Merge remote-tracking branches 'spi/fix/s3c64xx', 'spi/fix/samsung' and 'spi/fix...
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 #ifdef smp_mb__before_atomic
94 void __smp_mb__before_atomic(void)
95 {
96 smp_mb__before_atomic();
97 }
98 EXPORT_SYMBOL(__smp_mb__before_atomic);
99 #endif
100
101 #ifdef smp_mb__after_atomic
102 void __smp_mb__after_atomic(void)
103 {
104 smp_mb__after_atomic();
105 }
106 EXPORT_SYMBOL(__smp_mb__after_atomic);
107 #endif
108
109 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110 {
111 unsigned long delta;
112 ktime_t soft, hard, now;
113
114 for (;;) {
115 if (hrtimer_active(period_timer))
116 break;
117
118 now = hrtimer_cb_get_time(period_timer);
119 hrtimer_forward(period_timer, now, period);
120
121 soft = hrtimer_get_softexpires(period_timer);
122 hard = hrtimer_get_expires(period_timer);
123 delta = ktime_to_ns(ktime_sub(hard, soft));
124 __hrtimer_start_range_ns(period_timer, soft, delta,
125 HRTIMER_MODE_ABS_PINNED, 0);
126 }
127 }
128
129 DEFINE_MUTEX(sched_domains_mutex);
130 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131
132 static void update_rq_clock_task(struct rq *rq, s64 delta);
133
134 void update_rq_clock(struct rq *rq)
135 {
136 s64 delta;
137
138 if (rq->skip_clock_update > 0)
139 return;
140
141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142 rq->clock += delta;
143 update_rq_clock_task(rq, delta);
144 }
145
146 /*
147 * Debugging: various feature bits
148 */
149
150 #define SCHED_FEAT(name, enabled) \
151 (1UL << __SCHED_FEAT_##name) * enabled |
152
153 const_debug unsigned int sysctl_sched_features =
154 #include "features.h"
155 0;
156
157 #undef SCHED_FEAT
158
159 #ifdef CONFIG_SCHED_DEBUG
160 #define SCHED_FEAT(name, enabled) \
161 #name ,
162
163 static const char * const sched_feat_names[] = {
164 #include "features.h"
165 };
166
167 #undef SCHED_FEAT
168
169 static int sched_feat_show(struct seq_file *m, void *v)
170 {
171 int i;
172
173 for (i = 0; i < __SCHED_FEAT_NR; i++) {
174 if (!(sysctl_sched_features & (1UL << i)))
175 seq_puts(m, "NO_");
176 seq_printf(m, "%s ", sched_feat_names[i]);
177 }
178 seq_puts(m, "\n");
179
180 return 0;
181 }
182
183 #ifdef HAVE_JUMP_LABEL
184
185 #define jump_label_key__true STATIC_KEY_INIT_TRUE
186 #define jump_label_key__false STATIC_KEY_INIT_FALSE
187
188 #define SCHED_FEAT(name, enabled) \
189 jump_label_key__##enabled ,
190
191 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
192 #include "features.h"
193 };
194
195 #undef SCHED_FEAT
196
197 static void sched_feat_disable(int i)
198 {
199 if (static_key_enabled(&sched_feat_keys[i]))
200 static_key_slow_dec(&sched_feat_keys[i]);
201 }
202
203 static void sched_feat_enable(int i)
204 {
205 if (!static_key_enabled(&sched_feat_keys[i]))
206 static_key_slow_inc(&sched_feat_keys[i]);
207 }
208 #else
209 static void sched_feat_disable(int i) { };
210 static void sched_feat_enable(int i) { };
211 #endif /* HAVE_JUMP_LABEL */
212
213 static int sched_feat_set(char *cmp)
214 {
215 int i;
216 int neg = 0;
217
218 if (strncmp(cmp, "NO_", 3) == 0) {
219 neg = 1;
220 cmp += 3;
221 }
222
223 for (i = 0; i < __SCHED_FEAT_NR; i++) {
224 if (strcmp(cmp, sched_feat_names[i]) == 0) {
225 if (neg) {
226 sysctl_sched_features &= ~(1UL << i);
227 sched_feat_disable(i);
228 } else {
229 sysctl_sched_features |= (1UL << i);
230 sched_feat_enable(i);
231 }
232 break;
233 }
234 }
235
236 return i;
237 }
238
239 static ssize_t
240 sched_feat_write(struct file *filp, const char __user *ubuf,
241 size_t cnt, loff_t *ppos)
242 {
243 char buf[64];
244 char *cmp;
245 int i;
246
247 if (cnt > 63)
248 cnt = 63;
249
250 if (copy_from_user(&buf, ubuf, cnt))
251 return -EFAULT;
252
253 buf[cnt] = 0;
254 cmp = strstrip(buf);
255
256 i = sched_feat_set(cmp);
257 if (i == __SCHED_FEAT_NR)
258 return -EINVAL;
259
260 *ppos += cnt;
261
262 return cnt;
263 }
264
265 static int sched_feat_open(struct inode *inode, struct file *filp)
266 {
267 return single_open(filp, sched_feat_show, NULL);
268 }
269
270 static const struct file_operations sched_feat_fops = {
271 .open = sched_feat_open,
272 .write = sched_feat_write,
273 .read = seq_read,
274 .llseek = seq_lseek,
275 .release = single_release,
276 };
277
278 static __init int sched_init_debug(void)
279 {
280 debugfs_create_file("sched_features", 0644, NULL, NULL,
281 &sched_feat_fops);
282
283 return 0;
284 }
285 late_initcall(sched_init_debug);
286 #endif /* CONFIG_SCHED_DEBUG */
287
288 /*
289 * Number of tasks to iterate in a single balance run.
290 * Limited because this is done with IRQs disabled.
291 */
292 const_debug unsigned int sysctl_sched_nr_migrate = 32;
293
294 /*
295 * period over which we average the RT time consumption, measured
296 * in ms.
297 *
298 * default: 1s
299 */
300 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
301
302 /*
303 * period over which we measure -rt task cpu usage in us.
304 * default: 1s
305 */
306 unsigned int sysctl_sched_rt_period = 1000000;
307
308 __read_mostly int scheduler_running;
309
310 /*
311 * part of the period that we allow rt tasks to run in us.
312 * default: 0.95s
313 */
314 int sysctl_sched_rt_runtime = 950000;
315
316 /*
317 * __task_rq_lock - lock the rq @p resides on.
318 */
319 static inline struct rq *__task_rq_lock(struct task_struct *p)
320 __acquires(rq->lock)
321 {
322 struct rq *rq;
323
324 lockdep_assert_held(&p->pi_lock);
325
326 for (;;) {
327 rq = task_rq(p);
328 raw_spin_lock(&rq->lock);
329 if (likely(rq == task_rq(p)))
330 return rq;
331 raw_spin_unlock(&rq->lock);
332 }
333 }
334
335 /*
336 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
337 */
338 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
339 __acquires(p->pi_lock)
340 __acquires(rq->lock)
341 {
342 struct rq *rq;
343
344 for (;;) {
345 raw_spin_lock_irqsave(&p->pi_lock, *flags);
346 rq = task_rq(p);
347 raw_spin_lock(&rq->lock);
348 if (likely(rq == task_rq(p)))
349 return rq;
350 raw_spin_unlock(&rq->lock);
351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352 }
353 }
354
355 static void __task_rq_unlock(struct rq *rq)
356 __releases(rq->lock)
357 {
358 raw_spin_unlock(&rq->lock);
359 }
360
361 static inline void
362 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
363 __releases(rq->lock)
364 __releases(p->pi_lock)
365 {
366 raw_spin_unlock(&rq->lock);
367 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
368 }
369
370 /*
371 * this_rq_lock - lock this runqueue and disable interrupts.
372 */
373 static struct rq *this_rq_lock(void)
374 __acquires(rq->lock)
375 {
376 struct rq *rq;
377
378 local_irq_disable();
379 rq = this_rq();
380 raw_spin_lock(&rq->lock);
381
382 return rq;
383 }
384
385 #ifdef CONFIG_SCHED_HRTICK
386 /*
387 * Use HR-timers to deliver accurate preemption points.
388 */
389
390 static void hrtick_clear(struct rq *rq)
391 {
392 if (hrtimer_active(&rq->hrtick_timer))
393 hrtimer_cancel(&rq->hrtick_timer);
394 }
395
396 /*
397 * High-resolution timer tick.
398 * Runs from hardirq context with interrupts disabled.
399 */
400 static enum hrtimer_restart hrtick(struct hrtimer *timer)
401 {
402 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
403
404 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
405
406 raw_spin_lock(&rq->lock);
407 update_rq_clock(rq);
408 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
409 raw_spin_unlock(&rq->lock);
410
411 return HRTIMER_NORESTART;
412 }
413
414 #ifdef CONFIG_SMP
415
416 static int __hrtick_restart(struct rq *rq)
417 {
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = hrtimer_get_softexpires(timer);
420
421 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
422 }
423
424 /*
425 * called from hardirq (IPI) context
426 */
427 static void __hrtick_start(void *arg)
428 {
429 struct rq *rq = arg;
430
431 raw_spin_lock(&rq->lock);
432 __hrtick_restart(rq);
433 rq->hrtick_csd_pending = 0;
434 raw_spin_unlock(&rq->lock);
435 }
436
437 /*
438 * Called to set the hrtick timer state.
439 *
440 * called with rq->lock held and irqs disabled
441 */
442 void hrtick_start(struct rq *rq, u64 delay)
443 {
444 struct hrtimer *timer = &rq->hrtick_timer;
445 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
446
447 hrtimer_set_expires(timer, time);
448
449 if (rq == this_rq()) {
450 __hrtick_restart(rq);
451 } else if (!rq->hrtick_csd_pending) {
452 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
453 rq->hrtick_csd_pending = 1;
454 }
455 }
456
457 static int
458 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
459 {
460 int cpu = (int)(long)hcpu;
461
462 switch (action) {
463 case CPU_UP_CANCELED:
464 case CPU_UP_CANCELED_FROZEN:
465 case CPU_DOWN_PREPARE:
466 case CPU_DOWN_PREPARE_FROZEN:
467 case CPU_DEAD:
468 case CPU_DEAD_FROZEN:
469 hrtick_clear(cpu_rq(cpu));
470 return NOTIFY_OK;
471 }
472
473 return NOTIFY_DONE;
474 }
475
476 static __init void init_hrtick(void)
477 {
478 hotcpu_notifier(hotplug_hrtick, 0);
479 }
480 #else
481 /*
482 * Called to set the hrtick timer state.
483 *
484 * called with rq->lock held and irqs disabled
485 */
486 void hrtick_start(struct rq *rq, u64 delay)
487 {
488 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
489 HRTIMER_MODE_REL_PINNED, 0);
490 }
491
492 static inline void init_hrtick(void)
493 {
494 }
495 #endif /* CONFIG_SMP */
496
497 static void init_rq_hrtick(struct rq *rq)
498 {
499 #ifdef CONFIG_SMP
500 rq->hrtick_csd_pending = 0;
501
502 rq->hrtick_csd.flags = 0;
503 rq->hrtick_csd.func = __hrtick_start;
504 rq->hrtick_csd.info = rq;
505 #endif
506
507 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
508 rq->hrtick_timer.function = hrtick;
509 }
510 #else /* CONFIG_SCHED_HRTICK */
511 static inline void hrtick_clear(struct rq *rq)
512 {
513 }
514
515 static inline void init_rq_hrtick(struct rq *rq)
516 {
517 }
518
519 static inline void init_hrtick(void)
520 {
521 }
522 #endif /* CONFIG_SCHED_HRTICK */
523
524 /*
525 * cmpxchg based fetch_or, macro so it works for different integer types
526 */
527 #define fetch_or(ptr, val) \
528 ({ typeof(*(ptr)) __old, __val = *(ptr); \
529 for (;;) { \
530 __old = cmpxchg((ptr), __val, __val | (val)); \
531 if (__old == __val) \
532 break; \
533 __val = __old; \
534 } \
535 __old; \
536 })
537
538 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
539 /*
540 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
541 * this avoids any races wrt polling state changes and thereby avoids
542 * spurious IPIs.
543 */
544 static bool set_nr_and_not_polling(struct task_struct *p)
545 {
546 struct thread_info *ti = task_thread_info(p);
547 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
548 }
549
550 /*
551 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
552 *
553 * If this returns true, then the idle task promises to call
554 * sched_ttwu_pending() and reschedule soon.
555 */
556 static bool set_nr_if_polling(struct task_struct *p)
557 {
558 struct thread_info *ti = task_thread_info(p);
559 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
560
561 for (;;) {
562 if (!(val & _TIF_POLLING_NRFLAG))
563 return false;
564 if (val & _TIF_NEED_RESCHED)
565 return true;
566 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
567 if (old == val)
568 break;
569 val = old;
570 }
571 return true;
572 }
573
574 #else
575 static bool set_nr_and_not_polling(struct task_struct *p)
576 {
577 set_tsk_need_resched(p);
578 return true;
579 }
580
581 #ifdef CONFIG_SMP
582 static bool set_nr_if_polling(struct task_struct *p)
583 {
584 return false;
585 }
586 #endif
587 #endif
588
589 /*
590 * resched_task - mark a task 'to be rescheduled now'.
591 *
592 * On UP this means the setting of the need_resched flag, on SMP it
593 * might also involve a cross-CPU call to trigger the scheduler on
594 * the target CPU.
595 */
596 void resched_task(struct task_struct *p)
597 {
598 int cpu;
599
600 lockdep_assert_held(&task_rq(p)->lock);
601
602 if (test_tsk_need_resched(p))
603 return;
604
605 cpu = task_cpu(p);
606
607 if (cpu == smp_processor_id()) {
608 set_tsk_need_resched(p);
609 set_preempt_need_resched();
610 return;
611 }
612
613 if (set_nr_and_not_polling(p))
614 smp_send_reschedule(cpu);
615 else
616 trace_sched_wake_idle_without_ipi(cpu);
617 }
618
619 void resched_cpu(int cpu)
620 {
621 struct rq *rq = cpu_rq(cpu);
622 unsigned long flags;
623
624 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
625 return;
626 resched_task(cpu_curr(cpu));
627 raw_spin_unlock_irqrestore(&rq->lock, flags);
628 }
629
630 #ifdef CONFIG_SMP
631 #ifdef CONFIG_NO_HZ_COMMON
632 /*
633 * In the semi idle case, use the nearest busy cpu for migrating timers
634 * from an idle cpu. This is good for power-savings.
635 *
636 * We don't do similar optimization for completely idle system, as
637 * selecting an idle cpu will add more delays to the timers than intended
638 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
639 */
640 int get_nohz_timer_target(int pinned)
641 {
642 int cpu = smp_processor_id();
643 int i;
644 struct sched_domain *sd;
645
646 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
647 return cpu;
648
649 rcu_read_lock();
650 for_each_domain(cpu, sd) {
651 for_each_cpu(i, sched_domain_span(sd)) {
652 if (!idle_cpu(i)) {
653 cpu = i;
654 goto unlock;
655 }
656 }
657 }
658 unlock:
659 rcu_read_unlock();
660 return cpu;
661 }
662 /*
663 * When add_timer_on() enqueues a timer into the timer wheel of an
664 * idle CPU then this timer might expire before the next timer event
665 * which is scheduled to wake up that CPU. In case of a completely
666 * idle system the next event might even be infinite time into the
667 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
668 * leaves the inner idle loop so the newly added timer is taken into
669 * account when the CPU goes back to idle and evaluates the timer
670 * wheel for the next timer event.
671 */
672 static void wake_up_idle_cpu(int cpu)
673 {
674 struct rq *rq = cpu_rq(cpu);
675
676 if (cpu == smp_processor_id())
677 return;
678
679 if (set_nr_and_not_polling(rq->idle))
680 smp_send_reschedule(cpu);
681 else
682 trace_sched_wake_idle_without_ipi(cpu);
683 }
684
685 static bool wake_up_full_nohz_cpu(int cpu)
686 {
687 if (tick_nohz_full_cpu(cpu)) {
688 if (cpu != smp_processor_id() ||
689 tick_nohz_tick_stopped())
690 smp_send_reschedule(cpu);
691 return true;
692 }
693
694 return false;
695 }
696
697 void wake_up_nohz_cpu(int cpu)
698 {
699 if (!wake_up_full_nohz_cpu(cpu))
700 wake_up_idle_cpu(cpu);
701 }
702
703 static inline bool got_nohz_idle_kick(void)
704 {
705 int cpu = smp_processor_id();
706
707 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
708 return false;
709
710 if (idle_cpu(cpu) && !need_resched())
711 return true;
712
713 /*
714 * We can't run Idle Load Balance on this CPU for this time so we
715 * cancel it and clear NOHZ_BALANCE_KICK
716 */
717 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
718 return false;
719 }
720
721 #else /* CONFIG_NO_HZ_COMMON */
722
723 static inline bool got_nohz_idle_kick(void)
724 {
725 return false;
726 }
727
728 #endif /* CONFIG_NO_HZ_COMMON */
729
730 #ifdef CONFIG_NO_HZ_FULL
731 bool sched_can_stop_tick(void)
732 {
733 struct rq *rq;
734
735 rq = this_rq();
736
737 /* Make sure rq->nr_running update is visible after the IPI */
738 smp_rmb();
739
740 /* More than one running task need preemption */
741 if (rq->nr_running > 1)
742 return false;
743
744 return true;
745 }
746 #endif /* CONFIG_NO_HZ_FULL */
747
748 void sched_avg_update(struct rq *rq)
749 {
750 s64 period = sched_avg_period();
751
752 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
753 /*
754 * Inline assembly required to prevent the compiler
755 * optimising this loop into a divmod call.
756 * See __iter_div_u64_rem() for another example of this.
757 */
758 asm("" : "+rm" (rq->age_stamp));
759 rq->age_stamp += period;
760 rq->rt_avg /= 2;
761 }
762 }
763
764 #endif /* CONFIG_SMP */
765
766 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
767 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
768 /*
769 * Iterate task_group tree rooted at *from, calling @down when first entering a
770 * node and @up when leaving it for the final time.
771 *
772 * Caller must hold rcu_lock or sufficient equivalent.
773 */
774 int walk_tg_tree_from(struct task_group *from,
775 tg_visitor down, tg_visitor up, void *data)
776 {
777 struct task_group *parent, *child;
778 int ret;
779
780 parent = from;
781
782 down:
783 ret = (*down)(parent, data);
784 if (ret)
785 goto out;
786 list_for_each_entry_rcu(child, &parent->children, siblings) {
787 parent = child;
788 goto down;
789
790 up:
791 continue;
792 }
793 ret = (*up)(parent, data);
794 if (ret || parent == from)
795 goto out;
796
797 child = parent;
798 parent = parent->parent;
799 if (parent)
800 goto up;
801 out:
802 return ret;
803 }
804
805 int tg_nop(struct task_group *tg, void *data)
806 {
807 return 0;
808 }
809 #endif
810
811 static void set_load_weight(struct task_struct *p)
812 {
813 int prio = p->static_prio - MAX_RT_PRIO;
814 struct load_weight *load = &p->se.load;
815
816 /*
817 * SCHED_IDLE tasks get minimal weight:
818 */
819 if (p->policy == SCHED_IDLE) {
820 load->weight = scale_load(WEIGHT_IDLEPRIO);
821 load->inv_weight = WMULT_IDLEPRIO;
822 return;
823 }
824
825 load->weight = scale_load(prio_to_weight[prio]);
826 load->inv_weight = prio_to_wmult[prio];
827 }
828
829 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
830 {
831 update_rq_clock(rq);
832 sched_info_queued(rq, p);
833 p->sched_class->enqueue_task(rq, p, flags);
834 }
835
836 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
837 {
838 update_rq_clock(rq);
839 sched_info_dequeued(rq, p);
840 p->sched_class->dequeue_task(rq, p, flags);
841 }
842
843 void activate_task(struct rq *rq, struct task_struct *p, int flags)
844 {
845 if (task_contributes_to_load(p))
846 rq->nr_uninterruptible--;
847
848 enqueue_task(rq, p, flags);
849 }
850
851 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
852 {
853 if (task_contributes_to_load(p))
854 rq->nr_uninterruptible++;
855
856 dequeue_task(rq, p, flags);
857 }
858
859 static void update_rq_clock_task(struct rq *rq, s64 delta)
860 {
861 /*
862 * In theory, the compile should just see 0 here, and optimize out the call
863 * to sched_rt_avg_update. But I don't trust it...
864 */
865 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
866 s64 steal = 0, irq_delta = 0;
867 #endif
868 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
869 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
870
871 /*
872 * Since irq_time is only updated on {soft,}irq_exit, we might run into
873 * this case when a previous update_rq_clock() happened inside a
874 * {soft,}irq region.
875 *
876 * When this happens, we stop ->clock_task and only update the
877 * prev_irq_time stamp to account for the part that fit, so that a next
878 * update will consume the rest. This ensures ->clock_task is
879 * monotonic.
880 *
881 * It does however cause some slight miss-attribution of {soft,}irq
882 * time, a more accurate solution would be to update the irq_time using
883 * the current rq->clock timestamp, except that would require using
884 * atomic ops.
885 */
886 if (irq_delta > delta)
887 irq_delta = delta;
888
889 rq->prev_irq_time += irq_delta;
890 delta -= irq_delta;
891 #endif
892 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
893 if (static_key_false((&paravirt_steal_rq_enabled))) {
894 steal = paravirt_steal_clock(cpu_of(rq));
895 steal -= rq->prev_steal_time_rq;
896
897 if (unlikely(steal > delta))
898 steal = delta;
899
900 rq->prev_steal_time_rq += steal;
901 delta -= steal;
902 }
903 #endif
904
905 rq->clock_task += delta;
906
907 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
908 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
909 sched_rt_avg_update(rq, irq_delta + steal);
910 #endif
911 }
912
913 void sched_set_stop_task(int cpu, struct task_struct *stop)
914 {
915 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
916 struct task_struct *old_stop = cpu_rq(cpu)->stop;
917
918 if (stop) {
919 /*
920 * Make it appear like a SCHED_FIFO task, its something
921 * userspace knows about and won't get confused about.
922 *
923 * Also, it will make PI more or less work without too
924 * much confusion -- but then, stop work should not
925 * rely on PI working anyway.
926 */
927 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
928
929 stop->sched_class = &stop_sched_class;
930 }
931
932 cpu_rq(cpu)->stop = stop;
933
934 if (old_stop) {
935 /*
936 * Reset it back to a normal scheduling class so that
937 * it can die in pieces.
938 */
939 old_stop->sched_class = &rt_sched_class;
940 }
941 }
942
943 /*
944 * __normal_prio - return the priority that is based on the static prio
945 */
946 static inline int __normal_prio(struct task_struct *p)
947 {
948 return p->static_prio;
949 }
950
951 /*
952 * Calculate the expected normal priority: i.e. priority
953 * without taking RT-inheritance into account. Might be
954 * boosted by interactivity modifiers. Changes upon fork,
955 * setprio syscalls, and whenever the interactivity
956 * estimator recalculates.
957 */
958 static inline int normal_prio(struct task_struct *p)
959 {
960 int prio;
961
962 if (task_has_dl_policy(p))
963 prio = MAX_DL_PRIO-1;
964 else if (task_has_rt_policy(p))
965 prio = MAX_RT_PRIO-1 - p->rt_priority;
966 else
967 prio = __normal_prio(p);
968 return prio;
969 }
970
971 /*
972 * Calculate the current priority, i.e. the priority
973 * taken into account by the scheduler. This value might
974 * be boosted by RT tasks, or might be boosted by
975 * interactivity modifiers. Will be RT if the task got
976 * RT-boosted. If not then it returns p->normal_prio.
977 */
978 static int effective_prio(struct task_struct *p)
979 {
980 p->normal_prio = normal_prio(p);
981 /*
982 * If we are RT tasks or we were boosted to RT priority,
983 * keep the priority unchanged. Otherwise, update priority
984 * to the normal priority:
985 */
986 if (!rt_prio(p->prio))
987 return p->normal_prio;
988 return p->prio;
989 }
990
991 /**
992 * task_curr - is this task currently executing on a CPU?
993 * @p: the task in question.
994 *
995 * Return: 1 if the task is currently executing. 0 otherwise.
996 */
997 inline int task_curr(const struct task_struct *p)
998 {
999 return cpu_curr(task_cpu(p)) == p;
1000 }
1001
1002 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1003 const struct sched_class *prev_class,
1004 int oldprio)
1005 {
1006 if (prev_class != p->sched_class) {
1007 if (prev_class->switched_from)
1008 prev_class->switched_from(rq, p);
1009 p->sched_class->switched_to(rq, p);
1010 } else if (oldprio != p->prio || dl_task(p))
1011 p->sched_class->prio_changed(rq, p, oldprio);
1012 }
1013
1014 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1015 {
1016 const struct sched_class *class;
1017
1018 if (p->sched_class == rq->curr->sched_class) {
1019 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1020 } else {
1021 for_each_class(class) {
1022 if (class == rq->curr->sched_class)
1023 break;
1024 if (class == p->sched_class) {
1025 resched_task(rq->curr);
1026 break;
1027 }
1028 }
1029 }
1030
1031 /*
1032 * A queue event has occurred, and we're going to schedule. In
1033 * this case, we can save a useless back to back clock update.
1034 */
1035 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1036 rq->skip_clock_update = 1;
1037 }
1038
1039 #ifdef CONFIG_SMP
1040 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1041 {
1042 #ifdef CONFIG_SCHED_DEBUG
1043 /*
1044 * We should never call set_task_cpu() on a blocked task,
1045 * ttwu() will sort out the placement.
1046 */
1047 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1048 !(task_preempt_count(p) & PREEMPT_ACTIVE));
1049
1050 #ifdef CONFIG_LOCKDEP
1051 /*
1052 * The caller should hold either p->pi_lock or rq->lock, when changing
1053 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1054 *
1055 * sched_move_task() holds both and thus holding either pins the cgroup,
1056 * see task_group().
1057 *
1058 * Furthermore, all task_rq users should acquire both locks, see
1059 * task_rq_lock().
1060 */
1061 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1062 lockdep_is_held(&task_rq(p)->lock)));
1063 #endif
1064 #endif
1065
1066 trace_sched_migrate_task(p, new_cpu);
1067
1068 if (task_cpu(p) != new_cpu) {
1069 if (p->sched_class->migrate_task_rq)
1070 p->sched_class->migrate_task_rq(p, new_cpu);
1071 p->se.nr_migrations++;
1072 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1073 }
1074
1075 __set_task_cpu(p, new_cpu);
1076 }
1077
1078 static void __migrate_swap_task(struct task_struct *p, int cpu)
1079 {
1080 if (p->on_rq) {
1081 struct rq *src_rq, *dst_rq;
1082
1083 src_rq = task_rq(p);
1084 dst_rq = cpu_rq(cpu);
1085
1086 deactivate_task(src_rq, p, 0);
1087 set_task_cpu(p, cpu);
1088 activate_task(dst_rq, p, 0);
1089 check_preempt_curr(dst_rq, p, 0);
1090 } else {
1091 /*
1092 * Task isn't running anymore; make it appear like we migrated
1093 * it before it went to sleep. This means on wakeup we make the
1094 * previous cpu our targer instead of where it really is.
1095 */
1096 p->wake_cpu = cpu;
1097 }
1098 }
1099
1100 struct migration_swap_arg {
1101 struct task_struct *src_task, *dst_task;
1102 int src_cpu, dst_cpu;
1103 };
1104
1105 static int migrate_swap_stop(void *data)
1106 {
1107 struct migration_swap_arg *arg = data;
1108 struct rq *src_rq, *dst_rq;
1109 int ret = -EAGAIN;
1110
1111 src_rq = cpu_rq(arg->src_cpu);
1112 dst_rq = cpu_rq(arg->dst_cpu);
1113
1114 double_raw_lock(&arg->src_task->pi_lock,
1115 &arg->dst_task->pi_lock);
1116 double_rq_lock(src_rq, dst_rq);
1117 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1118 goto unlock;
1119
1120 if (task_cpu(arg->src_task) != arg->src_cpu)
1121 goto unlock;
1122
1123 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1124 goto unlock;
1125
1126 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1127 goto unlock;
1128
1129 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1130 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1131
1132 ret = 0;
1133
1134 unlock:
1135 double_rq_unlock(src_rq, dst_rq);
1136 raw_spin_unlock(&arg->dst_task->pi_lock);
1137 raw_spin_unlock(&arg->src_task->pi_lock);
1138
1139 return ret;
1140 }
1141
1142 /*
1143 * Cross migrate two tasks
1144 */
1145 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1146 {
1147 struct migration_swap_arg arg;
1148 int ret = -EINVAL;
1149
1150 arg = (struct migration_swap_arg){
1151 .src_task = cur,
1152 .src_cpu = task_cpu(cur),
1153 .dst_task = p,
1154 .dst_cpu = task_cpu(p),
1155 };
1156
1157 if (arg.src_cpu == arg.dst_cpu)
1158 goto out;
1159
1160 /*
1161 * These three tests are all lockless; this is OK since all of them
1162 * will be re-checked with proper locks held further down the line.
