sched/cputime: Fix clock_nanosleep()/clock_gettime() inconsistency
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33
34 #include <trace/events/sched.h>
35
36 #include "sched.h"
37
38 /*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53 /*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65 /*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72 /*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75 static unsigned int sched_nr_latency = 8;
76
77 /*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83 /*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96 /*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 lw->weight += inc;
120 lw->inv_weight = 0;
121 }
122
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127 }
128
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 lw->weight = w;
132 lw->inv_weight = 0;
133 }
134
135 /*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144 static int get_update_sysctl_factor(void)
145 {
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163 }
164
165 static void update_sysctl(void)
166 {
167 unsigned int factor = get_update_sysctl_factor();
168
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176
177 void sched_init_granularity(void)
178 {
179 update_sysctl();
180 }
181
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
184
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200 }
201
202 /*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238
239
240 const struct sched_class fair_sched_class;
241
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 return cfs_rq->rq;
252 }
253
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
256
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 return container_of(se, struct task_struct, se);
263 }
264
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 return p->se.cfs_rq;
272 }
273
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 return se->cfs_rq;
278 }
279
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 return grp->my_q;
284 }
285
286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
288
289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 {
291 if (!cfs_rq->on_list) {
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
305 }
306
307 cfs_rq->on_list = 1;
308 /* We should have no load, but we need to update last_decay. */
309 update_cfs_rq_blocked_load(cfs_rq, 0);
310 }
311 }
312
313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 {
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319 }
320
321 /* Iterate thr' all leaf cfs_rq's on a runqueue */
322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325 /* Do the two (enqueued) entities belong to the same group ? */
326 static inline struct cfs_rq *
327 is_same_group(struct sched_entity *se, struct sched_entity *pse)
328 {
329 if (se->cfs_rq == pse->cfs_rq)
330 return se->cfs_rq;
331
332 return NULL;
333 }
334
335 static inline struct sched_entity *parent_entity(struct sched_entity *se)
336 {
337 return se->parent;
338 }
339
340 static void
341 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342 {
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370 }
371
372 #else /* !CONFIG_FAIR_GROUP_SCHED */
373
374 static inline struct task_struct *task_of(struct sched_entity *se)
375 {
376 return container_of(se, struct task_struct, se);
377 }
378
379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380 {
381 return container_of(cfs_rq, struct rq, cfs);
382 }
383
384 #define entity_is_task(se) 1
385
386 #define for_each_sched_entity(se) \
387 for (; se; se = NULL)
388
389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390 {
391 return &task_rq(p)->cfs;
392 }
393
394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395 {
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400 }
401
402 /* runqueue "owned" by this group */
403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404 {
405 return NULL;
406 }
407
408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409 {
410 }
411
412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413 {
414 }
415
416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 {
421 return NULL;
422 }
423
424 static inline void
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426 {
427 }
428
429 #endif /* CONFIG_FAIR_GROUP_SCHED */
430
431 static __always_inline
432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433
434 /**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439 {
440 s64 delta = (s64)(vruntime - max_vruntime);
441 if (delta > 0)
442 max_vruntime = vruntime;
443
444 return max_vruntime;
445 }
446
447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
448 {
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454 }
455
456 static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458 {
459 return (s64)(a->vruntime - b->vruntime) < 0;
460 }
461
462 static void update_min_vruntime(struct cfs_rq *cfs_rq)
463 {
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
474 if (!cfs_rq->curr)
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
480 /* ensure we never gain time by being placed backwards. */
481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482 #ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485 #endif
486 }
487
488 /*
489 * Enqueue an entity into the rb-tree:
490 */
491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 {
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
508 if (entity_before(se, entry)) {
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
520 if (leftmost)
521 cfs_rq->rb_leftmost = &se->run_node;
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
525 }
526
527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 {
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
534 }
535
536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
537 }
538
539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540 {
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
547 }
548
549 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550 {
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557 }
558
559 #ifdef CONFIG_SCHED_DEBUG
560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561 {
562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563
564 if (!last)
565 return NULL;
566
567 return rb_entry(last, struct sched_entity, run_node);
568 }
569
570 /**************************************************************
571 * Scheduling class statistics methods:
572 */
573
574 int sched_proc_update_handler(struct ctl_table *table, int write,
575 void __user *buffer, size_t *lenp,
576 loff_t *ppos)
577 {
578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579 int factor = get_update_sysctl_factor();
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
587 #define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
592 #undef WRT_SYSCTL
593
594 return 0;
595 }
596 #endif
597
598 /*
599 * delta /= w
600 */
601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602 {
603 if (unlikely(se->load.weight != NICE_0_LOAD))
604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605
606 return delta;
607 }
608
609 /*
610 * The idea is to set a period in which each task runs once.
611 *
612 * When there are too many tasks (sched_nr_latency) we have to stretch
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
617 static u64 __sched_period(unsigned long nr_running)
618 {
619 u64 period = sysctl_sched_latency;
620 unsigned long nr_latency = sched_nr_latency;
621
622 if (unlikely(nr_running > nr_latency)) {
623 period = sysctl_sched_min_granularity;
624 period *= nr_running;
625 }
626
627 return period;
628 }
629
630 /*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
634 * s = p*P[w/rw]
635 */
636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637 {
638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639
640 for_each_sched_entity(se) {
641 struct load_weight *load;
642 struct load_weight lw;
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
646
647 if (unlikely(!se->on_rq)) {
648 lw = cfs_rq->load;
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
653 slice = __calc_delta(slice, se->load.weight, load);
654 }
655 return slice;
656 }
657
658 /*
659 * We calculate the vruntime slice of a to-be-inserted task.
660 *
661 * vs = s/w
662 */
663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664 {
665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 }
667
668 #ifdef CONFIG_SMP
669 static int select_idle_sibling(struct task_struct *p, int cpu);
670 static unsigned long task_h_load(struct task_struct *p);
671
672 static inline void __update_task_entity_contrib(struct sched_entity *se);
673
674 /* Give new task start runnable values to heavy its load in infant time */
675 void init_task_runnable_average(struct task_struct *p)
676 {
677 u32 slice;
678
679 p->se.avg.decay_count = 0;
680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 p->se.avg.runnable_avg_sum = slice;
682 p->se.avg.runnable_avg_period = slice;
683 __update_task_entity_contrib(&p->se);
684 }
685 #else
686 void init_task_runnable_average(struct task_struct *p)
687 {
688 }
689 #endif
690
691 /*
692 * Update the current task's runtime statistics.
693 */
694 static void update_curr(struct cfs_rq *cfs_rq)
695 {
696 struct sched_entity *curr = cfs_rq->curr;
697 u64 now = rq_clock_task(rq_of(cfs_rq));
698 u64 delta_exec;
699
700 if (unlikely(!curr))
701 return;
702
703 delta_exec = now - curr->exec_start;
704 if (unlikely((s64)delta_exec <= 0))
705 return;
706
707 curr->exec_start = now;
708
709 schedstat_set(curr->statistics.exec_max,
710 max(delta_exec, curr->statistics.exec_max));
711
712 curr->sum_exec_runtime += delta_exec;
713 schedstat_add(cfs_rq, exec_clock, delta_exec);
714
715 curr->vruntime += calc_delta_fair(delta_exec, curr);
716 update_min_vruntime(cfs_rq);
717
718 if (entity_is_task(curr)) {
719 struct task_struct *curtask = task_of(curr);
720
721 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
722 cpuacct_charge(curtask, delta_exec);
723 account_group_exec_runtime(curtask, delta_exec);
724 }
725
726 account_cfs_rq_runtime(cfs_rq, delta_exec);
727 }
728
729 static void update_curr_fair(struct rq *rq)
730 {
731 update_curr(cfs_rq_of(&rq->curr->se));
732 }
733
734 static inline void
735 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
736 {
737 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
738 }
739
740 /*
741 * Task is being enqueued - update stats:
742 */
743 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
744 {
745 /*
746 * Are we enqueueing a waiting task? (for current tasks
747 * a dequeue/enqueue event is a NOP)
748 */
749 if (se != cfs_rq->curr)
750 update_stats_wait_start(cfs_rq, se);
751 }
752
753 static void
754 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
755 {
756 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
758 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
759 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
760 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
761 #ifdef CONFIG_SCHEDSTATS
762 if (entity_is_task(se)) {
763 trace_sched_stat_wait(task_of(se),
764 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
765 }
766 #endif
767 schedstat_set(se->statistics.wait_start, 0);
768 }
769
770 static inline void
771 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
772 {
773 /*
774 * Mark the end of the wait period if dequeueing a
775 * waiting task:
776 */
777 if (se != cfs_rq->curr)
778 update_stats_wait_end(cfs_rq, se);
779 }
780
781 /*
782 * We are picking a new current task - update its stats:
783 */
784 static inline void
785 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
786 {
787 /*
788 * We are starting a new run period:
789 */
790 se->exec_start = rq_clock_task(rq_of(cfs_rq));
791 }
792
793 /**************************************************
794 * Scheduling class queueing methods:
795 */
796
797 #ifdef CONFIG_NUMA_BALANCING
798 /*
799 * Approximate time to scan a full NUMA task in ms. The task scan period is
800 * calculated based on the tasks virtual memory size and
801 * numa_balancing_scan_size.
802 */
803 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
804 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
805
806 /* Portion of address space to scan in MB */
807 unsigned int sysctl_numa_balancing_scan_size = 256;
808
809 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
810 unsigned int sysctl_numa_balancing_scan_delay = 1000;
811
812 static unsigned int task_nr_scan_windows(struct task_struct *p)
813 {
814 unsigned long rss = 0;
815 unsigned long nr_scan_pages;
816
817 /*
818 * Calculations based on RSS as non-present and empty pages are skipped
819 * by the PTE scanner and NUMA hinting faults should be trapped based
820 * on resident pages
821 */
822 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
823 rss = get_mm_rss(p->mm);
824 if (!rss)
825 rss = nr_scan_pages;
826
827 rss = round_up(rss, nr_scan_pages);
828 return rss / nr_scan_pages;
829 }
830
831 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
832 #define MAX_SCAN_WINDOW 2560
833
834 static unsigned int task_scan_min(struct task_struct *p)
835 {
836 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
837 unsigned int scan, floor;
838 unsigned int windows = 1;
839
840 if (scan_size < MAX_SCAN_WINDOW)
841 windows = MAX_SCAN_WINDOW / scan_size;
842 floor = 1000 / windows;
843
844 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
845 return max_t(unsigned int, floor, scan);
846 }
847
848 static unsigned int task_scan_max(struct task_struct *p)
849 {
850 unsigned int smin = task_scan_min(p);
851 unsigned int smax;
852
853 /* Watch for min being lower than max due to floor calculations */
854 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
855 return max(smin, smax);
856 }
857
858 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
859 {
860 rq->nr_numa_running += (p->numa_preferred_nid != -1);
861 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
862 }
863
864 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
865 {
866 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
867 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
868 }
869
870 struct numa_group {
871 atomic_t refcount;
872
873 spinlock_t lock; /* nr_tasks, tasks */
874 int nr_tasks;
875 pid_t gid;
876 struct list_head task_list;
877
878 struct rcu_head rcu;
879 nodemask_t active_nodes;
880 unsigned long total_faults;
881 /*
882 * Faults_cpu is used to decide whether memory should move
883 * towards the CPU. As a consequence, these stats are weighted
884 * more by CPU use than by memory faults.
885 */
886 unsigned long *faults_cpu;
887 unsigned long faults[0];
888 };
889
890 /* Shared or private faults. */
891 #define NR_NUMA_HINT_FAULT_TYPES 2
892
893 /* Memory and CPU locality */
894 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
895
896 /* Averaged statistics, and temporary buffers. */
897 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
898
899 pid_t task_numa_group_id(struct task_struct *p)
900 {
901 return p->numa_group ? p->numa_group->gid : 0;
902 }
903
904 static inline int task_faults_idx(int nid, int priv)
905 {
906 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
907 }
908
909 static inline unsigned long task_faults(struct task_struct *p, int nid)
910 {
911 if (!p->numa_faults_memory)
912 return 0;
913
914 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
915 p->numa_faults_memory[task_faults_idx(nid, 1)];
916 }
917
918 static inline unsigned long group_faults(struct task_struct *p, int nid)
919 {
920 if (!p->numa_group)
921 return 0;
922
923 return p->numa_group->faults[task_faults_idx(nid, 0)] +
924 p->numa_group->faults[task_faults_idx(nid, 1)];
925 }
926
927 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
928 {
929 return group->faults_cpu[task_faults_idx(nid, 0)] +
930 group->faults_cpu[task_faults_idx(nid, 1)];
931 }
932
933 /*
934 * These return the fraction of accesses done by a particular task, or
935 * task group, on a particular numa node. The group weight is given a
936 * larger multiplier, in order to group tasks together that are almost
937 * evenly spread out between numa nodes.
938 */
939 static inline unsigned long task_weight(struct task_struct *p, int nid)
940 {
941 unsigned long total_faults;
942
943 if (!p->numa_faults_memory)
944 return 0;
945
946 total_faults = p->total_numa_faults;
947
948 if (!total_faults)
949 return 0;
950
951 return 1000 * task_faults(p, nid) / total_faults;
952 }
953
954 static inline unsigned long group_weight(struct task_struct *p, int nid)
955 {
956 if (!p->numa_group || !p->numa_group->total_faults)
957 return 0;
958
959 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
960 }
961
962 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
963 int src_nid, int dst_cpu)
964 {
965 struct numa_group *ng = p->numa_group;
966 int dst_nid = cpu_to_node(dst_cpu);
967 int last_cpupid, this_cpupid;
968
969 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
970
971 /*
972 * Multi-stage node selection is used in conjunction with a periodic
973 * migration fault to build a temporal task<->page relation. By using
974 * a two-stage filter we remove short/unlikely relations.
975 *
976 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
977 * a task's usage of a particular page (n_p) per total usage of this
978 * page (n_t) (in a given time-span) to a probability.
979 *
980 * Our periodic faults will sample this probability and getting the
981 * same result twice in a row, given these samples are fully
982 * independent, is then given by P(n)^2, provided our sample period
983 * is sufficiently short compared to the usage pattern.
984 *
985 * This quadric squishes small probabilities, making it less likely we
986 * act on an unlikely task<->page relation.
987 */
988 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
989 if (!cpupid_pid_unset(last_cpupid) &&
990 cpupid_to_nid(last_cpupid) != dst_nid)
991 return false;
992
993 /* Always allow migrate on private faults */
994 if (cpupid_match_pid(p, last_cpupid))
995 return true;
996
997 /* A shared fault, but p->numa_group has not been set up yet. */
998 if (!ng)
999 return true;
1000
1001 /*
1002 * Do not migrate if the destination is not a node that
1003 * is actively used by this numa group.
1004 */
1005 if (!node_isset(dst_nid, ng->active_nodes))
1006 return false;
1007
1008 /*
1009 * Source is a node that is not actively used by this
1010 * numa group, while the destination is. Migrate.
1011 */
1012 if (!node_isset(src_nid, ng->active_nodes))
1013 return true;
1014
1015 /*
1016 * Both source and destination are nodes in active
1017 * use by this numa group. Maximize memory bandwidth
1018 * by migrating from more heavily used groups, to less
1019 * heavily used ones, spreading the load around.
1020 * Use a 1/4 hysteresis to avoid spurious page movement.
1021 */
1022 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1023 }
1024
1025 static unsigned long weighted_cpuload(const int cpu);
1026 static unsigned long source_load(int cpu, int type);
1027 static unsigned long target_load(int cpu, int type);
1028 static unsigned long capacity_of(int cpu);
1029 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1030
1031 /* Cached statistics for all CPUs within a node */
1032 struct numa_stats {
1033 unsigned long nr_running;
1034 unsigned long load;
1035
1036 /* Total compute capacity of CPUs on a node */
1037 unsigned long compute_capacity;
1038
1039 /* Approximate capacity in terms of runnable tasks on a node */
1040 unsigned long task_capacity;
1041 int has_free_capacity;
1042 };
1043
1044 /*
1045 * XXX borrowed from update_sg_lb_stats
1046 */
1047 static void update_numa_stats(struct numa_stats *ns, int nid)
1048 {
1049 int smt, cpu, cpus = 0;
1050 unsigned long capacity;
1051
1052 memset(ns, 0, sizeof(*ns));
1053 for_each_cpu(cpu, cpumask_of_node(nid)) {
1054 struct rq *rq = cpu_rq(cpu);
1055
1056 ns->nr_running += rq->nr_running;
1057 ns->load += weighted_cpuload(cpu);
1058 ns->compute_capacity += capacity_of(cpu);
1059
1060 cpus++;
1061 }
1062
1063 /*
1064 * If we raced with hotplug and there are no CPUs left in our mask
1065 * the @ns structure is NULL'ed and task_numa_compare() will
1066 * not find this node attractive.
1067 *
1068 * We'll either bail at !has_free_capacity, or we'll detect a huge
1069 * imbalance and bail there.
1070 */
1071 if (!cpus)
1072 return;
1073
1074 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1075 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1076 capacity = cpus / smt; /* cores */
1077
1078 ns->task_capacity = min_t(unsigned, capacity,
1079 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1080 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1081 }
1082
1083 struct task_numa_env {
1084 struct task_struct *p;
1085
1086 int src_cpu, src_nid;
1087 int dst_cpu, dst_nid;
1088
1089 struct numa_stats src_stats, dst_stats;
1090
1091 int imbalance_pct;
1092
1093 struct task_struct *best_task;
1094 long best_imp;
1095 int best_cpu;
1096 };
1097
1098 static void task_numa_assign(struct task_numa_env *env,
1099 struct task_struct *p, long imp)
1100 {
1101 if (env->best_task)
1102 put_task_struct(env->best_task);
1103 if (p)
1104 get_task_struct(p);
1105
1106 env->best_task = p;
1107 env->best_imp = imp;
1108 env->best_cpu = env->dst_cpu;
1109 }
1110
1111 static bool load_too_imbalanced(long src_load, long dst_load,
1112 struct task_numa_env *env)
1113 {
1114 long imb, old_imb;
1115 long orig_src_load, orig_dst_load;
1116 long src_capacity, dst_capacity;
1117
1118 /*
1119 * The load is corrected for the CPU capacity available on each node.
1120 *
1121 * src_load dst_load
1122 * ------------ vs ---------
1123 * src_capacity dst_capacity
1124 */
1125 src_capacity = env->src_stats.compute_capacity;
1126 dst_capacity = env->dst_stats.compute_capacity;
1127
1128 /* We care about the slope of the imbalance, not the direction. */
1129 if (dst_load < src_load)
1130 swap(dst_load, src_load);
1131
1132 /* Is the difference below the threshold? */
1133 imb = dst_load * src_capacity * 100 -
1134 src_load * dst_capacity * env->imbalance_pct;
1135 if (imb <= 0)
1136 return false;
1137
1138 /*
1139 * The imbalance is above the allowed threshold.
1140 * Compare it with the old imbalance.
1141 */
1142 orig_src_load = env->src_stats.load;
1143 orig_dst_load = env->dst_stats.load;
1144
1145 if (orig_dst_load < orig_src_load)
1146 swap(orig_dst_load, orig_src_load);
1147
1148 old_imb = orig_dst_load * src_capacity * 100 -
1149 orig_src_load * dst_capacity * env->imbalance_pct;
1150
1151 /* Would this change make things worse? */
1152 return (imb > old_imb);
1153 }
1154
1155 /*
1156 * This checks if the overall compute and NUMA accesses of the system would
1157 * be improved if the source tasks was migrated to the target dst_cpu taking
1158 * into account that it might be best if task running on the dst_cpu should
1159 * be exchanged with the source task
1160 */
1161 static void task_numa_compare(struct task_numa_env *env,
1162 long taskimp, long groupimp)
1163 {
1164 struct rq *src_rq = cpu_rq(env->src_cpu);
1165 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1166 struct task_struct *cur;
1167 long src_load, dst_load;
1168 long load;
1169 long imp = env->p->numa_group ? groupimp : taskimp;
1170 long moveimp = imp;
1171
1172 rcu_read_lock();
1173
1174 raw_spin_lock_irq(&dst_rq->lock);
1175 cur = dst_rq->curr;
1176 /*
1177 * No need to move the exiting task, and this ensures that ->curr
1178 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1179 * is safe under RCU read lock.
1180 * Note that rcu_read_lock() itself can't protect from the final
1181 * put_task_struct() after the last schedule().
1182 */
1183 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1184 cur = NULL;
1185 raw_spin_unlock_irq(&dst_rq->lock);
1186
1187 /*
1188 * Because we have preemption enabled we can get migrated around and
1189 * end try selecting ourselves (current == env->p) as a swap candidate.
1190 */
1191 if (cur == env->p)
1192 goto unlock;
1193
1194 /*
1195 * "imp" is the fault differential for the source task between the
1196 * source and destination node. Calculate the total differential for
1197 * the source task and potential destination task. The more negative
1198 * the value is, the more rmeote accesses that would be expected to
1199 * be incurred if the tasks were swapped.
1200 */
1201 if (cur) {
1202 /* Skip this swap candidate if cannot move to the source cpu */
1203 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1204 goto unlock;
1205
1206 /*
1207 * If dst and source tasks are in the same NUMA group, or not
1208 * in any group then look only at task weights.
1209 */
1210 if (cur->numa_group == env->p->numa_group) {
1211 imp = taskimp + task_weight(cur, env->src_nid) -
1212 task_weight(cur, env->dst_nid);
1213 /*
1214 * Add some hysteresis to prevent swapping the
1215 * tasks within a group over tiny differences.
1216 */
1217 if (cur->numa_group)
1218 imp -= imp/16;
1219 } else {
1220 /*
1221 * Compare the group weights. If a task is all by
1222 * itself (not part of a group), use the task weight
1223 * instead.
1224 */
1225 if (cur->numa_group)
1226 imp += group_weight(cur, env->src_nid) -
1227 group_weight(cur, env->dst_nid);
1228 else
1229 imp += task_weight(cur, env->src_nid) -
1230 task_weight(cur, env->dst_nid);
1231 }
1232 }
1233
1234 if (imp <= env->best_imp && moveimp <= env->best_imp)
1235 goto unlock;
1236
1237 if (!cur) {
1238 /* Is there capacity at our destination? */
1239 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1240 !env->dst_stats.has_free_capacity)
1241 goto unlock;
1242
1243 goto balance;
1244 }
1245
1246 /* Balance doesn't matter much if we're running a task per cpu */
1247 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1248 dst_rq->nr_running == 1)
1249 goto assign;
1250
1251 /*
1252 * In the overloaded case, try and keep the load balanced.
1253 */
1254 balance:
1255 load = task_h_load(env->p);
1256 dst_load = env->dst_stats.load + load;
1257 src_load = env->src_stats.load - load;
1258
1259 if (moveimp > imp && moveimp > env->best_imp) {
1260 /*
1261 * If the improvement from just moving env->p direction is
1262 * better than swapping tasks around, check if a move is
1263 * possible. Store a slightly smaller score than moveimp,
1264 * so an actually idle CPU will win.
1265 */
1266 if (!load_too_imbalanced(src_load, dst_load, env)) {
1267 imp = moveimp - 1;
1268 cur = NULL;
1269 goto assign;
1270 }
1271 }
1272
1273 if (imp <= env->best_imp)
1274 goto unlock;
1275
1276 if (cur) {
1277 load = task_h_load(cur);
1278 dst_load -= load;
1279 src_load += load;
1280 }
1281
1282 if (load_too_imbalanced(src_load, dst_load, env))
1283 goto unlock;
1284
1285 /*
1286 * One idle CPU per node is evaluated for a task numa move.
1287 * Call select_idle_sibling to maybe find a better one.
1288 */
1289 if (!cur)
1290 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1291
1292 assign:
1293 task_numa_assign(env, cur, imp);
1294 unlock:
1295 rcu_read_unlock();
1296 }
1297
1298 static void task_numa_find_cpu(struct task_numa_env *env,
1299 long taskimp, long groupimp)
1300 {
1301 int cpu;
1302
1303 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1304 /* Skip this CPU if the source task cannot migrate */
1305 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1306 continue;
1307
1308 env->dst_cpu = cpu;
1309 task_numa_compare(env, taskimp, groupimp);
1310 }
1311 }
1312
1313 static int task_numa_migrate(struct task_struct *p)
1314 {
1315 struct task_numa_env env = {
1316 .p = p,
1317
1318 .src_cpu = task_cpu(p),
1319 .src_nid = task_node(p),
1320
1321 .imbalance_pct = 112,
1322
1323 .best_task = NULL,
1324 .best_imp = 0,
1325 .best_cpu = -1
1326 };
1327 struct sched_domain *sd;
1328 unsigned long taskweight, groupweight;
1329 int nid, ret;
1330 long taskimp, groupimp;
1331
1332 /*
1333 * Pick the lowest SD_NUMA domain, as that would have the smallest
1334 * imbalance and would be the first to start moving tasks about.
1335 *
1336 * And we want to avoid any moving of tasks about, as that would create
1337 * random movement of tasks -- counter the numa conditions we're trying
1338 * to satisfy here.
1339 */
1340 rcu_read_lock();
1341 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1342 if (sd)
1343 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1344 rcu_read_unlock();
1345
1346 /*
1347 * Cpusets can break the scheduler domain tree into smaller
1348 * balance domains, some of which do not cross NUMA boundaries.
1349 * Tasks that are "trapped" in such domains cannot be migrated
1350 * elsewhere, so there is no point in (re)trying.
1351 */
1352 if (unlikely(!sd)) {
1353 p->numa_preferred_nid = task_node(p);
1354 return -EINVAL;
1355 }
1356
1357 taskweight = task_weight(p, env.src_nid);
1358 groupweight = group_weight(p, env.src_nid);
1359 update_numa_stats(&env.src_stats, env.src_nid);
1360 env.dst_nid = p->numa_preferred_nid;
1361 taskimp = task_weight(p, env.dst_nid) - taskweight;
1362 groupimp = group_weight(p, env.dst_nid) - groupweight;
1363 update_numa_stats(&env.dst_stats, env.dst_nid);
1364
1365 /* Try to find a spot on the preferred nid. */
1366 task_numa_find_cpu(&env, taskimp, groupimp);
1367
1368 /* No space available on the preferred nid. Look elsewhere. */
1369 if (env.best_cpu == -1) {
1370 for_each_online_node(nid) {
1371 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1372 continue;
1373
1374 /* Only consider nodes where both task and groups benefit */
1375 taskimp = task_weight(p, nid) - taskweight;
1376 groupimp = group_weight(p, nid) - groupweight;
1377 if (taskimp < 0 && groupimp < 0)
1378 continue;
1379
1380 env.dst_nid = nid;
1381 update_numa_stats(&env.dst_stats, env.dst_nid);
1382 task_numa_find_cpu(&env, taskimp, groupimp);
1383 }
1384 }
1385
1386 /*
1387 * If the task is part of a workload that spans multiple NUMA nodes,
1388 * and is migrating into one of the workload's active nodes, remember
1389 * this node as the task's preferred numa node, so the workload can
1390 * settle down.
1391 * A task that migrated to a second choice node will be better off
1392 * trying for a better one later. Do not set the preferred node here.
1393 */
1394 if (p->numa_group) {
1395 if (env.best_cpu == -1)
1396 nid = env.src_nid;
1397 else
1398 nid = env.dst_nid;
1399
1400 if (node_isset(nid, p->numa_group->active_nodes))
1401 sched_setnuma(p, env.dst_nid);
1402 }
1403
1404 /* No better CPU than the current one was found. */
1405 if (env.best_cpu == -1)
1406 return -EAGAIN;
1407
1408 /*
1409 * Reset the scan period if the task is being rescheduled on an
1410 * alternative node to recheck if the tasks is now properly placed.
