sched/fair: Remove rq's runnable avg
[deliverable/linux.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/mutex.h>
7 #include <linux/spinlock.h>
8 #include <linux/stop_machine.h>
9 #include <linux/irq_work.h>
10 #include <linux/tick.h>
11 #include <linux/slab.h>
12
13 #include "cpupri.h"
14 #include "cpudeadline.h"
15 #include "cpuacct.h"
16
17 struct rq;
18 struct cpuidle_state;
19
20 /* task_struct::on_rq states: */
21 #define TASK_ON_RQ_QUEUED 1
22 #define TASK_ON_RQ_MIGRATING 2
23
24 extern __read_mostly int scheduler_running;
25
26 extern unsigned long calc_load_update;
27 extern atomic_long_t calc_load_tasks;
28
29 extern void calc_global_load_tick(struct rq *this_rq);
30 extern long calc_load_fold_active(struct rq *this_rq);
31
32 #ifdef CONFIG_SMP
33 extern void update_cpu_load_active(struct rq *this_rq);
34 #else
35 static inline void update_cpu_load_active(struct rq *this_rq) { }
36 #endif
37
38 /*
39 * Helpers for converting nanosecond timing to jiffy resolution
40 */
41 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
42
43 /*
44 * Increase resolution of nice-level calculations for 64-bit architectures.
45 * The extra resolution improves shares distribution and load balancing of
46 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
47 * hierarchies, especially on larger systems. This is not a user-visible change
48 * and does not change the user-interface for setting shares/weights.
49 *
50 * We increase resolution only if we have enough bits to allow this increased
51 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
52 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
53 * increased costs.
54 */
55 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
56 # define SCHED_LOAD_RESOLUTION 10
57 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
58 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
59 #else
60 # define SCHED_LOAD_RESOLUTION 0
61 # define scale_load(w) (w)
62 # define scale_load_down(w) (w)
63 #endif
64
65 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
66 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
67
68 #define NICE_0_LOAD SCHED_LOAD_SCALE
69 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
70
71 /*
72 * Single value that decides SCHED_DEADLINE internal math precision.
73 * 10 -> just above 1us
74 * 9 -> just above 0.5us
75 */
76 #define DL_SCALE (10)
77
78 /*
79 * These are the 'tuning knobs' of the scheduler:
80 */
81
82 /*
83 * single value that denotes runtime == period, ie unlimited time.
84 */
85 #define RUNTIME_INF ((u64)~0ULL)
86
87 static inline int fair_policy(int policy)
88 {
89 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
90 }
91
92 static inline int rt_policy(int policy)
93 {
94 return policy == SCHED_FIFO || policy == SCHED_RR;
95 }
96
97 static inline int dl_policy(int policy)
98 {
99 return policy == SCHED_DEADLINE;
100 }
101
102 static inline int task_has_rt_policy(struct task_struct *p)
103 {
104 return rt_policy(p->policy);
105 }
106
107 static inline int task_has_dl_policy(struct task_struct *p)
108 {
109 return dl_policy(p->policy);
110 }
111
112 static inline bool dl_time_before(u64 a, u64 b)
113 {
114 return (s64)(a - b) < 0;
115 }
116
117 /*
118 * Tells if entity @a should preempt entity @b.
119 */
120 static inline bool
121 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
122 {
123 return dl_time_before(a->deadline, b->deadline);
124 }
125
126 /*
127 * This is the priority-queue data structure of the RT scheduling class:
128 */
129 struct rt_prio_array {
130 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
131 struct list_head queue[MAX_RT_PRIO];
132 };
133
134 struct rt_bandwidth {
135 /* nests inside the rq lock: */
136 raw_spinlock_t rt_runtime_lock;
137 ktime_t rt_period;
138 u64 rt_runtime;
139 struct hrtimer rt_period_timer;
140 unsigned int rt_period_active;
141 };
142
143 void __dl_clear_params(struct task_struct *p);
144
145 /*
146 * To keep the bandwidth of -deadline tasks and groups under control
147 * we need some place where:
148 * - store the maximum -deadline bandwidth of the system (the group);
149 * - cache the fraction of that bandwidth that is currently allocated.
150 *
151 * This is all done in the data structure below. It is similar to the
152 * one used for RT-throttling (rt_bandwidth), with the main difference
153 * that, since here we are only interested in admission control, we
154 * do not decrease any runtime while the group "executes", neither we
155 * need a timer to replenish it.
156 *
157 * With respect to SMP, the bandwidth is given on a per-CPU basis,
158 * meaning that:
159 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
160 * - dl_total_bw array contains, in the i-eth element, the currently
161 * allocated bandwidth on the i-eth CPU.
162 * Moreover, groups consume bandwidth on each CPU, while tasks only
163 * consume bandwidth on the CPU they're running on.
164 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
165 * that will be shown the next time the proc or cgroup controls will
166 * be red. It on its turn can be changed by writing on its own
167 * control.
168 */
169 struct dl_bandwidth {
170 raw_spinlock_t dl_runtime_lock;
171 u64 dl_runtime;
172 u64 dl_period;
173 };
174
175 static inline int dl_bandwidth_enabled(void)
176 {
177 return sysctl_sched_rt_runtime >= 0;
178 }
179
180 extern struct dl_bw *dl_bw_of(int i);
181
182 struct dl_bw {
183 raw_spinlock_t lock;
184 u64 bw, total_bw;
185 };
186
187 static inline
188 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
189 {
190 dl_b->total_bw -= tsk_bw;
191 }
192
193 static inline
194 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
195 {
196 dl_b->total_bw += tsk_bw;
197 }
198
199 static inline
200 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
201 {
202 return dl_b->bw != -1 &&
203 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
204 }
205
206 extern struct mutex sched_domains_mutex;
207
208 #ifdef CONFIG_CGROUP_SCHED
209
210 #include <linux/cgroup.h>
211
212 struct cfs_rq;
213 struct rt_rq;
214
215 extern struct list_head task_groups;
216
217 struct cfs_bandwidth {
218 #ifdef CONFIG_CFS_BANDWIDTH
219 raw_spinlock_t lock;
220 ktime_t period;
221 u64 quota, runtime;
222 s64 hierarchical_quota;
223 u64 runtime_expires;
224
225 int idle, period_active;
226 struct hrtimer period_timer, slack_timer;
227 struct list_head throttled_cfs_rq;
228
229 /* statistics */
230 int nr_periods, nr_throttled;
231 u64 throttled_time;
232 #endif
233 };
234
235 /* task group related information */
236 struct task_group {
237 struct cgroup_subsys_state css;
238
239 #ifdef CONFIG_FAIR_GROUP_SCHED
240 /* schedulable entities of this group on each cpu */
241 struct sched_entity **se;
242 /* runqueue "owned" by this group on each cpu */
243 struct cfs_rq **cfs_rq;
244 unsigned long shares;
245
246 #ifdef CONFIG_SMP
247 atomic_long_t load_avg;
248 atomic_t runnable_avg;
249 #endif
250 #endif
251
252 #ifdef CONFIG_RT_GROUP_SCHED
253 struct sched_rt_entity **rt_se;
254 struct rt_rq **rt_rq;
255
256 struct rt_bandwidth rt_bandwidth;
257 #endif
258
259 struct rcu_head rcu;
260 struct list_head list;
261
262 struct task_group *parent;
263 struct list_head siblings;
264 struct list_head children;
265
266 #ifdef CONFIG_SCHED_AUTOGROUP
267 struct autogroup *autogroup;
268 #endif
269
270 struct cfs_bandwidth cfs_bandwidth;
271 };
272
273 #ifdef CONFIG_FAIR_GROUP_SCHED
274 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
275
276 /*
277 * A weight of 0 or 1 can cause arithmetics problems.