1163 */
1164 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1165 goto out;
1166
1167 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1168 goto out;
1169
1170 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1171 goto out;
1172
1173 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1174 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1175
1176 out:
1177 return ret;
1178 }
1179
1180 struct migration_arg {
1181 struct task_struct *task;
1182 int dest_cpu;
1183 };
1184
1185 static int migration_cpu_stop(void *data);
1186
1187 /*
1188 * wait_task_inactive - wait for a thread to unschedule.
1189 *
1190 * If @match_state is nonzero, it's the @p->state value just checked and
1191 * not expected to change. If it changes, i.e. @p might have woken up,
1192 * then return zero. When we succeed in waiting for @p to be off its CPU,
1193 * we return a positive number (its total switch count). If a second call
1194 * a short while later returns the same number, the caller can be sure that
1195 * @p has remained unscheduled the whole time.
1196 *
1197 * The caller must ensure that the task *will* unschedule sometime soon,
1198 * else this function might spin for a *long* time. This function can't
1199 * be called with interrupts off, or it may introduce deadlock with
1200 * smp_call_function() if an IPI is sent by the same process we are
1201 * waiting to become inactive.
1202 */
1203 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1204 {
1205 unsigned long flags;
1206 int running, on_rq;
1207 unsigned long ncsw;
1208 struct rq *rq;
1209
1210 for (;;) {
1211 /*
1212 * We do the initial early heuristics without holding
1213 * any task-queue locks at all. We'll only try to get
1214 * the runqueue lock when things look like they will
1215 * work out!
1216 */
1217 rq = task_rq(p);
1218
1219 /*
1220 * If the task is actively running on another CPU
1221 * still, just relax and busy-wait without holding
1222 * any locks.
1223 *
1224 * NOTE! Since we don't hold any locks, it's not
1225 * even sure that "rq" stays as the right runqueue!
1226 * But we don't care, since "task_running()" will
1227 * return false if the runqueue has changed and p
1228 * is actually now running somewhere else!
1229 */
1230 while (task_running(rq, p)) {
1231 if (match_state && unlikely(p->state != match_state))
1232 return 0;
1233 cpu_relax();
1234 }
1235
1236 /*
1237 * Ok, time to look more closely! We need the rq
1238 * lock now, to be *sure*. If we're wrong, we'll
1239 * just go back and repeat.
1240 */
1241 rq = task_rq_lock(p, &flags);
1242 trace_sched_wait_task(p);
1243 running = task_running(rq, p);
1244 on_rq = p->on_rq;
1245 ncsw = 0;
1246 if (!match_state || p->state == match_state)
1247 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1248 task_rq_unlock(rq, p, &flags);
1249
1250 /*
1251 * If it changed from the expected state, bail out now.
1252 */
1253 if (unlikely(!ncsw))
1254 break;
1255
1256 /*
1257 * Was it really running after all now that we
1258 * checked with the proper locks actually held?
1259 *
1260 * Oops. Go back and try again..
1261 */
1262 if (unlikely(running)) {
1263 cpu_relax();
1264 continue;
1265 }
1266
1267 /*
1268 * It's not enough that it's not actively running,
1269 * it must be off the runqueue _entirely_, and not
1270 * preempted!
1271 *
1272 * So if it was still runnable (but just not actively
1273 * running right now), it's preempted, and we should
1274 * yield - it could be a while.
1275 */
1276 if (unlikely(on_rq)) {
1277 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1278
1279 set_current_state(TASK_UNINTERRUPTIBLE);
1280 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1281 continue;
1282 }
1283
1284 /*
1285 * Ahh, all good. It wasn't running, and it wasn't
1286 * runnable, which means that it will never become
1287 * running in the future either. We're all done!
1288 */
1289 break;
1290 }
1291
1292 return ncsw;
1293 }
1294
1295 /***
1296 * kick_process - kick a running thread to enter/exit the kernel
1297 * @p: the to-be-kicked thread
1298 *
1299 * Cause a process which is running on another CPU to enter
1300 * kernel-mode, without any delay. (to get signals handled.)
1301 *
1302 * NOTE: this function doesn't have to take the runqueue lock,
1303 * because all it wants to ensure is that the remote task enters
1304 * the kernel. If the IPI races and the task has been migrated
1305 * to another CPU then no harm is done and the purpose has been
1306 * achieved as well.
1307 */
1308 void kick_process(struct task_struct *p)
1309 {
1310 int cpu;
1311
1312 preempt_disable();
1313 cpu = task_cpu(p);
1314 if ((cpu != smp_processor_id()) && task_curr(p))
1315 smp_send_reschedule(cpu);
1316 preempt_enable();
1317 }
1318 EXPORT_SYMBOL_GPL(kick_process);
1319 #endif /* CONFIG_SMP */
1320
1321 #ifdef CONFIG_SMP
1322 /*
1323 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1324 */
1325 static int select_fallback_rq(int cpu, struct task_struct *p)
1326 {
1327 int nid = cpu_to_node(cpu);
1328 const struct cpumask *nodemask = NULL;
1329 enum { cpuset, possible, fail } state = cpuset;
1330 int dest_cpu;
1331
1332 /*
1333 * If the node that the cpu is on has been offlined, cpu_to_node()
1334 * will return -1. There is no cpu on the node, and we should
1335 * select the cpu on the other node.
1336 */
1337 if (nid != -1) {
1338 nodemask = cpumask_of_node(nid);
1339
1340 /* Look for allowed, online CPU in same node. */
1341 for_each_cpu(dest_cpu, nodemask) {
1342 if (!cpu_online(dest_cpu))
1343 continue;
1344 if (!cpu_active(dest_cpu))
1345 continue;
1346 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1347 return dest_cpu;
1348 }
1349 }
1350
1351 for (;;) {
1352 /* Any allowed, online CPU? */
1353 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1354 if (!cpu_online(dest_cpu))
1355 continue;
1356 if (!cpu_active(dest_cpu))
1357 continue;
1358 goto out;
1359 }
1360
1361 switch (state) {
1362 case cpuset:
1363 /* No more Mr. Nice Guy. */
1364 cpuset_cpus_allowed_fallback(p);
1365 state = possible;
1366 break;
1367
1368 case possible:
1369 do_set_cpus_allowed(p, cpu_possible_mask);
1370 state = fail;
1371 break;
1372
1373 case fail:
1374 BUG();
1375 break;
1376 }
1377 }
1378
1379 out:
1380 if (state != cpuset) {
1381 /*
1382 * Don't tell them about moving exiting tasks or
1383 * kernel threads (both mm NULL), since they never
1384 * leave kernel.
1385 */
1386 if (p->mm && printk_ratelimit()) {
1387 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1388 task_pid_nr(p), p->comm, cpu);
1389 }
1390 }
1391
1392 return dest_cpu;
1393 }
1394
1395 /*
1396 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1397 */
1398 static inline
1399 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1400 {
1401 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1402
1403 /*
1404 * In order not to call set_task_cpu() on a blocking task we need
1405 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1406 * cpu.
1407 *
1408 * Since this is common to all placement strategies, this lives here.
1409 *
1410 * [ this allows ->select_task() to simply return task_cpu(p) and
1411 * not worry about this generic constraint ]
1412 */
1413 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1414 !cpu_online(cpu)))
1415 cpu = select_fallback_rq(task_cpu(p), p);
1416
1417 return cpu;
1418 }
1419
1420 static void update_avg(u64 *avg, u64 sample)
1421 {
1422 s64 diff = sample - *avg;
1423 *avg += diff >> 3;
1424 }
1425 #endif
1426
1427 static void
1428 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1429 {
1430 #ifdef CONFIG_SCHEDSTATS
1431 struct rq *rq = this_rq();
1432
1433 #ifdef CONFIG_SMP
1434 int this_cpu = smp_processor_id();
1435
1436 if (cpu == this_cpu) {
1437 schedstat_inc(rq, ttwu_local);
1438 schedstat_inc(p, se.statistics.nr_wakeups_local);
1439 } else {
1440 struct sched_domain *sd;
1441
1442 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1443 rcu_read_lock();
1444 for_each_domain(this_cpu, sd) {
1445 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1446 schedstat_inc(sd, ttwu_wake_remote);
1447 break;
1448 }
1449 }
1450 rcu_read_unlock();
1451 }
1452
1453 if (wake_flags & WF_MIGRATED)
1454 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1455
1456 #endif /* CONFIG_SMP */
1457
1458 schedstat_inc(rq, ttwu_count);
1459 schedstat_inc(p, se.statistics.nr_wakeups);
1460
1461 if (wake_flags & WF_SYNC)
1462 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1463
1464 #endif /* CONFIG_SCHEDSTATS */
1465 }
1466
1467 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1468 {
1469 activate_task(rq, p, en_flags);
1470 p->on_rq = 1;
1471
1472 /* if a worker is waking up, notify workqueue */
1473 if (p->flags & PF_WQ_WORKER)
1474 wq_worker_waking_up(p, cpu_of(rq));
1475 }
1476
1477 /*
1478 * Mark the task runnable and perform wakeup-preemption.
1479 */
1480 static void
1481 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1482 {
1483 check_preempt_curr(rq, p, wake_flags);
1484 trace_sched_wakeup(p, true);
1485
1486 p->state = TASK_RUNNING;
1487 #ifdef CONFIG_SMP
1488 if (p->sched_class->task_woken)
1489 p->sched_class->task_woken(rq, p);
1490
1491 if (rq->idle_stamp) {
1492 u64 delta = rq_clock(rq) - rq->idle_stamp;
1493 u64 max = 2*rq->max_idle_balance_cost;
1494
1495 update_avg(&rq->avg_idle, delta);
1496
1497 if (rq->avg_idle > max)
1498 rq->avg_idle = max;
1499
1500 rq->idle_stamp = 0;
1501 }
1502 #endif
1503 }
1504
1505 static void
1506 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1507 {
1508 #ifdef CONFIG_SMP
1509 if (p->sched_contributes_to_load)
1510 rq->nr_uninterruptible--;
1511 #endif
1512
1513 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1514 ttwu_do_wakeup(rq, p, wake_flags);
1515 }
1516
1517 /*
1518 * Called in case the task @p isn't fully descheduled from its runqueue,
1519 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1520 * since all we need to do is flip p->state to TASK_RUNNING, since
1521 * the task is still ->on_rq.
1522 */
1523 static int ttwu_remote(struct task_struct *p, int wake_flags)
1524 {
1525 struct rq *rq;
1526 int ret = 0;
1527
1528 rq = __task_rq_lock(p);
1529 if (p->on_rq) {
1530 /* check_preempt_curr() may use rq clock */
1531 update_rq_clock(rq);
1532 ttwu_do_wakeup(rq, p, wake_flags);
1533 ret = 1;
1534 }
1535 __task_rq_unlock(rq);
1536
1537 return ret;
1538 }
1539
1540 #ifdef CONFIG_SMP
1541 void sched_ttwu_pending(void)
1542 {
1543 struct rq *rq = this_rq();
1544 struct llist_node *llist = llist_del_all(&rq->wake_list);
1545 struct task_struct *p;
1546 unsigned long flags;
1547
1548 if (!llist)
1549 return;
1550
1551 raw_spin_lock_irqsave(&rq->lock, flags);
1552
1553 while (llist) {
1554 p = llist_entry(llist, struct task_struct, wake_entry);
1555 llist = llist_next(llist);
1556 ttwu_do_activate(rq, p, 0);
1557 }
1558
1559 raw_spin_unlock_irqrestore(&rq->lock, flags);
1560 }
1561
1562 void scheduler_ipi(void)
1563 {
1564 /*
1565 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1566 * TIF_NEED_RESCHED remotely (for the first time) will also send
1567 * this IPI.
1568 */
1569 preempt_fold_need_resched();
1570
1571 if (llist_empty(&this_rq()->wake_list)
1572 && !tick_nohz_full_cpu(smp_processor_id())
1573 && !got_nohz_idle_kick())
1574 return;
1575
1576 /*
1577 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1578 * traditionally all their work was done from the interrupt return
1579 * path. Now that we actually do some work, we need to make sure
1580 * we do call them.
1581 *
1582 * Some archs already do call them, luckily irq_enter/exit nest
1583 * properly.
1584 *
1585 * Arguably we should visit all archs and update all handlers,
1586 * however a fair share of IPIs are still resched only so this would
1587 * somewhat pessimize the simple resched case.
1588 */
1589 irq_enter();
1590 tick_nohz_full_check();
1591 sched_ttwu_pending();
1592
1593 /*
1594 * Check if someone kicked us for doing the nohz idle load balance.
1595 */
1596 if (unlikely(got_nohz_idle_kick())) {
1597 this_rq()->idle_balance = 1;
1598 raise_softirq_irqoff(SCHED_SOFTIRQ);
1599 }
1600 irq_exit();
1601 }
1602
1603 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1604 {
1605 struct rq *rq = cpu_rq(cpu);
1606
1607 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1608 if (!set_nr_if_polling(rq->idle))
1609 smp_send_reschedule(cpu);
1610 else
1611 trace_sched_wake_idle_without_ipi(cpu);
1612 }
1613 }
1614
1615 bool cpus_share_cache(int this_cpu, int that_cpu)
1616 {
1617 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1618 }
1619 #endif /* CONFIG_SMP */
1620
1621 static void ttwu_queue(struct task_struct *p, int cpu)
1622 {
1623 struct rq *rq = cpu_rq(cpu);
1624
1625 #if defined(CONFIG_SMP)
1626 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1627 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1628 ttwu_queue_remote(p, cpu);
1629 return;
1630 }
1631 #endif
1632
1633 raw_spin_lock(&rq->lock);
1634 ttwu_do_activate(rq, p, 0);
1635 raw_spin_unlock(&rq->lock);
1636 }
1637
1638 /**
1639 * try_to_wake_up - wake up a thread
1640 * @p: the thread to be awakened
1641 * @state: the mask of task states that can be woken
1642 * @wake_flags: wake modifier flags (WF_*)
1643 *
1644 * Put it on the run-queue if it's not already there. The "current"
1645 * thread is always on the run-queue (except when the actual
1646 * re-schedule is in progress), and as such you're allowed to do
1647 * the simpler "current->state = TASK_RUNNING" to mark yourself
1648 * runnable without the overhead of this.
1649 *
1650 * Return: %true if @p was woken up, %false if it was already running.
1651 * or @state didn't match @p's state.
1652 */
1653 static int
1654 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1655 {
1656 unsigned long flags;
1657 int cpu, success = 0;
1658
1659 /*
1660 * If we are going to wake up a thread waiting for CONDITION we
1661 * need to ensure that CONDITION=1 done by the caller can not be
1662 * reordered with p->state check below. This pairs with mb() in
1663 * set_current_state() the waiting thread does.
1664 */
1665 smp_mb__before_spinlock();
1666 raw_spin_lock_irqsave(&p->pi_lock, flags);
1667 if (!(p->state & state))
1668 goto out;
1669
1670 success = 1; /* we're going to change ->state */
1671 cpu = task_cpu(p);
1672
1673 if (p->on_rq && ttwu_remote(p, wake_flags))
1674 goto stat;
1675
1676 #ifdef CONFIG_SMP
1677 /*
1678 * If the owning (remote) cpu is still in the middle of schedule() with
1679 * this task as prev, wait until its done referencing the task.
1680 */
1681 while (p->on_cpu)
1682 cpu_relax();
1683 /*
1684 * Pairs with the smp_wmb() in finish_lock_switch().
1685 */
1686 smp_rmb();
1687
1688 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1689 p->state = TASK_WAKING;
1690
1691 if (p->sched_class->task_waking)
1692 p->sched_class->task_waking(p);
1693
1694 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1695 if (task_cpu(p) != cpu) {
1696 wake_flags |= WF_MIGRATED;
1697 set_task_cpu(p, cpu);
1698 }
1699 #endif /* CONFIG_SMP */
1700
1701 ttwu_queue(p, cpu);
1702 stat:
1703 ttwu_stat(p, cpu, wake_flags);
1704 out:
1705 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1706
1707 return success;
1708 }
1709
1710 /**
1711 * try_to_wake_up_local - try to wake up a local task with rq lock held
1712 * @p: the thread to be awakened
1713 *
1714 * Put @p on the run-queue if it's not already there. The caller must
1715 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1716 * the current task.
1717 */
1718 static void try_to_wake_up_local(struct task_struct *p)
1719 {
1720 struct rq *rq = task_rq(p);
1721
1722 if (WARN_ON_ONCE(rq != this_rq()) ||
1723 WARN_ON_ONCE(p == current))
1724 return;
1725
1726 lockdep_assert_held(&rq->lock);
1727
1728 if (!raw_spin_trylock(&p->pi_lock)) {
1729 raw_spin_unlock(&rq->lock);
1730 raw_spin_lock(&p->pi_lock);
1731 raw_spin_lock(&rq->lock);
1732 }
1733
1734 if (!(p->state & TASK_NORMAL))
1735 goto out;
1736
1737 if (!p->on_rq)
1738 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1739
1740 ttwu_do_wakeup(rq, p, 0);
1741 ttwu_stat(p, smp_processor_id(), 0);
1742 out:
1743 raw_spin_unlock(&p->pi_lock);
1744 }
1745
1746 /**
1747 * wake_up_process - Wake up a specific process
1748 * @p: The process to be woken up.
1749 *
1750 * Attempt to wake up the nominated process and move it to the set of runnable
1751 * processes.
1752 *
1753 * Return: 1 if the process was woken up, 0 if it was already running.
1754 *
1755 * It may be assumed that this function implies a write memory barrier before
1756 * changing the task state if and only if any tasks are woken up.
1757 */
1758 int wake_up_process(struct task_struct *p)
1759 {
1760 WARN_ON(task_is_stopped_or_traced(p));
1761 return try_to_wake_up(p, TASK_NORMAL, 0);
1762 }
1763 EXPORT_SYMBOL(wake_up_process);
1764
1765 int wake_up_state(struct task_struct *p, unsigned int state)
1766 {
1767 return try_to_wake_up(p, state, 0);
1768 }
1769
1770 /*
1771 * Perform scheduler related setup for a newly forked process p.
1772 * p is forked by current.
1773 *
1774 * __sched_fork() is basic setup used by init_idle() too:
1775 */
1776 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1777 {
1778 p->on_rq = 0;
1779
1780 p->se.on_rq = 0;
1781 p->se.exec_start = 0;
1782 p->se.sum_exec_runtime = 0;
1783 p->se.prev_sum_exec_runtime = 0;
1784 p->se.nr_migrations = 0;
1785 p->se.vruntime = 0;
1786 INIT_LIST_HEAD(&p->se.group_node);
1787
1788 #ifdef CONFIG_SCHEDSTATS
1789 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1790 #endif
1791
1792 RB_CLEAR_NODE(&p->dl.rb_node);
1793 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1794 p->dl.dl_runtime = p->dl.runtime = 0;
1795 p->dl.dl_deadline = p->dl.deadline = 0;
1796 p->dl.dl_period = 0;
1797 p->dl.flags = 0;
1798
1799 INIT_LIST_HEAD(&p->rt.run_list);
1800
1801 #ifdef CONFIG_PREEMPT_NOTIFIERS
1802 INIT_HLIST_HEAD(&p->preempt_notifiers);
1803 #endif
1804
1805 #ifdef CONFIG_NUMA_BALANCING
1806 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1807 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1808 p->mm->numa_scan_seq = 0;
1809 }
1810
1811 if (clone_flags & CLONE_VM)
1812 p->numa_preferred_nid = current->numa_preferred_nid;
1813 else
1814 p->numa_preferred_nid = -1;
1815
1816 p->node_stamp = 0ULL;
1817 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1818 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1819 p->numa_work.next = &p->numa_work;
1820 p->numa_faults_memory = NULL;
1821 p->numa_faults_buffer_memory = NULL;
1822 p->last_task_numa_placement = 0;
1823 p->last_sum_exec_runtime = 0;
1824
1825 INIT_LIST_HEAD(&p->numa_entry);
1826 p->numa_group = NULL;
1827 #endif /* CONFIG_NUMA_BALANCING */
1828 }
1829
1830 #ifdef CONFIG_NUMA_BALANCING
1831 #ifdef CONFIG_SCHED_DEBUG
1832 void set_numabalancing_state(bool enabled)
1833 {
1834 if (enabled)
1835 sched_feat_set("NUMA");
1836 else
1837 sched_feat_set("NO_NUMA");
1838 }
1839 #else
1840 __read_mostly bool numabalancing_enabled;
1841
1842 void set_numabalancing_state(bool enabled)
1843 {
1844 numabalancing_enabled = enabled;
1845 }
1846 #endif /* CONFIG_SCHED_DEBUG */
1847
1848 #ifdef CONFIG_PROC_SYSCTL
1849 int sysctl_numa_balancing(struct ctl_table *table, int write,
1850 void __user *buffer, size_t *lenp, loff_t *ppos)
1851 {
1852 struct ctl_table t;
1853 int err;
1854 int state = numabalancing_enabled;
1855
1856 if (write && !capable(CAP_SYS_ADMIN))
1857 return -EPERM;
1858
1859 t = *table;
1860 t.data = &state;
1861 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1862 if (err < 0)
1863 return err;
1864 if (write)
1865 set_numabalancing_state(state);
1866 return err;
1867 }
1868 #endif
1869 #endif
1870
1871 /*
1872 * fork()/clone()-time setup:
1873 */
1874 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1875 {
1876 unsigned long flags;
1877 int cpu = get_cpu();
1878
1879 __sched_fork(clone_flags, p);
1880 /*
1881 * We mark the process as running here. This guarantees that
1882 * nobody will actually run it, and a signal or other external
1883 * event cannot wake it up and insert it on the runqueue either.
1884 */
1885 p->state = TASK_RUNNING;
1886
1887 /*
1888 * Make sure we do not leak PI boosting priority to the child.
1889 */
1890 p->prio = current->normal_prio;
1891
1892 /*
1893 * Revert to default priority/policy on fork if requested.
1894 */
1895 if (unlikely(p->sched_reset_on_fork)) {
1896 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1897 p->policy = SCHED_NORMAL;
1898 p->static_prio = NICE_TO_PRIO(0);
1899 p->rt_priority = 0;
1900 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1901 p->static_prio = NICE_TO_PRIO(0);
1902
1903 p->prio = p->normal_prio = __normal_prio(p);
1904 set_load_weight(p);
1905
1906 /*
1907 * We don't need the reset flag anymore after the fork. It has
1908 * fulfilled its duty:
1909 */
1910 p->sched_reset_on_fork = 0;
1911 }
1912
1913 if (dl_prio(p->prio)) {
1914 put_cpu();
1915 return -EAGAIN;
1916 } else if (rt_prio(p->prio)) {
1917 p->sched_class = &rt_sched_class;
1918 } else {
1919 p->sched_class = &fair_sched_class;
1920 }
1921
1922 if (p->sched_class->task_fork)
1923 p->sched_class->task_fork(p);
1924
1925 /*
1926 * The child is not yet in the pid-hash so no cgroup attach races,
1927 * and the cgroup is pinned to this child due to cgroup_fork()
1928 * is ran before sched_fork().
1929 *
1930 * Silence PROVE_RCU.
1931 */
1932 raw_spin_lock_irqsave(&p->pi_lock, flags);
1933 set_task_cpu(p, cpu);
1934 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1935
1936 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1937 if (likely(sched_info_on()))
1938 memset(&p->sched_info, 0, sizeof(p->sched_info));
1939 #endif
1940 #if defined(CONFIG_SMP)
1941 p->on_cpu = 0;
1942 #endif
1943 init_task_preempt_count(p);
1944 #ifdef CONFIG_SMP
1945 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1946 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1947 #endif
1948
1949 put_cpu();
1950 return 0;
1951 }
1952
1953 unsigned long to_ratio(u64 period, u64 runtime)
1954 {
1955 if (runtime == RUNTIME_INF)
1956 return 1ULL << 20;
1957
1958 /*
1959 * Doing this here saves a lot of checks in all
1960 * the calling paths, and returning zero seems
1961 * safe for them anyway.
1962 */
1963 if (period == 0)
1964 return 0;
1965
1966 return div64_u64(runtime << 20, period);
1967 }
1968
1969 #ifdef CONFIG_SMP
1970 inline struct dl_bw *dl_bw_of(int i)
1971 {
1972 return &cpu_rq(i)->rd->dl_bw;
1973 }
1974
1975 static inline int dl_bw_cpus(int i)
1976 {
1977 struct root_domain *rd = cpu_rq(i)->rd;
1978 int cpus = 0;
1979
1980 for_each_cpu_and(i, rd->span, cpu_active_mask)
1981 cpus++;
1982
1983 return cpus;
1984 }
1985 #else
1986 inline struct dl_bw *dl_bw_of(int i)
1987 {
1988 return &cpu_rq(i)->dl.dl_bw;
1989 }
1990
1991 static inline int dl_bw_cpus(int i)
1992 {
1993 return 1;
1994 }
1995 #endif
1996
1997 static inline
1998 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1999 {
2000 dl_b->total_bw -= tsk_bw;
2001 }
2002
2003 static inline
2004 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2005 {
2006 dl_b->total_bw += tsk_bw;
2007 }
2008
2009 static inline
2010 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2011 {
2012 return dl_b->bw != -1 &&
2013 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2014 }
2015
2016 /*
2017 * We must be sure that accepting a new task (or allowing changing the
2018 * parameters of an existing one) is consistent with the bandwidth
2019 * constraints. If yes, this function also accordingly updates the currently
2020 * allocated bandwidth to reflect the new situation.
2021 *
2022 * This function is called while holding p's rq->lock.
2023 */
2024 static int dl_overflow(struct task_struct *p, int policy,
2025 const struct sched_attr *attr)
2026 {
2027
2028 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2029 u64 period = attr->sched_period ?: attr->sched_deadline;
2030 u64 runtime = attr->sched_runtime;
2031 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2032 int cpus, err = -1;
2033
2034 if (new_bw == p->dl.dl_bw)
2035 return 0;
2036
2037 /*
2038 * Either if a task, enters, leave, or stays -deadline but changes
2039 * its parameters, we may need to update accordingly the total
2040 * allocated bandwidth of the container.
2041 */
2042 raw_spin_lock(&dl_b->lock);
2043 cpus = dl_bw_cpus(task_cpu(p));
2044 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2045 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2046 __dl_add(dl_b, new_bw);
2047 err = 0;
2048 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2049 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2050 __dl_clear(dl_b, p->dl.dl_bw);
2051 __dl_add(dl_b, new_bw);
2052 err = 0;
2053 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2054 __dl_clear(dl_b, p->dl.dl_bw);
2055 err = 0;
2056 }
2057 raw_spin_unlock(&dl_b->lock);
2058
2059 return err;
2060 }
2061
2062 extern void init_dl_bw(struct dl_bw *dl_b);
2063
2064 /*
2065 * wake_up_new_task - wake up a newly created task for the first time.
2066 *
2067 * This function will do some initial scheduler statistics housekeeping
2068 * that must be done for every newly created context, then puts the task
2069 * on the runqueue and wakes it.
2070 */
2071 void wake_up_new_task(struct task_struct *p)
2072 {
2073 unsigned long flags;
2074 struct rq *rq;
2075
2076 raw_spin_lock_irqsave(&p->pi_lock, flags);
2077 #ifdef CONFIG_SMP
2078 /*
2079 * Fork balancing, do it here and not earlier because:
2080 * - cpus_allowed can change in the fork path
2081 * - any previously selected cpu might disappear through hotplug
2082 */
2083 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2084 #endif
2085
2086 /* Initialize new task's runnable average */
2087 init_task_runnable_average(p);
2088 rq = __task_rq_lock(p);
2089 activate_task(rq, p, 0);
2090 p->on_rq = 1;
2091 trace_sched_wakeup_new(p, true);
2092 check_preempt_curr(rq, p, WF_FORK);
2093 #ifdef CONFIG_SMP
2094 if (p->sched_class->task_woken)
2095 p->sched_class->task_woken(rq, p);
2096 #endif
2097 task_rq_unlock(rq, p, &flags);
2098 }
2099
2100 #ifdef CONFIG_PREEMPT_NOTIFIERS
2101
2102 /**
2103 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2104 * @notifier: notifier struct to register
2105 */
2106 void preempt_notifier_register(struct preempt_notifier *notifier)
2107 {
2108 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2109 }
2110 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2111
2112 /**
2113 * preempt_notifier_unregister - no longer interested in preemption notifications
2114 * @notifier: notifier struct to unregister
2115 *
2116 * This is safe to call from within a preemption notifier.
2117 */
2118 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2119 {
2120 hlist_del(&notifier->link);
2121 }
2122 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2123
2124 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2125 {
2126 struct preempt_notifier *notifier;
2127
2128 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2129 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2130 }
2131
2132 static void
2133 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2134 struct task_struct *next)
2135 {
2136 struct preempt_notifier *notifier;
2137
2138 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2139 notifier->ops->sched_out(notifier, next);
2140 }
2141
2142 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2143
2144 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2145 {
2146 }
2147
2148 static void
2149 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2150 struct task_struct *next)
2151 {
2152 }
2153
2154 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2155
2156 /**
2157 * prepare_task_switch - prepare to switch tasks
2158 * @rq: the runqueue preparing to switch
2159 * @prev: the current task that is being switched out
2160 * @next: the task we are going to switch to.
2161 *
2162 * This is called with the rq lock held and interrupts off. It must
2163 * be paired with a subsequent finish_task_switch after the context
2164 * switch.
