sched, preempt_notifier: separate notifier registration from static_key inc/dec
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33
34 #include <trace/events/sched.h>
35
36 #include "sched.h"
37
38 /*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53 /*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65 /*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72 /*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75 static unsigned int sched_nr_latency = 8;
76
77 /*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83 /*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96 /*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 lw->weight += inc;
120 lw->inv_weight = 0;
121 }
122
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127 }
128
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 lw->weight = w;
132 lw->inv_weight = 0;
133 }
134
135 /*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144 static unsigned int get_update_sysctl_factor(void)
145 {
146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163 }
164
165 static void update_sysctl(void)
166 {
167 unsigned int factor = get_update_sysctl_factor();
168
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176
177 void sched_init_granularity(void)
178 {
179 update_sysctl();
180 }
181
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
184
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200 }
201
202 /*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238
239
240 const struct sched_class fair_sched_class;
241
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 return cfs_rq->rq;
252 }
253
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
256
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 return container_of(se, struct task_struct, se);
263 }
264
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 return p->se.cfs_rq;
272 }
273
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 return se->cfs_rq;
278 }
279
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 return grp->my_q;
284 }
285
286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
288
289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 {
291 if (!cfs_rq->on_list) {
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
305 }
306
307 cfs_rq->on_list = 1;
308 /* We should have no load, but we need to update last_decay. */
309 update_cfs_rq_blocked_load(cfs_rq, 0);
310 }
311 }
312
313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 {
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319 }
320
321 /* Iterate thr' all leaf cfs_rq's on a runqueue */
322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325 /* Do the two (enqueued) entities belong to the same group ? */
326 static inline struct cfs_rq *
327 is_same_group(struct sched_entity *se, struct sched_entity *pse)
328 {
329 if (se->cfs_rq == pse->cfs_rq)
330 return se->cfs_rq;
331
332 return NULL;
333 }
334
335 static inline struct sched_entity *parent_entity(struct sched_entity *se)
336 {
337 return se->parent;
338 }
339
340 static void
341 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342 {
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370 }
371
372 #else /* !CONFIG_FAIR_GROUP_SCHED */
373
374 static inline struct task_struct *task_of(struct sched_entity *se)
375 {
376 return container_of(se, struct task_struct, se);
377 }
378
379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380 {
381 return container_of(cfs_rq, struct rq, cfs);
382 }
383
384 #define entity_is_task(se) 1
385
386 #define for_each_sched_entity(se) \
387 for (; se; se = NULL)
388
389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390 {
391 return &task_rq(p)->cfs;
392 }
393
394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395 {
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400 }
401
402 /* runqueue "owned" by this group */
403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404 {
405 return NULL;
406 }
407
408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409 {
410 }
411
412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413 {
414 }
415
416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 {
421 return NULL;
422 }
423
424 static inline void
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426 {
427 }
428
429 #endif /* CONFIG_FAIR_GROUP_SCHED */
430
431 static __always_inline
432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433
434 /**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439 {
440 s64 delta = (s64)(vruntime - max_vruntime);
441 if (delta > 0)
442 max_vruntime = vruntime;
443
444 return max_vruntime;
445 }
446
447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
448 {
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454 }
455
456 static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458 {
459 return (s64)(a->vruntime - b->vruntime) < 0;
460 }
461
462 static void update_min_vruntime(struct cfs_rq *cfs_rq)
463 {
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
474 if (!cfs_rq->curr)
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
480 /* ensure we never gain time by being placed backwards. */
481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482 #ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485 #endif
486 }
487
488 /*
489 * Enqueue an entity into the rb-tree:
490 */
491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 {
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
508 if (entity_before(se, entry)) {
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
520 if (leftmost)
521 cfs_rq->rb_leftmost = &se->run_node;
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
525 }
526
527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 {
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
534 }
535
536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
537 }
538
539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540 {
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
547 }
548
549 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550 {
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557 }
558
559 #ifdef CONFIG_SCHED_DEBUG
560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561 {
562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563
564 if (!last)
565 return NULL;
566
567 return rb_entry(last, struct sched_entity, run_node);
568 }
569
570 /**************************************************************
571 * Scheduling class statistics methods:
572 */
573
574 int sched_proc_update_handler(struct ctl_table *table, int write,
575 void __user *buffer, size_t *lenp,
576 loff_t *ppos)
577 {
578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579 unsigned int factor = get_update_sysctl_factor();
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
587 #define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
592 #undef WRT_SYSCTL
593
594 return 0;
595 }
596 #endif
597
598 /*
599 * delta /= w
600 */
601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602 {
603 if (unlikely(se->load.weight != NICE_0_LOAD))
604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605
606 return delta;
607 }
608
609 /*
610 * The idea is to set a period in which each task runs once.
611 *
612 * When there are too many tasks (sched_nr_latency) we have to stretch
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
617 static u64 __sched_period(unsigned long nr_running)
618 {
619 u64 period = sysctl_sched_latency;
620 unsigned long nr_latency = sched_nr_latency;
621
622 if (unlikely(nr_running > nr_latency)) {
623 period = sysctl_sched_min_granularity;
624 period *= nr_running;
625 }
626
627 return period;
628 }
629
630 /*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
634 * s = p*P[w/rw]
635 */
636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637 {
638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639
640 for_each_sched_entity(se) {
641 struct load_weight *load;
642 struct load_weight lw;
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
646
647 if (unlikely(!se->on_rq)) {
648 lw = cfs_rq->load;
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
653 slice = __calc_delta(slice, se->load.weight, load);
654 }
655 return slice;
656 }
657
658 /*
659 * We calculate the vruntime slice of a to-be-inserted task.
660 *
661 * vs = s/w
662 */
663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664 {
665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 }
667
668 #ifdef CONFIG_SMP
669 static int select_idle_sibling(struct task_struct *p, int cpu);
670 static unsigned long task_h_load(struct task_struct *p);
671
672 static inline void __update_task_entity_contrib(struct sched_entity *se);
673 static inline void __update_task_entity_utilization(struct sched_entity *se);
674
675 /* Give new task start runnable values to heavy its load in infant time */
676 void init_task_runnable_average(struct task_struct *p)
677 {
678 u32 slice;
679
680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
682 p->se.avg.avg_period = slice;
683 __update_task_entity_contrib(&p->se);
684 __update_task_entity_utilization(&p->se);
685 }
686 #else
687 void init_task_runnable_average(struct task_struct *p)
688 {
689 }
690 #endif
691
692 /*
693 * Update the current task's runtime statistics.
694 */
695 static void update_curr(struct cfs_rq *cfs_rq)
696 {
697 struct sched_entity *curr = cfs_rq->curr;
698 u64 now = rq_clock_task(rq_of(cfs_rq));
699 u64 delta_exec;
700
701 if (unlikely(!curr))
702 return;
703
704 delta_exec = now - curr->exec_start;
705 if (unlikely((s64)delta_exec <= 0))
706 return;
707
708 curr->exec_start = now;
709
710 schedstat_set(curr->statistics.exec_max,
711 max(delta_exec, curr->statistics.exec_max));
712
713 curr->sum_exec_runtime += delta_exec;
714 schedstat_add(cfs_rq, exec_clock, delta_exec);
715
716 curr->vruntime += calc_delta_fair(delta_exec, curr);
717 update_min_vruntime(cfs_rq);
718
719 if (entity_is_task(curr)) {
720 struct task_struct *curtask = task_of(curr);
721
722 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
723 cpuacct_charge(curtask, delta_exec);
724 account_group_exec_runtime(curtask, delta_exec);
725 }
726
727 account_cfs_rq_runtime(cfs_rq, delta_exec);
728 }
729
730 static void update_curr_fair(struct rq *rq)
731 {
732 update_curr(cfs_rq_of(&rq->curr->se));
733 }
734
735 static inline void
736 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
739 }
740
741 /*
742 * Task is being enqueued - update stats:
743 */
744 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
745 {
746 /*
747 * Are we enqueueing a waiting task? (for current tasks
748 * a dequeue/enqueue event is a NOP)
749 */
750 if (se != cfs_rq->curr)
751 update_stats_wait_start(cfs_rq, se);
752 }
753
754 static void
755 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 {
757 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
758 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
759 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
760 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
761 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
762 #ifdef CONFIG_SCHEDSTATS
763 if (entity_is_task(se)) {
764 trace_sched_stat_wait(task_of(se),
765 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
766 }
767 #endif
768 schedstat_set(se->statistics.wait_start, 0);
769 }
770
771 static inline void
772 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
773 {
774 /*
775 * Mark the end of the wait period if dequeueing a
776 * waiting task:
777 */
778 if (se != cfs_rq->curr)
779 update_stats_wait_end(cfs_rq, se);
780 }
781
782 /*
783 * We are picking a new current task - update its stats:
784 */
785 static inline void
786 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
787 {
788 /*
789 * We are starting a new run period:
790 */
791 se->exec_start = rq_clock_task(rq_of(cfs_rq));
792 }
793
794 /**************************************************
795 * Scheduling class queueing methods:
796 */
797
798 #ifdef CONFIG_NUMA_BALANCING
799 /*
800 * Approximate time to scan a full NUMA task in ms. The task scan period is
801 * calculated based on the tasks virtual memory size and
802 * numa_balancing_scan_size.
803 */
804 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
805 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
806
807 /* Portion of address space to scan in MB */
808 unsigned int sysctl_numa_balancing_scan_size = 256;
809
810 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811 unsigned int sysctl_numa_balancing_scan_delay = 1000;
812
813 static unsigned int task_nr_scan_windows(struct task_struct *p)
814 {
815 unsigned long rss = 0;
816 unsigned long nr_scan_pages;
817
818 /*
819 * Calculations based on RSS as non-present and empty pages are skipped
820 * by the PTE scanner and NUMA hinting faults should be trapped based
821 * on resident pages
822 */
823 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
824 rss = get_mm_rss(p->mm);
825 if (!rss)
826 rss = nr_scan_pages;
827
828 rss = round_up(rss, nr_scan_pages);
829 return rss / nr_scan_pages;
830 }
831
832 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
833 #define MAX_SCAN_WINDOW 2560
834
835 static unsigned int task_scan_min(struct task_struct *p)
836 {
837 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
838 unsigned int scan, floor;
839 unsigned int windows = 1;
840
841 if (scan_size < MAX_SCAN_WINDOW)
842 windows = MAX_SCAN_WINDOW / scan_size;
843 floor = 1000 / windows;
844
845 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
846 return max_t(unsigned int, floor, scan);
847 }
848
849 static unsigned int task_scan_max(struct task_struct *p)
850 {
851 unsigned int smin = task_scan_min(p);
852 unsigned int smax;
853
854 /* Watch for min being lower than max due to floor calculations */
855 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
856 return max(smin, smax);
857 }
858
859 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
860 {
861 rq->nr_numa_running += (p->numa_preferred_nid != -1);
862 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
863 }
864
865 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
866 {
867 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
868 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
869 }
870
871 struct numa_group {
872 atomic_t refcount;
873
874 spinlock_t lock; /* nr_tasks, tasks */
875 int nr_tasks;
876 pid_t gid;
877
878 struct rcu_head rcu;
879 nodemask_t active_nodes;
880 unsigned long total_faults;
881 /*
882 * Faults_cpu is used to decide whether memory should move
883 * towards the CPU. As a consequence, these stats are weighted
884 * more by CPU use than by memory faults.
885 */
886 unsigned long *faults_cpu;
887 unsigned long faults[0];
888 };
889
890 /* Shared or private faults. */
891 #define NR_NUMA_HINT_FAULT_TYPES 2
892
893 /* Memory and CPU locality */
894 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
895
896 /* Averaged statistics, and temporary buffers. */
897 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
898
899 pid_t task_numa_group_id(struct task_struct *p)
900 {
901 return p->numa_group ? p->numa_group->gid : 0;
902 }
903
904 /*
905 * The averaged statistics, shared & private, memory & cpu,
906 * occupy the first half of the array. The second half of the
907 * array is for current counters, which are averaged into the
908 * first set by task_numa_placement.
909 */
910 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
911 {
912 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
913 }
914
915 static inline unsigned long task_faults(struct task_struct *p, int nid)
916 {
917 if (!p->numa_faults)
918 return 0;
919
920 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
921 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
922 }
923
924 static inline unsigned long group_faults(struct task_struct *p, int nid)
925 {
926 if (!p->numa_group)
927 return 0;
928
929 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
930 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
931 }
932
933 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
934 {
935 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
936 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
937 }
938
939 /* Handle placement on systems where not all nodes are directly connected. */
940 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
941 int maxdist, bool task)
942 {
943 unsigned long score = 0;
944 int node;
945
946 /*
947 * All nodes are directly connected, and the same distance
948 * from each other. No need for fancy placement algorithms.
949 */
950 if (sched_numa_topology_type == NUMA_DIRECT)
951 return 0;
952
953 /*
954 * This code is called for each node, introducing N^2 complexity,
955 * which should be ok given the number of nodes rarely exceeds 8.
956 */
957 for_each_online_node(node) {
958 unsigned long faults;
959 int dist = node_distance(nid, node);
960
961 /*
962 * The furthest away nodes in the system are not interesting
963 * for placement; nid was already counted.
964 */
965 if (dist == sched_max_numa_distance || node == nid)
966 continue;
967
968 /*
969 * On systems with a backplane NUMA topology, compare groups
970 * of nodes, and move tasks towards the group with the most
971 * memory accesses. When comparing two nodes at distance
972 * "hoplimit", only nodes closer by than "hoplimit" are part
973 * of each group. Skip other nodes.
974 */
975 if (sched_numa_topology_type == NUMA_BACKPLANE &&
976 dist > maxdist)
977 continue;
978
979 /* Add up the faults from nearby nodes. */
980 if (task)
981 faults = task_faults(p, node);
982 else
983 faults = group_faults(p, node);
984
985 /*
986 * On systems with a glueless mesh NUMA topology, there are
987 * no fixed "groups of nodes". Instead, nodes that are not
988 * directly connected bounce traffic through intermediate
989 * nodes; a numa_group can occupy any set of nodes.
990 * The further away a node is, the less the faults count.
991 * This seems to result in good task placement.
992 */
993 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
994 faults *= (sched_max_numa_distance - dist);
995 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
996 }
997
998 score += faults;
999 }
1000
1001 return score;
1002 }
1003
1004 /*
1005 * These return the fraction of accesses done by a particular task, or
1006 * task group, on a particular numa node. The group weight is given a
1007 * larger multiplier, in order to group tasks together that are almost
1008 * evenly spread out between numa nodes.
1009 */
1010 static inline unsigned long task_weight(struct task_struct *p, int nid,
1011 int dist)
1012 {
1013 unsigned long faults, total_faults;
1014
1015 if (!p->numa_faults)
1016 return 0;
1017
1018 total_faults = p->total_numa_faults;
1019
1020 if (!total_faults)
1021 return 0;
1022
1023 faults = task_faults(p, nid);
1024 faults += score_nearby_nodes(p, nid, dist, true);
1025
1026 return 1000 * faults / total_faults;
1027 }
1028
1029 static inline unsigned long group_weight(struct task_struct *p, int nid,
1030 int dist)
1031 {
1032 unsigned long faults, total_faults;
1033
1034 if (!p->numa_group)
1035 return 0;
1036
1037 total_faults = p->numa_group->total_faults;
1038
1039 if (!total_faults)
1040 return 0;
1041
1042 faults = group_faults(p, nid);
1043 faults += score_nearby_nodes(p, nid, dist, false);
1044
1045 return 1000 * faults / total_faults;
1046 }
1047
1048 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1049 int src_nid, int dst_cpu)
1050 {
1051 struct numa_group *ng = p->numa_group;
1052 int dst_nid = cpu_to_node(dst_cpu);
1053 int last_cpupid, this_cpupid;
1054
1055 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1056
1057 /*
1058 * Multi-stage node selection is used in conjunction with a periodic
1059 * migration fault to build a temporal task<->page relation. By using
1060 * a two-stage filter we remove short/unlikely relations.
1061 *
1062 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1063 * a task's usage of a particular page (n_p) per total usage of this
1064 * page (n_t) (in a given time-span) to a probability.
1065 *
1066 * Our periodic faults will sample this probability and getting the
1067 * same result twice in a row, given these samples are fully
1068 * independent, is then given by P(n)^2, provided our sample period
1069 * is sufficiently short compared to the usage pattern.
1070 *
1071 * This quadric squishes small probabilities, making it less likely we
1072 * act on an unlikely task<->page relation.
1073 */
1074 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1075 if (!cpupid_pid_unset(last_cpupid) &&
1076 cpupid_to_nid(last_cpupid) != dst_nid)
1077 return false;
1078
1079 /* Always allow migrate on private faults */
1080 if (cpupid_match_pid(p, last_cpupid))
1081 return true;
1082
1083 /* A shared fault, but p->numa_group has not been set up yet. */
1084 if (!ng)
1085 return true;
1086
1087 /*
1088 * Do not migrate if the destination is not a node that
1089 * is actively used by this numa group.
1090 */
1091 if (!node_isset(dst_nid, ng->active_nodes))
1092 return false;
1093
1094 /*
1095 * Source is a node that is not actively used by this
1096 * numa group, while the destination is. Migrate.
1097 */
1098 if (!node_isset(src_nid, ng->active_nodes))
1099 return true;
1100
1101 /*
1102 * Both source and destination are nodes in active
1103 * use by this numa group. Maximize memory bandwidth
1104 * by migrating from more heavily used groups, to less
1105 * heavily used ones, spreading the load around.
1106 * Use a 1/4 hysteresis to avoid spurious page movement.
1107 */
1108 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1109 }
1110
1111 static unsigned long weighted_cpuload(const int cpu);
1112 static unsigned long source_load(int cpu, int type);
1113 static unsigned long target_load(int cpu, int type);
1114 static unsigned long capacity_of(int cpu);
1115 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1116
1117 /* Cached statistics for all CPUs within a node */
1118 struct numa_stats {
1119 unsigned long nr_running;
1120 unsigned long load;
1121
1122 /* Total compute capacity of CPUs on a node */
1123 unsigned long compute_capacity;
1124
1125 /* Approximate capacity in terms of runnable tasks on a node */
1126 unsigned long task_capacity;
1127 int has_free_capacity;
1128 };
1129
1130 /*
1131 * XXX borrowed from update_sg_lb_stats
1132 */
1133 static void update_numa_stats(struct numa_stats *ns, int nid)
1134 {
1135 int smt, cpu, cpus = 0;
1136 unsigned long capacity;
1137
1138 memset(ns, 0, sizeof(*ns));
1139 for_each_cpu(cpu, cpumask_of_node(nid)) {
1140 struct rq *rq = cpu_rq(cpu);
1141
1142 ns->nr_running += rq->nr_running;
1143 ns->load += weighted_cpuload(cpu);
1144 ns->compute_capacity += capacity_of(cpu);
1145
1146 cpus++;
1147 }
1148
1149 /*
1150 * If we raced with hotplug and there are no CPUs left in our mask
1151 * the @ns structure is NULL'ed and task_numa_compare() will
1152 * not find this node attractive.
1153 *
1154 * We'll either bail at !has_free_capacity, or we'll detect a huge
1155 * imbalance and bail there.
1156 */
1157 if (!cpus)
1158 return;
1159
1160 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1161 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1162 capacity = cpus / smt; /* cores */
1163
1164 ns->task_capacity = min_t(unsigned, capacity,
1165 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1166 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1167 }
1168
1169 struct task_numa_env {
1170 struct task_struct *p;
1171
1172 int src_cpu, src_nid;
1173 int dst_cpu, dst_nid;
1174
1175 struct numa_stats src_stats, dst_stats;
1176
1177 int imbalance_pct;
1178 int dist;
1179
1180 struct task_struct *best_task;
1181 long best_imp;
1182 int best_cpu;
1183 };
1184
1185 static void task_numa_assign(struct task_numa_env *env,
1186 struct task_struct *p, long imp)
1187 {
1188 if (env->best_task)
1189 put_task_struct(env->best_task);
1190 if (p)
1191 get_task_struct(p);
1192
1193 env->best_task = p;
1194 env->best_imp = imp;
1195 env->best_cpu = env->dst_cpu;
1196 }
1197
1198 static bool load_too_imbalanced(long src_load, long dst_load,
1199 struct task_numa_env *env)
1200 {
1201 long imb, old_imb;
1202 long orig_src_load, orig_dst_load;
1203 long src_capacity, dst_capacity;
1204
1205 /*
1206 * The load is corrected for the CPU capacity available on each node.
1207 *
1208 * src_load dst_load
1209 * ------------ vs ---------
1210 * src_capacity dst_capacity
1211 */
1212 src_capacity = env->src_stats.compute_capacity;
1213 dst_capacity = env->dst_stats.compute_capacity;
1214
1215 /* We care about the slope of the imbalance, not the direction. */
1216 if (dst_load < src_load)
1217 swap(dst_load, src_load);
1218
1219 /* Is the difference below the threshold? */
1220 imb = dst_load * src_capacity * 100 -
1221 src_load * dst_capacity * env->imbalance_pct;
1222 if (imb <= 0)
1223 return false;
1224
1225 /*
1226 * The imbalance is above the allowed threshold.
1227 * Compare it with the old imbalance.
1228 */
1229 orig_src_load = env->src_stats.load;
1230 orig_dst_load = env->dst_stats.load;
1231
1232 if (orig_dst_load < orig_src_load)
1233 swap(orig_dst_load, orig_src_load);
1234
1235 old_imb = orig_dst_load * src_capacity * 100 -
1236 orig_src_load * dst_capacity * env->imbalance_pct;
1237
1238 /* Would this change make things worse? */
1239 return (imb > old_imb);
1240 }
1241
1242 /*
1243 * This checks if the overall compute and NUMA accesses of the system would
1244 * be improved if the source tasks was migrated to the target dst_cpu taking
1245 * into account that it might be best if task running on the dst_cpu should
1246 * be exchanged with the source task
1247 */
1248 static void task_numa_compare(struct task_numa_env *env,
1249 long taskimp, long groupimp)
1250 {
1251 struct rq *src_rq = cpu_rq(env->src_cpu);
1252 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1253 struct task_struct *cur;
1254 long src_load, dst_load;
1255 long load;
1256 long imp = env->p->numa_group ? groupimp : taskimp;
1257 long moveimp = imp;
1258 int dist = env->dist;
1259
1260 rcu_read_lock();
1261
1262 raw_spin_lock_irq(&dst_rq->lock);
1263 cur = dst_rq->curr;
1264 /*
1265 * No need to move the exiting task, and this ensures that ->curr
1266 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1267 * is safe under RCU read lock.
1268 * Note that rcu_read_lock() itself can't protect from the final
1269 * put_task_struct() after the last schedule().
1270 */
1271 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1272 cur = NULL;
1273 raw_spin_unlock_irq(&dst_rq->lock);
1274
1275 /*
1276 * Because we have preemption enabled we can get migrated around and
1277 * end try selecting ourselves (current == env->p) as a swap candidate.
1278 */
1279 if (cur == env->p)
1280 goto unlock;
1281
1282 /*
1283 * "imp" is the fault differential for the source task between the
1284 * source and destination node. Calculate the total differential for
1285 * the source task and potential destination task. The more negative
1286 * the value is, the more rmeote accesses that would be expected to
1287 * be incurred if the tasks were swapped.
1288 */
1289 if (cur) {
1290 /* Skip this swap candidate if cannot move to the source cpu */
1291 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1292 goto unlock;
1293
1294 /*
1295 * If dst and source tasks are in the same NUMA group, or not
1296 * in any group then look only at task weights.
1297 */
1298 if (cur->numa_group == env->p->numa_group) {
1299 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1300 task_weight(cur, env->dst_nid, dist);
1301 /*
1302 * Add some hysteresis to prevent swapping the
1303 * tasks within a group over tiny differences.
1304 */
1305 if (cur->numa_group)
1306 imp -= imp/16;
1307 } else {
1308 /*
1309 * Compare the group weights. If a task is all by
1310 * itself (not part of a group), use the task weight
1311 * instead.
1312 */
1313 if (cur->numa_group)
1314 imp += group_weight(cur, env->src_nid, dist) -
1315 group_weight(cur, env->dst_nid, dist);
1316 else
1317 imp += task_weight(cur, env->src_nid, dist) -
1318 task_weight(cur, env->dst_nid, dist);
1319 }
1320 }
1321
1322 if (imp <= env->best_imp && moveimp <= env->best_imp)
1323 goto unlock;
1324
1325 if (!cur) {
1326 /* Is there capacity at our destination? */
1327 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1328 !env->dst_stats.has_free_capacity)
1329 goto unlock;
1330
1331 goto balance;
1332 }
1333
1334 /* Balance doesn't matter much if we're running a task per cpu */
1335 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1336 dst_rq->nr_running == 1)
1337 goto assign;
1338
1339 /*
1340 * In the overloaded case, try and keep the load balanced.
1341 */
1342 balance:
1343 load = task_h_load(env->p);
1344 dst_load = env->dst_stats.load + load;
1345 src_load = env->src_stats.load - load;
1346
1347 if (moveimp > imp && moveimp > env->best_imp) {
1348 /*
1349 * If the improvement from just moving env->p direction is
1350 * better than swapping tasks around, check if a move is
1351 * possible. Store a slightly smaller score than moveimp,
1352 * so an actually idle CPU will win.
1353 */
1354 if (!load_too_imbalanced(src_load, dst_load, env)) {
1355 imp = moveimp - 1;
1356 cur = NULL;
1357 goto assign;
1358 }
1359 }
1360
1361 if (imp <= env->best_imp)
1362 goto unlock;
1363
1364 if (cur) {
1365 load = task_h_load(cur);
1366 dst_load -= load;
1367 src_load += load;
1368 }
1369
1370 if (load_too_imbalanced(src_load, dst_load, env))
1371 goto unlock;
1372
1373 /*
1374 * One idle CPU per node is evaluated for a task numa move.
1375 * Call select_idle_sibling to maybe find a better one.
1376 */
1377 if (!cur)
1378 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1379
1380 assign:
1381 task_numa_assign(env, cur, imp);
1382 unlock:
1383 rcu_read_unlock();
1384 }
1385
1386 static void task_numa_find_cpu(struct task_numa_env *env,
1387 long taskimp, long groupimp)
1388 {
1389 int cpu;
1390
1391 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1392 /* Skip this CPU if the source task cannot migrate */
1393 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1394 continue;
1395
1396 env->dst_cpu = cpu;
1397 task_numa_compare(env, taskimp, groupimp);
1398 }
1399 }
1400
1401 /* Only move tasks to a NUMA node less busy than the current node. */
1402 static bool numa_has_capacity(struct task_numa_env *env)
1403 {
1404 struct numa_stats *src = &env->src_stats;
1405 struct numa_stats *dst = &env->dst_stats;
1406
1407 if (src->has_free_capacity && !dst->has_free_capacity)
1408 return false;
1409
1410 /*
1411 * Only consider a task move if the source has a higher load
1412 * than the destination, corrected for CPU capacity on each node.
1413 *
1414 * src->load dst->load
1415 * --------------------- vs ---------------------
1416 * src->compute_capacity dst->compute_capacity
1417 */
1418 if (src->load * dst->compute_capacity >
1419 dst->load * src->compute_capacity)
1420 return true;
1421
1422 return false;
1423 }
1424
1425 static int task_numa_migrate(struct task_struct *p)
1426 {
1427 struct task_numa_env env = {
1428 .p = p,
1429
1430 .src_cpu = task_cpu(p),
1431 .src_nid = task_node(p),
1432
1433 .imbalance_pct = 112,
1434
1435 .best_task = NULL,
1436 .best_imp = 0,
1437 .best_cpu = -1
1438 };
1439 struct sched_domain *sd;
1440 unsigned long taskweight, groupweight;
1441 int nid, ret, dist;
1442 long taskimp, groupimp;
1443
1444 /*
1445 * Pick the lowest SD_NUMA domain, as that would have the smallest
1446 * imbalance and would be the first to start moving tasks about.
1447 *
1448 * And we want to avoid any moving of tasks about, as that would create
1449 * random movement of tasks -- counter the numa conditions we're trying
1450 * to satisfy here.
1451 */
1452 rcu_read_lock();
1453 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1454 if (sd)
1455 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1456 rcu_read_unlock();
1457
1458 /*
1459 * Cpusets can break the scheduler domain tree into smaller
1460 * balance domains, some of which do not cross NUMA boundaries.
1461 * Tasks that are "trapped" in such domains cannot be migrated
1462 * elsewhere, so there is no point in (re)trying.
1463 */
1464 if (unlikely(!sd)) {
1465 p->numa_preferred_nid = task_node(p);
1466 return -EINVAL;
1467 }
1468
1469 env.dst_nid = p->numa_preferred_nid;
1470 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1471 taskweight = task_weight(p, env.src_nid, dist);
1472 groupweight = group_weight(p, env.src_nid, dist);
1473 update_numa_stats(&env.src_stats, env.src_nid);
1474 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1475 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1476 update_numa_stats(&env.dst_stats, env.dst_nid);
1477
1478 /* Try to find a spot on the preferred nid. */
1479 if (numa_has_capacity(&env))
1480 task_numa_find_cpu(&env, taskimp, groupimp);
1481
1482 /*
1483 * Look at other nodes in these cases:
1484 * - there is no space available on the preferred_nid
1485 * - the task is part of a numa_group that is interleaved across
1486 * multiple NUMA nodes; in order to better consolidate the group,
1487 * we need to check other locations.
