Merge remote-tracking branch 'tip/auto-latest'
[deliverable/linux.git] / kernel / sched / cputime.c
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8 #ifdef CONFIG_PARAVIRT
9 #include <asm/paravirt.h>
10 #endif
11
12
13 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
14
15 /*
16 * There are no locks covering percpu hardirq/softirq time.
17 * They are only modified in vtime_account, on corresponding CPU
18 * with interrupts disabled. So, writes are safe.
19 * They are read and saved off onto struct rq in update_rq_clock().
20 * This may result in other CPU reading this CPU's irq time and can
21 * race with irq/vtime_account on this CPU. We would either get old
22 * or new value with a side effect of accounting a slice of irq time to wrong
23 * task when irq is in progress while we read rq->clock. That is a worthy
24 * compromise in place of having locks on each irq in account_system_time.
25 */
26 DEFINE_PER_CPU(u64, cpu_hardirq_time);
27 DEFINE_PER_CPU(u64, cpu_softirq_time);
28
29 static DEFINE_PER_CPU(u64, irq_start_time);
30 static int sched_clock_irqtime;
31
32 void enable_sched_clock_irqtime(void)
33 {
34 sched_clock_irqtime = 1;
35 }
36
37 void disable_sched_clock_irqtime(void)
38 {
39 sched_clock_irqtime = 0;
40 }
41
42 #ifndef CONFIG_64BIT
43 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
44 #endif /* CONFIG_64BIT */
45
46 /*
47 * Called before incrementing preempt_count on {soft,}irq_enter
48 * and before decrementing preempt_count on {soft,}irq_exit.
49 */
50 void irqtime_account_irq(struct task_struct *curr)
51 {
52 s64 delta;
53 int cpu;
54
55 if (!sched_clock_irqtime)
56 return;
57
58 cpu = smp_processor_id();
59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 __this_cpu_add(irq_start_time, delta);
61
62 irq_time_write_begin();
63 /*
64 * We do not account for softirq time from ksoftirqd here.
65 * We want to continue accounting softirq time to ksoftirqd thread
66 * in that case, so as not to confuse scheduler with a special task
67 * that do not consume any time, but still wants to run.
68 */
69 if (hardirq_count())
70 __this_cpu_add(cpu_hardirq_time, delta);
71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 __this_cpu_add(cpu_softirq_time, delta);
73
74 irq_time_write_end();
75 }
76 EXPORT_SYMBOL_GPL(irqtime_account_irq);
77
78 static cputime_t irqtime_account_hi_update(cputime_t maxtime)
79 {
80 u64 *cpustat = kcpustat_this_cpu->cpustat;
81 unsigned long flags;
82 cputime_t irq_cputime;
83
84 local_irq_save(flags);
85 irq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_hardirq_time)) -
86 cpustat[CPUTIME_IRQ];
87 irq_cputime = min(irq_cputime, maxtime);
88 cpustat[CPUTIME_IRQ] += irq_cputime;
89 local_irq_restore(flags);
90 return irq_cputime;
91 }
92
93 static cputime_t irqtime_account_si_update(cputime_t maxtime)
94 {
95 u64 *cpustat = kcpustat_this_cpu->cpustat;
96 unsigned long flags;
97 cputime_t softirq_cputime;
98
99 local_irq_save(flags);
100 softirq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_softirq_time)) -
101 cpustat[CPUTIME_SOFTIRQ];
102 softirq_cputime = min(softirq_cputime, maxtime);
103 cpustat[CPUTIME_SOFTIRQ] += softirq_cputime;
104 local_irq_restore(flags);
105 return softirq_cputime;
106 }
107
108 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
109
110 #define sched_clock_irqtime (0)
111
112 static cputime_t irqtime_account_hi_update(cputime_t dummy)
113 {
114 return 0;
115 }
116
117 static cputime_t irqtime_account_si_update(cputime_t dummy)
118 {
119 return 0;
120 }
121
122 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
123
124 static inline void task_group_account_field(struct task_struct *p, int index,
125 u64 tmp)
126 {
127 /*
128 * Since all updates are sure to touch the root cgroup, we
129 * get ourselves ahead and touch it first. If the root cgroup
130 * is the only cgroup, then nothing else should be necessary.