2165 *
2166 * prepare_task_switch sets up locking and calls architecture specific
2167 * hooks.
2168 */
2169 static inline void
2170 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2171 struct task_struct *next)
2172 {
2173 trace_sched_switch(prev, next);
2174 sched_info_switch(rq, prev, next);
2175 perf_event_task_sched_out(prev, next);
2176 fire_sched_out_preempt_notifiers(prev, next);
2177 prepare_lock_switch(rq, next);
2178 prepare_arch_switch(next);
2179 }
2180
2181 /**
2182 * finish_task_switch - clean up after a task-switch
2183 * @rq: runqueue associated with task-switch
2184 * @prev: the thread we just switched away from.
2185 *
2186 * finish_task_switch must be called after the context switch, paired
2187 * with a prepare_task_switch call before the context switch.
2188 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2189 * and do any other architecture-specific cleanup actions.
2190 *
2191 * Note that we may have delayed dropping an mm in context_switch(). If
2192 * so, we finish that here outside of the runqueue lock. (Doing it
2193 * with the lock held can cause deadlocks; see schedule() for
2194 * details.)
2195 */
2196 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2197 __releases(rq->lock)
2198 {
2199 struct mm_struct *mm = rq->prev_mm;
2200 long prev_state;
2201
2202 rq->prev_mm = NULL;
2203
2204 /*
2205 * A task struct has one reference for the use as "current".
2206 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2207 * schedule one last time. The schedule call will never return, and
2208 * the scheduled task must drop that reference.
2209 * The test for TASK_DEAD must occur while the runqueue locks are
2210 * still held, otherwise prev could be scheduled on another cpu, die
2211 * there before we look at prev->state, and then the reference would
2212 * be dropped twice.
2213 * Manfred Spraul <manfred@colorfullife.com>
2214 */
2215 prev_state = prev->state;
2216 vtime_task_switch(prev);
2217 finish_arch_switch(prev);
2218 perf_event_task_sched_in(prev, current);
2219 finish_lock_switch(rq, prev);
2220 finish_arch_post_lock_switch();
2221
2222 fire_sched_in_preempt_notifiers(current);
2223 if (mm)
2224 mmdrop(mm);
2225 if (unlikely(prev_state == TASK_DEAD)) {
2226 if (prev->sched_class->task_dead)
2227 prev->sched_class->task_dead(prev);
2228
2229 /*
2230 * Remove function-return probe instances associated with this
2231 * task and put them back on the free list.
2232 */
2233 kprobe_flush_task(prev);
2234 put_task_struct(prev);
2235 }
2236
2237 tick_nohz_task_switch(current);
2238 }
2239
2240 #ifdef CONFIG_SMP
2241
2242 /* rq->lock is NOT held, but preemption is disabled */
2243 static inline void post_schedule(struct rq *rq)
2244 {
2245 if (rq->post_schedule) {
2246 unsigned long flags;
2247
2248 raw_spin_lock_irqsave(&rq->lock, flags);
2249 if (rq->curr->sched_class->post_schedule)
2250 rq->curr->sched_class->post_schedule(rq);
2251 raw_spin_unlock_irqrestore(&rq->lock, flags);
2252
2253 rq->post_schedule = 0;
2254 }
2255 }
2256
2257 #else
2258
2259 static inline void post_schedule(struct rq *rq)
2260 {
2261 }
2262
2263 #endif
2264
2265 /**
2266 * schedule_tail - first thing a freshly forked thread must call.
2267 * @prev: the thread we just switched away from.
2268 */
2269 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2270 __releases(rq->lock)
2271 {
2272 struct rq *rq = this_rq();
2273
2274 finish_task_switch(rq, prev);
2275
2276 /*
2277 * FIXME: do we need to worry about rq being invalidated by the
2278 * task_switch?
2279 */
2280 post_schedule(rq);
2281
2282 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2283 /* In this case, finish_task_switch does not reenable preemption */
2284 preempt_enable();
2285 #endif
2286 if (current->set_child_tid)
2287 put_user(task_pid_vnr(current), current->set_child_tid);
2288 }
2289
2290 /*
2291 * context_switch - switch to the new MM and the new
2292 * thread's register state.
2293 */
2294 static inline void
2295 context_switch(struct rq *rq, struct task_struct *prev,
2296 struct task_struct *next)
2297 {
2298 struct mm_struct *mm, *oldmm;
2299
2300 prepare_task_switch(rq, prev, next);
2301
2302 mm = next->mm;
2303 oldmm = prev->active_mm;
2304 /*
2305 * For paravirt, this is coupled with an exit in switch_to to
2306 * combine the page table reload and the switch backend into
2307 * one hypercall.
2308 */
2309 arch_start_context_switch(prev);
2310
2311 if (!mm) {
2312 next->active_mm = oldmm;
2313 atomic_inc(&oldmm->mm_count);
2314 enter_lazy_tlb(oldmm, next);
2315 } else
2316 switch_mm(oldmm, mm, next);
2317
2318 if (!prev->mm) {
2319 prev->active_mm = NULL;
2320 rq->prev_mm = oldmm;
2321 }
2322 /*
2323 * Since the runqueue lock will be released by the next
2324 * task (which is an invalid locking op but in the case
2325 * of the scheduler it's an obvious special-case), so we
2326 * do an early lockdep release here:
2327 */
2328 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2329 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2330 #endif
2331
2332 context_tracking_task_switch(prev, next);
2333 /* Here we just switch the register state and the stack. */
2334 switch_to(prev, next, prev);
2335
2336 barrier();
2337 /*
2338 * this_rq must be evaluated again because prev may have moved
2339 * CPUs since it called schedule(), thus the 'rq' on its stack
2340 * frame will be invalid.
2341 */
2342 finish_task_switch(this_rq(), prev);
2343 }
2344
2345 /*
2346 * nr_running and nr_context_switches:
2347 *
2348 * externally visible scheduler statistics: current number of runnable
2349 * threads, total number of context switches performed since bootup.
2350 */
2351 unsigned long nr_running(void)
2352 {
2353 unsigned long i, sum = 0;
2354
2355 for_each_online_cpu(i)
2356 sum += cpu_rq(i)->nr_running;
2357
2358 return sum;
2359 }
2360
2361 unsigned long long nr_context_switches(void)
2362 {
2363 int i;
2364 unsigned long long sum = 0;
2365
2366 for_each_possible_cpu(i)
2367 sum += cpu_rq(i)->nr_switches;
2368
2369 return sum;
2370 }
2371
2372 unsigned long nr_iowait(void)
2373 {
2374 unsigned long i, sum = 0;
2375
2376 for_each_possible_cpu(i)
2377 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2378
2379 return sum;
2380 }
2381
2382 unsigned long nr_iowait_cpu(int cpu)
2383 {
2384 struct rq *this = cpu_rq(cpu);
2385 return atomic_read(&this->nr_iowait);
2386 }
2387
2388 #ifdef CONFIG_SMP
2389
2390 /*
2391 * sched_exec - execve() is a valuable balancing opportunity, because at
2392 * this point the task has the smallest effective memory and cache footprint.
2393 */
2394 void sched_exec(void)
2395 {
2396 struct task_struct *p = current;
2397 unsigned long flags;
2398 int dest_cpu;
2399
2400 raw_spin_lock_irqsave(&p->pi_lock, flags);
2401 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2402 if (dest_cpu == smp_processor_id())
2403 goto unlock;
2404
2405 if (likely(cpu_active(dest_cpu))) {
2406 struct migration_arg arg = { p, dest_cpu };
2407
2408 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2409 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2410 return;
2411 }
2412 unlock:
2413 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2414 }
2415
2416 #endif
2417
2418 DEFINE_PER_CPU(struct kernel_stat, kstat);
2419 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2420
2421 EXPORT_PER_CPU_SYMBOL(kstat);
2422 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2423
2424 /*
2425 * Return any ns on the sched_clock that have not yet been accounted in
2426 * @p in case that task is currently running.
2427 *
2428 * Called with task_rq_lock() held on @rq.
2429 */
2430 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2431 {
2432 u64 ns = 0;
2433
2434 if (task_current(rq, p)) {
2435 update_rq_clock(rq);
2436 ns = rq_clock_task(rq) - p->se.exec_start;
2437 if ((s64)ns < 0)
2438 ns = 0;
2439 }
2440
2441 return ns;
2442 }
2443
2444 unsigned long long task_delta_exec(struct task_struct *p)
2445 {
2446 unsigned long flags;
2447 struct rq *rq;
2448 u64 ns = 0;
2449
2450 rq = task_rq_lock(p, &flags);
2451 ns = do_task_delta_exec(p, rq);
2452 task_rq_unlock(rq, p, &flags);
2453
2454 return ns;
2455 }
2456
2457 /*
2458 * Return accounted runtime for the task.
2459 * In case the task is currently running, return the runtime plus current's
2460 * pending runtime that have not been accounted yet.
2461 */
2462 unsigned long long task_sched_runtime(struct task_struct *p)
2463 {
2464 unsigned long flags;
2465 struct rq *rq;
2466 u64 ns = 0;
2467
2468 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2469 /*
2470 * 64-bit doesn't need locks to atomically read a 64bit value.
2471 * So we have a optimization chance when the task's delta_exec is 0.
2472 * Reading ->on_cpu is racy, but this is ok.
2473 *
2474 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2475 * If we race with it entering cpu, unaccounted time is 0. This is
2476 * indistinguishable from the read occurring a few cycles earlier.
2477 */
2478 if (!p->on_cpu)
2479 return p->se.sum_exec_runtime;
2480 #endif
2481
2482 rq = task_rq_lock(p, &flags);
2483 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2484 task_rq_unlock(rq, p, &flags);
2485
2486 return ns;
2487 }
2488
2489 /*
2490 * This function gets called by the timer code, with HZ frequency.
2491 * We call it with interrupts disabled.
2492 */
2493 void scheduler_tick(void)
2494 {
2495 int cpu = smp_processor_id();
2496 struct rq *rq = cpu_rq(cpu);
2497 struct task_struct *curr = rq->curr;
2498
2499 sched_clock_tick();
2500
2501 raw_spin_lock(&rq->lock);
2502 update_rq_clock(rq);
2503 curr->sched_class->task_tick(rq, curr, 0);
2504 update_cpu_load_active(rq);
2505 raw_spin_unlock(&rq->lock);
2506
2507 perf_event_task_tick();
2508
2509 #ifdef CONFIG_SMP
2510 rq->idle_balance = idle_cpu(cpu);
2511 trigger_load_balance(rq);
2512 #endif
2513 rq_last_tick_reset(rq);
2514 }
2515
2516 #ifdef CONFIG_NO_HZ_FULL
2517 /**
2518 * scheduler_tick_max_deferment
2519 *
2520 * Keep at least one tick per second when a single
2521 * active task is running because the scheduler doesn't
2522 * yet completely support full dynticks environment.
2523 *
2524 * This makes sure that uptime, CFS vruntime, load
2525 * balancing, etc... continue to move forward, even
2526 * with a very low granularity.
2527 *
2528 * Return: Maximum deferment in nanoseconds.
2529 */
2530 u64 scheduler_tick_max_deferment(void)
2531 {
2532 struct rq *rq = this_rq();
2533 unsigned long next, now = ACCESS_ONCE(jiffies);
2534
2535 next = rq->last_sched_tick + HZ;
2536
2537 if (time_before_eq(next, now))
2538 return 0;
2539
2540 return jiffies_to_nsecs(next - now);
2541 }
2542 #endif
2543
2544 notrace unsigned long get_parent_ip(unsigned long addr)
2545 {
2546 if (in_lock_functions(addr)) {
2547 addr = CALLER_ADDR2;
2548 if (in_lock_functions(addr))
2549 addr = CALLER_ADDR3;
2550 }
2551 return addr;
2552 }
2553
2554 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2555 defined(CONFIG_PREEMPT_TRACER))
2556
2557 void preempt_count_add(int val)
2558 {
2559 #ifdef CONFIG_DEBUG_PREEMPT
2560 /*
2561 * Underflow?
2562 */
2563 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2564 return;
2565 #endif
2566 __preempt_count_add(val);
2567 #ifdef CONFIG_DEBUG_PREEMPT
2568 /*
2569 * Spinlock count overflowing soon?
2570 */
2571 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2572 PREEMPT_MASK - 10);
2573 #endif
2574 if (preempt_count() == val) {
2575 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2576 #ifdef CONFIG_DEBUG_PREEMPT
2577 current->preempt_disable_ip = ip;
2578 #endif
2579 trace_preempt_off(CALLER_ADDR0, ip);
2580 }
2581 }
2582 EXPORT_SYMBOL(preempt_count_add);
2583 NOKPROBE_SYMBOL(preempt_count_add);
2584
2585 void preempt_count_sub(int val)
2586 {
2587 #ifdef CONFIG_DEBUG_PREEMPT
2588 /*
2589 * Underflow?
2590 */
2591 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2592 return;
2593 /*
2594 * Is the spinlock portion underflowing?
2595 */
2596 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2597 !(preempt_count() & PREEMPT_MASK)))
2598 return;
2599 #endif
2600
2601 if (preempt_count() == val)
2602 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2603 __preempt_count_sub(val);
2604 }
2605 EXPORT_SYMBOL(preempt_count_sub);
2606 NOKPROBE_SYMBOL(preempt_count_sub);
2607
2608 #endif
2609
2610 /*
2611 * Print scheduling while atomic bug:
2612 */
2613 static noinline void __schedule_bug(struct task_struct *prev)
2614 {
2615 if (oops_in_progress)
2616 return;
2617
2618 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2619 prev->comm, prev->pid, preempt_count());
2620
2621 debug_show_held_locks(prev);
2622 print_modules();
2623 if (irqs_disabled())
2624 print_irqtrace_events(prev);
2625 #ifdef CONFIG_DEBUG_PREEMPT
2626 if (in_atomic_preempt_off()) {
2627 pr_err("Preemption disabled at:");
2628 print_ip_sym(current->preempt_disable_ip);
2629 pr_cont("\n");
2630 }
2631 #endif
2632 dump_stack();
2633 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2634 }
2635
2636 /*
2637 * Various schedule()-time debugging checks and statistics:
2638 */
2639 static inline void schedule_debug(struct task_struct *prev)
2640 {
2641 /*
2642 * Test if we are atomic. Since do_exit() needs to call into
2643 * schedule() atomically, we ignore that path. Otherwise whine
2644 * if we are scheduling when we should not.
2645 */
2646 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2647 __schedule_bug(prev);
2648 rcu_sleep_check();
2649
2650 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2651
2652 schedstat_inc(this_rq(), sched_count);
2653 }
2654
2655 /*
2656 * Pick up the highest-prio task:
2657 */
2658 static inline struct task_struct *
2659 pick_next_task(struct rq *rq, struct task_struct *prev)
2660 {
2661 const struct sched_class *class = &fair_sched_class;
2662 struct task_struct *p;
2663
2664 /*
2665 * Optimization: we know that if all tasks are in
2666 * the fair class we can call that function directly:
2667 */
2668 if (likely(prev->sched_class == class &&
2669 rq->nr_running == rq->cfs.h_nr_running)) {
2670 p = fair_sched_class.pick_next_task(rq, prev);
2671 if (unlikely(p == RETRY_TASK))
2672 goto again;
2673
2674 /* assumes fair_sched_class->next == idle_sched_class */
2675 if (unlikely(!p))
2676 p = idle_sched_class.pick_next_task(rq, prev);
2677
2678 return p;
2679 }
2680
2681 again:
2682 for_each_class(class) {
2683 p = class->pick_next_task(rq, prev);
2684 if (p) {
2685 if (unlikely(p == RETRY_TASK))
2686 goto again;
2687 return p;
2688 }
2689 }
2690
2691 BUG(); /* the idle class will always have a runnable task */
2692 }
2693
2694 /*
2695 * __schedule() is the main scheduler function.
2696 *
2697 * The main means of driving the scheduler and thus entering this function are:
2698 *
2699 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2700 *
2701 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2702 * paths. For example, see arch/x86/entry_64.S.
2703 *
2704 * To drive preemption between tasks, the scheduler sets the flag in timer
2705 * interrupt handler scheduler_tick().
2706 *
2707 * 3. Wakeups don't really cause entry into schedule(). They add a
2708 * task to the run-queue and that's it.
2709 *
2710 * Now, if the new task added to the run-queue preempts the current
2711 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2712 * called on the nearest possible occasion:
2713 *
2714 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2715 *
2716 * - in syscall or exception context, at the next outmost
2717 * preempt_enable(). (this might be as soon as the wake_up()'s
2718 * spin_unlock()!)
2719 *
2720 * - in IRQ context, return from interrupt-handler to
2721 * preemptible context
2722 *
2723 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2724 * then at the next:
2725 *
2726 * - cond_resched() call
2727 * - explicit schedule() call
2728 * - return from syscall or exception to user-space
2729 * - return from interrupt-handler to user-space
2730 */
2731 static void __sched __schedule(void)
2732 {
2733 struct task_struct *prev, *next;
2734 unsigned long *switch_count;
2735 struct rq *rq;
2736 int cpu;
2737
2738 need_resched:
2739 preempt_disable();
2740 cpu = smp_processor_id();
2741 rq = cpu_rq(cpu);
2742 rcu_note_context_switch(cpu);
2743 prev = rq->curr;
2744
2745 schedule_debug(prev);
2746
2747 if (sched_feat(HRTICK))
2748 hrtick_clear(rq);
2749
2750 /*
2751 * Make sure that signal_pending_state()->signal_pending() below
2752 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2753 * done by the caller to avoid the race with signal_wake_up().
2754 */
2755 smp_mb__before_spinlock();
2756 raw_spin_lock_irq(&rq->lock);
2757
2758 switch_count = &prev->nivcsw;
2759 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2760 if (unlikely(signal_pending_state(prev->state, prev))) {
2761 prev->state = TASK_RUNNING;
2762 } else {
2763 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2764 prev->on_rq = 0;
2765
2766 /*
2767 * If a worker went to sleep, notify and ask workqueue
2768 * whether it wants to wake up a task to maintain
2769 * concurrency.
2770 */
2771 if (prev->flags & PF_WQ_WORKER) {
2772 struct task_struct *to_wakeup;
2773
2774 to_wakeup = wq_worker_sleeping(prev, cpu);
2775 if (to_wakeup)
2776 try_to_wake_up_local(to_wakeup);
2777 }
2778 }
2779 switch_count = &prev->nvcsw;
2780 }
2781
2782 if (prev->on_rq || rq->skip_clock_update < 0)
2783 update_rq_clock(rq);
2784
2785 next = pick_next_task(rq, prev);
2786 clear_tsk_need_resched(prev);
2787 clear_preempt_need_resched();
2788 rq->skip_clock_update = 0;
2789
2790 if (likely(prev != next)) {
2791 rq->nr_switches++;
2792 rq->curr = next;
2793 ++*switch_count;
2794
2795 context_switch(rq, prev, next); /* unlocks the rq */
2796 /*
2797 * The context switch have flipped the stack from under us
2798 * and restored the local variables which were saved when
2799 * this task called schedule() in the past. prev == current
2800 * is still correct, but it can be moved to another cpu/rq.
2801 */
2802 cpu = smp_processor_id();
2803 rq = cpu_rq(cpu);
2804 } else
2805 raw_spin_unlock_irq(&rq->lock);
2806
2807 post_schedule(rq);
2808
2809 sched_preempt_enable_no_resched();
2810 if (need_resched())
2811 goto need_resched;
2812 }
2813
2814 static inline void sched_submit_work(struct task_struct *tsk)
2815 {
2816 if (!tsk->state || tsk_is_pi_blocked(tsk))
2817 return;
2818 /*
2819 * If we are going to sleep and we have plugged IO queued,
2820 * make sure to submit it to avoid deadlocks.
2821 */
2822 if (blk_needs_flush_plug(tsk))
2823 blk_schedule_flush_plug(tsk);
2824 }
2825
2826 asmlinkage __visible void __sched schedule(void)
2827 {
2828 struct task_struct *tsk = current;
2829
2830 sched_submit_work(tsk);
2831 __schedule();
2832 }
2833 EXPORT_SYMBOL(schedule);
2834
2835 #ifdef CONFIG_CONTEXT_TRACKING
2836 asmlinkage __visible void __sched schedule_user(void)
2837 {
2838 /*
2839 * If we come here after a random call to set_need_resched(),
2840 * or we have been woken up remotely but the IPI has not yet arrived,
2841 * we haven't yet exited the RCU idle mode. Do it here manually until
2842 * we find a better solution.
2843 */
2844 user_exit();
2845 schedule();
2846 user_enter();
2847 }
2848 #endif
2849
2850 /**
2851 * schedule_preempt_disabled - called with preemption disabled
2852 *
2853 * Returns with preemption disabled. Note: preempt_count must be 1
2854 */
2855 void __sched schedule_preempt_disabled(void)
2856 {
2857 sched_preempt_enable_no_resched();
2858 schedule();
2859 preempt_disable();
2860 }
2861
2862 #ifdef CONFIG_PREEMPT
2863 /*
2864 * this is the entry point to schedule() from in-kernel preemption
2865 * off of preempt_enable. Kernel preemptions off return from interrupt
2866 * occur there and call schedule directly.
2867 */
2868 asmlinkage __visible void __sched notrace preempt_schedule(void)
2869 {
2870 /*
2871 * If there is a non-zero preempt_count or interrupts are disabled,
2872 * we do not want to preempt the current task. Just return..
2873 */
2874 if (likely(!preemptible()))
2875 return;
2876
2877 do {
2878 __preempt_count_add(PREEMPT_ACTIVE);
2879 __schedule();
2880 __preempt_count_sub(PREEMPT_ACTIVE);
2881
2882 /*
2883 * Check again in case we missed a preemption opportunity
2884 * between schedule and now.
2885 */
2886 barrier();
2887 } while (need_resched());
2888 }
2889 NOKPROBE_SYMBOL(preempt_schedule);
2890 EXPORT_SYMBOL(preempt_schedule);
2891 #endif /* CONFIG_PREEMPT */
2892
2893 /*
2894 * this is the entry point to schedule() from kernel preemption
2895 * off of irq context.
2896 * Note, that this is called and return with irqs disabled. This will
2897 * protect us against recursive calling from irq.
2898 */
2899 asmlinkage __visible void __sched preempt_schedule_irq(void)
2900 {
2901 enum ctx_state prev_state;
2902
2903 /* Catch callers which need to be fixed */
2904 BUG_ON(preempt_count() || !irqs_disabled());
2905
2906 prev_state = exception_enter();
2907
2908 do {
2909 __preempt_count_add(PREEMPT_ACTIVE);
2910 local_irq_enable();
2911 __schedule();
2912 local_irq_disable();
2913 __preempt_count_sub(PREEMPT_ACTIVE);
2914
2915 /*
2916 * Check again in case we missed a preemption opportunity
2917 * between schedule and now.
2918 */
2919 barrier();
2920 } while (need_resched());
2921
2922 exception_exit(prev_state);
2923 }
2924
2925 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2926 void *key)
2927 {
2928 return try_to_wake_up(curr->private, mode, wake_flags);
2929 }
2930 EXPORT_SYMBOL(default_wake_function);
2931
2932 #ifdef CONFIG_RT_MUTEXES
2933
2934 /*
2935 * rt_mutex_setprio - set the current priority of a task
2936 * @p: task
2937 * @prio: prio value (kernel-internal form)
2938 *
2939 * This function changes the 'effective' priority of a task. It does
2940 * not touch ->normal_prio like __setscheduler().
2941 *
2942 * Used by the rt_mutex code to implement priority inheritance
2943 * logic. Call site only calls if the priority of the task changed.
2944 */
2945 void rt_mutex_setprio(struct task_struct *p, int prio)
2946 {
2947 int oldprio, on_rq, running, enqueue_flag = 0;
2948 struct rq *rq;
2949 const struct sched_class *prev_class;
2950
2951 BUG_ON(prio > MAX_PRIO);
2952
2953 rq = __task_rq_lock(p);
2954
2955 /*
2956 * Idle task boosting is a nono in general. There is one
2957 * exception, when PREEMPT_RT and NOHZ is active:
2958 *
2959 * The idle task calls get_next_timer_interrupt() and holds
2960 * the timer wheel base->lock on the CPU and another CPU wants
2961 * to access the timer (probably to cancel it). We can safely
2962 * ignore the boosting request, as the idle CPU runs this code
2963 * with interrupts disabled and will complete the lock
2964 * protected section without being interrupted. So there is no
2965 * real need to boost.
2966 */
2967 if (unlikely(p == rq->idle)) {
2968 WARN_ON(p != rq->curr);
2969 WARN_ON(p->pi_blocked_on);
2970 goto out_unlock;
2971 }
2972
2973 trace_sched_pi_setprio(p, prio);
2974 p->pi_top_task = rt_mutex_get_top_task(p);
2975 oldprio = p->prio;
2976 prev_class = p->sched_class;
2977 on_rq = p->on_rq;
2978 running = task_current(rq, p);
2979 if (on_rq)
2980 dequeue_task(rq, p, 0);
2981 if (running)
2982 p->sched_class->put_prev_task(rq, p);
2983
2984 /*
2985 * Boosting condition are:
2986 * 1. -rt task is running and holds mutex A
2987 * --> -dl task blocks on mutex A
2988 *
2989 * 2. -dl task is running and holds mutex A
2990 * --> -dl task blocks on mutex A and could preempt the
2991 * running task
2992 */
2993 if (dl_prio(prio)) {
2994 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2995 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2996 p->dl.dl_boosted = 1;
2997 p->dl.dl_throttled = 0;
2998 enqueue_flag = ENQUEUE_REPLENISH;
2999 } else
3000 p->dl.dl_boosted = 0;
3001 p->sched_class = &dl_sched_class;
3002 } else if (rt_prio(prio)) {
3003 if (dl_prio(oldprio))
3004 p->dl.dl_boosted = 0;
3005 if (oldprio < prio)
3006 enqueue_flag = ENQUEUE_HEAD;
3007 p->sched_class = &rt_sched_class;
3008 } else {
3009 if (dl_prio(oldprio))
3010 p->dl.dl_boosted = 0;
3011 p->sched_class = &fair_sched_class;
3012 }
3013
3014 p->prio = prio;
3015
3016 if (running)
3017 p->sched_class->set_curr_task(rq);
3018 if (on_rq)
3019 enqueue_task(rq, p, enqueue_flag);
3020
3021 check_class_changed(rq, p, prev_class, oldprio);
3022 out_unlock:
3023 __task_rq_unlock(rq);
3024 }
3025 #endif
3026
3027 void set_user_nice(struct task_struct *p, long nice)
3028 {
3029 int old_prio, delta, on_rq;
3030 unsigned long flags;
3031 struct rq *rq;
3032
3033 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3034 return;
3035 /*
3036 * We have to be careful, if called from sys_setpriority(),
3037 * the task might be in the middle of scheduling on another CPU.
3038 */
3039 rq = task_rq_lock(p, &flags);
3040 /*
3041 * The RT priorities are set via sched_setscheduler(), but we still
3042 * allow the 'normal' nice value to be set - but as expected
3043 * it wont have any effect on scheduling until the task is
3044 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3045 */
3046 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3047 p->static_prio = NICE_TO_PRIO(nice);
3048 goto out_unlock;
3049 }
3050 on_rq = p->on_rq;
3051 if (on_rq)
3052 dequeue_task(rq, p, 0);
3053
3054 p->static_prio = NICE_TO_PRIO(nice);
3055 set_load_weight(p);
3056 old_prio = p->prio;
3057 p->prio = effective_prio(p);
3058 delta = p->prio - old_prio;
3059
3060 if (on_rq) {
3061 enqueue_task(rq, p, 0);
3062 /*
3063 * If the task increased its priority or is running and
3064 * lowered its priority, then reschedule its CPU:
3065 */
3066 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3067 resched_task(rq->curr);
3068 }
3069 out_unlock:
3070 task_rq_unlock(rq, p, &flags);
3071 }
3072 EXPORT_SYMBOL(set_user_nice);
3073
3074 /*
3075 * can_nice - check if a task can reduce its nice value
3076 * @p: task
3077 * @nice: nice value
3078 */
3079 int can_nice(const struct task_struct *p, const int nice)
3080 {
3081 /* convert nice value [19,-20] to rlimit style value [1,40] */
3082 int nice_rlim = nice_to_rlimit(nice);
3083
3084 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3085 capable(CAP_SYS_NICE));
3086 }
3087
3088 #ifdef __ARCH_WANT_SYS_NICE
3089
3090 /*
3091 * sys_nice - change the priority of the current process.
3092 * @increment: priority increment
3093 *
3094 * sys_setpriority is a more generic, but much slower function that
3095 * does similar things.
3096 */
3097 SYSCALL_DEFINE1(nice, int, increment)
3098 {
3099 long nice, retval;
3100
3101 /*
3102 * Setpriority might change our priority at the same moment.
3103 * We don't have to worry. Conceptually one call occurs first
3104 * and we have a single winner.
3105 */
3106 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3107 nice = task_nice(current) + increment;
3108
3109 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3110 if (increment < 0 && !can_nice(current, nice))
3111 return -EPERM;
3112
3113 retval = security_task_setnice(current, nice);
3114 if (retval)
3115 return retval;
3116
3117 set_user_nice(current, nice);
3118 return 0;
3119 }
3120
3121 #endif
3122
3123 /**
3124 * task_prio - return the priority value of a given task.