1488 */
1489 if (env.best_cpu == -1 || (p->numa_group &&
1490 nodes_weight(p->numa_group->active_nodes) > 1)) {
1491 for_each_online_node(nid) {
1492 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1493 continue;
1494
1495 dist = node_distance(env.src_nid, env.dst_nid);
1496 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1497 dist != env.dist) {
1498 taskweight = task_weight(p, env.src_nid, dist);
1499 groupweight = group_weight(p, env.src_nid, dist);
1500 }
1501
1502 /* Only consider nodes where both task and groups benefit */
1503 taskimp = task_weight(p, nid, dist) - taskweight;
1504 groupimp = group_weight(p, nid, dist) - groupweight;
1505 if (taskimp < 0 && groupimp < 0)
1506 continue;
1507
1508 env.dist = dist;
1509 env.dst_nid = nid;
1510 update_numa_stats(&env.dst_stats, env.dst_nid);
1511 if (numa_has_capacity(&env))
1512 task_numa_find_cpu(&env, taskimp, groupimp);
1513 }
1514 }
1515
1516 /*
1517 * If the task is part of a workload that spans multiple NUMA nodes,
1518 * and is migrating into one of the workload's active nodes, remember
1519 * this node as the task's preferred numa node, so the workload can
1520 * settle down.
1521 * A task that migrated to a second choice node will be better off
1522 * trying for a better one later. Do not set the preferred node here.
1523 */
1524 if (p->numa_group) {
1525 if (env.best_cpu == -1)
1526 nid = env.src_nid;
1527 else
1528 nid = env.dst_nid;
1529
1530 if (node_isset(nid, p->numa_group->active_nodes))
1531 sched_setnuma(p, env.dst_nid);
1532 }
1533
1534 /* No better CPU than the current one was found. */
1535 if (env.best_cpu == -1)
1536 return -EAGAIN;
1537
1538 /*
1539 * Reset the scan period if the task is being rescheduled on an
1540 * alternative node to recheck if the tasks is now properly placed.
1541 */
1542 p->numa_scan_period = task_scan_min(p);
1543
1544 if (env.best_task == NULL) {
1545 ret = migrate_task_to(p, env.best_cpu);
1546 if (ret != 0)
1547 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1548 return ret;
1549 }
1550
1551 ret = migrate_swap(p, env.best_task);
1552 if (ret != 0)
1553 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1554 put_task_struct(env.best_task);
1555 return ret;
1556 }
1557
1558 /* Attempt to migrate a task to a CPU on the preferred node. */
1559 static void numa_migrate_preferred(struct task_struct *p)
1560 {
1561 unsigned long interval = HZ;
1562
1563 /* This task has no NUMA fault statistics yet */
1564 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1565 return;
1566
1567 /* Periodically retry migrating the task to the preferred node */
1568 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1569 p->numa_migrate_retry = jiffies + interval;
1570
1571 /* Success if task is already running on preferred CPU */
1572 if (task_node(p) == p->numa_preferred_nid)
1573 return;
1574
1575 /* Otherwise, try migrate to a CPU on the preferred node */
1576 task_numa_migrate(p);
1577 }
1578
1579 /*
1580 * Find the nodes on which the workload is actively running. We do this by
1581 * tracking the nodes from which NUMA hinting faults are triggered. This can
1582 * be different from the set of nodes where the workload's memory is currently
1583 * located.
1584 *
1585 * The bitmask is used to make smarter decisions on when to do NUMA page
1586 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1587 * are added when they cause over 6/16 of the maximum number of faults, but
1588 * only removed when they drop below 3/16.
1589 */
1590 static void update_numa_active_node_mask(struct numa_group *numa_group)
1591 {
1592 unsigned long faults, max_faults = 0;
1593 int nid;
1594
1595 for_each_online_node(nid) {
1596 faults = group_faults_cpu(numa_group, nid);
1597 if (faults > max_faults)
1598 max_faults = faults;
1599 }
1600
1601 for_each_online_node(nid) {
1602 faults = group_faults_cpu(numa_group, nid);
1603 if (!node_isset(nid, numa_group->active_nodes)) {
1604 if (faults > max_faults * 6 / 16)
1605 node_set(nid, numa_group->active_nodes);
1606 } else if (faults < max_faults * 3 / 16)
1607 node_clear(nid, numa_group->active_nodes);
1608 }
1609 }
1610
1611 /*
1612 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1613 * increments. The more local the fault statistics are, the higher the scan
1614 * period will be for the next scan window. If local/(local+remote) ratio is
1615 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1616 * the scan period will decrease. Aim for 70% local accesses.
1617 */
1618 #define NUMA_PERIOD_SLOTS 10
1619 #define NUMA_PERIOD_THRESHOLD 7
1620
1621 /*
1622 * Increase the scan period (slow down scanning) if the majority of
1623 * our memory is already on our local node, or if the majority of
1624 * the page accesses are shared with other processes.
1625 * Otherwise, decrease the scan period.
1626 */
1627 static void update_task_scan_period(struct task_struct *p,
1628 unsigned long shared, unsigned long private)
1629 {
1630 unsigned int period_slot;
1631 int ratio;
1632 int diff;
1633
1634 unsigned long remote = p->numa_faults_locality[0];
1635 unsigned long local = p->numa_faults_locality[1];
1636
1637 /*
1638 * If there were no record hinting faults then either the task is
1639 * completely idle or all activity is areas that are not of interest
1640 * to automatic numa balancing. Related to that, if there were failed
1641 * migration then it implies we are migrating too quickly or the local
1642 * node is overloaded. In either case, scan slower
1643 */
1644 if (local + shared == 0 || p->numa_faults_locality[2]) {
1645 p->numa_scan_period = min(p->numa_scan_period_max,
1646 p->numa_scan_period << 1);
1647
1648 p->mm->numa_next_scan = jiffies +
1649 msecs_to_jiffies(p->numa_scan_period);
1650
1651 return;
1652 }
1653
1654 /*
1655 * Prepare to scale scan period relative to the current period.
1656 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1657 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1658 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1659 */
1660 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1661 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1662 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1663 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1664 if (!slot)
1665 slot = 1;
1666 diff = slot * period_slot;
1667 } else {
1668 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1669
1670 /*
1671 * Scale scan rate increases based on sharing. There is an
1672 * inverse relationship between the degree of sharing and
1673 * the adjustment made to the scanning period. Broadly
1674 * speaking the intent is that there is little point
1675 * scanning faster if shared accesses dominate as it may
1676 * simply bounce migrations uselessly
1677 */
1678 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1679 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1680 }
1681
1682 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1683 task_scan_min(p), task_scan_max(p));
1684 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1685 }
1686
1687 /*
1688 * Get the fraction of time the task has been running since the last
1689 * NUMA placement cycle. The scheduler keeps similar statistics, but
1690 * decays those on a 32ms period, which is orders of magnitude off
1691 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1692 * stats only if the task is so new there are no NUMA statistics yet.
1693 */
1694 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1695 {
1696 u64 runtime, delta, now;
1697 /* Use the start of this time slice to avoid calculations. */
1698 now = p->se.exec_start;
1699 runtime = p->se.sum_exec_runtime;
1700
1701 if (p->last_task_numa_placement) {
1702 delta = runtime - p->last_sum_exec_runtime;
1703 *period = now - p->last_task_numa_placement;
1704 } else {
1705 delta = p->se.avg.runnable_avg_sum;
1706 *period = p->se.avg.avg_period;
1707 }
1708
1709 p->last_sum_exec_runtime = runtime;
1710 p->last_task_numa_placement = now;
1711
1712 return delta;
1713 }
1714
1715 /*
1716 * Determine the preferred nid for a task in a numa_group. This needs to
1717 * be done in a way that produces consistent results with group_weight,
1718 * otherwise workloads might not converge.
1719 */
1720 static int preferred_group_nid(struct task_struct *p, int nid)
1721 {
1722 nodemask_t nodes;
1723 int dist;
1724
1725 /* Direct connections between all NUMA nodes. */
1726 if (sched_numa_topology_type == NUMA_DIRECT)
1727 return nid;
1728
1729 /*
1730 * On a system with glueless mesh NUMA topology, group_weight
1731 * scores nodes according to the number of NUMA hinting faults on
1732 * both the node itself, and on nearby nodes.
1733 */
1734 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1735 unsigned long score, max_score = 0;
1736 int node, max_node = nid;
1737
1738 dist = sched_max_numa_distance;
1739
1740 for_each_online_node(node) {
1741 score = group_weight(p, node, dist);
1742 if (score > max_score) {
1743 max_score = score;
1744 max_node = node;
1745 }
1746 }
1747 return max_node;
1748 }
1749
1750 /*
1751 * Finding the preferred nid in a system with NUMA backplane
1752 * interconnect topology is more involved. The goal is to locate
1753 * tasks from numa_groups near each other in the system, and
1754 * untangle workloads from different sides of the system. This requires
1755 * searching down the hierarchy of node groups, recursively searching
1756 * inside the highest scoring group of nodes. The nodemask tricks
1757 * keep the complexity of the search down.
1758 */
1759 nodes = node_online_map;
1760 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1761 unsigned long max_faults = 0;
1762 nodemask_t max_group = NODE_MASK_NONE;
1763 int a, b;
1764
1765 /* Are there nodes at this distance from each other? */
1766 if (!find_numa_distance(dist))
1767 continue;
1768
1769 for_each_node_mask(a, nodes) {
1770 unsigned long faults = 0;
1771 nodemask_t this_group;
1772 nodes_clear(this_group);
1773
1774 /* Sum group's NUMA faults; includes a==b case. */
1775 for_each_node_mask(b, nodes) {
1776 if (node_distance(a, b) < dist) {
1777 faults += group_faults(p, b);
1778 node_set(b, this_group);
1779 node_clear(b, nodes);
1780 }
1781 }
1782
1783 /* Remember the top group. */
1784 if (faults > max_faults) {
1785 max_faults = faults;
1786 max_group = this_group;
1787 /*
1788 * subtle: at the smallest distance there is
1789 * just one node left in each "group", the
1790 * winner is the preferred nid.
1791 */
1792 nid = a;
1793 }
1794 }
1795 /* Next round, evaluate the nodes within max_group. */
1796 if (!max_faults)
1797 break;
1798 nodes = max_group;
1799 }
1800 return nid;
1801 }
1802
1803 static void task_numa_placement(struct task_struct *p)
1804 {
1805 int seq, nid, max_nid = -1, max_group_nid = -1;
1806 unsigned long max_faults = 0, max_group_faults = 0;
1807 unsigned long fault_types[2] = { 0, 0 };
1808 unsigned long total_faults;
1809 u64 runtime, period;
1810 spinlock_t *group_lock = NULL;
1811
1812 /*
1813 * The p->mm->numa_scan_seq field gets updated without
1814 * exclusive access. Use READ_ONCE() here to ensure
1815 * that the field is read in a single access:
1816 */
1817 seq = READ_ONCE(p->mm->numa_scan_seq);
1818 if (p->numa_scan_seq == seq)
1819 return;
1820 p->numa_scan_seq = seq;
1821 p->numa_scan_period_max = task_scan_max(p);
1822
1823 total_faults = p->numa_faults_locality[0] +
1824 p->numa_faults_locality[1];
1825 runtime = numa_get_avg_runtime(p, &period);
1826
1827 /* If the task is part of a group prevent parallel updates to group stats */
1828 if (p->numa_group) {
1829 group_lock = &p->numa_group->lock;
1830 spin_lock_irq(group_lock);
1831 }
1832
1833 /* Find the node with the highest number of faults */
1834 for_each_online_node(nid) {
1835 /* Keep track of the offsets in numa_faults array */
1836 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1837 unsigned long faults = 0, group_faults = 0;
1838 int priv;
1839
1840 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1841 long diff, f_diff, f_weight;
1842
1843 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1844 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1845 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1846 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1847
1848 /* Decay existing window, copy faults since last scan */
1849 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1850 fault_types[priv] += p->numa_faults[membuf_idx];
1851 p->numa_faults[membuf_idx] = 0;
1852
1853 /*
1854 * Normalize the faults_from, so all tasks in a group
1855 * count according to CPU use, instead of by the raw
1856 * number of faults. Tasks with little runtime have
1857 * little over-all impact on throughput, and thus their
1858 * faults are less important.
1859 */
1860 f_weight = div64_u64(runtime << 16, period + 1);
1861 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1862 (total_faults + 1);
1863 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1864 p->numa_faults[cpubuf_idx] = 0;
1865
1866 p->numa_faults[mem_idx] += diff;
1867 p->numa_faults[cpu_idx] += f_diff;
1868 faults += p->numa_faults[mem_idx];
1869 p->total_numa_faults += diff;
1870 if (p->numa_group) {
1871 /*
1872 * safe because we can only change our own group
1873 *
1874 * mem_idx represents the offset for a given
1875 * nid and priv in a specific region because it
1876 * is at the beginning of the numa_faults array.
1877 */
1878 p->numa_group->faults[mem_idx] += diff;
1879 p->numa_group->faults_cpu[mem_idx] += f_diff;
1880 p->numa_group->total_faults += diff;
1881 group_faults += p->numa_group->faults[mem_idx];
1882 }
1883 }
1884
1885 if (faults > max_faults) {
1886 max_faults = faults;
1887 max_nid = nid;
1888 }
1889
1890 if (group_faults > max_group_faults) {
1891 max_group_faults = group_faults;
1892 max_group_nid = nid;
1893 }
1894 }
1895
1896 update_task_scan_period(p, fault_types[0], fault_types[1]);
1897
1898 if (p->numa_group) {
1899 update_numa_active_node_mask(p->numa_group);
1900 spin_unlock_irq(group_lock);
1901 max_nid = preferred_group_nid(p, max_group_nid);
1902 }
1903
1904 if (max_faults) {
1905 /* Set the new preferred node */
1906 if (max_nid != p->numa_preferred_nid)
1907 sched_setnuma(p, max_nid);
1908
1909 if (task_node(p) != p->numa_preferred_nid)
1910 numa_migrate_preferred(p);
1911 }
1912 }
1913
1914 static inline int get_numa_group(struct numa_group *grp)
1915 {
1916 return atomic_inc_not_zero(&grp->refcount);
1917 }
1918
1919 static inline void put_numa_group(struct numa_group *grp)
1920 {
1921 if (atomic_dec_and_test(&grp->refcount))
1922 kfree_rcu(grp, rcu);
1923 }
1924
1925 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1926 int *priv)
1927 {
1928 struct numa_group *grp, *my_grp;
1929 struct task_struct *tsk;
1930 bool join = false;
1931 int cpu = cpupid_to_cpu(cpupid);
1932 int i;
1933
1934 if (unlikely(!p->numa_group)) {
1935 unsigned int size = sizeof(struct numa_group) +
1936 4*nr_node_ids*sizeof(unsigned long);
1937
1938 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1939 if (!grp)
1940 return;
1941
1942 atomic_set(&grp->refcount, 1);
1943 spin_lock_init(&grp->lock);
1944 grp->gid = p->pid;
1945 /* Second half of the array tracks nids where faults happen */
1946 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1947 nr_node_ids;
1948
1949 node_set(task_node(current), grp->active_nodes);
1950
1951 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1952 grp->faults[i] = p->numa_faults[i];
1953
1954 grp->total_faults = p->total_numa_faults;
1955
1956 grp->nr_tasks++;
1957 rcu_assign_pointer(p->numa_group, grp);
1958 }
1959
1960 rcu_read_lock();
1961 tsk = READ_ONCE(cpu_rq(cpu)->curr);
1962
1963 if (!cpupid_match_pid(tsk, cpupid))
1964 goto no_join;
1965
1966 grp = rcu_dereference(tsk->numa_group);
1967 if (!grp)
1968 goto no_join;
1969
1970 my_grp = p->numa_group;
1971 if (grp == my_grp)
1972 goto no_join;
1973
1974 /*
1975 * Only join the other group if its bigger; if we're the bigger group,
1976 * the other task will join us.
1977 */
1978 if (my_grp->nr_tasks > grp->nr_tasks)
1979 goto no_join;
1980
1981 /*
1982 * Tie-break on the grp address.
1983 */
1984 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1985 goto no_join;
1986
1987 /* Always join threads in the same process. */
1988 if (tsk->mm == current->mm)
1989 join = true;
1990
1991 /* Simple filter to avoid false positives due to PID collisions */
1992 if (flags & TNF_SHARED)
1993 join = true;
1994
1995 /* Update priv based on whether false sharing was detected */
1996 *priv = !join;
1997
1998 if (join && !get_numa_group(grp))
1999 goto no_join;
2000
2001 rcu_read_unlock();
2002
2003 if (!join)
2004 return;
2005
2006 BUG_ON(irqs_disabled());
2007 double_lock_irq(&my_grp->lock, &grp->lock);
2008
2009 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2010 my_grp->faults[i] -= p->numa_faults[i];
2011 grp->faults[i] += p->numa_faults[i];
2012 }
2013 my_grp->total_faults -= p->total_numa_faults;
2014 grp->total_faults += p->total_numa_faults;
2015
2016 my_grp->nr_tasks--;
2017 grp->nr_tasks++;
2018
2019 spin_unlock(&my_grp->lock);
2020 spin_unlock_irq(&grp->lock);
2021
2022 rcu_assign_pointer(p->numa_group, grp);
2023
2024 put_numa_group(my_grp);
2025 return;
2026
2027 no_join:
2028 rcu_read_unlock();
2029 return;
2030 }
2031
2032 void task_numa_free(struct task_struct *p)
2033 {
2034 struct numa_group *grp = p->numa_group;
2035 void *numa_faults = p->numa_faults;
2036 unsigned long flags;
2037 int i;
2038
2039 if (grp) {
2040 spin_lock_irqsave(&grp->lock, flags);
2041 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2042 grp->faults[i] -= p->numa_faults[i];
2043 grp->total_faults -= p->total_numa_faults;
2044
2045 grp->nr_tasks--;
2046 spin_unlock_irqrestore(&grp->lock, flags);
2047 RCU_INIT_POINTER(p->numa_group, NULL);
2048 put_numa_group(grp);
2049 }
2050
2051 p->numa_faults = NULL;
2052 kfree(numa_faults);
2053 }
2054
2055 /*
2056 * Got a PROT_NONE fault for a page on @node.
2057 */
2058 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2059 {
2060 struct task_struct *p = current;
2061 bool migrated = flags & TNF_MIGRATED;
2062 int cpu_node = task_node(current);
2063 int local = !!(flags & TNF_FAULT_LOCAL);
2064 int priv;
2065
2066 if (!numabalancing_enabled)
2067 return;
2068
2069 /* for example, ksmd faulting in a user's mm */
2070 if (!p->mm)
2071 return;
2072
2073 /* Allocate buffer to track faults on a per-node basis */
2074 if (unlikely(!p->numa_faults)) {
2075 int size = sizeof(*p->numa_faults) *
2076 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2077
2078 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2079 if (!p->numa_faults)
2080 return;
2081
2082 p->total_numa_faults = 0;
2083 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2084 }
2085
2086 /*
2087 * First accesses are treated as private, otherwise consider accesses
2088 * to be private if the accessing pid has not changed
2089 */
2090 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2091 priv = 1;
2092 } else {
2093 priv = cpupid_match_pid(p, last_cpupid);
2094 if (!priv && !(flags & TNF_NO_GROUP))
2095 task_numa_group(p, last_cpupid, flags, &priv);
2096 }
2097
2098 /*
2099 * If a workload spans multiple NUMA nodes, a shared fault that
2100 * occurs wholly within the set of nodes that the workload is
2101 * actively using should be counted as local. This allows the
2102 * scan rate to slow down when a workload has settled down.
2103 */
2104 if (!priv && !local && p->numa_group &&
2105 node_isset(cpu_node, p->numa_group->active_nodes) &&
2106 node_isset(mem_node, p->numa_group->active_nodes))
2107 local = 1;
2108
2109 task_numa_placement(p);
2110
2111 /*
2112 * Retry task to preferred node migration periodically, in case it
2113 * case it previously failed, or the scheduler moved us.
2114 */
2115 if (time_after(jiffies, p->numa_migrate_retry))
2116 numa_migrate_preferred(p);
2117
2118 if (migrated)
2119 p->numa_pages_migrated += pages;
2120 if (flags & TNF_MIGRATE_FAIL)
2121 p->numa_faults_locality[2] += pages;
2122
2123 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2124 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2125 p->numa_faults_locality[local] += pages;
2126 }
2127
2128 static void reset_ptenuma_scan(struct task_struct *p)
2129 {
2130 /*
2131 * We only did a read acquisition of the mmap sem, so
2132 * p->mm->numa_scan_seq is written to without exclusive access
2133 * and the update is not guaranteed to be atomic. That's not
2134 * much of an issue though, since this is just used for
2135 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2136 * expensive, to avoid any form of compiler optimizations:
2137 */
2138 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2139 p->mm->numa_scan_offset = 0;
2140 }
2141
2142 /*
2143 * The expensive part of numa migration is done from task_work context.
2144 * Triggered from task_tick_numa().
2145 */
2146 void task_numa_work(struct callback_head *work)
2147 {
2148 unsigned long migrate, next_scan, now = jiffies;
2149 struct task_struct *p = current;
2150 struct mm_struct *mm = p->mm;
2151 struct vm_area_struct *vma;
2152 unsigned long start, end;
2153 unsigned long nr_pte_updates = 0;
2154 long pages;
2155
2156 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2157
2158 work->next = work; /* protect against double add */
2159 /*
2160 * Who cares about NUMA placement when they're dying.
2161 *
2162 * NOTE: make sure not to dereference p->mm before this check,
2163 * exit_task_work() happens _after_ exit_mm() so we could be called
2164 * without p->mm even though we still had it when we enqueued this
2165 * work.
2166 */
2167 if (p->flags & PF_EXITING)
2168 return;
2169
2170 if (!mm->numa_next_scan) {
2171 mm->numa_next_scan = now +
2172 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2173 }
2174
2175 /*
2176 * Enforce maximal scan/migration frequency..
2177 */
2178 migrate = mm->numa_next_scan;
2179 if (time_before(now, migrate))
2180 return;
2181
2182 if (p->numa_scan_period == 0) {
2183 p->numa_scan_period_max = task_scan_max(p);
2184 p->numa_scan_period = task_scan_min(p);
2185 }
2186
2187 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2188 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2189 return;
2190
2191 /*
2192 * Delay this task enough that another task of this mm will likely win
2193 * the next time around.
2194 */
2195 p->node_stamp += 2 * TICK_NSEC;
2196
2197 start = mm->numa_scan_offset;
2198 pages = sysctl_numa_balancing_scan_size;
2199 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2200 if (!pages)
2201 return;
2202
2203 down_read(&mm->mmap_sem);
2204 vma = find_vma(mm, start);
2205 if (!vma) {
2206 reset_ptenuma_scan(p);
2207 start = 0;
2208 vma = mm->mmap;
2209 }
2210 for (; vma; vma = vma->vm_next) {
2211 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2212 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2213 continue;
2214 }
2215
2216 /*
2217 * Shared library pages mapped by multiple processes are not
2218 * migrated as it is expected they are cache replicated. Avoid
2219 * hinting faults in read-only file-backed mappings or the vdso
2220 * as migrating the pages will be of marginal benefit.
2221 */
2222 if (!vma->vm_mm ||
2223 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2224 continue;
2225
2226 /*
2227 * Skip inaccessible VMAs to avoid any confusion between
2228 * PROT_NONE and NUMA hinting ptes
2229 */
2230 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2231 continue;
2232
2233 do {
2234 start = max(start, vma->vm_start);
2235 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2236 end = min(end, vma->vm_end);
2237 nr_pte_updates += change_prot_numa(vma, start, end);
2238
2239 /*
2240 * Scan sysctl_numa_balancing_scan_size but ensure that
2241 * at least one PTE is updated so that unused virtual
2242 * address space is quickly skipped.
2243 */
2244 if (nr_pte_updates)
2245 pages -= (end - start) >> PAGE_SHIFT;
2246
2247 start = end;
2248 if (pages <= 0)
2249 goto out;
2250
2251 cond_resched();
2252 } while (end != vma->vm_end);
2253 }
2254
2255 out:
2256 /*
2257 * It is possible to reach the end of the VMA list but the last few
2258 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2259 * would find the !migratable VMA on the next scan but not reset the
2260 * scanner to the start so check it now.
2261 */
2262 if (vma)
2263 mm->numa_scan_offset = start;
2264 else
2265 reset_ptenuma_scan(p);
2266 up_read(&mm->mmap_sem);
2267 }
2268
2269 /*
2270 * Drive the periodic memory faults..
2271 */
2272 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2273 {
2274 struct callback_head *work = &curr->numa_work;
2275 u64 period, now;
2276
2277 /*
2278 * We don't care about NUMA placement if we don't have memory.
2279 */
2280 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2281 return;
2282
2283 /*
2284 * Using runtime rather than walltime has the dual advantage that
2285 * we (mostly) drive the selection from busy threads and that the
2286 * task needs to have done some actual work before we bother with
2287 * NUMA placement.
2288 */
2289 now = curr->se.sum_exec_runtime;
2290 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2291
2292 if (now - curr->node_stamp > period) {
2293 if (!curr->node_stamp)
2294 curr->numa_scan_period = task_scan_min(curr);
2295 curr->node_stamp += period;
2296
2297 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2298 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2299 task_work_add(curr, work, true);
2300 }
2301 }
2302 }
2303 #else
2304 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2305 {
2306 }
2307
2308 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2309 {
2310 }
2311
2312 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2313 {
2314 }
2315 #endif /* CONFIG_NUMA_BALANCING */
2316
2317 static void
2318 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2319 {
2320 update_load_add(&cfs_rq->load, se->load.weight);
2321 if (!parent_entity(se))
2322 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2323 #ifdef CONFIG_SMP
2324 if (entity_is_task(se)) {
2325 struct rq *rq = rq_of(cfs_rq);
2326
2327 account_numa_enqueue(rq, task_of(se));
2328 list_add(&se->group_node, &rq->cfs_tasks);
2329 }
2330 #endif
2331 cfs_rq->nr_running++;
2332 }
2333
2334 static void
2335 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2336 {
2337 update_load_sub(&cfs_rq->load, se->load.weight);
2338 if (!parent_entity(se))
2339 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2340 if (entity_is_task(se)) {
2341 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2342 list_del_init(&se->group_node);
2343 }
2344 cfs_rq->nr_running--;
2345 }
2346
2347 #ifdef CONFIG_FAIR_GROUP_SCHED
2348 # ifdef CONFIG_SMP
2349 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2350 {
2351 long tg_weight;
2352
2353 /*
2354 * Use this CPU's actual weight instead of the last load_contribution
2355 * to gain a more accurate current total weight. See
2356 * update_cfs_rq_load_contribution().
2357 */
2358 tg_weight = atomic_long_read(&tg->load_avg);
2359 tg_weight -= cfs_rq->tg_load_contrib;
2360 tg_weight += cfs_rq->load.weight;
2361
2362 return tg_weight;
2363 }
2364
2365 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2366 {
2367 long tg_weight, load, shares;
2368
2369 tg_weight = calc_tg_weight(tg, cfs_rq);
2370 load = cfs_rq->load.weight;
2371
2372 shares = (tg->shares * load);
2373 if (tg_weight)
2374 shares /= tg_weight;
2375
2376 if (shares < MIN_SHARES)
2377 shares = MIN_SHARES;
2378 if (shares > tg->shares)
2379 shares = tg->shares;
2380
2381 return shares;
2382 }
2383 # else /* CONFIG_SMP */
2384 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2385 {
2386 return tg->shares;
2387 }
2388 # endif /* CONFIG_SMP */
2389 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2390 unsigned long weight)
2391 {
2392 if (se->on_rq) {
2393 /* commit outstanding execution time */
2394 if (cfs_rq->curr == se)
2395 update_curr(cfs_rq);
2396 account_entity_dequeue(cfs_rq, se);
2397 }
2398
2399 update_load_set(&se->load, weight);
2400
2401 if (se->on_rq)
2402 account_entity_enqueue(cfs_rq, se);
2403 }
2404
2405 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2406
2407 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2408 {
2409 struct task_group *tg;
2410 struct sched_entity *se;
2411 long shares;
2412
2413 tg = cfs_rq->tg;
2414 se = tg->se[cpu_of(rq_of(cfs_rq))];
2415 if (!se || throttled_hierarchy(cfs_rq))
2416 return;
2417 #ifndef CONFIG_SMP
2418 if (likely(se->load.weight == tg->shares))
2419 return;
2420 #endif
2421 shares = calc_cfs_shares(cfs_rq, tg);
2422
2423 reweight_entity(cfs_rq_of(se), se, shares);
2424 }
2425 #else /* CONFIG_FAIR_GROUP_SCHED */
2426 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2427 {
2428 }
2429 #endif /* CONFIG_FAIR_GROUP_SCHED */
2430
2431 #ifdef CONFIG_SMP
2432 /*
2433 * We choose a half-life close to 1 scheduling period.
2434 * Note: The tables below are dependent on this value.
2435 */
2436 #define LOAD_AVG_PERIOD 32
2437 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2438 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2439
2440 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2441 static const u32 runnable_avg_yN_inv[] = {
2442 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2443 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2444 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2445 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2446 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2447 0x85aac367, 0x82cd8698,
2448 };
2449
2450 /*
2451 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2452 * over-estimates when re-combining.
2453 */
2454 static const u32 runnable_avg_yN_sum[] = {
2455 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2456 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2457 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2458 };
2459
2460 /*
2461 * Approximate:
2462 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2463 */
2464 static __always_inline u64 decay_load(u64 val, u64 n)
2465 {
2466 unsigned int local_n;
2467
2468 if (!n)
2469 return val;
2470 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2471 return 0;
2472
2473 /* after bounds checking we can collapse to 32-bit */
2474 local_n = n;
2475
2476 /*
2477 * As y^PERIOD = 1/2, we can combine
2478 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2479 * With a look-up table which covers y^n (n<PERIOD)
2480 *
2481 * To achieve constant time decay_load.