1411 */
1412 p->numa_scan_period = task_scan_min(p);
1413
1414 if (env.best_task == NULL) {
1415 ret = migrate_task_to(p, env.best_cpu);
1416 if (ret != 0)
1417 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1418 return ret;
1419 }
1420
1421 ret = migrate_swap(p, env.best_task);
1422 if (ret != 0)
1423 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1424 put_task_struct(env.best_task);
1425 return ret;
1426 }
1427
1428 /* Attempt to migrate a task to a CPU on the preferred node. */
1429 static void numa_migrate_preferred(struct task_struct *p)
1430 {
1431 unsigned long interval = HZ;
1432
1433 /* This task has no NUMA fault statistics yet */
1434 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1435 return;
1436
1437 /* Periodically retry migrating the task to the preferred node */
1438 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1439 p->numa_migrate_retry = jiffies + interval;
1440
1441 /* Success if task is already running on preferred CPU */
1442 if (task_node(p) == p->numa_preferred_nid)
1443 return;
1444
1445 /* Otherwise, try migrate to a CPU on the preferred node */
1446 task_numa_migrate(p);
1447 }
1448
1449 /*
1450 * Find the nodes on which the workload is actively running. We do this by
1451 * tracking the nodes from which NUMA hinting faults are triggered. This can
1452 * be different from the set of nodes where the workload's memory is currently
1453 * located.
1454 *
1455 * The bitmask is used to make smarter decisions on when to do NUMA page
1456 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1457 * are added when they cause over 6/16 of the maximum number of faults, but
1458 * only removed when they drop below 3/16.
1459 */
1460 static void update_numa_active_node_mask(struct numa_group *numa_group)
1461 {
1462 unsigned long faults, max_faults = 0;
1463 int nid;
1464
1465 for_each_online_node(nid) {
1466 faults = group_faults_cpu(numa_group, nid);
1467 if (faults > max_faults)
1468 max_faults = faults;
1469 }
1470
1471 for_each_online_node(nid) {
1472 faults = group_faults_cpu(numa_group, nid);
1473 if (!node_isset(nid, numa_group->active_nodes)) {
1474 if (faults > max_faults * 6 / 16)
1475 node_set(nid, numa_group->active_nodes);
1476 } else if (faults < max_faults * 3 / 16)
1477 node_clear(nid, numa_group->active_nodes);
1478 }
1479 }
1480
1481 /*
1482 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1483 * increments. The more local the fault statistics are, the higher the scan
1484 * period will be for the next scan window. If local/(local+remote) ratio is
1485 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1486 * the scan period will decrease. Aim for 70% local accesses.
1487 */
1488 #define NUMA_PERIOD_SLOTS 10
1489 #define NUMA_PERIOD_THRESHOLD 7
1490
1491 /*
1492 * Increase the scan period (slow down scanning) if the majority of
1493 * our memory is already on our local node, or if the majority of
1494 * the page accesses are shared with other processes.
1495 * Otherwise, decrease the scan period.
1496 */
1497 static void update_task_scan_period(struct task_struct *p,
1498 unsigned long shared, unsigned long private)
1499 {
1500 unsigned int period_slot;
1501 int ratio;
1502 int diff;
1503
1504 unsigned long remote = p->numa_faults_locality[0];
1505 unsigned long local = p->numa_faults_locality[1];
1506
1507 /*
1508 * If there were no record hinting faults then either the task is
1509 * completely idle or all activity is areas that are not of interest
1510 * to automatic numa balancing. Scan slower
1511 */
1512 if (local + shared == 0) {
1513 p->numa_scan_period = min(p->numa_scan_period_max,
1514 p->numa_scan_period << 1);
1515
1516 p->mm->numa_next_scan = jiffies +
1517 msecs_to_jiffies(p->numa_scan_period);
1518
1519 return;
1520 }
1521
1522 /*
1523 * Prepare to scale scan period relative to the current period.
1524 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1525 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1526 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1527 */
1528 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1529 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1530 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1531 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1532 if (!slot)
1533 slot = 1;
1534 diff = slot * period_slot;
1535 } else {
1536 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1537
1538 /*
1539 * Scale scan rate increases based on sharing. There is an
1540 * inverse relationship between the degree of sharing and
1541 * the adjustment made to the scanning period. Broadly
1542 * speaking the intent is that there is little point
1543 * scanning faster if shared accesses dominate as it may
1544 * simply bounce migrations uselessly
1545 */
1546 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1547 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1548 }
1549
1550 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1551 task_scan_min(p), task_scan_max(p));
1552 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1553 }
1554
1555 /*
1556 * Get the fraction of time the task has been running since the last
1557 * NUMA placement cycle. The scheduler keeps similar statistics, but
1558 * decays those on a 32ms period, which is orders of magnitude off
1559 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1560 * stats only if the task is so new there are no NUMA statistics yet.
1561 */
1562 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1563 {
1564 u64 runtime, delta, now;
1565 /* Use the start of this time slice to avoid calculations. */
1566 now = p->se.exec_start;
1567 runtime = p->se.sum_exec_runtime;
1568
1569 if (p->last_task_numa_placement) {
1570 delta = runtime - p->last_sum_exec_runtime;
1571 *period = now - p->last_task_numa_placement;
1572 } else {
1573 delta = p->se.avg.runnable_avg_sum;
1574 *period = p->se.avg.runnable_avg_period;
1575 }
1576
1577 p->last_sum_exec_runtime = runtime;
1578 p->last_task_numa_placement = now;
1579
1580 return delta;
1581 }
1582
1583 static void task_numa_placement(struct task_struct *p)
1584 {
1585 int seq, nid, max_nid = -1, max_group_nid = -1;
1586 unsigned long max_faults = 0, max_group_faults = 0;
1587 unsigned long fault_types[2] = { 0, 0 };
1588 unsigned long total_faults;
1589 u64 runtime, period;
1590 spinlock_t *group_lock = NULL;
1591
1592 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1593 if (p->numa_scan_seq == seq)
1594 return;
1595 p->numa_scan_seq = seq;
1596 p->numa_scan_period_max = task_scan_max(p);
1597
1598 total_faults = p->numa_faults_locality[0] +
1599 p->numa_faults_locality[1];
1600 runtime = numa_get_avg_runtime(p, &period);
1601
1602 /* If the task is part of a group prevent parallel updates to group stats */
1603 if (p->numa_group) {
1604 group_lock = &p->numa_group->lock;
1605 spin_lock_irq(group_lock);
1606 }
1607
1608 /* Find the node with the highest number of faults */
1609 for_each_online_node(nid) {
1610 unsigned long faults = 0, group_faults = 0;
1611 int priv, i;
1612
1613 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1614 long diff, f_diff, f_weight;
1615
1616 i = task_faults_idx(nid, priv);
1617
1618 /* Decay existing window, copy faults since last scan */
1619 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1620 fault_types[priv] += p->numa_faults_buffer_memory[i];
1621 p->numa_faults_buffer_memory[i] = 0;
1622
1623 /*
1624 * Normalize the faults_from, so all tasks in a group
1625 * count according to CPU use, instead of by the raw
1626 * number of faults. Tasks with little runtime have
1627 * little over-all impact on throughput, and thus their
1628 * faults are less important.
1629 */
1630 f_weight = div64_u64(runtime << 16, period + 1);
1631 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1632 (total_faults + 1);
1633 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1634 p->numa_faults_buffer_cpu[i] = 0;
1635
1636 p->numa_faults_memory[i] += diff;
1637 p->numa_faults_cpu[i] += f_diff;
1638 faults += p->numa_faults_memory[i];
1639 p->total_numa_faults += diff;
1640 if (p->numa_group) {
1641 /* safe because we can only change our own group */
1642 p->numa_group->faults[i] += diff;
1643 p->numa_group->faults_cpu[i] += f_diff;
1644 p->numa_group->total_faults += diff;
1645 group_faults += p->numa_group->faults[i];
1646 }
1647 }
1648
1649 if (faults > max_faults) {
1650 max_faults = faults;
1651 max_nid = nid;
1652 }
1653
1654 if (group_faults > max_group_faults) {
1655 max_group_faults = group_faults;
1656 max_group_nid = nid;
1657 }
1658 }
1659
1660 update_task_scan_period(p, fault_types[0], fault_types[1]);
1661
1662 if (p->numa_group) {
1663 update_numa_active_node_mask(p->numa_group);
1664 spin_unlock_irq(group_lock);
1665 max_nid = max_group_nid;
1666 }
1667
1668 if (max_faults) {
1669 /* Set the new preferred node */
1670 if (max_nid != p->numa_preferred_nid)
1671 sched_setnuma(p, max_nid);
1672
1673 if (task_node(p) != p->numa_preferred_nid)
1674 numa_migrate_preferred(p);
1675 }
1676 }
1677
1678 static inline int get_numa_group(struct numa_group *grp)
1679 {
1680 return atomic_inc_not_zero(&grp->refcount);
1681 }
1682
1683 static inline void put_numa_group(struct numa_group *grp)
1684 {
1685 if (atomic_dec_and_test(&grp->refcount))
1686 kfree_rcu(grp, rcu);
1687 }
1688
1689 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1690 int *priv)
1691 {
1692 struct numa_group *grp, *my_grp;
1693 struct task_struct *tsk;
1694 bool join = false;
1695 int cpu = cpupid_to_cpu(cpupid);
1696 int i;
1697
1698 if (unlikely(!p->numa_group)) {
1699 unsigned int size = sizeof(struct numa_group) +
1700 4*nr_node_ids*sizeof(unsigned long);
1701
1702 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1703 if (!grp)
1704 return;
1705
1706 atomic_set(&grp->refcount, 1);
1707 spin_lock_init(&grp->lock);
1708 INIT_LIST_HEAD(&grp->task_list);
1709 grp->gid = p->pid;
1710 /* Second half of the array tracks nids where faults happen */
1711 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1712 nr_node_ids;
1713
1714 node_set(task_node(current), grp->active_nodes);
1715
1716 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1717 grp->faults[i] = p->numa_faults_memory[i];
1718
1719 grp->total_faults = p->total_numa_faults;
1720
1721 list_add(&p->numa_entry, &grp->task_list);
1722 grp->nr_tasks++;
1723 rcu_assign_pointer(p->numa_group, grp);
1724 }
1725
1726 rcu_read_lock();
1727 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1728
1729 if (!cpupid_match_pid(tsk, cpupid))
1730 goto no_join;
1731
1732 grp = rcu_dereference(tsk->numa_group);
1733 if (!grp)
1734 goto no_join;
1735
1736 my_grp = p->numa_group;
1737 if (grp == my_grp)
1738 goto no_join;
1739
1740 /*
1741 * Only join the other group if its bigger; if we're the bigger group,
1742 * the other task will join us.
1743 */
1744 if (my_grp->nr_tasks > grp->nr_tasks)
1745 goto no_join;
1746
1747 /*
1748 * Tie-break on the grp address.
1749 */
1750 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1751 goto no_join;
1752
1753 /* Always join threads in the same process. */
1754 if (tsk->mm == current->mm)
1755 join = true;
1756
1757 /* Simple filter to avoid false positives due to PID collisions */
1758 if (flags & TNF_SHARED)
1759 join = true;
1760
1761 /* Update priv based on whether false sharing was detected */
1762 *priv = !join;
1763
1764 if (join && !get_numa_group(grp))
1765 goto no_join;
1766
1767 rcu_read_unlock();
1768
1769 if (!join)
1770 return;
1771
1772 BUG_ON(irqs_disabled());
1773 double_lock_irq(&my_grp->lock, &grp->lock);
1774
1775 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1776 my_grp->faults[i] -= p->numa_faults_memory[i];
1777 grp->faults[i] += p->numa_faults_memory[i];
1778 }
1779 my_grp->total_faults -= p->total_numa_faults;
1780 grp->total_faults += p->total_numa_faults;
1781
1782 list_move(&p->numa_entry, &grp->task_list);
1783 my_grp->nr_tasks--;
1784 grp->nr_tasks++;
1785
1786 spin_unlock(&my_grp->lock);
1787 spin_unlock_irq(&grp->lock);
1788
1789 rcu_assign_pointer(p->numa_group, grp);
1790
1791 put_numa_group(my_grp);
1792 return;
1793
1794 no_join:
1795 rcu_read_unlock();
1796 return;
1797 }
1798
1799 void task_numa_free(struct task_struct *p)
1800 {
1801 struct numa_group *grp = p->numa_group;
1802 void *numa_faults = p->numa_faults_memory;
1803 unsigned long flags;
1804 int i;
1805
1806 if (grp) {
1807 spin_lock_irqsave(&grp->lock, flags);
1808 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1809 grp->faults[i] -= p->numa_faults_memory[i];
1810 grp->total_faults -= p->total_numa_faults;
1811
1812 list_del(&p->numa_entry);
1813 grp->nr_tasks--;
1814 spin_unlock_irqrestore(&grp->lock, flags);
1815 RCU_INIT_POINTER(p->numa_group, NULL);
1816 put_numa_group(grp);
1817 }
1818
1819 p->numa_faults_memory = NULL;
1820 p->numa_faults_buffer_memory = NULL;
1821 p->numa_faults_cpu= NULL;
1822 p->numa_faults_buffer_cpu = NULL;
1823 kfree(numa_faults);
1824 }
1825
1826 /*
1827 * Got a PROT_NONE fault for a page on @node.
1828 */
1829 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1830 {
1831 struct task_struct *p = current;
1832 bool migrated = flags & TNF_MIGRATED;
1833 int cpu_node = task_node(current);
1834 int local = !!(flags & TNF_FAULT_LOCAL);
1835 int priv;
1836
1837 if (!numabalancing_enabled)
1838 return;
1839
1840 /* for example, ksmd faulting in a user's mm */
1841 if (!p->mm)
1842 return;
1843
1844 /* Allocate buffer to track faults on a per-node basis */
1845 if (unlikely(!p->numa_faults_memory)) {
1846 int size = sizeof(*p->numa_faults_memory) *
1847 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1848
1849 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1850 if (!p->numa_faults_memory)
1851 return;
1852
1853 BUG_ON(p->numa_faults_buffer_memory);
1854 /*
1855 * The averaged statistics, shared & private, memory & cpu,
1856 * occupy the first half of the array. The second half of the
1857 * array is for current counters, which are averaged into the
1858 * first set by task_numa_placement.
1859 */
1860 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1861 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1862 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1863 p->total_numa_faults = 0;
1864 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1865 }
1866
1867 /*
1868 * First accesses are treated as private, otherwise consider accesses
1869 * to be private if the accessing pid has not changed
1870 */
1871 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1872 priv = 1;
1873 } else {
1874 priv = cpupid_match_pid(p, last_cpupid);
1875 if (!priv && !(flags & TNF_NO_GROUP))
1876 task_numa_group(p, last_cpupid, flags, &priv);
1877 }
1878
1879 /*
1880 * If a workload spans multiple NUMA nodes, a shared fault that
1881 * occurs wholly within the set of nodes that the workload is
1882 * actively using should be counted as local. This allows the
1883 * scan rate to slow down when a workload has settled down.
1884 */
1885 if (!priv && !local && p->numa_group &&
1886 node_isset(cpu_node, p->numa_group->active_nodes) &&
1887 node_isset(mem_node, p->numa_group->active_nodes))
1888 local = 1;
1889
1890 task_numa_placement(p);
1891
1892 /*
1893 * Retry task to preferred node migration periodically, in case it
1894 * case it previously failed, or the scheduler moved us.
1895 */
1896 if (time_after(jiffies, p->numa_migrate_retry))
1897 numa_migrate_preferred(p);
1898
1899 if (migrated)
1900 p->numa_pages_migrated += pages;
1901
1902 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1903 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1904 p->numa_faults_locality[local] += pages;
1905 }
1906
1907 static void reset_ptenuma_scan(struct task_struct *p)
1908 {
1909 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1910 p->mm->numa_scan_offset = 0;
1911 }
1912
1913 /*
1914 * The expensive part of numa migration is done from task_work context.
1915 * Triggered from task_tick_numa().
1916 */
1917 void task_numa_work(struct callback_head *work)
1918 {
1919 unsigned long migrate, next_scan, now = jiffies;
1920 struct task_struct *p = current;
1921 struct mm_struct *mm = p->mm;
1922 struct vm_area_struct *vma;
1923 unsigned long start, end;
1924 unsigned long nr_pte_updates = 0;
1925 long pages;
1926
1927 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1928
1929 work->next = work; /* protect against double add */
1930 /*
1931 * Who cares about NUMA placement when they're dying.
1932 *
1933 * NOTE: make sure not to dereference p->mm before this check,
1934 * exit_task_work() happens _after_ exit_mm() so we could be called
1935 * without p->mm even though we still had it when we enqueued this
1936 * work.
1937 */
1938 if (p->flags & PF_EXITING)
1939 return;
1940
1941 if (!mm->numa_next_scan) {
1942 mm->numa_next_scan = now +
1943 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1944 }
1945
1946 /*
1947 * Enforce maximal scan/migration frequency..
1948 */
1949 migrate = mm->numa_next_scan;
1950 if (time_before(now, migrate))
1951 return;
1952
1953 if (p->numa_scan_period == 0) {
1954 p->numa_scan_period_max = task_scan_max(p);
1955 p->numa_scan_period = task_scan_min(p);
1956 }
1957
1958 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1959 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1960 return;
1961
1962 /*
1963 * Delay this task enough that another task of this mm will likely win
1964 * the next time around.
1965 */
1966 p->node_stamp += 2 * TICK_NSEC;
1967
1968 start = mm->numa_scan_offset;
1969 pages = sysctl_numa_balancing_scan_size;
1970 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1971 if (!pages)
1972 return;
1973
1974 down_read(&mm->mmap_sem);
1975 vma = find_vma(mm, start);
1976 if (!vma) {
1977 reset_ptenuma_scan(p);
1978 start = 0;
1979 vma = mm->mmap;
1980 }
1981 for (; vma; vma = vma->vm_next) {
1982 if (!vma_migratable(vma) || !vma_policy_mof(vma))
1983 continue;
1984
1985 /*
1986 * Shared library pages mapped by multiple processes are not
1987 * migrated as it is expected they are cache replicated. Avoid
1988 * hinting faults in read-only file-backed mappings or the vdso
1989 * as migrating the pages will be of marginal benefit.
1990 */
1991 if (!vma->vm_mm ||
1992 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1993 continue;
1994
1995 /*
1996 * Skip inaccessible VMAs to avoid any confusion between
1997 * PROT_NONE and NUMA hinting ptes
1998 */
1999 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2000 continue;
2001
2002 do {
2003 start = max(start, vma->vm_start);
2004 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2005 end = min(end, vma->vm_end);
2006 nr_pte_updates += change_prot_numa(vma, start, end);
2007
2008 /*
2009 * Scan sysctl_numa_balancing_scan_size but ensure that
2010 * at least one PTE is updated so that unused virtual
2011 * address space is quickly skipped.
2012 */
2013 if (nr_pte_updates)
2014 pages -= (end - start) >> PAGE_SHIFT;
2015
2016 start = end;
2017 if (pages <= 0)
2018 goto out;
2019
2020 cond_resched();
2021 } while (end != vma->vm_end);
2022 }
2023
2024 out:
2025 /*
2026 * It is possible to reach the end of the VMA list but the last few
2027 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2028 * would find the !migratable VMA on the next scan but not reset the
2029 * scanner to the start so check it now.
2030 */
2031 if (vma)
2032 mm->numa_scan_offset = start;
2033 else
2034 reset_ptenuma_scan(p);
2035 up_read(&mm->mmap_sem);
2036 }
2037
2038 /*
2039 * Drive the periodic memory faults..
2040 */
2041 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2042 {
2043 struct callback_head *work = &curr->numa_work;
2044 u64 period, now;
2045
2046 /*
2047 * We don't care about NUMA placement if we don't have memory.
2048 */
2049 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2050 return;
2051
2052 /*
2053 * Using runtime rather than walltime has the dual advantage that
2054 * we (mostly) drive the selection from busy threads and that the
2055 * task needs to have done some actual work before we bother with
2056 * NUMA placement.
2057 */
2058 now = curr->se.sum_exec_runtime;
2059 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2060
2061 if (now - curr->node_stamp > period) {
2062 if (!curr->node_stamp)
2063 curr->numa_scan_period = task_scan_min(curr);
2064 curr->node_stamp += period;
2065
2066 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2067 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2068 task_work_add(curr, work, true);
2069 }
2070 }
2071 }
2072 #else
2073 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2074 {
2075 }
2076
2077 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2078 {
2079 }
2080
2081 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2082 {
2083 }
2084 #endif /* CONFIG_NUMA_BALANCING */
2085
2086 static void
2087 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2088 {
2089 update_load_add(&cfs_rq->load, se->load.weight);
2090 if (!parent_entity(se))
2091 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2092 #ifdef CONFIG_SMP
2093 if (entity_is_task(se)) {
2094 struct rq *rq = rq_of(cfs_rq);
2095
2096 account_numa_enqueue(rq, task_of(se));
2097 list_add(&se->group_node, &rq->cfs_tasks);
2098 }
2099 #endif
2100 cfs_rq->nr_running++;
2101 }
2102
2103 static void
2104 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2105 {
2106 update_load_sub(&cfs_rq->load, se->load.weight);
2107 if (!parent_entity(se))
2108 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2109 if (entity_is_task(se)) {
2110 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2111 list_del_init(&se->group_node);
2112 }
2113 cfs_rq->nr_running--;
2114 }
2115
2116 #ifdef CONFIG_FAIR_GROUP_SCHED
2117 # ifdef CONFIG_SMP
2118 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2119 {
2120 long tg_weight;
2121
2122 /*
2123 * Use this CPU's actual weight instead of the last load_contribution
2124 * to gain a more accurate current total weight. See
2125 * update_cfs_rq_load_contribution().
2126 */
2127 tg_weight = atomic_long_read(&tg->load_avg);
2128 tg_weight -= cfs_rq->tg_load_contrib;
2129 tg_weight += cfs_rq->load.weight;
2130
2131 return tg_weight;
2132 }
2133
2134 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2135 {
2136 long tg_weight, load, shares;
2137
2138 tg_weight = calc_tg_weight(tg, cfs_rq);
2139 load = cfs_rq->load.weight;
2140
2141 shares = (tg->shares * load);
2142 if (tg_weight)
2143 shares /= tg_weight;
2144
2145 if (shares < MIN_SHARES)
2146 shares = MIN_SHARES;
2147 if (shares > tg->shares)
2148 shares = tg->shares;
2149
2150 return shares;
2151 }
2152 # else /* CONFIG_SMP */
2153 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2154 {
2155 return tg->shares;
2156 }
2157 # endif /* CONFIG_SMP */
2158 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2159 unsigned long weight)
2160 {
2161 if (se->on_rq) {
2162 /* commit outstanding execution time */
2163 if (cfs_rq->curr == se)
2164 update_curr(cfs_rq);
2165 account_entity_dequeue(cfs_rq, se);
2166 }
2167
2168 update_load_set(&se->load, weight);
2169
2170 if (se->on_rq)
2171 account_entity_enqueue(cfs_rq, se);
2172 }
2173
2174 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2175
2176 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2177 {
2178 struct task_group *tg;
2179 struct sched_entity *se;
2180 long shares;
2181
2182 tg = cfs_rq->tg;
2183 se = tg->se[cpu_of(rq_of(cfs_rq))];
2184 if (!se || throttled_hierarchy(cfs_rq))
2185 return;
2186 #ifndef CONFIG_SMP
2187 if (likely(se->load.weight == tg->shares))
2188 return;
2189 #endif
2190 shares = calc_cfs_shares(cfs_rq, tg);
2191
2192 reweight_entity(cfs_rq_of(se), se, shares);
2193 }
2194 #else /* CONFIG_FAIR_GROUP_SCHED */
2195 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2196 {
2197 }
2198 #endif /* CONFIG_FAIR_GROUP_SCHED */
2199
2200 #ifdef CONFIG_SMP
2201 /*
2202 * We choose a half-life close to 1 scheduling period.
2203 * Note: The tables below are dependent on this value.
2204 */
2205 #define LOAD_AVG_PERIOD 32
2206 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2207 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2208
2209 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2210 static const u32 runnable_avg_yN_inv[] = {
2211 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2212 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2213 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2214 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2215 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2216 0x85aac367, 0x82cd8698,
2217 };
2218
2219 /*
2220 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2221 * over-estimates when re-combining.
2222 */
2223 static const u32 runnable_avg_yN_sum[] = {
2224 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2225 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2226 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2227 };
2228
2229 /*
2230 * Approximate:
2231 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2232 */
2233 static __always_inline u64 decay_load(u64 val, u64 n)
2234 {
2235 unsigned int local_n;
2236
2237 if (!n)
2238 return val;
2239 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2240 return 0;
2241
2242 /* after bounds checking we can collapse to 32-bit */
2243 local_n = n;
2244
2245 /*
2246 * As y^PERIOD = 1/2, we can combine
2247 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2248 * With a look-up table which covers y^n (n<PERIOD)
2249 *
2250 * To achieve constant time decay_load.
2251 */
2252 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2253 val >>= local_n / LOAD_AVG_PERIOD;
2254 local_n %= LOAD_AVG_PERIOD;
2255 }
2256
2257 val *= runnable_avg_yN_inv[local_n];
2258 /* We don't use SRR here since we always want to round down. */
2259 return val >> 32;
2260 }
2261
2262 /*
2263 * For updates fully spanning n periods, the contribution to runnable
2264 * average will be: \Sum 1024*y^n
2265 *
2266 * We can compute this reasonably efficiently by combining:
2267 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2268 */
2269 static u32 __compute_runnable_contrib(u64 n)
2270 {
2271 u32 contrib = 0;
2272
2273 if (likely(n <= LOAD_AVG_PERIOD))
2274 return runnable_avg_yN_sum[n];
2275 else if (unlikely(n >= LOAD_AVG_MAX_N))
2276 return LOAD_AVG_MAX;
2277
2278 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2279 do {
2280 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2281 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2282
2283 n -= LOAD_AVG_PERIOD;
2284 } while (n > LOAD_AVG_PERIOD);
2285
2286 contrib = decay_load(contrib, n);
2287 return contrib + runnable_avg_yN_sum[n];
2288 }
2289
2290 /*
2291 * We can represent the historical contribution to runnable average as the
2292 * coefficients of a geometric series. To do this we sub-divide our runnable
2293 * history into segments of approximately 1ms (1024us); label the segment that
2294 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2295 *
2296 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2297 * p0 p1 p2
2298 * (now) (~1ms ago) (~2ms ago)
2299 *
2300 * Let u_i denote the fraction of p_i that the entity was runnable.
2301 *
2302 * We then designate the fractions u_i as our co-efficients, yielding the
2303 * following representation of historical load:
2304 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2305 *
2306 * We choose y based on the with of a reasonably scheduling period, fixing:
2307 * y^32 = 0.5
2308 *
2309 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2310 * approximately half as much as the contribution to load within the last ms
2311 * (u_0).
2312 *
2313 * When a period "rolls over" and we have new u_0`, multiplying the previous
2314 * sum again by y is sufficient to update:
2315 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2316 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2317 */
2318 static __always_inline int __update_entity_runnable_avg(u64 now,
2319 struct sched_avg *sa,
2320 int runnable)
2321 {
2322 u64 delta, periods;
2323 u32 runnable_contrib;
2324 int delta_w, decayed = 0;
2325
2326 delta = now - sa->last_runnable_update;
2327 /*
2328 * This should only happen when time goes backwards, which it
2329 * unfortunately does during sched clock init when we swap over to TSC.
2330 */
2331 if ((s64)delta < 0) {
2332 sa->last_runnable_update = now;
2333 return 0;
2334 }
2335
2336 /*
2337 * Use 1024ns as the unit of measurement since it's a reasonable
2338 * approximation of 1us and fast to compute.