3125 * @p: the task in question.
3126 *
3127 * Return: The priority value as seen by users in /proc.
3128 * RT tasks are offset by -200. Normal tasks are centered
3129 * around 0, value goes from -16 to +15.
3130 */
3131 int task_prio(const struct task_struct *p)
3132 {
3133 return p->prio - MAX_RT_PRIO;
3134 }
3135
3136 /**
3137 * idle_cpu - is a given cpu idle currently?
3138 * @cpu: the processor in question.
3139 *
3140 * Return: 1 if the CPU is currently idle. 0 otherwise.
3141 */
3142 int idle_cpu(int cpu)
3143 {
3144 struct rq *rq = cpu_rq(cpu);
3145
3146 if (rq->curr != rq->idle)
3147 return 0;
3148
3149 if (rq->nr_running)
3150 return 0;
3151
3152 #ifdef CONFIG_SMP
3153 if (!llist_empty(&rq->wake_list))
3154 return 0;
3155 #endif
3156
3157 return 1;
3158 }
3159
3160 /**
3161 * idle_task - return the idle task for a given cpu.
3162 * @cpu: the processor in question.
3163 *
3164 * Return: The idle task for the cpu @cpu.
3165 */
3166 struct task_struct *idle_task(int cpu)
3167 {
3168 return cpu_rq(cpu)->idle;
3169 }
3170
3171 /**
3172 * find_process_by_pid - find a process with a matching PID value.
3173 * @pid: the pid in question.
3174 *
3175 * The task of @pid, if found. %NULL otherwise.
3176 */
3177 static struct task_struct *find_process_by_pid(pid_t pid)
3178 {
3179 return pid ? find_task_by_vpid(pid) : current;
3180 }
3181
3182 /*
3183 * This function initializes the sched_dl_entity of a newly becoming
3184 * SCHED_DEADLINE task.
3185 *
3186 * Only the static values are considered here, the actual runtime and the
3187 * absolute deadline will be properly calculated when the task is enqueued
3188 * for the first time with its new policy.
3189 */
3190 static void
3191 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3192 {
3193 struct sched_dl_entity *dl_se = &p->dl;
3194
3195 init_dl_task_timer(dl_se);
3196 dl_se->dl_runtime = attr->sched_runtime;
3197 dl_se->dl_deadline = attr->sched_deadline;
3198 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3199 dl_se->flags = attr->sched_flags;
3200 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3201 dl_se->dl_throttled = 0;
3202 dl_se->dl_new = 1;
3203 dl_se->dl_yielded = 0;
3204 }
3205
3206 static void __setscheduler_params(struct task_struct *p,
3207 const struct sched_attr *attr)
3208 {
3209 int policy = attr->sched_policy;
3210
3211 if (policy == -1) /* setparam */
3212 policy = p->policy;
3213
3214 p->policy = policy;
3215
3216 if (dl_policy(policy))
3217 __setparam_dl(p, attr);
3218 else if (fair_policy(policy))
3219 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3220
3221 /*
3222 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3223 * !rt_policy. Always setting this ensures that things like
3224 * getparam()/getattr() don't report silly values for !rt tasks.
3225 */
3226 p->rt_priority = attr->sched_priority;
3227 p->normal_prio = normal_prio(p);
3228 set_load_weight(p);
3229 }
3230
3231 /* Actually do priority change: must hold pi & rq lock. */
3232 static void __setscheduler(struct rq *rq, struct task_struct *p,
3233 const struct sched_attr *attr)
3234 {
3235 __setscheduler_params(p, attr);
3236
3237 /*
3238 * If we get here, there was no pi waiters boosting the
3239 * task. It is safe to use the normal prio.
3240 */
3241 p->prio = normal_prio(p);
3242
3243 if (dl_prio(p->prio))
3244 p->sched_class = &dl_sched_class;
3245 else if (rt_prio(p->prio))
3246 p->sched_class = &rt_sched_class;
3247 else
3248 p->sched_class = &fair_sched_class;
3249 }
3250
3251 static void
3252 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3253 {
3254 struct sched_dl_entity *dl_se = &p->dl;
3255
3256 attr->sched_priority = p->rt_priority;
3257 attr->sched_runtime = dl_se->dl_runtime;
3258 attr->sched_deadline = dl_se->dl_deadline;
3259 attr->sched_period = dl_se->dl_period;
3260 attr->sched_flags = dl_se->flags;
3261 }
3262
3263 /*
3264 * This function validates the new parameters of a -deadline task.
3265 * We ask for the deadline not being zero, and greater or equal
3266 * than the runtime, as well as the period of being zero or
3267 * greater than deadline. Furthermore, we have to be sure that
3268 * user parameters are above the internal resolution of 1us (we
3269 * check sched_runtime only since it is always the smaller one) and
3270 * below 2^63 ns (we have to check both sched_deadline and
3271 * sched_period, as the latter can be zero).
3272 */
3273 static bool
3274 __checkparam_dl(const struct sched_attr *attr)
3275 {
3276 /* deadline != 0 */
3277 if (attr->sched_deadline == 0)
3278 return false;
3279
3280 /*
3281 * Since we truncate DL_SCALE bits, make sure we're at least
3282 * that big.
3283 */
3284 if (attr->sched_runtime < (1ULL << DL_SCALE))
3285 return false;
3286
3287 /*
3288 * Since we use the MSB for wrap-around and sign issues, make
3289 * sure it's not set (mind that period can be equal to zero).
3290 */
3291 if (attr->sched_deadline & (1ULL << 63) ||
3292 attr->sched_period & (1ULL << 63))
3293 return false;
3294
3295 /* runtime <= deadline <= period (if period != 0) */
3296 if ((attr->sched_period != 0 &&
3297 attr->sched_period < attr->sched_deadline) ||
3298 attr->sched_deadline < attr->sched_runtime)
3299 return false;
3300
3301 return true;
3302 }
3303
3304 /*
3305 * check the target process has a UID that matches the current process's
3306 */
3307 static bool check_same_owner(struct task_struct *p)
3308 {
3309 const struct cred *cred = current_cred(), *pcred;
3310 bool match;
3311
3312 rcu_read_lock();
3313 pcred = __task_cred(p);
3314 match = (uid_eq(cred->euid, pcred->euid) ||
3315 uid_eq(cred->euid, pcred->uid));
3316 rcu_read_unlock();
3317 return match;
3318 }
3319
3320 static int __sched_setscheduler(struct task_struct *p,
3321 const struct sched_attr *attr,
3322 bool user)
3323 {
3324 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3325 MAX_RT_PRIO - 1 - attr->sched_priority;
3326 int retval, oldprio, oldpolicy = -1, on_rq, running;
3327 int policy = attr->sched_policy;
3328 unsigned long flags;
3329 const struct sched_class *prev_class;
3330 struct rq *rq;
3331 int reset_on_fork;
3332
3333 /* may grab non-irq protected spin_locks */
3334 BUG_ON(in_interrupt());
3335 recheck:
3336 /* double check policy once rq lock held */
3337 if (policy < 0) {
3338 reset_on_fork = p->sched_reset_on_fork;
3339 policy = oldpolicy = p->policy;
3340 } else {
3341 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3342
3343 if (policy != SCHED_DEADLINE &&
3344 policy != SCHED_FIFO && policy != SCHED_RR &&
3345 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3346 policy != SCHED_IDLE)
3347 return -EINVAL;
3348 }
3349
3350 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3351 return -EINVAL;
3352
3353 /*
3354 * Valid priorities for SCHED_FIFO and SCHED_RR are
3355 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3356 * SCHED_BATCH and SCHED_IDLE is 0.
3357 */
3358 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3359 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3360 return -EINVAL;
3361 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3362 (rt_policy(policy) != (attr->sched_priority != 0)))
3363 return -EINVAL;
3364
3365 /*
3366 * Allow unprivileged RT tasks to decrease priority:
3367 */
3368 if (user && !capable(CAP_SYS_NICE)) {
3369 if (fair_policy(policy)) {
3370 if (attr->sched_nice < task_nice(p) &&
3371 !can_nice(p, attr->sched_nice))
3372 return -EPERM;
3373 }
3374
3375 if (rt_policy(policy)) {
3376 unsigned long rlim_rtprio =
3377 task_rlimit(p, RLIMIT_RTPRIO);
3378
3379 /* can't set/change the rt policy */
3380 if (policy != p->policy && !rlim_rtprio)
3381 return -EPERM;
3382
3383 /* can't increase priority */
3384 if (attr->sched_priority > p->rt_priority &&
3385 attr->sched_priority > rlim_rtprio)
3386 return -EPERM;
3387 }
3388
3389 /*
3390 * Can't set/change SCHED_DEADLINE policy at all for now
3391 * (safest behavior); in the future we would like to allow
3392 * unprivileged DL tasks to increase their relative deadline
3393 * or reduce their runtime (both ways reducing utilization)
3394 */
3395 if (dl_policy(policy))
3396 return -EPERM;
3397
3398 /*
3399 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3400 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3401 */
3402 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3403 if (!can_nice(p, task_nice(p)))
3404 return -EPERM;
3405 }
3406
3407 /* can't change other user's priorities */
3408 if (!check_same_owner(p))
3409 return -EPERM;
3410
3411 /* Normal users shall not reset the sched_reset_on_fork flag */
3412 if (p->sched_reset_on_fork && !reset_on_fork)
3413 return -EPERM;
3414 }
3415
3416 if (user) {
3417 retval = security_task_setscheduler(p);
3418 if (retval)
3419 return retval;
3420 }
3421
3422 /*
3423 * make sure no PI-waiters arrive (or leave) while we are
3424 * changing the priority of the task:
3425 *
3426 * To be able to change p->policy safely, the appropriate
3427 * runqueue lock must be held.
3428 */
3429 rq = task_rq_lock(p, &flags);
3430
3431 /*
3432 * Changing the policy of the stop threads its a very bad idea
3433 */
3434 if (p == rq->stop) {
3435 task_rq_unlock(rq, p, &flags);
3436 return -EINVAL;
3437 }
3438
3439 /*
3440 * If not changing anything there's no need to proceed further,
3441 * but store a possible modification of reset_on_fork.
3442 */
3443 if (unlikely(policy == p->policy)) {
3444 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3445 goto change;
3446 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3447 goto change;
3448 if (dl_policy(policy))
3449 goto change;
3450
3451 p->sched_reset_on_fork = reset_on_fork;
3452 task_rq_unlock(rq, p, &flags);
3453 return 0;
3454 }
3455 change:
3456
3457 if (user) {
3458 #ifdef CONFIG_RT_GROUP_SCHED
3459 /*
3460 * Do not allow realtime tasks into groups that have no runtime
3461 * assigned.
3462 */
3463 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3464 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3465 !task_group_is_autogroup(task_group(p))) {
3466 task_rq_unlock(rq, p, &flags);
3467 return -EPERM;
3468 }
3469 #endif
3470 #ifdef CONFIG_SMP
3471 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3472 cpumask_t *span = rq->rd->span;
3473
3474 /*
3475 * Don't allow tasks with an affinity mask smaller than
3476 * the entire root_domain to become SCHED_DEADLINE. We
3477 * will also fail if there's no bandwidth available.
3478 */
3479 if (!cpumask_subset(span, &p->cpus_allowed) ||
3480 rq->rd->dl_bw.bw == 0) {
3481 task_rq_unlock(rq, p, &flags);
3482 return -EPERM;
3483 }
3484 }
3485 #endif
3486 }
3487
3488 /* recheck policy now with rq lock held */
3489 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3490 policy = oldpolicy = -1;
3491 task_rq_unlock(rq, p, &flags);
3492 goto recheck;
3493 }
3494
3495 /*
3496 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3497 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3498 * is available.
3499 */
3500 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3501 task_rq_unlock(rq, p, &flags);
3502 return -EBUSY;
3503 }
3504
3505 p->sched_reset_on_fork = reset_on_fork;
3506 oldprio = p->prio;
3507
3508 /*
3509 * Special case for priority boosted tasks.
3510 *
3511 * If the new priority is lower or equal (user space view)
3512 * than the current (boosted) priority, we just store the new
3513 * normal parameters and do not touch the scheduler class and
3514 * the runqueue. This will be done when the task deboost
3515 * itself.
3516 */
3517 if (rt_mutex_check_prio(p, newprio)) {
3518 __setscheduler_params(p, attr);
3519 task_rq_unlock(rq, p, &flags);
3520 return 0;
3521 }
3522
3523 on_rq = p->on_rq;
3524 running = task_current(rq, p);
3525 if (on_rq)
3526 dequeue_task(rq, p, 0);
3527 if (running)
3528 p->sched_class->put_prev_task(rq, p);
3529
3530 prev_class = p->sched_class;
3531 __setscheduler(rq, p, attr);
3532
3533 if (running)
3534 p->sched_class->set_curr_task(rq);
3535 if (on_rq) {
3536 /*
3537 * We enqueue to tail when the priority of a task is
3538 * increased (user space view).
3539 */
3540 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3541 }
3542
3543 check_class_changed(rq, p, prev_class, oldprio);
3544 task_rq_unlock(rq, p, &flags);
3545
3546 rt_mutex_adjust_pi(p);
3547
3548 return 0;
3549 }
3550
3551 static int _sched_setscheduler(struct task_struct *p, int policy,
3552 const struct sched_param *param, bool check)
3553 {
3554 struct sched_attr attr = {
3555 .sched_policy = policy,
3556 .sched_priority = param->sched_priority,
3557 .sched_nice = PRIO_TO_NICE(p->static_prio),
3558 };
3559
3560 /*
3561 * Fixup the legacy SCHED_RESET_ON_FORK hack
3562 */
3563 if (policy & SCHED_RESET_ON_FORK) {
3564 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3565 policy &= ~SCHED_RESET_ON_FORK;
3566 attr.sched_policy = policy;
3567 }
3568
3569 return __sched_setscheduler(p, &attr, check);
3570 }
3571 /**
3572 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3573 * @p: the task in question.
3574 * @policy: new policy.
3575 * @param: structure containing the new RT priority.
3576 *
3577 * Return: 0 on success. An error code otherwise.
3578 *
3579 * NOTE that the task may be already dead.
3580 */
3581 int sched_setscheduler(struct task_struct *p, int policy,
3582 const struct sched_param *param)
3583 {
3584 return _sched_setscheduler(p, policy, param, true);
3585 }
3586 EXPORT_SYMBOL_GPL(sched_setscheduler);
3587
3588 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3589 {
3590 return __sched_setscheduler(p, attr, true);
3591 }
3592 EXPORT_SYMBOL_GPL(sched_setattr);
3593
3594 /**
3595 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3596 * @p: the task in question.
3597 * @policy: new policy.
3598 * @param: structure containing the new RT priority.
3599 *
3600 * Just like sched_setscheduler, only don't bother checking if the
3601 * current context has permission. For example, this is needed in
3602 * stop_machine(): we create temporary high priority worker threads,
3603 * but our caller might not have that capability.
3604 *
3605 * Return: 0 on success. An error code otherwise.
3606 */
3607 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3608 const struct sched_param *param)
3609 {
3610 return _sched_setscheduler(p, policy, param, false);
3611 }
3612
3613 static int
3614 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3615 {
3616 struct sched_param lparam;
3617 struct task_struct *p;
3618 int retval;
3619
3620 if (!param || pid < 0)
3621 return -EINVAL;
3622 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3623 return -EFAULT;
3624
3625 rcu_read_lock();
3626 retval = -ESRCH;
3627 p = find_process_by_pid(pid);
3628 if (p != NULL)
3629 retval = sched_setscheduler(p, policy, &lparam);
3630 rcu_read_unlock();
3631
3632 return retval;
3633 }
3634
3635 /*
3636 * Mimics kernel/events/core.c perf_copy_attr().
3637 */
3638 static int sched_copy_attr(struct sched_attr __user *uattr,
3639 struct sched_attr *attr)
3640 {
3641 u32 size;
3642 int ret;
3643
3644 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3645 return -EFAULT;
3646
3647 /*
3648 * zero the full structure, so that a short copy will be nice.
3649 */
3650 memset(attr, 0, sizeof(*attr));
3651
3652 ret = get_user(size, &uattr->size);
3653 if (ret)
3654 return ret;
3655
3656 if (size > PAGE_SIZE) /* silly large */
3657 goto err_size;
3658
3659 if (!size) /* abi compat */
3660 size = SCHED_ATTR_SIZE_VER0;
3661
3662 if (size < SCHED_ATTR_SIZE_VER0)
3663 goto err_size;
3664
3665 /*
3666 * If we're handed a bigger struct than we know of,
3667 * ensure all the unknown bits are 0 - i.e. new
3668 * user-space does not rely on any kernel feature
3669 * extensions we dont know about yet.
3670 */
3671 if (size > sizeof(*attr)) {
3672 unsigned char __user *addr;
3673 unsigned char __user *end;
3674 unsigned char val;
3675
3676 addr = (void __user *)uattr + sizeof(*attr);
3677 end = (void __user *)uattr + size;
3678
3679 for (; addr < end; addr++) {
3680 ret = get_user(val, addr);
3681 if (ret)
3682 return ret;
3683 if (val)
3684 goto err_size;
3685 }
3686 size = sizeof(*attr);
3687 }
3688
3689 ret = copy_from_user(attr, uattr, size);
3690 if (ret)
3691 return -EFAULT;
3692
3693 /*
3694 * XXX: do we want to be lenient like existing syscalls; or do we want
3695 * to be strict and return an error on out-of-bounds values?
3696 */
3697 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3698
3699 return 0;
3700
3701 err_size:
3702 put_user(sizeof(*attr), &uattr->size);
3703 return -E2BIG;
3704 }
3705
3706 /**
3707 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3708 * @pid: the pid in question.
3709 * @policy: new policy.
3710 * @param: structure containing the new RT priority.
3711 *
3712 * Return: 0 on success. An error code otherwise.
3713 */
3714 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3715 struct sched_param __user *, param)
3716 {
3717 /* negative values for policy are not valid */
3718 if (policy < 0)
3719 return -EINVAL;
3720
3721 return do_sched_setscheduler(pid, policy, param);
3722 }
3723
3724 /**
3725 * sys_sched_setparam - set/change the RT priority of a thread
3726 * @pid: the pid in question.
3727 * @param: structure containing the new RT priority.
3728 *
3729 * Return: 0 on success. An error code otherwise.
3730 */
3731 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3732 {
3733 return do_sched_setscheduler(pid, -1, param);
3734 }
3735
3736 /**
3737 * sys_sched_setattr - same as above, but with extended sched_attr
3738 * @pid: the pid in question.
3739 * @uattr: structure containing the extended parameters.
3740 * @flags: for future extension.
3741 */
3742 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3743 unsigned int, flags)
3744 {
3745 struct sched_attr attr;
3746 struct task_struct *p;
3747 int retval;
3748
3749 if (!uattr || pid < 0 || flags)
3750 return -EINVAL;
3751
3752 retval = sched_copy_attr(uattr, &attr);
3753 if (retval)
3754 return retval;
3755
3756 if ((int)attr.sched_policy < 0)
3757 return -EINVAL;
3758
3759 rcu_read_lock();
3760 retval = -ESRCH;
3761 p = find_process_by_pid(pid);
3762 if (p != NULL)
3763 retval = sched_setattr(p, &attr);
3764 rcu_read_unlock();
3765
3766 return retval;
3767 }
3768
3769 /**
3770 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3771 * @pid: the pid in question.
3772 *
3773 * Return: On success, the policy of the thread. Otherwise, a negative error
3774 * code.
3775 */
3776 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3777 {
3778 struct task_struct *p;
3779 int retval;
3780
3781 if (pid < 0)
3782 return -EINVAL;
3783
3784 retval = -ESRCH;
3785 rcu_read_lock();
3786 p = find_process_by_pid(pid);
3787 if (p) {
3788 retval = security_task_getscheduler(p);
3789 if (!retval)
3790 retval = p->policy
3791 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3792 }
3793 rcu_read_unlock();
3794 return retval;
3795 }
3796
3797 /**
3798 * sys_sched_getparam - get the RT priority of a thread
3799 * @pid: the pid in question.
3800 * @param: structure containing the RT priority.
3801 *
3802 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3803 * code.
3804 */
3805 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3806 {
3807 struct sched_param lp = { .sched_priority = 0 };
3808 struct task_struct *p;
3809 int retval;
3810
3811 if (!param || pid < 0)
3812 return -EINVAL;
3813
3814 rcu_read_lock();
3815 p = find_process_by_pid(pid);
3816 retval = -ESRCH;
3817 if (!p)
3818 goto out_unlock;
3819
3820 retval = security_task_getscheduler(p);
3821 if (retval)
3822 goto out_unlock;
3823
3824 if (task_has_rt_policy(p))
3825 lp.sched_priority = p->rt_priority;
3826 rcu_read_unlock();
3827
3828 /*
3829 * This one might sleep, we cannot do it with a spinlock held ...
3830 */
3831 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3832
3833 return retval;
3834
3835 out_unlock:
3836 rcu_read_unlock();
3837 return retval;
3838 }
3839
3840 static int sched_read_attr(struct sched_attr __user *uattr,
3841 struct sched_attr *attr,
3842 unsigned int usize)
3843 {
3844 int ret;
3845
3846 if (!access_ok(VERIFY_WRITE, uattr, usize))
3847 return -EFAULT;
3848
3849 /*
3850 * If we're handed a smaller struct than we know of,
3851 * ensure all the unknown bits are 0 - i.e. old
3852 * user-space does not get uncomplete information.
3853 */
3854 if (usize < sizeof(*attr)) {
3855 unsigned char *addr;
3856 unsigned char *end;
3857
3858 addr = (void *)attr + usize;
3859 end = (void *)attr + sizeof(*attr);
3860
3861 for (; addr < end; addr++) {
3862 if (*addr)
3863 return -EFBIG;
3864 }
3865
3866 attr->size = usize;
3867 }
3868
3869 ret = copy_to_user(uattr, attr, attr->size);
3870 if (ret)
3871 return -EFAULT;
3872
3873 return 0;
3874 }
3875
3876 /**
3877 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3878 * @pid: the pid in question.
3879 * @uattr: structure containing the extended parameters.
3880 * @size: sizeof(attr) for fwd/bwd comp.
3881 * @flags: for future extension.
3882 */
3883 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3884 unsigned int, size, unsigned int, flags)
3885 {
3886 struct sched_attr attr = {
3887 .size = sizeof(struct sched_attr),
3888 };
3889 struct task_struct *p;
3890 int retval;
3891
3892 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3893 size < SCHED_ATTR_SIZE_VER0 || flags)
3894 return -EINVAL;
3895
3896 rcu_read_lock();
3897 p = find_process_by_pid(pid);
3898 retval = -ESRCH;
3899 if (!p)
3900 goto out_unlock;
3901
3902 retval = security_task_getscheduler(p);
3903 if (retval)
3904 goto out_unlock;
3905
3906 attr.sched_policy = p->policy;
3907 if (p->sched_reset_on_fork)
3908 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3909 if (task_has_dl_policy(p))
3910 __getparam_dl(p, &attr);
3911 else if (task_has_rt_policy(p))
3912 attr.sched_priority = p->rt_priority;
3913 else
3914 attr.sched_nice = task_nice(p);
3915
3916 rcu_read_unlock();
3917
3918 retval = sched_read_attr(uattr, &attr, size);
3919 return retval;
3920
3921 out_unlock:
3922 rcu_read_unlock();
3923 return retval;
3924 }
3925
3926 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3927 {
3928 cpumask_var_t cpus_allowed, new_mask;
3929 struct task_struct *p;
3930 int retval;
3931
3932 rcu_read_lock();
3933
3934 p = find_process_by_pid(pid);
3935 if (!p) {
3936 rcu_read_unlock();
3937 return -ESRCH;
3938 }
3939
3940 /* Prevent p going away */
3941 get_task_struct(p);
3942 rcu_read_unlock();
3943
3944 if (p->flags & PF_NO_SETAFFINITY) {
3945 retval = -EINVAL;
3946 goto out_put_task;
3947 }
3948 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3949 retval = -ENOMEM;
3950 goto out_put_task;
3951 }
3952 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3953 retval = -ENOMEM;
3954 goto out_free_cpus_allowed;
3955 }
3956 retval = -EPERM;
3957 if (!check_same_owner(p)) {
3958 rcu_read_lock();
3959 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3960 rcu_read_unlock();
3961 goto out_unlock;
3962 }
3963 rcu_read_unlock();
3964 }
3965
3966 retval = security_task_setscheduler(p);
3967 if (retval)
3968 goto out_unlock;
3969
3970
3971 cpuset_cpus_allowed(p, cpus_allowed);
3972 cpumask_and(new_mask, in_mask, cpus_allowed);
3973
3974 /*
3975 * Since bandwidth control happens on root_domain basis,
3976 * if admission test is enabled, we only admit -deadline
3977 * tasks allowed to run on all the CPUs in the task's
3978 * root_domain.
3979 */
3980 #ifdef CONFIG_SMP
3981 if (task_has_dl_policy(p)) {
3982 const struct cpumask *span = task_rq(p)->rd->span;
3983
3984 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3985 retval = -EBUSY;
3986 goto out_unlock;
3987 }
3988 }
3989 #endif
3990 again:
3991 retval = set_cpus_allowed_ptr(p, new_mask);
3992
3993 if (!retval) {
3994 cpuset_cpus_allowed(p, cpus_allowed);
3995 if (!cpumask_subset(new_mask, cpus_allowed)) {
3996 /*
3997 * We must have raced with a concurrent cpuset
3998 * update. Just reset the cpus_allowed to the
3999 * cpuset's cpus_allowed
4000 */
4001 cpumask_copy(new_mask, cpus_allowed);
4002 goto again;
4003 }
4004 }
4005 out_unlock:
4006 free_cpumask_var(new_mask);
4007 out_free_cpus_allowed:
4008 free_cpumask_var(cpus_allowed);
4009 out_put_task:
4010 put_task_struct(p);
4011 return retval;
4012 }
4013
4014 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4015 struct cpumask *new_mask)
4016 {
4017 if (len < cpumask_size())
4018 cpumask_clear(new_mask);
4019 else if (len > cpumask_size())
4020 len = cpumask_size();
4021
4022 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4023 }
4024
4025 /**
4026 * sys_sched_setaffinity - set the cpu affinity of a process
4027 * @pid: pid of the process
4028 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4029 * @user_mask_ptr: user-space pointer to the new cpu mask
4030 *
4031 * Return: 0 on success. An error code otherwise.
4032 */
4033 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4034 unsigned long __user *, user_mask_ptr)
4035 {
4036 cpumask_var_t new_mask;
4037 int retval;
4038
4039 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4040 return -ENOMEM;
4041
4042 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4043 if (retval == 0)
4044 retval = sched_setaffinity(pid, new_mask);
4045 free_cpumask_var(new_mask);
4046 return retval;
4047 }
4048
4049 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4050 {
4051 struct task_struct *p;
4052 unsigned long flags;
4053 int retval;
4054
4055 rcu_read_lock();
4056
4057 retval = -ESRCH;
4058 p = find_process_by_pid(pid);
4059 if (!p)
4060 goto out_unlock;
4061
4062 retval = security_task_getscheduler(p);
4063 if (retval)
4064 goto out_unlock;
4065
4066 raw_spin_lock_irqsave(&p->pi_lock, flags);
4067 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4068 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4069
4070 out_unlock:
4071 rcu_read_unlock();
4072
4073 return retval;
4074 }
4075
4076 /**
4077 * sys_sched_getaffinity - get the cpu affinity of a process
4078 * @pid: pid of the process
4079 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4080 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4081 *
4082 * Return: 0 on success. An error code otherwise.
4083 */
4084 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4085 unsigned long __user *, user_mask_ptr)
4086 {
4087 int ret;
4088 cpumask_var_t mask;
4089
4090 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4091 return -EINVAL;
4092 if (len & (sizeof(unsigned long)-1))
4093 return -EINVAL;
4094
4095 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4096 return -ENOMEM;
4097
4098 ret = sched_getaffinity(pid, mask);
4099 if (ret == 0) {
4100 size_t retlen = min_t(size_t, len, cpumask_size());
4101
4102 if (copy_to_user(user_mask_ptr, mask, retlen))
4103 ret = -EFAULT;
4104 else
4105 ret = retlen;
4106 }
4107 free_cpumask_var(mask);
4108
4109 return ret;
4110 }
4111
4112 /**
4113 * sys_sched_yield - yield the current processor to other threads.
4114 *
4115 * This function yields the current CPU to other tasks. If there are no
4116 * other threads running on this CPU then this function will return.
4117 *
4118 * Return: 0.
