Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[deliverable/linux.git] / kernel / sched / cputime.c
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8 #ifdef CONFIG_PARAVIRT
9 #include <asm/paravirt.h>
10 #endif
11
12
13 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
14
15 /*
16 * There are no locks covering percpu hardirq/softirq time.
17 * They are only modified in vtime_account, on corresponding CPU
18 * with interrupts disabled. So, writes are safe.
19 * They are read and saved off onto struct rq in update_rq_clock().
20 * This may result in other CPU reading this CPU's irq time and can
21 * race with irq/vtime_account on this CPU. We would either get old
22 * or new value with a side effect of accounting a slice of irq time to wrong
23 * task when irq is in progress while we read rq->clock. That is a worthy
24 * compromise in place of having locks on each irq in account_system_time.
25 */
26 DEFINE_PER_CPU(u64, cpu_hardirq_time);
27 DEFINE_PER_CPU(u64, cpu_softirq_time);
28
29 static DEFINE_PER_CPU(u64, irq_start_time);
30 static int sched_clock_irqtime;
31
32 void enable_sched_clock_irqtime(void)
33 {
34 sched_clock_irqtime = 1;
35 }
36
37 void disable_sched_clock_irqtime(void)
38 {
39 sched_clock_irqtime = 0;
40 }
41
42 #ifndef CONFIG_64BIT
43 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
44 #endif /* CONFIG_64BIT */
45
46 /*
47 * Called before incrementing preempt_count on {soft,}irq_enter
48 * and before decrementing preempt_count on {soft,}irq_exit.
49 */
50 void irqtime_account_irq(struct task_struct *curr)
51 {
52 s64 delta;
53 int cpu;
54
55 if (!sched_clock_irqtime)
56 return;
57
58 cpu = smp_processor_id();
59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 __this_cpu_add(irq_start_time, delta);
61
62 irq_time_write_begin();
63 /*
64 * We do not account for softirq time from ksoftirqd here.
65 * We want to continue accounting softirq time to ksoftirqd thread
66 * in that case, so as not to confuse scheduler with a special task
67 * that do not consume any time, but still wants to run.
68 */
69 if (hardirq_count())
70 __this_cpu_add(cpu_hardirq_time, delta);
71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 __this_cpu_add(cpu_softirq_time, delta);
73
74 irq_time_write_end();
75 }
76 EXPORT_SYMBOL_GPL(irqtime_account_irq);
77
78 static cputime_t irqtime_account_hi_update(cputime_t maxtime)
79 {
80 u64 *cpustat = kcpustat_this_cpu->cpustat;
81 unsigned long flags;
82 cputime_t irq_cputime;
83
84 local_irq_save(flags);
85 irq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_hardirq_time)) -
86 cpustat[CPUTIME_IRQ];
87 irq_cputime = min(irq_cputime, maxtime);
88 cpustat[CPUTIME_IRQ] += irq_cputime;
89 local_irq_restore(flags);
90 return irq_cputime;
91 }
92
93 static cputime_t irqtime_account_si_update(cputime_t maxtime)
94 {
95 u64 *cpustat = kcpustat_this_cpu->cpustat;
96 unsigned long flags;
97 cputime_t softirq_cputime;
98
99 local_irq_save(flags);
100 softirq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_softirq_time)) -
101 cpustat[CPUTIME_SOFTIRQ];
102 softirq_cputime = min(softirq_cputime, maxtime);
103 cpustat[CPUTIME_SOFTIRQ] += softirq_cputime;
104 local_irq_restore(flags);
105 return softirq_cputime;
106 }
107
108 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
109
110 #define sched_clock_irqtime (0)
111
112 static cputime_t irqtime_account_hi_update(cputime_t dummy)
113 {
114 return 0;
115 }
116
117 static cputime_t irqtime_account_si_update(cputime_t dummy)
118 {
119 return 0;
120 }
121
122 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
123
124 static inline void task_group_account_field(struct task_struct *p, int index,
125 u64 tmp)
126 {
127 /*
128 * Since all updates are sure to touch the root cgroup, we
129 * get ourselves ahead and touch it first. If the root cgroup
130 * is the only cgroup, then nothing else should be necessary.
