Merge branch 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penber...
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
82 #endif
83
84 #include "sched.h"
85 #include "../workqueue_sched.h"
86 #include "../smpboot.h"
87
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/sched.h>
90
91 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92 {
93 unsigned long delta;
94 ktime_t soft, hard, now;
95
96 for (;;) {
97 if (hrtimer_active(period_timer))
98 break;
99
100 now = hrtimer_cb_get_time(period_timer);
101 hrtimer_forward(period_timer, now, period);
102
103 soft = hrtimer_get_softexpires(period_timer);
104 hard = hrtimer_get_expires(period_timer);
105 delta = ktime_to_ns(ktime_sub(hard, soft));
106 __hrtimer_start_range_ns(period_timer, soft, delta,
107 HRTIMER_MODE_ABS_PINNED, 0);
108 }
109 }
110
111 DEFINE_MUTEX(sched_domains_mutex);
112 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113
114 static void update_rq_clock_task(struct rq *rq, s64 delta);
115
116 void update_rq_clock(struct rq *rq)
117 {
118 s64 delta;
119
120 if (rq->skip_clock_update > 0)
121 return;
122
123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 rq->clock += delta;
125 update_rq_clock_task(rq, delta);
126 }
127
128 /*
129 * Debugging: various feature bits
130 */
131
132 #define SCHED_FEAT(name, enabled) \
133 (1UL << __SCHED_FEAT_##name) * enabled |
134
135 const_debug unsigned int sysctl_sched_features =
136 #include "features.h"
137 0;
138
139 #undef SCHED_FEAT
140
141 #ifdef CONFIG_SCHED_DEBUG
142 #define SCHED_FEAT(name, enabled) \
143 #name ,
144
145 static __read_mostly char *sched_feat_names[] = {
146 #include "features.h"
147 NULL
148 };
149
150 #undef SCHED_FEAT
151
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164 }
165
166 #ifdef HAVE_JUMP_LABEL
167
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177
178 #undef SCHED_FEAT
179
180 static void sched_feat_disable(int i)
181 {
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184 }
185
186 static void sched_feat_enable(int i)
187 {
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195
196 static ssize_t
197 sched_feat_write(struct file *filp, const char __user *ubuf,
198 size_t cnt, loff_t *ppos)
199 {
200 char buf[64];
201 char *cmp;
202 int neg = 0;
203 int i;
204
205 if (cnt > 63)
206 cnt = 63;
207
208 if (copy_from_user(&buf, ubuf, cnt))
209 return -EFAULT;
210
211 buf[cnt] = 0;
212 cmp = strstrip(buf);
213
214 if (strncmp(cmp, "NO_", 3) == 0) {
215 neg = 1;
216 cmp += 3;
217 }
218
219 for (i = 0; i < __SCHED_FEAT_NR; i++) {
220 if (strcmp(cmp, sched_feat_names[i]) == 0) {
221 if (neg) {
222 sysctl_sched_features &= ~(1UL << i);
223 sched_feat_disable(i);
224 } else {
225 sysctl_sched_features |= (1UL << i);
226 sched_feat_enable(i);
227 }
228 break;
229 }
230 }
231
232 if (i == __SCHED_FEAT_NR)
233 return -EINVAL;
234
235 *ppos += cnt;
236
237 return cnt;
238 }
239
240 static int sched_feat_open(struct inode *inode, struct file *filp)
241 {
242 return single_open(filp, sched_feat_show, NULL);
243 }
244
245 static const struct file_operations sched_feat_fops = {
246 .open = sched_feat_open,
247 .write = sched_feat_write,
248 .read = seq_read,
249 .llseek = seq_lseek,
250 .release = single_release,
251 };
252
253 static __init int sched_init_debug(void)
254 {
255 debugfs_create_file("sched_features", 0644, NULL, NULL,
256 &sched_feat_fops);
257
258 return 0;
259 }
260 late_initcall(sched_init_debug);
261 #endif /* CONFIG_SCHED_DEBUG */
262
263 /*
264 * Number of tasks to iterate in a single balance run.
265 * Limited because this is done with IRQs disabled.
266 */
267 const_debug unsigned int sysctl_sched_nr_migrate = 32;
268
269 /*
270 * period over which we average the RT time consumption, measured
271 * in ms.
272 *
273 * default: 1s
274 */
275 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
276
277 /*
278 * period over which we measure -rt task cpu usage in us.
279 * default: 1s
280 */
281 unsigned int sysctl_sched_rt_period = 1000000;
282
283 __read_mostly int scheduler_running;
284
285 /*
286 * part of the period that we allow rt tasks to run in us.
287 * default: 0.95s
288 */
289 int sysctl_sched_rt_runtime = 950000;
290
291
292
293 /*
294 * __task_rq_lock - lock the rq @p resides on.
295 */
296 static inline struct rq *__task_rq_lock(struct task_struct *p)
297 __acquires(rq->lock)
298 {
299 struct rq *rq;
300
301 lockdep_assert_held(&p->pi_lock);
302
303 for (;;) {
304 rq = task_rq(p);
305 raw_spin_lock(&rq->lock);
306 if (likely(rq == task_rq(p)))
307 return rq;
308 raw_spin_unlock(&rq->lock);
309 }
310 }
311
312 /*
313 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
314 */
315 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
316 __acquires(p->pi_lock)
317 __acquires(rq->lock)
318 {
319 struct rq *rq;
320
321 for (;;) {
322 raw_spin_lock_irqsave(&p->pi_lock, *flags);
323 rq = task_rq(p);
324 raw_spin_lock(&rq->lock);
325 if (likely(rq == task_rq(p)))
326 return rq;
327 raw_spin_unlock(&rq->lock);
328 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
329 }
330 }
331
332 static void __task_rq_unlock(struct rq *rq)
333 __releases(rq->lock)
334 {
335 raw_spin_unlock(&rq->lock);
336 }
337
338 static inline void
339 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
340 __releases(rq->lock)
341 __releases(p->pi_lock)
342 {
343 raw_spin_unlock(&rq->lock);
344 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
345 }
346
347 /*
348 * this_rq_lock - lock this runqueue and disable interrupts.
349 */
350 static struct rq *this_rq_lock(void)
351 __acquires(rq->lock)
352 {
353 struct rq *rq;
354
355 local_irq_disable();
356 rq = this_rq();
357 raw_spin_lock(&rq->lock);
358
359 return rq;
360 }
361
362 #ifdef CONFIG_SCHED_HRTICK
363 /*
364 * Use HR-timers to deliver accurate preemption points.
365 *
366 * Its all a bit involved since we cannot program an hrt while holding the
367 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
368 * reschedule event.
369 *
370 * When we get rescheduled we reprogram the hrtick_timer outside of the
371 * rq->lock.
372 */
373
374 static void hrtick_clear(struct rq *rq)
375 {
376 if (hrtimer_active(&rq->hrtick_timer))
377 hrtimer_cancel(&rq->hrtick_timer);
378 }
379
380 /*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384 static enum hrtimer_restart hrtick(struct hrtimer *timer)
385 {
386 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
390 raw_spin_lock(&rq->lock);
391 update_rq_clock(rq);
392 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393 raw_spin_unlock(&rq->lock);
394
395 return HRTIMER_NORESTART;
396 }
397
398 #ifdef CONFIG_SMP
399 /*
400 * called from hardirq (IPI) context
401 */
402 static void __hrtick_start(void *arg)
403 {
404 struct rq *rq = arg;
405
406 raw_spin_lock(&rq->lock);
407 hrtimer_restart(&rq->hrtick_timer);
408 rq->hrtick_csd_pending = 0;
409 raw_spin_unlock(&rq->lock);
410 }
411
412 /*
413 * Called to set the hrtick timer state.
414 *
415 * called with rq->lock held and irqs disabled
416 */
417 void hrtick_start(struct rq *rq, u64 delay)
418 {
419 struct hrtimer *timer = &rq->hrtick_timer;
420 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
421
422 hrtimer_set_expires(timer, time);
423
424 if (rq == this_rq()) {
425 hrtimer_restart(timer);
426 } else if (!rq->hrtick_csd_pending) {
427 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
428 rq->hrtick_csd_pending = 1;
429 }
430 }
431
432 static int
433 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
434 {
435 int cpu = (int)(long)hcpu;
436
437 switch (action) {
438 case CPU_UP_CANCELED:
439 case CPU_UP_CANCELED_FROZEN:
440 case CPU_DOWN_PREPARE:
441 case CPU_DOWN_PREPARE_FROZEN:
442 case CPU_DEAD:
443 case CPU_DEAD_FROZEN:
444 hrtick_clear(cpu_rq(cpu));
445 return NOTIFY_OK;
446 }
447
448 return NOTIFY_DONE;
449 }
450
451 static __init void init_hrtick(void)
452 {
453 hotcpu_notifier(hotplug_hrtick, 0);
454 }
455 #else
456 /*
457 * Called to set the hrtick timer state.
458 *
459 * called with rq->lock held and irqs disabled
460 */
461 void hrtick_start(struct rq *rq, u64 delay)
462 {
463 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
464 HRTIMER_MODE_REL_PINNED, 0);
465 }
466
467 static inline void init_hrtick(void)
468 {
469 }
470 #endif /* CONFIG_SMP */
471
472 static void init_rq_hrtick(struct rq *rq)
473 {
474 #ifdef CONFIG_SMP
475 rq->hrtick_csd_pending = 0;
476
477 rq->hrtick_csd.flags = 0;
478 rq->hrtick_csd.func = __hrtick_start;
479 rq->hrtick_csd.info = rq;
480 #endif
481
482 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
483 rq->hrtick_timer.function = hrtick;
484 }
485 #else /* CONFIG_SCHED_HRTICK */
486 static inline void hrtick_clear(struct rq *rq)
487 {
488 }
489
490 static inline void init_rq_hrtick(struct rq *rq)
491 {
492 }
493
494 static inline void init_hrtick(void)
495 {
496 }
497 #endif /* CONFIG_SCHED_HRTICK */
498
499 /*
500 * resched_task - mark a task 'to be rescheduled now'.
501 *
502 * On UP this means the setting of the need_resched flag, on SMP it
503 * might also involve a cross-CPU call to trigger the scheduler on
504 * the target CPU.
505 */
506 #ifdef CONFIG_SMP
507
508 #ifndef tsk_is_polling
509 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
510 #endif
511
512 void resched_task(struct task_struct *p)
513 {
514 int cpu;
515
516 assert_raw_spin_locked(&task_rq(p)->lock);
517
518 if (test_tsk_need_resched(p))
519 return;
520
521 set_tsk_need_resched(p);
522
523 cpu = task_cpu(p);
524 if (cpu == smp_processor_id())
525 return;
526
527 /* NEED_RESCHED must be visible before we test polling */
528 smp_mb();
529 if (!tsk_is_polling(p))
530 smp_send_reschedule(cpu);
531 }
532
533 void resched_cpu(int cpu)
534 {
535 struct rq *rq = cpu_rq(cpu);
536 unsigned long flags;
537
538 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
539 return;
540 resched_task(cpu_curr(cpu));
541 raw_spin_unlock_irqrestore(&rq->lock, flags);
542 }
543
544 #ifdef CONFIG_NO_HZ
545 /*
546 * In the semi idle case, use the nearest busy cpu for migrating timers
547 * from an idle cpu. This is good for power-savings.
548 *
549 * We don't do similar optimization for completely idle system, as
550 * selecting an idle cpu will add more delays to the timers than intended
551 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
552 */
553 int get_nohz_timer_target(void)
554 {
555 int cpu = smp_processor_id();
556 int i;
557 struct sched_domain *sd;
558
559 rcu_read_lock();
560 for_each_domain(cpu, sd) {
561 for_each_cpu(i, sched_domain_span(sd)) {
562 if (!idle_cpu(i)) {
563 cpu = i;
564 goto unlock;
565 }
566 }
567 }
568 unlock:
569 rcu_read_unlock();
570 return cpu;
571 }
572 /*
573 * When add_timer_on() enqueues a timer into the timer wheel of an
574 * idle CPU then this timer might expire before the next timer event
575 * which is scheduled to wake up that CPU. In case of a completely
576 * idle system the next event might even be infinite time into the
577 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
578 * leaves the inner idle loop so the newly added timer is taken into
579 * account when the CPU goes back to idle and evaluates the timer
580 * wheel for the next timer event.
581 */
582 void wake_up_idle_cpu(int cpu)
583 {
584 struct rq *rq = cpu_rq(cpu);
585
586 if (cpu == smp_processor_id())
587 return;
588
589 /*
590 * This is safe, as this function is called with the timer
591 * wheel base lock of (cpu) held. When the CPU is on the way
592 * to idle and has not yet set rq->curr to idle then it will
593 * be serialized on the timer wheel base lock and take the new
594 * timer into account automatically.
595 */
596 if (rq->curr != rq->idle)
597 return;
598
599 /*
600 * We can set TIF_RESCHED on the idle task of the other CPU
601 * lockless. The worst case is that the other CPU runs the
602 * idle task through an additional NOOP schedule()
603 */
604 set_tsk_need_resched(rq->idle);
605
606 /* NEED_RESCHED must be visible before we test polling */
607 smp_mb();
608 if (!tsk_is_polling(rq->idle))
609 smp_send_reschedule(cpu);
610 }
611
612 static inline bool got_nohz_idle_kick(void)
613 {
614 int cpu = smp_processor_id();
615 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
616 }
617
618 #else /* CONFIG_NO_HZ */
619
620 static inline bool got_nohz_idle_kick(void)
621 {
622 return false;
623 }
624
625 #endif /* CONFIG_NO_HZ */
626
627 void sched_avg_update(struct rq *rq)
628 {
629 s64 period = sched_avg_period();
630
631 while ((s64)(rq->clock - rq->age_stamp) > period) {
632 /*
633 * Inline assembly required to prevent the compiler
634 * optimising this loop into a divmod call.
635 * See __iter_div_u64_rem() for another example of this.
636 */
637 asm("" : "+rm" (rq->age_stamp));
638 rq->age_stamp += period;
639 rq->rt_avg /= 2;
640 }
641 }
642
643 #else /* !CONFIG_SMP */
644 void resched_task(struct task_struct *p)
645 {
646 assert_raw_spin_locked(&task_rq(p)->lock);
647 set_tsk_need_resched(p);
648 }
649 #endif /* CONFIG_SMP */
650
651 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
652 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
653 /*
654 * Iterate task_group tree rooted at *from, calling @down when first entering a
655 * node and @up when leaving it for the final time.
656 *
657 * Caller must hold rcu_lock or sufficient equivalent.
658 */
659 int walk_tg_tree_from(struct task_group *from,
660 tg_visitor down, tg_visitor up, void *data)
661 {
662 struct task_group *parent, *child;
663 int ret;
664
665 parent = from;
666
667 down:
668 ret = (*down)(parent, data);
669 if (ret)
670 goto out;
671 list_for_each_entry_rcu(child, &parent->children, siblings) {
672 parent = child;
673 goto down;
674
675 up:
676 continue;
677 }
678 ret = (*up)(parent, data);
679 if (ret || parent == from)
680 goto out;
681
682 child = parent;
683 parent = parent->parent;
684 if (parent)
685 goto up;
686 out:
687 return ret;
688 }
689
690 int tg_nop(struct task_group *tg, void *data)
691 {
692 return 0;
693 }
694 #endif
695
696 static void set_load_weight(struct task_struct *p)
697 {
698 int prio = p->static_prio - MAX_RT_PRIO;
699 struct load_weight *load = &p->se.load;
700
701 /*
702 * SCHED_IDLE tasks get minimal weight:
703 */
704 if (p->policy == SCHED_IDLE) {
705 load->weight = scale_load(WEIGHT_IDLEPRIO);
706 load->inv_weight = WMULT_IDLEPRIO;
707 return;
708 }
709
710 load->weight = scale_load(prio_to_weight[prio]);
711 load->inv_weight = prio_to_wmult[prio];
712 }
713
714 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
715 {
716 update_rq_clock(rq);
717 sched_info_queued(p);
718 p->sched_class->enqueue_task(rq, p, flags);
719 }
720
721 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
722 {
723 update_rq_clock(rq);
724 sched_info_dequeued(p);
725 p->sched_class->dequeue_task(rq, p, flags);
726 }
727
728 void activate_task(struct rq *rq, struct task_struct *p, int flags)
729 {
730 if (task_contributes_to_load(p))
731 rq->nr_uninterruptible--;
732
733 enqueue_task(rq, p, flags);
734 }
735
736 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
737 {
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible++;
740
741 dequeue_task(rq, p, flags);
742 }
743
744 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
745
746 /*
747 * There are no locks covering percpu hardirq/softirq time.
748 * They are only modified in account_system_vtime, on corresponding CPU
749 * with interrupts disabled. So, writes are safe.
750 * They are read and saved off onto struct rq in update_rq_clock().
751 * This may result in other CPU reading this CPU's irq time and can
752 * race with irq/account_system_vtime on this CPU. We would either get old
753 * or new value with a side effect of accounting a slice of irq time to wrong
754 * task when irq is in progress while we read rq->clock. That is a worthy
755 * compromise in place of having locks on each irq in account_system_time.
756 */
757 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
758 static DEFINE_PER_CPU(u64, cpu_softirq_time);
759
760 static DEFINE_PER_CPU(u64, irq_start_time);
761 static int sched_clock_irqtime;
762
763 void enable_sched_clock_irqtime(void)
764 {
765 sched_clock_irqtime = 1;
766 }
767
768 void disable_sched_clock_irqtime(void)
769 {
770 sched_clock_irqtime = 0;
771 }
772
773 #ifndef CONFIG_64BIT
774 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
775
776 static inline void irq_time_write_begin(void)
777 {
778 __this_cpu_inc(irq_time_seq.sequence);
779 smp_wmb();
780 }
781
782 static inline void irq_time_write_end(void)
783 {
784 smp_wmb();
785 __this_cpu_inc(irq_time_seq.sequence);
786 }
787
788 static inline u64 irq_time_read(int cpu)
789 {
790 u64 irq_time;
791 unsigned seq;
792
793 do {
794 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
795 irq_time = per_cpu(cpu_softirq_time, cpu) +
796 per_cpu(cpu_hardirq_time, cpu);
797 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
798
799 return irq_time;
800 }
801 #else /* CONFIG_64BIT */
802 static inline void irq_time_write_begin(void)
803 {
804 }
805
806 static inline void irq_time_write_end(void)
807 {
808 }
809
810 static inline u64 irq_time_read(int cpu)
811 {
812 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
813 }
814 #endif /* CONFIG_64BIT */
815
816 /*
817 * Called before incrementing preempt_count on {soft,}irq_enter
818 * and before decrementing preempt_count on {soft,}irq_exit.
819 */
820 void account_system_vtime(struct task_struct *curr)
821 {
822 unsigned long flags;
823 s64 delta;
824 int cpu;
825
826 if (!sched_clock_irqtime)
827 return;
828
829 local_irq_save(flags);
830
831 cpu = smp_processor_id();
832 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
833 __this_cpu_add(irq_start_time, delta);
834
835 irq_time_write_begin();
836 /*
837 * We do not account for softirq time from ksoftirqd here.
838 * We want to continue accounting softirq time to ksoftirqd thread
839 * in that case, so as not to confuse scheduler with a special task
840 * that do not consume any time, but still wants to run.
841 */
842 if (hardirq_count())
843 __this_cpu_add(cpu_hardirq_time, delta);
844 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
845 __this_cpu_add(cpu_softirq_time, delta);
846
847 irq_time_write_end();
848 local_irq_restore(flags);
849 }
850 EXPORT_SYMBOL_GPL(account_system_vtime);
851
852 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
853
854 #ifdef CONFIG_PARAVIRT
855 static inline u64 steal_ticks(u64 steal)
856 {
857 if (unlikely(steal > NSEC_PER_SEC))
858 return div_u64(steal, TICK_NSEC);
859
860 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
861 }
862 #endif
863
864 static void update_rq_clock_task(struct rq *rq, s64 delta)
865 {
866 /*
867 * In theory, the compile should just see 0 here, and optimize out the call
868 * to sched_rt_avg_update. But I don't trust it...
869 */
870 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
871 s64 steal = 0, irq_delta = 0;
872 #endif
873 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
874 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
875
876 /*
877 * Since irq_time is only updated on {soft,}irq_exit, we might run into
878 * this case when a previous update_rq_clock() happened inside a
879 * {soft,}irq region.
880 *
881 * When this happens, we stop ->clock_task and only update the
882 * prev_irq_time stamp to account for the part that fit, so that a next
883 * update will consume the rest. This ensures ->clock_task is
884 * monotonic.
885 *
886 * It does however cause some slight miss-attribution of {soft,}irq
887 * time, a more accurate solution would be to update the irq_time using
888 * the current rq->clock timestamp, except that would require using
889 * atomic ops.
890 */
891 if (irq_delta > delta)
892 irq_delta = delta;
893
894 rq->prev_irq_time += irq_delta;
895 delta -= irq_delta;
896 #endif
897 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
898 if (static_key_false((&paravirt_steal_rq_enabled))) {
899 u64 st;
900
901 steal = paravirt_steal_clock(cpu_of(rq));
902 steal -= rq->prev_steal_time_rq;
903
904 if (unlikely(steal > delta))
905 steal = delta;
906
907 st = steal_ticks(steal);
908 steal = st * TICK_NSEC;
909
910 rq->prev_steal_time_rq += steal;
911
912 delta -= steal;
913 }
914 #endif
915
916 rq->clock_task += delta;
917
918 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
919 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
920 sched_rt_avg_update(rq, irq_delta + steal);
921 #endif
922 }
923
924 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
925 static int irqtime_account_hi_update(void)
926 {
927 u64 *cpustat = kcpustat_this_cpu->cpustat;
928 unsigned long flags;
929 u64 latest_ns;
930 int ret = 0;
931
932 local_irq_save(flags);
933 latest_ns = this_cpu_read(cpu_hardirq_time);
934 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
935 ret = 1;
936 local_irq_restore(flags);
937 return ret;
938 }
939
940 static int irqtime_account_si_update(void)
941 {
942 u64 *cpustat = kcpustat_this_cpu->cpustat;
943 unsigned long flags;
944 u64 latest_ns;
945 int ret = 0;
946
947 local_irq_save(flags);
948 latest_ns = this_cpu_read(cpu_softirq_time);
949 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
950 ret = 1;
951 local_irq_restore(flags);
952 return ret;
953 }
954
955 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
956
957 #define sched_clock_irqtime (0)
958
959 #endif
960
961 void sched_set_stop_task(int cpu, struct task_struct *stop)
962 {
963 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
964 struct task_struct *old_stop = cpu_rq(cpu)->stop;
965
966 if (stop) {
967 /*
968 * Make it appear like a SCHED_FIFO task, its something
969 * userspace knows about and won't get confused about.
970 *
971 * Also, it will make PI more or less work without too
972 * much confusion -- but then, stop work should not
973 * rely on PI working anyway.
974 */
975 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
976
977 stop->sched_class = &stop_sched_class;
978 }
979
980 cpu_rq(cpu)->stop = stop;
981
982 if (old_stop) {
983 /*
984 * Reset it back to a normal scheduling class so that
985 * it can die in pieces.
986 */
987 old_stop->sched_class = &rt_sched_class;
988 }
989 }
990
991 /*
992 * __normal_prio - return the priority that is based on the static prio
993 */
994 static inline int __normal_prio(struct task_struct *p)
995 {
996 return p->static_prio;
997 }
998
999 /*
1000 * Calculate the expected normal priority: i.e. priority
1001 * without taking RT-inheritance into account. Might be
1002 * boosted by interactivity modifiers. Changes upon fork,
1003 * setprio syscalls, and whenever the interactivity
1004 * estimator recalculates.
1005 */
1006 static inline int normal_prio(struct task_struct *p)
1007 {
1008 int prio;
1009
1010 if (task_has_rt_policy(p))
1011 prio = MAX_RT_PRIO-1 - p->rt_priority;
1012 else
1013 prio = __normal_prio(p);
1014 return prio;
1015 }
1016
1017 /*
1018 * Calculate the current priority, i.e. the priority
1019 * taken into account by the scheduler. This value might
1020 * be boosted by RT tasks, or might be boosted by
1021 * interactivity modifiers. Will be RT if the task got
1022 * RT-boosted. If not then it returns p->normal_prio.
1023 */
1024 static int effective_prio(struct task_struct *p)
1025 {
1026 p->normal_prio = normal_prio(p);
1027 /*
1028 * If we are RT tasks or we were boosted to RT priority,
1029 * keep the priority unchanged. Otherwise, update priority
1030 * to the normal priority:
1031 */
1032 if (!rt_prio(p->prio))
1033 return p->normal_prio;
1034 return p->prio;
1035 }
1036
1037 /**
1038 * task_curr - is this task currently executing on a CPU?
1039 * @p: the task in question.
1040 */
1041 inline int task_curr(const struct task_struct *p)
1042 {
1043 return cpu_curr(task_cpu(p)) == p;
1044 }
1045
1046 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1047 const struct sched_class *prev_class,
1048 int oldprio)
1049 {
1050 if (prev_class != p->sched_class) {
1051 if (prev_class->switched_from)
1052 prev_class->switched_from(rq, p);
1053 p->sched_class->switched_to(rq, p);
1054 } else if (oldprio != p->prio)
1055 p->sched_class->prio_changed(rq, p, oldprio);
1056 }
1057
1058 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1059 {
1060 const struct sched_class *class;
1061
1062 if (p->sched_class == rq->curr->sched_class) {
1063 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1064 } else {
1065 for_each_class(class) {
1066 if (class == rq->curr->sched_class)
1067 break;
1068 if (class == p->sched_class) {
1069 resched_task(rq->curr);
1070 break;
1071 }
1072 }
1073 }
1074
1075 /*
1076 * A queue event has occurred, and we're going to schedule. In
1077 * this case, we can save a useless back to back clock update.
1078 */
1079 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1080 rq->skip_clock_update = 1;
1081 }
1082
1083 #ifdef CONFIG_SMP
1084 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1085 {
1086 #ifdef CONFIG_SCHED_DEBUG
1087 /*
1088 * We should never call set_task_cpu() on a blocked task,
1089 * ttwu() will sort out the placement.
1090 */
1091 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1092 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1093
1094 #ifdef CONFIG_LOCKDEP
1095 /*
1096 * The caller should hold either p->pi_lock or rq->lock, when changing
1097 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1098 *
1099 * sched_move_task() holds both and thus holding either pins the cgroup,
1100 * see set_task_rq().
1101 *
1102 * Furthermore, all task_rq users should acquire both locks, see
1103 * task_rq_lock().
1104 */
1105 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1106 lockdep_is_held(&task_rq(p)->lock)));
1107 #endif
1108 #endif
1109
1110 trace_sched_migrate_task(p, new_cpu);
1111
1112 if (task_cpu(p) != new_cpu) {
1113 p->se.nr_migrations++;
1114 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1115 }
1116
1117 __set_task_cpu(p, new_cpu);
1118 }
1119
1120 struct migration_arg {
1121 struct task_struct *task;
1122 int dest_cpu;
1123 };
1124
1125 static int migration_cpu_stop(void *data);
1126
1127 /*
1128 * wait_task_inactive - wait for a thread to unschedule.
1129 *
1130 * If @match_state is nonzero, it's the @p->state value just checked and
1131 * not expected to change. If it changes, i.e. @p might have woken up,
1132 * then return zero. When we succeed in waiting for @p to be off its CPU,
1133 * we return a positive number (its total switch count). If a second call
1134 * a short while later returns the same number, the caller can be sure that
1135 * @p has remained unscheduled the whole time.
1136 *
1137 * The caller must ensure that the task *will* unschedule sometime soon,
1138 * else this function might spin for a *long* time. This function can't
1139 * be called with interrupts off, or it may introduce deadlock with
1140 * smp_call_function() if an IPI is sent by the same process we are
1141 * waiting to become inactive.
1142 */
1143 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1144 {
1145 unsigned long flags;
1146 int running, on_rq;
1147 unsigned long ncsw;
1148 struct rq *rq;
1149
1150 for (;;) {
1151 /*
1152 * We do the initial early heuristics without holding
1153 * any task-queue locks at all. We'll only try to get
1154 * the runqueue lock when things look like they will
1155 * work out!
1156 */
1157 rq = task_rq(p);
1158
1159 /*
1160 * If the task is actively running on another CPU
1161 * still, just relax and busy-wait without holding
1162 * any locks.
1163 *
1164 * NOTE! Since we don't hold any locks, it's not
1165 * even sure that "rq" stays as the right runqueue!
1166 * But we don't care, since "task_running()" will
1167 * return false if the runqueue has changed and p
1168 * is actually now running somewhere else!
1169 */
1170 while (task_running(rq, p)) {
1171 if (match_state && unlikely(p->state != match_state))
1172 return 0;
1173 cpu_relax();
1174 }
1175
1176 /*
1177 * Ok, time to look more closely! We need the rq
1178 * lock now, to be *sure*. If we're wrong, we'll
1179 * just go back and repeat.