4119 */
4120 SYSCALL_DEFINE0(sched_yield)
4121 {
4122 struct rq *rq = this_rq_lock();
4123
4124 schedstat_inc(rq, yld_count);
4125 current->sched_class->yield_task(rq);
4126
4127 /*
4128 * Since we are going to call schedule() anyway, there's
4129 * no need to preempt or enable interrupts:
4130 */
4131 __release(rq->lock);
4132 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4133 do_raw_spin_unlock(&rq->lock);
4134 sched_preempt_enable_no_resched();
4135
4136 schedule();
4137
4138 return 0;
4139 }
4140
4141 static void __cond_resched(void)
4142 {
4143 __preempt_count_add(PREEMPT_ACTIVE);
4144 __schedule();
4145 __preempt_count_sub(PREEMPT_ACTIVE);
4146 }
4147
4148 int __sched _cond_resched(void)
4149 {
4150 if (should_resched()) {
4151 __cond_resched();
4152 return 1;
4153 }
4154 return 0;
4155 }
4156 EXPORT_SYMBOL(_cond_resched);
4157
4158 /*
4159 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4160 * call schedule, and on return reacquire the lock.
4161 *
4162 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4163 * operations here to prevent schedule() from being called twice (once via
4164 * spin_unlock(), once by hand).
4165 */
4166 int __cond_resched_lock(spinlock_t *lock)
4167 {
4168 int resched = should_resched();
4169 int ret = 0;
4170
4171 lockdep_assert_held(lock);
4172
4173 if (spin_needbreak(lock) || resched) {
4174 spin_unlock(lock);
4175 if (resched)
4176 __cond_resched();
4177 else
4178 cpu_relax();
4179 ret = 1;
4180 spin_lock(lock);
4181 }
4182 return ret;
4183 }
4184 EXPORT_SYMBOL(__cond_resched_lock);
4185
4186 int __sched __cond_resched_softirq(void)
4187 {
4188 BUG_ON(!in_softirq());
4189
4190 if (should_resched()) {
4191 local_bh_enable();
4192 __cond_resched();
4193 local_bh_disable();
4194 return 1;
4195 }
4196 return 0;
4197 }
4198 EXPORT_SYMBOL(__cond_resched_softirq);
4199
4200 /**
4201 * yield - yield the current processor to other threads.
4202 *
4203 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4204 *
4205 * The scheduler is at all times free to pick the calling task as the most
4206 * eligible task to run, if removing the yield() call from your code breaks
4207 * it, its already broken.
4208 *
4209 * Typical broken usage is:
4210 *
4211 * while (!event)
4212 * yield();
4213 *
4214 * where one assumes that yield() will let 'the other' process run that will
4215 * make event true. If the current task is a SCHED_FIFO task that will never
4216 * happen. Never use yield() as a progress guarantee!!
4217 *
4218 * If you want to use yield() to wait for something, use wait_event().
4219 * If you want to use yield() to be 'nice' for others, use cond_resched().
4220 * If you still want to use yield(), do not!
4221 */
4222 void __sched yield(void)
4223 {
4224 set_current_state(TASK_RUNNING);
4225 sys_sched_yield();
4226 }
4227 EXPORT_SYMBOL(yield);
4228
4229 /**
4230 * yield_to - yield the current processor to another thread in
4231 * your thread group, or accelerate that thread toward the
4232 * processor it's on.
4233 * @p: target task
4234 * @preempt: whether task preemption is allowed or not
4235 *
4236 * It's the caller's job to ensure that the target task struct
4237 * can't go away on us before we can do any checks.
4238 *
4239 * Return:
4240 * true (>0) if we indeed boosted the target task.
4241 * false (0) if we failed to boost the target.
4242 * -ESRCH if there's no task to yield to.
4243 */
4244 int __sched yield_to(struct task_struct *p, bool preempt)
4245 {
4246 struct task_struct *curr = current;
4247 struct rq *rq, *p_rq;
4248 unsigned long flags;
4249 int yielded = 0;
4250
4251 local_irq_save(flags);
4252 rq = this_rq();
4253
4254 again:
4255 p_rq = task_rq(p);
4256 /*
4257 * If we're the only runnable task on the rq and target rq also
4258 * has only one task, there's absolutely no point in yielding.
4259 */
4260 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4261 yielded = -ESRCH;
4262 goto out_irq;
4263 }
4264
4265 double_rq_lock(rq, p_rq);
4266 if (task_rq(p) != p_rq) {
4267 double_rq_unlock(rq, p_rq);
4268 goto again;
4269 }
4270
4271 if (!curr->sched_class->yield_to_task)
4272 goto out_unlock;
4273
4274 if (curr->sched_class != p->sched_class)
4275 goto out_unlock;
4276
4277 if (task_running(p_rq, p) || p->state)
4278 goto out_unlock;
4279
4280 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4281 if (yielded) {
4282 schedstat_inc(rq, yld_count);
4283 /*
4284 * Make p's CPU reschedule; pick_next_entity takes care of
4285 * fairness.
4286 */
4287 if (preempt && rq != p_rq)
4288 resched_task(p_rq->curr);
4289 }
4290
4291 out_unlock:
4292 double_rq_unlock(rq, p_rq);
4293 out_irq:
4294 local_irq_restore(flags);
4295
4296 if (yielded > 0)
4297 schedule();
4298
4299 return yielded;
4300 }
4301 EXPORT_SYMBOL_GPL(yield_to);
4302
4303 /*
4304 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4305 * that process accounting knows that this is a task in IO wait state.
4306 */
4307 void __sched io_schedule(void)
4308 {
4309 struct rq *rq = raw_rq();
4310
4311 delayacct_blkio_start();
4312 atomic_inc(&rq->nr_iowait);
4313 blk_flush_plug(current);
4314 current->in_iowait = 1;
4315 schedule();
4316 current->in_iowait = 0;
4317 atomic_dec(&rq->nr_iowait);
4318 delayacct_blkio_end();
4319 }
4320 EXPORT_SYMBOL(io_schedule);
4321
4322 long __sched io_schedule_timeout(long timeout)
4323 {
4324 struct rq *rq = raw_rq();
4325 long ret;
4326
4327 delayacct_blkio_start();
4328 atomic_inc(&rq->nr_iowait);
4329 blk_flush_plug(current);
4330 current->in_iowait = 1;
4331 ret = schedule_timeout(timeout);
4332 current->in_iowait = 0;
4333 atomic_dec(&rq->nr_iowait);
4334 delayacct_blkio_end();
4335 return ret;
4336 }
4337
4338 /**
4339 * sys_sched_get_priority_max - return maximum RT priority.
4340 * @policy: scheduling class.
4341 *
4342 * Return: On success, this syscall returns the maximum
4343 * rt_priority that can be used by a given scheduling class.
4344 * On failure, a negative error code is returned.
4345 */
4346 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4347 {
4348 int ret = -EINVAL;
4349
4350 switch (policy) {
4351 case SCHED_FIFO:
4352 case SCHED_RR:
4353 ret = MAX_USER_RT_PRIO-1;
4354 break;
4355 case SCHED_DEADLINE:
4356 case SCHED_NORMAL:
4357 case SCHED_BATCH:
4358 case SCHED_IDLE:
4359 ret = 0;
4360 break;
4361 }
4362 return ret;
4363 }
4364
4365 /**
4366 * sys_sched_get_priority_min - return minimum RT priority.
4367 * @policy: scheduling class.
4368 *
4369 * Return: On success, this syscall returns the minimum
4370 * rt_priority that can be used by a given scheduling class.
4371 * On failure, a negative error code is returned.
4372 */
4373 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4374 {
4375 int ret = -EINVAL;
4376
4377 switch (policy) {
4378 case SCHED_FIFO:
4379 case SCHED_RR:
4380 ret = 1;
4381 break;
4382 case SCHED_DEADLINE:
4383 case SCHED_NORMAL:
4384 case SCHED_BATCH:
4385 case SCHED_IDLE:
4386 ret = 0;
4387 }
4388 return ret;
4389 }
4390
4391 /**
4392 * sys_sched_rr_get_interval - return the default timeslice of a process.
4393 * @pid: pid of the process.
4394 * @interval: userspace pointer to the timeslice value.
4395 *
4396 * this syscall writes the default timeslice value of a given process
4397 * into the user-space timespec buffer. A value of '0' means infinity.
4398 *
4399 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4400 * an error code.
4401 */
4402 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4403 struct timespec __user *, interval)
4404 {
4405 struct task_struct *p;
4406 unsigned int time_slice;
4407 unsigned long flags;
4408 struct rq *rq;
4409 int retval;
4410 struct timespec t;
4411
4412 if (pid < 0)
4413 return -EINVAL;
4414
4415 retval = -ESRCH;
4416 rcu_read_lock();
4417 p = find_process_by_pid(pid);
4418 if (!p)
4419 goto out_unlock;
4420
4421 retval = security_task_getscheduler(p);
4422 if (retval)
4423 goto out_unlock;
4424
4425 rq = task_rq_lock(p, &flags);
4426 time_slice = 0;
4427 if (p->sched_class->get_rr_interval)
4428 time_slice = p->sched_class->get_rr_interval(rq, p);
4429 task_rq_unlock(rq, p, &flags);
4430
4431 rcu_read_unlock();
4432 jiffies_to_timespec(time_slice, &t);
4433 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4434 return retval;
4435
4436 out_unlock:
4437 rcu_read_unlock();
4438 return retval;
4439 }
4440
4441 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4442
4443 void sched_show_task(struct task_struct *p)
4444 {
4445 unsigned long free = 0;
4446 int ppid;
4447 unsigned state;
4448
4449 state = p->state ? __ffs(p->state) + 1 : 0;
4450 printk(KERN_INFO "%-15.15s %c", p->comm,
4451 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4452 #if BITS_PER_LONG == 32
4453 if (state == TASK_RUNNING)
4454 printk(KERN_CONT " running ");
4455 else
4456 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4457 #else
4458 if (state == TASK_RUNNING)
4459 printk(KERN_CONT " running task ");
4460 else
4461 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4462 #endif
4463 #ifdef CONFIG_DEBUG_STACK_USAGE
4464 free = stack_not_used(p);
4465 #endif
4466 rcu_read_lock();
4467 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4468 rcu_read_unlock();
4469 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4470 task_pid_nr(p), ppid,
4471 (unsigned long)task_thread_info(p)->flags);
4472
4473 print_worker_info(KERN_INFO, p);
4474 show_stack(p, NULL);
4475 }
4476
4477 void show_state_filter(unsigned long state_filter)
4478 {
4479 struct task_struct *g, *p;
4480
4481 #if BITS_PER_LONG == 32
4482 printk(KERN_INFO
4483 " task PC stack pid father\n");
4484 #else
4485 printk(KERN_INFO
4486 " task PC stack pid father\n");
4487 #endif
4488 rcu_read_lock();
4489 do_each_thread(g, p) {
4490 /*
4491 * reset the NMI-timeout, listing all files on a slow
4492 * console might take a lot of time:
4493 */
4494 touch_nmi_watchdog();
4495 if (!state_filter || (p->state & state_filter))
4496 sched_show_task(p);
4497 } while_each_thread(g, p);
4498
4499 touch_all_softlockup_watchdogs();
4500
4501 #ifdef CONFIG_SCHED_DEBUG
4502 sysrq_sched_debug_show();
4503 #endif
4504 rcu_read_unlock();
4505 /*
4506 * Only show locks if all tasks are dumped:
4507 */
4508 if (!state_filter)
4509 debug_show_all_locks();
4510 }
4511
4512 void init_idle_bootup_task(struct task_struct *idle)
4513 {
4514 idle->sched_class = &idle_sched_class;
4515 }
4516
4517 /**
4518 * init_idle - set up an idle thread for a given CPU
4519 * @idle: task in question
4520 * @cpu: cpu the idle task belongs to
4521 *
4522 * NOTE: this function does not set the idle thread's NEED_RESCHED
4523 * flag, to make booting more robust.
4524 */
4525 void init_idle(struct task_struct *idle, int cpu)
4526 {
4527 struct rq *rq = cpu_rq(cpu);
4528 unsigned long flags;
4529
4530 raw_spin_lock_irqsave(&rq->lock, flags);
4531
4532 __sched_fork(0, idle);
4533 idle->state = TASK_RUNNING;
4534 idle->se.exec_start = sched_clock();
4535
4536 do_set_cpus_allowed(idle, cpumask_of(cpu));
4537 /*
4538 * We're having a chicken and egg problem, even though we are
4539 * holding rq->lock, the cpu isn't yet set to this cpu so the
4540 * lockdep check in task_group() will fail.
4541 *
4542 * Similar case to sched_fork(). / Alternatively we could
4543 * use task_rq_lock() here and obtain the other rq->lock.
4544 *
4545 * Silence PROVE_RCU
4546 */
4547 rcu_read_lock();
4548 __set_task_cpu(idle, cpu);
4549 rcu_read_unlock();
4550
4551 rq->curr = rq->idle = idle;
4552 idle->on_rq = 1;
4553 #if defined(CONFIG_SMP)
4554 idle->on_cpu = 1;
4555 #endif
4556 raw_spin_unlock_irqrestore(&rq->lock, flags);
4557
4558 /* Set the preempt count _outside_ the spinlocks! */
4559 init_idle_preempt_count(idle, cpu);
4560
4561 /*
4562 * The idle tasks have their own, simple scheduling class:
4563 */
4564 idle->sched_class = &idle_sched_class;
4565 ftrace_graph_init_idle_task(idle, cpu);
4566 vtime_init_idle(idle, cpu);
4567 #if defined(CONFIG_SMP)
4568 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4569 #endif
4570 }
4571
4572 #ifdef CONFIG_SMP
4573 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4574 {
4575 if (p->sched_class && p->sched_class->set_cpus_allowed)
4576 p->sched_class->set_cpus_allowed(p, new_mask);
4577
4578 cpumask_copy(&p->cpus_allowed, new_mask);
4579 p->nr_cpus_allowed = cpumask_weight(new_mask);
4580 }
4581
4582 /*
4583 * This is how migration works:
4584 *
4585 * 1) we invoke migration_cpu_stop() on the target CPU using
4586 * stop_one_cpu().
4587 * 2) stopper starts to run (implicitly forcing the migrated thread
4588 * off the CPU)
4589 * 3) it checks whether the migrated task is still in the wrong runqueue.
4590 * 4) if it's in the wrong runqueue then the migration thread removes
4591 * it and puts it into the right queue.
4592 * 5) stopper completes and stop_one_cpu() returns and the migration
4593 * is done.
4594 */
4595
4596 /*
4597 * Change a given task's CPU affinity. Migrate the thread to a
4598 * proper CPU and schedule it away if the CPU it's executing on
4599 * is removed from the allowed bitmask.
4600 *
4601 * NOTE: the caller must have a valid reference to the task, the
4602 * task must not exit() & deallocate itself prematurely. The
4603 * call is not atomic; no spinlocks may be held.
4604 */
4605 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4606 {
4607 unsigned long flags;
4608 struct rq *rq;
4609 unsigned int dest_cpu;
4610 int ret = 0;
4611
4612 rq = task_rq_lock(p, &flags);
4613
4614 if (cpumask_equal(&p->cpus_allowed, new_mask))
4615 goto out;
4616
4617 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4618 ret = -EINVAL;
4619 goto out;
4620 }
4621
4622 do_set_cpus_allowed(p, new_mask);
4623
4624 /* Can the task run on the task's current CPU? If so, we're done */
4625 if (cpumask_test_cpu(task_cpu(p), new_mask))
4626 goto out;
4627
4628 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4629 if (p->on_rq) {
4630 struct migration_arg arg = { p, dest_cpu };
4631 /* Need help from migration thread: drop lock and wait. */
4632 task_rq_unlock(rq, p, &flags);
4633 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4634 tlb_migrate_finish(p->mm);
4635 return 0;
4636 }
4637 out:
4638 task_rq_unlock(rq, p, &flags);
4639
4640 return ret;
4641 }
4642 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4643
4644 /*
4645 * Move (not current) task off this cpu, onto dest cpu. We're doing
4646 * this because either it can't run here any more (set_cpus_allowed()
4647 * away from this CPU, or CPU going down), or because we're
4648 * attempting to rebalance this task on exec (sched_exec).
4649 *
4650 * So we race with normal scheduler movements, but that's OK, as long
4651 * as the task is no longer on this CPU.
4652 *
4653 * Returns non-zero if task was successfully migrated.
4654 */
4655 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4656 {
4657 struct rq *rq_dest, *rq_src;
4658 int ret = 0;
4659
4660 if (unlikely(!cpu_active(dest_cpu)))
4661 return ret;
4662
4663 rq_src = cpu_rq(src_cpu);
4664 rq_dest = cpu_rq(dest_cpu);
4665
4666 raw_spin_lock(&p->pi_lock);
4667 double_rq_lock(rq_src, rq_dest);
4668 /* Already moved. */
4669 if (task_cpu(p) != src_cpu)
4670 goto done;
4671 /* Affinity changed (again). */
4672 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4673 goto fail;
4674
4675 /*
4676 * If we're not on a rq, the next wake-up will ensure we're
4677 * placed properly.
4678 */
4679 if (p->on_rq) {
4680 dequeue_task(rq_src, p, 0);
4681 set_task_cpu(p, dest_cpu);
4682 enqueue_task(rq_dest, p, 0);
4683 check_preempt_curr(rq_dest, p, 0);
4684 }
4685 done:
4686 ret = 1;
4687 fail:
4688 double_rq_unlock(rq_src, rq_dest);
4689 raw_spin_unlock(&p->pi_lock);
4690 return ret;
4691 }
4692
4693 #ifdef CONFIG_NUMA_BALANCING
4694 /* Migrate current task p to target_cpu */
4695 int migrate_task_to(struct task_struct *p, int target_cpu)
4696 {
4697 struct migration_arg arg = { p, target_cpu };
4698 int curr_cpu = task_cpu(p);
4699
4700 if (curr_cpu == target_cpu)
4701 return 0;
4702
4703 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4704 return -EINVAL;
4705
4706 /* TODO: This is not properly updating schedstats */
4707
4708 trace_sched_move_numa(p, curr_cpu, target_cpu);
4709 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4710 }
4711
4712 /*
4713 * Requeue a task on a given node and accurately track the number of NUMA
4714 * tasks on the runqueues
4715 */
4716 void sched_setnuma(struct task_struct *p, int nid)
4717 {
4718 struct rq *rq;
4719 unsigned long flags;
4720 bool on_rq, running;
4721
4722 rq = task_rq_lock(p, &flags);
4723 on_rq = p->on_rq;
4724 running = task_current(rq, p);
4725
4726 if (on_rq)
4727 dequeue_task(rq, p, 0);
4728 if (running)
4729 p->sched_class->put_prev_task(rq, p);
4730
4731 p->numa_preferred_nid = nid;
4732
4733 if (running)
4734 p->sched_class->set_curr_task(rq);
4735 if (on_rq)
4736 enqueue_task(rq, p, 0);
4737 task_rq_unlock(rq, p, &flags);
4738 }
4739 #endif
4740
4741 /*
4742 * migration_cpu_stop - this will be executed by a highprio stopper thread
4743 * and performs thread migration by bumping thread off CPU then
4744 * 'pushing' onto another runqueue.
4745 */
4746 static int migration_cpu_stop(void *data)
4747 {
4748 struct migration_arg *arg = data;
4749
4750 /*
4751 * The original target cpu might have gone down and we might
4752 * be on another cpu but it doesn't matter.
4753 */
4754 local_irq_disable();
4755 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4756 local_irq_enable();
4757 return 0;
4758 }
4759
4760 #ifdef CONFIG_HOTPLUG_CPU
4761
4762 /*
4763 * Ensures that the idle task is using init_mm right before its cpu goes
4764 * offline.
4765 */
4766 void idle_task_exit(void)
4767 {
4768 struct mm_struct *mm = current->active_mm;
4769
4770 BUG_ON(cpu_online(smp_processor_id()));
4771
4772 if (mm != &init_mm) {
4773 switch_mm(mm, &init_mm, current);
4774 finish_arch_post_lock_switch();
4775 }
4776 mmdrop(mm);
4777 }
4778
4779 /*
4780 * Since this CPU is going 'away' for a while, fold any nr_active delta
4781 * we might have. Assumes we're called after migrate_tasks() so that the
4782 * nr_active count is stable.
4783 *
4784 * Also see the comment "Global load-average calculations".
4785 */
4786 static void calc_load_migrate(struct rq *rq)
4787 {
4788 long delta = calc_load_fold_active(rq);
4789 if (delta)
4790 atomic_long_add(delta, &calc_load_tasks);
4791 }
4792
4793 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4794 {
4795 }
4796
4797 static const struct sched_class fake_sched_class = {
4798 .put_prev_task = put_prev_task_fake,
4799 };
4800
4801 static struct task_struct fake_task = {
4802 /*
4803 * Avoid pull_{rt,dl}_task()
4804 */
4805 .prio = MAX_PRIO + 1,
4806 .sched_class = &fake_sched_class,
4807 };
4808
4809 /*
4810 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4811 * try_to_wake_up()->select_task_rq().
4812 *
4813 * Called with rq->lock held even though we'er in stop_machine() and
4814 * there's no concurrency possible, we hold the required locks anyway
4815 * because of lock validation efforts.
4816 */
4817 static void migrate_tasks(unsigned int dead_cpu)
4818 {
4819 struct rq *rq = cpu_rq(dead_cpu);
4820 struct task_struct *next, *stop = rq->stop;
4821 int dest_cpu;
4822
4823 /*
4824 * Fudge the rq selection such that the below task selection loop
4825 * doesn't get stuck on the currently eligible stop task.
4826 *
4827 * We're currently inside stop_machine() and the rq is either stuck
4828 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4829 * either way we should never end up calling schedule() until we're
4830 * done here.
4831 */
4832 rq->stop = NULL;
4833
4834 /*
4835 * put_prev_task() and pick_next_task() sched
4836 * class method both need to have an up-to-date
4837 * value of rq->clock[_task]
4838 */
4839 update_rq_clock(rq);
4840
4841 for ( ; ; ) {
4842 /*
4843 * There's this thread running, bail when that's the only
4844 * remaining thread.
4845 */
4846 if (rq->nr_running == 1)
4847 break;
4848
4849 next = pick_next_task(rq, &fake_task);
4850 BUG_ON(!next);
4851 next->sched_class->put_prev_task(rq, next);
4852
4853 /* Find suitable destination for @next, with force if needed. */
4854 dest_cpu = select_fallback_rq(dead_cpu, next);
4855 raw_spin_unlock(&rq->lock);
4856
4857 __migrate_task(next, dead_cpu, dest_cpu);
4858
4859 raw_spin_lock(&rq->lock);
4860 }
4861
4862 rq->stop = stop;
4863 }
4864
4865 #endif /* CONFIG_HOTPLUG_CPU */
4866
4867 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4868
4869 static struct ctl_table sd_ctl_dir[] = {
4870 {
4871 .procname = "sched_domain",
4872 .mode = 0555,
4873 },
4874 {}
4875 };
4876
4877 static struct ctl_table sd_ctl_root[] = {
4878 {
4879 .procname = "kernel",
4880 .mode = 0555,
4881 .child = sd_ctl_dir,
4882 },
4883 {}
4884 };
4885
4886 static struct ctl_table *sd_alloc_ctl_entry(int n)
4887 {
4888 struct ctl_table *entry =
4889 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4890
4891 return entry;
4892 }
4893
4894 static void sd_free_ctl_entry(struct ctl_table **tablep)
4895 {
4896 struct ctl_table *entry;
4897
4898 /*
4899 * In the intermediate directories, both the child directory and
4900 * procname are dynamically allocated and could fail but the mode
4901 * will always be set. In the lowest directory the names are
4902 * static strings and all have proc handlers.
4903 */
4904 for (entry = *tablep; entry->mode; entry++) {
4905 if (entry->child)
4906 sd_free_ctl_entry(&entry->child);
4907 if (entry->proc_handler == NULL)
4908 kfree(entry->procname);
4909 }
4910
4911 kfree(*tablep);
4912 *tablep = NULL;
4913 }
4914
4915 static int min_load_idx = 0;
4916 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4917
4918 static void
4919 set_table_entry(struct ctl_table *entry,
4920 const char *procname, void *data, int maxlen,
4921 umode_t mode, proc_handler *proc_handler,
4922 bool load_idx)
4923 {
4924 entry->procname = procname;
4925 entry->data = data;
4926 entry->maxlen = maxlen;
4927 entry->mode = mode;
4928 entry->proc_handler = proc_handler;
4929
4930 if (load_idx) {
4931 entry->extra1 = &min_load_idx;
4932 entry->extra2 = &max_load_idx;
4933 }
4934 }
4935
4936 static struct ctl_table *
4937 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4938 {
4939 struct ctl_table *table = sd_alloc_ctl_entry(14);
4940
4941 if (table == NULL)
4942 return NULL;
4943
4944 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4945 sizeof(long), 0644, proc_doulongvec_minmax, false);
4946 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4947 sizeof(long), 0644, proc_doulongvec_minmax, false);
4948 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4949 sizeof(int), 0644, proc_dointvec_minmax, true);
4950 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4951 sizeof(int), 0644, proc_dointvec_minmax, true);
4952 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4953 sizeof(int), 0644, proc_dointvec_minmax, true);
4954 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4955 sizeof(int), 0644, proc_dointvec_minmax, true);
4956 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4957 sizeof(int), 0644, proc_dointvec_minmax, true);
4958 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4959 sizeof(int), 0644, proc_dointvec_minmax, false);
4960 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4961 sizeof(int), 0644, proc_dointvec_minmax, false);
4962 set_table_entry(&table[9], "cache_nice_tries",
4963 &sd->cache_nice_tries,
4964 sizeof(int), 0644, proc_dointvec_minmax, false);
4965 set_table_entry(&table[10], "flags", &sd->flags,
4966 sizeof(int), 0644, proc_dointvec_minmax, false);
4967 set_table_entry(&table[11], "max_newidle_lb_cost",
4968 &sd->max_newidle_lb_cost,
4969 sizeof(long), 0644, proc_doulongvec_minmax, false);
4970 set_table_entry(&table[12], "name", sd->name,
4971 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4972 /* &table[13] is terminator */
4973
4974 return table;
4975 }
4976
4977 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4978 {
4979 struct ctl_table *entry, *table;
4980 struct sched_domain *sd;
4981 int domain_num = 0, i;
4982 char buf[32];
4983
4984 for_each_domain(cpu, sd)
4985 domain_num++;
4986 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4987 if (table == NULL)
4988 return NULL;
4989
4990 i = 0;
4991 for_each_domain(cpu, sd) {
4992 snprintf(buf, 32, "domain%d", i);
4993 entry->procname = kstrdup(buf, GFP_KERNEL);
4994 entry->mode = 0555;
4995 entry->child = sd_alloc_ctl_domain_table(sd);
4996 entry++;
4997 i++;
4998 }
4999 return table;
5000 }
5001
5002 static struct ctl_table_header *sd_sysctl_header;
5003 static void register_sched_domain_sysctl(void)
5004 {
5005 int i, cpu_num = num_possible_cpus();
5006 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5007 char buf[32];
5008
5009 WARN_ON(sd_ctl_dir[0].child);
5010 sd_ctl_dir[0].child = entry;
5011
5012 if (entry == NULL)
5013 return;
5014
5015 for_each_possible_cpu(i) {
5016 snprintf(buf, 32, "cpu%d", i);
5017 entry->procname = kstrdup(buf, GFP_KERNEL);
5018 entry->mode = 0555;
5019 entry->child = sd_alloc_ctl_cpu_table(i);
5020 entry++;
5021 }
5022
5023 WARN_ON(sd_sysctl_header);
5024 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5025 }
5026
5027 /* may be called multiple times per register */
5028 static void unregister_sched_domain_sysctl(void)
5029 {
5030 if (sd_sysctl_header)
5031 unregister_sysctl_table(sd_sysctl_header);
5032 sd_sysctl_header = NULL;
5033 if (sd_ctl_dir[0].child)
5034 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5035 }
5036 #else
5037 static void register_sched_domain_sysctl(void)
5038 {
5039 }
5040 static void unregister_sched_domain_sysctl(void)
5041 {
5042 }
5043 #endif
5044
5045 static void set_rq_online(struct rq *rq)
5046 {
5047 if (!rq->online) {
5048 const struct sched_class *class;
5049
5050 cpumask_set_cpu(rq->cpu, rq->rd->online);
5051 rq->online = 1;
5052
5053 for_each_class(class) {
5054 if (class->rq_online)
5055 class->rq_online(rq);
5056 }
5057 }
5058 }
5059
5060 static void set_rq_offline(struct rq *rq)
5061 {
5062 if (rq->online) {
5063 const struct sched_class *class;
5064
5065 for_each_class(class) {
5066 if (class->rq_offline)
5067 class->rq_offline(rq);
5068 }
5069
5070 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5071 rq->online = 0;
5072 }
5073 }
5074
5075 /*
5076 * migration_call - callback that gets triggered when a CPU is added.
5077 * Here we can start up the necessary migration thread for the new CPU.
