sched/numa: Move power adjustment into load_too_imbalanced()
[deliverable/linux.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 lw->weight += inc;
119 lw->inv_weight = 0;
120 }
121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126 }
127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 lw->weight = w;
131 lw->inv_weight = 0;
132 }
133
134 /*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143 static int get_update_sysctl_factor(void)
144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162 }
163
164 static void update_sysctl(void)
165 {
166 unsigned int factor = get_update_sysctl_factor();
167
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175
176 void sched_init_granularity(void)
177 {
178 update_sysctl();
179 }
180
181 #define WMULT_CONST (~0U)
182 #define WMULT_SHIFT 32
183
184 static void __update_inv_weight(struct load_weight *lw)
185 {
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199 }
200
201 /*
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212 */
213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214 {
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
217
218 __update_inv_weight(lw);
219
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
225 }
226
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
229
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
234
235 return mul_u64_u32_shr(delta_exec, fact, shift);
236 }
237
238
239 const struct sched_class fair_sched_class;
240
241 /**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
245 #ifdef CONFIG_FAIR_GROUP_SCHED
246
247 /* cpu runqueue to which this cfs_rq is attached */
248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249 {
250 return cfs_rq->rq;
251 }
252
253 /* An entity is a task if it doesn't "own" a runqueue */
254 #define entity_is_task(se) (!se->my_q)
255
256 static inline struct task_struct *task_of(struct sched_entity *se)
257 {
258 #ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260 #endif
261 return container_of(se, struct task_struct, se);
262 }
263
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 {
270 return p->se.cfs_rq;
271 }
272
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 {
276 return se->cfs_rq;
277 }
278
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 {
282 return grp->my_q;
283 }
284
285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
287
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289 {
290 if (!cfs_rq->on_list) {
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
304 }
305
306 cfs_rq->on_list = 1;
307 /* We should have no load, but we need to update last_decay. */
308 update_cfs_rq_blocked_load(cfs_rq, 0);
309 }
310 }
311
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 {
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318 }
319
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324 /* Do the two (enqueued) entities belong to the same group ? */
325 static inline struct cfs_rq *
326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
327 {
328 if (se->cfs_rq == pse->cfs_rq)
329 return se->cfs_rq;
330
331 return NULL;
332 }
333
334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
335 {
336 return se->parent;
337 }
338
339 static void
340 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341 {
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369 }
370
371 #else /* !CONFIG_FAIR_GROUP_SCHED */
372
373 static inline struct task_struct *task_of(struct sched_entity *se)
374 {
375 return container_of(se, struct task_struct, se);
376 }
377
378 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379 {
380 return container_of(cfs_rq, struct rq, cfs);
381 }
382
383 #define entity_is_task(se) 1
384
385 #define for_each_sched_entity(se) \
386 for (; se; se = NULL)
387
388 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
389 {
390 return &task_rq(p)->cfs;
391 }
392
393 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394 {
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399 }
400
401 /* runqueue "owned" by this group */
402 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403 {
404 return NULL;
405 }
406
407 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410
411 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412 {
413 }
414
415 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
418 static inline struct sched_entity *parent_entity(struct sched_entity *se)
419 {
420 return NULL;
421 }
422
423 static inline void
424 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 {
426 }
427
428 #endif /* CONFIG_FAIR_GROUP_SCHED */
429
430 static __always_inline
431 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
432
433 /**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
437 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
438 {
439 s64 delta = (s64)(vruntime - max_vruntime);
440 if (delta > 0)
441 max_vruntime = vruntime;
442
443 return max_vruntime;
444 }
445
446 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
447 {
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453 }
454
455 static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457 {
458 return (s64)(a->vruntime - b->vruntime) < 0;
459 }
460
461 static void update_min_vruntime(struct cfs_rq *cfs_rq)
462 {
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
473 if (!cfs_rq->curr)
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
479 /* ensure we never gain time by being placed backwards. */
480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
481 #ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484 #endif
485 }
486
487 /*
488 * Enqueue an entity into the rb-tree:
489 */
490 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
491 {
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
507 if (entity_before(se, entry)) {
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
519 if (leftmost)
520 cfs_rq->rb_leftmost = &se->run_node;
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
524 }
525
526 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
527 {
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
533 }
534
535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
536 }
537
538 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
539 {
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
546 }
547
548 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549 {
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556 }
557
558 #ifdef CONFIG_SCHED_DEBUG
559 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
560 {
561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
562
563 if (!last)
564 return NULL;
565
566 return rb_entry(last, struct sched_entity, run_node);
567 }
568
569 /**************************************************************
570 * Scheduling class statistics methods:
571 */
572
573 int sched_proc_update_handler(struct ctl_table *table, int write,
574 void __user *buffer, size_t *lenp,
575 loff_t *ppos)
576 {
577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
578 int factor = get_update_sysctl_factor();
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
586 #define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
591 #undef WRT_SYSCTL
592
593 return 0;
594 }
595 #endif
596
597 /*
598 * delta /= w
599 */
600 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
601 {
602 if (unlikely(se->load.weight != NICE_0_LOAD))
603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
604
605 return delta;
606 }
607
608 /*
609 * The idea is to set a period in which each task runs once.
610 *
611 * When there are too many tasks (sched_nr_latency) we have to stretch
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
616 static u64 __sched_period(unsigned long nr_running)
617 {
618 u64 period = sysctl_sched_latency;
619 unsigned long nr_latency = sched_nr_latency;
620
621 if (unlikely(nr_running > nr_latency)) {
622 period = sysctl_sched_min_granularity;
623 period *= nr_running;
624 }
625
626 return period;
627 }
628
629 /*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
633 * s = p*P[w/rw]
634 */
635 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
636 {
637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
638
639 for_each_sched_entity(se) {
640 struct load_weight *load;
641 struct load_weight lw;
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
645
646 if (unlikely(!se->on_rq)) {
647 lw = cfs_rq->load;
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
652 slice = __calc_delta(slice, se->load.weight, load);
653 }
654 return slice;
655 }
656
657 /*
658 * We calculate the vruntime slice of a to-be-inserted task.
659 *
660 * vs = s/w
661 */
662 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
663 {
664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
665 }
666
667 #ifdef CONFIG_SMP
668 static unsigned long task_h_load(struct task_struct *p);
669
670 static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672 /* Give new task start runnable values to heavy its load in infant time */
673 void init_task_runnable_average(struct task_struct *p)
674 {
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682 }
683 #else
684 void init_task_runnable_average(struct task_struct *p)
685 {
686 }
687 #endif
688
689 /*
690 * Update the current task's runtime statistics.
691 */
692 static void update_curr(struct cfs_rq *cfs_rq)
693 {
694 struct sched_entity *curr = cfs_rq->curr;
695 u64 now = rq_clock_task(rq_of(cfs_rq));
696 u64 delta_exec;
697
698 if (unlikely(!curr))
699 return;
700
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
703 return;
704
705 curr->exec_start = now;
706
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
720 cpuacct_charge(curtask, delta_exec);
721 account_group_exec_runtime(curtask, delta_exec);
722 }
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
725 }
726
727 static inline void
728 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
729 {
730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
731 }
732
733 /*
734 * Task is being enqueued - update stats:
735 */
736 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
742 if (se != cfs_rq->curr)
743 update_stats_wait_start(cfs_rq, se);
744 }
745
746 static void
747 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
748 {
749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
754 #ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
758 }
759 #endif
760 schedstat_set(se->statistics.wait_start, 0);
761 }
762
763 static inline void
764 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 {
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
770 if (se != cfs_rq->curr)
771 update_stats_wait_end(cfs_rq, se);
772 }
773
774 /*
775 * We are picking a new current task - update its stats:
776 */
777 static inline void
778 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 {
780 /*
781 * We are starting a new run period:
782 */
783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
784 }
785
786 /**************************************************
787 * Scheduling class queueing methods:
788 */
789
790 #ifdef CONFIG_NUMA_BALANCING
791 /*
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
795 */
796 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
798
799 /* Portion of address space to scan in MB */
800 unsigned int sysctl_numa_balancing_scan_size = 256;
801
802 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803 unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
805 static unsigned int task_nr_scan_windows(struct task_struct *p)
806 {
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822 }
823
824 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825 #define MAX_SCAN_WINDOW 2560
826
827 static unsigned int task_scan_min(struct task_struct *p)
828 {
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838 }
839
840 static unsigned int task_scan_max(struct task_struct *p)
841 {
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848 }
849
850 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851 {
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854 }
855
856 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857 {
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860 }
861
862 struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
867 pid_t gid;
868 struct list_head task_list;
869
870 struct rcu_head rcu;
871 nodemask_t active_nodes;
872 unsigned long total_faults;
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
878 unsigned long *faults_cpu;
879 unsigned long faults[0];
880 };
881
882 /* Shared or private faults. */
883 #define NR_NUMA_HINT_FAULT_TYPES 2
884
885 /* Memory and CPU locality */
886 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888 /* Averaged statistics, and temporary buffers. */
889 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
891 pid_t task_numa_group_id(struct task_struct *p)
892 {
893 return p->numa_group ? p->numa_group->gid : 0;
894 }
895
896 static inline int task_faults_idx(int nid, int priv)
897 {
898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
899 }
900
901 static inline unsigned long task_faults(struct task_struct *p, int nid)
902 {
903 if (!p->numa_faults_memory)
904 return 0;
905
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
908 }
909
910 static inline unsigned long group_faults(struct task_struct *p, int nid)
911 {
912 if (!p->numa_group)
913 return 0;
914
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
917 }
918
919 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920 {
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923 }
924
925 /*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931 static inline unsigned long task_weight(struct task_struct *p, int nid)
932 {
933 unsigned long total_faults;
934
935 if (!p->numa_faults_memory)
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944 }
945
946 static inline unsigned long group_weight(struct task_struct *p, int nid)
947 {
948 if (!p->numa_group || !p->numa_group->total_faults)
949 return 0;
950
951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
952 }
953
954 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956 {
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015 }
1016
1017 static unsigned long weighted_cpuload(const int cpu);
1018 static unsigned long source_load(int cpu, int type);
1019 static unsigned long target_load(int cpu, int type);
1020 static unsigned long capacity_of(int cpu);
1021 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
1023 /* Cached statistics for all CPUs within a node */
1024 struct numa_stats {
1025 unsigned long nr_running;
1026 unsigned long load;
1027
1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long compute_capacity;
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long task_capacity;
1033 int has_free_capacity;
1034 };
1035
1036 /*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039 static void update_numa_stats(struct numa_stats *ns, int nid)
1040 {
1041 int cpu, cpus = 0;
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
1049 ns->compute_capacity += capacity_of(cpu);
1050
1051 cpus++;
1052 }
1053
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1059 * We'll either bail at !has_free_capacity, or we'll detect a huge
1060 * imbalance and bail there.
1061 */
1062 if (!cpus)
1063 return;
1064
1065 ns->task_capacity =
1066 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE);
1067 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1068 }
1069
1070 struct task_numa_env {
1071 struct task_struct *p;
1072
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
1075
1076 struct numa_stats src_stats, dst_stats;
1077
1078 int imbalance_pct;
1079
1080 struct task_struct *best_task;
1081 long best_imp;
1082 int best_cpu;
1083 };
1084
1085 static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087 {
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096 }
1097
1098 static bool load_too_imbalanced(long src_load, long dst_load,
1099 struct task_numa_env *env)
1100 {
1101 long imb, old_imb;
1102 long orig_src_load, orig_dst_load;
1103 long src_capacity, dst_capacity;
1104
1105 /*
1106 * The load is corrected for the CPU capacity available on each node.
1107 *
1108 * src_load dst_load
1109 * ------------ vs ---------
1110 * src_capacity dst_capacity
1111 */
1112 src_capacity = env->src_stats.compute_capacity;
1113 dst_capacity = env->dst_stats.compute_capacity;
1114
1115 /* We care about the slope of the imbalance, not the direction. */
1116 if (dst_load < src_load)
1117 swap(dst_load, src_load);
1118
1119 /* Is the difference below the threshold? */
1120 imb = dst_load * src_capacity * 100 -
1121 src_load * dst_capacity * env->imbalance_pct;
1122 if (imb <= 0)
1123 return false;
1124
1125 /*
1126 * The imbalance is above the allowed threshold.
1127 * Compare it with the old imbalance.
1128 */
1129 orig_src_load = env->src_stats.load;
1130 orig_dst_load = env->dst_stats.load;
1131
1132 if (orig_dst_load < orig_src_load)
1133 swap(orig_dst_load, orig_src_load);
1134
1135 old_imb = orig_dst_load * src_capacity * 100 -
1136 orig_src_load * dst_capacity * env->imbalance_pct;
1137
1138 /* Would this change make things worse? */
1139 return (imb > old_imb);
1140 }
1141
1142 /*
1143 * This checks if the overall compute and NUMA accesses of the system would
1144 * be improved if the source tasks was migrated to the target dst_cpu taking
1145 * into account that it might be best if task running on the dst_cpu should
1146 * be exchanged with the source task
1147 */
1148 static void task_numa_compare(struct task_numa_env *env,
1149 long taskimp, long groupimp)
1150 {
1151 struct rq *src_rq = cpu_rq(env->src_cpu);
1152 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1153 struct task_struct *cur;
1154 long src_load, dst_load;
1155 long load;
1156 long imp = (groupimp > 0) ? groupimp : taskimp;
1157
1158 rcu_read_lock();
1159 cur = ACCESS_ONCE(dst_rq->curr);
1160 if (cur->pid == 0) /* idle */
1161 cur = NULL;
1162
1163 /*
1164 * "imp" is the fault differential for the source task between the
1165 * source and destination node. Calculate the total differential for
1166 * the source task and potential destination task. The more negative
1167 * the value is, the more rmeote accesses that would be expected to
1168 * be incurred if the tasks were swapped.
1169 */
1170 if (cur) {
1171 /* Skip this swap candidate if cannot move to the source cpu */
1172 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1173 goto unlock;
1174
1175 /*
1176 * If dst and source tasks are in the same NUMA group, or not
1177 * in any group then look only at task weights.
1178 */
1179 if (cur->numa_group == env->p->numa_group) {
1180 imp = taskimp + task_weight(cur, env->src_nid) -
1181 task_weight(cur, env->dst_nid);
1182 /*
1183 * Add some hysteresis to prevent swapping the
1184 * tasks within a group over tiny differences.
1185 */
1186 if (cur->numa_group)
1187 imp -= imp/16;
1188 } else {
1189 /*
1190 * Compare the group weights. If a task is all by
1191 * itself (not part of a group), use the task weight
1192 * instead.
1193 */
1194 if (env->p->numa_group)
1195 imp = groupimp;
1196 else
1197 imp = taskimp;
1198
1199 if (cur->numa_group)
1200 imp += group_weight(cur, env->src_nid) -
1201 group_weight(cur, env->dst_nid);
1202 else
1203 imp += task_weight(cur, env->src_nid) -
1204 task_weight(cur, env->dst_nid);
1205 }
1206 }
1207
1208 if (imp < env->best_imp)
1209 goto unlock;
1210
1211 if (!cur) {
1212 /* Is there capacity at our destination? */
1213 if (env->src_stats.has_free_capacity &&
1214 !env->dst_stats.has_free_capacity)
1215 goto unlock;
1216
1217 goto balance;
1218 }
1219
1220 /* Balance doesn't matter much if we're running a task per cpu */
1221 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1222 goto assign;
1223
1224 /*
1225 * In the overloaded case, try and keep the load balanced.
1226 */
1227 balance:
1228 load = task_h_load(env->p);
1229 dst_load = env->dst_stats.load + load;
1230 src_load = env->src_stats.load - load;
1231
1232 if (cur) {
1233 load = task_h_load(cur);
1234 dst_load -= load;
1235 src_load += load;
1236 }
1237
1238 if (load_too_imbalanced(src_load, dst_load, env))
1239 goto unlock;
1240
1241 assign:
1242 task_numa_assign(env, cur, imp);
1243 unlock:
1244 rcu_read_unlock();
1245 }
1246
1247 static void task_numa_find_cpu(struct task_numa_env *env,
1248 long taskimp, long groupimp)
1249 {
1250 int cpu;
1251
1252 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1253 /* Skip this CPU if the source task cannot migrate */
1254 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1255 continue;
1256
1257 env->dst_cpu = cpu;
1258 task_numa_compare(env, taskimp, groupimp);
1259 }
1260 }
1261
1262 static int task_numa_migrate(struct task_struct *p)
1263 {
1264 struct task_numa_env env = {
1265 .p = p,
1266
1267 .src_cpu = task_cpu(p),
1268 .src_nid = task_node(p),
1269
1270 .imbalance_pct = 112,
1271
1272 .best_task = NULL,
1273 .best_imp = 0,
1274 .best_cpu = -1
1275 };
1276 struct sched_domain *sd;
1277 unsigned long taskweight, groupweight;
1278 int nid, ret;
1279 long taskimp, groupimp;
1280
1281 /*
1282 * Pick the lowest SD_NUMA domain, as that would have the smallest
1283 * imbalance and would be the first to start moving tasks about.
1284 *
1285 * And we want to avoid any moving of tasks about, as that would create
1286 * random movement of tasks -- counter the numa conditions we're trying
1287 * to satisfy here.
1288 */
1289 rcu_read_lock();
1290 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1291 if (sd)
1292 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1293 rcu_read_unlock();
1294
1295 /*
1296 * Cpusets can break the scheduler domain tree into smaller
1297 * balance domains, some of which do not cross NUMA boundaries.
1298 * Tasks that are "trapped" in such domains cannot be migrated
1299 * elsewhere, so there is no point in (re)trying.
1300 */
1301 if (unlikely(!sd)) {
1302 p->numa_preferred_nid = task_node(p);
1303 return -EINVAL;
1304 }
1305
1306 taskweight = task_weight(p, env.src_nid);
1307 groupweight = group_weight(p, env.src_nid);
1308 update_numa_stats(&env.src_stats, env.src_nid);
1309 env.dst_nid = p->numa_preferred_nid;
1310 taskimp = task_weight(p, env.dst_nid) - taskweight;
1311 groupimp = group_weight(p, env.dst_nid) - groupweight;
1312 update_numa_stats(&env.dst_stats, env.dst_nid);
1313
1314 /* Try to find a spot on the preferred nid. */
1315 task_numa_find_cpu(&env, taskimp, groupimp);
1316
1317 /* No space available on the preferred nid. Look elsewhere. */
1318 if (env.best_cpu == -1) {
1319 for_each_online_node(nid) {
1320 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1321 continue;
1322
1323 /* Only consider nodes where both task and groups benefit */
1324 taskimp = task_weight(p, nid) - taskweight;
1325 groupimp = group_weight(p, nid) - groupweight;
1326 if (taskimp < 0 && groupimp < 0)
1327 continue;
1328
1329 env.dst_nid = nid;
1330 update_numa_stats(&env.dst_stats, env.dst_nid);
1331 task_numa_find_cpu(&env, taskimp, groupimp);
1332 }
1333 }
1334
1335 /* No better CPU than the current one was found. */
1336 if (env.best_cpu == -1)
1337 return -EAGAIN;
1338
1339 /*
1340 * If the task is part of a workload that spans multiple NUMA nodes,
1341 * and is migrating into one of the workload's active nodes, remember
1342 * this node as the task's preferred numa node, so the workload can
1343 * settle down.
1344 * A task that migrated to a second choice node will be better off
1345 * trying for a better one later. Do not set the preferred node here.
1346 */
1347 if (p->numa_group && node_isset(env.dst_nid, p->numa_group->active_nodes))
1348 sched_setnuma(p, env.dst_nid);
1349
1350 /*
1351 * Reset the scan period if the task is being rescheduled on an
1352 * alternative node to recheck if the tasks is now properly placed.
1353 */
1354 p->numa_scan_period = task_scan_min(p);
1355
1356 if (env.best_task == NULL) {
1357 ret = migrate_task_to(p, env.best_cpu);
1358 if (ret != 0)
1359 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1360 return ret;
1361 }
1362
1363 ret = migrate_swap(p, env.best_task);
1364 if (ret != 0)
1365 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1366 put_task_struct(env.best_task);
1367 return ret;
1368 }
1369
1370 /* Attempt to migrate a task to a CPU on the preferred node. */
1371 static void numa_migrate_preferred(struct task_struct *p)
1372 {
1373 unsigned long interval = HZ;
1374
1375 /* This task has no NUMA fault statistics yet */
1376 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1377 return;
1378
1379 /* Periodically retry migrating the task to the preferred node */
1380 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1381 p->numa_migrate_retry = jiffies + interval;
1382
1383 /* Success if task is already running on preferred CPU */
1384 if (task_node(p) == p->numa_preferred_nid)
1385 return;
1386
1387 /* Otherwise, try migrate to a CPU on the preferred node */
1388 task_numa_migrate(p);
1389 }
1390
1391 /*
1392 * Find the nodes on which the workload is actively running. We do this by
1393 * tracking the nodes from which NUMA hinting faults are triggered. This can
1394 * be different from the set of nodes where the workload's memory is currently
1395 * located.
1396 *
1397 * The bitmask is used to make smarter decisions on when to do NUMA page
1398 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1399 * are added when they cause over 6/16 of the maximum number of faults, but
1400 * only removed when they drop below 3/16.
1401 */
1402 static void update_numa_active_node_mask(struct numa_group *numa_group)
1403 {
1404 unsigned long faults, max_faults = 0;
1405 int nid;
1406
1407 for_each_online_node(nid) {
1408 faults = group_faults_cpu(numa_group, nid);
1409 if (faults > max_faults)
1410 max_faults = faults;
1411 }
1412
1413 for_each_online_node(nid) {
1414 faults = group_faults_cpu(numa_group, nid);
1415 if (!node_isset(nid, numa_group->active_nodes)) {
1416 if (faults > max_faults * 6 / 16)
1417 node_set(nid, numa_group->active_nodes);
1418 } else if (faults < max_faults * 3 / 16)
1419 node_clear(nid, numa_group->active_nodes);
1420 }
1421 }
1422
1423 /*
1424 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1425 * increments. The more local the fault statistics are, the higher the scan
1426 * period will be for the next scan window. If local/remote ratio is below
1427 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1428 * scan period will decrease
1429 */
1430 #define NUMA_PERIOD_SLOTS 10
1431 #define NUMA_PERIOD_THRESHOLD 3
1432
1433 /*
1434 * Increase the scan period (slow down scanning) if the majority of
1435 * our memory is already on our local node, or if the majority of
1436 * the page accesses are shared with other processes.
1437 * Otherwise, decrease the scan period.
1438 */
1439 static void update_task_scan_period(struct task_struct *p,
1440 unsigned long shared, unsigned long private)
1441 {
1442 unsigned int period_slot;
1443 int ratio;
1444 int diff;
1445
1446 unsigned long remote = p->numa_faults_locality[0];
1447 unsigned long local = p->numa_faults_locality[1];
1448
1449 /*
1450 * If there were no record hinting faults then either the task is
1451 * completely idle or all activity is areas that are not of interest
1452 * to automatic numa balancing. Scan slower
1453 */
1454 if (local + shared == 0) {
1455 p->numa_scan_period = min(p->numa_scan_period_max,
1456 p->numa_scan_period << 1);
1457
1458 p->mm->numa_next_scan = jiffies +
1459 msecs_to_jiffies(p->numa_scan_period);
1460
1461 return;
1462 }
1463
1464 /*
1465 * Prepare to scale scan period relative to the current period.
1466 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1467 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1468 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1469 */
1470 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1471 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1472 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1473 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1474 if (!slot)
1475 slot = 1;
1476 diff = slot * period_slot;
1477 } else {
1478 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1479
1480 /*
1481 * Scale scan rate increases based on sharing. There is an
1482 * inverse relationship between the degree of sharing and
1483 * the adjustment made to the scanning period. Broadly
1484 * speaking the intent is that there is little point
1485 * scanning faster if shared accesses dominate as it may
1486 * simply bounce migrations uselessly
1487 */
1488 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1489 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1490 }
1491
1492 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1493 task_scan_min(p), task_scan_max(p));
1494 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1495 }
1496
1497 /*
1498 * Get the fraction of time the task has been running since the last
1499 * NUMA placement cycle. The scheduler keeps similar statistics, but
1500 * decays those on a 32ms period, which is orders of magnitude off
1501 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1502 * stats only if the task is so new there are no NUMA statistics yet.
1503 */
1504 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1505 {
1506 u64 runtime, delta, now;
1507 /* Use the start of this time slice to avoid calculations. */
1508 now = p->se.exec_start;
1509 runtime = p->se.sum_exec_runtime;
1510
1511 if (p->last_task_numa_placement) {
1512 delta = runtime - p->last_sum_exec_runtime;
1513 *period = now - p->last_task_numa_placement;
1514 } else {
1515 delta = p->se.avg.runnable_avg_sum;
1516 *period = p->se.avg.runnable_avg_period;
1517 }
1518
1519 p->last_sum_exec_runtime = runtime;
1520 p->last_task_numa_placement = now;
1521
1522 return delta;
1523 }
1524
1525 static void task_numa_placement(struct task_struct *p)
1526 {
1527 int seq, nid, max_nid = -1, max_group_nid = -1;
1528 unsigned long max_faults = 0, max_group_faults = 0;
1529 unsigned long fault_types[2] = { 0, 0 };
1530 unsigned long total_faults;
1531 u64 runtime, period;
1532 spinlock_t *group_lock = NULL;
1533
1534 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1535 if (p->numa_scan_seq == seq)
1536 return;
1537 p->numa_scan_seq = seq;
1538 p->numa_scan_period_max = task_scan_max(p);
1539
1540 total_faults = p->numa_faults_locality[0] +
1541 p->numa_faults_locality[1];
1542 runtime = numa_get_avg_runtime(p, &period);
1543
1544 /* If the task is part of a group prevent parallel updates to group stats */
1545 if (p->numa_group) {
1546 group_lock = &p->numa_group->lock;
1547 spin_lock_irq(group_lock);
1548 }
1549
1550 /* Find the node with the highest number of faults */
1551 for_each_online_node(nid) {
1552 unsigned long faults = 0, group_faults = 0;
1553 int priv, i;
1554
1555 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1556 long diff, f_diff, f_weight;
1557
1558 i = task_faults_idx(nid, priv);
1559
1560 /* Decay existing window, copy faults since last scan */
1561 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1562 fault_types[priv] += p->numa_faults_buffer_memory[i];
1563 p->numa_faults_buffer_memory[i] = 0;
1564
1565 /*
1566 * Normalize the faults_from, so all tasks in a group
1567 * count according to CPU use, instead of by the raw
1568 * number of faults. Tasks with little runtime have
1569 * little over-all impact on throughput, and thus their
1570 * faults are less important.