131 *
132 */
133 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
134
135 cpuacct_account_field(p, index, tmp);
136 }
137
138 /*
139 * Account user cpu time to a process.
140 * @p: the process that the cpu time gets accounted to
141 * @cputime: the cpu time spent in user space since the last update
142 * @cputime_scaled: cputime scaled by cpu frequency
143 */
144 void account_user_time(struct task_struct *p, cputime_t cputime,
145 cputime_t cputime_scaled)
146 {
147 int index;
148
149 /* Add user time to process. */
150 p->utime += cputime;
151 p->utimescaled += cputime_scaled;
152 account_group_user_time(p, cputime);
153
154 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
155
156 /* Add user time to cpustat. */
157 task_group_account_field(p, index, (__force u64) cputime);
158
159 /* Account for user time used */
160 acct_account_cputime(p);
161 }
162
163 /*
164 * Account guest cpu time to a process.
165 * @p: the process that the cpu time gets accounted to
166 * @cputime: the cpu time spent in virtual machine since the last update
167 * @cputime_scaled: cputime scaled by cpu frequency
168 */
169 static void account_guest_time(struct task_struct *p, cputime_t cputime,
170 cputime_t cputime_scaled)
171 {
172 u64 *cpustat = kcpustat_this_cpu->cpustat;
173
174 /* Add guest time to process. */
175 p->utime += cputime;
176 p->utimescaled += cputime_scaled;
177 account_group_user_time(p, cputime);
178 p->gtime += cputime;
179
180 /* Add guest time to cpustat. */
181 if (task_nice(p) > 0) {
182 cpustat[CPUTIME_NICE] += (__force u64) cputime;
183 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
184 } else {
185 cpustat[CPUTIME_USER] += (__force u64) cputime;
186 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
187 }
188 }
189
190 /*
191 * Account system cpu time to a process and desired cpustat field
192 * @p: the process that the cpu time gets accounted to
193 * @cputime: the cpu time spent in kernel space since the last update
194 * @cputime_scaled: cputime scaled by cpu frequency
195 * @target_cputime64: pointer to cpustat field that has to be updated
196 */
197 static inline
198 void __account_system_time(struct task_struct *p, cputime_t cputime,
199 cputime_t cputime_scaled, int index)
200 {
201 /* Add system time to process. */
202 p->stime += cputime;
203 p->stimescaled += cputime_scaled;
204 account_group_system_time(p, cputime);
205
206 /* Add system time to cpustat. */
207 task_group_account_field(p, index, (__force u64) cputime);
208
209 /* Account for system time used */
210 acct_account_cputime(p);
211 }
212
213 /*
214 * Account system cpu time to a process.
215 * @p: the process that the cpu time gets accounted to
216 * @hardirq_offset: the offset to subtract from hardirq_count()
217 * @cputime: the cpu time spent in kernel space since the last update
218 * @cputime_scaled: cputime scaled by cpu frequency
219 */
220 void account_system_time(struct task_struct *p, int hardirq_offset,
221 cputime_t cputime, cputime_t cputime_scaled)
222 {
223 int index;
224
225 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
226 account_guest_time(p, cputime, cputime_scaled);
227 return;
228 }
229
230 if (hardirq_count() - hardirq_offset)
231 index = CPUTIME_IRQ;
232 else if (in_serving_softirq())
233 index = CPUTIME_SOFTIRQ;
234 else
235 index = CPUTIME_SYSTEM;
236
237 __account_system_time(p, cputime, cputime_scaled, index);
238 }
239
240 /*
241 * Account for involuntary wait time.
242 * @cputime: the cpu time spent in involuntary wait
243 */
244 void account_steal_time(cputime_t cputime)
245 {
246 u64 *cpustat = kcpustat_this_cpu->cpustat;
247
248 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
249 }
250
251 /*
252 * Account for idle time.
253 * @cputime: the cpu time spent in idle wait
254 */
255 void account_idle_time(cputime_t cputime)
256 {
257 u64 *cpustat = kcpustat_this_cpu->cpustat;
258 struct rq *rq = this_rq();
259
260 if (atomic_read(&rq->nr_iowait) > 0)
261 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
262 else
263 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
264 }
265
266 /*
267 * When a guest is interrupted for a longer amount of time, missed clock
268 * ticks are not redelivered later. Due to that, this function may on
269 * occasion account more time than the calling functions think elapsed.