1180 */
1181 rq = task_rq_lock(p, &flags);
1182 trace_sched_wait_task(p);
1183 running = task_running(rq, p);
1184 on_rq = p->on_rq;
1185 ncsw = 0;
1186 if (!match_state || p->state == match_state)
1187 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1188 task_rq_unlock(rq, p, &flags);
1189
1190 /*
1191 * If it changed from the expected state, bail out now.
1192 */
1193 if (unlikely(!ncsw))
1194 break;
1195
1196 /*
1197 * Was it really running after all now that we
1198 * checked with the proper locks actually held?
1199 *
1200 * Oops. Go back and try again..
1201 */
1202 if (unlikely(running)) {
1203 cpu_relax();
1204 continue;
1205 }
1206
1207 /*
1208 * It's not enough that it's not actively running,
1209 * it must be off the runqueue _entirely_, and not
1210 * preempted!
1211 *
1212 * So if it was still runnable (but just not actively
1213 * running right now), it's preempted, and we should
1214 * yield - it could be a while.
1215 */
1216 if (unlikely(on_rq)) {
1217 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1218
1219 set_current_state(TASK_UNINTERRUPTIBLE);
1220 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1221 continue;
1222 }
1223
1224 /*
1225 * Ahh, all good. It wasn't running, and it wasn't
1226 * runnable, which means that it will never become
1227 * running in the future either. We're all done!
1228 */
1229 break;
1230 }
1231
1232 return ncsw;
1233 }
1234
1235 /***
1236 * kick_process - kick a running thread to enter/exit the kernel
1237 * @p: the to-be-kicked thread
1238 *
1239 * Cause a process which is running on another CPU to enter
1240 * kernel-mode, without any delay. (to get signals handled.)
1241 *
1242 * NOTE: this function doesn't have to take the runqueue lock,
1243 * because all it wants to ensure is that the remote task enters
1244 * the kernel. If the IPI races and the task has been migrated
1245 * to another CPU then no harm is done and the purpose has been
1246 * achieved as well.
1247 */
1248 void kick_process(struct task_struct *p)
1249 {
1250 int cpu;
1251
1252 preempt_disable();
1253 cpu = task_cpu(p);
1254 if ((cpu != smp_processor_id()) && task_curr(p))
1255 smp_send_reschedule(cpu);
1256 preempt_enable();
1257 }
1258 EXPORT_SYMBOL_GPL(kick_process);
1259 #endif /* CONFIG_SMP */
1260
1261 #ifdef CONFIG_SMP
1262 /*
1263 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1264 */
1265 static int select_fallback_rq(int cpu, struct task_struct *p)
1266 {
1267 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1268 enum { cpuset, possible, fail } state = cpuset;
1269 int dest_cpu;
1270
1271 /* Look for allowed, online CPU in same node. */
1272 for_each_cpu(dest_cpu, nodemask) {
1273 if (!cpu_online(dest_cpu))
1274 continue;
1275 if (!cpu_active(dest_cpu))
1276 continue;
1277 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1278 return dest_cpu;
1279 }
1280
1281 for (;;) {
1282 /* Any allowed, online CPU? */
1283 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1284 if (!cpu_online(dest_cpu))
1285 continue;
1286 if (!cpu_active(dest_cpu))
1287 continue;
1288 goto out;
1289 }
1290
1291 switch (state) {
1292 case cpuset:
1293 /* No more Mr. Nice Guy. */
1294 cpuset_cpus_allowed_fallback(p);
1295 state = possible;
1296 break;
1297
1298 case possible:
1299 do_set_cpus_allowed(p, cpu_possible_mask);
1300 state = fail;
1301 break;
1302
1303 case fail:
1304 BUG();
1305 break;
1306 }
1307 }
1308
1309 out:
1310 if (state != cpuset) {
1311 /*
1312 * Don't tell them about moving exiting tasks or
1313 * kernel threads (both mm NULL), since they never
1314 * leave kernel.
1315 */
1316 if (p->mm && printk_ratelimit()) {
1317 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1318 task_pid_nr(p), p->comm, cpu);
1319 }
1320 }
1321
1322 return dest_cpu;
1323 }
1324
1325 /*
1326 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1327 */
1328 static inline
1329 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1330 {
1331 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1332
1333 /*
1334 * In order not to call set_task_cpu() on a blocking task we need
1335 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1336 * cpu.
1337 *
1338 * Since this is common to all placement strategies, this lives here.
1339 *
1340 * [ this allows ->select_task() to simply return task_cpu(p) and
1341 * not worry about this generic constraint ]
1342 */
1343 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1344 !cpu_online(cpu)))
1345 cpu = select_fallback_rq(task_cpu(p), p);
1346
1347 return cpu;
1348 }
1349
1350 static void update_avg(u64 *avg, u64 sample)
1351 {
1352 s64 diff = sample - *avg;
1353 *avg += diff >> 3;
1354 }
1355 #endif
1356
1357 static void
1358 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1359 {
1360 #ifdef CONFIG_SCHEDSTATS
1361 struct rq *rq = this_rq();
1362
1363 #ifdef CONFIG_SMP
1364 int this_cpu = smp_processor_id();
1365
1366 if (cpu == this_cpu) {
1367 schedstat_inc(rq, ttwu_local);
1368 schedstat_inc(p, se.statistics.nr_wakeups_local);
1369 } else {
1370 struct sched_domain *sd;
1371
1372 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1373 rcu_read_lock();
1374 for_each_domain(this_cpu, sd) {
1375 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1376 schedstat_inc(sd, ttwu_wake_remote);
1377 break;
1378 }
1379 }
1380 rcu_read_unlock();
1381 }
1382
1383 if (wake_flags & WF_MIGRATED)
1384 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1385
1386 #endif /* CONFIG_SMP */
1387
1388 schedstat_inc(rq, ttwu_count);
1389 schedstat_inc(p, se.statistics.nr_wakeups);
1390
1391 if (wake_flags & WF_SYNC)
1392 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1393
1394 #endif /* CONFIG_SCHEDSTATS */
1395 }
1396
1397 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1398 {
1399 activate_task(rq, p, en_flags);
1400 p->on_rq = 1;
1401
1402 /* if a worker is waking up, notify workqueue */
1403 if (p->flags & PF_WQ_WORKER)
1404 wq_worker_waking_up(p, cpu_of(rq));
1405 }
1406
1407 /*
1408 * Mark the task runnable and perform wakeup-preemption.
1409 */
1410 static void
1411 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1412 {
1413 trace_sched_wakeup(p, true);
1414 check_preempt_curr(rq, p, wake_flags);
1415
1416 p->state = TASK_RUNNING;
1417 #ifdef CONFIG_SMP
1418 if (p->sched_class->task_woken)
1419 p->sched_class->task_woken(rq, p);
1420
1421 if (rq->idle_stamp) {
1422 u64 delta = rq->clock - rq->idle_stamp;
1423 u64 max = 2*sysctl_sched_migration_cost;
1424
1425 if (delta > max)
1426 rq->avg_idle = max;
1427 else
1428 update_avg(&rq->avg_idle, delta);
1429 rq->idle_stamp = 0;
1430 }
1431 #endif
1432 }
1433
1434 static void
1435 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1436 {
1437 #ifdef CONFIG_SMP
1438 if (p->sched_contributes_to_load)
1439 rq->nr_uninterruptible--;
1440 #endif
1441
1442 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1443 ttwu_do_wakeup(rq, p, wake_flags);
1444 }
1445
1446 /*
1447 * Called in case the task @p isn't fully descheduled from its runqueue,
1448 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1449 * since all we need to do is flip p->state to TASK_RUNNING, since
1450 * the task is still ->on_rq.
1451 */
1452 static int ttwu_remote(struct task_struct *p, int wake_flags)
1453 {
1454 struct rq *rq;
1455 int ret = 0;
1456
1457 rq = __task_rq_lock(p);
1458 if (p->on_rq) {
1459 ttwu_do_wakeup(rq, p, wake_flags);
1460 ret = 1;
1461 }
1462 __task_rq_unlock(rq);
1463
1464 return ret;
1465 }
1466
1467 #ifdef CONFIG_SMP
1468 static void sched_ttwu_pending(void)
1469 {
1470 struct rq *rq = this_rq();
1471 struct llist_node *llist = llist_del_all(&rq->wake_list);
1472 struct task_struct *p;
1473
1474 raw_spin_lock(&rq->lock);
1475
1476 while (llist) {
1477 p = llist_entry(llist, struct task_struct, wake_entry);
1478 llist = llist_next(llist);
1479 ttwu_do_activate(rq, p, 0);
1480 }
1481
1482 raw_spin_unlock(&rq->lock);
1483 }
1484
1485 void scheduler_ipi(void)
1486 {
1487 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1488 return;
1489
1490 /*
1491 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1492 * traditionally all their work was done from the interrupt return
1493 * path. Now that we actually do some work, we need to make sure
1494 * we do call them.
1495 *
1496 * Some archs already do call them, luckily irq_enter/exit nest
1497 * properly.
1498 *
1499 * Arguably we should visit all archs and update all handlers,
1500 * however a fair share of IPIs are still resched only so this would
1501 * somewhat pessimize the simple resched case.
1502 */
1503 irq_enter();
1504 sched_ttwu_pending();
1505
1506 /*
1507 * Check if someone kicked us for doing the nohz idle load balance.
1508 */
1509 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1510 this_rq()->idle_balance = 1;
1511 raise_softirq_irqoff(SCHED_SOFTIRQ);
1512 }
1513 irq_exit();
1514 }
1515
1516 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1517 {
1518 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1519 smp_send_reschedule(cpu);
1520 }
1521
1522 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1523 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1524 {
1525 struct rq *rq;
1526 int ret = 0;
1527
1528 rq = __task_rq_lock(p);
1529 if (p->on_cpu) {
1530 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1531 ttwu_do_wakeup(rq, p, wake_flags);
1532 ret = 1;
1533 }
1534 __task_rq_unlock(rq);
1535
1536 return ret;
1537
1538 }
1539 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1540
1541 bool cpus_share_cache(int this_cpu, int that_cpu)
1542 {
1543 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544 }
1545 #endif /* CONFIG_SMP */
1546
1547 static void ttwu_queue(struct task_struct *p, int cpu)
1548 {
1549 struct rq *rq = cpu_rq(cpu);
1550
1551 #if defined(CONFIG_SMP)
1552 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1553 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1554 ttwu_queue_remote(p, cpu);
1555 return;
1556 }
1557 #endif
1558
1559 raw_spin_lock(&rq->lock);
1560 ttwu_do_activate(rq, p, 0);
1561 raw_spin_unlock(&rq->lock);
1562 }
1563
1564 /**
1565 * try_to_wake_up - wake up a thread
1566 * @p: the thread to be awakened
1567 * @state: the mask of task states that can be woken
1568 * @wake_flags: wake modifier flags (WF_*)
1569 *
1570 * Put it on the run-queue if it's not already there. The "current"
1571 * thread is always on the run-queue (except when the actual
1572 * re-schedule is in progress), and as such you're allowed to do
1573 * the simpler "current->state = TASK_RUNNING" to mark yourself
1574 * runnable without the overhead of this.
1575 *
1576 * Returns %true if @p was woken up, %false if it was already running
1577 * or @state didn't match @p's state.
1578 */
1579 static int
1580 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1581 {
1582 unsigned long flags;
1583 int cpu, success = 0;
1584
1585 smp_wmb();
1586 raw_spin_lock_irqsave(&p->pi_lock, flags);
1587 if (!(p->state & state))
1588 goto out;
1589
1590 success = 1; /* we're going to change ->state */
1591 cpu = task_cpu(p);
1592
1593 if (p->on_rq && ttwu_remote(p, wake_flags))
1594 goto stat;
1595
1596 #ifdef CONFIG_SMP
1597 /*
1598 * If the owning (remote) cpu is still in the middle of schedule() with
1599 * this task as prev, wait until its done referencing the task.
1600 */
1601 while (p->on_cpu) {
1602 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1603 /*
1604 * In case the architecture enables interrupts in
1605 * context_switch(), we cannot busy wait, since that
1606 * would lead to deadlocks when an interrupt hits and
1607 * tries to wake up @prev. So bail and do a complete
1608 * remote wakeup.
1609 */
1610 if (ttwu_activate_remote(p, wake_flags))
1611 goto stat;
1612 #else
1613 cpu_relax();
1614 #endif
1615 }
1616 /*
1617 * Pairs with the smp_wmb() in finish_lock_switch().
1618 */
1619 smp_rmb();
1620
1621 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1622 p->state = TASK_WAKING;
1623
1624 if (p->sched_class->task_waking)
1625 p->sched_class->task_waking(p);
1626
1627 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1628 if (task_cpu(p) != cpu) {
1629 wake_flags |= WF_MIGRATED;
1630 set_task_cpu(p, cpu);
1631 }
1632 #endif /* CONFIG_SMP */
1633
1634 ttwu_queue(p, cpu);
1635 stat:
1636 ttwu_stat(p, cpu, wake_flags);
1637 out:
1638 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1639
1640 return success;
1641 }
1642
1643 /**
1644 * try_to_wake_up_local - try to wake up a local task with rq lock held
1645 * @p: the thread to be awakened
1646 *
1647 * Put @p on the run-queue if it's not already there. The caller must
1648 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1649 * the current task.
1650 */
1651 static void try_to_wake_up_local(struct task_struct *p)
1652 {
1653 struct rq *rq = task_rq(p);
1654
1655 BUG_ON(rq != this_rq());
1656 BUG_ON(p == current);
1657 lockdep_assert_held(&rq->lock);
1658
1659 if (!raw_spin_trylock(&p->pi_lock)) {
1660 raw_spin_unlock(&rq->lock);
1661 raw_spin_lock(&p->pi_lock);
1662 raw_spin_lock(&rq->lock);
1663 }
1664
1665 if (!(p->state & TASK_NORMAL))
1666 goto out;
1667
1668 if (!p->on_rq)
1669 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1670
1671 ttwu_do_wakeup(rq, p, 0);
1672 ttwu_stat(p, smp_processor_id(), 0);
1673 out:
1674 raw_spin_unlock(&p->pi_lock);
1675 }
1676
1677 /**
1678 * wake_up_process - Wake up a specific process
1679 * @p: The process to be woken up.
1680 *
1681 * Attempt to wake up the nominated process and move it to the set of runnable
1682 * processes. Returns 1 if the process was woken up, 0 if it was already
1683 * running.
1684 *
1685 * It may be assumed that this function implies a write memory barrier before
1686 * changing the task state if and only if any tasks are woken up.
1687 */
1688 int wake_up_process(struct task_struct *p)
1689 {
1690 return try_to_wake_up(p, TASK_ALL, 0);
1691 }
1692 EXPORT_SYMBOL(wake_up_process);
1693
1694 int wake_up_state(struct task_struct *p, unsigned int state)
1695 {
1696 return try_to_wake_up(p, state, 0);
1697 }
1698
1699 /*
1700 * Perform scheduler related setup for a newly forked process p.
1701 * p is forked by current.
1702 *
1703 * __sched_fork() is basic setup used by init_idle() too:
1704 */
1705 static void __sched_fork(struct task_struct *p)
1706 {
1707 p->on_rq = 0;
1708
1709 p->se.on_rq = 0;
1710 p->se.exec_start = 0;
1711 p->se.sum_exec_runtime = 0;
1712 p->se.prev_sum_exec_runtime = 0;
1713 p->se.nr_migrations = 0;
1714 p->se.vruntime = 0;
1715 INIT_LIST_HEAD(&p->se.group_node);
1716
1717 #ifdef CONFIG_SCHEDSTATS
1718 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1719 #endif
1720
1721 INIT_LIST_HEAD(&p->rt.run_list);
1722
1723 #ifdef CONFIG_PREEMPT_NOTIFIERS
1724 INIT_HLIST_HEAD(&p->preempt_notifiers);
1725 #endif
1726 }
1727
1728 /*
1729 * fork()/clone()-time setup:
1730 */
1731 void sched_fork(struct task_struct *p)
1732 {
1733 unsigned long flags;
1734 int cpu = get_cpu();
1735
1736 __sched_fork(p);
1737 /*
1738 * We mark the process as running here. This guarantees that
1739 * nobody will actually run it, and a signal or other external
1740 * event cannot wake it up and insert it on the runqueue either.
1741 */
1742 p->state = TASK_RUNNING;
1743
1744 /*
1745 * Make sure we do not leak PI boosting priority to the child.
1746 */
1747 p->prio = current->normal_prio;
1748
1749 /*
1750 * Revert to default priority/policy on fork if requested.
1751 */
1752 if (unlikely(p->sched_reset_on_fork)) {
1753 if (task_has_rt_policy(p)) {
1754 p->policy = SCHED_NORMAL;
1755 p->static_prio = NICE_TO_PRIO(0);
1756 p->rt_priority = 0;
1757 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1758 p->static_prio = NICE_TO_PRIO(0);
1759
1760 p->prio = p->normal_prio = __normal_prio(p);
1761 set_load_weight(p);
1762
1763 /*
1764 * We don't need the reset flag anymore after the fork. It has
1765 * fulfilled its duty:
1766 */
1767 p->sched_reset_on_fork = 0;
1768 }
1769
1770 if (!rt_prio(p->prio))
1771 p->sched_class = &fair_sched_class;
1772
1773 if (p->sched_class->task_fork)
1774 p->sched_class->task_fork(p);
1775
1776 /*
1777 * The child is not yet in the pid-hash so no cgroup attach races,
1778 * and the cgroup is pinned to this child due to cgroup_fork()
1779 * is ran before sched_fork().
1780 *
1781 * Silence PROVE_RCU.
1782 */
1783 raw_spin_lock_irqsave(&p->pi_lock, flags);
1784 set_task_cpu(p, cpu);
1785 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1786
1787 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1788 if (likely(sched_info_on()))
1789 memset(&p->sched_info, 0, sizeof(p->sched_info));
1790 #endif
1791 #if defined(CONFIG_SMP)
1792 p->on_cpu = 0;
1793 #endif
1794 #ifdef CONFIG_PREEMPT_COUNT
1795 /* Want to start with kernel preemption disabled. */
1796 task_thread_info(p)->preempt_count = 1;
1797 #endif
1798 #ifdef CONFIG_SMP
1799 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1800 #endif
1801
1802 put_cpu();
1803 }
1804
1805 /*
1806 * wake_up_new_task - wake up a newly created task for the first time.
1807 *
1808 * This function will do some initial scheduler statistics housekeeping
1809 * that must be done for every newly created context, then puts the task
1810 * on the runqueue and wakes it.
1811 */
1812 void wake_up_new_task(struct task_struct *p)
1813 {
1814 unsigned long flags;
1815 struct rq *rq;
1816
1817 raw_spin_lock_irqsave(&p->pi_lock, flags);
1818 #ifdef CONFIG_SMP
1819 /*
1820 * Fork balancing, do it here and not earlier because:
1821 * - cpus_allowed can change in the fork path
1822 * - any previously selected cpu might disappear through hotplug
1823 */
1824 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1825 #endif
1826
1827 rq = __task_rq_lock(p);
1828 activate_task(rq, p, 0);
1829 p->on_rq = 1;
1830 trace_sched_wakeup_new(p, true);
1831 check_preempt_curr(rq, p, WF_FORK);
1832 #ifdef CONFIG_SMP
1833 if (p->sched_class->task_woken)
1834 p->sched_class->task_woken(rq, p);
1835 #endif
1836 task_rq_unlock(rq, p, &flags);
1837 }
1838
1839 #ifdef CONFIG_PREEMPT_NOTIFIERS
1840
1841 /**
1842 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1843 * @notifier: notifier struct to register
1844 */
1845 void preempt_notifier_register(struct preempt_notifier *notifier)
1846 {
1847 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1848 }
1849 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1850
1851 /**
1852 * preempt_notifier_unregister - no longer interested in preemption notifications
1853 * @notifier: notifier struct to unregister
1854 *
1855 * This is safe to call from within a preemption notifier.
1856 */
1857 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1858 {
1859 hlist_del(&notifier->link);
1860 }
1861 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1862
1863 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1864 {
1865 struct preempt_notifier *notifier;
1866 struct hlist_node *node;
1867
1868 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1869 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1870 }
1871
1872 static void
1873 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1874 struct task_struct *next)
1875 {
1876 struct preempt_notifier *notifier;
1877 struct hlist_node *node;
1878
1879 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1880 notifier->ops->sched_out(notifier, next);
1881 }
1882
1883 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1884
1885 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1886 {
1887 }
1888
1889 static void
1890 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1891 struct task_struct *next)
1892 {
1893 }
1894
1895 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1896
1897 /**
1898 * prepare_task_switch - prepare to switch tasks
1899 * @rq: the runqueue preparing to switch
1900 * @prev: the current task that is being switched out
1901 * @next: the task we are going to switch to.
1902 *
1903 * This is called with the rq lock held and interrupts off. It must
1904 * be paired with a subsequent finish_task_switch after the context
1905 * switch.
1906 *
1907 * prepare_task_switch sets up locking and calls architecture specific
1908 * hooks.
1909 */
1910 static inline void
1911 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1912 struct task_struct *next)
1913 {
1914 sched_info_switch(prev, next);
1915 perf_event_task_sched_out(prev, next);
1916 fire_sched_out_preempt_notifiers(prev, next);
1917 prepare_lock_switch(rq, next);
1918 prepare_arch_switch(next);
1919 trace_sched_switch(prev, next);
1920 }
1921
1922 /**
1923 * finish_task_switch - clean up after a task-switch
1924 * @rq: runqueue associated with task-switch
1925 * @prev: the thread we just switched away from.
1926 *
1927 * finish_task_switch must be called after the context switch, paired
1928 * with a prepare_task_switch call before the context switch.
1929 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1930 * and do any other architecture-specific cleanup actions.
1931 *
1932 * Note that we may have delayed dropping an mm in context_switch(). If
1933 * so, we finish that here outside of the runqueue lock. (Doing it
1934 * with the lock held can cause deadlocks; see schedule() for
1935 * details.)
1936 */
1937 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1938 __releases(rq->lock)
1939 {
1940 struct mm_struct *mm = rq->prev_mm;
1941 long prev_state;
1942
1943 rq->prev_mm = NULL;
1944
1945 /*
1946 * A task struct has one reference for the use as "current".
1947 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1948 * schedule one last time. The schedule call will never return, and
1949 * the scheduled task must drop that reference.
1950 * The test for TASK_DEAD must occur while the runqueue locks are
1951 * still held, otherwise prev could be scheduled on another cpu, die
1952 * there before we look at prev->state, and then the reference would
1953 * be dropped twice.
1954 * Manfred Spraul <manfred@colorfullife.com>
1955 */
1956 prev_state = prev->state;
1957 finish_arch_switch(prev);
1958 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1959 local_irq_disable();
1960 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1961 perf_event_task_sched_in(prev, current);
1962 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1963 local_irq_enable();
1964 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1965 finish_lock_switch(rq, prev);
1966 finish_arch_post_lock_switch();
1967
1968 fire_sched_in_preempt_notifiers(current);
1969 if (mm)
1970 mmdrop(mm);
1971 if (unlikely(prev_state == TASK_DEAD)) {
1972 /*
1973 * Remove function-return probe instances associated with this
1974 * task and put them back on the free list.
1975 */
1976 kprobe_flush_task(prev);
1977 put_task_struct(prev);
1978 }
1979 }
1980
1981 #ifdef CONFIG_SMP
1982
1983 /* assumes rq->lock is held */
1984 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1985 {
1986 if (prev->sched_class->pre_schedule)
1987 prev->sched_class->pre_schedule(rq, prev);
1988 }
1989
1990 /* rq->lock is NOT held, but preemption is disabled */
1991 static inline void post_schedule(struct rq *rq)
1992 {
1993 if (rq->post_schedule) {
1994 unsigned long flags;
1995
1996 raw_spin_lock_irqsave(&rq->lock, flags);
1997 if (rq->curr->sched_class->post_schedule)
1998 rq->curr->sched_class->post_schedule(rq);
1999 raw_spin_unlock_irqrestore(&rq->lock, flags);
2000
2001 rq->post_schedule = 0;
2002 }
2003 }
2004
2005 #else
2006
2007 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2008 {
2009 }
2010
2011 static inline void post_schedule(struct rq *rq)
2012 {
2013 }
2014
2015 #endif
2016
2017 /**
2018 * schedule_tail - first thing a freshly forked thread must call.
2019 * @prev: the thread we just switched away from.
2020 */
2021 asmlinkage void schedule_tail(struct task_struct *prev)
2022 __releases(rq->lock)
2023 {
2024 struct rq *rq = this_rq();
2025
2026 finish_task_switch(rq, prev);
2027
2028 /*
2029 * FIXME: do we need to worry about rq being invalidated by the
2030 * task_switch?
2031 */
2032 post_schedule(rq);
2033
2034 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2035 /* In this case, finish_task_switch does not reenable preemption */
2036 preempt_enable();
2037 #endif
2038 if (current->set_child_tid)
2039 put_user(task_pid_vnr(current), current->set_child_tid);
2040 }
2041
2042 /*
2043 * context_switch - switch to the new MM and the new
2044 * thread's register state.
2045 */
2046 static inline void
2047 context_switch(struct rq *rq, struct task_struct *prev,
2048 struct task_struct *next)
2049 {
2050 struct mm_struct *mm, *oldmm;
2051
2052 prepare_task_switch(rq, prev, next);
2053
2054 mm = next->mm;
2055 oldmm = prev->active_mm;
2056 /*
2057 * For paravirt, this is coupled with an exit in switch_to to
2058 * combine the page table reload and the switch backend into
2059 * one hypercall.
2060 */
2061 arch_start_context_switch(prev);
2062
2063 if (!mm) {
2064 next->active_mm = oldmm;
2065 atomic_inc(&oldmm->mm_count);
2066 enter_lazy_tlb(oldmm, next);
2067 } else
2068 switch_mm(oldmm, mm, next);
2069
2070 if (!prev->mm) {
2071 prev->active_mm = NULL;
2072 rq->prev_mm = oldmm;
2073 }
2074 /*
2075 * Since the runqueue lock will be released by the next
2076 * task (which is an invalid locking op but in the case
2077 * of the scheduler it's an obvious special-case), so we
2078 * do an early lockdep release here:
2079 */
2080 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2081 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2082 #endif
2083
2084 /* Here we just switch the register state and the stack. */
2085 rcu_switch_from(prev);
2086 switch_to(prev, next, prev);
2087
2088 barrier();
2089 /*
2090 * this_rq must be evaluated again because prev may have moved
2091 * CPUs since it called schedule(), thus the 'rq' on its stack
2092 * frame will be invalid.
2093 */
2094 finish_task_switch(this_rq(), prev);
2095 }
2096
2097 /*
2098 * nr_running, nr_uninterruptible and nr_context_switches:
2099 *
2100 * externally visible scheduler statistics: current number of runnable
2101 * threads, current number of uninterruptible-sleeping threads, total
2102 * number of context switches performed since bootup.
2103 */
2104 unsigned long nr_running(void)
2105 {
2106 unsigned long i, sum = 0;
2107
2108 for_each_online_cpu(i)
2109 sum += cpu_rq(i)->nr_running;
2110
2111 return sum;
2112 }
2113
2114 unsigned long nr_uninterruptible(void)
2115 {
2116 unsigned long i, sum = 0;
2117
2118 for_each_possible_cpu(i)
2119 sum += cpu_rq(i)->nr_uninterruptible;
2120
2121 /*
2122 * Since we read the counters lockless, it might be slightly
2123 * inaccurate. Do not allow it to go below zero though:
2124 */
2125 if (unlikely((long)sum < 0))
2126 sum = 0;
2127
2128 return sum;
2129 }
2130
2131 unsigned long long nr_context_switches(void)
2132 {
2133 int i;
2134 unsigned long long sum = 0;
2135
2136 for_each_possible_cpu(i)
2137 sum += cpu_rq(i)->nr_switches;
2138
2139 return sum;
2140 }
2141
2142 unsigned long nr_iowait(void)
2143 {
2144 unsigned long i, sum = 0;
2145
2146 for_each_possible_cpu(i)
2147 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2148
2149 return sum;
2150 }
2151
2152 unsigned long nr_iowait_cpu(int cpu)
2153 {
2154 struct rq *this = cpu_rq(cpu);
2155 return atomic_read(&this->nr_iowait);
2156 }
2157
2158 unsigned long this_cpu_load(void)
2159 {
2160 struct rq *this = this_rq();
2161 return this->cpu_load[0];
2162 }
2163
2164
2165 /* Variables and functions for calc_load */
2166 static atomic_long_t calc_load_tasks;
2167 static unsigned long calc_load_update;
2168 unsigned long avenrun[3];
2169 EXPORT_SYMBOL(avenrun);
2170
2171 static long calc_load_fold_active(struct rq *this_rq)
2172 {
2173 long nr_active, delta = 0;
2174
2175 nr_active = this_rq->nr_running;
2176 nr_active += (long) this_rq->nr_uninterruptible;
2177
2178 if (nr_active != this_rq->calc_load_active) {
2179 delta = nr_active - this_rq->calc_load_active;
2180 this_rq->calc_load_active = nr_active;
2181 }
2182
2183 return delta;
2184 }
2185
2186 static unsigned long
2187 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2188 {
2189 load *= exp;
2190 load += active * (FIXED_1 - exp);
2191 load += 1UL << (FSHIFT - 1);
2192 return load >> FSHIFT;
2193 }
2194
2195 #ifdef CONFIG_NO_HZ
2196 /*
2197 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2198 *
2199 * When making the ILB scale, we should try to pull this in as well.