1571 */
1572 f_weight = div64_u64(runtime << 16, period + 1);
1573 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1574 (total_faults + 1);
1575 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1576 p->numa_faults_buffer_cpu[i] = 0;
1577
1578 p->numa_faults_memory[i] += diff;
1579 p->numa_faults_cpu[i] += f_diff;
1580 faults += p->numa_faults_memory[i];
1581 p->total_numa_faults += diff;
1582 if (p->numa_group) {
1583 /* safe because we can only change our own group */
1584 p->numa_group->faults[i] += diff;
1585 p->numa_group->faults_cpu[i] += f_diff;
1586 p->numa_group->total_faults += diff;
1587 group_faults += p->numa_group->faults[i];
1588 }
1589 }
1590
1591 if (faults > max_faults) {
1592 max_faults = faults;
1593 max_nid = nid;
1594 }
1595
1596 if (group_faults > max_group_faults) {
1597 max_group_faults = group_faults;
1598 max_group_nid = nid;
1599 }
1600 }
1601
1602 update_task_scan_period(p, fault_types[0], fault_types[1]);
1603
1604 if (p->numa_group) {
1605 update_numa_active_node_mask(p->numa_group);
1606 spin_unlock_irq(group_lock);
1607 max_nid = max_group_nid;
1608 }
1609
1610 if (max_faults) {
1611 /* Set the new preferred node */
1612 if (max_nid != p->numa_preferred_nid)
1613 sched_setnuma(p, max_nid);
1614
1615 if (task_node(p) != p->numa_preferred_nid)
1616 numa_migrate_preferred(p);
1617 }
1618 }
1619
1620 static inline int get_numa_group(struct numa_group *grp)
1621 {
1622 return atomic_inc_not_zero(&grp->refcount);
1623 }
1624
1625 static inline void put_numa_group(struct numa_group *grp)
1626 {
1627 if (atomic_dec_and_test(&grp->refcount))
1628 kfree_rcu(grp, rcu);
1629 }
1630
1631 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1632 int *priv)
1633 {
1634 struct numa_group *grp, *my_grp;
1635 struct task_struct *tsk;
1636 bool join = false;
1637 int cpu = cpupid_to_cpu(cpupid);
1638 int i;
1639
1640 if (unlikely(!p->numa_group)) {
1641 unsigned int size = sizeof(struct numa_group) +
1642 4*nr_node_ids*sizeof(unsigned long);
1643
1644 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1645 if (!grp)
1646 return;
1647
1648 atomic_set(&grp->refcount, 1);
1649 spin_lock_init(&grp->lock);
1650 INIT_LIST_HEAD(&grp->task_list);
1651 grp->gid = p->pid;
1652 /* Second half of the array tracks nids where faults happen */
1653 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1654 nr_node_ids;
1655
1656 node_set(task_node(current), grp->active_nodes);
1657
1658 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1659 grp->faults[i] = p->numa_faults_memory[i];
1660
1661 grp->total_faults = p->total_numa_faults;
1662
1663 list_add(&p->numa_entry, &grp->task_list);
1664 grp->nr_tasks++;
1665 rcu_assign_pointer(p->numa_group, grp);
1666 }
1667
1668 rcu_read_lock();
1669 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1670
1671 if (!cpupid_match_pid(tsk, cpupid))
1672 goto no_join;
1673
1674 grp = rcu_dereference(tsk->numa_group);
1675 if (!grp)
1676 goto no_join;
1677
1678 my_grp = p->numa_group;
1679 if (grp == my_grp)
1680 goto no_join;
1681
1682 /*
1683 * Only join the other group if its bigger; if we're the bigger group,
1684 * the other task will join us.
1685 */
1686 if (my_grp->nr_tasks > grp->nr_tasks)
1687 goto no_join;
1688
1689 /*
1690 * Tie-break on the grp address.
1691 */
1692 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1693 goto no_join;
1694
1695 /* Always join threads in the same process. */
1696 if (tsk->mm == current->mm)
1697 join = true;
1698
1699 /* Simple filter to avoid false positives due to PID collisions */
1700 if (flags & TNF_SHARED)
1701 join = true;
1702
1703 /* Update priv based on whether false sharing was detected */
1704 *priv = !join;
1705
1706 if (join && !get_numa_group(grp))
1707 goto no_join;
1708
1709 rcu_read_unlock();
1710
1711 if (!join)
1712 return;
1713
1714 BUG_ON(irqs_disabled());
1715 double_lock_irq(&my_grp->lock, &grp->lock);
1716
1717 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1718 my_grp->faults[i] -= p->numa_faults_memory[i];
1719 grp->faults[i] += p->numa_faults_memory[i];
1720 }
1721 my_grp->total_faults -= p->total_numa_faults;
1722 grp->total_faults += p->total_numa_faults;
1723
1724 list_move(&p->numa_entry, &grp->task_list);
1725 my_grp->nr_tasks--;
1726 grp->nr_tasks++;
1727
1728 spin_unlock(&my_grp->lock);
1729 spin_unlock_irq(&grp->lock);
1730
1731 rcu_assign_pointer(p->numa_group, grp);
1732
1733 put_numa_group(my_grp);
1734 return;
1735
1736 no_join:
1737 rcu_read_unlock();
1738 return;
1739 }
1740
1741 void task_numa_free(struct task_struct *p)
1742 {
1743 struct numa_group *grp = p->numa_group;
1744 void *numa_faults = p->numa_faults_memory;
1745 unsigned long flags;
1746 int i;
1747
1748 if (grp) {
1749 spin_lock_irqsave(&grp->lock, flags);
1750 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1751 grp->faults[i] -= p->numa_faults_memory[i];
1752 grp->total_faults -= p->total_numa_faults;
1753
1754 list_del(&p->numa_entry);
1755 grp->nr_tasks--;
1756 spin_unlock_irqrestore(&grp->lock, flags);
1757 rcu_assign_pointer(p->numa_group, NULL);
1758 put_numa_group(grp);
1759 }
1760
1761 p->numa_faults_memory = NULL;
1762 p->numa_faults_buffer_memory = NULL;
1763 p->numa_faults_cpu= NULL;
1764 p->numa_faults_buffer_cpu = NULL;
1765 kfree(numa_faults);
1766 }
1767
1768 /*
1769 * Got a PROT_NONE fault for a page on @node.
1770 */
1771 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1772 {
1773 struct task_struct *p = current;
1774 bool migrated = flags & TNF_MIGRATED;
1775 int cpu_node = task_node(current);
1776 int local = !!(flags & TNF_FAULT_LOCAL);
1777 int priv;
1778
1779 if (!numabalancing_enabled)
1780 return;
1781
1782 /* for example, ksmd faulting in a user's mm */
1783 if (!p->mm)
1784 return;
1785
1786 /* Do not worry about placement if exiting */
1787 if (p->state == TASK_DEAD)
1788 return;
1789
1790 /* Allocate buffer to track faults on a per-node basis */
1791 if (unlikely(!p->numa_faults_memory)) {
1792 int size = sizeof(*p->numa_faults_memory) *
1793 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1794
1795 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1796 if (!p->numa_faults_memory)
1797 return;
1798
1799 BUG_ON(p->numa_faults_buffer_memory);
1800 /*
1801 * The averaged statistics, shared & private, memory & cpu,
1802 * occupy the first half of the array. The second half of the
1803 * array is for current counters, which are averaged into the
1804 * first set by task_numa_placement.
1805 */
1806 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1807 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1808 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1809 p->total_numa_faults = 0;
1810 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1811 }
1812
1813 /*
1814 * First accesses are treated as private, otherwise consider accesses
1815 * to be private if the accessing pid has not changed
1816 */
1817 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1818 priv = 1;
1819 } else {
1820 priv = cpupid_match_pid(p, last_cpupid);
1821 if (!priv && !(flags & TNF_NO_GROUP))
1822 task_numa_group(p, last_cpupid, flags, &priv);
1823 }
1824
1825 /*
1826 * If a workload spans multiple NUMA nodes, a shared fault that
1827 * occurs wholly within the set of nodes that the workload is
1828 * actively using should be counted as local. This allows the
1829 * scan rate to slow down when a workload has settled down.
1830 */
1831 if (!priv && !local && p->numa_group &&
1832 node_isset(cpu_node, p->numa_group->active_nodes) &&
1833 node_isset(mem_node, p->numa_group->active_nodes))
1834 local = 1;
1835
1836 task_numa_placement(p);
1837
1838 /*
1839 * Retry task to preferred node migration periodically, in case it
1840 * case it previously failed, or the scheduler moved us.
1841 */
1842 if (time_after(jiffies, p->numa_migrate_retry))
1843 numa_migrate_preferred(p);
1844
1845 if (migrated)
1846 p->numa_pages_migrated += pages;
1847
1848 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1849 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1850 p->numa_faults_locality[local] += pages;
1851 }
1852
1853 static void reset_ptenuma_scan(struct task_struct *p)
1854 {
1855 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1856 p->mm->numa_scan_offset = 0;
1857 }
1858
1859 /*
1860 * The expensive part of numa migration is done from task_work context.
1861 * Triggered from task_tick_numa().
1862 */
1863 void task_numa_work(struct callback_head *work)
1864 {
1865 unsigned long migrate, next_scan, now = jiffies;
1866 struct task_struct *p = current;
1867 struct mm_struct *mm = p->mm;
1868 struct vm_area_struct *vma;
1869 unsigned long start, end;
1870 unsigned long nr_pte_updates = 0;
1871 long pages;
1872
1873 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1874
1875 work->next = work; /* protect against double add */
1876 /*
1877 * Who cares about NUMA placement when they're dying.
1878 *
1879 * NOTE: make sure not to dereference p->mm before this check,
1880 * exit_task_work() happens _after_ exit_mm() so we could be called
1881 * without p->mm even though we still had it when we enqueued this
1882 * work.
1883 */
1884 if (p->flags & PF_EXITING)
1885 return;
1886
1887 if (!mm->numa_next_scan) {
1888 mm->numa_next_scan = now +
1889 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1890 }
1891
1892 /*
1893 * Enforce maximal scan/migration frequency..
1894 */
1895 migrate = mm->numa_next_scan;
1896 if (time_before(now, migrate))
1897 return;
1898
1899 if (p->numa_scan_period == 0) {
1900 p->numa_scan_period_max = task_scan_max(p);
1901 p->numa_scan_period = task_scan_min(p);
1902 }
1903
1904 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1905 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1906 return;
1907
1908 /*
1909 * Delay this task enough that another task of this mm will likely win
1910 * the next time around.
1911 */
1912 p->node_stamp += 2 * TICK_NSEC;
1913
1914 start = mm->numa_scan_offset;
1915 pages = sysctl_numa_balancing_scan_size;
1916 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1917 if (!pages)
1918 return;
1919
1920 down_read(&mm->mmap_sem);
1921 vma = find_vma(mm, start);
1922 if (!vma) {
1923 reset_ptenuma_scan(p);
1924 start = 0;
1925 vma = mm->mmap;
1926 }
1927 for (; vma; vma = vma->vm_next) {
1928 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1929 continue;
1930
1931 /*
1932 * Shared library pages mapped by multiple processes are not
1933 * migrated as it is expected they are cache replicated. Avoid
1934 * hinting faults in read-only file-backed mappings or the vdso
1935 * as migrating the pages will be of marginal benefit.
1936 */
1937 if (!vma->vm_mm ||
1938 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1939 continue;
1940
1941 /*
1942 * Skip inaccessible VMAs to avoid any confusion between
1943 * PROT_NONE and NUMA hinting ptes
1944 */
1945 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1946 continue;
1947
1948 do {
1949 start = max(start, vma->vm_start);
1950 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1951 end = min(end, vma->vm_end);
1952 nr_pte_updates += change_prot_numa(vma, start, end);
1953
1954 /*
1955 * Scan sysctl_numa_balancing_scan_size but ensure that
1956 * at least one PTE is updated so that unused virtual
1957 * address space is quickly skipped.
1958 */
1959 if (nr_pte_updates)
1960 pages -= (end - start) >> PAGE_SHIFT;
1961
1962 start = end;
1963 if (pages <= 0)
1964 goto out;
1965
1966 cond_resched();
1967 } while (end != vma->vm_end);
1968 }
1969
1970 out:
1971 /*
1972 * It is possible to reach the end of the VMA list but the last few
1973 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1974 * would find the !migratable VMA on the next scan but not reset the
1975 * scanner to the start so check it now.
1976 */
1977 if (vma)
1978 mm->numa_scan_offset = start;
1979 else
1980 reset_ptenuma_scan(p);
1981 up_read(&mm->mmap_sem);
1982 }
1983
1984 /*
1985 * Drive the periodic memory faults..
1986 */
1987 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1988 {
1989 struct callback_head *work = &curr->numa_work;
1990 u64 period, now;
1991
1992 /*
1993 * We don't care about NUMA placement if we don't have memory.
1994 */
1995 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1996 return;
1997
1998 /*
1999 * Using runtime rather than walltime has the dual advantage that
2000 * we (mostly) drive the selection from busy threads and that the
2001 * task needs to have done some actual work before we bother with
2002 * NUMA placement.
2003 */
2004 now = curr->se.sum_exec_runtime;
2005 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2006
2007 if (now - curr->node_stamp > period) {
2008 if (!curr->node_stamp)
2009 curr->numa_scan_period = task_scan_min(curr);
2010 curr->node_stamp += period;
2011
2012 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2013 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2014 task_work_add(curr, work, true);
2015 }
2016 }
2017 }
2018 #else
2019 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2020 {
2021 }
2022
2023 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2024 {
2025 }
2026
2027 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2028 {
2029 }
2030 #endif /* CONFIG_NUMA_BALANCING */
2031
2032 static void
2033 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2034 {
2035 update_load_add(&cfs_rq->load, se->load.weight);
2036 if (!parent_entity(se))
2037 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2038 #ifdef CONFIG_SMP
2039 if (entity_is_task(se)) {
2040 struct rq *rq = rq_of(cfs_rq);
2041
2042 account_numa_enqueue(rq, task_of(se));
2043 list_add(&se->group_node, &rq->cfs_tasks);
2044 }
2045 #endif
2046 cfs_rq->nr_running++;
2047 }
2048
2049 static void
2050 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2051 {
2052 update_load_sub(&cfs_rq->load, se->load.weight);
2053 if (!parent_entity(se))
2054 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2055 if (entity_is_task(se)) {
2056 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2057 list_del_init(&se->group_node);
2058 }
2059 cfs_rq->nr_running--;
2060 }
2061
2062 #ifdef CONFIG_FAIR_GROUP_SCHED
2063 # ifdef CONFIG_SMP
2064 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2065 {
2066 long tg_weight;
2067
2068 /*
2069 * Use this CPU's actual weight instead of the last load_contribution
2070 * to gain a more accurate current total weight. See
2071 * update_cfs_rq_load_contribution().
2072 */
2073 tg_weight = atomic_long_read(&tg->load_avg);
2074 tg_weight -= cfs_rq->tg_load_contrib;
2075 tg_weight += cfs_rq->load.weight;
2076
2077 return tg_weight;
2078 }
2079
2080 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2081 {
2082 long tg_weight, load, shares;
2083
2084 tg_weight = calc_tg_weight(tg, cfs_rq);
2085 load = cfs_rq->load.weight;
2086
2087 shares = (tg->shares * load);
2088 if (tg_weight)
2089 shares /= tg_weight;
2090
2091 if (shares < MIN_SHARES)
2092 shares = MIN_SHARES;
2093 if (shares > tg->shares)
2094 shares = tg->shares;
2095
2096 return shares;
2097 }
2098 # else /* CONFIG_SMP */
2099 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2100 {
2101 return tg->shares;
2102 }
2103 # endif /* CONFIG_SMP */
2104 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2105 unsigned long weight)
2106 {
2107 if (se->on_rq) {
2108 /* commit outstanding execution time */
2109 if (cfs_rq->curr == se)
2110 update_curr(cfs_rq);
2111 account_entity_dequeue(cfs_rq, se);
2112 }
2113
2114 update_load_set(&se->load, weight);
2115
2116 if (se->on_rq)
2117 account_entity_enqueue(cfs_rq, se);
2118 }
2119
2120 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2121
2122 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2123 {
2124 struct task_group *tg;
2125 struct sched_entity *se;
2126 long shares;
2127
2128 tg = cfs_rq->tg;
2129 se = tg->se[cpu_of(rq_of(cfs_rq))];
2130 if (!se || throttled_hierarchy(cfs_rq))
2131 return;
2132 #ifndef CONFIG_SMP
2133 if (likely(se->load.weight == tg->shares))
2134 return;
2135 #endif
2136 shares = calc_cfs_shares(cfs_rq, tg);
2137
2138 reweight_entity(cfs_rq_of(se), se, shares);
2139 }
2140 #else /* CONFIG_FAIR_GROUP_SCHED */
2141 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2142 {
2143 }
2144 #endif /* CONFIG_FAIR_GROUP_SCHED */
2145
2146 #ifdef CONFIG_SMP
2147 /*
2148 * We choose a half-life close to 1 scheduling period.
2149 * Note: The tables below are dependent on this value.
2150 */
2151 #define LOAD_AVG_PERIOD 32
2152 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2153 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2154
2155 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2156 static const u32 runnable_avg_yN_inv[] = {
2157 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2158 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2159 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2160 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2161 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2162 0x85aac367, 0x82cd8698,
2163 };
2164
2165 /*
2166 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2167 * over-estimates when re-combining.
2168 */
2169 static const u32 runnable_avg_yN_sum[] = {
2170 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2171 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2172 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2173 };
2174
2175 /*
2176 * Approximate:
2177 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2178 */
2179 static __always_inline u64 decay_load(u64 val, u64 n)
2180 {
2181 unsigned int local_n;
2182
2183 if (!n)
2184 return val;
2185 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2186 return 0;
2187
2188 /* after bounds checking we can collapse to 32-bit */
2189 local_n = n;
2190
2191 /*
2192 * As y^PERIOD = 1/2, we can combine
2193 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2194 * With a look-up table which covers k^n (n<PERIOD)
2195 *
2196 * To achieve constant time decay_load.
2197 */
2198 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2199 val >>= local_n / LOAD_AVG_PERIOD;
2200 local_n %= LOAD_AVG_PERIOD;
2201 }
2202
2203 val *= runnable_avg_yN_inv[local_n];
2204 /* We don't use SRR here since we always want to round down. */
2205 return val >> 32;
2206 }
2207
2208 /*
2209 * For updates fully spanning n periods, the contribution to runnable
2210 * average will be: \Sum 1024*y^n
2211 *
2212 * We can compute this reasonably efficiently by combining:
2213 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2214 */
2215 static u32 __compute_runnable_contrib(u64 n)
2216 {
2217 u32 contrib = 0;
2218
2219 if (likely(n <= LOAD_AVG_PERIOD))
2220 return runnable_avg_yN_sum[n];
2221 else if (unlikely(n >= LOAD_AVG_MAX_N))
2222 return LOAD_AVG_MAX;
2223
2224 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2225 do {
2226 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2227 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2228
2229 n -= LOAD_AVG_PERIOD;
2230 } while (n > LOAD_AVG_PERIOD);
2231
2232 contrib = decay_load(contrib, n);
2233 return contrib + runnable_avg_yN_sum[n];
2234 }
2235
2236 /*
2237 * We can represent the historical contribution to runnable average as the
2238 * coefficients of a geometric series. To do this we sub-divide our runnable
2239 * history into segments of approximately 1ms (1024us); label the segment that
2240 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2241 *
2242 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2243 * p0 p1 p2
2244 * (now) (~1ms ago) (~2ms ago)
2245 *
2246 * Let u_i denote the fraction of p_i that the entity was runnable.
2247 *
2248 * We then designate the fractions u_i as our co-efficients, yielding the
2249 * following representation of historical load:
2250 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2251 *
2252 * We choose y based on the with of a reasonably scheduling period, fixing:
2253 * y^32 = 0.5
2254 *
2255 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2256 * approximately half as much as the contribution to load within the last ms
2257 * (u_0).
2258 *
2259 * When a period "rolls over" and we have new u_0`, multiplying the previous
2260 * sum again by y is sufficient to update:
2261 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2262 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2263 */
2264 static __always_inline int __update_entity_runnable_avg(u64 now,
2265 struct sched_avg *sa,
2266 int runnable)
2267 {
2268 u64 delta, periods;
2269 u32 runnable_contrib;
2270 int delta_w, decayed = 0;
2271
2272 delta = now - sa->last_runnable_update;
2273 /*
2274 * This should only happen when time goes backwards, which it
2275 * unfortunately does during sched clock init when we swap over to TSC.
2276 */
2277 if ((s64)delta < 0) {
2278 sa->last_runnable_update = now;
2279 return 0;
2280 }
2281
2282 /*
2283 * Use 1024ns as the unit of measurement since it's a reasonable
2284 * approximation of 1us and fast to compute.
2285 */
2286 delta >>= 10;
2287 if (!delta)
2288 return 0;
2289 sa->last_runnable_update = now;
2290
2291 /* delta_w is the amount already accumulated against our next period */
2292 delta_w = sa->runnable_avg_period % 1024;
2293 if (delta + delta_w >= 1024) {
2294 /* period roll-over */
2295 decayed = 1;
2296
2297 /*
2298 * Now that we know we're crossing a period boundary, figure
2299 * out how much from delta we need to complete the current
2300 * period and accrue it.
2301 */
2302 delta_w = 1024 - delta_w;
2303 if (runnable)
2304 sa->runnable_avg_sum += delta_w;
2305 sa->runnable_avg_period += delta_w;
2306
2307 delta -= delta_w;
2308
2309 /* Figure out how many additional periods this update spans */
2310 periods = delta / 1024;
2311 delta %= 1024;
2312
2313 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2314 periods + 1);
2315 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2316 periods + 1);
2317
2318 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2319 runnable_contrib = __compute_runnable_contrib(periods);
2320 if (runnable)
2321 sa->runnable_avg_sum += runnable_contrib;
2322 sa->runnable_avg_period += runnable_contrib;
2323 }
2324
2325 /* Remainder of delta accrued against u_0` */
2326 if (runnable)
2327 sa->runnable_avg_sum += delta;
2328 sa->runnable_avg_period += delta;
2329
2330 return decayed;
2331 }
2332
2333 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2334 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2335 {
2336 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2337 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2338
2339 decays -= se->avg.decay_count;
2340 if (!decays)
2341 return 0;
2342
2343 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2344 se->avg.decay_count = 0;
2345
2346 return decays;
2347 }
2348
2349 #ifdef CONFIG_FAIR_GROUP_SCHED
2350 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2351 int force_update)
2352 {
2353 struct task_group *tg = cfs_rq->tg;
2354 long tg_contrib;
2355
2356 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2357 tg_contrib -= cfs_rq->tg_load_contrib;
2358
2359 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2360 atomic_long_add(tg_contrib, &tg->load_avg);
2361 cfs_rq->tg_load_contrib += tg_contrib;
2362 }
2363 }
2364
2365 /*
2366 * Aggregate cfs_rq runnable averages into an equivalent task_group
2367 * representation for computing load contributions.
2368 */
2369 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2370 struct cfs_rq *cfs_rq)
2371 {
2372 struct task_group *tg = cfs_rq->tg;
2373 long contrib;
2374
2375 /* The fraction of a cpu used by this cfs_rq */
2376 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2377 sa->runnable_avg_period + 1);
2378 contrib -= cfs_rq->tg_runnable_contrib;
2379
2380 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2381 atomic_add(contrib, &tg->runnable_avg);
2382 cfs_rq->tg_runnable_contrib += contrib;
2383 }
2384 }
2385
2386 static inline void __update_group_entity_contrib(struct sched_entity *se)
2387 {
2388 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2389 struct task_group *tg = cfs_rq->tg;
2390 int runnable_avg;
2391
2392 u64 contrib;
2393
2394 contrib = cfs_rq->tg_load_contrib * tg->shares;
2395 se->avg.load_avg_contrib = div_u64(contrib,
2396 atomic_long_read(&tg->load_avg) + 1);
2397
2398 /*
2399 * For group entities we need to compute a correction term in the case
2400 * that they are consuming <1 cpu so that we would contribute the same
2401 * load as a task of equal weight.
2402 *
2403 * Explicitly co-ordinating this measurement would be expensive, but
2404 * fortunately the sum of each cpus contribution forms a usable
2405 * lower-bound on the true value.
2406 *
2407 * Consider the aggregate of 2 contributions. Either they are disjoint
2408 * (and the sum represents true value) or they are disjoint and we are
2409 * understating by the aggregate of their overlap.
2410 *
2411 * Extending this to N cpus, for a given overlap, the maximum amount we
2412 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2413 * cpus that overlap for this interval and w_i is the interval width.
2414 *
2415 * On a small machine; the first term is well-bounded which bounds the
2416 * total error since w_i is a subset of the period. Whereas on a
2417 * larger machine, while this first term can be larger, if w_i is the
2418 * of consequential size guaranteed to see n_i*w_i quickly converge to
2419 * our upper bound of 1-cpu.
2420 */
2421 runnable_avg = atomic_read(&tg->runnable_avg);
2422 if (runnable_avg < NICE_0_LOAD) {
2423 se->avg.load_avg_contrib *= runnable_avg;
2424 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2425 }
2426 }
2427
2428 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2429 {
2430 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2431 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2432 }
2433 #else /* CONFIG_FAIR_GROUP_SCHED */
2434 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2435 int force_update) {}
2436 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2437 struct cfs_rq *cfs_rq) {}
2438 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2439 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2440 #endif /* CONFIG_FAIR_GROUP_SCHED */
2441
2442 static inline void __update_task_entity_contrib(struct sched_entity *se)
2443 {
2444 u32 contrib;
2445
2446 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2447 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2448 contrib /= (se->avg.runnable_avg_period + 1);
2449 se->avg.load_avg_contrib = scale_load(contrib);
2450 }
2451
2452 /* Compute the current contribution to load_avg by se, return any delta */
2453 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2454 {
2455 long old_contrib = se->avg.load_avg_contrib;
2456
2457 if (entity_is_task(se)) {
2458 __update_task_entity_contrib(se);
2459 } else {
2460 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2461 __update_group_entity_contrib(se);
2462 }
2463
2464 return se->avg.load_avg_contrib - old_contrib;
2465 }
2466
2467 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2468 long load_contrib)
2469 {
2470 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2471 cfs_rq->blocked_load_avg -= load_contrib;
2472 else
2473 cfs_rq->blocked_load_avg = 0;
2474 }
2475
2476 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2477
2478 /* Update a sched_entity's runnable average */
2479 static inline void update_entity_load_avg(struct sched_entity *se,
2480 int update_cfs_rq)
2481 {
2482 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2483 long contrib_delta;
2484 u64 now;
2485
2486 /*
2487 * For a group entity we need to use their owned cfs_rq_clock_task() in
2488 * case they are the parent of a throttled hierarchy.