278 * A weight of a cfs_rq is the sum of weights of which entities
279 * are queued on this cfs_rq, so a weight of a entity should not be
280 * too large, so as the shares value of a task group.
281 * (The default weight is 1024 - so there's no practical
282 * limitation from this.)
283 */
284 #define MIN_SHARES (1UL << 1)
285 #define MAX_SHARES (1UL << 18)
286 #endif
287
288 typedef int (*tg_visitor)(struct task_group *, void *);
289
290 extern int walk_tg_tree_from(struct task_group *from,
291 tg_visitor down, tg_visitor up, void *data);
292
293 /*
294 * Iterate the full tree, calling @down when first entering a node and @up when
295 * leaving it for the final time.
296 *
297 * Caller must hold rcu_lock or sufficient equivalent.
298 */
299 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
300 {
301 return walk_tg_tree_from(&root_task_group, down, up, data);
302 }
303
304 extern int tg_nop(struct task_group *tg, void *data);
305
306 extern void free_fair_sched_group(struct task_group *tg);
307 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
308 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
309 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
310 struct sched_entity *se, int cpu,
311 struct sched_entity *parent);
312 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
313 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
314
315 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
316 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
317 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
318
319 extern void free_rt_sched_group(struct task_group *tg);
320 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
321 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
322 struct sched_rt_entity *rt_se, int cpu,
323 struct sched_rt_entity *parent);
324
325 extern struct task_group *sched_create_group(struct task_group *parent);
326 extern void sched_online_group(struct task_group *tg,
327 struct task_group *parent);
328 extern void sched_destroy_group(struct task_group *tg);
329 extern void sched_offline_group(struct task_group *tg);
330
331 extern void sched_move_task(struct task_struct *tsk);
332
333 #ifdef CONFIG_FAIR_GROUP_SCHED
334 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
335 #endif
336
337 #else /* CONFIG_CGROUP_SCHED */
338
339 struct cfs_bandwidth { };
340
341 #endif /* CONFIG_CGROUP_SCHED */
342
343 /* CFS-related fields in a runqueue */
344 struct cfs_rq {
345 struct load_weight load;
346 unsigned int nr_running, h_nr_running;
347
348 u64 exec_clock;
349 u64 min_vruntime;
350 #ifndef CONFIG_64BIT
351 u64 min_vruntime_copy;
352 #endif
353
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
356
357 /*
358 * 'curr' points to currently running entity on this cfs_rq.
359 * It is set to NULL otherwise (i.e when none are currently running).
360 */
361 struct sched_entity *curr, *next, *last, *skip;
362
363 #ifdef CONFIG_SCHED_DEBUG
364 unsigned int nr_spread_over;
365 #endif
366
367 #ifdef CONFIG_SMP
368 /*
369 * CFS Load tracking
370 * Under CFS, load is tracked on a per-entity basis and aggregated up.
371 * This allows for the description of both thread and group usage (in
372 * the FAIR_GROUP_SCHED case).
373 * runnable_load_avg is the sum of the load_avg_contrib of the
374 * sched_entities on the rq.
375 * blocked_load_avg is similar to runnable_load_avg except that its
376 * the blocked sched_entities on the rq.
377 * utilization_load_avg is the sum of the average running time of the
378 * sched_entities on the rq.
379 */
380 unsigned long runnable_load_avg, blocked_load_avg, utilization_load_avg;
381 atomic64_t decay_counter;
382 u64 last_decay;
383 atomic_long_t removed_load;
384
385 #ifdef CONFIG_FAIR_GROUP_SCHED
386 /* Required to track per-cpu representation of a task_group */
387 u32 tg_runnable_contrib;
388 unsigned long tg_load_contrib;
389
390 /*
391 * h_load = weight * f(tg)
392 *
393 * Where f(tg) is the recursive weight fraction assigned to
394 * this group.
395 */
396 unsigned long h_load;
397 u64 last_h_load_update;
398 struct sched_entity *h_load_next;
399 #endif /* CONFIG_FAIR_GROUP_SCHED */
400 #endif /* CONFIG_SMP */
401
402 #ifdef CONFIG_FAIR_GROUP_SCHED
403 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
404
405 /*
406 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
407 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
408 * (like users, containers etc.)
409 *
410 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
411 * list is used during load balance.