2200 */
2201 static atomic_long_t calc_load_tasks_idle;
2202
2203 void calc_load_account_idle(struct rq *this_rq)
2204 {
2205 long delta;
2206
2207 delta = calc_load_fold_active(this_rq);
2208 if (delta)
2209 atomic_long_add(delta, &calc_load_tasks_idle);
2210 }
2211
2212 static long calc_load_fold_idle(void)
2213 {
2214 long delta = 0;
2215
2216 /*
2217 * Its got a race, we don't care...
2218 */
2219 if (atomic_long_read(&calc_load_tasks_idle))
2220 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2221
2222 return delta;
2223 }
2224
2225 /**
2226 * fixed_power_int - compute: x^n, in O(log n) time
2227 *
2228 * @x: base of the power
2229 * @frac_bits: fractional bits of @x
2230 * @n: power to raise @x to.
2231 *
2232 * By exploiting the relation between the definition of the natural power
2233 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2234 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2235 * (where: n_i \elem {0, 1}, the binary vector representing n),
2236 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2237 * of course trivially computable in O(log_2 n), the length of our binary
2238 * vector.
2239 */
2240 static unsigned long
2241 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2242 {
2243 unsigned long result = 1UL << frac_bits;
2244
2245 if (n) for (;;) {
2246 if (n & 1) {
2247 result *= x;
2248 result += 1UL << (frac_bits - 1);
2249 result >>= frac_bits;
2250 }
2251 n >>= 1;
2252 if (!n)
2253 break;
2254 x *= x;
2255 x += 1UL << (frac_bits - 1);
2256 x >>= frac_bits;
2257 }
2258
2259 return result;
2260 }
2261
2262 /*
2263 * a1 = a0 * e + a * (1 - e)
2264 *
2265 * a2 = a1 * e + a * (1 - e)
2266 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2267 * = a0 * e^2 + a * (1 - e) * (1 + e)
2268 *
2269 * a3 = a2 * e + a * (1 - e)
2270 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2271 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2272 *
2273 * ...
2274 *
2275 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2276 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2277 * = a0 * e^n + a * (1 - e^n)
2278 *
2279 * [1] application of the geometric series:
2280 *
2281 * n 1 - x^(n+1)
2282 * S_n := \Sum x^i = -------------
2283 * i=0 1 - x
2284 */
2285 static unsigned long
2286 calc_load_n(unsigned long load, unsigned long exp,
2287 unsigned long active, unsigned int n)
2288 {
2289
2290 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2291 }
2292
2293 /*
2294 * NO_HZ can leave us missing all per-cpu ticks calling
2295 * calc_load_account_active(), but since an idle CPU folds its delta into
2296 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2297 * in the pending idle delta if our idle period crossed a load cycle boundary.
2298 *
2299 * Once we've updated the global active value, we need to apply the exponential
2300 * weights adjusted to the number of cycles missed.
2301 */
2302 static void calc_global_nohz(void)
2303 {
2304 long delta, active, n;
2305
2306 /*
2307 * If we crossed a calc_load_update boundary, make sure to fold
2308 * any pending idle changes, the respective CPUs might have
2309 * missed the tick driven calc_load_account_active() update
2310 * due to NO_HZ.
2311 */
2312 delta = calc_load_fold_idle();
2313 if (delta)
2314 atomic_long_add(delta, &calc_load_tasks);
2315
2316 /*
2317 * It could be the one fold was all it took, we done!
2318 */
2319 if (time_before(jiffies, calc_load_update + 10))
2320 return;
2321
2322 /*
2323 * Catch-up, fold however many we are behind still
2324 */
2325 delta = jiffies - calc_load_update - 10;
2326 n = 1 + (delta / LOAD_FREQ);
2327
2328 active = atomic_long_read(&calc_load_tasks);
2329 active = active > 0 ? active * FIXED_1 : 0;
2330
2331 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2332 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2333 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2334
2335 calc_load_update += n * LOAD_FREQ;
2336 }
2337 #else
2338 void calc_load_account_idle(struct rq *this_rq)
2339 {
2340 }
2341
2342 static inline long calc_load_fold_idle(void)
2343 {
2344 return 0;
2345 }
2346
2347 static void calc_global_nohz(void)
2348 {
2349 }
2350 #endif
2351
2352 /**
2353 * get_avenrun - get the load average array
2354 * @loads: pointer to dest load array
2355 * @offset: offset to add
2356 * @shift: shift count to shift the result left
2357 *
2358 * These values are estimates at best, so no need for locking.
2359 */
2360 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2361 {
2362 loads[0] = (avenrun[0] + offset) << shift;
2363 loads[1] = (avenrun[1] + offset) << shift;
2364 loads[2] = (avenrun[2] + offset) << shift;
2365 }
2366
2367 /*
2368 * calc_load - update the avenrun load estimates 10 ticks after the
2369 * CPUs have updated calc_load_tasks.
2370 */
2371 void calc_global_load(unsigned long ticks)
2372 {
2373 long active;
2374
2375 if (time_before(jiffies, calc_load_update + 10))
2376 return;
2377
2378 active = atomic_long_read(&calc_load_tasks);
2379 active = active > 0 ? active * FIXED_1 : 0;
2380
2381 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2382 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2383 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2384
2385 calc_load_update += LOAD_FREQ;
2386
2387 /*
2388 * Account one period with whatever state we found before
2389 * folding in the nohz state and ageing the entire idle period.
2390 *
2391 * This avoids loosing a sample when we go idle between
2392 * calc_load_account_active() (10 ticks ago) and now and thus
2393 * under-accounting.
2394 */
2395 calc_global_nohz();
2396 }
2397
2398 /*
2399 * Called from update_cpu_load() to periodically update this CPU's
2400 * active count.
2401 */
2402 static void calc_load_account_active(struct rq *this_rq)
2403 {
2404 long delta;
2405
2406 if (time_before(jiffies, this_rq->calc_load_update))
2407 return;
2408
2409 delta = calc_load_fold_active(this_rq);
2410 delta += calc_load_fold_idle();
2411 if (delta)
2412 atomic_long_add(delta, &calc_load_tasks);
2413
2414 this_rq->calc_load_update += LOAD_FREQ;
2415 }
2416
2417 /*
2418 * The exact cpuload at various idx values, calculated at every tick would be
2419 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2420 *
2421 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2422 * on nth tick when cpu may be busy, then we have:
2423 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2424 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2425 *
2426 * decay_load_missed() below does efficient calculation of
2427 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2428 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2429 *
2430 * The calculation is approximated on a 128 point scale.
2431 * degrade_zero_ticks is the number of ticks after which load at any
2432 * particular idx is approximated to be zero.
2433 * degrade_factor is a precomputed table, a row for each load idx.
2434 * Each column corresponds to degradation factor for a power of two ticks,
2435 * based on 128 point scale.
2436 * Example:
2437 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2438 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2439 *
2440 * With this power of 2 load factors, we can degrade the load n times
2441 * by looking at 1 bits in n and doing as many mult/shift instead of
2442 * n mult/shifts needed by the exact degradation.
2443 */
2444 #define DEGRADE_SHIFT 7
2445 static const unsigned char
2446 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2447 static const unsigned char
2448 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2449 {0, 0, 0, 0, 0, 0, 0, 0},
2450 {64, 32, 8, 0, 0, 0, 0, 0},
2451 {96, 72, 40, 12, 1, 0, 0},
2452 {112, 98, 75, 43, 15, 1, 0},
2453 {120, 112, 98, 76, 45, 16, 2} };
2454
2455 /*
2456 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2457 * would be when CPU is idle and so we just decay the old load without
2458 * adding any new load.
2459 */
2460 static unsigned long
2461 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2462 {
2463 int j = 0;
2464
2465 if (!missed_updates)
2466 return load;
2467
2468 if (missed_updates >= degrade_zero_ticks[idx])
2469 return 0;
2470
2471 if (idx == 1)
2472 return load >> missed_updates;
2473
2474 while (missed_updates) {
2475 if (missed_updates % 2)
2476 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2477
2478 missed_updates >>= 1;
2479 j++;
2480 }
2481 return load;
2482 }
2483
2484 /*
2485 * Update rq->cpu_load[] statistics. This function is usually called every
2486 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2487 * every tick. We fix it up based on jiffies.
2488 */
2489 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2490 unsigned long pending_updates)
2491 {
2492 int i, scale;
2493
2494 this_rq->nr_load_updates++;
2495
2496 /* Update our load: */
2497 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2498 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2499 unsigned long old_load, new_load;
2500
2501 /* scale is effectively 1 << i now, and >> i divides by scale */
2502
2503 old_load = this_rq->cpu_load[i];
2504 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2505 new_load = this_load;
2506 /*
2507 * Round up the averaging division if load is increasing. This
2508 * prevents us from getting stuck on 9 if the load is 10, for
2509 * example.
2510 */
2511 if (new_load > old_load)
2512 new_load += scale - 1;
2513
2514 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2515 }
2516
2517 sched_avg_update(this_rq);
2518 }
2519
2520 /*
2521 * Called from nohz_idle_balance() to update the load ratings before doing the
2522 * idle balance.
2523 */
2524 void update_idle_cpu_load(struct rq *this_rq)
2525 {
2526 unsigned long curr_jiffies = jiffies;
2527 unsigned long load = this_rq->load.weight;
2528 unsigned long pending_updates;
2529
2530 /*
2531 * Bloody broken means of dealing with nohz, but better than nothing..
2532 * jiffies is updated by one cpu, another cpu can drift wrt the jiffy
2533 * update and see 0 difference the one time and 2 the next, even though
2534 * we ticked at roughtly the same rate.
2535 *
2536 * Hence we only use this from nohz_idle_balance() and skip this
2537 * nonsense when called from the scheduler_tick() since that's
2538 * guaranteed a stable rate.
2539 */
2540 if (load || curr_jiffies == this_rq->last_load_update_tick)
2541 return;
2542
2543 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2544 this_rq->last_load_update_tick = curr_jiffies;
2545
2546 __update_cpu_load(this_rq, load, pending_updates);
2547 }
2548
2549 /*
2550 * Called from scheduler_tick()
2551 */
2552 static void update_cpu_load_active(struct rq *this_rq)
2553 {
2554 /*
2555 * See the mess in update_idle_cpu_load().
2556 */
2557 this_rq->last_load_update_tick = jiffies;
2558 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2559
2560 calc_load_account_active(this_rq);
2561 }
2562
2563 #ifdef CONFIG_SMP
2564
2565 /*
2566 * sched_exec - execve() is a valuable balancing opportunity, because at
2567 * this point the task has the smallest effective memory and cache footprint.
2568 */
2569 void sched_exec(void)
2570 {
2571 struct task_struct *p = current;
2572 unsigned long flags;
2573 int dest_cpu;
2574
2575 raw_spin_lock_irqsave(&p->pi_lock, flags);
2576 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2577 if (dest_cpu == smp_processor_id())
2578 goto unlock;
2579
2580 if (likely(cpu_active(dest_cpu))) {
2581 struct migration_arg arg = { p, dest_cpu };
2582
2583 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2584 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2585 return;
2586 }
2587 unlock:
2588 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2589 }
2590
2591 #endif
2592
2593 DEFINE_PER_CPU(struct kernel_stat, kstat);
2594 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2595
2596 EXPORT_PER_CPU_SYMBOL(kstat);
2597 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2598
2599 /*
2600 * Return any ns on the sched_clock that have not yet been accounted in
2601 * @p in case that task is currently running.
2602 *
2603 * Called with task_rq_lock() held on @rq.
2604 */
2605 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2606 {
2607 u64 ns = 0;
2608
2609 if (task_current(rq, p)) {
2610 update_rq_clock(rq);
2611 ns = rq->clock_task - p->se.exec_start;
2612 if ((s64)ns < 0)
2613 ns = 0;
2614 }
2615
2616 return ns;
2617 }
2618
2619 unsigned long long task_delta_exec(struct task_struct *p)
2620 {
2621 unsigned long flags;
2622 struct rq *rq;
2623 u64 ns = 0;
2624
2625 rq = task_rq_lock(p, &flags);
2626 ns = do_task_delta_exec(p, rq);
2627 task_rq_unlock(rq, p, &flags);
2628
2629 return ns;
2630 }
2631
2632 /*
2633 * Return accounted runtime for the task.
2634 * In case the task is currently running, return the runtime plus current's
2635 * pending runtime that have not been accounted yet.
2636 */
2637 unsigned long long task_sched_runtime(struct task_struct *p)
2638 {
2639 unsigned long flags;
2640 struct rq *rq;
2641 u64 ns = 0;
2642
2643 rq = task_rq_lock(p, &flags);
2644 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2645 task_rq_unlock(rq, p, &flags);
2646
2647 return ns;
2648 }
2649
2650 #ifdef CONFIG_CGROUP_CPUACCT
2651 struct cgroup_subsys cpuacct_subsys;
2652 struct cpuacct root_cpuacct;
2653 #endif
2654
2655 static inline void task_group_account_field(struct task_struct *p, int index,
2656 u64 tmp)
2657 {
2658 #ifdef CONFIG_CGROUP_CPUACCT
2659 struct kernel_cpustat *kcpustat;
2660 struct cpuacct *ca;
2661 #endif
2662 /*
2663 * Since all updates are sure to touch the root cgroup, we
2664 * get ourselves ahead and touch it first. If the root cgroup
2665 * is the only cgroup, then nothing else should be necessary.
2666 *
2667 */
2668 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2669
2670 #ifdef CONFIG_CGROUP_CPUACCT
2671 if (unlikely(!cpuacct_subsys.active))
2672 return;
2673
2674 rcu_read_lock();
2675 ca = task_ca(p);
2676 while (ca && (ca != &root_cpuacct)) {
2677 kcpustat = this_cpu_ptr(ca->cpustat);
2678 kcpustat->cpustat[index] += tmp;
2679 ca = parent_ca(ca);
2680 }
2681 rcu_read_unlock();
2682 #endif
2683 }
2684
2685
2686 /*
2687 * Account user cpu time to a process.
2688 * @p: the process that the cpu time gets accounted to
2689 * @cputime: the cpu time spent in user space since the last update
2690 * @cputime_scaled: cputime scaled by cpu frequency
2691 */
2692 void account_user_time(struct task_struct *p, cputime_t cputime,
2693 cputime_t cputime_scaled)
2694 {
2695 int index;
2696
2697 /* Add user time to process. */
2698 p->utime += cputime;
2699 p->utimescaled += cputime_scaled;
2700 account_group_user_time(p, cputime);
2701
2702 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2703
2704 /* Add user time to cpustat. */
2705 task_group_account_field(p, index, (__force u64) cputime);
2706
2707 /* Account for user time used */
2708 acct_update_integrals(p);
2709 }
2710
2711 /*
2712 * Account guest cpu time to a process.
2713 * @p: the process that the cpu time gets accounted to
2714 * @cputime: the cpu time spent in virtual machine since the last update
2715 * @cputime_scaled: cputime scaled by cpu frequency
2716 */
2717 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2718 cputime_t cputime_scaled)
2719 {
2720 u64 *cpustat = kcpustat_this_cpu->cpustat;
2721
2722 /* Add guest time to process. */
2723 p->utime += cputime;
2724 p->utimescaled += cputime_scaled;
2725 account_group_user_time(p, cputime);
2726 p->gtime += cputime;
2727
2728 /* Add guest time to cpustat. */
2729 if (TASK_NICE(p) > 0) {
2730 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2731 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2732 } else {
2733 cpustat[CPUTIME_USER] += (__force u64) cputime;
2734 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2735 }
2736 }
2737
2738 /*
2739 * Account system cpu time to a process and desired cpustat field
2740 * @p: the process that the cpu time gets accounted to
2741 * @cputime: the cpu time spent in kernel space since the last update
2742 * @cputime_scaled: cputime scaled by cpu frequency
2743 * @target_cputime64: pointer to cpustat field that has to be updated
2744 */
2745 static inline
2746 void __account_system_time(struct task_struct *p, cputime_t cputime,
2747 cputime_t cputime_scaled, int index)
2748 {
2749 /* Add system time to process. */
2750 p->stime += cputime;
2751 p->stimescaled += cputime_scaled;
2752 account_group_system_time(p, cputime);
2753
2754 /* Add system time to cpustat. */
2755 task_group_account_field(p, index, (__force u64) cputime);
2756
2757 /* Account for system time used */
2758 acct_update_integrals(p);
2759 }
2760
2761 /*
2762 * Account system cpu time to a process.
2763 * @p: the process that the cpu time gets accounted to
2764 * @hardirq_offset: the offset to subtract from hardirq_count()
2765 * @cputime: the cpu time spent in kernel space since the last update
2766 * @cputime_scaled: cputime scaled by cpu frequency
2767 */
2768 void account_system_time(struct task_struct *p, int hardirq_offset,
2769 cputime_t cputime, cputime_t cputime_scaled)
2770 {
2771 int index;
2772
2773 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2774 account_guest_time(p, cputime, cputime_scaled);
2775 return;
2776 }
2777
2778 if (hardirq_count() - hardirq_offset)
2779 index = CPUTIME_IRQ;
2780 else if (in_serving_softirq())
2781 index = CPUTIME_SOFTIRQ;
2782 else
2783 index = CPUTIME_SYSTEM;
2784
2785 __account_system_time(p, cputime, cputime_scaled, index);
2786 }
2787
2788 /*
2789 * Account for involuntary wait time.
2790 * @cputime: the cpu time spent in involuntary wait
2791 */
2792 void account_steal_time(cputime_t cputime)
2793 {
2794 u64 *cpustat = kcpustat_this_cpu->cpustat;
2795
2796 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2797 }
2798
2799 /*
2800 * Account for idle time.
2801 * @cputime: the cpu time spent in idle wait
2802 */
2803 void account_idle_time(cputime_t cputime)
2804 {
2805 u64 *cpustat = kcpustat_this_cpu->cpustat;
2806 struct rq *rq = this_rq();
2807
2808 if (atomic_read(&rq->nr_iowait) > 0)
2809 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2810 else
2811 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2812 }
2813
2814 static __always_inline bool steal_account_process_tick(void)
2815 {
2816 #ifdef CONFIG_PARAVIRT
2817 if (static_key_false(&paravirt_steal_enabled)) {
2818 u64 steal, st = 0;
2819
2820 steal = paravirt_steal_clock(smp_processor_id());
2821 steal -= this_rq()->prev_steal_time;
2822
2823 st = steal_ticks(steal);
2824 this_rq()->prev_steal_time += st * TICK_NSEC;
2825
2826 account_steal_time(st);
2827 return st;
2828 }
2829 #endif
2830 return false;
2831 }
2832
2833 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2834
2835 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2836 /*
2837 * Account a tick to a process and cpustat
2838 * @p: the process that the cpu time gets accounted to
2839 * @user_tick: is the tick from userspace
2840 * @rq: the pointer to rq
2841 *
2842 * Tick demultiplexing follows the order
2843 * - pending hardirq update
2844 * - pending softirq update
2845 * - user_time
2846 * - idle_time
2847 * - system time
2848 * - check for guest_time
2849 * - else account as system_time
2850 *
2851 * Check for hardirq is done both for system and user time as there is
2852 * no timer going off while we are on hardirq and hence we may never get an
2853 * opportunity to update it solely in system time.
2854 * p->stime and friends are only updated on system time and not on irq
2855 * softirq as those do not count in task exec_runtime any more.
2856 */
2857 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2858 struct rq *rq)
2859 {
2860 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2861 u64 *cpustat = kcpustat_this_cpu->cpustat;
2862
2863 if (steal_account_process_tick())
2864 return;
2865
2866 if (irqtime_account_hi_update()) {
2867 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2868 } else if (irqtime_account_si_update()) {
2869 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2870 } else if (this_cpu_ksoftirqd() == p) {
2871 /*
2872 * ksoftirqd time do not get accounted in cpu_softirq_time.
2873 * So, we have to handle it separately here.
2874 * Also, p->stime needs to be updated for ksoftirqd.
2875 */
2876 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2877 CPUTIME_SOFTIRQ);
2878 } else if (user_tick) {
2879 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2880 } else if (p == rq->idle) {
2881 account_idle_time(cputime_one_jiffy);
2882 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2883 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2884 } else {
2885 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2886 CPUTIME_SYSTEM);
2887 }
2888 }
2889
2890 static void irqtime_account_idle_ticks(int ticks)
2891 {
2892 int i;
2893 struct rq *rq = this_rq();
2894
2895 for (i = 0; i < ticks; i++)
2896 irqtime_account_process_tick(current, 0, rq);
2897 }
2898 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2899 static void irqtime_account_idle_ticks(int ticks) {}
2900 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2901 struct rq *rq) {}
2902 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2903
2904 /*
2905 * Account a single tick of cpu time.
2906 * @p: the process that the cpu time gets accounted to
2907 * @user_tick: indicates if the tick is a user or a system tick
2908 */
2909 void account_process_tick(struct task_struct *p, int user_tick)
2910 {
2911 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2912 struct rq *rq = this_rq();
2913
2914 if (sched_clock_irqtime) {
2915 irqtime_account_process_tick(p, user_tick, rq);
2916 return;
2917 }
2918
2919 if (steal_account_process_tick())
2920 return;
2921
2922 if (user_tick)
2923 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2924 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2925 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2926 one_jiffy_scaled);
2927 else
2928 account_idle_time(cputime_one_jiffy);
2929 }
2930
2931 /*
2932 * Account multiple ticks of steal time.
2933 * @p: the process from which the cpu time has been stolen
2934 * @ticks: number of stolen ticks
2935 */
2936 void account_steal_ticks(unsigned long ticks)
2937 {
2938 account_steal_time(jiffies_to_cputime(ticks));
2939 }
2940
2941 /*
2942 * Account multiple ticks of idle time.
2943 * @ticks: number of stolen ticks
2944 */
2945 void account_idle_ticks(unsigned long ticks)
2946 {
2947
2948 if (sched_clock_irqtime) {
2949 irqtime_account_idle_ticks(ticks);
2950 return;
2951 }
2952
2953 account_idle_time(jiffies_to_cputime(ticks));
2954 }
2955
2956 #endif
2957
2958 /*
2959 * Use precise platform statistics if available:
2960 */
2961 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2962 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2963 {
2964 *ut = p->utime;
2965 *st = p->stime;
2966 }
2967
2968 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2969 {
2970 struct task_cputime cputime;
2971
2972 thread_group_cputime(p, &cputime);
2973
2974 *ut = cputime.utime;
2975 *st = cputime.stime;
2976 }
2977 #else
2978
2979 #ifndef nsecs_to_cputime
2980 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
2981 #endif
2982
2983 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2984 {
2985 cputime_t rtime, utime = p->utime, total = utime + p->stime;
2986
2987 /*
2988 * Use CFS's precise accounting:
2989 */
2990 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2991
2992 if (total) {
2993 u64 temp = (__force u64) rtime;
2994
2995 temp *= (__force u64) utime;
2996 do_div(temp, (__force u32) total);
2997 utime = (__force cputime_t) temp;
2998 } else
2999 utime = rtime;
3000
3001 /*
3002 * Compare with previous values, to keep monotonicity:
3003 */
3004 p->prev_utime = max(p->prev_utime, utime);
3005 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
3006
3007 *ut = p->prev_utime;
3008 *st = p->prev_stime;
3009 }
3010
3011 /*
3012 * Must be called with siglock held.
3013 */
3014 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3015 {
3016 struct signal_struct *sig = p->signal;
3017 struct task_cputime cputime;
3018 cputime_t rtime, utime, total;
3019
3020 thread_group_cputime(p, &cputime);
3021
3022 total = cputime.utime + cputime.stime;
3023 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3024
3025 if (total) {
3026 u64 temp = (__force u64) rtime;
3027
3028 temp *= (__force u64) cputime.utime;
3029 do_div(temp, (__force u32) total);
3030 utime = (__force cputime_t) temp;
3031 } else
3032 utime = rtime;
3033
3034 sig->prev_utime = max(sig->prev_utime, utime);
3035 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3036
3037 *ut = sig->prev_utime;
3038 *st = sig->prev_stime;
3039 }
3040 #endif
3041
3042 /*
3043 * This function gets called by the timer code, with HZ frequency.
3044 * We call it with interrupts disabled.
3045 */
3046 void scheduler_tick(void)
3047 {
3048 int cpu = smp_processor_id();
3049 struct rq *rq = cpu_rq(cpu);
3050 struct task_struct *curr = rq->curr;
3051
3052 sched_clock_tick();
3053
3054 raw_spin_lock(&rq->lock);
3055 update_rq_clock(rq);
3056 update_cpu_load_active(rq);
3057 curr->sched_class->task_tick(rq, curr, 0);
3058 raw_spin_unlock(&rq->lock);
3059
3060 perf_event_task_tick();
3061
3062 #ifdef CONFIG_SMP
3063 rq->idle_balance = idle_cpu(cpu);
3064 trigger_load_balance(rq, cpu);
3065 #endif
3066 }
3067
3068 notrace unsigned long get_parent_ip(unsigned long addr)
3069 {
3070 if (in_lock_functions(addr)) {
3071 addr = CALLER_ADDR2;
3072 if (in_lock_functions(addr))
3073 addr = CALLER_ADDR3;
3074 }
3075 return addr;
3076 }
3077
3078 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3079 defined(CONFIG_PREEMPT_TRACER))
3080
3081 void __kprobes add_preempt_count(int val)
3082 {
3083 #ifdef CONFIG_DEBUG_PREEMPT
3084 /*
3085 * Underflow?
3086 */
3087 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3088 return;
3089 #endif
3090 preempt_count() += val;
3091 #ifdef CONFIG_DEBUG_PREEMPT
3092 /*
3093 * Spinlock count overflowing soon?
3094 */
3095 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3096 PREEMPT_MASK - 10);
3097 #endif
3098 if (preempt_count() == val)
3099 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3100 }
3101 EXPORT_SYMBOL(add_preempt_count);
3102
3103 void __kprobes sub_preempt_count(int val)
3104 {
3105 #ifdef CONFIG_DEBUG_PREEMPT
3106 /*
3107 * Underflow?
3108 */
3109 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3110 return;
3111 /*
3112 * Is the spinlock portion underflowing?
3113 */
3114 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3115 !(preempt_count() & PREEMPT_MASK)))
3116 return;
3117 #endif
3118
3119 if (preempt_count() == val)
3120 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3121 preempt_count() -= val;
3122 }
3123 EXPORT_SYMBOL(sub_preempt_count);
3124
3125 #endif
3126
3127 /*
3128 * Print scheduling while atomic bug:
3129 */
3130 static noinline void __schedule_bug(struct task_struct *prev)
3131 {
3132 if (oops_in_progress)
3133 return;
3134
3135 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3136 prev->comm, prev->pid, preempt_count());
3137
3138 debug_show_held_locks(prev);
3139 print_modules();
3140 if (irqs_disabled())
3141 print_irqtrace_events(prev);
3142 dump_stack();
3143 add_taint(TAINT_WARN);
3144 }
3145
3146 /*
3147 * Various schedule()-time debugging checks and statistics:
3148 */
3149 static inline void schedule_debug(struct task_struct *prev)
3150 {
3151 /*
3152 * Test if we are atomic. Since do_exit() needs to call into
3153 * schedule() atomically, we ignore that path for now.
3154 * Otherwise, whine if we are scheduling when we should not be.
3155 */
3156 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3157 __schedule_bug(prev);
3158 rcu_sleep_check();
3159
3160 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3161
3162 schedstat_inc(this_rq(), sched_count);
3163 }
3164
3165 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3166 {
3167 if (prev->on_rq || rq->skip_clock_update < 0)
3168 update_rq_clock(rq);
3169 prev->sched_class->put_prev_task(rq, prev);
3170 }
3171
3172 /*
3173 * Pick up the highest-prio task:
3174 */
3175 static inline struct task_struct *
3176 pick_next_task(struct rq *rq)
3177 {
3178 const struct sched_class *class;
3179 struct task_struct *p;
3180
3181 /*
3182 * Optimization: we know that if all tasks are in
3183 * the fair class we can call that function directly:
3184 */
3185 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3186 p = fair_sched_class.pick_next_task(rq);
3187 if (likely(p))
3188 return p;
3189 }
3190
3191 for_each_class(class) {
3192 p = class->pick_next_task(rq);
3193 if (p)
3194 return p;
3195 }
3196
3197 BUG(); /* the idle class will always have a runnable task */
3198 }
3199
3200 /*
3201 * __schedule() is the main scheduler function.