2489 */
2490 if (entity_is_task(se))
2491 now = cfs_rq_clock_task(cfs_rq);
2492 else
2493 now = cfs_rq_clock_task(group_cfs_rq(se));
2494
2495 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2496 return;
2497
2498 contrib_delta = __update_entity_load_avg_contrib(se);
2499
2500 if (!update_cfs_rq)
2501 return;
2502
2503 if (se->on_rq)
2504 cfs_rq->runnable_load_avg += contrib_delta;
2505 else
2506 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2507 }
2508
2509 /*
2510 * Decay the load contributed by all blocked children and account this so that
2511 * their contribution may appropriately discounted when they wake up.
2512 */
2513 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2514 {
2515 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2516 u64 decays;
2517
2518 decays = now - cfs_rq->last_decay;
2519 if (!decays && !force_update)
2520 return;
2521
2522 if (atomic_long_read(&cfs_rq->removed_load)) {
2523 unsigned long removed_load;
2524 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2525 subtract_blocked_load_contrib(cfs_rq, removed_load);
2526 }
2527
2528 if (decays) {
2529 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2530 decays);
2531 atomic64_add(decays, &cfs_rq->decay_counter);
2532 cfs_rq->last_decay = now;
2533 }
2534
2535 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2536 }
2537
2538 /* Add the load generated by se into cfs_rq's child load-average */
2539 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2540 struct sched_entity *se,
2541 int wakeup)
2542 {
2543 /*
2544 * We track migrations using entity decay_count <= 0, on a wake-up
2545 * migration we use a negative decay count to track the remote decays
2546 * accumulated while sleeping.
2547 *
2548 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2549 * are seen by enqueue_entity_load_avg() as a migration with an already
2550 * constructed load_avg_contrib.
2551 */
2552 if (unlikely(se->avg.decay_count <= 0)) {
2553 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2554 if (se->avg.decay_count) {
2555 /*
2556 * In a wake-up migration we have to approximate the
2557 * time sleeping. This is because we can't synchronize
2558 * clock_task between the two cpus, and it is not
2559 * guaranteed to be read-safe. Instead, we can
2560 * approximate this using our carried decays, which are
2561 * explicitly atomically readable.
2562 */
2563 se->avg.last_runnable_update -= (-se->avg.decay_count)
2564 << 20;
2565 update_entity_load_avg(se, 0);
2566 /* Indicate that we're now synchronized and on-rq */
2567 se->avg.decay_count = 0;
2568 }
2569 wakeup = 0;
2570 } else {
2571 __synchronize_entity_decay(se);
2572 }
2573
2574 /* migrated tasks did not contribute to our blocked load */
2575 if (wakeup) {
2576 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2577 update_entity_load_avg(se, 0);
2578 }
2579
2580 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2581 /* we force update consideration on load-balancer moves */
2582 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2583 }
2584
2585 /*
2586 * Remove se's load from this cfs_rq child load-average, if the entity is
2587 * transitioning to a blocked state we track its projected decay using
2588 * blocked_load_avg.
2589 */
2590 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2591 struct sched_entity *se,
2592 int sleep)
2593 {
2594 update_entity_load_avg(se, 1);
2595 /* we force update consideration on load-balancer moves */
2596 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2597
2598 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2599 if (sleep) {
2600 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2601 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2602 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2603 }
2604
2605 /*
2606 * Update the rq's load with the elapsed running time before entering
2607 * idle. if the last scheduled task is not a CFS task, idle_enter will
2608 * be the only way to update the runnable statistic.
2609 */
2610 void idle_enter_fair(struct rq *this_rq)
2611 {
2612 update_rq_runnable_avg(this_rq, 1);
2613 }
2614
2615 /*
2616 * Update the rq's load with the elapsed idle time before a task is
2617 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2618 * be the only way to update the runnable statistic.
2619 */
2620 void idle_exit_fair(struct rq *this_rq)
2621 {
2622 update_rq_runnable_avg(this_rq, 0);
2623 }
2624
2625 static int idle_balance(struct rq *this_rq);
2626
2627 #else /* CONFIG_SMP */
2628
2629 static inline void update_entity_load_avg(struct sched_entity *se,
2630 int update_cfs_rq) {}
2631 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2632 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2633 struct sched_entity *se,
2634 int wakeup) {}
2635 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2636 struct sched_entity *se,
2637 int sleep) {}
2638 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2639 int force_update) {}
2640
2641 static inline int idle_balance(struct rq *rq)
2642 {
2643 return 0;
2644 }
2645
2646 #endif /* CONFIG_SMP */
2647
2648 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2649 {
2650 #ifdef CONFIG_SCHEDSTATS
2651 struct task_struct *tsk = NULL;
2652
2653 if (entity_is_task(se))
2654 tsk = task_of(se);
2655
2656 if (se->statistics.sleep_start) {
2657 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2658
2659 if ((s64)delta < 0)
2660 delta = 0;
2661
2662 if (unlikely(delta > se->statistics.sleep_max))
2663 se->statistics.sleep_max = delta;
2664
2665 se->statistics.sleep_start = 0;
2666 se->statistics.sum_sleep_runtime += delta;
2667
2668 if (tsk) {
2669 account_scheduler_latency(tsk, delta >> 10, 1);
2670 trace_sched_stat_sleep(tsk, delta);
2671 }
2672 }
2673 if (se->statistics.block_start) {
2674 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2675
2676 if ((s64)delta < 0)
2677 delta = 0;
2678
2679 if (unlikely(delta > se->statistics.block_max))
2680 se->statistics.block_max = delta;
2681
2682 se->statistics.block_start = 0;
2683 se->statistics.sum_sleep_runtime += delta;
2684
2685 if (tsk) {
2686 if (tsk->in_iowait) {
2687 se->statistics.iowait_sum += delta;
2688 se->statistics.iowait_count++;
2689 trace_sched_stat_iowait(tsk, delta);
2690 }
2691
2692 trace_sched_stat_blocked(tsk, delta);
2693
2694 /*
2695 * Blocking time is in units of nanosecs, so shift by
2696 * 20 to get a milliseconds-range estimation of the
2697 * amount of time that the task spent sleeping:
2698 */
2699 if (unlikely(prof_on == SLEEP_PROFILING)) {
2700 profile_hits(SLEEP_PROFILING,
2701 (void *)get_wchan(tsk),
2702 delta >> 20);
2703 }
2704 account_scheduler_latency(tsk, delta >> 10, 0);
2705 }
2706 }
2707 #endif
2708 }
2709
2710 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2711 {
2712 #ifdef CONFIG_SCHED_DEBUG
2713 s64 d = se->vruntime - cfs_rq->min_vruntime;
2714
2715 if (d < 0)
2716 d = -d;
2717
2718 if (d > 3*sysctl_sched_latency)
2719 schedstat_inc(cfs_rq, nr_spread_over);
2720 #endif
2721 }
2722
2723 static void
2724 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2725 {
2726 u64 vruntime = cfs_rq->min_vruntime;
2727
2728 /*
2729 * The 'current' period is already promised to the current tasks,
2730 * however the extra weight of the new task will slow them down a
2731 * little, place the new task so that it fits in the slot that
2732 * stays open at the end.
2733 */
2734 if (initial && sched_feat(START_DEBIT))
2735 vruntime += sched_vslice(cfs_rq, se);
2736
2737 /* sleeps up to a single latency don't count. */
2738 if (!initial) {
2739 unsigned long thresh = sysctl_sched_latency;
2740
2741 /*
2742 * Halve their sleep time's effect, to allow
2743 * for a gentler effect of sleepers:
2744 */
2745 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2746 thresh >>= 1;
2747
2748 vruntime -= thresh;
2749 }
2750
2751 /* ensure we never gain time by being placed backwards. */
2752 se->vruntime = max_vruntime(se->vruntime, vruntime);
2753 }
2754
2755 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2756
2757 static void
2758 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2759 {
2760 /*
2761 * Update the normalized vruntime before updating min_vruntime
2762 * through calling update_curr().
2763 */
2764 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2765 se->vruntime += cfs_rq->min_vruntime;
2766
2767 /*
2768 * Update run-time statistics of the 'current'.
2769 */
2770 update_curr(cfs_rq);
2771 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2772 account_entity_enqueue(cfs_rq, se);
2773 update_cfs_shares(cfs_rq);
2774
2775 if (flags & ENQUEUE_WAKEUP) {
2776 place_entity(cfs_rq, se, 0);
2777 enqueue_sleeper(cfs_rq, se);
2778 }
2779
2780 update_stats_enqueue(cfs_rq, se);
2781 check_spread(cfs_rq, se);
2782 if (se != cfs_rq->curr)
2783 __enqueue_entity(cfs_rq, se);
2784 se->on_rq = 1;
2785
2786 if (cfs_rq->nr_running == 1) {
2787 list_add_leaf_cfs_rq(cfs_rq);
2788 check_enqueue_throttle(cfs_rq);
2789 }
2790 }
2791
2792 static void __clear_buddies_last(struct sched_entity *se)
2793 {
2794 for_each_sched_entity(se) {
2795 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2796 if (cfs_rq->last != se)
2797 break;
2798
2799 cfs_rq->last = NULL;
2800 }
2801 }
2802
2803 static void __clear_buddies_next(struct sched_entity *se)
2804 {
2805 for_each_sched_entity(se) {
2806 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2807 if (cfs_rq->next != se)
2808 break;
2809
2810 cfs_rq->next = NULL;
2811 }
2812 }
2813
2814 static void __clear_buddies_skip(struct sched_entity *se)
2815 {
2816 for_each_sched_entity(se) {
2817 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2818 if (cfs_rq->skip != se)
2819 break;
2820
2821 cfs_rq->skip = NULL;
2822 }
2823 }
2824
2825 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2826 {
2827 if (cfs_rq->last == se)
2828 __clear_buddies_last(se);
2829
2830 if (cfs_rq->next == se)
2831 __clear_buddies_next(se);
2832
2833 if (cfs_rq->skip == se)
2834 __clear_buddies_skip(se);
2835 }
2836
2837 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2838
2839 static void
2840 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2841 {
2842 /*
2843 * Update run-time statistics of the 'current'.
2844 */
2845 update_curr(cfs_rq);
2846 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2847
2848 update_stats_dequeue(cfs_rq, se);
2849 if (flags & DEQUEUE_SLEEP) {
2850 #ifdef CONFIG_SCHEDSTATS
2851 if (entity_is_task(se)) {
2852 struct task_struct *tsk = task_of(se);
2853
2854 if (tsk->state & TASK_INTERRUPTIBLE)
2855 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2856 if (tsk->state & TASK_UNINTERRUPTIBLE)
2857 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2858 }
2859 #endif
2860 }
2861
2862 clear_buddies(cfs_rq, se);
2863
2864 if (se != cfs_rq->curr)
2865 __dequeue_entity(cfs_rq, se);
2866 se->on_rq = 0;
2867 account_entity_dequeue(cfs_rq, se);
2868
2869 /*
2870 * Normalize the entity after updating the min_vruntime because the
2871 * update can refer to the ->curr item and we need to reflect this
2872 * movement in our normalized position.
2873 */
2874 if (!(flags & DEQUEUE_SLEEP))
2875 se->vruntime -= cfs_rq->min_vruntime;
2876
2877 /* return excess runtime on last dequeue */
2878 return_cfs_rq_runtime(cfs_rq);
2879
2880 update_min_vruntime(cfs_rq);
2881 update_cfs_shares(cfs_rq);
2882 }
2883
2884 /*
2885 * Preempt the current task with a newly woken task if needed:
2886 */
2887 static void
2888 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2889 {
2890 unsigned long ideal_runtime, delta_exec;
2891 struct sched_entity *se;
2892 s64 delta;
2893
2894 ideal_runtime = sched_slice(cfs_rq, curr);
2895 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2896 if (delta_exec > ideal_runtime) {
2897 resched_task(rq_of(cfs_rq)->curr);
2898 /*
2899 * The current task ran long enough, ensure it doesn't get
2900 * re-elected due to buddy favours.
2901 */
2902 clear_buddies(cfs_rq, curr);
2903 return;
2904 }
2905
2906 /*
2907 * Ensure that a task that missed wakeup preemption by a
2908 * narrow margin doesn't have to wait for a full slice.
2909 * This also mitigates buddy induced latencies under load.
2910 */
2911 if (delta_exec < sysctl_sched_min_granularity)
2912 return;
2913
2914 se = __pick_first_entity(cfs_rq);
2915 delta = curr->vruntime - se->vruntime;
2916
2917 if (delta < 0)
2918 return;
2919
2920 if (delta > ideal_runtime)
2921 resched_task(rq_of(cfs_rq)->curr);
2922 }
2923
2924 static void
2925 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2926 {
2927 /* 'current' is not kept within the tree. */
2928 if (se->on_rq) {
2929 /*
2930 * Any task has to be enqueued before it get to execute on
2931 * a CPU. So account for the time it spent waiting on the
2932 * runqueue.
2933 */
2934 update_stats_wait_end(cfs_rq, se);
2935 __dequeue_entity(cfs_rq, se);
2936 }
2937
2938 update_stats_curr_start(cfs_rq, se);
2939 cfs_rq->curr = se;
2940 #ifdef CONFIG_SCHEDSTATS
2941 /*
2942 * Track our maximum slice length, if the CPU's load is at
2943 * least twice that of our own weight (i.e. dont track it
2944 * when there are only lesser-weight tasks around):
2945 */
2946 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2947 se->statistics.slice_max = max(se->statistics.slice_max,
2948 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2949 }
2950 #endif
2951 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2952 }
2953
2954 static int
2955 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2956
2957 /*
2958 * Pick the next process, keeping these things in mind, in this order:
2959 * 1) keep things fair between processes/task groups
2960 * 2) pick the "next" process, since someone really wants that to run
2961 * 3) pick the "last" process, for cache locality
2962 * 4) do not run the "skip" process, if something else is available
2963 */
2964 static struct sched_entity *
2965 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2966 {
2967 struct sched_entity *left = __pick_first_entity(cfs_rq);
2968 struct sched_entity *se;
2969
2970 /*
2971 * If curr is set we have to see if its left of the leftmost entity
2972 * still in the tree, provided there was anything in the tree at all.
2973 */
2974 if (!left || (curr && entity_before(curr, left)))
2975 left = curr;
2976
2977 se = left; /* ideally we run the leftmost entity */
2978
2979 /*
2980 * Avoid running the skip buddy, if running something else can
2981 * be done without getting too unfair.
2982 */
2983 if (cfs_rq->skip == se) {
2984 struct sched_entity *second;
2985
2986 if (se == curr) {
2987 second = __pick_first_entity(cfs_rq);
2988 } else {
2989 second = __pick_next_entity(se);
2990 if (!second || (curr && entity_before(curr, second)))
2991 second = curr;
2992 }
2993
2994 if (second && wakeup_preempt_entity(second, left) < 1)
2995 se = second;
2996 }
2997
2998 /*
2999 * Prefer last buddy, try to return the CPU to a preempted task.
3000 */
3001 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3002 se = cfs_rq->last;
3003
3004 /*
3005 * Someone really wants this to run. If it's not unfair, run it.
3006 */
3007 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3008 se = cfs_rq->next;
3009
3010 clear_buddies(cfs_rq, se);
3011
3012 return se;
3013 }
3014
3015 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3016
3017 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3018 {
3019 /*
3020 * If still on the runqueue then deactivate_task()
3021 * was not called and update_curr() has to be done:
3022 */
3023 if (prev->on_rq)
3024 update_curr(cfs_rq);
3025
3026 /* throttle cfs_rqs exceeding runtime */
3027 check_cfs_rq_runtime(cfs_rq);
3028
3029 check_spread(cfs_rq, prev);
3030 if (prev->on_rq) {
3031 update_stats_wait_start(cfs_rq, prev);
3032 /* Put 'current' back into the tree. */
3033 __enqueue_entity(cfs_rq, prev);
3034 /* in !on_rq case, update occurred at dequeue */
3035 update_entity_load_avg(prev, 1);
3036 }
3037 cfs_rq->curr = NULL;
3038 }
3039
3040 static void
3041 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3042 {
3043 /*
3044 * Update run-time statistics of the 'current'.
3045 */
3046 update_curr(cfs_rq);
3047
3048 /*
3049 * Ensure that runnable average is periodically updated.
3050 */
3051 update_entity_load_avg(curr, 1);
3052 update_cfs_rq_blocked_load(cfs_rq, 1);
3053 update_cfs_shares(cfs_rq);
3054
3055 #ifdef CONFIG_SCHED_HRTICK
3056 /*
3057 * queued ticks are scheduled to match the slice, so don't bother
3058 * validating it and just reschedule.
3059 */
3060 if (queued) {
3061 resched_task(rq_of(cfs_rq)->curr);
3062 return;
3063 }
3064 /*
3065 * don't let the period tick interfere with the hrtick preemption
3066 */
3067 if (!sched_feat(DOUBLE_TICK) &&
3068 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3069 return;
3070 #endif
3071
3072 if (cfs_rq->nr_running > 1)
3073 check_preempt_tick(cfs_rq, curr);
3074 }
3075
3076
3077 /**************************************************
3078 * CFS bandwidth control machinery
3079 */
3080
3081 #ifdef CONFIG_CFS_BANDWIDTH
3082
3083 #ifdef HAVE_JUMP_LABEL
3084 static struct static_key __cfs_bandwidth_used;
3085
3086 static inline bool cfs_bandwidth_used(void)
3087 {
3088 return static_key_false(&__cfs_bandwidth_used);
3089 }
3090
3091 void cfs_bandwidth_usage_inc(void)
3092 {
3093 static_key_slow_inc(&__cfs_bandwidth_used);
3094 }
3095
3096 void cfs_bandwidth_usage_dec(void)
3097 {
3098 static_key_slow_dec(&__cfs_bandwidth_used);
3099 }
3100 #else /* HAVE_JUMP_LABEL */
3101 static bool cfs_bandwidth_used(void)
3102 {
3103 return true;
3104 }
3105
3106 void cfs_bandwidth_usage_inc(void) {}
3107 void cfs_bandwidth_usage_dec(void) {}
3108 #endif /* HAVE_JUMP_LABEL */
3109
3110 /*
3111 * default period for cfs group bandwidth.
3112 * default: 0.1s, units: nanoseconds
3113 */
3114 static inline u64 default_cfs_period(void)
3115 {
3116 return 100000000ULL;
3117 }
3118
3119 static inline u64 sched_cfs_bandwidth_slice(void)
3120 {
3121 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3122 }
3123
3124 /*
3125 * Replenish runtime according to assigned quota and update expiration time.
3126 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3127 * additional synchronization around rq->lock.
3128 *
3129 * requires cfs_b->lock
3130 */
3131 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3132 {
3133 u64 now;
3134
3135 if (cfs_b->quota == RUNTIME_INF)
3136 return;
3137
3138 now = sched_clock_cpu(smp_processor_id());
3139 cfs_b->runtime = cfs_b->quota;
3140 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3141 }
3142
3143 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3144 {
3145 return &tg->cfs_bandwidth;
3146 }
3147
3148 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3149 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3150 {
3151 if (unlikely(cfs_rq->throttle_count))
3152 return cfs_rq->throttled_clock_task;
3153
3154 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3155 }
3156
3157 /* returns 0 on failure to allocate runtime */
3158 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3159 {
3160 struct task_group *tg = cfs_rq->tg;
3161 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3162 u64 amount = 0, min_amount, expires;
3163
3164 /* note: this is a positive sum as runtime_remaining <= 0 */
3165 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3166
3167 raw_spin_lock(&cfs_b->lock);
3168 if (cfs_b->quota == RUNTIME_INF)
3169 amount = min_amount;
3170 else {
3171 /*
3172 * If the bandwidth pool has become inactive, then at least one
3173 * period must have elapsed since the last consumption.
3174 * Refresh the global state and ensure bandwidth timer becomes
3175 * active.
3176 */
3177 if (!cfs_b->timer_active) {
3178 __refill_cfs_bandwidth_runtime(cfs_b);
3179 __start_cfs_bandwidth(cfs_b, false);
3180 }
3181
3182 if (cfs_b->runtime > 0) {
3183 amount = min(cfs_b->runtime, min_amount);
3184 cfs_b->runtime -= amount;
3185 cfs_b->idle = 0;
3186 }
3187 }
3188 expires = cfs_b->runtime_expires;
3189 raw_spin_unlock(&cfs_b->lock);
3190
3191 cfs_rq->runtime_remaining += amount;
3192 /*
3193 * we may have advanced our local expiration to account for allowed
3194 * spread between our sched_clock and the one on which runtime was
3195 * issued.
3196 */
3197 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3198 cfs_rq->runtime_expires = expires;
3199
3200 return cfs_rq->runtime_remaining > 0;
3201 }
3202
3203 /*
3204 * Note: This depends on the synchronization provided by sched_clock and the
3205 * fact that rq->clock snapshots this value.
3206 */
3207 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3208 {
3209 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3210
3211 /* if the deadline is ahead of our clock, nothing to do */
3212 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3213 return;
3214
3215 if (cfs_rq->runtime_remaining < 0)
3216 return;
3217
3218 /*
3219 * If the local deadline has passed we have to consider the
3220 * possibility that our sched_clock is 'fast' and the global deadline
3221 * has not truly expired.
3222 *
3223 * Fortunately we can check determine whether this the case by checking
3224 * whether the global deadline has advanced. It is valid to compare
3225 * cfs_b->runtime_expires without any locks since we only care about
3226 * exact equality, so a partial write will still work.
3227 */
3228
3229 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3230 /* extend local deadline, drift is bounded above by 2 ticks */
3231 cfs_rq->runtime_expires += TICK_NSEC;
3232 } else {
3233 /* global deadline is ahead, expiration has passed */
3234 cfs_rq->runtime_remaining = 0;
3235 }
3236 }
3237
3238 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3239 {
3240 /* dock delta_exec before expiring quota (as it could span periods) */
3241 cfs_rq->runtime_remaining -= delta_exec;
3242 expire_cfs_rq_runtime(cfs_rq);
3243
3244 if (likely(cfs_rq->runtime_remaining > 0))
3245 return;
3246
3247 /*
3248 * if we're unable to extend our runtime we resched so that the active
3249 * hierarchy can be throttled
3250 */
3251 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3252 resched_task(rq_of(cfs_rq)->curr);
3253 }
3254
3255 static __always_inline
3256 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3257 {
3258 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3259 return;
3260
3261 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3262 }
3263
3264 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3265 {
3266 return cfs_bandwidth_used() && cfs_rq->throttled;
3267 }
3268
3269 /* check whether cfs_rq, or any parent, is throttled */
3270 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3271 {
3272 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3273 }
3274
3275 /*
3276 * Ensure that neither of the group entities corresponding to src_cpu or
3277 * dest_cpu are members of a throttled hierarchy when performing group
3278 * load-balance operations.
3279 */
3280 static inline int throttled_lb_pair(struct task_group *tg,
3281 int src_cpu, int dest_cpu)
3282 {
3283 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3284
3285 src_cfs_rq = tg->cfs_rq[src_cpu];
3286 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3287
3288 return throttled_hierarchy(src_cfs_rq) ||
3289 throttled_hierarchy(dest_cfs_rq);
3290 }
3291
3292 /* updated child weight may affect parent so we have to do this bottom up */
3293 static int tg_unthrottle_up(struct task_group *tg, void *data)
3294 {
3295 struct rq *rq = data;
3296 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3297
3298 cfs_rq->throttle_count--;
3299 #ifdef CONFIG_SMP
3300 if (!cfs_rq->throttle_count) {
3301 /* adjust cfs_rq_clock_task() */
3302 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3303 cfs_rq->throttled_clock_task;
3304 }
3305 #endif
3306
3307 return 0;
3308 }
3309
3310 static int tg_throttle_down(struct task_group *tg, void *data)
3311 {
3312 struct rq *rq = data;
3313 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3314
3315 /* group is entering throttled state, stop time */
3316 if (!cfs_rq->throttle_count)
3317 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3318 cfs_rq->throttle_count++;
3319
3320 return 0;
3321 }
3322
3323 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3324 {
3325 struct rq *rq = rq_of(cfs_rq);
3326 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3327 struct sched_entity *se;
3328 long task_delta, dequeue = 1;
3329
3330 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3331
3332 /* freeze hierarchy runnable averages while throttled */
3333 rcu_read_lock();
3334 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3335 rcu_read_unlock();
3336
3337 task_delta = cfs_rq->h_nr_running;
3338 for_each_sched_entity(se) {
3339 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3340 /* throttled entity or throttle-on-deactivate */
3341 if (!se->on_rq)
3342 break;
3343
3344 if (dequeue)
3345 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3346 qcfs_rq->h_nr_running -= task_delta;
3347
3348 if (qcfs_rq->load.weight)
3349 dequeue = 0;
3350 }
3351
3352 if (!se)
3353 sub_nr_running(rq, task_delta);
3354
3355 cfs_rq->throttled = 1;
3356 cfs_rq->throttled_clock = rq_clock(rq);
3357 raw_spin_lock(&cfs_b->lock);
3358 /*
3359 * Add to the _head_ of the list, so that an already-started
3360 * distribute_cfs_runtime will not see us
3361 */
3362 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3363 if (!cfs_b->timer_active)
3364 __start_cfs_bandwidth(cfs_b, false);
3365 raw_spin_unlock(&cfs_b->lock);
3366 }
3367
3368 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3369 {
3370 struct rq *rq = rq_of(cfs_rq);
3371 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3372 struct sched_entity *se;
3373 int enqueue = 1;
3374 long task_delta;
3375
3376 se = cfs_rq->tg->se[cpu_of(rq)];
3377
3378 cfs_rq->throttled = 0;
3379
3380 update_rq_clock(rq);
3381
3382 raw_spin_lock(&cfs_b->lock);
3383 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3384 list_del_rcu(&cfs_rq->throttled_list);
3385 raw_spin_unlock(&cfs_b->lock);
3386
3387 /* update hierarchical throttle state */
3388 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3389
3390 if (!cfs_rq->load.weight)
3391 return;
3392
3393 task_delta = cfs_rq->h_nr_running;
3394 for_each_sched_entity(se) {
3395 if (se->on_rq)
3396 enqueue = 0;
3397
3398 cfs_rq = cfs_rq_of(se);
3399 if (enqueue)
3400 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3401 cfs_rq->h_nr_running += task_delta;
3402
3403 if (cfs_rq_throttled(cfs_rq))
3404 break;
3405 }
3406
3407 if (!se)
3408 add_nr_running(rq, task_delta);
3409
3410 /* determine whether we need to wake up potentially idle cpu */
3411 if (rq->curr == rq->idle && rq->cfs.nr_running)
3412 resched_task(rq->curr);
3413 }
3414
3415 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3416 u64 remaining, u64 expires)
3417 {
3418 struct cfs_rq *cfs_rq;
3419 u64 runtime;
3420 u64 starting_runtime = remaining;
3421
3422 rcu_read_lock();
3423 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3424 throttled_list) {
3425 struct rq *rq = rq_of(cfs_rq);
3426
3427 raw_spin_lock(&rq->lock);
3428 if (!cfs_rq_throttled(cfs_rq))
3429 goto next;
3430
3431 runtime = -cfs_rq->runtime_remaining + 1;
3432 if (runtime > remaining)
3433 runtime = remaining;
3434 remaining -= runtime;
3435
3436 cfs_rq->runtime_remaining += runtime;
3437 cfs_rq->runtime_expires = expires;
3438
3439 /* we check whether we're throttled above */
3440 if (cfs_rq->runtime_remaining > 0)
3441 unthrottle_cfs_rq(cfs_rq);
3442
3443 next:
3444 raw_spin_unlock(&rq->lock);
3445
3446 if (!remaining)
3447 break;
3448 }
3449 rcu_read_unlock();
3450
3451 return starting_runtime - remaining;
3452 }
3453
3454 /*
3455 * Responsible for refilling a task_group's bandwidth and unthrottling its
3456 * cfs_rqs as appropriate. If there has been no activity within the last
3457 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3458 * used to track this state.
