In the lowest directory the names are
4858 * static strings and all have proc handlers.
4859 */
4860 for (entry = *tablep; entry->mode; entry++) {
4861 if (entry->child)
4862 sd_free_ctl_entry(&entry->child);
4863 if (entry->proc_handler == NULL)
4864 kfree(entry->procname);
4865 }
4866
4867 kfree(*tablep);
4868 *tablep = NULL;
4869 }
4870
4871 static int min_load_idx = 0;
4872 static int max_load_idx = CPU_LOAD_IDX_MAX;
4873
4874 static void
4875 set_table_entry(struct ctl_table *entry,
4876 const char *procname, void *data, int maxlen,
4877 umode_t mode, proc_handler *proc_handler,
4878 bool load_idx)
4879 {
4880 entry->procname = procname;
4881 entry->data = data;
4882 entry->maxlen = maxlen;
4883 entry->mode = mode;
4884 entry->proc_handler = proc_handler;
4885
4886 if (load_idx) {
4887 entry->extra1 = &min_load_idx;
4888 entry->extra2 = &max_load_idx;
4889 }
4890 }
4891
4892 static struct ctl_table *
4893 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4894 {
4895 struct ctl_table *table = sd_alloc_ctl_entry(13);
4896
4897 if (table == NULL)
4898 return NULL;
4899
4900 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4901 sizeof(long), 0644, proc_doulongvec_minmax, false);
4902 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4903 sizeof(long), 0644, proc_doulongvec_minmax, false);
4904 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4905 sizeof(int), 0644, proc_dointvec_minmax, true);
4906 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4907 sizeof(int), 0644, proc_dointvec_minmax, true);
4908 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4909 sizeof(int), 0644, proc_dointvec_minmax, true);
4910 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4911 sizeof(int), 0644, proc_dointvec_minmax, true);
4912 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4913 sizeof(int), 0644, proc_dointvec_minmax, true);
4914 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4915 sizeof(int), 0644, proc_dointvec_minmax, false);
4916 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4917 sizeof(int), 0644, proc_dointvec_minmax, false);
4918 set_table_entry(&table[9], "cache_nice_tries",
4919 &sd->cache_nice_tries,
4920 sizeof(int), 0644, proc_dointvec_minmax, false);
4921 set_table_entry(&table[10], "flags", &sd->flags,
4922 sizeof(int), 0644, proc_dointvec_minmax, false);
4923 set_table_entry(&table[11], "name", sd->name,
4924 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4925 /* &table[12] is terminator */
4926
4927 return table;
4928 }
4929
4930 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4931 {
4932 struct ctl_table *entry, *table;
4933 struct sched_domain *sd;
4934 int domain_num = 0, i;
4935 char buf[32];
4936
4937 for_each_domain(cpu, sd)
4938 domain_num++;
4939 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4940 if (table == NULL)
4941 return NULL;
4942
4943 i = 0;
4944 for_each_domain(cpu, sd) {
4945 snprintf(buf, 32, "domain%d", i);
4946 entry->procname = kstrdup(buf, GFP_KERNEL);
4947 entry->mode = 0555;
4948 entry->child = sd_alloc_ctl_domain_table(sd);
4949 entry++;
4950 i++;
4951 }
4952 return table;
4953 }
4954
4955 static struct ctl_table_header *sd_sysctl_header;
4956 static void register_sched_domain_sysctl(void)
4957 {
4958 int i, cpu_num = num_possible_cpus();
4959 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4960 char buf[32];
4961
4962 WARN_ON(sd_ctl_dir[0].child);
4963 sd_ctl_dir[0].child = entry;
4964
4965 if (entry == NULL)
4966 return;
4967
4968 for_each_possible_cpu(i) {
4969 snprintf(buf, 32, "cpu%d", i);
4970 entry->procname = kstrdup(buf, GFP_KERNEL);
4971 entry->mode = 0555;
4972 entry->child = sd_alloc_ctl_cpu_table(i);
4973 entry++;
4974 }
4975
4976 WARN_ON(sd_sysctl_header);
4977 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4978 }
4979
4980 /* may be called multiple times per register */
4981 static void unregister_sched_domain_sysctl(void)
4982 {
4983 if (sd_sysctl_header)
4984 unregister_sysctl_table(sd_sysctl_header);
4985 sd_sysctl_header = NULL;
4986 if (sd_ctl_dir[0].child)
4987 sd_free_ctl_entry(&sd_ctl_dir[0].child);
4988 }
4989 #else
4990 static void register_sched_domain_sysctl(void)
4991 {
4992 }
4993 static void unregister_sched_domain_sysctl(void)
4994 {
4995 }
4996 #endif
4997
4998 static void set_rq_online(struct rq *rq)
4999 {
5000 if (!rq->online) {
5001 const struct sched_class *class;
5002
5003 cpumask_set_cpu(rq->cpu, rq->rd->online);
5004 rq->online = 1;
5005
5006 for_each_class(class) {
5007 if (class->rq_online)
5008 class->rq_online(rq);
5009 }
5010 }
5011 }
5012
5013 static void set_rq_offline(struct rq *rq)
5014 {
5015 if (rq->online) {
5016 const struct sched_class *class;
5017
5018 for_each_class(class) {
5019 if (class->rq_offline)
5020 class->rq_offline(rq);
5021 }
5022
5023 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5024 rq->online = 0;
5025 }
5026 }
5027
5028 /*
5029 * migration_call - callback that gets triggered when a CPU is added.
5030 * Here we can start up the necessary migration thread for the new CPU.
5031 */
5032 static int __cpuinit
5033 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5034 {
5035 int cpu = (long)hcpu;
5036 unsigned long flags;
5037 struct rq *rq = cpu_rq(cpu);
5038
5039 switch (action & ~CPU_TASKS_FROZEN) {
5040
5041 case CPU_UP_PREPARE:
5042 rq->calc_load_update = calc_load_update;
5043 break;
5044
5045 case CPU_ONLINE:
5046 /* Update our root-domain */
5047 raw_spin_lock_irqsave(&rq->lock, flags);
5048 if (rq->rd) {
5049 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5050
5051 set_rq_online(rq);
5052 }
5053 raw_spin_unlock_irqrestore(&rq->lock, flags);
5054 break;
5055
5056 #ifdef CONFIG_HOTPLUG_CPU
5057 case CPU_DYING:
5058 sched_ttwu_pending();
5059 /* Update our root-domain */
5060 raw_spin_lock_irqsave(&rq->lock, flags);
5061 if (rq->rd) {
5062 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5063 set_rq_offline(rq);
5064 }
5065 migrate_tasks(cpu);
5066 BUG_ON(rq->nr_running != 1); /* the migration thread */
5067 raw_spin_unlock_irqrestore(&rq->lock, flags);
5068 break;
5069
5070 case CPU_DEAD:
5071 calc_load_migrate(rq);
5072 break;
5073 #endif
5074 }
5075
5076 update_max_interval();
5077
5078 return NOTIFY_OK;
5079 }
5080
5081 /*
5082 * Register at high priority so that task migration (migrate_all_tasks)
5083 * happens before everything else. This has to be lower priority than
5084 * the notifier in the perf_event subsystem, though.
5085 */
5086 static struct notifier_block __cpuinitdata migration_notifier = {
5087 .notifier_call = migration_call,
5088 .priority = CPU_PRI_MIGRATION,
5089 };
5090
5091 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5092 unsigned long action, void *hcpu)
5093 {
5094 switch (action & ~CPU_TASKS_FROZEN) {
5095 case CPU_STARTING:
5096 case CPU_DOWN_FAILED:
5097 set_cpu_active((long)hcpu, true);
5098 return NOTIFY_OK;
5099 default:
5100 return NOTIFY_DONE;
5101 }
5102 }
5103
5104 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5105 unsigned long action, void *hcpu)
5106 {
5107 switch (action & ~CPU_TASKS_FROZEN) {
5108 case CPU_DOWN_PREPARE:
5109 set_cpu_active((long)hcpu, false);
5110 return NOTIFY_OK;
5111 default:
5112 return NOTIFY_DONE;
5113 }
5114 }
5115
5116 static int __init migration_init(void)
5117 {
5118 void *cpu = (void *)(long)smp_processor_id();
5119 int err;
5120
5121 /* Initialize migration for the boot CPU */
5122 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5123 BUG_ON(err == NOTIFY_BAD);
5124 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5125 register_cpu_notifier(&migration_notifier);
5126
5127 /* Register cpu active notifiers */
5128 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5129 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5130
5131 return 0;
5132 }
5133 early_initcall(migration_init);
5134 #endif
5135
5136 #ifdef CONFIG_SMP
5137
5138 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5139
5140 #ifdef CONFIG_SCHED_DEBUG
5141
5142 static __read_mostly int sched_debug_enabled;
5143
5144 static int __init sched_debug_setup(char *str)
5145 {
5146 sched_debug_enabled = 1;
5147
5148 return 0;
5149 }
5150 early_param("sched_debug", sched_debug_setup);
5151
5152 static inline bool sched_debug(void)
5153 {
5154 return sched_debug_enabled;
5155 }
5156
5157 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5158 struct cpumask *groupmask)
5159 {
5160 struct sched_group *group = sd->groups;
5161 char str[256];
5162
5163 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5164 cpumask_clear(groupmask);
5165
5166 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5167
5168 if (!(sd->flags & SD_LOAD_BALANCE)) {
5169 printk("does not load-balance\n");
5170 if (sd->parent)
5171 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5172 " has parent");
5173 return -1;
5174 }
5175
5176 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5177
5178 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5179 printk(KERN_ERR "ERROR: domain->span does not contain "
5180 "CPU%d\n", cpu);
5181 }
5182 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5183 printk(KERN_ERR "ERROR: domain->groups does not contain"
5184 " CPU%d\n", cpu);
5185 }
5186
5187 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5188 do {
5189 if (!group) {
5190 printk("\n");
5191 printk(KERN_ERR "ERROR: group is NULL\n");
5192 break;
5193 }
5194
5195 /*
5196 * Even though we initialize ->power to something semi-sane,
5197 * we leave power_orig unset. This allows us to detect if
5198 * domain iteration is still funny without causing /0 traps.