270 */
271 static __always_inline cputime_t steal_account_process_time(cputime_t maxtime)
272 {
273 #ifdef CONFIG_PARAVIRT
274 if (static_key_false(&paravirt_steal_enabled)) {
275 cputime_t steal_cputime;
276 u64 steal;
277
278 steal = paravirt_steal_clock(smp_processor_id());
279 steal -= this_rq()->prev_steal_time;
280
281 steal_cputime = min(nsecs_to_cputime(steal), maxtime);
282 account_steal_time(steal_cputime);
283 this_rq()->prev_steal_time += cputime_to_nsecs(steal_cputime);
284
285 return steal_cputime;
286 }
287 #endif
288 return 0;
289 }
290
291 /*
292 * Account how much elapsed time was spent in steal, irq, or softirq time.
293 */
294 static inline cputime_t account_other_time(cputime_t max)
295 {
296 cputime_t accounted;
297
298 accounted = steal_account_process_time(max);
299
300 if (accounted < max)
301 accounted += irqtime_account_hi_update(max - accounted);
302
303 if (accounted < max)
304 accounted += irqtime_account_si_update(max - accounted);
305
306 return accounted;
307 }
308
309 #ifdef CONFIG_64BIT
310 static inline u64 read_sum_exec_runtime(struct task_struct *t)
311 {
312 return t->se.sum_exec_runtime;
313 }
314 #else
315 static u64 read_sum_exec_runtime(struct task_struct *t)
316 {
317 u64 ns;
318 struct rq_flags rf;
319 struct rq *rq;
320
321 rq = task_rq_lock(t, &rf);
322 ns = t->se.sum_exec_runtime;
323 task_rq_unlock(rq, t, &rf);
324
325 return ns;
326 }
327 #endif
328
329 /*
330 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
331 * tasks (sum on group iteration) belonging to @tsk's group.
332 */
333 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
334 {
335 struct signal_struct *sig = tsk->signal;
336 cputime_t utime, stime;
337 struct task_struct *t;
338 unsigned int seq, nextseq;
339 unsigned long flags;
340
341 /*
342 * Update current task runtime to account pending time since last
343 * scheduler action or thread_group_cputime() call. This thread group
344 * might have other running tasks on different CPUs, but updating
345 * their runtime can affect syscall performance, so we skip account
346 * those pending times and rely only on values updated on tick or
347 * other scheduler action.
348 */
349 if (same_thread_group(current, tsk))
350 (void) task_sched_runtime(current);
351
352 rcu_read_lock();
353 /* Attempt a lockless read on the first round. */
354 nextseq = 0;
355 do {
356 seq = nextseq;
357 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
358 times->utime = sig->utime;
359 times->stime = sig->stime;
360 times->sum_exec_runtime = sig->sum_sched_runtime;
361
362 for_each_thread(tsk, t) {
363 task_cputime(t, &utime, &stime);
364 times->utime += utime;
365 times->stime += stime;
366 times->sum_exec_runtime += read_sum_exec_runtime(t);
367 }
368 /* If lockless access failed, take the lock. */
369 nextseq = 1;
370 } while (need_seqretry(&sig->stats_lock, seq));
371 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
372 rcu_read_unlock();
373 }
374
375 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
376 /*
377 * Account a tick to a process and cpustat
378 * @p: the process that the cpu time gets accounted to
379 * @user_tick: is the tick from userspace
380 * @rq: the pointer to rq
381 *
382 * Tick demultiplexing follows the order
383 * - pending hardirq update
384 * - pending softirq update
385 * - user_time
386 * - idle_time
387 * - system time
388 * - check for guest_time
389 * - else account as system_time
390 *
391 * Check for hardirq is done both for system and user time as there is
392 * no timer going off while we are on hardirq and hence we may never get an
393 * opportunity to update it solely in system time.
394 * p->stime and friends are only updated on system time and not on irq
395 * softirq as those do not count in task exec_runtime any more.