3202 */
3203 static void __sched __schedule(void)
3204 {
3205 struct task_struct *prev, *next;
3206 unsigned long *switch_count;
3207 struct rq *rq;
3208 int cpu;
3209
3210 need_resched:
3211 preempt_disable();
3212 cpu = smp_processor_id();
3213 rq = cpu_rq(cpu);
3214 rcu_note_context_switch(cpu);
3215 prev = rq->curr;
3216
3217 schedule_debug(prev);
3218
3219 if (sched_feat(HRTICK))
3220 hrtick_clear(rq);
3221
3222 raw_spin_lock_irq(&rq->lock);
3223
3224 switch_count = &prev->nivcsw;
3225 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3226 if (unlikely(signal_pending_state(prev->state, prev))) {
3227 prev->state = TASK_RUNNING;
3228 } else {
3229 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3230 prev->on_rq = 0;
3231
3232 /*
3233 * If a worker went to sleep, notify and ask workqueue
3234 * whether it wants to wake up a task to maintain
3235 * concurrency.
3236 */
3237 if (prev->flags & PF_WQ_WORKER) {
3238 struct task_struct *to_wakeup;
3239
3240 to_wakeup = wq_worker_sleeping(prev, cpu);
3241 if (to_wakeup)
3242 try_to_wake_up_local(to_wakeup);
3243 }
3244 }
3245 switch_count = &prev->nvcsw;
3246 }
3247
3248 pre_schedule(rq, prev);
3249
3250 if (unlikely(!rq->nr_running))
3251 idle_balance(cpu, rq);
3252
3253 put_prev_task(rq, prev);
3254 next = pick_next_task(rq);
3255 clear_tsk_need_resched(prev);
3256 rq->skip_clock_update = 0;
3257
3258 if (likely(prev != next)) {
3259 rq->nr_switches++;
3260 rq->curr = next;
3261 ++*switch_count;
3262
3263 context_switch(rq, prev, next); /* unlocks the rq */
3264 /*
3265 * The context switch have flipped the stack from under us
3266 * and restored the local variables which were saved when
3267 * this task called schedule() in the past. prev == current
3268 * is still correct, but it can be moved to another cpu/rq.
3269 */
3270 cpu = smp_processor_id();
3271 rq = cpu_rq(cpu);
3272 } else
3273 raw_spin_unlock_irq(&rq->lock);
3274
3275 post_schedule(rq);
3276
3277 sched_preempt_enable_no_resched();
3278 if (need_resched())
3279 goto need_resched;
3280 }
3281
3282 static inline void sched_submit_work(struct task_struct *tsk)
3283 {
3284 if (!tsk->state || tsk_is_pi_blocked(tsk))
3285 return;
3286 /*
3287 * If we are going to sleep and we have plugged IO queued,
3288 * make sure to submit it to avoid deadlocks.
3289 */
3290 if (blk_needs_flush_plug(tsk))
3291 blk_schedule_flush_plug(tsk);
3292 }
3293
3294 asmlinkage void __sched schedule(void)
3295 {
3296 struct task_struct *tsk = current;
3297
3298 sched_submit_work(tsk);
3299 __schedule();
3300 }
3301 EXPORT_SYMBOL(schedule);
3302
3303 /**
3304 * schedule_preempt_disabled - called with preemption disabled
3305 *
3306 * Returns with preemption disabled. Note: preempt_count must be 1
3307 */
3308 void __sched schedule_preempt_disabled(void)
3309 {
3310 sched_preempt_enable_no_resched();
3311 schedule();
3312 preempt_disable();
3313 }
3314
3315 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3316
3317 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3318 {
3319 if (lock->owner != owner)
3320 return false;
3321
3322 /*
3323 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3324 * lock->owner still matches owner, if that fails, owner might
3325 * point to free()d memory, if it still matches, the rcu_read_lock()
3326 * ensures the memory stays valid.
3327 */
3328 barrier();
3329
3330 return owner->on_cpu;
3331 }
3332
3333 /*
3334 * Look out! "owner" is an entirely speculative pointer
3335 * access and not reliable.
3336 */
3337 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3338 {
3339 if (!sched_feat(OWNER_SPIN))
3340 return 0;
3341
3342 rcu_read_lock();
3343 while (owner_running(lock, owner)) {
3344 if (need_resched())
3345 break;
3346
3347 arch_mutex_cpu_relax();
3348 }
3349 rcu_read_unlock();
3350
3351 /*
3352 * We break out the loop above on need_resched() and when the
3353 * owner changed, which is a sign for heavy contention. Return
3354 * success only when lock->owner is NULL.
3355 */
3356 return lock->owner == NULL;
3357 }
3358 #endif
3359
3360 #ifdef CONFIG_PREEMPT
3361 /*
3362 * this is the entry point to schedule() from in-kernel preemption
3363 * off of preempt_enable. Kernel preemptions off return from interrupt
3364 * occur there and call schedule directly.
3365 */
3366 asmlinkage void __sched notrace preempt_schedule(void)
3367 {
3368 struct thread_info *ti = current_thread_info();
3369
3370 /*
3371 * If there is a non-zero preempt_count or interrupts are disabled,
3372 * we do not want to preempt the current task. Just return..
3373 */
3374 if (likely(ti->preempt_count || irqs_disabled()))
3375 return;
3376
3377 do {
3378 add_preempt_count_notrace(PREEMPT_ACTIVE);
3379 __schedule();
3380 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3381
3382 /*
3383 * Check again in case we missed a preemption opportunity
3384 * between schedule and now.
3385 */
3386 barrier();
3387 } while (need_resched());
3388 }
3389 EXPORT_SYMBOL(preempt_schedule);
3390
3391 /*
3392 * this is the entry point to schedule() from kernel preemption
3393 * off of irq context.
3394 * Note, that this is called and return with irqs disabled. This will
3395 * protect us against recursive calling from irq.
3396 */
3397 asmlinkage void __sched preempt_schedule_irq(void)
3398 {
3399 struct thread_info *ti = current_thread_info();
3400
3401 /* Catch callers which need to be fixed */
3402 BUG_ON(ti->preempt_count || !irqs_disabled());
3403
3404 do {
3405 add_preempt_count(PREEMPT_ACTIVE);
3406 local_irq_enable();
3407 __schedule();
3408 local_irq_disable();
3409 sub_preempt_count(PREEMPT_ACTIVE);
3410
3411 /*
3412 * Check again in case we missed a preemption opportunity
3413 * between schedule and now.
3414 */
3415 barrier();
3416 } while (need_resched());
3417 }
3418
3419 #endif /* CONFIG_PREEMPT */
3420
3421 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3422 void *key)
3423 {
3424 return try_to_wake_up(curr->private, mode, wake_flags);
3425 }
3426 EXPORT_SYMBOL(default_wake_function);
3427
3428 /*
3429 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3430 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3431 * number) then we wake all the non-exclusive tasks and one exclusive task.
3432 *
3433 * There are circumstances in which we can try to wake a task which has already
3434 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3435 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3436 */
3437 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3438 int nr_exclusive, int wake_flags, void *key)
3439 {
3440 wait_queue_t *curr, *next;
3441
3442 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3443 unsigned flags = curr->flags;
3444
3445 if (curr->func(curr, mode, wake_flags, key) &&
3446 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3447 break;
3448 }
3449 }
3450
3451 /**
3452 * __wake_up - wake up threads blocked on a waitqueue.
3453 * @q: the waitqueue
3454 * @mode: which threads
3455 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3456 * @key: is directly passed to the wakeup function
3457 *
3458 * It may be assumed that this function implies a write memory barrier before
3459 * changing the task state if and only if any tasks are woken up.
3460 */
3461 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3462 int nr_exclusive, void *key)
3463 {
3464 unsigned long flags;
3465
3466 spin_lock_irqsave(&q->lock, flags);
3467 __wake_up_common(q, mode, nr_exclusive, 0, key);
3468 spin_unlock_irqrestore(&q->lock, flags);
3469 }
3470 EXPORT_SYMBOL(__wake_up);
3471
3472 /*
3473 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3474 */
3475 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3476 {
3477 __wake_up_common(q, mode, nr, 0, NULL);
3478 }
3479 EXPORT_SYMBOL_GPL(__wake_up_locked);
3480
3481 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3482 {
3483 __wake_up_common(q, mode, 1, 0, key);
3484 }
3485 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3486
3487 /**
3488 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3489 * @q: the waitqueue
3490 * @mode: which threads
3491 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3492 * @key: opaque value to be passed to wakeup targets
3493 *
3494 * The sync wakeup differs that the waker knows that it will schedule
3495 * away soon, so while the target thread will be woken up, it will not
3496 * be migrated to another CPU - ie. the two threads are 'synchronized'
3497 * with each other. This can prevent needless bouncing between CPUs.
3498 *
3499 * On UP it can prevent extra preemption.
3500 *
3501 * It may be assumed that this function implies a write memory barrier before
3502 * changing the task state if and only if any tasks are woken up.
3503 */
3504 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3505 int nr_exclusive, void *key)
3506 {
3507 unsigned long flags;
3508 int wake_flags = WF_SYNC;
3509
3510 if (unlikely(!q))
3511 return;
3512
3513 if (unlikely(!nr_exclusive))
3514 wake_flags = 0;
3515
3516 spin_lock_irqsave(&q->lock, flags);
3517 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3518 spin_unlock_irqrestore(&q->lock, flags);
3519 }
3520 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3521
3522 /*
3523 * __wake_up_sync - see __wake_up_sync_key()
3524 */
3525 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3526 {
3527 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3528 }
3529 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3530
3531 /**
3532 * complete: - signals a single thread waiting on this completion
3533 * @x: holds the state of this particular completion
3534 *
3535 * This will wake up a single thread waiting on this completion. Threads will be
3536 * awakened in the same order in which they were queued.
3537 *
3538 * See also complete_all(), wait_for_completion() and related routines.
3539 *
3540 * It may be assumed that this function implies a write memory barrier before
3541 * changing the task state if and only if any tasks are woken up.
3542 */
3543 void complete(struct completion *x)
3544 {
3545 unsigned long flags;
3546
3547 spin_lock_irqsave(&x->wait.lock, flags);
3548 x->done++;
3549 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3550 spin_unlock_irqrestore(&x->wait.lock, flags);
3551 }
3552 EXPORT_SYMBOL(complete);
3553
3554 /**
3555 * complete_all: - signals all threads waiting on this completion
3556 * @x: holds the state of this particular completion
3557 *
3558 * This will wake up all threads waiting on this particular completion event.
3559 *
3560 * It may be assumed that this function implies a write memory barrier before
3561 * changing the task state if and only if any tasks are woken up.
3562 */
3563 void complete_all(struct completion *x)
3564 {
3565 unsigned long flags;
3566
3567 spin_lock_irqsave(&x->wait.lock, flags);
3568 x->done += UINT_MAX/2;
3569 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3570 spin_unlock_irqrestore(&x->wait.lock, flags);
3571 }
3572 EXPORT_SYMBOL(complete_all);
3573
3574 static inline long __sched
3575 do_wait_for_common(struct completion *x, long timeout, int state)
3576 {
3577 if (!x->done) {
3578 DECLARE_WAITQUEUE(wait, current);
3579
3580 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3581 do {
3582 if (signal_pending_state(state, current)) {
3583 timeout = -ERESTARTSYS;
3584 break;
3585 }
3586 __set_current_state(state);
3587 spin_unlock_irq(&x->wait.lock);
3588 timeout = schedule_timeout(timeout);
3589 spin_lock_irq(&x->wait.lock);
3590 } while (!x->done && timeout);
3591 __remove_wait_queue(&x->wait, &wait);
3592 if (!x->done)
3593 return timeout;
3594 }
3595 x->done--;
3596 return timeout ?: 1;
3597 }
3598
3599 static long __sched
3600 wait_for_common(struct completion *x, long timeout, int state)
3601 {
3602 might_sleep();
3603
3604 spin_lock_irq(&x->wait.lock);
3605 timeout = do_wait_for_common(x, timeout, state);
3606 spin_unlock_irq(&x->wait.lock);
3607 return timeout;
3608 }
3609
3610 /**
3611 * wait_for_completion: - waits for completion of a task
3612 * @x: holds the state of this particular completion
3613 *
3614 * This waits to be signaled for completion of a specific task. It is NOT
3615 * interruptible and there is no timeout.
3616 *
3617 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3618 * and interrupt capability. Also see complete().
3619 */
3620 void __sched wait_for_completion(struct completion *x)
3621 {
3622 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3623 }
3624 EXPORT_SYMBOL(wait_for_completion);
3625
3626 /**
3627 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3628 * @x: holds the state of this particular completion
3629 * @timeout: timeout value in jiffies
3630 *
3631 * This waits for either a completion of a specific task to be signaled or for a
3632 * specified timeout to expire. The timeout is in jiffies. It is not
3633 * interruptible.
3634 *
3635 * The return value is 0 if timed out, and positive (at least 1, or number of
3636 * jiffies left till timeout) if completed.
3637 */
3638 unsigned long __sched
3639 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3640 {
3641 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3642 }
3643 EXPORT_SYMBOL(wait_for_completion_timeout);
3644
3645 /**
3646 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3647 * @x: holds the state of this particular completion
3648 *
3649 * This waits for completion of a specific task to be signaled. It is
3650 * interruptible.
3651 *
3652 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3653 */
3654 int __sched wait_for_completion_interruptible(struct completion *x)
3655 {
3656 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3657 if (t == -ERESTARTSYS)
3658 return t;
3659 return 0;
3660 }
3661 EXPORT_SYMBOL(wait_for_completion_interruptible);
3662
3663 /**
3664 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3665 * @x: holds the state of this particular completion
3666 * @timeout: timeout value in jiffies
3667 *
3668 * This waits for either a completion of a specific task to be signaled or for a
3669 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3670 *
3671 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3672 * positive (at least 1, or number of jiffies left till timeout) if completed.
3673 */
3674 long __sched
3675 wait_for_completion_interruptible_timeout(struct completion *x,
3676 unsigned long timeout)
3677 {
3678 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3679 }
3680 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3681
3682 /**
3683 * wait_for_completion_killable: - waits for completion of a task (killable)
3684 * @x: holds the state of this particular completion
3685 *
3686 * This waits to be signaled for completion of a specific task. It can be
3687 * interrupted by a kill signal.
3688 *
3689 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3690 */
3691 int __sched wait_for_completion_killable(struct completion *x)
3692 {
3693 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3694 if (t == -ERESTARTSYS)
3695 return t;
3696 return 0;
3697 }
3698 EXPORT_SYMBOL(wait_for_completion_killable);
3699
3700 /**
3701 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3702 * @x: holds the state of this particular completion
3703 * @timeout: timeout value in jiffies
3704 *
3705 * This waits for either a completion of a specific task to be
3706 * signaled or for a specified timeout to expire. It can be
3707 * interrupted by a kill signal. The timeout is in jiffies.
3708 *
3709 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3710 * positive (at least 1, or number of jiffies left till timeout) if completed.
3711 */
3712 long __sched
3713 wait_for_completion_killable_timeout(struct completion *x,
3714 unsigned long timeout)
3715 {
3716 return wait_for_common(x, timeout, TASK_KILLABLE);
3717 }
3718 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3719
3720 /**
3721 * try_wait_for_completion - try to decrement a completion without blocking
3722 * @x: completion structure
3723 *
3724 * Returns: 0 if a decrement cannot be done without blocking
3725 * 1 if a decrement succeeded.
3726 *
3727 * If a completion is being used as a counting completion,
3728 * attempt to decrement the counter without blocking. This
3729 * enables us to avoid waiting if the resource the completion
3730 * is protecting is not available.
3731 */
3732 bool try_wait_for_completion(struct completion *x)
3733 {
3734 unsigned long flags;
3735 int ret = 1;
3736
3737 spin_lock_irqsave(&x->wait.lock, flags);
3738 if (!x->done)
3739 ret = 0;
3740 else
3741 x->done--;
3742 spin_unlock_irqrestore(&x->wait.lock, flags);
3743 return ret;
3744 }
3745 EXPORT_SYMBOL(try_wait_for_completion);
3746
3747 /**
3748 * completion_done - Test to see if a completion has any waiters
3749 * @x: completion structure
3750 *
3751 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3752 * 1 if there are no waiters.
3753 *
3754 */
3755 bool completion_done(struct completion *x)
3756 {
3757 unsigned long flags;
3758 int ret = 1;
3759
3760 spin_lock_irqsave(&x->wait.lock, flags);
3761 if (!x->done)
3762 ret = 0;
3763 spin_unlock_irqrestore(&x->wait.lock, flags);
3764 return ret;
3765 }
3766 EXPORT_SYMBOL(completion_done);
3767
3768 static long __sched
3769 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3770 {
3771 unsigned long flags;
3772 wait_queue_t wait;
3773
3774 init_waitqueue_entry(&wait, current);
3775
3776 __set_current_state(state);
3777
3778 spin_lock_irqsave(&q->lock, flags);
3779 __add_wait_queue(q, &wait);
3780 spin_unlock(&q->lock);
3781 timeout = schedule_timeout(timeout);
3782 spin_lock_irq(&q->lock);
3783 __remove_wait_queue(q, &wait);
3784 spin_unlock_irqrestore(&q->lock, flags);
3785
3786 return timeout;
3787 }
3788
3789 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3790 {
3791 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3792 }
3793 EXPORT_SYMBOL(interruptible_sleep_on);
3794
3795 long __sched
3796 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3797 {
3798 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3799 }
3800 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3801
3802 void __sched sleep_on(wait_queue_head_t *q)
3803 {
3804 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3805 }
3806 EXPORT_SYMBOL(sleep_on);
3807
3808 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3809 {
3810 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3811 }
3812 EXPORT_SYMBOL(sleep_on_timeout);
3813
3814 #ifdef CONFIG_RT_MUTEXES
3815
3816 /*
3817 * rt_mutex_setprio - set the current priority of a task
3818 * @p: task
3819 * @prio: prio value (kernel-internal form)
3820 *
3821 * This function changes the 'effective' priority of a task. It does
3822 * not touch ->normal_prio like __setscheduler().
3823 *
3824 * Used by the rt_mutex code to implement priority inheritance logic.
3825 */
3826 void rt_mutex_setprio(struct task_struct *p, int prio)
3827 {
3828 int oldprio, on_rq, running;
3829 struct rq *rq;
3830 const struct sched_class *prev_class;
3831
3832 BUG_ON(prio < 0 || prio > MAX_PRIO);
3833
3834 rq = __task_rq_lock(p);
3835
3836 /*
3837 * Idle task boosting is a nono in general. There is one
3838 * exception, when PREEMPT_RT and NOHZ is active:
3839 *
3840 * The idle task calls get_next_timer_interrupt() and holds
3841 * the timer wheel base->lock on the CPU and another CPU wants
3842 * to access the timer (probably to cancel it). We can safely
3843 * ignore the boosting request, as the idle CPU runs this code
3844 * with interrupts disabled and will complete the lock
3845 * protected section without being interrupted. So there is no
3846 * real need to boost.
3847 */
3848 if (unlikely(p == rq->idle)) {
3849 WARN_ON(p != rq->curr);
3850 WARN_ON(p->pi_blocked_on);
3851 goto out_unlock;
3852 }
3853
3854 trace_sched_pi_setprio(p, prio);
3855 oldprio = p->prio;
3856 prev_class = p->sched_class;
3857 on_rq = p->on_rq;
3858 running = task_current(rq, p);
3859 if (on_rq)
3860 dequeue_task(rq, p, 0);
3861 if (running)
3862 p->sched_class->put_prev_task(rq, p);
3863
3864 if (rt_prio(prio))
3865 p->sched_class = &rt_sched_class;
3866 else
3867 p->sched_class = &fair_sched_class;
3868
3869 p->prio = prio;
3870
3871 if (running)
3872 p->sched_class->set_curr_task(rq);
3873 if (on_rq)
3874 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3875
3876 check_class_changed(rq, p, prev_class, oldprio);
3877 out_unlock:
3878 __task_rq_unlock(rq);
3879 }
3880 #endif
3881 void set_user_nice(struct task_struct *p, long nice)
3882 {
3883 int old_prio, delta, on_rq;
3884 unsigned long flags;
3885 struct rq *rq;
3886
3887 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3888 return;
3889 /*
3890 * We have to be careful, if called from sys_setpriority(),
3891 * the task might be in the middle of scheduling on another CPU.
3892 */
3893 rq = task_rq_lock(p, &flags);
3894 /*
3895 * The RT priorities are set via sched_setscheduler(), but we still
3896 * allow the 'normal' nice value to be set - but as expected
3897 * it wont have any effect on scheduling until the task is
3898 * SCHED_FIFO/SCHED_RR:
3899 */
3900 if (task_has_rt_policy(p)) {
3901 p->static_prio = NICE_TO_PRIO(nice);
3902 goto out_unlock;
3903 }
3904 on_rq = p->on_rq;
3905 if (on_rq)
3906 dequeue_task(rq, p, 0);
3907
3908 p->static_prio = NICE_TO_PRIO(nice);
3909 set_load_weight(p);
3910 old_prio = p->prio;
3911 p->prio = effective_prio(p);
3912 delta = p->prio - old_prio;
3913
3914 if (on_rq) {
3915 enqueue_task(rq, p, 0);
3916 /*
3917 * If the task increased its priority or is running and
3918 * lowered its priority, then reschedule its CPU:
3919 */
3920 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3921 resched_task(rq->curr);
3922 }
3923 out_unlock:
3924 task_rq_unlock(rq, p, &flags);
3925 }
3926 EXPORT_SYMBOL(set_user_nice);
3927
3928 /*
3929 * can_nice - check if a task can reduce its nice value
3930 * @p: task
3931 * @nice: nice value
3932 */
3933 int can_nice(const struct task_struct *p, const int nice)
3934 {
3935 /* convert nice value [19,-20] to rlimit style value [1,40] */
3936 int nice_rlim = 20 - nice;
3937
3938 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3939 capable(CAP_SYS_NICE));
3940 }
3941
3942 #ifdef __ARCH_WANT_SYS_NICE
3943
3944 /*
3945 * sys_nice - change the priority of the current process.
3946 * @increment: priority increment
3947 *
3948 * sys_setpriority is a more generic, but much slower function that
3949 * does similar things.
3950 */
3951 SYSCALL_DEFINE1(nice, int, increment)
3952 {
3953 long nice, retval;
3954
3955 /*
3956 * Setpriority might change our priority at the same moment.
3957 * We don't have to worry. Conceptually one call occurs first
3958 * and we have a single winner.
3959 */
3960 if (increment < -40)
3961 increment = -40;
3962 if (increment > 40)
3963 increment = 40;
3964
3965 nice = TASK_NICE(current) + increment;
3966 if (nice < -20)
3967 nice = -20;
3968 if (nice > 19)
3969 nice = 19;
3970
3971 if (increment < 0 && !can_nice(current, nice))
3972 return -EPERM;
3973
3974 retval = security_task_setnice(current, nice);
3975 if (retval)
3976 return retval;
3977
3978 set_user_nice(current, nice);
3979 return 0;
3980 }
3981
3982 #endif
3983
3984 /**
3985 * task_prio - return the priority value of a given task.
3986 * @p: the task in question.
3987 *
3988 * This is the priority value as seen by users in /proc.
3989 * RT tasks are offset by -200. Normal tasks are centered
3990 * around 0, value goes from -16 to +15.
3991 */
3992 int task_prio(const struct task_struct *p)
3993 {
3994 return p->prio - MAX_RT_PRIO;
3995 }
3996
3997 /**
3998 * task_nice - return the nice value of a given task.
3999 * @p: the task in question.
4000 */
4001 int task_nice(const struct task_struct *p)
4002 {
4003 return TASK_NICE(p);
4004 }
4005 EXPORT_SYMBOL(task_nice);
4006
4007 /**
4008 * idle_cpu - is a given cpu idle currently?
4009 * @cpu: the processor in question.
4010 */
4011 int idle_cpu(int cpu)
4012 {
4013 struct rq *rq = cpu_rq(cpu);
4014
4015 if (rq->curr != rq->idle)
4016 return 0;
4017
4018 if (rq->nr_running)
4019 return 0;
4020
4021 #ifdef CONFIG_SMP
4022 if (!llist_empty(&rq->wake_list))
4023 return 0;
4024 #endif
4025
4026 return 1;
4027 }
4028
4029 /**
4030 * idle_task - return the idle task for a given cpu.
4031 * @cpu: the processor in question.
4032 */
4033 struct task_struct *idle_task(int cpu)
4034 {
4035 return cpu_rq(cpu)->idle;
4036 }
4037
4038 /**
4039 * find_process_by_pid - find a process with a matching PID value.
4040 * @pid: the pid in question.
4041 */
4042 static struct task_struct *find_process_by_pid(pid_t pid)
4043 {
4044 return pid ? find_task_by_vpid(pid) : current;
4045 }
4046
4047 /* Actually do priority change: must hold rq lock. */
4048 static void
4049 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4050 {
4051 p->policy = policy;
4052 p->rt_priority = prio;
4053 p->normal_prio = normal_prio(p);
4054 /* we are holding p->pi_lock already */
4055 p->prio = rt_mutex_getprio(p);
4056 if (rt_prio(p->prio))
4057 p->sched_class = &rt_sched_class;
4058 else
4059 p->sched_class = &fair_sched_class;
4060 set_load_weight(p);
4061 }
4062
4063 /*
4064 * check the target process has a UID that matches the current process's
4065 */
4066 static bool check_same_owner(struct task_struct *p)
4067 {
4068 const struct cred *cred = current_cred(), *pcred;
4069 bool match;
4070
4071 rcu_read_lock();
4072 pcred = __task_cred(p);
4073 match = (uid_eq(cred->euid, pcred->euid) ||
4074 uid_eq(cred->euid, pcred->uid));
4075 rcu_read_unlock();
4076 return match;
4077 }
4078
4079 static int __sched_setscheduler(struct task_struct *p, int policy,
4080 const struct sched_param *param, bool user)
4081 {
4082 int retval, oldprio, oldpolicy = -1, on_rq, running;
4083 unsigned long flags;
4084 const struct sched_class *prev_class;
4085 struct rq *rq;
4086 int reset_on_fork;
4087
4088 /* may grab non-irq protected spin_locks */
4089 BUG_ON(in_interrupt());
4090 recheck:
4091 /* double check policy once rq lock held */
4092 if (policy < 0) {
4093 reset_on_fork = p->sched_reset_on_fork;
4094 policy = oldpolicy = p->policy;
4095 } else {
4096 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4097 policy &= ~SCHED_RESET_ON_FORK;
4098
4099 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4100 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4101 policy != SCHED_IDLE)
4102 return -EINVAL;
4103 }
4104
4105 /*
4106 * Valid priorities for SCHED_FIFO and SCHED_RR are
4107 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4108 * SCHED_BATCH and SCHED_IDLE is 0.
4109 */
4110 if (param->sched_priority < 0 ||
4111 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4112 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4113 return -EINVAL;
4114 if (rt_policy(policy) != (param->sched_priority != 0))
4115 return -EINVAL;
4116
4117 /*
4118 * Allow unprivileged RT tasks to decrease priority:
4119 */
4120 if (user && !capable(CAP_SYS_NICE)) {
4121 if (rt_policy(policy)) {
4122 unsigned long rlim_rtprio =
4123 task_rlimit(p, RLIMIT_RTPRIO);
4124
4125 /* can't set/change the rt policy */
4126 if (policy != p->policy && !rlim_rtprio)
4127 return -EPERM;
4128
4129 /* can't increase priority */
4130 if (param->sched_priority > p->rt_priority &&
4131 param->sched_priority > rlim_rtprio)
4132 return -EPERM;
4133 }
4134
4135 /*
4136 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4137 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4138 */
4139 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4140 if (!can_nice(p, TASK_NICE(p)))
4141 return -EPERM;
4142 }
4143
4144 /* can't change other user's priorities */
4145 if (!check_same_owner(p))
4146 return -EPERM;
4147
4148 /* Normal users shall not reset the sched_reset_on_fork flag */
4149 if (p->sched_reset_on_fork && !reset_on_fork)
4150 return -EPERM;
4151 }
4152
4153 if (user) {
4154 retval = security_task_setscheduler(p);
4155 if (retval)
4156 return retval;
4157 }
4158
4159 /*
4160 * make sure no PI-waiters arrive (or leave) while we are
4161 * changing the priority of the task:
4162 *
4163 * To be able to change p->policy safely, the appropriate
4164 * runqueue lock must be held.
4165 */
4166 rq = task_rq_lock(p, &flags);
4167
4168 /*
4169 * Changing the policy of the stop threads its a very bad idea
4170 */
4171 if (p == rq->stop) {
4172 task_rq_unlock(rq, p, &flags);
4173 return -EINVAL;
4174 }
4175
4176 /*
4177 * If not changing anything there's no need to proceed further:
4178 */
4179 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4180 param->sched_priority == p->rt_priority))) {
4181
4182 __task_rq_unlock(rq);
4183 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4184 return 0;
4185 }
4186
4187 #ifdef CONFIG_RT_GROUP_SCHED
4188 if (user) {
4189 /*
4190 * Do not allow realtime tasks into groups that have no runtime
4191 * assigned.