412 */
413 int on_list;
414 struct list_head leaf_cfs_rq_list;
415 struct task_group *tg; /* group that "owns" this runqueue */
416
417 #ifdef CONFIG_CFS_BANDWIDTH
418 int runtime_enabled;
419 u64 runtime_expires;
420 s64 runtime_remaining;
421
422 u64 throttled_clock, throttled_clock_task;
423 u64 throttled_clock_task_time;
424 int throttled, throttle_count;
425 struct list_head throttled_list;
426 #endif /* CONFIG_CFS_BANDWIDTH */
427 #endif /* CONFIG_FAIR_GROUP_SCHED */
428 };
429
430 static inline int rt_bandwidth_enabled(void)
431 {
432 return sysctl_sched_rt_runtime >= 0;
433 }
434
435 /* RT IPI pull logic requires IRQ_WORK */
436 #ifdef CONFIG_IRQ_WORK
437 # define HAVE_RT_PUSH_IPI
438 #endif
439
440 /* Real-Time classes' related field in a runqueue: */
441 struct rt_rq {
442 struct rt_prio_array active;
443 unsigned int rt_nr_running;
444 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
445 struct {
446 int curr; /* highest queued rt task prio */
447 #ifdef CONFIG_SMP
448 int next; /* next highest */
449 #endif
450 } highest_prio;
451 #endif
452 #ifdef CONFIG_SMP
453 unsigned long rt_nr_migratory;
454 unsigned long rt_nr_total;
455 int overloaded;
456 struct plist_head pushable_tasks;
457 #ifdef HAVE_RT_PUSH_IPI
458 int push_flags;
459 int push_cpu;
460 struct irq_work push_work;
461 raw_spinlock_t push_lock;
462 #endif
463 #endif /* CONFIG_SMP */
464 int rt_queued;
465
466 int rt_throttled;
467 u64 rt_time;
468 u64 rt_runtime;
469 /* Nests inside the rq lock: */
470 raw_spinlock_t rt_runtime_lock;
471
472 #ifdef CONFIG_RT_GROUP_SCHED
473 unsigned long rt_nr_boosted;
474
475 struct rq *rq;
476 struct task_group *tg;
477 #endif
478 };
479
480 /* Deadline class' related fields in a runqueue */
481 struct dl_rq {
482 /* runqueue is an rbtree, ordered by deadline */
483 struct rb_root rb_root;
484 struct rb_node *rb_leftmost;
485
486 unsigned long dl_nr_running;
487
488 #ifdef CONFIG_SMP
489 /*
490 * Deadline values of the currently executing and the
491 * earliest ready task on this rq. Caching these facilitates
492 * the decision wether or not a ready but not running task
493 * should migrate somewhere else.
494 */
495 struct {
496 u64 curr;
497 u64 next;
498 } earliest_dl;
499
500 unsigned long dl_nr_migratory;
501 int overloaded;
502
503 /*
504 * Tasks on this rq that can be pushed away. They are kept in
505 * an rb-tree, ordered by tasks' deadlines, with caching
506 * of the leftmost (earliest deadline) element.
507 */
508 struct rb_root pushable_dl_tasks_root;
509 struct rb_node *pushable_dl_tasks_leftmost;
510 #else
511 struct dl_bw dl_bw;
512 #endif
513 };
514
515 #ifdef CONFIG_SMP
516
517 /*
518 * We add the notion of a root-domain which will be used to define per-domain
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
521 * exclusive cpuset is created, we also create and attach a new root-domain
522 * object.
523 *
524 */
525 struct root_domain {
526 atomic_t refcount;
527 atomic_t rto_count;
528 struct rcu_head rcu;
529 cpumask_var_t span;
530 cpumask_var_t online;
531
532 /* Indicate more than one runnable task for any CPU */
533 bool overload;
534
535 /*
536 * The bit corresponding to a CPU gets set here if such CPU has more
537 * than one runnable -deadline task (as it is below for RT tasks).
538 */
539 cpumask_var_t dlo_mask;
540 atomic_t dlo_count;
541 struct dl_bw dl_bw;
542 struct cpudl cpudl;
543
544 /*
545 * The "RT overload" flag: it gets set if a CPU has more than
546 * one runnable RT task.
547 */
548 cpumask_var_t rto_mask;
549 struct cpupri cpupri;
550 };
551
552 extern struct root_domain def_root_domain;
553
554 #endif /* CONFIG_SMP */
555
556 /*
557 * This is the main, per-CPU runqueue data structure.
558 *
559 * Locking rule: those places that want to lock multiple runqueues
560 * (such as the load balancing or the thread migration code), lock
561 * acquire operations must be ordered by ascending &runqueue.
562 */
563 struct rq {
564 /* runqueue lock: */
565 raw_spinlock_t lock;
566
567 /*
568 * nr_running and cpu_load should be in the same cacheline because
569 * remote CPUs use both these fields when doing load calculation.
570 */
571 unsigned int nr_running;
572 #ifdef CONFIG_NUMA_BALANCING
573 unsigned int nr_numa_running;
574 unsigned int nr_preferred_running;
575 #endif
576 #define CPU_LOAD_IDX_MAX 5
577 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
578 unsigned long last_load_update_tick;
579 #ifdef CONFIG_NO_HZ_COMMON
580 u64 nohz_stamp;
581 unsigned long nohz_flags;
582 #endif
583 #ifdef CONFIG_NO_HZ_FULL
584 unsigned long last_sched_tick;
585 #endif
586 /* capture load from *all* tasks on this cpu: */
587 struct load_weight load;
588 unsigned long nr_load_updates;
589 u64 nr_switches;
590
591 struct cfs_rq cfs;
592 struct rt_rq rt;
593 struct dl_rq dl;
594
595 #ifdef CONFIG_FAIR_GROUP_SCHED
596 /* list of leaf cfs_rq on this cpu: */
597 struct list_head leaf_cfs_rq_list;
598 #endif /* CONFIG_FAIR_GROUP_SCHED */
599
600 /*
601 * This is part of a global counter where only the total sum
602 * over all CPUs matters. A task can increase this counter on
603 * one CPU and if it got migrated afterwards it may decrease
604 * it on another CPU. Always updated under the runqueue lock:
605 */
606 unsigned long nr_uninterruptible;
607
608 struct task_struct *curr, *idle, *stop;
609 unsigned long next_balance;
610 struct mm_struct *prev_mm;
611
612 unsigned int clock_skip_update;
613 u64 clock;
614 u64 clock_task;
615
616 atomic_t nr_iowait;
617
618 #ifdef CONFIG_SMP
619 struct root_domain *rd;
620 struct sched_domain *sd;
621
622 unsigned long cpu_capacity;
623 unsigned long cpu_capacity_orig;
624
625 struct callback_head *balance_callback;
626
627 unsigned char idle_balance;
628 /* For active balancing */
629 int active_balance;
630 int push_cpu;
631 struct cpu_stop_work active_balance_work;
632 /* cpu of this runqueue: */
633 int cpu;
634 int online;
635
636 struct list_head cfs_tasks;
637
638 u64 rt_avg;
639 u64 age_stamp;
640 u64 idle_stamp;
641 u64 avg_idle;
642
643 /* This is used to determine avg_idle's max value */
644 u64 max_idle_balance_cost;
645 #endif
646
647 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