396 */
397 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
398 struct rq *rq, int ticks)
399 {
400 u64 cputime = (__force u64) cputime_one_jiffy * ticks;
401 cputime_t scaled, other;
402
403 /*
404 * When returning from idle, many ticks can get accounted at
405 * once, including some ticks of steal, irq, and softirq time.
406 * Subtract those ticks from the amount of time accounted to
407 * idle, or potentially user or system time. Due to rounding,
408 * other time can exceed ticks occasionally.
409 */
410 other = account_other_time(ULONG_MAX);
411 if (other >= cputime)
412 return;
413 cputime -= other;
414 scaled = cputime_to_scaled(cputime);
415
416 if (this_cpu_ksoftirqd() == p) {
417 /*
418 * ksoftirqd time do not get accounted in cpu_softirq_time.
419 * So, we have to handle it separately here.
420 * Also, p->stime needs to be updated for ksoftirqd.
421 */
422 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
423 } else if (user_tick) {
424 account_user_time(p, cputime, scaled);
425 } else if (p == rq->idle) {
426 account_idle_time(cputime);
427 } else if (p->flags & PF_VCPU) { /* System time or guest time */
428 account_guest_time(p, cputime, scaled);
429 } else {
430 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
431 }
432 }
433
434 static void irqtime_account_idle_ticks(int ticks)
435 {
436 struct rq *rq = this_rq();
437
438 irqtime_account_process_tick(current, 0, rq, ticks);
439 }
440 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
441 static inline void irqtime_account_idle_ticks(int ticks) {}
442 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
443 struct rq *rq, int nr_ticks) {}
444 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
445
446 /*
447 * Use precise platform statistics if available:
448 */
449 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
450
451 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
452 void vtime_common_task_switch(struct task_struct *prev)
453 {
454 if (is_idle_task(prev))
455 vtime_account_idle(prev);
456 else
457 vtime_account_system(prev);
458
459 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
460 vtime_account_user(prev);
461 #endif
462 arch_vtime_task_switch(prev);
463 }
464 #endif
465
466 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
467
468
469 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
470 /*
471 * Archs that account the whole time spent in the idle task
472 * (outside irq) as idle time can rely on this and just implement
473 * vtime_account_system() and vtime_account_idle(). Archs that
474 * have other meaning of the idle time (s390 only includes the
475 * time spent by the CPU when it's in low power mode) must override
476 * vtime_account().
477 */
478 #ifndef __ARCH_HAS_VTIME_ACCOUNT
479 void vtime_account_irq_enter(struct task_struct *tsk)
480 {
481 if (!in_interrupt() && is_idle_task(tsk))
482 vtime_account_idle(tsk);
483 else
484 vtime_account_system(tsk);
485 }
486 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
487 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
488
489 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
490 {
491 *ut = p->utime;
492 *st = p->stime;
493 }
494 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
495
496 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
497 {
498 struct task_cputime cputime;
499
500 thread_group_cputime(p, &cputime);
501
502 *ut = cputime.utime;
503 *st = cputime.stime;
504 }
505 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
506 /*
507 * Account a single tick of cpu time.
508 * @p: the process that the cpu time gets accounted to
509 * @user_tick: indicates if the tick is a user or a system tick
510 */
511 void account_process_tick(struct task_struct *p, int user_tick)
512 {
513 cputime_t cputime, scaled, steal;
514 struct rq *rq = this_rq();
515
516 if (vtime_accounting_cpu_enabled())
517 return;
518
519 if (sched_clock_irqtime) {
520 irqtime_account_process_tick(p, user_tick, rq, 1);
521 return;
522 }
523
524 cputime = cputime_one_jiffy;
525 steal = steal_account_process_time(ULONG_MAX);
526
527 if (steal >= cputime)
528 return;
529
530 cputime -= steal;
531 scaled = cputime_to_scaled(cputime);
532
533 if (user_tick)
534 account_user_time(p, cputime, scaled);
535 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
536 account_system_time(p, HARDIRQ_OFFSET, cputime, scaled);
537 else
538 account_idle_time(cputime);
539 }
540
541 /*
542 * Account multiple ticks of idle time.