2339 */
2340 delta >>= 10;
2341 if (!delta)
2342 return 0;
2343 sa->last_runnable_update = now;
2344
2345 /* delta_w is the amount already accumulated against our next period */
2346 delta_w = sa->runnable_avg_period % 1024;
2347 if (delta + delta_w >= 1024) {
2348 /* period roll-over */
2349 decayed = 1;
2350
2351 /*
2352 * Now that we know we're crossing a period boundary, figure
2353 * out how much from delta we need to complete the current
2354 * period and accrue it.
2355 */
2356 delta_w = 1024 - delta_w;
2357 if (runnable)
2358 sa->runnable_avg_sum += delta_w;
2359 sa->runnable_avg_period += delta_w;
2360
2361 delta -= delta_w;
2362
2363 /* Figure out how many additional periods this update spans */
2364 periods = delta / 1024;
2365 delta %= 1024;
2366
2367 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2368 periods + 1);
2369 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2370 periods + 1);
2371
2372 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2373 runnable_contrib = __compute_runnable_contrib(periods);
2374 if (runnable)
2375 sa->runnable_avg_sum += runnable_contrib;
2376 sa->runnable_avg_period += runnable_contrib;
2377 }
2378
2379 /* Remainder of delta accrued against u_0` */
2380 if (runnable)
2381 sa->runnable_avg_sum += delta;
2382 sa->runnable_avg_period += delta;
2383
2384 return decayed;
2385 }
2386
2387 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2388 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2389 {
2390 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2391 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2392
2393 decays -= se->avg.decay_count;
2394 if (!decays)
2395 return 0;
2396
2397 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2398 se->avg.decay_count = 0;
2399
2400 return decays;
2401 }
2402
2403 #ifdef CONFIG_FAIR_GROUP_SCHED
2404 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2405 int force_update)
2406 {
2407 struct task_group *tg = cfs_rq->tg;
2408 long tg_contrib;
2409
2410 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2411 tg_contrib -= cfs_rq->tg_load_contrib;
2412
2413 if (!tg_contrib)
2414 return;
2415
2416 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2417 atomic_long_add(tg_contrib, &tg->load_avg);
2418 cfs_rq->tg_load_contrib += tg_contrib;
2419 }
2420 }
2421
2422 /*
2423 * Aggregate cfs_rq runnable averages into an equivalent task_group
2424 * representation for computing load contributions.
2425 */
2426 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2427 struct cfs_rq *cfs_rq)
2428 {
2429 struct task_group *tg = cfs_rq->tg;
2430 long contrib;
2431
2432 /* The fraction of a cpu used by this cfs_rq */
2433 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2434 sa->runnable_avg_period + 1);
2435 contrib -= cfs_rq->tg_runnable_contrib;
2436
2437 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2438 atomic_add(contrib, &tg->runnable_avg);
2439 cfs_rq->tg_runnable_contrib += contrib;
2440 }
2441 }
2442
2443 static inline void __update_group_entity_contrib(struct sched_entity *se)
2444 {
2445 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2446 struct task_group *tg = cfs_rq->tg;
2447 int runnable_avg;
2448
2449 u64 contrib;
2450
2451 contrib = cfs_rq->tg_load_contrib * tg->shares;
2452 se->avg.load_avg_contrib = div_u64(contrib,
2453 atomic_long_read(&tg->load_avg) + 1);
2454
2455 /*
2456 * For group entities we need to compute a correction term in the case
2457 * that they are consuming <1 cpu so that we would contribute the same
2458 * load as a task of equal weight.
2459 *
2460 * Explicitly co-ordinating this measurement would be expensive, but
2461 * fortunately the sum of each cpus contribution forms a usable
2462 * lower-bound on the true value.
2463 *
2464 * Consider the aggregate of 2 contributions. Either they are disjoint
2465 * (and the sum represents true value) or they are disjoint and we are
2466 * understating by the aggregate of their overlap.
2467 *
2468 * Extending this to N cpus, for a given overlap, the maximum amount we
2469 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2470 * cpus that overlap for this interval and w_i is the interval width.
2471 *
2472 * On a small machine; the first term is well-bounded which bounds the
2473 * total error since w_i is a subset of the period. Whereas on a
2474 * larger machine, while this first term can be larger, if w_i is the
2475 * of consequential size guaranteed to see n_i*w_i quickly converge to
2476 * our upper bound of 1-cpu.
2477 */
2478 runnable_avg = atomic_read(&tg->runnable_avg);
2479 if (runnable_avg < NICE_0_LOAD) {
2480 se->avg.load_avg_contrib *= runnable_avg;
2481 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2482 }
2483 }
2484
2485 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2486 {
2487 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2488 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2489 }
2490 #else /* CONFIG_FAIR_GROUP_SCHED */
2491 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2492 int force_update) {}
2493 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2494 struct cfs_rq *cfs_rq) {}
2495 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2496 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2497 #endif /* CONFIG_FAIR_GROUP_SCHED */
2498
2499 static inline void __update_task_entity_contrib(struct sched_entity *se)
2500 {
2501 u32 contrib;
2502
2503 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2504 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2505 contrib /= (se->avg.runnable_avg_period + 1);
2506 se->avg.load_avg_contrib = scale_load(contrib);
2507 }
2508
2509 /* Compute the current contribution to load_avg by se, return any delta */
2510 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2511 {
2512 long old_contrib = se->avg.load_avg_contrib;
2513
2514 if (entity_is_task(se)) {
2515 __update_task_entity_contrib(se);
2516 } else {
2517 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2518 __update_group_entity_contrib(se);
2519 }
2520
2521 return se->avg.load_avg_contrib - old_contrib;
2522 }
2523
2524 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2525 long load_contrib)
2526 {
2527 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2528 cfs_rq->blocked_load_avg -= load_contrib;
2529 else
2530 cfs_rq->blocked_load_avg = 0;
2531 }
2532
2533 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2534
2535 /* Update a sched_entity's runnable average */
2536 static inline void update_entity_load_avg(struct sched_entity *se,
2537 int update_cfs_rq)
2538 {
2539 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2540 long contrib_delta;
2541 u64 now;
2542
2543 /*
2544 * For a group entity we need to use their owned cfs_rq_clock_task() in
2545 * case they are the parent of a throttled hierarchy.
2546 */
2547 if (entity_is_task(se))
2548 now = cfs_rq_clock_task(cfs_rq);
2549 else
2550 now = cfs_rq_clock_task(group_cfs_rq(se));
2551
2552 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2553 return;
2554
2555 contrib_delta = __update_entity_load_avg_contrib(se);
2556
2557 if (!update_cfs_rq)
2558 return;
2559
2560 if (se->on_rq)
2561 cfs_rq->runnable_load_avg += contrib_delta;
2562 else
2563 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2564 }
2565
2566 /*
2567 * Decay the load contributed by all blocked children and account this so that
2568 * their contribution may appropriately discounted when they wake up.
2569 */
2570 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2571 {
2572 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2573 u64 decays;
2574
2575 decays = now - cfs_rq->last_decay;
2576 if (!decays && !force_update)
2577 return;
2578
2579 if (atomic_long_read(&cfs_rq->removed_load)) {
2580 unsigned long removed_load;
2581 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2582 subtract_blocked_load_contrib(cfs_rq, removed_load);
2583 }
2584
2585 if (decays) {
2586 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2587 decays);
2588 atomic64_add(decays, &cfs_rq->decay_counter);
2589 cfs_rq->last_decay = now;
2590 }
2591
2592 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2593 }
2594
2595 /* Add the load generated by se into cfs_rq's child load-average */
2596 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2597 struct sched_entity *se,
2598 int wakeup)
2599 {
2600 /*
2601 * We track migrations using entity decay_count <= 0, on a wake-up
2602 * migration we use a negative decay count to track the remote decays
2603 * accumulated while sleeping.
2604 *
2605 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2606 * are seen by enqueue_entity_load_avg() as a migration with an already
2607 * constructed load_avg_contrib.
2608 */
2609 if (unlikely(se->avg.decay_count <= 0)) {
2610 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2611 if (se->avg.decay_count) {
2612 /*
2613 * In a wake-up migration we have to approximate the
2614 * time sleeping. This is because we can't synchronize
2615 * clock_task between the two cpus, and it is not
2616 * guaranteed to be read-safe. Instead, we can
2617 * approximate this using our carried decays, which are
2618 * explicitly atomically readable.
2619 */
2620 se->avg.last_runnable_update -= (-se->avg.decay_count)
2621 << 20;
2622 update_entity_load_avg(se, 0);
2623 /* Indicate that we're now synchronized and on-rq */
2624 se->avg.decay_count = 0;
2625 }
2626 wakeup = 0;
2627 } else {
2628 __synchronize_entity_decay(se);
2629 }
2630
2631 /* migrated tasks did not contribute to our blocked load */
2632 if (wakeup) {
2633 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2634 update_entity_load_avg(se, 0);
2635 }
2636
2637 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2638 /* we force update consideration on load-balancer moves */
2639 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2640 }
2641
2642 /*
2643 * Remove se's load from this cfs_rq child load-average, if the entity is
2644 * transitioning to a blocked state we track its projected decay using
2645 * blocked_load_avg.
2646 */
2647 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2648 struct sched_entity *se,
2649 int sleep)
2650 {
2651 update_entity_load_avg(se, 1);
2652 /* we force update consideration on load-balancer moves */
2653 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2654
2655 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2656 if (sleep) {
2657 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2658 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2659 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2660 }
2661
2662 /*
2663 * Update the rq's load with the elapsed running time before entering
2664 * idle. if the last scheduled task is not a CFS task, idle_enter will
2665 * be the only way to update the runnable statistic.
2666 */
2667 void idle_enter_fair(struct rq *this_rq)
2668 {
2669 update_rq_runnable_avg(this_rq, 1);
2670 }
2671
2672 /*
2673 * Update the rq's load with the elapsed idle time before a task is
2674 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2675 * be the only way to update the runnable statistic.
2676 */
2677 void idle_exit_fair(struct rq *this_rq)
2678 {
2679 update_rq_runnable_avg(this_rq, 0);
2680 }
2681
2682 static int idle_balance(struct rq *this_rq);
2683
2684 #else /* CONFIG_SMP */
2685
2686 static inline void update_entity_load_avg(struct sched_entity *se,
2687 int update_cfs_rq) {}
2688 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2689 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2690 struct sched_entity *se,
2691 int wakeup) {}
2692 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2693 struct sched_entity *se,
2694 int sleep) {}
2695 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2696 int force_update) {}
2697
2698 static inline int idle_balance(struct rq *rq)
2699 {
2700 return 0;
2701 }
2702
2703 #endif /* CONFIG_SMP */
2704
2705 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2706 {
2707 #ifdef CONFIG_SCHEDSTATS
2708 struct task_struct *tsk = NULL;
2709
2710 if (entity_is_task(se))
2711 tsk = task_of(se);
2712
2713 if (se->statistics.sleep_start) {
2714 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2715
2716 if ((s64)delta < 0)
2717 delta = 0;
2718
2719 if (unlikely(delta > se->statistics.sleep_max))
2720 se->statistics.sleep_max = delta;
2721
2722 se->statistics.sleep_start = 0;
2723 se->statistics.sum_sleep_runtime += delta;
2724
2725 if (tsk) {
2726 account_scheduler_latency(tsk, delta >> 10, 1);
2727 trace_sched_stat_sleep(tsk, delta);
2728 }
2729 }
2730 if (se->statistics.block_start) {
2731 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2732
2733 if ((s64)delta < 0)
2734 delta = 0;
2735
2736 if (unlikely(delta > se->statistics.block_max))
2737 se->statistics.block_max = delta;
2738
2739 se->statistics.block_start = 0;
2740 se->statistics.sum_sleep_runtime += delta;
2741
2742 if (tsk) {
2743 if (tsk->in_iowait) {
2744 se->statistics.iowait_sum += delta;
2745 se->statistics.iowait_count++;
2746 trace_sched_stat_iowait(tsk, delta);
2747 }
2748
2749 trace_sched_stat_blocked(tsk, delta);
2750
2751 /*
2752 * Blocking time is in units of nanosecs, so shift by
2753 * 20 to get a milliseconds-range estimation of the
2754 * amount of time that the task spent sleeping:
2755 */
2756 if (unlikely(prof_on == SLEEP_PROFILING)) {
2757 profile_hits(SLEEP_PROFILING,
2758 (void *)get_wchan(tsk),
2759 delta >> 20);
2760 }
2761 account_scheduler_latency(tsk, delta >> 10, 0);
2762 }
2763 }
2764 #endif
2765 }
2766
2767 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2768 {
2769 #ifdef CONFIG_SCHED_DEBUG
2770 s64 d = se->vruntime - cfs_rq->min_vruntime;
2771
2772 if (d < 0)
2773 d = -d;
2774
2775 if (d > 3*sysctl_sched_latency)
2776 schedstat_inc(cfs_rq, nr_spread_over);
2777 #endif
2778 }
2779
2780 static void
2781 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2782 {
2783 u64 vruntime = cfs_rq->min_vruntime;
2784
2785 /*
2786 * The 'current' period is already promised to the current tasks,
2787 * however the extra weight of the new task will slow them down a
2788 * little, place the new task so that it fits in the slot that
2789 * stays open at the end.
2790 */
2791 if (initial && sched_feat(START_DEBIT))
2792 vruntime += sched_vslice(cfs_rq, se);
2793
2794 /* sleeps up to a single latency don't count. */
2795 if (!initial) {
2796 unsigned long thresh = sysctl_sched_latency;
2797
2798 /*
2799 * Halve their sleep time's effect, to allow
2800 * for a gentler effect of sleepers:
2801 */
2802 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2803 thresh >>= 1;
2804
2805 vruntime -= thresh;
2806 }
2807
2808 /* ensure we never gain time by being placed backwards. */
2809 se->vruntime = max_vruntime(se->vruntime, vruntime);
2810 }
2811
2812 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2813
2814 static void
2815 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2816 {
2817 /*
2818 * Update the normalized vruntime before updating min_vruntime
2819 * through calling update_curr().
2820 */
2821 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2822 se->vruntime += cfs_rq->min_vruntime;
2823
2824 /*
2825 * Update run-time statistics of the 'current'.
2826 */
2827 update_curr(cfs_rq);
2828 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2829 account_entity_enqueue(cfs_rq, se);
2830 update_cfs_shares(cfs_rq);
2831
2832 if (flags & ENQUEUE_WAKEUP) {
2833 place_entity(cfs_rq, se, 0);
2834 enqueue_sleeper(cfs_rq, se);
2835 }
2836
2837 update_stats_enqueue(cfs_rq, se);
2838 check_spread(cfs_rq, se);
2839 if (se != cfs_rq->curr)
2840 __enqueue_entity(cfs_rq, se);
2841 se->on_rq = 1;
2842
2843 if (cfs_rq->nr_running == 1) {
2844 list_add_leaf_cfs_rq(cfs_rq);
2845 check_enqueue_throttle(cfs_rq);
2846 }
2847 }
2848
2849 static void __clear_buddies_last(struct sched_entity *se)
2850 {
2851 for_each_sched_entity(se) {
2852 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2853 if (cfs_rq->last != se)
2854 break;
2855
2856 cfs_rq->last = NULL;
2857 }
2858 }
2859
2860 static void __clear_buddies_next(struct sched_entity *se)
2861 {
2862 for_each_sched_entity(se) {
2863 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2864 if (cfs_rq->next != se)
2865 break;
2866
2867 cfs_rq->next = NULL;
2868 }
2869 }
2870
2871 static void __clear_buddies_skip(struct sched_entity *se)
2872 {
2873 for_each_sched_entity(se) {
2874 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2875 if (cfs_rq->skip != se)
2876 break;
2877
2878 cfs_rq->skip = NULL;
2879 }
2880 }
2881
2882 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2883 {
2884 if (cfs_rq->last == se)
2885 __clear_buddies_last(se);
2886
2887 if (cfs_rq->next == se)
2888 __clear_buddies_next(se);
2889
2890 if (cfs_rq->skip == se)
2891 __clear_buddies_skip(se);
2892 }
2893
2894 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2895
2896 static void
2897 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2898 {
2899 /*
2900 * Update run-time statistics of the 'current'.
2901 */
2902 update_curr(cfs_rq);
2903 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2904
2905 update_stats_dequeue(cfs_rq, se);
2906 if (flags & DEQUEUE_SLEEP) {
2907 #ifdef CONFIG_SCHEDSTATS
2908 if (entity_is_task(se)) {
2909 struct task_struct *tsk = task_of(se);
2910
2911 if (tsk->state & TASK_INTERRUPTIBLE)
2912 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2913 if (tsk->state & TASK_UNINTERRUPTIBLE)
2914 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2915 }
2916 #endif
2917 }
2918
2919 clear_buddies(cfs_rq, se);
2920
2921 if (se != cfs_rq->curr)
2922 __dequeue_entity(cfs_rq, se);
2923 se->on_rq = 0;
2924 account_entity_dequeue(cfs_rq, se);
2925
2926 /*
2927 * Normalize the entity after updating the min_vruntime because the
2928 * update can refer to the ->curr item and we need to reflect this
2929 * movement in our normalized position.
2930 */
2931 if (!(flags & DEQUEUE_SLEEP))
2932 se->vruntime -= cfs_rq->min_vruntime;
2933
2934 /* return excess runtime on last dequeue */
2935 return_cfs_rq_runtime(cfs_rq);
2936
2937 update_min_vruntime(cfs_rq);
2938 update_cfs_shares(cfs_rq);
2939 }
2940
2941 /*
2942 * Preempt the current task with a newly woken task if needed:
2943 */
2944 static void
2945 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2946 {
2947 unsigned long ideal_runtime, delta_exec;
2948 struct sched_entity *se;
2949 s64 delta;
2950
2951 ideal_runtime = sched_slice(cfs_rq, curr);
2952 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2953 if (delta_exec > ideal_runtime) {
2954 resched_curr(rq_of(cfs_rq));
2955 /*
2956 * The current task ran long enough, ensure it doesn't get
2957 * re-elected due to buddy favours.
2958 */
2959 clear_buddies(cfs_rq, curr);
2960 return;
2961 }
2962
2963 /*
2964 * Ensure that a task that missed wakeup preemption by a
2965 * narrow margin doesn't have to wait for a full slice.
2966 * This also mitigates buddy induced latencies under load.
2967 */
2968 if (delta_exec < sysctl_sched_min_granularity)
2969 return;
2970
2971 se = __pick_first_entity(cfs_rq);
2972 delta = curr->vruntime - se->vruntime;
2973
2974 if (delta < 0)
2975 return;
2976
2977 if (delta > ideal_runtime)
2978 resched_curr(rq_of(cfs_rq));
2979 }
2980
2981 static void
2982 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2983 {
2984 /* 'current' is not kept within the tree. */
2985 if (se->on_rq) {
2986 /*
2987 * Any task has to be enqueued before it get to execute on
2988 * a CPU. So account for the time it spent waiting on the
2989 * runqueue.
2990 */
2991 update_stats_wait_end(cfs_rq, se);
2992 __dequeue_entity(cfs_rq, se);
2993 }
2994
2995 update_stats_curr_start(cfs_rq, se);
2996 cfs_rq->curr = se;
2997 #ifdef CONFIG_SCHEDSTATS
2998 /*
2999 * Track our maximum slice length, if the CPU's load is at
3000 * least twice that of our own weight (i.e. dont track it
3001 * when there are only lesser-weight tasks around):
3002 */
3003 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3004 se->statistics.slice_max = max(se->statistics.slice_max,
3005 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3006 }
3007 #endif
3008 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3009 }
3010
3011 static int
3012 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3013
3014 /*
3015 * Pick the next process, keeping these things in mind, in this order:
3016 * 1) keep things fair between processes/task groups
3017 * 2) pick the "next" process, since someone really wants that to run
3018 * 3) pick the "last" process, for cache locality
3019 * 4) do not run the "skip" process, if something else is available
3020 */
3021 static struct sched_entity *
3022 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3023 {
3024 struct sched_entity *left = __pick_first_entity(cfs_rq);
3025 struct sched_entity *se;
3026
3027 /*
3028 * If curr is set we have to see if its left of the leftmost entity
3029 * still in the tree, provided there was anything in the tree at all.
3030 */
3031 if (!left || (curr && entity_before(curr, left)))
3032 left = curr;
3033
3034 se = left; /* ideally we run the leftmost entity */
3035
3036 /*
3037 * Avoid running the skip buddy, if running something else can
3038 * be done without getting too unfair.
3039 */
3040 if (cfs_rq->skip == se) {
3041 struct sched_entity *second;
3042
3043 if (se == curr) {
3044 second = __pick_first_entity(cfs_rq);
3045 } else {
3046 second = __pick_next_entity(se);
3047 if (!second || (curr && entity_before(curr, second)))
3048 second = curr;
3049 }
3050
3051 if (second && wakeup_preempt_entity(second, left) < 1)
3052 se = second;
3053 }
3054
3055 /*
3056 * Prefer last buddy, try to return the CPU to a preempted task.
3057 */
3058 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3059 se = cfs_rq->last;
3060
3061 /*
3062 * Someone really wants this to run. If it's not unfair, run it.
3063 */
3064 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3065 se = cfs_rq->next;
3066
3067 clear_buddies(cfs_rq, se);
3068
3069 return se;
3070 }
3071
3072 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3073
3074 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3075 {
3076 /*
3077 * If still on the runqueue then deactivate_task()
3078 * was not called and update_curr() has to be done:
3079 */
3080 if (prev->on_rq)
3081 update_curr(cfs_rq);
3082
3083 /* throttle cfs_rqs exceeding runtime */
3084 check_cfs_rq_runtime(cfs_rq);
3085
3086 check_spread(cfs_rq, prev);
3087 if (prev->on_rq) {
3088 update_stats_wait_start(cfs_rq, prev);
3089 /* Put 'current' back into the tree. */
3090 __enqueue_entity(cfs_rq, prev);
3091 /* in !on_rq case, update occurred at dequeue */
3092 update_entity_load_avg(prev, 1);
3093 }
3094 cfs_rq->curr = NULL;
3095 }
3096
3097 static void
3098 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3099 {
3100 /*
3101 * Update run-time statistics of the 'current'.
3102 */
3103 update_curr(cfs_rq);
3104
3105 /*
3106 * Ensure that runnable average is periodically updated.
3107 */
3108 update_entity_load_avg(curr, 1);
3109 update_cfs_rq_blocked_load(cfs_rq, 1);
3110 update_cfs_shares(cfs_rq);
3111
3112 #ifdef CONFIG_SCHED_HRTICK
3113 /*
3114 * queued ticks are scheduled to match the slice, so don't bother
3115 * validating it and just reschedule.
3116 */
3117 if (queued) {
3118 resched_curr(rq_of(cfs_rq));
3119 return;
3120 }
3121 /*
3122 * don't let the period tick interfere with the hrtick preemption
3123 */
3124 if (!sched_feat(DOUBLE_TICK) &&
3125 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3126 return;
3127 #endif
3128
3129 if (cfs_rq->nr_running > 1)
3130 check_preempt_tick(cfs_rq, curr);
3131 }
3132
3133
3134 /**************************************************
3135 * CFS bandwidth control machinery
3136 */
3137
3138 #ifdef CONFIG_CFS_BANDWIDTH
3139
3140 #ifdef HAVE_JUMP_LABEL
3141 static struct static_key __cfs_bandwidth_used;
3142
3143 static inline bool cfs_bandwidth_used(void)
3144 {
3145 return static_key_false(&__cfs_bandwidth_used);
3146 }
3147
3148 void cfs_bandwidth_usage_inc(void)
3149 {
3150 static_key_slow_inc(&__cfs_bandwidth_used);
3151 }
3152
3153 void cfs_bandwidth_usage_dec(void)
3154 {
3155 static_key_slow_dec(&__cfs_bandwidth_used);
3156 }
3157 #else /* HAVE_JUMP_LABEL */
3158 static bool cfs_bandwidth_used(void)
3159 {
3160 return true;
3161 }
3162
3163 void cfs_bandwidth_usage_inc(void) {}
3164 void cfs_bandwidth_usage_dec(void) {}
3165 #endif /* HAVE_JUMP_LABEL */
3166
3167 /*
3168 * default period for cfs group bandwidth.
3169 * default: 0.1s, units: nanoseconds
3170 */
3171 static inline u64 default_cfs_period(void)
3172 {
3173 return 100000000ULL;
3174 }
3175
3176 static inline u64 sched_cfs_bandwidth_slice(void)
3177 {
3178 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3179 }
3180
3181 /*
3182 * Replenish runtime according to assigned quota and update expiration time.
3183 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3184 * additional synchronization around rq->lock.
3185 *
3186 * requires cfs_b->lock
3187 */
3188 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3189 {
3190 u64 now;
3191
3192 if (cfs_b->quota == RUNTIME_INF)
3193 return;
3194
3195 now = sched_clock_cpu(smp_processor_id());
3196 cfs_b->runtime = cfs_b->quota;
3197 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3198 }
3199
3200 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3201 {
3202 return &tg->cfs_bandwidth;
3203 }
3204
3205 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3206 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3207 {
3208 if (unlikely(cfs_rq->throttle_count))
3209 return cfs_rq->throttled_clock_task;
3210
3211 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3212 }
3213
3214 /* returns 0 on failure to allocate runtime */
3215 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3216 {
3217 struct task_group *tg = cfs_rq->tg;
3218 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3219 u64 amount = 0, min_amount, expires;
3220
3221 /* note: this is a positive sum as runtime_remaining <= 0 */
3222 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3223
3224 raw_spin_lock(&cfs_b->lock);
3225 if (cfs_b->quota == RUNTIME_INF)
3226 amount = min_amount;
3227 else {
3228 /*
3229 * If the bandwidth pool has become inactive, then at least one
3230 * period must have elapsed since the last consumption.
3231 * Refresh the global state and ensure bandwidth timer becomes
3232 * active.
3233 */
3234 if (!cfs_b->timer_active) {
3235 __refill_cfs_bandwidth_runtime(cfs_b);
3236 __start_cfs_bandwidth(cfs_b, false);
3237 }
3238
3239 if (cfs_b->runtime > 0) {
3240 amount = min(cfs_b->runtime, min_amount);
3241 cfs_b->runtime -= amount;
3242 cfs_b->idle = 0;
3243 }
3244 }
3245 expires = cfs_b->runtime_expires;
3246 raw_spin_unlock(&cfs_b->lock);
3247
3248 cfs_rq->runtime_remaining += amount;
3249 /*
3250 * we may have advanced our local expiration to account for allowed
3251 * spread between our sched_clock and the one on which runtime was
3252 * issued.
3253 */
3254 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3255 cfs_rq->runtime_expires = expires;
3256
3257 return cfs_rq->runtime_remaining > 0;
3258 }
3259
3260 /*
3261 * Note: This depends on the synchronization provided by sched_clock and the
3262 * fact that rq->clock snapshots this value.
3263 */
3264 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3265 {
3266 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3267
3268 /* if the deadline is ahead of our clock, nothing to do */
3269 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3270 return;
3271
3272 if (cfs_rq->runtime_remaining < 0)
3273 return;
3274
3275 /*
3276 * If the local deadline has passed we have to consider the
3277 * possibility that our sched_clock is 'fast' and the global deadline
3278 * has not truly expired.
3279 *
3280 * Fortunately we can check determine whether this the case by checking
3281 * whether the global deadline has advanced. It is valid to compare
3282 * cfs_b->runtime_expires without any locks since we only care about
3283 * exact equality, so a partial write will still work.