2482 */
2483 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2484 val >>= local_n / LOAD_AVG_PERIOD;
2485 local_n %= LOAD_AVG_PERIOD;
2486 }
2487
2488 val *= runnable_avg_yN_inv[local_n];
2489 /* We don't use SRR here since we always want to round down. */
2490 return val >> 32;
2491 }
2492
2493 /*
2494 * For updates fully spanning n periods, the contribution to runnable
2495 * average will be: \Sum 1024*y^n
2496 *
2497 * We can compute this reasonably efficiently by combining:
2498 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2499 */
2500 static u32 __compute_runnable_contrib(u64 n)
2501 {
2502 u32 contrib = 0;
2503
2504 if (likely(n <= LOAD_AVG_PERIOD))
2505 return runnable_avg_yN_sum[n];
2506 else if (unlikely(n >= LOAD_AVG_MAX_N))
2507 return LOAD_AVG_MAX;
2508
2509 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2510 do {
2511 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2512 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2513
2514 n -= LOAD_AVG_PERIOD;
2515 } while (n > LOAD_AVG_PERIOD);
2516
2517 contrib = decay_load(contrib, n);
2518 return contrib + runnable_avg_yN_sum[n];
2519 }
2520
2521 /*
2522 * We can represent the historical contribution to runnable average as the
2523 * coefficients of a geometric series. To do this we sub-divide our runnable
2524 * history into segments of approximately 1ms (1024us); label the segment that
2525 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2526 *
2527 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2528 * p0 p1 p2
2529 * (now) (~1ms ago) (~2ms ago)
2530 *
2531 * Let u_i denote the fraction of p_i that the entity was runnable.
2532 *
2533 * We then designate the fractions u_i as our co-efficients, yielding the
2534 * following representation of historical load:
2535 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2536 *
2537 * We choose y based on the with of a reasonably scheduling period, fixing:
2538 * y^32 = 0.5
2539 *
2540 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2541 * approximately half as much as the contribution to load within the last ms
2542 * (u_0).
2543 *
2544 * When a period "rolls over" and we have new u_0`, multiplying the previous
2545 * sum again by y is sufficient to update:
2546 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2547 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2548 */
2549 static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
2550 struct sched_avg *sa,
2551 int runnable,
2552 int running)
2553 {
2554 u64 delta, periods;
2555 u32 runnable_contrib;
2556 int delta_w, decayed = 0;
2557 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
2558
2559 delta = now - sa->last_runnable_update;
2560 /*
2561 * This should only happen when time goes backwards, which it
2562 * unfortunately does during sched clock init when we swap over to TSC.
2563 */
2564 if ((s64)delta < 0) {
2565 sa->last_runnable_update = now;
2566 return 0;
2567 }
2568
2569 /*
2570 * Use 1024ns as the unit of measurement since it's a reasonable
2571 * approximation of 1us and fast to compute.
2572 */
2573 delta >>= 10;
2574 if (!delta)
2575 return 0;
2576 sa->last_runnable_update = now;
2577
2578 /* delta_w is the amount already accumulated against our next period */
2579 delta_w = sa->avg_period % 1024;
2580 if (delta + delta_w >= 1024) {
2581 /* period roll-over */
2582 decayed = 1;
2583
2584 /*
2585 * Now that we know we're crossing a period boundary, figure
2586 * out how much from delta we need to complete the current
2587 * period and accrue it.
2588 */
2589 delta_w = 1024 - delta_w;
2590 if (runnable)
2591 sa->runnable_avg_sum += delta_w;
2592 if (running)
2593 sa->running_avg_sum += delta_w * scale_freq
2594 >> SCHED_CAPACITY_SHIFT;
2595 sa->avg_period += delta_w;
2596
2597 delta -= delta_w;
2598
2599 /* Figure out how many additional periods this update spans */
2600 periods = delta / 1024;
2601 delta %= 1024;
2602
2603 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2604 periods + 1);
2605 sa->running_avg_sum = decay_load(sa->running_avg_sum,
2606 periods + 1);
2607 sa->avg_period = decay_load(sa->avg_period,
2608 periods + 1);
2609
2610 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2611 runnable_contrib = __compute_runnable_contrib(periods);
2612 if (runnable)
2613 sa->runnable_avg_sum += runnable_contrib;
2614 if (running)
2615 sa->running_avg_sum += runnable_contrib * scale_freq
2616 >> SCHED_CAPACITY_SHIFT;
2617 sa->avg_period += runnable_contrib;
2618 }
2619
2620 /* Remainder of delta accrued against u_0` */
2621 if (runnable)
2622 sa->runnable_avg_sum += delta;
2623 if (running)
2624 sa->running_avg_sum += delta * scale_freq
2625 >> SCHED_CAPACITY_SHIFT;
2626 sa->avg_period += delta;
2627
2628 return decayed;
2629 }
2630
2631 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2632 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2633 {
2634 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2635 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2636
2637 decays -= se->avg.decay_count;
2638 se->avg.decay_count = 0;
2639 if (!decays)
2640 return 0;
2641
2642 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2643 se->avg.utilization_avg_contrib =
2644 decay_load(se->avg.utilization_avg_contrib, decays);
2645
2646 return decays;
2647 }
2648
2649 #ifdef CONFIG_FAIR_GROUP_SCHED
2650 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2651 int force_update)
2652 {
2653 struct task_group *tg = cfs_rq->tg;
2654 long tg_contrib;
2655
2656 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2657 tg_contrib -= cfs_rq->tg_load_contrib;
2658
2659 if (!tg_contrib)
2660 return;
2661
2662 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2663 atomic_long_add(tg_contrib, &tg->load_avg);
2664 cfs_rq->tg_load_contrib += tg_contrib;
2665 }
2666 }
2667
2668 /*
2669 * Aggregate cfs_rq runnable averages into an equivalent task_group
2670 * representation for computing load contributions.
2671 */
2672 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2673 struct cfs_rq *cfs_rq)
2674 {
2675 struct task_group *tg = cfs_rq->tg;
2676 long contrib;
2677
2678 /* The fraction of a cpu used by this cfs_rq */
2679 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2680 sa->avg_period + 1);
2681 contrib -= cfs_rq->tg_runnable_contrib;
2682
2683 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2684 atomic_add(contrib, &tg->runnable_avg);
2685 cfs_rq->tg_runnable_contrib += contrib;
2686 }
2687 }
2688
2689 static inline void __update_group_entity_contrib(struct sched_entity *se)
2690 {
2691 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2692 struct task_group *tg = cfs_rq->tg;
2693 int runnable_avg;
2694
2695 u64 contrib;
2696
2697 contrib = cfs_rq->tg_load_contrib * tg->shares;
2698 se->avg.load_avg_contrib = div_u64(contrib,
2699 atomic_long_read(&tg->load_avg) + 1);
2700
2701 /*
2702 * For group entities we need to compute a correction term in the case
2703 * that they are consuming <1 cpu so that we would contribute the same
2704 * load as a task of equal weight.
2705 *
2706 * Explicitly co-ordinating this measurement would be expensive, but
2707 * fortunately the sum of each cpus contribution forms a usable
2708 * lower-bound on the true value.
2709 *
2710 * Consider the aggregate of 2 contributions. Either they are disjoint
2711 * (and the sum represents true value) or they are disjoint and we are
2712 * understating by the aggregate of their overlap.
2713 *
2714 * Extending this to N cpus, for a given overlap, the maximum amount we
2715 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2716 * cpus that overlap for this interval and w_i is the interval width.
2717 *
2718 * On a small machine; the first term is well-bounded which bounds the
2719 * total error since w_i is a subset of the period. Whereas on a
2720 * larger machine, while this first term can be larger, if w_i is the
2721 * of consequential size guaranteed to see n_i*w_i quickly converge to
2722 * our upper bound of 1-cpu.
2723 */
2724 runnable_avg = atomic_read(&tg->runnable_avg);
2725 if (runnable_avg < NICE_0_LOAD) {
2726 se->avg.load_avg_contrib *= runnable_avg;
2727 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2728 }
2729 }
2730
2731 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2732 {
2733 __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
2734 runnable, runnable);
2735 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2736 }
2737 #else /* CONFIG_FAIR_GROUP_SCHED */
2738 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2739 int force_update) {}
2740 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2741 struct cfs_rq *cfs_rq) {}
2742 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2743 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2744 #endif /* CONFIG_FAIR_GROUP_SCHED */
2745
2746 static inline void __update_task_entity_contrib(struct sched_entity *se)
2747 {
2748 u32 contrib;
2749
2750 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2751 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2752 contrib /= (se->avg.avg_period + 1);
2753 se->avg.load_avg_contrib = scale_load(contrib);
2754 }
2755
2756 /* Compute the current contribution to load_avg by se, return any delta */
2757 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2758 {
2759 long old_contrib = se->avg.load_avg_contrib;
2760
2761 if (entity_is_task(se)) {
2762 __update_task_entity_contrib(se);
2763 } else {
2764 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2765 __update_group_entity_contrib(se);
2766 }
2767
2768 return se->avg.load_avg_contrib - old_contrib;
2769 }
2770
2771
2772 static inline void __update_task_entity_utilization(struct sched_entity *se)
2773 {
2774 u32 contrib;
2775
2776 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2777 contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
2778 contrib /= (se->avg.avg_period + 1);
2779 se->avg.utilization_avg_contrib = scale_load(contrib);
2780 }
2781
2782 static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
2783 {
2784 long old_contrib = se->avg.utilization_avg_contrib;
2785
2786 if (entity_is_task(se))
2787 __update_task_entity_utilization(se);
2788 else
2789 se->avg.utilization_avg_contrib =
2790 group_cfs_rq(se)->utilization_load_avg;
2791
2792 return se->avg.utilization_avg_contrib - old_contrib;
2793 }
2794
2795 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2796 long load_contrib)
2797 {
2798 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2799 cfs_rq->blocked_load_avg -= load_contrib;
2800 else
2801 cfs_rq->blocked_load_avg = 0;
2802 }
2803
2804 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2805
2806 /* Update a sched_entity's runnable average */
2807 static inline void update_entity_load_avg(struct sched_entity *se,
2808 int update_cfs_rq)
2809 {
2810 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2811 long contrib_delta, utilization_delta;
2812 int cpu = cpu_of(rq_of(cfs_rq));
2813 u64 now;
2814
2815 /*
2816 * For a group entity we need to use their owned cfs_rq_clock_task() in
2817 * case they are the parent of a throttled hierarchy.
2818 */
2819 if (entity_is_task(se))
2820 now = cfs_rq_clock_task(cfs_rq);
2821 else
2822 now = cfs_rq_clock_task(group_cfs_rq(se));
2823
2824 if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
2825 cfs_rq->curr == se))
2826 return;
2827
2828 contrib_delta = __update_entity_load_avg_contrib(se);
2829 utilization_delta = __update_entity_utilization_avg_contrib(se);
2830
2831 if (!update_cfs_rq)
2832 return;
2833
2834 if (se->on_rq) {
2835 cfs_rq->runnable_load_avg += contrib_delta;
2836 cfs_rq->utilization_load_avg += utilization_delta;
2837 } else {
2838 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2839 }
2840 }
2841
2842 /*
2843 * Decay the load contributed by all blocked children and account this so that
2844 * their contribution may appropriately discounted when they wake up.
2845 */
2846 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2847 {
2848 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2849 u64 decays;
2850
2851 decays = now - cfs_rq->last_decay;
2852 if (!decays && !force_update)
2853 return;
2854
2855 if (atomic_long_read(&cfs_rq->removed_load)) {
2856 unsigned long removed_load;
2857 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2858 subtract_blocked_load_contrib(cfs_rq, removed_load);
2859 }
2860
2861 if (decays) {
2862 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2863 decays);
2864 atomic64_add(decays, &cfs_rq->decay_counter);
2865 cfs_rq->last_decay = now;
2866 }
2867
2868 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2869 }
2870
2871 /* Add the load generated by se into cfs_rq's child load-average */
2872 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2873 struct sched_entity *se,
2874 int wakeup)
2875 {
2876 /*
2877 * We track migrations using entity decay_count <= 0, on a wake-up
2878 * migration we use a negative decay count to track the remote decays
2879 * accumulated while sleeping.
2880 *
2881 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2882 * are seen by enqueue_entity_load_avg() as a migration with an already
2883 * constructed load_avg_contrib.
2884 */
2885 if (unlikely(se->avg.decay_count <= 0)) {
2886 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2887 if (se->avg.decay_count) {
2888 /*
2889 * In a wake-up migration we have to approximate the
2890 * time sleeping. This is because we can't synchronize
2891 * clock_task between the two cpus, and it is not
2892 * guaranteed to be read-safe. Instead, we can
2893 * approximate this using our carried decays, which are
2894 * explicitly atomically readable.
2895 */
2896 se->avg.last_runnable_update -= (-se->avg.decay_count)
2897 << 20;
2898 update_entity_load_avg(se, 0);
2899 /* Indicate that we're now synchronized and on-rq */
2900 se->avg.decay_count = 0;
2901 }
2902 wakeup = 0;
2903 } else {
2904 __synchronize_entity_decay(se);
2905 }
2906
2907 /* migrated tasks did not contribute to our blocked load */
2908 if (wakeup) {
2909 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2910 update_entity_load_avg(se, 0);
2911 }
2912
2913 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2914 cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
2915 /* we force update consideration on load-balancer moves */
2916 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2917 }
2918
2919 /*
2920 * Remove se's load from this cfs_rq child load-average, if the entity is
2921 * transitioning to a blocked state we track its projected decay using
2922 * blocked_load_avg.
2923 */
2924 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2925 struct sched_entity *se,
2926 int sleep)
2927 {
2928 update_entity_load_avg(se, 1);
2929 /* we force update consideration on load-balancer moves */
2930 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2931
2932 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2933 cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
2934 if (sleep) {
2935 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2936 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2937 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2938 }
2939
2940 /*
2941 * Update the rq's load with the elapsed running time before entering
2942 * idle. if the last scheduled task is not a CFS task, idle_enter will
2943 * be the only way to update the runnable statistic.
2944 */
2945 void idle_enter_fair(struct rq *this_rq)
2946 {
2947 update_rq_runnable_avg(this_rq, 1);
2948 }
2949
2950 /*
2951 * Update the rq's load with the elapsed idle time before a task is
2952 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2953 * be the only way to update the runnable statistic.
2954 */
2955 void idle_exit_fair(struct rq *this_rq)
2956 {
2957 update_rq_runnable_avg(this_rq, 0);
2958 }
2959
2960 static int idle_balance(struct rq *this_rq);
2961
2962 #else /* CONFIG_SMP */
2963
2964 static inline void update_entity_load_avg(struct sched_entity *se,
2965 int update_cfs_rq) {}
2966 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2967 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2968 struct sched_entity *se,
2969 int wakeup) {}
2970 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2971 struct sched_entity *se,
2972 int sleep) {}
2973 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2974 int force_update) {}
2975
2976 static inline int idle_balance(struct rq *rq)
2977 {
2978 return 0;
2979 }
2980
2981 #endif /* CONFIG_SMP */
2982
2983 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2984 {
2985 #ifdef CONFIG_SCHEDSTATS
2986 struct task_struct *tsk = NULL;
2987
2988 if (entity_is_task(se))
2989 tsk = task_of(se);
2990
2991 if (se->statistics.sleep_start) {
2992 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2993
2994 if ((s64)delta < 0)
2995 delta = 0;
2996
2997 if (unlikely(delta > se->statistics.sleep_max))
2998 se->statistics.sleep_max = delta;
2999
3000 se->statistics.sleep_start = 0;
3001 se->statistics.sum_sleep_runtime += delta;
3002
3003 if (tsk) {
3004 account_scheduler_latency(tsk, delta >> 10, 1);
3005 trace_sched_stat_sleep(tsk, delta);
3006 }
3007 }
3008 if (se->statistics.block_start) {
3009 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3010
3011 if ((s64)delta < 0)
3012 delta = 0;
3013
3014 if (unlikely(delta > se->statistics.block_max))
3015 se->statistics.block_max = delta;
3016
3017 se->statistics.block_start = 0;
3018 se->statistics.sum_sleep_runtime += delta;
3019
3020 if (tsk) {
3021 if (tsk->in_iowait) {
3022 se->statistics.iowait_sum += delta;
3023 se->statistics.iowait_count++;
3024 trace_sched_stat_iowait(tsk, delta);
3025 }
3026
3027 trace_sched_stat_blocked(tsk, delta);
3028
3029 /*
3030 * Blocking time is in units of nanosecs, so shift by
3031 * 20 to get a milliseconds-range estimation of the
3032 * amount of time that the task spent sleeping:
3033 */
3034 if (unlikely(prof_on == SLEEP_PROFILING)) {
3035 profile_hits(SLEEP_PROFILING,
3036 (void *)get_wchan(tsk),
3037 delta >> 20);
3038 }
3039 account_scheduler_latency(tsk, delta >> 10, 0);
3040 }
3041 }
3042 #endif
3043 }
3044
3045 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3046 {
3047 #ifdef CONFIG_SCHED_DEBUG
3048 s64 d = se->vruntime - cfs_rq->min_vruntime;
3049
3050 if (d < 0)
3051 d = -d;
3052
3053 if (d > 3*sysctl_sched_latency)
3054 schedstat_inc(cfs_rq, nr_spread_over);
3055 #endif
3056 }
3057
3058 static void
3059 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3060 {
3061 u64 vruntime = cfs_rq->min_vruntime;
3062
3063 /*
3064 * The 'current' period is already promised to the current tasks,
3065 * however the extra weight of the new task will slow them down a
3066 * little, place the new task so that it fits in the slot that
3067 * stays open at the end.
3068 */
3069 if (initial && sched_feat(START_DEBIT))
3070 vruntime += sched_vslice(cfs_rq, se);
3071
3072 /* sleeps up to a single latency don't count. */
3073 if (!initial) {
3074 unsigned long thresh = sysctl_sched_latency;
3075
3076 /*
3077 * Halve their sleep time's effect, to allow
3078 * for a gentler effect of sleepers:
3079 */
3080 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3081 thresh >>= 1;
3082
3083 vruntime -= thresh;
3084 }
3085
3086 /* ensure we never gain time by being placed backwards. */
3087 se->vruntime = max_vruntime(se->vruntime, vruntime);
3088 }
3089
3090 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3091
3092 static void
3093 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3094 {
3095 /*
3096 * Update the normalized vruntime before updating min_vruntime
3097 * through calling update_curr().
3098 */
3099 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3100 se->vruntime += cfs_rq->min_vruntime;
3101
3102 /*
3103 * Update run-time statistics of the 'current'.
3104 */
3105 update_curr(cfs_rq);
3106 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
3107 account_entity_enqueue(cfs_rq, se);
3108 update_cfs_shares(cfs_rq);
3109
3110 if (flags & ENQUEUE_WAKEUP) {
3111 place_entity(cfs_rq, se, 0);
3112 enqueue_sleeper(cfs_rq, se);
3113 }
3114
3115 update_stats_enqueue(cfs_rq, se);
3116 check_spread(cfs_rq, se);
3117 if (se != cfs_rq->curr)
3118 __enqueue_entity(cfs_rq, se);
3119 se->on_rq = 1;
3120
3121 if (cfs_rq->nr_running == 1) {
3122 list_add_leaf_cfs_rq(cfs_rq);
3123 check_enqueue_throttle(cfs_rq);
3124 }
3125 }
3126
3127 static void __clear_buddies_last(struct sched_entity *se)
3128 {
3129 for_each_sched_entity(se) {
3130 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3131 if (cfs_rq->last != se)
3132 break;
3133
3134 cfs_rq->last = NULL;
3135 }
3136 }
3137
3138 static void __clear_buddies_next(struct sched_entity *se)
3139 {
3140 for_each_sched_entity(se) {
3141 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3142 if (cfs_rq->next != se)
3143 break;
3144
3145 cfs_rq->next = NULL;
3146 }
3147 }
3148
3149 static void __clear_buddies_skip(struct sched_entity *se)
3150 {
3151 for_each_sched_entity(se) {
3152 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3153 if (cfs_rq->skip != se)
3154 break;
3155
3156 cfs_rq->skip = NULL;
3157 }
3158 }
3159
3160 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3161 {
3162 if (cfs_rq->last == se)
3163 __clear_buddies_last(se);
3164
3165 if (cfs_rq->next == se)
3166 __clear_buddies_next(se);
3167
3168 if (cfs_rq->skip == se)
3169 __clear_buddies_skip(se);
3170 }
3171
3172 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3173
3174 static void
3175 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3176 {
3177 /*
3178 * Update run-time statistics of the 'current'.
3179 */
3180 update_curr(cfs_rq);
3181 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
3182
3183 update_stats_dequeue(cfs_rq, se);
3184 if (flags & DEQUEUE_SLEEP) {
3185 #ifdef CONFIG_SCHEDSTATS
3186 if (entity_is_task(se)) {
3187 struct task_struct *tsk = task_of(se);
3188
3189 if (tsk->state & TASK_INTERRUPTIBLE)
3190 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3191 if (tsk->state & TASK_UNINTERRUPTIBLE)
3192 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3193 }
3194 #endif
3195 }
3196
3197 clear_buddies(cfs_rq, se);
3198
3199 if (se != cfs_rq->curr)
3200 __dequeue_entity(cfs_rq, se);
3201 se->on_rq = 0;
3202 account_entity_dequeue(cfs_rq, se);
3203
3204 /*
3205 * Normalize the entity after updating the min_vruntime because the
3206 * update can refer to the ->curr item and we need to reflect this
3207 * movement in our normalized position.
3208 */
3209 if (!(flags & DEQUEUE_SLEEP))
3210 se->vruntime -= cfs_rq->min_vruntime;
3211
3212 /* return excess runtime on last dequeue */
3213 return_cfs_rq_runtime(cfs_rq);
3214
3215 update_min_vruntime(cfs_rq);
3216 update_cfs_shares(cfs_rq);
3217 }
3218
3219 /*
3220 * Preempt the current task with a newly woken task if needed:
3221 */
3222 static void
3223 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3224 {
3225 unsigned long ideal_runtime, delta_exec;
3226 struct sched_entity *se;
3227 s64 delta;
3228
3229 ideal_runtime = sched_slice(cfs_rq, curr);
3230 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3231 if (delta_exec > ideal_runtime) {
3232 resched_curr(rq_of(cfs_rq));
3233 /*
3234 * The current task ran long enough, ensure it doesn't get
3235 * re-elected due to buddy favours.
3236 */
3237 clear_buddies(cfs_rq, curr);
3238 return;
3239 }
3240
3241 /*
3242 * Ensure that a task that missed wakeup preemption by a
3243 * narrow margin doesn't have to wait for a full slice.
3244 * This also mitigates buddy induced latencies under load.
3245 */
3246 if (delta_exec < sysctl_sched_min_granularity)
3247 return;
3248
3249 se = __pick_first_entity(cfs_rq);
3250 delta = curr->vruntime - se->vruntime;
3251
3252 if (delta < 0)
3253 return;
3254
3255 if (delta > ideal_runtime)
3256 resched_curr(rq_of(cfs_rq));
3257 }
3258
3259 static void
3260 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3261 {
3262 /* 'current' is not kept within the tree. */
3263 if (se->on_rq) {
3264 /*
3265 * Any task has to be enqueued before it get to execute on
3266 * a CPU. So account for the time it spent waiting on the
3267 * runqueue.
3268 */
3269 update_stats_wait_end(cfs_rq, se);
3270 __dequeue_entity(cfs_rq, se);
3271 update_entity_load_avg(se, 1);
3272 }
3273
3274 update_stats_curr_start(cfs_rq, se);
3275 cfs_rq->curr = se;
3276 #ifdef CONFIG_SCHEDSTATS
3277 /*
3278 * Track our maximum slice length, if the CPU's load is at
3279 * least twice that of our own weight (i.e. dont track it
3280 * when there are only lesser-weight tasks around):
3281 */
3282 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3283 se->statistics.slice_max = max(se->statistics.slice_max,
3284 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3285 }
3286 #endif
3287 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3288 }
3289
3290 static int
3291 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3292
3293 /*
3294 * Pick the next process, keeping these things in mind, in this order:
3295 * 1) keep things fair between processes/task groups
3296 * 2) pick the "next" process, since someone really wants that to run
3297 * 3) pick the "last" process, for cache locality
3298 * 4) do not run the "skip" process, if something else is available
3299 */
3300 static struct sched_entity *
3301 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3302 {
3303 struct sched_entity *left = __pick_first_entity(cfs_rq);
3304 struct sched_entity *se;
3305
3306 /*
3307 * If curr is set we have to see if its left of the leftmost entity
3308 * still in the tree, provided there was anything in the tree at all.
3309 */
3310 if (!left || (curr && entity_before(curr, left)))
3311 left = curr;
3312
3313 se = left; /* ideally we run the leftmost entity */
3314
3315 /*
3316 * Avoid running the skip buddy, if running something else can
3317 * be done without getting too unfair.
3318 */
3319 if (cfs_rq->skip == se) {
3320 struct sched_entity *second;
3321
3322 if (se == curr) {
3323 second = __pick_first_entity(cfs_rq);
3324 } else {
3325 second = __pick_next_entity(se);
3326 if (!second || (curr && entity_before(curr, second)))
3327 second = curr;
3328 }
3329
3330 if (second && wakeup_preempt_entity(second, left) < 1)
3331 se = second;
3332 }
3333
3334 /*
3335 * Prefer last buddy, try to return the CPU to a preempted task.
3336 */
3337 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3338 se = cfs_rq->last;
3339
3340 /*
3341 * Someone really wants this to run. If it's not unfair, run it.
3342 */
3343 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3344 se = cfs_rq->next;
3345
3346 clear_buddies(cfs_rq, se);
3347
3348 return se;
3349 }
3350
3351 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3352
3353 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3354 {
3355 /*
3356 * If still on the runqueue then deactivate_task()
3357 * was not called and update_curr() has to be done:
3358 */
3359 if (prev->on_rq)
3360 update_curr(cfs_rq);
3361
3362 /* throttle cfs_rqs exceeding runtime */
3363 check_cfs_rq_runtime(cfs_rq);
3364
3365 check_spread(cfs_rq, prev);
3366 if (prev->on_rq) {
3367 update_stats_wait_start(cfs_rq, prev);
3368 /* Put 'current' back into the tree. */
3369 __enqueue_entity(cfs_rq, prev);
3370 /* in !on_rq case, update occurred at dequeue */
3371 update_entity_load_avg(prev, 1);
3372 }
3373 cfs_rq->curr = NULL;
3374 }
3375
3376 static void
3377 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3378 {
3379 /*
3380 * Update run-time statistics of the 'current'.
3381 */
3382 update_curr(cfs_rq);
3383
3384 /*
3385 * Ensure that runnable average is periodically updated.
3386 */
3387 update_entity_load_avg(curr, 1);
3388 update_cfs_rq_blocked_load(cfs_rq, 1);
3389 update_cfs_shares(cfs_rq);
3390
3391 #ifdef CONFIG_SCHED_HRTICK
3392 /*
3393 * queued ticks are scheduled to match the slice, so don't bother
3394 * validating it and just reschedule.
3395 */
3396 if (queued) {
3397 resched_curr(rq_of(cfs_rq));
3398 return;
3399 }
3400 /*
3401 * don't let the period tick interfere with the hrtick preemption
3402 */
3403 if (!sched_feat(DOUBLE_TICK) &&
3404 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3405 return;
3406 #endif
3407
3408 if (cfs_rq->nr_running > 1)
3409 check_preempt_tick(cfs_rq, curr);
3410 }
3411
3412
3413 /**************************************************
3414 * CFS bandwidth control machinery
3415 */
3416
3417 #ifdef CONFIG_CFS_BANDWIDTH
3418
3419 #ifdef HAVE_JUMP_LABEL
3420 static struct static_key __cfs_bandwidth_used;
3421
3422 static inline bool cfs_bandwidth_used(void)
3423 {
3424 return static_key_false(&__cfs_bandwidth_used);
3425 }
3426
3427 void cfs_bandwidth_usage_inc(void)
3428 {
3429 static_key_slow_inc(&__cfs_bandwidth_used);
3430 }
3431
3432 void cfs_bandwidth_usage_dec(void)
3433 {
3434 static_key_slow_dec(&__cfs_bandwidth_used);
3435 }
3436 #else /* HAVE_JUMP_LABEL */
3437 static bool cfs_bandwidth_used(void)
3438 {
3439 return true;
3440 }
3441
3442 void cfs_bandwidth_usage_inc(void) {}
3443 void cfs_bandwidth_usage_dec(void) {}
3444 #endif /* HAVE_JUMP_LABEL */
3445
3446 /*
3447 * default period for cfs group bandwidth.
3448 * default: 0.1s, units: nanoseconds
3449 */
3450 static inline u64 default_cfs_period(void)
3451 {
3452 return 100000000ULL;
3453 }
3454
3455 static inline u64 sched_cfs_bandwidth_slice(void)
3456 {
3457 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3458 }
3459
3460 /*
3461 * Replenish runtime according to assigned quota and update expiration time.
3462 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3463 * additional synchronization around rq->lock.