4192 */
4193 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4194 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4195 !task_group_is_autogroup(task_group(p))) {
4196 task_rq_unlock(rq, p, &flags);
4197 return -EPERM;
4198 }
4199 }
4200 #endif
4201
4202 /* recheck policy now with rq lock held */
4203 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4204 policy = oldpolicy = -1;
4205 task_rq_unlock(rq, p, &flags);
4206 goto recheck;
4207 }
4208 on_rq = p->on_rq;
4209 running = task_current(rq, p);
4210 if (on_rq)
4211 dequeue_task(rq, p, 0);
4212 if (running)
4213 p->sched_class->put_prev_task(rq, p);
4214
4215 p->sched_reset_on_fork = reset_on_fork;
4216
4217 oldprio = p->prio;
4218 prev_class = p->sched_class;
4219 __setscheduler(rq, p, policy, param->sched_priority);
4220
4221 if (running)
4222 p->sched_class->set_curr_task(rq);
4223 if (on_rq)
4224 enqueue_task(rq, p, 0);
4225
4226 check_class_changed(rq, p, prev_class, oldprio);
4227 task_rq_unlock(rq, p, &flags);
4228
4229 rt_mutex_adjust_pi(p);
4230
4231 return 0;
4232 }
4233
4234 /**
4235 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4236 * @p: the task in question.
4237 * @policy: new policy.
4238 * @param: structure containing the new RT priority.
4239 *
4240 * NOTE that the task may be already dead.
4241 */
4242 int sched_setscheduler(struct task_struct *p, int policy,
4243 const struct sched_param *param)
4244 {
4245 return __sched_setscheduler(p, policy, param, true);
4246 }
4247 EXPORT_SYMBOL_GPL(sched_setscheduler);
4248
4249 /**
4250 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4251 * @p: the task in question.
4252 * @policy: new policy.
4253 * @param: structure containing the new RT priority.
4254 *
4255 * Just like sched_setscheduler, only don't bother checking if the
4256 * current context has permission. For example, this is needed in
4257 * stop_machine(): we create temporary high priority worker threads,
4258 * but our caller might not have that capability.
4259 */
4260 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4261 const struct sched_param *param)
4262 {
4263 return __sched_setscheduler(p, policy, param, false);
4264 }
4265
4266 static int
4267 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4268 {
4269 struct sched_param lparam;
4270 struct task_struct *p;
4271 int retval;
4272
4273 if (!param || pid < 0)
4274 return -EINVAL;
4275 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4276 return -EFAULT;
4277
4278 rcu_read_lock();
4279 retval = -ESRCH;
4280 p = find_process_by_pid(pid);
4281 if (p != NULL)
4282 retval = sched_setscheduler(p, policy, &lparam);
4283 rcu_read_unlock();
4284
4285 return retval;
4286 }
4287
4288 /**
4289 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4290 * @pid: the pid in question.
4291 * @policy: new policy.
4292 * @param: structure containing the new RT priority.
4293 */
4294 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4295 struct sched_param __user *, param)
4296 {
4297 /* negative values for policy are not valid */
4298 if (policy < 0)
4299 return -EINVAL;
4300
4301 return do_sched_setscheduler(pid, policy, param);
4302 }
4303
4304 /**
4305 * sys_sched_setparam - set/change the RT priority of a thread
4306 * @pid: the pid in question.
4307 * @param: structure containing the new RT priority.
4308 */
4309 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4310 {
4311 return do_sched_setscheduler(pid, -1, param);
4312 }
4313
4314 /**
4315 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4316 * @pid: the pid in question.
4317 */
4318 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4319 {
4320 struct task_struct *p;
4321 int retval;
4322
4323 if (pid < 0)
4324 return -EINVAL;
4325
4326 retval = -ESRCH;
4327 rcu_read_lock();
4328 p = find_process_by_pid(pid);
4329 if (p) {
4330 retval = security_task_getscheduler(p);
4331 if (!retval)
4332 retval = p->policy
4333 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4334 }
4335 rcu_read_unlock();
4336 return retval;
4337 }
4338
4339 /**
4340 * sys_sched_getparam - get the RT priority of a thread
4341 * @pid: the pid in question.
4342 * @param: structure containing the RT priority.
4343 */
4344 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4345 {
4346 struct sched_param lp;
4347 struct task_struct *p;
4348 int retval;
4349
4350 if (!param || pid < 0)
4351 return -EINVAL;
4352
4353 rcu_read_lock();
4354 p = find_process_by_pid(pid);
4355 retval = -ESRCH;
4356 if (!p)
4357 goto out_unlock;
4358
4359 retval = security_task_getscheduler(p);
4360 if (retval)
4361 goto out_unlock;
4362
4363 lp.sched_priority = p->rt_priority;
4364 rcu_read_unlock();
4365
4366 /*
4367 * This one might sleep, we cannot do it with a spinlock held ...
4368 */
4369 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4370
4371 return retval;
4372
4373 out_unlock:
4374 rcu_read_unlock();
4375 return retval;
4376 }
4377
4378 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4379 {
4380 cpumask_var_t cpus_allowed, new_mask;
4381 struct task_struct *p;
4382 int retval;
4383
4384 get_online_cpus();
4385 rcu_read_lock();
4386
4387 p = find_process_by_pid(pid);
4388 if (!p) {
4389 rcu_read_unlock();
4390 put_online_cpus();
4391 return -ESRCH;
4392 }
4393
4394 /* Prevent p going away */
4395 get_task_struct(p);
4396 rcu_read_unlock();
4397
4398 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4399 retval = -ENOMEM;
4400 goto out_put_task;
4401 }
4402 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4403 retval = -ENOMEM;
4404 goto out_free_cpus_allowed;
4405 }
4406 retval = -EPERM;
4407 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4408 goto out_unlock;
4409
4410 retval = security_task_setscheduler(p);
4411 if (retval)
4412 goto out_unlock;
4413
4414 cpuset_cpus_allowed(p, cpus_allowed);
4415 cpumask_and(new_mask, in_mask, cpus_allowed);
4416 again:
4417 retval = set_cpus_allowed_ptr(p, new_mask);
4418
4419 if (!retval) {
4420 cpuset_cpus_allowed(p, cpus_allowed);
4421 if (!cpumask_subset(new_mask, cpus_allowed)) {
4422 /*
4423 * We must have raced with a concurrent cpuset
4424 * update. Just reset the cpus_allowed to the
4425 * cpuset's cpus_allowed
4426 */
4427 cpumask_copy(new_mask, cpus_allowed);
4428 goto again;
4429 }
4430 }
4431 out_unlock:
4432 free_cpumask_var(new_mask);
4433 out_free_cpus_allowed:
4434 free_cpumask_var(cpus_allowed);
4435 out_put_task:
4436 put_task_struct(p);
4437 put_online_cpus();
4438 return retval;
4439 }
4440
4441 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4442 struct cpumask *new_mask)
4443 {
4444 if (len < cpumask_size())
4445 cpumask_clear(new_mask);
4446 else if (len > cpumask_size())
4447 len = cpumask_size();
4448
4449 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4450 }
4451
4452 /**
4453 * sys_sched_setaffinity - set the cpu affinity of a process
4454 * @pid: pid of the process
4455 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4456 * @user_mask_ptr: user-space pointer to the new cpu mask
4457 */
4458 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4459 unsigned long __user *, user_mask_ptr)
4460 {
4461 cpumask_var_t new_mask;
4462 int retval;
4463
4464 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4465 return -ENOMEM;
4466
4467 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4468 if (retval == 0)
4469 retval = sched_setaffinity(pid, new_mask);
4470 free_cpumask_var(new_mask);
4471 return retval;
4472 }
4473
4474 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4475 {
4476 struct task_struct *p;
4477 unsigned long flags;
4478 int retval;
4479
4480 get_online_cpus();
4481 rcu_read_lock();
4482
4483 retval = -ESRCH;
4484 p = find_process_by_pid(pid);
4485 if (!p)
4486 goto out_unlock;
4487
4488 retval = security_task_getscheduler(p);
4489 if (retval)
4490 goto out_unlock;
4491
4492 raw_spin_lock_irqsave(&p->pi_lock, flags);
4493 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4494 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4495
4496 out_unlock:
4497 rcu_read_unlock();
4498 put_online_cpus();
4499
4500 return retval;
4501 }
4502
4503 /**
4504 * sys_sched_getaffinity - get the cpu affinity of a process
4505 * @pid: pid of the process
4506 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4507 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4508 */
4509 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4510 unsigned long __user *, user_mask_ptr)
4511 {
4512 int ret;
4513 cpumask_var_t mask;
4514
4515 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4516 return -EINVAL;
4517 if (len & (sizeof(unsigned long)-1))
4518 return -EINVAL;
4519
4520 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4521 return -ENOMEM;
4522
4523 ret = sched_getaffinity(pid, mask);
4524 if (ret == 0) {
4525 size_t retlen = min_t(size_t, len, cpumask_size());
4526
4527 if (copy_to_user(user_mask_ptr, mask, retlen))
4528 ret = -EFAULT;
4529 else
4530 ret = retlen;
4531 }
4532 free_cpumask_var(mask);
4533
4534 return ret;
4535 }
4536
4537 /**
4538 * sys_sched_yield - yield the current processor to other threads.
4539 *
4540 * This function yields the current CPU to other tasks. If there are no
4541 * other threads running on this CPU then this function will return.
4542 */
4543 SYSCALL_DEFINE0(sched_yield)
4544 {
4545 struct rq *rq = this_rq_lock();
4546
4547 schedstat_inc(rq, yld_count);
4548 current->sched_class->yield_task(rq);
4549
4550 /*
4551 * Since we are going to call schedule() anyway, there's
4552 * no need to preempt or enable interrupts:
4553 */
4554 __release(rq->lock);
4555 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4556 do_raw_spin_unlock(&rq->lock);
4557 sched_preempt_enable_no_resched();
4558
4559 schedule();
4560
4561 return 0;
4562 }
4563
4564 static inline int should_resched(void)
4565 {
4566 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4567 }
4568
4569 static void __cond_resched(void)
4570 {
4571 add_preempt_count(PREEMPT_ACTIVE);
4572 __schedule();
4573 sub_preempt_count(PREEMPT_ACTIVE);
4574 }
4575
4576 int __sched _cond_resched(void)
4577 {
4578 if (should_resched()) {
4579 __cond_resched();
4580 return 1;
4581 }
4582 return 0;
4583 }
4584 EXPORT_SYMBOL(_cond_resched);
4585
4586 /*
4587 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4588 * call schedule, and on return reacquire the lock.
4589 *
4590 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4591 * operations here to prevent schedule() from being called twice (once via
4592 * spin_unlock(), once by hand).
4593 */
4594 int __cond_resched_lock(spinlock_t *lock)
4595 {
4596 int resched = should_resched();
4597 int ret = 0;
4598
4599 lockdep_assert_held(lock);
4600
4601 if (spin_needbreak(lock) || resched) {
4602 spin_unlock(lock);
4603 if (resched)
4604 __cond_resched();
4605 else
4606 cpu_relax();
4607 ret = 1;
4608 spin_lock(lock);
4609 }
4610 return ret;
4611 }
4612 EXPORT_SYMBOL(__cond_resched_lock);
4613
4614 int __sched __cond_resched_softirq(void)
4615 {
4616 BUG_ON(!in_softirq());
4617
4618 if (should_resched()) {
4619 local_bh_enable();
4620 __cond_resched();
4621 local_bh_disable();
4622 return 1;
4623 }
4624 return 0;
4625 }
4626 EXPORT_SYMBOL(__cond_resched_softirq);
4627
4628 /**
4629 * yield - yield the current processor to other threads.
4630 *
4631 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4632 *
4633 * The scheduler is at all times free to pick the calling task as the most
4634 * eligible task to run, if removing the yield() call from your code breaks
4635 * it, its already broken.
4636 *
4637 * Typical broken usage is:
4638 *
4639 * while (!event)
4640 * yield();
4641 *
4642 * where one assumes that yield() will let 'the other' process run that will
4643 * make event true. If the current task is a SCHED_FIFO task that will never
4644 * happen. Never use yield() as a progress guarantee!!
4645 *
4646 * If you want to use yield() to wait for something, use wait_event().
4647 * If you want to use yield() to be 'nice' for others, use cond_resched().
4648 * If you still want to use yield(), do not!
4649 */
4650 void __sched yield(void)
4651 {
4652 set_current_state(TASK_RUNNING);
4653 sys_sched_yield();
4654 }
4655 EXPORT_SYMBOL(yield);
4656
4657 /**
4658 * yield_to - yield the current processor to another thread in
4659 * your thread group, or accelerate that thread toward the
4660 * processor it's on.
4661 * @p: target task
4662 * @preempt: whether task preemption is allowed or not
4663 *
4664 * It's the caller's job to ensure that the target task struct
4665 * can't go away on us before we can do any checks.
4666 *
4667 * Returns true if we indeed boosted the target task.
4668 */
4669 bool __sched yield_to(struct task_struct *p, bool preempt)
4670 {
4671 struct task_struct *curr = current;
4672 struct rq *rq, *p_rq;
4673 unsigned long flags;
4674 bool yielded = 0;
4675
4676 local_irq_save(flags);
4677 rq = this_rq();
4678
4679 again:
4680 p_rq = task_rq(p);
4681 double_rq_lock(rq, p_rq);
4682 while (task_rq(p) != p_rq) {
4683 double_rq_unlock(rq, p_rq);
4684 goto again;
4685 }
4686
4687 if (!curr->sched_class->yield_to_task)
4688 goto out;
4689
4690 if (curr->sched_class != p->sched_class)
4691 goto out;
4692
4693 if (task_running(p_rq, p) || p->state)
4694 goto out;
4695
4696 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4697 if (yielded) {
4698 schedstat_inc(rq, yld_count);
4699 /*
4700 * Make p's CPU reschedule; pick_next_entity takes care of
4701 * fairness.
4702 */
4703 if (preempt && rq != p_rq)
4704 resched_task(p_rq->curr);
4705 } else {
4706 /*
4707 * We might have set it in task_yield_fair(), but are
4708 * not going to schedule(), so don't want to skip
4709 * the next update.
4710 */
4711 rq->skip_clock_update = 0;
4712 }
4713
4714 out:
4715 double_rq_unlock(rq, p_rq);
4716 local_irq_restore(flags);
4717
4718 if (yielded)
4719 schedule();
4720
4721 return yielded;
4722 }
4723 EXPORT_SYMBOL_GPL(yield_to);
4724
4725 /*
4726 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4727 * that process accounting knows that this is a task in IO wait state.
4728 */
4729 void __sched io_schedule(void)
4730 {
4731 struct rq *rq = raw_rq();
4732
4733 delayacct_blkio_start();
4734 atomic_inc(&rq->nr_iowait);
4735 blk_flush_plug(current);
4736 current->in_iowait = 1;
4737 schedule();
4738 current->in_iowait = 0;
4739 atomic_dec(&rq->nr_iowait);
4740 delayacct_blkio_end();
4741 }
4742 EXPORT_SYMBOL(io_schedule);
4743
4744 long __sched io_schedule_timeout(long timeout)
4745 {
4746 struct rq *rq = raw_rq();
4747 long ret;
4748
4749 delayacct_blkio_start();
4750 atomic_inc(&rq->nr_iowait);
4751 blk_flush_plug(current);
4752 current->in_iowait = 1;
4753 ret = schedule_timeout(timeout);
4754 current->in_iowait = 0;
4755 atomic_dec(&rq->nr_iowait);
4756 delayacct_blkio_end();
4757 return ret;
4758 }
4759
4760 /**
4761 * sys_sched_get_priority_max - return maximum RT priority.
4762 * @policy: scheduling class.
4763 *
4764 * this syscall returns the maximum rt_priority that can be used
4765 * by a given scheduling class.
4766 */
4767 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4768 {
4769 int ret = -EINVAL;
4770
4771 switch (policy) {
4772 case SCHED_FIFO:
4773 case SCHED_RR:
4774 ret = MAX_USER_RT_PRIO-1;
4775 break;
4776 case SCHED_NORMAL:
4777 case SCHED_BATCH:
4778 case SCHED_IDLE:
4779 ret = 0;
4780 break;
4781 }
4782 return ret;
4783 }
4784
4785 /**
4786 * sys_sched_get_priority_min - return minimum RT priority.
4787 * @policy: scheduling class.
4788 *
4789 * this syscall returns the minimum rt_priority that can be used
4790 * by a given scheduling class.
4791 */
4792 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4793 {
4794 int ret = -EINVAL;
4795
4796 switch (policy) {
4797 case SCHED_FIFO:
4798 case SCHED_RR:
4799 ret = 1;
4800 break;
4801 case SCHED_NORMAL:
4802 case SCHED_BATCH:
4803 case SCHED_IDLE:
4804 ret = 0;
4805 }
4806 return ret;
4807 }
4808
4809 /**
4810 * sys_sched_rr_get_interval - return the default timeslice of a process.
4811 * @pid: pid of the process.
4812 * @interval: userspace pointer to the timeslice value.
4813 *
4814 * this syscall writes the default timeslice value of a given process
4815 * into the user-space timespec buffer. A value of '0' means infinity.
4816 */
4817 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4818 struct timespec __user *, interval)
4819 {
4820 struct task_struct *p;
4821 unsigned int time_slice;
4822 unsigned long flags;
4823 struct rq *rq;
4824 int retval;
4825 struct timespec t;
4826
4827 if (pid < 0)
4828 return -EINVAL;
4829
4830 retval = -ESRCH;
4831 rcu_read_lock();
4832 p = find_process_by_pid(pid);
4833 if (!p)
4834 goto out_unlock;
4835
4836 retval = security_task_getscheduler(p);
4837 if (retval)
4838 goto out_unlock;
4839
4840 rq = task_rq_lock(p, &flags);
4841 time_slice = p->sched_class->get_rr_interval(rq, p);
4842 task_rq_unlock(rq, p, &flags);
4843
4844 rcu_read_unlock();
4845 jiffies_to_timespec(time_slice, &t);
4846 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4847 return retval;
4848
4849 out_unlock:
4850 rcu_read_unlock();
4851 return retval;
4852 }
4853
4854 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4855
4856 void sched_show_task(struct task_struct *p)
4857 {
4858 unsigned long free = 0;
4859 unsigned state;
4860
4861 state = p->state ? __ffs(p->state) + 1 : 0;
4862 printk(KERN_INFO "%-15.15s %c", p->comm,
4863 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4864 #if BITS_PER_LONG == 32
4865 if (state == TASK_RUNNING)
4866 printk(KERN_CONT " running ");
4867 else
4868 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4869 #else
4870 if (state == TASK_RUNNING)
4871 printk(KERN_CONT " running task ");
4872 else
4873 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4874 #endif
4875 #ifdef CONFIG_DEBUG_STACK_USAGE
4876 free = stack_not_used(p);
4877 #endif
4878 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4879 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4880 (unsigned long)task_thread_info(p)->flags);
4881
4882 show_stack(p, NULL);
4883 }
4884
4885 void show_state_filter(unsigned long state_filter)
4886 {
4887 struct task_struct *g, *p;
4888
4889 #if BITS_PER_LONG == 32
4890 printk(KERN_INFO
4891 " task PC stack pid father\n");
4892 #else
4893 printk(KERN_INFO
4894 " task PC stack pid father\n");
4895 #endif
4896 rcu_read_lock();
4897 do_each_thread(g, p) {
4898 /*
4899 * reset the NMI-timeout, listing all files on a slow
4900 * console might take a lot of time:
4901 */
4902 touch_nmi_watchdog();
4903 if (!state_filter || (p->state & state_filter))
4904 sched_show_task(p);
4905 } while_each_thread(g, p);
4906
4907 touch_all_softlockup_watchdogs();
4908
4909 #ifdef CONFIG_SCHED_DEBUG
4910 sysrq_sched_debug_show();
4911 #endif
4912 rcu_read_unlock();
4913 /*
4914 * Only show locks if all tasks are dumped:
4915 */
4916 if (!state_filter)
4917 debug_show_all_locks();
4918 }
4919
4920 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4921 {
4922 idle->sched_class = &idle_sched_class;
4923 }
4924
4925 /**
4926 * init_idle - set up an idle thread for a given CPU
4927 * @idle: task in question
4928 * @cpu: cpu the idle task belongs to
4929 *
4930 * NOTE: this function does not set the idle thread's NEED_RESCHED
4931 * flag, to make booting more robust.
4932 */
4933 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4934 {
4935 struct rq *rq = cpu_rq(cpu);
4936 unsigned long flags;
4937
4938 raw_spin_lock_irqsave(&rq->lock, flags);
4939
4940 __sched_fork(idle);
4941 idle->state = TASK_RUNNING;
4942 idle->se.exec_start = sched_clock();
4943
4944 do_set_cpus_allowed(idle, cpumask_of(cpu));
4945 /*
4946 * We're having a chicken and egg problem, even though we are
4947 * holding rq->lock, the cpu isn't yet set to this cpu so the
4948 * lockdep check in task_group() will fail.
4949 *
4950 * Similar case to sched_fork(). / Alternatively we could
4951 * use task_rq_lock() here and obtain the other rq->lock.
4952 *
4953 * Silence PROVE_RCU
4954 */
4955 rcu_read_lock();
4956 __set_task_cpu(idle, cpu);
4957 rcu_read_unlock();
4958
4959 rq->curr = rq->idle = idle;
4960 #if defined(CONFIG_SMP)
4961 idle->on_cpu = 1;
4962 #endif
4963 raw_spin_unlock_irqrestore(&rq->lock, flags);
4964
4965 /* Set the preempt count _outside_ the spinlocks! */
4966 task_thread_info(idle)->preempt_count = 0;
4967
4968 /*
4969 * The idle tasks have their own, simple scheduling class:
4970 */
4971 idle->sched_class = &idle_sched_class;
4972 ftrace_graph_init_idle_task(idle, cpu);
4973 #if defined(CONFIG_SMP)
4974 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4975 #endif
4976 }
4977
4978 #ifdef CONFIG_SMP
4979 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4980 {
4981 if (p->sched_class && p->sched_class->set_cpus_allowed)
4982 p->sched_class->set_cpus_allowed(p, new_mask);
4983
4984 cpumask_copy(&p->cpus_allowed, new_mask);
4985 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4986 }
4987
4988 /*
4989 * This is how migration works:
4990 *
4991 * 1) we invoke migration_cpu_stop() on the target CPU using
4992 * stop_one_cpu().
4993 * 2) stopper starts to run (implicitly forcing the migrated thread
4994 * off the CPU)
4995 * 3) it checks whether the migrated task is still in the wrong runqueue.
4996 * 4) if it's in the wrong runqueue then the migration thread removes
4997 * it and puts it into the right queue.
4998 * 5) stopper completes and stop_one_cpu() returns and the migration
4999 * is done.
5000 */
5001
5002 /*
5003 * Change a given task's CPU affinity. Migrate the thread to a
5004 * proper CPU and schedule it away if the CPU it's executing on
5005 * is removed from the allowed bitmask.
5006 *
5007 * NOTE: the caller must have a valid reference to the task, the
5008 * task must not exit() & deallocate itself prematurely. The
5009 * call is not atomic; no spinlocks may be held.
5010 */
5011 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5012 {
5013 unsigned long flags;
5014 struct rq *rq;
5015 unsigned int dest_cpu;
5016 int ret = 0;
5017
5018 rq = task_rq_lock(p, &flags);
5019
5020 if (cpumask_equal(&p->cpus_allowed, new_mask))
5021 goto out;
5022
5023 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5024 ret = -EINVAL;
5025 goto out;
5026 }
5027
5028 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5029 ret = -EINVAL;
5030 goto out;
5031 }
5032
5033 do_set_cpus_allowed(p, new_mask);
5034
5035 /* Can the task run on the task's current CPU? If so, we're done */
5036 if (cpumask_test_cpu(task_cpu(p), new_mask))
5037 goto out;
5038
5039 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5040 if (p->on_rq) {
5041 struct migration_arg arg = { p, dest_cpu };
5042 /* Need help from migration thread: drop lock and wait. */
5043 task_rq_unlock(rq, p, &flags);
5044 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5045 tlb_migrate_finish(p->mm);
5046 return 0;
5047 }
5048 out:
5049 task_rq_unlock(rq, p, &flags);
5050
5051 return ret;
5052 }
5053 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5054
5055 /*
5056 * Move (not current) task off this cpu, onto dest cpu. We're doing
5057 * this because either it can't run here any more (set_cpus_allowed()
5058 * away from this CPU, or CPU going down), or because we're
5059 * attempting to rebalance this task on exec (sched_exec).
5060 *
5061 * So we race with normal scheduler movements, but that's OK, as long
5062 * as the task is no longer on this CPU.
5063 *
5064 * Returns non-zero if task was successfully migrated.
5065 */
5066 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5067 {
5068 struct rq *rq_dest, *rq_src;
5069 int ret = 0;
5070
5071 if (unlikely(!cpu_active(dest_cpu)))
5072 return ret;
5073
5074 rq_src = cpu_rq(src_cpu);
5075 rq_dest = cpu_rq(dest_cpu);
5076
5077 raw_spin_lock(&p->pi_lock);
5078 double_rq_lock(rq_src, rq_dest);
5079 /* Already moved. */
5080 if (task_cpu(p) != src_cpu)
5081 goto done;
5082 /* Affinity changed (again). */
5083 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5084 goto fail;
5085
5086 /*
5087 * If we're not on a rq, the next wake-up will ensure we're
5088 * placed properly.
5089 */
5090 if (p->on_rq) {
5091 dequeue_task(rq_src, p, 0);
5092 set_task_cpu(p, dest_cpu);
5093 enqueue_task(rq_dest, p, 0);
5094 check_preempt_curr(rq_dest, p, 0);
5095 }
5096 done:
5097 ret = 1;
5098 fail:
5099 double_rq_unlock(rq_src, rq_dest);
5100 raw_spin_unlock(&p->pi_lock);
5101 return ret;
5102 }
5103
5104 /*
5105 * migration_cpu_stop - this will be executed by a highprio stopper thread
5106 * and performs thread migration by bumping thread off CPU then
5107 * 'pushing' onto another runqueue.
5108 */
5109 static int migration_cpu_stop(void *data)
5110 {
5111 struct migration_arg *arg = data;
5112
5113 /*
5114 * The original target cpu might have gone down and we might
5115 * be on another cpu but it doesn't matter.
5116 */
5117 local_irq_disable();
5118 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5119 local_irq_enable();
5120 return 0;
5121 }
5122
5123 #ifdef CONFIG_HOTPLUG_CPU
5124
5125 /*
5126 * Ensures that the idle task is using init_mm right before its cpu goes
5127 * offline.
5128 */
5129 void idle_task_exit(void)
5130 {
5131 struct mm_struct *mm = current->active_mm;
5132
5133 BUG_ON(cpu_online(smp_processor_id()));
5134
5135 if (mm != &init_mm)
5136 switch_mm(mm, &init_mm, current);
5137 mmdrop(mm);
5138 }
5139
5140 /*
5141 * While a dead CPU has no uninterruptible tasks queued at this point,
5142 * it might still have a nonzero ->nr_uninterruptible counter, because
5143 * for performance reasons the counter is not stricly tracking tasks to
5144 * their home CPUs. So we just add the counter to another CPU's counter,
5145 * to keep the global sum constant after CPU-down:
5146 */
5147 static void migrate_nr_uninterruptible(struct rq *rq_src)
5148 {
5149 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5150
5151 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5152 rq_src->nr_uninterruptible = 0;
5153 }
5154
5155 /*
5156 * remove the tasks which were accounted by rq from calc_load_tasks.
5157 */
5158 static void calc_global_load_remove(struct rq *rq)
5159 {
5160 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5161 rq->calc_load_active = 0;
5162 }
5163
5164 /*
5165 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5166 * try_to_wake_up()->select_task_rq().
5167 *
5168 * Called with rq->lock held even though we'er in stop_machine() and
5169 * there's no concurrency possible, we hold the required locks anyway
5170 * because of lock validation efforts.
5171 */
5172 static void migrate_tasks(unsigned int dead_cpu)
5173 {
5174 struct rq *rq = cpu_rq(dead_cpu);
5175 struct task_struct *next, *stop = rq->stop;
5176 int dest_cpu;
5177
5178 /*
5179 * Fudge the rq selection such that the below task selection loop
5180 * doesn't get stuck on the currently eligible stop task.
5181 *
5182 * We're currently inside stop_machine() and the rq is either stuck
5183 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5184 * either way we should never end up calling schedule() until we're
5185 * done here.
5186 */
5187 rq->stop = NULL;
5188
5189 /* Ensure any throttled groups are reachable by pick_next_task */
5190 unthrottle_offline_cfs_rqs(rq);
5191
5192 for ( ; ; ) {
5193 /*
5194 * There's this thread running, bail when that's the only
5195 * remaining thread.