3284 */
3285
3286 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3287 /* extend local deadline, drift is bounded above by 2 ticks */
3288 cfs_rq->runtime_expires += TICK_NSEC;
3289 } else {
3290 /* global deadline is ahead, expiration has passed */
3291 cfs_rq->runtime_remaining = 0;
3292 }
3293 }
3294
3295 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3296 {
3297 /* dock delta_exec before expiring quota (as it could span periods) */
3298 cfs_rq->runtime_remaining -= delta_exec;
3299 expire_cfs_rq_runtime(cfs_rq);
3300
3301 if (likely(cfs_rq->runtime_remaining > 0))
3302 return;
3303
3304 /*
3305 * if we're unable to extend our runtime we resched so that the active
3306 * hierarchy can be throttled
3307 */
3308 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3309 resched_curr(rq_of(cfs_rq));
3310 }
3311
3312 static __always_inline
3313 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3314 {
3315 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3316 return;
3317
3318 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3319 }
3320
3321 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3322 {
3323 return cfs_bandwidth_used() && cfs_rq->throttled;
3324 }
3325
3326 /* check whether cfs_rq, or any parent, is throttled */
3327 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3328 {
3329 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3330 }
3331
3332 /*
3333 * Ensure that neither of the group entities corresponding to src_cpu or
3334 * dest_cpu are members of a throttled hierarchy when performing group
3335 * load-balance operations.
3336 */
3337 static inline int throttled_lb_pair(struct task_group *tg,
3338 int src_cpu, int dest_cpu)
3339 {
3340 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3341
3342 src_cfs_rq = tg->cfs_rq[src_cpu];
3343 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3344
3345 return throttled_hierarchy(src_cfs_rq) ||
3346 throttled_hierarchy(dest_cfs_rq);
3347 }
3348
3349 /* updated child weight may affect parent so we have to do this bottom up */
3350 static int tg_unthrottle_up(struct task_group *tg, void *data)
3351 {
3352 struct rq *rq = data;
3353 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3354
3355 cfs_rq->throttle_count--;
3356 #ifdef CONFIG_SMP
3357 if (!cfs_rq->throttle_count) {
3358 /* adjust cfs_rq_clock_task() */
3359 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3360 cfs_rq->throttled_clock_task;
3361 }
3362 #endif
3363
3364 return 0;
3365 }
3366
3367 static int tg_throttle_down(struct task_group *tg, void *data)
3368 {
3369 struct rq *rq = data;
3370 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3371
3372 /* group is entering throttled state, stop time */
3373 if (!cfs_rq->throttle_count)
3374 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3375 cfs_rq->throttle_count++;
3376
3377 return 0;
3378 }
3379
3380 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3381 {
3382 struct rq *rq = rq_of(cfs_rq);
3383 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3384 struct sched_entity *se;
3385 long task_delta, dequeue = 1;
3386
3387 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3388
3389 /* freeze hierarchy runnable averages while throttled */
3390 rcu_read_lock();
3391 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3392 rcu_read_unlock();
3393
3394 task_delta = cfs_rq->h_nr_running;
3395 for_each_sched_entity(se) {
3396 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3397 /* throttled entity or throttle-on-deactivate */
3398 if (!se->on_rq)
3399 break;
3400
3401 if (dequeue)
3402 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3403 qcfs_rq->h_nr_running -= task_delta;
3404
3405 if (qcfs_rq->load.weight)
3406 dequeue = 0;
3407 }
3408
3409 if (!se)
3410 sub_nr_running(rq, task_delta);
3411
3412 cfs_rq->throttled = 1;
3413 cfs_rq->throttled_clock = rq_clock(rq);
3414 raw_spin_lock(&cfs_b->lock);
3415 /*
3416 * Add to the _head_ of the list, so that an already-started
3417 * distribute_cfs_runtime will not see us
3418 */
3419 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3420 if (!cfs_b->timer_active)
3421 __start_cfs_bandwidth(cfs_b, false);
3422 raw_spin_unlock(&cfs_b->lock);
3423 }
3424
3425 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3426 {
3427 struct rq *rq = rq_of(cfs_rq);
3428 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3429 struct sched_entity *se;
3430 int enqueue = 1;
3431 long task_delta;
3432
3433 se = cfs_rq->tg->se[cpu_of(rq)];
3434
3435 cfs_rq->throttled = 0;
3436
3437 update_rq_clock(rq);
3438
3439 raw_spin_lock(&cfs_b->lock);
3440 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3441 list_del_rcu(&cfs_rq->throttled_list);
3442 raw_spin_unlock(&cfs_b->lock);
3443
3444 /* update hierarchical throttle state */
3445 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3446
3447 if (!cfs_rq->load.weight)
3448 return;
3449
3450 task_delta = cfs_rq->h_nr_running;
3451 for_each_sched_entity(se) {
3452 if (se->on_rq)
3453 enqueue = 0;
3454
3455 cfs_rq = cfs_rq_of(se);
3456 if (enqueue)
3457 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3458 cfs_rq->h_nr_running += task_delta;
3459
3460 if (cfs_rq_throttled(cfs_rq))
3461 break;
3462 }
3463
3464 if (!se)
3465 add_nr_running(rq, task_delta);
3466
3467 /* determine whether we need to wake up potentially idle cpu */
3468 if (rq->curr == rq->idle && rq->cfs.nr_running)
3469 resched_curr(rq);
3470 }
3471
3472 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3473 u64 remaining, u64 expires)
3474 {
3475 struct cfs_rq *cfs_rq;
3476 u64 runtime;
3477 u64 starting_runtime = remaining;
3478
3479 rcu_read_lock();
3480 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3481 throttled_list) {
3482 struct rq *rq = rq_of(cfs_rq);
3483
3484 raw_spin_lock(&rq->lock);
3485 if (!cfs_rq_throttled(cfs_rq))
3486 goto next;
3487
3488 runtime = -cfs_rq->runtime_remaining + 1;
3489 if (runtime > remaining)
3490 runtime = remaining;
3491 remaining -= runtime;
3492
3493 cfs_rq->runtime_remaining += runtime;
3494 cfs_rq->runtime_expires = expires;
3495
3496 /* we check whether we're throttled above */
3497 if (cfs_rq->runtime_remaining > 0)
3498 unthrottle_cfs_rq(cfs_rq);
3499
3500 next:
3501 raw_spin_unlock(&rq->lock);
3502
3503 if (!remaining)
3504 break;
3505 }
3506 rcu_read_unlock();
3507
3508 return starting_runtime - remaining;
3509 }
3510
3511 /*
3512 * Responsible for refilling a task_group's bandwidth and unthrottling its
3513 * cfs_rqs as appropriate. If there has been no activity within the last
3514 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3515 * used to track this state.
3516 */
3517 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3518 {
3519 u64 runtime, runtime_expires;
3520 int throttled;
3521
3522 /* no need to continue the timer with no bandwidth constraint */
3523 if (cfs_b->quota == RUNTIME_INF)
3524 goto out_deactivate;
3525
3526 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3527 cfs_b->nr_periods += overrun;
3528
3529 /*
3530 * idle depends on !throttled (for the case of a large deficit), and if
3531 * we're going inactive then everything else can be deferred
3532 */
3533 if (cfs_b->idle && !throttled)
3534 goto out_deactivate;
3535
3536 /*
3537 * if we have relooped after returning idle once, we need to update our
3538 * status as actually running, so that other cpus doing
3539 * __start_cfs_bandwidth will stop trying to cancel us.
3540 */
3541 cfs_b->timer_active = 1;
3542
3543 __refill_cfs_bandwidth_runtime(cfs_b);
3544
3545 if (!throttled) {
3546 /* mark as potentially idle for the upcoming period */
3547 cfs_b->idle = 1;
3548 return 0;
3549 }
3550
3551 /* account preceding periods in which throttling occurred */
3552 cfs_b->nr_throttled += overrun;
3553
3554 runtime_expires = cfs_b->runtime_expires;
3555
3556 /*
3557 * This check is repeated as we are holding onto the new bandwidth while
3558 * we unthrottle. This can potentially race with an unthrottled group
3559 * trying to acquire new bandwidth from the global pool. This can result
3560 * in us over-using our runtime if it is all used during this loop, but
3561 * only by limited amounts in that extreme case.
3562 */
3563 while (throttled && cfs_b->runtime > 0) {
3564 runtime = cfs_b->runtime;
3565 raw_spin_unlock(&cfs_b->lock);
3566 /* we can't nest cfs_b->lock while distributing bandwidth */
3567 runtime = distribute_cfs_runtime(cfs_b, runtime,
3568 runtime_expires);
3569 raw_spin_lock(&cfs_b->lock);
3570
3571 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3572
3573 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3574 }
3575
3576 /*
3577 * While we are ensured activity in the period following an
3578 * unthrottle, this also covers the case in which the new bandwidth is
3579 * insufficient to cover the existing bandwidth deficit. (Forcing the
3580 * timer to remain active while there are any throttled entities.)
3581 */
3582 cfs_b->idle = 0;
3583
3584 return 0;
3585
3586 out_deactivate:
3587 cfs_b->timer_active = 0;
3588 return 1;
3589 }
3590
3591 /* a cfs_rq won't donate quota below this amount */
3592 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3593 /* minimum remaining period time to redistribute slack quota */
3594 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3595 /* how long we wait to gather additional slack before distributing */
3596 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3597
3598 /*
3599 * Are we near the end of the current quota period?
3600 *
3601 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3602 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3603 * migrate_hrtimers, base is never cleared, so we are fine.
3604 */
3605 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3606 {
3607 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3608 u64 remaining;
3609
3610 /* if the call-back is running a quota refresh is already occurring */
3611 if (hrtimer_callback_running(refresh_timer))
3612 return 1;
3613
3614 /* is a quota refresh about to occur? */
3615 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3616 if (remaining < min_expire)
3617 return 1;
3618
3619 return 0;
3620 }
3621
3622 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3623 {
3624 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3625
3626 /* if there's a quota refresh soon don't bother with slack */
3627 if (runtime_refresh_within(cfs_b, min_left))
3628 return;
3629
3630 start_bandwidth_timer(&cfs_b->slack_timer,
3631 ns_to_ktime(cfs_bandwidth_slack_period));
3632 }
3633
3634 /* we know any runtime found here is valid as update_curr() precedes return */
3635 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3636 {
3637 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3638 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3639
3640 if (slack_runtime <= 0)
3641 return;
3642
3643 raw_spin_lock(&cfs_b->lock);
3644 if (cfs_b->quota != RUNTIME_INF &&
3645 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3646 cfs_b->runtime += slack_runtime;
3647
3648 /* we are under rq->lock, defer unthrottling using a timer */
3649 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3650 !list_empty(&cfs_b->throttled_cfs_rq))
3651 start_cfs_slack_bandwidth(cfs_b);
3652 }
3653 raw_spin_unlock(&cfs_b->lock);
3654
3655 /* even if it's not valid for return we don't want to try again */
3656 cfs_rq->runtime_remaining -= slack_runtime;
3657 }
3658
3659 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3660 {
3661 if (!cfs_bandwidth_used())
3662 return;
3663
3664 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3665 return;
3666
3667 __return_cfs_rq_runtime(cfs_rq);
3668 }
3669
3670 /*
3671 * This is done with a timer (instead of inline with bandwidth return) since
3672 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3673 */
3674 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3675 {
3676 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3677 u64 expires;
3678
3679 /* confirm we're still not at a refresh boundary */
3680 raw_spin_lock(&cfs_b->lock);
3681 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3682 raw_spin_unlock(&cfs_b->lock);
3683 return;
3684 }
3685
3686 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3687 runtime = cfs_b->runtime;
3688
3689 expires = cfs_b->runtime_expires;
3690 raw_spin_unlock(&cfs_b->lock);
3691
3692 if (!runtime)
3693 return;
3694
3695 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3696
3697 raw_spin_lock(&cfs_b->lock);
3698 if (expires == cfs_b->runtime_expires)
3699 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3700 raw_spin_unlock(&cfs_b->lock);
3701 }
3702
3703 /*
3704 * When a group wakes up we want to make sure that its quota is not already
3705 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3706 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3707 */
3708 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3709 {
3710 if (!cfs_bandwidth_used())
3711 return;
3712
3713 /* an active group must be handled by the update_curr()->put() path */
3714 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3715 return;
3716
3717 /* ensure the group is not already throttled */
3718 if (cfs_rq_throttled(cfs_rq))
3719 return;
3720
3721 /* update runtime allocation */
3722 account_cfs_rq_runtime(cfs_rq, 0);
3723 if (cfs_rq->runtime_remaining <= 0)
3724 throttle_cfs_rq(cfs_rq);
3725 }
3726
3727 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3728 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3729 {
3730 if (!cfs_bandwidth_used())
3731 return false;
3732
3733 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3734 return false;
3735
3736 /*
3737 * it's possible for a throttled entity to be forced into a running
3738 * state (e.g. set_curr_task), in this case we're finished.
3739 */
3740 if (cfs_rq_throttled(cfs_rq))
3741 return true;
3742
3743 throttle_cfs_rq(cfs_rq);
3744 return true;
3745 }
3746
3747 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3748 {
3749 struct cfs_bandwidth *cfs_b =
3750 container_of(timer, struct cfs_bandwidth, slack_timer);
3751 do_sched_cfs_slack_timer(cfs_b);
3752
3753 return HRTIMER_NORESTART;
3754 }
3755
3756 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3757 {
3758 struct cfs_bandwidth *cfs_b =
3759 container_of(timer, struct cfs_bandwidth, period_timer);
3760 ktime_t now;
3761 int overrun;
3762 int idle = 0;
3763
3764 raw_spin_lock(&cfs_b->lock);
3765 for (;;) {
3766 now = hrtimer_cb_get_time(timer);
3767 overrun = hrtimer_forward(timer, now, cfs_b->period);
3768
3769 if (!overrun)
3770 break;
3771
3772 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3773 }
3774 raw_spin_unlock(&cfs_b->lock);
3775
3776 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3777 }
3778
3779 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3780 {
3781 raw_spin_lock_init(&cfs_b->lock);
3782 cfs_b->runtime = 0;
3783 cfs_b->quota = RUNTIME_INF;
3784 cfs_b->period = ns_to_ktime(default_cfs_period());
3785
3786 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3787 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3788 cfs_b->period_timer.function = sched_cfs_period_timer;
3789 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3790 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3791 }
3792
3793 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3794 {
3795 cfs_rq->runtime_enabled = 0;
3796 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3797 }
3798
3799 /* requires cfs_b->lock, may release to reprogram timer */
3800 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3801 {
3802 /*
3803 * The timer may be active because we're trying to set a new bandwidth
3804 * period or because we're racing with the tear-down path
3805 * (timer_active==0 becomes visible before the hrtimer call-back
3806 * terminates). In either case we ensure that it's re-programmed
3807 */
3808 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3809 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3810 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3811 raw_spin_unlock(&cfs_b->lock);
3812 cpu_relax();
3813 raw_spin_lock(&cfs_b->lock);
3814 /* if someone else restarted the timer then we're done */
3815 if (!force && cfs_b->timer_active)
3816 return;
3817 }
3818
3819 cfs_b->timer_active = 1;
3820 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3821 }
3822
3823 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3824 {
3825 hrtimer_cancel(&cfs_b->period_timer);
3826 hrtimer_cancel(&cfs_b->slack_timer);
3827 }
3828
3829 static void __maybe_unused update_runtime_enabled(struct rq *rq)
3830 {
3831 struct cfs_rq *cfs_rq;
3832
3833 for_each_leaf_cfs_rq(rq, cfs_rq) {
3834 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3835
3836 raw_spin_lock(&cfs_b->lock);
3837 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3838 raw_spin_unlock(&cfs_b->lock);
3839 }
3840 }
3841
3842 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3843 {
3844 struct cfs_rq *cfs_rq;
3845
3846 for_each_leaf_cfs_rq(rq, cfs_rq) {
3847 if (!cfs_rq->runtime_enabled)
3848 continue;
3849
3850 /*
3851 * clock_task is not advancing so we just need to make sure
3852 * there's some valid quota amount
3853 */
3854 cfs_rq->runtime_remaining = 1;
3855 /*
3856 * Offline rq is schedulable till cpu is completely disabled
3857 * in take_cpu_down(), so we prevent new cfs throttling here.
3858 */
3859 cfs_rq->runtime_enabled = 0;
3860
3861 if (cfs_rq_throttled(cfs_rq))
3862 unthrottle_cfs_rq(cfs_rq);
3863 }
3864 }
3865
3866 #else /* CONFIG_CFS_BANDWIDTH */
3867 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3868 {
3869 return rq_clock_task(rq_of(cfs_rq));
3870 }
3871
3872 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3873 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3874 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3875 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3876
3877 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3878 {
3879 return 0;
3880 }
3881
3882 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3883 {
3884 return 0;
3885 }
3886
3887 static inline int throttled_lb_pair(struct task_group *tg,
3888 int src_cpu, int dest_cpu)
3889 {
3890 return 0;
3891 }
3892
3893 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3894
3895 #ifdef CONFIG_FAIR_GROUP_SCHED
3896 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3897 #endif
3898
3899 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3900 {
3901 return NULL;
3902 }
3903 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3904 static inline void update_runtime_enabled(struct rq *rq) {}
3905 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3906
3907 #endif /* CONFIG_CFS_BANDWIDTH */
3908
3909 /**************************************************
3910 * CFS operations on tasks:
3911 */
3912
3913 #ifdef CONFIG_SCHED_HRTICK
3914 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3915 {
3916 struct sched_entity *se = &p->se;
3917 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3918
3919 WARN_ON(task_rq(p) != rq);
3920
3921 if (cfs_rq->nr_running > 1) {
3922 u64 slice = sched_slice(cfs_rq, se);
3923 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3924 s64 delta = slice - ran;
3925
3926 if (delta < 0) {
3927 if (rq->curr == p)
3928 resched_curr(rq);
3929 return;
3930 }
3931 hrtick_start(rq, delta);
3932 }
3933 }
3934
3935 /*
3936 * called from enqueue/dequeue and updates the hrtick when the
3937 * current task is from our class and nr_running is low enough
3938 * to matter.
3939 */
3940 static void hrtick_update(struct rq *rq)
3941 {
3942 struct task_struct *curr = rq->curr;
3943
3944 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3945 return;
3946
3947 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3948 hrtick_start_fair(rq, curr);
3949 }
3950 #else /* !CONFIG_SCHED_HRTICK */
3951 static inline void
3952 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3953 {
3954 }
3955
3956 static inline void hrtick_update(struct rq *rq)
3957 {
3958 }
3959 #endif
3960
3961 /*
3962 * The enqueue_task method is called before nr_running is
3963 * increased. Here we update the fair scheduling stats and
3964 * then put the task into the rbtree:
3965 */
3966 static void
3967 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3968 {
3969 struct cfs_rq *cfs_rq;
3970 struct sched_entity *se = &p->se;
3971
3972 for_each_sched_entity(se) {
3973 if (se->on_rq)
3974 break;
3975 cfs_rq = cfs_rq_of(se);
3976 enqueue_entity(cfs_rq, se, flags);
3977
3978 /*
3979 * end evaluation on encountering a throttled cfs_rq
3980 *
3981 * note: in the case of encountering a throttled cfs_rq we will
3982 * post the final h_nr_running increment below.
3983 */
3984 if (cfs_rq_throttled(cfs_rq))
3985 break;
3986 cfs_rq->h_nr_running++;
3987
3988 flags = ENQUEUE_WAKEUP;
3989 }
3990
3991 for_each_sched_entity(se) {
3992 cfs_rq = cfs_rq_of(se);
3993 cfs_rq->h_nr_running++;
3994
3995 if (cfs_rq_throttled(cfs_rq))
3996 break;
3997
3998 update_cfs_shares(cfs_rq);
3999 update_entity_load_avg(se, 1);
4000 }
4001
4002 if (!se) {
4003 update_rq_runnable_avg(rq, rq->nr_running);
4004 add_nr_running(rq, 1);
4005 }
4006 hrtick_update(rq);
4007 }
4008
4009 static void set_next_buddy(struct sched_entity *se);
4010
4011 /*
4012 * The dequeue_task method is called before nr_running is
4013 * decreased. We remove the task from the rbtree and
4014 * update the fair scheduling stats:
4015 */
4016 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4017 {
4018 struct cfs_rq *cfs_rq;
4019 struct sched_entity *se = &p->se;
4020 int task_sleep = flags & DEQUEUE_SLEEP;
4021
4022 for_each_sched_entity(se) {
4023 cfs_rq = cfs_rq_of(se);
4024 dequeue_entity(cfs_rq, se, flags);
4025
4026 /*
4027 * end evaluation on encountering a throttled cfs_rq
4028 *
4029 * note: in the case of encountering a throttled cfs_rq we will
4030 * post the final h_nr_running decrement below.
4031 */
4032 if (cfs_rq_throttled(cfs_rq))
4033 break;
4034 cfs_rq->h_nr_running--;
4035
4036 /* Don't dequeue parent if it has other entities besides us */
4037 if (cfs_rq->load.weight) {
4038 /*
4039 * Bias pick_next to pick a task from this cfs_rq, as
4040 * p is sleeping when it is within its sched_slice.
4041 */
4042 if (task_sleep && parent_entity(se))
4043 set_next_buddy(parent_entity(se));
4044
4045 /* avoid re-evaluating load for this entity */
4046 se = parent_entity(se);
4047 break;
4048 }
4049 flags |= DEQUEUE_SLEEP;
4050 }
4051
4052 for_each_sched_entity(se) {
4053 cfs_rq = cfs_rq_of(se);
4054 cfs_rq->h_nr_running--;
4055
4056 if (cfs_rq_throttled(cfs_rq))
4057 break;
4058
4059 update_cfs_shares(cfs_rq);
4060 update_entity_load_avg(se, 1);
4061 }
4062
4063 if (!se) {
4064 sub_nr_running(rq, 1);
4065 update_rq_runnable_avg(rq, 1);
4066 }
4067 hrtick_update(rq);
4068 }
4069
4070 #ifdef CONFIG_SMP
4071 /* Used instead of source_load when we know the type == 0 */
4072 static unsigned long weighted_cpuload(const int cpu)
4073 {
4074 return cpu_rq(cpu)->cfs.runnable_load_avg;
4075 }
4076
4077 /*
4078 * Return a low guess at the load of a migration-source cpu weighted
4079 * according to the scheduling class and "nice" value.
4080 *
4081 * We want to under-estimate the load of migration sources, to
4082 * balance conservatively.
4083 */
4084 static unsigned long source_load(int cpu, int type)
4085 {
4086 struct rq *rq = cpu_rq(cpu);
4087 unsigned long total = weighted_cpuload(cpu);
4088
4089 if (type == 0 || !sched_feat(LB_BIAS))
4090 return total;
4091
4092 return min(rq->cpu_load[type-1], total);
4093 }
4094
4095 /*
4096 * Return a high guess at the load of a migration-target cpu weighted
4097 * according to the scheduling class and "nice" value.
4098 */
4099 static unsigned long target_load(int cpu, int type)
4100 {
4101 struct rq *rq = cpu_rq(cpu);
4102 unsigned long total = weighted_cpuload(cpu);
4103
4104 if (type == 0 || !sched_feat(LB_BIAS))
4105 return total;
4106
4107 return max(rq->cpu_load[type-1], total);
4108 }
4109
4110 static unsigned long capacity_of(int cpu)
4111 {
4112 return cpu_rq(cpu)->cpu_capacity;
4113 }
4114
4115 static unsigned long cpu_avg_load_per_task(int cpu)
4116 {
4117 struct rq *rq = cpu_rq(cpu);
4118 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4119 unsigned long load_avg = rq->cfs.runnable_load_avg;
4120
4121 if (nr_running)
4122 return load_avg / nr_running;
4123
4124 return 0;
4125 }
4126
4127 static void record_wakee(struct task_struct *p)
4128 {
4129 /*
4130 * Rough decay (wiping) for cost saving, don't worry
4131 * about the boundary, really active task won't care
4132 * about the loss.
4133 */
4134 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4135 current->wakee_flips >>= 1;
4136 current->wakee_flip_decay_ts = jiffies;
4137 }
4138
4139 if (current->last_wakee != p) {
4140 current->last_wakee = p;
4141 current->wakee_flips++;
4142 }
4143 }
4144
4145 static void task_waking_fair(struct task_struct *p)
4146 {
4147 struct sched_entity *se = &p->se;
4148 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4149 u64 min_vruntime;
4150
4151 #ifndef CONFIG_64BIT
4152 u64 min_vruntime_copy;
4153
4154 do {
4155 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4156 smp_rmb();
4157 min_vruntime = cfs_rq->min_vruntime;
4158 } while (min_vruntime != min_vruntime_copy);
4159 #else
4160 min_vruntime = cfs_rq->min_vruntime;
4161 #endif
4162
4163 se->vruntime -= min_vruntime;
4164 record_wakee(p);
4165 }
4166
4167 #ifdef CONFIG_FAIR_GROUP_SCHED
4168 /*
4169 * effective_load() calculates the load change as seen from the root_task_group
4170 *
4171 * Adding load to a group doesn't make a group heavier, but can cause movement
4172 * of group shares between cpus. Assuming the shares were perfectly aligned one
4173 * can calculate the shift in shares.
4174 *
4175 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4176 * on this @cpu and results in a total addition (subtraction) of @wg to the
4177 * total group weight.
4178 *
4179 * Given a runqueue weight distribution (rw_i) we can compute a shares
4180 * distribution (s_i) using:
4181 *
4182 * s_i = rw_i / \Sum rw_j (1)
4183 *
4184 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4185 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4186 * shares distribution (s_i):
4187 *
4188 * rw_i = { 2, 4, 1, 0 }
4189 * s_i = { 2/7, 4/7, 1/7, 0 }
4190 *
4191 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4192 * task used to run on and the CPU the waker is running on), we need to
4193 * compute the effect of waking a task on either CPU and, in case of a sync
4194 * wakeup, compute the effect of the current task going to sleep.
4195 *
4196 * So for a change of @wl to the local @cpu with an overall group weight change
4197 * of @wl we can compute the new shares distribution (s'_i) using:
4198 *
4199 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4200 *
4201 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4202 * differences in waking a task to CPU 0. The additional task changes the
4203 * weight and shares distributions like:
4204 *
4205 * rw'_i = { 3, 4, 1, 0 }
4206 * s'_i = { 3/8, 4/8, 1/8, 0 }
4207 *
4208 * We can then compute the difference in effective weight by using:
4209 *
4210 * dw_i = S * (s'_i - s_i) (3)
4211 *
4212 * Where 'S' is the group weight as seen by its parent.
4213 *
4214 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4215 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4216 * 4/7) times the weight of the group.
4217 */
4218 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4219 {
4220 struct sched_entity *se = tg->se[cpu];
4221
4222 if (!tg->parent) /* the trivial, non-cgroup case */
4223 return wl;
4224
4225 for_each_sched_entity(se) {
4226 long w, W;
4227
4228 tg = se->my_q->tg;
4229
4230 /*
4231 * W = @wg + \Sum rw_j
4232 */
4233 W = wg + calc_tg_weight(tg, se->my_q);
4234
4235 /*
4236 * w = rw_i + @wl
4237 */
4238 w = se->my_q->load.weight + wl;
4239
4240 /*
4241 * wl = S * s'_i; see (2)
4242 */
4243 if (W > 0 && w < W)
4244 wl = (w * tg->shares) / W;
4245 else
4246 wl = tg->shares;
4247
4248 /*
4249 * Per the above, wl is the new se->load.weight value; since
4250 * those are clipped to [MIN_SHARES, ...) do so now. See
4251 * calc_cfs_shares().
4252 */
4253 if (wl < MIN_SHARES)
4254 wl = MIN_SHARES;
4255
4256 /*
4257 * wl = dw_i = S * (s'_i - s_i); see (3)
4258 */
4259 wl -= se->load.weight;
4260
4261 /*
4262 * Recursively apply this logic to all parent groups to compute
4263 * the final effective load change on the root group. Since
4264 * only the @tg group gets extra weight, all parent groups can
4265 * only redistribute existing shares. @wl is the shift in shares
4266 * resulting from this level per the above.