648 u64 prev_irq_time;
649 #endif
650 #ifdef CONFIG_PARAVIRT
651 u64 prev_steal_time;
652 #endif
653 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
654 u64 prev_steal_time_rq;
655 #endif
656
657 /* calc_load related fields */
658 unsigned long calc_load_update;
659 long calc_load_active;
660
661 #ifdef CONFIG_SCHED_HRTICK
662 #ifdef CONFIG_SMP
663 int hrtick_csd_pending;
664 struct call_single_data hrtick_csd;
665 #endif
666 struct hrtimer hrtick_timer;
667 #endif
668
669 #ifdef CONFIG_SCHEDSTATS
670 /* latency stats */
671 struct sched_info rq_sched_info;
672 unsigned long long rq_cpu_time;
673 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
674
675 /* sys_sched_yield() stats */
676 unsigned int yld_count;
677
678 /* schedule() stats */
679 unsigned int sched_count;
680 unsigned int sched_goidle;
681
682 /* try_to_wake_up() stats */
683 unsigned int ttwu_count;
684 unsigned int ttwu_local;
685 #endif
686
687 #ifdef CONFIG_SMP
688 struct llist_head wake_list;
689 #endif
690
691 #ifdef CONFIG_CPU_IDLE
692 /* Must be inspected within a rcu lock section */
693 struct cpuidle_state *idle_state;
694 #endif
695 };
696
697 static inline int cpu_of(struct rq *rq)
698 {
699 #ifdef CONFIG_SMP
700 return rq->cpu;
701 #else
702 return 0;
703 #endif
704 }
705
706 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
707
708 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
709 #define this_rq() this_cpu_ptr(&runqueues)
710 #define task_rq(p) cpu_rq(task_cpu(p))
711 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
712 #define raw_rq() raw_cpu_ptr(&runqueues)
713
714 static inline u64 __rq_clock_broken(struct rq *rq)
715 {
716 return READ_ONCE(rq->clock);
717 }
718
719 static inline u64 rq_clock(struct rq *rq)
720 {
721 lockdep_assert_held(&rq->lock);
722 return rq->clock;
723 }
724
725 static inline u64 rq_clock_task(struct rq *rq)
726 {
727 lockdep_assert_held(&rq->lock);
728 return rq->clock_task;
729 }
730
731 #define RQCF_REQ_SKIP 0x01
732 #define RQCF_ACT_SKIP 0x02
733
734 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
735 {
736 lockdep_assert_held(&rq->lock);
737 if (skip)
738 rq->clock_skip_update |= RQCF_REQ_SKIP;
739 else
740 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
741 }
742
743 #ifdef CONFIG_NUMA
744 enum numa_topology_type {
745 NUMA_DIRECT,
746 NUMA_GLUELESS_MESH,
747 NUMA_BACKPLANE,
748 };
749 extern enum numa_topology_type sched_numa_topology_type;
750 extern int sched_max_numa_distance;
751 extern bool find_numa_distance(int distance);
752 #endif
753
754 #ifdef CONFIG_NUMA_BALANCING
755 /* The regions in numa_faults array from task_struct */
756 enum numa_faults_stats {
757 NUMA_MEM = 0,
758 NUMA_CPU,
759 NUMA_MEMBUF,
760 NUMA_CPUBUF
761 };
762 extern void sched_setnuma(struct task_struct *p, int node);
763 extern int migrate_task_to(struct task_struct *p, int cpu);
764 extern int migrate_swap(struct task_struct *, struct task_struct *);
765 #endif /* CONFIG_NUMA_BALANCING */
766
767 #ifdef CONFIG_SMP
768
769 static inline void
770 queue_balance_callback(struct rq *rq,
771 struct callback_head *head,
772 void (*func)(struct rq *rq))
773 {
774 lockdep_assert_held(&rq->lock);
775
776 if (unlikely(head->next))
777 return;
778
779 head->func = (void (*)(struct callback_head *))func;
780 head->next = rq->balance_callback;
781 rq->balance_callback = head;
782 }
783
784 extern void sched_ttwu_pending(void);
785
786 #define rcu_dereference_check_sched_domain(p) \
787 rcu_dereference_check((p), \
788 lockdep_is_held(&sched_domains_mutex))
789
790 /*
791 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
792 * See detach_destroy_domains: synchronize_sched for details.
793 *
794 * The domain tree of any CPU may only be accessed from within
795 * preempt-disabled sections.
796 */
797 #define for_each_domain(cpu, __sd) \
798 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
799 __sd; __sd = __sd->parent)
800
801 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
802
803 /**
804 * highest_flag_domain - Return highest sched_domain containing flag.
805 * @cpu: The cpu whose highest level of sched domain is to
806 * be returned.
807 * @flag: The flag to check for the highest sched_domain
808 * for the given cpu.
809 *
810 * Returns the highest sched_domain of a cpu which contains the given flag.
811 */
812 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
813 {
814 struct sched_domain *sd, *hsd = NULL;
815
816 for_each_domain(cpu, sd) {
817 if (!(sd->flags & flag))
818 break;
819 hsd = sd;
820 }
821
822 return hsd;
823 }
824
825 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
826 {
827 struct sched_domain *sd;
828
829 for_each_domain(cpu, sd) {
830 if (sd->flags & flag)
831 break;
832 }
833
834 return sd;
835 }
836
837 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
838 DECLARE_PER_CPU(int, sd_llc_size);
839 DECLARE_PER_CPU(int, sd_llc_id);
840 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
841 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
842 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
843
844 struct sched_group_capacity {
845 atomic_t ref;
846 /*
847 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
848 * for a single CPU.
849 */
850 unsigned int capacity;
851 unsigned long next_update;
852 int imbalance; /* XXX unrelated to capacity but shared group state */
853 /*
854 * Number of busy cpus in this group.
855 */
856 atomic_t nr_busy_cpus;
857
858 unsigned long cpumask[0]; /* iteration mask */
859 };
860
861 struct sched_group {
862 struct sched_group *next; /* Must be a circular list */
863 atomic_t ref;
864
865 unsigned int group_weight;
866 struct sched_group_capacity *sgc;
867
868 /*
869 * The CPUs this group covers.
870 *
871 * NOTE: this field is variable length. (Allocated dynamically
872 * by attaching extra space to the end of the structure,
873 * depending on how many CPUs the kernel has booted up with)
874 */
875 unsigned long cpumask[0];
876 };
877
878 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
879 {
880 return to_cpumask(sg->cpumask);
881 }
882
883 /*
884 * cpumask masking which cpus in the group are allowed to iterate up the domain
885 * tree.