5196 */
5197 if (rq->nr_running == 1)
5198 break;
5199
5200 next = pick_next_task(rq);
5201 BUG_ON(!next);
5202 next->sched_class->put_prev_task(rq, next);
5203
5204 /* Find suitable destination for @next, with force if needed. */
5205 dest_cpu = select_fallback_rq(dead_cpu, next);
5206 raw_spin_unlock(&rq->lock);
5207
5208 __migrate_task(next, dead_cpu, dest_cpu);
5209
5210 raw_spin_lock(&rq->lock);
5211 }
5212
5213 rq->stop = stop;
5214 }
5215
5216 #endif /* CONFIG_HOTPLUG_CPU */
5217
5218 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5219
5220 static struct ctl_table sd_ctl_dir[] = {
5221 {
5222 .procname = "sched_domain",
5223 .mode = 0555,
5224 },
5225 {}
5226 };
5227
5228 static struct ctl_table sd_ctl_root[] = {
5229 {
5230 .procname = "kernel",
5231 .mode = 0555,
5232 .child = sd_ctl_dir,
5233 },
5234 {}
5235 };
5236
5237 static struct ctl_table *sd_alloc_ctl_entry(int n)
5238 {
5239 struct ctl_table *entry =
5240 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5241
5242 return entry;
5243 }
5244
5245 static void sd_free_ctl_entry(struct ctl_table **tablep)
5246 {
5247 struct ctl_table *entry;
5248
5249 /*
5250 * In the intermediate directories, both the child directory and
5251 * procname are dynamically allocated and could fail but the mode
5252 * will always be set. In the lowest directory the names are
5253 * static strings and all have proc handlers.
5254 */
5255 for (entry = *tablep; entry->mode; entry++) {
5256 if (entry->child)
5257 sd_free_ctl_entry(&entry->child);
5258 if (entry->proc_handler == NULL)
5259 kfree(entry->procname);
5260 }
5261
5262 kfree(*tablep);
5263 *tablep = NULL;
5264 }
5265
5266 static void
5267 set_table_entry(struct ctl_table *entry,
5268 const char *procname, void *data, int maxlen,
5269 umode_t mode, proc_handler *proc_handler)
5270 {
5271 entry->procname = procname;
5272 entry->data = data;
5273 entry->maxlen = maxlen;
5274 entry->mode = mode;
5275 entry->proc_handler = proc_handler;
5276 }
5277
5278 static struct ctl_table *
5279 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5280 {
5281 struct ctl_table *table = sd_alloc_ctl_entry(13);
5282
5283 if (table == NULL)
5284 return NULL;
5285
5286 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5287 sizeof(long), 0644, proc_doulongvec_minmax);
5288 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5289 sizeof(long), 0644, proc_doulongvec_minmax);
5290 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5291 sizeof(int), 0644, proc_dointvec_minmax);
5292 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5293 sizeof(int), 0644, proc_dointvec_minmax);
5294 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5295 sizeof(int), 0644, proc_dointvec_minmax);
5296 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5297 sizeof(int), 0644, proc_dointvec_minmax);
5298 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5299 sizeof(int), 0644, proc_dointvec_minmax);
5300 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5301 sizeof(int), 0644, proc_dointvec_minmax);
5302 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5303 sizeof(int), 0644, proc_dointvec_minmax);
5304 set_table_entry(&table[9], "cache_nice_tries",
5305 &sd->cache_nice_tries,
5306 sizeof(int), 0644, proc_dointvec_minmax);
5307 set_table_entry(&table[10], "flags", &sd->flags,
5308 sizeof(int), 0644, proc_dointvec_minmax);
5309 set_table_entry(&table[11], "name", sd->name,
5310 CORENAME_MAX_SIZE, 0444, proc_dostring);
5311 /* &table[12] is terminator */
5312
5313 return table;
5314 }
5315
5316 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5317 {
5318 struct ctl_table *entry, *table;
5319 struct sched_domain *sd;
5320 int domain_num = 0, i;
5321 char buf[32];
5322
5323 for_each_domain(cpu, sd)
5324 domain_num++;
5325 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5326 if (table == NULL)
5327 return NULL;
5328
5329 i = 0;
5330 for_each_domain(cpu, sd) {
5331 snprintf(buf, 32, "domain%d", i);
5332 entry->procname = kstrdup(buf, GFP_KERNEL);
5333 entry->mode = 0555;
5334 entry->child = sd_alloc_ctl_domain_table(sd);
5335 entry++;
5336 i++;
5337 }
5338 return table;
5339 }
5340
5341 static struct ctl_table_header *sd_sysctl_header;
5342 static void register_sched_domain_sysctl(void)
5343 {
5344 int i, cpu_num = num_possible_cpus();
5345 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5346 char buf[32];
5347
5348 WARN_ON(sd_ctl_dir[0].child);
5349 sd_ctl_dir[0].child = entry;
5350
5351 if (entry == NULL)
5352 return;
5353
5354 for_each_possible_cpu(i) {
5355 snprintf(buf, 32, "cpu%d", i);
5356 entry->procname = kstrdup(buf, GFP_KERNEL);
5357 entry->mode = 0555;
5358 entry->child = sd_alloc_ctl_cpu_table(i);
5359 entry++;
5360 }
5361
5362 WARN_ON(sd_sysctl_header);
5363 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5364 }
5365
5366 /* may be called multiple times per register */
5367 static void unregister_sched_domain_sysctl(void)
5368 {
5369 if (sd_sysctl_header)
5370 unregister_sysctl_table(sd_sysctl_header);
5371 sd_sysctl_header = NULL;
5372 if (sd_ctl_dir[0].child)
5373 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5374 }
5375 #else
5376 static void register_sched_domain_sysctl(void)
5377 {
5378 }
5379 static void unregister_sched_domain_sysctl(void)
5380 {
5381 }
5382 #endif
5383
5384 static void set_rq_online(struct rq *rq)
5385 {
5386 if (!rq->online) {
5387 const struct sched_class *class;
5388
5389 cpumask_set_cpu(rq->cpu, rq->rd->online);
5390 rq->online = 1;
5391
5392 for_each_class(class) {
5393 if (class->rq_online)
5394 class->rq_online(rq);
5395 }
5396 }
5397 }
5398
5399 static void set_rq_offline(struct rq *rq)
5400 {
5401 if (rq->online) {
5402 const struct sched_class *class;
5403
5404 for_each_class(class) {
5405 if (class->rq_offline)
5406 class->rq_offline(rq);
5407 }
5408
5409 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5410 rq->online = 0;
5411 }
5412 }
5413
5414 /*
5415 * migration_call - callback that gets triggered when a CPU is added.
5416 * Here we can start up the necessary migration thread for the new CPU.
5417 */
5418 static int __cpuinit
5419 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5420 {
5421 int cpu = (long)hcpu;
5422 unsigned long flags;
5423 struct rq *rq = cpu_rq(cpu);
5424
5425 switch (action & ~CPU_TASKS_FROZEN) {
5426
5427 case CPU_UP_PREPARE:
5428 rq->calc_load_update = calc_load_update;
5429 break;
5430
5431 case CPU_ONLINE:
5432 /* Update our root-domain */
5433 raw_spin_lock_irqsave(&rq->lock, flags);
5434 if (rq->rd) {
5435 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5436
5437 set_rq_online(rq);
5438 }
5439 raw_spin_unlock_irqrestore(&rq->lock, flags);
5440 break;
5441
5442 #ifdef CONFIG_HOTPLUG_CPU
5443 case CPU_DYING:
5444 sched_ttwu_pending();
5445 /* Update our root-domain */
5446 raw_spin_lock_irqsave(&rq->lock, flags);
5447 if (rq->rd) {
5448 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5449 set_rq_offline(rq);
5450 }
5451 migrate_tasks(cpu);
5452 BUG_ON(rq->nr_running != 1); /* the migration thread */
5453 raw_spin_unlock_irqrestore(&rq->lock, flags);
5454
5455 migrate_nr_uninterruptible(rq);
5456 calc_global_load_remove(rq);
5457 break;
5458 #endif
5459 }
5460
5461 update_max_interval();
5462
5463 return NOTIFY_OK;
5464 }
5465
5466 /*
5467 * Register at high priority so that task migration (migrate_all_tasks)
5468 * happens before everything else. This has to be lower priority than
5469 * the notifier in the perf_event subsystem, though.
5470 */
5471 static struct notifier_block __cpuinitdata migration_notifier = {
5472 .notifier_call = migration_call,
5473 .priority = CPU_PRI_MIGRATION,
5474 };
5475
5476 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5477 unsigned long action, void *hcpu)
5478 {
5479 switch (action & ~CPU_TASKS_FROZEN) {
5480 case CPU_STARTING:
5481 case CPU_DOWN_FAILED:
5482 set_cpu_active((long)hcpu, true);
5483 return NOTIFY_OK;
5484 default:
5485 return NOTIFY_DONE;
5486 }
5487 }
5488
5489 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5490 unsigned long action, void *hcpu)
5491 {
5492 switch (action & ~CPU_TASKS_FROZEN) {
5493 case CPU_DOWN_PREPARE:
5494 set_cpu_active((long)hcpu, false);
5495 return NOTIFY_OK;
5496 default:
5497 return NOTIFY_DONE;
5498 }
5499 }
5500
5501 static int __init migration_init(void)
5502 {
5503 void *cpu = (void *)(long)smp_processor_id();
5504 int err;
5505
5506 /* Initialize migration for the boot CPU */
5507 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5508 BUG_ON(err == NOTIFY_BAD);
5509 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5510 register_cpu_notifier(&migration_notifier);
5511
5512 /* Register cpu active notifiers */
5513 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5514 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5515
5516 return 0;
5517 }
5518 early_initcall(migration_init);
5519 #endif
5520
5521 #ifdef CONFIG_SMP
5522
5523 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5524
5525 #ifdef CONFIG_SCHED_DEBUG
5526
5527 static __read_mostly int sched_domain_debug_enabled;
5528
5529 static int __init sched_domain_debug_setup(char *str)
5530 {
5531 sched_domain_debug_enabled = 1;
5532
5533 return 0;
5534 }
5535 early_param("sched_debug", sched_domain_debug_setup);
5536
5537 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5538 struct cpumask *groupmask)
5539 {
5540 struct sched_group *group = sd->groups;
5541 char str[256];
5542
5543 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5544 cpumask_clear(groupmask);
5545
5546 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5547
5548 if (!(sd->flags & SD_LOAD_BALANCE)) {
5549 printk("does not load-balance\n");
5550 if (sd->parent)
5551 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5552 " has parent");
5553 return -1;
5554 }
5555
5556 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5557
5558 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5559 printk(KERN_ERR "ERROR: domain->span does not contain "
5560 "CPU%d\n", cpu);
5561 }
5562 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5563 printk(KERN_ERR "ERROR: domain->groups does not contain"
5564 " CPU%d\n", cpu);
5565 }
5566
5567 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5568 do {
5569 if (!group) {
5570 printk("\n");
5571 printk(KERN_ERR "ERROR: group is NULL\n");
5572 break;
5573 }
5574
5575 if (!group->sgp->power) {
5576 printk(KERN_CONT "\n");
5577 printk(KERN_ERR "ERROR: domain->cpu_power not "
5578 "set\n");
5579 break;
5580 }
5581
5582 if (!cpumask_weight(sched_group_cpus(group))) {
5583 printk(KERN_CONT "\n");
5584 printk(KERN_ERR "ERROR: empty group\n");
5585 break;
5586 }
5587
5588 if (!(sd->flags & SD_OVERLAP) &&
5589 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5590 printk(KERN_CONT "\n");
5591 printk(KERN_ERR "ERROR: repeated CPUs\n");
5592 break;
5593 }
5594
5595 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5596
5597 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5598
5599 printk(KERN_CONT " %s", str);
5600 if (group->sgp->power != SCHED_POWER_SCALE) {
5601 printk(KERN_CONT " (cpu_power = %d)",
5602 group->sgp->power);
5603 }
5604
5605 group = group->next;
5606 } while (group != sd->groups);
5607 printk(KERN_CONT "\n");
5608
5609 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5610 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5611
5612 if (sd->parent &&
5613 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5614 printk(KERN_ERR "ERROR: parent span is not a superset "
5615 "of domain->span\n");
5616 return 0;
5617 }
5618
5619 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5620 {
5621 int level = 0;
5622
5623 if (!sched_domain_debug_enabled)
5624 return;
5625
5626 if (!sd) {
5627 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5628 return;
5629 }
5630
5631 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5632
5633 for (;;) {
5634 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5635 break;
5636 level++;
5637 sd = sd->parent;
5638 if (!sd)
5639 break;
5640 }
5641 }
5642 #else /* !CONFIG_SCHED_DEBUG */
5643 # define sched_domain_debug(sd, cpu) do { } while (0)
5644 #endif /* CONFIG_SCHED_DEBUG */
5645
5646 static int sd_degenerate(struct sched_domain *sd)
5647 {
5648 if (cpumask_weight(sched_domain_span(sd)) == 1)
5649 return 1;
5650
5651 /* Following flags need at least 2 groups */
5652 if (sd->flags & (SD_LOAD_BALANCE |
5653 SD_BALANCE_NEWIDLE |
5654 SD_BALANCE_FORK |
5655 SD_BALANCE_EXEC |
5656 SD_SHARE_CPUPOWER |
5657 SD_SHARE_PKG_RESOURCES)) {
5658 if (sd->groups != sd->groups->next)
5659 return 0;
5660 }
5661
5662 /* Following flags don't use groups */
5663 if (sd->flags & (SD_WAKE_AFFINE))
5664 return 0;
5665
5666 return 1;
5667 }
5668
5669 static int
5670 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5671 {
5672 unsigned long cflags = sd->flags, pflags = parent->flags;
5673
5674 if (sd_degenerate(parent))
5675 return 1;
5676
5677 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5678 return 0;
5679
5680 /* Flags needing groups don't count if only 1 group in parent */
5681 if (parent->groups == parent->groups->next) {
5682 pflags &= ~(SD_LOAD_BALANCE |
5683 SD_BALANCE_NEWIDLE |
5684 SD_BALANCE_FORK |
5685 SD_BALANCE_EXEC |
5686 SD_SHARE_CPUPOWER |
5687 SD_SHARE_PKG_RESOURCES);
5688 if (nr_node_ids == 1)
5689 pflags &= ~SD_SERIALIZE;
5690 }
5691 if (~cflags & pflags)
5692 return 0;
5693
5694 return 1;
5695 }
5696
5697 static void free_rootdomain(struct rcu_head *rcu)
5698 {
5699 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5700
5701 cpupri_cleanup(&rd->cpupri);
5702 free_cpumask_var(rd->rto_mask);
5703 free_cpumask_var(rd->online);
5704 free_cpumask_var(rd->span);
5705 kfree(rd);
5706 }
5707
5708 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5709 {
5710 struct root_domain *old_rd = NULL;
5711 unsigned long flags;
5712
5713 raw_spin_lock_irqsave(&rq->lock, flags);
5714
5715 if (rq->rd) {
5716 old_rd = rq->rd;
5717
5718 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5719 set_rq_offline(rq);
5720
5721 cpumask_clear_cpu(rq->cpu, old_rd->span);
5722
5723 /*
5724 * If we dont want to free the old_rt yet then
5725 * set old_rd to NULL to skip the freeing later
5726 * in this function:
5727 */
5728 if (!atomic_dec_and_test(&old_rd->refcount))
5729 old_rd = NULL;
5730 }
5731
5732 atomic_inc(&rd->refcount);
5733 rq->rd = rd;
5734
5735 cpumask_set_cpu(rq->cpu, rd->span);
5736 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5737 set_rq_online(rq);
5738
5739 raw_spin_unlock_irqrestore(&rq->lock, flags);
5740
5741 if (old_rd)
5742 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5743 }
5744
5745 static int init_rootdomain(struct root_domain *rd)
5746 {
5747 memset(rd, 0, sizeof(*rd));
5748
5749 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5750 goto out;
5751 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5752 goto free_span;
5753 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5754 goto free_online;
5755
5756 if (cpupri_init(&rd->cpupri) != 0)
5757 goto free_rto_mask;
5758 return 0;
5759
5760 free_rto_mask:
5761 free_cpumask_var(rd->rto_mask);
5762 free_online:
5763 free_cpumask_var(rd->online);
5764 free_span:
5765 free_cpumask_var(rd->span);
5766 out:
5767 return -ENOMEM;
5768 }
5769
5770 /*
5771 * By default the system creates a single root-domain with all cpus as
5772 * members (mimicking the global state we have today).
5773 */
5774 struct root_domain def_root_domain;
5775
5776 static void init_defrootdomain(void)
5777 {
5778 init_rootdomain(&def_root_domain);
5779
5780 atomic_set(&def_root_domain.refcount, 1);
5781 }
5782
5783 static struct root_domain *alloc_rootdomain(void)
5784 {
5785 struct root_domain *rd;
5786
5787 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5788 if (!rd)
5789 return NULL;
5790
5791 if (init_rootdomain(rd) != 0) {
5792 kfree(rd);
5793 return NULL;
5794 }
5795
5796 return rd;
5797 }
5798
5799 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5800 {
5801 struct sched_group *tmp, *first;
5802
5803 if (!sg)
5804 return;
5805
5806 first = sg;
5807 do {
5808 tmp = sg->next;
5809
5810 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5811 kfree(sg->sgp);
5812
5813 kfree(sg);
5814 sg = tmp;
5815 } while (sg != first);
5816 }
5817
5818 static void free_sched_domain(struct rcu_head *rcu)
5819 {
5820 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5821
5822 /*
5823 * If its an overlapping domain it has private groups, iterate and
5824 * nuke them all.
5825 */
5826 if (sd->flags & SD_OVERLAP) {
5827 free_sched_groups(sd->groups, 1);
5828 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5829 kfree(sd->groups->sgp);
5830 kfree(sd->groups);
5831 }
5832 kfree(sd);
5833 }
5834
5835 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5836 {
5837 call_rcu(&sd->rcu, free_sched_domain);
5838 }
5839
5840 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5841 {
5842 for (; sd; sd = sd->parent)
5843 destroy_sched_domain(sd, cpu);
5844 }
5845
5846 /*
5847 * Keep a special pointer to the highest sched_domain that has
5848 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5849 * allows us to avoid some pointer chasing select_idle_sibling().
5850 *
5851 * Also keep a unique ID per domain (we use the first cpu number in
5852 * the cpumask of the domain), this allows us to quickly tell if
5853 * two cpus are in the same cache domain, see cpus_share_cache().
5854 */
5855 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5856 DEFINE_PER_CPU(int, sd_llc_id);
5857
5858 static void update_top_cache_domain(int cpu)
5859 {
5860 struct sched_domain *sd;
5861 int id = cpu;
5862
5863 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5864 if (sd)
5865 id = cpumask_first(sched_domain_span(sd));
5866
5867 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5868 per_cpu(sd_llc_id, cpu) = id;
5869 }
5870
5871 /*
5872 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5873 * hold the hotplug lock.
5874 */
5875 static void
5876 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5877 {
5878 struct rq *rq = cpu_rq(cpu);
5879 struct sched_domain *tmp;
5880
5881 /* Remove the sched domains which do not contribute to scheduling. */
5882 for (tmp = sd; tmp; ) {
5883 struct sched_domain *parent = tmp->parent;
5884 if (!parent)
5885 break;
5886
5887 if (sd_parent_degenerate(tmp, parent)) {
5888 tmp->parent = parent->parent;
5889 if (parent->parent)
5890 parent->parent->child = tmp;
5891 destroy_sched_domain(parent, cpu);
5892 } else
5893 tmp = tmp->parent;
5894 }
5895
5896 if (sd && sd_degenerate(sd)) {
5897 tmp = sd;
5898 sd = sd->parent;
5899 destroy_sched_domain(tmp, cpu);
5900 if (sd)
5901 sd->child = NULL;
5902 }
5903
5904 sched_domain_debug(sd, cpu);
5905
5906 rq_attach_root(rq, rd);
5907 tmp = rq->sd;
5908 rcu_assign_pointer(rq->sd, sd);
5909 destroy_sched_domains(tmp, cpu);
5910
5911 update_top_cache_domain(cpu);
5912 }
5913
5914 /* cpus with isolated domains */
5915 static cpumask_var_t cpu_isolated_map;
5916
5917 /* Setup the mask of cpus configured for isolated domains */
5918 static int __init isolated_cpu_setup(char *str)
5919 {
5920 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5921 cpulist_parse(str, cpu_isolated_map);
5922 return 1;
5923 }
5924
5925 __setup("isolcpus=", isolated_cpu_setup);
5926
5927 static const struct cpumask *cpu_cpu_mask(int cpu)
5928 {
5929 return cpumask_of_node(cpu_to_node(cpu));
5930 }
5931
5932 struct sd_data {
5933 struct sched_domain **__percpu sd;
5934 struct sched_group **__percpu sg;
5935 struct sched_group_power **__percpu sgp;
5936 };
5937
5938 struct s_data {
5939 struct sched_domain ** __percpu sd;
5940 struct root_domain *rd;
5941 };
5942
5943 enum s_alloc {
5944 sa_rootdomain,
5945 sa_sd,
5946 sa_sd_storage,
5947 sa_none,
5948 };
5949
5950 struct sched_domain_topology_level;
5951
5952 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5953 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5954
5955 #define SDTL_OVERLAP 0x01
5956
5957 struct sched_domain_topology_level {
5958 sched_domain_init_f init;
5959 sched_domain_mask_f mask;
5960 int flags;
5961 int numa_level;
5962 struct sd_data data;
5963 };
5964
5965 static int
5966 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5967 {
5968 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5969 const struct cpumask *span = sched_domain_span(sd);
5970 struct cpumask *covered = sched_domains_tmpmask;
5971 struct sd_data *sdd = sd->private;
5972 struct sched_domain *child;
5973 int i;
5974
5975 cpumask_clear(covered);
5976
5977 for_each_cpu(i, span) {
5978 struct cpumask *sg_span;
5979
5980 if (cpumask_test_cpu(i, covered))
5981 continue;
5982
5983 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5984 GFP_KERNEL, cpu_to_node(cpu));
5985
5986 if (!sg)
5987 goto fail;
5988
5989 sg_span = sched_group_cpus(sg);
5990
5991 child = *per_cpu_ptr(sdd->sd, i);
5992 if (child->child) {
5993 child = child->child;
5994 cpumask_copy(sg_span, sched_domain_span(child));
5995 } else
5996 cpumask_set_cpu(i, sg_span);
5997
5998 cpumask_or(covered, covered, sg_span);
5999
6000 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6001 atomic_inc(&sg->sgp->ref);
6002
6003 if (cpumask_test_cpu(cpu, sg_span))
6004 groups = sg;
6005
6006 if (!first)
6007 first = sg;
6008 if (last)
6009 last->next = sg;
6010 last = sg;
6011 last->next = first;
6012 }
6013 sd->groups = groups;
6014
6015 return 0;
6016
6017 fail:
6018 free_sched_groups(first, 0);
6019
6020 return -ENOMEM;
6021 }
6022
6023 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6024 {
6025 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6026 struct sched_domain *child = sd->child;
6027
6028 if (child)
6029 cpu = cpumask_first(sched_domain_span(child));
6030
6031 if (sg) {
6032 *sg = *per_cpu_ptr(sdd->sg, cpu);
6033 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6034 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6035 }
6036
6037 return cpu;
6038 }
6039
6040 /*
6041 * build_sched_groups will build a circular linked list of the groups
6042 * covered by the given span, and will set each group's ->cpumask correctly,
6043 * and ->cpu_power to 0.
6044 *
6045 * Assumes the sched_domain tree is fully constructed
6046 */
6047 static int
6048 build_sched_groups(struct sched_domain *sd, int cpu)
6049 {
6050 struct sched_group *first = NULL, *last = NULL;
6051 struct sd_data *sdd = sd->private;
6052 const struct cpumask *span = sched_domain_span(sd);
6053 struct cpumask *covered;
6054 int i;
6055
6056 get_group(cpu, sdd, &sd->groups);
6057 atomic_inc(&sd->groups->ref);
6058
6059 if (cpu != cpumask_first(sched_domain_span(sd)))
6060 return 0;
6061
6062 lockdep_assert_held(&sched_domains_mutex);
6063 covered = sched_domains_tmpmask;
6064
6065 cpumask_clear(covered);
6066
6067 for_each_cpu(i, span) {
6068 struct sched_group *sg;
6069 int group = get_group(i, sdd, &sg);
6070 int j;
6071
6072 if (cpumask_test_cpu(i, covered))
6073 continue;
6074
6075 cpumask_clear(sched_group_cpus(sg));
6076 sg->sgp->power = 0;
6077
6078 for_each_cpu(j, span) {
6079 if (get_group(j, sdd, NULL) != group)
6080 continue;
6081
6082 cpumask_set_cpu(j, covered);
6083 cpumask_set_cpu(j, sched_group_cpus(sg));
6084 }
6085
6086 if (!first)
6087 first = sg;
6088 if (last)
6089 last->next = sg;
6090 last = sg;
6091 }
6092 last->next = first;
6093
6094 return 0;
6095 }
6096
6097 /*
6098 * Initialize sched groups cpu_power.
6099 *
6100 * cpu_power indicates the capacity of sched group, which is used while
6101 * distributing the load between different sched groups in a sched domain.
6102 * Typically cpu_power for all the groups in a sched domain will be same unless
6103 * there are asymmetries in the topology. If there are asymmetries, group
6104 * having more cpu_power will pickup more load compared to the group having
6105 * less cpu_power.
6106 */
6107 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6108 {
6109 struct sched_group *sg = sd->groups;
6110
6111 WARN_ON(!sd || !sg);
6112
6113 do {
6114 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6115 sg = sg->next;
6116 } while (sg != sd->groups);
6117
6118 if (cpu != group_first_cpu(sg))
6119 return;
6120
6121 update_group_power(sd, cpu);
6122 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6123 }
6124
6125 int __weak arch_sd_sibling_asym_packing(void)
6126 {
6127 return 0*SD_ASYM_PACKING;
6128 }
6129
6130 /*
6131 * Initializers for schedule domains
6132 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6133 */
6134
6135 #ifdef CONFIG_SCHED_DEBUG
6136 # define SD_INIT_NAME(sd, type) sd->name = #type
6137 #else
6138 # define SD_INIT_NAME(sd, type) do { } while (0)
6139 #endif
6140
6141 #define SD_INIT_FUNC(type) \
6142 static noinline struct sched_domain * \
6143 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6144 { \
6145 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6146 *sd = SD_##type##_INIT; \
6147 SD_INIT_NAME(sd, type); \
6148 sd->private = &tl->data; \
6149 return sd; \
6150 }
6151
6152 SD_INIT_FUNC(CPU)
6153 #ifdef CONFIG_SCHED_SMT
6154 SD_INIT_FUNC(SIBLING)
6155 #endif
6156 #ifdef CONFIG_SCHED_MC
6157 SD_INIT_FUNC(MC)
6158 #endif
6159 #ifdef CONFIG_SCHED_BOOK
6160 SD_INIT_FUNC(BOOK)
6161 #endif
6162
6163 static int default_relax_domain_level = -1;
6164 int sched_domain_level_max;
6165
6166 static int __init setup_relax_domain_level(char *str)
6167 {
6168 unsigned long val;
6169
6170 val = simple_strtoul(str, NULL, 0);
6171 if (val < sched_domain_level_max)
6172 default_relax_domain_level = val;
6173
6174 return 1;
6175 }
6176 __setup("relax_domain_level=", setup_relax_domain_level);
6177
6178 static void set_domain_attribute(struct sched_domain *sd,
6179 struct sched_domain_attr *attr)
6180 {
6181 int request;
6182
6183 if (!attr || attr->relax_domain_level < 0) {
6184 if (default_relax_domain_level < 0)
6185 return;
6186 else
6187 request = default_relax_domain_level;
6188 } else
6189 request = attr->relax_domain_level;
6190 if (request < sd->level) {
6191 /* turn off idle balance on this domain */
6192 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6193 } else {
6194 /* turn on idle balance on this domain */
6195 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6196 }
6197 }
6198
6199 static void __sdt_free(const struct cpumask *cpu_map);
6200 static int __sdt_alloc(const struct cpumask *cpu_map);
6201
6202 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6203 const struct cpumask *cpu_map)
6204 {
6205 switch (what) {
6206 case sa_rootdomain:
6207 if (!atomic_read(&d->rd->refcount))
6208 free_rootdomain(&d->rd->rcu); /* fall through */
6209 case sa_sd:
6210 free_percpu(d->sd); /* fall through */
6211 case sa_sd_storage:
6212 __sdt_free(cpu_map); /* fall through */
6213 case sa_none:
6214 break;
6215 }
6216 }
6217
6218 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6219 const struct cpumask *cpu_map)
6220 {
6221 memset(d, 0, sizeof(*d));
6222
6223 if (__sdt_alloc(cpu_map))
6224 return sa_sd_storage;
6225 d->sd = alloc_percpu(struct sched_domain *);
6226 if (!d->sd)
6227 return sa_sd_storage;
6228 d->rd = alloc_rootdomain();
6229 if (!d->rd)
6230 return sa_sd;
6231 return sa_rootdomain;
6232 }
6233
6234 /*
6235 * NULL the sd_data elements we've used to build the sched_domain and
6236 * sched_group structure so that the subsequent __free_domain_allocs()
6237 * will not free the data we're using.
6238 */
6239 static void claim_allocations(int cpu, struct sched_domain *sd)
6240 {
6241 struct sd_data *sdd = sd->private;
6242
6243 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6244 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6245
6246 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6247 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6248
6249 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6250 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6251 }
6252
6253 #ifdef CONFIG_SCHED_SMT
6254 static const struct cpumask *cpu_smt_mask(int cpu)
6255 {
6256 return topology_thread_cpumask(cpu);
6257 }
6258 #endif
6259
6260 /*
6261 * Topology list, bottom-up.
