USB: sierra: refactor delayed-urb submission
[deliverable/linux.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/mutex.h>
7 #include <linux/spinlock.h>
8 #include <linux/stop_machine.h>
9 #include <linux/tick.h>
10 #include <linux/slab.h>
11
12 #include "cpupri.h"
13 #include "cpudeadline.h"
14 #include "cpuacct.h"
15
16 struct rq;
17
18 extern __read_mostly int scheduler_running;
19
20 extern unsigned long calc_load_update;
21 extern atomic_long_t calc_load_tasks;
22
23 extern long calc_load_fold_active(struct rq *this_rq);
24 extern void update_cpu_load_active(struct rq *this_rq);
25
26 /*
27 * Helpers for converting nanosecond timing to jiffy resolution
28 */
29 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
30
31 /*
32 * Increase resolution of nice-level calculations for 64-bit architectures.
33 * The extra resolution improves shares distribution and load balancing of
34 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
35 * hierarchies, especially on larger systems. This is not a user-visible change
36 * and does not change the user-interface for setting shares/weights.
37 *
38 * We increase resolution only if we have enough bits to allow this increased
39 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
40 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
41 * increased costs.
42 */
43 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
44 # define SCHED_LOAD_RESOLUTION 10
45 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
46 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
47 #else
48 # define SCHED_LOAD_RESOLUTION 0
49 # define scale_load(w) (w)
50 # define scale_load_down(w) (w)
51 #endif
52
53 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
54 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
55
56 #define NICE_0_LOAD SCHED_LOAD_SCALE
57 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
58
59 /*
60 * Single value that decides SCHED_DEADLINE internal math precision.
61 * 10 -> just above 1us
62 * 9 -> just above 0.5us
63 */
64 #define DL_SCALE (10)
65
66 /*
67 * These are the 'tuning knobs' of the scheduler:
68 */
69
70 /*
71 * single value that denotes runtime == period, ie unlimited time.
72 */
73 #define RUNTIME_INF ((u64)~0ULL)
74
75 static inline int fair_policy(int policy)
76 {
77 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
78 }
79
80 static inline int rt_policy(int policy)
81 {
82 return policy == SCHED_FIFO || policy == SCHED_RR;
83 }
84
85 static inline int dl_policy(int policy)
86 {
87 return policy == SCHED_DEADLINE;
88 }
89
90 static inline int task_has_rt_policy(struct task_struct *p)
91 {
92 return rt_policy(p->policy);
93 }
94
95 static inline int task_has_dl_policy(struct task_struct *p)
96 {
97 return dl_policy(p->policy);
98 }
99
100 static inline bool dl_time_before(u64 a, u64 b)
101 {
102 return (s64)(a - b) < 0;
103 }
104
105 /*
106 * Tells if entity @a should preempt entity @b.
107 */
108 static inline bool
109 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
110 {
111 return dl_time_before(a->deadline, b->deadline);
112 }
113
114 /*
115 * This is the priority-queue data structure of the RT scheduling class:
116 */
117 struct rt_prio_array {
118 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
119 struct list_head queue[MAX_RT_PRIO];
120 };
121
122 struct rt_bandwidth {
123 /* nests inside the rq lock: */
124 raw_spinlock_t rt_runtime_lock;
125 ktime_t rt_period;
126 u64 rt_runtime;
127 struct hrtimer rt_period_timer;
128 };
129 /*
130 * To keep the bandwidth of -deadline tasks and groups under control
131 * we need some place where:
132 * - store the maximum -deadline bandwidth of the system (the group);
133 * - cache the fraction of that bandwidth that is currently allocated.
134 *
135 * This is all done in the data structure below. It is similar to the
136 * one used for RT-throttling (rt_bandwidth), with the main difference
137 * that, since here we are only interested in admission control, we
138 * do not decrease any runtime while the group "executes", neither we
139 * need a timer to replenish it.
140 *
141 * With respect to SMP, the bandwidth is given on a per-CPU basis,
142 * meaning that:
143 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
144 * - dl_total_bw array contains, in the i-eth element, the currently
145 * allocated bandwidth on the i-eth CPU.
146 * Moreover, groups consume bandwidth on each CPU, while tasks only
147 * consume bandwidth on the CPU they're running on.
148 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
149 * that will be shown the next time the proc or cgroup controls will
150 * be red. It on its turn can be changed by writing on its own
151 * control.