3464 *
3465 * requires cfs_b->lock
3466 */
3467 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3468 {
3469 u64 now;
3470
3471 if (cfs_b->quota == RUNTIME_INF)
3472 return;
3473
3474 now = sched_clock_cpu(smp_processor_id());
3475 cfs_b->runtime = cfs_b->quota;
3476 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3477 }
3478
3479 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3480 {
3481 return &tg->cfs_bandwidth;
3482 }
3483
3484 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3485 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3486 {
3487 if (unlikely(cfs_rq->throttle_count))
3488 return cfs_rq->throttled_clock_task;
3489
3490 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3491 }
3492
3493 /* returns 0 on failure to allocate runtime */
3494 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3495 {
3496 struct task_group *tg = cfs_rq->tg;
3497 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3498 u64 amount = 0, min_amount, expires;
3499
3500 /* note: this is a positive sum as runtime_remaining <= 0 */
3501 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3502
3503 raw_spin_lock(&cfs_b->lock);
3504 if (cfs_b->quota == RUNTIME_INF)
3505 amount = min_amount;
3506 else {
3507 start_cfs_bandwidth(cfs_b);
3508
3509 if (cfs_b->runtime > 0) {
3510 amount = min(cfs_b->runtime, min_amount);
3511 cfs_b->runtime -= amount;
3512 cfs_b->idle = 0;
3513 }
3514 }
3515 expires = cfs_b->runtime_expires;
3516 raw_spin_unlock(&cfs_b->lock);
3517
3518 cfs_rq->runtime_remaining += amount;
3519 /*
3520 * we may have advanced our local expiration to account for allowed
3521 * spread between our sched_clock and the one on which runtime was
3522 * issued.
3523 */
3524 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3525 cfs_rq->runtime_expires = expires;
3526
3527 return cfs_rq->runtime_remaining > 0;
3528 }
3529
3530 /*
3531 * Note: This depends on the synchronization provided by sched_clock and the
3532 * fact that rq->clock snapshots this value.
3533 */
3534 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3535 {
3536 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3537
3538 /* if the deadline is ahead of our clock, nothing to do */
3539 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3540 return;
3541
3542 if (cfs_rq->runtime_remaining < 0)
3543 return;
3544
3545 /*
3546 * If the local deadline has passed we have to consider the
3547 * possibility that our sched_clock is 'fast' and the global deadline
3548 * has not truly expired.
3549 *
3550 * Fortunately we can check determine whether this the case by checking
3551 * whether the global deadline has advanced. It is valid to compare
3552 * cfs_b->runtime_expires without any locks since we only care about
3553 * exact equality, so a partial write will still work.
3554 */
3555
3556 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3557 /* extend local deadline, drift is bounded above by 2 ticks */
3558 cfs_rq->runtime_expires += TICK_NSEC;
3559 } else {
3560 /* global deadline is ahead, expiration has passed */
3561 cfs_rq->runtime_remaining = 0;
3562 }
3563 }
3564
3565 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3566 {
3567 /* dock delta_exec before expiring quota (as it could span periods) */
3568 cfs_rq->runtime_remaining -= delta_exec;
3569 expire_cfs_rq_runtime(cfs_rq);
3570
3571 if (likely(cfs_rq->runtime_remaining > 0))
3572 return;
3573
3574 /*
3575 * if we're unable to extend our runtime we resched so that the active
3576 * hierarchy can be throttled
3577 */
3578 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3579 resched_curr(rq_of(cfs_rq));
3580 }
3581
3582 static __always_inline
3583 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3584 {
3585 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3586 return;
3587
3588 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3589 }
3590
3591 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3592 {
3593 return cfs_bandwidth_used() && cfs_rq->throttled;
3594 }
3595
3596 /* check whether cfs_rq, or any parent, is throttled */
3597 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3598 {
3599 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3600 }
3601
3602 /*
3603 * Ensure that neither of the group entities corresponding to src_cpu or
3604 * dest_cpu are members of a throttled hierarchy when performing group
3605 * load-balance operations.
3606 */
3607 static inline int throttled_lb_pair(struct task_group *tg,
3608 int src_cpu, int dest_cpu)
3609 {
3610 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3611
3612 src_cfs_rq = tg->cfs_rq[src_cpu];
3613 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3614
3615 return throttled_hierarchy(src_cfs_rq) ||
3616 throttled_hierarchy(dest_cfs_rq);
3617 }
3618
3619 /* updated child weight may affect parent so we have to do this bottom up */
3620 static int tg_unthrottle_up(struct task_group *tg, void *data)
3621 {
3622 struct rq *rq = data;
3623 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3624
3625 cfs_rq->throttle_count--;
3626 #ifdef CONFIG_SMP
3627 if (!cfs_rq->throttle_count) {
3628 /* adjust cfs_rq_clock_task() */
3629 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3630 cfs_rq->throttled_clock_task;
3631 }
3632 #endif
3633
3634 return 0;
3635 }
3636
3637 static int tg_throttle_down(struct task_group *tg, void *data)
3638 {
3639 struct rq *rq = data;
3640 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3641
3642 /* group is entering throttled state, stop time */
3643 if (!cfs_rq->throttle_count)
3644 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3645 cfs_rq->throttle_count++;
3646
3647 return 0;
3648 }
3649
3650 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3651 {
3652 struct rq *rq = rq_of(cfs_rq);
3653 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3654 struct sched_entity *se;
3655 long task_delta, dequeue = 1;
3656 bool empty;
3657
3658 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3659
3660 /* freeze hierarchy runnable averages while throttled */
3661 rcu_read_lock();
3662 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3663 rcu_read_unlock();
3664
3665 task_delta = cfs_rq->h_nr_running;
3666 for_each_sched_entity(se) {
3667 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3668 /* throttled entity or throttle-on-deactivate */
3669 if (!se->on_rq)
3670 break;
3671
3672 if (dequeue)
3673 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3674 qcfs_rq->h_nr_running -= task_delta;
3675
3676 if (qcfs_rq->load.weight)
3677 dequeue = 0;
3678 }
3679
3680 if (!se)
3681 sub_nr_running(rq, task_delta);
3682
3683 cfs_rq->throttled = 1;
3684 cfs_rq->throttled_clock = rq_clock(rq);
3685 raw_spin_lock(&cfs_b->lock);
3686 empty = list_empty(&cfs_rq->throttled_list);
3687
3688 /*
3689 * Add to the _head_ of the list, so that an already-started
3690 * distribute_cfs_runtime will not see us
3691 */
3692 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3693
3694 /*
3695 * If we're the first throttled task, make sure the bandwidth
3696 * timer is running.
3697 */
3698 if (empty)
3699 start_cfs_bandwidth(cfs_b);
3700
3701 raw_spin_unlock(&cfs_b->lock);
3702 }
3703
3704 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3705 {
3706 struct rq *rq = rq_of(cfs_rq);
3707 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3708 struct sched_entity *se;
3709 int enqueue = 1;
3710 long task_delta;
3711
3712 se = cfs_rq->tg->se[cpu_of(rq)];
3713
3714 cfs_rq->throttled = 0;
3715
3716 update_rq_clock(rq);
3717
3718 raw_spin_lock(&cfs_b->lock);
3719 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3720 list_del_rcu(&cfs_rq->throttled_list);
3721 raw_spin_unlock(&cfs_b->lock);
3722
3723 /* update hierarchical throttle state */
3724 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3725
3726 if (!cfs_rq->load.weight)
3727 return;
3728
3729 task_delta = cfs_rq->h_nr_running;
3730 for_each_sched_entity(se) {
3731 if (se->on_rq)
3732 enqueue = 0;
3733
3734 cfs_rq = cfs_rq_of(se);
3735 if (enqueue)
3736 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3737 cfs_rq->h_nr_running += task_delta;
3738
3739 if (cfs_rq_throttled(cfs_rq))
3740 break;
3741 }
3742
3743 if (!se)
3744 add_nr_running(rq, task_delta);
3745
3746 /* determine whether we need to wake up potentially idle cpu */
3747 if (rq->curr == rq->idle && rq->cfs.nr_running)
3748 resched_curr(rq);
3749 }
3750
3751 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3752 u64 remaining, u64 expires)
3753 {
3754 struct cfs_rq *cfs_rq;
3755 u64 runtime;
3756 u64 starting_runtime = remaining;
3757
3758 rcu_read_lock();
3759 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3760 throttled_list) {
3761 struct rq *rq = rq_of(cfs_rq);
3762
3763 raw_spin_lock(&rq->lock);
3764 if (!cfs_rq_throttled(cfs_rq))
3765 goto next;
3766
3767 runtime = -cfs_rq->runtime_remaining + 1;
3768 if (runtime > remaining)
3769 runtime = remaining;
3770 remaining -= runtime;
3771
3772 cfs_rq->runtime_remaining += runtime;
3773 cfs_rq->runtime_expires = expires;
3774
3775 /* we check whether we're throttled above */
3776 if (cfs_rq->runtime_remaining > 0)
3777 unthrottle_cfs_rq(cfs_rq);
3778
3779 next:
3780 raw_spin_unlock(&rq->lock);
3781
3782 if (!remaining)
3783 break;
3784 }
3785 rcu_read_unlock();
3786
3787 return starting_runtime - remaining;
3788 }
3789
3790 /*
3791 * Responsible for refilling a task_group's bandwidth and unthrottling its
3792 * cfs_rqs as appropriate. If there has been no activity within the last
3793 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3794 * used to track this state.
3795 */
3796 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3797 {
3798 u64 runtime, runtime_expires;
3799 int throttled;
3800
3801 /* no need to continue the timer with no bandwidth constraint */
3802 if (cfs_b->quota == RUNTIME_INF)
3803 goto out_deactivate;
3804
3805 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3806 cfs_b->nr_periods += overrun;
3807
3808 /*
3809 * idle depends on !throttled (for the case of a large deficit), and if
3810 * we're going inactive then everything else can be deferred
3811 */
3812 if (cfs_b->idle && !throttled)
3813 goto out_deactivate;
3814
3815 __refill_cfs_bandwidth_runtime(cfs_b);
3816
3817 if (!throttled) {
3818 /* mark as potentially idle for the upcoming period */
3819 cfs_b->idle = 1;
3820 return 0;
3821 }
3822
3823 /* account preceding periods in which throttling occurred */
3824 cfs_b->nr_throttled += overrun;
3825
3826 runtime_expires = cfs_b->runtime_expires;
3827
3828 /*
3829 * This check is repeated as we are holding onto the new bandwidth while
3830 * we unthrottle. This can potentially race with an unthrottled group
3831 * trying to acquire new bandwidth from the global pool. This can result
3832 * in us over-using our runtime if it is all used during this loop, but
3833 * only by limited amounts in that extreme case.
3834 */
3835 while (throttled && cfs_b->runtime > 0) {
3836 runtime = cfs_b->runtime;
3837 raw_spin_unlock(&cfs_b->lock);
3838 /* we can't nest cfs_b->lock while distributing bandwidth */
3839 runtime = distribute_cfs_runtime(cfs_b, runtime,
3840 runtime_expires);
3841 raw_spin_lock(&cfs_b->lock);
3842
3843 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3844
3845 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3846 }
3847
3848 /*
3849 * While we are ensured activity in the period following an
3850 * unthrottle, this also covers the case in which the new bandwidth is
3851 * insufficient to cover the existing bandwidth deficit. (Forcing the
3852 * timer to remain active while there are any throttled entities.)
3853 */
3854 cfs_b->idle = 0;
3855
3856 return 0;
3857
3858 out_deactivate:
3859 return 1;
3860 }
3861
3862 /* a cfs_rq won't donate quota below this amount */
3863 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3864 /* minimum remaining period time to redistribute slack quota */
3865 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3866 /* how long we wait to gather additional slack before distributing */
3867 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3868
3869 /*
3870 * Are we near the end of the current quota period?
3871 *
3872 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3873 * hrtimer base being cleared by hrtimer_start. In the case of
3874 * migrate_hrtimers, base is never cleared, so we are fine.
3875 */
3876 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3877 {
3878 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3879 u64 remaining;
3880
3881 /* if the call-back is running a quota refresh is already occurring */
3882 if (hrtimer_callback_running(refresh_timer))
3883 return 1;
3884
3885 /* is a quota refresh about to occur? */
3886 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3887 if (remaining < min_expire)
3888 return 1;
3889
3890 return 0;
3891 }
3892
3893 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3894 {
3895 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3896
3897 /* if there's a quota refresh soon don't bother with slack */
3898 if (runtime_refresh_within(cfs_b, min_left))
3899 return;
3900
3901 hrtimer_start(&cfs_b->slack_timer,
3902 ns_to_ktime(cfs_bandwidth_slack_period),
3903 HRTIMER_MODE_REL);
3904 }
3905
3906 /* we know any runtime found here is valid as update_curr() precedes return */
3907 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3908 {
3909 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3910 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3911
3912 if (slack_runtime <= 0)
3913 return;
3914
3915 raw_spin_lock(&cfs_b->lock);
3916 if (cfs_b->quota != RUNTIME_INF &&
3917 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3918 cfs_b->runtime += slack_runtime;
3919
3920 /* we are under rq->lock, defer unthrottling using a timer */
3921 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3922 !list_empty(&cfs_b->throttled_cfs_rq))
3923 start_cfs_slack_bandwidth(cfs_b);
3924 }
3925 raw_spin_unlock(&cfs_b->lock);
3926
3927 /* even if it's not valid for return we don't want to try again */
3928 cfs_rq->runtime_remaining -= slack_runtime;
3929 }
3930
3931 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3932 {
3933 if (!cfs_bandwidth_used())
3934 return;
3935
3936 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3937 return;
3938
3939 __return_cfs_rq_runtime(cfs_rq);
3940 }
3941
3942 /*
3943 * This is done with a timer (instead of inline with bandwidth return) since
3944 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3945 */
3946 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3947 {
3948 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3949 u64 expires;
3950
3951 /* confirm we're still not at a refresh boundary */
3952 raw_spin_lock(&cfs_b->lock);
3953 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3954 raw_spin_unlock(&cfs_b->lock);
3955 return;
3956 }
3957
3958 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3959 runtime = cfs_b->runtime;
3960
3961 expires = cfs_b->runtime_expires;
3962 raw_spin_unlock(&cfs_b->lock);
3963
3964 if (!runtime)
3965 return;
3966
3967 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3968
3969 raw_spin_lock(&cfs_b->lock);
3970 if (expires == cfs_b->runtime_expires)
3971 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3972 raw_spin_unlock(&cfs_b->lock);
3973 }
3974
3975 /*
3976 * When a group wakes up we want to make sure that its quota is not already
3977 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3978 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3979 */
3980 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3981 {
3982 if (!cfs_bandwidth_used())
3983 return;
3984
3985 /* an active group must be handled by the update_curr()->put() path */
3986 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3987 return;
3988
3989 /* ensure the group is not already throttled */
3990 if (cfs_rq_throttled(cfs_rq))
3991 return;
3992
3993 /* update runtime allocation */
3994 account_cfs_rq_runtime(cfs_rq, 0);
3995 if (cfs_rq->runtime_remaining <= 0)
3996 throttle_cfs_rq(cfs_rq);
3997 }
3998
3999 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4000 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4001 {
4002 if (!cfs_bandwidth_used())
4003 return false;
4004
4005 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4006 return false;
4007
4008 /*
4009 * it's possible for a throttled entity to be forced into a running
4010 * state (e.g. set_curr_task), in this case we're finished.
4011 */
4012 if (cfs_rq_throttled(cfs_rq))
4013 return true;
4014
4015 throttle_cfs_rq(cfs_rq);
4016 return true;
4017 }
4018
4019 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4020 {
4021 struct cfs_bandwidth *cfs_b =
4022 container_of(timer, struct cfs_bandwidth, slack_timer);
4023
4024 do_sched_cfs_slack_timer(cfs_b);
4025
4026 return HRTIMER_NORESTART;
4027 }
4028
4029 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4030 {
4031 struct cfs_bandwidth *cfs_b =
4032 container_of(timer, struct cfs_bandwidth, period_timer);
4033 int overrun;
4034 int idle = 0;
4035
4036 raw_spin_lock(&cfs_b->lock);
4037 for (;;) {
4038 overrun = hrtimer_forward_now(timer, cfs_b->period);
4039 if (!overrun)
4040 break;
4041
4042 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4043 }
4044 if (idle)
4045 cfs_b->period_active = 0;
4046 raw_spin_unlock(&cfs_b->lock);
4047
4048 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4049 }
4050
4051 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4052 {
4053 raw_spin_lock_init(&cfs_b->lock);
4054 cfs_b->runtime = 0;
4055 cfs_b->quota = RUNTIME_INF;
4056 cfs_b->period = ns_to_ktime(default_cfs_period());
4057
4058 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4059 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4060 cfs_b->period_timer.function = sched_cfs_period_timer;
4061 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4062 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4063 }
4064
4065 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4066 {
4067 cfs_rq->runtime_enabled = 0;
4068 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4069 }
4070
4071 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4072 {
4073 lockdep_assert_held(&cfs_b->lock);
4074
4075 if (!cfs_b->period_active) {
4076 cfs_b->period_active = 1;
4077 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4078 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4079 }
4080 }
4081
4082 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4083 {
4084 /* init_cfs_bandwidth() was not called */
4085 if (!cfs_b->throttled_cfs_rq.next)
4086 return;
4087
4088 hrtimer_cancel(&cfs_b->period_timer);
4089 hrtimer_cancel(&cfs_b->slack_timer);
4090 }
4091
4092 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4093 {
4094 struct cfs_rq *cfs_rq;
4095
4096 for_each_leaf_cfs_rq(rq, cfs_rq) {
4097 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4098
4099 raw_spin_lock(&cfs_b->lock);
4100 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4101 raw_spin_unlock(&cfs_b->lock);
4102 }
4103 }
4104
4105 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4106 {
4107 struct cfs_rq *cfs_rq;
4108
4109 for_each_leaf_cfs_rq(rq, cfs_rq) {
4110 if (!cfs_rq->runtime_enabled)
4111 continue;
4112
4113 /*
4114 * clock_task is not advancing so we just need to make sure
4115 * there's some valid quota amount
4116 */
4117 cfs_rq->runtime_remaining = 1;
4118 /*
4119 * Offline rq is schedulable till cpu is completely disabled
4120 * in take_cpu_down(), so we prevent new cfs throttling here.
4121 */
4122 cfs_rq->runtime_enabled = 0;
4123
4124 if (cfs_rq_throttled(cfs_rq))
4125 unthrottle_cfs_rq(cfs_rq);
4126 }
4127 }
4128
4129 #else /* CONFIG_CFS_BANDWIDTH */
4130 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4131 {
4132 return rq_clock_task(rq_of(cfs_rq));
4133 }
4134
4135 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4136 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4137 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4138 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4139
4140 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4141 {
4142 return 0;
4143 }
4144
4145 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4146 {
4147 return 0;
4148 }
4149
4150 static inline int throttled_lb_pair(struct task_group *tg,
4151 int src_cpu, int dest_cpu)
4152 {
4153 return 0;
4154 }
4155
4156 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4157
4158 #ifdef CONFIG_FAIR_GROUP_SCHED
4159 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4160 #endif
4161
4162 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4163 {
4164 return NULL;
4165 }
4166 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4167 static inline void update_runtime_enabled(struct rq *rq) {}
4168 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4169
4170 #endif /* CONFIG_CFS_BANDWIDTH */
4171
4172 /**************************************************
4173 * CFS operations on tasks:
4174 */
4175
4176 #ifdef CONFIG_SCHED_HRTICK
4177 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4178 {
4179 struct sched_entity *se = &p->se;
4180 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4181
4182 WARN_ON(task_rq(p) != rq);
4183
4184 if (cfs_rq->nr_running > 1) {
4185 u64 slice = sched_slice(cfs_rq, se);
4186 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4187 s64 delta = slice - ran;
4188
4189 if (delta < 0) {
4190 if (rq->curr == p)
4191 resched_curr(rq);
4192 return;
4193 }
4194 hrtick_start(rq, delta);
4195 }
4196 }
4197
4198 /*
4199 * called from enqueue/dequeue and updates the hrtick when the
4200 * current task is from our class and nr_running is low enough
4201 * to matter.
4202 */
4203 static void hrtick_update(struct rq *rq)
4204 {
4205 struct task_struct *curr = rq->curr;
4206
4207 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4208 return;
4209
4210 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4211 hrtick_start_fair(rq, curr);
4212 }
4213 #else /* !CONFIG_SCHED_HRTICK */
4214 static inline void
4215 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4216 {
4217 }
4218
4219 static inline void hrtick_update(struct rq *rq)
4220 {
4221 }
4222 #endif
4223
4224 /*
4225 * The enqueue_task method is called before nr_running is
4226 * increased. Here we update the fair scheduling stats and
4227 * then put the task into the rbtree:
4228 */
4229 static void
4230 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4231 {
4232 struct cfs_rq *cfs_rq;
4233 struct sched_entity *se = &p->se;
4234
4235 for_each_sched_entity(se) {
4236 if (se->on_rq)
4237 break;
4238 cfs_rq = cfs_rq_of(se);
4239 enqueue_entity(cfs_rq, se, flags);
4240
4241 /*
4242 * end evaluation on encountering a throttled cfs_rq
4243 *
4244 * note: in the case of encountering a throttled cfs_rq we will
4245 * post the final h_nr_running increment below.
4246 */
4247 if (cfs_rq_throttled(cfs_rq))
4248 break;
4249 cfs_rq->h_nr_running++;
4250
4251 flags = ENQUEUE_WAKEUP;
4252 }
4253
4254 for_each_sched_entity(se) {
4255 cfs_rq = cfs_rq_of(se);
4256 cfs_rq->h_nr_running++;
4257
4258 if (cfs_rq_throttled(cfs_rq))
4259 break;
4260
4261 update_cfs_shares(cfs_rq);
4262 update_entity_load_avg(se, 1);
4263 }
4264
4265 if (!se) {
4266 update_rq_runnable_avg(rq, rq->nr_running);
4267 add_nr_running(rq, 1);
4268 }
4269 hrtick_update(rq);
4270 }
4271
4272 static void set_next_buddy(struct sched_entity *se);
4273
4274 /*
4275 * The dequeue_task method is called before nr_running is
4276 * decreased. We remove the task from the rbtree and
4277 * update the fair scheduling stats:
4278 */
4279 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4280 {
4281 struct cfs_rq *cfs_rq;
4282 struct sched_entity *se = &p->se;
4283 int task_sleep = flags & DEQUEUE_SLEEP;
4284
4285 for_each_sched_entity(se) {
4286 cfs_rq = cfs_rq_of(se);
4287 dequeue_entity(cfs_rq, se, flags);
4288
4289 /*
4290 * end evaluation on encountering a throttled cfs_rq
4291 *
4292 * note: in the case of encountering a throttled cfs_rq we will
4293 * post the final h_nr_running decrement below.
4294 */
4295 if (cfs_rq_throttled(cfs_rq))
4296 break;
4297 cfs_rq->h_nr_running--;
4298
4299 /* Don't dequeue parent if it has other entities besides us */
4300 if (cfs_rq->load.weight) {
4301 /*
4302 * Bias pick_next to pick a task from this cfs_rq, as
4303 * p is sleeping when it is within its sched_slice.
4304 */
4305 if (task_sleep && parent_entity(se))
4306 set_next_buddy(parent_entity(se));
4307
4308 /* avoid re-evaluating load for this entity */
4309 se = parent_entity(se);
4310 break;
4311 }
4312 flags |= DEQUEUE_SLEEP;
4313 }
4314
4315 for_each_sched_entity(se) {
4316 cfs_rq = cfs_rq_of(se);
4317 cfs_rq->h_nr_running--;
4318
4319 if (cfs_rq_throttled(cfs_rq))
4320 break;
4321
4322 update_cfs_shares(cfs_rq);
4323 update_entity_load_avg(se, 1);
4324 }
4325
4326 if (!se) {
4327 sub_nr_running(rq, 1);
4328 update_rq_runnable_avg(rq, 1);
4329 }
4330 hrtick_update(rq);
4331 }
4332
4333 #ifdef CONFIG_SMP
4334
4335 /*
4336 * per rq 'load' arrray crap; XXX kill this.
4337 */
4338
4339 /*
4340 * The exact cpuload at various idx values, calculated at every tick would be
4341 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4342 *
4343 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4344 * on nth tick when cpu may be busy, then we have:
4345 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4346 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4347 *
4348 * decay_load_missed() below does efficient calculation of
4349 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4350 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4351 *
4352 * The calculation is approximated on a 128 point scale.
4353 * degrade_zero_ticks is the number of ticks after which load at any
4354 * particular idx is approximated to be zero.
4355 * degrade_factor is a precomputed table, a row for each load idx.
4356 * Each column corresponds to degradation factor for a power of two ticks,
4357 * based on 128 point scale.
4358 * Example:
4359 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4360 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4361 *
4362 * With this power of 2 load factors, we can degrade the load n times
4363 * by looking at 1 bits in n and doing as many mult/shift instead of
4364 * n mult/shifts needed by the exact degradation.
4365 */
4366 #define DEGRADE_SHIFT 7
4367 static const unsigned char
4368 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4369 static const unsigned char
4370 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4371 {0, 0, 0, 0, 0, 0, 0, 0},
4372 {64, 32, 8, 0, 0, 0, 0, 0},
4373 {96, 72, 40, 12, 1, 0, 0},
4374 {112, 98, 75, 43, 15, 1, 0},
4375 {120, 112, 98, 76, 45, 16, 2} };
4376
4377 /*
4378 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4379 * would be when CPU is idle and so we just decay the old load without
4380 * adding any new load.
4381 */
4382 static unsigned long
4383 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4384 {
4385 int j = 0;
4386
4387 if (!missed_updates)
4388 return load;
4389
4390 if (missed_updates >= degrade_zero_ticks[idx])
4391 return 0;
4392
4393 if (idx == 1)
4394 return load >> missed_updates;
4395
4396 while (missed_updates) {
4397 if (missed_updates % 2)
4398 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4399
4400 missed_updates >>= 1;
4401 j++;
4402 }
4403 return load;
4404 }
4405
4406 /*
4407 * Update rq->cpu_load[] statistics. This function is usually called every
4408 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4409 * every tick. We fix it up based on jiffies.
4410 */
4411 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4412 unsigned long pending_updates)
4413 {
4414 int i, scale;
4415
4416 this_rq->nr_load_updates++;
4417
4418 /* Update our load: */
4419 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4420 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4421 unsigned long old_load, new_load;
4422
4423 /* scale is effectively 1 << i now, and >> i divides by scale */
4424
4425 old_load = this_rq->cpu_load[i];
4426 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4427 new_load = this_load;
4428 /*
4429 * Round up the averaging division if load is increasing. This
4430 * prevents us from getting stuck on 9 if the load is 10, for
4431 * example.
4432 */
4433 if (new_load > old_load)
4434 new_load += scale - 1;
4435
4436 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4437 }
4438
4439 sched_avg_update(this_rq);
4440 }
4441
4442 #ifdef CONFIG_NO_HZ_COMMON
4443 /*
4444 * There is no sane way to deal with nohz on smp when using jiffies because the
4445 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4446 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4447 *
4448 * Therefore we cannot use the delta approach from the regular tick since that
4449 * would seriously skew the load calculation. However we'll make do for those
4450 * updates happening while idle (nohz_idle_balance) or coming out of idle
4451 * (tick_nohz_idle_exit).
4452 *
4453 * This means we might still be one tick off for nohz periods.
4454 */
4455
4456 /*
4457 * Called from nohz_idle_balance() to update the load ratings before doing the
4458 * idle balance.
4459 */
4460 static void update_idle_cpu_load(struct rq *this_rq)
4461 {
4462 unsigned long curr_jiffies = READ_ONCE(jiffies);
4463 unsigned long load = this_rq->cfs.runnable_load_avg;
4464 unsigned long pending_updates;
4465
4466 /*
4467 * bail if there's load or we're actually up-to-date.
4468 */
4469 if (load || curr_jiffies == this_rq->last_load_update_tick)
4470 return;
4471
4472 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4473 this_rq->last_load_update_tick = curr_jiffies;
4474
4475 __update_cpu_load(this_rq, load, pending_updates);
4476 }
4477
4478 /*
4479 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4480 */
4481 void update_cpu_load_nohz(void)
4482 {
4483 struct rq *this_rq = this_rq();
4484 unsigned long curr_jiffies = READ_ONCE(jiffies);
4485 unsigned long pending_updates;
4486
4487 if (curr_jiffies == this_rq->last_load_update_tick)
4488 return;
4489
4490 raw_spin_lock(&this_rq->lock);
4491 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4492 if (pending_updates) {
4493 this_rq->last_load_update_tick = curr_jiffies;
4494 /*
4495 * We were idle, this means load 0, the current load might be
4496 * !0 due to remote wakeups and the sort.
4497 */
4498 __update_cpu_load(this_rq, 0, pending_updates);
4499 }
4500 raw_spin_unlock(&this_rq->lock);
4501 }
4502 #endif /* CONFIG_NO_HZ */
4503
4504 /*
4505 * Called from scheduler_tick()
4506 */
4507 void update_cpu_load_active(struct rq *this_rq)
4508 {
4509 unsigned long load = this_rq->cfs.runnable_load_avg;
4510 /*
4511 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4512 */
4513 this_rq->last_load_update_tick = jiffies;
4514 __update_cpu_load(this_rq, load, 1);
4515 }
4516
4517 /* Used instead of source_load when we know the type == 0 */
4518 static unsigned long weighted_cpuload(const int cpu)
4519 {
4520 return cpu_rq(cpu)->cfs.runnable_load_avg;
4521 }
4522
4523 /*
4524 * Return a low guess at the load of a migration-source cpu weighted
4525 * according to the scheduling class and "nice" value.
4526 *
4527 * We want to under-estimate the load of migration sources, to
4528 * balance conservatively.
4529 */
4530 static unsigned long source_load(int cpu, int type)
4531 {
4532 struct rq *rq = cpu_rq(cpu);
4533 unsigned long total = weighted_cpuload(cpu);
4534
4535 if (type == 0 || !sched_feat(LB_BIAS))
4536 return total;
4537
4538 return min(rq->cpu_load[type-1], total);
4539 }
4540
4541 /*
4542 * Return a high guess at the load of a migration-target cpu weighted
4543 * according to the scheduling class and "nice" value.