4267 */
4268 wg = 0;
4269 }
4270
4271 return wl;
4272 }
4273 #else
4274
4275 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4276 {
4277 return wl;
4278 }
4279
4280 #endif
4281
4282 static int wake_wide(struct task_struct *p)
4283 {
4284 int factor = this_cpu_read(sd_llc_size);
4285
4286 /*
4287 * Yeah, it's the switching-frequency, could means many wakee or
4288 * rapidly switch, use factor here will just help to automatically
4289 * adjust the loose-degree, so bigger node will lead to more pull.
4290 */
4291 if (p->wakee_flips > factor) {
4292 /*
4293 * wakee is somewhat hot, it needs certain amount of cpu
4294 * resource, so if waker is far more hot, prefer to leave
4295 * it alone.
4296 */
4297 if (current->wakee_flips > (factor * p->wakee_flips))
4298 return 1;
4299 }
4300
4301 return 0;
4302 }
4303
4304 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4305 {
4306 s64 this_load, load;
4307 s64 this_eff_load, prev_eff_load;
4308 int idx, this_cpu, prev_cpu;
4309 struct task_group *tg;
4310 unsigned long weight;
4311 int balanced;
4312
4313 /*
4314 * If we wake multiple tasks be careful to not bounce
4315 * ourselves around too much.
4316 */
4317 if (wake_wide(p))
4318 return 0;
4319
4320 idx = sd->wake_idx;
4321 this_cpu = smp_processor_id();
4322 prev_cpu = task_cpu(p);
4323 load = source_load(prev_cpu, idx);
4324 this_load = target_load(this_cpu, idx);
4325
4326 /*
4327 * If sync wakeup then subtract the (maximum possible)
4328 * effect of the currently running task from the load
4329 * of the current CPU:
4330 */
4331 if (sync) {
4332 tg = task_group(current);
4333 weight = current->se.load.weight;
4334
4335 this_load += effective_load(tg, this_cpu, -weight, -weight);
4336 load += effective_load(tg, prev_cpu, 0, -weight);
4337 }
4338
4339 tg = task_group(p);
4340 weight = p->se.load.weight;
4341
4342 /*
4343 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4344 * due to the sync cause above having dropped this_load to 0, we'll
4345 * always have an imbalance, but there's really nothing you can do
4346 * about that, so that's good too.
4347 *
4348 * Otherwise check if either cpus are near enough in load to allow this
4349 * task to be woken on this_cpu.
4350 */
4351 this_eff_load = 100;
4352 this_eff_load *= capacity_of(prev_cpu);
4353
4354 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4355 prev_eff_load *= capacity_of(this_cpu);
4356
4357 if (this_load > 0) {
4358 this_eff_load *= this_load +
4359 effective_load(tg, this_cpu, weight, weight);
4360
4361 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4362 }
4363
4364 balanced = this_eff_load <= prev_eff_load;
4365
4366 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4367
4368 if (!balanced)
4369 return 0;
4370
4371 schedstat_inc(sd, ttwu_move_affine);
4372 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4373
4374 return 1;
4375 }
4376
4377 /*
4378 * find_idlest_group finds and returns the least busy CPU group within the
4379 * domain.
4380 */
4381 static struct sched_group *
4382 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4383 int this_cpu, int sd_flag)
4384 {
4385 struct sched_group *idlest = NULL, *group = sd->groups;
4386 unsigned long min_load = ULONG_MAX, this_load = 0;
4387 int load_idx = sd->forkexec_idx;
4388 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4389
4390 if (sd_flag & SD_BALANCE_WAKE)
4391 load_idx = sd->wake_idx;
4392
4393 do {
4394 unsigned long load, avg_load;
4395 int local_group;
4396 int i;
4397
4398 /* Skip over this group if it has no CPUs allowed */
4399 if (!cpumask_intersects(sched_group_cpus(group),
4400 tsk_cpus_allowed(p)))
4401 continue;
4402
4403 local_group = cpumask_test_cpu(this_cpu,
4404 sched_group_cpus(group));
4405
4406 /* Tally up the load of all CPUs in the group */
4407 avg_load = 0;
4408
4409 for_each_cpu(i, sched_group_cpus(group)) {
4410 /* Bias balancing toward cpus of our domain */
4411 if (local_group)
4412 load = source_load(i, load_idx);
4413 else
4414 load = target_load(i, load_idx);
4415
4416 avg_load += load;
4417 }
4418
4419 /* Adjust by relative CPU capacity of the group */
4420 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4421
4422 if (local_group) {
4423 this_load = avg_load;
4424 } else if (avg_load < min_load) {
4425 min_load = avg_load;
4426 idlest = group;
4427 }
4428 } while (group = group->next, group != sd->groups);
4429
4430 if (!idlest || 100*this_load < imbalance*min_load)
4431 return NULL;
4432 return idlest;
4433 }
4434
4435 /*
4436 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4437 */
4438 static int
4439 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4440 {
4441 unsigned long load, min_load = ULONG_MAX;
4442 unsigned int min_exit_latency = UINT_MAX;
4443 u64 latest_idle_timestamp = 0;
4444 int least_loaded_cpu = this_cpu;
4445 int shallowest_idle_cpu = -1;
4446 int i;
4447
4448 /* Traverse only the allowed CPUs */
4449 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4450 if (idle_cpu(i)) {
4451 struct rq *rq = cpu_rq(i);
4452 struct cpuidle_state *idle = idle_get_state(rq);
4453 if (idle && idle->exit_latency < min_exit_latency) {
4454 /*
4455 * We give priority to a CPU whose idle state
4456 * has the smallest exit latency irrespective
4457 * of any idle timestamp.
4458 */
4459 min_exit_latency = idle->exit_latency;
4460 latest_idle_timestamp = rq->idle_stamp;
4461 shallowest_idle_cpu = i;
4462 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4463 rq->idle_stamp > latest_idle_timestamp) {
4464 /*
4465 * If equal or no active idle state, then
4466 * the most recently idled CPU might have
4467 * a warmer cache.
4468 */
4469 latest_idle_timestamp = rq->idle_stamp;
4470 shallowest_idle_cpu = i;
4471 }
4472 } else {
4473 load = weighted_cpuload(i);
4474 if (load < min_load || (load == min_load && i == this_cpu)) {
4475 min_load = load;
4476 least_loaded_cpu = i;
4477 }
4478 }
4479 }
4480
4481 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4482 }
4483
4484 /*
4485 * Try and locate an idle CPU in the sched_domain.
4486 */
4487 static int select_idle_sibling(struct task_struct *p, int target)
4488 {
4489 struct sched_domain *sd;
4490 struct sched_group *sg;
4491 int i = task_cpu(p);
4492
4493 if (idle_cpu(target))
4494 return target;
4495
4496 /*
4497 * If the prevous cpu is cache affine and idle, don't be stupid.
4498 */
4499 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4500 return i;
4501
4502 /*
4503 * Otherwise, iterate the domains and find an elegible idle cpu.
4504 */
4505 sd = rcu_dereference(per_cpu(sd_llc, target));
4506 for_each_lower_domain(sd) {
4507 sg = sd->groups;
4508 do {
4509 if (!cpumask_intersects(sched_group_cpus(sg),
4510 tsk_cpus_allowed(p)))
4511 goto next;
4512
4513 for_each_cpu(i, sched_group_cpus(sg)) {
4514 if (i == target || !idle_cpu(i))
4515 goto next;
4516 }
4517
4518 target = cpumask_first_and(sched_group_cpus(sg),
4519 tsk_cpus_allowed(p));
4520 goto done;
4521 next:
4522 sg = sg->next;
4523 } while (sg != sd->groups);
4524 }
4525 done:
4526 return target;
4527 }
4528
4529 /*
4530 * select_task_rq_fair: Select target runqueue for the waking task in domains
4531 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4532 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4533 *
4534 * Balances load by selecting the idlest cpu in the idlest group, or under
4535 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4536 *
4537 * Returns the target cpu number.
4538 *
4539 * preempt must be disabled.
4540 */
4541 static int
4542 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4543 {
4544 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4545 int cpu = smp_processor_id();
4546 int new_cpu = cpu;
4547 int want_affine = 0;
4548 int sync = wake_flags & WF_SYNC;
4549
4550 if (p->nr_cpus_allowed == 1)
4551 return prev_cpu;
4552
4553 if (sd_flag & SD_BALANCE_WAKE)
4554 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4555
4556 rcu_read_lock();
4557 for_each_domain(cpu, tmp) {
4558 if (!(tmp->flags & SD_LOAD_BALANCE))
4559 continue;
4560
4561 /*
4562 * If both cpu and prev_cpu are part of this domain,
4563 * cpu is a valid SD_WAKE_AFFINE target.
4564 */
4565 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4566 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4567 affine_sd = tmp;
4568 break;
4569 }
4570
4571 if (tmp->flags & sd_flag)
4572 sd = tmp;
4573 }
4574
4575 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4576 prev_cpu = cpu;
4577
4578 if (sd_flag & SD_BALANCE_WAKE) {
4579 new_cpu = select_idle_sibling(p, prev_cpu);
4580 goto unlock;
4581 }
4582
4583 while (sd) {
4584 struct sched_group *group;
4585 int weight;
4586
4587 if (!(sd->flags & sd_flag)) {
4588 sd = sd->child;
4589 continue;
4590 }
4591
4592 group = find_idlest_group(sd, p, cpu, sd_flag);
4593 if (!group) {
4594 sd = sd->child;
4595 continue;
4596 }
4597
4598 new_cpu = find_idlest_cpu(group, p, cpu);
4599 if (new_cpu == -1 || new_cpu == cpu) {
4600 /* Now try balancing at a lower domain level of cpu */
4601 sd = sd->child;
4602 continue;
4603 }
4604
4605 /* Now try balancing at a lower domain level of new_cpu */
4606 cpu = new_cpu;
4607 weight = sd->span_weight;
4608 sd = NULL;
4609 for_each_domain(cpu, tmp) {
4610 if (weight <= tmp->span_weight)
4611 break;
4612 if (tmp->flags & sd_flag)
4613 sd = tmp;
4614 }
4615 /* while loop will break here if sd == NULL */
4616 }
4617 unlock:
4618 rcu_read_unlock();
4619
4620 return new_cpu;
4621 }
4622
4623 /*
4624 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4625 * cfs_rq_of(p) references at time of call are still valid and identify the
4626 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4627 * other assumptions, including the state of rq->lock, should be made.
4628 */
4629 static void
4630 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4631 {
4632 struct sched_entity *se = &p->se;
4633 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4634
4635 /*
4636 * Load tracking: accumulate removed load so that it can be processed
4637 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4638 * to blocked load iff they have a positive decay-count. It can never
4639 * be negative here since on-rq tasks have decay-count == 0.
4640 */
4641 if (se->avg.decay_count) {
4642 se->avg.decay_count = -__synchronize_entity_decay(se);
4643 atomic_long_add(se->avg.load_avg_contrib,
4644 &cfs_rq->removed_load);
4645 }
4646
4647 /* We have migrated, no longer consider this task hot */
4648 se->exec_start = 0;
4649 }
4650 #endif /* CONFIG_SMP */
4651
4652 static unsigned long
4653 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4654 {
4655 unsigned long gran = sysctl_sched_wakeup_granularity;
4656
4657 /*
4658 * Since its curr running now, convert the gran from real-time
4659 * to virtual-time in his units.
4660 *
4661 * By using 'se' instead of 'curr' we penalize light tasks, so
4662 * they get preempted easier. That is, if 'se' < 'curr' then
4663 * the resulting gran will be larger, therefore penalizing the
4664 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4665 * be smaller, again penalizing the lighter task.
4666 *
4667 * This is especially important for buddies when the leftmost
4668 * task is higher priority than the buddy.
4669 */
4670 return calc_delta_fair(gran, se);
4671 }
4672
4673 /*
4674 * Should 'se' preempt 'curr'.
4675 *
4676 * |s1
4677 * |s2
4678 * |s3
4679 * g
4680 * |<--->|c
4681 *
4682 * w(c, s1) = -1
4683 * w(c, s2) = 0
4684 * w(c, s3) = 1
4685 *
4686 */
4687 static int
4688 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4689 {
4690 s64 gran, vdiff = curr->vruntime - se->vruntime;
4691
4692 if (vdiff <= 0)
4693 return -1;
4694
4695 gran = wakeup_gran(curr, se);
4696 if (vdiff > gran)
4697 return 1;
4698
4699 return 0;
4700 }
4701
4702 static void set_last_buddy(struct sched_entity *se)
4703 {
4704 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4705 return;
4706
4707 for_each_sched_entity(se)
4708 cfs_rq_of(se)->last = se;
4709 }
4710
4711 static void set_next_buddy(struct sched_entity *se)
4712 {
4713 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4714 return;
4715
4716 for_each_sched_entity(se)
4717 cfs_rq_of(se)->next = se;
4718 }
4719
4720 static void set_skip_buddy(struct sched_entity *se)
4721 {
4722 for_each_sched_entity(se)
4723 cfs_rq_of(se)->skip = se;
4724 }
4725
4726 /*
4727 * Preempt the current task with a newly woken task if needed:
4728 */
4729 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4730 {
4731 struct task_struct *curr = rq->curr;
4732 struct sched_entity *se = &curr->se, *pse = &p->se;
4733 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4734 int scale = cfs_rq->nr_running >= sched_nr_latency;
4735 int next_buddy_marked = 0;
4736
4737 if (unlikely(se == pse))
4738 return;
4739
4740 /*
4741 * This is possible from callers such as attach_tasks(), in which we
4742 * unconditionally check_prempt_curr() after an enqueue (which may have
4743 * lead to a throttle). This both saves work and prevents false
4744 * next-buddy nomination below.
4745 */
4746 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4747 return;
4748
4749 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4750 set_next_buddy(pse);
4751 next_buddy_marked = 1;
4752 }
4753
4754 /*
4755 * We can come here with TIF_NEED_RESCHED already set from new task
4756 * wake up path.
4757 *
4758 * Note: this also catches the edge-case of curr being in a throttled
4759 * group (e.g. via set_curr_task), since update_curr() (in the
4760 * enqueue of curr) will have resulted in resched being set. This
4761 * prevents us from potentially nominating it as a false LAST_BUDDY
4762 * below.
4763 */
4764 if (test_tsk_need_resched(curr))
4765 return;
4766
4767 /* Idle tasks are by definition preempted by non-idle tasks. */
4768 if (unlikely(curr->policy == SCHED_IDLE) &&
4769 likely(p->policy != SCHED_IDLE))
4770 goto preempt;
4771
4772 /*
4773 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4774 * is driven by the tick):
4775 */
4776 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4777 return;
4778
4779 find_matching_se(&se, &pse);
4780 update_curr(cfs_rq_of(se));
4781 BUG_ON(!pse);
4782 if (wakeup_preempt_entity(se, pse) == 1) {
4783 /*
4784 * Bias pick_next to pick the sched entity that is
4785 * triggering this preemption.
4786 */
4787 if (!next_buddy_marked)
4788 set_next_buddy(pse);
4789 goto preempt;
4790 }
4791
4792 return;
4793
4794 preempt:
4795 resched_curr(rq);
4796 /*
4797 * Only set the backward buddy when the current task is still
4798 * on the rq. This can happen when a wakeup gets interleaved
4799 * with schedule on the ->pre_schedule() or idle_balance()
4800 * point, either of which can * drop the rq lock.
4801 *
4802 * Also, during early boot the idle thread is in the fair class,
4803 * for obvious reasons its a bad idea to schedule back to it.
4804 */
4805 if (unlikely(!se->on_rq || curr == rq->idle))
4806 return;
4807
4808 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4809 set_last_buddy(se);
4810 }
4811
4812 static struct task_struct *
4813 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4814 {
4815 struct cfs_rq *cfs_rq = &rq->cfs;
4816 struct sched_entity *se;
4817 struct task_struct *p;
4818 int new_tasks;
4819
4820 again:
4821 #ifdef CONFIG_FAIR_GROUP_SCHED
4822 if (!cfs_rq->nr_running)
4823 goto idle;
4824
4825 if (prev->sched_class != &fair_sched_class)
4826 goto simple;
4827
4828 /*
4829 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4830 * likely that a next task is from the same cgroup as the current.
4831 *
4832 * Therefore attempt to avoid putting and setting the entire cgroup
4833 * hierarchy, only change the part that actually changes.
4834 */
4835
4836 do {
4837 struct sched_entity *curr = cfs_rq->curr;
4838
4839 /*
4840 * Since we got here without doing put_prev_entity() we also
4841 * have to consider cfs_rq->curr. If it is still a runnable
4842 * entity, update_curr() will update its vruntime, otherwise
4843 * forget we've ever seen it.
4844 */
4845 if (curr && curr->on_rq)
4846 update_curr(cfs_rq);
4847 else
4848 curr = NULL;
4849
4850 /*
4851 * This call to check_cfs_rq_runtime() will do the throttle and
4852 * dequeue its entity in the parent(s). Therefore the 'simple'
4853 * nr_running test will indeed be correct.
4854 */
4855 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4856 goto simple;
4857
4858 se = pick_next_entity(cfs_rq, curr);
4859 cfs_rq = group_cfs_rq(se);
4860 } while (cfs_rq);
4861
4862 p = task_of(se);
4863
4864 /*
4865 * Since we haven't yet done put_prev_entity and if the selected task
4866 * is a different task than we started out with, try and touch the
4867 * least amount of cfs_rqs.
4868 */
4869 if (prev != p) {
4870 struct sched_entity *pse = &prev->se;
4871
4872 while (!(cfs_rq = is_same_group(se, pse))) {
4873 int se_depth = se->depth;
4874 int pse_depth = pse->depth;
4875
4876 if (se_depth <= pse_depth) {
4877 put_prev_entity(cfs_rq_of(pse), pse);
4878 pse = parent_entity(pse);
4879 }
4880 if (se_depth >= pse_depth) {
4881 set_next_entity(cfs_rq_of(se), se);
4882 se = parent_entity(se);
4883 }
4884 }
4885
4886 put_prev_entity(cfs_rq, pse);
4887 set_next_entity(cfs_rq, se);
4888 }
4889
4890 if (hrtick_enabled(rq))
4891 hrtick_start_fair(rq, p);
4892
4893 return p;
4894 simple:
4895 cfs_rq = &rq->cfs;
4896 #endif
4897
4898 if (!cfs_rq->nr_running)
4899 goto idle;
4900
4901 put_prev_task(rq, prev);
4902
4903 do {
4904 se = pick_next_entity(cfs_rq, NULL);
4905 set_next_entity(cfs_rq, se);
4906 cfs_rq = group_cfs_rq(se);
4907 } while (cfs_rq);
4908
4909 p = task_of(se);
4910
4911 if (hrtick_enabled(rq))
4912 hrtick_start_fair(rq, p);
4913
4914 return p;
4915
4916 idle:
4917 new_tasks = idle_balance(rq);
4918 /*
4919 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4920 * possible for any higher priority task to appear. In that case we
4921 * must re-start the pick_next_entity() loop.
4922 */
4923 if (new_tasks < 0)
4924 return RETRY_TASK;
4925
4926 if (new_tasks > 0)
4927 goto again;
4928
4929 return NULL;
4930 }
4931
4932 /*
4933 * Account for a descheduled task:
4934 */
4935 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4936 {
4937 struct sched_entity *se = &prev->se;
4938 struct cfs_rq *cfs_rq;
4939
4940 for_each_sched_entity(se) {
4941 cfs_rq = cfs_rq_of(se);
4942 put_prev_entity(cfs_rq, se);
4943 }
4944 }
4945
4946 /*
4947 * sched_yield() is very simple
4948 *
4949 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4950 */
4951 static void yield_task_fair(struct rq *rq)
4952 {
4953 struct task_struct *curr = rq->curr;
4954 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4955 struct sched_entity *se = &curr->se;
4956
4957 /*
4958 * Are we the only task in the tree?
4959 */
4960 if (unlikely(rq->nr_running == 1))
4961 return;
4962
4963 clear_buddies(cfs_rq, se);
4964
4965 if (curr->policy != SCHED_BATCH) {
4966 update_rq_clock(rq);
4967 /*
4968 * Update run-time statistics of the 'current'.
4969 */
4970 update_curr(cfs_rq);
4971 /*
4972 * Tell update_rq_clock() that we've just updated,
4973 * so we don't do microscopic update in schedule()
4974 * and double the fastpath cost.
4975 */
4976 rq->skip_clock_update = 1;
4977 }
4978
4979 set_skip_buddy(se);
4980 }
4981
4982 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4983 {
4984 struct sched_entity *se = &p->se;
4985
4986 /* throttled hierarchies are not runnable */
4987 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4988 return false;
4989
4990 /* Tell the scheduler that we'd really like pse to run next. */
4991 set_next_buddy(se);
4992
4993 yield_task_fair(rq);
4994
4995 return true;
4996 }
4997
4998 #ifdef CONFIG_SMP
4999 /**************************************************
5000 * Fair scheduling class load-balancing methods.
5001 *
5002 * BASICS
5003 *
5004 * The purpose of load-balancing is to achieve the same basic fairness the
5005 * per-cpu scheduler provides, namely provide a proportional amount of compute
5006 * time to each task. This is expressed in the following equation:
5007 *
5008 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5009 *
5010 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5011 * W_i,0 is defined as:
5012 *
5013 * W_i,0 = \Sum_j w_i,j (2)
5014 *
5015 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5016 * is derived from the nice value as per prio_to_weight[].
5017 *
5018 * The weight average is an exponential decay average of the instantaneous
5019 * weight:
5020 *
5021 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5022 *
5023 * C_i is the compute capacity of cpu i, typically it is the
5024 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5025 * can also include other factors [XXX].
5026 *
5027 * To achieve this balance we define a measure of imbalance which follows
5028 * directly from (1):
5029 *
5030 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5031 *
5032 * We them move tasks around to minimize the imbalance. In the continuous
5033 * function space it is obvious this converges, in the discrete case we get
5034 * a few fun cases generally called infeasible weight scenarios.
5035 *
5036 * [XXX expand on:
5037 * - infeasible weights;
5038 * - local vs global optima in the discrete case. ]
5039 *
5040 *
5041 * SCHED DOMAINS
5042 *
5043 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5044 * for all i,j solution, we create a tree of cpus that follows the hardware
5045 * topology where each level pairs two lower groups (or better). This results
5046 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5047 * tree to only the first of the previous level and we decrease the frequency
5048 * of load-balance at each level inv. proportional to the number of cpus in
5049 * the groups.
5050 *
5051 * This yields:
5052 *
5053 * log_2 n 1 n
5054 * \Sum { --- * --- * 2^i } = O(n) (5)
5055 * i = 0 2^i 2^i
5056 * `- size of each group
5057 * | | `- number of cpus doing load-balance
5058 * | `- freq
5059 * `- sum over all levels
5060 *
5061 * Coupled with a limit on how many tasks we can migrate every balance pass,
5062 * this makes (5) the runtime complexity of the balancer.
5063 *
5064 * An important property here is that each CPU is still (indirectly) connected
5065 * to every other cpu in at most O(log n) steps:
5066 *
5067 * The adjacency matrix of the resulting graph is given by:
5068 *
5069 * log_2 n
5070 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5071 * k = 0
5072 *
5073 * And you'll find that:
5074 *
5075 * A^(log_2 n)_i,j != 0 for all i,j (7)
5076 *
5077 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5078 * The task movement gives a factor of O(m), giving a convergence complexity
5079 * of:
5080 *
5081 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5082 *
5083 *
5084 * WORK CONSERVING
5085 *
5086 * In order to avoid CPUs going idle while there's still work to do, new idle
5087 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5088 * tree itself instead of relying on other CPUs to bring it work.
5089 *
5090 * This adds some complexity to both (5) and (8) but it reduces the total idle
5091 * time.
5092 *
5093 * [XXX more?]
5094 *
5095 *
5096 * CGROUPS
5097 *
5098 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5099 *
5100 * s_k,i
5101 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5102 * S_k
5103 *
5104 * Where
5105 *
5106 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5107 *
5108 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5109 *
5110 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5111 * property.
5112 *
5113 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5114 * rewrite all of this once again.]
5115 */
5116
5117 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5118
5119 enum fbq_type { regular, remote, all };
5120
5121 #define LBF_ALL_PINNED 0x01
5122 #define LBF_NEED_BREAK 0x02
5123 #define LBF_DST_PINNED 0x04
5124 #define LBF_SOME_PINNED 0x08
5125
5126 struct lb_env {
5127 struct sched_domain *sd;
5128
5129 struct rq *src_rq;
5130 int src_cpu;
5131
5132 int dst_cpu;
5133 struct rq *dst_rq;
5134
5135 struct cpumask *dst_grpmask;
5136 int new_dst_cpu;
5137 enum cpu_idle_type idle;
5138 long imbalance;
5139 /* The set of CPUs under consideration for load-balancing */
5140 struct cpumask *cpus;
5141
5142 unsigned int flags;
5143
5144 unsigned int loop;
5145 unsigned int loop_break;
5146 unsigned int loop_max;
5147
5148 enum fbq_type fbq_type;
5149 struct list_head tasks;
5150 };
5151
5152 /*
5153 * Is this task likely cache-hot:
5154 */
5155 static int task_hot(struct task_struct *p, struct lb_env *env)
5156 {
5157 s64 delta;
5158
5159 lockdep_assert_held(&env->src_rq->lock);
5160
5161 if (p->sched_class != &fair_sched_class)
5162 return 0;
5163
5164 if (unlikely(p->policy == SCHED_IDLE))
5165 return 0;
5166
5167 /*
5168 * Buddy candidates are cache hot:
5169 */
5170 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5171 (&p->se == cfs_rq_of(&p->se)->next ||
5172 &p->se == cfs_rq_of(&p->se)->last))
5173 return 1;
5174
5175 if (sysctl_sched_migration_cost == -1)
5176 return 1;
5177 if (sysctl_sched_migration_cost == 0)
5178 return 0;
5179
5180 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5181
5182 return delta < (s64)sysctl_sched_migration_cost;
5183 }
5184
5185 #ifdef CONFIG_NUMA_BALANCING
5186 /* Returns true if the destination node has incurred more faults */
5187 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5188 {
5189 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5190 int src_nid, dst_nid;
5191
5192 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5193 !(env->sd->flags & SD_NUMA)) {
5194 return false;
5195 }
5196
5197 src_nid = cpu_to_node(env->src_cpu);
5198 dst_nid = cpu_to_node(env->dst_cpu);
5199
5200 if (src_nid == dst_nid)
5201 return false;
5202
5203 if (numa_group) {
5204 /* Task is already in the group's interleave set. */
5205 if (node_isset(src_nid, numa_group->active_nodes))
5206 return false;
5207
5208 /* Task is moving into the group's interleave set. */
5209 if (node_isset(dst_nid, numa_group->active_nodes))
5210 return true;
5211
5212 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5213 }
5214
5215 /* Encourage migration to the preferred node. */
5216 if (dst_nid == p->numa_preferred_nid)
5217 return true;
5218
5219 return task_faults(p, dst_nid) > task_faults(p, src_nid);
5220 }
5221
5222
5223 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5224 {
5225 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5226 int src_nid, dst_nid;
5227
5228 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5229 return false;
5230
5231 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5232 return false;
5233
5234 src_nid = cpu_to_node(env->src_cpu);
5235 dst_nid = cpu_to_node(env->dst_cpu);
5236
5237 if (src_nid == dst_nid)
5238 return false;
5239
5240 if (numa_group) {
5241 /* Task is moving within/into the group's interleave set. */
5242 if (node_isset(dst_nid, numa_group->active_nodes))
5243 return false;
5244
5245 /* Task is moving out of the group's interleave set. */
5246 if (node_isset(src_nid, numa_group->active_nodes))
5247 return true;
5248
5249 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5250 }
5251
5252 /* Migrating away from the preferred node is always bad. */
5253 if (src_nid == p->numa_preferred_nid)
5254 return true;
5255
5256 return task_faults(p, dst_nid) < task_faults(p, src_nid);
5257 }
5258
5259 #else
5260 static inline bool migrate_improves_locality(struct task_struct *p,
5261 struct lb_env *env)
5262 {
5263 return false;
5264 }
5265
5266 static inline bool migrate_degrades_locality(struct task_struct *p,
5267 struct lb_env *env)
5268 {
5269 return false;
5270 }
5271 #endif
5272
5273 /*
5274 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5275 */
5276 static
5277 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5278 {
5279 int tsk_cache_hot = 0;
5280
5281 lockdep_assert_held(&env->src_rq->lock);
5282
5283 /*
5284 * We do not migrate tasks that are:
5285 * 1) throttled_lb_pair, or
5286 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5287 * 3) running (obviously), or
5288 * 4) are cache-hot on their current CPU.