3459 */
3460 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3461 {
3462 u64 runtime, runtime_expires;
3463 int throttled;
3464
3465 /* no need to continue the timer with no bandwidth constraint */
3466 if (cfs_b->quota == RUNTIME_INF)
3467 goto out_deactivate;
3468
3469 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3470 cfs_b->nr_periods += overrun;
3471
3472 /*
3473 * idle depends on !throttled (for the case of a large deficit), and if
3474 * we're going inactive then everything else can be deferred
3475 */
3476 if (cfs_b->idle && !throttled)
3477 goto out_deactivate;
3478
3479 /*
3480 * if we have relooped after returning idle once, we need to update our
3481 * status as actually running, so that other cpus doing
3482 * __start_cfs_bandwidth will stop trying to cancel us.
3483 */
3484 cfs_b->timer_active = 1;
3485
3486 __refill_cfs_bandwidth_runtime(cfs_b);
3487
3488 if (!throttled) {
3489 /* mark as potentially idle for the upcoming period */
3490 cfs_b->idle = 1;
3491 return 0;
3492 }
3493
3494 /* account preceding periods in which throttling occurred */
3495 cfs_b->nr_throttled += overrun;
3496
3497 runtime_expires = cfs_b->runtime_expires;
3498
3499 /*
3500 * This check is repeated as we are holding onto the new bandwidth while
3501 * we unthrottle. This can potentially race with an unthrottled group
3502 * trying to acquire new bandwidth from the global pool. This can result
3503 * in us over-using our runtime if it is all used during this loop, but
3504 * only by limited amounts in that extreme case.
3505 */
3506 while (throttled && cfs_b->runtime > 0) {
3507 runtime = cfs_b->runtime;
3508 raw_spin_unlock(&cfs_b->lock);
3509 /* we can't nest cfs_b->lock while distributing bandwidth */
3510 runtime = distribute_cfs_runtime(cfs_b, runtime,
3511 runtime_expires);
3512 raw_spin_lock(&cfs_b->lock);
3513
3514 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3515
3516 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3517 }
3518
3519 /*
3520 * While we are ensured activity in the period following an
3521 * unthrottle, this also covers the case in which the new bandwidth is
3522 * insufficient to cover the existing bandwidth deficit. (Forcing the
3523 * timer to remain active while there are any throttled entities.)
3524 */
3525 cfs_b->idle = 0;
3526
3527 return 0;
3528
3529 out_deactivate:
3530 cfs_b->timer_active = 0;
3531 return 1;
3532 }
3533
3534 /* a cfs_rq won't donate quota below this amount */
3535 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3536 /* minimum remaining period time to redistribute slack quota */
3537 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3538 /* how long we wait to gather additional slack before distributing */
3539 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3540
3541 /*
3542 * Are we near the end of the current quota period?
3543 *
3544 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3545 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3546 * migrate_hrtimers, base is never cleared, so we are fine.
3547 */
3548 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3549 {
3550 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3551 u64 remaining;
3552
3553 /* if the call-back is running a quota refresh is already occurring */
3554 if (hrtimer_callback_running(refresh_timer))
3555 return 1;
3556
3557 /* is a quota refresh about to occur? */
3558 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3559 if (remaining < min_expire)
3560 return 1;
3561
3562 return 0;
3563 }
3564
3565 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3566 {
3567 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3568
3569 /* if there's a quota refresh soon don't bother with slack */
3570 if (runtime_refresh_within(cfs_b, min_left))
3571 return;
3572
3573 start_bandwidth_timer(&cfs_b->slack_timer,
3574 ns_to_ktime(cfs_bandwidth_slack_period));
3575 }
3576
3577 /* we know any runtime found here is valid as update_curr() precedes return */
3578 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3579 {
3580 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3581 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3582
3583 if (slack_runtime <= 0)
3584 return;
3585
3586 raw_spin_lock(&cfs_b->lock);
3587 if (cfs_b->quota != RUNTIME_INF &&
3588 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3589 cfs_b->runtime += slack_runtime;
3590
3591 /* we are under rq->lock, defer unthrottling using a timer */
3592 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3593 !list_empty(&cfs_b->throttled_cfs_rq))
3594 start_cfs_slack_bandwidth(cfs_b);
3595 }
3596 raw_spin_unlock(&cfs_b->lock);
3597
3598 /* even if it's not valid for return we don't want to try again */
3599 cfs_rq->runtime_remaining -= slack_runtime;
3600 }
3601
3602 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3603 {
3604 if (!cfs_bandwidth_used())
3605 return;
3606
3607 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3608 return;
3609
3610 __return_cfs_rq_runtime(cfs_rq);
3611 }
3612
3613 /*
3614 * This is done with a timer (instead of inline with bandwidth return) since
3615 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3616 */
3617 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3618 {
3619 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3620 u64 expires;
3621
3622 /* confirm we're still not at a refresh boundary */
3623 raw_spin_lock(&cfs_b->lock);
3624 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3625 raw_spin_unlock(&cfs_b->lock);
3626 return;
3627 }
3628
3629 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3630 runtime = cfs_b->runtime;
3631
3632 expires = cfs_b->runtime_expires;
3633 raw_spin_unlock(&cfs_b->lock);
3634
3635 if (!runtime)
3636 return;
3637
3638 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3639
3640 raw_spin_lock(&cfs_b->lock);
3641 if (expires == cfs_b->runtime_expires)
3642 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3643 raw_spin_unlock(&cfs_b->lock);
3644 }
3645
3646 /*
3647 * When a group wakes up we want to make sure that its quota is not already
3648 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3649 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3650 */
3651 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3652 {
3653 if (!cfs_bandwidth_used())
3654 return;
3655
3656 /* an active group must be handled by the update_curr()->put() path */
3657 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3658 return;
3659
3660 /* ensure the group is not already throttled */
3661 if (cfs_rq_throttled(cfs_rq))
3662 return;
3663
3664 /* update runtime allocation */
3665 account_cfs_rq_runtime(cfs_rq, 0);
3666 if (cfs_rq->runtime_remaining <= 0)
3667 throttle_cfs_rq(cfs_rq);
3668 }
3669
3670 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3671 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3672 {
3673 if (!cfs_bandwidth_used())
3674 return false;
3675
3676 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3677 return false;
3678
3679 /*
3680 * it's possible for a throttled entity to be forced into a running
3681 * state (e.g. set_curr_task), in this case we're finished.
3682 */
3683 if (cfs_rq_throttled(cfs_rq))
3684 return true;
3685
3686 throttle_cfs_rq(cfs_rq);
3687 return true;
3688 }
3689
3690 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3691 {
3692 struct cfs_bandwidth *cfs_b =
3693 container_of(timer, struct cfs_bandwidth, slack_timer);
3694 do_sched_cfs_slack_timer(cfs_b);
3695
3696 return HRTIMER_NORESTART;
3697 }
3698
3699 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3700 {
3701 struct cfs_bandwidth *cfs_b =
3702 container_of(timer, struct cfs_bandwidth, period_timer);
3703 ktime_t now;
3704 int overrun;
3705 int idle = 0;
3706
3707 raw_spin_lock(&cfs_b->lock);
3708 for (;;) {
3709 now = hrtimer_cb_get_time(timer);
3710 overrun = hrtimer_forward(timer, now, cfs_b->period);
3711
3712 if (!overrun)
3713 break;
3714
3715 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3716 }
3717 raw_spin_unlock(&cfs_b->lock);
3718
3719 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3720 }
3721
3722 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3723 {
3724 raw_spin_lock_init(&cfs_b->lock);
3725 cfs_b->runtime = 0;
3726 cfs_b->quota = RUNTIME_INF;
3727 cfs_b->period = ns_to_ktime(default_cfs_period());
3728
3729 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3730 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3731 cfs_b->period_timer.function = sched_cfs_period_timer;
3732 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3733 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3734 }
3735
3736 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3737 {
3738 cfs_rq->runtime_enabled = 0;
3739 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3740 }
3741
3742 /* requires cfs_b->lock, may release to reprogram timer */
3743 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3744 {
3745 /*
3746 * The timer may be active because we're trying to set a new bandwidth
3747 * period or because we're racing with the tear-down path
3748 * (timer_active==0 becomes visible before the hrtimer call-back
3749 * terminates). In either case we ensure that it's re-programmed
3750 */
3751 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3752 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3753 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3754 raw_spin_unlock(&cfs_b->lock);
3755 cpu_relax();
3756 raw_spin_lock(&cfs_b->lock);
3757 /* if someone else restarted the timer then we're done */
3758 if (!force && cfs_b->timer_active)
3759 return;
3760 }
3761
3762 cfs_b->timer_active = 1;
3763 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3764 }
3765
3766 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3767 {
3768 hrtimer_cancel(&cfs_b->period_timer);
3769 hrtimer_cancel(&cfs_b->slack_timer);
3770 }
3771
3772 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3773 {
3774 struct cfs_rq *cfs_rq;
3775
3776 for_each_leaf_cfs_rq(rq, cfs_rq) {
3777 if (!cfs_rq->runtime_enabled)
3778 continue;
3779
3780 /*
3781 * clock_task is not advancing so we just need to make sure
3782 * there's some valid quota amount
3783 */
3784 cfs_rq->runtime_remaining = 1;
3785 if (cfs_rq_throttled(cfs_rq))
3786 unthrottle_cfs_rq(cfs_rq);
3787 }
3788 }
3789
3790 #else /* CONFIG_CFS_BANDWIDTH */
3791 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3792 {
3793 return rq_clock_task(rq_of(cfs_rq));
3794 }
3795
3796 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3797 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3798 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3799 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3800
3801 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3802 {
3803 return 0;
3804 }
3805
3806 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3807 {
3808 return 0;
3809 }
3810
3811 static inline int throttled_lb_pair(struct task_group *tg,
3812 int src_cpu, int dest_cpu)
3813 {
3814 return 0;
3815 }
3816
3817 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3818
3819 #ifdef CONFIG_FAIR_GROUP_SCHED
3820 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3821 #endif
3822
3823 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3824 {
3825 return NULL;
3826 }
3827 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3828 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3829
3830 #endif /* CONFIG_CFS_BANDWIDTH */
3831
3832 /**************************************************
3833 * CFS operations on tasks:
3834 */
3835
3836 #ifdef CONFIG_SCHED_HRTICK
3837 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3838 {
3839 struct sched_entity *se = &p->se;
3840 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3841
3842 WARN_ON(task_rq(p) != rq);
3843
3844 if (cfs_rq->nr_running > 1) {
3845 u64 slice = sched_slice(cfs_rq, se);
3846 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3847 s64 delta = slice - ran;
3848
3849 if (delta < 0) {
3850 if (rq->curr == p)
3851 resched_task(p);
3852 return;
3853 }
3854
3855 /*
3856 * Don't schedule slices shorter than 10000ns, that just
3857 * doesn't make sense. Rely on vruntime for fairness.
3858 */
3859 if (rq->curr != p)
3860 delta = max_t(s64, 10000LL, delta);
3861
3862 hrtick_start(rq, delta);
3863 }
3864 }
3865
3866 /*
3867 * called from enqueue/dequeue and updates the hrtick when the
3868 * current task is from our class and nr_running is low enough
3869 * to matter.
3870 */
3871 static void hrtick_update(struct rq *rq)
3872 {
3873 struct task_struct *curr = rq->curr;
3874
3875 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3876 return;
3877
3878 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3879 hrtick_start_fair(rq, curr);
3880 }
3881 #else /* !CONFIG_SCHED_HRTICK */
3882 static inline void
3883 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3884 {
3885 }
3886
3887 static inline void hrtick_update(struct rq *rq)
3888 {
3889 }
3890 #endif
3891
3892 /*
3893 * The enqueue_task method is called before nr_running is
3894 * increased. Here we update the fair scheduling stats and
3895 * then put the task into the rbtree:
3896 */
3897 static void
3898 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3899 {
3900 struct cfs_rq *cfs_rq;
3901 struct sched_entity *se = &p->se;
3902
3903 for_each_sched_entity(se) {
3904 if (se->on_rq)
3905 break;
3906 cfs_rq = cfs_rq_of(se);
3907 enqueue_entity(cfs_rq, se, flags);
3908
3909 /*
3910 * end evaluation on encountering a throttled cfs_rq
3911 *
3912 * note: in the case of encountering a throttled cfs_rq we will
3913 * post the final h_nr_running increment below.
3914 */
3915 if (cfs_rq_throttled(cfs_rq))
3916 break;
3917 cfs_rq->h_nr_running++;
3918
3919 flags = ENQUEUE_WAKEUP;
3920 }
3921
3922 for_each_sched_entity(se) {
3923 cfs_rq = cfs_rq_of(se);
3924 cfs_rq->h_nr_running++;
3925
3926 if (cfs_rq_throttled(cfs_rq))
3927 break;
3928
3929 update_cfs_shares(cfs_rq);
3930 update_entity_load_avg(se, 1);
3931 }
3932
3933 if (!se) {
3934 update_rq_runnable_avg(rq, rq->nr_running);
3935 add_nr_running(rq, 1);
3936 }
3937 hrtick_update(rq);
3938 }
3939
3940 static void set_next_buddy(struct sched_entity *se);
3941
3942 /*
3943 * The dequeue_task method is called before nr_running is
3944 * decreased. We remove the task from the rbtree and
3945 * update the fair scheduling stats:
3946 */
3947 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3948 {
3949 struct cfs_rq *cfs_rq;
3950 struct sched_entity *se = &p->se;
3951 int task_sleep = flags & DEQUEUE_SLEEP;
3952
3953 for_each_sched_entity(se) {
3954 cfs_rq = cfs_rq_of(se);
3955 dequeue_entity(cfs_rq, se, flags);
3956
3957 /*
3958 * end evaluation on encountering a throttled cfs_rq
3959 *
3960 * note: in the case of encountering a throttled cfs_rq we will
3961 * post the final h_nr_running decrement below.
3962 */
3963 if (cfs_rq_throttled(cfs_rq))
3964 break;
3965 cfs_rq->h_nr_running--;
3966
3967 /* Don't dequeue parent if it has other entities besides us */
3968 if (cfs_rq->load.weight) {
3969 /*
3970 * Bias pick_next to pick a task from this cfs_rq, as
3971 * p is sleeping when it is within its sched_slice.
3972 */
3973 if (task_sleep && parent_entity(se))
3974 set_next_buddy(parent_entity(se));
3975
3976 /* avoid re-evaluating load for this entity */
3977 se = parent_entity(se);
3978 break;
3979 }
3980 flags |= DEQUEUE_SLEEP;
3981 }
3982
3983 for_each_sched_entity(se) {
3984 cfs_rq = cfs_rq_of(se);
3985 cfs_rq->h_nr_running--;
3986
3987 if (cfs_rq_throttled(cfs_rq))
3988 break;
3989
3990 update_cfs_shares(cfs_rq);
3991 update_entity_load_avg(se, 1);
3992 }
3993
3994 if (!se) {
3995 sub_nr_running(rq, 1);
3996 update_rq_runnable_avg(rq, 1);
3997 }
3998 hrtick_update(rq);
3999 }
4000
4001 #ifdef CONFIG_SMP
4002 /* Used instead of source_load when we know the type == 0 */
4003 static unsigned long weighted_cpuload(const int cpu)
4004 {
4005 return cpu_rq(cpu)->cfs.runnable_load_avg;
4006 }
4007
4008 /*
4009 * Return a low guess at the load of a migration-source cpu weighted
4010 * according to the scheduling class and "nice" value.
4011 *
4012 * We want to under-estimate the load of migration sources, to
4013 * balance conservatively.
4014 */
4015 static unsigned long source_load(int cpu, int type)
4016 {
4017 struct rq *rq = cpu_rq(cpu);
4018 unsigned long total = weighted_cpuload(cpu);
4019
4020 if (type == 0 || !sched_feat(LB_BIAS))
4021 return total;
4022
4023 return min(rq->cpu_load[type-1], total);
4024 }
4025
4026 /*
4027 * Return a high guess at the load of a migration-target cpu weighted
4028 * according to the scheduling class and "nice" value.
4029 */
4030 static unsigned long target_load(int cpu, int type)
4031 {
4032 struct rq *rq = cpu_rq(cpu);
4033 unsigned long total = weighted_cpuload(cpu);
4034
4035 if (type == 0 || !sched_feat(LB_BIAS))
4036 return total;
4037
4038 return max(rq->cpu_load[type-1], total);
4039 }
4040
4041 static unsigned long capacity_of(int cpu)
4042 {
4043 return cpu_rq(cpu)->cpu_capacity;
4044 }
4045
4046 static unsigned long cpu_avg_load_per_task(int cpu)
4047 {
4048 struct rq *rq = cpu_rq(cpu);
4049 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
4050 unsigned long load_avg = rq->cfs.runnable_load_avg;
4051
4052 if (nr_running)
4053 return load_avg / nr_running;
4054
4055 return 0;
4056 }
4057
4058 static void record_wakee(struct task_struct *p)
4059 {
4060 /*
4061 * Rough decay (wiping) for cost saving, don't worry
4062 * about the boundary, really active task won't care
4063 * about the loss.
4064 */
4065 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4066 current->wakee_flips >>= 1;
4067 current->wakee_flip_decay_ts = jiffies;
4068 }
4069
4070 if (current->last_wakee != p) {
4071 current->last_wakee = p;
4072 current->wakee_flips++;
4073 }
4074 }
4075
4076 static void task_waking_fair(struct task_struct *p)
4077 {
4078 struct sched_entity *se = &p->se;
4079 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4080 u64 min_vruntime;
4081
4082 #ifndef CONFIG_64BIT
4083 u64 min_vruntime_copy;
4084
4085 do {
4086 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4087 smp_rmb();
4088 min_vruntime = cfs_rq->min_vruntime;
4089 } while (min_vruntime != min_vruntime_copy);
4090 #else
4091 min_vruntime = cfs_rq->min_vruntime;
4092 #endif
4093
4094 se->vruntime -= min_vruntime;
4095 record_wakee(p);
4096 }
4097
4098 #ifdef CONFIG_FAIR_GROUP_SCHED
4099 /*
4100 * effective_load() calculates the load change as seen from the root_task_group
4101 *
4102 * Adding load to a group doesn't make a group heavier, but can cause movement
4103 * of group shares between cpus. Assuming the shares were perfectly aligned one
4104 * can calculate the shift in shares.
4105 *
4106 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4107 * on this @cpu and results in a total addition (subtraction) of @wg to the
4108 * total group weight.
4109 *
4110 * Given a runqueue weight distribution (rw_i) we can compute a shares
4111 * distribution (s_i) using:
4112 *
4113 * s_i = rw_i / \Sum rw_j (1)
4114 *
4115 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4116 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4117 * shares distribution (s_i):
4118 *
4119 * rw_i = { 2, 4, 1, 0 }
4120 * s_i = { 2/7, 4/7, 1/7, 0 }
4121 *
4122 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4123 * task used to run on and the CPU the waker is running on), we need to
4124 * compute the effect of waking a task on either CPU and, in case of a sync
4125 * wakeup, compute the effect of the current task going to sleep.
4126 *
4127 * So for a change of @wl to the local @cpu with an overall group weight change
4128 * of @wl we can compute the new shares distribution (s'_i) using:
4129 *
4130 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4131 *
4132 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4133 * differences in waking a task to CPU 0. The additional task changes the
4134 * weight and shares distributions like:
4135 *
4136 * rw'_i = { 3, 4, 1, 0 }
4137 * s'_i = { 3/8, 4/8, 1/8, 0 }
4138 *
4139 * We can then compute the difference in effective weight by using:
4140 *
4141 * dw_i = S * (s'_i - s_i) (3)
4142 *
4143 * Where 'S' is the group weight as seen by its parent.
4144 *
4145 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4146 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4147 * 4/7) times the weight of the group.
4148 */
4149 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4150 {
4151 struct sched_entity *se = tg->se[cpu];
4152
4153 if (!tg->parent) /* the trivial, non-cgroup case */
4154 return wl;
4155
4156 for_each_sched_entity(se) {
4157 long w, W;
4158
4159 tg = se->my_q->tg;
4160
4161 /*
4162 * W = @wg + \Sum rw_j
4163 */
4164 W = wg + calc_tg_weight(tg, se->my_q);
4165
4166 /*
4167 * w = rw_i + @wl
4168 */
4169 w = se->my_q->load.weight + wl;
4170
4171 /*
4172 * wl = S * s'_i; see (2)
4173 */
4174 if (W > 0 && w < W)
4175 wl = (w * tg->shares) / W;
4176 else
4177 wl = tg->shares;
4178
4179 /*
4180 * Per the above, wl is the new se->load.weight value; since
4181 * those are clipped to [MIN_SHARES, ...) do so now. See
4182 * calc_cfs_shares().
4183 */
4184 if (wl < MIN_SHARES)
4185 wl = MIN_SHARES;
4186
4187 /*
4188 * wl = dw_i = S * (s'_i - s_i); see (3)
4189 */
4190 wl -= se->load.weight;
4191
4192 /*
4193 * Recursively apply this logic to all parent groups to compute
4194 * the final effective load change on the root group. Since
4195 * only the @tg group gets extra weight, all parent groups can
4196 * only redistribute existing shares. @wl is the shift in shares
4197 * resulting from this level per the above.
4198 */
4199 wg = 0;
4200 }
4201
4202 return wl;
4203 }
4204 #else
4205
4206 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4207 {
4208 return wl;
4209 }
4210
4211 #endif
4212
4213 static int wake_wide(struct task_struct *p)
4214 {
4215 int factor = this_cpu_read(sd_llc_size);
4216
4217 /*
4218 * Yeah, it's the switching-frequency, could means many wakee or
4219 * rapidly switch, use factor here will just help to automatically
4220 * adjust the loose-degree, so bigger node will lead to more pull.
4221 */
4222 if (p->wakee_flips > factor) {
4223 /*
4224 * wakee is somewhat hot, it needs certain amount of cpu
4225 * resource, so if waker is far more hot, prefer to leave
4226 * it alone.
4227 */
4228 if (current->wakee_flips > (factor * p->wakee_flips))
4229 return 1;
4230 }
4231
4232 return 0;
4233 }
4234
4235 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4236 {
4237 s64 this_load, load;
4238 int idx, this_cpu, prev_cpu;
4239 unsigned long tl_per_task;
4240 struct task_group *tg;
4241 unsigned long weight;
4242 int balanced;
4243
4244 /*
4245 * If we wake multiple tasks be careful to not bounce
4246 * ourselves around too much.
4247 */
4248 if (wake_wide(p))
4249 return 0;
4250
4251 idx = sd->wake_idx;
4252 this_cpu = smp_processor_id();
4253 prev_cpu = task_cpu(p);
4254 load = source_load(prev_cpu, idx);
4255 this_load = target_load(this_cpu, idx);
4256
4257 /*
4258 * If sync wakeup then subtract the (maximum possible)
4259 * effect of the currently running task from the load
4260 * of the current CPU:
4261 */
4262 if (sync) {
4263 tg = task_group(current);
4264 weight = current->se.load.weight;
4265
4266 this_load += effective_load(tg, this_cpu, -weight, -weight);
4267 load += effective_load(tg, prev_cpu, 0, -weight);
4268 }
4269
4270 tg = task_group(p);
4271 weight = p->se.load.weight;
4272
4273 /*
4274 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4275 * due to the sync cause above having dropped this_load to 0, we'll
4276 * always have an imbalance, but there's really nothing you can do
4277 * about that, so that's good too.
4278 *
4279 * Otherwise check if either cpus are near enough in load to allow this
4280 * task to be woken on this_cpu.