131 *
132 */
133 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
134
135 cpuacct_account_field(p, index, tmp);
136 }
137
138 /*
139 * Account user cpu time to a process.
140 * @p: the process that the cpu time gets accounted to
141 * @cputime: the cpu time spent in user space since the last update
142 * @cputime_scaled: cputime scaled by cpu frequency
143 */
144 void account_user_time(struct task_struct *p, cputime_t cputime,
145 cputime_t cputime_scaled)
146 {
147 int index;
148
149 /* Add user time to process. */
150 p->utime += cputime;
151 p->utimescaled += cputime_scaled;
152 account_group_user_time(p, cputime);
153
154 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
155
156 /* Add user time to cpustat. */
157 task_group_account_field(p, index, (__force u64) cputime);
158
159 /* Account for user time used */
160 acct_account_cputime(p);
161 }
162
163 /*
164 * Account guest cpu time to a process.
165 * @p: the process that the cpu time gets accounted to
166 * @cputime: the cpu time spent in virtual machine since the last update
167 * @cputime_scaled: cputime scaled by cpu frequency
168 */
169 static void account_guest_time(struct task_struct *p, cputime_t cputime,
170 cputime_t cputime_scaled)
171 {
172 u64 *cpustat = kcpustat_this_cpu->cpustat;
173
174 /* Add guest time to process. */
175 p->utime += cputime;
176 p->utimescaled += cputime_scaled;
177 account_group_user_time(p, cputime);
178 p->gtime += cputime;
179
180 /* Add guest time to cpustat. */
181 if (task_nice(p) > 0) {
182 cpustat[CPUTIME_NICE] += (__force u64) cputime;
183 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
184 } else {
185 cpustat[CPUTIME_USER] += (__force u64) cputime;
186 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
187 }
188 }
189
190 /*
191 * Account system cpu time to a process and desired cpustat field
192 * @p: the process that the cpu time gets accounted to
193 * @cputime: the cpu time spent in kernel space since the last update
194 * @cputime_scaled: cputime scaled by cpu frequency
195 * @target_cputime64: pointer to cpustat field that has to be updated
196 */
197 static inline
198 void __account_system_time(struct task_struct *p, cputime_t cputime,
199 cputime_t cputime_scaled, int index)
200 {
201 /* Add system time to process. */
202 p->stime += cputime;
203 p->stimescaled += cputime_scaled;
204 account_group_system_time(p, cputime);
205
206 /* Add system time to cpustat. */
207 task_group_account_field(p, index, (__force u64) cputime);
208
209 /* Account for system time used */
210 acct_account_cputime(p);
211 }
212
213 /*
214 * Account system cpu time to a process.
215 * @p: the process that the cpu time gets accounted to
216 * @hardirq_offset: the offset to subtract from hardirq_count()
217 * @cputime: the cpu time spent in kernel space since the last update
218 * @cputime_scaled: cputime scaled by cpu frequency
219 */
220 void account_system_time(struct task_struct *p, int hardirq_offset,
221 cputime_t cputime, cputime_t cputime_scaled)
222 {
223 int index;
224
225 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
226 account_guest_time(p, cputime, cputime_scaled);
227 return;
228 }
229
230 if (hardirq_count() - hardirq_offset)
231 index = CPUTIME_IRQ;
232 else if (in_serving_softirq())
233 index = CPUTIME_SOFTIRQ;
234 else
235 index = CPUTIME_SYSTEM;
236
237 __account_system_time(p, cputime, cputime_scaled, index);
238 }
239
240 /*
241 * Account for involuntary wait time.
242 * @cputime: the cpu time spent in involuntary wait
243 */
244 void account_steal_time(cputime_t cputime)
245 {
246 u64 *cpustat = kcpustat_this_cpu->cpustat;
247
248 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
249 }
250
251 /*
252 * Account for idle time.