4544 */
4545 static unsigned long target_load(int cpu, int type)
4546 {
4547 struct rq *rq = cpu_rq(cpu);
4548 unsigned long total = weighted_cpuload(cpu);
4549
4550 if (type == 0 || !sched_feat(LB_BIAS))
4551 return total;
4552
4553 return max(rq->cpu_load[type-1], total);
4554 }
4555
4556 static unsigned long capacity_of(int cpu)
4557 {
4558 return cpu_rq(cpu)->cpu_capacity;
4559 }
4560
4561 static unsigned long capacity_orig_of(int cpu)
4562 {
4563 return cpu_rq(cpu)->cpu_capacity_orig;
4564 }
4565
4566 static unsigned long cpu_avg_load_per_task(int cpu)
4567 {
4568 struct rq *rq = cpu_rq(cpu);
4569 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4570 unsigned long load_avg = rq->cfs.runnable_load_avg;
4571
4572 if (nr_running)
4573 return load_avg / nr_running;
4574
4575 return 0;
4576 }
4577
4578 static void record_wakee(struct task_struct *p)
4579 {
4580 /*
4581 * Rough decay (wiping) for cost saving, don't worry
4582 * about the boundary, really active task won't care
4583 * about the loss.
4584 */
4585 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4586 current->wakee_flips >>= 1;
4587 current->wakee_flip_decay_ts = jiffies;
4588 }
4589
4590 if (current->last_wakee != p) {
4591 current->last_wakee = p;
4592 current->wakee_flips++;
4593 }
4594 }
4595
4596 static void task_waking_fair(struct task_struct *p)
4597 {
4598 struct sched_entity *se = &p->se;
4599 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4600 u64 min_vruntime;
4601
4602 #ifndef CONFIG_64BIT
4603 u64 min_vruntime_copy;
4604
4605 do {
4606 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4607 smp_rmb();
4608 min_vruntime = cfs_rq->min_vruntime;
4609 } while (min_vruntime != min_vruntime_copy);
4610 #else
4611 min_vruntime = cfs_rq->min_vruntime;
4612 #endif
4613
4614 se->vruntime -= min_vruntime;
4615 record_wakee(p);
4616 }
4617
4618 #ifdef CONFIG_FAIR_GROUP_SCHED
4619 /*
4620 * effective_load() calculates the load change as seen from the root_task_group
4621 *
4622 * Adding load to a group doesn't make a group heavier, but can cause movement
4623 * of group shares between cpus. Assuming the shares were perfectly aligned one
4624 * can calculate the shift in shares.
4625 *
4626 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4627 * on this @cpu and results in a total addition (subtraction) of @wg to the
4628 * total group weight.
4629 *
4630 * Given a runqueue weight distribution (rw_i) we can compute a shares
4631 * distribution (s_i) using:
4632 *
4633 * s_i = rw_i / \Sum rw_j (1)
4634 *
4635 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4636 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4637 * shares distribution (s_i):
4638 *
4639 * rw_i = { 2, 4, 1, 0 }
4640 * s_i = { 2/7, 4/7, 1/7, 0 }
4641 *
4642 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4643 * task used to run on and the CPU the waker is running on), we need to
4644 * compute the effect of waking a task on either CPU and, in case of a sync
4645 * wakeup, compute the effect of the current task going to sleep.
4646 *
4647 * So for a change of @wl to the local @cpu with an overall group weight change
4648 * of @wl we can compute the new shares distribution (s'_i) using:
4649 *
4650 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4651 *
4652 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4653 * differences in waking a task to CPU 0. The additional task changes the
4654 * weight and shares distributions like:
4655 *
4656 * rw'_i = { 3, 4, 1, 0 }
4657 * s'_i = { 3/8, 4/8, 1/8, 0 }
4658 *
4659 * We can then compute the difference in effective weight by using:
4660 *
4661 * dw_i = S * (s'_i - s_i) (3)
4662 *
4663 * Where 'S' is the group weight as seen by its parent.
4664 *
4665 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4666 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4667 * 4/7) times the weight of the group.
4668 */
4669 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4670 {
4671 struct sched_entity *se = tg->se[cpu];
4672
4673 if (!tg->parent) /* the trivial, non-cgroup case */
4674 return wl;
4675
4676 for_each_sched_entity(se) {
4677 long w, W;
4678
4679 tg = se->my_q->tg;
4680
4681 /*
4682 * W = @wg + \Sum rw_j
4683 */
4684 W = wg + calc_tg_weight(tg, se->my_q);
4685
4686 /*
4687 * w = rw_i + @wl
4688 */
4689 w = se->my_q->load.weight + wl;
4690
4691 /*
4692 * wl = S * s'_i; see (2)
4693 */
4694 if (W > 0 && w < W)
4695 wl = (w * (long)tg->shares) / W;
4696 else
4697 wl = tg->shares;
4698
4699 /*
4700 * Per the above, wl is the new se->load.weight value; since
4701 * those are clipped to [MIN_SHARES, ...) do so now. See
4702 * calc_cfs_shares().
4703 */
4704 if (wl < MIN_SHARES)
4705 wl = MIN_SHARES;
4706
4707 /*
4708 * wl = dw_i = S * (s'_i - s_i); see (3)
4709 */
4710 wl -= se->load.weight;
4711
4712 /*
4713 * Recursively apply this logic to all parent groups to compute
4714 * the final effective load change on the root group. Since
4715 * only the @tg group gets extra weight, all parent groups can
4716 * only redistribute existing shares. @wl is the shift in shares
4717 * resulting from this level per the above.
4718 */
4719 wg = 0;
4720 }
4721
4722 return wl;
4723 }
4724 #else
4725
4726 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4727 {
4728 return wl;
4729 }
4730
4731 #endif
4732
4733 static int wake_wide(struct task_struct *p)
4734 {
4735 int factor = this_cpu_read(sd_llc_size);
4736
4737 /*
4738 * Yeah, it's the switching-frequency, could means many wakee or
4739 * rapidly switch, use factor here will just help to automatically
4740 * adjust the loose-degree, so bigger node will lead to more pull.
4741 */
4742 if (p->wakee_flips > factor) {
4743 /*
4744 * wakee is somewhat hot, it needs certain amount of cpu
4745 * resource, so if waker is far more hot, prefer to leave
4746 * it alone.
4747 */
4748 if (current->wakee_flips > (factor * p->wakee_flips))
4749 return 1;
4750 }
4751
4752 return 0;
4753 }
4754
4755 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4756 {
4757 s64 this_load, load;
4758 s64 this_eff_load, prev_eff_load;
4759 int idx, this_cpu, prev_cpu;
4760 struct task_group *tg;
4761 unsigned long weight;
4762 int balanced;
4763
4764 /*
4765 * If we wake multiple tasks be careful to not bounce
4766 * ourselves around too much.
4767 */
4768 if (wake_wide(p))
4769 return 0;
4770
4771 idx = sd->wake_idx;
4772 this_cpu = smp_processor_id();
4773 prev_cpu = task_cpu(p);
4774 load = source_load(prev_cpu, idx);
4775 this_load = target_load(this_cpu, idx);
4776
4777 /*
4778 * If sync wakeup then subtract the (maximum possible)
4779 * effect of the currently running task from the load
4780 * of the current CPU:
4781 */
4782 if (sync) {
4783 tg = task_group(current);
4784 weight = current->se.load.weight;
4785
4786 this_load += effective_load(tg, this_cpu, -weight, -weight);
4787 load += effective_load(tg, prev_cpu, 0, -weight);
4788 }
4789
4790 tg = task_group(p);
4791 weight = p->se.load.weight;
4792
4793 /*
4794 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4795 * due to the sync cause above having dropped this_load to 0, we'll
4796 * always have an imbalance, but there's really nothing you can do
4797 * about that, so that's good too.
4798 *
4799 * Otherwise check if either cpus are near enough in load to allow this
4800 * task to be woken on this_cpu.
4801 */
4802 this_eff_load = 100;
4803 this_eff_load *= capacity_of(prev_cpu);
4804
4805 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4806 prev_eff_load *= capacity_of(this_cpu);
4807
4808 if (this_load > 0) {
4809 this_eff_load *= this_load +
4810 effective_load(tg, this_cpu, weight, weight);
4811
4812 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4813 }
4814
4815 balanced = this_eff_load <= prev_eff_load;
4816
4817 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4818
4819 if (!balanced)
4820 return 0;
4821
4822 schedstat_inc(sd, ttwu_move_affine);
4823 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4824
4825 return 1;
4826 }
4827
4828 /*
4829 * find_idlest_group finds and returns the least busy CPU group within the
4830 * domain.
4831 */
4832 static struct sched_group *
4833 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4834 int this_cpu, int sd_flag)
4835 {
4836 struct sched_group *idlest = NULL, *group = sd->groups;
4837 unsigned long min_load = ULONG_MAX, this_load = 0;
4838 int load_idx = sd->forkexec_idx;
4839 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4840
4841 if (sd_flag & SD_BALANCE_WAKE)
4842 load_idx = sd->wake_idx;
4843
4844 do {
4845 unsigned long load, avg_load;
4846 int local_group;
4847 int i;
4848
4849 /* Skip over this group if it has no CPUs allowed */
4850 if (!cpumask_intersects(sched_group_cpus(group),
4851 tsk_cpus_allowed(p)))
4852 continue;
4853
4854 local_group = cpumask_test_cpu(this_cpu,
4855 sched_group_cpus(group));
4856
4857 /* Tally up the load of all CPUs in the group */
4858 avg_load = 0;
4859
4860 for_each_cpu(i, sched_group_cpus(group)) {
4861 /* Bias balancing toward cpus of our domain */
4862 if (local_group)
4863 load = source_load(i, load_idx);
4864 else
4865 load = target_load(i, load_idx);
4866
4867 avg_load += load;
4868 }
4869
4870 /* Adjust by relative CPU capacity of the group */
4871 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4872
4873 if (local_group) {
4874 this_load = avg_load;
4875 } else if (avg_load < min_load) {
4876 min_load = avg_load;
4877 idlest = group;
4878 }
4879 } while (group = group->next, group != sd->groups);
4880
4881 if (!idlest || 100*this_load < imbalance*min_load)
4882 return NULL;
4883 return idlest;
4884 }
4885
4886 /*
4887 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4888 */
4889 static int
4890 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4891 {
4892 unsigned long load, min_load = ULONG_MAX;
4893 unsigned int min_exit_latency = UINT_MAX;
4894 u64 latest_idle_timestamp = 0;
4895 int least_loaded_cpu = this_cpu;
4896 int shallowest_idle_cpu = -1;
4897 int i;
4898
4899 /* Traverse only the allowed CPUs */
4900 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4901 if (idle_cpu(i)) {
4902 struct rq *rq = cpu_rq(i);
4903 struct cpuidle_state *idle = idle_get_state(rq);
4904 if (idle && idle->exit_latency < min_exit_latency) {
4905 /*
4906 * We give priority to a CPU whose idle state
4907 * has the smallest exit latency irrespective
4908 * of any idle timestamp.
4909 */
4910 min_exit_latency = idle->exit_latency;
4911 latest_idle_timestamp = rq->idle_stamp;
4912 shallowest_idle_cpu = i;
4913 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4914 rq->idle_stamp > latest_idle_timestamp) {
4915 /*
4916 * If equal or no active idle state, then
4917 * the most recently idled CPU might have
4918 * a warmer cache.
4919 */
4920 latest_idle_timestamp = rq->idle_stamp;
4921 shallowest_idle_cpu = i;
4922 }
4923 } else if (shallowest_idle_cpu == -1) {
4924 load = weighted_cpuload(i);
4925 if (load < min_load || (load == min_load && i == this_cpu)) {
4926 min_load = load;
4927 least_loaded_cpu = i;
4928 }
4929 }
4930 }
4931
4932 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4933 }
4934
4935 /*
4936 * Try and locate an idle CPU in the sched_domain.
4937 */
4938 static int select_idle_sibling(struct task_struct *p, int target)
4939 {
4940 struct sched_domain *sd;
4941 struct sched_group *sg;
4942 int i = task_cpu(p);
4943
4944 if (idle_cpu(target))
4945 return target;
4946
4947 /*
4948 * If the prevous cpu is cache affine and idle, don't be stupid.
4949 */
4950 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4951 return i;
4952
4953 /*
4954 * Otherwise, iterate the domains and find an elegible idle cpu.
4955 */
4956 sd = rcu_dereference(per_cpu(sd_llc, target));
4957 for_each_lower_domain(sd) {
4958 sg = sd->groups;
4959 do {
4960 if (!cpumask_intersects(sched_group_cpus(sg),
4961 tsk_cpus_allowed(p)))
4962 goto next;
4963
4964 for_each_cpu(i, sched_group_cpus(sg)) {
4965 if (i == target || !idle_cpu(i))
4966 goto next;
4967 }
4968
4969 target = cpumask_first_and(sched_group_cpus(sg),
4970 tsk_cpus_allowed(p));
4971 goto done;
4972 next:
4973 sg = sg->next;
4974 } while (sg != sd->groups);
4975 }
4976 done:
4977 return target;
4978 }
4979 /*
4980 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4981 * tasks. The unit of the return value must be the one of capacity so we can
4982 * compare the usage with the capacity of the CPU that is available for CFS
4983 * task (ie cpu_capacity).
4984 * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
4985 * CPU. It represents the amount of utilization of a CPU in the range
4986 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4987 * capacity of the CPU because it's about the running time on this CPU.
4988 * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
4989 * because of unfortunate rounding in avg_period and running_load_avg or just
4990 * after migrating tasks until the average stabilizes with the new running
4991 * time. So we need to check that the usage stays into the range
4992 * [0..cpu_capacity_orig] and cap if necessary.
4993 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4994 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4995 */
4996 static int get_cpu_usage(int cpu)
4997 {
4998 unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
4999 unsigned long capacity = capacity_orig_of(cpu);
5000
5001 if (usage >= SCHED_LOAD_SCALE)
5002 return capacity;
5003
5004 return (usage * capacity) >> SCHED_LOAD_SHIFT;
5005 }
5006
5007 /*
5008 * select_task_rq_fair: Select target runqueue for the waking task in domains
5009 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5010 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5011 *
5012 * Balances load by selecting the idlest cpu in the idlest group, or under
5013 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5014 *
5015 * Returns the target cpu number.
5016 *
5017 * preempt must be disabled.
5018 */
5019 static int
5020 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5021 {
5022 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5023 int cpu = smp_processor_id();
5024 int new_cpu = cpu;
5025 int want_affine = 0;
5026 int sync = wake_flags & WF_SYNC;
5027
5028 if (sd_flag & SD_BALANCE_WAKE)
5029 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5030
5031 rcu_read_lock();
5032 for_each_domain(cpu, tmp) {
5033 if (!(tmp->flags & SD_LOAD_BALANCE))
5034 continue;
5035
5036 /*
5037 * If both cpu and prev_cpu are part of this domain,
5038 * cpu is a valid SD_WAKE_AFFINE target.
5039 */
5040 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5041 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5042 affine_sd = tmp;
5043 break;
5044 }
5045
5046 if (tmp->flags & sd_flag)
5047 sd = tmp;
5048 }
5049
5050 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5051 prev_cpu = cpu;
5052
5053 if (sd_flag & SD_BALANCE_WAKE) {
5054 new_cpu = select_idle_sibling(p, prev_cpu);
5055 goto unlock;
5056 }
5057
5058 while (sd) {
5059 struct sched_group *group;
5060 int weight;
5061
5062 if (!(sd->flags & sd_flag)) {
5063 sd = sd->child;
5064 continue;
5065 }
5066
5067 group = find_idlest_group(sd, p, cpu, sd_flag);
5068 if (!group) {
5069 sd = sd->child;
5070 continue;
5071 }
5072
5073 new_cpu = find_idlest_cpu(group, p, cpu);
5074 if (new_cpu == -1 || new_cpu == cpu) {
5075 /* Now try balancing at a lower domain level of cpu */
5076 sd = sd->child;
5077 continue;
5078 }
5079
5080 /* Now try balancing at a lower domain level of new_cpu */
5081 cpu = new_cpu;
5082 weight = sd->span_weight;
5083 sd = NULL;
5084 for_each_domain(cpu, tmp) {
5085 if (weight <= tmp->span_weight)
5086 break;
5087 if (tmp->flags & sd_flag)
5088 sd = tmp;
5089 }
5090 /* while loop will break here if sd == NULL */
5091 }
5092 unlock:
5093 rcu_read_unlock();
5094
5095 return new_cpu;
5096 }
5097
5098 /*
5099 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5100 * cfs_rq_of(p) references at time of call are still valid and identify the
5101 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
5102 * other assumptions, including the state of rq->lock, should be made.
5103 */
5104 static void
5105 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
5106 {
5107 struct sched_entity *se = &p->se;
5108 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5109
5110 /*
5111 * Load tracking: accumulate removed load so that it can be processed
5112 * when we next update owning cfs_rq under rq->lock. Tasks contribute
5113 * to blocked load iff they have a positive decay-count. It can never
5114 * be negative here since on-rq tasks have decay-count == 0.
5115 */
5116 if (se->avg.decay_count) {
5117 se->avg.decay_count = -__synchronize_entity_decay(se);
5118 atomic_long_add(se->avg.load_avg_contrib,
5119 &cfs_rq->removed_load);
5120 }
5121
5122 /* We have migrated, no longer consider this task hot */
5123 se->exec_start = 0;
5124 }
5125 #endif /* CONFIG_SMP */
5126
5127 static unsigned long
5128 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5129 {
5130 unsigned long gran = sysctl_sched_wakeup_granularity;
5131
5132 /*
5133 * Since its curr running now, convert the gran from real-time
5134 * to virtual-time in his units.
5135 *
5136 * By using 'se' instead of 'curr' we penalize light tasks, so
5137 * they get preempted easier. That is, if 'se' < 'curr' then
5138 * the resulting gran will be larger, therefore penalizing the
5139 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5140 * be smaller, again penalizing the lighter task.
5141 *
5142 * This is especially important for buddies when the leftmost
5143 * task is higher priority than the buddy.
5144 */
5145 return calc_delta_fair(gran, se);
5146 }
5147
5148 /*
5149 * Should 'se' preempt 'curr'.
5150 *
5151 * |s1
5152 * |s2
5153 * |s3
5154 * g
5155 * |<--->|c
5156 *
5157 * w(c, s1) = -1
5158 * w(c, s2) = 0
5159 * w(c, s3) = 1
5160 *
5161 */
5162 static int
5163 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5164 {
5165 s64 gran, vdiff = curr->vruntime - se->vruntime;
5166
5167 if (vdiff <= 0)
5168 return -1;
5169
5170 gran = wakeup_gran(curr, se);
5171 if (vdiff > gran)
5172 return 1;
5173
5174 return 0;
5175 }
5176
5177 static void set_last_buddy(struct sched_entity *se)
5178 {
5179 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5180 return;
5181
5182 for_each_sched_entity(se)
5183 cfs_rq_of(se)->last = se;
5184 }
5185
5186 static void set_next_buddy(struct sched_entity *se)
5187 {
5188 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5189 return;
5190
5191 for_each_sched_entity(se)
5192 cfs_rq_of(se)->next = se;
5193 }
5194
5195 static void set_skip_buddy(struct sched_entity *se)
5196 {
5197 for_each_sched_entity(se)
5198 cfs_rq_of(se)->skip = se;
5199 }
5200
5201 /*
5202 * Preempt the current task with a newly woken task if needed:
5203 */
5204 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5205 {
5206 struct task_struct *curr = rq->curr;
5207 struct sched_entity *se = &curr->se, *pse = &p->se;
5208 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5209 int scale = cfs_rq->nr_running >= sched_nr_latency;
5210 int next_buddy_marked = 0;
5211
5212 if (unlikely(se == pse))
5213 return;
5214
5215 /*
5216 * This is possible from callers such as attach_tasks(), in which we
5217 * unconditionally check_prempt_curr() after an enqueue (which may have
5218 * lead to a throttle). This both saves work and prevents false
5219 * next-buddy nomination below.
5220 */
5221 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5222 return;
5223
5224 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5225 set_next_buddy(pse);
5226 next_buddy_marked = 1;
5227 }
5228
5229 /*
5230 * We can come here with TIF_NEED_RESCHED already set from new task
5231 * wake up path.
5232 *
5233 * Note: this also catches the edge-case of curr being in a throttled
5234 * group (e.g. via set_curr_task), since update_curr() (in the
5235 * enqueue of curr) will have resulted in resched being set. This
5236 * prevents us from potentially nominating it as a false LAST_BUDDY
5237 * below.
5238 */
5239 if (test_tsk_need_resched(curr))
5240 return;
5241
5242 /* Idle tasks are by definition preempted by non-idle tasks. */
5243 if (unlikely(curr->policy == SCHED_IDLE) &&
5244 likely(p->policy != SCHED_IDLE))
5245 goto preempt;
5246
5247 /*
5248 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5249 * is driven by the tick):
5250 */
5251 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5252 return;
5253
5254 find_matching_se(&se, &pse);
5255 update_curr(cfs_rq_of(se));
5256 BUG_ON(!pse);
5257 if (wakeup_preempt_entity(se, pse) == 1) {
5258 /*
5259 * Bias pick_next to pick the sched entity that is
5260 * triggering this preemption.
5261 */
5262 if (!next_buddy_marked)
5263 set_next_buddy(pse);
5264 goto preempt;
5265 }
5266
5267 return;
5268
5269 preempt:
5270 resched_curr(rq);
5271 /*
5272 * Only set the backward buddy when the current task is still
5273 * on the rq. This can happen when a wakeup gets interleaved
5274 * with schedule on the ->pre_schedule() or idle_balance()
5275 * point, either of which can * drop the rq lock.
5276 *
5277 * Also, during early boot the idle thread is in the fair class,
5278 * for obvious reasons its a bad idea to schedule back to it.
5279 */
5280 if (unlikely(!se->on_rq || curr == rq->idle))
5281 return;
5282
5283 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5284 set_last_buddy(se);
5285 }
5286
5287 static struct task_struct *
5288 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5289 {
5290 struct cfs_rq *cfs_rq = &rq->cfs;
5291 struct sched_entity *se;
5292 struct task_struct *p;
5293 int new_tasks;
5294
5295 again:
5296 #ifdef CONFIG_FAIR_GROUP_SCHED
5297 if (!cfs_rq->nr_running)
5298 goto idle;
5299
5300 if (prev->sched_class != &fair_sched_class)
5301 goto simple;
5302
5303 /*
5304 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5305 * likely that a next task is from the same cgroup as the current.
5306 *
5307 * Therefore attempt to avoid putting and setting the entire cgroup
5308 * hierarchy, only change the part that actually changes.
5309 */
5310
5311 do {
5312 struct sched_entity *curr = cfs_rq->curr;
5313
5314 /*
5315 * Since we got here without doing put_prev_entity() we also
5316 * have to consider cfs_rq->curr. If it is still a runnable
5317 * entity, update_curr() will update its vruntime, otherwise
5318 * forget we've ever seen it.
5319 */
5320 if (curr) {
5321 if (curr->on_rq)
5322 update_curr(cfs_rq);
5323 else
5324 curr = NULL;
5325
5326 /*
5327 * This call to check_cfs_rq_runtime() will do the
5328 * throttle and dequeue its entity in the parent(s).
5329 * Therefore the 'simple' nr_running test will indeed
5330 * be correct.
5331 */
5332 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5333 goto simple;
5334 }
5335
5336 se = pick_next_entity(cfs_rq, curr);
5337 cfs_rq = group_cfs_rq(se);
5338 } while (cfs_rq);
5339
5340 p = task_of(se);
5341
5342 /*
5343 * Since we haven't yet done put_prev_entity and if the selected task
5344 * is a different task than we started out with, try and touch the
5345 * least amount of cfs_rqs.
5346 */
5347 if (prev != p) {
5348 struct sched_entity *pse = &prev->se;
5349
5350 while (!(cfs_rq = is_same_group(se, pse))) {
5351 int se_depth = se->depth;
5352 int pse_depth = pse->depth;
5353
5354 if (se_depth <= pse_depth) {
5355 put_prev_entity(cfs_rq_of(pse), pse);
5356 pse = parent_entity(pse);
5357 }
5358 if (se_depth >= pse_depth) {
5359 set_next_entity(cfs_rq_of(se), se);
5360 se = parent_entity(se);
5361 }
5362 }
5363
5364 put_prev_entity(cfs_rq, pse);
5365 set_next_entity(cfs_rq, se);
5366 }
5367
5368 if (hrtick_enabled(rq))
5369 hrtick_start_fair(rq, p);
5370
5371 return p;
5372 simple:
5373 cfs_rq = &rq->cfs;
5374 #endif
5375
5376 if (!cfs_rq->nr_running)
5377 goto idle;
5378
5379 put_prev_task(rq, prev);
5380
5381 do {
5382 se = pick_next_entity(cfs_rq, NULL);
5383 set_next_entity(cfs_rq, se);
5384 cfs_rq = group_cfs_rq(se);
5385 } while (cfs_rq);
5386
5387 p = task_of(se);
5388
5389 if (hrtick_enabled(rq))
5390 hrtick_start_fair(rq, p);
5391
5392 return p;
5393
5394 idle:
5395 /*
5396 * This is OK, because current is on_cpu, which avoids it being picked
5397 * for load-balance and preemption/IRQs are still disabled avoiding
5398 * further scheduler activity on it and we're being very careful to
5399 * re-start the picking loop.
5400 */
5401 lockdep_unpin_lock(&rq->lock);
5402 new_tasks = idle_balance(rq);
5403 lockdep_pin_lock(&rq->lock);
5404 /*
5405 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5406 * possible for any higher priority task to appear. In that case we
5407 * must re-start the pick_next_entity() loop.
5408 */
5409 if (new_tasks < 0)
5410 return RETRY_TASK;
5411
5412 if (new_tasks > 0)
5413 goto again;
5414
5415 return NULL;
5416 }
5417
5418 /*
5419 * Account for a descheduled task:
5420 */
5421 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5422 {
5423 struct sched_entity *se = &prev->se;
5424 struct cfs_rq *cfs_rq;
5425
5426 for_each_sched_entity(se) {
5427 cfs_rq = cfs_rq_of(se);
5428 put_prev_entity(cfs_rq, se);
5429 }
5430 }
5431
5432 /*
5433 * sched_yield() is very simple
5434 *
5435 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5436 */
5437 static void yield_task_fair(struct rq *rq)
5438 {
5439 struct task_struct *curr = rq->curr;
5440 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5441 struct sched_entity *se = &curr->se;
5442
5443 /*
5444 * Are we the only task in the tree?
5445 */
5446 if (unlikely(rq->nr_running == 1))
5447 return;
5448
5449 clear_buddies(cfs_rq, se);
5450
5451 if (curr->policy != SCHED_BATCH) {
5452 update_rq_clock(rq);
5453 /*
5454 * Update run-time statistics of the 'current'.
5455 */
5456 update_curr(cfs_rq);
5457 /*
5458 * Tell update_rq_clock() that we've just updated,
5459 * so we don't do microscopic update in schedule()
5460 * and double the fastpath cost.
5461 */
5462 rq_clock_skip_update(rq, true);
5463 }
5464
5465 set_skip_buddy(se);
5466 }
5467
5468 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5469 {
5470 struct sched_entity *se = &p->se;
5471
5472 /* throttled hierarchies are not runnable */
5473 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5474 return false;
5475
5476 /* Tell the scheduler that we'd really like pse to run next. */
5477 set_next_buddy(se);
5478
5479 yield_task_fair(rq);
5480
5481 return true;
5482 }
5483
5484 #ifdef CONFIG_SMP
5485 /**************************************************
5486 * Fair scheduling class load-balancing methods.
5487 *
5488 * BASICS
5489 *
5490 * The purpose of load-balancing is to achieve the same basic fairness the
5491 * per-cpu scheduler provides, namely provide a proportional amount of compute
5492 * time to each task. This is expressed in the following equation:
5493 *
5494 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5495 *
5496 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5497 * W_i,0 is defined as:
5498 *
5499 * W_i,0 = \Sum_j w_i,j (2)
5500 *
5501 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5502 * is derived from the nice value as per prio_to_weight[].
5503 *
5504 * The weight average is an exponential decay average of the instantaneous
5505 * weight:
5506 *
5507 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5508 *
5509 * C_i is the compute capacity of cpu i, typically it is the
5510 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5511 * can also include other factors [XXX].
5512 *
5513 * To achieve this balance we define a measure of imbalance which follows
5514 * directly from (1):
5515 *
5516 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5517 *
5518 * We them move tasks around to minimize the imbalance. In the continuous
5519 * function space it is obvious this converges, in the discrete case we get
5520 * a few fun cases generally called infeasible weight scenarios.
5521 *
5522 * [XXX expand on:
5523 * - infeasible weights;
5524 * - local vs global optima in the discrete case. ]
5525 *
5526 *
5527 * SCHED DOMAINS
5528 *
5529 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5530 * for all i,j solution, we create a tree of cpus that follows the hardware
5531 * topology where each level pairs two lower groups (or better). This results
5532 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5533 * tree to only the first of the previous level and we decrease the frequency
5534 * of load-balance at each level inv. proportional to the number of cpus in
5535 * the groups.
5536 *
5537 * This yields:
5538 *
5539 * log_2 n 1 n
5540 * \Sum { --- * --- * 2^i } = O(n) (5)
5541 * i = 0 2^i 2^i
5542 * `- size of each group
5543 * | | `- number of cpus doing load-balance
5544 * | `- freq
5545 * `- sum over all levels
5546 *
5547 * Coupled with a limit on how many tasks we can migrate every balance pass,
5548 * this makes (5) the runtime complexity of the balancer.