152 */
153 struct dl_bandwidth {
154 raw_spinlock_t dl_runtime_lock;
155 u64 dl_runtime;
156 u64 dl_period;
157 };
158
159 static inline int dl_bandwidth_enabled(void)
160 {
161 return sysctl_sched_rt_runtime >= 0;
162 }
163
164 extern struct dl_bw *dl_bw_of(int i);
165
166 struct dl_bw {
167 raw_spinlock_t lock;
168 u64 bw, total_bw;
169 };
170
171 extern struct mutex sched_domains_mutex;
172
173 #ifdef CONFIG_CGROUP_SCHED
174
175 #include <linux/cgroup.h>
176
177 struct cfs_rq;
178 struct rt_rq;
179
180 extern struct list_head task_groups;
181
182 struct cfs_bandwidth {
183 #ifdef CONFIG_CFS_BANDWIDTH
184 raw_spinlock_t lock;
185 ktime_t period;
186 u64 quota, runtime;
187 s64 hierarchal_quota;
188 u64 runtime_expires;
189
190 int idle, timer_active;
191 struct hrtimer period_timer, slack_timer;
192 struct list_head throttled_cfs_rq;
193
194 /* statistics */
195 int nr_periods, nr_throttled;
196 u64 throttled_time;
197 #endif
198 };
199
200 /* task group related information */
201 struct task_group {
202 struct cgroup_subsys_state css;
203
204 #ifdef CONFIG_FAIR_GROUP_SCHED
205 /* schedulable entities of this group on each cpu */
206 struct sched_entity **se;
207 /* runqueue "owned" by this group on each cpu */
208 struct cfs_rq **cfs_rq;
209 unsigned long shares;
210
211 #ifdef CONFIG_SMP
212 atomic_long_t load_avg;
213 atomic_t runnable_avg;
214 #endif
215 #endif
216
217 #ifdef CONFIG_RT_GROUP_SCHED
218 struct sched_rt_entity **rt_se;
219 struct rt_rq **rt_rq;
220
221 struct rt_bandwidth rt_bandwidth;
222 #endif
223
224 struct rcu_head rcu;
225 struct list_head list;
226
227 struct task_group *parent;
228 struct list_head siblings;
229 struct list_head children;
230
231 #ifdef CONFIG_SCHED_AUTOGROUP
232 struct autogroup *autogroup;
233 #endif
234
235 struct cfs_bandwidth cfs_bandwidth;
236 };
237
238 #ifdef CONFIG_FAIR_GROUP_SCHED
239 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
240
241 /*
242 * A weight of 0 or 1 can cause arithmetics problems.
243 * A weight of a cfs_rq is the sum of weights of which entities
244 * are queued on this cfs_rq, so a weight of a entity should not be
245 * too large, so as the shares value of a task group.
246 * (The default weight is 1024 - so there's no practical
247 * limitation from this.)
248 */
249 #define MIN_SHARES (1UL << 1)
250 #define MAX_SHARES (1UL << 18)
251 #endif
252
253 typedef int (*tg_visitor)(struct task_group *, void *);
254
255 extern int walk_tg_tree_from(struct task_group *from,
256 tg_visitor down, tg_visitor up, void *data);
257
258 /*
259 * Iterate the full tree, calling @down when first entering a node and @up when
260 * leaving it for the final time.
261 *
262 * Caller must hold rcu_lock or sufficient equivalent.
263 */
264 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
265 {
266 return walk_tg_tree_from(&root_task_group, down, up, data);
267 }
268
269 extern int tg_nop(struct task_group *tg, void *data);
270
271 extern void free_fair_sched_group(struct task_group *tg);
272 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
273 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
274 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
275 struct sched_entity *se, int cpu,
276 struct sched_entity *parent);
277 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
278 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
279
280 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
281 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
282 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
283
284 extern void free_rt_sched_group(struct task_group *tg);
285 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
286 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
287 struct sched_rt_entity *rt_se, int cpu,
288 struct sched_rt_entity *parent);
289
290 extern struct task_group *sched_create_group(struct task_group *parent);
291 extern void sched_online_group(struct task_group *tg,
292 struct task_group *parent);
293 extern void sched_destroy_group(struct task_group *tg);
294 extern void sched_offline_group(struct task_group *tg);
295
296 extern void sched_move_task(struct task_struct *tsk);
297
298 #ifdef CONFIG_FAIR_GROUP_SCHED
299 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
300 #endif
301
302 #else /* CONFIG_CGROUP_SCHED */
303
304 struct cfs_bandwidth { };
305
306 #endif /* CONFIG_CGROUP_SCHED */
307
308 /* CFS-related fields in a runqueue */
309 struct cfs_rq {
310 struct load_weight load;
311 unsigned int nr_running, h_nr_running;
312
313 u64 exec_clock;
314 u64 min_vruntime;
315 #ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317 #endif
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
321
322 /*
323 * 'curr' points to currently running entity on this cfs_rq.
324 * It is set to NULL otherwise (i.e when none are currently running).
325 */
326 struct sched_entity *curr, *next, *last, *skip;
327
328 #ifdef CONFIG_SCHED_DEBUG
329 unsigned int nr_spread_over;
330 #endif
331
332 #ifdef CONFIG_SMP
333 /*
334 * CFS Load tracking
335 * Under CFS, load is tracked on a per-entity basis and aggregated up.
336 * This allows for the description of both thread and group usage (in
337 * the FAIR_GROUP_SCHED case).
338 */
339 unsigned long runnable_load_avg, blocked_load_avg;
340 atomic64_t decay_counter;
341 u64 last_decay;
342 atomic_long_t removed_load;
343
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 /* Required to track per-cpu representation of a task_group */
346 u32 tg_runnable_contrib;
347 unsigned long tg_load_contrib;
348
349 /*
350 * h_load = weight * f(tg)
351 *
352 * Where f(tg) is the recursive weight fraction assigned to
353 * this group.
354 */
355 unsigned long h_load;
356 u64 last_h_load_update;
357 struct sched_entity *h_load_next;
358 #endif /* CONFIG_FAIR_GROUP_SCHED */
359 #endif /* CONFIG_SMP */
360
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
363
364 /*
365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
367 * (like users, containers etc.)
368 *
369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
370 * list is used during load balance.