543 * @ticks: number of stolen ticks
544 */
545 void account_idle_ticks(unsigned long ticks)
546 {
547 cputime_t cputime, steal;
548
549 if (sched_clock_irqtime) {
550 irqtime_account_idle_ticks(ticks);
551 return;
552 }
553
554 cputime = jiffies_to_cputime(ticks);
555 steal = steal_account_process_time(ULONG_MAX);
556
557 if (steal >= cputime)
558 return;
559
560 cputime -= steal;
561 account_idle_time(cputime);
562 }
563
564 /*
565 * Perform (stime * rtime) / total, but avoid multiplication overflow by
566 * loosing precision when the numbers are big.
567 */
568 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
569 {
570 u64 scaled;
571
572 for (;;) {
573 /* Make sure "rtime" is the bigger of stime/rtime */
574 if (stime > rtime)
575 swap(rtime, stime);
576
577 /* Make sure 'total' fits in 32 bits */
578 if (total >> 32)
579 goto drop_precision;
580
581 /* Does rtime (and thus stime) fit in 32 bits? */
582 if (!(rtime >> 32))
583 break;
584
585 /* Can we just balance rtime/stime rather than dropping bits? */
586 if (stime >> 31)
587 goto drop_precision;
588
589 /* We can grow stime and shrink rtime and try to make them both fit */
590 stime <<= 1;
591 rtime >>= 1;
592 continue;
593
594 drop_precision:
595 /* We drop from rtime, it has more bits than stime */
596 rtime >>= 1;
597 total >>= 1;
598 }
599
600 /*
601 * Make sure gcc understands that this is a 32x32->64 multiply,
602 * followed by a 64/32->64 divide.
603 */
604 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
605 return (__force cputime_t) scaled;
606 }
607
608 /*
609 * Adjust tick based cputime random precision against scheduler runtime
610 * accounting.
611 *
612 * Tick based cputime accounting depend on random scheduling timeslices of a
613 * task to be interrupted or not by the timer. Depending on these
614 * circumstances, the number of these interrupts may be over or
615 * under-optimistic, matching the real user and system cputime with a variable
616 * precision.
617 *
618 * Fix this by scaling these tick based values against the total runtime
619 * accounted by the CFS scheduler.
620 *
621 * This code provides the following guarantees:
622 *
623 * stime + utime == rtime
624 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
625 *
626 * Assuming that rtime_i+1 >= rtime_i.
627 */
628 static void cputime_adjust(struct task_cputime *curr,
629 struct prev_cputime *prev,
630 cputime_t *ut, cputime_t *st)
631 {
632 cputime_t rtime, stime, utime;
633 unsigned long flags;
634
635 /* Serialize concurrent callers such that we can honour our guarantees */
636 raw_spin_lock_irqsave(&prev->lock, flags);
637 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
638
639 /*
640 * This is possible under two circumstances:
641 * - rtime isn't monotonic after all (a bug);
642 * - we got reordered by the lock.
643 *
644 * In both cases this acts as a filter such that the rest of the code
645 * can assume it is monotonic regardless of anything else.
646 */
647 if (prev->stime + prev->utime >= rtime)
648 goto out;
649
650 stime = curr->stime;
651 utime = curr->utime;
652
653 /*
654 * If either stime or both stime and utime are 0, assume all runtime is
655 * userspace. Once a task gets some ticks, the monotonicy code at
656 * 'update' will ensure things converge to the observed ratio.
657 */
658 if (stime == 0) {
659 utime = rtime;
660 goto update;
661 }
662
663 if (utime == 0) {
664 stime = rtime;
665 goto update;
666 }
667
668 stime = scale_stime((__force u64)stime, (__force u64)rtime,
669 (__force u64)(stime + utime));
670
671 update:
672 /*
673 * Make sure stime doesn't go backwards; this preserves monotonicity
674 * for utime because rtime is monotonic.
675 *
676 * utime_i+1 = rtime_i+1 - stime_i
677 * = rtime_i+1 - (rtime_i - utime_i)
678 * = (rtime_i+1 - rtime_i) + utime_i
679 * >= utime_i
680 */
681 if (stime < prev->stime)
682 stime = prev->stime;
683 utime = rtime - stime;
684
685 /*
686 * Make sure utime doesn't go backwards; this still preserves
687 * monotonicity for stime, analogous argument to above.