253 * @cputime: the cpu time spent in idle wait
254 */
255 void account_idle_time(cputime_t cputime)
256 {
257 u64 *cpustat = kcpustat_this_cpu->cpustat;
258 struct rq *rq = this_rq();
259
260 if (atomic_read(&rq->nr_iowait) > 0)
261 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
262 else
263 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
264 }
265
266 /*
267 * When a guest is interrupted for a longer amount of time, missed clock
268 * ticks are not redelivered later. Due to that, this function may on
269 * occasion account more time than the calling functions think elapsed.
270 */
271 static __always_inline cputime_t steal_account_process_time(cputime_t maxtime)
272 {
273 #ifdef CONFIG_PARAVIRT
274 if (static_key_false(&paravirt_steal_enabled)) {
275 cputime_t steal_cputime;
276 u64 steal;
277
278 steal = paravirt_steal_clock(smp_processor_id());
279 steal -= this_rq()->prev_steal_time;
280
281 steal_cputime = min(nsecs_to_cputime(steal), maxtime);
282 account_steal_time(steal_cputime);
283 this_rq()->prev_steal_time += cputime_to_nsecs(steal_cputime);
284
285 return steal_cputime;
286 }
287 #endif
288 return 0;
289 }
290
291 /*
292 * Account how much elapsed time was spent in steal, irq, or softirq time.
293 */
294 static inline cputime_t account_other_time(cputime_t max)
295 {
296 cputime_t accounted;
297
298 accounted = steal_account_process_time(max);
299
300 if (accounted < max)
301 accounted += irqtime_account_hi_update(max - accounted);
302
303 if (accounted < max)
304 accounted += irqtime_account_si_update(max - accounted);
305
306 return accounted;
307 }
308
309 /*
310 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
311 * tasks (sum on group iteration) belonging to @tsk's group.
312 */
313 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
314 {
315 struct signal_struct *sig = tsk->signal;
316 cputime_t utime, stime;
317 struct task_struct *t;
318 unsigned int seq, nextseq;
319 unsigned long flags;
320
321 rcu_read_lock();
322 /* Attempt a lockless read on the first round. */
323 nextseq = 0;
324 do {
325 seq = nextseq;
326 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
327 times->utime = sig->utime;
328 times->stime = sig->stime;
329 times->sum_exec_runtime = sig->sum_sched_runtime;
330
331 for_each_thread(tsk, t) {
332 task_cputime(t, &utime, &stime);
333 times->utime += utime;
334 times->stime += stime;
335 times->sum_exec_runtime += task_sched_runtime(t);
336 }
337 /* If lockless access failed, take the lock. */
338 nextseq = 1;
339 } while (need_seqretry(&sig->stats_lock, seq));
340 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
341 rcu_read_unlock();
342 }
343
344 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
345 /*
346 * Account a tick to a process and cpustat
347 * @p: the process that the cpu time gets accounted to
348 * @user_tick: is the tick from userspace
349 * @rq: the pointer to rq
350 *
351 * Tick demultiplexing follows the order
352 * - pending hardirq update
353 * - pending softirq update
354 * - user_time
355 * - idle_time
356 * - system time
357 * - check for guest_time
358 * - else account as system_time
359 *
360 * Check for hardirq is done both for system and user time as there is
361 * no timer going off while we are on hardirq and hence we may never get an
362 * opportunity to update it solely in system time.
363 * p->stime and friends are only updated on system time and not on irq
364 * softirq as those do not count in task exec_runtime any more.
365 */
366 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
367 struct rq *rq, int ticks)
368 {
369 u64 cputime = (__force u64) cputime_one_jiffy * ticks;
370 cputime_t scaled, other;
371
372 /*
373 * When returning from idle, many ticks can get accounted at
374 * once, including some ticks of steal, irq, and softirq time.
375 * Subtract those ticks from the amount of time accounted to
376 * idle, or potentially user or system time. Due to rounding,
377 * other time can exceed ticks occasionally.
378 */
379 other = account_other_time(ULONG_MAX);
380 if (other >= cputime)
381 return;
382 cputime -= other;
383 scaled = cputime_to_scaled(cputime);
384
385 if (this_cpu_ksoftirqd() == p) {
386 /*
387 * ksoftirqd time do not get accounted in cpu_softirq_time.