4281 */
4282 if (this_load > 0) {
4283 s64 this_eff_load, prev_eff_load;
4284
4285 this_eff_load = 100;
4286 this_eff_load *= capacity_of(prev_cpu);
4287 this_eff_load *= this_load +
4288 effective_load(tg, this_cpu, weight, weight);
4289
4290 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4291 prev_eff_load *= capacity_of(this_cpu);
4292 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4293
4294 balanced = this_eff_load <= prev_eff_load;
4295 } else
4296 balanced = true;
4297
4298 /*
4299 * If the currently running task will sleep within
4300 * a reasonable amount of time then attract this newly
4301 * woken task:
4302 */
4303 if (sync && balanced)
4304 return 1;
4305
4306 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4307 tl_per_task = cpu_avg_load_per_task(this_cpu);
4308
4309 if (balanced ||
4310 (this_load <= load &&
4311 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4312 /*
4313 * This domain has SD_WAKE_AFFINE and
4314 * p is cache cold in this domain, and
4315 * there is no bad imbalance.
4316 */
4317 schedstat_inc(sd, ttwu_move_affine);
4318 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4319
4320 return 1;
4321 }
4322 return 0;
4323 }
4324
4325 /*
4326 * find_idlest_group finds and returns the least busy CPU group within the
4327 * domain.
4328 */
4329 static struct sched_group *
4330 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4331 int this_cpu, int sd_flag)
4332 {
4333 struct sched_group *idlest = NULL, *group = sd->groups;
4334 unsigned long min_load = ULONG_MAX, this_load = 0;
4335 int load_idx = sd->forkexec_idx;
4336 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4337
4338 if (sd_flag & SD_BALANCE_WAKE)
4339 load_idx = sd->wake_idx;
4340
4341 do {
4342 unsigned long load, avg_load;
4343 int local_group;
4344 int i;
4345
4346 /* Skip over this group if it has no CPUs allowed */
4347 if (!cpumask_intersects(sched_group_cpus(group),
4348 tsk_cpus_allowed(p)))
4349 continue;
4350
4351 local_group = cpumask_test_cpu(this_cpu,
4352 sched_group_cpus(group));
4353
4354 /* Tally up the load of all CPUs in the group */
4355 avg_load = 0;
4356
4357 for_each_cpu(i, sched_group_cpus(group)) {
4358 /* Bias balancing toward cpus of our domain */
4359 if (local_group)
4360 load = source_load(i, load_idx);
4361 else
4362 load = target_load(i, load_idx);
4363
4364 avg_load += load;
4365 }
4366
4367 /* Adjust by relative CPU capacity of the group */
4368 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4369
4370 if (local_group) {
4371 this_load = avg_load;
4372 } else if (avg_load < min_load) {
4373 min_load = avg_load;
4374 idlest = group;
4375 }
4376 } while (group = group->next, group != sd->groups);
4377
4378 if (!idlest || 100*this_load < imbalance*min_load)
4379 return NULL;
4380 return idlest;
4381 }
4382
4383 /*
4384 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4385 */
4386 static int
4387 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4388 {
4389 unsigned long load, min_load = ULONG_MAX;
4390 int idlest = -1;
4391 int i;
4392
4393 /* Traverse only the allowed CPUs */
4394 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4395 load = weighted_cpuload(i);
4396
4397 if (load < min_load || (load == min_load && i == this_cpu)) {
4398 min_load = load;
4399 idlest = i;
4400 }
4401 }
4402
4403 return idlest;
4404 }
4405
4406 /*
4407 * Try and locate an idle CPU in the sched_domain.
4408 */
4409 static int select_idle_sibling(struct task_struct *p, int target)
4410 {
4411 struct sched_domain *sd;
4412 struct sched_group *sg;
4413 int i = task_cpu(p);
4414
4415 if (idle_cpu(target))
4416 return target;
4417
4418 /*
4419 * If the prevous cpu is cache affine and idle, don't be stupid.
4420 */
4421 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4422 return i;
4423
4424 /*
4425 * Otherwise, iterate the domains and find an elegible idle cpu.
4426 */
4427 sd = rcu_dereference(per_cpu(sd_llc, target));
4428 for_each_lower_domain(sd) {
4429 sg = sd->groups;
4430 do {
4431 if (!cpumask_intersects(sched_group_cpus(sg),
4432 tsk_cpus_allowed(p)))
4433 goto next;
4434
4435 for_each_cpu(i, sched_group_cpus(sg)) {
4436 if (i == target || !idle_cpu(i))
4437 goto next;
4438 }
4439
4440 target = cpumask_first_and(sched_group_cpus(sg),
4441 tsk_cpus_allowed(p));
4442 goto done;
4443 next:
4444 sg = sg->next;
4445 } while (sg != sd->groups);
4446 }
4447 done:
4448 return target;
4449 }
4450
4451 /*
4452 * select_task_rq_fair: Select target runqueue for the waking task in domains
4453 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4454 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4455 *
4456 * Balances load by selecting the idlest cpu in the idlest group, or under
4457 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4458 *
4459 * Returns the target cpu number.
4460 *
4461 * preempt must be disabled.
4462 */
4463 static int
4464 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4465 {
4466 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4467 int cpu = smp_processor_id();
4468 int new_cpu = cpu;
4469 int want_affine = 0;
4470 int sync = wake_flags & WF_SYNC;
4471
4472 if (p->nr_cpus_allowed == 1)
4473 return prev_cpu;
4474
4475 if (sd_flag & SD_BALANCE_WAKE) {
4476 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4477 want_affine = 1;
4478 new_cpu = prev_cpu;
4479 }
4480
4481 rcu_read_lock();
4482 for_each_domain(cpu, tmp) {
4483 if (!(tmp->flags & SD_LOAD_BALANCE))
4484 continue;
4485
4486 /*
4487 * If both cpu and prev_cpu are part of this domain,
4488 * cpu is a valid SD_WAKE_AFFINE target.
4489 */
4490 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4491 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4492 affine_sd = tmp;
4493 break;
4494 }
4495
4496 if (tmp->flags & sd_flag)
4497 sd = tmp;
4498 }
4499
4500 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4501 prev_cpu = cpu;
4502
4503 if (sd_flag & SD_BALANCE_WAKE) {
4504 new_cpu = select_idle_sibling(p, prev_cpu);
4505 goto unlock;
4506 }
4507
4508 while (sd) {
4509 struct sched_group *group;
4510 int weight;
4511
4512 if (!(sd->flags & sd_flag)) {
4513 sd = sd->child;
4514 continue;
4515 }
4516
4517 group = find_idlest_group(sd, p, cpu, sd_flag);
4518 if (!group) {
4519 sd = sd->child;
4520 continue;
4521 }
4522
4523 new_cpu = find_idlest_cpu(group, p, cpu);
4524 if (new_cpu == -1 || new_cpu == cpu) {
4525 /* Now try balancing at a lower domain level of cpu */
4526 sd = sd->child;
4527 continue;
4528 }
4529
4530 /* Now try balancing at a lower domain level of new_cpu */
4531 cpu = new_cpu;
4532 weight = sd->span_weight;
4533 sd = NULL;
4534 for_each_domain(cpu, tmp) {
4535 if (weight <= tmp->span_weight)
4536 break;
4537 if (tmp->flags & sd_flag)
4538 sd = tmp;
4539 }
4540 /* while loop will break here if sd == NULL */
4541 }
4542 unlock:
4543 rcu_read_unlock();
4544
4545 return new_cpu;
4546 }
4547
4548 /*
4549 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4550 * cfs_rq_of(p) references at time of call are still valid and identify the
4551 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4552 * other assumptions, including the state of rq->lock, should be made.
4553 */
4554 static void
4555 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4556 {
4557 struct sched_entity *se = &p->se;
4558 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4559
4560 /*
4561 * Load tracking: accumulate removed load so that it can be processed
4562 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4563 * to blocked load iff they have a positive decay-count. It can never
4564 * be negative here since on-rq tasks have decay-count == 0.
4565 */
4566 if (se->avg.decay_count) {
4567 se->avg.decay_count = -__synchronize_entity_decay(se);
4568 atomic_long_add(se->avg.load_avg_contrib,
4569 &cfs_rq->removed_load);
4570 }
4571
4572 /* We have migrated, no longer consider this task hot */
4573 se->exec_start = 0;
4574 }
4575 #endif /* CONFIG_SMP */
4576
4577 static unsigned long
4578 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4579 {
4580 unsigned long gran = sysctl_sched_wakeup_granularity;
4581
4582 /*
4583 * Since its curr running now, convert the gran from real-time
4584 * to virtual-time in his units.
4585 *
4586 * By using 'se' instead of 'curr' we penalize light tasks, so
4587 * they get preempted easier. That is, if 'se' < 'curr' then
4588 * the resulting gran will be larger, therefore penalizing the
4589 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4590 * be smaller, again penalizing the lighter task.
4591 *
4592 * This is especially important for buddies when the leftmost
4593 * task is higher priority than the buddy.
4594 */
4595 return calc_delta_fair(gran, se);
4596 }
4597
4598 /*
4599 * Should 'se' preempt 'curr'.
4600 *
4601 * |s1
4602 * |s2
4603 * |s3
4604 * g
4605 * |<--->|c
4606 *
4607 * w(c, s1) = -1
4608 * w(c, s2) = 0
4609 * w(c, s3) = 1
4610 *
4611 */
4612 static int
4613 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4614 {
4615 s64 gran, vdiff = curr->vruntime - se->vruntime;
4616
4617 if (vdiff <= 0)
4618 return -1;
4619
4620 gran = wakeup_gran(curr, se);
4621 if (vdiff > gran)
4622 return 1;
4623
4624 return 0;
4625 }
4626
4627 static void set_last_buddy(struct sched_entity *se)
4628 {
4629 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4630 return;
4631
4632 for_each_sched_entity(se)
4633 cfs_rq_of(se)->last = se;
4634 }
4635
4636 static void set_next_buddy(struct sched_entity *se)
4637 {
4638 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4639 return;
4640
4641 for_each_sched_entity(se)
4642 cfs_rq_of(se)->next = se;
4643 }
4644
4645 static void set_skip_buddy(struct sched_entity *se)
4646 {
4647 for_each_sched_entity(se)
4648 cfs_rq_of(se)->skip = se;
4649 }
4650
4651 /*
4652 * Preempt the current task with a newly woken task if needed:
4653 */
4654 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4655 {
4656 struct task_struct *curr = rq->curr;
4657 struct sched_entity *se = &curr->se, *pse = &p->se;
4658 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4659 int scale = cfs_rq->nr_running >= sched_nr_latency;
4660 int next_buddy_marked = 0;
4661
4662 if (unlikely(se == pse))
4663 return;
4664
4665 /*
4666 * This is possible from callers such as move_task(), in which we
4667 * unconditionally check_prempt_curr() after an enqueue (which may have
4668 * lead to a throttle). This both saves work and prevents false
4669 * next-buddy nomination below.
4670 */
4671 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4672 return;
4673
4674 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4675 set_next_buddy(pse);
4676 next_buddy_marked = 1;
4677 }
4678
4679 /*
4680 * We can come here with TIF_NEED_RESCHED already set from new task
4681 * wake up path.
4682 *
4683 * Note: this also catches the edge-case of curr being in a throttled
4684 * group (e.g. via set_curr_task), since update_curr() (in the
4685 * enqueue of curr) will have resulted in resched being set. This
4686 * prevents us from potentially nominating it as a false LAST_BUDDY
4687 * below.
4688 */
4689 if (test_tsk_need_resched(curr))
4690 return;
4691
4692 /* Idle tasks are by definition preempted by non-idle tasks. */
4693 if (unlikely(curr->policy == SCHED_IDLE) &&
4694 likely(p->policy != SCHED_IDLE))
4695 goto preempt;
4696
4697 /*
4698 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4699 * is driven by the tick):
4700 */
4701 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4702 return;
4703
4704 find_matching_se(&se, &pse);
4705 update_curr(cfs_rq_of(se));
4706 BUG_ON(!pse);
4707 if (wakeup_preempt_entity(se, pse) == 1) {
4708 /*
4709 * Bias pick_next to pick the sched entity that is
4710 * triggering this preemption.
4711 */
4712 if (!next_buddy_marked)
4713 set_next_buddy(pse);
4714 goto preempt;
4715 }
4716
4717 return;
4718
4719 preempt:
4720 resched_task(curr);
4721 /*
4722 * Only set the backward buddy when the current task is still
4723 * on the rq. This can happen when a wakeup gets interleaved
4724 * with schedule on the ->pre_schedule() or idle_balance()
4725 * point, either of which can * drop the rq lock.
4726 *
4727 * Also, during early boot the idle thread is in the fair class,
4728 * for obvious reasons its a bad idea to schedule back to it.
4729 */
4730 if (unlikely(!se->on_rq || curr == rq->idle))
4731 return;
4732
4733 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4734 set_last_buddy(se);
4735 }
4736
4737 static struct task_struct *
4738 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4739 {
4740 struct cfs_rq *cfs_rq = &rq->cfs;
4741 struct sched_entity *se;
4742 struct task_struct *p;
4743 int new_tasks;
4744
4745 again:
4746 #ifdef CONFIG_FAIR_GROUP_SCHED
4747 if (!cfs_rq->nr_running)
4748 goto idle;
4749
4750 if (prev->sched_class != &fair_sched_class)
4751 goto simple;
4752
4753 /*
4754 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4755 * likely that a next task is from the same cgroup as the current.
4756 *
4757 * Therefore attempt to avoid putting and setting the entire cgroup
4758 * hierarchy, only change the part that actually changes.
4759 */
4760
4761 do {
4762 struct sched_entity *curr = cfs_rq->curr;
4763
4764 /*
4765 * Since we got here without doing put_prev_entity() we also
4766 * have to consider cfs_rq->curr. If it is still a runnable
4767 * entity, update_curr() will update its vruntime, otherwise
4768 * forget we've ever seen it.
4769 */
4770 if (curr && curr->on_rq)
4771 update_curr(cfs_rq);
4772 else
4773 curr = NULL;
4774
4775 /*
4776 * This call to check_cfs_rq_runtime() will do the throttle and
4777 * dequeue its entity in the parent(s). Therefore the 'simple'
4778 * nr_running test will indeed be correct.
4779 */
4780 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4781 goto simple;
4782
4783 se = pick_next_entity(cfs_rq, curr);
4784 cfs_rq = group_cfs_rq(se);
4785 } while (cfs_rq);
4786
4787 p = task_of(se);
4788
4789 /*
4790 * Since we haven't yet done put_prev_entity and if the selected task
4791 * is a different task than we started out with, try and touch the
4792 * least amount of cfs_rqs.
4793 */
4794 if (prev != p) {
4795 struct sched_entity *pse = &prev->se;
4796
4797 while (!(cfs_rq = is_same_group(se, pse))) {
4798 int se_depth = se->depth;
4799 int pse_depth = pse->depth;
4800
4801 if (se_depth <= pse_depth) {
4802 put_prev_entity(cfs_rq_of(pse), pse);
4803 pse = parent_entity(pse);
4804 }
4805 if (se_depth >= pse_depth) {
4806 set_next_entity(cfs_rq_of(se), se);
4807 se = parent_entity(se);
4808 }
4809 }
4810
4811 put_prev_entity(cfs_rq, pse);
4812 set_next_entity(cfs_rq, se);
4813 }
4814
4815 if (hrtick_enabled(rq))
4816 hrtick_start_fair(rq, p);
4817
4818 return p;
4819 simple:
4820 cfs_rq = &rq->cfs;
4821 #endif
4822
4823 if (!cfs_rq->nr_running)
4824 goto idle;
4825
4826 put_prev_task(rq, prev);
4827
4828 do {
4829 se = pick_next_entity(cfs_rq, NULL);
4830 set_next_entity(cfs_rq, se);
4831 cfs_rq = group_cfs_rq(se);
4832 } while (cfs_rq);
4833
4834 p = task_of(se);
4835
4836 if (hrtick_enabled(rq))
4837 hrtick_start_fair(rq, p);
4838
4839 return p;
4840
4841 idle:
4842 new_tasks = idle_balance(rq);
4843 /*
4844 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4845 * possible for any higher priority task to appear. In that case we
4846 * must re-start the pick_next_entity() loop.
4847 */
4848 if (new_tasks < 0)
4849 return RETRY_TASK;
4850
4851 if (new_tasks > 0)
4852 goto again;
4853
4854 return NULL;
4855 }
4856
4857 /*
4858 * Account for a descheduled task:
4859 */
4860 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4861 {
4862 struct sched_entity *se = &prev->se;
4863 struct cfs_rq *cfs_rq;
4864
4865 for_each_sched_entity(se) {
4866 cfs_rq = cfs_rq_of(se);
4867 put_prev_entity(cfs_rq, se);
4868 }
4869 }
4870
4871 /*
4872 * sched_yield() is very simple
4873 *
4874 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4875 */
4876 static void yield_task_fair(struct rq *rq)
4877 {
4878 struct task_struct *curr = rq->curr;
4879 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4880 struct sched_entity *se = &curr->se;
4881
4882 /*
4883 * Are we the only task in the tree?
4884 */
4885 if (unlikely(rq->nr_running == 1))
4886 return;
4887
4888 clear_buddies(cfs_rq, se);
4889
4890 if (curr->policy != SCHED_BATCH) {
4891 update_rq_clock(rq);
4892 /*
4893 * Update run-time statistics of the 'current'.
4894 */
4895 update_curr(cfs_rq);
4896 /*
4897 * Tell update_rq_clock() that we've just updated,
4898 * so we don't do microscopic update in schedule()
4899 * and double the fastpath cost.
4900 */
4901 rq->skip_clock_update = 1;
4902 }
4903
4904 set_skip_buddy(se);
4905 }
4906
4907 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4908 {
4909 struct sched_entity *se = &p->se;
4910
4911 /* throttled hierarchies are not runnable */
4912 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4913 return false;
4914
4915 /* Tell the scheduler that we'd really like pse to run next. */
4916 set_next_buddy(se);
4917
4918 yield_task_fair(rq);
4919
4920 return true;
4921 }
4922
4923 #ifdef CONFIG_SMP
4924 /**************************************************
4925 * Fair scheduling class load-balancing methods.
4926 *
4927 * BASICS
4928 *
4929 * The purpose of load-balancing is to achieve the same basic fairness the
4930 * per-cpu scheduler provides, namely provide a proportional amount of compute
4931 * time to each task. This is expressed in the following equation:
4932 *
4933 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4934 *
4935 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4936 * W_i,0 is defined as:
4937 *
4938 * W_i,0 = \Sum_j w_i,j (2)
4939 *
4940 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4941 * is derived from the nice value as per prio_to_weight[].
4942 *
4943 * The weight average is an exponential decay average of the instantaneous
4944 * weight:
4945 *
4946 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4947 *
4948 * C_i is the compute capacity of cpu i, typically it is the
4949 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4950 * can also include other factors [XXX].
4951 *
4952 * To achieve this balance we define a measure of imbalance which follows
4953 * directly from (1):
4954 *
4955 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
4956 *
4957 * We them move tasks around to minimize the imbalance. In the continuous
4958 * function space it is obvious this converges, in the discrete case we get
4959 * a few fun cases generally called infeasible weight scenarios.
4960 *
4961 * [XXX expand on:
4962 * - infeasible weights;
4963 * - local vs global optima in the discrete case. ]
4964 *
4965 *
4966 * SCHED DOMAINS
4967 *
4968 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4969 * for all i,j solution, we create a tree of cpus that follows the hardware
4970 * topology where each level pairs two lower groups (or better). This results
4971 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4972 * tree to only the first of the previous level and we decrease the frequency
4973 * of load-balance at each level inv. proportional to the number of cpus in
4974 * the groups.
4975 *
4976 * This yields:
4977 *
4978 * log_2 n 1 n
4979 * \Sum { --- * --- * 2^i } = O(n) (5)
4980 * i = 0 2^i 2^i
4981 * `- size of each group
4982 * | | `- number of cpus doing load-balance
4983 * | `- freq
4984 * `- sum over all levels
4985 *
4986 * Coupled with a limit on how many tasks we can migrate every balance pass,
4987 * this makes (5) the runtime complexity of the balancer.
4988 *
4989 * An important property here is that each CPU is still (indirectly) connected
4990 * to every other cpu in at most O(log n) steps:
4991 *
4992 * The adjacency matrix of the resulting graph is given by:
4993 *
4994 * log_2 n
4995 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4996 * k = 0
4997 *
4998 * And you'll find that:
4999 *
5000 * A^(log_2 n)_i,j != 0 for all i,j (7)
5001 *
5002 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5003 * The task movement gives a factor of O(m), giving a convergence complexity
5004 * of:
5005 *
5006 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5007 *
5008 *
5009 * WORK CONSERVING
5010 *
5011 * In order to avoid CPUs going idle while there's still work to do, new idle
5012 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5013 * tree itself instead of relying on other CPUs to bring it work.
5014 *
5015 * This adds some complexity to both (5) and (8) but it reduces the total idle
5016 * time.
5017 *
5018 * [XXX more?]
5019 *
5020 *
5021 * CGROUPS
5022 *
5023 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5024 *
5025 * s_k,i
5026 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5027 * S_k
5028 *
5029 * Where
5030 *
5031 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5032 *
5033 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5034 *
5035 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5036 * property.
5037 *
5038 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5039 * rewrite all of this once again.]
5040 */
5041
5042 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5043
5044 enum fbq_type { regular, remote, all };
5045
5046 #define LBF_ALL_PINNED 0x01
5047 #define LBF_NEED_BREAK 0x02
5048 #define LBF_DST_PINNED 0x04
5049 #define LBF_SOME_PINNED 0x08
5050
5051 struct lb_env {
5052 struct sched_domain *sd;
5053
5054 struct rq *src_rq;
5055 int src_cpu;
5056
5057 int dst_cpu;
5058 struct rq *dst_rq;
5059
5060 struct cpumask *dst_grpmask;
5061 int new_dst_cpu;
5062 enum cpu_idle_type idle;
5063 long imbalance;
5064 /* The set of CPUs under consideration for load-balancing */
5065 struct cpumask *cpus;
5066
5067 unsigned int flags;
5068
5069 unsigned int loop;
5070 unsigned int loop_break;
5071 unsigned int loop_max;
5072
5073 enum fbq_type fbq_type;
5074 };
5075
5076 /*
5077 * move_task - move a task from one runqueue to another runqueue.
5078 * Both runqueues must be locked.
5079 */
5080 static void move_task(struct task_struct *p, struct lb_env *env)
5081 {
5082 deactivate_task(env->src_rq, p, 0);
5083 set_task_cpu(p, env->dst_cpu);
5084 activate_task(env->dst_rq, p, 0);
5085 check_preempt_curr(env->dst_rq, p, 0);
5086 }
5087
5088 /*
5089 * Is this task likely cache-hot:
5090 */
5091 static int task_hot(struct task_struct *p, struct lb_env *env)
5092 {
5093 s64 delta;
5094
5095 if (p->sched_class != &fair_sched_class)
5096 return 0;
5097
5098 if (unlikely(p->policy == SCHED_IDLE))
5099 return 0;
5100
5101 /*
5102 * Buddy candidates are cache hot:
5103 */
5104 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5105 (&p->se == cfs_rq_of(&p->se)->next ||
5106 &p->se == cfs_rq_of(&p->se)->last))
5107 return 1;
5108
5109 if (sysctl_sched_migration_cost == -1)
5110 return 1;
5111 if (sysctl_sched_migration_cost == 0)
5112 return 0;
5113
5114 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5115
5116 return delta < (s64)sysctl_sched_migration_cost;
5117 }
5118
5119 #ifdef CONFIG_NUMA_BALANCING
5120 /* Returns true if the destination node has incurred more faults */
5121 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5122 {
5123 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5124 int src_nid, dst_nid;
5125
5126 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5127 !(env->sd->flags & SD_NUMA)) {
5128 return false;
5129 }
5130
5131 src_nid = cpu_to_node(env->src_cpu);
5132 dst_nid = cpu_to_node(env->dst_cpu);
5133
5134 if (src_nid == dst_nid)
5135 return false;
5136
5137 if (numa_group) {
5138 /* Task is already in the group's interleave set. */
5139 if (node_isset(src_nid, numa_group->active_nodes))
5140 return false;
5141
5142 /* Task is moving into the group's interleave set. */
5143 if (node_isset(dst_nid, numa_group->active_nodes))
5144 return true;
5145
5146 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5147 }
5148
5149 /* Encourage migration to the preferred node. */
5150 if (dst_nid == p->numa_preferred_nid)
5151 return true;
5152
5153 return task_faults(p, dst_nid) > task_faults(p, src_nid);
5154 }
5155
5156
5157 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5158 {
5159 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5160 int src_nid, dst_nid;
5161
5162 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5163 return false;
5164
5165 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5166 return false;
5167
5168 src_nid = cpu_to_node(env->src_cpu);
5169 dst_nid = cpu_to_node(env->dst_cpu);
5170
5171 if (src_nid == dst_nid)
5172 return false;
5173
5174 if (numa_group) {
5175 /* Task is moving within/into the group's interleave set. */
5176 if (node_isset(dst_nid, numa_group->active_nodes))
5177 return false;
5178
5179 /* Task is moving out of the group's interleave set. */
5180 if (node_isset(src_nid, numa_group->active_nodes))
5181 return true;
5182
5183 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5184 }
5185
5186 /* Migrating away from the preferred node is always bad. */
5187 if (src_nid == p->numa_preferred_nid)
5188 return true;
5189
5190 return task_faults(p, dst_nid) < task_faults(p, src_nid);
5191 }
5192
5193 #else
5194 static inline bool migrate_improves_locality(struct task_struct *p,
5195 struct lb_env *env)
5196 {
5197 return false;
5198 }
5199
5200 static inline bool migrate_degrades_locality(struct task_struct *p,
5201 struct lb_env *env)
5202 {
5203 return false;
5204 }
5205 #endif
5206
5207 /*
5208 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5209 */
5210 static
5211 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5212 {
5213 int tsk_cache_hot = 0;
5214 /*
5215 * We do not migrate tasks that are:
5216 * 1) throttled_lb_pair, or
5217 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5218 * 3) running (obviously), or
5219 * 4) are cache-hot on their current CPU.
5220 */
5221 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5222 return 0;
5223
5224 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5225 int cpu;
5226
5227 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5228
5229 env->flags |= LBF_SOME_PINNED;
5230
5231 /*
5232 * Remember if this task can be migrated to any other cpu in
5233 * our sched_group. We may want to revisit it if we couldn't
5234 * meet load balance goals by pulling other tasks on src_cpu.
