Merge branch 'x86-mce-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78 #include <asm/mutex.h>
79
80 #include "sched_cpupri.h"
81 #include "workqueue_sched.h"
82 #include "sched_autogroup.h"
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/sched.h>
86
87 /*
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 * and back.
91 */
92 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95
96 /*
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
100 */
101 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104
105 /*
106 * Helpers for converting nanosecond timing to jiffy resolution
107 */
108 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109
110 #define NICE_0_LOAD SCHED_LOAD_SCALE
111 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112
113 /*
114 * These are the 'tuning knobs' of the scheduler:
115 *
116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
117 * Timeslices get refilled after they expire.
118 */
119 #define DEF_TIMESLICE (100 * HZ / 1000)
120
121 /*
122 * single value that denotes runtime == period, ie unlimited time.
123 */
124 #define RUNTIME_INF ((u64)~0ULL)
125
126 static inline int rt_policy(int policy)
127 {
128 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
129 return 1;
130 return 0;
131 }
132
133 static inline int task_has_rt_policy(struct task_struct *p)
134 {
135 return rt_policy(p->policy);
136 }
137
138 /*
139 * This is the priority-queue data structure of the RT scheduling class:
140 */
141 struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144 };
145
146 struct rt_bandwidth {
147 /* nests inside the rq lock: */
148 raw_spinlock_t rt_runtime_lock;
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
152 };
153
154 static struct rt_bandwidth def_rt_bandwidth;
155
156 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157
158 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159 {
160 struct rt_bandwidth *rt_b =
161 container_of(timer, struct rt_bandwidth, rt_period_timer);
162 ktime_t now;
163 int overrun;
164 int idle = 0;
165
166 for (;;) {
167 now = hrtimer_cb_get_time(timer);
168 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
169
170 if (!overrun)
171 break;
172
173 idle = do_sched_rt_period_timer(rt_b, overrun);
174 }
175
176 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177 }
178
179 static
180 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181 {
182 rt_b->rt_period = ns_to_ktime(period);
183 rt_b->rt_runtime = runtime;
184
185 raw_spin_lock_init(&rt_b->rt_runtime_lock);
186
187 hrtimer_init(&rt_b->rt_period_timer,
188 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
189 rt_b->rt_period_timer.function = sched_rt_period_timer;
190 }
191
192 static inline int rt_bandwidth_enabled(void)
193 {
194 return sysctl_sched_rt_runtime >= 0;
195 }
196
197 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
198 {
199 ktime_t now;
200
201 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
202 return;
203
204 if (hrtimer_active(&rt_b->rt_period_timer))
205 return;
206
207 raw_spin_lock(&rt_b->rt_runtime_lock);
208 for (;;) {
209 unsigned long delta;
210 ktime_t soft, hard;
211
212 if (hrtimer_active(&rt_b->rt_period_timer))
213 break;
214
215 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
216 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
217
218 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
219 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
220 delta = ktime_to_ns(ktime_sub(hard, soft));
221 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
222 HRTIMER_MODE_ABS_PINNED, 0);
223 }
224 raw_spin_unlock(&rt_b->rt_runtime_lock);
225 }
226
227 #ifdef CONFIG_RT_GROUP_SCHED
228 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229 {
230 hrtimer_cancel(&rt_b->rt_period_timer);
231 }
232 #endif
233
234 /*
235 * sched_domains_mutex serializes calls to arch_init_sched_domains,
236 * detach_destroy_domains and partition_sched_domains.
237 */
238 static DEFINE_MUTEX(sched_domains_mutex);
239
240 #ifdef CONFIG_CGROUP_SCHED
241
242 #include <linux/cgroup.h>
243
244 struct cfs_rq;
245
246 static LIST_HEAD(task_groups);
247
248 /* task group related information */
249 struct task_group {
250 struct cgroup_subsys_state css;
251
252 #ifdef CONFIG_FAIR_GROUP_SCHED
253 /* schedulable entities of this group on each cpu */
254 struct sched_entity **se;
255 /* runqueue "owned" by this group on each cpu */
256 struct cfs_rq **cfs_rq;
257 unsigned long shares;
258
259 atomic_t load_weight;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275
276 #ifdef CONFIG_SCHED_AUTOGROUP
277 struct autogroup *autogroup;
278 #endif
279 };
280
281 #define root_task_group init_task_group
282
283 /* task_group_lock serializes the addition/removal of task groups */
284 static DEFINE_SPINLOCK(task_group_lock);
285
286 #ifdef CONFIG_FAIR_GROUP_SCHED
287
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
289
290 /*
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
298 #define MIN_SHARES 2
299 #define MAX_SHARES (1UL << 18)
300
301 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302 #endif
303
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
306 */
307 struct task_group init_task_group;
308
309 #endif /* CONFIG_CGROUP_SCHED */
310
311 /* CFS-related fields in a runqueue */
312 struct cfs_rq {
313 struct load_weight load;
314 unsigned long nr_running;
315
316 u64 exec_clock;
317 u64 min_vruntime;
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
329 struct sched_entity *curr, *next, *last;
330
331 unsigned int nr_spread_over;
332
333 #ifdef CONFIG_FAIR_GROUP_SCHED
334 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
335
336 /*
337 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
338 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
339 * (like users, containers etc.)
340 *
341 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
342 * list is used during load balance.
343 */
344 int on_list;
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
347
348 #ifdef CONFIG_SMP
349 /*
350 * the part of load.weight contributed by tasks
351 */
352 unsigned long task_weight;
353
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
361
362 /*
363 * Maintaining per-cpu shares distribution for group scheduling
364 *
365 * load_stamp is the last time we updated the load average
366 * load_last is the last time we updated the load average and saw load
367 * load_unacc_exec_time is currently unaccounted execution time
368 */
369 u64 load_avg;
370 u64 load_period;
371 u64 load_stamp, load_last, load_unacc_exec_time;
372
373 unsigned long load_contribution;
374 #endif
375 #endif
376 };
377
378 /* Real-Time classes' related field in a runqueue: */
379 struct rt_rq {
380 struct rt_prio_array active;
381 unsigned long rt_nr_running;
382 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
383 struct {
384 int curr; /* highest queued rt task prio */
385 #ifdef CONFIG_SMP
386 int next; /* next highest */
387 #endif
388 } highest_prio;
389 #endif
390 #ifdef CONFIG_SMP
391 unsigned long rt_nr_migratory;
392 unsigned long rt_nr_total;
393 int overloaded;
394 struct plist_head pushable_tasks;
395 #endif
396 int rt_throttled;
397 u64 rt_time;
398 u64 rt_runtime;
399 /* Nests inside the rq lock: */
400 raw_spinlock_t rt_runtime_lock;
401
402 #ifdef CONFIG_RT_GROUP_SCHED
403 unsigned long rt_nr_boosted;
404
405 struct rq *rq;
406 struct list_head leaf_rt_rq_list;
407 struct task_group *tg;
408 #endif
409 };
410
411 #ifdef CONFIG_SMP
412
413 /*
414 * We add the notion of a root-domain which will be used to define per-domain
415 * variables. Each exclusive cpuset essentially defines an island domain by
416 * fully partitioning the member cpus from any other cpuset. Whenever a new
417 * exclusive cpuset is created, we also create and attach a new root-domain
418 * object.
419 *
420 */
421 struct root_domain {
422 atomic_t refcount;
423 cpumask_var_t span;
424 cpumask_var_t online;
425
426 /*
427 * The "RT overload" flag: it gets set if a CPU has more than
428 * one runnable RT task.
429 */
430 cpumask_var_t rto_mask;
431 atomic_t rto_count;
432 struct cpupri cpupri;
433 };
434
435 /*
436 * By default the system creates a single root-domain with all cpus as
437 * members (mimicking the global state we have today).
438 */
439 static struct root_domain def_root_domain;
440
441 #endif /* CONFIG_SMP */
442
443 /*
444 * This is the main, per-CPU runqueue data structure.
445 *
446 * Locking rule: those places that want to lock multiple runqueues
447 * (such as the load balancing or the thread migration code), lock
448 * acquire operations must be ordered by ascending &runqueue.
449 */
450 struct rq {
451 /* runqueue lock: */
452 raw_spinlock_t lock;
453
454 /*
455 * nr_running and cpu_load should be in the same cacheline because
456 * remote CPUs use both these fields when doing load calculation.
457 */
458 unsigned long nr_running;
459 #define CPU_LOAD_IDX_MAX 5
460 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
461 unsigned long last_load_update_tick;
462 #ifdef CONFIG_NO_HZ
463 u64 nohz_stamp;
464 unsigned char nohz_balance_kick;
465 #endif
466 unsigned int skip_clock_update;
467
468 /* capture load from *all* tasks on this cpu: */
469 struct load_weight load;
470 unsigned long nr_load_updates;
471 u64 nr_switches;
472
473 struct cfs_rq cfs;
474 struct rt_rq rt;
475
476 #ifdef CONFIG_FAIR_GROUP_SCHED
477 /* list of leaf cfs_rq on this cpu: */
478 struct list_head leaf_cfs_rq_list;
479 #endif
480 #ifdef CONFIG_RT_GROUP_SCHED
481 struct list_head leaf_rt_rq_list;
482 #endif
483
484 /*
485 * This is part of a global counter where only the total sum
486 * over all CPUs matters. A task can increase this counter on
487 * one CPU and if it got migrated afterwards it may decrease
488 * it on another CPU. Always updated under the runqueue lock:
489 */
490 unsigned long nr_uninterruptible;
491
492 struct task_struct *curr, *idle, *stop;
493 unsigned long next_balance;
494 struct mm_struct *prev_mm;
495
496 u64 clock;
497 u64 clock_task;
498
499 atomic_t nr_iowait;
500
501 #ifdef CONFIG_SMP
502 struct root_domain *rd;
503 struct sched_domain *sd;
504
505 unsigned long cpu_power;
506
507 unsigned char idle_at_tick;
508 /* For active balancing */
509 int post_schedule;
510 int active_balance;
511 int push_cpu;
512 struct cpu_stop_work active_balance_work;
513 /* cpu of this runqueue: */
514 int cpu;
515 int online;
516
517 unsigned long avg_load_per_task;
518
519 u64 rt_avg;
520 u64 age_stamp;
521 u64 idle_stamp;
522 u64 avg_idle;
523 #endif
524
525 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
526 u64 prev_irq_time;
527 #endif
528
529 /* calc_load related fields */
530 unsigned long calc_load_update;
531 long calc_load_active;
532
533 #ifdef CONFIG_SCHED_HRTICK
534 #ifdef CONFIG_SMP
535 int hrtick_csd_pending;
536 struct call_single_data hrtick_csd;
537 #endif
538 struct hrtimer hrtick_timer;
539 #endif
540
541 #ifdef CONFIG_SCHEDSTATS
542 /* latency stats */
543 struct sched_info rq_sched_info;
544 unsigned long long rq_cpu_time;
545 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
546
547 /* sys_sched_yield() stats */
548 unsigned int yld_count;
549
550 /* schedule() stats */
551 unsigned int sched_switch;
552 unsigned int sched_count;
553 unsigned int sched_goidle;
554
555 /* try_to_wake_up() stats */
556 unsigned int ttwu_count;
557 unsigned int ttwu_local;
558
559 /* BKL stats */
560 unsigned int bkl_count;
561 #endif
562 };
563
564 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
565
566
567 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
568
569 static inline int cpu_of(struct rq *rq)
570 {
571 #ifdef CONFIG_SMP
572 return rq->cpu;
573 #else
574 return 0;
575 #endif
576 }
577
578 #define rcu_dereference_check_sched_domain(p) \
579 rcu_dereference_check((p), \
580 rcu_read_lock_sched_held() || \
581 lockdep_is_held(&sched_domains_mutex))
582
583 /*
584 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
585 * See detach_destroy_domains: synchronize_sched for details.
586 *
587 * The domain tree of any CPU may only be accessed from within
588 * preempt-disabled sections.
589 */
590 #define for_each_domain(cpu, __sd) \
591 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
592
593 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
594 #define this_rq() (&__get_cpu_var(runqueues))
595 #define task_rq(p) cpu_rq(task_cpu(p))
596 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
597 #define raw_rq() (&__raw_get_cpu_var(runqueues))
598
599 #ifdef CONFIG_CGROUP_SCHED
600
601 /*
602 * Return the group to which this tasks belongs.
603 *
604 * We use task_subsys_state_check() and extend the RCU verification
605 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
606 * holds that lock for each task it moves into the cgroup. Therefore
607 * by holding that lock, we pin the task to the current cgroup.
608 */
609 static inline struct task_group *task_group(struct task_struct *p)
610 {
611 struct task_group *tg;
612 struct cgroup_subsys_state *css;
613
614 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
615 lockdep_is_held(&task_rq(p)->lock));
616 tg = container_of(css, struct task_group, css);
617
618 return autogroup_task_group(p, tg);
619 }
620
621 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
622 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
623 {
624 #ifdef CONFIG_FAIR_GROUP_SCHED
625 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
626 p->se.parent = task_group(p)->se[cpu];
627 #endif
628
629 #ifdef CONFIG_RT_GROUP_SCHED
630 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
631 p->rt.parent = task_group(p)->rt_se[cpu];
632 #endif
633 }
634
635 #else /* CONFIG_CGROUP_SCHED */
636
637 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
638 static inline struct task_group *task_group(struct task_struct *p)
639 {
640 return NULL;
641 }
642
643 #endif /* CONFIG_CGROUP_SCHED */
644
645 static void update_rq_clock_task(struct rq *rq, s64 delta);
646
647 static void update_rq_clock(struct rq *rq)
648 {
649 s64 delta;
650
651 if (rq->skip_clock_update)
652 return;
653
654 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
655 rq->clock += delta;
656 update_rq_clock_task(rq, delta);
657 }
658
659 /*
660 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
661 */
662 #ifdef CONFIG_SCHED_DEBUG
663 # define const_debug __read_mostly
664 #else
665 # define const_debug static const
666 #endif
667
668 /**
669 * runqueue_is_locked
670 * @cpu: the processor in question.