371 */
372 int on_list;
373 struct list_head leaf_cfs_rq_list;
374 struct task_group *tg; /* group that "owns" this runqueue */
375
376 #ifdef CONFIG_CFS_BANDWIDTH
377 int runtime_enabled;
378 u64 runtime_expires;
379 s64 runtime_remaining;
380
381 u64 throttled_clock, throttled_clock_task;
382 u64 throttled_clock_task_time;
383 int throttled, throttle_count;
384 struct list_head throttled_list;
385 #endif /* CONFIG_CFS_BANDWIDTH */
386 #endif /* CONFIG_FAIR_GROUP_SCHED */
387 };
388
389 static inline int rt_bandwidth_enabled(void)
390 {
391 return sysctl_sched_rt_runtime >= 0;
392 }
393
394 /* Real-Time classes' related field in a runqueue: */
395 struct rt_rq {
396 struct rt_prio_array active;
397 unsigned int rt_nr_running;
398 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
399 struct {
400 int curr; /* highest queued rt task prio */
401 #ifdef CONFIG_SMP
402 int next; /* next highest */
403 #endif
404 } highest_prio;
405 #endif
406 #ifdef CONFIG_SMP
407 unsigned long rt_nr_migratory;
408 unsigned long rt_nr_total;
409 int overloaded;
410 struct plist_head pushable_tasks;
411 #endif
412 int rt_throttled;
413 u64 rt_time;
414 u64 rt_runtime;
415 /* Nests inside the rq lock: */
416 raw_spinlock_t rt_runtime_lock;
417
418 #ifdef CONFIG_RT_GROUP_SCHED
419 unsigned long rt_nr_boosted;
420
421 struct rq *rq;
422 struct task_group *tg;
423 #endif
424 };
425
426 #ifdef CONFIG_RT_GROUP_SCHED
427 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
428 {
429 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
430 }
431 #else
432 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
433 {
434 return rt_rq->rt_throttled;
435 }
436 #endif
437
438 /* Deadline class' related fields in a runqueue */
439 struct dl_rq {
440 /* runqueue is an rbtree, ordered by deadline */
441 struct rb_root rb_root;
442 struct rb_node *rb_leftmost;
443
444 unsigned long dl_nr_running;
445
446 #ifdef CONFIG_SMP
447 /*
448 * Deadline values of the currently executing and the
449 * earliest ready task on this rq. Caching these facilitates
450 * the decision wether or not a ready but not running task
451 * should migrate somewhere else.
452 */
453 struct {
454 u64 curr;
455 u64 next;
456 } earliest_dl;
457
458 unsigned long dl_nr_migratory;
459 int overloaded;
460
461 /*
462 * Tasks on this rq that can be pushed away. They are kept in
463 * an rb-tree, ordered by tasks' deadlines, with caching
464 * of the leftmost (earliest deadline) element.
465 */
466 struct rb_root pushable_dl_tasks_root;
467 struct rb_node *pushable_dl_tasks_leftmost;
468 #else
469 struct dl_bw dl_bw;
470 #endif
471 };
472
473 #ifdef CONFIG_SMP
474
475 /*
476 * We add the notion of a root-domain which will be used to define per-domain
477 * variables. Each exclusive cpuset essentially defines an island domain by
478 * fully partitioning the member cpus from any other cpuset. Whenever a new
479 * exclusive cpuset is created, we also create and attach a new root-domain
480 * object.
481 *
482 */
483 struct root_domain {
484 atomic_t refcount;
485 atomic_t rto_count;
486 struct rcu_head rcu;
487 cpumask_var_t span;
488 cpumask_var_t online;
489
490 /*
491 * The bit corresponding to a CPU gets set here if such CPU has more
492 * than one runnable -deadline task (as it is below for RT tasks).
493 */
494 cpumask_var_t dlo_mask;
495 atomic_t dlo_count;
496 struct dl_bw dl_bw;
497 struct cpudl cpudl;
498
499 /*
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
502 */
503 cpumask_var_t rto_mask;
504 struct cpupri cpupri;
505 };
506
507 extern struct root_domain def_root_domain;
508
509 #endif /* CONFIG_SMP */
510
511 /*
512 * This is the main, per-CPU runqueue data structure.
513 *
514 * Locking rule: those places that want to lock multiple runqueues
515 * (such as the load balancing or the thread migration code), lock
516 * acquire operations must be ordered by ascending &runqueue.
517 */
518 struct rq {
519 /* runqueue lock: */
520 raw_spinlock_t lock;
521
522 /*
523 * nr_running and cpu_load should be in the same cacheline because
524 * remote CPUs use both these fields when doing load calculation.