886 */
887 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
888 {
889 return to_cpumask(sg->sgc->cpumask);
890 }
891
892 /**
893 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
894 * @group: The group whose first cpu is to be returned.
895 */
896 static inline unsigned int group_first_cpu(struct sched_group *group)
897 {
898 return cpumask_first(sched_group_cpus(group));
899 }
900
901 extern int group_balance_cpu(struct sched_group *sg);
902
903 #else
904
905 static inline void sched_ttwu_pending(void) { }
906
907 #endif /* CONFIG_SMP */
908
909 #include "stats.h"
910 #include "auto_group.h"
911
912 #ifdef CONFIG_CGROUP_SCHED
913
914 /*
915 * Return the group to which this tasks belongs.
916 *
917 * We cannot use task_css() and friends because the cgroup subsystem
918 * changes that value before the cgroup_subsys::attach() method is called,
919 * therefore we cannot pin it and might observe the wrong value.
920 *
921 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
922 * core changes this before calling sched_move_task().
923 *
924 * Instead we use a 'copy' which is updated from sched_move_task() while
925 * holding both task_struct::pi_lock and rq::lock.
926 */
927 static inline struct task_group *task_group(struct task_struct *p)
928 {
929 return p->sched_task_group;
930 }
931
932 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
933 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
934 {
935 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
936 struct task_group *tg = task_group(p);
937 #endif
938
939 #ifdef CONFIG_FAIR_GROUP_SCHED
940 p->se.cfs_rq = tg->cfs_rq[cpu];
941 p->se.parent = tg->se[cpu];
942 #endif
943
944 #ifdef CONFIG_RT_GROUP_SCHED
945 p->rt.rt_rq = tg->rt_rq[cpu];
946 p->rt.parent = tg->rt_se[cpu];
947 #endif
948 }
949
950 #else /* CONFIG_CGROUP_SCHED */
951
952 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
953 static inline struct task_group *task_group(struct task_struct *p)
954 {
955 return NULL;
956 }
957
958 #endif /* CONFIG_CGROUP_SCHED */
959
960 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
961 {
962 set_task_rq(p, cpu);
963 #ifdef CONFIG_SMP
964 /*
965 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
966 * successfuly executed on another CPU. We must ensure that updates of
967 * per-task data have been completed by this moment.
968 */
969 smp_wmb();
970 task_thread_info(p)->cpu = cpu;
971 p->wake_cpu = cpu;
972 #endif
973 }
974
975 /*
976 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
977 */
978 #ifdef CONFIG_SCHED_DEBUG
979 # include <linux/static_key.h>
980 # define const_debug __read_mostly
981 #else
982 # define const_debug const
983 #endif
984
985 extern const_debug unsigned int sysctl_sched_features;
986
987 #define SCHED_FEAT(name, enabled) \
988 __SCHED_FEAT_##name ,
989
990 enum {
991 #include "features.h"
992 __SCHED_FEAT_NR,
993 };
994
995 #undef SCHED_FEAT
996
997 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
998 #define SCHED_FEAT(name, enabled) \
999 static __always_inline bool static_branch_##name(struct static_key *key) \
1000 { \
1001 return static_key_##enabled(key); \
1002 }
1003
1004 #include "features.h"
1005
1006 #undef SCHED_FEAT
1007
1008 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1009 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1010 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1011 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1012 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1013
1014 #ifdef CONFIG_NUMA_BALANCING
1015 #define sched_feat_numa(x) sched_feat(x)
1016 #ifdef CONFIG_SCHED_DEBUG
1017 #define numabalancing_enabled sched_feat_numa(NUMA)
1018 #else
1019 extern bool numabalancing_enabled;
1020 #endif /* CONFIG_SCHED_DEBUG */
1021 #else
1022 #define sched_feat_numa(x) (0)
1023 #define numabalancing_enabled (0)
1024 #endif /* CONFIG_NUMA_BALANCING */
1025
1026 static inline u64 global_rt_period(void)
1027 {
1028 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1029 }
1030
1031 static inline u64 global_rt_runtime(void)
1032 {
1033 if (sysctl_sched_rt_runtime < 0)
1034 return RUNTIME_INF;
1035
1036 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1037 }
1038
1039 static inline int task_current(struct rq *rq, struct task_struct *p)
1040 {
1041 return rq->curr == p;
1042 }
1043
1044 static inline int task_running(struct rq *rq, struct task_struct *p)
1045 {
1046 #ifdef CONFIG_SMP
1047 return p->on_cpu;
1048 #else
1049 return task_current(rq, p);
1050 #endif
1051 }
1052
1053 static inline int task_on_rq_queued(struct task_struct *p)
1054 {
1055 return p->on_rq == TASK_ON_RQ_QUEUED;
1056 }
1057
1058 static inline int task_on_rq_migrating(struct task_struct *p)
1059 {
1060 return p->on_rq == TASK_ON_RQ_MIGRATING;
1061 }
1062
1063 #ifndef prepare_arch_switch
1064 # define prepare_arch_switch(next) do { } while (0)
1065 #endif
1066 #ifndef finish_arch_switch
1067 # define finish_arch_switch(prev) do { } while (0)
1068 #endif
1069 #ifndef finish_arch_post_lock_switch
1070 # define finish_arch_post_lock_switch() do { } while (0)
1071 #endif
1072
1073 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1074 {
1075 #ifdef CONFIG_SMP
1076 /*
1077 * We can optimise this out completely for !SMP, because the
1078 * SMP rebalancing from interrupt is the only thing that cares
1079 * here.
1080 */
1081 next->on_cpu = 1;
1082 #endif
1083 }
1084
1085 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1086 {
1087 #ifdef CONFIG_SMP
1088 /*
1089 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1090 * We must ensure this doesn't happen until the switch is completely
1091 * finished.
1092 */
1093 smp_wmb();
1094 prev->on_cpu = 0;
1095 #endif
1096 #ifdef CONFIG_DEBUG_SPINLOCK
1097 /* this is a valid case when another task releases the spinlock */
1098 rq->lock.owner = current;
1099 #endif
1100 /*
1101 * If we are tracking spinlock dependencies then we have to
1102 * fix up the runqueue lock - which gets 'carried over' from
1103 * prev into current:
1104 */
1105 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1106
1107 raw_spin_unlock_irq(&rq->lock);
1108 }
1109
1110 /*
1111 * wake flags
1112 */
1113 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1114 #define WF_FORK 0x02 /* child wakeup after fork */
1115 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1116
1117 /*
1118 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1119 * of tasks with abnormal "nice" values across CPUs the contribution that
1120 * each task makes to its run queue's load is weighted according to its
1121 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1122 * scaled version of the new time slice allocation that they receive on time
1123 * slice expiry etc.