671 *
672 * Returns true if the current cpu runqueue is locked.
673 * This interface allows printk to be called with the runqueue lock
674 * held and know whether or not it is OK to wake up the klogd.
675 */
676 int runqueue_is_locked(int cpu)
677 {
678 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
679 }
680
681 /*
682 * Debugging: various feature bits
683 */
684
685 #define SCHED_FEAT(name, enabled) \
686 __SCHED_FEAT_##name ,
687
688 enum {
689 #include "sched_features.h"
690 };
691
692 #undef SCHED_FEAT
693
694 #define SCHED_FEAT(name, enabled) \
695 (1UL << __SCHED_FEAT_##name) * enabled |
696
697 const_debug unsigned int sysctl_sched_features =
698 #include "sched_features.h"
699 0;
700
701 #undef SCHED_FEAT
702
703 #ifdef CONFIG_SCHED_DEBUG
704 #define SCHED_FEAT(name, enabled) \
705 #name ,
706
707 static __read_mostly char *sched_feat_names[] = {
708 #include "sched_features.h"
709 NULL
710 };
711
712 #undef SCHED_FEAT
713
714 static int sched_feat_show(struct seq_file *m, void *v)
715 {
716 int i;
717
718 for (i = 0; sched_feat_names[i]; i++) {
719 if (!(sysctl_sched_features & (1UL << i)))
720 seq_puts(m, "NO_");
721 seq_printf(m, "%s ", sched_feat_names[i]);
722 }
723 seq_puts(m, "\n");
724
725 return 0;
726 }
727
728 static ssize_t
729 sched_feat_write(struct file *filp, const char __user *ubuf,
730 size_t cnt, loff_t *ppos)
731 {
732 char buf[64];
733 char *cmp;
734 int neg = 0;
735 int i;
736
737 if (cnt > 63)
738 cnt = 63;
739
740 if (copy_from_user(&buf, ubuf, cnt))
741 return -EFAULT;
742
743 buf[cnt] = 0;
744 cmp = strstrip(buf);
745
746 if (strncmp(buf, "NO_", 3) == 0) {
747 neg = 1;
748 cmp += 3;
749 }
750
751 for (i = 0; sched_feat_names[i]; i++) {
752 if (strcmp(cmp, sched_feat_names[i]) == 0) {
753 if (neg)
754 sysctl_sched_features &= ~(1UL << i);
755 else
756 sysctl_sched_features |= (1UL << i);
757 break;
758 }
759 }
760
761 if (!sched_feat_names[i])
762 return -EINVAL;
763
764 *ppos += cnt;
765
766 return cnt;
767 }
768
769 static int sched_feat_open(struct inode *inode, struct file *filp)
770 {
771 return single_open(filp, sched_feat_show, NULL);
772 }
773
774 static const struct file_operations sched_feat_fops = {
775 .open = sched_feat_open,
776 .write = sched_feat_write,
777 .read = seq_read,
778 .llseek = seq_lseek,
779 .release = single_release,
780 };
781
782 static __init int sched_init_debug(void)
783 {
784 debugfs_create_file("sched_features", 0644, NULL, NULL,
785 &sched_feat_fops);
786
787 return 0;
788 }
789 late_initcall(sched_init_debug);
790
791 #endif
792
793 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
794
795 /*
796 * Number of tasks to iterate in a single balance run.
797 * Limited because this is done with IRQs disabled.
798 */
799 const_debug unsigned int sysctl_sched_nr_migrate = 32;
800
801 /*
802 * period over which we average the RT time consumption, measured
803 * in ms.
804 *
805 * default: 1s
806 */
807 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
808
809 /*
810 * period over which we measure -rt task cpu usage in us.
811 * default: 1s
812 */
813 unsigned int sysctl_sched_rt_period = 1000000;
814
815 static __read_mostly int scheduler_running;
816
817 /*
818 * part of the period that we allow rt tasks to run in us.
819 * default: 0.95s
820 */
821 int sysctl_sched_rt_runtime = 950000;
822
823 static inline u64 global_rt_period(void)
824 {
825 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
826 }
827
828 static inline u64 global_rt_runtime(void)
829 {
830 if (sysctl_sched_rt_runtime < 0)
831 return RUNTIME_INF;
832
833 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
834 }
835
836 #ifndef prepare_arch_switch
837 # define prepare_arch_switch(next) do { } while (0)
838 #endif
839 #ifndef finish_arch_switch
840 # define finish_arch_switch(prev) do { } while (0)
841 #endif
842
843 static inline int task_current(struct rq *rq, struct task_struct *p)
844 {
845 return rq->curr == p;
846 }
847
848 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
849 static inline int task_running(struct rq *rq, struct task_struct *p)
850 {
851 return task_current(rq, p);
852 }
853
854 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
855 {
856 }
857
858 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
859 {
860 #ifdef CONFIG_DEBUG_SPINLOCK
861 /* this is a valid case when another task releases the spinlock */
862 rq->lock.owner = current;
863 #endif
864 /*
865 * If we are tracking spinlock dependencies then we have to
866 * fix up the runqueue lock - which gets 'carried over' from
867 * prev into current:
868 */
869 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
870
871 raw_spin_unlock_irq(&rq->lock);
872 }
873
874 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
875 static inline int task_running(struct rq *rq, struct task_struct *p)
876 {
877 #ifdef CONFIG_SMP
878 return p->oncpu;
879 #else
880 return task_current(rq, p);
881 #endif
882 }
883
884 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
885 {
886 #ifdef CONFIG_SMP
887 /*
888 * We can optimise this out completely for !SMP, because the
889 * SMP rebalancing from interrupt is the only thing that cares
890 * here.
891 */
892 next->oncpu = 1;
893 #endif
894 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
895 raw_spin_unlock_irq(&rq->lock);
896 #else
897 raw_spin_unlock(&rq->lock);
898 #endif
899 }
900
901 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
902 {
903 #ifdef CONFIG_SMP
904 /*
905 * After ->oncpu is cleared, the task can be moved to a different CPU.
906 * We must ensure this doesn't happen until the switch is completely
907 * finished.
908 */
909 smp_wmb();
910 prev->oncpu = 0;
911 #endif
912 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 local_irq_enable();
914 #endif
915 }
916 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
917
918 /*
919 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
920 * against ttwu().
921 */
922 static inline int task_is_waking(struct task_struct *p)
923 {
924 return unlikely(p->state == TASK_WAKING);
925 }
926
927 /*
928 * __task_rq_lock - lock the runqueue a given task resides on.
929 * Must be called interrupts disabled.
930 */
931 static inline struct rq *__task_rq_lock(struct task_struct *p)
932 __acquires(rq->lock)
933 {
934 struct rq *rq;
935
936 for (;;) {
937 rq = task_rq(p);
938 raw_spin_lock(&rq->lock);
939 if (likely(rq == task_rq(p)))
940 return rq;
941 raw_spin_unlock(&rq->lock);
942 }
943 }
944
945 /*
946 * task_rq_lock - lock the runqueue a given task resides on and disable
947 * interrupts. Note the ordering: we can safely lookup the task_rq without
948 * explicitly disabling preemption.
949 */
950 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
951 __acquires(rq->lock)
952 {
953 struct rq *rq;
954
955 for (;;) {
956 local_irq_save(*flags);
957 rq = task_rq(p);
958 raw_spin_lock(&rq->lock);
959 if (likely(rq == task_rq(p)))
960 return rq;
961 raw_spin_unlock_irqrestore(&rq->lock, *flags);
962 }
963 }
964
965 static void __task_rq_unlock(struct rq *rq)
966 __releases(rq->lock)
967 {
968 raw_spin_unlock(&rq->lock);
969 }
970
971 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
972 __releases(rq->lock)
973 {
974 raw_spin_unlock_irqrestore(&rq->lock, *flags);
975 }
976
977 /*
978 * this_rq_lock - lock this runqueue and disable interrupts.
979 */
980 static struct rq *this_rq_lock(void)
981 __acquires(rq->lock)
982 {
983 struct rq *rq;
984
985 local_irq_disable();
986 rq = this_rq();
987 raw_spin_lock(&rq->lock);
988
989 return rq;
990 }
991
992 #ifdef CONFIG_SCHED_HRTICK
993 /*
994 * Use HR-timers to deliver accurate preemption points.
995 *
996 * Its all a bit involved since we cannot program an hrt while holding the
997 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
998 * reschedule event.
999 *
1000 * When we get rescheduled we reprogram the hrtick_timer outside of the
1001 * rq->lock.
1002 */
1003
1004 /*
1005 * Use hrtick when:
1006 * - enabled by features
1007 * - hrtimer is actually high res
1008 */
1009 static inline int hrtick_enabled(struct rq *rq)
1010 {
1011 if (!sched_feat(HRTICK))
1012 return 0;
1013 if (!cpu_active(cpu_of(rq)))
1014 return 0;
1015 return hrtimer_is_hres_active(&rq->hrtick_timer);
1016 }
1017
1018 static void hrtick_clear(struct rq *rq)
1019 {
1020 if (hrtimer_active(&rq->hrtick_timer))
1021 hrtimer_cancel(&rq->hrtick_timer);
1022 }
1023
1024 /*
1025 * High-resolution timer tick.
1026 * Runs from hardirq context with interrupts disabled.
1027 */
1028 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1029 {
1030 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1031
1032 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1033
1034 raw_spin_lock(&rq->lock);
1035 update_rq_clock(rq);
1036 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1037 raw_spin_unlock(&rq->lock);
1038
1039 return HRTIMER_NORESTART;
1040 }
1041
1042 #ifdef CONFIG_SMP
1043 /*
1044 * called from hardirq (IPI) context
1045 */
1046 static void __hrtick_start(void *arg)
1047 {
1048 struct rq *rq = arg;
1049
1050 raw_spin_lock(&rq->lock);
1051 hrtimer_restart(&rq->hrtick_timer);
1052 rq->hrtick_csd_pending = 0;
1053 raw_spin_unlock(&rq->lock);
1054 }
1055
1056 /*
1057 * Called to set the hrtick timer state.
1058 *
1059 * called with rq->lock held and irqs disabled
1060 */
1061 static void hrtick_start(struct rq *rq, u64 delay)
1062 {
1063 struct hrtimer *timer = &rq->hrtick_timer;
1064 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1065
1066 hrtimer_set_expires(timer, time);
1067
1068 if (rq == this_rq()) {
1069 hrtimer_restart(timer);
1070 } else if (!rq->hrtick_csd_pending) {
1071 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1072 rq->hrtick_csd_pending = 1;
1073 }
1074 }
1075
1076 static int
1077 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1078 {
1079 int cpu = (int)(long)hcpu;
1080
1081 switch (action) {
1082 case CPU_UP_CANCELED:
1083 case CPU_UP_CANCELED_FROZEN:
1084 case CPU_DOWN_PREPARE:
1085 case CPU_DOWN_PREPARE_FROZEN:
1086 case CPU_DEAD:
1087 case CPU_DEAD_FROZEN:
1088 hrtick_clear(cpu_rq(cpu));
1089 return NOTIFY_OK;
1090 }
1091
1092 return NOTIFY_DONE;
1093 }
1094
1095 static __init void init_hrtick(void)
1096 {
1097 hotcpu_notifier(hotplug_hrtick, 0);
1098 }
1099 #else
1100 /*
1101 * Called to set the hrtick timer state.
1102 *
1103 * called with rq->lock held and irqs disabled
1104 */
1105 static void hrtick_start(struct rq *rq, u64 delay)
1106 {
1107 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1108 HRTIMER_MODE_REL_PINNED, 0);
1109 }
1110
1111 static inline void init_hrtick(void)
1112 {
1113 }
1114 #endif /* CONFIG_SMP */
1115
1116 static void init_rq_hrtick(struct rq *rq)
1117 {
1118 #ifdef CONFIG_SMP
1119 rq->hrtick_csd_pending = 0;
1120
1121 rq->hrtick_csd.flags = 0;
1122 rq->hrtick_csd.func = __hrtick_start;
1123 rq->hrtick_csd.info = rq;
1124 #endif
1125
1126 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1127 rq->hrtick_timer.function = hrtick;
1128 }
1129 #else /* CONFIG_SCHED_HRTICK */
1130 static inline void hrtick_clear(struct rq *rq)
1131 {
1132 }
1133
1134 static inline void init_rq_hrtick(struct rq *rq)
1135 {
1136 }
1137
1138 static inline void init_hrtick(void)
1139 {
1140 }
1141 #endif /* CONFIG_SCHED_HRTICK */
1142
1143 /*
1144 * resched_task - mark a task 'to be rescheduled now'.
1145 *
1146 * On UP this means the setting of the need_resched flag, on SMP it
1147 * might also involve a cross-CPU call to trigger the scheduler on
1148 * the target CPU.
1149 */
1150 #ifdef CONFIG_SMP
1151
1152 #ifndef tsk_is_polling
1153 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1154 #endif
1155
1156 static void resched_task(struct task_struct *p)
1157 {
1158 int cpu;
1159
1160 assert_raw_spin_locked(&task_rq(p)->lock);
1161
1162 if (test_tsk_need_resched(p))
1163 return;
1164
1165 set_tsk_need_resched(p);
1166
1167 cpu = task_cpu(p);
1168 if (cpu == smp_processor_id())
1169 return;
1170
1171 /* NEED_RESCHED must be visible before we test polling */
1172 smp_mb();
1173 if (!tsk_is_polling(p))
1174 smp_send_reschedule(cpu);
1175 }
1176
1177 static void resched_cpu(int cpu)
1178 {
1179 struct rq *rq = cpu_rq(cpu);
1180 unsigned long flags;
1181
1182 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1183 return;
1184 resched_task(cpu_curr(cpu));
1185 raw_spin_unlock_irqrestore(&rq->lock, flags);
1186 }
1187
1188 #ifdef CONFIG_NO_HZ
1189 /*
1190 * In the semi idle case, use the nearest busy cpu for migrating timers
1191 * from an idle cpu. This is good for power-savings.