5078 */
5079 static int
5080 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5081 {
5082 int cpu = (long)hcpu;
5083 unsigned long flags;
5084 struct rq *rq = cpu_rq(cpu);
5085
5086 switch (action & ~CPU_TASKS_FROZEN) {
5087
5088 case CPU_UP_PREPARE:
5089 rq->calc_load_update = calc_load_update;
5090 break;
5091
5092 case CPU_ONLINE:
5093 /* Update our root-domain */
5094 raw_spin_lock_irqsave(&rq->lock, flags);
5095 if (rq->rd) {
5096 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5097
5098 set_rq_online(rq);
5099 }
5100 raw_spin_unlock_irqrestore(&rq->lock, flags);
5101 break;
5102
5103 #ifdef CONFIG_HOTPLUG_CPU
5104 case CPU_DYING:
5105 sched_ttwu_pending();
5106 /* Update our root-domain */
5107 raw_spin_lock_irqsave(&rq->lock, flags);
5108 if (rq->rd) {
5109 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5110 set_rq_offline(rq);
5111 }
5112 migrate_tasks(cpu);
5113 BUG_ON(rq->nr_running != 1); /* the migration thread */
5114 raw_spin_unlock_irqrestore(&rq->lock, flags);
5115 break;
5116
5117 case CPU_DEAD:
5118 calc_load_migrate(rq);
5119 break;
5120 #endif
5121 }
5122
5123 update_max_interval();
5124
5125 return NOTIFY_OK;
5126 }
5127
5128 /*
5129 * Register at high priority so that task migration (migrate_all_tasks)
5130 * happens before everything else. This has to be lower priority than
5131 * the notifier in the perf_event subsystem, though.
5132 */
5133 static struct notifier_block migration_notifier = {
5134 .notifier_call = migration_call,
5135 .priority = CPU_PRI_MIGRATION,
5136 };
5137
5138 static void __cpuinit set_cpu_rq_start_time(void)
5139 {
5140 int cpu = smp_processor_id();
5141 struct rq *rq = cpu_rq(cpu);
5142 rq->age_stamp = sched_clock_cpu(cpu);
5143 }
5144
5145 static int sched_cpu_active(struct notifier_block *nfb,
5146 unsigned long action, void *hcpu)
5147 {
5148 switch (action & ~CPU_TASKS_FROZEN) {
5149 case CPU_STARTING:
5150 set_cpu_rq_start_time();
5151 return NOTIFY_OK;
5152 case CPU_DOWN_FAILED:
5153 set_cpu_active((long)hcpu, true);
5154 return NOTIFY_OK;
5155 default:
5156 return NOTIFY_DONE;
5157 }
5158 }
5159
5160 static int sched_cpu_inactive(struct notifier_block *nfb,
5161 unsigned long action, void *hcpu)
5162 {
5163 unsigned long flags;
5164 long cpu = (long)hcpu;
5165
5166 switch (action & ~CPU_TASKS_FROZEN) {
5167 case CPU_DOWN_PREPARE:
5168 set_cpu_active(cpu, false);
5169
5170 /* explicitly allow suspend */
5171 if (!(action & CPU_TASKS_FROZEN)) {
5172 struct dl_bw *dl_b = dl_bw_of(cpu);
5173 bool overflow;
5174 int cpus;
5175
5176 raw_spin_lock_irqsave(&dl_b->lock, flags);
5177 cpus = dl_bw_cpus(cpu);
5178 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5179 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5180
5181 if (overflow)
5182 return notifier_from_errno(-EBUSY);
5183 }
5184 return NOTIFY_OK;
5185 }
5186
5187 return NOTIFY_DONE;
5188 }
5189
5190 static int __init migration_init(void)
5191 {
5192 void *cpu = (void *)(long)smp_processor_id();
5193 int err;
5194
5195 /* Initialize migration for the boot CPU */
5196 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5197 BUG_ON(err == NOTIFY_BAD);
5198 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5199 register_cpu_notifier(&migration_notifier);
5200
5201 /* Register cpu active notifiers */
5202 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5203 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5204
5205 return 0;
5206 }
5207 early_initcall(migration_init);
5208 #endif
5209
5210 #ifdef CONFIG_SMP
5211
5212 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5213
5214 #ifdef CONFIG_SCHED_DEBUG
5215
5216 static __read_mostly int sched_debug_enabled;
5217
5218 static int __init sched_debug_setup(char *str)
5219 {
5220 sched_debug_enabled = 1;
5221
5222 return 0;
5223 }
5224 early_param("sched_debug", sched_debug_setup);
5225
5226 static inline bool sched_debug(void)
5227 {
5228 return sched_debug_enabled;
5229 }
5230
5231 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5232 struct cpumask *groupmask)
5233 {
5234 struct sched_group *group = sd->groups;
5235 char str[256];
5236
5237 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5238 cpumask_clear(groupmask);
5239
5240 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5241
5242 if (!(sd->flags & SD_LOAD_BALANCE)) {
5243 printk("does not load-balance\n");
5244 if (sd->parent)
5245 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5246 " has parent");
5247 return -1;
5248 }
5249
5250 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5251
5252 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5253 printk(KERN_ERR "ERROR: domain->span does not contain "
5254 "CPU%d\n", cpu);
5255 }
5256 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5257 printk(KERN_ERR "ERROR: domain->groups does not contain"
5258 " CPU%d\n", cpu);
5259 }
5260
5261 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5262 do {
5263 if (!group) {
5264 printk("\n");
5265 printk(KERN_ERR "ERROR: group is NULL\n");
5266 break;
5267 }
5268
5269 /*
5270 * Even though we initialize ->capacity to something semi-sane,
5271 * we leave capacity_orig unset. This allows us to detect if
5272 * domain iteration is still funny without causing /0 traps.
5273 */
5274 if (!group->sgc->capacity_orig) {
5275 printk(KERN_CONT "\n");
5276 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5277 break;
5278 }
5279
5280 if (!cpumask_weight(sched_group_cpus(group))) {
5281 printk(KERN_CONT "\n");
5282 printk(KERN_ERR "ERROR: empty group\n");
5283 break;
5284 }
5285
5286 if (!(sd->flags & SD_OVERLAP) &&
5287 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5288 printk(KERN_CONT "\n");
5289 printk(KERN_ERR "ERROR: repeated CPUs\n");
5290 break;
5291 }
5292
5293 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5294
5295 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5296
5297 printk(KERN_CONT " %s", str);
5298 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5299 printk(KERN_CONT " (cpu_capacity = %d)",
5300 group->sgc->capacity);
5301 }
5302
5303 group = group->next;
5304 } while (group != sd->groups);
5305 printk(KERN_CONT "\n");
5306
5307 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5308 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5309
5310 if (sd->parent &&
5311 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5312 printk(KERN_ERR "ERROR: parent span is not a superset "
5313 "of domain->span\n");
5314 return 0;
5315 }
5316
5317 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5318 {
5319 int level = 0;
5320
5321 if (!sched_debug_enabled)
5322 return;
5323
5324 if (!sd) {
5325 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5326 return;
5327 }
5328
5329 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5330
5331 for (;;) {
5332 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5333 break;
5334 level++;
5335 sd = sd->parent;
5336 if (!sd)
5337 break;
5338 }
5339 }
5340 #else /* !CONFIG_SCHED_DEBUG */
5341 # define sched_domain_debug(sd, cpu) do { } while (0)
5342 static inline bool sched_debug(void)
5343 {
5344 return false;
5345 }
5346 #endif /* CONFIG_SCHED_DEBUG */
5347
5348 static int sd_degenerate(struct sched_domain *sd)
5349 {
5350 if (cpumask_weight(sched_domain_span(sd)) == 1)
5351 return 1;
5352
5353 /* Following flags need at least 2 groups */
5354 if (sd->flags & (SD_LOAD_BALANCE |
5355 SD_BALANCE_NEWIDLE |
5356 SD_BALANCE_FORK |
5357 SD_BALANCE_EXEC |
5358 SD_SHARE_CPUCAPACITY |
5359 SD_SHARE_PKG_RESOURCES |
5360 SD_SHARE_POWERDOMAIN)) {
5361 if (sd->groups != sd->groups->next)
5362 return 0;
5363 }
5364
5365 /* Following flags don't use groups */
5366 if (sd->flags & (SD_WAKE_AFFINE))
5367 return 0;
5368
5369 return 1;
5370 }
5371
5372 static int
5373 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5374 {
5375 unsigned long cflags = sd->flags, pflags = parent->flags;
5376
5377 if (sd_degenerate(parent))
5378 return 1;
5379
5380 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5381 return 0;
5382
5383 /* Flags needing groups don't count if only 1 group in parent */
5384 if (parent->groups == parent->groups->next) {
5385 pflags &= ~(SD_LOAD_BALANCE |
5386 SD_BALANCE_NEWIDLE |
5387 SD_BALANCE_FORK |
5388 SD_BALANCE_EXEC |
5389 SD_SHARE_CPUCAPACITY |
5390 SD_SHARE_PKG_RESOURCES |
5391 SD_PREFER_SIBLING |
5392 SD_SHARE_POWERDOMAIN);
5393 if (nr_node_ids == 1)
5394 pflags &= ~SD_SERIALIZE;
5395 }
5396 if (~cflags & pflags)
5397 return 0;
5398
5399 return 1;
5400 }
5401
5402 static void free_rootdomain(struct rcu_head *rcu)
5403 {
5404 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5405
5406 cpupri_cleanup(&rd->cpupri);
5407 cpudl_cleanup(&rd->cpudl);
5408 free_cpumask_var(rd->dlo_mask);
5409 free_cpumask_var(rd->rto_mask);
5410 free_cpumask_var(rd->online);
5411 free_cpumask_var(rd->span);
5412 kfree(rd);
5413 }
5414
5415 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5416 {
5417 struct root_domain *old_rd = NULL;
5418 unsigned long flags;
5419
5420 raw_spin_lock_irqsave(&rq->lock, flags);
5421
5422 if (rq->rd) {
5423 old_rd = rq->rd;
5424
5425 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5426 set_rq_offline(rq);
5427
5428 cpumask_clear_cpu(rq->cpu, old_rd->span);
5429
5430 /*
5431 * If we dont want to free the old_rd yet then
5432 * set old_rd to NULL to skip the freeing later
5433 * in this function:
5434 */
5435 if (!atomic_dec_and_test(&old_rd->refcount))
5436 old_rd = NULL;
5437 }
5438
5439 atomic_inc(&rd->refcount);
5440 rq->rd = rd;
5441
5442 cpumask_set_cpu(rq->cpu, rd->span);
5443 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5444 set_rq_online(rq);
5445
5446 raw_spin_unlock_irqrestore(&rq->lock, flags);
5447
5448 if (old_rd)
5449 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5450 }
5451
5452 static int init_rootdomain(struct root_domain *rd)
5453 {
5454 memset(rd, 0, sizeof(*rd));
5455
5456 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5457 goto out;
5458 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5459 goto free_span;
5460 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5461 goto free_online;
5462 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5463 goto free_dlo_mask;
5464
5465 init_dl_bw(&rd->dl_bw);
5466 if (cpudl_init(&rd->cpudl) != 0)
5467 goto free_dlo_mask;
5468
5469 if (cpupri_init(&rd->cpupri) != 0)
5470 goto free_rto_mask;
5471 return 0;
5472
5473 free_rto_mask:
5474 free_cpumask_var(rd->rto_mask);
5475 free_dlo_mask:
5476 free_cpumask_var(rd->dlo_mask);
5477 free_online:
5478 free_cpumask_var(rd->online);
5479 free_span:
5480 free_cpumask_var(rd->span);
5481 out:
5482 return -ENOMEM;
5483 }
5484
5485 /*
5486 * By default the system creates a single root-domain with all cpus as
5487 * members (mimicking the global state we have today).
5488 */
5489 struct root_domain def_root_domain;
5490
5491 static void init_defrootdomain(void)
5492 {
5493 init_rootdomain(&def_root_domain);
5494
5495 atomic_set(&def_root_domain.refcount, 1);
5496 }
5497
5498 static struct root_domain *alloc_rootdomain(void)
5499 {
5500 struct root_domain *rd;
5501
5502 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5503 if (!rd)
5504 return NULL;
5505
5506 if (init_rootdomain(rd) != 0) {
5507 kfree(rd);
5508 return NULL;
5509 }
5510
5511 return rd;
5512 }
5513
5514 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5515 {
5516 struct sched_group *tmp, *first;
5517
5518 if (!sg)
5519 return;
5520
5521 first = sg;
5522 do {
5523 tmp = sg->next;
5524
5525 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5526 kfree(sg->sgc);
5527
5528 kfree(sg);
5529 sg = tmp;
5530 } while (sg != first);
5531 }
5532
5533 static void free_sched_domain(struct rcu_head *rcu)
5534 {
5535 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5536
5537 /*
5538 * If its an overlapping domain it has private groups, iterate and
5539 * nuke them all.
5540 */
5541 if (sd->flags & SD_OVERLAP) {
5542 free_sched_groups(sd->groups, 1);
5543 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5544 kfree(sd->groups->sgc);
5545 kfree(sd->groups);
5546 }
5547 kfree(sd);
5548 }
5549
5550 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5551 {
5552 call_rcu(&sd->rcu, free_sched_domain);
5553 }
5554
5555 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5556 {
5557 for (; sd; sd = sd->parent)
5558 destroy_sched_domain(sd, cpu);
5559 }
5560
5561 /*
5562 * Keep a special pointer to the highest sched_domain that has
5563 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5564 * allows us to avoid some pointer chasing select_idle_sibling().
5565 *
5566 * Also keep a unique ID per domain (we use the first cpu number in
5567 * the cpumask of the domain), this allows us to quickly tell if
5568 * two cpus are in the same cache domain, see cpus_share_cache().
5569 */
5570 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5571 DEFINE_PER_CPU(int, sd_llc_size);
5572 DEFINE_PER_CPU(int, sd_llc_id);
5573 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5574 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5575 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5576
5577 static void update_top_cache_domain(int cpu)
5578 {
5579 struct sched_domain *sd;
5580 struct sched_domain *busy_sd = NULL;
5581 int id = cpu;
5582 int size = 1;
5583
5584 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5585 if (sd) {
5586 id = cpumask_first(sched_domain_span(sd));
5587 size = cpumask_weight(sched_domain_span(sd));
5588 busy_sd = sd->parent; /* sd_busy */
5589 }
5590 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5591
5592 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5593 per_cpu(sd_llc_size, cpu) = size;
5594 per_cpu(sd_llc_id, cpu) = id;
5595
5596 sd = lowest_flag_domain(cpu, SD_NUMA);
5597 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5598
5599 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5600 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5601 }
5602
5603 /*
5604 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5605 * hold the hotplug lock.
5606 */
5607 static void
5608 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5609 {
5610 struct rq *rq = cpu_rq(cpu);
5611 struct sched_domain *tmp;
5612
5613 /* Remove the sched domains which do not contribute to scheduling. */
5614 for (tmp = sd; tmp; ) {
5615 struct sched_domain *parent = tmp->parent;
5616 if (!parent)
5617 break;
5618
5619 if (sd_parent_degenerate(tmp, parent)) {
5620 tmp->parent = parent->parent;
5621 if (parent->parent)
5622 parent->parent->child = tmp;
5623 /*
5624 * Transfer SD_PREFER_SIBLING down in case of a
5625 * degenerate parent; the spans match for this
5626 * so the property transfers.
5627 */
5628 if (parent->flags & SD_PREFER_SIBLING)
5629 tmp->flags |= SD_PREFER_SIBLING;
5630 destroy_sched_domain(parent, cpu);
5631 } else
5632 tmp = tmp->parent;
5633 }
5634
5635 if (sd && sd_degenerate(sd)) {
5636 tmp = sd;
5637 sd = sd->parent;
5638 destroy_sched_domain(tmp, cpu);
5639 if (sd)
5640 sd->child = NULL;
5641 }
5642
5643 sched_domain_debug(sd, cpu);
5644
5645 rq_attach_root(rq, rd);
5646 tmp = rq->sd;
5647 rcu_assign_pointer(rq->sd, sd);
5648 destroy_sched_domains(tmp, cpu);
5649
5650 update_top_cache_domain(cpu);
5651 }
5652
5653 /* cpus with isolated domains */
5654 static cpumask_var_t cpu_isolated_map;
5655
5656 /* Setup the mask of cpus configured for isolated domains */
5657 static int __init isolated_cpu_setup(char *str)
5658 {
5659 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5660 cpulist_parse(str, cpu_isolated_map);
5661 return 1;
5662 }
5663
5664 __setup("isolcpus=", isolated_cpu_setup);
5665
5666 struct s_data {
5667 struct sched_domain ** __percpu sd;
5668 struct root_domain *rd;
5669 };
5670
5671 enum s_alloc {
5672 sa_rootdomain,
5673 sa_sd,
5674 sa_sd_storage,
5675 sa_none,
5676 };
5677
5678 /*
5679 * Build an iteration mask that can exclude certain CPUs from the upwards
5680 * domain traversal.
5681 *
5682 * Asymmetric node setups can result in situations where the domain tree is of
5683 * unequal depth, make sure to skip domains that already cover the entire
5684 * range.
5685 *
5686 * In that case build_sched_domains() will have terminated the iteration early
5687 * and our sibling sd spans will be empty. Domains should always include the
5688 * cpu they're built on, so check that.
5689 *
5690 */
5691 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5692 {
5693 const struct cpumask *span = sched_domain_span(sd);
5694 struct sd_data *sdd = sd->private;
5695 struct sched_domain *sibling;
5696 int i;
5697
5698 for_each_cpu(i, span) {
5699 sibling = *per_cpu_ptr(sdd->sd, i);
5700 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5701 continue;
5702
5703 cpumask_set_cpu(i, sched_group_mask(sg));
5704 }
5705 }
5706
5707 /*
5708 * Return the canonical balance cpu for this group, this is the first cpu
5709 * of this group that's also in the iteration mask.
5710 */
5711 int group_balance_cpu(struct sched_group *sg)
5712 {
5713 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5714 }
5715
5716 static int
5717 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5718 {
5719 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5720 const struct cpumask *span = sched_domain_span(sd);
5721 struct cpumask *covered = sched_domains_tmpmask;
5722 struct sd_data *sdd = sd->private;
5723 struct sched_domain *child;
5724 int i;
5725
5726 cpumask_clear(covered);
5727
5728 for_each_cpu(i, span) {
5729 struct cpumask *sg_span;
5730
5731 if (cpumask_test_cpu(i, covered))
5732 continue;
5733
5734 child = *per_cpu_ptr(sdd->sd, i);
5735
5736 /* See the comment near build_group_mask(). */
5737 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5738 continue;
5739
5740 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5741 GFP_KERNEL, cpu_to_node(cpu));
5742
5743 if (!sg)
5744 goto fail;
5745
5746 sg_span = sched_group_cpus(sg);
5747 if (child->child) {
5748 child = child->child;
5749 cpumask_copy(sg_span, sched_domain_span(child));
5750 } else
5751 cpumask_set_cpu(i, sg_span);
5752
5753 cpumask_or(covered, covered, sg_span);
5754
5755 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5756 if (atomic_inc_return(&sg->sgc->ref) == 1)
5757 build_group_mask(sd, sg);
5758
5759 /*
5760 * Initialize sgc->capacity such that even if we mess up the
5761 * domains and no possible iteration will get us here, we won't
5762 * die on a /0 trap.
5763 */
5764 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5765 sg->sgc->capacity_orig = sg->sgc->capacity;
5766
5767 /*
5768 * Make sure the first group of this domain contains the
5769 * canonical balance cpu. Otherwise the sched_domain iteration
5770 * breaks. See update_sg_lb_stats().
5771 */
5772 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5773 group_balance_cpu(sg) == cpu)
5774 groups = sg;
5775
5776 if (!first)
5777 first = sg;
5778 if (last)
5779 last->next = sg;
5780 last = sg;
5781 last->next = first;
5782 }
5783 sd->groups = groups;
5784
5785 return 0;
5786
5787 fail:
5788 free_sched_groups(first, 0);
5789
5790 return -ENOMEM;
5791 }
5792
5793 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5794 {
5795 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5796 struct sched_domain *child = sd->child;
5797
5798 if (child)
5799 cpu = cpumask_first(sched_domain_span(child));
5800
5801 if (sg) {
5802 *sg = *per_cpu_ptr(sdd->sg, cpu);
5803 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5804 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5805 }
5806
5807 return cpu;
5808 }
5809
5810 /*
5811 * build_sched_groups will build a circular linked list of the groups
5812 * covered by the given span, and will set each group's ->cpumask correctly,
5813 * and ->cpu_capacity to 0.
5814 *
5815 * Assumes the sched_domain tree is fully constructed
5816 */
5817 static int
5818 build_sched_groups(struct sched_domain *sd, int cpu)
5819 {
5820 struct sched_group *first = NULL, *last = NULL;
5821 struct sd_data *sdd = sd->private;
5822 const struct cpumask *span = sched_domain_span(sd);
5823 struct cpumask *covered;
5824 int i;
5825
5826 get_group(cpu, sdd, &sd->groups);
5827 atomic_inc(&sd->groups->ref);
5828
5829 if (cpu != cpumask_first(span))
5830 return 0;
5831
5832 lockdep_assert_held(&sched_domains_mutex);
5833 covered = sched_domains_tmpmask;
5834
5835 cpumask_clear(covered);
5836
5837 for_each_cpu(i, span) {
5838 struct sched_group *sg;
5839 int group, j;
5840
5841 if (cpumask_test_cpu(i, covered))
5842 continue;
5843
5844 group = get_group(i, sdd, &sg);
5845 cpumask_setall(sched_group_mask(sg));
5846
5847 for_each_cpu(j, span) {
5848 if (get_group(j, sdd, NULL) != group)
5849 continue;
5850
5851 cpumask_set_cpu(j, covered);
5852 cpumask_set_cpu(j, sched_group_cpus(sg));
5853 }
5854
5855 if (!first)
5856 first = sg;
5857 if (last)
5858 last->next = sg;
5859 last = sg;
5860 }
5861 last->next = first;
5862
5863 return 0;
5864 }
5865
5866 /*
5867 * Initialize sched groups cpu_capacity.
5868 *
5869 * cpu_capacity indicates the capacity of sched group, which is used while
5870 * distributing the load between different sched groups in a sched domain.
5871 * Typically cpu_capacity for all the groups in a sched domain will be same
5872 * unless there are asymmetries in the topology. If there are asymmetries,
5873 * group having more cpu_capacity will pickup more load compared to the
5874 * group having less cpu_capacity.
5875 */
5876 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5877 {
5878 struct sched_group *sg = sd->groups;
5879
5880 WARN_ON(!sg);
5881
5882 do {
5883 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5884 sg = sg->next;
5885 } while (sg != sd->groups);
5886
5887 if (cpu != group_balance_cpu(sg))
5888 return;
5889
5890 update_group_capacity(sd, cpu);
5891 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5892 }
5893
5894 /*
5895 * Initializers for schedule domains
5896 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5897 */
5898
5899 static int default_relax_domain_level = -1;
5900 int sched_domain_level_max;
5901
5902 static int __init setup_relax_domain_level(char *str)
5903 {
5904 if (kstrtoint(str, 0, &default_relax_domain_level))
5905 pr_warn("Unable to set relax_domain_level\n");
5906
5907 return 1;
5908 }
5909 __setup("relax_domain_level=", setup_relax_domain_level);
5910
5911 static void set_domain_attribute(struct sched_domain *sd,
5912 struct sched_domain_attr *attr)
5913 {
5914 int request;
5915
5916 if (!attr || attr->relax_domain_level < 0) {
5917 if (default_relax_domain_level < 0)
5918 return;
5919 else
5920 request = default_relax_domain_level;
5921 } else
5922 request = attr->relax_domain_level;
5923 if (request < sd->level) {
5924 /* turn off idle balance on this domain */
5925 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5926 } else {
5927 /* turn on idle balance on this domain */
5928 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5929 }
5930 }
5931
5932 static void __sdt_free(const struct cpumask *cpu_map);
5933 static int __sdt_alloc(const struct cpumask *cpu_map);
5934
5935 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5936 const struct cpumask *cpu_map)
5937 {
5938 switch (what) {
5939 case sa_rootdomain:
5940 if (!atomic_read(&d->rd->refcount))
5941 free_rootdomain(&d->rd->rcu); /* fall through */
5942 case sa_sd:
5943 free_percpu(d->sd); /* fall through */
5944 case sa_sd_storage:
5945 __sdt_free(cpu_map); /* fall through */
5946 case sa_none:
5947 break;
5948 }
5949 }
5950
5951 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5952 const struct cpumask *cpu_map)
5953 {
5954 memset(d, 0, sizeof(*d));
5955
5956 if (__sdt_alloc(cpu_map))
5957 return sa_sd_storage;
5958 d->sd = alloc_percpu(struct sched_domain *);
5959 if (!d->sd)
5960 return sa_sd_storage;
5961 d->rd = alloc_rootdomain();
5962 if (!d->rd)
5963 return sa_sd;
5964 return sa_rootdomain;
5965 }
5966
5967 /*
5968 * NULL the sd_data elements we've used to build the sched_domain and
5969 * sched_group structure so that the subsequent __free_domain_allocs()
5970 * will not free the data we're using.
5971 */
5972 static void claim_allocations(int cpu, struct sched_domain *sd)
5973 {
5974 struct sd_data *sdd = sd->private;
5975
5976 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5977 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5978
5979 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5980 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5981
5982 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
5983 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
5984 }
5985
5986 #ifdef CONFIG_NUMA
5987 static int sched_domains_numa_levels;
5988 static int *sched_domains_numa_distance;
5989 static struct cpumask ***sched_domains_numa_masks;
5990 static int sched_domains_curr_level;
5991 #endif
5992
5993 /*
5994 * SD_flags allowed in topology descriptions.
5995 *
5996 * SD_SHARE_CPUCAPACITY - describes SMT topologies
5997 * SD_SHARE_PKG_RESOURCES - describes shared caches
5998 * SD_NUMA - describes NUMA topologies
5999 * SD_SHARE_POWERDOMAIN - describes shared power domain
6000 *
6001 * Odd one out:
6002 * SD_ASYM_PACKING - describes SMT quirks
6003 */
6004 #define TOPOLOGY_SD_FLAGS \
6005 (SD_SHARE_CPUCAPACITY | \
6006 SD_SHARE_PKG_RESOURCES | \
6007 SD_NUMA | \
6008 SD_ASYM_PACKING | \
6009 SD_SHARE_POWERDOMAIN)
6010
6011 static struct sched_domain *
6012 sd_init(struct sched_domain_topology_level *tl, int cpu)
6013 {
6014 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6015 int sd_weight, sd_flags = 0;
6016
6017 #ifdef CONFIG_NUMA
6018 /*
6019 * Ugly hack to pass state to sd_numa_mask()...
6020 */
6021 sched_domains_curr_level = tl->numa_level;
6022 #endif
6023
6024 sd_weight = cpumask_weight(tl->mask(cpu));
6025
6026 if (tl->sd_flags)
6027 sd_flags = (*tl->sd_flags)();
6028 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6029 "wrong sd_flags in topology description\n"))
6030 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6031
6032 *sd = (struct sched_domain){
6033 .min_interval = sd_weight,
6034 .max_interval = 2*sd_weight,
6035 .busy_factor = 32,
6036 .imbalance_pct = 125,
6037
6038 .cache_nice_tries = 0,
6039 .busy_idx = 0,
6040 .idle_idx = 0,
6041 .newidle_idx = 0,
6042 .wake_idx = 0,
6043 .forkexec_idx = 0,
6044
6045 .flags = 1*SD_LOAD_BALANCE
6046 | 1*SD_BALANCE_NEWIDLE
6047 | 1*SD_BALANCE_EXEC
6048 | 1*SD_BALANCE_FORK
6049 | 0*SD_BALANCE_WAKE
6050 | 1*SD_WAKE_AFFINE
6051 | 0*SD_SHARE_CPUCAPACITY
6052 | 0*SD_SHARE_PKG_RESOURCES
6053 | 0*SD_SERIALIZE
6054 | 0*SD_PREFER_SIBLING
6055 | 0*SD_NUMA
6056 | sd_flags
6057 ,
6058
6059 .last_balance = jiffies,
6060 .balance_interval = sd_weight,
6061 .smt_gain = 0,
6062 .max_newidle_lb_cost = 0,
6063 .next_decay_max_lb_cost = jiffies,
6064 #ifdef CONFIG_SCHED_DEBUG
6065 .name = tl->name,
6066 #endif
6067 };
6068
6069 /*
6070 * Convert topological properties into behaviour.
6071 */
6072
6073 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6074 sd->imbalance_pct = 110;
6075 sd->smt_gain = 1178; /* ~15% */
6076
6077 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6078 sd->imbalance_pct = 117;
6079 sd->cache_nice_tries = 1;
6080 sd->busy_idx = 2;
6081
6082 #ifdef CONFIG_NUMA
6083 } else if (sd->flags & SD_NUMA) {
6084 sd->cache_nice_tries = 2;
6085 sd->busy_idx = 3;
6086 sd->idle_idx = 2;
6087
6088 sd->flags |= SD_SERIALIZE;
6089 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6090 sd->flags &= ~(SD_BALANCE_EXEC |
6091 SD_BALANCE_FORK |
6092 SD_WAKE_AFFINE);
6093 }
6094
6095 #endif
6096 } else {
6097 sd->flags |= SD_PREFER_SIBLING;
6098 sd->cache_nice_tries = 1;
6099 sd->busy_idx = 2;
6100 sd->idle_idx = 1;
6101 }
6102
6103 sd->private = &tl->data;
6104
6105 return sd;
6106 }
6107
6108 /*
6109 * Topology list, bottom-up.