388 * So, we have to handle it separately here.
389 * Also, p->stime needs to be updated for ksoftirqd.
390 */
391 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
392 } else if (user_tick) {
393 account_user_time(p, cputime, scaled);
394 } else if (p == rq->idle) {
395 account_idle_time(cputime);
396 } else if (p->flags & PF_VCPU) { /* System time or guest time */
397 account_guest_time(p, cputime, scaled);
398 } else {
399 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
400 }
401 }
402
403 static void irqtime_account_idle_ticks(int ticks)
404 {
405 struct rq *rq = this_rq();
406
407 irqtime_account_process_tick(current, 0, rq, ticks);
408 }
409 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
410 static inline void irqtime_account_idle_ticks(int ticks) {}
411 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
412 struct rq *rq, int nr_ticks) {}
413 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
414
415 /*
416 * Use precise platform statistics if available:
417 */
418 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
419
420 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
421 void vtime_common_task_switch(struct task_struct *prev)
422 {
423 if (is_idle_task(prev))
424 vtime_account_idle(prev);
425 else
426 vtime_account_system(prev);
427
428 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
429 vtime_account_user(prev);
430 #endif
431 arch_vtime_task_switch(prev);
432 }
433 #endif
434
435 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
436
437
438 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
439 /*
440 * Archs that account the whole time spent in the idle task
441 * (outside irq) as idle time can rely on this and just implement
442 * vtime_account_system() and vtime_account_idle(). Archs that
443 * have other meaning of the idle time (s390 only includes the
444 * time spent by the CPU when it's in low power mode) must override
445 * vtime_account().
446 */
447 #ifndef __ARCH_HAS_VTIME_ACCOUNT
448 void vtime_account_irq_enter(struct task_struct *tsk)
449 {
450 if (!in_interrupt() && is_idle_task(tsk))
451 vtime_account_idle(tsk);
452 else
453 vtime_account_system(tsk);
454 }
455 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
456 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
457
458 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
459 {
460 *ut = p->utime;
461 *st = p->stime;
462 }
463 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
464
465 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
466 {
467 struct task_cputime cputime;
468
469 thread_group_cputime(p, &cputime);
470
471 *ut = cputime.utime;
472 *st = cputime.stime;
473 }
474 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
475 /*
476 * Account a single tick of cpu time.
477 * @p: the process that the cpu time gets accounted to
478 * @user_tick: indicates if the tick is a user or a system tick
479 */
480 void account_process_tick(struct task_struct *p, int user_tick)
481 {
482 cputime_t cputime, scaled, steal;
483 struct rq *rq = this_rq();
484
485 if (vtime_accounting_cpu_enabled())
486 return;
487
488 if (sched_clock_irqtime) {
489 irqtime_account_process_tick(p, user_tick, rq, 1);
490 return;
491 }
492
493 cputime = cputime_one_jiffy;
494 steal = steal_account_process_time(ULONG_MAX);
495
496 if (steal >= cputime)
497 return;
498
499 cputime -= steal;
500 scaled = cputime_to_scaled(cputime);
501
502 if (user_tick)
503 account_user_time(p, cputime, scaled);
504 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
505 account_system_time(p, HARDIRQ_OFFSET, cputime, scaled);
506 else
507 account_idle_time(cputime);
508 }
509
510 /*
511 * Account multiple ticks of idle time.
512 * @ticks: number of stolen ticks
513 */
514 void account_idle_ticks(unsigned long ticks)
515 {
516 cputime_t cputime, steal;
517
518 if (sched_clock_irqtime) {
519 irqtime_account_idle_ticks(ticks);
520 return;
521 }
522
523 cputime = jiffies_to_cputime(ticks);
524 steal = steal_account_process_time(ULONG_MAX);
525
526 if (steal >= cputime)
527 return;
528
529 cputime -= steal;
530 account_idle_time(cputime);
531 }
532
533 /*
534 * Perform (stime * rtime) / total, but avoid multiplication overflow by
535 * loosing precision when the numbers are big.