1192 *
1193 * We don't do similar optimization for completely idle system, as
1194 * selecting an idle cpu will add more delays to the timers than intended
1195 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1196 */
1197 int get_nohz_timer_target(void)
1198 {
1199 int cpu = smp_processor_id();
1200 int i;
1201 struct sched_domain *sd;
1202
1203 for_each_domain(cpu, sd) {
1204 for_each_cpu(i, sched_domain_span(sd))
1205 if (!idle_cpu(i))
1206 return i;
1207 }
1208 return cpu;
1209 }
1210 /*
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1219 */
1220 void wake_up_idle_cpu(int cpu)
1221 {
1222 struct rq *rq = cpu_rq(cpu);
1223
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /*
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1233 */
1234 if (rq->curr != rq->idle)
1235 return;
1236
1237 /*
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1241 */
1242 set_tsk_need_resched(rq->idle);
1243
1244 /* NEED_RESCHED must be visible before we test polling */
1245 smp_mb();
1246 if (!tsk_is_polling(rq->idle))
1247 smp_send_reschedule(cpu);
1248 }
1249
1250 #endif /* CONFIG_NO_HZ */
1251
1252 static u64 sched_avg_period(void)
1253 {
1254 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1255 }
1256
1257 static void sched_avg_update(struct rq *rq)
1258 {
1259 s64 period = sched_avg_period();
1260
1261 while ((s64)(rq->clock - rq->age_stamp) > period) {
1262 /*
1263 * Inline assembly required to prevent the compiler
1264 * optimising this loop into a divmod call.
1265 * See __iter_div_u64_rem() for another example of this.
1266 */
1267 asm("" : "+rm" (rq->age_stamp));
1268 rq->age_stamp += period;
1269 rq->rt_avg /= 2;
1270 }
1271 }
1272
1273 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1274 {
1275 rq->rt_avg += rt_delta;
1276 sched_avg_update(rq);
1277 }
1278
1279 #else /* !CONFIG_SMP */
1280 static void resched_task(struct task_struct *p)
1281 {
1282 assert_raw_spin_locked(&task_rq(p)->lock);
1283 set_tsk_need_resched(p);
1284 }
1285
1286 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1287 {
1288 }
1289
1290 static void sched_avg_update(struct rq *rq)
1291 {
1292 }
1293 #endif /* CONFIG_SMP */
1294
1295 #if BITS_PER_LONG == 32
1296 # define WMULT_CONST (~0UL)
1297 #else
1298 # define WMULT_CONST (1UL << 32)
1299 #endif
1300
1301 #define WMULT_SHIFT 32
1302
1303 /*
1304 * Shift right and round:
1305 */
1306 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1307
1308 /*
1309 * delta *= weight / lw
1310 */
1311 static unsigned long
1312 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1313 struct load_weight *lw)
1314 {
1315 u64 tmp;
1316
1317 if (!lw->inv_weight) {
1318 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1319 lw->inv_weight = 1;
1320 else
1321 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1322 / (lw->weight+1);
1323 }
1324
1325 tmp = (u64)delta_exec * weight;
1326 /*
1327 * Check whether we'd overflow the 64-bit multiplication:
1328 */
1329 if (unlikely(tmp > WMULT_CONST))
1330 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1331 WMULT_SHIFT/2);
1332 else
1333 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1334
1335 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1336 }
1337
1338 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1339 {
1340 lw->weight += inc;
1341 lw->inv_weight = 0;
1342 }
1343
1344 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1345 {
1346 lw->weight -= dec;
1347 lw->inv_weight = 0;
1348 }
1349
1350 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1351 {
1352 lw->weight = w;
1353 lw->inv_weight = 0;
1354 }
1355
1356 /*
1357 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1358 * of tasks with abnormal "nice" values across CPUs the contribution that
1359 * each task makes to its run queue's load is weighted according to its
1360 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1361 * scaled version of the new time slice allocation that they receive on time
1362 * slice expiry etc.
1363 */
1364
1365 #define WEIGHT_IDLEPRIO 3
1366 #define WMULT_IDLEPRIO 1431655765
1367
1368 /*
1369 * Nice levels are multiplicative, with a gentle 10% change for every
1370 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1371 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1372 * that remained on nice 0.
1373 *
1374 * The "10% effect" is relative and cumulative: from _any_ nice level,
1375 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1376 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1377 * If a task goes up by ~10% and another task goes down by ~10% then
1378 * the relative distance between them is ~25%.)
1379 */
1380 static const int prio_to_weight[40] = {
1381 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1382 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1383 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1384 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1385 /* 0 */ 1024, 820, 655, 526, 423,
1386 /* 5 */ 335, 272, 215, 172, 137,
1387 /* 10 */ 110, 87, 70, 56, 45,
1388 /* 15 */ 36, 29, 23, 18, 15,
1389 };
1390
1391 /*
1392 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1393 *
1394 * In cases where the weight does not change often, we can use the
1395 * precalculated inverse to speed up arithmetics by turning divisions
1396 * into multiplications:
1397 */
1398 static const u32 prio_to_wmult[40] = {
1399 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1400 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1401 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1402 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1403 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1404 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1405 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1406 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1407 };
1408
1409 /* Time spent by the tasks of the cpu accounting group executing in ... */
1410 enum cpuacct_stat_index {
1411 CPUACCT_STAT_USER, /* ... user mode */
1412 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1413
1414 CPUACCT_STAT_NSTATS,
1415 };
1416
1417 #ifdef CONFIG_CGROUP_CPUACCT
1418 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1419 static void cpuacct_update_stats(struct task_struct *tsk,
1420 enum cpuacct_stat_index idx, cputime_t val);
1421 #else
1422 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1423 static inline void cpuacct_update_stats(struct task_struct *tsk,
1424 enum cpuacct_stat_index idx, cputime_t val) {}
1425 #endif
1426
1427 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1428 {
1429 update_load_add(&rq->load, load);
1430 }
1431
1432 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1433 {
1434 update_load_sub(&rq->load, load);
1435 }
1436
1437 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1438 typedef int (*tg_visitor)(struct task_group *, void *);
1439
1440 /*
1441 * Iterate the full tree, calling @down when first entering a node and @up when
1442 * leaving it for the final time.
1443 */
1444 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1445 {
1446 struct task_group *parent, *child;
1447 int ret;
1448
1449 rcu_read_lock();
1450 parent = &root_task_group;
1451 down:
1452 ret = (*down)(parent, data);
1453 if (ret)
1454 goto out_unlock;
1455 list_for_each_entry_rcu(child, &parent->children, siblings) {
1456 parent = child;
1457 goto down;
1458
1459 up:
1460 continue;
1461 }
1462 ret = (*up)(parent, data);
1463 if (ret)
1464 goto out_unlock;
1465
1466 child = parent;
1467 parent = parent->parent;
1468 if (parent)
1469 goto up;
1470 out_unlock:
1471 rcu_read_unlock();
1472
1473 return ret;
1474 }
1475
1476 static int tg_nop(struct task_group *tg, void *data)
1477 {
1478 return 0;
1479 }
1480 #endif
1481
1482 #ifdef CONFIG_SMP
1483 /* Used instead of source_load when we know the type == 0 */
1484 static unsigned long weighted_cpuload(const int cpu)
1485 {
1486 return cpu_rq(cpu)->load.weight;
1487 }
1488
1489 /*
1490 * Return a low guess at the load of a migration-source cpu weighted
1491 * according to the scheduling class and "nice" value.
1492 *
1493 * We want to under-estimate the load of migration sources, to
1494 * balance conservatively.
1495 */
1496 static unsigned long source_load(int cpu, int type)
1497 {
1498 struct rq *rq = cpu_rq(cpu);
1499 unsigned long total = weighted_cpuload(cpu);
1500
1501 if (type == 0 || !sched_feat(LB_BIAS))
1502 return total;
1503
1504 return min(rq->cpu_load[type-1], total);
1505 }
1506
1507 /*
1508 * Return a high guess at the load of a migration-target cpu weighted
1509 * according to the scheduling class and "nice" value.
1510 */
1511 static unsigned long target_load(int cpu, int type)
1512 {
1513 struct rq *rq = cpu_rq(cpu);
1514 unsigned long total = weighted_cpuload(cpu);
1515
1516 if (type == 0 || !sched_feat(LB_BIAS))
1517 return total;
1518
1519 return max(rq->cpu_load[type-1], total);
1520 }
1521
1522 static unsigned long power_of(int cpu)
1523 {
1524 return cpu_rq(cpu)->cpu_power;
1525 }
1526
1527 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1528
1529 static unsigned long cpu_avg_load_per_task(int cpu)
1530 {
1531 struct rq *rq = cpu_rq(cpu);
1532 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1533
1534 if (nr_running)
1535 rq->avg_load_per_task = rq->load.weight / nr_running;
1536 else
1537 rq->avg_load_per_task = 0;
1538
1539 return rq->avg_load_per_task;
1540 }
1541
1542 #ifdef CONFIG_FAIR_GROUP_SCHED
1543
1544 /*
1545 * Compute the cpu's hierarchical load factor for each task group.
1546 * This needs to be done in a top-down fashion because the load of a child
1547 * group is a fraction of its parents load.
1548 */
1549 static int tg_load_down(struct task_group *tg, void *data)
1550 {
1551 unsigned long load;
1552 long cpu = (long)data;
1553
1554 if (!tg->parent) {
1555 load = cpu_rq(cpu)->load.weight;
1556 } else {
1557 load = tg->parent->cfs_rq[cpu]->h_load;
1558 load *= tg->se[cpu]->load.weight;
1559 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1560 }
1561
1562 tg->cfs_rq[cpu]->h_load = load;
1563
1564 return 0;
1565 }
1566
1567 static void update_h_load(long cpu)
1568 {
1569 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1570 }
1571
1572 #endif
1573
1574 #ifdef CONFIG_PREEMPT
1575
1576 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1577
1578 /*
1579 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1580 * way at the expense of forcing extra atomic operations in all
1581 * invocations. This assures that the double_lock is acquired using the
1582 * same underlying policy as the spinlock_t on this architecture, which
1583 * reduces latency compared to the unfair variant below. However, it
1584 * also adds more overhead and therefore may reduce throughput.
1585 */
1586 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1587 __releases(this_rq->lock)
1588 __acquires(busiest->lock)
1589 __acquires(this_rq->lock)
1590 {
1591 raw_spin_unlock(&this_rq->lock);
1592 double_rq_lock(this_rq, busiest);
1593
1594 return 1;
1595 }
1596
1597 #else
1598 /*
1599 * Unfair double_lock_balance: Optimizes throughput at the expense of
1600 * latency by eliminating extra atomic operations when the locks are
1601 * already in proper order on entry. This favors lower cpu-ids and will
1602 * grant the double lock to lower cpus over higher ids under contention,
1603 * regardless of entry order into the function.
1604 */
1605 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1606 __releases(this_rq->lock)
1607 __acquires(busiest->lock)
1608 __acquires(this_rq->lock)
1609 {
1610 int ret = 0;
1611
1612 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1613 if (busiest < this_rq) {
1614 raw_spin_unlock(&this_rq->lock);
1615 raw_spin_lock(&busiest->lock);
1616 raw_spin_lock_nested(&this_rq->lock,
1617 SINGLE_DEPTH_NESTING);
1618 ret = 1;
1619 } else
1620 raw_spin_lock_nested(&busiest->lock,
1621 SINGLE_DEPTH_NESTING);
1622 }
1623 return ret;
1624 }
1625
1626 #endif /* CONFIG_PREEMPT */
1627
1628 /*
1629 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1630 */
1631 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1632 {
1633 if (unlikely(!irqs_disabled())) {
1634 /* printk() doesn't work good under rq->lock */
1635 raw_spin_unlock(&this_rq->lock);
1636 BUG_ON(1);
1637 }
1638
1639 return _double_lock_balance(this_rq, busiest);
1640 }
1641
1642 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1643 __releases(busiest->lock)
1644 {
1645 raw_spin_unlock(&busiest->lock);
1646 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1647 }
1648
1649 /*
1650 * double_rq_lock - safely lock two runqueues
1651 *
1652 * Note this does not disable interrupts like task_rq_lock,
1653 * you need to do so manually before calling.
1654 */
1655 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1656 __acquires(rq1->lock)
1657 __acquires(rq2->lock)
1658 {
1659 BUG_ON(!irqs_disabled());
1660 if (rq1 == rq2) {
1661 raw_spin_lock(&rq1->lock);
1662 __acquire(rq2->lock); /* Fake it out ;) */
1663 } else {
1664 if (rq1 < rq2) {
1665 raw_spin_lock(&rq1->lock);
1666 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1667 } else {
1668 raw_spin_lock(&rq2->lock);
1669 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1670 }
1671 }
1672 }
1673
1674 /*
1675 * double_rq_unlock - safely unlock two runqueues
1676 *
1677 * Note this does not restore interrupts like task_rq_unlock,
1678 * you need to do so manually after calling.
1679 */
1680 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1681 __releases(rq1->lock)
1682 __releases(rq2->lock)
1683 {
1684 raw_spin_unlock(&rq1->lock);
1685 if (rq1 != rq2)
1686 raw_spin_unlock(&rq2->lock);
1687 else
1688 __release(rq2->lock);
1689 }
1690
1691 #endif
1692
1693 static void calc_load_account_idle(struct rq *this_rq);
1694 static void update_sysctl(void);
1695 static int get_update_sysctl_factor(void);
1696 static void update_cpu_load(struct rq *this_rq);
1697
1698 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1699 {
1700 set_task_rq(p, cpu);
1701 #ifdef CONFIG_SMP
1702 /*
1703 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1704 * successfuly executed on another CPU. We must ensure that updates of
1705 * per-task data have been completed by this moment.