525 */
526 unsigned int nr_running;
527 #ifdef CONFIG_NUMA_BALANCING
528 unsigned int nr_numa_running;
529 unsigned int nr_preferred_running;
530 #endif
531 #define CPU_LOAD_IDX_MAX 5
532 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
533 unsigned long last_load_update_tick;
534 #ifdef CONFIG_NO_HZ_COMMON
535 u64 nohz_stamp;
536 unsigned long nohz_flags;
537 #endif
538 #ifdef CONFIG_NO_HZ_FULL
539 unsigned long last_sched_tick;
540 #endif
541 int skip_clock_update;
542
543 /* capture load from *all* tasks on this cpu: */
544 struct load_weight load;
545 unsigned long nr_load_updates;
546 u64 nr_switches;
547
548 struct cfs_rq cfs;
549 struct rt_rq rt;
550 struct dl_rq dl;
551
552 #ifdef CONFIG_FAIR_GROUP_SCHED
553 /* list of leaf cfs_rq on this cpu: */
554 struct list_head leaf_cfs_rq_list;
555
556 struct sched_avg avg;
557 #endif /* CONFIG_FAIR_GROUP_SCHED */
558
559 /*
560 * This is part of a global counter where only the total sum
561 * over all CPUs matters. A task can increase this counter on
562 * one CPU and if it got migrated afterwards it may decrease
563 * it on another CPU. Always updated under the runqueue lock:
564 */
565 unsigned long nr_uninterruptible;
566
567 struct task_struct *curr, *idle, *stop;
568 unsigned long next_balance;
569 struct mm_struct *prev_mm;
570
571 u64 clock;
572 u64 clock_task;
573
574 atomic_t nr_iowait;
575
576 #ifdef CONFIG_SMP
577 struct root_domain *rd;
578 struct sched_domain *sd;
579
580 unsigned long cpu_power;
581
582 unsigned char idle_balance;
583 /* For active balancing */
584 int post_schedule;
585 int active_balance;
586 int push_cpu;
587 struct cpu_stop_work active_balance_work;
588 /* cpu of this runqueue: */
589 int cpu;
590 int online;
591
592 struct list_head cfs_tasks;
593
594 u64 rt_avg;
595 u64 age_stamp;
596 u64 idle_stamp;
597 u64 avg_idle;
598
599 /* This is used to determine avg_idle's max value */
600 u64 max_idle_balance_cost;
601 #endif
602
603 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
604 u64 prev_irq_time;
605 #endif
606 #ifdef CONFIG_PARAVIRT
607 u64 prev_steal_time;
608 #endif
609 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
610 u64 prev_steal_time_rq;
611 #endif
612
613 /* calc_load related fields */
614 unsigned long calc_load_update;
615 long calc_load_active;
616
617 #ifdef CONFIG_SCHED_HRTICK
618 #ifdef CONFIG_SMP
619 int hrtick_csd_pending;
620 struct call_single_data hrtick_csd;
621 #endif
622 struct hrtimer hrtick_timer;
623 #endif
624
625 #ifdef CONFIG_SCHEDSTATS
626 /* latency stats */
627 struct sched_info rq_sched_info;
628 unsigned long long rq_cpu_time;
629 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
630
631 /* sys_sched_yield() stats */
632 unsigned int yld_count;
633
634 /* schedule() stats */
635 unsigned int sched_count;
636 unsigned int sched_goidle;
637
638 /* try_to_wake_up() stats */
639 unsigned int ttwu_count;
640 unsigned int ttwu_local;
641 #endif
642
643 #ifdef CONFIG_SMP
644 struct llist_head wake_list;
645 #endif
646 };
647
648 static inline int cpu_of(struct rq *rq)
649 {
650 #ifdef CONFIG_SMP
651 return rq->cpu;
652 #else
653 return 0;
654 #endif
655 }
656
657 DECLARE_PER_CPU(struct rq, runqueues);
658
659 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
660 #define this_rq() (&__get_cpu_var(runqueues))
661 #define task_rq(p) cpu_rq(task_cpu(p))
662 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
663 #define raw_rq() (&__raw_get_cpu_var(runqueues))
664
665 static inline u64 rq_clock(struct rq *rq)
666 {
667 return rq->clock;
668 }
669
670 static inline u64 rq_clock_task(struct rq *rq)
671 {
672 return rq->clock_task;
673 }
674
675 #ifdef CONFIG_NUMA_BALANCING
676 extern void sched_setnuma(struct task_struct *p, int node);
677 extern int migrate_task_to(struct task_struct *p, int cpu);
678 extern int migrate_swap(struct task_struct *, struct task_struct *);
679 #endif /* CONFIG_NUMA_BALANCING */
680
681 #ifdef CONFIG_SMP
682
683 #define rcu_dereference_check_sched_domain(p) \
684 rcu_dereference_check((p), \
685 lockdep_is_held(&sched_domains_mutex))
686
687 /*
688 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
689 * See detach_destroy_domains: synchronize_sched for details.
690 *
691 * The domain tree of any CPU may only be accessed from within
692 * preempt-disabled sections.
693 */
694 #define for_each_domain(cpu, __sd) \
695 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
696 __sd; __sd = __sd->parent)
697
698 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
699
700 /**
701 * highest_flag_domain - Return highest sched_domain containing flag.
702 * @cpu: The cpu whose highest level of sched domain is to
703 * be returned.
704 * @flag: The flag to check for the highest sched_domain
705 * for the given cpu.
706 *
707 * Returns the highest sched_domain of a cpu which contains the given flag.
708 */
709 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
710 {
711 struct sched_domain *sd, *hsd = NULL;
712
713 for_each_domain(cpu, sd) {
714 if (!(sd->flags & flag))
715 break;
716 hsd = sd;
717 }
718
719 return hsd;
720 }
721
722 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
723 {
724 struct sched_domain *sd;
725
726 for_each_domain(cpu, sd) {
727 if (sd->flags & flag)
728 break;
729 }
730
731 return sd;
732 }
733
734 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
735 DECLARE_PER_CPU(int, sd_llc_size);
736 DECLARE_PER_CPU(int, sd_llc_id);
737 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
738 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
739 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
740
741 struct sched_group_power {
742 atomic_t ref;
743 /*
744 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
745 * single CPU.
746 */
747 unsigned int power, power_orig;
748 unsigned long next_update;
749 int imbalance; /* XXX unrelated to power but shared group state */
750 /*
751 * Number of busy cpus in this group.
752 */
753 atomic_t nr_busy_cpus;
754
755 unsigned long cpumask[0]; /* iteration mask */
756 };
757
758 struct sched_group {
759 struct sched_group *next; /* Must be a circular list */
760 atomic_t ref;
761
762 unsigned int group_weight;
763 struct sched_group_power *sgp;
764
765 /*
766 * The CPUs this group covers.