536 */
537 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
538 {
539 u64 scaled;
540
541 for (;;) {
542 /* Make sure "rtime" is the bigger of stime/rtime */
543 if (stime > rtime)
544 swap(rtime, stime);
545
546 /* Make sure 'total' fits in 32 bits */
547 if (total >> 32)
548 goto drop_precision;
549
550 /* Does rtime (and thus stime) fit in 32 bits? */
551 if (!(rtime >> 32))
552 break;
553
554 /* Can we just balance rtime/stime rather than dropping bits? */
555 if (stime >> 31)
556 goto drop_precision;
557
558 /* We can grow stime and shrink rtime and try to make them both fit */
559 stime <<= 1;
560 rtime >>= 1;
561 continue;
562
563 drop_precision:
564 /* We drop from rtime, it has more bits than stime */
565 rtime >>= 1;
566 total >>= 1;
567 }
568
569 /*
570 * Make sure gcc understands that this is a 32x32->64 multiply,
571 * followed by a 64/32->64 divide.
572 */
573 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
574 return (__force cputime_t) scaled;
575 }
576
577 /*
578 * Adjust tick based cputime random precision against scheduler runtime
579 * accounting.
580 *
581 * Tick based cputime accounting depend on random scheduling timeslices of a
582 * task to be interrupted or not by the timer. Depending on these
583 * circumstances, the number of these interrupts may be over or
584 * under-optimistic, matching the real user and system cputime with a variable
585 * precision.
586 *
587 * Fix this by scaling these tick based values against the total runtime
588 * accounted by the CFS scheduler.
589 *
590 * This code provides the following guarantees:
591 *
592 * stime + utime == rtime
593 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
594 *
595 * Assuming that rtime_i+1 >= rtime_i.
596 */
597 static void cputime_adjust(struct task_cputime *curr,
598 struct prev_cputime *prev,
599 cputime_t *ut, cputime_t *st)
600 {
601 cputime_t rtime, stime, utime;
602 unsigned long flags;
603
604 /* Serialize concurrent callers such that we can honour our guarantees */
605 raw_spin_lock_irqsave(&prev->lock, flags);
606 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
607
608 /*
609 * This is possible under two circumstances:
610 * - rtime isn't monotonic after all (a bug);
611 * - we got reordered by the lock.
612 *
613 * In both cases this acts as a filter such that the rest of the code
614 * can assume it is monotonic regardless of anything else.
615 */
616 if (prev->stime + prev->utime >= rtime)
617 goto out;
618
619 stime = curr->stime;
620 utime = curr->utime;
621
622 /*
623 * If either stime or both stime and utime are 0, assume all runtime is
624 * userspace. Once a task gets some ticks, the monotonicy code at
625 * 'update' will ensure things converge to the observed ratio.
626 */
627 if (stime == 0) {
628 utime = rtime;
629 goto update;
630 }
631
632 if (utime == 0) {
633 stime = rtime;
634 goto update;
635 }
636
637 stime = scale_stime((__force u64)stime, (__force u64)rtime,
638 (__force u64)(stime + utime));
639
640 update:
641 /*
642 * Make sure stime doesn't go backwards; this preserves monotonicity
643 * for utime because rtime is monotonic.
644 *
645 * utime_i+1 = rtime_i+1 - stime_i
646 * = rtime_i+1 - (rtime_i - utime_i)
647 * = (rtime_i+1 - rtime_i) + utime_i
648 * >= utime_i
649 */
650 if (stime < prev->stime)
651 stime = prev->stime;
652 utime = rtime - stime;
653
654 /*
655 * Make sure utime doesn't go backwards; this still preserves
656 * monotonicity for stime, analogous argument to above.