688 */
689 if (utime < prev->utime) {
690 utime = prev->utime;
691 stime = rtime - utime;
692 }
693
694 prev->stime = stime;
695 prev->utime = utime;
696 out:
697 *ut = prev->utime;
698 *st = prev->stime;
699 raw_spin_unlock_irqrestore(&prev->lock, flags);
700 }
701
702 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
703 {
704 struct task_cputime cputime = {
705 .sum_exec_runtime = p->se.sum_exec_runtime,
706 };
707
708 task_cputime(p, &cputime.utime, &cputime.stime);
709 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
710 }
711 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
712
713 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
714 {
715 struct task_cputime cputime;
716
717 thread_group_cputime(p, &cputime);
718 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
719 }
720 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
721
722 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
723 static cputime_t vtime_delta(struct task_struct *tsk)
724 {
725 unsigned long now = READ_ONCE(jiffies);
726
727 if (time_before(now, (unsigned long)tsk->vtime_snap))
728 return 0;
729
730 return jiffies_to_cputime(now - tsk->vtime_snap);
731 }
732
733 static cputime_t get_vtime_delta(struct task_struct *tsk)
734 {
735 unsigned long now = READ_ONCE(jiffies);
736 cputime_t delta, other;
737
738 /*
739 * Unlike tick based timing, vtime based timing never has lost
740 * ticks, and no need for steal time accounting to make up for
741 * lost ticks. Vtime accounts a rounded version of actual
742 * elapsed time. Limit account_other_time to prevent rounding
743 * errors from causing elapsed vtime to go negative.
744 */
745 delta = jiffies_to_cputime(now - tsk->vtime_snap);
746 other = account_other_time(delta);
747 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
748 tsk->vtime_snap = now;
749
750 return delta - other;
751 }
752
753 static void __vtime_account_system(struct task_struct *tsk)
754 {
755 cputime_t delta_cpu = get_vtime_delta(tsk);
756
757 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
758 }
759
760 void vtime_account_system(struct task_struct *tsk)
761 {
762 if (!vtime_delta(tsk))
763 return;
764
765 write_seqcount_begin(&tsk->vtime_seqcount);
766 __vtime_account_system(tsk);
767 write_seqcount_end(&tsk->vtime_seqcount);
768 }
769
770 void vtime_account_user(struct task_struct *tsk)
771 {
772 cputime_t delta_cpu;
773
774 write_seqcount_begin(&tsk->vtime_seqcount);
775 tsk->vtime_snap_whence = VTIME_SYS;
776 if (vtime_delta(tsk)) {
777 delta_cpu = get_vtime_delta(tsk);
778 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
779 }
780 write_seqcount_end(&tsk->vtime_seqcount);
781 }
782
783 void vtime_user_enter(struct task_struct *tsk)
784 {
785 write_seqcount_begin(&tsk->vtime_seqcount);
786 if (vtime_delta(tsk))
787 __vtime_account_system(tsk);
788 tsk->vtime_snap_whence = VTIME_USER;
789 write_seqcount_end(&tsk->vtime_seqcount);
790 }
791
792 void vtime_guest_enter(struct task_struct *tsk)
793 {
794 /*
795 * The flags must be updated under the lock with
796 * the vtime_snap flush and update.
797 * That enforces a right ordering and update sequence
798 * synchronization against the reader (task_gtime())
799 * that can thus safely catch up with a tickless delta.