1706 */
1707 smp_wmb();
1708 task_thread_info(p)->cpu = cpu;
1709 #endif
1710 }
1711
1712 static const struct sched_class rt_sched_class;
1713
1714 #define sched_class_highest (&stop_sched_class)
1715 #define for_each_class(class) \
1716 for (class = sched_class_highest; class; class = class->next)
1717
1718 #include "sched_stats.h"
1719
1720 static void inc_nr_running(struct rq *rq)
1721 {
1722 rq->nr_running++;
1723 }
1724
1725 static void dec_nr_running(struct rq *rq)
1726 {
1727 rq->nr_running--;
1728 }
1729
1730 static void set_load_weight(struct task_struct *p)
1731 {
1732 /*
1733 * SCHED_IDLE tasks get minimal weight:
1734 */
1735 if (p->policy == SCHED_IDLE) {
1736 p->se.load.weight = WEIGHT_IDLEPRIO;
1737 p->se.load.inv_weight = WMULT_IDLEPRIO;
1738 return;
1739 }
1740
1741 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1742 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1743 }
1744
1745 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1746 {
1747 update_rq_clock(rq);
1748 sched_info_queued(p);
1749 p->sched_class->enqueue_task(rq, p, flags);
1750 p->se.on_rq = 1;
1751 }
1752
1753 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1754 {
1755 update_rq_clock(rq);
1756 sched_info_dequeued(p);
1757 p->sched_class->dequeue_task(rq, p, flags);
1758 p->se.on_rq = 0;
1759 }
1760
1761 /*
1762 * activate_task - move a task to the runqueue.
1763 */
1764 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1765 {
1766 if (task_contributes_to_load(p))
1767 rq->nr_uninterruptible--;
1768
1769 enqueue_task(rq, p, flags);
1770 inc_nr_running(rq);
1771 }
1772
1773 /*
1774 * deactivate_task - remove a task from the runqueue.
1775 */
1776 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1777 {
1778 if (task_contributes_to_load(p))
1779 rq->nr_uninterruptible++;
1780
1781 dequeue_task(rq, p, flags);
1782 dec_nr_running(rq);
1783 }
1784
1785 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1786
1787 /*
1788 * There are no locks covering percpu hardirq/softirq time.
1789 * They are only modified in account_system_vtime, on corresponding CPU
1790 * with interrupts disabled. So, writes are safe.
1791 * They are read and saved off onto struct rq in update_rq_clock().
1792 * This may result in other CPU reading this CPU's irq time and can
1793 * race with irq/account_system_vtime on this CPU. We would either get old
1794 * or new value with a side effect of accounting a slice of irq time to wrong
1795 * task when irq is in progress while we read rq->clock. That is a worthy
1796 * compromise in place of having locks on each irq in account_system_time.
1797 */
1798 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1799 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1800
1801 static DEFINE_PER_CPU(u64, irq_start_time);
1802 static int sched_clock_irqtime;
1803
1804 void enable_sched_clock_irqtime(void)
1805 {
1806 sched_clock_irqtime = 1;
1807 }
1808
1809 void disable_sched_clock_irqtime(void)
1810 {
1811 sched_clock_irqtime = 0;
1812 }
1813
1814 #ifndef CONFIG_64BIT
1815 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1816
1817 static inline void irq_time_write_begin(void)
1818 {
1819 __this_cpu_inc(irq_time_seq.sequence);
1820 smp_wmb();
1821 }
1822
1823 static inline void irq_time_write_end(void)
1824 {
1825 smp_wmb();
1826 __this_cpu_inc(irq_time_seq.sequence);
1827 }
1828
1829 static inline u64 irq_time_read(int cpu)
1830 {
1831 u64 irq_time;
1832 unsigned seq;
1833
1834 do {
1835 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1836 irq_time = per_cpu(cpu_softirq_time, cpu) +
1837 per_cpu(cpu_hardirq_time, cpu);
1838 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1839
1840 return irq_time;
1841 }
1842 #else /* CONFIG_64BIT */
1843 static inline void irq_time_write_begin(void)
1844 {
1845 }
1846
1847 static inline void irq_time_write_end(void)
1848 {
1849 }
1850
1851 static inline u64 irq_time_read(int cpu)
1852 {
1853 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1854 }
1855 #endif /* CONFIG_64BIT */
1856
1857 /*
1858 * Called before incrementing preempt_count on {soft,}irq_enter
1859 * and before decrementing preempt_count on {soft,}irq_exit.
1860 */
1861 void account_system_vtime(struct task_struct *curr)
1862 {
1863 unsigned long flags;
1864 s64 delta;
1865 int cpu;
1866
1867 if (!sched_clock_irqtime)
1868 return;
1869
1870 local_irq_save(flags);
1871
1872 cpu = smp_processor_id();
1873 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1874 __this_cpu_add(irq_start_time, delta);
1875
1876 irq_time_write_begin();
1877 /*
1878 * We do not account for softirq time from ksoftirqd here.
1879 * We want to continue accounting softirq time to ksoftirqd thread
1880 * in that case, so as not to confuse scheduler with a special task
1881 * that do not consume any time, but still wants to run.
1882 */
1883 if (hardirq_count())
1884 __this_cpu_add(cpu_hardirq_time, delta);
1885 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1886 __this_cpu_add(cpu_softirq_time, delta);
1887
1888 irq_time_write_end();
1889 local_irq_restore(flags);
1890 }
1891 EXPORT_SYMBOL_GPL(account_system_vtime);
1892
1893 static void update_rq_clock_task(struct rq *rq, s64 delta)
1894 {
1895 s64 irq_delta;
1896
1897 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1898
1899 /*
1900 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1901 * this case when a previous update_rq_clock() happened inside a
1902 * {soft,}irq region.
1903 *
1904 * When this happens, we stop ->clock_task and only update the
1905 * prev_irq_time stamp to account for the part that fit, so that a next
1906 * update will consume the rest. This ensures ->clock_task is
1907 * monotonic.
1908 *
1909 * It does however cause some slight miss-attribution of {soft,}irq
1910 * time, a more accurate solution would be to update the irq_time using
1911 * the current rq->clock timestamp, except that would require using
1912 * atomic ops.
1913 */
1914 if (irq_delta > delta)
1915 irq_delta = delta;
1916
1917 rq->prev_irq_time += irq_delta;
1918 delta -= irq_delta;
1919 rq->clock_task += delta;
1920
1921 if (irq_delta && sched_feat(NONIRQ_POWER))
1922 sched_rt_avg_update(rq, irq_delta);
1923 }
1924
1925 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
1926
1927 static void update_rq_clock_task(struct rq *rq, s64 delta)
1928 {
1929 rq->clock_task += delta;
1930 }
1931
1932 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1933
1934 #include "sched_idletask.c"
1935 #include "sched_fair.c"
1936 #include "sched_rt.c"
1937 #include "sched_autogroup.c"
1938 #include "sched_stoptask.c"
1939 #ifdef CONFIG_SCHED_DEBUG
1940 # include "sched_debug.c"
1941 #endif
1942
1943 void sched_set_stop_task(int cpu, struct task_struct *stop)
1944 {
1945 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1946 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1947
1948 if (stop) {
1949 /*
1950 * Make it appear like a SCHED_FIFO task, its something
1951 * userspace knows about and won't get confused about.
1952 *
1953 * Also, it will make PI more or less work without too
1954 * much confusion -- but then, stop work should not
1955 * rely on PI working anyway.
1956 */
1957 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1958
1959 stop->sched_class = &stop_sched_class;
1960 }
1961
1962 cpu_rq(cpu)->stop = stop;
1963
1964 if (old_stop) {
1965 /*
1966 * Reset it back to a normal scheduling class so that
1967 * it can die in pieces.
1968 */
1969 old_stop->sched_class = &rt_sched_class;
1970 }
1971 }
1972
1973 /*
1974 * __normal_prio - return the priority that is based on the static prio
1975 */
1976 static inline int __normal_prio(struct task_struct *p)
1977 {
1978 return p->static_prio;
1979 }
1980
1981 /*
1982 * Calculate the expected normal priority: i.e. priority
1983 * without taking RT-inheritance into account. Might be
1984 * boosted by interactivity modifiers. Changes upon fork,
1985 * setprio syscalls, and whenever the interactivity
1986 * estimator recalculates.
1987 */
1988 static inline int normal_prio(struct task_struct *p)
1989 {
1990 int prio;
1991
1992 if (task_has_rt_policy(p))
1993 prio = MAX_RT_PRIO-1 - p->rt_priority;
1994 else
1995 prio = __normal_prio(p);
1996 return prio;
1997 }
1998
1999 /*
2000 * Calculate the current priority, i.e. the priority
2001 * taken into account by the scheduler. This value might
2002 * be boosted by RT tasks, or might be boosted by
2003 * interactivity modifiers. Will be RT if the task got
2004 * RT-boosted. If not then it returns p->normal_prio.
2005 */
2006 static int effective_prio(struct task_struct *p)
2007 {
2008 p->normal_prio = normal_prio(p);
2009 /*
2010 * If we are RT tasks or we were boosted to RT priority,
2011 * keep the priority unchanged. Otherwise, update priority
2012 * to the normal priority:
2013 */
2014 if (!rt_prio(p->prio))
2015 return p->normal_prio;
2016 return p->prio;
2017 }
2018
2019 /**
2020 * task_curr - is this task currently executing on a CPU?
2021 * @p: the task in question.
2022 */
2023 inline int task_curr(const struct task_struct *p)
2024 {
2025 return cpu_curr(task_cpu(p)) == p;
2026 }
2027
2028 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2029 const struct sched_class *prev_class,
2030 int oldprio, int running)
2031 {
2032 if (prev_class != p->sched_class) {
2033 if (prev_class->switched_from)
2034 prev_class->switched_from(rq, p, running);
2035 p->sched_class->switched_to(rq, p, running);
2036 } else
2037 p->sched_class->prio_changed(rq, p, oldprio, running);
2038 }
2039
2040 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2041 {
2042 const struct sched_class *class;
2043
2044 if (p->sched_class == rq->curr->sched_class) {
2045 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2046 } else {
2047 for_each_class(class) {
2048 if (class == rq->curr->sched_class)
2049 break;
2050 if (class == p->sched_class) {
2051 resched_task(rq->curr);
2052 break;
2053 }
2054 }
2055 }
2056
2057 /*
2058 * A queue event has occurred, and we're going to schedule. In
2059 * this case, we can save a useless back to back clock update.
2060 */
2061 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2062 rq->skip_clock_update = 1;
2063 }
2064
2065 #ifdef CONFIG_SMP
2066 /*
2067 * Is this task likely cache-hot:
2068 */
2069 static int
2070 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2071 {
2072 s64 delta;
2073
2074 if (p->sched_class != &fair_sched_class)
2075 return 0;
2076
2077 if (unlikely(p->policy == SCHED_IDLE))
2078 return 0;
2079
2080 /*
2081 * Buddy candidates are cache hot:
2082 */
2083 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2084 (&p->se == cfs_rq_of(&p->se)->next ||
2085 &p->se == cfs_rq_of(&p->se)->last))
2086 return 1;
2087
2088 if (sysctl_sched_migration_cost == -1)
2089 return 1;
2090 if (sysctl_sched_migration_cost == 0)
2091 return 0;
2092
2093 delta = now - p->se.exec_start;
2094
2095 return delta < (s64)sysctl_sched_migration_cost;
2096 }
2097
2098 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2099 {
2100 #ifdef CONFIG_SCHED_DEBUG
2101 /*
2102 * We should never call set_task_cpu() on a blocked task,
2103 * ttwu() will sort out the placement.
2104 */
2105 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2106 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2107 #endif
2108
2109 trace_sched_migrate_task(p, new_cpu);
2110
2111 if (task_cpu(p) != new_cpu) {
2112 p->se.nr_migrations++;
2113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2114 }
2115
2116 __set_task_cpu(p, new_cpu);
2117 }
2118
2119 struct migration_arg {
2120 struct task_struct *task;
2121 int dest_cpu;
2122 };
2123
2124 static int migration_cpu_stop(void *data);
2125
2126 /*
2127 * The task's runqueue lock must be held.
2128 * Returns true if you have to wait for migration thread.
2129 */
2130 static bool migrate_task(struct task_struct *p, struct rq *rq)
2131 {
2132 /*
2133 * If the task is not on a runqueue (and not running), then
2134 * the next wake-up will properly place the task.
2135 */
2136 return p->se.on_rq || task_running(rq, p);
2137 }
2138
2139 /*
2140 * wait_task_inactive - wait for a thread to unschedule.
2141 *
2142 * If @match_state is nonzero, it's the @p->state value just checked and
2143 * not expected to change. If it changes, i.e. @p might have woken up,
2144 * then return zero. When we succeed in waiting for @p to be off its CPU,
2145 * we return a positive number (its total switch count). If a second call
2146 * a short while later returns the same number, the caller can be sure that
2147 * @p has remained unscheduled the whole time.
2148 *
2149 * The caller must ensure that the task *will* unschedule sometime soon,
2150 * else this function might spin for a *long* time. This function can't
2151 * be called with interrupts off, or it may introduce deadlock with
2152 * smp_call_function() if an IPI is sent by the same process we are
2153 * waiting to become inactive.
2154 */
2155 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2156 {
2157 unsigned long flags;
2158 int running, on_rq;
2159 unsigned long ncsw;
2160 struct rq *rq;
2161
2162 for (;;) {
2163 /*
2164 * We do the initial early heuristics without holding
2165 * any task-queue locks at all. We'll only try to get
2166 * the runqueue lock when things look like they will
2167 * work out!
2168 */
2169 rq = task_rq(p);
2170
2171 /*
2172 * If the task is actively running on another CPU
2173 * still, just relax and busy-wait without holding
2174 * any locks.
2175 *
2176 * NOTE! Since we don't hold any locks, it's not
2177 * even sure that "rq" stays as the right runqueue!
2178 * But we don't care, since "task_running()" will
2179 * return false if the runqueue has changed and p
2180 * is actually now running somewhere else!
2181 */
2182 while (task_running(rq, p)) {
2183 if (match_state && unlikely(p->state != match_state))
2184 return 0;
2185 cpu_relax();
2186 }
2187
2188 /*
2189 * Ok, time to look more closely! We need the rq
2190 * lock now, to be *sure*. If we're wrong, we'll
2191 * just go back and repeat.