6262 */
6263 static struct sched_domain_topology_level default_topology[] = {
6264 #ifdef CONFIG_SCHED_SMT
6265 { sd_init_SIBLING, cpu_smt_mask, },
6266 #endif
6267 #ifdef CONFIG_SCHED_MC
6268 { sd_init_MC, cpu_coregroup_mask, },
6269 #endif
6270 #ifdef CONFIG_SCHED_BOOK
6271 { sd_init_BOOK, cpu_book_mask, },
6272 #endif
6273 { sd_init_CPU, cpu_cpu_mask, },
6274 { NULL, },
6275 };
6276
6277 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6278
6279 #ifdef CONFIG_NUMA
6280
6281 static int sched_domains_numa_levels;
6282 static int sched_domains_numa_scale;
6283 static int *sched_domains_numa_distance;
6284 static struct cpumask ***sched_domains_numa_masks;
6285 static int sched_domains_curr_level;
6286
6287 static inline int sd_local_flags(int level)
6288 {
6289 if (sched_domains_numa_distance[level] > REMOTE_DISTANCE)
6290 return 0;
6291
6292 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6293 }
6294
6295 static struct sched_domain *
6296 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6297 {
6298 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6299 int level = tl->numa_level;
6300 int sd_weight = cpumask_weight(
6301 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6302
6303 *sd = (struct sched_domain){
6304 .min_interval = sd_weight,
6305 .max_interval = 2*sd_weight,
6306 .busy_factor = 32,
6307 .imbalance_pct = 125,
6308 .cache_nice_tries = 2,
6309 .busy_idx = 3,
6310 .idle_idx = 2,
6311 .newidle_idx = 0,
6312 .wake_idx = 0,
6313 .forkexec_idx = 0,
6314
6315 .flags = 1*SD_LOAD_BALANCE
6316 | 1*SD_BALANCE_NEWIDLE
6317 | 0*SD_BALANCE_EXEC
6318 | 0*SD_BALANCE_FORK
6319 | 0*SD_BALANCE_WAKE
6320 | 0*SD_WAKE_AFFINE
6321 | 0*SD_PREFER_LOCAL
6322 | 0*SD_SHARE_CPUPOWER
6323 | 0*SD_SHARE_PKG_RESOURCES
6324 | 1*SD_SERIALIZE
6325 | 0*SD_PREFER_SIBLING
6326 | sd_local_flags(level)
6327 ,
6328 .last_balance = jiffies,
6329 .balance_interval = sd_weight,
6330 };
6331 SD_INIT_NAME(sd, NUMA);
6332 sd->private = &tl->data;
6333
6334 /*
6335 * Ugly hack to pass state to sd_numa_mask()...
6336 */
6337 sched_domains_curr_level = tl->numa_level;
6338
6339 return sd;
6340 }
6341
6342 static const struct cpumask *sd_numa_mask(int cpu)
6343 {
6344 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6345 }
6346
6347 static void sched_init_numa(void)
6348 {
6349 int next_distance, curr_distance = node_distance(0, 0);
6350 struct sched_domain_topology_level *tl;
6351 int level = 0;
6352 int i, j, k;
6353
6354 sched_domains_numa_scale = curr_distance;
6355 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6356 if (!sched_domains_numa_distance)
6357 return;
6358
6359 /*
6360 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6361 * unique distances in the node_distance() table.
6362 *
6363 * Assumes node_distance(0,j) includes all distances in
6364 * node_distance(i,j) in order to avoid cubic time.
6365 *
6366 * XXX: could be optimized to O(n log n) by using sort()
6367 */
6368 next_distance = curr_distance;
6369 for (i = 0; i < nr_node_ids; i++) {
6370 for (j = 0; j < nr_node_ids; j++) {
6371 int distance = node_distance(0, j);
6372 if (distance > curr_distance &&
6373 (distance < next_distance ||
6374 next_distance == curr_distance))
6375 next_distance = distance;
6376 }
6377 if (next_distance != curr_distance) {
6378 sched_domains_numa_distance[level++] = next_distance;
6379 sched_domains_numa_levels = level;
6380 curr_distance = next_distance;
6381 } else break;
6382 }
6383 /*
6384 * 'level' contains the number of unique distances, excluding the
6385 * identity distance node_distance(i,i).
6386 *
6387 * The sched_domains_nume_distance[] array includes the actual distance
6388 * numbers.
6389 */
6390
6391 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6392 if (!sched_domains_numa_masks)
6393 return;
6394
6395 /*
6396 * Now for each level, construct a mask per node which contains all
6397 * cpus of nodes that are that many hops away from us.
6398 */
6399 for (i = 0; i < level; i++) {
6400 sched_domains_numa_masks[i] =
6401 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6402 if (!sched_domains_numa_masks[i])
6403 return;
6404
6405 for (j = 0; j < nr_node_ids; j++) {
6406 struct cpumask *mask = kzalloc_node(cpumask_size(), GFP_KERNEL, j);
6407 if (!mask)
6408 return;
6409
6410 sched_domains_numa_masks[i][j] = mask;
6411
6412 for (k = 0; k < nr_node_ids; k++) {
6413 if (node_distance(j, k) > sched_domains_numa_distance[i])
6414 continue;
6415
6416 cpumask_or(mask, mask, cpumask_of_node(k));
6417 }
6418 }
6419 }
6420
6421 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6422 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6423 if (!tl)
6424 return;
6425
6426 /*
6427 * Copy the default topology bits..
6428 */
6429 for (i = 0; default_topology[i].init; i++)
6430 tl[i] = default_topology[i];
6431
6432 /*
6433 * .. and append 'j' levels of NUMA goodness.
6434 */
6435 for (j = 0; j < level; i++, j++) {
6436 tl[i] = (struct sched_domain_topology_level){
6437 .init = sd_numa_init,
6438 .mask = sd_numa_mask,
6439 .flags = SDTL_OVERLAP,
6440 .numa_level = j,
6441 };
6442 }
6443
6444 sched_domain_topology = tl;
6445 }
6446 #else
6447 static inline void sched_init_numa(void)
6448 {
6449 }
6450 #endif /* CONFIG_NUMA */
6451
6452 static int __sdt_alloc(const struct cpumask *cpu_map)
6453 {
6454 struct sched_domain_topology_level *tl;
6455 int j;
6456
6457 for (tl = sched_domain_topology; tl->init; tl++) {
6458 struct sd_data *sdd = &tl->data;
6459
6460 sdd->sd = alloc_percpu(struct sched_domain *);
6461 if (!sdd->sd)
6462 return -ENOMEM;
6463
6464 sdd->sg = alloc_percpu(struct sched_group *);
6465 if (!sdd->sg)
6466 return -ENOMEM;
6467
6468 sdd->sgp = alloc_percpu(struct sched_group_power *);
6469 if (!sdd->sgp)
6470 return -ENOMEM;
6471
6472 for_each_cpu(j, cpu_map) {
6473 struct sched_domain *sd;
6474 struct sched_group *sg;
6475 struct sched_group_power *sgp;
6476
6477 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6478 GFP_KERNEL, cpu_to_node(j));
6479 if (!sd)
6480 return -ENOMEM;
6481
6482 *per_cpu_ptr(sdd->sd, j) = sd;
6483
6484 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6485 GFP_KERNEL, cpu_to_node(j));
6486 if (!sg)
6487 return -ENOMEM;
6488
6489 sg->next = sg;
6490
6491 *per_cpu_ptr(sdd->sg, j) = sg;
6492
6493 sgp = kzalloc_node(sizeof(struct sched_group_power),
6494 GFP_KERNEL, cpu_to_node(j));
6495 if (!sgp)
6496 return -ENOMEM;
6497
6498 *per_cpu_ptr(sdd->sgp, j) = sgp;
6499 }
6500 }
6501
6502 return 0;
6503 }
6504
6505 static void __sdt_free(const struct cpumask *cpu_map)
6506 {
6507 struct sched_domain_topology_level *tl;
6508 int j;
6509
6510 for (tl = sched_domain_topology; tl->init; tl++) {
6511 struct sd_data *sdd = &tl->data;
6512
6513 for_each_cpu(j, cpu_map) {
6514 struct sched_domain *sd;
6515
6516 if (sdd->sd) {
6517 sd = *per_cpu_ptr(sdd->sd, j);
6518 if (sd && (sd->flags & SD_OVERLAP))
6519 free_sched_groups(sd->groups, 0);
6520 kfree(*per_cpu_ptr(sdd->sd, j));
6521 }
6522
6523 if (sdd->sg)
6524 kfree(*per_cpu_ptr(sdd->sg, j));
6525 if (sdd->sgp)
6526 kfree(*per_cpu_ptr(sdd->sgp, j));
6527 }
6528 free_percpu(sdd->sd);
6529 sdd->sd = NULL;
6530 free_percpu(sdd->sg);
6531 sdd->sg = NULL;
6532 free_percpu(sdd->sgp);
6533 sdd->sgp = NULL;
6534 }
6535 }
6536
6537 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6538 struct s_data *d, const struct cpumask *cpu_map,
6539 struct sched_domain_attr *attr, struct sched_domain *child,
6540 int cpu)
6541 {
6542 struct sched_domain *sd = tl->init(tl, cpu);
6543 if (!sd)
6544 return child;
6545
6546 set_domain_attribute(sd, attr);
6547 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6548 if (child) {
6549 sd->level = child->level + 1;
6550 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6551 child->parent = sd;
6552 }
6553 sd->child = child;
6554
6555 return sd;
6556 }
6557
6558 /*
6559 * Build sched domains for a given set of cpus and attach the sched domains
6560 * to the individual cpus
6561 */
6562 static int build_sched_domains(const struct cpumask *cpu_map,
6563 struct sched_domain_attr *attr)
6564 {
6565 enum s_alloc alloc_state = sa_none;
6566 struct sched_domain *sd;
6567 struct s_data d;
6568 int i, ret = -ENOMEM;
6569
6570 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6571 if (alloc_state != sa_rootdomain)
6572 goto error;
6573
6574 /* Set up domains for cpus specified by the cpu_map. */
6575 for_each_cpu(i, cpu_map) {
6576 struct sched_domain_topology_level *tl;
6577
6578 sd = NULL;
6579 for (tl = sched_domain_topology; tl->init; tl++) {
6580 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6581 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6582 sd->flags |= SD_OVERLAP;
6583 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6584 break;
6585 }
6586
6587 while (sd->child)
6588 sd = sd->child;
6589
6590 *per_cpu_ptr(d.sd, i) = sd;
6591 }
6592
6593 /* Build the groups for the domains */
6594 for_each_cpu(i, cpu_map) {
6595 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6596 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6597 if (sd->flags & SD_OVERLAP) {
6598 if (build_overlap_sched_groups(sd, i))
6599 goto error;
6600 } else {
6601 if (build_sched_groups(sd, i))
6602 goto error;
6603 }
6604 }
6605 }
6606
6607 /* Calculate CPU power for physical packages and nodes */
6608 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6609 if (!cpumask_test_cpu(i, cpu_map))
6610 continue;
6611
6612 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6613 claim_allocations(i, sd);
6614 init_sched_groups_power(i, sd);
6615 }
6616 }
6617
6618 /* Attach the domains */
6619 rcu_read_lock();
6620 for_each_cpu(i, cpu_map) {
6621 sd = *per_cpu_ptr(d.sd, i);
6622 cpu_attach_domain(sd, d.rd, i);
6623 }
6624 rcu_read_unlock();
6625
6626 ret = 0;
6627 error:
6628 __free_domain_allocs(&d, alloc_state, cpu_map);
6629 return ret;
6630 }
6631
6632 static cpumask_var_t *doms_cur; /* current sched domains */
6633 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6634 static struct sched_domain_attr *dattr_cur;
6635 /* attribues of custom domains in 'doms_cur' */
6636
6637 /*
6638 * Special case: If a kmalloc of a doms_cur partition (array of
6639 * cpumask) fails, then fallback to a single sched domain,
6640 * as determined by the single cpumask fallback_doms.
6641 */
6642 static cpumask_var_t fallback_doms;
6643
6644 /*
6645 * arch_update_cpu_topology lets virtualized architectures update the
6646 * cpu core maps. It is supposed to return 1 if the topology changed
6647 * or 0 if it stayed the same.
6648 */
6649 int __attribute__((weak)) arch_update_cpu_topology(void)
6650 {
6651 return 0;
6652 }
6653
6654 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6655 {
6656 int i;
6657 cpumask_var_t *doms;
6658
6659 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6660 if (!doms)
6661 return NULL;
6662 for (i = 0; i < ndoms; i++) {
6663 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6664 free_sched_domains(doms, i);
6665 return NULL;
6666 }
6667 }
6668 return doms;
6669 }
6670
6671 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6672 {
6673 unsigned int i;
6674 for (i = 0; i < ndoms; i++)
6675 free_cpumask_var(doms[i]);
6676 kfree(doms);
6677 }
6678
6679 /*
6680 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6681 * For now this just excludes isolated cpus, but could be used to
6682 * exclude other special cases in the future.
6683 */
6684 static int init_sched_domains(const struct cpumask *cpu_map)
6685 {
6686 int err;
6687
6688 arch_update_cpu_topology();
6689 ndoms_cur = 1;
6690 doms_cur = alloc_sched_domains(ndoms_cur);
6691 if (!doms_cur)
6692 doms_cur = &fallback_doms;
6693 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6694 dattr_cur = NULL;
6695 err = build_sched_domains(doms_cur[0], NULL);
6696 register_sched_domain_sysctl();
6697
6698 return err;
6699 }
6700
6701 /*
6702 * Detach sched domains from a group of cpus specified in cpu_map
6703 * These cpus will now be attached to the NULL domain
6704 */
6705 static void detach_destroy_domains(const struct cpumask *cpu_map)
6706 {
6707 int i;
6708
6709 rcu_read_lock();
6710 for_each_cpu(i, cpu_map)
6711 cpu_attach_domain(NULL, &def_root_domain, i);
6712 rcu_read_unlock();
6713 }
6714
6715 /* handle null as "default" */
6716 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6717 struct sched_domain_attr *new, int idx_new)
6718 {
6719 struct sched_domain_attr tmp;
6720
6721 /* fast path */
6722 if (!new && !cur)
6723 return 1;
6724
6725 tmp = SD_ATTR_INIT;
6726 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6727 new ? (new + idx_new) : &tmp,
6728 sizeof(struct sched_domain_attr));
6729 }
6730
6731 /*
6732 * Partition sched domains as specified by the 'ndoms_new'
6733 * cpumasks in the array doms_new[] of cpumasks. This compares
6734 * doms_new[] to the current sched domain partitioning, doms_cur[].
6735 * It destroys each deleted domain and builds each new domain.
6736 *
6737 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6738 * The masks don't intersect (don't overlap.) We should setup one
6739 * sched domain for each mask. CPUs not in any of the cpumasks will
6740 * not be load balanced. If the same cpumask appears both in the
6741 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6742 * it as it is.
6743 *
6744 * The passed in 'doms_new' should be allocated using
6745 * alloc_sched_domains. This routine takes ownership of it and will
6746 * free_sched_domains it when done with it. If the caller failed the
6747 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6748 * and partition_sched_domains() will fallback to the single partition
6749 * 'fallback_doms', it also forces the domains to be rebuilt.
6750 *
6751 * If doms_new == NULL it will be replaced with cpu_online_mask.
6752 * ndoms_new == 0 is a special case for destroying existing domains,
6753 * and it will not create the default domain.
6754 *
6755 * Call with hotplug lock held
6756 */
6757 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6758 struct sched_domain_attr *dattr_new)
6759 {
6760 int i, j, n;
6761 int new_topology;
6762
6763 mutex_lock(&sched_domains_mutex);
6764
6765 /* always unregister in case we don't destroy any domains */
6766 unregister_sched_domain_sysctl();
6767
6768 /* Let architecture update cpu core mappings. */
6769 new_topology = arch_update_cpu_topology();
6770
6771 n = doms_new ? ndoms_new : 0;
6772
6773 /* Destroy deleted domains */
6774 for (i = 0; i < ndoms_cur; i++) {
6775 for (j = 0; j < n && !new_topology; j++) {
6776 if (cpumask_equal(doms_cur[i], doms_new[j])
6777 && dattrs_equal(dattr_cur, i, dattr_new, j))
6778 goto match1;
6779 }
6780 /* no match - a current sched domain not in new doms_new[] */
6781 detach_destroy_domains(doms_cur[i]);
6782 match1:
6783 ;
6784 }
6785
6786 if (doms_new == NULL) {
6787 ndoms_cur = 0;
6788 doms_new = &fallback_doms;
6789 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6790 WARN_ON_ONCE(dattr_new);
6791 }
6792
6793 /* Build new domains */
6794 for (i = 0; i < ndoms_new; i++) {
6795 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6796 if (cpumask_equal(doms_new[i], doms_cur[j])
6797 && dattrs_equal(dattr_new, i, dattr_cur, j))
6798 goto match2;
6799 }
6800 /* no match - add a new doms_new */
6801 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6802 match2:
6803 ;
6804 }
6805
6806 /* Remember the new sched domains */
6807 if (doms_cur != &fallback_doms)
6808 free_sched_domains(doms_cur, ndoms_cur);
6809 kfree(dattr_cur); /* kfree(NULL) is safe */
6810 doms_cur = doms_new;
6811 dattr_cur = dattr_new;
6812 ndoms_cur = ndoms_new;
6813
6814 register_sched_domain_sysctl();
6815
6816 mutex_unlock(&sched_domains_mutex);
6817 }
6818
6819 /*
6820 * Update cpusets according to cpu_active mask. If cpusets are
6821 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6822 * around partition_sched_domains().
6823 */
6824 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6825 void *hcpu)
6826 {
6827 switch (action & ~CPU_TASKS_FROZEN) {
6828 case CPU_ONLINE:
6829 case CPU_DOWN_FAILED:
6830 cpuset_update_active_cpus();
6831 return NOTIFY_OK;
6832 default:
6833 return NOTIFY_DONE;
6834 }
6835 }
6836
6837 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6838 void *hcpu)
6839 {
6840 switch (action & ~CPU_TASKS_FROZEN) {
6841 case CPU_DOWN_PREPARE:
6842 cpuset_update_active_cpus();
6843 return NOTIFY_OK;
6844 default:
6845 return NOTIFY_DONE;
6846 }
6847 }
6848
6849 void __init sched_init_smp(void)
6850 {
6851 cpumask_var_t non_isolated_cpus;
6852
6853 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6854 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6855
6856 sched_init_numa();
6857
6858 get_online_cpus();
6859 mutex_lock(&sched_domains_mutex);
6860 init_sched_domains(cpu_active_mask);
6861 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6862 if (cpumask_empty(non_isolated_cpus))
6863 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6864 mutex_unlock(&sched_domains_mutex);
6865 put_online_cpus();
6866
6867 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6868 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6869
6870 /* RT runtime code needs to handle some hotplug events */
6871 hotcpu_notifier(update_runtime, 0);
6872
6873 init_hrtick();
6874
6875 /* Move init over to a non-isolated CPU */
6876 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6877 BUG();
6878 sched_init_granularity();
6879 free_cpumask_var(non_isolated_cpus);
6880
6881 init_sched_rt_class();
6882 }
6883 #else
6884 void __init sched_init_smp(void)
6885 {
6886 sched_init_granularity();
6887 }
6888 #endif /* CONFIG_SMP */
6889
6890 const_debug unsigned int sysctl_timer_migration = 1;
6891
6892 int in_sched_functions(unsigned long addr)
6893 {
6894 return in_lock_functions(addr) ||
6895 (addr >= (unsigned long)__sched_text_start
6896 && addr < (unsigned long)__sched_text_end);
6897 }
6898
6899 #ifdef CONFIG_CGROUP_SCHED
6900 struct task_group root_task_group;
6901 #endif
6902
6903 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6904
6905 void __init sched_init(void)
6906 {
6907 int i, j;
6908 unsigned long alloc_size = 0, ptr;
6909
6910 #ifdef CONFIG_FAIR_GROUP_SCHED
6911 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6912 #endif
6913 #ifdef CONFIG_RT_GROUP_SCHED
6914 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6915 #endif
6916 #ifdef CONFIG_CPUMASK_OFFSTACK
6917 alloc_size += num_possible_cpus() * cpumask_size();
6918 #endif
6919 if (alloc_size) {
6920 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6921
6922 #ifdef CONFIG_FAIR_GROUP_SCHED
6923 root_task_group.se = (struct sched_entity **)ptr;
6924 ptr += nr_cpu_ids * sizeof(void **);
6925
6926 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6927 ptr += nr_cpu_ids * sizeof(void **);
6928
6929 #endif /* CONFIG_FAIR_GROUP_SCHED */
6930 #ifdef CONFIG_RT_GROUP_SCHED
6931 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6932 ptr += nr_cpu_ids * sizeof(void **);
6933
6934 root_task_group.rt_rq = (struct rt_rq **)ptr;
6935 ptr += nr_cpu_ids * sizeof(void **);
6936
6937 #endif /* CONFIG_RT_GROUP_SCHED */
6938 #ifdef CONFIG_CPUMASK_OFFSTACK
6939 for_each_possible_cpu(i) {
6940 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6941 ptr += cpumask_size();
6942 }
6943 #endif /* CONFIG_CPUMASK_OFFSTACK */
6944 }
6945
6946 #ifdef CONFIG_SMP
6947 init_defrootdomain();
6948 #endif
6949
6950 init_rt_bandwidth(&def_rt_bandwidth,
6951 global_rt_period(), global_rt_runtime());
6952
6953 #ifdef CONFIG_RT_GROUP_SCHED
6954 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6955 global_rt_period(), global_rt_runtime());
6956 #endif /* CONFIG_RT_GROUP_SCHED */
6957
6958 #ifdef CONFIG_CGROUP_SCHED
6959 list_add(&root_task_group.list, &task_groups);
6960 INIT_LIST_HEAD(&root_task_group.children);
6961 INIT_LIST_HEAD(&root_task_group.siblings);
6962 autogroup_init(&init_task);
6963
6964 #endif /* CONFIG_CGROUP_SCHED */
6965
6966 #ifdef CONFIG_CGROUP_CPUACCT
6967 root_cpuacct.cpustat = &kernel_cpustat;
6968 root_cpuacct.cpuusage = alloc_percpu(u64);
6969 /* Too early, not expected to fail */
6970 BUG_ON(!root_cpuacct.cpuusage);
6971 #endif
6972 for_each_possible_cpu(i) {
6973 struct rq *rq;
6974
6975 rq = cpu_rq(i);
6976 raw_spin_lock_init(&rq->lock);
6977 rq->nr_running = 0;
6978 rq->calc_load_active = 0;
6979 rq->calc_load_update = jiffies + LOAD_FREQ;
6980 init_cfs_rq(&rq->cfs);
6981 init_rt_rq(&rq->rt, rq);
6982 #ifdef CONFIG_FAIR_GROUP_SCHED
6983 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6984 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6985 /*
6986 * How much cpu bandwidth does root_task_group get?
6987 *
6988 * In case of task-groups formed thr' the cgroup filesystem, it
6989 * gets 100% of the cpu resources in the system. This overall
6990 * system cpu resource is divided among the tasks of
6991 * root_task_group and its child task-groups in a fair manner,
6992 * based on each entity's (task or task-group's) weight
6993 * (se->load.weight).
6994 *
6995 * In other words, if root_task_group has 10 tasks of weight
6996 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6997 * then A0's share of the cpu resource is:
6998 *
6999 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7000 *
7001 * We achieve this by letting root_task_group's tasks sit
7002 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7003 */
7004 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7005 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7006 #endif /* CONFIG_FAIR_GROUP_SCHED */
7007
7008 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7009 #ifdef CONFIG_RT_GROUP_SCHED
7010 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7011 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7012 #endif
7013
7014 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7015 rq->cpu_load[j] = 0;
7016
7017 rq->last_load_update_tick = jiffies;
7018
7019 #ifdef CONFIG_SMP
7020 rq->sd = NULL;
7021 rq->rd = NULL;
7022 rq->cpu_power = SCHED_POWER_SCALE;
7023 rq->post_schedule = 0;
7024 rq->active_balance = 0;
7025 rq->next_balance = jiffies;
7026 rq->push_cpu = 0;
7027 rq->cpu = i;
7028 rq->online = 0;
7029 rq->idle_stamp = 0;
7030 rq->avg_idle = 2*sysctl_sched_migration_cost;
7031
7032 INIT_LIST_HEAD(&rq->cfs_tasks);
7033
7034 rq_attach_root(rq, &def_root_domain);
7035 #ifdef CONFIG_NO_HZ
7036 rq->nohz_flags = 0;
7037 #endif
7038 #endif
7039 init_rq_hrtick(rq);
7040 atomic_set(&rq->nr_iowait, 0);
7041 }
7042
7043 set_load_weight(&init_task);
7044
7045 #ifdef CONFIG_PREEMPT_NOTIFIERS
7046 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7047 #endif
7048
7049 #ifdef CONFIG_RT_MUTEXES
7050 plist_head_init(&init_task.pi_waiters);
7051 #endif
7052
7053 /*
7054 * The boot idle thread does lazy MMU switching as well:
7055 */
7056 atomic_inc(&init_mm.mm_count);
7057 enter_lazy_tlb(&init_mm, current);
7058
7059 /*
7060 * Make us the idle thread. Technically, schedule() should not be
7061 * called from this thread, however somewhere below it might be,
7062 * but because we are the idle thread, we just pick up running again
7063 * when this runqueue becomes "idle".
7064 */
7065 init_idle(current, smp_processor_id());
7066
7067 calc_load_update = jiffies + LOAD_FREQ;
7068
7069 /*
7070 * During early bootup we pretend to be a normal task:
7071 */
7072 current->sched_class = &fair_sched_class;
7073
7074 #ifdef CONFIG_SMP
7075 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7076 /* May be allocated at isolcpus cmdline parse time */
7077 if (cpu_isolated_map == NULL)
7078 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7079 idle_thread_set_boot_cpu();
7080 #endif
7081 init_sched_fair_class();
7082
7083 scheduler_running = 1;
7084 }
7085
7086 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7087 static inline int preempt_count_equals(int preempt_offset)
7088 {
7089 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7090
7091 return (nested == preempt_offset);
7092 }
7093
7094 void __might_sleep(const char *file, int line, int preempt_offset)
7095 {
7096 static unsigned long prev_jiffy; /* ratelimiting */
7097
7098 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7099 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7100 system_state != SYSTEM_RUNNING || oops_in_progress)
7101 return;
7102 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7103 return;
7104 prev_jiffy = jiffies;
7105
7106 printk(KERN_ERR
7107 "BUG: sleeping function called from invalid context at %s:%d\n",
7108 file, line);
7109 printk(KERN_ERR
7110 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7111 in_atomic(), irqs_disabled(),
7112 current->pid, current->comm);
7113
7114 debug_show_held_locks(current);
7115 if (irqs_disabled())
7116 print_irqtrace_events(current);
7117 dump_stack();
7118 }
7119 EXPORT_SYMBOL(__might_sleep);
7120 #endif
7121
7122 #ifdef CONFIG_MAGIC_SYSRQ
7123 static void normalize_task(struct rq *rq, struct task_struct *p)
7124 {
7125 const struct sched_class *prev_class = p->sched_class;
7126 int old_prio = p->prio;
7127 int on_rq;
7128
7129 on_rq = p->on_rq;
7130 if (on_rq)
7131 dequeue_task(rq, p, 0);
7132 __setscheduler(rq, p, SCHED_NORMAL, 0);
7133 if (on_rq) {
7134 enqueue_task(rq, p, 0);
7135 resched_task(rq->curr);
7136 }
7137
7138 check_class_changed(rq, p, prev_class, old_prio);
7139 }
7140
7141 void normalize_rt_tasks(void)
7142 {
7143 struct task_struct *g, *p;
7144 unsigned long flags;
7145 struct rq *rq;
7146
7147 read_lock_irqsave(&tasklist_lock, flags);
7148 do_each_thread(g, p) {
7149 /*
7150 * Only normalize user tasks:
7151 */
7152 if (!p->mm)
7153 continue;
7154
7155 p->se.exec_start = 0;
7156 #ifdef CONFIG_SCHEDSTATS
7157 p->se.statistics.wait_start = 0;
7158 p->se.statistics.sleep_start = 0;
7159 p->se.statistics.block_start = 0;
7160 #endif
7161
7162 if (!rt_task(p)) {
7163 /*
7164 * Renice negative nice level userspace
7165 * tasks back to 0:
7166 */
7167 if (TASK_NICE(p) < 0 && p->mm)
7168 set_user_nice(p, 0);
7169 continue;
7170 }
7171
7172 raw_spin_lock(&p->pi_lock);
7173 rq = __task_rq_lock(p);
7174
7175 normalize_task(rq, p);
7176
7177 __task_rq_unlock(rq);
7178 raw_spin_unlock(&p->pi_lock);
7179 } while_each_thread(g, p);
7180
7181 read_unlock_irqrestore(&tasklist_lock, flags);
7182 }
7183
7184 #endif /* CONFIG_MAGIC_SYSRQ */
7185
7186 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7187 /*
7188 * These functions are only useful for the IA64 MCA handling, or kdb.