5289 */
5290 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5291 return 0;
5292
5293 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5294 int cpu;
5295
5296 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5297
5298 env->flags |= LBF_SOME_PINNED;
5299
5300 /*
5301 * Remember if this task can be migrated to any other cpu in
5302 * our sched_group. We may want to revisit it if we couldn't
5303 * meet load balance goals by pulling other tasks on src_cpu.
5304 *
5305 * Also avoid computing new_dst_cpu if we have already computed
5306 * one in current iteration.
5307 */
5308 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5309 return 0;
5310
5311 /* Prevent to re-select dst_cpu via env's cpus */
5312 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5313 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5314 env->flags |= LBF_DST_PINNED;
5315 env->new_dst_cpu = cpu;
5316 break;
5317 }
5318 }
5319
5320 return 0;
5321 }
5322
5323 /* Record that we found atleast one task that could run on dst_cpu */
5324 env->flags &= ~LBF_ALL_PINNED;
5325
5326 if (task_running(env->src_rq, p)) {
5327 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5328 return 0;
5329 }
5330
5331 /*
5332 * Aggressive migration if:
5333 * 1) destination numa is preferred
5334 * 2) task is cache cold, or
5335 * 3) too many balance attempts have failed.
5336 */
5337 tsk_cache_hot = task_hot(p, env);
5338 if (!tsk_cache_hot)
5339 tsk_cache_hot = migrate_degrades_locality(p, env);
5340
5341 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5342 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5343 if (tsk_cache_hot) {
5344 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5345 schedstat_inc(p, se.statistics.nr_forced_migrations);
5346 }
5347 return 1;
5348 }
5349
5350 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5351 return 0;
5352 }
5353
5354 /*
5355 * detach_task() -- detach the task for the migration specified in env
5356 */
5357 static void detach_task(struct task_struct *p, struct lb_env *env)
5358 {
5359 lockdep_assert_held(&env->src_rq->lock);
5360
5361 deactivate_task(env->src_rq, p, 0);
5362 p->on_rq = TASK_ON_RQ_MIGRATING;
5363 set_task_cpu(p, env->dst_cpu);
5364 }
5365
5366 /*
5367 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5368 * part of active balancing operations within "domain".
5369 *
5370 * Returns a task if successful and NULL otherwise.
5371 */
5372 static struct task_struct *detach_one_task(struct lb_env *env)
5373 {
5374 struct task_struct *p, *n;
5375
5376 lockdep_assert_held(&env->src_rq->lock);
5377
5378 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5379 if (!can_migrate_task(p, env))
5380 continue;
5381
5382 detach_task(p, env);
5383
5384 /*
5385 * Right now, this is only the second place where
5386 * lb_gained[env->idle] is updated (other is detach_tasks)
5387 * so we can safely collect stats here rather than
5388 * inside detach_tasks().
5389 */
5390 schedstat_inc(env->sd, lb_gained[env->idle]);
5391 return p;
5392 }
5393 return NULL;
5394 }
5395
5396 static const unsigned int sched_nr_migrate_break = 32;
5397
5398 /*
5399 * detach_tasks() -- tries to detach up to imbalance weighted load from
5400 * busiest_rq, as part of a balancing operation within domain "sd".
5401 *
5402 * Returns number of detached tasks if successful and 0 otherwise.
5403 */
5404 static int detach_tasks(struct lb_env *env)
5405 {
5406 struct list_head *tasks = &env->src_rq->cfs_tasks;
5407 struct task_struct *p;
5408 unsigned long load;
5409 int detached = 0;
5410
5411 lockdep_assert_held(&env->src_rq->lock);
5412
5413 if (env->imbalance <= 0)
5414 return 0;
5415
5416 while (!list_empty(tasks)) {
5417 p = list_first_entry(tasks, struct task_struct, se.group_node);
5418
5419 env->loop++;
5420 /* We've more or less seen every task there is, call it quits */
5421 if (env->loop > env->loop_max)
5422 break;
5423
5424 /* take a breather every nr_migrate tasks */
5425 if (env->loop > env->loop_break) {
5426 env->loop_break += sched_nr_migrate_break;
5427 env->flags |= LBF_NEED_BREAK;
5428 break;
5429 }
5430
5431 if (!can_migrate_task(p, env))
5432 goto next;
5433
5434 load = task_h_load(p);
5435
5436 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5437 goto next;
5438
5439 if ((load / 2) > env->imbalance)
5440 goto next;
5441
5442 detach_task(p, env);
5443 list_add(&p->se.group_node, &env->tasks);
5444
5445 detached++;
5446 env->imbalance -= load;
5447
5448 #ifdef CONFIG_PREEMPT
5449 /*
5450 * NEWIDLE balancing is a source of latency, so preemptible
5451 * kernels will stop after the first task is detached to minimize
5452 * the critical section.
5453 */
5454 if (env->idle == CPU_NEWLY_IDLE)
5455 break;
5456 #endif
5457
5458 /*
5459 * We only want to steal up to the prescribed amount of
5460 * weighted load.
5461 */
5462 if (env->imbalance <= 0)
5463 break;
5464
5465 continue;
5466 next:
5467 list_move_tail(&p->se.group_node, tasks);
5468 }
5469
5470 /*
5471 * Right now, this is one of only two places we collect this stat
5472 * so we can safely collect detach_one_task() stats here rather
5473 * than inside detach_one_task().
5474 */
5475 schedstat_add(env->sd, lb_gained[env->idle], detached);
5476
5477 return detached;
5478 }
5479
5480 /*
5481 * attach_task() -- attach the task detached by detach_task() to its new rq.
5482 */
5483 static void attach_task(struct rq *rq, struct task_struct *p)
5484 {
5485 lockdep_assert_held(&rq->lock);
5486
5487 BUG_ON(task_rq(p) != rq);
5488 p->on_rq = TASK_ON_RQ_QUEUED;
5489 activate_task(rq, p, 0);
5490 check_preempt_curr(rq, p, 0);
5491 }
5492
5493 /*
5494 * attach_one_task() -- attaches the task returned from detach_one_task() to
5495 * its new rq.
5496 */
5497 static void attach_one_task(struct rq *rq, struct task_struct *p)
5498 {
5499 raw_spin_lock(&rq->lock);
5500 attach_task(rq, p);
5501 raw_spin_unlock(&rq->lock);
5502 }
5503
5504 /*
5505 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5506 * new rq.
5507 */
5508 static void attach_tasks(struct lb_env *env)
5509 {
5510 struct list_head *tasks = &env->tasks;
5511 struct task_struct *p;
5512
5513 raw_spin_lock(&env->dst_rq->lock);
5514
5515 while (!list_empty(tasks)) {
5516 p = list_first_entry(tasks, struct task_struct, se.group_node);
5517 list_del_init(&p->se.group_node);
5518
5519 attach_task(env->dst_rq, p);
5520 }
5521
5522 raw_spin_unlock(&env->dst_rq->lock);
5523 }
5524
5525 #ifdef CONFIG_FAIR_GROUP_SCHED
5526 /*
5527 * update tg->load_weight by folding this cpu's load_avg
5528 */
5529 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5530 {
5531 struct sched_entity *se = tg->se[cpu];
5532 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5533
5534 /* throttled entities do not contribute to load */
5535 if (throttled_hierarchy(cfs_rq))
5536 return;
5537
5538 update_cfs_rq_blocked_load(cfs_rq, 1);
5539
5540 if (se) {
5541 update_entity_load_avg(se, 1);
5542 /*
5543 * We pivot on our runnable average having decayed to zero for
5544 * list removal. This generally implies that all our children
5545 * have also been removed (modulo rounding error or bandwidth
5546 * control); however, such cases are rare and we can fix these
5547 * at enqueue.
5548 *
5549 * TODO: fix up out-of-order children on enqueue.
5550 */
5551 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5552 list_del_leaf_cfs_rq(cfs_rq);
5553 } else {
5554 struct rq *rq = rq_of(cfs_rq);
5555 update_rq_runnable_avg(rq, rq->nr_running);
5556 }
5557 }
5558
5559 static void update_blocked_averages(int cpu)
5560 {
5561 struct rq *rq = cpu_rq(cpu);
5562 struct cfs_rq *cfs_rq;
5563 unsigned long flags;
5564
5565 raw_spin_lock_irqsave(&rq->lock, flags);
5566 update_rq_clock(rq);
5567 /*
5568 * Iterates the task_group tree in a bottom up fashion, see
5569 * list_add_leaf_cfs_rq() for details.
5570 */
5571 for_each_leaf_cfs_rq(rq, cfs_rq) {
5572 /*
5573 * Note: We may want to consider periodically releasing
5574 * rq->lock about these updates so that creating many task
5575 * groups does not result in continually extending hold time.
5576 */
5577 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5578 }
5579
5580 raw_spin_unlock_irqrestore(&rq->lock, flags);
5581 }
5582
5583 /*
5584 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5585 * This needs to be done in a top-down fashion because the load of a child
5586 * group is a fraction of its parents load.
5587 */
5588 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5589 {
5590 struct rq *rq = rq_of(cfs_rq);
5591 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5592 unsigned long now = jiffies;
5593 unsigned long load;
5594
5595 if (cfs_rq->last_h_load_update == now)
5596 return;
5597
5598 cfs_rq->h_load_next = NULL;
5599 for_each_sched_entity(se) {
5600 cfs_rq = cfs_rq_of(se);
5601 cfs_rq->h_load_next = se;
5602 if (cfs_rq->last_h_load_update == now)
5603 break;
5604 }
5605
5606 if (!se) {
5607 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5608 cfs_rq->last_h_load_update = now;
5609 }
5610
5611 while ((se = cfs_rq->h_load_next) != NULL) {
5612 load = cfs_rq->h_load;
5613 load = div64_ul(load * se->avg.load_avg_contrib,
5614 cfs_rq->runnable_load_avg + 1);
5615 cfs_rq = group_cfs_rq(se);
5616 cfs_rq->h_load = load;
5617 cfs_rq->last_h_load_update = now;
5618 }
5619 }
5620
5621 static unsigned long task_h_load(struct task_struct *p)
5622 {
5623 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5624
5625 update_cfs_rq_h_load(cfs_rq);
5626 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5627 cfs_rq->runnable_load_avg + 1);
5628 }
5629 #else
5630 static inline void update_blocked_averages(int cpu)
5631 {
5632 }
5633
5634 static unsigned long task_h_load(struct task_struct *p)
5635 {
5636 return p->se.avg.load_avg_contrib;
5637 }
5638 #endif
5639
5640 /********** Helpers for find_busiest_group ************************/
5641
5642 enum group_type {
5643 group_other = 0,
5644 group_imbalanced,
5645 group_overloaded,
5646 };
5647
5648 /*
5649 * sg_lb_stats - stats of a sched_group required for load_balancing
5650 */
5651 struct sg_lb_stats {
5652 unsigned long avg_load; /*Avg load across the CPUs of the group */
5653 unsigned long group_load; /* Total load over the CPUs of the group */
5654 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5655 unsigned long load_per_task;
5656 unsigned long group_capacity;
5657 unsigned int sum_nr_running; /* Nr tasks running in the group */
5658 unsigned int group_capacity_factor;
5659 unsigned int idle_cpus;
5660 unsigned int group_weight;
5661 enum group_type group_type;
5662 int group_has_free_capacity;
5663 #ifdef CONFIG_NUMA_BALANCING
5664 unsigned int nr_numa_running;
5665 unsigned int nr_preferred_running;
5666 #endif
5667 };
5668
5669 /*
5670 * sd_lb_stats - Structure to store the statistics of a sched_domain
5671 * during load balancing.
5672 */
5673 struct sd_lb_stats {
5674 struct sched_group *busiest; /* Busiest group in this sd */
5675 struct sched_group *local; /* Local group in this sd */
5676 unsigned long total_load; /* Total load of all groups in sd */
5677 unsigned long total_capacity; /* Total capacity of all groups in sd */
5678 unsigned long avg_load; /* Average load across all groups in sd */
5679
5680 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5681 struct sg_lb_stats local_stat; /* Statistics of the local group */
5682 };
5683
5684 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5685 {
5686 /*
5687 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5688 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5689 * We must however clear busiest_stat::avg_load because
5690 * update_sd_pick_busiest() reads this before assignment.
5691 */
5692 *sds = (struct sd_lb_stats){
5693 .busiest = NULL,
5694 .local = NULL,
5695 .total_load = 0UL,
5696 .total_capacity = 0UL,
5697 .busiest_stat = {
5698 .avg_load = 0UL,
5699 .sum_nr_running = 0,
5700 .group_type = group_other,
5701 },
5702 };
5703 }
5704
5705 /**
5706 * get_sd_load_idx - Obtain the load index for a given sched domain.
5707 * @sd: The sched_domain whose load_idx is to be obtained.
5708 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5709 *
5710 * Return: The load index.
5711 */
5712 static inline int get_sd_load_idx(struct sched_domain *sd,
5713 enum cpu_idle_type idle)
5714 {
5715 int load_idx;
5716
5717 switch (idle) {
5718 case CPU_NOT_IDLE:
5719 load_idx = sd->busy_idx;
5720 break;
5721
5722 case CPU_NEWLY_IDLE:
5723 load_idx = sd->newidle_idx;
5724 break;
5725 default:
5726 load_idx = sd->idle_idx;
5727 break;
5728 }
5729
5730 return load_idx;
5731 }
5732
5733 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5734 {
5735 return SCHED_CAPACITY_SCALE;
5736 }
5737
5738 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5739 {
5740 return default_scale_capacity(sd, cpu);
5741 }
5742
5743 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5744 {
5745 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5746 return sd->smt_gain / sd->span_weight;
5747
5748 return SCHED_CAPACITY_SCALE;
5749 }
5750
5751 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5752 {
5753 return default_scale_cpu_capacity(sd, cpu);
5754 }
5755
5756 static unsigned long scale_rt_capacity(int cpu)
5757 {
5758 struct rq *rq = cpu_rq(cpu);
5759 u64 total, available, age_stamp, avg;
5760 s64 delta;
5761
5762 /*
5763 * Since we're reading these variables without serialization make sure
5764 * we read them once before doing sanity checks on them.
5765 */
5766 age_stamp = ACCESS_ONCE(rq->age_stamp);
5767 avg = ACCESS_ONCE(rq->rt_avg);
5768
5769 delta = rq_clock(rq) - age_stamp;
5770 if (unlikely(delta < 0))
5771 delta = 0;
5772
5773 total = sched_avg_period() + delta;
5774
5775 if (unlikely(total < avg)) {
5776 /* Ensures that capacity won't end up being negative */
5777 available = 0;
5778 } else {
5779 available = total - avg;
5780 }
5781
5782 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5783 total = SCHED_CAPACITY_SCALE;
5784
5785 total >>= SCHED_CAPACITY_SHIFT;
5786
5787 return div_u64(available, total);
5788 }
5789
5790 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5791 {
5792 unsigned long capacity = SCHED_CAPACITY_SCALE;
5793 struct sched_group *sdg = sd->groups;
5794
5795 if (sched_feat(ARCH_CAPACITY))
5796 capacity *= arch_scale_cpu_capacity(sd, cpu);
5797 else
5798 capacity *= default_scale_cpu_capacity(sd, cpu);
5799
5800 capacity >>= SCHED_CAPACITY_SHIFT;
5801
5802 sdg->sgc->capacity_orig = capacity;
5803
5804 if (sched_feat(ARCH_CAPACITY))
5805 capacity *= arch_scale_freq_capacity(sd, cpu);
5806 else
5807 capacity *= default_scale_capacity(sd, cpu);
5808
5809 capacity >>= SCHED_CAPACITY_SHIFT;
5810
5811 capacity *= scale_rt_capacity(cpu);
5812 capacity >>= SCHED_CAPACITY_SHIFT;
5813
5814 if (!capacity)
5815 capacity = 1;
5816
5817 cpu_rq(cpu)->cpu_capacity = capacity;
5818 sdg->sgc->capacity = capacity;
5819 }
5820
5821 void update_group_capacity(struct sched_domain *sd, int cpu)
5822 {
5823 struct sched_domain *child = sd->child;
5824 struct sched_group *group, *sdg = sd->groups;
5825 unsigned long capacity, capacity_orig;
5826 unsigned long interval;
5827
5828 interval = msecs_to_jiffies(sd->balance_interval);
5829 interval = clamp(interval, 1UL, max_load_balance_interval);
5830 sdg->sgc->next_update = jiffies + interval;
5831
5832 if (!child) {
5833 update_cpu_capacity(sd, cpu);
5834 return;
5835 }
5836
5837 capacity_orig = capacity = 0;
5838
5839 if (child->flags & SD_OVERLAP) {
5840 /*
5841 * SD_OVERLAP domains cannot assume that child groups
5842 * span the current group.
5843 */
5844
5845 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5846 struct sched_group_capacity *sgc;
5847 struct rq *rq = cpu_rq(cpu);
5848
5849 /*
5850 * build_sched_domains() -> init_sched_groups_capacity()
5851 * gets here before we've attached the domains to the
5852 * runqueues.
5853 *
5854 * Use capacity_of(), which is set irrespective of domains
5855 * in update_cpu_capacity().
5856 *
5857 * This avoids capacity/capacity_orig from being 0 and
5858 * causing divide-by-zero issues on boot.
5859 *
5860 * Runtime updates will correct capacity_orig.
5861 */
5862 if (unlikely(!rq->sd)) {
5863 capacity_orig += capacity_of(cpu);
5864 capacity += capacity_of(cpu);
5865 continue;
5866 }
5867
5868 sgc = rq->sd->groups->sgc;
5869 capacity_orig += sgc->capacity_orig;
5870 capacity += sgc->capacity;
5871 }
5872 } else {
5873 /*
5874 * !SD_OVERLAP domains can assume that child groups
5875 * span the current group.
5876 */
5877
5878 group = child->groups;
5879 do {
5880 capacity_orig += group->sgc->capacity_orig;
5881 capacity += group->sgc->capacity;
5882 group = group->next;
5883 } while (group != child->groups);
5884 }
5885
5886 sdg->sgc->capacity_orig = capacity_orig;
5887 sdg->sgc->capacity = capacity;
5888 }
5889
5890 /*
5891 * Try and fix up capacity for tiny siblings, this is needed when
5892 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5893 * which on its own isn't powerful enough.
5894 *
5895 * See update_sd_pick_busiest() and check_asym_packing().
5896 */
5897 static inline int
5898 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5899 {
5900 /*
5901 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
5902 */
5903 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
5904 return 0;
5905
5906 /*
5907 * If ~90% of the cpu_capacity is still there, we're good.
5908 */
5909 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
5910 return 1;
5911
5912 return 0;
5913 }
5914
5915 /*
5916 * Group imbalance indicates (and tries to solve) the problem where balancing
5917 * groups is inadequate due to tsk_cpus_allowed() constraints.
5918 *
5919 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5920 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5921 * Something like:
5922 *
5923 * { 0 1 2 3 } { 4 5 6 7 }
5924 * * * * *
5925 *
5926 * If we were to balance group-wise we'd place two tasks in the first group and
5927 * two tasks in the second group. Clearly this is undesired as it will overload
5928 * cpu 3 and leave one of the cpus in the second group unused.
5929 *
5930 * The current solution to this issue is detecting the skew in the first group
5931 * by noticing the lower domain failed to reach balance and had difficulty
5932 * moving tasks due to affinity constraints.
5933 *
5934 * When this is so detected; this group becomes a candidate for busiest; see
5935 * update_sd_pick_busiest(). And calculate_imbalance() and
5936 * find_busiest_group() avoid some of the usual balance conditions to allow it
5937 * to create an effective group imbalance.
5938 *
5939 * This is a somewhat tricky proposition since the next run might not find the
5940 * group imbalance and decide the groups need to be balanced again. A most
5941 * subtle and fragile situation.
5942 */
5943
5944 static inline int sg_imbalanced(struct sched_group *group)
5945 {
5946 return group->sgc->imbalance;
5947 }
5948
5949 /*
5950 * Compute the group capacity factor.
5951 *
5952 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
5953 * first dividing out the smt factor and computing the actual number of cores
5954 * and limit unit capacity with that.
5955 */
5956 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
5957 {
5958 unsigned int capacity_factor, smt, cpus;
5959 unsigned int capacity, capacity_orig;
5960
5961 capacity = group->sgc->capacity;
5962 capacity_orig = group->sgc->capacity_orig;
5963 cpus = group->group_weight;
5964
5965 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
5966 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
5967 capacity_factor = cpus / smt; /* cores */
5968
5969 capacity_factor = min_t(unsigned,
5970 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
5971 if (!capacity_factor)
5972 capacity_factor = fix_small_capacity(env->sd, group);
5973
5974 return capacity_factor;
5975 }
5976
5977 static enum group_type
5978 group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
5979 {
5980 if (sgs->sum_nr_running > sgs->group_capacity_factor)
5981 return group_overloaded;
5982
5983 if (sg_imbalanced(group))
5984 return group_imbalanced;
5985
5986 return group_other;
5987 }
5988
5989 /**
5990 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5991 * @env: The load balancing environment.
5992 * @group: sched_group whose statistics are to be updated.
5993 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5994 * @local_group: Does group contain this_cpu.
5995 * @sgs: variable to hold the statistics for this group.
5996 * @overload: Indicate more than one runnable task for any CPU.
5997 */
5998 static inline void update_sg_lb_stats(struct lb_env *env,
5999 struct sched_group *group, int load_idx,
6000 int local_group, struct sg_lb_stats *sgs,
6001 bool *overload)
6002 {
6003 unsigned long load;
6004 int i;
6005
6006 memset(sgs, 0, sizeof(*sgs));
6007
6008 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6009 struct rq *rq = cpu_rq(i);
6010
6011 /* Bias balancing toward cpus of our domain */
6012 if (local_group)
6013 load = target_load(i, load_idx);
6014 else
6015 load = source_load(i, load_idx);
6016
6017 sgs->group_load += load;
6018 sgs->sum_nr_running += rq->cfs.h_nr_running;
6019
6020 if (rq->nr_running > 1)
6021 *overload = true;
6022
6023 #ifdef CONFIG_NUMA_BALANCING
6024 sgs->nr_numa_running += rq->nr_numa_running;
6025 sgs->nr_preferred_running += rq->nr_preferred_running;
6026 #endif
6027 sgs->sum_weighted_load += weighted_cpuload(i);
6028 if (idle_cpu(i))
6029 sgs->idle_cpus++;
6030 }
6031
6032 /* Adjust by relative CPU capacity of the group */
6033 sgs->group_capacity = group->sgc->capacity;
6034 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6035
6036 if (sgs->sum_nr_running)
6037 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6038
6039 sgs->group_weight = group->group_weight;
6040 sgs->group_capacity_factor = sg_capacity_factor(env, group);
6041 sgs->group_type = group_classify(group, sgs);
6042
6043 if (sgs->group_capacity_factor > sgs->sum_nr_running)
6044 sgs->group_has_free_capacity = 1;
6045 }
6046
6047 /**
6048 * update_sd_pick_busiest - return 1 on busiest group
6049 * @env: The load balancing environment.
6050 * @sds: sched_domain statistics
6051 * @sg: sched_group candidate to be checked for being the busiest
6052 * @sgs: sched_group statistics
6053 *
6054 * Determine if @sg is a busier group than the previously selected
6055 * busiest group.
6056 *
6057 * Return: %true if @sg is a busier group than the previously selected
6058 * busiest group. %false otherwise.
6059 */
6060 static bool update_sd_pick_busiest(struct lb_env *env,
6061 struct sd_lb_stats *sds,
6062 struct sched_group *sg,
6063 struct sg_lb_stats *sgs)
6064 {
6065 struct sg_lb_stats *busiest = &sds->busiest_stat;
6066
6067 if (sgs->group_type > busiest->group_type)
6068 return true;
6069
6070 if (sgs->group_type < busiest->group_type)
6071 return false;
6072
6073 if (sgs->avg_load <= busiest->avg_load)
6074 return false;
6075
6076 /* This is the busiest node in its class. */
6077 if (!(env->sd->flags & SD_ASYM_PACKING))
6078 return true;
6079
6080 /*
6081 * ASYM_PACKING needs to move all the work to the lowest
6082 * numbered CPUs in the group, therefore mark all groups
6083 * higher than ourself as busy.
6084 */
6085 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6086 if (!sds->busiest)
6087 return true;
6088
6089 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6090 return true;
6091 }
6092
6093 return false;
6094 }
6095
6096 #ifdef CONFIG_NUMA_BALANCING
6097 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6098 {
6099 if (sgs->sum_nr_running > sgs->nr_numa_running)
6100 return regular;
6101 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6102 return remote;
6103 return all;
6104 }
6105
6106 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6107 {
6108 if (rq->nr_running > rq->nr_numa_running)
6109 return regular;
6110 if (rq->nr_running > rq->nr_preferred_running)
6111 return remote;
6112 return all;
6113 }
6114 #else
6115 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6116 {
6117 return all;
6118 }
6119
6120 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6121 {
6122 return regular;
6123 }
6124 #endif /* CONFIG_NUMA_BALANCING */
6125
6126 /**
6127 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6128 * @env: The load balancing environment.
6129 * @sds: variable to hold the statistics for this sched_domain.
6130 */
6131 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6132 {
6133 struct sched_domain *child = env->sd->child;
6134 struct sched_group *sg = env->sd->groups;
6135 struct sg_lb_stats tmp_sgs;
6136 int load_idx, prefer_sibling = 0;
6137 bool overload = false;
6138
6139 if (child && child->flags & SD_PREFER_SIBLING)
6140 prefer_sibling = 1;
6141
6142 load_idx = get_sd_load_idx(env->sd, env->idle);
6143
6144 do {
6145 struct sg_lb_stats *sgs = &tmp_sgs;
6146 int local_group;
6147
6148 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6149 if (local_group) {
6150 sds->local = sg;
6151 sgs = &sds->local_stat;
6152
6153 if (env->idle != CPU_NEWLY_IDLE ||
6154 time_after_eq(jiffies, sg->sgc->next_update))
6155 update_group_capacity(env->sd, env->dst_cpu);
6156 }
6157
6158 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6159 &overload);
6160
6161 if (local_group)
6162 goto next_group;
6163
6164 /*
6165 * In case the child domain prefers tasks go to siblings
6166 * first, lower the sg capacity factor to one so that we'll try
6167 * and move all the excess tasks away. We lower the capacity
6168 * of a group only if the local group has the capacity to fit
6169 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6170 * extra check prevents the case where you always pull from the
6171 * heaviest group when it is already under-utilized (possible
6172 * with a large weight task outweighs the tasks on the system).