2192 */
2193 rq = task_rq_lock(p, &flags);
2194 trace_sched_wait_task(p);
2195 running = task_running(rq, p);
2196 on_rq = p->se.on_rq;
2197 ncsw = 0;
2198 if (!match_state || p->state == match_state)
2199 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2200 task_rq_unlock(rq, &flags);
2201
2202 /*
2203 * If it changed from the expected state, bail out now.
2204 */
2205 if (unlikely(!ncsw))
2206 break;
2207
2208 /*
2209 * Was it really running after all now that we
2210 * checked with the proper locks actually held?
2211 *
2212 * Oops. Go back and try again..
2213 */
2214 if (unlikely(running)) {
2215 cpu_relax();
2216 continue;
2217 }
2218
2219 /*
2220 * It's not enough that it's not actively running,
2221 * it must be off the runqueue _entirely_, and not
2222 * preempted!
2223 *
2224 * So if it was still runnable (but just not actively
2225 * running right now), it's preempted, and we should
2226 * yield - it could be a while.
2227 */
2228 if (unlikely(on_rq)) {
2229 schedule_timeout_uninterruptible(1);
2230 continue;
2231 }
2232
2233 /*
2234 * Ahh, all good. It wasn't running, and it wasn't
2235 * runnable, which means that it will never become
2236 * running in the future either. We're all done!
2237 */
2238 break;
2239 }
2240
2241 return ncsw;
2242 }
2243
2244 /***
2245 * kick_process - kick a running thread to enter/exit the kernel
2246 * @p: the to-be-kicked thread
2247 *
2248 * Cause a process which is running on another CPU to enter
2249 * kernel-mode, without any delay. (to get signals handled.)
2250 *
2251 * NOTE: this function doesnt have to take the runqueue lock,
2252 * because all it wants to ensure is that the remote task enters
2253 * the kernel. If the IPI races and the task has been migrated
2254 * to another CPU then no harm is done and the purpose has been
2255 * achieved as well.
2256 */
2257 void kick_process(struct task_struct *p)
2258 {
2259 int cpu;
2260
2261 preempt_disable();
2262 cpu = task_cpu(p);
2263 if ((cpu != smp_processor_id()) && task_curr(p))
2264 smp_send_reschedule(cpu);
2265 preempt_enable();
2266 }
2267 EXPORT_SYMBOL_GPL(kick_process);
2268 #endif /* CONFIG_SMP */
2269
2270 /**
2271 * task_oncpu_function_call - call a function on the cpu on which a task runs
2272 * @p: the task to evaluate
2273 * @func: the function to be called
2274 * @info: the function call argument
2275 *
2276 * Calls the function @func when the task is currently running. This might
2277 * be on the current CPU, which just calls the function directly
2278 */
2279 void task_oncpu_function_call(struct task_struct *p,
2280 void (*func) (void *info), void *info)
2281 {
2282 int cpu;
2283
2284 preempt_disable();
2285 cpu = task_cpu(p);
2286 if (task_curr(p))
2287 smp_call_function_single(cpu, func, info, 1);
2288 preempt_enable();
2289 }
2290
2291 #ifdef CONFIG_SMP
2292 /*
2293 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2294 */
2295 static int select_fallback_rq(int cpu, struct task_struct *p)
2296 {
2297 int dest_cpu;
2298 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2299
2300 /* Look for allowed, online CPU in same node. */
2301 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2302 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2303 return dest_cpu;
2304
2305 /* Any allowed, online CPU? */
2306 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2307 if (dest_cpu < nr_cpu_ids)
2308 return dest_cpu;
2309
2310 /* No more Mr. Nice Guy. */
2311 dest_cpu = cpuset_cpus_allowed_fallback(p);
2312 /*
2313 * Don't tell them about moving exiting tasks or
2314 * kernel threads (both mm NULL), since they never
2315 * leave kernel.
2316 */
2317 if (p->mm && printk_ratelimit()) {
2318 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2319 task_pid_nr(p), p->comm, cpu);
2320 }
2321
2322 return dest_cpu;
2323 }
2324
2325 /*
2326 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2327 */
2328 static inline
2329 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2330 {
2331 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2332
2333 /*
2334 * In order not to call set_task_cpu() on a blocking task we need
2335 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2336 * cpu.
2337 *
2338 * Since this is common to all placement strategies, this lives here.
2339 *
2340 * [ this allows ->select_task() to simply return task_cpu(p) and
2341 * not worry about this generic constraint ]
2342 */
2343 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2344 !cpu_online(cpu)))
2345 cpu = select_fallback_rq(task_cpu(p), p);
2346
2347 return cpu;
2348 }
2349
2350 static void update_avg(u64 *avg, u64 sample)
2351 {
2352 s64 diff = sample - *avg;
2353 *avg += diff >> 3;
2354 }
2355 #endif
2356
2357 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2358 bool is_sync, bool is_migrate, bool is_local,
2359 unsigned long en_flags)
2360 {
2361 schedstat_inc(p, se.statistics.nr_wakeups);
2362 if (is_sync)
2363 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2364 if (is_migrate)
2365 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2366 if (is_local)
2367 schedstat_inc(p, se.statistics.nr_wakeups_local);
2368 else
2369 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2370
2371 activate_task(rq, p, en_flags);
2372 }
2373
2374 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2375 int wake_flags, bool success)
2376 {
2377 trace_sched_wakeup(p, success);
2378 check_preempt_curr(rq, p, wake_flags);
2379
2380 p->state = TASK_RUNNING;
2381 #ifdef CONFIG_SMP
2382 if (p->sched_class->task_woken)
2383 p->sched_class->task_woken(rq, p);
2384
2385 if (unlikely(rq->idle_stamp)) {
2386 u64 delta = rq->clock - rq->idle_stamp;
2387 u64 max = 2*sysctl_sched_migration_cost;
2388
2389 if (delta > max)
2390 rq->avg_idle = max;
2391 else
2392 update_avg(&rq->avg_idle, delta);
2393 rq->idle_stamp = 0;
2394 }
2395 #endif
2396 /* if a worker is waking up, notify workqueue */
2397 if ((p->flags & PF_WQ_WORKER) && success)
2398 wq_worker_waking_up(p, cpu_of(rq));
2399 }
2400
2401 /**
2402 * try_to_wake_up - wake up a thread
2403 * @p: the thread to be awakened
2404 * @state: the mask of task states that can be woken
2405 * @wake_flags: wake modifier flags (WF_*)
2406 *
2407 * Put it on the run-queue if it's not already there. The "current"
2408 * thread is always on the run-queue (except when the actual
2409 * re-schedule is in progress), and as such you're allowed to do
2410 * the simpler "current->state = TASK_RUNNING" to mark yourself
2411 * runnable without the overhead of this.
2412 *
2413 * Returns %true if @p was woken up, %false if it was already running
2414 * or @state didn't match @p's state.
2415 */
2416 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2417 int wake_flags)
2418 {
2419 int cpu, orig_cpu, this_cpu, success = 0;
2420 unsigned long flags;
2421 unsigned long en_flags = ENQUEUE_WAKEUP;
2422 struct rq *rq;
2423
2424 this_cpu = get_cpu();
2425
2426 smp_wmb();
2427 rq = task_rq_lock(p, &flags);
2428 if (!(p->state & state))
2429 goto out;
2430
2431 if (p->se.on_rq)
2432 goto out_running;
2433
2434 cpu = task_cpu(p);
2435 orig_cpu = cpu;
2436
2437 #ifdef CONFIG_SMP
2438 if (unlikely(task_running(rq, p)))
2439 goto out_activate;
2440
2441 /*
2442 * In order to handle concurrent wakeups and release the rq->lock
2443 * we put the task in TASK_WAKING state.
2444 *
2445 * First fix up the nr_uninterruptible count:
2446 */
2447 if (task_contributes_to_load(p)) {
2448 if (likely(cpu_online(orig_cpu)))
2449 rq->nr_uninterruptible--;
2450 else
2451 this_rq()->nr_uninterruptible--;
2452 }
2453 p->state = TASK_WAKING;
2454
2455 if (p->sched_class->task_waking) {
2456 p->sched_class->task_waking(rq, p);
2457 en_flags |= ENQUEUE_WAKING;
2458 }
2459
2460 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2461 if (cpu != orig_cpu)
2462 set_task_cpu(p, cpu);
2463 __task_rq_unlock(rq);
2464
2465 rq = cpu_rq(cpu);
2466 raw_spin_lock(&rq->lock);
2467
2468 /*
2469 * We migrated the task without holding either rq->lock, however
2470 * since the task is not on the task list itself, nobody else
2471 * will try and migrate the task, hence the rq should match the
2472 * cpu we just moved it to.
2473 */
2474 WARN_ON(task_cpu(p) != cpu);
2475 WARN_ON(p->state != TASK_WAKING);
2476
2477 #ifdef CONFIG_SCHEDSTATS
2478 schedstat_inc(rq, ttwu_count);
2479 if (cpu == this_cpu)
2480 schedstat_inc(rq, ttwu_local);
2481 else {
2482 struct sched_domain *sd;
2483 for_each_domain(this_cpu, sd) {
2484 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2485 schedstat_inc(sd, ttwu_wake_remote);
2486 break;
2487 }
2488 }
2489 }
2490 #endif /* CONFIG_SCHEDSTATS */
2491
2492 out_activate:
2493 #endif /* CONFIG_SMP */
2494 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2495 cpu == this_cpu, en_flags);
2496 success = 1;
2497 out_running:
2498 ttwu_post_activation(p, rq, wake_flags, success);
2499 out:
2500 task_rq_unlock(rq, &flags);
2501 put_cpu();
2502
2503 return success;
2504 }
2505
2506 /**
2507 * try_to_wake_up_local - try to wake up a local task with rq lock held
2508 * @p: the thread to be awakened
2509 *
2510 * Put @p on the run-queue if it's not alredy there. The caller must
2511 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2512 * the current task. this_rq() stays locked over invocation.
2513 */
2514 static void try_to_wake_up_local(struct task_struct *p)
2515 {
2516 struct rq *rq = task_rq(p);
2517 bool success = false;
2518
2519 BUG_ON(rq != this_rq());
2520 BUG_ON(p == current);
2521 lockdep_assert_held(&rq->lock);
2522
2523 if (!(p->state & TASK_NORMAL))
2524 return;
2525
2526 if (!p->se.on_rq) {
2527 if (likely(!task_running(rq, p))) {
2528 schedstat_inc(rq, ttwu_count);
2529 schedstat_inc(rq, ttwu_local);
2530 }
2531 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2532 success = true;
2533 }
2534 ttwu_post_activation(p, rq, 0, success);
2535 }
2536
2537 /**
2538 * wake_up_process - Wake up a specific process
2539 * @p: The process to be woken up.
2540 *
2541 * Attempt to wake up the nominated process and move it to the set of runnable
2542 * processes. Returns 1 if the process was woken up, 0 if it was already
2543 * running.
2544 *
2545 * It may be assumed that this function implies a write memory barrier before
2546 * changing the task state if and only if any tasks are woken up.
2547 */
2548 int wake_up_process(struct task_struct *p)
2549 {
2550 return try_to_wake_up(p, TASK_ALL, 0);
2551 }
2552 EXPORT_SYMBOL(wake_up_process);
2553
2554 int wake_up_state(struct task_struct *p, unsigned int state)
2555 {
2556 return try_to_wake_up(p, state, 0);
2557 }
2558
2559 /*
2560 * Perform scheduler related setup for a newly forked process p.
2561 * p is forked by current.
2562 *
2563 * __sched_fork() is basic setup used by init_idle() too:
2564 */
2565 static void __sched_fork(struct task_struct *p)
2566 {
2567 p->se.exec_start = 0;
2568 p->se.sum_exec_runtime = 0;
2569 p->se.prev_sum_exec_runtime = 0;
2570 p->se.nr_migrations = 0;
2571
2572 #ifdef CONFIG_SCHEDSTATS
2573 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2574 #endif
2575
2576 INIT_LIST_HEAD(&p->rt.run_list);
2577 p->se.on_rq = 0;
2578 INIT_LIST_HEAD(&p->se.group_node);
2579
2580 #ifdef CONFIG_PREEMPT_NOTIFIERS
2581 INIT_HLIST_HEAD(&p->preempt_notifiers);
2582 #endif
2583 }
2584
2585 /*
2586 * fork()/clone()-time setup:
2587 */
2588 void sched_fork(struct task_struct *p, int clone_flags)
2589 {
2590 int cpu = get_cpu();
2591
2592 __sched_fork(p);
2593 /*
2594 * We mark the process as running here. This guarantees that
2595 * nobody will actually run it, and a signal or other external
2596 * event cannot wake it up and insert it on the runqueue either.
2597 */
2598 p->state = TASK_RUNNING;
2599
2600 /*
2601 * Revert to default priority/policy on fork if requested.
2602 */
2603 if (unlikely(p->sched_reset_on_fork)) {
2604 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2605 p->policy = SCHED_NORMAL;
2606 p->normal_prio = p->static_prio;
2607 }
2608
2609 if (PRIO_TO_NICE(p->static_prio) < 0) {
2610 p->static_prio = NICE_TO_PRIO(0);
2611 p->normal_prio = p->static_prio;
2612 set_load_weight(p);
2613 }
2614
2615 /*
2616 * We don't need the reset flag anymore after the fork. It has
2617 * fulfilled its duty:
2618 */
2619 p->sched_reset_on_fork = 0;
2620 }
2621
2622 /*
2623 * Make sure we do not leak PI boosting priority to the child.
2624 */
2625 p->prio = current->normal_prio;
2626
2627 if (!rt_prio(p->prio))
2628 p->sched_class = &fair_sched_class;
2629
2630 if (p->sched_class->task_fork)
2631 p->sched_class->task_fork(p);
2632
2633 /*
2634 * The child is not yet in the pid-hash so no cgroup attach races,
2635 * and the cgroup is pinned to this child due to cgroup_fork()
2636 * is ran before sched_fork().
2637 *
2638 * Silence PROVE_RCU.