5549 *
5550 * An important property here is that each CPU is still (indirectly) connected
5551 * to every other cpu in at most O(log n) steps:
5552 *
5553 * The adjacency matrix of the resulting graph is given by:
5554 *
5555 * log_2 n
5556 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5557 * k = 0
5558 *
5559 * And you'll find that:
5560 *
5561 * A^(log_2 n)_i,j != 0 for all i,j (7)
5562 *
5563 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5564 * The task movement gives a factor of O(m), giving a convergence complexity
5565 * of:
5566 *
5567 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5568 *
5569 *
5570 * WORK CONSERVING
5571 *
5572 * In order to avoid CPUs going idle while there's still work to do, new idle
5573 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5574 * tree itself instead of relying on other CPUs to bring it work.
5575 *
5576 * This adds some complexity to both (5) and (8) but it reduces the total idle
5577 * time.
5578 *
5579 * [XXX more?]
5580 *
5581 *
5582 * CGROUPS
5583 *
5584 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5585 *
5586 * s_k,i
5587 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5588 * S_k
5589 *
5590 * Where
5591 *
5592 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5593 *
5594 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5595 *
5596 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5597 * property.
5598 *
5599 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5600 * rewrite all of this once again.]
5601 */
5602
5603 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5604
5605 enum fbq_type { regular, remote, all };
5606
5607 #define LBF_ALL_PINNED 0x01
5608 #define LBF_NEED_BREAK 0x02
5609 #define LBF_DST_PINNED 0x04
5610 #define LBF_SOME_PINNED 0x08
5611
5612 struct lb_env {
5613 struct sched_domain *sd;
5614
5615 struct rq *src_rq;
5616 int src_cpu;
5617
5618 int dst_cpu;
5619 struct rq *dst_rq;
5620
5621 struct cpumask *dst_grpmask;
5622 int new_dst_cpu;
5623 enum cpu_idle_type idle;
5624 long imbalance;
5625 /* The set of CPUs under consideration for load-balancing */
5626 struct cpumask *cpus;
5627
5628 unsigned int flags;
5629
5630 unsigned int loop;
5631 unsigned int loop_break;
5632 unsigned int loop_max;
5633
5634 enum fbq_type fbq_type;
5635 struct list_head tasks;
5636 };
5637
5638 /*
5639 * Is this task likely cache-hot:
5640 */
5641 static int task_hot(struct task_struct *p, struct lb_env *env)
5642 {
5643 s64 delta;
5644
5645 lockdep_assert_held(&env->src_rq->lock);
5646
5647 if (p->sched_class != &fair_sched_class)
5648 return 0;
5649
5650 if (unlikely(p->policy == SCHED_IDLE))
5651 return 0;
5652
5653 /*
5654 * Buddy candidates are cache hot:
5655 */
5656 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5657 (&p->se == cfs_rq_of(&p->se)->next ||
5658 &p->se == cfs_rq_of(&p->se)->last))
5659 return 1;
5660
5661 if (sysctl_sched_migration_cost == -1)
5662 return 1;
5663 if (sysctl_sched_migration_cost == 0)
5664 return 0;
5665
5666 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5667
5668 return delta < (s64)sysctl_sched_migration_cost;
5669 }
5670
5671 #ifdef CONFIG_NUMA_BALANCING
5672 /*
5673 * Returns true if the destination node is the preferred node.
5674 * Needs to match fbq_classify_rq(): if there is a runnable task
5675 * that is not on its preferred node, we should identify it.
5676 */
5677 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5678 {
5679 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5680 unsigned long src_faults, dst_faults;
5681 int src_nid, dst_nid;
5682
5683 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
5684 !(env->sd->flags & SD_NUMA)) {
5685 return false;
5686 }
5687
5688 src_nid = cpu_to_node(env->src_cpu);
5689 dst_nid = cpu_to_node(env->dst_cpu);
5690
5691 if (src_nid == dst_nid)
5692 return false;
5693
5694 /* Encourage migration to the preferred node. */
5695 if (dst_nid == p->numa_preferred_nid)
5696 return true;
5697
5698 /* Migrating away from the preferred node is bad. */
5699 if (src_nid == p->numa_preferred_nid)
5700 return false;
5701
5702 if (numa_group) {
5703 src_faults = group_faults(p, src_nid);
5704 dst_faults = group_faults(p, dst_nid);
5705 } else {
5706 src_faults = task_faults(p, src_nid);
5707 dst_faults = task_faults(p, dst_nid);
5708 }
5709
5710 return dst_faults > src_faults;
5711 }
5712
5713
5714 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5715 {
5716 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5717 unsigned long src_faults, dst_faults;
5718 int src_nid, dst_nid;
5719
5720 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5721 return false;
5722
5723 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5724 return false;
5725
5726 src_nid = cpu_to_node(env->src_cpu);
5727 dst_nid = cpu_to_node(env->dst_cpu);
5728
5729 if (src_nid == dst_nid)
5730 return false;
5731
5732 /* Migrating away from the preferred node is bad. */
5733 if (src_nid == p->numa_preferred_nid)
5734 return true;
5735
5736 /* Encourage migration to the preferred node. */
5737 if (dst_nid == p->numa_preferred_nid)
5738 return false;
5739
5740 if (numa_group) {
5741 src_faults = group_faults(p, src_nid);
5742 dst_faults = group_faults(p, dst_nid);
5743 } else {
5744 src_faults = task_faults(p, src_nid);
5745 dst_faults = task_faults(p, dst_nid);
5746 }
5747
5748 return dst_faults < src_faults;
5749 }
5750
5751 #else
5752 static inline bool migrate_improves_locality(struct task_struct *p,
5753 struct lb_env *env)
5754 {
5755 return false;
5756 }
5757
5758 static inline bool migrate_degrades_locality(struct task_struct *p,
5759 struct lb_env *env)
5760 {
5761 return false;
5762 }
5763 #endif
5764
5765 /*
5766 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5767 */
5768 static
5769 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5770 {
5771 int tsk_cache_hot = 0;
5772
5773 lockdep_assert_held(&env->src_rq->lock);
5774
5775 /*
5776 * We do not migrate tasks that are:
5777 * 1) throttled_lb_pair, or
5778 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5779 * 3) running (obviously), or
5780 * 4) are cache-hot on their current CPU.
5781 */
5782 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5783 return 0;
5784
5785 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5786 int cpu;
5787
5788 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5789
5790 env->flags |= LBF_SOME_PINNED;
5791
5792 /*
5793 * Remember if this task can be migrated to any other cpu in
5794 * our sched_group. We may want to revisit it if we couldn't
5795 * meet load balance goals by pulling other tasks on src_cpu.
5796 *
5797 * Also avoid computing new_dst_cpu if we have already computed
5798 * one in current iteration.
5799 */
5800 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5801 return 0;
5802
5803 /* Prevent to re-select dst_cpu via env's cpus */
5804 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5805 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5806 env->flags |= LBF_DST_PINNED;
5807 env->new_dst_cpu = cpu;
5808 break;
5809 }
5810 }
5811
5812 return 0;
5813 }
5814
5815 /* Record that we found atleast one task that could run on dst_cpu */
5816 env->flags &= ~LBF_ALL_PINNED;
5817
5818 if (task_running(env->src_rq, p)) {
5819 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5820 return 0;
5821 }
5822
5823 /*
5824 * Aggressive migration if:
5825 * 1) destination numa is preferred
5826 * 2) task is cache cold, or
5827 * 3) too many balance attempts have failed.
5828 */
5829 tsk_cache_hot = task_hot(p, env);
5830 if (!tsk_cache_hot)
5831 tsk_cache_hot = migrate_degrades_locality(p, env);
5832
5833 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5834 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5835 if (tsk_cache_hot) {
5836 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5837 schedstat_inc(p, se.statistics.nr_forced_migrations);
5838 }
5839 return 1;
5840 }
5841
5842 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5843 return 0;
5844 }
5845
5846 /*
5847 * detach_task() -- detach the task for the migration specified in env
5848 */
5849 static void detach_task(struct task_struct *p, struct lb_env *env)
5850 {
5851 lockdep_assert_held(&env->src_rq->lock);
5852
5853 deactivate_task(env->src_rq, p, 0);
5854 p->on_rq = TASK_ON_RQ_MIGRATING;
5855 set_task_cpu(p, env->dst_cpu);
5856 }
5857
5858 /*
5859 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5860 * part of active balancing operations within "domain".
5861 *
5862 * Returns a task if successful and NULL otherwise.
5863 */
5864 static struct task_struct *detach_one_task(struct lb_env *env)
5865 {
5866 struct task_struct *p, *n;
5867
5868 lockdep_assert_held(&env->src_rq->lock);
5869
5870 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5871 if (!can_migrate_task(p, env))
5872 continue;
5873
5874 detach_task(p, env);
5875
5876 /*
5877 * Right now, this is only the second place where
5878 * lb_gained[env->idle] is updated (other is detach_tasks)
5879 * so we can safely collect stats here rather than
5880 * inside detach_tasks().
5881 */
5882 schedstat_inc(env->sd, lb_gained[env->idle]);
5883 return p;
5884 }
5885 return NULL;
5886 }
5887
5888 static const unsigned int sched_nr_migrate_break = 32;
5889
5890 /*
5891 * detach_tasks() -- tries to detach up to imbalance weighted load from
5892 * busiest_rq, as part of a balancing operation within domain "sd".
5893 *
5894 * Returns number of detached tasks if successful and 0 otherwise.
5895 */
5896 static int detach_tasks(struct lb_env *env)
5897 {
5898 struct list_head *tasks = &env->src_rq->cfs_tasks;
5899 struct task_struct *p;
5900 unsigned long load;
5901 int detached = 0;
5902
5903 lockdep_assert_held(&env->src_rq->lock);
5904
5905 if (env->imbalance <= 0)
5906 return 0;
5907
5908 while (!list_empty(tasks)) {
5909 p = list_first_entry(tasks, struct task_struct, se.group_node);
5910
5911 env->loop++;
5912 /* We've more or less seen every task there is, call it quits */
5913 if (env->loop > env->loop_max)
5914 break;
5915
5916 /* take a breather every nr_migrate tasks */
5917 if (env->loop > env->loop_break) {
5918 env->loop_break += sched_nr_migrate_break;
5919 env->flags |= LBF_NEED_BREAK;
5920 break;
5921 }
5922
5923 if (!can_migrate_task(p, env))
5924 goto next;
5925
5926 load = task_h_load(p);
5927
5928 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5929 goto next;
5930
5931 if ((load / 2) > env->imbalance)
5932 goto next;
5933
5934 detach_task(p, env);
5935 list_add(&p->se.group_node, &env->tasks);
5936
5937 detached++;
5938 env->imbalance -= load;
5939
5940 #ifdef CONFIG_PREEMPT
5941 /*
5942 * NEWIDLE balancing is a source of latency, so preemptible
5943 * kernels will stop after the first task is detached to minimize
5944 * the critical section.
5945 */
5946 if (env->idle == CPU_NEWLY_IDLE)
5947 break;
5948 #endif
5949
5950 /*
5951 * We only want to steal up to the prescribed amount of
5952 * weighted load.
5953 */
5954 if (env->imbalance <= 0)
5955 break;
5956
5957 continue;
5958 next:
5959 list_move_tail(&p->se.group_node, tasks);
5960 }
5961
5962 /*
5963 * Right now, this is one of only two places we collect this stat
5964 * so we can safely collect detach_one_task() stats here rather
5965 * than inside detach_one_task().
5966 */
5967 schedstat_add(env->sd, lb_gained[env->idle], detached);
5968
5969 return detached;
5970 }
5971
5972 /*
5973 * attach_task() -- attach the task detached by detach_task() to its new rq.
5974 */
5975 static void attach_task(struct rq *rq, struct task_struct *p)
5976 {
5977 lockdep_assert_held(&rq->lock);
5978
5979 BUG_ON(task_rq(p) != rq);
5980 p->on_rq = TASK_ON_RQ_QUEUED;
5981 activate_task(rq, p, 0);
5982 check_preempt_curr(rq, p, 0);
5983 }
5984
5985 /*
5986 * attach_one_task() -- attaches the task returned from detach_one_task() to
5987 * its new rq.
5988 */
5989 static void attach_one_task(struct rq *rq, struct task_struct *p)
5990 {
5991 raw_spin_lock(&rq->lock);
5992 attach_task(rq, p);
5993 raw_spin_unlock(&rq->lock);
5994 }
5995
5996 /*
5997 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5998 * new rq.
5999 */
6000 static void attach_tasks(struct lb_env *env)
6001 {
6002 struct list_head *tasks = &env->tasks;
6003 struct task_struct *p;
6004
6005 raw_spin_lock(&env->dst_rq->lock);
6006
6007 while (!list_empty(tasks)) {
6008 p = list_first_entry(tasks, struct task_struct, se.group_node);
6009 list_del_init(&p->se.group_node);
6010
6011 attach_task(env->dst_rq, p);
6012 }
6013
6014 raw_spin_unlock(&env->dst_rq->lock);
6015 }
6016
6017 #ifdef CONFIG_FAIR_GROUP_SCHED
6018 /*
6019 * update tg->load_weight by folding this cpu's load_avg
6020 */
6021 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
6022 {
6023 struct sched_entity *se = tg->se[cpu];
6024 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
6025
6026 /* throttled entities do not contribute to load */
6027 if (throttled_hierarchy(cfs_rq))
6028 return;
6029
6030 update_cfs_rq_blocked_load(cfs_rq, 1);
6031
6032 if (se) {
6033 update_entity_load_avg(se, 1);
6034 /*
6035 * We pivot on our runnable average having decayed to zero for
6036 * list removal. This generally implies that all our children
6037 * have also been removed (modulo rounding error or bandwidth
6038 * control); however, such cases are rare and we can fix these
6039 * at enqueue.
6040 *
6041 * TODO: fix up out-of-order children on enqueue.
6042 */
6043 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
6044 list_del_leaf_cfs_rq(cfs_rq);
6045 } else {
6046 struct rq *rq = rq_of(cfs_rq);
6047 update_rq_runnable_avg(rq, rq->nr_running);
6048 }
6049 }
6050
6051 static void update_blocked_averages(int cpu)
6052 {
6053 struct rq *rq = cpu_rq(cpu);
6054 struct cfs_rq *cfs_rq;
6055 unsigned long flags;
6056
6057 raw_spin_lock_irqsave(&rq->lock, flags);
6058 update_rq_clock(rq);
6059 /*
6060 * Iterates the task_group tree in a bottom up fashion, see
6061 * list_add_leaf_cfs_rq() for details.
6062 */
6063 for_each_leaf_cfs_rq(rq, cfs_rq) {
6064 /*
6065 * Note: We may want to consider periodically releasing
6066 * rq->lock about these updates so that creating many task
6067 * groups does not result in continually extending hold time.
6068 */
6069 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
6070 }
6071
6072 raw_spin_unlock_irqrestore(&rq->lock, flags);
6073 }
6074
6075 /*
6076 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6077 * This needs to be done in a top-down fashion because the load of a child
6078 * group is a fraction of its parents load.
6079 */
6080 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6081 {
6082 struct rq *rq = rq_of(cfs_rq);
6083 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6084 unsigned long now = jiffies;
6085 unsigned long load;
6086
6087 if (cfs_rq->last_h_load_update == now)
6088 return;
6089
6090 cfs_rq->h_load_next = NULL;
6091 for_each_sched_entity(se) {
6092 cfs_rq = cfs_rq_of(se);
6093 cfs_rq->h_load_next = se;
6094 if (cfs_rq->last_h_load_update == now)
6095 break;
6096 }
6097
6098 if (!se) {
6099 cfs_rq->h_load = cfs_rq->runnable_load_avg;
6100 cfs_rq->last_h_load_update = now;
6101 }
6102
6103 while ((se = cfs_rq->h_load_next) != NULL) {
6104 load = cfs_rq->h_load;
6105 load = div64_ul(load * se->avg.load_avg_contrib,
6106 cfs_rq->runnable_load_avg + 1);
6107 cfs_rq = group_cfs_rq(se);
6108 cfs_rq->h_load = load;
6109 cfs_rq->last_h_load_update = now;
6110 }
6111 }
6112
6113 static unsigned long task_h_load(struct task_struct *p)
6114 {
6115 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6116
6117 update_cfs_rq_h_load(cfs_rq);
6118 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
6119 cfs_rq->runnable_load_avg + 1);
6120 }
6121 #else
6122 static inline void update_blocked_averages(int cpu)
6123 {
6124 }
6125
6126 static unsigned long task_h_load(struct task_struct *p)
6127 {
6128 return p->se.avg.load_avg_contrib;
6129 }
6130 #endif
6131
6132 /********** Helpers for find_busiest_group ************************/
6133
6134 enum group_type {
6135 group_other = 0,
6136 group_imbalanced,
6137 group_overloaded,
6138 };
6139
6140 /*
6141 * sg_lb_stats - stats of a sched_group required for load_balancing
6142 */
6143 struct sg_lb_stats {
6144 unsigned long avg_load; /*Avg load across the CPUs of the group */
6145 unsigned long group_load; /* Total load over the CPUs of the group */
6146 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6147 unsigned long load_per_task;
6148 unsigned long group_capacity;
6149 unsigned long group_usage; /* Total usage of the group */
6150 unsigned int sum_nr_running; /* Nr tasks running in the group */
6151 unsigned int idle_cpus;
6152 unsigned int group_weight;
6153 enum group_type group_type;
6154 int group_no_capacity;
6155 #ifdef CONFIG_NUMA_BALANCING
6156 unsigned int nr_numa_running;
6157 unsigned int nr_preferred_running;
6158 #endif
6159 };
6160
6161 /*
6162 * sd_lb_stats - Structure to store the statistics of a sched_domain
6163 * during load balancing.
6164 */
6165 struct sd_lb_stats {
6166 struct sched_group *busiest; /* Busiest group in this sd */
6167 struct sched_group *local; /* Local group in this sd */
6168 unsigned long total_load; /* Total load of all groups in sd */
6169 unsigned long total_capacity; /* Total capacity of all groups in sd */
6170 unsigned long avg_load; /* Average load across all groups in sd */
6171
6172 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6173 struct sg_lb_stats local_stat; /* Statistics of the local group */
6174 };
6175
6176 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6177 {
6178 /*
6179 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6180 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6181 * We must however clear busiest_stat::avg_load because
6182 * update_sd_pick_busiest() reads this before assignment.
6183 */
6184 *sds = (struct sd_lb_stats){
6185 .busiest = NULL,
6186 .local = NULL,
6187 .total_load = 0UL,
6188 .total_capacity = 0UL,
6189 .busiest_stat = {
6190 .avg_load = 0UL,
6191 .sum_nr_running = 0,
6192 .group_type = group_other,
6193 },
6194 };
6195 }
6196
6197 /**
6198 * get_sd_load_idx - Obtain the load index for a given sched domain.
6199 * @sd: The sched_domain whose load_idx is to be obtained.
6200 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6201 *
6202 * Return: The load index.
6203 */
6204 static inline int get_sd_load_idx(struct sched_domain *sd,
6205 enum cpu_idle_type idle)
6206 {
6207 int load_idx;
6208
6209 switch (idle) {
6210 case CPU_NOT_IDLE:
6211 load_idx = sd->busy_idx;
6212 break;
6213
6214 case CPU_NEWLY_IDLE:
6215 load_idx = sd->newidle_idx;
6216 break;
6217 default:
6218 load_idx = sd->idle_idx;
6219 break;
6220 }
6221
6222 return load_idx;
6223 }
6224
6225 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6226 {
6227 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6228 return sd->smt_gain / sd->span_weight;
6229
6230 return SCHED_CAPACITY_SCALE;
6231 }
6232
6233 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6234 {
6235 return default_scale_cpu_capacity(sd, cpu);
6236 }
6237
6238 static unsigned long scale_rt_capacity(int cpu)
6239 {
6240 struct rq *rq = cpu_rq(cpu);
6241 u64 total, used, age_stamp, avg;
6242 s64 delta;
6243
6244 /*
6245 * Since we're reading these variables without serialization make sure
6246 * we read them once before doing sanity checks on them.
6247 */
6248 age_stamp = READ_ONCE(rq->age_stamp);
6249 avg = READ_ONCE(rq->rt_avg);
6250 delta = __rq_clock_broken(rq) - age_stamp;
6251
6252 if (unlikely(delta < 0))
6253 delta = 0;
6254
6255 total = sched_avg_period() + delta;
6256
6257 used = div_u64(avg, total);
6258
6259 if (likely(used < SCHED_CAPACITY_SCALE))
6260 return SCHED_CAPACITY_SCALE - used;
6261
6262 return 1;
6263 }
6264
6265 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6266 {
6267 unsigned long capacity = SCHED_CAPACITY_SCALE;
6268 struct sched_group *sdg = sd->groups;
6269
6270 if (sched_feat(ARCH_CAPACITY))
6271 capacity *= arch_scale_cpu_capacity(sd, cpu);
6272 else
6273 capacity *= default_scale_cpu_capacity(sd, cpu);
6274
6275 capacity >>= SCHED_CAPACITY_SHIFT;
6276
6277 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6278
6279 capacity *= scale_rt_capacity(cpu);
6280 capacity >>= SCHED_CAPACITY_SHIFT;
6281
6282 if (!capacity)
6283 capacity = 1;
6284
6285 cpu_rq(cpu)->cpu_capacity = capacity;
6286 sdg->sgc->capacity = capacity;
6287 }
6288
6289 void update_group_capacity(struct sched_domain *sd, int cpu)
6290 {
6291 struct sched_domain *child = sd->child;
6292 struct sched_group *group, *sdg = sd->groups;
6293 unsigned long capacity;
6294 unsigned long interval;
6295
6296 interval = msecs_to_jiffies(sd->balance_interval);
6297 interval = clamp(interval, 1UL, max_load_balance_interval);
6298 sdg->sgc->next_update = jiffies + interval;
6299
6300 if (!child) {
6301 update_cpu_capacity(sd, cpu);
6302 return;
6303 }
6304
6305 capacity = 0;
6306
6307 if (child->flags & SD_OVERLAP) {
6308 /*
6309 * SD_OVERLAP domains cannot assume that child groups
6310 * span the current group.
6311 */
6312
6313 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6314 struct sched_group_capacity *sgc;
6315 struct rq *rq = cpu_rq(cpu);
6316
6317 /*
6318 * build_sched_domains() -> init_sched_groups_capacity()
6319 * gets here before we've attached the domains to the
6320 * runqueues.
6321 *
6322 * Use capacity_of(), which is set irrespective of domains
6323 * in update_cpu_capacity().
6324 *
6325 * This avoids capacity from being 0 and
6326 * causing divide-by-zero issues on boot.
6327 */
6328 if (unlikely(!rq->sd)) {
6329 capacity += capacity_of(cpu);
6330 continue;
6331 }
6332
6333 sgc = rq->sd->groups->sgc;
6334 capacity += sgc->capacity;
6335 }
6336 } else {
6337 /*
6338 * !SD_OVERLAP domains can assume that child groups
6339 * span the current group.
6340 */
6341
6342 group = child->groups;
6343 do {
6344 capacity += group->sgc->capacity;
6345 group = group->next;
6346 } while (group != child->groups);
6347 }
6348
6349 sdg->sgc->capacity = capacity;
6350 }
6351
6352 /*
6353 * Check whether the capacity of the rq has been noticeably reduced by side
6354 * activity. The imbalance_pct is used for the threshold.
6355 * Return true is the capacity is reduced
6356 */
6357 static inline int
6358 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6359 {
6360 return ((rq->cpu_capacity * sd->imbalance_pct) <
6361 (rq->cpu_capacity_orig * 100));
6362 }
6363
6364 /*
6365 * Group imbalance indicates (and tries to solve) the problem where balancing
6366 * groups is inadequate due to tsk_cpus_allowed() constraints.
6367 *
6368 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6369 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6370 * Something like:
6371 *
6372 * { 0 1 2 3 } { 4 5 6 7 }
6373 * * * * *
6374 *
6375 * If we were to balance group-wise we'd place two tasks in the first group and
6376 * two tasks in the second group. Clearly this is undesired as it will overload
6377 * cpu 3 and leave one of the cpus in the second group unused.
6378 *
6379 * The current solution to this issue is detecting the skew in the first group
6380 * by noticing the lower domain failed to reach balance and had difficulty
6381 * moving tasks due to affinity constraints.
6382 *
6383 * When this is so detected; this group becomes a candidate for busiest; see
6384 * update_sd_pick_busiest(). And calculate_imbalance() and
6385 * find_busiest_group() avoid some of the usual balance conditions to allow it
6386 * to create an effective group imbalance.
6387 *
6388 * This is a somewhat tricky proposition since the next run might not find the
6389 * group imbalance and decide the groups need to be balanced again. A most
6390 * subtle and fragile situation.
6391 */
6392
6393 static inline int sg_imbalanced(struct sched_group *group)
6394 {
6395 return group->sgc->imbalance;
6396 }
6397
6398 /*
6399 * group_has_capacity returns true if the group has spare capacity that could
6400 * be used by some tasks.
6401 * We consider that a group has spare capacity if the * number of task is
6402 * smaller than the number of CPUs or if the usage is lower than the available
6403 * capacity for CFS tasks.
6404 * For the latter, we use a threshold to stabilize the state, to take into
6405 * account the variance of the tasks' load and to return true if the available
6406 * capacity in meaningful for the load balancer.
6407 * As an example, an available capacity of 1% can appear but it doesn't make
6408 * any benefit for the load balance.
6409 */
6410 static inline bool
6411 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6412 {
6413 if (sgs->sum_nr_running < sgs->group_weight)
6414 return true;
6415
6416 if ((sgs->group_capacity * 100) >
6417 (sgs->group_usage * env->sd->imbalance_pct))
6418 return true;
6419
6420 return false;
6421 }
6422
6423 /*
6424 * group_is_overloaded returns true if the group has more tasks than it can
6425 * handle.
6426 * group_is_overloaded is not equals to !group_has_capacity because a group
6427 * with the exact right number of tasks, has no more spare capacity but is not
6428 * overloaded so both group_has_capacity and group_is_overloaded return
6429 * false.
6430 */
6431 static inline bool
6432 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6433 {
6434 if (sgs->sum_nr_running <= sgs->group_weight)
6435 return false;
6436
6437 if ((sgs->group_capacity * 100) <
6438 (sgs->group_usage * env->sd->imbalance_pct))
6439 return true;
6440
6441 return false;
6442 }
6443
6444 static enum group_type group_classify(struct lb_env *env,
6445 struct sched_group *group,
6446 struct sg_lb_stats *sgs)
6447 {
6448 if (sgs->group_no_capacity)
6449 return group_overloaded;
6450
6451 if (sg_imbalanced(group))
6452 return group_imbalanced;
6453
6454 return group_other;
6455 }
6456
6457 /**
6458 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6459 * @env: The load balancing environment.
6460 * @group: sched_group whose statistics are to be updated.
6461 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6462 * @local_group: Does group contain this_cpu.
6463 * @sgs: variable to hold the statistics for this group.
6464 * @overload: Indicate more than one runnable task for any CPU.
6465 */
6466 static inline void update_sg_lb_stats(struct lb_env *env,
6467 struct sched_group *group, int load_idx,
6468 int local_group, struct sg_lb_stats *sgs,
6469 bool *overload)
6470 {
6471 unsigned long load;
6472 int i;
6473
6474 memset(sgs, 0, sizeof(*sgs));
6475
6476 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6477 struct rq *rq = cpu_rq(i);
6478
6479 /* Bias balancing toward cpus of our domain */
6480 if (local_group)
6481 load = target_load(i, load_idx);
6482 else
6483 load = source_load(i, load_idx);
6484
6485 sgs->group_load += load;
6486 sgs->group_usage += get_cpu_usage(i);
6487 sgs->sum_nr_running += rq->cfs.h_nr_running;
6488
6489 if (rq->nr_running > 1)
6490 *overload = true;
6491
6492 #ifdef CONFIG_NUMA_BALANCING
6493 sgs->nr_numa_running += rq->nr_numa_running;
6494 sgs->nr_preferred_running += rq->nr_preferred_running;
6495 #endif
6496 sgs->sum_weighted_load += weighted_cpuload(i);
6497 if (idle_cpu(i))
6498 sgs->idle_cpus++;
6499 }
6500
6501 /* Adjust by relative CPU capacity of the group */
6502 sgs->group_capacity = group->sgc->capacity;
6503 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6504
6505 if (sgs->sum_nr_running)
6506 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6507
6508 sgs->group_weight = group->group_weight;
6509
6510 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6511 sgs->group_type = group_classify(env, group, sgs);
6512 }
6513
6514 /**
6515 * update_sd_pick_busiest - return 1 on busiest group
6516 * @env: The load balancing environment.
6517 * @sds: sched_domain statistics
6518 * @sg: sched_group candidate to be checked for being the busiest
6519 * @sgs: sched_group statistics
6520 *
6521 * Determine if @sg is a busier group than the previously selected
6522 * busiest group.
6523 *
6524 * Return: %true if @sg is a busier group than the previously selected
6525 * busiest group. %false otherwise.
6526 */
6527 static bool update_sd_pick_busiest(struct lb_env *env,
6528 struct sd_lb_stats *sds,
6529 struct sched_group *sg,
6530 struct sg_lb_stats *sgs)
6531 {
6532 struct sg_lb_stats *busiest = &sds->busiest_stat;
6533
6534 if (sgs->group_type > busiest->group_type)
6535 return true;
6536
6537 if (sgs->group_type < busiest->group_type)
6538 return false;
6539
6540 if (sgs->avg_load <= busiest->avg_load)
6541 return false;
6542
6543 /* This is the busiest node in its class. */
6544 if (!(env->sd->flags & SD_ASYM_PACKING))
6545 return true;
6546
6547 /*
6548 * ASYM_PACKING needs to move all the work to the lowest
6549 * numbered CPUs in the group, therefore mark all groups
6550 * higher than ourself as busy.