800 */
801 write_seqcount_begin(&tsk->vtime_seqcount);
802 if (vtime_delta(tsk))
803 __vtime_account_system(tsk);
804 current->flags |= PF_VCPU;
805 write_seqcount_end(&tsk->vtime_seqcount);
806 }
807 EXPORT_SYMBOL_GPL(vtime_guest_enter);
808
809 void vtime_guest_exit(struct task_struct *tsk)
810 {
811 write_seqcount_begin(&tsk->vtime_seqcount);
812 __vtime_account_system(tsk);
813 current->flags &= ~PF_VCPU;
814 write_seqcount_end(&tsk->vtime_seqcount);
815 }
816 EXPORT_SYMBOL_GPL(vtime_guest_exit);
817
818 void vtime_account_idle(struct task_struct *tsk)
819 {
820 cputime_t delta_cpu = get_vtime_delta(tsk);
821
822 account_idle_time(delta_cpu);
823 }
824
825 void arch_vtime_task_switch(struct task_struct *prev)
826 {
827 write_seqcount_begin(&prev->vtime_seqcount);
828 prev->vtime_snap_whence = VTIME_INACTIVE;
829 write_seqcount_end(&prev->vtime_seqcount);
830
831 write_seqcount_begin(&current->vtime_seqcount);
832 current->vtime_snap_whence = VTIME_SYS;
833 current->vtime_snap = jiffies;
834 write_seqcount_end(&current->vtime_seqcount);
835 }
836
837 void vtime_init_idle(struct task_struct *t, int cpu)
838 {
839 unsigned long flags;
840
841 local_irq_save(flags);
842 write_seqcount_begin(&t->vtime_seqcount);
843 t->vtime_snap_whence = VTIME_SYS;
844 t->vtime_snap = jiffies;
845 write_seqcount_end(&t->vtime_seqcount);
846 local_irq_restore(flags);
847 }
848
849 cputime_t task_gtime(struct task_struct *t)
850 {
851 unsigned int seq;
852 cputime_t gtime;
853
854 if (!vtime_accounting_enabled())
855 return t->gtime;
856
857 do {
858 seq = read_seqcount_begin(&t->vtime_seqcount);
859
860 gtime = t->gtime;
861 if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
862 gtime += vtime_delta(t);
863
864 } while (read_seqcount_retry(&t->vtime_seqcount, seq));
865
866 return gtime;
867 }
868
869 /*
870 * Fetch cputime raw values from fields of task_struct and
871 * add up the pending nohz execution time since the last
872 * cputime snapshot.
873 */
874 static void
875 fetch_task_cputime(struct task_struct *t,
876 cputime_t *u_dst, cputime_t *s_dst,
877 cputime_t *u_src, cputime_t *s_src,
878 cputime_t *udelta, cputime_t *sdelta)
879 {
880 unsigned int seq;
881 unsigned long long delta;
882
883 do {
884 *udelta = 0;
885 *sdelta = 0;
886
887 seq = read_seqcount_begin(&t->vtime_seqcount);
888
889 if (u_dst)
890 *u_dst = *u_src;
891 if (s_dst)
892 *s_dst = *s_src;
893
894 /* Task is sleeping, nothing to add */
895 if (t->vtime_snap_whence == VTIME_INACTIVE ||
896 is_idle_task(t))
897 continue;
898
899 delta = vtime_delta(t);
900
901 /*
902 * Task runs either in user or kernel space, add pending nohz time to
903 * the right place.
904 */
905 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
906 *udelta = delta;
907 } else {
908 if (t->vtime_snap_whence == VTIME_SYS)
909 *sdelta = delta;
910 }
911 } while (read_seqcount_retry(&t->vtime_seqcount, seq));
912 }
913
914
915 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
916 {
917 cputime_t udelta, sdelta;
918
919 if (!vtime_accounting_enabled()) {
920 if (utime)
921 *utime = t->utime;
922 if (stime)
923 *stime = t->stime;
924 return;
925 }
926
927 fetch_task_cputime(t, utime, stime, &t->utime,
928 &t->stime, &udelta, &sdelta);
929 if (utime)
930 *utime += udelta;
931 if (stime)
932 *stime += sdelta;
933 }
934
935 void task_cputime_scaled(struct task_struct *t,
936 cputime_t *utimescaled, cputime_t *stimescaled)
937 {
938 cputime_t udelta, sdelta;
939
940 if (!vtime_accounting_enabled()) {
941 if (utimescaled)
942 *utimescaled = t->utimescaled;
943 if (stimescaled)
944 *stimescaled = t->stimescaled;
945 return;
946 }
947
948 fetch_task_cputime(t, utimescaled, stimescaled,
949 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
950 if (utimescaled)
951 *utimescaled += cputime_to_scaled(udelta);
952 if (stimescaled)
953 *stimescaled += cputime_to_scaled(sdelta);
954 }
955 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
This page took 0.061461 seconds and 6 git commands to generate.