2639 */
2640 rcu_read_lock();
2641 set_task_cpu(p, cpu);
2642 rcu_read_unlock();
2643
2644 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2645 if (likely(sched_info_on()))
2646 memset(&p->sched_info, 0, sizeof(p->sched_info));
2647 #endif
2648 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2649 p->oncpu = 0;
2650 #endif
2651 #ifdef CONFIG_PREEMPT
2652 /* Want to start with kernel preemption disabled. */
2653 task_thread_info(p)->preempt_count = 1;
2654 #endif
2655 #ifdef CONFIG_SMP
2656 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2657 #endif
2658
2659 put_cpu();
2660 }
2661
2662 /*
2663 * wake_up_new_task - wake up a newly created task for the first time.
2664 *
2665 * This function will do some initial scheduler statistics housekeeping
2666 * that must be done for every newly created context, then puts the task
2667 * on the runqueue and wakes it.
2668 */
2669 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2670 {
2671 unsigned long flags;
2672 struct rq *rq;
2673 int cpu __maybe_unused = get_cpu();
2674
2675 #ifdef CONFIG_SMP
2676 rq = task_rq_lock(p, &flags);
2677 p->state = TASK_WAKING;
2678
2679 /*
2680 * Fork balancing, do it here and not earlier because:
2681 * - cpus_allowed can change in the fork path
2682 * - any previously selected cpu might disappear through hotplug
2683 *
2684 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2685 * without people poking at ->cpus_allowed.
2686 */
2687 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2688 set_task_cpu(p, cpu);
2689
2690 p->state = TASK_RUNNING;
2691 task_rq_unlock(rq, &flags);
2692 #endif
2693
2694 rq = task_rq_lock(p, &flags);
2695 activate_task(rq, p, 0);
2696 trace_sched_wakeup_new(p, 1);
2697 check_preempt_curr(rq, p, WF_FORK);
2698 #ifdef CONFIG_SMP
2699 if (p->sched_class->task_woken)
2700 p->sched_class->task_woken(rq, p);
2701 #endif
2702 task_rq_unlock(rq, &flags);
2703 put_cpu();
2704 }
2705
2706 #ifdef CONFIG_PREEMPT_NOTIFIERS
2707
2708 /**
2709 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2710 * @notifier: notifier struct to register
2711 */
2712 void preempt_notifier_register(struct preempt_notifier *notifier)
2713 {
2714 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2715 }
2716 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2717
2718 /**
2719 * preempt_notifier_unregister - no longer interested in preemption notifications
2720 * @notifier: notifier struct to unregister
2721 *
2722 * This is safe to call from within a preemption notifier.
2723 */
2724 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2725 {
2726 hlist_del(&notifier->link);
2727 }
2728 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2729
2730 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2731 {
2732 struct preempt_notifier *notifier;
2733 struct hlist_node *node;
2734
2735 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2736 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2737 }
2738
2739 static void
2740 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2741 struct task_struct *next)
2742 {
2743 struct preempt_notifier *notifier;
2744 struct hlist_node *node;
2745
2746 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2747 notifier->ops->sched_out(notifier, next);
2748 }
2749
2750 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2751
2752 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2753 {
2754 }
2755
2756 static void
2757 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2758 struct task_struct *next)
2759 {
2760 }
2761
2762 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2763
2764 /**
2765 * prepare_task_switch - prepare to switch tasks
2766 * @rq: the runqueue preparing to switch
2767 * @prev: the current task that is being switched out
2768 * @next: the task we are going to switch to.
2769 *
2770 * This is called with the rq lock held and interrupts off. It must
2771 * be paired with a subsequent finish_task_switch after the context
2772 * switch.
2773 *
2774 * prepare_task_switch sets up locking and calls architecture specific
2775 * hooks.
2776 */
2777 static inline void
2778 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2779 struct task_struct *next)
2780 {
2781 fire_sched_out_preempt_notifiers(prev, next);
2782 prepare_lock_switch(rq, next);
2783 prepare_arch_switch(next);
2784 }
2785
2786 /**
2787 * finish_task_switch - clean up after a task-switch
2788 * @rq: runqueue associated with task-switch
2789 * @prev: the thread we just switched away from.
2790 *
2791 * finish_task_switch must be called after the context switch, paired
2792 * with a prepare_task_switch call before the context switch.
2793 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2794 * and do any other architecture-specific cleanup actions.
2795 *
2796 * Note that we may have delayed dropping an mm in context_switch(). If
2797 * so, we finish that here outside of the runqueue lock. (Doing it
2798 * with the lock held can cause deadlocks; see schedule() for
2799 * details.)
2800 */
2801 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2802 __releases(rq->lock)
2803 {
2804 struct mm_struct *mm = rq->prev_mm;
2805 long prev_state;
2806
2807 rq->prev_mm = NULL;
2808
2809 /*
2810 * A task struct has one reference for the use as "current".
2811 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2812 * schedule one last time. The schedule call will never return, and
2813 * the scheduled task must drop that reference.
2814 * The test for TASK_DEAD must occur while the runqueue locks are
2815 * still held, otherwise prev could be scheduled on another cpu, die
2816 * there before we look at prev->state, and then the reference would
2817 * be dropped twice.
2818 * Manfred Spraul <manfred@colorfullife.com>
2819 */
2820 prev_state = prev->state;
2821 finish_arch_switch(prev);
2822 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2823 local_irq_disable();
2824 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2825 perf_event_task_sched_in(current);
2826 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2827 local_irq_enable();
2828 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2829 finish_lock_switch(rq, prev);
2830
2831 fire_sched_in_preempt_notifiers(current);
2832 if (mm)
2833 mmdrop(mm);
2834 if (unlikely(prev_state == TASK_DEAD)) {
2835 /*
2836 * Remove function-return probe instances associated with this
2837 * task and put them back on the free list.
2838 */
2839 kprobe_flush_task(prev);
2840 put_task_struct(prev);
2841 }
2842 }
2843
2844 #ifdef CONFIG_SMP
2845
2846 /* assumes rq->lock is held */
2847 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2848 {
2849 if (prev->sched_class->pre_schedule)
2850 prev->sched_class->pre_schedule(rq, prev);
2851 }
2852
2853 /* rq->lock is NOT held, but preemption is disabled */
2854 static inline void post_schedule(struct rq *rq)
2855 {
2856 if (rq->post_schedule) {
2857 unsigned long flags;
2858
2859 raw_spin_lock_irqsave(&rq->lock, flags);
2860 if (rq->curr->sched_class->post_schedule)
2861 rq->curr->sched_class->post_schedule(rq);
2862 raw_spin_unlock_irqrestore(&rq->lock, flags);
2863
2864 rq->post_schedule = 0;
2865 }
2866 }
2867
2868 #else
2869
2870 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2871 {
2872 }
2873
2874 static inline void post_schedule(struct rq *rq)
2875 {
2876 }
2877
2878 #endif
2879
2880 /**
2881 * schedule_tail - first thing a freshly forked thread must call.
2882 * @prev: the thread we just switched away from.
2883 */
2884 asmlinkage void schedule_tail(struct task_struct *prev)
2885 __releases(rq->lock)
2886 {
2887 struct rq *rq = this_rq();
2888
2889 finish_task_switch(rq, prev);
2890
2891 /*
2892 * FIXME: do we need to worry about rq being invalidated by the
2893 * task_switch?
2894 */
2895 post_schedule(rq);
2896
2897 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2898 /* In this case, finish_task_switch does not reenable preemption */
2899 preempt_enable();
2900 #endif
2901 if (current->set_child_tid)
2902 put_user(task_pid_vnr(current), current->set_child_tid);
2903 }
2904
2905 /*
2906 * context_switch - switch to the new MM and the new
2907 * thread's register state.
2908 */
2909 static inline void
2910 context_switch(struct rq *rq, struct task_struct *prev,
2911 struct task_struct *next)
2912 {
2913 struct mm_struct *mm, *oldmm;
2914
2915 prepare_task_switch(rq, prev, next);
2916 trace_sched_switch(prev, next);
2917 mm = next->mm;
2918 oldmm = prev->active_mm;
2919 /*
2920 * For paravirt, this is coupled with an exit in switch_to to
2921 * combine the page table reload and the switch backend into
2922 * one hypercall.
2923 */
2924 arch_start_context_switch(prev);
2925
2926 if (!mm) {
2927 next->active_mm = oldmm;
2928 atomic_inc(&oldmm->mm_count);
2929 enter_lazy_tlb(oldmm, next);
2930 } else
2931 switch_mm(oldmm, mm, next);
2932
2933 if (!prev->mm) {
2934 prev->active_mm = NULL;
2935 rq->prev_mm = oldmm;
2936 }
2937 /*
2938 * Since the runqueue lock will be released by the next
2939 * task (which is an invalid locking op but in the case
2940 * of the scheduler it's an obvious special-case), so we
2941 * do an early lockdep release here:
2942 */
2943 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2944 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2945 #endif
2946
2947 /* Here we just switch the register state and the stack. */
2948 switch_to(prev, next, prev);
2949
2950 barrier();
2951 /*
2952 * this_rq must be evaluated again because prev may have moved
2953 * CPUs since it called schedule(), thus the 'rq' on its stack
2954 * frame will be invalid.
2955 */
2956 finish_task_switch(this_rq(), prev);
2957 }
2958
2959 /*
2960 * nr_running, nr_uninterruptible and nr_context_switches:
2961 *
2962 * externally visible scheduler statistics: current number of runnable
2963 * threads, current number of uninterruptible-sleeping threads, total
2964 * number of context switches performed since bootup.
2965 */
2966 unsigned long nr_running(void)
2967 {
2968 unsigned long i, sum = 0;
2969
2970 for_each_online_cpu(i)
2971 sum += cpu_rq(i)->nr_running;
2972
2973 return sum;
2974 }
2975
2976 unsigned long nr_uninterruptible(void)
2977 {
2978 unsigned long i, sum = 0;
2979
2980 for_each_possible_cpu(i)
2981 sum += cpu_rq(i)->nr_uninterruptible;
2982
2983 /*
2984 * Since we read the counters lockless, it might be slightly
2985 * inaccurate. Do not allow it to go below zero though:
2986 */
2987 if (unlikely((long)sum < 0))
2988 sum = 0;
2989
2990 return sum;
2991 }
2992
2993 unsigned long long nr_context_switches(void)
2994 {
2995 int i;
2996 unsigned long long sum = 0;
2997
2998 for_each_possible_cpu(i)
2999 sum += cpu_rq(i)->nr_switches;
3000
3001 return sum;
3002 }
3003
3004 unsigned long nr_iowait(void)
3005 {
3006 unsigned long i, sum = 0;
3007
3008 for_each_possible_cpu(i)
3009 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3010
3011 return sum;
3012 }
3013
3014 unsigned long nr_iowait_cpu(int cpu)
3015 {
3016 struct rq *this = cpu_rq(cpu);
3017 return atomic_read(&this->nr_iowait);
3018 }
3019
3020 unsigned long this_cpu_load(void)
3021 {
3022 struct rq *this = this_rq();
3023 return this->cpu_load[0];
3024 }
3025
3026
3027 /* Variables and functions for calc_load */
3028 static atomic_long_t calc_load_tasks;
3029 static unsigned long calc_load_update;
3030 unsigned long avenrun[3];
3031 EXPORT_SYMBOL(avenrun);
3032
3033 static long calc_load_fold_active(struct rq *this_rq)
3034 {
3035 long nr_active, delta = 0;
3036
3037 nr_active = this_rq->nr_running;
3038 nr_active += (long) this_rq->nr_uninterruptible;
3039
3040 if (nr_active != this_rq->calc_load_active) {
3041 delta = nr_active - this_rq->calc_load_active;
3042 this_rq->calc_load_active = nr_active;
3043 }
3044
3045 return delta;
3046 }
3047
3048 static unsigned long
3049 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3050 {
3051 load *= exp;
3052 load += active * (FIXED_1 - exp);
3053 load += 1UL << (FSHIFT - 1);
3054 return load >> FSHIFT;
3055 }
3056
3057 #ifdef CONFIG_NO_HZ
3058 /*
3059 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3060 *
3061 * When making the ILB scale, we should try to pull this in as well.
3062 */
3063 static atomic_long_t calc_load_tasks_idle;
3064
3065 static void calc_load_account_idle(struct rq *this_rq)
3066 {
3067 long delta;
3068
3069 delta = calc_load_fold_active(this_rq);
3070 if (delta)
3071 atomic_long_add(delta, &calc_load_tasks_idle);
3072 }
3073
3074 static long calc_load_fold_idle(void)
3075 {
3076 long delta = 0;
3077
3078 /*
3079 * Its got a race, we don't care...
3080 */
3081 if (atomic_long_read(&calc_load_tasks_idle))
3082 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3083
3084 return delta;
3085 }
3086
3087 /**
3088 * fixed_power_int - compute: x^n, in O(log n) time
3089 *
3090 * @x: base of the power
3091 * @frac_bits: fractional bits of @x
3092 * @n: power to raise @x to.
3093 *
3094 * By exploiting the relation between the definition of the natural power
3095 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3096 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3097 * (where: n_i \elem {0, 1}, the binary vector representing n),
3098 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3099 * of course trivially computable in O(log_2 n), the length of our binary
3100 * vector.
3101 */
3102 static unsigned long
3103 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3104 {
3105 unsigned long result = 1UL << frac_bits;
3106
3107 if (n) for (;;) {
3108 if (n & 1) {
3109 result *= x;
3110 result += 1UL << (frac_bits - 1);
3111 result >>= frac_bits;
3112 }
3113 n >>= 1;
3114 if (!n)
3115 break;
3116 x *= x;
3117 x += 1UL << (frac_bits - 1);
3118 x >>= frac_bits;
3119 }
3120
3121 return result;
3122 }
3123
3124 /*
3125 * a1 = a0 * e + a * (1 - e)
3126 *
3127 * a2 = a1 * e + a * (1 - e)
3128 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3129 * = a0 * e^2 + a * (1 - e) * (1 + e)
3130 *
3131 * a3 = a2 * e + a * (1 - e)
3132 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3133 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3134 *
3135 * ...