767 *
768 * NOTE: this field is variable length. (Allocated dynamically
769 * by attaching extra space to the end of the structure,
770 * depending on how many CPUs the kernel has booted up with)
771 */
772 unsigned long cpumask[0];
773 };
774
775 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
776 {
777 return to_cpumask(sg->cpumask);
778 }
779
780 /*
781 * cpumask masking which cpus in the group are allowed to iterate up the domain
782 * tree.
783 */
784 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
785 {
786 return to_cpumask(sg->sgp->cpumask);
787 }
788
789 /**
790 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
791 * @group: The group whose first cpu is to be returned.
792 */
793 static inline unsigned int group_first_cpu(struct sched_group *group)
794 {
795 return cpumask_first(sched_group_cpus(group));
796 }
797
798 extern int group_balance_cpu(struct sched_group *sg);
799
800 #endif /* CONFIG_SMP */
801
802 #include "stats.h"
803 #include "auto_group.h"
804
805 #ifdef CONFIG_CGROUP_SCHED
806
807 /*
808 * Return the group to which this tasks belongs.
809 *
810 * We cannot use task_css() and friends because the cgroup subsystem
811 * changes that value before the cgroup_subsys::attach() method is called,
812 * therefore we cannot pin it and might observe the wrong value.
813 *
814 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
815 * core changes this before calling sched_move_task().
816 *
817 * Instead we use a 'copy' which is updated from sched_move_task() while
818 * holding both task_struct::pi_lock and rq::lock.
819 */
820 static inline struct task_group *task_group(struct task_struct *p)
821 {
822 return p->sched_task_group;
823 }
824
825 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
826 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
827 {
828 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
829 struct task_group *tg = task_group(p);
830 #endif
831
832 #ifdef CONFIG_FAIR_GROUP_SCHED
833 p->se.cfs_rq = tg->cfs_rq[cpu];
834 p->se.parent = tg->se[cpu];
835 #endif
836
837 #ifdef CONFIG_RT_GROUP_SCHED
838 p->rt.rt_rq = tg->rt_rq[cpu];
839 p->rt.parent = tg->rt_se[cpu];
840 #endif
841 }
842
843 #else /* CONFIG_CGROUP_SCHED */
844
845 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
846 static inline struct task_group *task_group(struct task_struct *p)
847 {
848 return NULL;
849 }
850
851 #endif /* CONFIG_CGROUP_SCHED */
852
853 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
854 {
855 set_task_rq(p, cpu);
856 #ifdef CONFIG_SMP
857 /*
858 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
859 * successfuly executed on another CPU. We must ensure that updates of
860 * per-task data have been completed by this moment.
861 */
862 smp_wmb();
863 task_thread_info(p)->cpu = cpu;
864 p->wake_cpu = cpu;
865 #endif
866 }
867
868 /*
869 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
870 */
871 #ifdef CONFIG_SCHED_DEBUG
872 # include <linux/static_key.h>
873 # define const_debug __read_mostly
874 #else
875 # define const_debug const
876 #endif
877
878 extern const_debug unsigned int sysctl_sched_features;
879
880 #define SCHED_FEAT(name, enabled) \
881 __SCHED_FEAT_##name ,
882
883 enum {
884 #include "features.h"
885 __SCHED_FEAT_NR,
886 };
887
888 #undef SCHED_FEAT
889
890 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
891 static __always_inline bool static_branch__true(struct static_key *key)
892 {
893 return static_key_true(key); /* Not out of line branch. */
894 }
895
896 static __always_inline bool static_branch__false(struct static_key *key)
897 {
898 return static_key_false(key); /* Out of line branch. */
899 }
900
901 #define SCHED_FEAT(name, enabled) \
902 static __always_inline bool static_branch_##name(struct static_key *key) \
903 { \
904 return static_branch__##enabled(key); \
905 }
906
907 #include "features.h"
908
909 #undef SCHED_FEAT
910
911 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
912 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
913 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
914 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
915 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
916
917 #ifdef CONFIG_NUMA_BALANCING
918 #define sched_feat_numa(x) sched_feat(x)
919 #ifdef CONFIG_SCHED_DEBUG
920 #define numabalancing_enabled sched_feat_numa(NUMA)
921 #else
922 extern bool numabalancing_enabled;
923 #endif /* CONFIG_SCHED_DEBUG */
924 #else
925 #define sched_feat_numa(x) (0)
926 #define numabalancing_enabled (0)
927 #endif /* CONFIG_NUMA_BALANCING */
928
929 static inline u64 global_rt_period(void)
930 {
931 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
932 }
933
934 static inline u64 global_rt_runtime(void)
935 {
936 if (sysctl_sched_rt_runtime < 0)
937 return RUNTIME_INF;
938
939 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
940 }
941
942 static inline int task_current(struct rq *rq, struct task_struct *p)
943 {
944 return rq->curr == p;
945 }
946
947 static inline int task_running(struct rq *rq, struct task_struct *p)
948 {
949 #ifdef CONFIG_SMP
950 return p->on_cpu;
951 #else
952 return task_current(rq, p);
953 #endif
954 }
955
956
957 #ifndef prepare_arch_switch
958 # define prepare_arch_switch(next) do { } while (0)
959 #endif
960 #ifndef finish_arch_switch
961 # define finish_arch_switch(prev) do { } while (0)
962 #endif
963 #ifndef finish_arch_post_lock_switch
964 # define finish_arch_post_lock_switch() do { } while (0)
965 #endif
966
967 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
968 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
969 {
970 #ifdef CONFIG_SMP
971 /*
972 * We can optimise this out completely for !SMP, because the
973 * SMP rebalancing from interrupt is the only thing that cares
974 * here.