5199 */
5200 if (!group->sgp->power_orig) {
5201 printk(KERN_CONT "\n");
5202 printk(KERN_ERR "ERROR: domain->cpu_power not "
5203 "set\n");
5204 break;
5205 }
5206
5207 if (!cpumask_weight(sched_group_cpus(group))) {
5208 printk(KERN_CONT "\n");
5209 printk(KERN_ERR "ERROR: empty group\n");
5210 break;
5211 }
5212
5213 if (!(sd->flags & SD_OVERLAP) &&
5214 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5215 printk(KERN_CONT "\n");
5216 printk(KERN_ERR "ERROR: repeated CPUs\n");
5217 break;
5218 }
5219
5220 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5221
5222 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5223
5224 printk(KERN_CONT " %s", str);
5225 if (group->sgp->power != SCHED_POWER_SCALE) {
5226 printk(KERN_CONT " (cpu_power = %d)",
5227 group->sgp->power);
5228 }
5229
5230 group = group->next;
5231 } while (group != sd->groups);
5232 printk(KERN_CONT "\n");
5233
5234 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5235 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5236
5237 if (sd->parent &&
5238 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5239 printk(KERN_ERR "ERROR: parent span is not a superset "
5240 "of domain->span\n");
5241 return 0;
5242 }
5243
5244 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5245 {
5246 int level = 0;
5247
5248 if (!sched_debug_enabled)
5249 return;
5250
5251 if (!sd) {
5252 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5253 return;
5254 }
5255
5256 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5257
5258 for (;;) {
5259 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5260 break;
5261 level++;
5262 sd = sd->parent;
5263 if (!sd)
5264 break;
5265 }
5266 }
5267 #else /* !CONFIG_SCHED_DEBUG */
5268 # define sched_domain_debug(sd, cpu) do { } while (0)
5269 static inline bool sched_debug(void)
5270 {
5271 return false;
5272 }
5273 #endif /* CONFIG_SCHED_DEBUG */
5274
5275 static int sd_degenerate(struct sched_domain *sd)
5276 {
5277 if (cpumask_weight(sched_domain_span(sd)) == 1)
5278 return 1;
5279
5280 /* Following flags need at least 2 groups */
5281 if (sd->flags & (SD_LOAD_BALANCE |
5282 SD_BALANCE_NEWIDLE |
5283 SD_BALANCE_FORK |
5284 SD_BALANCE_EXEC |
5285 SD_SHARE_CPUPOWER |
5286 SD_SHARE_PKG_RESOURCES)) {
5287 if (sd->groups != sd->groups->next)
5288 return 0;
5289 }
5290
5291 /* Following flags don't use groups */
5292 if (sd->flags & (SD_WAKE_AFFINE))
5293 return 0;
5294
5295 return 1;
5296 }
5297
5298 static int
5299 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5300 {
5301 unsigned long cflags = sd->flags, pflags = parent->flags;
5302
5303 if (sd_degenerate(parent))
5304 return 1;
5305
5306 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5307 return 0;
5308
5309 /* Flags needing groups don't count if only 1 group in parent */
5310 if (parent->groups == parent->groups->next) {
5311 pflags &= ~(SD_LOAD_BALANCE |
5312 SD_BALANCE_NEWIDLE |
5313 SD_BALANCE_FORK |
5314 SD_BALANCE_EXEC |
5315 SD_SHARE_CPUPOWER |
5316 SD_SHARE_PKG_RESOURCES);
5317 if (nr_node_ids == 1)
5318 pflags &= ~SD_SERIALIZE;
5319 }
5320 if (~cflags & pflags)
5321 return 0;
5322
5323 return 1;
5324 }
5325
5326 static void free_rootdomain(struct rcu_head *rcu)
5327 {
5328 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5329
5330 cpupri_cleanup(&rd->cpupri);
5331 free_cpumask_var(rd->rto_mask);
5332 free_cpumask_var(rd->online);
5333 free_cpumask_var(rd->span);
5334 kfree(rd);
5335 }
5336
5337 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5338 {
5339 struct root_domain *old_rd = NULL;
5340 unsigned long flags;
5341
5342 raw_spin_lock_irqsave(&rq->lock, flags);
5343
5344 if (rq->rd) {
5345 old_rd = rq->rd;
5346
5347 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5348 set_rq_offline(rq);
5349
5350 cpumask_clear_cpu(rq->cpu, old_rd->span);
5351
5352 /*
5353 * If we dont want to free the old_rt yet then
5354 * set old_rd to NULL to skip the freeing later
5355 * in this function:
5356 */
5357 if (!atomic_dec_and_test(&old_rd->refcount))
5358 old_rd = NULL;
5359 }
5360
5361 atomic_inc(&rd->refcount);
5362 rq->rd = rd;
5363
5364 cpumask_set_cpu(rq->cpu, rd->span);
5365 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5366 set_rq_online(rq);
5367
5368 raw_spin_unlock_irqrestore(&rq->lock, flags);
5369
5370 if (old_rd)
5371 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5372 }
5373
5374 static int init_rootdomain(struct root_domain *rd)
5375 {
5376 memset(rd, 0, sizeof(*rd));
5377
5378 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5379 goto out;
5380 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5381 goto free_span;
5382 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5383 goto free_online;
5384
5385 if (cpupri_init(&rd->cpupri) != 0)
5386 goto free_rto_mask;
5387 return 0;
5388
5389 free_rto_mask:
5390 free_cpumask_var(rd->rto_mask);
5391 free_online:
5392 free_cpumask_var(rd->online);
5393 free_span:
5394 free_cpumask_var(rd->span);
5395 out:
5396 return -ENOMEM;
5397 }
5398
5399 /*
5400 * By default the system creates a single root-domain with all cpus as
5401 * members (mimicking the global state we have today).
5402 */
5403 struct root_domain def_root_domain;
5404
5405 static void init_defrootdomain(void)
5406 {
5407 init_rootdomain(&def_root_domain);
5408
5409 atomic_set(&def_root_domain.refcount, 1);
5410 }
5411
5412 static struct root_domain *alloc_rootdomain(void)
5413 {
5414 struct root_domain *rd;
5415
5416 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5417 if (!rd)
5418 return NULL;
5419
5420 if (init_rootdomain(rd) != 0) {
5421 kfree(rd);
5422 return NULL;
5423 }
5424
5425 return rd;
5426 }
5427
5428 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5429 {
5430 struct sched_group *tmp, *first;
5431
5432 if (!sg)
5433 return;
5434
5435 first = sg;
5436 do {
5437 tmp = sg->next;
5438
5439 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5440 kfree(sg->sgp);
5441
5442 kfree(sg);
5443 sg = tmp;
5444 } while (sg != first);
5445 }
5446
5447 static void free_sched_domain(struct rcu_head *rcu)
5448 {
5449 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5450
5451 /*
5452 * If its an overlapping domain it has private groups, iterate and
5453 * nuke them all.
5454 */
5455 if (sd->flags & SD_OVERLAP) {
5456 free_sched_groups(sd->groups, 1);
5457 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5458 kfree(sd->groups->sgp);
5459 kfree(sd->groups);
5460 }
5461 kfree(sd);
5462 }
5463
5464 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5465 {
5466 call_rcu(&sd->rcu, free_sched_domain);
5467 }
5468
5469 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5470 {
5471 for (; sd; sd = sd->parent)
5472 destroy_sched_domain(sd, cpu);
5473 }
5474
5475 /*
5476 * Keep a special pointer to the highest sched_domain that has
5477 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5478 * allows us to avoid some pointer chasing select_idle_sibling().
5479 *
5480 * Also keep a unique ID per domain (we use the first cpu number in
5481 * the cpumask of the domain), this allows us to quickly tell if
5482 * two cpus are in the same cache domain, see cpus_share_cache().
5483 */
5484 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5485 DEFINE_PER_CPU(int, sd_llc_id);
5486
5487 static void update_top_cache_domain(int cpu)
5488 {
5489 struct sched_domain *sd;
5490 int id = cpu;
5491
5492 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5493 if (sd)
5494 id = cpumask_first(sched_domain_span(sd));
5495
5496 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5497 per_cpu(sd_llc_id, cpu) = id;
5498 }
5499
5500 /*
5501 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5502 * hold the hotplug lock.
5503 */
5504 static void
5505 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5506 {
5507 struct rq *rq = cpu_rq(cpu);
5508 struct sched_domain *tmp;
5509
5510 /* Remove the sched domains which do not contribute to scheduling. */
5511 for (tmp = sd; tmp; ) {
5512 struct sched_domain *parent = tmp->parent;
5513 if (!parent)
5514 break;
5515
5516 if (sd_parent_degenerate(tmp, parent)) {
5517 tmp->parent = parent->parent;
5518 if (parent->parent)
5519 parent->parent->child = tmp;
5520 destroy_sched_domain(parent, cpu);
5521 } else
5522 tmp = tmp->parent;
5523 }
5524
5525 if (sd && sd_degenerate(sd)) {
5526 tmp = sd;
5527 sd = sd->parent;
5528 destroy_sched_domain(tmp, cpu);
5529 if (sd)
5530 sd->child = NULL;
5531 }
5532
5533 sched_domain_debug(sd, cpu);
5534
5535 rq_attach_root(rq, rd);
5536 tmp = rq->sd;
5537 rcu_assign_pointer(rq->sd, sd);
5538 destroy_sched_domains(tmp, cpu);
5539
5540 update_top_cache_domain(cpu);
5541 }
5542
5543 /* cpus with isolated domains */
5544 static cpumask_var_t cpu_isolated_map;
5545
5546 /* Setup the mask of cpus configured for isolated domains */
5547 static int __init isolated_cpu_setup(char *str)
5548 {
5549 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5550 cpulist_parse(str, cpu_isolated_map);
5551 return 1;
5552 }
5553
5554 __setup("isolcpus=", isolated_cpu_setup);
5555
5556 static const struct cpumask *cpu_cpu_mask(int cpu)
5557 {
5558 return cpumask_of_node(cpu_to_node(cpu));
5559 }
5560
5561 struct sd_data {
5562 struct sched_domain **__percpu sd;
5563 struct sched_group **__percpu sg;
5564 struct sched_group_power **__percpu sgp;
5565 };
5566
5567 struct s_data {
5568 struct sched_domain ** __percpu sd;
5569 struct root_domain *rd;
5570 };
5571
5572 enum s_alloc {
5573 sa_rootdomain,
5574 sa_sd,
5575 sa_sd_storage,
5576 sa_none,
5577 };
5578
5579 struct sched_domain_topology_level;
5580
5581 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5582 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5583
5584 #define SDTL_OVERLAP 0x01
5585
5586 struct sched_domain_topology_level {
5587 sched_domain_init_f init;
5588 sched_domain_mask_f mask;
5589 int flags;
5590 int numa_level;
5591 struct sd_data data;
5592 };
5593
5594 /*
5595 * Build an iteration mask that can exclude certain CPUs from the upwards
5596 * domain traversal.
5597 *
5598 * Asymmetric node setups can result in situations where the domain tree is of
5599 * unequal depth, make sure to skip domains that already cover the entire
5600 * range.
5601 *
5602 * In that case build_sched_domains() will have terminated the iteration early
5603 * and our sibling sd spans will be empty. Domains should always include the
5604 * cpu they're built on, so check that.
5605 *
5606 */
5607 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5608 {
5609 const struct cpumask *span = sched_domain_span(sd);
5610 struct sd_data *sdd = sd->private;
5611 struct sched_domain *sibling;
5612 int i;
5613
5614 for_each_cpu(i, span) {
5615 sibling = *per_cpu_ptr(sdd->sd, i);
5616 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5617 continue;
5618
5619 cpumask_set_cpu(i, sched_group_mask(sg));
5620 }
5621 }
5622
5623 /*
5624 * Return the canonical balance cpu for this group, this is the first cpu
5625 * of this group that's also in the iteration mask.
5626 */
5627 int group_balance_cpu(struct sched_group *sg)
5628 {
5629 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5630 }
5631
5632 static int
5633 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5634 {
5635 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5636 const struct cpumask *span = sched_domain_span(sd);
5637 struct cpumask *covered = sched_domains_tmpmask;
5638 struct sd_data *sdd = sd->private;
5639 struct sched_domain *child;
5640 int i;
5641
5642 cpumask_clear(covered);
5643
5644 for_each_cpu(i, span) {
5645 struct cpumask *sg_span;
5646
5647 if (cpumask_test_cpu(i, covered))
5648 continue;
5649
5650 child = *per_cpu_ptr(sdd->sd, i);
5651
5652 /* See the comment near build_group_mask(). */
5653 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5654 continue;
5655
5656 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5657 GFP_KERNEL, cpu_to_node(cpu));
5658
5659 if (!sg)
5660 goto fail;
5661
5662 sg_span = sched_group_cpus(sg);
5663 if (child->child) {
5664 child = child->child;
5665 cpumask_copy(sg_span, sched_domain_span(child));
5666 } else
5667 cpumask_set_cpu(i, sg_span);
5668
5669 cpumask_or(covered, covered, sg_span);
5670
5671 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5672 if (atomic_inc_return(&sg->sgp->ref) == 1)
5673 build_group_mask(sd, sg);
5674
5675 /*
5676 * Initialize sgp->power such that even if we mess up the
5677 * domains and no possible iteration will get us here, we won't
5678 * die on a /0 trap.