5235 *
5236 * Also avoid computing new_dst_cpu if we have already computed
5237 * one in current iteration.
5238 */
5239 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5240 return 0;
5241
5242 /* Prevent to re-select dst_cpu via env's cpus */
5243 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5244 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5245 env->flags |= LBF_DST_PINNED;
5246 env->new_dst_cpu = cpu;
5247 break;
5248 }
5249 }
5250
5251 return 0;
5252 }
5253
5254 /* Record that we found atleast one task that could run on dst_cpu */
5255 env->flags &= ~LBF_ALL_PINNED;
5256
5257 if (task_running(env->src_rq, p)) {
5258 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5259 return 0;
5260 }
5261
5262 /*
5263 * Aggressive migration if:
5264 * 1) destination numa is preferred
5265 * 2) task is cache cold, or
5266 * 3) too many balance attempts have failed.
5267 */
5268 tsk_cache_hot = task_hot(p, env);
5269 if (!tsk_cache_hot)
5270 tsk_cache_hot = migrate_degrades_locality(p, env);
5271
5272 if (migrate_improves_locality(p, env)) {
5273 #ifdef CONFIG_SCHEDSTATS
5274 if (tsk_cache_hot) {
5275 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5276 schedstat_inc(p, se.statistics.nr_forced_migrations);
5277 }
5278 #endif
5279 return 1;
5280 }
5281
5282 if (!tsk_cache_hot ||
5283 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5284
5285 if (tsk_cache_hot) {
5286 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5287 schedstat_inc(p, se.statistics.nr_forced_migrations);
5288 }
5289
5290 return 1;
5291 }
5292
5293 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5294 return 0;
5295 }
5296
5297 /*
5298 * move_one_task tries to move exactly one task from busiest to this_rq, as
5299 * part of active balancing operations within "domain".
5300 * Returns 1 if successful and 0 otherwise.
5301 *
5302 * Called with both runqueues locked.
5303 */
5304 static int move_one_task(struct lb_env *env)
5305 {
5306 struct task_struct *p, *n;
5307
5308 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5309 if (!can_migrate_task(p, env))
5310 continue;
5311
5312 move_task(p, env);
5313 /*
5314 * Right now, this is only the second place move_task()
5315 * is called, so we can safely collect move_task()
5316 * stats here rather than inside move_task().
5317 */
5318 schedstat_inc(env->sd, lb_gained[env->idle]);
5319 return 1;
5320 }
5321 return 0;
5322 }
5323
5324 static const unsigned int sched_nr_migrate_break = 32;
5325
5326 /*
5327 * move_tasks tries to move up to imbalance weighted load from busiest to
5328 * this_rq, as part of a balancing operation within domain "sd".
5329 * Returns 1 if successful and 0 otherwise.
5330 *
5331 * Called with both runqueues locked.
5332 */
5333 static int move_tasks(struct lb_env *env)
5334 {
5335 struct list_head *tasks = &env->src_rq->cfs_tasks;
5336 struct task_struct *p;
5337 unsigned long load;
5338 int pulled = 0;
5339
5340 if (env->imbalance <= 0)
5341 return 0;
5342
5343 while (!list_empty(tasks)) {
5344 p = list_first_entry(tasks, struct task_struct, se.group_node);
5345
5346 env->loop++;
5347 /* We've more or less seen every task there is, call it quits */
5348 if (env->loop > env->loop_max)
5349 break;
5350
5351 /* take a breather every nr_migrate tasks */
5352 if (env->loop > env->loop_break) {
5353 env->loop_break += sched_nr_migrate_break;
5354 env->flags |= LBF_NEED_BREAK;
5355 break;
5356 }
5357
5358 if (!can_migrate_task(p, env))
5359 goto next;
5360
5361 load = task_h_load(p);
5362
5363 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5364 goto next;
5365
5366 if ((load / 2) > env->imbalance)
5367 goto next;
5368
5369 move_task(p, env);
5370 pulled++;
5371 env->imbalance -= load;
5372
5373 #ifdef CONFIG_PREEMPT
5374 /*
5375 * NEWIDLE balancing is a source of latency, so preemptible
5376 * kernels will stop after the first task is pulled to minimize
5377 * the critical section.
5378 */
5379 if (env->idle == CPU_NEWLY_IDLE)
5380 break;
5381 #endif
5382
5383 /*
5384 * We only want to steal up to the prescribed amount of
5385 * weighted load.
5386 */
5387 if (env->imbalance <= 0)
5388 break;
5389
5390 continue;
5391 next:
5392 list_move_tail(&p->se.group_node, tasks);
5393 }
5394
5395 /*
5396 * Right now, this is one of only two places move_task() is called,
5397 * so we can safely collect move_task() stats here rather than
5398 * inside move_task().
5399 */
5400 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5401
5402 return pulled;
5403 }
5404
5405 #ifdef CONFIG_FAIR_GROUP_SCHED
5406 /*
5407 * update tg->load_weight by folding this cpu's load_avg
5408 */
5409 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5410 {
5411 struct sched_entity *se = tg->se[cpu];
5412 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5413
5414 /* throttled entities do not contribute to load */
5415 if (throttled_hierarchy(cfs_rq))
5416 return;
5417
5418 update_cfs_rq_blocked_load(cfs_rq, 1);
5419
5420 if (se) {
5421 update_entity_load_avg(se, 1);
5422 /*
5423 * We pivot on our runnable average having decayed to zero for
5424 * list removal. This generally implies that all our children
5425 * have also been removed (modulo rounding error or bandwidth
5426 * control); however, such cases are rare and we can fix these
5427 * at enqueue.
5428 *
5429 * TODO: fix up out-of-order children on enqueue.
5430 */
5431 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5432 list_del_leaf_cfs_rq(cfs_rq);
5433 } else {
5434 struct rq *rq = rq_of(cfs_rq);
5435 update_rq_runnable_avg(rq, rq->nr_running);
5436 }
5437 }
5438
5439 static void update_blocked_averages(int cpu)
5440 {
5441 struct rq *rq = cpu_rq(cpu);
5442 struct cfs_rq *cfs_rq;
5443 unsigned long flags;
5444
5445 raw_spin_lock_irqsave(&rq->lock, flags);
5446 update_rq_clock(rq);
5447 /*
5448 * Iterates the task_group tree in a bottom up fashion, see
5449 * list_add_leaf_cfs_rq() for details.
5450 */
5451 for_each_leaf_cfs_rq(rq, cfs_rq) {
5452 /*
5453 * Note: We may want to consider periodically releasing
5454 * rq->lock about these updates so that creating many task
5455 * groups does not result in continually extending hold time.
5456 */
5457 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5458 }
5459
5460 raw_spin_unlock_irqrestore(&rq->lock, flags);
5461 }
5462
5463 /*
5464 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5465 * This needs to be done in a top-down fashion because the load of a child
5466 * group is a fraction of its parents load.
5467 */
5468 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5469 {
5470 struct rq *rq = rq_of(cfs_rq);
5471 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5472 unsigned long now = jiffies;
5473 unsigned long load;
5474
5475 if (cfs_rq->last_h_load_update == now)
5476 return;
5477
5478 cfs_rq->h_load_next = NULL;
5479 for_each_sched_entity(se) {
5480 cfs_rq = cfs_rq_of(se);
5481 cfs_rq->h_load_next = se;
5482 if (cfs_rq->last_h_load_update == now)
5483 break;
5484 }
5485
5486 if (!se) {
5487 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5488 cfs_rq->last_h_load_update = now;
5489 }
5490
5491 while ((se = cfs_rq->h_load_next) != NULL) {
5492 load = cfs_rq->h_load;
5493 load = div64_ul(load * se->avg.load_avg_contrib,
5494 cfs_rq->runnable_load_avg + 1);
5495 cfs_rq = group_cfs_rq(se);
5496 cfs_rq->h_load = load;
5497 cfs_rq->last_h_load_update = now;
5498 }
5499 }
5500
5501 static unsigned long task_h_load(struct task_struct *p)
5502 {
5503 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5504
5505 update_cfs_rq_h_load(cfs_rq);
5506 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5507 cfs_rq->runnable_load_avg + 1);
5508 }
5509 #else
5510 static inline void update_blocked_averages(int cpu)
5511 {
5512 }
5513
5514 static unsigned long task_h_load(struct task_struct *p)
5515 {
5516 return p->se.avg.load_avg_contrib;
5517 }
5518 #endif
5519
5520 /********** Helpers for find_busiest_group ************************/
5521 /*
5522 * sg_lb_stats - stats of a sched_group required for load_balancing
5523 */
5524 struct sg_lb_stats {
5525 unsigned long avg_load; /*Avg load across the CPUs of the group */
5526 unsigned long group_load; /* Total load over the CPUs of the group */
5527 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5528 unsigned long load_per_task;
5529 unsigned long group_capacity;
5530 unsigned int sum_nr_running; /* Nr tasks running in the group */
5531 unsigned int group_capacity_factor;
5532 unsigned int idle_cpus;
5533 unsigned int group_weight;
5534 int group_imb; /* Is there an imbalance in the group ? */
5535 int group_has_free_capacity;
5536 #ifdef CONFIG_NUMA_BALANCING
5537 unsigned int nr_numa_running;
5538 unsigned int nr_preferred_running;
5539 #endif
5540 };
5541
5542 /*
5543 * sd_lb_stats - Structure to store the statistics of a sched_domain
5544 * during load balancing.
5545 */
5546 struct sd_lb_stats {
5547 struct sched_group *busiest; /* Busiest group in this sd */
5548 struct sched_group *local; /* Local group in this sd */
5549 unsigned long total_load; /* Total load of all groups in sd */
5550 unsigned long total_capacity; /* Total capacity of all groups in sd */
5551 unsigned long avg_load; /* Average load across all groups in sd */
5552
5553 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5554 struct sg_lb_stats local_stat; /* Statistics of the local group */
5555 };
5556
5557 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5558 {
5559 /*
5560 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5561 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5562 * We must however clear busiest_stat::avg_load because
5563 * update_sd_pick_busiest() reads this before assignment.
5564 */
5565 *sds = (struct sd_lb_stats){
5566 .busiest = NULL,
5567 .local = NULL,
5568 .total_load = 0UL,
5569 .total_capacity = 0UL,
5570 .busiest_stat = {
5571 .avg_load = 0UL,
5572 },
5573 };
5574 }
5575
5576 /**
5577 * get_sd_load_idx - Obtain the load index for a given sched domain.
5578 * @sd: The sched_domain whose load_idx is to be obtained.
5579 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5580 *
5581 * Return: The load index.
5582 */
5583 static inline int get_sd_load_idx(struct sched_domain *sd,
5584 enum cpu_idle_type idle)
5585 {
5586 int load_idx;
5587
5588 switch (idle) {
5589 case CPU_NOT_IDLE:
5590 load_idx = sd->busy_idx;
5591 break;
5592
5593 case CPU_NEWLY_IDLE:
5594 load_idx = sd->newidle_idx;
5595 break;
5596 default:
5597 load_idx = sd->idle_idx;
5598 break;
5599 }
5600
5601 return load_idx;
5602 }
5603
5604 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5605 {
5606 return SCHED_CAPACITY_SCALE;
5607 }
5608
5609 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5610 {
5611 return default_scale_capacity(sd, cpu);
5612 }
5613
5614 static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
5615 {
5616 unsigned long weight = sd->span_weight;
5617 unsigned long smt_gain = sd->smt_gain;
5618
5619 smt_gain /= weight;
5620
5621 return smt_gain;
5622 }
5623
5624 unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
5625 {
5626 return default_scale_smt_capacity(sd, cpu);
5627 }
5628
5629 static unsigned long scale_rt_capacity(int cpu)
5630 {
5631 struct rq *rq = cpu_rq(cpu);
5632 u64 total, available, age_stamp, avg;
5633 s64 delta;
5634
5635 /*
5636 * Since we're reading these variables without serialization make sure
5637 * we read them once before doing sanity checks on them.
5638 */
5639 age_stamp = ACCESS_ONCE(rq->age_stamp);
5640 avg = ACCESS_ONCE(rq->rt_avg);
5641
5642 delta = rq_clock(rq) - age_stamp;
5643 if (unlikely(delta < 0))
5644 delta = 0;
5645
5646 total = sched_avg_period() + delta;
5647
5648 if (unlikely(total < avg)) {
5649 /* Ensures that capacity won't end up being negative */
5650 available = 0;
5651 } else {
5652 available = total - avg;
5653 }
5654
5655 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5656 total = SCHED_CAPACITY_SCALE;
5657
5658 total >>= SCHED_CAPACITY_SHIFT;
5659
5660 return div_u64(available, total);
5661 }
5662
5663 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5664 {
5665 unsigned long weight = sd->span_weight;
5666 unsigned long capacity = SCHED_CAPACITY_SCALE;
5667 struct sched_group *sdg = sd->groups;
5668
5669 if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
5670 if (sched_feat(ARCH_CAPACITY))
5671 capacity *= arch_scale_smt_capacity(sd, cpu);
5672 else
5673 capacity *= default_scale_smt_capacity(sd, cpu);
5674
5675 capacity >>= SCHED_CAPACITY_SHIFT;
5676 }
5677
5678 sdg->sgc->capacity_orig = capacity;
5679
5680 if (sched_feat(ARCH_CAPACITY))
5681 capacity *= arch_scale_freq_capacity(sd, cpu);
5682 else
5683 capacity *= default_scale_capacity(sd, cpu);
5684
5685 capacity >>= SCHED_CAPACITY_SHIFT;
5686
5687 capacity *= scale_rt_capacity(cpu);
5688 capacity >>= SCHED_CAPACITY_SHIFT;
5689
5690 if (!capacity)
5691 capacity = 1;
5692
5693 cpu_rq(cpu)->cpu_capacity = capacity;
5694 sdg->sgc->capacity = capacity;
5695 }
5696
5697 void update_group_capacity(struct sched_domain *sd, int cpu)
5698 {
5699 struct sched_domain *child = sd->child;
5700 struct sched_group *group, *sdg = sd->groups;
5701 unsigned long capacity, capacity_orig;
5702 unsigned long interval;
5703
5704 interval = msecs_to_jiffies(sd->balance_interval);
5705 interval = clamp(interval, 1UL, max_load_balance_interval);
5706 sdg->sgc->next_update = jiffies + interval;
5707
5708 if (!child) {
5709 update_cpu_capacity(sd, cpu);
5710 return;
5711 }
5712
5713 capacity_orig = capacity = 0;
5714
5715 if (child->flags & SD_OVERLAP) {
5716 /*
5717 * SD_OVERLAP domains cannot assume that child groups
5718 * span the current group.
5719 */
5720
5721 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5722 struct sched_group_capacity *sgc;
5723 struct rq *rq = cpu_rq(cpu);
5724
5725 /*
5726 * build_sched_domains() -> init_sched_groups_capacity()
5727 * gets here before we've attached the domains to the
5728 * runqueues.
5729 *
5730 * Use capacity_of(), which is set irrespective of domains
5731 * in update_cpu_capacity().
5732 *
5733 * This avoids capacity/capacity_orig from being 0 and
5734 * causing divide-by-zero issues on boot.
5735 *
5736 * Runtime updates will correct capacity_orig.
5737 */
5738 if (unlikely(!rq->sd)) {
5739 capacity_orig += capacity_of(cpu);
5740 capacity += capacity_of(cpu);
5741 continue;
5742 }
5743
5744 sgc = rq->sd->groups->sgc;
5745 capacity_orig += sgc->capacity_orig;
5746 capacity += sgc->capacity;
5747 }
5748 } else {
5749 /*
5750 * !SD_OVERLAP domains can assume that child groups
5751 * span the current group.
5752 */
5753
5754 group = child->groups;
5755 do {
5756 capacity_orig += group->sgc->capacity_orig;
5757 capacity += group->sgc->capacity;
5758 group = group->next;
5759 } while (group != child->groups);
5760 }
5761
5762 sdg->sgc->capacity_orig = capacity_orig;
5763 sdg->sgc->capacity = capacity;
5764 }
5765
5766 /*
5767 * Try and fix up capacity for tiny siblings, this is needed when
5768 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5769 * which on its own isn't powerful enough.
5770 *
5771 * See update_sd_pick_busiest() and check_asym_packing().
5772 */
5773 static inline int
5774 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5775 {
5776 /*
5777 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
5778 */
5779 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
5780 return 0;
5781
5782 /*
5783 * If ~90% of the cpu_capacity is still there, we're good.
5784 */
5785 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
5786 return 1;
5787
5788 return 0;
5789 }
5790
5791 /*
5792 * Group imbalance indicates (and tries to solve) the problem where balancing
5793 * groups is inadequate due to tsk_cpus_allowed() constraints.
5794 *
5795 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5796 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5797 * Something like:
5798 *
5799 * { 0 1 2 3 } { 4 5 6 7 }
5800 * * * * *
5801 *
5802 * If we were to balance group-wise we'd place two tasks in the first group and
5803 * two tasks in the second group. Clearly this is undesired as it will overload
5804 * cpu 3 and leave one of the cpus in the second group unused.
5805 *
5806 * The current solution to this issue is detecting the skew in the first group
5807 * by noticing the lower domain failed to reach balance and had difficulty
5808 * moving tasks due to affinity constraints.
5809 *
5810 * When this is so detected; this group becomes a candidate for busiest; see
5811 * update_sd_pick_busiest(). And calculate_imbalance() and
5812 * find_busiest_group() avoid some of the usual balance conditions to allow it
5813 * to create an effective group imbalance.
5814 *
5815 * This is a somewhat tricky proposition since the next run might not find the
5816 * group imbalance and decide the groups need to be balanced again. A most
5817 * subtle and fragile situation.
5818 */
5819
5820 static inline int sg_imbalanced(struct sched_group *group)
5821 {
5822 return group->sgc->imbalance;
5823 }
5824
5825 /*
5826 * Compute the group capacity factor.
5827 *
5828 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
5829 * first dividing out the smt factor and computing the actual number of cores
5830 * and limit unit capacity with that.
5831 */
5832 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
5833 {
5834 unsigned int capacity_factor, smt, cpus;
5835 unsigned int capacity, capacity_orig;
5836
5837 capacity = group->sgc->capacity;
5838 capacity_orig = group->sgc->capacity_orig;
5839 cpus = group->group_weight;
5840
5841 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
5842 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
5843 capacity_factor = cpus / smt; /* cores */
5844
5845 capacity_factor = min_t(unsigned,
5846 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
5847 if (!capacity_factor)
5848 capacity_factor = fix_small_capacity(env->sd, group);
5849
5850 return capacity_factor;
5851 }
5852
5853 /**
5854 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5855 * @env: The load balancing environment.
5856 * @group: sched_group whose statistics are to be updated.
5857 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5858 * @local_group: Does group contain this_cpu.
5859 * @sgs: variable to hold the statistics for this group.
5860 */
5861 static inline void update_sg_lb_stats(struct lb_env *env,
5862 struct sched_group *group, int load_idx,
5863 int local_group, struct sg_lb_stats *sgs,
5864 bool *overload)
5865 {
5866 unsigned long load;
5867 int i;
5868
5869 memset(sgs, 0, sizeof(*sgs));
5870
5871 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5872 struct rq *rq = cpu_rq(i);
5873
5874 /* Bias balancing toward cpus of our domain */
5875 if (local_group)
5876 load = target_load(i, load_idx);
5877 else
5878 load = source_load(i, load_idx);
5879
5880 sgs->group_load += load;
5881 sgs->sum_nr_running += rq->nr_running;
5882
5883 if (rq->nr_running > 1)
5884 *overload = true;
5885
5886 #ifdef CONFIG_NUMA_BALANCING
5887 sgs->nr_numa_running += rq->nr_numa_running;
5888 sgs->nr_preferred_running += rq->nr_preferred_running;
5889 #endif
5890 sgs->sum_weighted_load += weighted_cpuload(i);
5891 if (idle_cpu(i))
5892 sgs->idle_cpus++;
5893 }
5894
5895 /* Adjust by relative CPU capacity of the group */
5896 sgs->group_capacity = group->sgc->capacity;
5897 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
5898
5899 if (sgs->sum_nr_running)
5900 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5901
5902 sgs->group_weight = group->group_weight;
5903
5904 sgs->group_imb = sg_imbalanced(group);
5905 sgs->group_capacity_factor = sg_capacity_factor(env, group);
5906
5907 if (sgs->group_capacity_factor > sgs->sum_nr_running)
5908 sgs->group_has_free_capacity = 1;
5909 }
5910
5911 /**
5912 * update_sd_pick_busiest - return 1 on busiest group
5913 * @env: The load balancing environment.
5914 * @sds: sched_domain statistics
5915 * @sg: sched_group candidate to be checked for being the busiest
5916 * @sgs: sched_group statistics
5917 *
5918 * Determine if @sg is a busier group than the previously selected
5919 * busiest group.
5920 *
5921 * Return: %true if @sg is a busier group than the previously selected
5922 * busiest group. %false otherwise.
5923 */
5924 static bool update_sd_pick_busiest(struct lb_env *env,
5925 struct sd_lb_stats *sds,
5926 struct sched_group *sg,
5927 struct sg_lb_stats *sgs)
5928 {
5929 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5930 return false;
5931
5932 if (sgs->sum_nr_running > sgs->group_capacity_factor)
5933 return true;
5934
5935 if (sgs->group_imb)
5936 return true;
5937
5938 /*
5939 * ASYM_PACKING needs to move all the work to the lowest
5940 * numbered CPUs in the group, therefore mark all groups
5941 * higher than ourself as busy.
5942 */
5943 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5944 env->dst_cpu < group_first_cpu(sg)) {
5945 if (!sds->busiest)
5946 return true;
5947
5948 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5949 return true;
5950 }
5951
5952 return false;
5953 }
5954
5955 #ifdef CONFIG_NUMA_BALANCING
5956 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5957 {
5958 if (sgs->sum_nr_running > sgs->nr_numa_running)
5959 return regular;
5960 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5961 return remote;
5962 return all;
5963 }
5964
5965 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5966 {
5967 if (rq->nr_running > rq->nr_numa_running)
5968 return regular;
5969 if (rq->nr_running > rq->nr_preferred_running)
5970 return remote;
5971 return all;
5972 }
5973 #else
5974 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5975 {
5976 return all;
5977 }
5978
5979 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5980 {
5981 return regular;
5982 }
5983 #endif /* CONFIG_NUMA_BALANCING */
5984
5985 /**
5986 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5987 * @env: The load balancing environment.
5988 * @sds: variable to hold the statistics for this sched_domain.
5989 */
5990 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5991 {
5992 struct sched_domain *child = env->sd->child;
5993 struct sched_group *sg = env->sd->groups;
5994 struct sg_lb_stats tmp_sgs;
5995 int load_idx, prefer_sibling = 0;
5996 bool overload = false;
5997
5998 if (child && child->flags & SD_PREFER_SIBLING)
5999 prefer_sibling = 1;
6000
6001 load_idx = get_sd_load_idx(env->sd, env->idle);
6002
6003 do {
6004 struct sg_lb_stats *sgs = &tmp_sgs;
6005 int local_group;
6006
6007 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6008 if (local_group) {
6009 sds->local = sg;
6010 sgs = &sds->local_stat;
6011
6012 if (env->idle != CPU_NEWLY_IDLE ||
6013 time_after_eq(jiffies, sg->sgc->next_update))
6014 update_group_capacity(env->sd, env->dst_cpu);
6015 }
6016
6017 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6018 &overload);
6019
6020 if (local_group)
6021 goto next_group;
6022
6023 /*
6024 * In case the child domain prefers tasks go to siblings
6025 * first, lower the sg capacity factor to one so that we'll try
6026 * and move all the excess tasks away. We lower the capacity
6027 * of a group only if the local group has the capacity to fit
6028 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6029 * extra check prevents the case where you always pull from the
6030 * heaviest group when it is already under-utilized (possible
6031 * with a large weight task outweighs the tasks on the system).
6032 */
6033 if (prefer_sibling && sds->local &&
6034 sds->local_stat.group_has_free_capacity)
6035 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6036
6037 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6038 sds->busiest = sg;
6039 sds->busiest_stat = *sgs;
6040 }
6041
6042 next_group:
6043 /* Now, start updating sd_lb_stats */
6044 sds->total_load += sgs->group_load;
6045 sds->total_capacity += sgs->group_capacity;
6046
6047 sg = sg->next;
6048 } while (sg != env->sd->groups);
6049
6050 if (env->sd->flags & SD_NUMA)
6051 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6052
6053 if (!env->sd->parent) {
6054 /* update overload indicator if we are at root domain */
6055 if (env->dst_rq->rd->overload != overload)
6056 env->dst_rq->rd->overload = overload;
6057 }
6058
6059 }
6060
6061 /**
6062 * check_asym_packing - Check to see if the group is packed into the
6063 * sched doman.
6064 *
6065 * This is primarily intended to used at the sibling level. Some
6066 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6067 * case of POWER7, it can move to lower SMT modes only when higher
6068 * threads are idle. When in lower SMT modes, the threads will
6069 * perform better since they share less core resources. Hence when we
6070 * have idle threads, we want them to be the higher ones.
6071 *
6072 * This packing function is run on idle threads. It checks to see if
6073 * the busiest CPU in this domain (core in the P7 case) has a higher
6074 * CPU number than the packing function is being run on. Here we are
6075 * assuming lower CPU number will be equivalent to lower a SMT thread
6076 * number.
6077 *
6078 * Return: 1 when packing is required and a task should be moved to
6079 * this CPU. The amount of the imbalance is returned in *imbalance.
6080 *
6081 * @env: The load balancing environment.
6082 * @sds: Statistics of the sched_domain which is to be packed
6083 */
6084 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6085 {
6086 int busiest_cpu;
6087
6088 if (!(env->sd->flags & SD_ASYM_PACKING))
6089 return 0;
6090
6091 if (!sds->busiest)
6092 return 0;
6093
6094 busiest_cpu = group_first_cpu(sds->busiest);
6095 if (env->dst_cpu > busiest_cpu)
6096 return 0;
6097
6098 env->imbalance = DIV_ROUND_CLOSEST(
6099 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6100 SCHED_CAPACITY_SCALE);
6101
6102 return 1;
6103 }
6104
6105 /**
6106 * fix_small_imbalance - Calculate the minor imbalance that exists
6107 * amongst the groups of a sched_domain, during
6108 * load balancing.