3136 *
3137 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3138 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3139 * = a0 * e^n + a * (1 - e^n)
3140 *
3141 * [1] application of the geometric series:
3142 *
3143 * n 1 - x^(n+1)
3144 * S_n := \Sum x^i = -------------
3145 * i=0 1 - x
3146 */
3147 static unsigned long
3148 calc_load_n(unsigned long load, unsigned long exp,
3149 unsigned long active, unsigned int n)
3150 {
3151
3152 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3153 }
3154
3155 /*
3156 * NO_HZ can leave us missing all per-cpu ticks calling
3157 * calc_load_account_active(), but since an idle CPU folds its delta into
3158 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3159 * in the pending idle delta if our idle period crossed a load cycle boundary.
3160 *
3161 * Once we've updated the global active value, we need to apply the exponential
3162 * weights adjusted to the number of cycles missed.
3163 */
3164 static void calc_global_nohz(unsigned long ticks)
3165 {
3166 long delta, active, n;
3167
3168 if (time_before(jiffies, calc_load_update))
3169 return;
3170
3171 /*
3172 * If we crossed a calc_load_update boundary, make sure to fold
3173 * any pending idle changes, the respective CPUs might have
3174 * missed the tick driven calc_load_account_active() update
3175 * due to NO_HZ.
3176 */
3177 delta = calc_load_fold_idle();
3178 if (delta)
3179 atomic_long_add(delta, &calc_load_tasks);
3180
3181 /*
3182 * If we were idle for multiple load cycles, apply them.
3183 */
3184 if (ticks >= LOAD_FREQ) {
3185 n = ticks / LOAD_FREQ;
3186
3187 active = atomic_long_read(&calc_load_tasks);
3188 active = active > 0 ? active * FIXED_1 : 0;
3189
3190 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3191 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3192 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3193
3194 calc_load_update += n * LOAD_FREQ;
3195 }
3196
3197 /*
3198 * Its possible the remainder of the above division also crosses
3199 * a LOAD_FREQ period, the regular check in calc_global_load()
3200 * which comes after this will take care of that.
3201 *
3202 * Consider us being 11 ticks before a cycle completion, and us
3203 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3204 * age us 4 cycles, and the test in calc_global_load() will
3205 * pick up the final one.
3206 */
3207 }
3208 #else
3209 static void calc_load_account_idle(struct rq *this_rq)
3210 {
3211 }
3212
3213 static inline long calc_load_fold_idle(void)
3214 {
3215 return 0;
3216 }
3217
3218 static void calc_global_nohz(unsigned long ticks)
3219 {
3220 }
3221 #endif
3222
3223 /**
3224 * get_avenrun - get the load average array
3225 * @loads: pointer to dest load array
3226 * @offset: offset to add
3227 * @shift: shift count to shift the result left
3228 *
3229 * These values are estimates at best, so no need for locking.
3230 */
3231 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3232 {
3233 loads[0] = (avenrun[0] + offset) << shift;
3234 loads[1] = (avenrun[1] + offset) << shift;
3235 loads[2] = (avenrun[2] + offset) << shift;
3236 }
3237
3238 /*
3239 * calc_load - update the avenrun load estimates 10 ticks after the
3240 * CPUs have updated calc_load_tasks.
3241 */
3242 void calc_global_load(unsigned long ticks)
3243 {
3244 long active;
3245
3246 calc_global_nohz(ticks);
3247
3248 if (time_before(jiffies, calc_load_update + 10))
3249 return;
3250
3251 active = atomic_long_read(&calc_load_tasks);
3252 active = active > 0 ? active * FIXED_1 : 0;
3253
3254 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3255 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3256 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3257
3258 calc_load_update += LOAD_FREQ;
3259 }
3260
3261 /*
3262 * Called from update_cpu_load() to periodically update this CPU's
3263 * active count.
3264 */
3265 static void calc_load_account_active(struct rq *this_rq)
3266 {
3267 long delta;
3268
3269 if (time_before(jiffies, this_rq->calc_load_update))
3270 return;
3271
3272 delta = calc_load_fold_active(this_rq);
3273 delta += calc_load_fold_idle();
3274 if (delta)
3275 atomic_long_add(delta, &calc_load_tasks);
3276
3277 this_rq->calc_load_update += LOAD_FREQ;
3278 }
3279
3280 /*
3281 * The exact cpuload at various idx values, calculated at every tick would be
3282 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3283 *
3284 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3285 * on nth tick when cpu may be busy, then we have:
3286 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3287 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3288 *
3289 * decay_load_missed() below does efficient calculation of
3290 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3291 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3292 *
3293 * The calculation is approximated on a 128 point scale.
3294 * degrade_zero_ticks is the number of ticks after which load at any
3295 * particular idx is approximated to be zero.
3296 * degrade_factor is a precomputed table, a row for each load idx.
3297 * Each column corresponds to degradation factor for a power of two ticks,
3298 * based on 128 point scale.
3299 * Example:
3300 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3301 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3302 *
3303 * With this power of 2 load factors, we can degrade the load n times
3304 * by looking at 1 bits in n and doing as many mult/shift instead of
3305 * n mult/shifts needed by the exact degradation.
3306 */
3307 #define DEGRADE_SHIFT 7
3308 static const unsigned char
3309 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3310 static const unsigned char
3311 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3312 {0, 0, 0, 0, 0, 0, 0, 0},
3313 {64, 32, 8, 0, 0, 0, 0, 0},
3314 {96, 72, 40, 12, 1, 0, 0},
3315 {112, 98, 75, 43, 15, 1, 0},
3316 {120, 112, 98, 76, 45, 16, 2} };
3317
3318 /*
3319 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3320 * would be when CPU is idle and so we just decay the old load without
3321 * adding any new load.
3322 */
3323 static unsigned long
3324 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3325 {
3326 int j = 0;
3327
3328 if (!missed_updates)
3329 return load;
3330
3331 if (missed_updates >= degrade_zero_ticks[idx])
3332 return 0;
3333
3334 if (idx == 1)
3335 return load >> missed_updates;
3336
3337 while (missed_updates) {
3338 if (missed_updates % 2)
3339 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3340
3341 missed_updates >>= 1;
3342 j++;
3343 }
3344 return load;
3345 }
3346
3347 /*
3348 * Update rq->cpu_load[] statistics. This function is usually called every
3349 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3350 * every tick. We fix it up based on jiffies.
3351 */
3352 static void update_cpu_load(struct rq *this_rq)
3353 {
3354 unsigned long this_load = this_rq->load.weight;
3355 unsigned long curr_jiffies = jiffies;
3356 unsigned long pending_updates;
3357 int i, scale;
3358
3359 this_rq->nr_load_updates++;
3360
3361 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3362 if (curr_jiffies == this_rq->last_load_update_tick)
3363 return;
3364
3365 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3366 this_rq->last_load_update_tick = curr_jiffies;
3367
3368 /* Update our load: */
3369 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3370 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3371 unsigned long old_load, new_load;
3372
3373 /* scale is effectively 1 << i now, and >> i divides by scale */
3374
3375 old_load = this_rq->cpu_load[i];
3376 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3377 new_load = this_load;
3378 /*
3379 * Round up the averaging division if load is increasing. This
3380 * prevents us from getting stuck on 9 if the load is 10, for
3381 * example.
3382 */
3383 if (new_load > old_load)
3384 new_load += scale - 1;
3385
3386 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3387 }
3388
3389 sched_avg_update(this_rq);
3390 }
3391
3392 static void update_cpu_load_active(struct rq *this_rq)
3393 {
3394 update_cpu_load(this_rq);
3395
3396 calc_load_account_active(this_rq);
3397 }
3398
3399 #ifdef CONFIG_SMP
3400
3401 /*
3402 * sched_exec - execve() is a valuable balancing opportunity, because at
3403 * this point the task has the smallest effective memory and cache footprint.
3404 */
3405 void sched_exec(void)
3406 {
3407 struct task_struct *p = current;
3408 unsigned long flags;
3409 struct rq *rq;
3410 int dest_cpu;
3411
3412 rq = task_rq_lock(p, &flags);
3413 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3414 if (dest_cpu == smp_processor_id())
3415 goto unlock;
3416
3417 /*
3418 * select_task_rq() can race against ->cpus_allowed
3419 */
3420 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3421 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3422 struct migration_arg arg = { p, dest_cpu };
3423
3424 task_rq_unlock(rq, &flags);
3425 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3426 return;
3427 }
3428 unlock:
3429 task_rq_unlock(rq, &flags);
3430 }
3431
3432 #endif
3433
3434 DEFINE_PER_CPU(struct kernel_stat, kstat);
3435
3436 EXPORT_PER_CPU_SYMBOL(kstat);
3437
3438 /*
3439 * Return any ns on the sched_clock that have not yet been accounted in
3440 * @p in case that task is currently running.
3441 *
3442 * Called with task_rq_lock() held on @rq.
3443 */
3444 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3445 {
3446 u64 ns = 0;
3447
3448 if (task_current(rq, p)) {
3449 update_rq_clock(rq);
3450 ns = rq->clock_task - p->se.exec_start;
3451 if ((s64)ns < 0)
3452 ns = 0;
3453 }
3454
3455 return ns;
3456 }
3457
3458 unsigned long long task_delta_exec(struct task_struct *p)
3459 {
3460 unsigned long flags;
3461 struct rq *rq;
3462 u64 ns = 0;
3463
3464 rq = task_rq_lock(p, &flags);
3465 ns = do_task_delta_exec(p, rq);
3466 task_rq_unlock(rq, &flags);
3467
3468 return ns;
3469 }
3470
3471 /*
3472 * Return accounted runtime for the task.
3473 * In case the task is currently running, return the runtime plus current's
3474 * pending runtime that have not been accounted yet.
3475 */
3476 unsigned long long task_sched_runtime(struct task_struct *p)
3477 {
3478 unsigned long flags;
3479 struct rq *rq;
3480 u64 ns = 0;
3481
3482 rq = task_rq_lock(p, &flags);
3483 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3484 task_rq_unlock(rq, &flags);
3485
3486 return ns;
3487 }
3488
3489 /*
3490 * Return sum_exec_runtime for the thread group.
3491 * In case the task is currently running, return the sum plus current's
3492 * pending runtime that have not been accounted yet.
3493 *
3494 * Note that the thread group might have other running tasks as well,
3495 * so the return value not includes other pending runtime that other
3496 * running tasks might have.
3497 */
3498 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3499 {
3500 struct task_cputime totals;
3501 unsigned long flags;
3502 struct rq *rq;
3503 u64 ns;
3504
3505 rq = task_rq_lock(p, &flags);
3506 thread_group_cputime(p, &totals);
3507 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3508 task_rq_unlock(rq, &flags);
3509
3510 return ns;
3511 }
3512
3513 /*
3514 * Account user cpu time to a process.
3515 * @p: the process that the cpu time gets accounted to
3516 * @cputime: the cpu time spent in user space since the last update
3517 * @cputime_scaled: cputime scaled by cpu frequency
3518 */
3519 void account_user_time(struct task_struct *p, cputime_t cputime,
3520 cputime_t cputime_scaled)
3521 {
3522 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3523 cputime64_t tmp;
3524
3525 /* Add user time to process. */
3526 p->utime = cputime_add(p->utime, cputime);
3527 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3528 account_group_user_time(p, cputime);
3529
3530 /* Add user time to cpustat. */
3531 tmp = cputime_to_cputime64(cputime);
3532 if (TASK_NICE(p) > 0)
3533 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3534 else
3535 cpustat->user = cputime64_add(cpustat->user, tmp);
3536
3537 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3538 /* Account for user time used */
3539 acct_update_integrals(p);
3540 }
3541
3542 /*
3543 * Account guest cpu time to a process.
3544 * @p: the process that the cpu time gets accounted to
3545 * @cputime: the cpu time spent in virtual machine since the last update
3546 * @cputime_scaled: cputime scaled by cpu frequency
3547 */
3548 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3549 cputime_t cputime_scaled)
3550 {
3551 cputime64_t tmp;
3552 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3553
3554 tmp = cputime_to_cputime64(cputime);
3555
3556 /* Add guest time to process. */
3557 p->utime = cputime_add(p->utime, cputime);
3558 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3559 account_group_user_time(p, cputime);
3560 p->gtime = cputime_add(p->gtime, cputime);
3561
3562 /* Add guest time to cpustat. */
3563 if (TASK_NICE(p) > 0) {
3564 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3565 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3566 } else {
3567 cpustat->user = cputime64_add(cpustat->user, tmp);
3568 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3569 }
3570 }
3571
3572 /*
3573 * Account system cpu time to a process.
3574 * @p: the process that the cpu time gets accounted to
3575 * @hardirq_offset: the offset to subtract from hardirq_count()
3576 * @cputime: the cpu time spent in kernel space since the last update
3577 * @cputime_scaled: cputime scaled by cpu frequency
3578 */
3579 void account_system_time(struct task_struct *p, int hardirq_offset,
3580 cputime_t cputime, cputime_t cputime_scaled)
3581 {
3582 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3583 cputime64_t tmp;
3584
3585 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3586 account_guest_time(p, cputime, cputime_scaled);
3587 return;
3588 }
3589
3590 /* Add system time to process. */
3591 p->stime = cputime_add(p->stime, cputime);
3592 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3593 account_group_system_time(p, cputime);
3594
3595 /* Add system time to cpustat. */
3596 tmp = cputime_to_cputime64(cputime);
3597 if (hardirq_count() - hardirq_offset)
3598 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3599 else if (in_serving_softirq())
3600 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3601 else
3602 cpustat->system = cputime64_add(cpustat->system, tmp);
3603
3604 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3605
3606 /* Account for system time used */
3607 acct_update_integrals(p);
3608 }
3609
3610 /*
3611 * Account for involuntary wait time.
3612 * @steal: the cpu time spent in involuntary wait
3613 */
3614 void account_steal_time(cputime_t cputime)
3615 {
3616 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3617 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3618
3619 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3620 }
3621
3622 /*
3623 * Account for idle time.
3624 * @cputime: the cpu time spent in idle wait
3625 */
3626 void account_idle_time(cputime_t cputime)
3627 {
3628 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3629 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3630 struct rq *rq = this_rq();
3631
3632 if (atomic_read(&rq->nr_iowait) > 0)
3633 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3634 else
3635 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3636 }
3637
3638 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3639
3640 /*
3641 * Account a single tick of cpu time.