5679 */
5680 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5681
5682 /*
5683 * Make sure the first group of this domain contains the
5684 * canonical balance cpu. Otherwise the sched_domain iteration
5685 * breaks. See update_sg_lb_stats().
5686 */
5687 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5688 group_balance_cpu(sg) == cpu)
5689 groups = sg;
5690
5691 if (!first)
5692 first = sg;
5693 if (last)
5694 last->next = sg;
5695 last = sg;
5696 last->next = first;
5697 }
5698 sd->groups = groups;
5699
5700 return 0;
5701
5702 fail:
5703 free_sched_groups(first, 0);
5704
5705 return -ENOMEM;
5706 }
5707
5708 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5709 {
5710 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5711 struct sched_domain *child = sd->child;
5712
5713 if (child)
5714 cpu = cpumask_first(sched_domain_span(child));
5715
5716 if (sg) {
5717 *sg = *per_cpu_ptr(sdd->sg, cpu);
5718 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5719 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5720 }
5721
5722 return cpu;
5723 }
5724
5725 /*
5726 * build_sched_groups will build a circular linked list of the groups
5727 * covered by the given span, and will set each group's ->cpumask correctly,
5728 * and ->cpu_power to 0.
5729 *
5730 * Assumes the sched_domain tree is fully constructed
5731 */
5732 static int
5733 build_sched_groups(struct sched_domain *sd, int cpu)
5734 {
5735 struct sched_group *first = NULL, *last = NULL;
5736 struct sd_data *sdd = sd->private;
5737 const struct cpumask *span = sched_domain_span(sd);
5738 struct cpumask *covered;
5739 int i;
5740
5741 get_group(cpu, sdd, &sd->groups);
5742 atomic_inc(&sd->groups->ref);
5743
5744 if (cpu != cpumask_first(sched_domain_span(sd)))
5745 return 0;
5746
5747 lockdep_assert_held(&sched_domains_mutex);
5748 covered = sched_domains_tmpmask;
5749
5750 cpumask_clear(covered);
5751
5752 for_each_cpu(i, span) {
5753 struct sched_group *sg;
5754 int group = get_group(i, sdd, &sg);
5755 int j;
5756
5757 if (cpumask_test_cpu(i, covered))
5758 continue;
5759
5760 cpumask_clear(sched_group_cpus(sg));
5761 sg->sgp->power = 0;
5762 cpumask_setall(sched_group_mask(sg));
5763
5764 for_each_cpu(j, span) {
5765 if (get_group(j, sdd, NULL) != group)
5766 continue;
5767
5768 cpumask_set_cpu(j, covered);
5769 cpumask_set_cpu(j, sched_group_cpus(sg));
5770 }
5771
5772 if (!first)
5773 first = sg;
5774 if (last)
5775 last->next = sg;
5776 last = sg;
5777 }
5778 last->next = first;
5779
5780 return 0;
5781 }
5782
5783 /*
5784 * Initialize sched groups cpu_power.
5785 *
5786 * cpu_power indicates the capacity of sched group, which is used while
5787 * distributing the load between different sched groups in a sched domain.
5788 * Typically cpu_power for all the groups in a sched domain will be same unless
5789 * there are asymmetries in the topology. If there are asymmetries, group
5790 * having more cpu_power will pickup more load compared to the group having
5791 * less cpu_power.
5792 */
5793 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5794 {
5795 struct sched_group *sg = sd->groups;
5796
5797 WARN_ON(!sd || !sg);
5798
5799 do {
5800 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5801 sg = sg->next;
5802 } while (sg != sd->groups);
5803
5804 if (cpu != group_balance_cpu(sg))
5805 return;
5806
5807 update_group_power(sd, cpu);
5808 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5809 }
5810
5811 int __weak arch_sd_sibling_asym_packing(void)
5812 {
5813 return 0*SD_ASYM_PACKING;
5814 }
5815
5816 /*
5817 * Initializers for schedule domains
5818 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5819 */
5820
5821 #ifdef CONFIG_SCHED_DEBUG
5822 # define SD_INIT_NAME(sd, type) sd->name = #type
5823 #else
5824 # define SD_INIT_NAME(sd, type) do { } while (0)
5825 #endif
5826
5827 #define SD_INIT_FUNC(type) \
5828 static noinline struct sched_domain * \
5829 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5830 { \
5831 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5832 *sd = SD_##type##_INIT; \
5833 SD_INIT_NAME(sd, type); \
5834 sd->private = &tl->data; \
5835 return sd; \
5836 }
5837
5838 SD_INIT_FUNC(CPU)
5839 #ifdef CONFIG_SCHED_SMT
5840 SD_INIT_FUNC(SIBLING)
5841 #endif
5842 #ifdef CONFIG_SCHED_MC
5843 SD_INIT_FUNC(MC)
5844 #endif
5845 #ifdef CONFIG_SCHED_BOOK
5846 SD_INIT_FUNC(BOOK)
5847 #endif
5848
5849 static int default_relax_domain_level = -1;
5850 int sched_domain_level_max;
5851
5852 static int __init setup_relax_domain_level(char *str)
5853 {
5854 if (kstrtoint(str, 0, &default_relax_domain_level))
5855 pr_warn("Unable to set relax_domain_level\n");
5856
5857 return 1;
5858 }
5859 __setup("relax_domain_level=", setup_relax_domain_level);
5860
5861 static void set_domain_attribute(struct sched_domain *sd,
5862 struct sched_domain_attr *attr)
5863 {
5864 int request;
5865
5866 if (!attr || attr->relax_domain_level < 0) {
5867 if (default_relax_domain_level < 0)
5868 return;
5869 else
5870 request = default_relax_domain_level;
5871 } else
5872 request = attr->relax_domain_level;
5873 if (request < sd->level) {
5874 /* turn off idle balance on this domain */
5875 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5876 } else {
5877 /* turn on idle balance on this domain */
5878 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5879 }
5880 }
5881
5882 static void __sdt_free(const struct cpumask *cpu_map);
5883 static int __sdt_alloc(const struct cpumask *cpu_map);
5884
5885 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5886 const struct cpumask *cpu_map)
5887 {
5888 switch (what) {
5889 case sa_rootdomain:
5890 if (!atomic_read(&d->rd->refcount))
5891 free_rootdomain(&d->rd->rcu); /* fall through */
5892 case sa_sd:
5893 free_percpu(d->sd); /* fall through */
5894 case sa_sd_storage:
5895 __sdt_free(cpu_map); /* fall through */
5896 case sa_none:
5897 break;
5898 }
5899 }
5900
5901 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5902 const struct cpumask *cpu_map)
5903 {
5904 memset(d, 0, sizeof(*d));
5905
5906 if (__sdt_alloc(cpu_map))
5907 return sa_sd_storage;
5908 d->sd = alloc_percpu(struct sched_domain *);
5909 if (!d->sd)
5910 return sa_sd_storage;
5911 d->rd = alloc_rootdomain();
5912 if (!d->rd)
5913 return sa_sd;
5914 return sa_rootdomain;
5915 }
5916
5917 /*
5918 * NULL the sd_data elements we've used to build the sched_domain and
5919 * sched_group structure so that the subsequent __free_domain_allocs()
5920 * will not free the data we're using.
5921 */
5922 static void claim_allocations(int cpu, struct sched_domain *sd)
5923 {
5924 struct sd_data *sdd = sd->private;
5925
5926 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5927 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5928
5929 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5930 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5931
5932 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5933 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5934 }
5935
5936 #ifdef CONFIG_SCHED_SMT
5937 static const struct cpumask *cpu_smt_mask(int cpu)
5938 {
5939 return topology_thread_cpumask(cpu);
5940 }
5941 #endif
5942
5943 /*
5944 * Topology list, bottom-up.
5945 */
5946 static struct sched_domain_topology_level default_topology[] = {
5947 #ifdef CONFIG_SCHED_SMT
5948 { sd_init_SIBLING, cpu_smt_mask, },
5949 #endif
5950 #ifdef CONFIG_SCHED_MC
5951 { sd_init_MC, cpu_coregroup_mask, },
5952 #endif
5953 #ifdef CONFIG_SCHED_BOOK
5954 { sd_init_BOOK, cpu_book_mask, },
5955 #endif
5956 { sd_init_CPU, cpu_cpu_mask, },
5957 { NULL, },
5958 };
5959
5960 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5961
5962 #ifdef CONFIG_NUMA
5963
5964 static int sched_domains_numa_levels;
5965 static int *sched_domains_numa_distance;
5966 static struct cpumask ***sched_domains_numa_masks;
5967 static int sched_domains_curr_level;
5968
5969 static inline int sd_local_flags(int level)
5970 {
5971 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5972 return 0;
5973
5974 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5975 }
5976
5977 static struct sched_domain *
5978 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5979 {
5980 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5981 int level = tl->numa_level;
5982 int sd_weight = cpumask_weight(
5983 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5984
5985 *sd = (struct sched_domain){
5986 .min_interval = sd_weight,
5987 .max_interval = 2*sd_weight,
5988 .busy_factor = 32,
5989 .imbalance_pct = 125,
5990 .cache_nice_tries = 2,
5991 .busy_idx = 3,
5992 .idle_idx = 2,
5993 .newidle_idx = 0,
5994 .wake_idx = 0,
5995 .forkexec_idx = 0,
5996
5997 .flags = 1*SD_LOAD_BALANCE
5998 | 1*SD_BALANCE_NEWIDLE
5999 | 0*SD_BALANCE_EXEC
6000 | 0*SD_BALANCE_FORK
6001 | 0*SD_BALANCE_WAKE
6002 | 0*SD_WAKE_AFFINE
6003 | 0*SD_SHARE_CPUPOWER
6004 | 0*SD_SHARE_PKG_RESOURCES
6005 | 1*SD_SERIALIZE
6006 | 0*SD_PREFER_SIBLING
6007 | sd_local_flags(level)
6008 ,
6009 .last_balance = jiffies,
6010 .balance_interval = sd_weight,
6011 };
6012 SD_INIT_NAME(sd, NUMA);
6013 sd->private = &tl->data;
6014
6015 /*
6016 * Ugly hack to pass state to sd_numa_mask()...
6017 */
6018 sched_domains_curr_level = tl->numa_level;
6019
6020 return sd;
6021 }
6022
6023 static const struct cpumask *sd_numa_mask(int cpu)
6024 {
6025 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6026 }
6027
6028 static void sched_numa_warn(const char *str)
6029 {
6030 static int done = false;
6031 int i,j;
6032
6033 if (done)
6034 return;
6035
6036 done = true;
6037
6038 printk(KERN_WARNING "ERROR: %s\n\n", str);
6039
6040 for (i = 0; i < nr_node_ids; i++) {
6041 printk(KERN_WARNING " ");
6042 for (j = 0; j < nr_node_ids; j++)
6043 printk(KERN_CONT "%02d ", node_distance(i,j));
6044 printk(KERN_CONT "\n");
6045 }
6046 printk(KERN_WARNING "\n");
6047 }
6048
6049 static bool find_numa_distance(int distance)
6050 {
6051 int i;
6052
6053 if (distance == node_distance(0, 0))
6054 return true;
6055
6056 for (i = 0; i < sched_domains_numa_levels; i++) {
6057 if (sched_domains_numa_distance[i] == distance)
6058 return true;
6059 }
6060
6061 return false;
6062 }
6063
6064 static void sched_init_numa(void)
6065 {
6066 int next_distance, curr_distance = node_distance(0, 0);
6067 struct sched_domain_topology_level *tl;
6068 int level = 0;
6069 int i, j, k;
6070
6071 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6072 if (!sched_domains_numa_distance)
6073 return;
6074
6075 /*
6076 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6077 * unique distances in the node_distance() table.
6078 *
6079 * Assumes node_distance(0,j) includes all distances in
6080 * node_distance(i,j) in order to avoid cubic time.