6110 */
6111 static struct sched_domain_topology_level default_topology[] = {
6112 #ifdef CONFIG_SCHED_SMT
6113 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6114 #endif
6115 #ifdef CONFIG_SCHED_MC
6116 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6117 #endif
6118 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6119 { NULL, },
6120 };
6121
6122 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6123
6124 #define for_each_sd_topology(tl) \
6125 for (tl = sched_domain_topology; tl->mask; tl++)
6126
6127 void set_sched_topology(struct sched_domain_topology_level *tl)
6128 {
6129 sched_domain_topology = tl;
6130 }
6131
6132 #ifdef CONFIG_NUMA
6133
6134 static const struct cpumask *sd_numa_mask(int cpu)
6135 {
6136 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6137 }
6138
6139 static void sched_numa_warn(const char *str)
6140 {
6141 static int done = false;
6142 int i,j;
6143
6144 if (done)
6145 return;
6146
6147 done = true;
6148
6149 printk(KERN_WARNING "ERROR: %s\n\n", str);
6150
6151 for (i = 0; i < nr_node_ids; i++) {
6152 printk(KERN_WARNING " ");
6153 for (j = 0; j < nr_node_ids; j++)
6154 printk(KERN_CONT "%02d ", node_distance(i,j));
6155 printk(KERN_CONT "\n");
6156 }
6157 printk(KERN_WARNING "\n");
6158 }
6159
6160 static bool find_numa_distance(int distance)
6161 {
6162 int i;
6163
6164 if (distance == node_distance(0, 0))
6165 return true;
6166
6167 for (i = 0; i < sched_domains_numa_levels; i++) {
6168 if (sched_domains_numa_distance[i] == distance)
6169 return true;
6170 }
6171
6172 return false;
6173 }
6174
6175 static void sched_init_numa(void)
6176 {
6177 int next_distance, curr_distance = node_distance(0, 0);
6178 struct sched_domain_topology_level *tl;
6179 int level = 0;
6180 int i, j, k;
6181
6182 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6183 if (!sched_domains_numa_distance)
6184 return;
6185
6186 /*
6187 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6188 * unique distances in the node_distance() table.
6189 *
6190 * Assumes node_distance(0,j) includes all distances in
6191 * node_distance(i,j) in order to avoid cubic time.
6192 */
6193 next_distance = curr_distance;
6194 for (i = 0; i < nr_node_ids; i++) {
6195 for (j = 0; j < nr_node_ids; j++) {
6196 for (k = 0; k < nr_node_ids; k++) {
6197 int distance = node_distance(i, k);
6198
6199 if (distance > curr_distance &&
6200 (distance < next_distance ||
6201 next_distance == curr_distance))
6202 next_distance = distance;
6203
6204 /*
6205 * While not a strong assumption it would be nice to know
6206 * about cases where if node A is connected to B, B is not
6207 * equally connected to A.
6208 */
6209 if (sched_debug() && node_distance(k, i) != distance)
6210 sched_numa_warn("Node-distance not symmetric");
6211
6212 if (sched_debug() && i && !find_numa_distance(distance))
6213 sched_numa_warn("Node-0 not representative");
6214 }
6215 if (next_distance != curr_distance) {
6216 sched_domains_numa_distance[level++] = next_distance;
6217 sched_domains_numa_levels = level;
6218 curr_distance = next_distance;
6219 } else break;
6220 }
6221
6222 /*
6223 * In case of sched_debug() we verify the above assumption.
6224 */
6225 if (!sched_debug())
6226 break;
6227 }
6228 /*
6229 * 'level' contains the number of unique distances, excluding the
6230 * identity distance node_distance(i,i).
6231 *
6232 * The sched_domains_numa_distance[] array includes the actual distance
6233 * numbers.
6234 */
6235
6236 /*
6237 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6238 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6239 * the array will contain less then 'level' members. This could be
6240 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6241 * in other functions.
6242 *
6243 * We reset it to 'level' at the end of this function.
6244 */
6245 sched_domains_numa_levels = 0;
6246
6247 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6248 if (!sched_domains_numa_masks)
6249 return;
6250
6251 /*
6252 * Now for each level, construct a mask per node which contains all
6253 * cpus of nodes that are that many hops away from us.
6254 */
6255 for (i = 0; i < level; i++) {
6256 sched_domains_numa_masks[i] =
6257 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6258 if (!sched_domains_numa_masks[i])
6259 return;
6260
6261 for (j = 0; j < nr_node_ids; j++) {
6262 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6263 if (!mask)
6264 return;
6265
6266 sched_domains_numa_masks[i][j] = mask;
6267
6268 for (k = 0; k < nr_node_ids; k++) {
6269 if (node_distance(j, k) > sched_domains_numa_distance[i])
6270 continue;
6271
6272 cpumask_or(mask, mask, cpumask_of_node(k));
6273 }
6274 }
6275 }
6276
6277 /* Compute default topology size */
6278 for (i = 0; sched_domain_topology[i].mask; i++);
6279
6280 tl = kzalloc((i + level + 1) *
6281 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6282 if (!tl)
6283 return;
6284
6285 /*
6286 * Copy the default topology bits..
6287 */
6288 for (i = 0; sched_domain_topology[i].mask; i++)
6289 tl[i] = sched_domain_topology[i];
6290
6291 /*
6292 * .. and append 'j' levels of NUMA goodness.
6293 */
6294 for (j = 0; j < level; i++, j++) {
6295 tl[i] = (struct sched_domain_topology_level){
6296 .mask = sd_numa_mask,
6297 .sd_flags = cpu_numa_flags,
6298 .flags = SDTL_OVERLAP,
6299 .numa_level = j,
6300 SD_INIT_NAME(NUMA)
6301 };
6302 }
6303
6304 sched_domain_topology = tl;
6305
6306 sched_domains_numa_levels = level;
6307 }
6308
6309 static void sched_domains_numa_masks_set(int cpu)
6310 {
6311 int i, j;
6312 int node = cpu_to_node(cpu);
6313
6314 for (i = 0; i < sched_domains_numa_levels; i++) {
6315 for (j = 0; j < nr_node_ids; j++) {
6316 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6317 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6318 }
6319 }
6320 }
6321
6322 static void sched_domains_numa_masks_clear(int cpu)
6323 {
6324 int i, j;
6325 for (i = 0; i < sched_domains_numa_levels; i++) {
6326 for (j = 0; j < nr_node_ids; j++)
6327 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6328 }
6329 }
6330
6331 /*
6332 * Update sched_domains_numa_masks[level][node] array when new cpus
6333 * are onlined.
6334 */
6335 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6336 unsigned long action,
6337 void *hcpu)
6338 {
6339 int cpu = (long)hcpu;
6340
6341 switch (action & ~CPU_TASKS_FROZEN) {
6342 case CPU_ONLINE:
6343 sched_domains_numa_masks_set(cpu);
6344 break;
6345
6346 case CPU_DEAD:
6347 sched_domains_numa_masks_clear(cpu);
6348 break;
6349
6350 default:
6351 return NOTIFY_DONE;
6352 }
6353
6354 return NOTIFY_OK;
6355 }
6356 #else
6357 static inline void sched_init_numa(void)
6358 {
6359 }
6360
6361 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6362 unsigned long action,
6363 void *hcpu)
6364 {
6365 return 0;
6366 }
6367 #endif /* CONFIG_NUMA */
6368
6369 static int __sdt_alloc(const struct cpumask *cpu_map)
6370 {
6371 struct sched_domain_topology_level *tl;
6372 int j;
6373
6374 for_each_sd_topology(tl) {
6375 struct sd_data *sdd = &tl->data;
6376
6377 sdd->sd = alloc_percpu(struct sched_domain *);
6378 if (!sdd->sd)
6379 return -ENOMEM;
6380
6381 sdd->sg = alloc_percpu(struct sched_group *);
6382 if (!sdd->sg)
6383 return -ENOMEM;
6384
6385 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6386 if (!sdd->sgc)
6387 return -ENOMEM;
6388
6389 for_each_cpu(j, cpu_map) {
6390 struct sched_domain *sd;
6391 struct sched_group *sg;
6392 struct sched_group_capacity *sgc;
6393
6394 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6395 GFP_KERNEL, cpu_to_node(j));
6396 if (!sd)
6397 return -ENOMEM;
6398
6399 *per_cpu_ptr(sdd->sd, j) = sd;
6400
6401 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6402 GFP_KERNEL, cpu_to_node(j));
6403 if (!sg)
6404 return -ENOMEM;
6405
6406 sg->next = sg;
6407
6408 *per_cpu_ptr(sdd->sg, j) = sg;
6409
6410 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6411 GFP_KERNEL, cpu_to_node(j));
6412 if (!sgc)
6413 return -ENOMEM;
6414
6415 *per_cpu_ptr(sdd->sgc, j) = sgc;
6416 }
6417 }
6418
6419 return 0;
6420 }
6421
6422 static void __sdt_free(const struct cpumask *cpu_map)
6423 {
6424 struct sched_domain_topology_level *tl;
6425 int j;
6426
6427 for_each_sd_topology(tl) {
6428 struct sd_data *sdd = &tl->data;
6429
6430 for_each_cpu(j, cpu_map) {
6431 struct sched_domain *sd;
6432
6433 if (sdd->sd) {
6434 sd = *per_cpu_ptr(sdd->sd, j);
6435 if (sd && (sd->flags & SD_OVERLAP))
6436 free_sched_groups(sd->groups, 0);
6437 kfree(*per_cpu_ptr(sdd->sd, j));
6438 }
6439
6440 if (sdd->sg)
6441 kfree(*per_cpu_ptr(sdd->sg, j));
6442 if (sdd->sgc)
6443 kfree(*per_cpu_ptr(sdd->sgc, j));
6444 }
6445 free_percpu(sdd->sd);
6446 sdd->sd = NULL;
6447 free_percpu(sdd->sg);
6448 sdd->sg = NULL;
6449 free_percpu(sdd->sgc);
6450 sdd->sgc = NULL;
6451 }
6452 }
6453
6454 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6455 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6456 struct sched_domain *child, int cpu)
6457 {
6458 struct sched_domain *sd = sd_init(tl, cpu);
6459 if (!sd)
6460 return child;
6461
6462 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6463 if (child) {
6464 sd->level = child->level + 1;
6465 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6466 child->parent = sd;
6467 sd->child = child;
6468 }
6469 set_domain_attribute(sd, attr);
6470
6471 return sd;
6472 }
6473
6474 /*
6475 * Build sched domains for a given set of cpus and attach the sched domains
6476 * to the individual cpus
6477 */
6478 static int build_sched_domains(const struct cpumask *cpu_map,
6479 struct sched_domain_attr *attr)
6480 {
6481 enum s_alloc alloc_state;
6482 struct sched_domain *sd;
6483 struct s_data d;
6484 int i, ret = -ENOMEM;
6485
6486 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6487 if (alloc_state != sa_rootdomain)
6488 goto error;
6489
6490 /* Set up domains for cpus specified by the cpu_map. */
6491 for_each_cpu(i, cpu_map) {
6492 struct sched_domain_topology_level *tl;
6493
6494 sd = NULL;
6495 for_each_sd_topology(tl) {
6496 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6497 if (tl == sched_domain_topology)
6498 *per_cpu_ptr(d.sd, i) = sd;
6499 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6500 sd->flags |= SD_OVERLAP;
6501 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6502 break;
6503 }
6504 }
6505
6506 /* Build the groups for the domains */
6507 for_each_cpu(i, cpu_map) {
6508 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6509 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6510 if (sd->flags & SD_OVERLAP) {
6511 if (build_overlap_sched_groups(sd, i))
6512 goto error;
6513 } else {
6514 if (build_sched_groups(sd, i))
6515 goto error;
6516 }
6517 }
6518 }
6519
6520 /* Calculate CPU capacity for physical packages and nodes */
6521 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6522 if (!cpumask_test_cpu(i, cpu_map))
6523 continue;
6524
6525 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6526 claim_allocations(i, sd);
6527 init_sched_groups_capacity(i, sd);
6528 }
6529 }
6530
6531 /* Attach the domains */
6532 rcu_read_lock();
6533 for_each_cpu(i, cpu_map) {
6534 sd = *per_cpu_ptr(d.sd, i);
6535 cpu_attach_domain(sd, d.rd, i);
6536 }
6537 rcu_read_unlock();
6538
6539 ret = 0;
6540 error:
6541 __free_domain_allocs(&d, alloc_state, cpu_map);
6542 return ret;
6543 }
6544
6545 static cpumask_var_t *doms_cur; /* current sched domains */
6546 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6547 static struct sched_domain_attr *dattr_cur;
6548 /* attribues of custom domains in 'doms_cur' */
6549
6550 /*
6551 * Special case: If a kmalloc of a doms_cur partition (array of
6552 * cpumask) fails, then fallback to a single sched domain,
6553 * as determined by the single cpumask fallback_doms.
6554 */
6555 static cpumask_var_t fallback_doms;
6556
6557 /*
6558 * arch_update_cpu_topology lets virtualized architectures update the
6559 * cpu core maps. It is supposed to return 1 if the topology changed
6560 * or 0 if it stayed the same.
6561 */
6562 int __weak arch_update_cpu_topology(void)
6563 {
6564 return 0;
6565 }
6566
6567 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6568 {
6569 int i;
6570 cpumask_var_t *doms;
6571
6572 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6573 if (!doms)
6574 return NULL;
6575 for (i = 0; i < ndoms; i++) {
6576 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6577 free_sched_domains(doms, i);
6578 return NULL;
6579 }
6580 }
6581 return doms;
6582 }
6583
6584 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6585 {
6586 unsigned int i;
6587 for (i = 0; i < ndoms; i++)
6588 free_cpumask_var(doms[i]);
6589 kfree(doms);
6590 }
6591
6592 /*
6593 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6594 * For now this just excludes isolated cpus, but could be used to
6595 * exclude other special cases in the future.
6596 */
6597 static int init_sched_domains(const struct cpumask *cpu_map)
6598 {
6599 int err;
6600
6601 arch_update_cpu_topology();
6602 ndoms_cur = 1;
6603 doms_cur = alloc_sched_domains(ndoms_cur);
6604 if (!doms_cur)
6605 doms_cur = &fallback_doms;
6606 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6607 err = build_sched_domains(doms_cur[0], NULL);
6608 register_sched_domain_sysctl();
6609
6610 return err;
6611 }
6612
6613 /*
6614 * Detach sched domains from a group of cpus specified in cpu_map
6615 * These cpus will now be attached to the NULL domain
6616 */
6617 static void detach_destroy_domains(const struct cpumask *cpu_map)
6618 {
6619 int i;
6620
6621 rcu_read_lock();
6622 for_each_cpu(i, cpu_map)
6623 cpu_attach_domain(NULL, &def_root_domain, i);
6624 rcu_read_unlock();
6625 }
6626
6627 /* handle null as "default" */
6628 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6629 struct sched_domain_attr *new, int idx_new)
6630 {
6631 struct sched_domain_attr tmp;
6632
6633 /* fast path */
6634 if (!new && !cur)
6635 return 1;
6636
6637 tmp = SD_ATTR_INIT;
6638 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6639 new ? (new + idx_new) : &tmp,
6640 sizeof(struct sched_domain_attr));
6641 }
6642
6643 /*
6644 * Partition sched domains as specified by the 'ndoms_new'
6645 * cpumasks in the array doms_new[] of cpumasks. This compares
6646 * doms_new[] to the current sched domain partitioning, doms_cur[].
6647 * It destroys each deleted domain and builds each new domain.
6648 *
6649 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6650 * The masks don't intersect (don't overlap.) We should setup one
6651 * sched domain for each mask. CPUs not in any of the cpumasks will
6652 * not be load balanced. If the same cpumask appears both in the
6653 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6654 * it as it is.
6655 *
6656 * The passed in 'doms_new' should be allocated using
6657 * alloc_sched_domains. This routine takes ownership of it and will
6658 * free_sched_domains it when done with it. If the caller failed the
6659 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6660 * and partition_sched_domains() will fallback to the single partition
6661 * 'fallback_doms', it also forces the domains to be rebuilt.
6662 *
6663 * If doms_new == NULL it will be replaced with cpu_online_mask.
6664 * ndoms_new == 0 is a special case for destroying existing domains,
6665 * and it will not create the default domain.
6666 *
6667 * Call with hotplug lock held
6668 */
6669 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6670 struct sched_domain_attr *dattr_new)
6671 {
6672 int i, j, n;
6673 int new_topology;
6674
6675 mutex_lock(&sched_domains_mutex);
6676
6677 /* always unregister in case we don't destroy any domains */
6678 unregister_sched_domain_sysctl();
6679
6680 /* Let architecture update cpu core mappings. */
6681 new_topology = arch_update_cpu_topology();
6682
6683 n = doms_new ? ndoms_new : 0;
6684
6685 /* Destroy deleted domains */
6686 for (i = 0; i < ndoms_cur; i++) {
6687 for (j = 0; j < n && !new_topology; j++) {
6688 if (cpumask_equal(doms_cur[i], doms_new[j])
6689 && dattrs_equal(dattr_cur, i, dattr_new, j))
6690 goto match1;
6691 }
6692 /* no match - a current sched domain not in new doms_new[] */
6693 detach_destroy_domains(doms_cur[i]);
6694 match1:
6695 ;
6696 }
6697
6698 n = ndoms_cur;
6699 if (doms_new == NULL) {
6700 n = 0;
6701 doms_new = &fallback_doms;
6702 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6703 WARN_ON_ONCE(dattr_new);
6704 }
6705
6706 /* Build new domains */
6707 for (i = 0; i < ndoms_new; i++) {
6708 for (j = 0; j < n && !new_topology; j++) {
6709 if (cpumask_equal(doms_new[i], doms_cur[j])
6710 && dattrs_equal(dattr_new, i, dattr_cur, j))
6711 goto match2;
6712 }
6713 /* no match - add a new doms_new */
6714 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6715 match2:
6716 ;
6717 }
6718
6719 /* Remember the new sched domains */
6720 if (doms_cur != &fallback_doms)
6721 free_sched_domains(doms_cur, ndoms_cur);
6722 kfree(dattr_cur); /* kfree(NULL) is safe */
6723 doms_cur = doms_new;
6724 dattr_cur = dattr_new;
6725 ndoms_cur = ndoms_new;
6726
6727 register_sched_domain_sysctl();
6728
6729 mutex_unlock(&sched_domains_mutex);
6730 }
6731
6732 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6733
6734 /*
6735 * Update cpusets according to cpu_active mask. If cpusets are
6736 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6737 * around partition_sched_domains().
6738 *
6739 * If we come here as part of a suspend/resume, don't touch cpusets because we
6740 * want to restore it back to its original state upon resume anyway.
6741 */
6742 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6743 void *hcpu)
6744 {
6745 switch (action) {
6746 case CPU_ONLINE_FROZEN:
6747 case CPU_DOWN_FAILED_FROZEN:
6748
6749 /*
6750 * num_cpus_frozen tracks how many CPUs are involved in suspend
6751 * resume sequence. As long as this is not the last online
6752 * operation in the resume sequence, just build a single sched
6753 * domain, ignoring cpusets.
6754 */
6755 num_cpus_frozen--;
6756 if (likely(num_cpus_frozen)) {
6757 partition_sched_domains(1, NULL, NULL);
6758 break;
6759 }
6760
6761 /*
6762 * This is the last CPU online operation. So fall through and
6763 * restore the original sched domains by considering the
6764 * cpuset configurations.
6765 */
6766
6767 case CPU_ONLINE:
6768 case CPU_DOWN_FAILED:
6769 cpuset_update_active_cpus(true);
6770 break;
6771 default:
6772 return NOTIFY_DONE;
6773 }
6774 return NOTIFY_OK;
6775 }
6776
6777 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6778 void *hcpu)
6779 {
6780 switch (action) {
6781 case CPU_DOWN_PREPARE:
6782 cpuset_update_active_cpus(false);
6783 break;
6784 case CPU_DOWN_PREPARE_FROZEN:
6785 num_cpus_frozen++;
6786 partition_sched_domains(1, NULL, NULL);
6787 break;
6788 default:
6789 return NOTIFY_DONE;
6790 }
6791 return NOTIFY_OK;
6792 }
6793
6794 void __init sched_init_smp(void)
6795 {
6796 cpumask_var_t non_isolated_cpus;
6797
6798 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6799 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6800
6801 sched_init_numa();
6802
6803 /*
6804 * There's no userspace yet to cause hotplug operations; hence all the
6805 * cpu masks are stable and all blatant races in the below code cannot
6806 * happen.
6807 */
6808 mutex_lock(&sched_domains_mutex);
6809 init_sched_domains(cpu_active_mask);
6810 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6811 if (cpumask_empty(non_isolated_cpus))
6812 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6813 mutex_unlock(&sched_domains_mutex);
6814
6815 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6816 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6817 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6818
6819 init_hrtick();
6820
6821 /* Move init over to a non-isolated CPU */
6822 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6823 BUG();
6824 sched_init_granularity();
6825 free_cpumask_var(non_isolated_cpus);
6826
6827 init_sched_rt_class();
6828 init_sched_dl_class();
6829 }
6830 #else
6831 void __init sched_init_smp(void)
6832 {
6833 sched_init_granularity();
6834 }
6835 #endif /* CONFIG_SMP */
6836
6837 const_debug unsigned int sysctl_timer_migration = 1;
6838
6839 int in_sched_functions(unsigned long addr)
6840 {
6841 return in_lock_functions(addr) ||
6842 (addr >= (unsigned long)__sched_text_start
6843 && addr < (unsigned long)__sched_text_end);
6844 }
6845
6846 #ifdef CONFIG_CGROUP_SCHED
6847 /*
6848 * Default task group.
6849 * Every task in system belongs to this group at bootup.
6850 */
6851 struct task_group root_task_group;
6852 LIST_HEAD(task_groups);
6853 #endif
6854
6855 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6856
6857 void __init sched_init(void)
6858 {
6859 int i, j;
6860 unsigned long alloc_size = 0, ptr;
6861
6862 #ifdef CONFIG_FAIR_GROUP_SCHED
6863 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6864 #endif
6865 #ifdef CONFIG_RT_GROUP_SCHED
6866 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6867 #endif
6868 #ifdef CONFIG_CPUMASK_OFFSTACK
6869 alloc_size += num_possible_cpus() * cpumask_size();
6870 #endif
6871 if (alloc_size) {
6872 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6873
6874 #ifdef CONFIG_FAIR_GROUP_SCHED
6875 root_task_group.se = (struct sched_entity **)ptr;
6876 ptr += nr_cpu_ids * sizeof(void **);
6877
6878 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6879 ptr += nr_cpu_ids * sizeof(void **);
6880
6881 #endif /* CONFIG_FAIR_GROUP_SCHED */
6882 #ifdef CONFIG_RT_GROUP_SCHED
6883 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6884 ptr += nr_cpu_ids * sizeof(void **);
6885
6886 root_task_group.rt_rq = (struct rt_rq **)ptr;
6887 ptr += nr_cpu_ids * sizeof(void **);
6888
6889 #endif /* CONFIG_RT_GROUP_SCHED */
6890 #ifdef CONFIG_CPUMASK_OFFSTACK
6891 for_each_possible_cpu(i) {
6892 per_cpu(load_balance_mask, i) = (void *)ptr;
6893 ptr += cpumask_size();
6894 }
6895 #endif /* CONFIG_CPUMASK_OFFSTACK */
6896 }
6897
6898 init_rt_bandwidth(&def_rt_bandwidth,
6899 global_rt_period(), global_rt_runtime());
6900 init_dl_bandwidth(&def_dl_bandwidth,
6901 global_rt_period(), global_rt_runtime());
6902
6903 #ifdef CONFIG_SMP
6904 init_defrootdomain();
6905 #endif
6906
6907 #ifdef CONFIG_RT_GROUP_SCHED
6908 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6909 global_rt_period(), global_rt_runtime());
6910 #endif /* CONFIG_RT_GROUP_SCHED */
6911
6912 #ifdef CONFIG_CGROUP_SCHED
6913 list_add(&root_task_group.list, &task_groups);
6914 INIT_LIST_HEAD(&root_task_group.children);
6915 INIT_LIST_HEAD(&root_task_group.siblings);
6916 autogroup_init(&init_task);
6917
6918 #endif /* CONFIG_CGROUP_SCHED */
6919
6920 for_each_possible_cpu(i) {
6921 struct rq *rq;
6922
6923 rq = cpu_rq(i);
6924 raw_spin_lock_init(&rq->lock);
6925 rq->nr_running = 0;
6926 rq->calc_load_active = 0;
6927 rq->calc_load_update = jiffies + LOAD_FREQ;
6928 init_cfs_rq(&rq->cfs);
6929 init_rt_rq(&rq->rt, rq);
6930 init_dl_rq(&rq->dl, rq);
6931 #ifdef CONFIG_FAIR_GROUP_SCHED
6932 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6933 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6934 /*
6935 * How much cpu bandwidth does root_task_group get?
6936 *
6937 * In case of task-groups formed thr' the cgroup filesystem, it
6938 * gets 100% of the cpu resources in the system. This overall
6939 * system cpu resource is divided among the tasks of
6940 * root_task_group and its child task-groups in a fair manner,
6941 * based on each entity's (task or task-group's) weight
6942 * (se->load.weight).
6943 *
6944 * In other words, if root_task_group has 10 tasks of weight
6945 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6946 * then A0's share of the cpu resource is:
6947 *
6948 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6949 *
6950 * We achieve this by letting root_task_group's tasks sit
6951 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6952 */
6953 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6954 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6955 #endif /* CONFIG_FAIR_GROUP_SCHED */
6956
6957 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6958 #ifdef CONFIG_RT_GROUP_SCHED
6959 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6960 #endif
6961
6962 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6963 rq->cpu_load[j] = 0;
6964
6965 rq->last_load_update_tick = jiffies;
6966
6967 #ifdef CONFIG_SMP
6968 rq->sd = NULL;
6969 rq->rd = NULL;
6970 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
6971 rq->post_schedule = 0;
6972 rq->active_balance = 0;
6973 rq->next_balance = jiffies;
6974 rq->push_cpu = 0;
6975 rq->cpu = i;
6976 rq->online = 0;
6977 rq->idle_stamp = 0;
6978 rq->avg_idle = 2*sysctl_sched_migration_cost;
6979 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6980
6981 INIT_LIST_HEAD(&rq->cfs_tasks);
6982
6983 rq_attach_root(rq, &def_root_domain);
6984 #ifdef CONFIG_NO_HZ_COMMON
6985 rq->nohz_flags = 0;
6986 #endif
6987 #ifdef CONFIG_NO_HZ_FULL
6988 rq->last_sched_tick = 0;
6989 #endif
6990 #endif
6991 init_rq_hrtick(rq);
6992 atomic_set(&rq->nr_iowait, 0);
6993 }
6994
6995 set_load_weight(&init_task);
6996
6997 #ifdef CONFIG_PREEMPT_NOTIFIERS
6998 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6999 #endif
7000
7001 /*
7002 * The boot idle thread does lazy MMU switching as well:
7003 */
7004 atomic_inc(&init_mm.mm_count);
7005 enter_lazy_tlb(&init_mm, current);
7006
7007 /*
7008 * Make us the idle thread. Technically, schedule() should not be
7009 * called from this thread, however somewhere below it might be,
7010 * but because we are the idle thread, we just pick up running again
7011 * when this runqueue becomes "idle".