657 */
658 if (utime < prev->utime) {
659 utime = prev->utime;
660 stime = rtime - utime;
661 }
662
663 prev->stime = stime;
664 prev->utime = utime;
665 out:
666 *ut = prev->utime;
667 *st = prev->stime;
668 raw_spin_unlock_irqrestore(&prev->lock, flags);
669 }
670
671 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
672 {
673 struct task_cputime cputime = {
674 .sum_exec_runtime = p->se.sum_exec_runtime,
675 };
676
677 task_cputime(p, &cputime.utime, &cputime.stime);
678 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
679 }
680 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
681
682 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
683 {
684 struct task_cputime cputime;
685
686 thread_group_cputime(p, &cputime);
687 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
688 }
689 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
690
691 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
692 static cputime_t vtime_delta(struct task_struct *tsk)
693 {
694 unsigned long now = READ_ONCE(jiffies);
695
696 if (time_before(now, (unsigned long)tsk->vtime_snap))
697 return 0;
698
699 return jiffies_to_cputime(now - tsk->vtime_snap);
700 }
701
702 static cputime_t get_vtime_delta(struct task_struct *tsk)
703 {
704 unsigned long now = READ_ONCE(jiffies);
705 cputime_t delta, other;
706
707 /*
708 * Unlike tick based timing, vtime based timing never has lost
709 * ticks, and no need for steal time accounting to make up for
710 * lost ticks. Vtime accounts a rounded version of actual
711 * elapsed time. Limit account_other_time to prevent rounding
712 * errors from causing elapsed vtime to go negative.
713 */
714 delta = jiffies_to_cputime(now - tsk->vtime_snap);
715 other = account_other_time(delta);
716 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
717 tsk->vtime_snap = now;
718
719 return delta - other;
720 }
721
722 static void __vtime_account_system(struct task_struct *tsk)
723 {
724 cputime_t delta_cpu = get_vtime_delta(tsk);
725
726 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
727 }
728
729 void vtime_account_system(struct task_struct *tsk)
730 {
731 if (!vtime_delta(tsk))
732 return;
733
734 write_seqcount_begin(&tsk->vtime_seqcount);
735 __vtime_account_system(tsk);
736 write_seqcount_end(&tsk->vtime_seqcount);
737 }
738
739 void vtime_account_user(struct task_struct *tsk)
740 {
741 cputime_t delta_cpu;
742
743 write_seqcount_begin(&tsk->vtime_seqcount);
744 tsk->vtime_snap_whence = VTIME_SYS;
745 if (vtime_delta(tsk)) {
746 delta_cpu = get_vtime_delta(tsk);
747 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
748 }
749 write_seqcount_end(&tsk->vtime_seqcount);
750 }
751
752 void vtime_user_enter(struct task_struct *tsk)
753 {
754 write_seqcount_begin(&tsk->vtime_seqcount);
755 if (vtime_delta(tsk))
756 __vtime_account_system(tsk);
757 tsk->vtime_snap_whence = VTIME_USER;
758 write_seqcount_end(&tsk->vtime_seqcount);
759 }
760
761 void vtime_guest_enter(struct task_struct *tsk)
762 {
763 /*
764 * The flags must be updated under the lock with
765 * the vtime_snap flush and update.
766 * That enforces a right ordering and update sequence
767 * synchronization against the reader (task_gtime())
768 * that can thus safely catch up with a tickless delta.