6551 */
6552 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6553 if (!sds->busiest)
6554 return true;
6555
6556 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6557 return true;
6558 }
6559
6560 return false;
6561 }
6562
6563 #ifdef CONFIG_NUMA_BALANCING
6564 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6565 {
6566 if (sgs->sum_nr_running > sgs->nr_numa_running)
6567 return regular;
6568 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6569 return remote;
6570 return all;
6571 }
6572
6573 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6574 {
6575 if (rq->nr_running > rq->nr_numa_running)
6576 return regular;
6577 if (rq->nr_running > rq->nr_preferred_running)
6578 return remote;
6579 return all;
6580 }
6581 #else
6582 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6583 {
6584 return all;
6585 }
6586
6587 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6588 {
6589 return regular;
6590 }
6591 #endif /* CONFIG_NUMA_BALANCING */
6592
6593 /**
6594 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6595 * @env: The load balancing environment.
6596 * @sds: variable to hold the statistics for this sched_domain.
6597 */
6598 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6599 {
6600 struct sched_domain *child = env->sd->child;
6601 struct sched_group *sg = env->sd->groups;
6602 struct sg_lb_stats tmp_sgs;
6603 int load_idx, prefer_sibling = 0;
6604 bool overload = false;
6605
6606 if (child && child->flags & SD_PREFER_SIBLING)
6607 prefer_sibling = 1;
6608
6609 load_idx = get_sd_load_idx(env->sd, env->idle);
6610
6611 do {
6612 struct sg_lb_stats *sgs = &tmp_sgs;
6613 int local_group;
6614
6615 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6616 if (local_group) {
6617 sds->local = sg;
6618 sgs = &sds->local_stat;
6619
6620 if (env->idle != CPU_NEWLY_IDLE ||
6621 time_after_eq(jiffies, sg->sgc->next_update))
6622 update_group_capacity(env->sd, env->dst_cpu);
6623 }
6624
6625 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6626 &overload);
6627
6628 if (local_group)
6629 goto next_group;
6630
6631 /*
6632 * In case the child domain prefers tasks go to siblings
6633 * first, lower the sg capacity so that we'll try
6634 * and move all the excess tasks away. We lower the capacity
6635 * of a group only if the local group has the capacity to fit
6636 * these excess tasks. The extra check prevents the case where
6637 * you always pull from the heaviest group when it is already
6638 * under-utilized (possible with a large weight task outweighs
6639 * the tasks on the system).
6640 */
6641 if (prefer_sibling && sds->local &&
6642 group_has_capacity(env, &sds->local_stat) &&
6643 (sgs->sum_nr_running > 1)) {
6644 sgs->group_no_capacity = 1;
6645 sgs->group_type = group_overloaded;
6646 }
6647
6648 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6649 sds->busiest = sg;
6650 sds->busiest_stat = *sgs;
6651 }
6652
6653 next_group:
6654 /* Now, start updating sd_lb_stats */
6655 sds->total_load += sgs->group_load;
6656 sds->total_capacity += sgs->group_capacity;
6657
6658 sg = sg->next;
6659 } while (sg != env->sd->groups);
6660
6661 if (env->sd->flags & SD_NUMA)
6662 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6663
6664 if (!env->sd->parent) {
6665 /* update overload indicator if we are at root domain */
6666 if (env->dst_rq->rd->overload != overload)
6667 env->dst_rq->rd->overload = overload;
6668 }
6669
6670 }
6671
6672 /**
6673 * check_asym_packing - Check to see if the group is packed into the
6674 * sched doman.
6675 *
6676 * This is primarily intended to used at the sibling level. Some
6677 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6678 * case of POWER7, it can move to lower SMT modes only when higher
6679 * threads are idle. When in lower SMT modes, the threads will
6680 * perform better since they share less core resources. Hence when we
6681 * have idle threads, we want them to be the higher ones.
6682 *
6683 * This packing function is run on idle threads. It checks to see if
6684 * the busiest CPU in this domain (core in the P7 case) has a higher
6685 * CPU number than the packing function is being run on. Here we are
6686 * assuming lower CPU number will be equivalent to lower a SMT thread
6687 * number.
6688 *
6689 * Return: 1 when packing is required and a task should be moved to
6690 * this CPU. The amount of the imbalance is returned in *imbalance.
6691 *
6692 * @env: The load balancing environment.
6693 * @sds: Statistics of the sched_domain which is to be packed
6694 */
6695 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6696 {
6697 int busiest_cpu;
6698
6699 if (!(env->sd->flags & SD_ASYM_PACKING))
6700 return 0;
6701
6702 if (!sds->busiest)
6703 return 0;
6704
6705 busiest_cpu = group_first_cpu(sds->busiest);
6706 if (env->dst_cpu > busiest_cpu)
6707 return 0;
6708
6709 env->imbalance = DIV_ROUND_CLOSEST(
6710 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6711 SCHED_CAPACITY_SCALE);
6712
6713 return 1;
6714 }
6715
6716 /**
6717 * fix_small_imbalance - Calculate the minor imbalance that exists
6718 * amongst the groups of a sched_domain, during
6719 * load balancing.
6720 * @env: The load balancing environment.
6721 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6722 */
6723 static inline
6724 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6725 {
6726 unsigned long tmp, capa_now = 0, capa_move = 0;
6727 unsigned int imbn = 2;
6728 unsigned long scaled_busy_load_per_task;
6729 struct sg_lb_stats *local, *busiest;
6730
6731 local = &sds->local_stat;
6732 busiest = &sds->busiest_stat;
6733
6734 if (!local->sum_nr_running)
6735 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6736 else if (busiest->load_per_task > local->load_per_task)
6737 imbn = 1;
6738
6739 scaled_busy_load_per_task =
6740 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6741 busiest->group_capacity;
6742
6743 if (busiest->avg_load + scaled_busy_load_per_task >=
6744 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6745 env->imbalance = busiest->load_per_task;
6746 return;
6747 }
6748
6749 /*
6750 * OK, we don't have enough imbalance to justify moving tasks,
6751 * however we may be able to increase total CPU capacity used by
6752 * moving them.
6753 */
6754
6755 capa_now += busiest->group_capacity *
6756 min(busiest->load_per_task, busiest->avg_load);
6757 capa_now += local->group_capacity *
6758 min(local->load_per_task, local->avg_load);
6759 capa_now /= SCHED_CAPACITY_SCALE;
6760
6761 /* Amount of load we'd subtract */
6762 if (busiest->avg_load > scaled_busy_load_per_task) {
6763 capa_move += busiest->group_capacity *
6764 min(busiest->load_per_task,
6765 busiest->avg_load - scaled_busy_load_per_task);
6766 }
6767
6768 /* Amount of load we'd add */
6769 if (busiest->avg_load * busiest->group_capacity <
6770 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6771 tmp = (busiest->avg_load * busiest->group_capacity) /
6772 local->group_capacity;
6773 } else {
6774 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6775 local->group_capacity;
6776 }
6777 capa_move += local->group_capacity *
6778 min(local->load_per_task, local->avg_load + tmp);
6779 capa_move /= SCHED_CAPACITY_SCALE;
6780
6781 /* Move if we gain throughput */
6782 if (capa_move > capa_now)
6783 env->imbalance = busiest->load_per_task;
6784 }
6785
6786 /**
6787 * calculate_imbalance - Calculate the amount of imbalance present within the
6788 * groups of a given sched_domain during load balance.
6789 * @env: load balance environment
6790 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6791 */
6792 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6793 {
6794 unsigned long max_pull, load_above_capacity = ~0UL;
6795 struct sg_lb_stats *local, *busiest;
6796
6797 local = &sds->local_stat;
6798 busiest = &sds->busiest_stat;
6799
6800 if (busiest->group_type == group_imbalanced) {
6801 /*
6802 * In the group_imb case we cannot rely on group-wide averages
6803 * to ensure cpu-load equilibrium, look at wider averages. XXX
6804 */
6805 busiest->load_per_task =
6806 min(busiest->load_per_task, sds->avg_load);
6807 }
6808
6809 /*
6810 * In the presence of smp nice balancing, certain scenarios can have
6811 * max load less than avg load(as we skip the groups at or below
6812 * its cpu_capacity, while calculating max_load..)
6813 */
6814 if (busiest->avg_load <= sds->avg_load ||
6815 local->avg_load >= sds->avg_load) {
6816 env->imbalance = 0;
6817 return fix_small_imbalance(env, sds);
6818 }
6819
6820 /*
6821 * If there aren't any idle cpus, avoid creating some.
6822 */
6823 if (busiest->group_type == group_overloaded &&
6824 local->group_type == group_overloaded) {
6825 load_above_capacity = busiest->sum_nr_running *
6826 SCHED_LOAD_SCALE;
6827 if (load_above_capacity > busiest->group_capacity)
6828 load_above_capacity -= busiest->group_capacity;
6829 else
6830 load_above_capacity = ~0UL;
6831 }
6832
6833 /*
6834 * We're trying to get all the cpus to the average_load, so we don't
6835 * want to push ourselves above the average load, nor do we wish to
6836 * reduce the max loaded cpu below the average load. At the same time,
6837 * we also don't want to reduce the group load below the group capacity
6838 * (so that we can implement power-savings policies etc). Thus we look
6839 * for the minimum possible imbalance.
6840 */
6841 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6842
6843 /* How much load to actually move to equalise the imbalance */
6844 env->imbalance = min(
6845 max_pull * busiest->group_capacity,
6846 (sds->avg_load - local->avg_load) * local->group_capacity
6847 ) / SCHED_CAPACITY_SCALE;
6848
6849 /*
6850 * if *imbalance is less than the average load per runnable task
6851 * there is no guarantee that any tasks will be moved so we'll have
6852 * a think about bumping its value to force at least one task to be
6853 * moved
6854 */
6855 if (env->imbalance < busiest->load_per_task)
6856 return fix_small_imbalance(env, sds);
6857 }
6858
6859 /******* find_busiest_group() helpers end here *********************/
6860
6861 /**
6862 * find_busiest_group - Returns the busiest group within the sched_domain
6863 * if there is an imbalance. If there isn't an imbalance, and
6864 * the user has opted for power-savings, it returns a group whose
6865 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6866 * such a group exists.
6867 *
6868 * Also calculates the amount of weighted load which should be moved
6869 * to restore balance.
6870 *
6871 * @env: The load balancing environment.
6872 *
6873 * Return: - The busiest group if imbalance exists.
6874 * - If no imbalance and user has opted for power-savings balance,
6875 * return the least loaded group whose CPUs can be
6876 * put to idle by rebalancing its tasks onto our group.
6877 */
6878 static struct sched_group *find_busiest_group(struct lb_env *env)
6879 {
6880 struct sg_lb_stats *local, *busiest;
6881 struct sd_lb_stats sds;
6882
6883 init_sd_lb_stats(&sds);
6884
6885 /*
6886 * Compute the various statistics relavent for load balancing at
6887 * this level.
6888 */
6889 update_sd_lb_stats(env, &sds);
6890 local = &sds.local_stat;
6891 busiest = &sds.busiest_stat;
6892
6893 /* ASYM feature bypasses nice load balance check */
6894 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6895 check_asym_packing(env, &sds))
6896 return sds.busiest;
6897
6898 /* There is no busy sibling group to pull tasks from */
6899 if (!sds.busiest || busiest->sum_nr_running == 0)
6900 goto out_balanced;
6901
6902 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6903 / sds.total_capacity;
6904
6905 /*
6906 * If the busiest group is imbalanced the below checks don't
6907 * work because they assume all things are equal, which typically
6908 * isn't true due to cpus_allowed constraints and the like.
6909 */
6910 if (busiest->group_type == group_imbalanced)
6911 goto force_balance;
6912
6913 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6914 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6915 busiest->group_no_capacity)
6916 goto force_balance;
6917
6918 /*
6919 * If the local group is busier than the selected busiest group
6920 * don't try and pull any tasks.
6921 */
6922 if (local->avg_load >= busiest->avg_load)
6923 goto out_balanced;
6924
6925 /*
6926 * Don't pull any tasks if this group is already above the domain
6927 * average load.
6928 */
6929 if (local->avg_load >= sds.avg_load)
6930 goto out_balanced;
6931
6932 if (env->idle == CPU_IDLE) {
6933 /*
6934 * This cpu is idle. If the busiest group is not overloaded
6935 * and there is no imbalance between this and busiest group
6936 * wrt idle cpus, it is balanced. The imbalance becomes
6937 * significant if the diff is greater than 1 otherwise we
6938 * might end up to just move the imbalance on another group
6939 */
6940 if ((busiest->group_type != group_overloaded) &&
6941 (local->idle_cpus <= (busiest->idle_cpus + 1)))
6942 goto out_balanced;
6943 } else {
6944 /*
6945 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6946 * imbalance_pct to be conservative.
6947 */
6948 if (100 * busiest->avg_load <=
6949 env->sd->imbalance_pct * local->avg_load)
6950 goto out_balanced;
6951 }
6952
6953 force_balance:
6954 /* Looks like there is an imbalance. Compute it */
6955 calculate_imbalance(env, &sds);
6956 return sds.busiest;
6957
6958 out_balanced:
6959 env->imbalance = 0;
6960 return NULL;
6961 }
6962
6963 /*
6964 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6965 */
6966 static struct rq *find_busiest_queue(struct lb_env *env,
6967 struct sched_group *group)
6968 {
6969 struct rq *busiest = NULL, *rq;
6970 unsigned long busiest_load = 0, busiest_capacity = 1;
6971 int i;
6972
6973 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6974 unsigned long capacity, wl;
6975 enum fbq_type rt;
6976
6977 rq = cpu_rq(i);
6978 rt = fbq_classify_rq(rq);
6979
6980 /*
6981 * We classify groups/runqueues into three groups:
6982 * - regular: there are !numa tasks
6983 * - remote: there are numa tasks that run on the 'wrong' node
6984 * - all: there is no distinction
6985 *
6986 * In order to avoid migrating ideally placed numa tasks,
6987 * ignore those when there's better options.
6988 *
6989 * If we ignore the actual busiest queue to migrate another
6990 * task, the next balance pass can still reduce the busiest
6991 * queue by moving tasks around inside the node.
6992 *
6993 * If we cannot move enough load due to this classification
6994 * the next pass will adjust the group classification and
6995 * allow migration of more tasks.
6996 *
6997 * Both cases only affect the total convergence complexity.
6998 */
6999 if (rt > env->fbq_type)
7000 continue;
7001
7002 capacity = capacity_of(i);
7003
7004 wl = weighted_cpuload(i);
7005
7006 /*
7007 * When comparing with imbalance, use weighted_cpuload()
7008 * which is not scaled with the cpu capacity.
7009 */
7010
7011 if (rq->nr_running == 1 && wl > env->imbalance &&
7012 !check_cpu_capacity(rq, env->sd))
7013 continue;
7014
7015 /*
7016 * For the load comparisons with the other cpu's, consider
7017 * the weighted_cpuload() scaled with the cpu capacity, so
7018 * that the load can be moved away from the cpu that is
7019 * potentially running at a lower capacity.
7020 *
7021 * Thus we're looking for max(wl_i / capacity_i), crosswise
7022 * multiplication to rid ourselves of the division works out
7023 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7024 * our previous maximum.
7025 */
7026 if (wl * busiest_capacity > busiest_load * capacity) {
7027 busiest_load = wl;
7028 busiest_capacity = capacity;
7029 busiest = rq;
7030 }
7031 }
7032
7033 return busiest;
7034 }
7035
7036 /*
7037 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7038 * so long as it is large enough.
7039 */
7040 #define MAX_PINNED_INTERVAL 512
7041
7042 /* Working cpumask for load_balance and load_balance_newidle. */
7043 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7044
7045 static int need_active_balance(struct lb_env *env)
7046 {
7047 struct sched_domain *sd = env->sd;
7048
7049 if (env->idle == CPU_NEWLY_IDLE) {
7050
7051 /*
7052 * ASYM_PACKING needs to force migrate tasks from busy but
7053 * higher numbered CPUs in order to pack all tasks in the
7054 * lowest numbered CPUs.
7055 */
7056 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7057 return 1;
7058 }
7059
7060 /*
7061 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7062 * It's worth migrating the task if the src_cpu's capacity is reduced
7063 * because of other sched_class or IRQs if more capacity stays
7064 * available on dst_cpu.
7065 */
7066 if ((env->idle != CPU_NOT_IDLE) &&
7067 (env->src_rq->cfs.h_nr_running == 1)) {
7068 if ((check_cpu_capacity(env->src_rq, sd)) &&
7069 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7070 return 1;
7071 }
7072
7073 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7074 }
7075
7076 static int active_load_balance_cpu_stop(void *data);
7077
7078 static int should_we_balance(struct lb_env *env)
7079 {
7080 struct sched_group *sg = env->sd->groups;
7081 struct cpumask *sg_cpus, *sg_mask;
7082 int cpu, balance_cpu = -1;
7083
7084 /*
7085 * In the newly idle case, we will allow all the cpu's
7086 * to do the newly idle load balance.
7087 */
7088 if (env->idle == CPU_NEWLY_IDLE)
7089 return 1;
7090
7091 sg_cpus = sched_group_cpus(sg);
7092 sg_mask = sched_group_mask(sg);
7093 /* Try to find first idle cpu */
7094 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7095 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7096 continue;
7097
7098 balance_cpu = cpu;
7099 break;
7100 }
7101
7102 if (balance_cpu == -1)
7103 balance_cpu = group_balance_cpu(sg);
7104
7105 /*
7106 * First idle cpu or the first cpu(busiest) in this sched group
7107 * is eligible for doing load balancing at this and above domains.
7108 */
7109 return balance_cpu == env->dst_cpu;
7110 }
7111
7112 /*
7113 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7114 * tasks if there is an imbalance.
7115 */
7116 static int load_balance(int this_cpu, struct rq *this_rq,
7117 struct sched_domain *sd, enum cpu_idle_type idle,
7118 int *continue_balancing)
7119 {
7120 int ld_moved, cur_ld_moved, active_balance = 0;
7121 struct sched_domain *sd_parent = sd->parent;
7122 struct sched_group *group;
7123 struct rq *busiest;
7124 unsigned long flags;
7125 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7126
7127 struct lb_env env = {
7128 .sd = sd,
7129 .dst_cpu = this_cpu,
7130 .dst_rq = this_rq,
7131 .dst_grpmask = sched_group_cpus(sd->groups),
7132 .idle = idle,
7133 .loop_break = sched_nr_migrate_break,
7134 .cpus = cpus,
7135 .fbq_type = all,
7136 .tasks = LIST_HEAD_INIT(env.tasks),
7137 };
7138
7139 /*
7140 * For NEWLY_IDLE load_balancing, we don't need to consider
7141 * other cpus in our group
7142 */
7143 if (idle == CPU_NEWLY_IDLE)
7144 env.dst_grpmask = NULL;
7145
7146 cpumask_copy(cpus, cpu_active_mask);
7147
7148 schedstat_inc(sd, lb_count[idle]);
7149
7150 redo:
7151 if (!should_we_balance(&env)) {
7152 *continue_balancing = 0;
7153 goto out_balanced;
7154 }
7155
7156 group = find_busiest_group(&env);
7157 if (!group) {
7158 schedstat_inc(sd, lb_nobusyg[idle]);
7159 goto out_balanced;
7160 }
7161
7162 busiest = find_busiest_queue(&env, group);
7163 if (!busiest) {
7164 schedstat_inc(sd, lb_nobusyq[idle]);
7165 goto out_balanced;
7166 }
7167
7168 BUG_ON(busiest == env.dst_rq);
7169
7170 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7171
7172 env.src_cpu = busiest->cpu;
7173 env.src_rq = busiest;
7174
7175 ld_moved = 0;
7176 if (busiest->nr_running > 1) {
7177 /*
7178 * Attempt to move tasks. If find_busiest_group has found
7179 * an imbalance but busiest->nr_running <= 1, the group is
7180 * still unbalanced. ld_moved simply stays zero, so it is
7181 * correctly treated as an imbalance.
7182 */
7183 env.flags |= LBF_ALL_PINNED;
7184 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
7185
7186 more_balance:
7187 raw_spin_lock_irqsave(&busiest->lock, flags);
7188
7189 /*
7190 * cur_ld_moved - load moved in current iteration
7191 * ld_moved - cumulative load moved across iterations
7192 */
7193 cur_ld_moved = detach_tasks(&env);
7194
7195 /*
7196 * We've detached some tasks from busiest_rq. Every
7197 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7198 * unlock busiest->lock, and we are able to be sure
7199 * that nobody can manipulate the tasks in parallel.
7200 * See task_rq_lock() family for the details.
7201 */
7202
7203 raw_spin_unlock(&busiest->lock);
7204
7205 if (cur_ld_moved) {
7206 attach_tasks(&env);
7207 ld_moved += cur_ld_moved;
7208 }
7209
7210 local_irq_restore(flags);
7211
7212 if (env.flags & LBF_NEED_BREAK) {
7213 env.flags &= ~LBF_NEED_BREAK;
7214 goto more_balance;
7215 }
7216
7217 /*
7218 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7219 * us and move them to an alternate dst_cpu in our sched_group
7220 * where they can run. The upper limit on how many times we
7221 * iterate on same src_cpu is dependent on number of cpus in our
7222 * sched_group.
7223 *
7224 * This changes load balance semantics a bit on who can move
7225 * load to a given_cpu. In addition to the given_cpu itself
7226 * (or a ilb_cpu acting on its behalf where given_cpu is
7227 * nohz-idle), we now have balance_cpu in a position to move
7228 * load to given_cpu. In rare situations, this may cause
7229 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7230 * _independently_ and at _same_ time to move some load to
7231 * given_cpu) causing exceess load to be moved to given_cpu.
7232 * This however should not happen so much in practice and
7233 * moreover subsequent load balance cycles should correct the
7234 * excess load moved.
7235 */
7236 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7237
7238 /* Prevent to re-select dst_cpu via env's cpus */
7239 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7240
7241 env.dst_rq = cpu_rq(env.new_dst_cpu);
7242 env.dst_cpu = env.new_dst_cpu;
7243 env.flags &= ~LBF_DST_PINNED;
7244 env.loop = 0;
7245 env.loop_break = sched_nr_migrate_break;
7246
7247 /*
7248 * Go back to "more_balance" rather than "redo" since we
7249 * need to continue with same src_cpu.
7250 */
7251 goto more_balance;
7252 }
7253
7254 /*
7255 * We failed to reach balance because of affinity.
7256 */
7257 if (sd_parent) {
7258 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7259
7260 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7261 *group_imbalance = 1;
7262 }
7263
7264 /* All tasks on this runqueue were pinned by CPU affinity */
7265 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7266 cpumask_clear_cpu(cpu_of(busiest), cpus);
7267 if (!cpumask_empty(cpus)) {
7268 env.loop = 0;
7269 env.loop_break = sched_nr_migrate_break;
7270 goto redo;
7271 }
7272 goto out_all_pinned;
7273 }
7274 }
7275
7276 if (!ld_moved) {
7277 schedstat_inc(sd, lb_failed[idle]);
7278 /*
7279 * Increment the failure counter only on periodic balance.
7280 * We do not want newidle balance, which can be very
7281 * frequent, pollute the failure counter causing
7282 * excessive cache_hot migrations and active balances.
7283 */
7284 if (idle != CPU_NEWLY_IDLE)
7285 sd->nr_balance_failed++;
7286
7287 if (need_active_balance(&env)) {
7288 raw_spin_lock_irqsave(&busiest->lock, flags);
7289
7290 /* don't kick the active_load_balance_cpu_stop,
7291 * if the curr task on busiest cpu can't be
7292 * moved to this_cpu
7293 */
7294 if (!cpumask_test_cpu(this_cpu,
7295 tsk_cpus_allowed(busiest->curr))) {
7296 raw_spin_unlock_irqrestore(&busiest->lock,
7297 flags);
7298 env.flags |= LBF_ALL_PINNED;
7299 goto out_one_pinned;
7300 }
7301
7302 /*
7303 * ->active_balance synchronizes accesses to
7304 * ->active_balance_work. Once set, it's cleared
7305 * only after active load balance is finished.
7306 */
7307 if (!busiest->active_balance) {
7308 busiest->active_balance = 1;
7309 busiest->push_cpu = this_cpu;
7310 active_balance = 1;
7311 }
7312 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7313
7314 if (active_balance) {
7315 stop_one_cpu_nowait(cpu_of(busiest),
7316 active_load_balance_cpu_stop, busiest,
7317 &busiest->active_balance_work);
7318 }
7319
7320 /*
7321 * We've kicked active balancing, reset the failure
7322 * counter.
7323 */
7324 sd->nr_balance_failed = sd->cache_nice_tries+1;
7325 }
7326 } else
7327 sd->nr_balance_failed = 0;
7328
7329 if (likely(!active_balance)) {
7330 /* We were unbalanced, so reset the balancing interval */
7331 sd->balance_interval = sd->min_interval;
7332 } else {
7333 /*
7334 * If we've begun active balancing, start to back off. This
7335 * case may not be covered by the all_pinned logic if there
7336 * is only 1 task on the busy runqueue (because we don't call
7337 * detach_tasks).
7338 */
7339 if (sd->balance_interval < sd->max_interval)
7340 sd->balance_interval *= 2;
7341 }
7342
7343 goto out;
7344
7345 out_balanced:
7346 /*
7347 * We reach balance although we may have faced some affinity
7348 * constraints. Clear the imbalance flag if it was set.
7349 */
7350 if (sd_parent) {
7351 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7352
7353 if (*group_imbalance)
7354 *group_imbalance = 0;
7355 }
7356
7357 out_all_pinned:
7358 /*
7359 * We reach balance because all tasks are pinned at this level so
7360 * we can't migrate them. Let the imbalance flag set so parent level
7361 * can try to migrate them.
7362 */
7363 schedstat_inc(sd, lb_balanced[idle]);
7364
7365 sd->nr_balance_failed = 0;
7366
7367 out_one_pinned:
7368 /* tune up the balancing interval */
7369 if (((env.flags & LBF_ALL_PINNED) &&
7370 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7371 (sd->balance_interval < sd->max_interval))
7372 sd->balance_interval *= 2;
7373
7374 ld_moved = 0;
7375 out:
7376 return ld_moved;
7377 }
7378
7379 static inline unsigned long
7380 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7381 {
7382 unsigned long interval = sd->balance_interval;
7383
7384 if (cpu_busy)
7385 interval *= sd->busy_factor;
7386
7387 /* scale ms to jiffies */
7388 interval = msecs_to_jiffies(interval);
7389 interval = clamp(interval, 1UL, max_load_balance_interval);
7390
7391 return interval;
7392 }
7393
7394 static inline void
7395 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7396 {
7397 unsigned long interval, next;
7398
7399 interval = get_sd_balance_interval(sd, cpu_busy);
7400 next = sd->last_balance + interval;
7401
7402 if (time_after(*next_balance, next))
7403 *next_balance = next;
7404 }
7405
7406 /*
7407 * idle_balance is called by schedule() if this_cpu is about to become
7408 * idle. Attempts to pull tasks from other CPUs.
7409 */
7410 static int idle_balance(struct rq *this_rq)
7411 {
7412 unsigned long next_balance = jiffies + HZ;
7413 int this_cpu = this_rq->cpu;
7414 struct sched_domain *sd;
7415 int pulled_task = 0;
7416 u64 curr_cost = 0;
7417
7418 idle_enter_fair(this_rq);
7419
7420 /*
7421 * We must set idle_stamp _before_ calling idle_balance(), such that we
7422 * measure the duration of idle_balance() as idle time.
7423 */
7424 this_rq->idle_stamp = rq_clock(this_rq);
7425
7426 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7427 !this_rq->rd->overload) {
7428 rcu_read_lock();
7429 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7430 if (sd)
7431 update_next_balance(sd, 0, &next_balance);
7432 rcu_read_unlock();
7433
7434 goto out;
7435 }
7436
7437 raw_spin_unlock(&this_rq->lock);
7438
7439 update_blocked_averages(this_cpu);
7440 rcu_read_lock();
7441 for_each_domain(this_cpu, sd) {
7442 int continue_balancing = 1;
7443 u64 t0, domain_cost;
7444
7445 if (!(sd->flags & SD_LOAD_BALANCE))
7446 continue;
7447
7448 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7449 update_next_balance(sd, 0, &next_balance);
7450 break;
7451 }
7452
7453 if (sd->flags & SD_BALANCE_NEWIDLE) {
7454 t0 = sched_clock_cpu(this_cpu);
7455
7456 pulled_task = load_balance(this_cpu, this_rq,
7457 sd, CPU_NEWLY_IDLE,
7458 &continue_balancing);
7459
7460 domain_cost = sched_clock_cpu(this_cpu) - t0;
7461 if (domain_cost > sd->max_newidle_lb_cost)
7462 sd->max_newidle_lb_cost = domain_cost;
7463
7464 curr_cost += domain_cost;
7465 }
7466
7467 update_next_balance(sd, 0, &next_balance);
7468
7469 /*
7470 * Stop searching for tasks to pull if there are
7471 * now runnable tasks on this rq.
7472 */
7473 if (pulled_task || this_rq->nr_running > 0)
7474 break;
7475 }
7476 rcu_read_unlock();
7477
7478 raw_spin_lock(&this_rq->lock);
7479
7480 if (curr_cost > this_rq->max_idle_balance_cost)
7481 this_rq->max_idle_balance_cost = curr_cost;
7482
7483 /*
7484 * While browsing the domains, we released the rq lock, a task could
7485 * have been enqueued in the meantime. Since we're not going idle,
7486 * pretend we pulled a task.