1124 */
1125
1126 #define WEIGHT_IDLEPRIO 3
1127 #define WMULT_IDLEPRIO 1431655765
1128
1129 /*
1130 * Nice levels are multiplicative, with a gentle 10% change for every
1131 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1132 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1133 * that remained on nice 0.
1134 *
1135 * The "10% effect" is relative and cumulative: from _any_ nice level,
1136 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1137 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1138 * If a task goes up by ~10% and another task goes down by ~10% then
1139 * the relative distance between them is ~25%.)
1140 */
1141 static const int prio_to_weight[40] = {
1142 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1143 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1144 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1145 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1146 /* 0 */ 1024, 820, 655, 526, 423,
1147 /* 5 */ 335, 272, 215, 172, 137,
1148 /* 10 */ 110, 87, 70, 56, 45,
1149 /* 15 */ 36, 29, 23, 18, 15,
1150 };
1151
1152 /*
1153 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1154 *
1155 * In cases where the weight does not change often, we can use the
1156 * precalculated inverse to speed up arithmetics by turning divisions
1157 * into multiplications:
1158 */
1159 static const u32 prio_to_wmult[40] = {
1160 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1161 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1162 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1163 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1164 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1165 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1166 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1167 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1168 };
1169
1170 #define ENQUEUE_WAKEUP 1
1171 #define ENQUEUE_HEAD 2
1172 #ifdef CONFIG_SMP
1173 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1174 #else
1175 #define ENQUEUE_WAKING 0
1176 #endif
1177 #define ENQUEUE_REPLENISH 8
1178
1179 #define DEQUEUE_SLEEP 1
1180
1181 #define RETRY_TASK ((void *)-1UL)
1182
1183 struct sched_class {
1184 const struct sched_class *next;
1185
1186 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1187 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1188 void (*yield_task) (struct rq *rq);
1189 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1190
1191 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1192
1193 /*
1194 * It is the responsibility of the pick_next_task() method that will
1195 * return the next task to call put_prev_task() on the @prev task or
1196 * something equivalent.
1197 *
1198 * May return RETRY_TASK when it finds a higher prio class has runnable
1199 * tasks.
1200 */
1201 struct task_struct * (*pick_next_task) (struct rq *rq,
1202 struct task_struct *prev);
1203 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1204
1205 #ifdef CONFIG_SMP
1206 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1207 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1208
1209 void (*task_waking) (struct task_struct *task);
1210 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1211
1212 void (*set_cpus_allowed)(struct task_struct *p,
1213 const struct cpumask *newmask);
1214
1215 void (*rq_online)(struct rq *rq);
1216 void (*rq_offline)(struct rq *rq);
1217 #endif
1218
1219 void (*set_curr_task) (struct rq *rq);
1220 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1221 void (*task_fork) (struct task_struct *p);
1222 void (*task_dead) (struct task_struct *p);
1223
1224 /*
1225 * The switched_from() call is allowed to drop rq->lock, therefore we
1226 * cannot assume the switched_from/switched_to pair is serliazed by
1227 * rq->lock. They are however serialized by p->pi_lock.
1228 */
1229 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1230 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1231 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1232 int oldprio);
1233
1234 unsigned int (*get_rr_interval) (struct rq *rq,
1235 struct task_struct *task);
1236
1237 void (*update_curr) (struct rq *rq);
1238
1239 #ifdef CONFIG_FAIR_GROUP_SCHED
1240 void (*task_move_group) (struct task_struct *p, int on_rq);
1241 #endif
1242 };
1243
1244 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1245 {
1246 prev->sched_class->put_prev_task(rq, prev);
1247 }
1248
1249 #define sched_class_highest (&stop_sched_class)
1250 #define for_each_class(class) \
1251 for (class = sched_class_highest; class; class = class->next)
1252
1253 extern const struct sched_class stop_sched_class;
1254 extern const struct sched_class dl_sched_class;
1255 extern const struct sched_class rt_sched_class;
1256 extern const struct sched_class fair_sched_class;
1257 extern const struct sched_class idle_sched_class;
1258
1259
1260 #ifdef CONFIG_SMP
1261
1262 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1263
1264 extern void trigger_load_balance(struct rq *rq);
1265
1266 extern void idle_enter_fair(struct rq *this_rq);
1267 extern void idle_exit_fair(struct rq *this_rq);
1268
1269 #else
1270
1271 static inline void idle_enter_fair(struct rq *rq) { }
1272 static inline void idle_exit_fair(struct rq *rq) { }
1273
1274 #endif
1275
1276 #ifdef CONFIG_CPU_IDLE
1277 static inline void idle_set_state(struct rq *rq,
1278 struct cpuidle_state *idle_state)
1279 {
1280 rq->idle_state = idle_state;
1281 }
1282
1283 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1284 {
1285 WARN_ON(!rcu_read_lock_held());
1286 return rq->idle_state;
1287 }
1288 #else
1289 static inline void idle_set_state(struct rq *rq,
1290 struct cpuidle_state *idle_state)
1291 {
1292 }
1293
1294 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1295 {
1296 return NULL;
1297 }
1298 #endif
1299
1300 extern void sysrq_sched_debug_show(void);
1301 extern void sched_init_granularity(void);
1302 extern void update_max_interval(void);
1303
1304 extern void init_sched_dl_class(void);
1305 extern void init_sched_rt_class(void);
1306 extern void init_sched_fair_class(void);
1307
1308 extern void resched_curr(struct rq *rq);
1309 extern void resched_cpu(int cpu);
1310
1311 extern struct rt_bandwidth def_rt_bandwidth;
1312 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1313
1314 extern struct dl_bandwidth def_dl_bandwidth;
1315 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1316 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1317
1318 unsigned long to_ratio(u64 period, u64 runtime);
1319
1320 extern void init_task_runnable_average(struct task_struct *p);
1321
1322 static inline void add_nr_running(struct rq *rq, unsigned count)
1323 {
1324 unsigned prev_nr = rq->nr_running;
1325
1326 rq->nr_running = prev_nr + count;
1327
1328 if (prev_nr < 2 && rq->nr_running >= 2) {
1329 #ifdef CONFIG_SMP
1330 if (!rq->rd->overload)
1331 rq->rd->overload = true;
1332 #endif
1333
1334 #ifdef CONFIG_NO_HZ_FULL
1335 if (tick_nohz_full_cpu(rq->cpu)) {
1336 /*
1337 * Tick is needed if more than one task runs on a CPU.