769 */
770 write_seqcount_begin(&tsk->vtime_seqcount);
771 if (vtime_delta(tsk))
772 __vtime_account_system(tsk);
773 current->flags |= PF_VCPU;
774 write_seqcount_end(&tsk->vtime_seqcount);
775 }
776 EXPORT_SYMBOL_GPL(vtime_guest_enter);
777
778 void vtime_guest_exit(struct task_struct *tsk)
779 {
780 write_seqcount_begin(&tsk->vtime_seqcount);
781 __vtime_account_system(tsk);
782 current->flags &= ~PF_VCPU;
783 write_seqcount_end(&tsk->vtime_seqcount);
784 }
785 EXPORT_SYMBOL_GPL(vtime_guest_exit);
786
787 void vtime_account_idle(struct task_struct *tsk)
788 {
789 cputime_t delta_cpu = get_vtime_delta(tsk);
790
791 account_idle_time(delta_cpu);
792 }
793
794 void arch_vtime_task_switch(struct task_struct *prev)
795 {
796 write_seqcount_begin(&prev->vtime_seqcount);
797 prev->vtime_snap_whence = VTIME_INACTIVE;
798 write_seqcount_end(&prev->vtime_seqcount);
799
800 write_seqcount_begin(&current->vtime_seqcount);
801 current->vtime_snap_whence = VTIME_SYS;
802 current->vtime_snap = jiffies;
803 write_seqcount_end(&current->vtime_seqcount);
804 }
805
806 void vtime_init_idle(struct task_struct *t, int cpu)
807 {
808 unsigned long flags;
809
810 local_irq_save(flags);
811 write_seqcount_begin(&t->vtime_seqcount);
812 t->vtime_snap_whence = VTIME_SYS;
813 t->vtime_snap = jiffies;
814 write_seqcount_end(&t->vtime_seqcount);
815 local_irq_restore(flags);
816 }
817
818 cputime_t task_gtime(struct task_struct *t)
819 {
820 unsigned int seq;
821 cputime_t gtime;
822
823 if (!vtime_accounting_enabled())
824 return t->gtime;
825
826 do {
827 seq = read_seqcount_begin(&t->vtime_seqcount);
828
829 gtime = t->gtime;
830 if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
831 gtime += vtime_delta(t);
832
833 } while (read_seqcount_retry(&t->vtime_seqcount, seq));
834
835 return gtime;
836 }
837
838 /*
839 * Fetch cputime raw values from fields of task_struct and
840 * add up the pending nohz execution time since the last
841 * cputime snapshot.
842 */
843 static void
844 fetch_task_cputime(struct task_struct *t,
845 cputime_t *u_dst, cputime_t *s_dst,
846 cputime_t *u_src, cputime_t *s_src,
847 cputime_t *udelta, cputime_t *sdelta)
848 {
849 unsigned int seq;
850 unsigned long long delta;
851
852 do {
853 *udelta = 0;
854 *sdelta = 0;
855
856 seq = read_seqcount_begin(&t->vtime_seqcount);
857
858 if (u_dst)
859 *u_dst = *u_src;
860 if (s_dst)
861 *s_dst = *s_src;
862
863 /* Task is sleeping, nothing to add */
864 if (t->vtime_snap_whence == VTIME_INACTIVE ||
865 is_idle_task(t))
866 continue;
867
868 delta = vtime_delta(t);
869
870 /*
871 * Task runs either in user or kernel space, add pending nohz time to
872 * the right place.
873 */
874 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
875 *udelta = delta;
876 } else {
877 if (t->vtime_snap_whence == VTIME_SYS)
878 *sdelta = delta;
879 }
880 } while (read_seqcount_retry(&t->vtime_seqcount, seq));
881 }
882
883
884 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
885 {
886 cputime_t udelta, sdelta;
887
888 if (!vtime_accounting_enabled()) {
889 if (utime)
890 *utime = t->utime;
891 if (stime)
892 *stime = t->stime;
893 return;
894 }
895
896 fetch_task_cputime(t, utime, stime, &t->utime,
897 &t->stime, &udelta, &sdelta);
898 if (utime)
899 *utime += udelta;
900 if (stime)
901 *stime += sdelta;
902 }
903
904 void task_cputime_scaled(struct task_struct *t,
905 cputime_t *utimescaled, cputime_t *stimescaled)
906 {
907 cputime_t udelta, sdelta;
908
909 if (!vtime_accounting_enabled()) {
910 if (utimescaled)
911 *utimescaled = t->utimescaled;
912 if (stimescaled)
913 *stimescaled = t->stimescaled;
914 return;
915 }
916
917 fetch_task_cputime(t, utimescaled, stimescaled,
918 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
919 if (utimescaled)
920 *utimescaled += cputime_to_scaled(udelta);
921 if (stimescaled)
922 *stimescaled += cputime_to_scaled(sdelta);
923 }
924 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
This page took 0.072242 seconds and 6 git commands to generate.