6173 */
6174 if (prefer_sibling && sds->local &&
6175 sds->local_stat.group_has_free_capacity)
6176 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6177
6178 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6179 sds->busiest = sg;
6180 sds->busiest_stat = *sgs;
6181 }
6182
6183 next_group:
6184 /* Now, start updating sd_lb_stats */
6185 sds->total_load += sgs->group_load;
6186 sds->total_capacity += sgs->group_capacity;
6187
6188 sg = sg->next;
6189 } while (sg != env->sd->groups);
6190
6191 if (env->sd->flags & SD_NUMA)
6192 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6193
6194 if (!env->sd->parent) {
6195 /* update overload indicator if we are at root domain */
6196 if (env->dst_rq->rd->overload != overload)
6197 env->dst_rq->rd->overload = overload;
6198 }
6199
6200 }
6201
6202 /**
6203 * check_asym_packing - Check to see if the group is packed into the
6204 * sched doman.
6205 *
6206 * This is primarily intended to used at the sibling level. Some
6207 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6208 * case of POWER7, it can move to lower SMT modes only when higher
6209 * threads are idle. When in lower SMT modes, the threads will
6210 * perform better since they share less core resources. Hence when we
6211 * have idle threads, we want them to be the higher ones.
6212 *
6213 * This packing function is run on idle threads. It checks to see if
6214 * the busiest CPU in this domain (core in the P7 case) has a higher
6215 * CPU number than the packing function is being run on. Here we are
6216 * assuming lower CPU number will be equivalent to lower a SMT thread
6217 * number.
6218 *
6219 * Return: 1 when packing is required and a task should be moved to
6220 * this CPU. The amount of the imbalance is returned in *imbalance.
6221 *
6222 * @env: The load balancing environment.
6223 * @sds: Statistics of the sched_domain which is to be packed
6224 */
6225 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6226 {
6227 int busiest_cpu;
6228
6229 if (!(env->sd->flags & SD_ASYM_PACKING))
6230 return 0;
6231
6232 if (!sds->busiest)
6233 return 0;
6234
6235 busiest_cpu = group_first_cpu(sds->busiest);
6236 if (env->dst_cpu > busiest_cpu)
6237 return 0;
6238
6239 env->imbalance = DIV_ROUND_CLOSEST(
6240 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6241 SCHED_CAPACITY_SCALE);
6242
6243 return 1;
6244 }
6245
6246 /**
6247 * fix_small_imbalance - Calculate the minor imbalance that exists
6248 * amongst the groups of a sched_domain, during
6249 * load balancing.
6250 * @env: The load balancing environment.
6251 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6252 */
6253 static inline
6254 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6255 {
6256 unsigned long tmp, capa_now = 0, capa_move = 0;
6257 unsigned int imbn = 2;
6258 unsigned long scaled_busy_load_per_task;
6259 struct sg_lb_stats *local, *busiest;
6260
6261 local = &sds->local_stat;
6262 busiest = &sds->busiest_stat;
6263
6264 if (!local->sum_nr_running)
6265 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6266 else if (busiest->load_per_task > local->load_per_task)
6267 imbn = 1;
6268
6269 scaled_busy_load_per_task =
6270 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6271 busiest->group_capacity;
6272
6273 if (busiest->avg_load + scaled_busy_load_per_task >=
6274 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6275 env->imbalance = busiest->load_per_task;
6276 return;
6277 }
6278
6279 /*
6280 * OK, we don't have enough imbalance to justify moving tasks,
6281 * however we may be able to increase total CPU capacity used by
6282 * moving them.
6283 */
6284
6285 capa_now += busiest->group_capacity *
6286 min(busiest->load_per_task, busiest->avg_load);
6287 capa_now += local->group_capacity *
6288 min(local->load_per_task, local->avg_load);
6289 capa_now /= SCHED_CAPACITY_SCALE;
6290
6291 /* Amount of load we'd subtract */
6292 if (busiest->avg_load > scaled_busy_load_per_task) {
6293 capa_move += busiest->group_capacity *
6294 min(busiest->load_per_task,
6295 busiest->avg_load - scaled_busy_load_per_task);
6296 }
6297
6298 /* Amount of load we'd add */
6299 if (busiest->avg_load * busiest->group_capacity <
6300 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6301 tmp = (busiest->avg_load * busiest->group_capacity) /
6302 local->group_capacity;
6303 } else {
6304 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6305 local->group_capacity;
6306 }
6307 capa_move += local->group_capacity *
6308 min(local->load_per_task, local->avg_load + tmp);
6309 capa_move /= SCHED_CAPACITY_SCALE;
6310
6311 /* Move if we gain throughput */
6312 if (capa_move > capa_now)
6313 env->imbalance = busiest->load_per_task;
6314 }
6315
6316 /**
6317 * calculate_imbalance - Calculate the amount of imbalance present within the
6318 * groups of a given sched_domain during load balance.
6319 * @env: load balance environment
6320 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6321 */
6322 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6323 {
6324 unsigned long max_pull, load_above_capacity = ~0UL;
6325 struct sg_lb_stats *local, *busiest;
6326
6327 local = &sds->local_stat;
6328 busiest = &sds->busiest_stat;
6329
6330 if (busiest->group_type == group_imbalanced) {
6331 /*
6332 * In the group_imb case we cannot rely on group-wide averages
6333 * to ensure cpu-load equilibrium, look at wider averages. XXX
6334 */
6335 busiest->load_per_task =
6336 min(busiest->load_per_task, sds->avg_load);
6337 }
6338
6339 /*
6340 * In the presence of smp nice balancing, certain scenarios can have
6341 * max load less than avg load(as we skip the groups at or below
6342 * its cpu_capacity, while calculating max_load..)
6343 */
6344 if (busiest->avg_load <= sds->avg_load ||
6345 local->avg_load >= sds->avg_load) {
6346 env->imbalance = 0;
6347 return fix_small_imbalance(env, sds);
6348 }
6349
6350 /*
6351 * If there aren't any idle cpus, avoid creating some.
6352 */
6353 if (busiest->group_type == group_overloaded &&
6354 local->group_type == group_overloaded) {
6355 load_above_capacity =
6356 (busiest->sum_nr_running - busiest->group_capacity_factor);
6357
6358 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6359 load_above_capacity /= busiest->group_capacity;
6360 }
6361
6362 /*
6363 * We're trying to get all the cpus to the average_load, so we don't
6364 * want to push ourselves above the average load, nor do we wish to
6365 * reduce the max loaded cpu below the average load. At the same time,
6366 * we also don't want to reduce the group load below the group capacity
6367 * (so that we can implement power-savings policies etc). Thus we look
6368 * for the minimum possible imbalance.
6369 */
6370 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6371
6372 /* How much load to actually move to equalise the imbalance */
6373 env->imbalance = min(
6374 max_pull * busiest->group_capacity,
6375 (sds->avg_load - local->avg_load) * local->group_capacity
6376 ) / SCHED_CAPACITY_SCALE;
6377
6378 /*
6379 * if *imbalance is less than the average load per runnable task
6380 * there is no guarantee that any tasks will be moved so we'll have
6381 * a think about bumping its value to force at least one task to be
6382 * moved
6383 */
6384 if (env->imbalance < busiest->load_per_task)
6385 return fix_small_imbalance(env, sds);
6386 }
6387
6388 /******* find_busiest_group() helpers end here *********************/
6389
6390 /**
6391 * find_busiest_group - Returns the busiest group within the sched_domain
6392 * if there is an imbalance. If there isn't an imbalance, and
6393 * the user has opted for power-savings, it returns a group whose
6394 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6395 * such a group exists.
6396 *
6397 * Also calculates the amount of weighted load which should be moved
6398 * to restore balance.
6399 *
6400 * @env: The load balancing environment.
6401 *
6402 * Return: - The busiest group if imbalance exists.
6403 * - If no imbalance and user has opted for power-savings balance,
6404 * return the least loaded group whose CPUs can be
6405 * put to idle by rebalancing its tasks onto our group.
6406 */
6407 static struct sched_group *find_busiest_group(struct lb_env *env)
6408 {
6409 struct sg_lb_stats *local, *busiest;
6410 struct sd_lb_stats sds;
6411
6412 init_sd_lb_stats(&sds);
6413
6414 /*
6415 * Compute the various statistics relavent for load balancing at
6416 * this level.
6417 */
6418 update_sd_lb_stats(env, &sds);
6419 local = &sds.local_stat;
6420 busiest = &sds.busiest_stat;
6421
6422 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6423 check_asym_packing(env, &sds))
6424 return sds.busiest;
6425
6426 /* There is no busy sibling group to pull tasks from */
6427 if (!sds.busiest || busiest->sum_nr_running == 0)
6428 goto out_balanced;
6429
6430 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6431 / sds.total_capacity;
6432
6433 /*
6434 * If the busiest group is imbalanced the below checks don't
6435 * work because they assume all things are equal, which typically
6436 * isn't true due to cpus_allowed constraints and the like.
6437 */
6438 if (busiest->group_type == group_imbalanced)
6439 goto force_balance;
6440
6441 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6442 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6443 !busiest->group_has_free_capacity)
6444 goto force_balance;
6445
6446 /*
6447 * If the local group is busier than the selected busiest group
6448 * don't try and pull any tasks.
6449 */
6450 if (local->avg_load >= busiest->avg_load)
6451 goto out_balanced;
6452
6453 /*
6454 * Don't pull any tasks if this group is already above the domain
6455 * average load.
6456 */
6457 if (local->avg_load >= sds.avg_load)
6458 goto out_balanced;
6459
6460 if (env->idle == CPU_IDLE) {
6461 /*
6462 * This cpu is idle. If the busiest group is not overloaded
6463 * and there is no imbalance between this and busiest group
6464 * wrt idle cpus, it is balanced. The imbalance becomes
6465 * significant if the diff is greater than 1 otherwise we
6466 * might end up to just move the imbalance on another group
6467 */
6468 if ((busiest->group_type != group_overloaded) &&
6469 (local->idle_cpus <= (busiest->idle_cpus + 1)))
6470 goto out_balanced;
6471 } else {
6472 /*
6473 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6474 * imbalance_pct to be conservative.
6475 */
6476 if (100 * busiest->avg_load <=
6477 env->sd->imbalance_pct * local->avg_load)
6478 goto out_balanced;
6479 }
6480
6481 force_balance:
6482 /* Looks like there is an imbalance. Compute it */
6483 calculate_imbalance(env, &sds);
6484 return sds.busiest;
6485
6486 out_balanced:
6487 env->imbalance = 0;
6488 return NULL;
6489 }
6490
6491 /*
6492 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6493 */
6494 static struct rq *find_busiest_queue(struct lb_env *env,
6495 struct sched_group *group)
6496 {
6497 struct rq *busiest = NULL, *rq;
6498 unsigned long busiest_load = 0, busiest_capacity = 1;
6499 int i;
6500
6501 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6502 unsigned long capacity, capacity_factor, wl;
6503 enum fbq_type rt;
6504
6505 rq = cpu_rq(i);
6506 rt = fbq_classify_rq(rq);
6507
6508 /*
6509 * We classify groups/runqueues into three groups:
6510 * - regular: there are !numa tasks
6511 * - remote: there are numa tasks that run on the 'wrong' node
6512 * - all: there is no distinction
6513 *
6514 * In order to avoid migrating ideally placed numa tasks,
6515 * ignore those when there's better options.
6516 *
6517 * If we ignore the actual busiest queue to migrate another
6518 * task, the next balance pass can still reduce the busiest
6519 * queue by moving tasks around inside the node.
6520 *
6521 * If we cannot move enough load due to this classification
6522 * the next pass will adjust the group classification and
6523 * allow migration of more tasks.
6524 *
6525 * Both cases only affect the total convergence complexity.
6526 */
6527 if (rt > env->fbq_type)
6528 continue;
6529
6530 capacity = capacity_of(i);
6531 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6532 if (!capacity_factor)
6533 capacity_factor = fix_small_capacity(env->sd, group);
6534
6535 wl = weighted_cpuload(i);
6536
6537 /*
6538 * When comparing with imbalance, use weighted_cpuload()
6539 * which is not scaled with the cpu capacity.
6540 */
6541 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6542 continue;
6543
6544 /*
6545 * For the load comparisons with the other cpu's, consider
6546 * the weighted_cpuload() scaled with the cpu capacity, so
6547 * that the load can be moved away from the cpu that is
6548 * potentially running at a lower capacity.
6549 *
6550 * Thus we're looking for max(wl_i / capacity_i), crosswise
6551 * multiplication to rid ourselves of the division works out
6552 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6553 * our previous maximum.
6554 */
6555 if (wl * busiest_capacity > busiest_load * capacity) {
6556 busiest_load = wl;
6557 busiest_capacity = capacity;
6558 busiest = rq;
6559 }
6560 }
6561
6562 return busiest;
6563 }
6564
6565 /*
6566 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6567 * so long as it is large enough.
6568 */
6569 #define MAX_PINNED_INTERVAL 512
6570
6571 /* Working cpumask for load_balance and load_balance_newidle. */
6572 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6573
6574 static int need_active_balance(struct lb_env *env)
6575 {
6576 struct sched_domain *sd = env->sd;
6577
6578 if (env->idle == CPU_NEWLY_IDLE) {
6579
6580 /*
6581 * ASYM_PACKING needs to force migrate tasks from busy but
6582 * higher numbered CPUs in order to pack all tasks in the
6583 * lowest numbered CPUs.
6584 */
6585 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6586 return 1;
6587 }
6588
6589 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6590 }
6591
6592 static int active_load_balance_cpu_stop(void *data);
6593
6594 static int should_we_balance(struct lb_env *env)
6595 {
6596 struct sched_group *sg = env->sd->groups;
6597 struct cpumask *sg_cpus, *sg_mask;
6598 int cpu, balance_cpu = -1;
6599
6600 /*
6601 * In the newly idle case, we will allow all the cpu's
6602 * to do the newly idle load balance.
6603 */
6604 if (env->idle == CPU_NEWLY_IDLE)
6605 return 1;
6606
6607 sg_cpus = sched_group_cpus(sg);
6608 sg_mask = sched_group_mask(sg);
6609 /* Try to find first idle cpu */
6610 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6611 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6612 continue;
6613
6614 balance_cpu = cpu;
6615 break;
6616 }
6617
6618 if (balance_cpu == -1)
6619 balance_cpu = group_balance_cpu(sg);
6620
6621 /*
6622 * First idle cpu or the first cpu(busiest) in this sched group
6623 * is eligible for doing load balancing at this and above domains.
6624 */
6625 return balance_cpu == env->dst_cpu;
6626 }
6627
6628 /*
6629 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6630 * tasks if there is an imbalance.
6631 */
6632 static int load_balance(int this_cpu, struct rq *this_rq,
6633 struct sched_domain *sd, enum cpu_idle_type idle,
6634 int *continue_balancing)
6635 {
6636 int ld_moved, cur_ld_moved, active_balance = 0;
6637 struct sched_domain *sd_parent = sd->parent;
6638 struct sched_group *group;
6639 struct rq *busiest;
6640 unsigned long flags;
6641 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6642
6643 struct lb_env env = {
6644 .sd = sd,
6645 .dst_cpu = this_cpu,
6646 .dst_rq = this_rq,
6647 .dst_grpmask = sched_group_cpus(sd->groups),
6648 .idle = idle,
6649 .loop_break = sched_nr_migrate_break,
6650 .cpus = cpus,
6651 .fbq_type = all,
6652 .tasks = LIST_HEAD_INIT(env.tasks),
6653 };
6654
6655 /*
6656 * For NEWLY_IDLE load_balancing, we don't need to consider
6657 * other cpus in our group
6658 */
6659 if (idle == CPU_NEWLY_IDLE)
6660 env.dst_grpmask = NULL;
6661
6662 cpumask_copy(cpus, cpu_active_mask);
6663
6664 schedstat_inc(sd, lb_count[idle]);
6665
6666 redo:
6667 if (!should_we_balance(&env)) {
6668 *continue_balancing = 0;
6669 goto out_balanced;
6670 }
6671
6672 group = find_busiest_group(&env);
6673 if (!group) {
6674 schedstat_inc(sd, lb_nobusyg[idle]);
6675 goto out_balanced;
6676 }
6677
6678 busiest = find_busiest_queue(&env, group);
6679 if (!busiest) {
6680 schedstat_inc(sd, lb_nobusyq[idle]);
6681 goto out_balanced;
6682 }
6683
6684 BUG_ON(busiest == env.dst_rq);
6685
6686 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6687
6688 ld_moved = 0;
6689 if (busiest->nr_running > 1) {
6690 /*
6691 * Attempt to move tasks. If find_busiest_group has found
6692 * an imbalance but busiest->nr_running <= 1, the group is
6693 * still unbalanced. ld_moved simply stays zero, so it is
6694 * correctly treated as an imbalance.
6695 */
6696 env.flags |= LBF_ALL_PINNED;
6697 env.src_cpu = busiest->cpu;
6698 env.src_rq = busiest;
6699 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6700
6701 more_balance:
6702 raw_spin_lock_irqsave(&busiest->lock, flags);
6703
6704 /*
6705 * cur_ld_moved - load moved in current iteration
6706 * ld_moved - cumulative load moved across iterations
6707 */
6708 cur_ld_moved = detach_tasks(&env);
6709
6710 /*
6711 * We've detached some tasks from busiest_rq. Every
6712 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6713 * unlock busiest->lock, and we are able to be sure
6714 * that nobody can manipulate the tasks in parallel.
6715 * See task_rq_lock() family for the details.
6716 */
6717
6718 raw_spin_unlock(&busiest->lock);
6719
6720 if (cur_ld_moved) {
6721 attach_tasks(&env);
6722 ld_moved += cur_ld_moved;
6723 }
6724
6725 local_irq_restore(flags);
6726
6727 if (env.flags & LBF_NEED_BREAK) {
6728 env.flags &= ~LBF_NEED_BREAK;
6729 goto more_balance;
6730 }
6731
6732 /*
6733 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6734 * us and move them to an alternate dst_cpu in our sched_group
6735 * where they can run. The upper limit on how many times we
6736 * iterate on same src_cpu is dependent on number of cpus in our
6737 * sched_group.
6738 *
6739 * This changes load balance semantics a bit on who can move
6740 * load to a given_cpu. In addition to the given_cpu itself
6741 * (or a ilb_cpu acting on its behalf where given_cpu is
6742 * nohz-idle), we now have balance_cpu in a position to move
6743 * load to given_cpu. In rare situations, this may cause
6744 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6745 * _independently_ and at _same_ time to move some load to
6746 * given_cpu) causing exceess load to be moved to given_cpu.
6747 * This however should not happen so much in practice and
6748 * moreover subsequent load balance cycles should correct the
6749 * excess load moved.
6750 */
6751 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6752
6753 /* Prevent to re-select dst_cpu via env's cpus */
6754 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6755
6756 env.dst_rq = cpu_rq(env.new_dst_cpu);
6757 env.dst_cpu = env.new_dst_cpu;
6758 env.flags &= ~LBF_DST_PINNED;
6759 env.loop = 0;
6760 env.loop_break = sched_nr_migrate_break;
6761
6762 /*
6763 * Go back to "more_balance" rather than "redo" since we
6764 * need to continue with same src_cpu.
6765 */
6766 goto more_balance;
6767 }
6768
6769 /*
6770 * We failed to reach balance because of affinity.
6771 */
6772 if (sd_parent) {
6773 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6774
6775 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6776 *group_imbalance = 1;
6777 }
6778
6779 /* All tasks on this runqueue were pinned by CPU affinity */
6780 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6781 cpumask_clear_cpu(cpu_of(busiest), cpus);
6782 if (!cpumask_empty(cpus)) {
6783 env.loop = 0;
6784 env.loop_break = sched_nr_migrate_break;
6785 goto redo;
6786 }
6787 goto out_all_pinned;
6788 }
6789 }
6790
6791 if (!ld_moved) {
6792 schedstat_inc(sd, lb_failed[idle]);
6793 /*
6794 * Increment the failure counter only on periodic balance.
6795 * We do not want newidle balance, which can be very
6796 * frequent, pollute the failure counter causing
6797 * excessive cache_hot migrations and active balances.
6798 */
6799 if (idle != CPU_NEWLY_IDLE)
6800 sd->nr_balance_failed++;
6801
6802 if (need_active_balance(&env)) {
6803 raw_spin_lock_irqsave(&busiest->lock, flags);
6804
6805 /* don't kick the active_load_balance_cpu_stop,
6806 * if the curr task on busiest cpu can't be
6807 * moved to this_cpu
6808 */
6809 if (!cpumask_test_cpu(this_cpu,
6810 tsk_cpus_allowed(busiest->curr))) {
6811 raw_spin_unlock_irqrestore(&busiest->lock,
6812 flags);
6813 env.flags |= LBF_ALL_PINNED;
6814 goto out_one_pinned;
6815 }
6816
6817 /*
6818 * ->active_balance synchronizes accesses to
6819 * ->active_balance_work. Once set, it's cleared
6820 * only after active load balance is finished.
6821 */
6822 if (!busiest->active_balance) {
6823 busiest->active_balance = 1;
6824 busiest->push_cpu = this_cpu;
6825 active_balance = 1;
6826 }
6827 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6828
6829 if (active_balance) {
6830 stop_one_cpu_nowait(cpu_of(busiest),
6831 active_load_balance_cpu_stop, busiest,
6832 &busiest->active_balance_work);
6833 }
6834
6835 /*
6836 * We've kicked active balancing, reset the failure
6837 * counter.
6838 */
6839 sd->nr_balance_failed = sd->cache_nice_tries+1;
6840 }
6841 } else
6842 sd->nr_balance_failed = 0;
6843
6844 if (likely(!active_balance)) {
6845 /* We were unbalanced, so reset the balancing interval */
6846 sd->balance_interval = sd->min_interval;
6847 } else {
6848 /*
6849 * If we've begun active balancing, start to back off. This
6850 * case may not be covered by the all_pinned logic if there
6851 * is only 1 task on the busy runqueue (because we don't call
6852 * detach_tasks).
6853 */
6854 if (sd->balance_interval < sd->max_interval)
6855 sd->balance_interval *= 2;
6856 }
6857
6858 goto out;
6859
6860 out_balanced:
6861 /*
6862 * We reach balance although we may have faced some affinity
6863 * constraints. Clear the imbalance flag if it was set.
6864 */
6865 if (sd_parent) {
6866 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6867
6868 if (*group_imbalance)
6869 *group_imbalance = 0;
6870 }
6871
6872 out_all_pinned:
6873 /*
6874 * We reach balance because all tasks are pinned at this level so
6875 * we can't migrate them. Let the imbalance flag set so parent level
6876 * can try to migrate them.
6877 */
6878 schedstat_inc(sd, lb_balanced[idle]);
6879
6880 sd->nr_balance_failed = 0;
6881
6882 out_one_pinned:
6883 /* tune up the balancing interval */
6884 if (((env.flags & LBF_ALL_PINNED) &&
6885 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6886 (sd->balance_interval < sd->max_interval))
6887 sd->balance_interval *= 2;
6888
6889 ld_moved = 0;
6890 out:
6891 return ld_moved;
6892 }
6893
6894 static inline unsigned long
6895 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6896 {
6897 unsigned long interval = sd->balance_interval;
6898
6899 if (cpu_busy)
6900 interval *= sd->busy_factor;
6901
6902 /* scale ms to jiffies */
6903 interval = msecs_to_jiffies(interval);
6904 interval = clamp(interval, 1UL, max_load_balance_interval);
6905
6906 return interval;
6907 }
6908
6909 static inline void
6910 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6911 {
6912 unsigned long interval, next;
6913
6914 interval = get_sd_balance_interval(sd, cpu_busy);
6915 next = sd->last_balance + interval;
6916
6917 if (time_after(*next_balance, next))
6918 *next_balance = next;
6919 }
6920
6921 /*
6922 * idle_balance is called by schedule() if this_cpu is about to become
6923 * idle. Attempts to pull tasks from other CPUs.
6924 */
6925 static int idle_balance(struct rq *this_rq)
6926 {
6927 unsigned long next_balance = jiffies + HZ;
6928 int this_cpu = this_rq->cpu;
6929 struct sched_domain *sd;
6930 int pulled_task = 0;
6931 u64 curr_cost = 0;
6932
6933 idle_enter_fair(this_rq);
6934
6935 /*
6936 * We must set idle_stamp _before_ calling idle_balance(), such that we
6937 * measure the duration of idle_balance() as idle time.
6938 */
6939 this_rq->idle_stamp = rq_clock(this_rq);
6940
6941 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6942 !this_rq->rd->overload) {
6943 rcu_read_lock();
6944 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6945 if (sd)
6946 update_next_balance(sd, 0, &next_balance);
6947 rcu_read_unlock();
6948
6949 goto out;
6950 }
6951
6952 /*
6953 * Drop the rq->lock, but keep IRQ/preempt disabled.
6954 */
6955 raw_spin_unlock(&this_rq->lock);
6956
6957 update_blocked_averages(this_cpu);
6958 rcu_read_lock();
6959 for_each_domain(this_cpu, sd) {
6960 int continue_balancing = 1;
6961 u64 t0, domain_cost;
6962
6963 if (!(sd->flags & SD_LOAD_BALANCE))
6964 continue;
6965
6966 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6967 update_next_balance(sd, 0, &next_balance);
6968 break;
6969 }
6970
6971 if (sd->flags & SD_BALANCE_NEWIDLE) {
6972 t0 = sched_clock_cpu(this_cpu);
6973
6974 pulled_task = load_balance(this_cpu, this_rq,
6975 sd, CPU_NEWLY_IDLE,
6976 &continue_balancing);
6977
6978 domain_cost = sched_clock_cpu(this_cpu) - t0;
6979 if (domain_cost > sd->max_newidle_lb_cost)
6980 sd->max_newidle_lb_cost = domain_cost;
6981
6982 curr_cost += domain_cost;
6983 }
6984
6985 update_next_balance(sd, 0, &next_balance);
6986
6987 /*
6988 * Stop searching for tasks to pull if there are
6989 * now runnable tasks on this rq.
6990 */
6991 if (pulled_task || this_rq->nr_running > 0)
6992 break;
6993 }
6994 rcu_read_unlock();
6995
6996 raw_spin_lock(&this_rq->lock);
6997
6998 if (curr_cost > this_rq->max_idle_balance_cost)
6999 this_rq->max_idle_balance_cost = curr_cost;
7000
7001 /*
7002 * While browsing the domains, we released the rq lock, a task could
7003 * have been enqueued in the meantime. Since we're not going idle,
7004 * pretend we pulled a task.
7005 */
7006 if (this_rq->cfs.h_nr_running && !pulled_task)
7007 pulled_task = 1;
7008
7009 out:
7010 /* Move the next balance forward */
7011 if (time_after(this_rq->next_balance, next_balance))
7012 this_rq->next_balance = next_balance;
7013
7014 /* Is there a task of a high priority class? */
7015 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7016 pulled_task = -1;
7017
7018 if (pulled_task) {
7019 idle_exit_fair(this_rq);
7020 this_rq->idle_stamp = 0;
7021 }
7022
7023 return pulled_task;
7024 }
7025
7026 /*
7027 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7028 * running tasks off the busiest CPU onto idle CPUs. It requires at
7029 * least 1 task to be running on each physical CPU where possible, and
7030 * avoids physical / logical imbalances.
7031 */
7032 static int active_load_balance_cpu_stop(void *data)
7033 {
7034 struct rq *busiest_rq = data;
7035 int busiest_cpu = cpu_of(busiest_rq);
7036 int target_cpu = busiest_rq->push_cpu;
7037 struct rq *target_rq = cpu_rq(target_cpu);
7038 struct sched_domain *sd;
7039 struct task_struct *p = NULL;
7040
7041 raw_spin_lock_irq(&busiest_rq->lock);
7042
7043 /* make sure the requested cpu hasn't gone down in the meantime */
7044 if (unlikely(busiest_cpu != smp_processor_id() ||
7045 !busiest_rq->active_balance))
7046 goto out_unlock;
7047
7048 /* Is there any task to move? */
7049 if (busiest_rq->nr_running <= 1)
7050 goto out_unlock;
7051
7052 /*
7053 * This condition is "impossible", if it occurs
7054 * we need to fix it. Originally reported by
7055 * Bjorn Helgaas on a 128-cpu setup.