975 */
976 next->on_cpu = 1;
977 #endif
978 }
979
980 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
981 {
982 #ifdef CONFIG_SMP
983 /*
984 * After ->on_cpu is cleared, the task can be moved to a different CPU.
985 * We must ensure this doesn't happen until the switch is completely
986 * finished.
987 */
988 smp_wmb();
989 prev->on_cpu = 0;
990 #endif
991 #ifdef CONFIG_DEBUG_SPINLOCK
992 /* this is a valid case when another task releases the spinlock */
993 rq->lock.owner = current;
994 #endif
995 /*
996 * If we are tracking spinlock dependencies then we have to
997 * fix up the runqueue lock - which gets 'carried over' from
998 * prev into current:
999 */
1000 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1001
1002 raw_spin_unlock_irq(&rq->lock);
1003 }
1004
1005 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1006 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1007 {
1008 #ifdef CONFIG_SMP
1009 /*
1010 * We can optimise this out completely for !SMP, because the
1011 * SMP rebalancing from interrupt is the only thing that cares
1012 * here.
1013 */
1014 next->on_cpu = 1;
1015 #endif
1016 raw_spin_unlock(&rq->lock);
1017 }
1018
1019 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1020 {
1021 #ifdef CONFIG_SMP
1022 /*
1023 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1024 * We must ensure this doesn't happen until the switch is completely
1025 * finished.
1026 */
1027 smp_wmb();
1028 prev->on_cpu = 0;
1029 #endif
1030 local_irq_enable();
1031 }
1032 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1033
1034 /*
1035 * wake flags
1036 */
1037 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1038 #define WF_FORK 0x02 /* child wakeup after fork */
1039 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1040
1041 /*
1042 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1043 * of tasks with abnormal "nice" values across CPUs the contribution that
1044 * each task makes to its run queue's load is weighted according to its
1045 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1046 * scaled version of the new time slice allocation that they receive on time
1047 * slice expiry etc.
1048 */
1049
1050 #define WEIGHT_IDLEPRIO 3
1051 #define WMULT_IDLEPRIO 1431655765
1052
1053 /*
1054 * Nice levels are multiplicative, with a gentle 10% change for every
1055 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1056 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1057 * that remained on nice 0.
1058 *
1059 * The "10% effect" is relative and cumulative: from _any_ nice level,
1060 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1061 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1062 * If a task goes up by ~10% and another task goes down by ~10% then
1063 * the relative distance between them is ~25%.)
1064 */
1065 static const int prio_to_weight[40] = {
1066 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1067 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1068 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1069 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1070 /* 0 */ 1024, 820, 655, 526, 423,
1071 /* 5 */ 335, 272, 215, 172, 137,
1072 /* 10 */ 110, 87, 70, 56, 45,
1073 /* 15 */ 36, 29, 23, 18, 15,
1074 };
1075
1076 /*
1077 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1078 *
1079 * In cases where the weight does not change often, we can use the
1080 * precalculated inverse to speed up arithmetics by turning divisions
1081 * into multiplications:
1082 */
1083 static const u32 prio_to_wmult[40] = {
1084 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1085 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1086 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1087 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1088 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1089 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1090 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1091 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1092 };
1093
1094 #define ENQUEUE_WAKEUP 1
1095 #define ENQUEUE_HEAD 2
1096 #ifdef CONFIG_SMP
1097 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1098 #else
1099 #define ENQUEUE_WAKING 0
1100 #endif
1101 #define ENQUEUE_REPLENISH 8
1102
1103 #define DEQUEUE_SLEEP 1
1104
1105 #define RETRY_TASK ((void *)-1UL)
1106
1107 struct sched_class {
1108 const struct sched_class *next;
1109
1110 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1111 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1112 void (*yield_task) (struct rq *rq);
1113 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1114
1115 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1116
1117 /*
1118 * It is the responsibility of the pick_next_task() method that will
1119 * return the next task to call put_prev_task() on the @prev task or
1120 * something equivalent.
1121 *
1122 * May return RETRY_TASK when it finds a higher prio class has runnable
1123 * tasks.