6081 */
6082 next_distance = curr_distance;
6083 for (i = 0; i < nr_node_ids; i++) {
6084 for (j = 0; j < nr_node_ids; j++) {
6085 for (k = 0; k < nr_node_ids; k++) {
6086 int distance = node_distance(i, k);
6087
6088 if (distance > curr_distance &&
6089 (distance < next_distance ||
6090 next_distance == curr_distance))
6091 next_distance = distance;
6092
6093 /*
6094 * While not a strong assumption it would be nice to know
6095 * about cases where if node A is connected to B, B is not
6096 * equally connected to A.
6097 */
6098 if (sched_debug() && node_distance(k, i) != distance)
6099 sched_numa_warn("Node-distance not symmetric");
6100
6101 if (sched_debug() && i && !find_numa_distance(distance))
6102 sched_numa_warn("Node-0 not representative");
6103 }
6104 if (next_distance != curr_distance) {
6105 sched_domains_numa_distance[level++] = next_distance;
6106 sched_domains_numa_levels = level;
6107 curr_distance = next_distance;
6108 } else break;
6109 }
6110
6111 /*
6112 * In case of sched_debug() we verify the above assumption.
6113 */
6114 if (!sched_debug())
6115 break;
6116 }
6117 /*
6118 * 'level' contains the number of unique distances, excluding the
6119 * identity distance node_distance(i,i).
6120 *
6121 * The sched_domains_nume_distance[] array includes the actual distance
6122 * numbers.
6123 */
6124
6125 /*
6126 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6127 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6128 * the array will contain less then 'level' members. This could be
6129 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6130 * in other functions.
6131 *
6132 * We reset it to 'level' at the end of this function.
6133 */
6134 sched_domains_numa_levels = 0;
6135
6136 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6137 if (!sched_domains_numa_masks)
6138 return;
6139
6140 /*
6141 * Now for each level, construct a mask per node which contains all
6142 * cpus of nodes that are that many hops away from us.
6143 */
6144 for (i = 0; i < level; i++) {
6145 sched_domains_numa_masks[i] =
6146 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6147 if (!sched_domains_numa_masks[i])
6148 return;
6149
6150 for (j = 0; j < nr_node_ids; j++) {
6151 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6152 if (!mask)
6153 return;
6154
6155 sched_domains_numa_masks[i][j] = mask;
6156
6157 for (k = 0; k < nr_node_ids; k++) {
6158 if (node_distance(j, k) > sched_domains_numa_distance[i])
6159 continue;
6160
6161 cpumask_or(mask, mask, cpumask_of_node(k));
6162 }
6163 }
6164 }
6165
6166 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6167 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6168 if (!tl)
6169 return;
6170
6171 /*
6172 * Copy the default topology bits..
6173 */
6174 for (i = 0; default_topology[i].init; i++)
6175 tl[i] = default_topology[i];
6176
6177 /*
6178 * .. and append 'j' levels of NUMA goodness.
6179 */
6180 for (j = 0; j < level; i++, j++) {
6181 tl[i] = (struct sched_domain_topology_level){
6182 .init = sd_numa_init,
6183 .mask = sd_numa_mask,
6184 .flags = SDTL_OVERLAP,
6185 .numa_level = j,
6186 };
6187 }
6188
6189 sched_domain_topology = tl;
6190
6191 sched_domains_numa_levels = level;
6192 }
6193
6194 static void sched_domains_numa_masks_set(int cpu)
6195 {
6196 int i, j;
6197 int node = cpu_to_node(cpu);
6198
6199 for (i = 0; i < sched_domains_numa_levels; i++) {
6200 for (j = 0; j < nr_node_ids; j++) {
6201 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6202 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6203 }
6204 }
6205 }
6206
6207 static void sched_domains_numa_masks_clear(int cpu)
6208 {
6209 int i, j;
6210 for (i = 0; i < sched_domains_numa_levels; i++) {
6211 for (j = 0; j < nr_node_ids; j++)
6212 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6213 }
6214 }
6215
6216 /*
6217 * Update sched_domains_numa_masks[level][node] array when new cpus
6218 * are onlined.
6219 */
6220 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6221 unsigned long action,
6222 void *hcpu)
6223 {
6224 int cpu = (long)hcpu;
6225
6226 switch (action & ~CPU_TASKS_FROZEN) {
6227 case CPU_ONLINE:
6228 sched_domains_numa_masks_set(cpu);
6229 break;
6230
6231 case CPU_DEAD:
6232 sched_domains_numa_masks_clear(cpu);
6233 break;
6234
6235 default:
6236 return NOTIFY_DONE;
6237 }
6238
6239 return NOTIFY_OK;
6240 }
6241 #else
6242 static inline void sched_init_numa(void)
6243 {
6244 }
6245
6246 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6247 unsigned long action,
6248 void *hcpu)
6249 {
6250 return 0;
6251 }
6252 #endif /* CONFIG_NUMA */
6253
6254 static int __sdt_alloc(const struct cpumask *cpu_map)
6255 {
6256 struct sched_domain_topology_level *tl;
6257 int j;
6258
6259 for (tl = sched_domain_topology; tl->init; tl++) {
6260 struct sd_data *sdd = &tl->data;
6261
6262 sdd->sd = alloc_percpu(struct sched_domain *);
6263 if (!sdd->sd)
6264 return -ENOMEM;
6265
6266 sdd->sg = alloc_percpu(struct sched_group *);
6267 if (!sdd->sg)
6268 return -ENOMEM;
6269
6270 sdd->sgp = alloc_percpu(struct sched_group_power *);
6271 if (!sdd->sgp)
6272 return -ENOMEM;
6273
6274 for_each_cpu(j, cpu_map) {
6275 struct sched_domain *sd;
6276 struct sched_group *sg;
6277 struct sched_group_power *sgp;
6278
6279 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6280 GFP_KERNEL, cpu_to_node(j));
6281 if (!sd)
6282 return -ENOMEM;
6283
6284 *per_cpu_ptr(sdd->sd, j) = sd;
6285
6286 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6287 GFP_KERNEL, cpu_to_node(j));
6288 if (!sg)
6289 return -ENOMEM;
6290
6291 sg->next = sg;
6292
6293 *per_cpu_ptr(sdd->sg, j) = sg;
6294
6295 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6296 GFP_KERNEL, cpu_to_node(j));
6297 if (!sgp)
6298 return -ENOMEM;
6299
6300 *per_cpu_ptr(sdd->sgp, j) = sgp;
6301 }
6302 }
6303
6304 return 0;
6305 }
6306
6307 static void __sdt_free(const struct cpumask *cpu_map)
6308 {
6309 struct sched_domain_topology_level *tl;
6310 int j;
6311
6312 for (tl = sched_domain_topology; tl->init; tl++) {
6313 struct sd_data *sdd = &tl->data;
6314
6315 for_each_cpu(j, cpu_map) {
6316 struct sched_domain *sd;
6317
6318 if (sdd->sd) {
6319 sd = *per_cpu_ptr(sdd->sd, j);
6320 if (sd && (sd->flags & SD_OVERLAP))
6321 free_sched_groups(sd->groups, 0);
6322 kfree(*per_cpu_ptr(sdd->sd, j));
6323 }
6324
6325 if (sdd->sg)
6326 kfree(*per_cpu_ptr(sdd->sg, j));
6327 if (sdd->sgp)
6328 kfree(*per_cpu_ptr(sdd->sgp, j));
6329 }
6330 free_percpu(sdd->sd);
6331 sdd->sd = NULL;
6332 free_percpu(sdd->sg);
6333 sdd->sg = NULL;
6334 free_percpu(sdd->sgp);
6335 sdd->sgp = NULL;
6336 }
6337 }
6338
6339 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6340 struct s_data *d, const struct cpumask *cpu_map,
6341 struct sched_domain_attr *attr, struct sched_domain *child,
6342 int cpu)
6343 {
6344 struct sched_domain *sd = tl->init(tl, cpu);
6345 if (!sd)
6346 return child;
6347
6348 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6349 if (child) {
6350 sd->level = child->level + 1;
6351 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6352 child->parent = sd;
6353 }
6354 sd->child = child;
6355 set_domain_attribute(sd, attr);
6356
6357 return sd;
6358 }
6359
6360 /*
6361 * Build sched domains for a given set of cpus and attach the sched domains
6362 * to the individual cpus
6363 */
6364 static int build_sched_domains(const struct cpumask *cpu_map,
6365 struct sched_domain_attr *attr)
6366 {
6367 enum s_alloc alloc_state = sa_none;
6368 struct sched_domain *sd;
6369 struct s_data d;
6370 int i, ret = -ENOMEM;
6371
6372 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6373 if (alloc_state != sa_rootdomain)
6374 goto error;
6375
6376 /* Set up domains for cpus specified by the cpu_map. */
6377 for_each_cpu(i, cpu_map) {
6378 struct sched_domain_topology_level *tl;
6379
6380 sd = NULL;
6381 for (tl = sched_domain_topology; tl->init; tl++) {
6382 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6383 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6384 sd->flags |= SD_OVERLAP;
6385 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6386 break;
6387 }
6388
6389 while (sd->child)
6390 sd = sd->child;
6391
6392 *per_cpu_ptr(d.sd, i) = sd;
6393 }
6394
6395 /* Build the groups for the domains */
6396 for_each_cpu(i, cpu_map) {
6397 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6398 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6399 if (sd->flags & SD_OVERLAP) {
6400 if (build_overlap_sched_groups(sd, i))
6401 goto error;
6402 } else {
6403 if (build_sched_groups(sd, i))
6404 goto error;
6405 }
6406 }
6407 }
6408
6409 /* Calculate CPU power for physical packages and nodes */
6410 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6411 if (!cpumask_test_cpu(i, cpu_map))
6412 continue;
6413
6414 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6415 claim_allocations(i, sd);
6416 init_sched_groups_power(i, sd);
6417 }
6418 }
6419
6420 /* Attach the domains */
6421 rcu_read_lock();
6422 for_each_cpu(i, cpu_map) {
6423 sd = *per_cpu_ptr(d.sd, i);
6424 cpu_attach_domain(sd, d.rd, i);
6425 }
6426 rcu_read_unlock();
6427
6428 ret = 0;
6429 error:
6430 __free_domain_allocs(&d, alloc_state, cpu_map);
6431 return ret;
6432 }
6433
6434 static cpumask_var_t *doms_cur; /* current sched domains */
6435 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6436 static struct sched_domain_attr *dattr_cur;
6437 /* attribues of custom domains in 'doms_cur' */
6438
6439 /*
6440 * Special case: If a kmalloc of a doms_cur partition (array of
6441 * cpumask) fails, then fallback to a single sched domain,
6442 * as determined by the single cpumask fallback_doms.
6443 */
6444 static cpumask_var_t fallback_doms;
6445
6446 /*
6447 * arch_update_cpu_topology lets virtualized architectures update the
6448 * cpu core maps. It is supposed to return 1 if the topology changed
6449 * or 0 if it stayed the same.
6450 */
6451 int __attribute__((weak)) arch_update_cpu_topology(void)
6452 {
6453 return 0;
6454 }
6455
6456 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6457 {
6458 int i;
6459 cpumask_var_t *doms;
6460
6461 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6462 if (!doms)
6463 return NULL;
6464 for (i = 0; i < ndoms; i++) {
6465 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6466 free_sched_domains(doms, i);
6467 return NULL;
6468 }
6469 }
6470 return doms;
6471 }
6472
6473 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6474 {
6475 unsigned int i;
6476 for (i = 0; i < ndoms; i++)
6477 free_cpumask_var(doms[i]);
6478 kfree(doms);
6479 }
6480
6481 /*
6482 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6483 * For now this just excludes isolated cpus, but could be used to
6484 * exclude other special cases in the future.