6109 * @env: The load balancing environment.
6110 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6111 */
6112 static inline
6113 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6114 {
6115 unsigned long tmp, capa_now = 0, capa_move = 0;
6116 unsigned int imbn = 2;
6117 unsigned long scaled_busy_load_per_task;
6118 struct sg_lb_stats *local, *busiest;
6119
6120 local = &sds->local_stat;
6121 busiest = &sds->busiest_stat;
6122
6123 if (!local->sum_nr_running)
6124 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6125 else if (busiest->load_per_task > local->load_per_task)
6126 imbn = 1;
6127
6128 scaled_busy_load_per_task =
6129 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6130 busiest->group_capacity;
6131
6132 if (busiest->avg_load + scaled_busy_load_per_task >=
6133 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6134 env->imbalance = busiest->load_per_task;
6135 return;
6136 }
6137
6138 /*
6139 * OK, we don't have enough imbalance to justify moving tasks,
6140 * however we may be able to increase total CPU capacity used by
6141 * moving them.
6142 */
6143
6144 capa_now += busiest->group_capacity *
6145 min(busiest->load_per_task, busiest->avg_load);
6146 capa_now += local->group_capacity *
6147 min(local->load_per_task, local->avg_load);
6148 capa_now /= SCHED_CAPACITY_SCALE;
6149
6150 /* Amount of load we'd subtract */
6151 if (busiest->avg_load > scaled_busy_load_per_task) {
6152 capa_move += busiest->group_capacity *
6153 min(busiest->load_per_task,
6154 busiest->avg_load - scaled_busy_load_per_task);
6155 }
6156
6157 /* Amount of load we'd add */
6158 if (busiest->avg_load * busiest->group_capacity <
6159 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6160 tmp = (busiest->avg_load * busiest->group_capacity) /
6161 local->group_capacity;
6162 } else {
6163 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6164 local->group_capacity;
6165 }
6166 capa_move += local->group_capacity *
6167 min(local->load_per_task, local->avg_load + tmp);
6168 capa_move /= SCHED_CAPACITY_SCALE;
6169
6170 /* Move if we gain throughput */
6171 if (capa_move > capa_now)
6172 env->imbalance = busiest->load_per_task;
6173 }
6174
6175 /**
6176 * calculate_imbalance - Calculate the amount of imbalance present within the
6177 * groups of a given sched_domain during load balance.
6178 * @env: load balance environment
6179 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6180 */
6181 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6182 {
6183 unsigned long max_pull, load_above_capacity = ~0UL;
6184 struct sg_lb_stats *local, *busiest;
6185
6186 local = &sds->local_stat;
6187 busiest = &sds->busiest_stat;
6188
6189 if (busiest->group_imb) {
6190 /*
6191 * In the group_imb case we cannot rely on group-wide averages
6192 * to ensure cpu-load equilibrium, look at wider averages. XXX
6193 */
6194 busiest->load_per_task =
6195 min(busiest->load_per_task, sds->avg_load);
6196 }
6197
6198 /*
6199 * In the presence of smp nice balancing, certain scenarios can have
6200 * max load less than avg load(as we skip the groups at or below
6201 * its cpu_capacity, while calculating max_load..)
6202 */
6203 if (busiest->avg_load <= sds->avg_load ||
6204 local->avg_load >= sds->avg_load) {
6205 env->imbalance = 0;
6206 return fix_small_imbalance(env, sds);
6207 }
6208
6209 if (!busiest->group_imb) {
6210 /*
6211 * Don't want to pull so many tasks that a group would go idle.
6212 * Except of course for the group_imb case, since then we might
6213 * have to drop below capacity to reach cpu-load equilibrium.
6214 */
6215 load_above_capacity =
6216 (busiest->sum_nr_running - busiest->group_capacity_factor);
6217
6218 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6219 load_above_capacity /= busiest->group_capacity;
6220 }
6221
6222 /*
6223 * We're trying to get all the cpus to the average_load, so we don't
6224 * want to push ourselves above the average load, nor do we wish to
6225 * reduce the max loaded cpu below the average load. At the same time,
6226 * we also don't want to reduce the group load below the group capacity
6227 * (so that we can implement power-savings policies etc). Thus we look
6228 * for the minimum possible imbalance.
6229 */
6230 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6231
6232 /* How much load to actually move to equalise the imbalance */
6233 env->imbalance = min(
6234 max_pull * busiest->group_capacity,
6235 (sds->avg_load - local->avg_load) * local->group_capacity
6236 ) / SCHED_CAPACITY_SCALE;
6237
6238 /*
6239 * if *imbalance is less than the average load per runnable task
6240 * there is no guarantee that any tasks will be moved so we'll have
6241 * a think about bumping its value to force at least one task to be
6242 * moved
6243 */
6244 if (env->imbalance < busiest->load_per_task)
6245 return fix_small_imbalance(env, sds);
6246 }
6247
6248 /******* find_busiest_group() helpers end here *********************/
6249
6250 /**
6251 * find_busiest_group - Returns the busiest group within the sched_domain
6252 * if there is an imbalance. If there isn't an imbalance, and
6253 * the user has opted for power-savings, it returns a group whose
6254 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6255 * such a group exists.
6256 *
6257 * Also calculates the amount of weighted load which should be moved
6258 * to restore balance.
6259 *
6260 * @env: The load balancing environment.
6261 *
6262 * Return: - The busiest group if imbalance exists.
6263 * - If no imbalance and user has opted for power-savings balance,
6264 * return the least loaded group whose CPUs can be
6265 * put to idle by rebalancing its tasks onto our group.
6266 */
6267 static struct sched_group *find_busiest_group(struct lb_env *env)
6268 {
6269 struct sg_lb_stats *local, *busiest;
6270 struct sd_lb_stats sds;
6271
6272 init_sd_lb_stats(&sds);
6273
6274 /*
6275 * Compute the various statistics relavent for load balancing at
6276 * this level.
6277 */
6278 update_sd_lb_stats(env, &sds);
6279 local = &sds.local_stat;
6280 busiest = &sds.busiest_stat;
6281
6282 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6283 check_asym_packing(env, &sds))
6284 return sds.busiest;
6285
6286 /* There is no busy sibling group to pull tasks from */
6287 if (!sds.busiest || busiest->sum_nr_running == 0)
6288 goto out_balanced;
6289
6290 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6291 / sds.total_capacity;
6292
6293 /*
6294 * If the busiest group is imbalanced the below checks don't
6295 * work because they assume all things are equal, which typically
6296 * isn't true due to cpus_allowed constraints and the like.
6297 */
6298 if (busiest->group_imb)
6299 goto force_balance;
6300
6301 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6302 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6303 !busiest->group_has_free_capacity)
6304 goto force_balance;
6305
6306 /*
6307 * If the local group is more busy than the selected busiest group
6308 * don't try and pull any tasks.
6309 */
6310 if (local->avg_load >= busiest->avg_load)
6311 goto out_balanced;
6312
6313 /*
6314 * Don't pull any tasks if this group is already above the domain
6315 * average load.
6316 */
6317 if (local->avg_load >= sds.avg_load)
6318 goto out_balanced;
6319
6320 if (env->idle == CPU_IDLE) {
6321 /*
6322 * This cpu is idle. If the busiest group load doesn't
6323 * have more tasks than the number of available cpu's and
6324 * there is no imbalance between this and busiest group
6325 * wrt to idle cpu's, it is balanced.
6326 */
6327 if ((local->idle_cpus < busiest->idle_cpus) &&
6328 busiest->sum_nr_running <= busiest->group_weight)
6329 goto out_balanced;
6330 } else {
6331 /*
6332 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6333 * imbalance_pct to be conservative.
6334 */
6335 if (100 * busiest->avg_load <=
6336 env->sd->imbalance_pct * local->avg_load)
6337 goto out_balanced;
6338 }
6339
6340 force_balance:
6341 /* Looks like there is an imbalance. Compute it */
6342 calculate_imbalance(env, &sds);
6343 return sds.busiest;
6344
6345 out_balanced:
6346 env->imbalance = 0;
6347 return NULL;
6348 }
6349
6350 /*
6351 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6352 */
6353 static struct rq *find_busiest_queue(struct lb_env *env,
6354 struct sched_group *group)
6355 {
6356 struct rq *busiest = NULL, *rq;
6357 unsigned long busiest_load = 0, busiest_capacity = 1;
6358 int i;
6359
6360 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6361 unsigned long capacity, capacity_factor, wl;
6362 enum fbq_type rt;
6363
6364 rq = cpu_rq(i);
6365 rt = fbq_classify_rq(rq);
6366
6367 /*
6368 * We classify groups/runqueues into three groups:
6369 * - regular: there are !numa tasks
6370 * - remote: there are numa tasks that run on the 'wrong' node
6371 * - all: there is no distinction
6372 *
6373 * In order to avoid migrating ideally placed numa tasks,
6374 * ignore those when there's better options.
6375 *
6376 * If we ignore the actual busiest queue to migrate another
6377 * task, the next balance pass can still reduce the busiest
6378 * queue by moving tasks around inside the node.
6379 *
6380 * If we cannot move enough load due to this classification
6381 * the next pass will adjust the group classification and
6382 * allow migration of more tasks.
6383 *
6384 * Both cases only affect the total convergence complexity.
6385 */
6386 if (rt > env->fbq_type)
6387 continue;
6388
6389 capacity = capacity_of(i);
6390 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6391 if (!capacity_factor)
6392 capacity_factor = fix_small_capacity(env->sd, group);
6393
6394 wl = weighted_cpuload(i);
6395
6396 /*
6397 * When comparing with imbalance, use weighted_cpuload()
6398 * which is not scaled with the cpu capacity.
6399 */
6400 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6401 continue;
6402
6403 /*
6404 * For the load comparisons with the other cpu's, consider
6405 * the weighted_cpuload() scaled with the cpu capacity, so
6406 * that the load can be moved away from the cpu that is
6407 * potentially running at a lower capacity.
6408 *
6409 * Thus we're looking for max(wl_i / capacity_i), crosswise
6410 * multiplication to rid ourselves of the division works out
6411 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6412 * our previous maximum.
6413 */
6414 if (wl * busiest_capacity > busiest_load * capacity) {
6415 busiest_load = wl;
6416 busiest_capacity = capacity;
6417 busiest = rq;
6418 }
6419 }
6420
6421 return busiest;
6422 }
6423
6424 /*
6425 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6426 * so long as it is large enough.
6427 */
6428 #define MAX_PINNED_INTERVAL 512
6429
6430 /* Working cpumask for load_balance and load_balance_newidle. */
6431 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6432
6433 static int need_active_balance(struct lb_env *env)
6434 {
6435 struct sched_domain *sd = env->sd;
6436
6437 if (env->idle == CPU_NEWLY_IDLE) {
6438
6439 /*
6440 * ASYM_PACKING needs to force migrate tasks from busy but
6441 * higher numbered CPUs in order to pack all tasks in the
6442 * lowest numbered CPUs.
6443 */
6444 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6445 return 1;
6446 }
6447
6448 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6449 }
6450
6451 static int active_load_balance_cpu_stop(void *data);
6452
6453 static int should_we_balance(struct lb_env *env)
6454 {
6455 struct sched_group *sg = env->sd->groups;
6456 struct cpumask *sg_cpus, *sg_mask;
6457 int cpu, balance_cpu = -1;
6458
6459 /*
6460 * In the newly idle case, we will allow all the cpu's
6461 * to do the newly idle load balance.
6462 */
6463 if (env->idle == CPU_NEWLY_IDLE)
6464 return 1;
6465
6466 sg_cpus = sched_group_cpus(sg);
6467 sg_mask = sched_group_mask(sg);
6468 /* Try to find first idle cpu */
6469 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6470 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6471 continue;
6472
6473 balance_cpu = cpu;
6474 break;
6475 }
6476
6477 if (balance_cpu == -1)
6478 balance_cpu = group_balance_cpu(sg);
6479
6480 /*
6481 * First idle cpu or the first cpu(busiest) in this sched group
6482 * is eligible for doing load balancing at this and above domains.
6483 */
6484 return balance_cpu == env->dst_cpu;
6485 }
6486
6487 /*
6488 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6489 * tasks if there is an imbalance.
6490 */
6491 static int load_balance(int this_cpu, struct rq *this_rq,
6492 struct sched_domain *sd, enum cpu_idle_type idle,
6493 int *continue_balancing)
6494 {
6495 int ld_moved, cur_ld_moved, active_balance = 0;
6496 struct sched_domain *sd_parent = sd->parent;
6497 struct sched_group *group;
6498 struct rq *busiest;
6499 unsigned long flags;
6500 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6501
6502 struct lb_env env = {
6503 .sd = sd,
6504 .dst_cpu = this_cpu,
6505 .dst_rq = this_rq,
6506 .dst_grpmask = sched_group_cpus(sd->groups),
6507 .idle = idle,
6508 .loop_break = sched_nr_migrate_break,
6509 .cpus = cpus,
6510 .fbq_type = all,
6511 };
6512
6513 /*
6514 * For NEWLY_IDLE load_balancing, we don't need to consider
6515 * other cpus in our group
6516 */
6517 if (idle == CPU_NEWLY_IDLE)
6518 env.dst_grpmask = NULL;
6519
6520 cpumask_copy(cpus, cpu_active_mask);
6521
6522 schedstat_inc(sd, lb_count[idle]);
6523
6524 redo:
6525 if (!should_we_balance(&env)) {
6526 *continue_balancing = 0;
6527 goto out_balanced;
6528 }
6529
6530 group = find_busiest_group(&env);
6531 if (!group) {
6532 schedstat_inc(sd, lb_nobusyg[idle]);
6533 goto out_balanced;
6534 }
6535
6536 busiest = find_busiest_queue(&env, group);
6537 if (!busiest) {
6538 schedstat_inc(sd, lb_nobusyq[idle]);
6539 goto out_balanced;
6540 }
6541
6542 BUG_ON(busiest == env.dst_rq);
6543
6544 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6545
6546 ld_moved = 0;
6547 if (busiest->nr_running > 1) {
6548 /*
6549 * Attempt to move tasks. If find_busiest_group has found
6550 * an imbalance but busiest->nr_running <= 1, the group is
6551 * still unbalanced. ld_moved simply stays zero, so it is
6552 * correctly treated as an imbalance.
6553 */
6554 env.flags |= LBF_ALL_PINNED;
6555 env.src_cpu = busiest->cpu;
6556 env.src_rq = busiest;
6557 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6558
6559 more_balance:
6560 local_irq_save(flags);
6561 double_rq_lock(env.dst_rq, busiest);
6562
6563 /*
6564 * cur_ld_moved - load moved in current iteration
6565 * ld_moved - cumulative load moved across iterations
6566 */
6567 cur_ld_moved = move_tasks(&env);
6568 ld_moved += cur_ld_moved;
6569 double_rq_unlock(env.dst_rq, busiest);
6570 local_irq_restore(flags);
6571
6572 /*
6573 * some other cpu did the load balance for us.
6574 */
6575 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6576 resched_cpu(env.dst_cpu);
6577
6578 if (env.flags & LBF_NEED_BREAK) {
6579 env.flags &= ~LBF_NEED_BREAK;
6580 goto more_balance;
6581 }
6582
6583 /*
6584 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6585 * us and move them to an alternate dst_cpu in our sched_group
6586 * where they can run. The upper limit on how many times we
6587 * iterate on same src_cpu is dependent on number of cpus in our
6588 * sched_group.
6589 *
6590 * This changes load balance semantics a bit on who can move
6591 * load to a given_cpu. In addition to the given_cpu itself
6592 * (or a ilb_cpu acting on its behalf where given_cpu is
6593 * nohz-idle), we now have balance_cpu in a position to move
6594 * load to given_cpu. In rare situations, this may cause
6595 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6596 * _independently_ and at _same_ time to move some load to
6597 * given_cpu) causing exceess load to be moved to given_cpu.
6598 * This however should not happen so much in practice and
6599 * moreover subsequent load balance cycles should correct the
6600 * excess load moved.
6601 */
6602 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6603
6604 /* Prevent to re-select dst_cpu via env's cpus */
6605 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6606
6607 env.dst_rq = cpu_rq(env.new_dst_cpu);
6608 env.dst_cpu = env.new_dst_cpu;
6609 env.flags &= ~LBF_DST_PINNED;
6610 env.loop = 0;
6611 env.loop_break = sched_nr_migrate_break;
6612
6613 /*
6614 * Go back to "more_balance" rather than "redo" since we
6615 * need to continue with same src_cpu.
6616 */
6617 goto more_balance;
6618 }
6619
6620 /*
6621 * We failed to reach balance because of affinity.
6622 */
6623 if (sd_parent) {
6624 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6625
6626 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6627 *group_imbalance = 1;
6628 } else if (*group_imbalance)
6629 *group_imbalance = 0;
6630 }
6631
6632 /* All tasks on this runqueue were pinned by CPU affinity */
6633 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6634 cpumask_clear_cpu(cpu_of(busiest), cpus);
6635 if (!cpumask_empty(cpus)) {
6636 env.loop = 0;
6637 env.loop_break = sched_nr_migrate_break;
6638 goto redo;
6639 }
6640 goto out_balanced;
6641 }
6642 }
6643
6644 if (!ld_moved) {
6645 schedstat_inc(sd, lb_failed[idle]);
6646 /*
6647 * Increment the failure counter only on periodic balance.
6648 * We do not want newidle balance, which can be very
6649 * frequent, pollute the failure counter causing
6650 * excessive cache_hot migrations and active balances.
6651 */
6652 if (idle != CPU_NEWLY_IDLE)
6653 sd->nr_balance_failed++;
6654
6655 if (need_active_balance(&env)) {
6656 raw_spin_lock_irqsave(&busiest->lock, flags);
6657
6658 /* don't kick the active_load_balance_cpu_stop,
6659 * if the curr task on busiest cpu can't be
6660 * moved to this_cpu
6661 */
6662 if (!cpumask_test_cpu(this_cpu,
6663 tsk_cpus_allowed(busiest->curr))) {
6664 raw_spin_unlock_irqrestore(&busiest->lock,
6665 flags);
6666 env.flags |= LBF_ALL_PINNED;
6667 goto out_one_pinned;
6668 }
6669
6670 /*
6671 * ->active_balance synchronizes accesses to
6672 * ->active_balance_work. Once set, it's cleared
6673 * only after active load balance is finished.
6674 */
6675 if (!busiest->active_balance) {
6676 busiest->active_balance = 1;
6677 busiest->push_cpu = this_cpu;
6678 active_balance = 1;
6679 }
6680 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6681
6682 if (active_balance) {
6683 stop_one_cpu_nowait(cpu_of(busiest),
6684 active_load_balance_cpu_stop, busiest,
6685 &busiest->active_balance_work);
6686 }
6687
6688 /*
6689 * We've kicked active balancing, reset the failure
6690 * counter.
6691 */
6692 sd->nr_balance_failed = sd->cache_nice_tries+1;
6693 }
6694 } else
6695 sd->nr_balance_failed = 0;
6696
6697 if (likely(!active_balance)) {
6698 /* We were unbalanced, so reset the balancing interval */
6699 sd->balance_interval = sd->min_interval;
6700 } else {
6701 /*
6702 * If we've begun active balancing, start to back off. This
6703 * case may not be covered by the all_pinned logic if there
6704 * is only 1 task on the busy runqueue (because we don't call
6705 * move_tasks).
6706 */
6707 if (sd->balance_interval < sd->max_interval)
6708 sd->balance_interval *= 2;
6709 }
6710
6711 goto out;
6712
6713 out_balanced:
6714 schedstat_inc(sd, lb_balanced[idle]);
6715
6716 sd->nr_balance_failed = 0;
6717
6718 out_one_pinned:
6719 /* tune up the balancing interval */
6720 if (((env.flags & LBF_ALL_PINNED) &&
6721 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6722 (sd->balance_interval < sd->max_interval))
6723 sd->balance_interval *= 2;
6724
6725 ld_moved = 0;
6726 out:
6727 return ld_moved;
6728 }
6729
6730 static inline unsigned long
6731 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6732 {
6733 unsigned long interval = sd->balance_interval;
6734
6735 if (cpu_busy)
6736 interval *= sd->busy_factor;
6737
6738 /* scale ms to jiffies */
6739 interval = msecs_to_jiffies(interval);
6740 interval = clamp(interval, 1UL, max_load_balance_interval);
6741
6742 return interval;
6743 }
6744
6745 static inline void
6746 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6747 {
6748 unsigned long interval, next;
6749
6750 interval = get_sd_balance_interval(sd, cpu_busy);
6751 next = sd->last_balance + interval;
6752
6753 if (time_after(*next_balance, next))
6754 *next_balance = next;
6755 }
6756
6757 /*
6758 * idle_balance is called by schedule() if this_cpu is about to become
6759 * idle. Attempts to pull tasks from other CPUs.
6760 */
6761 static int idle_balance(struct rq *this_rq)
6762 {
6763 unsigned long next_balance = jiffies + HZ;
6764 int this_cpu = this_rq->cpu;
6765 struct sched_domain *sd;
6766 int pulled_task = 0;
6767 u64 curr_cost = 0;
6768
6769 idle_enter_fair(this_rq);
6770
6771 /*
6772 * We must set idle_stamp _before_ calling idle_balance(), such that we
6773 * measure the duration of idle_balance() as idle time.
6774 */
6775 this_rq->idle_stamp = rq_clock(this_rq);
6776
6777 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6778 !this_rq->rd->overload) {
6779 rcu_read_lock();
6780 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6781 if (sd)
6782 update_next_balance(sd, 0, &next_balance);
6783 rcu_read_unlock();
6784
6785 goto out;
6786 }
6787
6788 /*
6789 * Drop the rq->lock, but keep IRQ/preempt disabled.
6790 */
6791 raw_spin_unlock(&this_rq->lock);
6792
6793 update_blocked_averages(this_cpu);
6794 rcu_read_lock();
6795 for_each_domain(this_cpu, sd) {
6796 int continue_balancing = 1;
6797 u64 t0, domain_cost;
6798
6799 if (!(sd->flags & SD_LOAD_BALANCE))
6800 continue;
6801
6802 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6803 update_next_balance(sd, 0, &next_balance);
6804 break;
6805 }
6806
6807 if (sd->flags & SD_BALANCE_NEWIDLE) {
6808 t0 = sched_clock_cpu(this_cpu);
6809
6810 pulled_task = load_balance(this_cpu, this_rq,
6811 sd, CPU_NEWLY_IDLE,
6812 &continue_balancing);
6813
6814 domain_cost = sched_clock_cpu(this_cpu) - t0;
6815 if (domain_cost > sd->max_newidle_lb_cost)
6816 sd->max_newidle_lb_cost = domain_cost;
6817
6818 curr_cost += domain_cost;
6819 }
6820
6821 update_next_balance(sd, 0, &next_balance);
6822
6823 /*
6824 * Stop searching for tasks to pull if there are
6825 * now runnable tasks on this rq.
6826 */
6827 if (pulled_task || this_rq->nr_running > 0)
6828 break;
6829 }
6830 rcu_read_unlock();
6831
6832 raw_spin_lock(&this_rq->lock);
6833
6834 if (curr_cost > this_rq->max_idle_balance_cost)
6835 this_rq->max_idle_balance_cost = curr_cost;
6836
6837 /*
6838 * While browsing the domains, we released the rq lock, a task could
6839 * have been enqueued in the meantime. Since we're not going idle,
6840 * pretend we pulled a task.
6841 */
6842 if (this_rq->cfs.h_nr_running && !pulled_task)
6843 pulled_task = 1;
6844
6845 out:
6846 /* Move the next balance forward */
6847 if (time_after(this_rq->next_balance, next_balance))
6848 this_rq->next_balance = next_balance;
6849
6850 /* Is there a task of a high priority class? */
6851 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
6852 pulled_task = -1;
6853
6854 if (pulled_task) {
6855 idle_exit_fair(this_rq);
6856 this_rq->idle_stamp = 0;
6857 }
6858
6859 return pulled_task;
6860 }
6861
6862 /*
6863 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6864 * running tasks off the busiest CPU onto idle CPUs. It requires at
6865 * least 1 task to be running on each physical CPU where possible, and
6866 * avoids physical / logical imbalances.
6867 */
6868 static int active_load_balance_cpu_stop(void *data)
6869 {
6870 struct rq *busiest_rq = data;
6871 int busiest_cpu = cpu_of(busiest_rq);
6872 int target_cpu = busiest_rq->push_cpu;
6873 struct rq *target_rq = cpu_rq(target_cpu);
6874 struct sched_domain *sd;
6875
6876 raw_spin_lock_irq(&busiest_rq->lock);
6877
6878 /* make sure the requested cpu hasn't gone down in the meantime */
6879 if (unlikely(busiest_cpu != smp_processor_id() ||
6880 !busiest_rq->active_balance))
6881 goto out_unlock;
6882
6883 /* Is there any task to move? */
6884 if (busiest_rq->nr_running <= 1)
6885 goto out_unlock;
6886
6887 /*
6888 * This condition is "impossible", if it occurs
6889 * we need to fix it. Originally reported by
6890 * Bjorn Helgaas on a 128-cpu setup.
6891 */
6892 BUG_ON(busiest_rq == target_rq);
6893
6894 /* move a task from busiest_rq to target_rq */
6895 double_lock_balance(busiest_rq, target_rq);
6896
6897 /* Search for an sd spanning us and the target CPU. */
6898 rcu_read_lock();
6899 for_each_domain(target_cpu, sd) {
6900 if ((sd->flags & SD_LOAD_BALANCE) &&
6901 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6902 break;
6903 }
6904
6905 if (likely(sd)) {
6906 struct lb_env env = {
6907 .sd = sd,
6908 .dst_cpu = target_cpu,
6909 .dst_rq = target_rq,
6910 .src_cpu = busiest_rq->cpu,
6911 .src_rq = busiest_rq,
6912 .idle = CPU_IDLE,
6913 };
6914
6915 schedstat_inc(sd, alb_count);
6916
6917 if (move_one_task(&env))
6918 schedstat_inc(sd, alb_pushed);
6919 else
6920 schedstat_inc(sd, alb_failed);
6921 }
6922 rcu_read_unlock();
6923 double_unlock_balance(busiest_rq, target_rq);
6924 out_unlock:
6925 busiest_rq->active_balance = 0;
6926 raw_spin_unlock_irq(&busiest_rq->lock);
6927 return 0;
6928 }
6929
6930 static inline int on_null_domain(struct rq *rq)
6931 {
6932 return unlikely(!rcu_dereference_sched(rq->sd));
6933 }
6934
6935 #ifdef CONFIG_NO_HZ_COMMON
6936 /*
6937 * idle load balancing details
6938 * - When one of the busy CPUs notice that there may be an idle rebalancing
6939 * needed, they will kick the idle load balancer, which then does idle
6940 * load balancing for all the idle CPUs.