7189 *
7190 * They can only be called when the whole system has been
7191 * stopped - every CPU needs to be quiescent, and no scheduling
7192 * activity can take place. Using them for anything else would
7193 * be a serious bug, and as a result, they aren't even visible
7194 * under any other configuration.
7195 */
7196
7197 /**
7198 * curr_task - return the current task for a given cpu.
7199 * @cpu: the processor in question.
7200 *
7201 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7202 */
7203 struct task_struct *curr_task(int cpu)
7204 {
7205 return cpu_curr(cpu);
7206 }
7207
7208 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7209
7210 #ifdef CONFIG_IA64
7211 /**
7212 * set_curr_task - set the current task for a given cpu.
7213 * @cpu: the processor in question.
7214 * @p: the task pointer to set.
7215 *
7216 * Description: This function must only be used when non-maskable interrupts
7217 * are serviced on a separate stack. It allows the architecture to switch the
7218 * notion of the current task on a cpu in a non-blocking manner. This function
7219 * must be called with all CPU's synchronized, and interrupts disabled, the
7220 * and caller must save the original value of the current task (see
7221 * curr_task() above) and restore that value before reenabling interrupts and
7222 * re-starting the system.
7223 *
7224 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7225 */
7226 void set_curr_task(int cpu, struct task_struct *p)
7227 {
7228 cpu_curr(cpu) = p;
7229 }
7230
7231 #endif
7232
7233 #ifdef CONFIG_CGROUP_SCHED
7234 /* task_group_lock serializes the addition/removal of task groups */
7235 static DEFINE_SPINLOCK(task_group_lock);
7236
7237 static void free_sched_group(struct task_group *tg)
7238 {
7239 free_fair_sched_group(tg);
7240 free_rt_sched_group(tg);
7241 autogroup_free(tg);
7242 kfree(tg);
7243 }
7244
7245 /* allocate runqueue etc for a new task group */
7246 struct task_group *sched_create_group(struct task_group *parent)
7247 {
7248 struct task_group *tg;
7249 unsigned long flags;
7250
7251 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7252 if (!tg)
7253 return ERR_PTR(-ENOMEM);
7254
7255 if (!alloc_fair_sched_group(tg, parent))
7256 goto err;
7257
7258 if (!alloc_rt_sched_group(tg, parent))
7259 goto err;
7260
7261 spin_lock_irqsave(&task_group_lock, flags);
7262 list_add_rcu(&tg->list, &task_groups);
7263
7264 WARN_ON(!parent); /* root should already exist */
7265
7266 tg->parent = parent;
7267 INIT_LIST_HEAD(&tg->children);
7268 list_add_rcu(&tg->siblings, &parent->children);
7269 spin_unlock_irqrestore(&task_group_lock, flags);
7270
7271 return tg;
7272
7273 err:
7274 free_sched_group(tg);
7275 return ERR_PTR(-ENOMEM);
7276 }
7277
7278 /* rcu callback to free various structures associated with a task group */
7279 static void free_sched_group_rcu(struct rcu_head *rhp)
7280 {
7281 /* now it should be safe to free those cfs_rqs */
7282 free_sched_group(container_of(rhp, struct task_group, rcu));
7283 }
7284
7285 /* Destroy runqueue etc associated with a task group */
7286 void sched_destroy_group(struct task_group *tg)
7287 {
7288 unsigned long flags;
7289 int i;
7290
7291 /* end participation in shares distribution */
7292 for_each_possible_cpu(i)
7293 unregister_fair_sched_group(tg, i);
7294
7295 spin_lock_irqsave(&task_group_lock, flags);
7296 list_del_rcu(&tg->list);
7297 list_del_rcu(&tg->siblings);
7298 spin_unlock_irqrestore(&task_group_lock, flags);
7299
7300 /* wait for possible concurrent references to cfs_rqs complete */
7301 call_rcu(&tg->rcu, free_sched_group_rcu);
7302 }
7303
7304 /* change task's runqueue when it moves between groups.
7305 * The caller of this function should have put the task in its new group
7306 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7307 * reflect its new group.
7308 */
7309 void sched_move_task(struct task_struct *tsk)
7310 {
7311 int on_rq, running;
7312 unsigned long flags;
7313 struct rq *rq;
7314
7315 rq = task_rq_lock(tsk, &flags);
7316
7317 running = task_current(rq, tsk);
7318 on_rq = tsk->on_rq;
7319
7320 if (on_rq)
7321 dequeue_task(rq, tsk, 0);
7322 if (unlikely(running))
7323 tsk->sched_class->put_prev_task(rq, tsk);
7324
7325 #ifdef CONFIG_FAIR_GROUP_SCHED
7326 if (tsk->sched_class->task_move_group)
7327 tsk->sched_class->task_move_group(tsk, on_rq);
7328 else
7329 #endif
7330 set_task_rq(tsk, task_cpu(tsk));
7331
7332 if (unlikely(running))
7333 tsk->sched_class->set_curr_task(rq);
7334 if (on_rq)
7335 enqueue_task(rq, tsk, 0);
7336
7337 task_rq_unlock(rq, tsk, &flags);
7338 }
7339 #endif /* CONFIG_CGROUP_SCHED */
7340
7341 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7342 static unsigned long to_ratio(u64 period, u64 runtime)
7343 {
7344 if (runtime == RUNTIME_INF)
7345 return 1ULL << 20;
7346
7347 return div64_u64(runtime << 20, period);
7348 }
7349 #endif
7350
7351 #ifdef CONFIG_RT_GROUP_SCHED
7352 /*
7353 * Ensure that the real time constraints are schedulable.
7354 */
7355 static DEFINE_MUTEX(rt_constraints_mutex);
7356
7357 /* Must be called with tasklist_lock held */
7358 static inline int tg_has_rt_tasks(struct task_group *tg)
7359 {
7360 struct task_struct *g, *p;
7361
7362 do_each_thread(g, p) {
7363 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7364 return 1;
7365 } while_each_thread(g, p);
7366
7367 return 0;
7368 }
7369
7370 struct rt_schedulable_data {
7371 struct task_group *tg;
7372 u64 rt_period;
7373 u64 rt_runtime;
7374 };
7375
7376 static int tg_rt_schedulable(struct task_group *tg, void *data)
7377 {
7378 struct rt_schedulable_data *d = data;
7379 struct task_group *child;
7380 unsigned long total, sum = 0;
7381 u64 period, runtime;
7382
7383 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7384 runtime = tg->rt_bandwidth.rt_runtime;
7385
7386 if (tg == d->tg) {
7387 period = d->rt_period;
7388 runtime = d->rt_runtime;
7389 }
7390
7391 /*
7392 * Cannot have more runtime than the period.
7393 */
7394 if (runtime > period && runtime != RUNTIME_INF)
7395 return -EINVAL;
7396
7397 /*
7398 * Ensure we don't starve existing RT tasks.
7399 */
7400 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7401 return -EBUSY;
7402
7403 total = to_ratio(period, runtime);
7404
7405 /*
7406 * Nobody can have more than the global setting allows.
7407 */
7408 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7409 return -EINVAL;
7410
7411 /*
7412 * The sum of our children's runtime should not exceed our own.
7413 */
7414 list_for_each_entry_rcu(child, &tg->children, siblings) {
7415 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7416 runtime = child->rt_bandwidth.rt_runtime;
7417
7418 if (child == d->tg) {
7419 period = d->rt_period;
7420 runtime = d->rt_runtime;
7421 }
7422
7423 sum += to_ratio(period, runtime);
7424 }
7425
7426 if (sum > total)
7427 return -EINVAL;
7428
7429 return 0;
7430 }
7431
7432 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7433 {
7434 int ret;
7435
7436 struct rt_schedulable_data data = {
7437 .tg = tg,
7438 .rt_period = period,
7439 .rt_runtime = runtime,
7440 };
7441
7442 rcu_read_lock();
7443 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7444 rcu_read_unlock();
7445
7446 return ret;
7447 }
7448
7449 static int tg_set_rt_bandwidth(struct task_group *tg,
7450 u64 rt_period, u64 rt_runtime)
7451 {
7452 int i, err = 0;
7453
7454 mutex_lock(&rt_constraints_mutex);
7455 read_lock(&tasklist_lock);
7456 err = __rt_schedulable(tg, rt_period, rt_runtime);
7457 if (err)
7458 goto unlock;
7459
7460 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7461 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7462 tg->rt_bandwidth.rt_runtime = rt_runtime;
7463
7464 for_each_possible_cpu(i) {
7465 struct rt_rq *rt_rq = tg->rt_rq[i];
7466
7467 raw_spin_lock(&rt_rq->rt_runtime_lock);
7468 rt_rq->rt_runtime = rt_runtime;
7469 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7470 }
7471 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7472 unlock:
7473 read_unlock(&tasklist_lock);
7474 mutex_unlock(&rt_constraints_mutex);
7475
7476 return err;
7477 }
7478
7479 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7480 {
7481 u64 rt_runtime, rt_period;
7482
7483 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7484 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7485 if (rt_runtime_us < 0)
7486 rt_runtime = RUNTIME_INF;
7487
7488 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7489 }
7490
7491 long sched_group_rt_runtime(struct task_group *tg)
7492 {
7493 u64 rt_runtime_us;
7494
7495 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7496 return -1;
7497
7498 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7499 do_div(rt_runtime_us, NSEC_PER_USEC);
7500 return rt_runtime_us;
7501 }
7502
7503 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7504 {
7505 u64 rt_runtime, rt_period;
7506
7507 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7508 rt_runtime = tg->rt_bandwidth.rt_runtime;
7509
7510 if (rt_period == 0)
7511 return -EINVAL;
7512
7513 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7514 }
7515
7516 long sched_group_rt_period(struct task_group *tg)
7517 {
7518 u64 rt_period_us;
7519
7520 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7521 do_div(rt_period_us, NSEC_PER_USEC);
7522 return rt_period_us;
7523 }
7524
7525 static int sched_rt_global_constraints(void)
7526 {
7527 u64 runtime, period;
7528 int ret = 0;
7529
7530 if (sysctl_sched_rt_period <= 0)
7531 return -EINVAL;
7532
7533 runtime = global_rt_runtime();
7534 period = global_rt_period();
7535
7536 /*
7537 * Sanity check on the sysctl variables.
7538 */
7539 if (runtime > period && runtime != RUNTIME_INF)
7540 return -EINVAL;
7541
7542 mutex_lock(&rt_constraints_mutex);
7543 read_lock(&tasklist_lock);
7544 ret = __rt_schedulable(NULL, 0, 0);
7545 read_unlock(&tasklist_lock);
7546 mutex_unlock(&rt_constraints_mutex);
7547
7548 return ret;
7549 }
7550
7551 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7552 {
7553 /* Don't accept realtime tasks when there is no way for them to run */
7554 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7555 return 0;
7556
7557 return 1;
7558 }
7559
7560 #else /* !CONFIG_RT_GROUP_SCHED */
7561 static int sched_rt_global_constraints(void)
7562 {
7563 unsigned long flags;
7564 int i;
7565
7566 if (sysctl_sched_rt_period <= 0)
7567 return -EINVAL;
7568
7569 /*
7570 * There's always some RT tasks in the root group
7571 * -- migration, kstopmachine etc..
7572 */
7573 if (sysctl_sched_rt_runtime == 0)
7574 return -EBUSY;
7575
7576 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7577 for_each_possible_cpu(i) {
7578 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7579
7580 raw_spin_lock(&rt_rq->rt_runtime_lock);
7581 rt_rq->rt_runtime = global_rt_runtime();
7582 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7583 }
7584 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7585
7586 return 0;
7587 }
7588 #endif /* CONFIG_RT_GROUP_SCHED */
7589
7590 int sched_rt_handler(struct ctl_table *table, int write,
7591 void __user *buffer, size_t *lenp,
7592 loff_t *ppos)
7593 {
7594 int ret;
7595 int old_period, old_runtime;
7596 static DEFINE_MUTEX(mutex);
7597
7598 mutex_lock(&mutex);
7599 old_period = sysctl_sched_rt_period;
7600 old_runtime = sysctl_sched_rt_runtime;
7601
7602 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7603
7604 if (!ret && write) {
7605 ret = sched_rt_global_constraints();
7606 if (ret) {
7607 sysctl_sched_rt_period = old_period;
7608 sysctl_sched_rt_runtime = old_runtime;
7609 } else {
7610 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7611 def_rt_bandwidth.rt_period =
7612 ns_to_ktime(global_rt_period());
7613 }
7614 }
7615 mutex_unlock(&mutex);
7616
7617 return ret;
7618 }
7619
7620 #ifdef CONFIG_CGROUP_SCHED
7621
7622 /* return corresponding task_group object of a cgroup */
7623 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7624 {
7625 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7626 struct task_group, css);
7627 }
7628
7629 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7630 {
7631 struct task_group *tg, *parent;
7632
7633 if (!cgrp->parent) {
7634 /* This is early initialization for the top cgroup */
7635 return &root_task_group.css;
7636 }
7637
7638 parent = cgroup_tg(cgrp->parent);
7639 tg = sched_create_group(parent);
7640 if (IS_ERR(tg))
7641 return ERR_PTR(-ENOMEM);
7642
7643 return &tg->css;
7644 }
7645
7646 static void cpu_cgroup_destroy(struct cgroup *cgrp)
7647 {
7648 struct task_group *tg = cgroup_tg(cgrp);
7649
7650 sched_destroy_group(tg);
7651 }
7652
7653 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7654 struct cgroup_taskset *tset)
7655 {
7656 struct task_struct *task;
7657
7658 cgroup_taskset_for_each(task, cgrp, tset) {
7659 #ifdef CONFIG_RT_GROUP_SCHED
7660 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7661 return -EINVAL;
7662 #else
7663 /* We don't support RT-tasks being in separate groups */
7664 if (task->sched_class != &fair_sched_class)
7665 return -EINVAL;
7666 #endif
7667 }
7668 return 0;
7669 }
7670
7671 static void cpu_cgroup_attach(struct cgroup *cgrp,
7672 struct cgroup_taskset *tset)
7673 {
7674 struct task_struct *task;
7675
7676 cgroup_taskset_for_each(task, cgrp, tset)
7677 sched_move_task(task);
7678 }
7679
7680 static void
7681 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7682 struct task_struct *task)
7683 {
7684 /*
7685 * cgroup_exit() is called in the copy_process() failure path.
7686 * Ignore this case since the task hasn't ran yet, this avoids
7687 * trying to poke a half freed task state from generic code.
7688 */
7689 if (!(task->flags & PF_EXITING))
7690 return;
7691
7692 sched_move_task(task);
7693 }
7694
7695 #ifdef CONFIG_FAIR_GROUP_SCHED
7696 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7697 u64 shareval)
7698 {
7699 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7700 }
7701
7702 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7703 {
7704 struct task_group *tg = cgroup_tg(cgrp);
7705
7706 return (u64) scale_load_down(tg->shares);
7707 }
7708
7709 #ifdef CONFIG_CFS_BANDWIDTH
7710 static DEFINE_MUTEX(cfs_constraints_mutex);
7711
7712 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7713 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7714
7715 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7716
7717 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7718 {
7719 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7720 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7721
7722 if (tg == &root_task_group)
7723 return -EINVAL;
7724
7725 /*
7726 * Ensure we have at some amount of bandwidth every period. This is
7727 * to prevent reaching a state of large arrears when throttled via
7728 * entity_tick() resulting in prolonged exit starvation.
7729 */
7730 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7731 return -EINVAL;
7732
7733 /*
7734 * Likewise, bound things on the otherside by preventing insane quota
7735 * periods. This also allows us to normalize in computing quota
7736 * feasibility.
7737 */
7738 if (period > max_cfs_quota_period)
7739 return -EINVAL;
7740
7741 mutex_lock(&cfs_constraints_mutex);
7742 ret = __cfs_schedulable(tg, period, quota);
7743 if (ret)
7744 goto out_unlock;
7745
7746 runtime_enabled = quota != RUNTIME_INF;
7747 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7748 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7749 raw_spin_lock_irq(&cfs_b->lock);
7750 cfs_b->period = ns_to_ktime(period);
7751 cfs_b->quota = quota;
7752
7753 __refill_cfs_bandwidth_runtime(cfs_b);
7754 /* restart the period timer (if active) to handle new period expiry */
7755 if (runtime_enabled && cfs_b->timer_active) {
7756 /* force a reprogram */
7757 cfs_b->timer_active = 0;
7758 __start_cfs_bandwidth(cfs_b);
7759 }
7760 raw_spin_unlock_irq(&cfs_b->lock);
7761
7762 for_each_possible_cpu(i) {
7763 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7764 struct rq *rq = cfs_rq->rq;
7765
7766 raw_spin_lock_irq(&rq->lock);
7767 cfs_rq->runtime_enabled = runtime_enabled;
7768 cfs_rq->runtime_remaining = 0;
7769
7770 if (cfs_rq->throttled)
7771 unthrottle_cfs_rq(cfs_rq);
7772 raw_spin_unlock_irq(&rq->lock);
7773 }
7774 out_unlock:
7775 mutex_unlock(&cfs_constraints_mutex);
7776
7777 return ret;
7778 }
7779
7780 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7781 {
7782 u64 quota, period;
7783
7784 period = ktime_to_ns(tg->cfs_bandwidth.period);
7785 if (cfs_quota_us < 0)
7786 quota = RUNTIME_INF;
7787 else
7788 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7789
7790 return tg_set_cfs_bandwidth(tg, period, quota);
7791 }
7792
7793 long tg_get_cfs_quota(struct task_group *tg)
7794 {
7795 u64 quota_us;
7796
7797 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7798 return -1;
7799
7800 quota_us = tg->cfs_bandwidth.quota;
7801 do_div(quota_us, NSEC_PER_USEC);
7802
7803 return quota_us;
7804 }
7805
7806 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7807 {
7808 u64 quota, period;
7809
7810 period = (u64)cfs_period_us * NSEC_PER_USEC;
7811 quota = tg->cfs_bandwidth.quota;
7812
7813 return tg_set_cfs_bandwidth(tg, period, quota);
7814 }
7815
7816 long tg_get_cfs_period(struct task_group *tg)
7817 {
7818 u64 cfs_period_us;
7819
7820 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7821 do_div(cfs_period_us, NSEC_PER_USEC);
7822
7823 return cfs_period_us;
7824 }
7825
7826 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7827 {
7828 return tg_get_cfs_quota(cgroup_tg(cgrp));
7829 }
7830
7831 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7832 s64 cfs_quota_us)
7833 {
7834 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7835 }
7836
7837 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7838 {
7839 return tg_get_cfs_period(cgroup_tg(cgrp));
7840 }
7841
7842 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7843 u64 cfs_period_us)
7844 {
7845 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7846 }
7847
7848 struct cfs_schedulable_data {
7849 struct task_group *tg;
7850 u64 period, quota;
7851 };
7852
7853 /*
7854 * normalize group quota/period to be quota/max_period
7855 * note: units are usecs
7856 */
7857 static u64 normalize_cfs_quota(struct task_group *tg,
7858 struct cfs_schedulable_data *d)
7859 {
7860 u64 quota, period;
7861
7862 if (tg == d->tg) {
7863 period = d->period;
7864 quota = d->quota;
7865 } else {
7866 period = tg_get_cfs_period(tg);
7867 quota = tg_get_cfs_quota(tg);
7868 }
7869
7870 /* note: these should typically be equivalent */
7871 if (quota == RUNTIME_INF || quota == -1)
7872 return RUNTIME_INF;
7873
7874 return to_ratio(period, quota);
7875 }
7876
7877 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7878 {
7879 struct cfs_schedulable_data *d = data;
7880 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7881 s64 quota = 0, parent_quota = -1;
7882
7883 if (!tg->parent) {
7884 quota = RUNTIME_INF;
7885 } else {
7886 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7887
7888 quota = normalize_cfs_quota(tg, d);
7889 parent_quota = parent_b->hierarchal_quota;
7890
7891 /*
7892 * ensure max(child_quota) <= parent_quota, inherit when no
7893 * limit is set
7894 */
7895 if (quota == RUNTIME_INF)
7896 quota = parent_quota;
7897 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7898 return -EINVAL;
7899 }
7900 cfs_b->hierarchal_quota = quota;
7901
7902 return 0;
7903 }
7904
7905 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7906 {
7907 int ret;
7908 struct cfs_schedulable_data data = {
7909 .tg = tg,
7910 .period = period,
7911 .quota = quota,
7912 };
7913
7914 if (quota != RUNTIME_INF) {
7915 do_div(data.period, NSEC_PER_USEC);
7916 do_div(data.quota, NSEC_PER_USEC);
7917 }
7918
7919 rcu_read_lock();
7920 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7921 rcu_read_unlock();
7922
7923 return ret;
7924 }
7925
7926 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7927 struct cgroup_map_cb *cb)
7928 {
7929 struct task_group *tg = cgroup_tg(cgrp);
7930 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7931
7932 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7933 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7934 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7935
7936 return 0;
7937 }
7938 #endif /* CONFIG_CFS_BANDWIDTH */
7939 #endif /* CONFIG_FAIR_GROUP_SCHED */
7940
7941 #ifdef CONFIG_RT_GROUP_SCHED
7942 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7943 s64 val)
7944 {
7945 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7946 }
7947
7948 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7949 {
7950 return sched_group_rt_runtime(cgroup_tg(cgrp));
7951 }
7952
7953 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7954 u64 rt_period_us)
7955 {
7956 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7957 }
7958
7959 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7960 {
7961 return sched_group_rt_period(cgroup_tg(cgrp));
7962 }
7963 #endif /* CONFIG_RT_GROUP_SCHED */
7964
7965 static struct cftype cpu_files[] = {
7966 #ifdef CONFIG_FAIR_GROUP_SCHED
7967 {
7968 .name = "shares",
7969 .read_u64 = cpu_shares_read_u64,
7970 .write_u64 = cpu_shares_write_u64,
7971 },
7972 #endif
7973 #ifdef CONFIG_CFS_BANDWIDTH
7974 {
7975 .name = "cfs_quota_us",
7976 .read_s64 = cpu_cfs_quota_read_s64,
7977 .write_s64 = cpu_cfs_quota_write_s64,
7978 },
7979 {
7980 .name = "cfs_period_us",
7981 .read_u64 = cpu_cfs_period_read_u64,
7982 .write_u64 = cpu_cfs_period_write_u64,
7983 },
7984 {
7985 .name = "stat",
7986 .read_map = cpu_stats_show,
7987 },
7988 #endif
7989 #ifdef CONFIG_RT_GROUP_SCHED
7990 {
7991 .name = "rt_runtime_us",
7992 .read_s64 = cpu_rt_runtime_read,
7993 .write_s64 = cpu_rt_runtime_write,
7994 },
7995 {
7996 .name = "rt_period_us",
7997 .read_u64 = cpu_rt_period_read_uint,
7998 .write_u64 = cpu_rt_period_write_uint,
7999 },
8000 #endif
8001 { } /* terminate */
8002 };
8003
8004 struct cgroup_subsys cpu_cgroup_subsys = {
8005 .name = "cpu",
8006 .create = cpu_cgroup_create,
8007 .destroy = cpu_cgroup_destroy,
8008 .can_attach = cpu_cgroup_can_attach,
8009 .attach = cpu_cgroup_attach,
8010 .exit = cpu_cgroup_exit,
8011 .subsys_id = cpu_cgroup_subsys_id,
8012 .base_cftypes = cpu_files,
8013 .early_init = 1,
8014 };
8015
8016 #endif /* CONFIG_CGROUP_SCHED */
8017
8018 #ifdef CONFIG_CGROUP_CPUACCT
8019
8020 /*
8021 * CPU accounting code for task groups.
8022 *
8023 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8024 * (balbir@in.ibm.com).
8025 */
8026
8027 /* create a new cpu accounting group */
8028 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8029 {
8030 struct cpuacct *ca;
8031
8032 if (!cgrp->parent)
8033 return &root_cpuacct.css;
8034
8035 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8036 if (!ca)
8037 goto out;
8038
8039 ca->cpuusage = alloc_percpu(u64);
8040 if (!ca->cpuusage)
8041 goto out_free_ca;
8042
8043 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8044 if (!ca->cpustat)
8045 goto out_free_cpuusage;
8046
8047 return &ca->css;
8048
8049 out_free_cpuusage:
8050 free_percpu(ca->cpuusage);
8051 out_free_ca:
8052 kfree(ca);
8053 out:
8054 return ERR_PTR(-ENOMEM);
8055 }
8056
8057 /* destroy an existing cpu accounting group */
8058 static void cpuacct_destroy(struct cgroup *cgrp)
8059 {
8060 struct cpuacct *ca = cgroup_ca(cgrp);
8061
8062 free_percpu(ca->cpustat);
8063 free_percpu(ca->cpuusage);
8064 kfree(ca);
8065 }
8066
8067 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8068 {
8069 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8070 u64 data;
8071
8072 #ifndef CONFIG_64BIT
8073 /*
8074 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8075 */
8076 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8077 data = *cpuusage;
8078 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8079 #else
8080 data = *cpuusage;
8081 #endif
8082
8083 return data;
8084 }
8085
8086 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8087 {
8088 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8089
8090 #ifndef CONFIG_64BIT
8091 /*
8092 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8093 */
8094 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8095 *cpuusage = val;
8096 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8097 #else
8098 *cpuusage = val;
8099 #endif
8100 }
8101
8102 /* return total cpu usage (in nanoseconds) of a group */
8103 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8104 {
8105 struct cpuacct *ca = cgroup_ca(cgrp);
8106 u64 totalcpuusage = 0;
8107 int i;
8108
8109 for_each_present_cpu(i)
8110 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8111
8112 return totalcpuusage;
8113 }
8114
8115 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8116 u64 reset)
8117 {
8118 struct cpuacct *ca = cgroup_ca(cgrp);
8119 int err = 0;
8120 int i;
8121
8122 if (reset) {
8123 err = -EINVAL;
8124 goto out;
8125 }
8126
8127 for_each_present_cpu(i)
8128 cpuacct_cpuusage_write(ca, i, 0);
8129
8130 out:
8131 return err;
8132 }
8133
8134 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8135 struct seq_file *m)
8136 {
8137 struct cpuacct *ca = cgroup_ca(cgroup);
8138 u64 percpu;
8139 int i;
8140
8141 for_each_present_cpu(i) {
8142 percpu = cpuacct_cpuusage_read(ca, i);
8143 seq_printf(m, "%llu ", (unsigned long long) percpu);
8144 }
8145 seq_printf(m, "\n");
8146 return 0;
8147 }
8148
8149 static const char *cpuacct_stat_desc[] = {
8150 [CPUACCT_STAT_USER] = "user",
8151 [CPUACCT_STAT_SYSTEM] = "system",
8152 };
8153
8154 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8155 struct cgroup_map_cb *cb)
8156 {
8157 struct cpuacct *ca = cgroup_ca(cgrp);
8158 int cpu;
8159 s64 val = 0;
8160
8161 for_each_online_cpu(cpu) {
8162 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8163 val += kcpustat->cpustat[CPUTIME_USER];
8164 val += kcpustat->cpustat[CPUTIME_NICE];
8165 }
8166 val = cputime64_to_clock_t(val);
8167 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8168
8169 val = 0;
8170 for_each_online_cpu(cpu) {
8171 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8172 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8173 val += kcpustat->cpustat[CPUTIME_IRQ];
8174 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8175 }
8176
8177 val = cputime64_to_clock_t(val);
8178 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8179
8180 return 0;
8181 }
8182
8183 static struct cftype files[] = {
8184 {
8185 .name = "usage",
8186 .read_u64 = cpuusage_read,
8187 .write_u64 = cpuusage_write,
8188 },
8189 {
8190 .name = "usage_percpu",
8191 .read_seq_string = cpuacct_percpu_seq_read,
8192 },
8193 {
8194 .name = "stat",
8195 .read_map = cpuacct_stats_show,
8196 },
8197 { } /* terminate */
8198 };
8199
8200 /*
8201 * charge this task's execution time to its accounting group.
8202 *
8203 * called with rq->lock held.
8204 */
8205 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8206 {
8207 struct cpuacct *ca;
8208 int cpu;
8209
8210 if (unlikely(!cpuacct_subsys.active))
8211 return;
8212
8213 cpu = task_cpu(tsk);
8214
8215 rcu_read_lock();
8216
8217 ca = task_ca(tsk);
8218
8219 for (; ca; ca = parent_ca(ca)) {
8220 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8221 *cpuusage += cputime;
8222 }
8223
8224 rcu_read_unlock();
8225 }
8226
8227 struct cgroup_subsys cpuacct_subsys = {
8228 .name = "cpuacct",
8229 .create = cpuacct_create,
8230 .destroy = cpuacct_destroy,
8231 .subsys_id = cpuacct_subsys_id,
8232 .base_cftypes = files,
8233 };
8234 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.212683 seconds and 6 git commands to generate.