7056 */
7057 BUG_ON(busiest_rq == target_rq);
7058
7059 /* Search for an sd spanning us and the target CPU. */
7060 rcu_read_lock();
7061 for_each_domain(target_cpu, sd) {
7062 if ((sd->flags & SD_LOAD_BALANCE) &&
7063 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7064 break;
7065 }
7066
7067 if (likely(sd)) {
7068 struct lb_env env = {
7069 .sd = sd,
7070 .dst_cpu = target_cpu,
7071 .dst_rq = target_rq,
7072 .src_cpu = busiest_rq->cpu,
7073 .src_rq = busiest_rq,
7074 .idle = CPU_IDLE,
7075 };
7076
7077 schedstat_inc(sd, alb_count);
7078
7079 p = detach_one_task(&env);
7080 if (p)
7081 schedstat_inc(sd, alb_pushed);
7082 else
7083 schedstat_inc(sd, alb_failed);
7084 }
7085 rcu_read_unlock();
7086 out_unlock:
7087 busiest_rq->active_balance = 0;
7088 raw_spin_unlock(&busiest_rq->lock);
7089
7090 if (p)
7091 attach_one_task(target_rq, p);
7092
7093 local_irq_enable();
7094
7095 return 0;
7096 }
7097
7098 static inline int on_null_domain(struct rq *rq)
7099 {
7100 return unlikely(!rcu_dereference_sched(rq->sd));
7101 }
7102
7103 #ifdef CONFIG_NO_HZ_COMMON
7104 /*
7105 * idle load balancing details
7106 * - When one of the busy CPUs notice that there may be an idle rebalancing
7107 * needed, they will kick the idle load balancer, which then does idle
7108 * load balancing for all the idle CPUs.
7109 */
7110 static struct {
7111 cpumask_var_t idle_cpus_mask;
7112 atomic_t nr_cpus;
7113 unsigned long next_balance; /* in jiffy units */
7114 } nohz ____cacheline_aligned;
7115
7116 static inline int find_new_ilb(void)
7117 {
7118 int ilb = cpumask_first(nohz.idle_cpus_mask);
7119
7120 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7121 return ilb;
7122
7123 return nr_cpu_ids;
7124 }
7125
7126 /*
7127 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7128 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7129 * CPU (if there is one).
7130 */
7131 static void nohz_balancer_kick(void)
7132 {
7133 int ilb_cpu;
7134
7135 nohz.next_balance++;
7136
7137 ilb_cpu = find_new_ilb();
7138
7139 if (ilb_cpu >= nr_cpu_ids)
7140 return;
7141
7142 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7143 return;
7144 /*
7145 * Use smp_send_reschedule() instead of resched_cpu().
7146 * This way we generate a sched IPI on the target cpu which
7147 * is idle. And the softirq performing nohz idle load balance
7148 * will be run before returning from the IPI.
7149 */
7150 smp_send_reschedule(ilb_cpu);
7151 return;
7152 }
7153
7154 static inline void nohz_balance_exit_idle(int cpu)
7155 {
7156 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7157 /*
7158 * Completely isolated CPUs don't ever set, so we must test.
7159 */
7160 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7161 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7162 atomic_dec(&nohz.nr_cpus);
7163 }
7164 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7165 }
7166 }
7167
7168 static inline void set_cpu_sd_state_busy(void)
7169 {
7170 struct sched_domain *sd;
7171 int cpu = smp_processor_id();
7172
7173 rcu_read_lock();
7174 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7175
7176 if (!sd || !sd->nohz_idle)
7177 goto unlock;
7178 sd->nohz_idle = 0;
7179
7180 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7181 unlock:
7182 rcu_read_unlock();
7183 }
7184
7185 void set_cpu_sd_state_idle(void)
7186 {
7187 struct sched_domain *sd;
7188 int cpu = smp_processor_id();
7189
7190 rcu_read_lock();
7191 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7192
7193 if (!sd || sd->nohz_idle)
7194 goto unlock;
7195 sd->nohz_idle = 1;
7196
7197 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7198 unlock:
7199 rcu_read_unlock();
7200 }
7201
7202 /*
7203 * This routine will record that the cpu is going idle with tick stopped.
7204 * This info will be used in performing idle load balancing in the future.
7205 */
7206 void nohz_balance_enter_idle(int cpu)
7207 {
7208 /*
7209 * If this cpu is going down, then nothing needs to be done.
7210 */
7211 if (!cpu_active(cpu))
7212 return;
7213
7214 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7215 return;
7216
7217 /*
7218 * If we're a completely isolated CPU, we don't play.
7219 */
7220 if (on_null_domain(cpu_rq(cpu)))
7221 return;
7222
7223 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7224 atomic_inc(&nohz.nr_cpus);
7225 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7226 }
7227
7228 static int sched_ilb_notifier(struct notifier_block *nfb,
7229 unsigned long action, void *hcpu)
7230 {
7231 switch (action & ~CPU_TASKS_FROZEN) {
7232 case CPU_DYING:
7233 nohz_balance_exit_idle(smp_processor_id());
7234 return NOTIFY_OK;
7235 default:
7236 return NOTIFY_DONE;
7237 }
7238 }
7239 #endif
7240
7241 static DEFINE_SPINLOCK(balancing);
7242
7243 /*
7244 * Scale the max load_balance interval with the number of CPUs in the system.
7245 * This trades load-balance latency on larger machines for less cross talk.
7246 */
7247 void update_max_interval(void)
7248 {
7249 max_load_balance_interval = HZ*num_online_cpus()/10;
7250 }
7251
7252 /*
7253 * It checks each scheduling domain to see if it is due to be balanced,
7254 * and initiates a balancing operation if so.
7255 *
7256 * Balancing parameters are set up in init_sched_domains.
7257 */
7258 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7259 {
7260 int continue_balancing = 1;
7261 int cpu = rq->cpu;
7262 unsigned long interval;
7263 struct sched_domain *sd;
7264 /* Earliest time when we have to do rebalance again */
7265 unsigned long next_balance = jiffies + 60*HZ;
7266 int update_next_balance = 0;
7267 int need_serialize, need_decay = 0;
7268 u64 max_cost = 0;
7269
7270 update_blocked_averages(cpu);
7271
7272 rcu_read_lock();
7273 for_each_domain(cpu, sd) {
7274 /*
7275 * Decay the newidle max times here because this is a regular
7276 * visit to all the domains. Decay ~1% per second.
7277 */
7278 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7279 sd->max_newidle_lb_cost =
7280 (sd->max_newidle_lb_cost * 253) / 256;
7281 sd->next_decay_max_lb_cost = jiffies + HZ;
7282 need_decay = 1;
7283 }
7284 max_cost += sd->max_newidle_lb_cost;
7285
7286 if (!(sd->flags & SD_LOAD_BALANCE))
7287 continue;
7288
7289 /*
7290 * Stop the load balance at this level. There is another
7291 * CPU in our sched group which is doing load balancing more
7292 * actively.
7293 */
7294 if (!continue_balancing) {
7295 if (need_decay)
7296 continue;
7297 break;
7298 }
7299
7300 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7301
7302 need_serialize = sd->flags & SD_SERIALIZE;
7303 if (need_serialize) {
7304 if (!spin_trylock(&balancing))
7305 goto out;
7306 }
7307
7308 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7309 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7310 /*
7311 * The LBF_DST_PINNED logic could have changed
7312 * env->dst_cpu, so we can't know our idle
7313 * state even if we migrated tasks. Update it.
7314 */
7315 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7316 }
7317 sd->last_balance = jiffies;
7318 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7319 }
7320 if (need_serialize)
7321 spin_unlock(&balancing);
7322 out:
7323 if (time_after(next_balance, sd->last_balance + interval)) {
7324 next_balance = sd->last_balance + interval;
7325 update_next_balance = 1;
7326 }
7327 }
7328 if (need_decay) {
7329 /*
7330 * Ensure the rq-wide value also decays but keep it at a
7331 * reasonable floor to avoid funnies with rq->avg_idle.
7332 */
7333 rq->max_idle_balance_cost =
7334 max((u64)sysctl_sched_migration_cost, max_cost);
7335 }
7336 rcu_read_unlock();
7337
7338 /*
7339 * next_balance will be updated only when there is a need.
7340 * When the cpu is attached to null domain for ex, it will not be
7341 * updated.
7342 */
7343 if (likely(update_next_balance))
7344 rq->next_balance = next_balance;
7345 }
7346
7347 #ifdef CONFIG_NO_HZ_COMMON
7348 /*
7349 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7350 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7351 */
7352 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7353 {
7354 int this_cpu = this_rq->cpu;
7355 struct rq *rq;
7356 int balance_cpu;
7357
7358 if (idle != CPU_IDLE ||
7359 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7360 goto end;
7361
7362 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7363 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7364 continue;
7365
7366 /*
7367 * If this cpu gets work to do, stop the load balancing
7368 * work being done for other cpus. Next load
7369 * balancing owner will pick it up.
7370 */
7371 if (need_resched())
7372 break;
7373
7374 rq = cpu_rq(balance_cpu);
7375
7376 /*
7377 * If time for next balance is due,
7378 * do the balance.
7379 */
7380 if (time_after_eq(jiffies, rq->next_balance)) {
7381 raw_spin_lock_irq(&rq->lock);
7382 update_rq_clock(rq);
7383 update_idle_cpu_load(rq);
7384 raw_spin_unlock_irq(&rq->lock);
7385 rebalance_domains(rq, CPU_IDLE);
7386 }
7387
7388 if (time_after(this_rq->next_balance, rq->next_balance))
7389 this_rq->next_balance = rq->next_balance;
7390 }
7391 nohz.next_balance = this_rq->next_balance;
7392 end:
7393 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7394 }
7395
7396 /*
7397 * Current heuristic for kicking the idle load balancer in the presence
7398 * of an idle cpu is the system.
7399 * - This rq has more than one task.
7400 * - At any scheduler domain level, this cpu's scheduler group has multiple
7401 * busy cpu's exceeding the group's capacity.
7402 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7403 * domain span are idle.
7404 */
7405 static inline int nohz_kick_needed(struct rq *rq)
7406 {
7407 unsigned long now = jiffies;
7408 struct sched_domain *sd;
7409 struct sched_group_capacity *sgc;
7410 int nr_busy, cpu = rq->cpu;
7411
7412 if (unlikely(rq->idle_balance))
7413 return 0;
7414
7415 /*
7416 * We may be recently in ticked or tickless idle mode. At the first
7417 * busy tick after returning from idle, we will update the busy stats.
7418 */
7419 set_cpu_sd_state_busy();
7420 nohz_balance_exit_idle(cpu);
7421
7422 /*
7423 * None are in tickless mode and hence no need for NOHZ idle load
7424 * balancing.
7425 */
7426 if (likely(!atomic_read(&nohz.nr_cpus)))
7427 return 0;
7428
7429 if (time_before(now, nohz.next_balance))
7430 return 0;
7431
7432 if (rq->nr_running >= 2)
7433 goto need_kick;
7434
7435 rcu_read_lock();
7436 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7437
7438 if (sd) {
7439 sgc = sd->groups->sgc;
7440 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7441
7442 if (nr_busy > 1)
7443 goto need_kick_unlock;
7444 }
7445
7446 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7447
7448 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7449 sched_domain_span(sd)) < cpu))
7450 goto need_kick_unlock;
7451
7452 rcu_read_unlock();
7453 return 0;
7454
7455 need_kick_unlock:
7456 rcu_read_unlock();
7457 need_kick:
7458 return 1;
7459 }
7460 #else
7461 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7462 #endif
7463
7464 /*
7465 * run_rebalance_domains is triggered when needed from the scheduler tick.
7466 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7467 */
7468 static void run_rebalance_domains(struct softirq_action *h)
7469 {
7470 struct rq *this_rq = this_rq();
7471 enum cpu_idle_type idle = this_rq->idle_balance ?
7472 CPU_IDLE : CPU_NOT_IDLE;
7473
7474 rebalance_domains(this_rq, idle);
7475
7476 /*
7477 * If this cpu has a pending nohz_balance_kick, then do the
7478 * balancing on behalf of the other idle cpus whose ticks are
7479 * stopped.
7480 */
7481 nohz_idle_balance(this_rq, idle);
7482 }
7483
7484 /*
7485 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7486 */
7487 void trigger_load_balance(struct rq *rq)
7488 {
7489 /* Don't need to rebalance while attached to NULL domain */
7490 if (unlikely(on_null_domain(rq)))
7491 return;
7492
7493 if (time_after_eq(jiffies, rq->next_balance))
7494 raise_softirq(SCHED_SOFTIRQ);
7495 #ifdef CONFIG_NO_HZ_COMMON
7496 if (nohz_kick_needed(rq))
7497 nohz_balancer_kick();
7498 #endif
7499 }
7500
7501 static void rq_online_fair(struct rq *rq)
7502 {
7503 update_sysctl();
7504
7505 update_runtime_enabled(rq);
7506 }
7507
7508 static void rq_offline_fair(struct rq *rq)
7509 {
7510 update_sysctl();
7511
7512 /* Ensure any throttled groups are reachable by pick_next_task */
7513 unthrottle_offline_cfs_rqs(rq);
7514 }
7515
7516 #endif /* CONFIG_SMP */
7517
7518 /*
7519 * scheduler tick hitting a task of our scheduling class:
7520 */
7521 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7522 {
7523 struct cfs_rq *cfs_rq;
7524 struct sched_entity *se = &curr->se;
7525
7526 for_each_sched_entity(se) {
7527 cfs_rq = cfs_rq_of(se);
7528 entity_tick(cfs_rq, se, queued);
7529 }
7530
7531 if (numabalancing_enabled)
7532 task_tick_numa(rq, curr);
7533
7534 update_rq_runnable_avg(rq, 1);
7535 }
7536
7537 /*
7538 * called on fork with the child task as argument from the parent's context
7539 * - child not yet on the tasklist
7540 * - preemption disabled
7541 */
7542 static void task_fork_fair(struct task_struct *p)
7543 {
7544 struct cfs_rq *cfs_rq;
7545 struct sched_entity *se = &p->se, *curr;
7546 int this_cpu = smp_processor_id();
7547 struct rq *rq = this_rq();
7548 unsigned long flags;
7549
7550 raw_spin_lock_irqsave(&rq->lock, flags);
7551
7552 update_rq_clock(rq);
7553
7554 cfs_rq = task_cfs_rq(current);
7555 curr = cfs_rq->curr;
7556
7557 /*
7558 * Not only the cpu but also the task_group of the parent might have
7559 * been changed after parent->se.parent,cfs_rq were copied to
7560 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7561 * of child point to valid ones.
7562 */
7563 rcu_read_lock();
7564 __set_task_cpu(p, this_cpu);
7565 rcu_read_unlock();
7566
7567 update_curr(cfs_rq);
7568
7569 if (curr)
7570 se->vruntime = curr->vruntime;
7571 place_entity(cfs_rq, se, 1);
7572
7573 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7574 /*
7575 * Upon rescheduling, sched_class::put_prev_task() will place
7576 * 'current' within the tree based on its new key value.
7577 */
7578 swap(curr->vruntime, se->vruntime);
7579 resched_curr(rq);
7580 }
7581
7582 se->vruntime -= cfs_rq->min_vruntime;
7583
7584 raw_spin_unlock_irqrestore(&rq->lock, flags);
7585 }
7586
7587 /*
7588 * Priority of the task has changed. Check to see if we preempt
7589 * the current task.
7590 */
7591 static void
7592 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7593 {
7594 if (!task_on_rq_queued(p))
7595 return;
7596
7597 /*
7598 * Reschedule if we are currently running on this runqueue and
7599 * our priority decreased, or if we are not currently running on
7600 * this runqueue and our priority is higher than the current's
7601 */
7602 if (rq->curr == p) {
7603 if (p->prio > oldprio)
7604 resched_curr(rq);
7605 } else
7606 check_preempt_curr(rq, p, 0);
7607 }
7608
7609 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7610 {
7611 struct sched_entity *se = &p->se;
7612 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7613
7614 /*
7615 * Ensure the task's vruntime is normalized, so that when it's
7616 * switched back to the fair class the enqueue_entity(.flags=0) will
7617 * do the right thing.
7618 *
7619 * If it's queued, then the dequeue_entity(.flags=0) will already
7620 * have normalized the vruntime, if it's !queued, then only when
7621 * the task is sleeping will it still have non-normalized vruntime.
7622 */
7623 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7624 /*
7625 * Fix up our vruntime so that the current sleep doesn't
7626 * cause 'unlimited' sleep bonus.
7627 */
7628 place_entity(cfs_rq, se, 0);
7629 se->vruntime -= cfs_rq->min_vruntime;
7630 }
7631
7632 #ifdef CONFIG_SMP
7633 /*
7634 * Remove our load from contribution when we leave sched_fair
7635 * and ensure we don't carry in an old decay_count if we
7636 * switch back.
7637 */
7638 if (se->avg.decay_count) {
7639 __synchronize_entity_decay(se);
7640 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7641 }
7642 #endif
7643 }
7644
7645 /*
7646 * We switched to the sched_fair class.
7647 */
7648 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7649 {
7650 #ifdef CONFIG_FAIR_GROUP_SCHED
7651 struct sched_entity *se = &p->se;
7652 /*
7653 * Since the real-depth could have been changed (only FAIR
7654 * class maintain depth value), reset depth properly.
7655 */
7656 se->depth = se->parent ? se->parent->depth + 1 : 0;
7657 #endif
7658 if (!task_on_rq_queued(p))
7659 return;
7660
7661 /*
7662 * We were most likely switched from sched_rt, so
7663 * kick off the schedule if running, otherwise just see
7664 * if we can still preempt the current task.
7665 */
7666 if (rq->curr == p)
7667 resched_curr(rq);
7668 else
7669 check_preempt_curr(rq, p, 0);
7670 }
7671
7672 /* Account for a task changing its policy or group.
7673 *
7674 * This routine is mostly called to set cfs_rq->curr field when a task
7675 * migrates between groups/classes.
7676 */
7677 static void set_curr_task_fair(struct rq *rq)
7678 {
7679 struct sched_entity *se = &rq->curr->se;
7680
7681 for_each_sched_entity(se) {
7682 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7683
7684 set_next_entity(cfs_rq, se);
7685 /* ensure bandwidth has been allocated on our new cfs_rq */
7686 account_cfs_rq_runtime(cfs_rq, 0);
7687 }
7688 }
7689
7690 void init_cfs_rq(struct cfs_rq *cfs_rq)
7691 {
7692 cfs_rq->tasks_timeline = RB_ROOT;
7693 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7694 #ifndef CONFIG_64BIT
7695 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7696 #endif
7697 #ifdef CONFIG_SMP
7698 atomic64_set(&cfs_rq->decay_counter, 1);
7699 atomic_long_set(&cfs_rq->removed_load, 0);
7700 #endif
7701 }
7702
7703 #ifdef CONFIG_FAIR_GROUP_SCHED
7704 static void task_move_group_fair(struct task_struct *p, int queued)
7705 {
7706 struct sched_entity *se = &p->se;
7707 struct cfs_rq *cfs_rq;
7708
7709 /*
7710 * If the task was not on the rq at the time of this cgroup movement
7711 * it must have been asleep, sleeping tasks keep their ->vruntime
7712 * absolute on their old rq until wakeup (needed for the fair sleeper
7713 * bonus in place_entity()).
7714 *
7715 * If it was on the rq, we've just 'preempted' it, which does convert
7716 * ->vruntime to a relative base.
7717 *
7718 * Make sure both cases convert their relative position when migrating
7719 * to another cgroup's rq. This does somewhat interfere with the
7720 * fair sleeper stuff for the first placement, but who cares.
7721 */
7722 /*
7723 * When !queued, vruntime of the task has usually NOT been normalized.
7724 * But there are some cases where it has already been normalized:
7725 *
7726 * - Moving a forked child which is waiting for being woken up by
7727 * wake_up_new_task().
7728 * - Moving a task which has been woken up by try_to_wake_up() and
7729 * waiting for actually being woken up by sched_ttwu_pending().
7730 *
7731 * To prevent boost or penalty in the new cfs_rq caused by delta
7732 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7733 */
7734 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7735 queued = 1;
7736
7737 if (!queued)
7738 se->vruntime -= cfs_rq_of(se)->min_vruntime;
7739 set_task_rq(p, task_cpu(p));
7740 se->depth = se->parent ? se->parent->depth + 1 : 0;
7741 if (!queued) {
7742 cfs_rq = cfs_rq_of(se);
7743 se->vruntime += cfs_rq->min_vruntime;
7744 #ifdef CONFIG_SMP
7745 /*
7746 * migrate_task_rq_fair() will have removed our previous
7747 * contribution, but we must synchronize for ongoing future
7748 * decay.
7749 */
7750 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7751 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7752 #endif
7753 }
7754 }
7755
7756 void free_fair_sched_group(struct task_group *tg)
7757 {
7758 int i;
7759
7760 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7761
7762 for_each_possible_cpu(i) {
7763 if (tg->cfs_rq)
7764 kfree(tg->cfs_rq[i]);
7765 if (tg->se)
7766 kfree(tg->se[i]);
7767 }
7768
7769 kfree(tg->cfs_rq);
7770 kfree(tg->se);
7771 }
7772
7773 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7774 {
7775 struct cfs_rq *cfs_rq;
7776 struct sched_entity *se;
7777 int i;
7778
7779 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7780 if (!tg->cfs_rq)
7781 goto err;
7782 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7783 if (!tg->se)
7784 goto err;
7785
7786 tg->shares = NICE_0_LOAD;
7787
7788 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7789
7790 for_each_possible_cpu(i) {
7791 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7792 GFP_KERNEL, cpu_to_node(i));
7793 if (!cfs_rq)
7794 goto err;
7795
7796 se = kzalloc_node(sizeof(struct sched_entity),
7797 GFP_KERNEL, cpu_to_node(i));
7798 if (!se)
7799 goto err_free_rq;
7800
7801 init_cfs_rq(cfs_rq);
7802 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7803 }
7804
7805 return 1;
7806
7807 err_free_rq:
7808 kfree(cfs_rq);
7809 err:
7810 return 0;
7811 }
7812
7813 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7814 {
7815 struct rq *rq = cpu_rq(cpu);
7816 unsigned long flags;
7817
7818 /*
7819 * Only empty task groups can be destroyed; so we can speculatively
7820 * check on_list without danger of it being re-added.
7821 */
7822 if (!tg->cfs_rq[cpu]->on_list)
7823 return;
7824
7825 raw_spin_lock_irqsave(&rq->lock, flags);
7826 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7827 raw_spin_unlock_irqrestore(&rq->lock, flags);
7828 }
7829
7830 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7831 struct sched_entity *se, int cpu,
7832 struct sched_entity *parent)
7833 {
7834 struct rq *rq = cpu_rq(cpu);
7835
7836 cfs_rq->tg = tg;
7837 cfs_rq->rq = rq;
7838 init_cfs_rq_runtime(cfs_rq);
7839
7840 tg->cfs_rq[cpu] = cfs_rq;
7841 tg->se[cpu] = se;
7842
7843 /* se could be NULL for root_task_group */
7844 if (!se)
7845 return;
7846
7847 if (!parent) {
7848 se->cfs_rq = &rq->cfs;
7849 se->depth = 0;
7850 } else {
7851 se->cfs_rq = parent->my_q;
7852 se->depth = parent->depth + 1;
7853 }
7854
7855 se->my_q = cfs_rq;
7856 /* guarantee group entities always have weight */
7857 update_load_set(&se->load, NICE_0_LOAD);
7858 se->parent = parent;
7859 }
7860
7861 static DEFINE_MUTEX(shares_mutex);
7862
7863 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7864 {
7865 int i;
7866 unsigned long flags;
7867
7868 /*
7869 * We can't change the weight of the root cgroup.
7870 */
7871 if (!tg->se[0])
7872 return -EINVAL;
7873
7874 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7875
7876 mutex_lock(&shares_mutex);
7877 if (tg->shares == shares)
7878 goto done;
7879
7880 tg->shares = shares;
7881 for_each_possible_cpu(i) {
7882 struct rq *rq = cpu_rq(i);
7883 struct sched_entity *se;
7884
7885 se = tg->se[i];
7886 /* Propagate contribution to hierarchy */
7887 raw_spin_lock_irqsave(&rq->lock, flags);
7888
7889 /* Possible calls to update_curr() need rq clock */
7890 update_rq_clock(rq);
7891 for_each_sched_entity(se)
7892 update_cfs_shares(group_cfs_rq(se));
7893 raw_spin_unlock_irqrestore(&rq->lock, flags);
7894 }
7895
7896 done:
7897 mutex_unlock(&shares_mutex);
7898 return 0;
7899 }
7900 #else /* CONFIG_FAIR_GROUP_SCHED */
7901
7902 void free_fair_sched_group(struct task_group *tg) { }
7903
7904 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7905 {
7906 return 1;
7907 }
7908
7909 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7910
7911 #endif /* CONFIG_FAIR_GROUP_SCHED */
7912
7913
7914 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7915 {
7916 struct sched_entity *se = &task->se;
7917 unsigned int rr_interval = 0;
7918
7919 /*
7920 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7921 * idle runqueue:
7922 */
7923 if (rq->cfs.load.weight)
7924 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7925
7926 return rr_interval;
7927 }
7928
7929 /*
7930 * All the scheduling class methods:
7931 */
7932 const struct sched_class fair_sched_class = {
7933 .next = &idle_sched_class,
7934 .enqueue_task = enqueue_task_fair,
7935 .dequeue_task = dequeue_task_fair,
7936 .yield_task = yield_task_fair,
7937 .yield_to_task = yield_to_task_fair,
7938
7939 .check_preempt_curr = check_preempt_wakeup,
7940
7941 .pick_next_task = pick_next_task_fair,
7942 .put_prev_task = put_prev_task_fair,
7943
7944 #ifdef CONFIG_SMP
7945 .select_task_rq = select_task_rq_fair,
7946 .migrate_task_rq = migrate_task_rq_fair,
7947
7948 .rq_online = rq_online_fair,
7949 .rq_offline = rq_offline_fair,
7950
7951 .task_waking = task_waking_fair,
7952 #endif
7953
7954 .set_curr_task = set_curr_task_fair,
7955 .task_tick = task_tick_fair,
7956 .task_fork = task_fork_fair,
7957
7958 .prio_changed = prio_changed_fair,
7959 .switched_from = switched_from_fair,
7960 .switched_to = switched_to_fair,
7961
7962 .get_rr_interval = get_rr_interval_fair,
7963
7964 .update_curr = update_curr_fair,
7965
7966 #ifdef CONFIG_FAIR_GROUP_SCHED
7967 .task_move_group = task_move_group_fair,
7968 #endif
7969 };
7970
7971 #ifdef CONFIG_SCHED_DEBUG
7972 void print_cfs_stats(struct seq_file *m, int cpu)
7973 {
7974 struct cfs_rq *cfs_rq;
7975
7976 rcu_read_lock();
7977 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7978 print_cfs_rq(m, cpu, cfs_rq);
7979 rcu_read_unlock();
7980 }
7981 #endif
7982
7983 __init void init_sched_fair_class(void)
7984 {
7985 #ifdef CONFIG_SMP
7986 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7987
7988 #ifdef CONFIG_NO_HZ_COMMON
7989 nohz.next_balance = jiffies;
7990 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7991 cpu_notifier(sched_ilb_notifier, 0);
7992 #endif
7993 #endif /* SMP */
7994
7995 }
This page took 0.310671 seconds and 5 git commands to generate.