6485 */
6486 static int init_sched_domains(const struct cpumask *cpu_map)
6487 {
6488 int err;
6489
6490 arch_update_cpu_topology();
6491 ndoms_cur = 1;
6492 doms_cur = alloc_sched_domains(ndoms_cur);
6493 if (!doms_cur)
6494 doms_cur = &fallback_doms;
6495 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6496 err = build_sched_domains(doms_cur[0], NULL);
6497 register_sched_domain_sysctl();
6498
6499 return err;
6500 }
6501
6502 /*
6503 * Detach sched domains from a group of cpus specified in cpu_map
6504 * These cpus will now be attached to the NULL domain
6505 */
6506 static void detach_destroy_domains(const struct cpumask *cpu_map)
6507 {
6508 int i;
6509
6510 rcu_read_lock();
6511 for_each_cpu(i, cpu_map)
6512 cpu_attach_domain(NULL, &def_root_domain, i);
6513 rcu_read_unlock();
6514 }
6515
6516 /* handle null as "default" */
6517 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6518 struct sched_domain_attr *new, int idx_new)
6519 {
6520 struct sched_domain_attr tmp;
6521
6522 /* fast path */
6523 if (!new && !cur)
6524 return 1;
6525
6526 tmp = SD_ATTR_INIT;
6527 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6528 new ? (new + idx_new) : &tmp,
6529 sizeof(struct sched_domain_attr));
6530 }
6531
6532 /*
6533 * Partition sched domains as specified by the 'ndoms_new'
6534 * cpumasks in the array doms_new[] of cpumasks. This compares
6535 * doms_new[] to the current sched domain partitioning, doms_cur[].
6536 * It destroys each deleted domain and builds each new domain.
6537 *
6538 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6539 * The masks don't intersect (don't overlap.) We should setup one
6540 * sched domain for each mask. CPUs not in any of the cpumasks will
6541 * not be load balanced. If the same cpumask appears both in the
6542 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6543 * it as it is.
6544 *
6545 * The passed in 'doms_new' should be allocated using
6546 * alloc_sched_domains. This routine takes ownership of it and will
6547 * free_sched_domains it when done with it. If the caller failed the
6548 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6549 * and partition_sched_domains() will fallback to the single partition
6550 * 'fallback_doms', it also forces the domains to be rebuilt.
6551 *
6552 * If doms_new == NULL it will be replaced with cpu_online_mask.
6553 * ndoms_new == 0 is a special case for destroying existing domains,
6554 * and it will not create the default domain.
6555 *
6556 * Call with hotplug lock held
6557 */
6558 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6559 struct sched_domain_attr *dattr_new)
6560 {
6561 int i, j, n;
6562 int new_topology;
6563
6564 mutex_lock(&sched_domains_mutex);
6565
6566 /* always unregister in case we don't destroy any domains */
6567 unregister_sched_domain_sysctl();
6568
6569 /* Let architecture update cpu core mappings. */
6570 new_topology = arch_update_cpu_topology();
6571
6572 n = doms_new ? ndoms_new : 0;
6573
6574 /* Destroy deleted domains */
6575 for (i = 0; i < ndoms_cur; i++) {
6576 for (j = 0; j < n && !new_topology; j++) {
6577 if (cpumask_equal(doms_cur[i], doms_new[j])
6578 && dattrs_equal(dattr_cur, i, dattr_new, j))
6579 goto match1;
6580 }
6581 /* no match - a current sched domain not in new doms_new[] */
6582 detach_destroy_domains(doms_cur[i]);
6583 match1:
6584 ;
6585 }
6586
6587 if (doms_new == NULL) {
6588 ndoms_cur = 0;
6589 doms_new = &fallback_doms;
6590 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6591 WARN_ON_ONCE(dattr_new);
6592 }
6593
6594 /* Build new domains */
6595 for (i = 0; i < ndoms_new; i++) {
6596 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6597 if (cpumask_equal(doms_new[i], doms_cur[j])
6598 && dattrs_equal(dattr_new, i, dattr_cur, j))
6599 goto match2;
6600 }
6601 /* no match - add a new doms_new */
6602 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6603 match2:
6604 ;
6605 }
6606
6607 /* Remember the new sched domains */
6608 if (doms_cur != &fallback_doms)
6609 free_sched_domains(doms_cur, ndoms_cur);
6610 kfree(dattr_cur); /* kfree(NULL) is safe */
6611 doms_cur = doms_new;
6612 dattr_cur = dattr_new;
6613 ndoms_cur = ndoms_new;
6614
6615 register_sched_domain_sysctl();
6616
6617 mutex_unlock(&sched_domains_mutex);
6618 }
6619
6620 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6621
6622 /*
6623 * Update cpusets according to cpu_active mask. If cpusets are
6624 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6625 * around partition_sched_domains().
6626 *
6627 * If we come here as part of a suspend/resume, don't touch cpusets because we
6628 * want to restore it back to its original state upon resume anyway.
6629 */
6630 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6631 void *hcpu)
6632 {
6633 switch (action) {
6634 case CPU_ONLINE_FROZEN:
6635 case CPU_DOWN_FAILED_FROZEN:
6636
6637 /*
6638 * num_cpus_frozen tracks how many CPUs are involved in suspend
6639 * resume sequence. As long as this is not the last online
6640 * operation in the resume sequence, just build a single sched
6641 * domain, ignoring cpusets.
6642 */
6643 num_cpus_frozen--;
6644 if (likely(num_cpus_frozen)) {
6645 partition_sched_domains(1, NULL, NULL);
6646 break;
6647 }
6648
6649 /*
6650 * This is the last CPU online operation. So fall through and
6651 * restore the original sched domains by considering the
6652 * cpuset configurations.
6653 */
6654
6655 case CPU_ONLINE:
6656 case CPU_DOWN_FAILED:
6657 cpuset_update_active_cpus(true);
6658 break;
6659 default:
6660 return NOTIFY_DONE;
6661 }
6662 return NOTIFY_OK;
6663 }
6664
6665 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6666 void *hcpu)
6667 {
6668 switch (action) {
6669 case CPU_DOWN_PREPARE:
6670 cpuset_update_active_cpus(false);
6671 break;
6672 case CPU_DOWN_PREPARE_FROZEN:
6673 num_cpus_frozen++;
6674 partition_sched_domains(1, NULL, NULL);
6675 break;
6676 default:
6677 return NOTIFY_DONE;
6678 }
6679 return NOTIFY_OK;
6680 }
6681
6682 void __init sched_init_smp(void)
6683 {
6684 cpumask_var_t non_isolated_cpus;
6685
6686 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6687 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6688
6689 sched_init_numa();
6690
6691 get_online_cpus();
6692 mutex_lock(&sched_domains_mutex);
6693 init_sched_domains(cpu_active_mask);
6694 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6695 if (cpumask_empty(non_isolated_cpus))
6696 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6697 mutex_unlock(&sched_domains_mutex);
6698 put_online_cpus();
6699
6700 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6701 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6702 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6703
6704 /* RT runtime code needs to handle some hotplug events */
6705 hotcpu_notifier(update_runtime, 0);
6706
6707 init_hrtick();
6708
6709 /* Move init over to a non-isolated CPU */
6710 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6711 BUG();
6712 sched_init_granularity();
6713 free_cpumask_var(non_isolated_cpus);
6714
6715 init_sched_rt_class();
6716 }
6717 #else
6718 void __init sched_init_smp(void)
6719 {
6720 sched_init_granularity();
6721 }
6722 #endif /* CONFIG_SMP */
6723
6724 const_debug unsigned int sysctl_timer_migration = 1;
6725
6726 int in_sched_functions(unsigned long addr)
6727 {
6728 return in_lock_functions(addr) ||
6729 (addr >= (unsigned long)__sched_text_start
6730 && addr < (unsigned long)__sched_text_end);
6731 }
6732
6733 #ifdef CONFIG_CGROUP_SCHED
6734 struct task_group root_task_group;
6735 LIST_HEAD(task_groups);
6736 #endif
6737
6738 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6739
6740 void __init sched_init(void)
6741 {
6742 int i, j;
6743 unsigned long alloc_size = 0, ptr;
6744
6745 #ifdef CONFIG_FAIR_GROUP_SCHED
6746 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6747 #endif
6748 #ifdef CONFIG_RT_GROUP_SCHED
6749 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6750 #endif
6751 #ifdef CONFIG_CPUMASK_OFFSTACK
6752 alloc_size += num_possible_cpus() * cpumask_size();
6753 #endif
6754 if (alloc_size) {
6755 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6756
6757 #ifdef CONFIG_FAIR_GROUP_SCHED
6758 root_task_group.se = (struct sched_entity **)ptr;
6759 ptr += nr_cpu_ids * sizeof(void **);
6760
6761 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6762 ptr += nr_cpu_ids * sizeof(void **);
6763
6764 #endif /* CONFIG_FAIR_GROUP_SCHED */
6765 #ifdef CONFIG_RT_GROUP_SCHED
6766 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6767 ptr += nr_cpu_ids * sizeof(void **);
6768
6769 root_task_group.rt_rq = (struct rt_rq **)ptr;
6770 ptr += nr_cpu_ids * sizeof(void **);
6771
6772 #endif /* CONFIG_RT_GROUP_SCHED */
6773 #ifdef CONFIG_CPUMASK_OFFSTACK
6774 for_each_possible_cpu(i) {
6775 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6776 ptr += cpumask_size();
6777 }
6778 #endif /* CONFIG_CPUMASK_OFFSTACK */
6779 }
6780
6781 #ifdef CONFIG_SMP
6782 init_defrootdomain();
6783 #endif
6784
6785 init_rt_bandwidth(&def_rt_bandwidth,
6786 global_rt_period(), global_rt_runtime());
6787
6788 #ifdef CONFIG_RT_GROUP_SCHED
6789 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6790 global_rt_period(), global_rt_runtime());
6791 #endif /* CONFIG_RT_GROUP_SCHED */
6792
6793 #ifdef CONFIG_CGROUP_SCHED
6794 list_add(&root_task_group.list, &task_groups);
6795 INIT_LIST_HEAD(&root_task_group.children);
6796 INIT_LIST_HEAD(&root_task_group.siblings);
6797 autogroup_init(&init_task);
6798
6799 #endif /* CONFIG_CGROUP_SCHED */
6800
6801 #ifdef CONFIG_CGROUP_CPUACCT
6802 root_cpuacct.cpustat = &kernel_cpustat;
6803 root_cpuacct.cpuusage = alloc_percpu(u64);
6804 /* Too early, not expected to fail */
6805 BUG_ON(!root_cpuacct.cpuusage);
6806 #endif
6807 for_each_possible_cpu(i) {
6808 struct rq *rq;
6809
6810 rq = cpu_rq(i);
6811 raw_spin_lock_init(&rq->lock);
6812 rq->nr_running = 0;
6813 rq->calc_load_active = 0;
6814 rq->calc_load_update = jiffies + LOAD_FREQ;
6815 init_cfs_rq(&rq->cfs);
6816 init_rt_rq(&rq->rt, rq);
6817 #ifdef CONFIG_FAIR_GROUP_SCHED
6818 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6819 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6820 /*
6821 * How much cpu bandwidth does root_task_group get?
6822 *
6823 * In case of task-groups formed thr' the cgroup filesystem, it
6824 * gets 100% of the cpu resources in the system. This overall
6825 * system cpu resource is divided among the tasks of
6826 * root_task_group and its child task-groups in a fair manner,
6827 * based on each entity's (task or task-group's) weight
6828 * (se->load.weight).