7487 */
7488 if (this_rq->cfs.h_nr_running && !pulled_task)
7489 pulled_task = 1;
7490
7491 out:
7492 /* Move the next balance forward */
7493 if (time_after(this_rq->next_balance, next_balance))
7494 this_rq->next_balance = next_balance;
7495
7496 /* Is there a task of a high priority class? */
7497 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7498 pulled_task = -1;
7499
7500 if (pulled_task) {
7501 idle_exit_fair(this_rq);
7502 this_rq->idle_stamp = 0;
7503 }
7504
7505 return pulled_task;
7506 }
7507
7508 /*
7509 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7510 * running tasks off the busiest CPU onto idle CPUs. It requires at
7511 * least 1 task to be running on each physical CPU where possible, and
7512 * avoids physical / logical imbalances.
7513 */
7514 static int active_load_balance_cpu_stop(void *data)
7515 {
7516 struct rq *busiest_rq = data;
7517 int busiest_cpu = cpu_of(busiest_rq);
7518 int target_cpu = busiest_rq->push_cpu;
7519 struct rq *target_rq = cpu_rq(target_cpu);
7520 struct sched_domain *sd;
7521 struct task_struct *p = NULL;
7522
7523 raw_spin_lock_irq(&busiest_rq->lock);
7524
7525 /* make sure the requested cpu hasn't gone down in the meantime */
7526 if (unlikely(busiest_cpu != smp_processor_id() ||
7527 !busiest_rq->active_balance))
7528 goto out_unlock;
7529
7530 /* Is there any task to move? */
7531 if (busiest_rq->nr_running <= 1)
7532 goto out_unlock;
7533
7534 /*
7535 * This condition is "impossible", if it occurs
7536 * we need to fix it. Originally reported by
7537 * Bjorn Helgaas on a 128-cpu setup.
7538 */
7539 BUG_ON(busiest_rq == target_rq);
7540
7541 /* Search for an sd spanning us and the target CPU. */
7542 rcu_read_lock();
7543 for_each_domain(target_cpu, sd) {
7544 if ((sd->flags & SD_LOAD_BALANCE) &&
7545 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7546 break;
7547 }
7548
7549 if (likely(sd)) {
7550 struct lb_env env = {
7551 .sd = sd,
7552 .dst_cpu = target_cpu,
7553 .dst_rq = target_rq,
7554 .src_cpu = busiest_rq->cpu,
7555 .src_rq = busiest_rq,
7556 .idle = CPU_IDLE,
7557 };
7558
7559 schedstat_inc(sd, alb_count);
7560
7561 p = detach_one_task(&env);
7562 if (p)
7563 schedstat_inc(sd, alb_pushed);
7564 else
7565 schedstat_inc(sd, alb_failed);
7566 }
7567 rcu_read_unlock();
7568 out_unlock:
7569 busiest_rq->active_balance = 0;
7570 raw_spin_unlock(&busiest_rq->lock);
7571
7572 if (p)
7573 attach_one_task(target_rq, p);
7574
7575 local_irq_enable();
7576
7577 return 0;
7578 }
7579
7580 static inline int on_null_domain(struct rq *rq)
7581 {
7582 return unlikely(!rcu_dereference_sched(rq->sd));
7583 }
7584
7585 #ifdef CONFIG_NO_HZ_COMMON
7586 /*
7587 * idle load balancing details
7588 * - When one of the busy CPUs notice that there may be an idle rebalancing
7589 * needed, they will kick the idle load balancer, which then does idle
7590 * load balancing for all the idle CPUs.
7591 */
7592 static struct {
7593 cpumask_var_t idle_cpus_mask;
7594 atomic_t nr_cpus;
7595 unsigned long next_balance; /* in jiffy units */
7596 } nohz ____cacheline_aligned;
7597
7598 static inline int find_new_ilb(void)
7599 {
7600 int ilb = cpumask_first(nohz.idle_cpus_mask);
7601
7602 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7603 return ilb;
7604
7605 return nr_cpu_ids;
7606 }
7607
7608 /*
7609 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7610 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7611 * CPU (if there is one).
7612 */
7613 static void nohz_balancer_kick(void)
7614 {
7615 int ilb_cpu;
7616
7617 nohz.next_balance++;
7618
7619 ilb_cpu = find_new_ilb();
7620
7621 if (ilb_cpu >= nr_cpu_ids)
7622 return;
7623
7624 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7625 return;
7626 /*
7627 * Use smp_send_reschedule() instead of resched_cpu().
7628 * This way we generate a sched IPI on the target cpu which
7629 * is idle. And the softirq performing nohz idle load balance
7630 * will be run before returning from the IPI.
7631 */
7632 smp_send_reschedule(ilb_cpu);
7633 return;
7634 }
7635
7636 static inline void nohz_balance_exit_idle(int cpu)
7637 {
7638 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7639 /*
7640 * Completely isolated CPUs don't ever set, so we must test.
7641 */
7642 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7643 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7644 atomic_dec(&nohz.nr_cpus);
7645 }
7646 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7647 }
7648 }
7649
7650 static inline void set_cpu_sd_state_busy(void)
7651 {
7652 struct sched_domain *sd;
7653 int cpu = smp_processor_id();
7654
7655 rcu_read_lock();
7656 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7657
7658 if (!sd || !sd->nohz_idle)
7659 goto unlock;
7660 sd->nohz_idle = 0;
7661
7662 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7663 unlock:
7664 rcu_read_unlock();
7665 }
7666
7667 void set_cpu_sd_state_idle(void)
7668 {
7669 struct sched_domain *sd;
7670 int cpu = smp_processor_id();
7671
7672 rcu_read_lock();
7673 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7674
7675 if (!sd || sd->nohz_idle)
7676 goto unlock;
7677 sd->nohz_idle = 1;
7678
7679 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7680 unlock:
7681 rcu_read_unlock();
7682 }
7683
7684 /*
7685 * This routine will record that the cpu is going idle with tick stopped.
7686 * This info will be used in performing idle load balancing in the future.
7687 */
7688 void nohz_balance_enter_idle(int cpu)
7689 {
7690 /*
7691 * If this cpu is going down, then nothing needs to be done.
7692 */
7693 if (!cpu_active(cpu))
7694 return;
7695
7696 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7697 return;
7698
7699 /*
7700 * If we're a completely isolated CPU, we don't play.
7701 */
7702 if (on_null_domain(cpu_rq(cpu)))
7703 return;
7704
7705 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7706 atomic_inc(&nohz.nr_cpus);
7707 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7708 }
7709
7710 static int sched_ilb_notifier(struct notifier_block *nfb,
7711 unsigned long action, void *hcpu)
7712 {
7713 switch (action & ~CPU_TASKS_FROZEN) {
7714 case CPU_DYING:
7715 nohz_balance_exit_idle(smp_processor_id());
7716 return NOTIFY_OK;
7717 default:
7718 return NOTIFY_DONE;
7719 }
7720 }
7721 #endif
7722
7723 static DEFINE_SPINLOCK(balancing);
7724
7725 /*
7726 * Scale the max load_balance interval with the number of CPUs in the system.
7727 * This trades load-balance latency on larger machines for less cross talk.
7728 */
7729 void update_max_interval(void)
7730 {
7731 max_load_balance_interval = HZ*num_online_cpus()/10;
7732 }
7733
7734 /*
7735 * It checks each scheduling domain to see if it is due to be balanced,
7736 * and initiates a balancing operation if so.
7737 *
7738 * Balancing parameters are set up in init_sched_domains.
7739 */
7740 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7741 {
7742 int continue_balancing = 1;
7743 int cpu = rq->cpu;
7744 unsigned long interval;
7745 struct sched_domain *sd;
7746 /* Earliest time when we have to do rebalance again */
7747 unsigned long next_balance = jiffies + 60*HZ;
7748 int update_next_balance = 0;
7749 int need_serialize, need_decay = 0;
7750 u64 max_cost = 0;
7751
7752 update_blocked_averages(cpu);
7753
7754 rcu_read_lock();
7755 for_each_domain(cpu, sd) {
7756 /*
7757 * Decay the newidle max times here because this is a regular
7758 * visit to all the domains. Decay ~1% per second.
7759 */
7760 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7761 sd->max_newidle_lb_cost =
7762 (sd->max_newidle_lb_cost * 253) / 256;
7763 sd->next_decay_max_lb_cost = jiffies + HZ;
7764 need_decay = 1;
7765 }
7766 max_cost += sd->max_newidle_lb_cost;
7767
7768 if (!(sd->flags & SD_LOAD_BALANCE))
7769 continue;
7770
7771 /*
7772 * Stop the load balance at this level. There is another
7773 * CPU in our sched group which is doing load balancing more
7774 * actively.
7775 */
7776 if (!continue_balancing) {
7777 if (need_decay)
7778 continue;
7779 break;
7780 }
7781
7782 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7783
7784 need_serialize = sd->flags & SD_SERIALIZE;
7785 if (need_serialize) {
7786 if (!spin_trylock(&balancing))
7787 goto out;
7788 }
7789
7790 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7791 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7792 /*
7793 * The LBF_DST_PINNED logic could have changed
7794 * env->dst_cpu, so we can't know our idle
7795 * state even if we migrated tasks. Update it.
7796 */
7797 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7798 }
7799 sd->last_balance = jiffies;
7800 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7801 }
7802 if (need_serialize)
7803 spin_unlock(&balancing);
7804 out:
7805 if (time_after(next_balance, sd->last_balance + interval)) {
7806 next_balance = sd->last_balance + interval;
7807 update_next_balance = 1;
7808 }
7809 }
7810 if (need_decay) {
7811 /*
7812 * Ensure the rq-wide value also decays but keep it at a
7813 * reasonable floor to avoid funnies with rq->avg_idle.
7814 */
7815 rq->max_idle_balance_cost =
7816 max((u64)sysctl_sched_migration_cost, max_cost);
7817 }
7818 rcu_read_unlock();
7819
7820 /*
7821 * next_balance will be updated only when there is a need.
7822 * When the cpu is attached to null domain for ex, it will not be
7823 * updated.
7824 */
7825 if (likely(update_next_balance))
7826 rq->next_balance = next_balance;
7827 }
7828
7829 #ifdef CONFIG_NO_HZ_COMMON
7830 /*
7831 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7832 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7833 */
7834 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7835 {
7836 int this_cpu = this_rq->cpu;
7837 struct rq *rq;
7838 int balance_cpu;
7839
7840 if (idle != CPU_IDLE ||
7841 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7842 goto end;
7843
7844 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7845 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7846 continue;
7847
7848 /*
7849 * If this cpu gets work to do, stop the load balancing
7850 * work being done for other cpus. Next load
7851 * balancing owner will pick it up.
7852 */
7853 if (need_resched())
7854 break;
7855
7856 rq = cpu_rq(balance_cpu);
7857
7858 /*
7859 * If time for next balance is due,
7860 * do the balance.
7861 */
7862 if (time_after_eq(jiffies, rq->next_balance)) {
7863 raw_spin_lock_irq(&rq->lock);
7864 update_rq_clock(rq);
7865 update_idle_cpu_load(rq);
7866 raw_spin_unlock_irq(&rq->lock);
7867 rebalance_domains(rq, CPU_IDLE);
7868 }
7869
7870 if (time_after(this_rq->next_balance, rq->next_balance))
7871 this_rq->next_balance = rq->next_balance;
7872 }
7873 nohz.next_balance = this_rq->next_balance;
7874 end:
7875 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7876 }
7877
7878 /*
7879 * Current heuristic for kicking the idle load balancer in the presence
7880 * of an idle cpu in the system.
7881 * - This rq has more than one task.
7882 * - This rq has at least one CFS task and the capacity of the CPU is
7883 * significantly reduced because of RT tasks or IRQs.
7884 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7885 * multiple busy cpu.
7886 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7887 * domain span are idle.
7888 */
7889 static inline bool nohz_kick_needed(struct rq *rq)
7890 {
7891 unsigned long now = jiffies;
7892 struct sched_domain *sd;
7893 struct sched_group_capacity *sgc;
7894 int nr_busy, cpu = rq->cpu;
7895 bool kick = false;
7896
7897 if (unlikely(rq->idle_balance))
7898 return false;
7899
7900 /*
7901 * We may be recently in ticked or tickless idle mode. At the first
7902 * busy tick after returning from idle, we will update the busy stats.
7903 */
7904 set_cpu_sd_state_busy();
7905 nohz_balance_exit_idle(cpu);
7906
7907 /*
7908 * None are in tickless mode and hence no need for NOHZ idle load
7909 * balancing.
7910 */
7911 if (likely(!atomic_read(&nohz.nr_cpus)))
7912 return false;
7913
7914 if (time_before(now, nohz.next_balance))
7915 return false;
7916
7917 if (rq->nr_running >= 2)
7918 return true;
7919
7920 rcu_read_lock();
7921 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7922 if (sd) {
7923 sgc = sd->groups->sgc;
7924 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7925
7926 if (nr_busy > 1) {
7927 kick = true;
7928 goto unlock;
7929 }
7930
7931 }
7932
7933 sd = rcu_dereference(rq->sd);
7934 if (sd) {
7935 if ((rq->cfs.h_nr_running >= 1) &&
7936 check_cpu_capacity(rq, sd)) {
7937 kick = true;
7938 goto unlock;
7939 }
7940 }
7941
7942 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7943 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7944 sched_domain_span(sd)) < cpu)) {
7945 kick = true;
7946 goto unlock;
7947 }
7948
7949 unlock:
7950 rcu_read_unlock();
7951 return kick;
7952 }
7953 #else
7954 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7955 #endif
7956
7957 /*
7958 * run_rebalance_domains is triggered when needed from the scheduler tick.
7959 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7960 */
7961 static void run_rebalance_domains(struct softirq_action *h)
7962 {
7963 struct rq *this_rq = this_rq();
7964 enum cpu_idle_type idle = this_rq->idle_balance ?
7965 CPU_IDLE : CPU_NOT_IDLE;
7966
7967 /*
7968 * If this cpu has a pending nohz_balance_kick, then do the
7969 * balancing on behalf of the other idle cpus whose ticks are
7970 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7971 * give the idle cpus a chance to load balance. Else we may
7972 * load balance only within the local sched_domain hierarchy
7973 * and abort nohz_idle_balance altogether if we pull some load.
7974 */
7975 nohz_idle_balance(this_rq, idle);
7976 rebalance_domains(this_rq, idle);
7977 }
7978
7979 /*
7980 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7981 */
7982 void trigger_load_balance(struct rq *rq)
7983 {
7984 /* Don't need to rebalance while attached to NULL domain */
7985 if (unlikely(on_null_domain(rq)))
7986 return;
7987
7988 if (time_after_eq(jiffies, rq->next_balance))
7989 raise_softirq(SCHED_SOFTIRQ);
7990 #ifdef CONFIG_NO_HZ_COMMON
7991 if (nohz_kick_needed(rq))
7992 nohz_balancer_kick();
7993 #endif
7994 }
7995
7996 static void rq_online_fair(struct rq *rq)
7997 {
7998 update_sysctl();
7999
8000 update_runtime_enabled(rq);
8001 }
8002
8003 static void rq_offline_fair(struct rq *rq)
8004 {
8005 update_sysctl();
8006
8007 /* Ensure any throttled groups are reachable by pick_next_task */
8008 unthrottle_offline_cfs_rqs(rq);
8009 }
8010
8011 #endif /* CONFIG_SMP */
8012
8013 /*
8014 * scheduler tick hitting a task of our scheduling class:
8015 */
8016 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8017 {
8018 struct cfs_rq *cfs_rq;
8019 struct sched_entity *se = &curr->se;
8020
8021 for_each_sched_entity(se) {
8022 cfs_rq = cfs_rq_of(se);
8023 entity_tick(cfs_rq, se, queued);
8024 }
8025
8026 if (numabalancing_enabled)
8027 task_tick_numa(rq, curr);
8028
8029 update_rq_runnable_avg(rq, 1);
8030 }
8031
8032 /*
8033 * called on fork with the child task as argument from the parent's context
8034 * - child not yet on the tasklist
8035 * - preemption disabled
8036 */
8037 static void task_fork_fair(struct task_struct *p)
8038 {
8039 struct cfs_rq *cfs_rq;
8040 struct sched_entity *se = &p->se, *curr;
8041 int this_cpu = smp_processor_id();
8042 struct rq *rq = this_rq();
8043 unsigned long flags;
8044
8045 raw_spin_lock_irqsave(&rq->lock, flags);
8046
8047 update_rq_clock(rq);
8048
8049 cfs_rq = task_cfs_rq(current);
8050 curr = cfs_rq->curr;
8051
8052 /*
8053 * Not only the cpu but also the task_group of the parent might have
8054 * been changed after parent->se.parent,cfs_rq were copied to
8055 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8056 * of child point to valid ones.
8057 */
8058 rcu_read_lock();
8059 __set_task_cpu(p, this_cpu);
8060 rcu_read_unlock();
8061
8062 update_curr(cfs_rq);
8063
8064 if (curr)
8065 se->vruntime = curr->vruntime;
8066 place_entity(cfs_rq, se, 1);
8067
8068 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8069 /*
8070 * Upon rescheduling, sched_class::put_prev_task() will place
8071 * 'current' within the tree based on its new key value.
8072 */
8073 swap(curr->vruntime, se->vruntime);
8074 resched_curr(rq);
8075 }
8076
8077 se->vruntime -= cfs_rq->min_vruntime;
8078
8079 raw_spin_unlock_irqrestore(&rq->lock, flags);
8080 }
8081
8082 /*
8083 * Priority of the task has changed. Check to see if we preempt
8084 * the current task.
8085 */
8086 static void
8087 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8088 {
8089 if (!task_on_rq_queued(p))
8090 return;
8091
8092 /*
8093 * Reschedule if we are currently running on this runqueue and
8094 * our priority decreased, or if we are not currently running on
8095 * this runqueue and our priority is higher than the current's
8096 */
8097 if (rq->curr == p) {
8098 if (p->prio > oldprio)
8099 resched_curr(rq);
8100 } else
8101 check_preempt_curr(rq, p, 0);
8102 }
8103
8104 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8105 {
8106 struct sched_entity *se = &p->se;
8107 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8108
8109 /*
8110 * Ensure the task's vruntime is normalized, so that when it's
8111 * switched back to the fair class the enqueue_entity(.flags=0) will
8112 * do the right thing.
8113 *
8114 * If it's queued, then the dequeue_entity(.flags=0) will already
8115 * have normalized the vruntime, if it's !queued, then only when
8116 * the task is sleeping will it still have non-normalized vruntime.
8117 */
8118 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
8119 /*
8120 * Fix up our vruntime so that the current sleep doesn't
8121 * cause 'unlimited' sleep bonus.
8122 */
8123 place_entity(cfs_rq, se, 0);
8124 se->vruntime -= cfs_rq->min_vruntime;
8125 }
8126
8127 #ifdef CONFIG_SMP
8128 /*
8129 * Remove our load from contribution when we leave sched_fair
8130 * and ensure we don't carry in an old decay_count if we
8131 * switch back.
8132 */
8133 if (se->avg.decay_count) {
8134 __synchronize_entity_decay(se);
8135 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
8136 }
8137 #endif
8138 }
8139
8140 /*
8141 * We switched to the sched_fair class.
8142 */
8143 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8144 {
8145 #ifdef CONFIG_FAIR_GROUP_SCHED
8146 struct sched_entity *se = &p->se;
8147 /*
8148 * Since the real-depth could have been changed (only FAIR
8149 * class maintain depth value), reset depth properly.
8150 */
8151 se->depth = se->parent ? se->parent->depth + 1 : 0;
8152 #endif
8153 if (!task_on_rq_queued(p))
8154 return;
8155
8156 /*
8157 * We were most likely switched from sched_rt, so
8158 * kick off the schedule if running, otherwise just see
8159 * if we can still preempt the current task.
8160 */
8161 if (rq->curr == p)
8162 resched_curr(rq);
8163 else
8164 check_preempt_curr(rq, p, 0);
8165 }
8166
8167 /* Account for a task changing its policy or group.
8168 *
8169 * This routine is mostly called to set cfs_rq->curr field when a task
8170 * migrates between groups/classes.
8171 */
8172 static void set_curr_task_fair(struct rq *rq)
8173 {
8174 struct sched_entity *se = &rq->curr->se;
8175
8176 for_each_sched_entity(se) {
8177 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8178
8179 set_next_entity(cfs_rq, se);
8180 /* ensure bandwidth has been allocated on our new cfs_rq */
8181 account_cfs_rq_runtime(cfs_rq, 0);
8182 }
8183 }
8184
8185 void init_cfs_rq(struct cfs_rq *cfs_rq)
8186 {
8187 cfs_rq->tasks_timeline = RB_ROOT;
8188 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8189 #ifndef CONFIG_64BIT
8190 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8191 #endif
8192 #ifdef CONFIG_SMP
8193 atomic64_set(&cfs_rq->decay_counter, 1);
8194 atomic_long_set(&cfs_rq->removed_load, 0);
8195 #endif
8196 }
8197
8198 #ifdef CONFIG_FAIR_GROUP_SCHED
8199 static void task_move_group_fair(struct task_struct *p, int queued)
8200 {
8201 struct sched_entity *se = &p->se;
8202 struct cfs_rq *cfs_rq;
8203
8204 /*
8205 * If the task was not on the rq at the time of this cgroup movement
8206 * it must have been asleep, sleeping tasks keep their ->vruntime
8207 * absolute on their old rq until wakeup (needed for the fair sleeper
8208 * bonus in place_entity()).
8209 *
8210 * If it was on the rq, we've just 'preempted' it, which does convert
8211 * ->vruntime to a relative base.
8212 *
8213 * Make sure both cases convert their relative position when migrating
8214 * to another cgroup's rq. This does somewhat interfere with the
8215 * fair sleeper stuff for the first placement, but who cares.
8216 */
8217 /*
8218 * When !queued, vruntime of the task has usually NOT been normalized.
8219 * But there are some cases where it has already been normalized:
8220 *
8221 * - Moving a forked child which is waiting for being woken up by
8222 * wake_up_new_task().
8223 * - Moving a task which has been woken up by try_to_wake_up() and
8224 * waiting for actually being woken up by sched_ttwu_pending().
8225 *
8226 * To prevent boost or penalty in the new cfs_rq caused by delta
8227 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8228 */
8229 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8230 queued = 1;
8231
8232 if (!queued)
8233 se->vruntime -= cfs_rq_of(se)->min_vruntime;
8234 set_task_rq(p, task_cpu(p));
8235 se->depth = se->parent ? se->parent->depth + 1 : 0;
8236 if (!queued) {
8237 cfs_rq = cfs_rq_of(se);
8238 se->vruntime += cfs_rq->min_vruntime;
8239 #ifdef CONFIG_SMP
8240 /*
8241 * migrate_task_rq_fair() will have removed our previous
8242 * contribution, but we must synchronize for ongoing future
8243 * decay.
8244 */
8245 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
8246 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
8247 #endif
8248 }
8249 }
8250
8251 void free_fair_sched_group(struct task_group *tg)
8252 {
8253 int i;
8254
8255 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8256
8257 for_each_possible_cpu(i) {
8258 if (tg->cfs_rq)
8259 kfree(tg->cfs_rq[i]);
8260 if (tg->se)
8261 kfree(tg->se[i]);
8262 }
8263
8264 kfree(tg->cfs_rq);
8265 kfree(tg->se);
8266 }
8267
8268 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8269 {
8270 struct cfs_rq *cfs_rq;
8271 struct sched_entity *se;
8272 int i;
8273
8274 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8275 if (!tg->cfs_rq)
8276 goto err;
8277 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8278 if (!tg->se)
8279 goto err;
8280
8281 tg->shares = NICE_0_LOAD;
8282
8283 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8284
8285 for_each_possible_cpu(i) {
8286 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8287 GFP_KERNEL, cpu_to_node(i));
8288 if (!cfs_rq)
8289 goto err;
8290
8291 se = kzalloc_node(sizeof(struct sched_entity),
8292 GFP_KERNEL, cpu_to_node(i));
8293 if (!se)
8294 goto err_free_rq;
8295
8296 init_cfs_rq(cfs_rq);
8297 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8298 }
8299
8300 return 1;
8301
8302 err_free_rq:
8303 kfree(cfs_rq);
8304 err:
8305 return 0;
8306 }
8307
8308 void unregister_fair_sched_group(struct task_group *tg, int cpu)
8309 {
8310 struct rq *rq = cpu_rq(cpu);
8311 unsigned long flags;
8312
8313 /*
8314 * Only empty task groups can be destroyed; so we can speculatively
8315 * check on_list without danger of it being re-added.
8316 */
8317 if (!tg->cfs_rq[cpu]->on_list)
8318 return;
8319
8320 raw_spin_lock_irqsave(&rq->lock, flags);
8321 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8322 raw_spin_unlock_irqrestore(&rq->lock, flags);
8323 }
8324
8325 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8326 struct sched_entity *se, int cpu,
8327 struct sched_entity *parent)
8328 {
8329 struct rq *rq = cpu_rq(cpu);
8330
8331 cfs_rq->tg = tg;
8332 cfs_rq->rq = rq;
8333 init_cfs_rq_runtime(cfs_rq);
8334
8335 tg->cfs_rq[cpu] = cfs_rq;
8336 tg->se[cpu] = se;
8337
8338 /* se could be NULL for root_task_group */
8339 if (!se)
8340 return;
8341
8342 if (!parent) {
8343 se->cfs_rq = &rq->cfs;
8344 se->depth = 0;
8345 } else {
8346 se->cfs_rq = parent->my_q;
8347 se->depth = parent->depth + 1;
8348 }
8349
8350 se->my_q = cfs_rq;
8351 /* guarantee group entities always have weight */
8352 update_load_set(&se->load, NICE_0_LOAD);
8353 se->parent = parent;
8354 }
8355
8356 static DEFINE_MUTEX(shares_mutex);
8357
8358 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8359 {
8360 int i;
8361 unsigned long flags;
8362
8363 /*
8364 * We can't change the weight of the root cgroup.
8365 */
8366 if (!tg->se[0])
8367 return -EINVAL;
8368
8369 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8370
8371 mutex_lock(&shares_mutex);
8372 if (tg->shares == shares)
8373 goto done;
8374
8375 tg->shares = shares;
8376 for_each_possible_cpu(i) {
8377 struct rq *rq = cpu_rq(i);
8378 struct sched_entity *se;
8379
8380 se = tg->se[i];
8381 /* Propagate contribution to hierarchy */
8382 raw_spin_lock_irqsave(&rq->lock, flags);
8383
8384 /* Possible calls to update_curr() need rq clock */
8385 update_rq_clock(rq);
8386 for_each_sched_entity(se)
8387 update_cfs_shares(group_cfs_rq(se));
8388 raw_spin_unlock_irqrestore(&rq->lock, flags);
8389 }
8390
8391 done:
8392 mutex_unlock(&shares_mutex);
8393 return 0;
8394 }
8395 #else /* CONFIG_FAIR_GROUP_SCHED */
8396
8397 void free_fair_sched_group(struct task_group *tg) { }
8398
8399 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8400 {
8401 return 1;
8402 }
8403
8404 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8405
8406 #endif /* CONFIG_FAIR_GROUP_SCHED */
8407
8408
8409 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8410 {
8411 struct sched_entity *se = &task->se;
8412 unsigned int rr_interval = 0;
8413
8414 /*
8415 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8416 * idle runqueue:
8417 */
8418 if (rq->cfs.load.weight)
8419 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8420
8421 return rr_interval;
8422 }
8423
8424 /*
8425 * All the scheduling class methods:
8426 */
8427 const struct sched_class fair_sched_class = {
8428 .next = &idle_sched_class,
8429 .enqueue_task = enqueue_task_fair,
8430 .dequeue_task = dequeue_task_fair,
8431 .yield_task = yield_task_fair,
8432 .yield_to_task = yield_to_task_fair,
8433
8434 .check_preempt_curr = check_preempt_wakeup,
8435
8436 .pick_next_task = pick_next_task_fair,
8437 .put_prev_task = put_prev_task_fair,
8438
8439 #ifdef CONFIG_SMP
8440 .select_task_rq = select_task_rq_fair,
8441 .migrate_task_rq = migrate_task_rq_fair,
8442
8443 .rq_online = rq_online_fair,
8444 .rq_offline = rq_offline_fair,
8445
8446 .task_waking = task_waking_fair,
8447 #endif
8448
8449 .set_curr_task = set_curr_task_fair,
8450 .task_tick = task_tick_fair,
8451 .task_fork = task_fork_fair,
8452
8453 .prio_changed = prio_changed_fair,
8454 .switched_from = switched_from_fair,
8455 .switched_to = switched_to_fair,
8456
8457 .get_rr_interval = get_rr_interval_fair,
8458
8459 .update_curr = update_curr_fair,
8460
8461 #ifdef CONFIG_FAIR_GROUP_SCHED
8462 .task_move_group = task_move_group_fair,
8463 #endif
8464 };
8465
8466 #ifdef CONFIG_SCHED_DEBUG
8467 void print_cfs_stats(struct seq_file *m, int cpu)
8468 {
8469 struct cfs_rq *cfs_rq;
8470
8471 rcu_read_lock();
8472 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8473 print_cfs_rq(m, cpu, cfs_rq);
8474 rcu_read_unlock();
8475 }
8476 #endif
8477
8478 __init void init_sched_fair_class(void)
8479 {
8480 #ifdef CONFIG_SMP
8481 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8482
8483 #ifdef CONFIG_NO_HZ_COMMON
8484 nohz.next_balance = jiffies;
8485 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8486 cpu_notifier(sched_ilb_notifier, 0);
8487 #endif
8488 #endif /* SMP */
8489
8490 }
This page took 0.215739 seconds and 5 git commands to generate.