7012 */
7013 init_idle(current, smp_processor_id());
7014
7015 calc_load_update = jiffies + LOAD_FREQ;
7016
7017 /*
7018 * During early bootup we pretend to be a normal task:
7019 */
7020 current->sched_class = &fair_sched_class;
7021
7022 #ifdef CONFIG_SMP
7023 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7024 /* May be allocated at isolcpus cmdline parse time */
7025 if (cpu_isolated_map == NULL)
7026 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7027 idle_thread_set_boot_cpu();
7028 set_cpu_rq_start_time();
7029 #endif
7030 init_sched_fair_class();
7031
7032 scheduler_running = 1;
7033 }
7034
7035 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7036 static inline int preempt_count_equals(int preempt_offset)
7037 {
7038 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7039
7040 return (nested == preempt_offset);
7041 }
7042
7043 void __might_sleep(const char *file, int line, int preempt_offset)
7044 {
7045 static unsigned long prev_jiffy; /* ratelimiting */
7046
7047 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7048 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7049 !is_idle_task(current)) ||
7050 system_state != SYSTEM_RUNNING || oops_in_progress)
7051 return;
7052 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7053 return;
7054 prev_jiffy = jiffies;
7055
7056 printk(KERN_ERR
7057 "BUG: sleeping function called from invalid context at %s:%d\n",
7058 file, line);
7059 printk(KERN_ERR
7060 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7061 in_atomic(), irqs_disabled(),
7062 current->pid, current->comm);
7063
7064 debug_show_held_locks(current);
7065 if (irqs_disabled())
7066 print_irqtrace_events(current);
7067 #ifdef CONFIG_DEBUG_PREEMPT
7068 if (!preempt_count_equals(preempt_offset)) {
7069 pr_err("Preemption disabled at:");
7070 print_ip_sym(current->preempt_disable_ip);
7071 pr_cont("\n");
7072 }
7073 #endif
7074 dump_stack();
7075 }
7076 EXPORT_SYMBOL(__might_sleep);
7077 #endif
7078
7079 #ifdef CONFIG_MAGIC_SYSRQ
7080 static void normalize_task(struct rq *rq, struct task_struct *p)
7081 {
7082 const struct sched_class *prev_class = p->sched_class;
7083 struct sched_attr attr = {
7084 .sched_policy = SCHED_NORMAL,
7085 };
7086 int old_prio = p->prio;
7087 int on_rq;
7088
7089 on_rq = p->on_rq;
7090 if (on_rq)
7091 dequeue_task(rq, p, 0);
7092 __setscheduler(rq, p, &attr);
7093 if (on_rq) {
7094 enqueue_task(rq, p, 0);
7095 resched_task(rq->curr);
7096 }
7097
7098 check_class_changed(rq, p, prev_class, old_prio);
7099 }
7100
7101 void normalize_rt_tasks(void)
7102 {
7103 struct task_struct *g, *p;
7104 unsigned long flags;
7105 struct rq *rq;
7106
7107 read_lock_irqsave(&tasklist_lock, flags);
7108 do_each_thread(g, p) {
7109 /*
7110 * Only normalize user tasks:
7111 */
7112 if (!p->mm)
7113 continue;
7114
7115 p->se.exec_start = 0;
7116 #ifdef CONFIG_SCHEDSTATS
7117 p->se.statistics.wait_start = 0;
7118 p->se.statistics.sleep_start = 0;
7119 p->se.statistics.block_start = 0;
7120 #endif
7121
7122 if (!dl_task(p) && !rt_task(p)) {
7123 /*
7124 * Renice negative nice level userspace
7125 * tasks back to 0:
7126 */
7127 if (task_nice(p) < 0 && p->mm)
7128 set_user_nice(p, 0);
7129 continue;
7130 }
7131
7132 raw_spin_lock(&p->pi_lock);
7133 rq = __task_rq_lock(p);
7134
7135 normalize_task(rq, p);
7136
7137 __task_rq_unlock(rq);
7138 raw_spin_unlock(&p->pi_lock);
7139 } while_each_thread(g, p);
7140
7141 read_unlock_irqrestore(&tasklist_lock, flags);
7142 }
7143
7144 #endif /* CONFIG_MAGIC_SYSRQ */
7145
7146 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7147 /*
7148 * These functions are only useful for the IA64 MCA handling, or kdb.
7149 *
7150 * They can only be called when the whole system has been
7151 * stopped - every CPU needs to be quiescent, and no scheduling
7152 * activity can take place. Using them for anything else would
7153 * be a serious bug, and as a result, they aren't even visible
7154 * under any other configuration.
7155 */
7156
7157 /**
7158 * curr_task - return the current task for a given cpu.
7159 * @cpu: the processor in question.
7160 *
7161 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7162 *
7163 * Return: The current task for @cpu.
7164 */
7165 struct task_struct *curr_task(int cpu)
7166 {
7167 return cpu_curr(cpu);
7168 }
7169
7170 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7171
7172 #ifdef CONFIG_IA64
7173 /**
7174 * set_curr_task - set the current task for a given cpu.
7175 * @cpu: the processor in question.
7176 * @p: the task pointer to set.
7177 *
7178 * Description: This function must only be used when non-maskable interrupts
7179 * are serviced on a separate stack. It allows the architecture to switch the
7180 * notion of the current task on a cpu in a non-blocking manner. This function
7181 * must be called with all CPU's synchronized, and interrupts disabled, the
7182 * and caller must save the original value of the current task (see
7183 * curr_task() above) and restore that value before reenabling interrupts and
7184 * re-starting the system.
7185 *
7186 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7187 */
7188 void set_curr_task(int cpu, struct task_struct *p)
7189 {
7190 cpu_curr(cpu) = p;
7191 }
7192
7193 #endif
7194
7195 #ifdef CONFIG_CGROUP_SCHED
7196 /* task_group_lock serializes the addition/removal of task groups */
7197 static DEFINE_SPINLOCK(task_group_lock);
7198
7199 static void free_sched_group(struct task_group *tg)
7200 {
7201 free_fair_sched_group(tg);
7202 free_rt_sched_group(tg);
7203 autogroup_free(tg);
7204 kfree(tg);
7205 }
7206
7207 /* allocate runqueue etc for a new task group */
7208 struct task_group *sched_create_group(struct task_group *parent)
7209 {
7210 struct task_group *tg;
7211
7212 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7213 if (!tg)
7214 return ERR_PTR(-ENOMEM);
7215
7216 if (!alloc_fair_sched_group(tg, parent))
7217 goto err;
7218
7219 if (!alloc_rt_sched_group(tg, parent))
7220 goto err;
7221
7222 return tg;
7223
7224 err:
7225 free_sched_group(tg);
7226 return ERR_PTR(-ENOMEM);
7227 }
7228
7229 void sched_online_group(struct task_group *tg, struct task_group *parent)
7230 {
7231 unsigned long flags;
7232
7233 spin_lock_irqsave(&task_group_lock, flags);
7234 list_add_rcu(&tg->list, &task_groups);
7235
7236 WARN_ON(!parent); /* root should already exist */
7237
7238 tg->parent = parent;
7239 INIT_LIST_HEAD(&tg->children);
7240 list_add_rcu(&tg->siblings, &parent->children);
7241 spin_unlock_irqrestore(&task_group_lock, flags);
7242 }
7243
7244 /* rcu callback to free various structures associated with a task group */
7245 static void free_sched_group_rcu(struct rcu_head *rhp)
7246 {
7247 /* now it should be safe to free those cfs_rqs */
7248 free_sched_group(container_of(rhp, struct task_group, rcu));
7249 }
7250
7251 /* Destroy runqueue etc associated with a task group */
7252 void sched_destroy_group(struct task_group *tg)
7253 {
7254 /* wait for possible concurrent references to cfs_rqs complete */
7255 call_rcu(&tg->rcu, free_sched_group_rcu);
7256 }
7257
7258 void sched_offline_group(struct task_group *tg)
7259 {
7260 unsigned long flags;
7261 int i;
7262
7263 /* end participation in shares distribution */
7264 for_each_possible_cpu(i)
7265 unregister_fair_sched_group(tg, i);
7266
7267 spin_lock_irqsave(&task_group_lock, flags);
7268 list_del_rcu(&tg->list);
7269 list_del_rcu(&tg->siblings);
7270 spin_unlock_irqrestore(&task_group_lock, flags);
7271 }
7272
7273 /* change task's runqueue when it moves between groups.
7274 * The caller of this function should have put the task in its new group
7275 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7276 * reflect its new group.
7277 */
7278 void sched_move_task(struct task_struct *tsk)
7279 {
7280 struct task_group *tg;
7281 int on_rq, running;
7282 unsigned long flags;
7283 struct rq *rq;
7284
7285 rq = task_rq_lock(tsk, &flags);
7286
7287 running = task_current(rq, tsk);
7288 on_rq = tsk->on_rq;
7289
7290 if (on_rq)
7291 dequeue_task(rq, tsk, 0);
7292 if (unlikely(running))
7293 tsk->sched_class->put_prev_task(rq, tsk);
7294
7295 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7296 lockdep_is_held(&tsk->sighand->siglock)),
7297 struct task_group, css);
7298 tg = autogroup_task_group(tsk, tg);
7299 tsk->sched_task_group = tg;
7300
7301 #ifdef CONFIG_FAIR_GROUP_SCHED
7302 if (tsk->sched_class->task_move_group)
7303 tsk->sched_class->task_move_group(tsk, on_rq);
7304 else
7305 #endif
7306 set_task_rq(tsk, task_cpu(tsk));
7307
7308 if (unlikely(running))
7309 tsk->sched_class->set_curr_task(rq);
7310 if (on_rq)
7311 enqueue_task(rq, tsk, 0);
7312
7313 task_rq_unlock(rq, tsk, &flags);
7314 }
7315 #endif /* CONFIG_CGROUP_SCHED */
7316
7317 #ifdef CONFIG_RT_GROUP_SCHED
7318 /*
7319 * Ensure that the real time constraints are schedulable.
7320 */
7321 static DEFINE_MUTEX(rt_constraints_mutex);
7322
7323 /* Must be called with tasklist_lock held */
7324 static inline int tg_has_rt_tasks(struct task_group *tg)
7325 {
7326 struct task_struct *g, *p;
7327
7328 do_each_thread(g, p) {
7329 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7330 return 1;
7331 } while_each_thread(g, p);
7332
7333 return 0;
7334 }
7335
7336 struct rt_schedulable_data {
7337 struct task_group *tg;
7338 u64 rt_period;
7339 u64 rt_runtime;
7340 };
7341
7342 static int tg_rt_schedulable(struct task_group *tg, void *data)
7343 {
7344 struct rt_schedulable_data *d = data;
7345 struct task_group *child;
7346 unsigned long total, sum = 0;
7347 u64 period, runtime;
7348
7349 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7350 runtime = tg->rt_bandwidth.rt_runtime;
7351
7352 if (tg == d->tg) {
7353 period = d->rt_period;
7354 runtime = d->rt_runtime;
7355 }
7356
7357 /*
7358 * Cannot have more runtime than the period.
7359 */
7360 if (runtime > period && runtime != RUNTIME_INF)
7361 return -EINVAL;
7362
7363 /*
7364 * Ensure we don't starve existing RT tasks.
7365 */
7366 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7367 return -EBUSY;
7368
7369 total = to_ratio(period, runtime);
7370
7371 /*
7372 * Nobody can have more than the global setting allows.
7373 */
7374 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7375 return -EINVAL;
7376
7377 /*
7378 * The sum of our children's runtime should not exceed our own.
7379 */
7380 list_for_each_entry_rcu(child, &tg->children, siblings) {
7381 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7382 runtime = child->rt_bandwidth.rt_runtime;
7383
7384 if (child == d->tg) {
7385 period = d->rt_period;
7386 runtime = d->rt_runtime;
7387 }
7388
7389 sum += to_ratio(period, runtime);
7390 }
7391
7392 if (sum > total)
7393 return -EINVAL;
7394
7395 return 0;
7396 }
7397
7398 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7399 {
7400 int ret;
7401
7402 struct rt_schedulable_data data = {
7403 .tg = tg,
7404 .rt_period = period,
7405 .rt_runtime = runtime,
7406 };
7407
7408 rcu_read_lock();
7409 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7410 rcu_read_unlock();
7411
7412 return ret;
7413 }
7414
7415 static int tg_set_rt_bandwidth(struct task_group *tg,
7416 u64 rt_period, u64 rt_runtime)
7417 {
7418 int i, err = 0;
7419
7420 mutex_lock(&rt_constraints_mutex);
7421 read_lock(&tasklist_lock);
7422 err = __rt_schedulable(tg, rt_period, rt_runtime);
7423 if (err)
7424 goto unlock;
7425
7426 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7427 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7428 tg->rt_bandwidth.rt_runtime = rt_runtime;
7429
7430 for_each_possible_cpu(i) {
7431 struct rt_rq *rt_rq = tg->rt_rq[i];
7432
7433 raw_spin_lock(&rt_rq->rt_runtime_lock);
7434 rt_rq->rt_runtime = rt_runtime;
7435 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7436 }
7437 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7438 unlock:
7439 read_unlock(&tasklist_lock);
7440 mutex_unlock(&rt_constraints_mutex);
7441
7442 return err;
7443 }
7444
7445 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7446 {
7447 u64 rt_runtime, rt_period;
7448
7449 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7450 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7451 if (rt_runtime_us < 0)
7452 rt_runtime = RUNTIME_INF;
7453
7454 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7455 }
7456
7457 static long sched_group_rt_runtime(struct task_group *tg)
7458 {
7459 u64 rt_runtime_us;
7460
7461 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7462 return -1;
7463
7464 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7465 do_div(rt_runtime_us, NSEC_PER_USEC);
7466 return rt_runtime_us;
7467 }
7468
7469 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7470 {
7471 u64 rt_runtime, rt_period;
7472
7473 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7474 rt_runtime = tg->rt_bandwidth.rt_runtime;
7475
7476 if (rt_period == 0)
7477 return -EINVAL;
7478
7479 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7480 }
7481
7482 static long sched_group_rt_period(struct task_group *tg)
7483 {
7484 u64 rt_period_us;
7485
7486 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7487 do_div(rt_period_us, NSEC_PER_USEC);
7488 return rt_period_us;
7489 }
7490 #endif /* CONFIG_RT_GROUP_SCHED */
7491
7492 #ifdef CONFIG_RT_GROUP_SCHED
7493 static int sched_rt_global_constraints(void)
7494 {
7495 int ret = 0;
7496
7497 mutex_lock(&rt_constraints_mutex);
7498 read_lock(&tasklist_lock);
7499 ret = __rt_schedulable(NULL, 0, 0);
7500 read_unlock(&tasklist_lock);
7501 mutex_unlock(&rt_constraints_mutex);
7502
7503 return ret;
7504 }
7505
7506 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7507 {
7508 /* Don't accept realtime tasks when there is no way for them to run */
7509 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7510 return 0;
7511
7512 return 1;
7513 }
7514
7515 #else /* !CONFIG_RT_GROUP_SCHED */
7516 static int sched_rt_global_constraints(void)
7517 {
7518 unsigned long flags;
7519 int i, ret = 0;
7520
7521 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7522 for_each_possible_cpu(i) {
7523 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7524
7525 raw_spin_lock(&rt_rq->rt_runtime_lock);
7526 rt_rq->rt_runtime = global_rt_runtime();
7527 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7528 }
7529 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7530
7531 return ret;
7532 }
7533 #endif /* CONFIG_RT_GROUP_SCHED */
7534
7535 static int sched_dl_global_constraints(void)
7536 {
7537 u64 runtime = global_rt_runtime();
7538 u64 period = global_rt_period();
7539 u64 new_bw = to_ratio(period, runtime);
7540 int cpu, ret = 0;
7541 unsigned long flags;
7542
7543 /*
7544 * Here we want to check the bandwidth not being set to some
7545 * value smaller than the currently allocated bandwidth in
7546 * any of the root_domains.
7547 *
7548 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7549 * cycling on root_domains... Discussion on different/better
7550 * solutions is welcome!
7551 */
7552 for_each_possible_cpu(cpu) {
7553 struct dl_bw *dl_b = dl_bw_of(cpu);
7554
7555 raw_spin_lock_irqsave(&dl_b->lock, flags);
7556 if (new_bw < dl_b->total_bw)
7557 ret = -EBUSY;
7558 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7559
7560 if (ret)
7561 break;
7562 }
7563
7564 return ret;
7565 }
7566
7567 static void sched_dl_do_global(void)
7568 {
7569 u64 new_bw = -1;
7570 int cpu;
7571 unsigned long flags;
7572
7573 def_dl_bandwidth.dl_period = global_rt_period();
7574 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7575
7576 if (global_rt_runtime() != RUNTIME_INF)
7577 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7578
7579 /*
7580 * FIXME: As above...
7581 */
7582 for_each_possible_cpu(cpu) {
7583 struct dl_bw *dl_b = dl_bw_of(cpu);
7584
7585 raw_spin_lock_irqsave(&dl_b->lock, flags);
7586 dl_b->bw = new_bw;
7587 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7588 }
7589 }
7590
7591 static int sched_rt_global_validate(void)
7592 {
7593 if (sysctl_sched_rt_period <= 0)
7594 return -EINVAL;
7595
7596 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7597 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7598 return -EINVAL;
7599
7600 return 0;
7601 }
7602
7603 static void sched_rt_do_global(void)
7604 {
7605 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7606 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7607 }
7608
7609 int sched_rt_handler(struct ctl_table *table, int write,
7610 void __user *buffer, size_t *lenp,
7611 loff_t *ppos)
7612 {
7613 int old_period, old_runtime;
7614 static DEFINE_MUTEX(mutex);
7615 int ret;
7616
7617 mutex_lock(&mutex);
7618 old_period = sysctl_sched_rt_period;
7619 old_runtime = sysctl_sched_rt_runtime;
7620
7621 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7622
7623 if (!ret && write) {
7624 ret = sched_rt_global_validate();
7625 if (ret)
7626 goto undo;
7627
7628 ret = sched_rt_global_constraints();
7629 if (ret)
7630 goto undo;
7631
7632 ret = sched_dl_global_constraints();
7633 if (ret)
7634 goto undo;
7635
7636 sched_rt_do_global();
7637 sched_dl_do_global();
7638 }
7639 if (0) {
7640 undo:
7641 sysctl_sched_rt_period = old_period;
7642 sysctl_sched_rt_runtime = old_runtime;
7643 }
7644 mutex_unlock(&mutex);
7645
7646 return ret;
7647 }
7648
7649 int sched_rr_handler(struct ctl_table *table, int write,
7650 void __user *buffer, size_t *lenp,
7651 loff_t *ppos)
7652 {
7653 int ret;
7654 static DEFINE_MUTEX(mutex);
7655
7656 mutex_lock(&mutex);
7657 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7658 /* make sure that internally we keep jiffies */
7659 /* also, writing zero resets timeslice to default */
7660 if (!ret && write) {
7661 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7662 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7663 }
7664 mutex_unlock(&mutex);
7665 return ret;
7666 }
7667
7668 #ifdef CONFIG_CGROUP_SCHED
7669
7670 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7671 {
7672 return css ? container_of(css, struct task_group, css) : NULL;
7673 }
7674
7675 static struct cgroup_subsys_state *
7676 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7677 {
7678 struct task_group *parent = css_tg(parent_css);
7679 struct task_group *tg;
7680
7681 if (!parent) {
7682 /* This is early initialization for the top cgroup */
7683 return &root_task_group.css;
7684 }
7685
7686 tg = sched_create_group(parent);
7687 if (IS_ERR(tg))
7688 return ERR_PTR(-ENOMEM);
7689
7690 return &tg->css;
7691 }
7692
7693 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7694 {
7695 struct task_group *tg = css_tg(css);
7696 struct task_group *parent = css_tg(css->parent);
7697
7698 if (parent)
7699 sched_online_group(tg, parent);
7700 return 0;
7701 }
7702
7703 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7704 {
7705 struct task_group *tg = css_tg(css);
7706
7707 sched_destroy_group(tg);
7708 }
7709
7710 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7711 {
7712 struct task_group *tg = css_tg(css);
7713
7714 sched_offline_group(tg);
7715 }
7716
7717 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7718 struct cgroup_taskset *tset)
7719 {
7720 struct task_struct *task;
7721
7722 cgroup_taskset_for_each(task, tset) {
7723 #ifdef CONFIG_RT_GROUP_SCHED
7724 if (!sched_rt_can_attach(css_tg(css), task))
7725 return -EINVAL;
7726 #else
7727 /* We don't support RT-tasks being in separate groups */
7728 if (task->sched_class != &fair_sched_class)
7729 return -EINVAL;
7730 #endif
7731 }
7732 return 0;
7733 }
7734
7735 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7736 struct cgroup_taskset *tset)
7737 {
7738 struct task_struct *task;
7739
7740 cgroup_taskset_for_each(task, tset)
7741 sched_move_task(task);
7742 }
7743
7744 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7745 struct cgroup_subsys_state *old_css,
7746 struct task_struct *task)
7747 {
7748 /*
7749 * cgroup_exit() is called in the copy_process() failure path.
7750 * Ignore this case since the task hasn't ran yet, this avoids
7751 * trying to poke a half freed task state from generic code.
7752 */
7753 if (!(task->flags & PF_EXITING))
7754 return;
7755
7756 sched_move_task(task);
7757 }
7758
7759 #ifdef CONFIG_FAIR_GROUP_SCHED
7760 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7761 struct cftype *cftype, u64 shareval)
7762 {
7763 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7764 }
7765
7766 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7767 struct cftype *cft)
7768 {
7769 struct task_group *tg = css_tg(css);
7770
7771 return (u64) scale_load_down(tg->shares);
7772 }
7773
7774 #ifdef CONFIG_CFS_BANDWIDTH
7775 static DEFINE_MUTEX(cfs_constraints_mutex);
7776
7777 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7778 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7779
7780 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7781
7782 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7783 {
7784 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7785 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7786
7787 if (tg == &root_task_group)
7788 return -EINVAL;
7789
7790 /*
7791 * Ensure we have at some amount of bandwidth every period. This is
7792 * to prevent reaching a state of large arrears when throttled via
7793 * entity_tick() resulting in prolonged exit starvation.
7794 */
7795 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7796 return -EINVAL;
7797
7798 /*
7799 * Likewise, bound things on the otherside by preventing insane quota
7800 * periods. This also allows us to normalize in computing quota
7801 * feasibility.
7802 */
7803 if (period > max_cfs_quota_period)
7804 return -EINVAL;
7805
7806 mutex_lock(&cfs_constraints_mutex);
7807 ret = __cfs_schedulable(tg, period, quota);
7808 if (ret)
7809 goto out_unlock;
7810
7811 runtime_enabled = quota != RUNTIME_INF;
7812 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7813 /*
7814 * If we need to toggle cfs_bandwidth_used, off->on must occur
7815 * before making related changes, and on->off must occur afterwards
7816 */
7817 if (runtime_enabled && !runtime_was_enabled)
7818 cfs_bandwidth_usage_inc();
7819 raw_spin_lock_irq(&cfs_b->lock);
7820 cfs_b->period = ns_to_ktime(period);
7821 cfs_b->quota = quota;
7822
7823 __refill_cfs_bandwidth_runtime(cfs_b);
7824 /* restart the period timer (if active) to handle new period expiry */
7825 if (runtime_enabled && cfs_b->timer_active) {
7826 /* force a reprogram */
7827 __start_cfs_bandwidth(cfs_b, true);
7828 }
7829 raw_spin_unlock_irq(&cfs_b->lock);
7830
7831 for_each_possible_cpu(i) {
7832 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7833 struct rq *rq = cfs_rq->rq;
7834
7835 raw_spin_lock_irq(&rq->lock);
7836 cfs_rq->runtime_enabled = runtime_enabled;
7837 cfs_rq->runtime_remaining = 0;
7838
7839 if (cfs_rq->throttled)
7840 unthrottle_cfs_rq(cfs_rq);
7841 raw_spin_unlock_irq(&rq->lock);
7842 }
7843 if (runtime_was_enabled && !runtime_enabled)
7844 cfs_bandwidth_usage_dec();
7845 out_unlock:
7846 mutex_unlock(&cfs_constraints_mutex);
7847
7848 return ret;
7849 }
7850
7851 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7852 {
7853 u64 quota, period;
7854
7855 period = ktime_to_ns(tg->cfs_bandwidth.period);
7856 if (cfs_quota_us < 0)
7857 quota = RUNTIME_INF;
7858 else
7859 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7860
7861 return tg_set_cfs_bandwidth(tg, period, quota);
7862 }
7863
7864 long tg_get_cfs_quota(struct task_group *tg)
7865 {
7866 u64 quota_us;
7867
7868 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7869 return -1;
7870
7871 quota_us = tg->cfs_bandwidth.quota;
7872 do_div(quota_us, NSEC_PER_USEC);
7873
7874 return quota_us;
7875 }
7876
7877 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7878 {
7879 u64 quota, period;
7880
7881 period = (u64)cfs_period_us * NSEC_PER_USEC;
7882 quota = tg->cfs_bandwidth.quota;
7883
7884 return tg_set_cfs_bandwidth(tg, period, quota);
7885 }
7886
7887 long tg_get_cfs_period(struct task_group *tg)
7888 {
7889 u64 cfs_period_us;
7890
7891 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7892 do_div(cfs_period_us, NSEC_PER_USEC);
7893
7894 return cfs_period_us;
7895 }
7896
7897 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7898 struct cftype *cft)
7899 {
7900 return tg_get_cfs_quota(css_tg(css));
7901 }
7902
7903 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7904 struct cftype *cftype, s64 cfs_quota_us)
7905 {
7906 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7907 }
7908
7909 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7910 struct cftype *cft)
7911 {
7912 return tg_get_cfs_period(css_tg(css));
7913 }
7914
7915 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7916 struct cftype *cftype, u64 cfs_period_us)
7917 {
7918 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7919 }
7920
7921 struct cfs_schedulable_data {
7922 struct task_group *tg;
7923 u64 period, quota;
7924 };
7925
7926 /*
7927 * normalize group quota/period to be quota/max_period
7928 * note: units are usecs
7929 */
7930 static u64 normalize_cfs_quota(struct task_group *tg,
7931 struct cfs_schedulable_data *d)
7932 {
7933 u64 quota, period;
7934
7935 if (tg == d->tg) {
7936 period = d->period;
7937 quota = d->quota;
7938 } else {
7939 period = tg_get_cfs_period(tg);
7940 quota = tg_get_cfs_quota(tg);
7941 }
7942
7943 /* note: these should typically be equivalent */
7944 if (quota == RUNTIME_INF || quota == -1)
7945 return RUNTIME_INF;
7946
7947 return to_ratio(period, quota);
7948 }
7949
7950 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7951 {
7952 struct cfs_schedulable_data *d = data;
7953 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7954 s64 quota = 0, parent_quota = -1;
7955
7956 if (!tg->parent) {
7957 quota = RUNTIME_INF;
7958 } else {
7959 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7960
7961 quota = normalize_cfs_quota(tg, d);
7962 parent_quota = parent_b->hierarchal_quota;
7963
7964 /*
7965 * ensure max(child_quota) <= parent_quota, inherit when no
7966 * limit is set
7967 */
7968 if (quota == RUNTIME_INF)
7969 quota = parent_quota;
7970 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7971 return -EINVAL;
7972 }
7973 cfs_b->hierarchal_quota = quota;
7974
7975 return 0;
7976 }
7977
7978 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7979 {
7980 int ret;
7981 struct cfs_schedulable_data data = {
7982 .tg = tg,
7983 .period = period,
7984 .quota = quota,
7985 };
7986
7987 if (quota != RUNTIME_INF) {
7988 do_div(data.period, NSEC_PER_USEC);
7989 do_div(data.quota, NSEC_PER_USEC);
7990 }
7991
7992 rcu_read_lock();
7993 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7994 rcu_read_unlock();
7995
7996 return ret;
7997 }
7998
7999 static int cpu_stats_show(struct seq_file *sf, void *v)
8000 {
8001 struct task_group *tg = css_tg(seq_css(sf));
8002 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8003
8004 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8005 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8006 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8007
8008 return 0;
8009 }
8010 #endif /* CONFIG_CFS_BANDWIDTH */
8011 #endif /* CONFIG_FAIR_GROUP_SCHED */
8012
8013 #ifdef CONFIG_RT_GROUP_SCHED
8014 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8015 struct cftype *cft, s64 val)
8016 {
8017 return sched_group_set_rt_runtime(css_tg(css), val);
8018 }
8019
8020 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8021 struct cftype *cft)
8022 {
8023 return sched_group_rt_runtime(css_tg(css));
8024 }
8025
8026 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8027 struct cftype *cftype, u64 rt_period_us)
8028 {
8029 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8030 }
8031
8032 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8033 struct cftype *cft)
8034 {
8035 return sched_group_rt_period(css_tg(css));
8036 }
8037 #endif /* CONFIG_RT_GROUP_SCHED */
8038
8039 static struct cftype cpu_files[] = {
8040 #ifdef CONFIG_FAIR_GROUP_SCHED
8041 {
8042 .name = "shares",
8043 .read_u64 = cpu_shares_read_u64,
8044 .write_u64 = cpu_shares_write_u64,
8045 },
8046 #endif
8047 #ifdef CONFIG_CFS_BANDWIDTH
8048 {
8049 .name = "cfs_quota_us",
8050 .read_s64 = cpu_cfs_quota_read_s64,
8051 .write_s64 = cpu_cfs_quota_write_s64,
8052 },
8053 {
8054 .name = "cfs_period_us",
8055 .read_u64 = cpu_cfs_period_read_u64,
8056 .write_u64 = cpu_cfs_period_write_u64,
8057 },
8058 {
8059 .name = "stat",
8060 .seq_show = cpu_stats_show,
8061 },
8062 #endif
8063 #ifdef CONFIG_RT_GROUP_SCHED
8064 {
8065 .name = "rt_runtime_us",
8066 .read_s64 = cpu_rt_runtime_read,
8067 .write_s64 = cpu_rt_runtime_write,
8068 },
8069 {
8070 .name = "rt_period_us",
8071 .read_u64 = cpu_rt_period_read_uint,
8072 .write_u64 = cpu_rt_period_write_uint,
8073 },
8074 #endif
8075 { } /* terminate */
8076 };
8077
8078 struct cgroup_subsys cpu_cgrp_subsys = {
8079 .css_alloc = cpu_cgroup_css_alloc,
8080 .css_free = cpu_cgroup_css_free,
8081 .css_online = cpu_cgroup_css_online,
8082 .css_offline = cpu_cgroup_css_offline,
8083 .can_attach = cpu_cgroup_can_attach,
8084 .attach = cpu_cgroup_attach,
8085 .exit = cpu_cgroup_exit,
8086 .base_cftypes = cpu_files,
8087 .early_init = 1,
8088 };
8089
8090 #endif /* CONFIG_CGROUP_SCHED */
8091
8092 void dump_cpu_task(int cpu)
8093 {
8094 pr_info("Task dump for CPU %d:\n", cpu);
8095 sched_show_task(cpu_curr(cpu));
8096 }
This page took 0.216538 seconds and 6 git commands to generate.