6829 *
6830 * In other words, if root_task_group has 10 tasks of weight
6831 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6832 * then A0's share of the cpu resource is:
6833 *
6834 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6835 *
6836 * We achieve this by letting root_task_group's tasks sit
6837 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6838 */
6839 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6840 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6841 #endif /* CONFIG_FAIR_GROUP_SCHED */
6842
6843 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6844 #ifdef CONFIG_RT_GROUP_SCHED
6845 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6846 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6847 #endif
6848
6849 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6850 rq->cpu_load[j] = 0;
6851
6852 rq->last_load_update_tick = jiffies;
6853
6854 #ifdef CONFIG_SMP
6855 rq->sd = NULL;
6856 rq->rd = NULL;
6857 rq->cpu_power = SCHED_POWER_SCALE;
6858 rq->post_schedule = 0;
6859 rq->active_balance = 0;
6860 rq->next_balance = jiffies;
6861 rq->push_cpu = 0;
6862 rq->cpu = i;
6863 rq->online = 0;
6864 rq->idle_stamp = 0;
6865 rq->avg_idle = 2*sysctl_sched_migration_cost;
6866
6867 INIT_LIST_HEAD(&rq->cfs_tasks);
6868
6869 rq_attach_root(rq, &def_root_domain);
6870 #ifdef CONFIG_NO_HZ
6871 rq->nohz_flags = 0;
6872 #endif
6873 #endif
6874 init_rq_hrtick(rq);
6875 atomic_set(&rq->nr_iowait, 0);
6876 }
6877
6878 set_load_weight(&init_task);
6879
6880 #ifdef CONFIG_PREEMPT_NOTIFIERS
6881 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6882 #endif
6883
6884 #ifdef CONFIG_RT_MUTEXES
6885 plist_head_init(&init_task.pi_waiters);
6886 #endif
6887
6888 /*
6889 * The boot idle thread does lazy MMU switching as well:
6890 */
6891 atomic_inc(&init_mm.mm_count);
6892 enter_lazy_tlb(&init_mm, current);
6893
6894 /*
6895 * Make us the idle thread. Technically, schedule() should not be
6896 * called from this thread, however somewhere below it might be,
6897 * but because we are the idle thread, we just pick up running again
6898 * when this runqueue becomes "idle".
6899 */
6900 init_idle(current, smp_processor_id());
6901
6902 calc_load_update = jiffies + LOAD_FREQ;
6903
6904 /*
6905 * During early bootup we pretend to be a normal task:
6906 */
6907 current->sched_class = &fair_sched_class;
6908
6909 #ifdef CONFIG_SMP
6910 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6911 /* May be allocated at isolcpus cmdline parse time */
6912 if (cpu_isolated_map == NULL)
6913 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6914 idle_thread_set_boot_cpu();
6915 #endif
6916 init_sched_fair_class();
6917
6918 scheduler_running = 1;
6919 }
6920
6921 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6922 static inline int preempt_count_equals(int preempt_offset)
6923 {
6924 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6925
6926 return (nested == preempt_offset);
6927 }
6928
6929 void __might_sleep(const char *file, int line, int preempt_offset)
6930 {
6931 static unsigned long prev_jiffy; /* ratelimiting */
6932
6933 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6934 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6935 system_state != SYSTEM_RUNNING || oops_in_progress)
6936 return;
6937 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6938 return;
6939 prev_jiffy = jiffies;
6940
6941 printk(KERN_ERR
6942 "BUG: sleeping function called from invalid context at %s:%d\n",
6943 file, line);
6944 printk(KERN_ERR
6945 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6946 in_atomic(), irqs_disabled(),
6947 current->pid, current->comm);
6948
6949 debug_show_held_locks(current);
6950 if (irqs_disabled())
6951 print_irqtrace_events(current);
6952 dump_stack();
6953 }
6954 EXPORT_SYMBOL(__might_sleep);
6955 #endif
6956
6957 #ifdef CONFIG_MAGIC_SYSRQ
6958 static void normalize_task(struct rq *rq, struct task_struct *p)
6959 {
6960 const struct sched_class *prev_class = p->sched_class;
6961 int old_prio = p->prio;
6962 int on_rq;
6963
6964 on_rq = p->on_rq;
6965 if (on_rq)
6966 dequeue_task(rq, p, 0);
6967 __setscheduler(rq, p, SCHED_NORMAL, 0);
6968 if (on_rq) {
6969 enqueue_task(rq, p, 0);
6970 resched_task(rq->curr);
6971 }
6972
6973 check_class_changed(rq, p, prev_class, old_prio);
6974 }
6975
6976 void normalize_rt_tasks(void)
6977 {
6978 struct task_struct *g, *p;
6979 unsigned long flags;
6980 struct rq *rq;
6981
6982 read_lock_irqsave(&tasklist_lock, flags);
6983 do_each_thread(g, p) {
6984 /*
6985 * Only normalize user tasks:
6986 */
6987 if (!p->mm)
6988 continue;
6989
6990 p->se.exec_start = 0;
6991 #ifdef CONFIG_SCHEDSTATS
6992 p->se.statistics.wait_start = 0;
6993 p->se.statistics.sleep_start = 0;
6994 p->se.statistics.block_start = 0;
6995 #endif
6996
6997 if (!rt_task(p)) {
6998 /*
6999 * Renice negative nice level userspace
7000 * tasks back to 0:
7001 */
7002 if (TASK_NICE(p) < 0 && p->mm)
7003 set_user_nice(p, 0);
7004 continue;
7005 }
7006
7007 raw_spin_lock(&p->pi_lock);
7008 rq = __task_rq_lock(p);
7009
7010 normalize_task(rq, p);
7011
7012 __task_rq_unlock(rq);
7013 raw_spin_unlock(&p->pi_lock);
7014 } while_each_thread(g, p);
7015
7016 read_unlock_irqrestore(&tasklist_lock, flags);
7017 }
7018
7019 #endif /* CONFIG_MAGIC_SYSRQ */
7020
7021 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7022 /*
7023 * These functions are only useful for the IA64 MCA handling, or kdb.
7024 *
7025 * They can only be called when the whole system has been
7026 * stopped - every CPU needs to be quiescent, and no scheduling
7027 * activity can take place. Using them for anything else would
7028 * be a serious bug, and as a result, they aren't even visible
7029 * under any other configuration.
7030 */
7031
7032 /**
7033 * curr_task - return the current task for a given cpu.
7034 * @cpu: the processor in question.
7035 *
7036 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7037 */
7038 struct task_struct *curr_task(int cpu)
7039 {
7040 return cpu_curr(cpu);
7041 }
7042
7043 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7044
7045 #ifdef CONFIG_IA64
7046 /**
7047 * set_curr_task - set the current task for a given cpu.
7048 * @cpu: the processor in question.
7049 * @p: the task pointer to set.
7050 *
7051 * Description: This function must only be used when non-maskable interrupts
7052 * are serviced on a separate stack. It allows the architecture to switch the
7053 * notion of the current task on a cpu in a non-blocking manner. This function
7054 * must be called with all CPU's synchronized, and interrupts disabled, the
7055 * and caller must save the original value of the current task (see
7056 * curr_task() above) and restore that value before reenabling interrupts and
7057 * re-starting the system.
7058 *
7059 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7060 */
7061 void set_curr_task(int cpu, struct task_struct *p)
7062 {
7063 cpu_curr(cpu) = p;
7064 }
7065
7066 #endif
7067
7068 #ifdef CONFIG_CGROUP_SCHED
7069 /* task_group_lock serializes the addition/removal of task groups */
7070 static DEFINE_SPINLOCK(task_group_lock);
7071
7072 static void free_sched_group(struct task_group *tg)
7073 {
7074 free_fair_sched_group(tg);
7075 free_rt_sched_group(tg);
7076 autogroup_free(tg);
7077 kfree(tg);
7078 }
7079
7080 /* allocate runqueue etc for a new task group */
7081 struct task_group *sched_create_group(struct task_group *parent)
7082 {
7083 struct task_group *tg;
7084 unsigned long flags;
7085
7086 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7087 if (!tg)
7088 return ERR_PTR(-ENOMEM);
7089
7090 if (!alloc_fair_sched_group(tg, parent))
7091 goto err;
7092
7093 if (!alloc_rt_sched_group(tg, parent))
7094 goto err;
7095
7096 spin_lock_irqsave(&task_group_lock, flags);
7097 list_add_rcu(&tg->list, &task_groups);
7098
7099 WARN_ON(!parent); /* root should already exist */
7100
7101 tg->parent = parent;
7102 INIT_LIST_HEAD(&tg->children);
7103 list_add_rcu(&tg->siblings, &parent->children);
7104 spin_unlock_irqrestore(&task_group_lock, flags);
7105
7106 return tg;
7107
7108 err:
7109 free_sched_group(tg);
7110 return ERR_PTR(-ENOMEM);
7111 }
7112
7113 /* rcu callback to free various structures associated with a task group */
7114 static void free_sched_group_rcu(struct rcu_head *rhp)
7115 {
7116 /* now it should be safe to free those cfs_rqs */
7117 free_sched_group(container_of(rhp, struct task_group, rcu));
7118 }
7119
7120 /* Destroy runqueue etc associated with a task group */
7121 void sched_destroy_group(struct task_group *tg)
7122 {
7123 unsigned long flags;
7124 int i;
7125
7126 /* end participation in shares distribution */
7127 for_each_possible_cpu(i)
7128 unregister_fair_sched_group(tg, i);
7129
7130 spin_lock_irqsave(&task_group_lock, flags);
7131 list_del_rcu(&tg->list);
7132 list_del_rcu(&tg->siblings);
7133 spin_unlock_irqrestore(&task_group_lock, flags);
7134
7135 /* wait for possible concurrent references to cfs_rqs complete */
7136 call_rcu(&tg->rcu, free_sched_group_rcu);
7137 }
7138
7139 /* change task's runqueue when it moves between groups.
7140 * The caller of this function should have put the task in its new group
7141 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7142 * reflect its new group.
7143 */
7144 void sched_move_task(struct task_struct *tsk)
7145 {
7146 struct task_group *tg;
7147 int on_rq, running;
7148 unsigned long flags;
7149 struct rq *rq;
7150
7151 rq = task_rq_lock(tsk, &flags);
7152
7153 running = task_current(rq, tsk);
7154 on_rq = tsk->on_rq;
7155
7156 if (on_rq)
7157 dequeue_task(rq, tsk, 0);
7158 if (unlikely(running))
7159 tsk->sched_class->put_prev_task(rq, tsk);
7160
7161 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7162 lockdep_is_held(&tsk->sighand->siglock)),
7163 struct task_group, css);
7164 tg = autogroup_task_group(tsk, tg);
7165 tsk->sched_task_group = tg;
7166
7167 #ifdef CONFIG_FAIR_GROUP_SCHED
7168 if (tsk->sched_class->task_move_group)
7169 tsk->sched_class->task_move_group(tsk, on_rq);
7170 else
7171 #endif
7172 set_task_rq(tsk, task_cpu(tsk));
7173
7174 if (unlikely(running))
7175 tsk->sched_class->set_curr_task(rq);
7176 if (on_rq)
7177 enqueue_task(rq, tsk, 0);
7178
7179 task_rq_unlock(rq, tsk, &flags);
7180 }
7181 #endif /* CONFIG_CGROUP_SCHED */
7182
7183 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7184 static unsigned long to_ratio(u64 period, u64 runtime)
7185 {
7186 if (runtime == RUNTIME_INF)
7187 return 1ULL << 20;
7188
7189 return div64_u64(runtime << 20, period);
7190 }
7191 #endif
7192
7193 #ifdef CONFIG_RT_GROUP_SCHED
7194 /*
7195 * Ensure that the real time constraints are schedulable.