1338 * Send the target an IPI to kick it out of nohz mode.
1339 *
1340 * We assume that IPI implies full memory barrier and the
1341 * new value of rq->nr_running is visible on reception
1342 * from the target.
1343 */
1344 tick_nohz_full_kick_cpu(rq->cpu);
1345 }
1346 #endif
1347 }
1348 }
1349
1350 static inline void sub_nr_running(struct rq *rq, unsigned count)
1351 {
1352 rq->nr_running -= count;
1353 }
1354
1355 static inline void rq_last_tick_reset(struct rq *rq)
1356 {
1357 #ifdef CONFIG_NO_HZ_FULL
1358 rq->last_sched_tick = jiffies;
1359 #endif
1360 }
1361
1362 extern void update_rq_clock(struct rq *rq);
1363
1364 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1365 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1366
1367 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1368
1369 extern const_debug unsigned int sysctl_sched_time_avg;
1370 extern const_debug unsigned int sysctl_sched_nr_migrate;
1371 extern const_debug unsigned int sysctl_sched_migration_cost;
1372
1373 static inline u64 sched_avg_period(void)
1374 {
1375 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1376 }
1377
1378 #ifdef CONFIG_SCHED_HRTICK
1379
1380 /*
1381 * Use hrtick when:
1382 * - enabled by features
1383 * - hrtimer is actually high res
1384 */
1385 static inline int hrtick_enabled(struct rq *rq)
1386 {
1387 if (!sched_feat(HRTICK))
1388 return 0;
1389 if (!cpu_active(cpu_of(rq)))
1390 return 0;
1391 return hrtimer_is_hres_active(&rq->hrtick_timer);
1392 }
1393
1394 void hrtick_start(struct rq *rq, u64 delay);
1395
1396 #else
1397
1398 static inline int hrtick_enabled(struct rq *rq)
1399 {
1400 return 0;
1401 }
1402
1403 #endif /* CONFIG_SCHED_HRTICK */
1404
1405 #ifdef CONFIG_SMP
1406 extern void sched_avg_update(struct rq *rq);
1407
1408 #ifndef arch_scale_freq_capacity
1409 static __always_inline
1410 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1411 {
1412 return SCHED_CAPACITY_SCALE;
1413 }
1414 #endif
1415
1416 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1417 {
1418 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1419 sched_avg_update(rq);
1420 }
1421 #else
1422 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1423 static inline void sched_avg_update(struct rq *rq) { }
1424 #endif
1425
1426 /*
1427 * __task_rq_lock - lock the rq @p resides on.
1428 */
1429 static inline struct rq *__task_rq_lock(struct task_struct *p)
1430 __acquires(rq->lock)
1431 {
1432 struct rq *rq;
1433
1434 lockdep_assert_held(&p->pi_lock);
1435
1436 for (;;) {
1437 rq = task_rq(p);
1438 raw_spin_lock(&rq->lock);
1439 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1440 lockdep_pin_lock(&rq->lock);
1441 return rq;
1442 }
1443 raw_spin_unlock(&rq->lock);
1444
1445 while (unlikely(task_on_rq_migrating(p)))
1446 cpu_relax();
1447 }
1448 }
1449
1450 /*
1451 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1452 */
1453 static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1454 __acquires(p->pi_lock)
1455 __acquires(rq->lock)
1456 {
1457 struct rq *rq;
1458
1459 for (;;) {
1460 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1461 rq = task_rq(p);
1462 raw_spin_lock(&rq->lock);
1463 /*
1464 * move_queued_task() task_rq_lock()
1465 *
1466 * ACQUIRE (rq->lock)
1467 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
1468 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
1469 * [S] ->cpu = new_cpu [L] task_rq()
1470 * [L] ->on_rq
1471 * RELEASE (rq->lock)
1472 *
1473 * If we observe the old cpu in task_rq_lock, the acquire of
1474 * the old rq->lock will fully serialize against the stores.
1475 *
1476 * If we observe the new cpu in task_rq_lock, the acquire will
1477 * pair with the WMB to ensure we must then also see migrating.
1478 */
1479 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1480 lockdep_pin_lock(&rq->lock);
1481 return rq;
1482 }
1483 raw_spin_unlock(&rq->lock);
1484 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1485
1486 while (unlikely(task_on_rq_migrating(p)))
1487 cpu_relax();
1488 }
1489 }
1490
1491 static inline void __task_rq_unlock(struct rq *rq)
1492 __releases(rq->lock)
1493 {
1494 lockdep_unpin_lock(&rq->lock);
1495 raw_spin_unlock(&rq->lock);
1496 }
1497
1498 static inline void
1499 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1500 __releases(rq->lock)
1501 __releases(p->pi_lock)
1502 {
1503 lockdep_unpin_lock(&rq->lock);
1504 raw_spin_unlock(&rq->lock);
1505 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1506 }
1507
1508 #ifdef CONFIG_SMP
1509 #ifdef CONFIG_PREEMPT
1510
1511 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1512
1513 /*
1514 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1515 * way at the expense of forcing extra atomic operations in all
1516 * invocations. This assures that the double_lock is acquired using the
1517 * same underlying policy as the spinlock_t on this architecture, which
1518 * reduces latency compared to the unfair variant below. However, it
1519 * also adds more overhead and therefore may reduce throughput.
1520 */
1521 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1522 __releases(this_rq->lock)
1523 __acquires(busiest->lock)
1524 __acquires(this_rq->lock)
1525 {
1526 raw_spin_unlock(&this_rq->lock);
1527 double_rq_lock(this_rq, busiest);
1528
1529 return 1;
1530 }
1531
1532 #else
1533 /*
1534 * Unfair double_lock_balance: Optimizes throughput at the expense of
1535 * latency by eliminating extra atomic operations when the locks are
1536 * already in proper order on entry. This favors lower cpu-ids and will
1537 * grant the double lock to lower cpus over higher ids under contention,
1538 * regardless of entry order into the function.