1124 */
1125 struct task_struct * (*pick_next_task) (struct rq *rq,
1126 struct task_struct *prev);
1127 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1128
1129 #ifdef CONFIG_SMP
1130 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1131 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1132
1133 void (*post_schedule) (struct rq *this_rq);
1134 void (*task_waking) (struct task_struct *task);
1135 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1136
1137 void (*set_cpus_allowed)(struct task_struct *p,
1138 const struct cpumask *newmask);
1139
1140 void (*rq_online)(struct rq *rq);
1141 void (*rq_offline)(struct rq *rq);
1142 #endif
1143
1144 void (*set_curr_task) (struct rq *rq);
1145 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1146 void (*task_fork) (struct task_struct *p);
1147 void (*task_dead) (struct task_struct *p);
1148
1149 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1150 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1151 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1152 int oldprio);
1153
1154 unsigned int (*get_rr_interval) (struct rq *rq,
1155 struct task_struct *task);
1156
1157 #ifdef CONFIG_FAIR_GROUP_SCHED
1158 void (*task_move_group) (struct task_struct *p, int on_rq);
1159 #endif
1160 };
1161
1162 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1163 {
1164 prev->sched_class->put_prev_task(rq, prev);
1165 }
1166
1167 #define sched_class_highest (&stop_sched_class)
1168 #define for_each_class(class) \
1169 for (class = sched_class_highest; class; class = class->next)
1170
1171 extern const struct sched_class stop_sched_class;
1172 extern const struct sched_class dl_sched_class;
1173 extern const struct sched_class rt_sched_class;
1174 extern const struct sched_class fair_sched_class;
1175 extern const struct sched_class idle_sched_class;
1176
1177
1178 #ifdef CONFIG_SMP
1179
1180 extern void update_group_power(struct sched_domain *sd, int cpu);
1181
1182 extern void trigger_load_balance(struct rq *rq);
1183
1184 extern void idle_enter_fair(struct rq *this_rq);
1185 extern void idle_exit_fair(struct rq *this_rq);
1186
1187 #else
1188
1189 static inline void idle_enter_fair(struct rq *rq) { }
1190 static inline void idle_exit_fair(struct rq *rq) { }
1191
1192 #endif
1193
1194 extern void sysrq_sched_debug_show(void);
1195 extern void sched_init_granularity(void);
1196 extern void update_max_interval(void);
1197
1198 extern void init_sched_dl_class(void);
1199 extern void init_sched_rt_class(void);
1200 extern void init_sched_fair_class(void);
1201 extern void init_sched_dl_class(void);
1202
1203 extern void resched_task(struct task_struct *p);
1204 extern void resched_cpu(int cpu);
1205
1206 extern struct rt_bandwidth def_rt_bandwidth;
1207 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1208
1209 extern struct dl_bandwidth def_dl_bandwidth;
1210 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1211 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1212
1213 unsigned long to_ratio(u64 period, u64 runtime);
1214
1215 extern void update_idle_cpu_load(struct rq *this_rq);
1216
1217 extern void init_task_runnable_average(struct task_struct *p);
1218
1219 static inline void inc_nr_running(struct rq *rq)
1220 {
1221 rq->nr_running++;
1222
1223 #ifdef CONFIG_NO_HZ_FULL
1224 if (rq->nr_running == 2) {
1225 if (tick_nohz_full_cpu(rq->cpu)) {
1226 /* Order rq->nr_running write against the IPI */
1227 smp_wmb();
1228 smp_send_reschedule(rq->cpu);
1229 }
1230 }
1231 #endif
1232 }
1233
1234 static inline void dec_nr_running(struct rq *rq)
1235 {
1236 rq->nr_running--;
1237 }
1238
1239 static inline void rq_last_tick_reset(struct rq *rq)
1240 {
1241 #ifdef CONFIG_NO_HZ_FULL
1242 rq->last_sched_tick = jiffies;
1243 #endif
1244 }
1245
1246 extern void update_rq_clock(struct rq *rq);
1247
1248 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1249 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1250
1251 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1252
1253 extern const_debug unsigned int sysctl_sched_time_avg;
1254 extern const_debug unsigned int sysctl_sched_nr_migrate;
1255 extern const_debug unsigned int sysctl_sched_migration_cost;
1256
1257 static inline u64 sched_avg_period(void)
1258 {
1259 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1260 }
1261
1262 #ifdef CONFIG_SCHED_HRTICK
1263
1264 /*
1265 * Use hrtick when:
1266 * - enabled by features
1267 * - hrtimer is actually high res
1268 */
1269 static inline int hrtick_enabled(struct rq *rq)
1270 {
1271 if (!sched_feat(HRTICK))
1272 return 0;
1273 if (!cpu_active(cpu_of(rq)))
1274 return 0;
1275 return hrtimer_is_hres_active(&rq->hrtick_timer);
1276 }
1277
1278 void hrtick_start(struct rq *rq, u64 delay);
1279
1280 #else
1281
1282 static inline int hrtick_enabled(struct rq *rq)
1283 {
1284 return 0;
1285 }
1286
1287 #endif /* CONFIG_SCHED_HRTICK */
1288
1289 #ifdef CONFIG_SMP
1290 extern void sched_avg_update(struct rq *rq);
1291 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1292 {
1293 rq->rt_avg += rt_delta;
1294 sched_avg_update(rq);
1295 }
1296 #else
1297 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1298 static inline void sched_avg_update(struct rq *rq) { }
1299 #endif
1300
1301 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1302
1303 #ifdef CONFIG_SMP
1304 #ifdef CONFIG_PREEMPT
1305
1306 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1307
1308 /*
1309 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1310 * way at the expense of forcing extra atomic operations in all
1311 * invocations. This assures that the double_lock is acquired using the
1312 * same underlying policy as the spinlock_t on this architecture, which
1313 * reduces latency compared to the unfair variant below. However, it
1314 * also adds more overhead and therefore may reduce throughput.
1315 */
1316 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1317 __releases(this_rq->lock)
1318 __acquires(busiest->lock)
1319 __acquires(this_rq->lock)
1320 {
1321 raw_spin_unlock(&this_rq->lock);
1322 double_rq_lock(this_rq, busiest);
1323
1324 return 1;
1325 }
1326
1327 #else
1328 /*
1329 * Unfair double_lock_balance: Optimizes throughput at the expense of
1330 * latency by eliminating extra atomic operations when the locks are
1331 * already in proper order on entry. This favors lower cpu-ids and will
1332 * grant the double lock to lower cpus over higher ids under contention,
1333 * regardless of entry order into the function.