6941 */
6942 static struct {
6943 cpumask_var_t idle_cpus_mask;
6944 atomic_t nr_cpus;
6945 unsigned long next_balance; /* in jiffy units */
6946 } nohz ____cacheline_aligned;
6947
6948 static inline int find_new_ilb(void)
6949 {
6950 int ilb = cpumask_first(nohz.idle_cpus_mask);
6951
6952 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6953 return ilb;
6954
6955 return nr_cpu_ids;
6956 }
6957
6958 /*
6959 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6960 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6961 * CPU (if there is one).
6962 */
6963 static void nohz_balancer_kick(void)
6964 {
6965 int ilb_cpu;
6966
6967 nohz.next_balance++;
6968
6969 ilb_cpu = find_new_ilb();
6970
6971 if (ilb_cpu >= nr_cpu_ids)
6972 return;
6973
6974 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6975 return;
6976 /*
6977 * Use smp_send_reschedule() instead of resched_cpu().
6978 * This way we generate a sched IPI on the target cpu which
6979 * is idle. And the softirq performing nohz idle load balance
6980 * will be run before returning from the IPI.
6981 */
6982 smp_send_reschedule(ilb_cpu);
6983 return;
6984 }
6985
6986 static inline void nohz_balance_exit_idle(int cpu)
6987 {
6988 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6989 /*
6990 * Completely isolated CPUs don't ever set, so we must test.
6991 */
6992 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6993 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6994 atomic_dec(&nohz.nr_cpus);
6995 }
6996 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6997 }
6998 }
6999
7000 static inline void set_cpu_sd_state_busy(void)
7001 {
7002 struct sched_domain *sd;
7003 int cpu = smp_processor_id();
7004
7005 rcu_read_lock();
7006 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7007
7008 if (!sd || !sd->nohz_idle)
7009 goto unlock;
7010 sd->nohz_idle = 0;
7011
7012 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7013 unlock:
7014 rcu_read_unlock();
7015 }
7016
7017 void set_cpu_sd_state_idle(void)
7018 {
7019 struct sched_domain *sd;
7020 int cpu = smp_processor_id();
7021
7022 rcu_read_lock();
7023 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7024
7025 if (!sd || sd->nohz_idle)
7026 goto unlock;
7027 sd->nohz_idle = 1;
7028
7029 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7030 unlock:
7031 rcu_read_unlock();
7032 }
7033
7034 /*
7035 * This routine will record that the cpu is going idle with tick stopped.
7036 * This info will be used in performing idle load balancing in the future.
7037 */
7038 void nohz_balance_enter_idle(int cpu)
7039 {
7040 /*
7041 * If this cpu is going down, then nothing needs to be done.
7042 */
7043 if (!cpu_active(cpu))
7044 return;
7045
7046 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7047 return;
7048
7049 /*
7050 * If we're a completely isolated CPU, we don't play.
7051 */
7052 if (on_null_domain(cpu_rq(cpu)))
7053 return;
7054
7055 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7056 atomic_inc(&nohz.nr_cpus);
7057 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7058 }
7059
7060 static int sched_ilb_notifier(struct notifier_block *nfb,
7061 unsigned long action, void *hcpu)
7062 {
7063 switch (action & ~CPU_TASKS_FROZEN) {
7064 case CPU_DYING:
7065 nohz_balance_exit_idle(smp_processor_id());
7066 return NOTIFY_OK;
7067 default:
7068 return NOTIFY_DONE;
7069 }
7070 }
7071 #endif
7072
7073 static DEFINE_SPINLOCK(balancing);
7074
7075 /*
7076 * Scale the max load_balance interval with the number of CPUs in the system.
7077 * This trades load-balance latency on larger machines for less cross talk.
7078 */
7079 void update_max_interval(void)
7080 {
7081 max_load_balance_interval = HZ*num_online_cpus()/10;
7082 }
7083
7084 /*
7085 * It checks each scheduling domain to see if it is due to be balanced,
7086 * and initiates a balancing operation if so.
7087 *
7088 * Balancing parameters are set up in init_sched_domains.
7089 */
7090 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7091 {
7092 int continue_balancing = 1;
7093 int cpu = rq->cpu;
7094 unsigned long interval;
7095 struct sched_domain *sd;
7096 /* Earliest time when we have to do rebalance again */
7097 unsigned long next_balance = jiffies + 60*HZ;
7098 int update_next_balance = 0;
7099 int need_serialize, need_decay = 0;
7100 u64 max_cost = 0;
7101
7102 update_blocked_averages(cpu);
7103
7104 rcu_read_lock();
7105 for_each_domain(cpu, sd) {
7106 /*
7107 * Decay the newidle max times here because this is a regular
7108 * visit to all the domains. Decay ~1% per second.
7109 */
7110 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7111 sd->max_newidle_lb_cost =
7112 (sd->max_newidle_lb_cost * 253) / 256;
7113 sd->next_decay_max_lb_cost = jiffies + HZ;
7114 need_decay = 1;
7115 }
7116 max_cost += sd->max_newidle_lb_cost;
7117
7118 if (!(sd->flags & SD_LOAD_BALANCE))
7119 continue;
7120
7121 /*
7122 * Stop the load balance at this level. There is another
7123 * CPU in our sched group which is doing load balancing more
7124 * actively.
7125 */
7126 if (!continue_balancing) {
7127 if (need_decay)
7128 continue;
7129 break;
7130 }
7131
7132 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7133
7134 need_serialize = sd->flags & SD_SERIALIZE;
7135 if (need_serialize) {
7136 if (!spin_trylock(&balancing))
7137 goto out;
7138 }
7139
7140 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7141 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7142 /*
7143 * The LBF_DST_PINNED logic could have changed
7144 * env->dst_cpu, so we can't know our idle
7145 * state even if we migrated tasks. Update it.
7146 */
7147 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7148 }
7149 sd->last_balance = jiffies;
7150 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7151 }
7152 if (need_serialize)
7153 spin_unlock(&balancing);
7154 out:
7155 if (time_after(next_balance, sd->last_balance + interval)) {
7156 next_balance = sd->last_balance + interval;
7157 update_next_balance = 1;
7158 }
7159 }
7160 if (need_decay) {
7161 /*
7162 * Ensure the rq-wide value also decays but keep it at a
7163 * reasonable floor to avoid funnies with rq->avg_idle.
7164 */
7165 rq->max_idle_balance_cost =
7166 max((u64)sysctl_sched_migration_cost, max_cost);
7167 }
7168 rcu_read_unlock();
7169
7170 /*
7171 * next_balance will be updated only when there is a need.
7172 * When the cpu is attached to null domain for ex, it will not be
7173 * updated.
7174 */
7175 if (likely(update_next_balance))
7176 rq->next_balance = next_balance;
7177 }
7178
7179 #ifdef CONFIG_NO_HZ_COMMON
7180 /*
7181 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7182 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7183 */
7184 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7185 {
7186 int this_cpu = this_rq->cpu;
7187 struct rq *rq;
7188 int balance_cpu;
7189
7190 if (idle != CPU_IDLE ||
7191 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7192 goto end;
7193
7194 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7195 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7196 continue;
7197
7198 /*
7199 * If this cpu gets work to do, stop the load balancing
7200 * work being done for other cpus. Next load
7201 * balancing owner will pick it up.
7202 */
7203 if (need_resched())
7204 break;
7205
7206 rq = cpu_rq(balance_cpu);
7207
7208 /*
7209 * If time for next balance is due,
7210 * do the balance.
7211 */
7212 if (time_after_eq(jiffies, rq->next_balance)) {
7213 raw_spin_lock_irq(&rq->lock);
7214 update_rq_clock(rq);
7215 update_idle_cpu_load(rq);
7216 raw_spin_unlock_irq(&rq->lock);
7217 rebalance_domains(rq, CPU_IDLE);
7218 }
7219
7220 if (time_after(this_rq->next_balance, rq->next_balance))
7221 this_rq->next_balance = rq->next_balance;
7222 }
7223 nohz.next_balance = this_rq->next_balance;
7224 end:
7225 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7226 }
7227
7228 /*
7229 * Current heuristic for kicking the idle load balancer in the presence
7230 * of an idle cpu is the system.
7231 * - This rq has more than one task.
7232 * - At any scheduler domain level, this cpu's scheduler group has multiple
7233 * busy cpu's exceeding the group's capacity.
7234 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7235 * domain span are idle.
7236 */
7237 static inline int nohz_kick_needed(struct rq *rq)
7238 {
7239 unsigned long now = jiffies;
7240 struct sched_domain *sd;
7241 struct sched_group_capacity *sgc;
7242 int nr_busy, cpu = rq->cpu;
7243
7244 if (unlikely(rq->idle_balance))
7245 return 0;
7246
7247 /*
7248 * We may be recently in ticked or tickless idle mode. At the first
7249 * busy tick after returning from idle, we will update the busy stats.
7250 */
7251 set_cpu_sd_state_busy();
7252 nohz_balance_exit_idle(cpu);
7253
7254 /*
7255 * None are in tickless mode and hence no need for NOHZ idle load
7256 * balancing.
7257 */
7258 if (likely(!atomic_read(&nohz.nr_cpus)))
7259 return 0;
7260
7261 if (time_before(now, nohz.next_balance))
7262 return 0;
7263
7264 if (rq->nr_running >= 2)
7265 goto need_kick;
7266
7267 rcu_read_lock();
7268 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7269
7270 if (sd) {
7271 sgc = sd->groups->sgc;
7272 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7273
7274 if (nr_busy > 1)
7275 goto need_kick_unlock;
7276 }
7277
7278 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7279
7280 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7281 sched_domain_span(sd)) < cpu))
7282 goto need_kick_unlock;
7283
7284 rcu_read_unlock();
7285 return 0;
7286
7287 need_kick_unlock:
7288 rcu_read_unlock();
7289 need_kick:
7290 return 1;
7291 }
7292 #else
7293 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7294 #endif
7295
7296 /*
7297 * run_rebalance_domains is triggered when needed from the scheduler tick.
7298 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7299 */
7300 static void run_rebalance_domains(struct softirq_action *h)
7301 {
7302 struct rq *this_rq = this_rq();
7303 enum cpu_idle_type idle = this_rq->idle_balance ?
7304 CPU_IDLE : CPU_NOT_IDLE;
7305
7306 rebalance_domains(this_rq, idle);
7307
7308 /*
7309 * If this cpu has a pending nohz_balance_kick, then do the
7310 * balancing on behalf of the other idle cpus whose ticks are
7311 * stopped.
7312 */
7313 nohz_idle_balance(this_rq, idle);
7314 }
7315
7316 /*
7317 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7318 */
7319 void trigger_load_balance(struct rq *rq)
7320 {
7321 /* Don't need to rebalance while attached to NULL domain */
7322 if (unlikely(on_null_domain(rq)))
7323 return;
7324
7325 if (time_after_eq(jiffies, rq->next_balance))
7326 raise_softirq(SCHED_SOFTIRQ);
7327 #ifdef CONFIG_NO_HZ_COMMON
7328 if (nohz_kick_needed(rq))
7329 nohz_balancer_kick();
7330 #endif
7331 }
7332
7333 static void rq_online_fair(struct rq *rq)
7334 {
7335 update_sysctl();
7336 }
7337
7338 static void rq_offline_fair(struct rq *rq)
7339 {
7340 update_sysctl();
7341
7342 /* Ensure any throttled groups are reachable by pick_next_task */
7343 unthrottle_offline_cfs_rqs(rq);
7344 }
7345
7346 #endif /* CONFIG_SMP */
7347
7348 /*
7349 * scheduler tick hitting a task of our scheduling class:
7350 */
7351 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7352 {
7353 struct cfs_rq *cfs_rq;
7354 struct sched_entity *se = &curr->se;
7355
7356 for_each_sched_entity(se) {
7357 cfs_rq = cfs_rq_of(se);
7358 entity_tick(cfs_rq, se, queued);
7359 }
7360
7361 if (numabalancing_enabled)
7362 task_tick_numa(rq, curr);
7363
7364 update_rq_runnable_avg(rq, 1);
7365 }
7366
7367 /*
7368 * called on fork with the child task as argument from the parent's context
7369 * - child not yet on the tasklist
7370 * - preemption disabled
7371 */
7372 static void task_fork_fair(struct task_struct *p)
7373 {
7374 struct cfs_rq *cfs_rq;
7375 struct sched_entity *se = &p->se, *curr;
7376 int this_cpu = smp_processor_id();
7377 struct rq *rq = this_rq();
7378 unsigned long flags;
7379
7380 raw_spin_lock_irqsave(&rq->lock, flags);
7381
7382 update_rq_clock(rq);
7383
7384 cfs_rq = task_cfs_rq(current);
7385 curr = cfs_rq->curr;
7386
7387 /*
7388 * Not only the cpu but also the task_group of the parent might have
7389 * been changed after parent->se.parent,cfs_rq were copied to
7390 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7391 * of child point to valid ones.
7392 */
7393 rcu_read_lock();
7394 __set_task_cpu(p, this_cpu);
7395 rcu_read_unlock();
7396
7397 update_curr(cfs_rq);
7398
7399 if (curr)
7400 se->vruntime = curr->vruntime;
7401 place_entity(cfs_rq, se, 1);
7402
7403 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7404 /*
7405 * Upon rescheduling, sched_class::put_prev_task() will place
7406 * 'current' within the tree based on its new key value.
7407 */
7408 swap(curr->vruntime, se->vruntime);
7409 resched_task(rq->curr);
7410 }
7411
7412 se->vruntime -= cfs_rq->min_vruntime;
7413
7414 raw_spin_unlock_irqrestore(&rq->lock, flags);
7415 }
7416
7417 /*
7418 * Priority of the task has changed. Check to see if we preempt
7419 * the current task.
7420 */
7421 static void
7422 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7423 {
7424 if (!p->se.on_rq)
7425 return;
7426
7427 /*
7428 * Reschedule if we are currently running on this runqueue and
7429 * our priority decreased, or if we are not currently running on
7430 * this runqueue and our priority is higher than the current's
7431 */
7432 if (rq->curr == p) {
7433 if (p->prio > oldprio)
7434 resched_task(rq->curr);
7435 } else
7436 check_preempt_curr(rq, p, 0);
7437 }
7438
7439 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7440 {
7441 struct sched_entity *se = &p->se;
7442 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7443
7444 /*
7445 * Ensure the task's vruntime is normalized, so that when it's
7446 * switched back to the fair class the enqueue_entity(.flags=0) will
7447 * do the right thing.
7448 *
7449 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7450 * have normalized the vruntime, if it's !on_rq, then only when
7451 * the task is sleeping will it still have non-normalized vruntime.
7452 */
7453 if (!p->on_rq && p->state != TASK_RUNNING) {
7454 /*
7455 * Fix up our vruntime so that the current sleep doesn't
7456 * cause 'unlimited' sleep bonus.
7457 */
7458 place_entity(cfs_rq, se, 0);
7459 se->vruntime -= cfs_rq->min_vruntime;
7460 }
7461
7462 #ifdef CONFIG_SMP
7463 /*
7464 * Remove our load from contribution when we leave sched_fair
7465 * and ensure we don't carry in an old decay_count if we
7466 * switch back.
7467 */
7468 if (se->avg.decay_count) {
7469 __synchronize_entity_decay(se);
7470 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7471 }
7472 #endif
7473 }
7474
7475 /*
7476 * We switched to the sched_fair class.
7477 */
7478 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7479 {
7480 struct sched_entity *se = &p->se;
7481 #ifdef CONFIG_FAIR_GROUP_SCHED
7482 /*
7483 * Since the real-depth could have been changed (only FAIR
7484 * class maintain depth value), reset depth properly.
7485 */
7486 se->depth = se->parent ? se->parent->depth + 1 : 0;
7487 #endif
7488 if (!se->on_rq)
7489 return;
7490
7491 /*
7492 * We were most likely switched from sched_rt, so
7493 * kick off the schedule if running, otherwise just see
7494 * if we can still preempt the current task.
7495 */
7496 if (rq->curr == p)
7497 resched_task(rq->curr);
7498 else
7499 check_preempt_curr(rq, p, 0);
7500 }
7501
7502 /* Account for a task changing its policy or group.
7503 *
7504 * This routine is mostly called to set cfs_rq->curr field when a task
7505 * migrates between groups/classes.
7506 */
7507 static void set_curr_task_fair(struct rq *rq)
7508 {
7509 struct sched_entity *se = &rq->curr->se;
7510
7511 for_each_sched_entity(se) {
7512 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7513
7514 set_next_entity(cfs_rq, se);
7515 /* ensure bandwidth has been allocated on our new cfs_rq */
7516 account_cfs_rq_runtime(cfs_rq, 0);
7517 }
7518 }
7519
7520 void init_cfs_rq(struct cfs_rq *cfs_rq)
7521 {
7522 cfs_rq->tasks_timeline = RB_ROOT;
7523 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7524 #ifndef CONFIG_64BIT
7525 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7526 #endif
7527 #ifdef CONFIG_SMP
7528 atomic64_set(&cfs_rq->decay_counter, 1);
7529 atomic_long_set(&cfs_rq->removed_load, 0);
7530 #endif
7531 }
7532
7533 #ifdef CONFIG_FAIR_GROUP_SCHED
7534 static void task_move_group_fair(struct task_struct *p, int on_rq)
7535 {
7536 struct sched_entity *se = &p->se;
7537 struct cfs_rq *cfs_rq;
7538
7539 /*
7540 * If the task was not on the rq at the time of this cgroup movement
7541 * it must have been asleep, sleeping tasks keep their ->vruntime
7542 * absolute on their old rq until wakeup (needed for the fair sleeper
7543 * bonus in place_entity()).
7544 *
7545 * If it was on the rq, we've just 'preempted' it, which does convert
7546 * ->vruntime to a relative base.
7547 *
7548 * Make sure both cases convert their relative position when migrating
7549 * to another cgroup's rq. This does somewhat interfere with the
7550 * fair sleeper stuff for the first placement, but who cares.
7551 */
7552 /*
7553 * When !on_rq, vruntime of the task has usually NOT been normalized.
7554 * But there are some cases where it has already been normalized:
7555 *
7556 * - Moving a forked child which is waiting for being woken up by
7557 * wake_up_new_task().
7558 * - Moving a task which has been woken up by try_to_wake_up() and
7559 * waiting for actually being woken up by sched_ttwu_pending().
7560 *
7561 * To prevent boost or penalty in the new cfs_rq caused by delta
7562 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7563 */
7564 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7565 on_rq = 1;
7566
7567 if (!on_rq)
7568 se->vruntime -= cfs_rq_of(se)->min_vruntime;
7569 set_task_rq(p, task_cpu(p));
7570 se->depth = se->parent ? se->parent->depth + 1 : 0;
7571 if (!on_rq) {
7572 cfs_rq = cfs_rq_of(se);
7573 se->vruntime += cfs_rq->min_vruntime;
7574 #ifdef CONFIG_SMP
7575 /*
7576 * migrate_task_rq_fair() will have removed our previous
7577 * contribution, but we must synchronize for ongoing future
7578 * decay.
7579 */
7580 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7581 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7582 #endif
7583 }
7584 }
7585
7586 void free_fair_sched_group(struct task_group *tg)
7587 {
7588 int i;
7589
7590 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7591
7592 for_each_possible_cpu(i) {
7593 if (tg->cfs_rq)
7594 kfree(tg->cfs_rq[i]);
7595 if (tg->se)
7596 kfree(tg->se[i]);
7597 }
7598
7599 kfree(tg->cfs_rq);
7600 kfree(tg->se);
7601 }
7602
7603 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7604 {
7605 struct cfs_rq *cfs_rq;
7606 struct sched_entity *se;
7607 int i;
7608
7609 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7610 if (!tg->cfs_rq)
7611 goto err;
7612 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7613 if (!tg->se)
7614 goto err;
7615
7616 tg->shares = NICE_0_LOAD;
7617
7618 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7619
7620 for_each_possible_cpu(i) {
7621 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7622 GFP_KERNEL, cpu_to_node(i));
7623 if (!cfs_rq)
7624 goto err;
7625
7626 se = kzalloc_node(sizeof(struct sched_entity),
7627 GFP_KERNEL, cpu_to_node(i));
7628 if (!se)
7629 goto err_free_rq;
7630
7631 init_cfs_rq(cfs_rq);
7632 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7633 }
7634
7635 return 1;
7636
7637 err_free_rq:
7638 kfree(cfs_rq);
7639 err:
7640 return 0;
7641 }
7642
7643 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7644 {
7645 struct rq *rq = cpu_rq(cpu);
7646 unsigned long flags;
7647
7648 /*
7649 * Only empty task groups can be destroyed; so we can speculatively
7650 * check on_list without danger of it being re-added.
7651 */
7652 if (!tg->cfs_rq[cpu]->on_list)
7653 return;
7654
7655 raw_spin_lock_irqsave(&rq->lock, flags);
7656 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7657 raw_spin_unlock_irqrestore(&rq->lock, flags);
7658 }
7659
7660 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7661 struct sched_entity *se, int cpu,
7662 struct sched_entity *parent)
7663 {
7664 struct rq *rq = cpu_rq(cpu);
7665
7666 cfs_rq->tg = tg;
7667 cfs_rq->rq = rq;
7668 init_cfs_rq_runtime(cfs_rq);
7669
7670 tg->cfs_rq[cpu] = cfs_rq;
7671 tg->se[cpu] = se;
7672
7673 /* se could be NULL for root_task_group */
7674 if (!se)
7675 return;
7676
7677 if (!parent) {
7678 se->cfs_rq = &rq->cfs;
7679 se->depth = 0;
7680 } else {
7681 se->cfs_rq = parent->my_q;
7682 se->depth = parent->depth + 1;
7683 }
7684
7685 se->my_q = cfs_rq;
7686 /* guarantee group entities always have weight */
7687 update_load_set(&se->load, NICE_0_LOAD);
7688 se->parent = parent;
7689 }
7690
7691 static DEFINE_MUTEX(shares_mutex);
7692
7693 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7694 {
7695 int i;
7696 unsigned long flags;
7697
7698 /*
7699 * We can't change the weight of the root cgroup.
7700 */
7701 if (!tg->se[0])
7702 return -EINVAL;
7703
7704 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7705
7706 mutex_lock(&shares_mutex);
7707 if (tg->shares == shares)
7708 goto done;
7709
7710 tg->shares = shares;
7711 for_each_possible_cpu(i) {
7712 struct rq *rq = cpu_rq(i);
7713 struct sched_entity *se;
7714
7715 se = tg->se[i];
7716 /* Propagate contribution to hierarchy */
7717 raw_spin_lock_irqsave(&rq->lock, flags);
7718
7719 /* Possible calls to update_curr() need rq clock */
7720 update_rq_clock(rq);
7721 for_each_sched_entity(se)
7722 update_cfs_shares(group_cfs_rq(se));
7723 raw_spin_unlock_irqrestore(&rq->lock, flags);
7724 }
7725
7726 done:
7727 mutex_unlock(&shares_mutex);
7728 return 0;
7729 }
7730 #else /* CONFIG_FAIR_GROUP_SCHED */
7731
7732 void free_fair_sched_group(struct task_group *tg) { }
7733
7734 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7735 {
7736 return 1;
7737 }
7738
7739 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7740
7741 #endif /* CONFIG_FAIR_GROUP_SCHED */
7742
7743
7744 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7745 {
7746 struct sched_entity *se = &task->se;
7747 unsigned int rr_interval = 0;
7748
7749 /*
7750 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7751 * idle runqueue:
7752 */
7753 if (rq->cfs.load.weight)
7754 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7755
7756 return rr_interval;
7757 }
7758
7759 /*
7760 * All the scheduling class methods:
7761 */
7762 const struct sched_class fair_sched_class = {
7763 .next = &idle_sched_class,
7764 .enqueue_task = enqueue_task_fair,
7765 .dequeue_task = dequeue_task_fair,
7766 .yield_task = yield_task_fair,
7767 .yield_to_task = yield_to_task_fair,
7768
7769 .check_preempt_curr = check_preempt_wakeup,
7770
7771 .pick_next_task = pick_next_task_fair,
7772 .put_prev_task = put_prev_task_fair,
7773
7774 #ifdef CONFIG_SMP
7775 .select_task_rq = select_task_rq_fair,
7776 .migrate_task_rq = migrate_task_rq_fair,
7777
7778 .rq_online = rq_online_fair,
7779 .rq_offline = rq_offline_fair,
7780
7781 .task_waking = task_waking_fair,
7782 #endif
7783
7784 .set_curr_task = set_curr_task_fair,
7785 .task_tick = task_tick_fair,
7786 .task_fork = task_fork_fair,
7787
7788 .prio_changed = prio_changed_fair,
7789 .switched_from = switched_from_fair,
7790 .switched_to = switched_to_fair,
7791
7792 .get_rr_interval = get_rr_interval_fair,
7793
7794 #ifdef CONFIG_FAIR_GROUP_SCHED
7795 .task_move_group = task_move_group_fair,
7796 #endif
7797 };
7798
7799 #ifdef CONFIG_SCHED_DEBUG
7800 void print_cfs_stats(struct seq_file *m, int cpu)
7801 {
7802 struct cfs_rq *cfs_rq;
7803
7804 rcu_read_lock();
7805 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7806 print_cfs_rq(m, cpu, cfs_rq);
7807 rcu_read_unlock();
7808 }
7809 #endif
7810
7811 __init void init_sched_fair_class(void)
7812 {
7813 #ifdef CONFIG_SMP
7814 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7815
7816 #ifdef CONFIG_NO_HZ_COMMON
7817 nohz.next_balance = jiffies;
7818 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7819 cpu_notifier(sched_ilb_notifier, 0);
7820 #endif
7821 #endif /* SMP */
7822
7823 }
This page took 0.279193 seconds and 5 git commands to generate.