7196 */
7197 static DEFINE_MUTEX(rt_constraints_mutex);
7198
7199 /* Must be called with tasklist_lock held */
7200 static inline int tg_has_rt_tasks(struct task_group *tg)
7201 {
7202 struct task_struct *g, *p;
7203
7204 do_each_thread(g, p) {
7205 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7206 return 1;
7207 } while_each_thread(g, p);
7208
7209 return 0;
7210 }
7211
7212 struct rt_schedulable_data {
7213 struct task_group *tg;
7214 u64 rt_period;
7215 u64 rt_runtime;
7216 };
7217
7218 static int tg_rt_schedulable(struct task_group *tg, void *data)
7219 {
7220 struct rt_schedulable_data *d = data;
7221 struct task_group *child;
7222 unsigned long total, sum = 0;
7223 u64 period, runtime;
7224
7225 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7226 runtime = tg->rt_bandwidth.rt_runtime;
7227
7228 if (tg == d->tg) {
7229 period = d->rt_period;
7230 runtime = d->rt_runtime;
7231 }
7232
7233 /*
7234 * Cannot have more runtime than the period.
7235 */
7236 if (runtime > period && runtime != RUNTIME_INF)
7237 return -EINVAL;
7238
7239 /*
7240 * Ensure we don't starve existing RT tasks.
7241 */
7242 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7243 return -EBUSY;
7244
7245 total = to_ratio(period, runtime);
7246
7247 /*
7248 * Nobody can have more than the global setting allows.
7249 */
7250 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7251 return -EINVAL;
7252
7253 /*
7254 * The sum of our children's runtime should not exceed our own.
7255 */
7256 list_for_each_entry_rcu(child, &tg->children, siblings) {
7257 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7258 runtime = child->rt_bandwidth.rt_runtime;
7259
7260 if (child == d->tg) {
7261 period = d->rt_period;
7262 runtime = d->rt_runtime;
7263 }
7264
7265 sum += to_ratio(period, runtime);
7266 }
7267
7268 if (sum > total)
7269 return -EINVAL;
7270
7271 return 0;
7272 }
7273
7274 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7275 {
7276 int ret;
7277
7278 struct rt_schedulable_data data = {
7279 .tg = tg,
7280 .rt_period = period,
7281 .rt_runtime = runtime,
7282 };
7283
7284 rcu_read_lock();
7285 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7286 rcu_read_unlock();
7287
7288 return ret;
7289 }
7290
7291 static int tg_set_rt_bandwidth(struct task_group *tg,
7292 u64 rt_period, u64 rt_runtime)
7293 {
7294 int i, err = 0;
7295
7296 mutex_lock(&rt_constraints_mutex);
7297 read_lock(&tasklist_lock);
7298 err = __rt_schedulable(tg, rt_period, rt_runtime);
7299 if (err)
7300 goto unlock;
7301
7302 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7303 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7304 tg->rt_bandwidth.rt_runtime = rt_runtime;
7305
7306 for_each_possible_cpu(i) {
7307 struct rt_rq *rt_rq = tg->rt_rq[i];
7308
7309 raw_spin_lock(&rt_rq->rt_runtime_lock);
7310 rt_rq->rt_runtime = rt_runtime;
7311 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7312 }
7313 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7314 unlock:
7315 read_unlock(&tasklist_lock);
7316 mutex_unlock(&rt_constraints_mutex);
7317
7318 return err;
7319 }
7320
7321 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7322 {
7323 u64 rt_runtime, rt_period;
7324
7325 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7326 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7327 if (rt_runtime_us < 0)
7328 rt_runtime = RUNTIME_INF;
7329
7330 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7331 }
7332
7333 long sched_group_rt_runtime(struct task_group *tg)
7334 {
7335 u64 rt_runtime_us;
7336
7337 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7338 return -1;
7339
7340 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7341 do_div(rt_runtime_us, NSEC_PER_USEC);
7342 return rt_runtime_us;
7343 }
7344
7345 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7346 {
7347 u64 rt_runtime, rt_period;
7348
7349 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7350 rt_runtime = tg->rt_bandwidth.rt_runtime;
7351
7352 if (rt_period == 0)
7353 return -EINVAL;
7354
7355 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7356 }
7357
7358 long sched_group_rt_period(struct task_group *tg)
7359 {
7360 u64 rt_period_us;
7361
7362 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7363 do_div(rt_period_us, NSEC_PER_USEC);
7364 return rt_period_us;
7365 }
7366
7367 static int sched_rt_global_constraints(void)
7368 {
7369 u64 runtime, period;
7370 int ret = 0;
7371
7372 if (sysctl_sched_rt_period <= 0)
7373 return -EINVAL;
7374
7375 runtime = global_rt_runtime();
7376 period = global_rt_period();
7377
7378 /*
7379 * Sanity check on the sysctl variables.
7380 */
7381 if (runtime > period && runtime != RUNTIME_INF)
7382 return -EINVAL;
7383
7384 mutex_lock(&rt_constraints_mutex);
7385 read_lock(&tasklist_lock);
7386 ret = __rt_schedulable(NULL, 0, 0);
7387 read_unlock(&tasklist_lock);
7388 mutex_unlock(&rt_constraints_mutex);
7389
7390 return ret;
7391 }
7392
7393 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7394 {
7395 /* Don't accept realtime tasks when there is no way for them to run */
7396 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7397 return 0;
7398
7399 return 1;
7400 }
7401
7402 #else /* !CONFIG_RT_GROUP_SCHED */
7403 static int sched_rt_global_constraints(void)
7404 {
7405 unsigned long flags;
7406 int i;
7407
7408 if (sysctl_sched_rt_period <= 0)
7409 return -EINVAL;
7410
7411 /*
7412 * There's always some RT tasks in the root group
7413 * -- migration, kstopmachine etc..
7414 */
7415 if (sysctl_sched_rt_runtime == 0)
7416 return -EBUSY;
7417
7418 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7419 for_each_possible_cpu(i) {
7420 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7421
7422 raw_spin_lock(&rt_rq->rt_runtime_lock);
7423 rt_rq->rt_runtime = global_rt_runtime();
7424 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7425 }
7426 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7427
7428 return 0;
7429 }
7430 #endif /* CONFIG_RT_GROUP_SCHED */
7431
7432 int sched_rt_handler(struct ctl_table *table, int write,
7433 void __user *buffer, size_t *lenp,
7434 loff_t *ppos)
7435 {
7436 int ret;
7437 int old_period, old_runtime;
7438 static DEFINE_MUTEX(mutex);
7439
7440 mutex_lock(&mutex);
7441 old_period = sysctl_sched_rt_period;
7442 old_runtime = sysctl_sched_rt_runtime;
7443
7444 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7445
7446 if (!ret && write) {
7447 ret = sched_rt_global_constraints();
7448 if (ret) {
7449 sysctl_sched_rt_period = old_period;
7450 sysctl_sched_rt_runtime = old_runtime;
7451 } else {
7452 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7453 def_rt_bandwidth.rt_period =
7454 ns_to_ktime(global_rt_period());
7455 }
7456 }
7457 mutex_unlock(&mutex);
7458
7459 return ret;
7460 }
7461
7462 #ifdef CONFIG_CGROUP_SCHED
7463
7464 /* return corresponding task_group object of a cgroup */
7465 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7466 {
7467 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7468 struct task_group, css);
7469 }
7470
7471 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7472 {
7473 struct task_group *tg, *parent;
7474
7475 if (!cgrp->parent) {
7476 /* This is early initialization for the top cgroup */
7477 return &root_task_group.css;
7478 }
7479
7480 parent = cgroup_tg(cgrp->parent);
7481 tg = sched_create_group(parent);
7482 if (IS_ERR(tg))
7483 return ERR_PTR(-ENOMEM);
7484
7485 return &tg->css;
7486 }
7487
7488 static void cpu_cgroup_destroy(struct cgroup *cgrp)
7489 {
7490 struct task_group *tg = cgroup_tg(cgrp);
7491
7492 sched_destroy_group(tg);
7493 }
7494
7495 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7496 struct cgroup_taskset *tset)
7497 {
7498 struct task_struct *task;
7499
7500 cgroup_taskset_for_each(task, cgrp, tset) {
7501 #ifdef CONFIG_RT_GROUP_SCHED
7502 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7503 return -EINVAL;
7504 #else
7505 /* We don't support RT-tasks being in separate groups */
7506 if (task->sched_class != &fair_sched_class)
7507 return -EINVAL;
7508 #endif
7509 }
7510 return 0;
7511 }
7512
7513 static void cpu_cgroup_attach(struct cgroup *cgrp,
7514 struct cgroup_taskset *tset)
7515 {
7516 struct task_struct *task;
7517
7518 cgroup_taskset_for_each(task, cgrp, tset)
7519 sched_move_task(task);
7520 }
7521
7522 static void
7523 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7524 struct task_struct *task)
7525 {
7526 /*
7527 * cgroup_exit() is called in the copy_process() failure path.
7528 * Ignore this case since the task hasn't ran yet, this avoids
7529 * trying to poke a half freed task state from generic code.
7530 */
7531 if (!(task->flags & PF_EXITING))
7532 return;
7533
7534 sched_move_task(task);
7535 }
7536
7537 #ifdef CONFIG_FAIR_GROUP_SCHED
7538 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7539 u64 shareval)
7540 {
7541 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7542 }
7543
7544 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7545 {
7546 struct task_group *tg = cgroup_tg(cgrp);
7547
7548 return (u64) scale_load_down(tg->shares);
7549 }
7550
7551 #ifdef CONFIG_CFS_BANDWIDTH
7552 static DEFINE_MUTEX(cfs_constraints_mutex);
7553
7554 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7555 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7556
7557 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7558
7559 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7560 {
7561 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7562 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7563
7564 if (tg == &root_task_group)
7565 return -EINVAL;
7566
7567 /*
7568 * Ensure we have at some amount of bandwidth every period. This is
7569 * to prevent reaching a state of large arrears when throttled via
7570 * entity_tick() resulting in prolonged exit starvation.
7571 */
7572 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7573 return -EINVAL;
7574
7575 /*
7576 * Likewise, bound things on the otherside by preventing insane quota
7577 * periods. This also allows us to normalize in computing quota
7578 * feasibility.