1334 */
1335 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1336 __releases(this_rq->lock)
1337 __acquires(busiest->lock)
1338 __acquires(this_rq->lock)
1339 {
1340 int ret = 0;
1341
1342 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1343 if (busiest < this_rq) {
1344 raw_spin_unlock(&this_rq->lock);
1345 raw_spin_lock(&busiest->lock);
1346 raw_spin_lock_nested(&this_rq->lock,
1347 SINGLE_DEPTH_NESTING);
1348 ret = 1;
1349 } else
1350 raw_spin_lock_nested(&busiest->lock,
1351 SINGLE_DEPTH_NESTING);
1352 }
1353 return ret;
1354 }
1355
1356 #endif /* CONFIG_PREEMPT */
1357
1358 /*
1359 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1360 */
1361 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1362 {
1363 if (unlikely(!irqs_disabled())) {
1364 /* printk() doesn't work good under rq->lock */
1365 raw_spin_unlock(&this_rq->lock);
1366 BUG_ON(1);
1367 }
1368
1369 return _double_lock_balance(this_rq, busiest);
1370 }
1371
1372 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1373 __releases(busiest->lock)
1374 {
1375 raw_spin_unlock(&busiest->lock);
1376 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1377 }
1378
1379 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1380 {
1381 if (l1 > l2)
1382 swap(l1, l2);
1383
1384 spin_lock(l1);
1385 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1386 }
1387
1388 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1389 {
1390 if (l1 > l2)
1391 swap(l1, l2);
1392
1393 spin_lock_irq(l1);
1394 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1395 }
1396
1397 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1398 {
1399 if (l1 > l2)
1400 swap(l1, l2);
1401
1402 raw_spin_lock(l1);
1403 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1404 }
1405
1406 /*
1407 * double_rq_lock - safely lock two runqueues
1408 *
1409 * Note this does not disable interrupts like task_rq_lock,
1410 * you need to do so manually before calling.
1411 */
1412 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1413 __acquires(rq1->lock)
1414 __acquires(rq2->lock)
1415 {
1416 BUG_ON(!irqs_disabled());
1417 if (rq1 == rq2) {
1418 raw_spin_lock(&rq1->lock);
1419 __acquire(rq2->lock); /* Fake it out ;) */
1420 } else {
1421 if (rq1 < rq2) {
1422 raw_spin_lock(&rq1->lock);
1423 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1424 } else {
1425 raw_spin_lock(&rq2->lock);
1426 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1427 }
1428 }
1429 }
1430
1431 /*
1432 * double_rq_unlock - safely unlock two runqueues
1433 *
1434 * Note this does not restore interrupts like task_rq_unlock,
1435 * you need to do so manually after calling.
1436 */
1437 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1438 __releases(rq1->lock)
1439 __releases(rq2->lock)
1440 {
1441 raw_spin_unlock(&rq1->lock);
1442 if (rq1 != rq2)
1443 raw_spin_unlock(&rq2->lock);
1444 else
1445 __release(rq2->lock);
1446 }
1447
1448 #else /* CONFIG_SMP */
1449
1450 /*
1451 * double_rq_lock - safely lock two runqueues
1452 *
1453 * Note this does not disable interrupts like task_rq_lock,
1454 * you need to do so manually before calling.
1455 */
1456 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1457 __acquires(rq1->lock)
1458 __acquires(rq2->lock)
1459 {
1460 BUG_ON(!irqs_disabled());
1461 BUG_ON(rq1 != rq2);
1462 raw_spin_lock(&rq1->lock);
1463 __acquire(rq2->lock); /* Fake it out ;) */
1464 }
1465
1466 /*
1467 * double_rq_unlock - safely unlock two runqueues
1468 *
1469 * Note this does not restore interrupts like task_rq_unlock,
1470 * you need to do so manually after calling.
1471 */
1472 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1473 __releases(rq1->lock)
1474 __releases(rq2->lock)
1475 {
1476 BUG_ON(rq1 != rq2);
1477 raw_spin_unlock(&rq1->lock);
1478 __release(rq2->lock);
1479 }
1480
1481 #endif
1482
1483 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1484 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1485 extern void print_cfs_stats(struct seq_file *m, int cpu);
1486 extern void print_rt_stats(struct seq_file *m, int cpu);
1487
1488 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1489 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1490 extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
1491
1492 extern void cfs_bandwidth_usage_inc(void);
1493 extern void cfs_bandwidth_usage_dec(void);
1494
1495 #ifdef CONFIG_NO_HZ_COMMON
1496 enum rq_nohz_flag_bits {
1497 NOHZ_TICK_STOPPED,
1498 NOHZ_BALANCE_KICK,
1499 };
1500
1501 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1502 #endif
1503
1504 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1505
1506 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1507 DECLARE_PER_CPU(u64, cpu_softirq_time);
1508
1509 #ifndef CONFIG_64BIT
1510 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1511
1512 static inline void irq_time_write_begin(void)
1513 {
1514 __this_cpu_inc(irq_time_seq.sequence);
1515 smp_wmb();
1516 }
1517
1518 static inline void irq_time_write_end(void)
1519 {
1520 smp_wmb();
1521 __this_cpu_inc(irq_time_seq.sequence);
1522 }
1523
1524 static inline u64 irq_time_read(int cpu)
1525 {
1526 u64 irq_time;
1527 unsigned seq;
1528
1529 do {
1530 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1531 irq_time = per_cpu(cpu_softirq_time, cpu) +
1532 per_cpu(cpu_hardirq_time, cpu);
1533 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1534
1535 return irq_time;
1536 }
1537 #else /* CONFIG_64BIT */
1538 static inline void irq_time_write_begin(void)
1539 {
1540 }
1541
1542 static inline void irq_time_write_end(void)
1543 {
1544 }
1545
1546 static inline u64 irq_time_read(int cpu)
1547 {
1548 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1549 }
1550 #endif /* CONFIG_64BIT */
1551 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
This page took 0.061285 seconds and 5 git commands to generate.