1539 */
1540 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1541 __releases(this_rq->lock)
1542 __acquires(busiest->lock)
1543 __acquires(this_rq->lock)
1544 {
1545 int ret = 0;
1546
1547 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1548 if (busiest < this_rq) {
1549 raw_spin_unlock(&this_rq->lock);
1550 raw_spin_lock(&busiest->lock);
1551 raw_spin_lock_nested(&this_rq->lock,
1552 SINGLE_DEPTH_NESTING);
1553 ret = 1;
1554 } else
1555 raw_spin_lock_nested(&busiest->lock,
1556 SINGLE_DEPTH_NESTING);
1557 }
1558 return ret;
1559 }
1560
1561 #endif /* CONFIG_PREEMPT */
1562
1563 /*
1564 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1565 */
1566 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1567 {
1568 if (unlikely(!irqs_disabled())) {
1569 /* printk() doesn't work good under rq->lock */
1570 raw_spin_unlock(&this_rq->lock);
1571 BUG_ON(1);
1572 }
1573
1574 return _double_lock_balance(this_rq, busiest);
1575 }
1576
1577 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1578 __releases(busiest->lock)
1579 {
1580 raw_spin_unlock(&busiest->lock);
1581 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1582 }
1583
1584 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1585 {
1586 if (l1 > l2)
1587 swap(l1, l2);
1588
1589 spin_lock(l1);
1590 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1591 }
1592
1593 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1594 {
1595 if (l1 > l2)
1596 swap(l1, l2);
1597
1598 spin_lock_irq(l1);
1599 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1600 }
1601
1602 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1603 {
1604 if (l1 > l2)
1605 swap(l1, l2);
1606
1607 raw_spin_lock(l1);
1608 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1609 }
1610
1611 /*
1612 * double_rq_lock - safely lock two runqueues
1613 *
1614 * Note this does not disable interrupts like task_rq_lock,
1615 * you need to do so manually before calling.
1616 */
1617 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1618 __acquires(rq1->lock)
1619 __acquires(rq2->lock)
1620 {
1621 BUG_ON(!irqs_disabled());
1622 if (rq1 == rq2) {
1623 raw_spin_lock(&rq1->lock);
1624 __acquire(rq2->lock); /* Fake it out ;) */
1625 } else {
1626 if (rq1 < rq2) {
1627 raw_spin_lock(&rq1->lock);
1628 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1629 } else {
1630 raw_spin_lock(&rq2->lock);
1631 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1632 }
1633 }
1634 }
1635
1636 /*
1637 * double_rq_unlock - safely unlock two runqueues
1638 *
1639 * Note this does not restore interrupts like task_rq_unlock,
1640 * you need to do so manually after calling.
1641 */
1642 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1643 __releases(rq1->lock)
1644 __releases(rq2->lock)
1645 {
1646 raw_spin_unlock(&rq1->lock);
1647 if (rq1 != rq2)
1648 raw_spin_unlock(&rq2->lock);
1649 else
1650 __release(rq2->lock);
1651 }
1652
1653 #else /* CONFIG_SMP */
1654
1655 /*
1656 * double_rq_lock - safely lock two runqueues
1657 *
1658 * Note this does not disable interrupts like task_rq_lock,
1659 * you need to do so manually before calling.
1660 */
1661 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1662 __acquires(rq1->lock)
1663 __acquires(rq2->lock)
1664 {
1665 BUG_ON(!irqs_disabled());
1666 BUG_ON(rq1 != rq2);
1667 raw_spin_lock(&rq1->lock);
1668 __acquire(rq2->lock); /* Fake it out ;) */
1669 }
1670
1671 /*
1672 * double_rq_unlock - safely unlock two runqueues
1673 *
1674 * Note this does not restore interrupts like task_rq_unlock,
1675 * you need to do so manually after calling.
1676 */
1677 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1678 __releases(rq1->lock)
1679 __releases(rq2->lock)
1680 {
1681 BUG_ON(rq1 != rq2);
1682 raw_spin_unlock(&rq1->lock);
1683 __release(rq2->lock);
1684 }
1685
1686 #endif
1687
1688 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1689 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1690
1691 #ifdef CONFIG_SCHED_DEBUG
1692 extern void print_cfs_stats(struct seq_file *m, int cpu);
1693 extern void print_rt_stats(struct seq_file *m, int cpu);
1694 extern void print_dl_stats(struct seq_file *m, int cpu);
1695 extern void
1696 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1697
1698 #ifdef CONFIG_NUMA_BALANCING
1699 extern void
1700 show_numa_stats(struct task_struct *p, struct seq_file *m);
1701 extern void
1702 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1703 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1704 #endif /* CONFIG_NUMA_BALANCING */
1705 #endif /* CONFIG_SCHED_DEBUG */
1706
1707 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1708 extern void init_rt_rq(struct rt_rq *rt_rq);
1709 extern void init_dl_rq(struct dl_rq *dl_rq);
1710
1711 extern void cfs_bandwidth_usage_inc(void);
1712 extern void cfs_bandwidth_usage_dec(void);
1713
1714 #ifdef CONFIG_NO_HZ_COMMON
1715 enum rq_nohz_flag_bits {
1716 NOHZ_TICK_STOPPED,
1717 NOHZ_BALANCE_KICK,
1718 };
1719
1720 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1721 #endif
1722
1723 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1724
1725 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1726 DECLARE_PER_CPU(u64, cpu_softirq_time);
1727
1728 #ifndef CONFIG_64BIT
1729 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1730
1731 static inline void irq_time_write_begin(void)
1732 {
1733 __this_cpu_inc(irq_time_seq.sequence);
1734 smp_wmb();
1735 }
1736
1737 static inline void irq_time_write_end(void)
1738 {
1739 smp_wmb();
1740 __this_cpu_inc(irq_time_seq.sequence);
1741 }
1742
1743 static inline u64 irq_time_read(int cpu)
1744 {
1745 u64 irq_time;
1746 unsigned seq;
1747
1748 do {
1749 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1750 irq_time = per_cpu(cpu_softirq_time, cpu) +
1751 per_cpu(cpu_hardirq_time, cpu);
1752 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1753
1754 return irq_time;
1755 }
1756 #else /* CONFIG_64BIT */
1757 static inline void irq_time_write_begin(void)
1758 {
1759 }
1760
1761 static inline void irq_time_write_end(void)
1762 {
1763 }
1764
1765 static inline u64 irq_time_read(int cpu)
1766 {
1767 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1768 }
1769 #endif /* CONFIG_64BIT */
1770 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
This page took 0.080236 seconds and 5 git commands to generate.