7579 */
7580 if (period > max_cfs_quota_period)
7581 return -EINVAL;
7582
7583 mutex_lock(&cfs_constraints_mutex);
7584 ret = __cfs_schedulable(tg, period, quota);
7585 if (ret)
7586 goto out_unlock;
7587
7588 runtime_enabled = quota != RUNTIME_INF;
7589 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7590 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7591 raw_spin_lock_irq(&cfs_b->lock);
7592 cfs_b->period = ns_to_ktime(period);
7593 cfs_b->quota = quota;
7594
7595 __refill_cfs_bandwidth_runtime(cfs_b);
7596 /* restart the period timer (if active) to handle new period expiry */
7597 if (runtime_enabled && cfs_b->timer_active) {
7598 /* force a reprogram */
7599 cfs_b->timer_active = 0;
7600 __start_cfs_bandwidth(cfs_b);
7601 }
7602 raw_spin_unlock_irq(&cfs_b->lock);
7603
7604 for_each_possible_cpu(i) {
7605 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7606 struct rq *rq = cfs_rq->rq;
7607
7608 raw_spin_lock_irq(&rq->lock);
7609 cfs_rq->runtime_enabled = runtime_enabled;
7610 cfs_rq->runtime_remaining = 0;
7611
7612 if (cfs_rq->throttled)
7613 unthrottle_cfs_rq(cfs_rq);
7614 raw_spin_unlock_irq(&rq->lock);
7615 }
7616 out_unlock:
7617 mutex_unlock(&cfs_constraints_mutex);
7618
7619 return ret;
7620 }
7621
7622 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7623 {
7624 u64 quota, period;
7625
7626 period = ktime_to_ns(tg->cfs_bandwidth.period);
7627 if (cfs_quota_us < 0)
7628 quota = RUNTIME_INF;
7629 else
7630 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7631
7632 return tg_set_cfs_bandwidth(tg, period, quota);
7633 }
7634
7635 long tg_get_cfs_quota(struct task_group *tg)
7636 {
7637 u64 quota_us;
7638
7639 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7640 return -1;
7641
7642 quota_us = tg->cfs_bandwidth.quota;
7643 do_div(quota_us, NSEC_PER_USEC);
7644
7645 return quota_us;
7646 }
7647
7648 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7649 {
7650 u64 quota, period;
7651
7652 period = (u64)cfs_period_us * NSEC_PER_USEC;
7653 quota = tg->cfs_bandwidth.quota;
7654
7655 return tg_set_cfs_bandwidth(tg, period, quota);
7656 }
7657
7658 long tg_get_cfs_period(struct task_group *tg)
7659 {
7660 u64 cfs_period_us;
7661
7662 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7663 do_div(cfs_period_us, NSEC_PER_USEC);
7664
7665 return cfs_period_us;
7666 }
7667
7668 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7669 {
7670 return tg_get_cfs_quota(cgroup_tg(cgrp));
7671 }
7672
7673 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7674 s64 cfs_quota_us)
7675 {
7676 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7677 }
7678
7679 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7680 {
7681 return tg_get_cfs_period(cgroup_tg(cgrp));
7682 }
7683
7684 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7685 u64 cfs_period_us)
7686 {
7687 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7688 }
7689
7690 struct cfs_schedulable_data {
7691 struct task_group *tg;
7692 u64 period, quota;
7693 };
7694
7695 /*
7696 * normalize group quota/period to be quota/max_period
7697 * note: units are usecs
7698 */
7699 static u64 normalize_cfs_quota(struct task_group *tg,
7700 struct cfs_schedulable_data *d)
7701 {
7702 u64 quota, period;
7703
7704 if (tg == d->tg) {
7705 period = d->period;
7706 quota = d->quota;
7707 } else {
7708 period = tg_get_cfs_period(tg);
7709 quota = tg_get_cfs_quota(tg);
7710 }
7711
7712 /* note: these should typically be equivalent */
7713 if (quota == RUNTIME_INF || quota == -1)
7714 return RUNTIME_INF;
7715
7716 return to_ratio(period, quota);
7717 }
7718
7719 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7720 {
7721 struct cfs_schedulable_data *d = data;
7722 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7723 s64 quota = 0, parent_quota = -1;
7724
7725 if (!tg->parent) {
7726 quota = RUNTIME_INF;
7727 } else {
7728 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7729
7730 quota = normalize_cfs_quota(tg, d);
7731 parent_quota = parent_b->hierarchal_quota;
7732
7733 /*
7734 * ensure max(child_quota) <= parent_quota, inherit when no
7735 * limit is set
7736 */
7737 if (quota == RUNTIME_INF)
7738 quota = parent_quota;
7739 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7740 return -EINVAL;
7741 }
7742 cfs_b->hierarchal_quota = quota;
7743
7744 return 0;
7745 }
7746
7747 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7748 {
7749 int ret;
7750 struct cfs_schedulable_data data = {
7751 .tg = tg,
7752 .period = period,
7753 .quota = quota,
7754 };
7755
7756 if (quota != RUNTIME_INF) {
7757 do_div(data.period, NSEC_PER_USEC);
7758 do_div(data.quota, NSEC_PER_USEC);
7759 }
7760
7761 rcu_read_lock();
7762 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7763 rcu_read_unlock();
7764
7765 return ret;
7766 }
7767
7768 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7769 struct cgroup_map_cb *cb)
7770 {
7771 struct task_group *tg = cgroup_tg(cgrp);
7772 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7773
7774 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7775 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7776 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7777
7778 return 0;
7779 }
7780 #endif /* CONFIG_CFS_BANDWIDTH */
7781 #endif /* CONFIG_FAIR_GROUP_SCHED */
7782
7783 #ifdef CONFIG_RT_GROUP_SCHED
7784 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7785 s64 val)
7786 {
7787 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7788 }
7789
7790 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7791 {
7792 return sched_group_rt_runtime(cgroup_tg(cgrp));
7793 }
7794
7795 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7796 u64 rt_period_us)
7797 {
7798 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7799 }
7800
7801 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7802 {
7803 return sched_group_rt_period(cgroup_tg(cgrp));
7804 }
7805 #endif /* CONFIG_RT_GROUP_SCHED */
7806
7807 static struct cftype cpu_files[] = {
7808 #ifdef CONFIG_FAIR_GROUP_SCHED
7809 {
7810 .name = "shares",
7811 .read_u64 = cpu_shares_read_u64,
7812 .write_u64 = cpu_shares_write_u64,
7813 },
7814 #endif
7815 #ifdef CONFIG_CFS_BANDWIDTH
7816 {
7817 .name = "cfs_quota_us",
7818 .read_s64 = cpu_cfs_quota_read_s64,
7819 .write_s64 = cpu_cfs_quota_write_s64,
7820 },
7821 {
7822 .name = "cfs_period_us",
7823 .read_u64 = cpu_cfs_period_read_u64,
7824 .write_u64 = cpu_cfs_period_write_u64,
7825 },
7826 {
7827 .name = "stat",
7828 .read_map = cpu_stats_show,
7829 },
7830 #endif
7831 #ifdef CONFIG_RT_GROUP_SCHED
7832 {
7833 .name = "rt_runtime_us",
7834 .read_s64 = cpu_rt_runtime_read,
7835 .write_s64 = cpu_rt_runtime_write,
7836 },
7837 {
7838 .name = "rt_period_us",
7839 .read_u64 = cpu_rt_period_read_uint,
7840 .write_u64 = cpu_rt_period_write_uint,
7841 },
7842 #endif
7843 { } /* terminate */
7844 };
7845
7846 struct cgroup_subsys cpu_cgroup_subsys = {
7847 .name = "cpu",
7848 .create = cpu_cgroup_create,
7849 .destroy = cpu_cgroup_destroy,
7850 .can_attach = cpu_cgroup_can_attach,
7851 .attach = cpu_cgroup_attach,
7852 .exit = cpu_cgroup_exit,
7853 .subsys_id = cpu_cgroup_subsys_id,
7854 .base_cftypes = cpu_files,
7855 .early_init = 1,
7856 };
7857
7858 #endif /* CONFIG_CGROUP_SCHED */
7859
7860 #ifdef CONFIG_CGROUP_CPUACCT
7861
7862 /*
7863 * CPU accounting code for task groups.
7864 *
7865 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7866 * (balbir@in.ibm.com).
7867 */
7868
7869 struct cpuacct root_cpuacct;
7870
7871 /* create a new cpu accounting group */
7872 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7873 {
7874 struct cpuacct *ca;
7875
7876 if (!cgrp->parent)
7877 return &root_cpuacct.css;
7878
7879 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7880 if (!ca)
7881 goto out;
7882
7883 ca->cpuusage = alloc_percpu(u64);
7884 if (!ca->cpuusage)
7885 goto out_free_ca;
7886
7887 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7888 if (!ca->cpustat)
7889 goto out_free_cpuusage;
7890
7891 return &ca->css;
7892
7893 out_free_cpuusage:
7894 free_percpu(ca->cpuusage);
7895 out_free_ca:
7896 kfree(ca);
7897 out:
7898 return ERR_PTR(-ENOMEM);
7899 }
7900
7901 /* destroy an existing cpu accounting group */
7902 static void cpuacct_destroy(struct cgroup *cgrp)
7903 {
7904 struct cpuacct *ca = cgroup_ca(cgrp);
7905
7906 free_percpu(ca->cpustat);
7907 free_percpu(ca->cpuusage);
7908 kfree(ca);
7909 }
7910
7911 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7912 {
7913 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7914 u64 data;
7915
7916 #ifndef CONFIG_64BIT
7917 /*
7918 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7919 */
7920 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7921 data = *cpuusage;
7922 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7923 #else
7924 data = *cpuusage;
7925 #endif
7926
7927 return data;
7928 }
7929
7930 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7931 {
7932 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7933
7934 #ifndef CONFIG_64BIT
7935 /*
7936 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7937 */
7938 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7939 *cpuusage = val;
7940 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7941 #else
7942 *cpuusage = val;
7943 #endif
7944 }
7945
7946 /* return total cpu usage (in nanoseconds) of a group */
7947 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7948 {
7949 struct cpuacct *ca = cgroup_ca(cgrp);
7950 u64 totalcpuusage = 0;
7951 int i;
7952
7953 for_each_present_cpu(i)
7954 totalcpuusage += cpuacct_cpuusage_read(ca, i);
7955
7956 return totalcpuusage;
7957 }
7958
7959 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
7960 u64 reset)
7961 {
7962 struct cpuacct *ca = cgroup_ca(cgrp);
7963 int err = 0;
7964 int i;
7965
7966 if (reset) {
7967 err = -EINVAL;
7968 goto out;
7969 }
7970
7971 for_each_present_cpu(i)
7972 cpuacct_cpuusage_write(ca, i, 0);
7973
7974 out:
7975 return err;
7976 }
7977
7978 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
7979 struct seq_file *m)
7980 {
7981 struct cpuacct *ca = cgroup_ca(cgroup);
7982 u64 percpu;
7983 int i;
7984
7985 for_each_present_cpu(i) {
7986 percpu = cpuacct_cpuusage_read(ca, i);
7987 seq_printf(m, "%llu ", (unsigned long long) percpu);
7988 }
7989 seq_printf(m, "\n");
7990 return 0;
7991 }
7992
7993 static const char *cpuacct_stat_desc[] = {
7994 [CPUACCT_STAT_USER] = "user",
7995 [CPUACCT_STAT_SYSTEM] = "system",
7996 };
7997
7998 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
7999 struct cgroup_map_cb *cb)
8000 {
8001 struct cpuacct *ca = cgroup_ca(cgrp);
8002 int cpu;
8003 s64 val = 0;
8004
8005 for_each_online_cpu(cpu) {
8006 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8007 val += kcpustat->cpustat[CPUTIME_USER];
8008 val += kcpustat->cpustat[CPUTIME_NICE];
8009 }
8010 val = cputime64_to_clock_t(val);
8011 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8012
8013 val = 0;
8014 for_each_online_cpu(cpu) {
8015 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8016 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8017 val += kcpustat->cpustat[CPUTIME_IRQ];
8018 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8019 }
8020
8021 val = cputime64_to_clock_t(val);
8022 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8023
8024 return 0;
8025 }
8026
8027 static struct cftype files[] = {
8028 {
8029 .name = "usage",
8030 .read_u64 = cpuusage_read,
8031 .write_u64 = cpuusage_write,
8032 },
8033 {
8034 .name = "usage_percpu",
8035 .read_seq_string = cpuacct_percpu_seq_read,
8036 },
8037 {
8038 .name = "stat",
8039 .read_map = cpuacct_stats_show,
8040 },
8041 { } /* terminate */
8042 };
8043
8044 /*
8045 * charge this task's execution time to its accounting group.
8046 *
8047 * called with rq->lock held.
8048 */
8049 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8050 {
8051 struct cpuacct *ca;
8052 int cpu;
8053
8054 if (unlikely(!cpuacct_subsys.active))
8055 return;
8056
8057 cpu = task_cpu(tsk);
8058
8059 rcu_read_lock();
8060
8061 ca = task_ca(tsk);
8062
8063 for (; ca; ca = parent_ca(ca)) {
8064 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8065 *cpuusage += cputime;
8066 }
8067
8068 rcu_read_unlock();
8069 }
8070
8071 struct cgroup_subsys cpuacct_subsys = {
8072 .name = "cpuacct",
8073 .create = cpuacct_create,
8074 .destroy = cpuacct_destroy,
8075 .subsys_id = cpuacct_subsys_id,
8076 .base_cftypes = files,
8077 };
8078 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.220791 seconds and 6 git commands to generate.