3642 * @p: the process that the cpu time gets accounted to
3643 * @user_tick: indicates if the tick is a user or a system tick
3644 */
3645 void account_process_tick(struct task_struct *p, int user_tick)
3646 {
3647 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3648 struct rq *rq = this_rq();
3649
3650 if (user_tick)
3651 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3652 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3653 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3654 one_jiffy_scaled);
3655 else
3656 account_idle_time(cputime_one_jiffy);
3657 }
3658
3659 /*
3660 * Account multiple ticks of steal time.
3661 * @p: the process from which the cpu time has been stolen
3662 * @ticks: number of stolen ticks
3663 */
3664 void account_steal_ticks(unsigned long ticks)
3665 {
3666 account_steal_time(jiffies_to_cputime(ticks));
3667 }
3668
3669 /*
3670 * Account multiple ticks of idle time.
3671 * @ticks: number of stolen ticks
3672 */
3673 void account_idle_ticks(unsigned long ticks)
3674 {
3675 account_idle_time(jiffies_to_cputime(ticks));
3676 }
3677
3678 #endif
3679
3680 /*
3681 * Use precise platform statistics if available:
3682 */
3683 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3684 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3685 {
3686 *ut = p->utime;
3687 *st = p->stime;
3688 }
3689
3690 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3691 {
3692 struct task_cputime cputime;
3693
3694 thread_group_cputime(p, &cputime);
3695
3696 *ut = cputime.utime;
3697 *st = cputime.stime;
3698 }
3699 #else
3700
3701 #ifndef nsecs_to_cputime
3702 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3703 #endif
3704
3705 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3706 {
3707 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3708
3709 /*
3710 * Use CFS's precise accounting:
3711 */
3712 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3713
3714 if (total) {
3715 u64 temp = rtime;
3716
3717 temp *= utime;
3718 do_div(temp, total);
3719 utime = (cputime_t)temp;
3720 } else
3721 utime = rtime;
3722
3723 /*
3724 * Compare with previous values, to keep monotonicity:
3725 */
3726 p->prev_utime = max(p->prev_utime, utime);
3727 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3728
3729 *ut = p->prev_utime;
3730 *st = p->prev_stime;
3731 }
3732
3733 /*
3734 * Must be called with siglock held.
3735 */
3736 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3737 {
3738 struct signal_struct *sig = p->signal;
3739 struct task_cputime cputime;
3740 cputime_t rtime, utime, total;
3741
3742 thread_group_cputime(p, &cputime);
3743
3744 total = cputime_add(cputime.utime, cputime.stime);
3745 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3746
3747 if (total) {
3748 u64 temp = rtime;
3749
3750 temp *= cputime.utime;
3751 do_div(temp, total);
3752 utime = (cputime_t)temp;
3753 } else
3754 utime = rtime;
3755
3756 sig->prev_utime = max(sig->prev_utime, utime);
3757 sig->prev_stime = max(sig->prev_stime,
3758 cputime_sub(rtime, sig->prev_utime));
3759
3760 *ut = sig->prev_utime;
3761 *st = sig->prev_stime;
3762 }
3763 #endif
3764
3765 /*
3766 * This function gets called by the timer code, with HZ frequency.
3767 * We call it with interrupts disabled.
3768 *
3769 * It also gets called by the fork code, when changing the parent's
3770 * timeslices.
3771 */
3772 void scheduler_tick(void)
3773 {
3774 int cpu = smp_processor_id();
3775 struct rq *rq = cpu_rq(cpu);
3776 struct task_struct *curr = rq->curr;
3777
3778 sched_clock_tick();
3779
3780 raw_spin_lock(&rq->lock);
3781 update_rq_clock(rq);
3782 update_cpu_load_active(rq);
3783 curr->sched_class->task_tick(rq, curr, 0);
3784 raw_spin_unlock(&rq->lock);
3785
3786 perf_event_task_tick();
3787
3788 #ifdef CONFIG_SMP
3789 rq->idle_at_tick = idle_cpu(cpu);
3790 trigger_load_balance(rq, cpu);
3791 #endif
3792 }
3793
3794 notrace unsigned long get_parent_ip(unsigned long addr)
3795 {
3796 if (in_lock_functions(addr)) {
3797 addr = CALLER_ADDR2;
3798 if (in_lock_functions(addr))
3799 addr = CALLER_ADDR3;
3800 }
3801 return addr;
3802 }
3803
3804 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3805 defined(CONFIG_PREEMPT_TRACER))
3806
3807 void __kprobes add_preempt_count(int val)
3808 {
3809 #ifdef CONFIG_DEBUG_PREEMPT
3810 /*
3811 * Underflow?
3812 */
3813 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3814 return;
3815 #endif
3816 preempt_count() += val;
3817 #ifdef CONFIG_DEBUG_PREEMPT
3818 /*
3819 * Spinlock count overflowing soon?
3820 */
3821 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3822 PREEMPT_MASK - 10);
3823 #endif
3824 if (preempt_count() == val)
3825 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3826 }
3827 EXPORT_SYMBOL(add_preempt_count);
3828
3829 void __kprobes sub_preempt_count(int val)
3830 {
3831 #ifdef CONFIG_DEBUG_PREEMPT
3832 /*
3833 * Underflow?
3834 */
3835 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3836 return;
3837 /*
3838 * Is the spinlock portion underflowing?
3839 */
3840 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3841 !(preempt_count() & PREEMPT_MASK)))
3842 return;
3843 #endif
3844
3845 if (preempt_count() == val)
3846 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3847 preempt_count() -= val;
3848 }
3849 EXPORT_SYMBOL(sub_preempt_count);
3850
3851 #endif
3852
3853 /*
3854 * Print scheduling while atomic bug:
3855 */
3856 static noinline void __schedule_bug(struct task_struct *prev)
3857 {
3858 struct pt_regs *regs = get_irq_regs();
3859
3860 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3861 prev->comm, prev->pid, preempt_count());
3862
3863 debug_show_held_locks(prev);
3864 print_modules();
3865 if (irqs_disabled())
3866 print_irqtrace_events(prev);
3867
3868 if (regs)
3869 show_regs(regs);
3870 else
3871 dump_stack();
3872 }
3873
3874 /*
3875 * Various schedule()-time debugging checks and statistics:
3876 */
3877 static inline void schedule_debug(struct task_struct *prev)
3878 {
3879 /*
3880 * Test if we are atomic. Since do_exit() needs to call into
3881 * schedule() atomically, we ignore that path for now.
3882 * Otherwise, whine if we are scheduling when we should not be.
3883 */
3884 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3885 __schedule_bug(prev);
3886
3887 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3888
3889 schedstat_inc(this_rq(), sched_count);
3890 #ifdef CONFIG_SCHEDSTATS
3891 if (unlikely(prev->lock_depth >= 0)) {
3892 schedstat_inc(this_rq(), bkl_count);
3893 schedstat_inc(prev, sched_info.bkl_count);
3894 }
3895 #endif
3896 }
3897
3898 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3899 {
3900 if (prev->se.on_rq)
3901 update_rq_clock(rq);
3902 prev->sched_class->put_prev_task(rq, prev);
3903 }
3904
3905 /*
3906 * Pick up the highest-prio task:
3907 */
3908 static inline struct task_struct *
3909 pick_next_task(struct rq *rq)
3910 {
3911 const struct sched_class *class;
3912 struct task_struct *p;
3913
3914 /*
3915 * Optimization: we know that if all tasks are in
3916 * the fair class we can call that function directly:
3917 */
3918 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3919 p = fair_sched_class.pick_next_task(rq);
3920 if (likely(p))
3921 return p;
3922 }
3923
3924 for_each_class(class) {
3925 p = class->pick_next_task(rq);
3926 if (p)
3927 return p;
3928 }
3929
3930 BUG(); /* the idle class will always have a runnable task */
3931 }
3932
3933 /*
3934 * schedule() is the main scheduler function.
3935 */
3936 asmlinkage void __sched schedule(void)
3937 {
3938 struct task_struct *prev, *next;
3939 unsigned long *switch_count;
3940 struct rq *rq;
3941 int cpu;
3942
3943 need_resched:
3944 preempt_disable();
3945 cpu = smp_processor_id();
3946 rq = cpu_rq(cpu);
3947 rcu_note_context_switch(cpu);
3948 prev = rq->curr;
3949
3950 release_kernel_lock(prev);
3951 need_resched_nonpreemptible:
3952
3953 schedule_debug(prev);
3954
3955 if (sched_feat(HRTICK))
3956 hrtick_clear(rq);
3957
3958 raw_spin_lock_irq(&rq->lock);
3959
3960 switch_count = &prev->nivcsw;
3961 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3962 if (unlikely(signal_pending_state(prev->state, prev))) {
3963 prev->state = TASK_RUNNING;
3964 } else {
3965 /*
3966 * If a worker is going to sleep, notify and
3967 * ask workqueue whether it wants to wake up a
3968 * task to maintain concurrency. If so, wake
3969 * up the task.
3970 */
3971 if (prev->flags & PF_WQ_WORKER) {
3972 struct task_struct *to_wakeup;
3973
3974 to_wakeup = wq_worker_sleeping(prev, cpu);
3975 if (to_wakeup)
3976 try_to_wake_up_local(to_wakeup);
3977 }
3978 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3979 }
3980 switch_count = &prev->nvcsw;
3981 }
3982
3983 pre_schedule(rq, prev);
3984
3985 if (unlikely(!rq->nr_running))
3986 idle_balance(cpu, rq);
3987
3988 put_prev_task(rq, prev);
3989 next = pick_next_task(rq);
3990 clear_tsk_need_resched(prev);
3991 rq->skip_clock_update = 0;
3992
3993 if (likely(prev != next)) {
3994 sched_info_switch(prev, next);
3995 perf_event_task_sched_out(prev, next);
3996
3997 rq->nr_switches++;
3998 rq->curr = next;
3999 ++*switch_count;
4000
4001 context_switch(rq, prev, next); /* unlocks the rq */
4002 /*
4003 * The context switch have flipped the stack from under us
4004 * and restored the local variables which were saved when
4005 * this task called schedule() in the past. prev == current
4006 * is still correct, but it can be moved to another cpu/rq.
4007 */
4008 cpu = smp_processor_id();
4009 rq = cpu_rq(cpu);
4010 } else
4011 raw_spin_unlock_irq(&rq->lock);
4012
4013 post_schedule(rq);
4014
4015 if (unlikely(reacquire_kernel_lock(prev)))
4016 goto need_resched_nonpreemptible;
4017
4018 preempt_enable_no_resched();
4019 if (need_resched())
4020 goto need_resched;
4021 }
4022 EXPORT_SYMBOL(schedule);
4023
4024 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4025 /*
4026 * Look out! "owner" is an entirely speculative pointer
4027 * access and not reliable.
4028 */
4029 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4030 {
4031 unsigned int cpu;
4032 struct rq *rq;
4033
4034 if (!sched_feat(OWNER_SPIN))
4035 return 0;
4036
4037 #ifdef CONFIG_DEBUG_PAGEALLOC
4038 /*
4039 * Need to access the cpu field knowing that
4040 * DEBUG_PAGEALLOC could have unmapped it if
4041 * the mutex owner just released it and exited.
4042 */
4043 if (probe_kernel_address(&owner->cpu, cpu))
4044 return 0;
4045 #else
4046 cpu = owner->cpu;
4047 #endif
4048
4049 /*
4050 * Even if the access succeeded (likely case),
4051 * the cpu field may no longer be valid.
4052 */
4053 if (cpu >= nr_cpumask_bits)
4054 return 0;
4055
4056 /*
4057 * We need to validate that we can do a
4058 * get_cpu() and that we have the percpu area.
4059 */
4060 if (!cpu_online(cpu))
4061 return 0;
4062
4063 rq = cpu_rq(cpu);
4064
4065 for (;;) {
4066 /*
4067 * Owner changed, break to re-assess state.
4068 */
4069 if (lock->owner != owner) {
4070 /*
4071 * If the lock has switched to a different owner,
4072 * we likely have heavy contention. Return 0 to quit
4073 * optimistic spinning and not contend further:
4074 */
4075 if (lock->owner)
4076 return 0;
4077 break;
4078 }
4079
4080 /*
4081 * Is that owner really running on that cpu?
4082 */
4083 if (task_thread_info(rq->curr) != owner || need_resched())
4084 return 0;
4085
4086 arch_mutex_cpu_relax();
4087 }
4088
4089 return 1;
4090 }
4091 #endif
4092
4093 #ifdef CONFIG_PREEMPT
4094 /*
4095 * this is the entry point to schedule() from in-kernel preemption
4096 * off of preempt_enable. Kernel preemptions off return from interrupt
4097 * occur there and call schedule directly.
4098 */
4099 asmlinkage void __sched notrace preempt_schedule(void)
4100 {
4101 struct thread_info *ti = current_thread_info();
4102
4103 /*
4104 * If there is a non-zero preempt_count or interrupts are disabled,
4105 * we do not want to preempt the current task. Just return..
4106 */
4107 if (likely(ti->preempt_count || irqs_disabled()))
4108 return;
4109
4110 do {
4111 add_preempt_count_notrace(PREEMPT_ACTIVE);
4112 schedule();
4113 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4114
4115 /*
4116 * Check again in case we missed a preemption opportunity
4117 * between schedule and now.
4118 */
4119 barrier();
4120 } while (need_resched());
4121 }
4122 EXPORT_SYMBOL(preempt_schedule);
4123
4124 /*
4125 * this is the entry point to schedule() from kernel preemption
4126 * off of irq context.
4127 * Note, that this is called and return with irqs disabled. This will
4128 * protect us against recursive calling from irq.
4129 */
4130 asmlinkage void __sched preempt_schedule_irq(void)
4131 {
4132 struct thread_info *ti = current_thread_info();
4133
4134 /* Catch callers which need to be fixed */
4135 BUG_ON(ti->preempt_count || !irqs_disabled());
4136
4137 do {
4138 add_preempt_count(PREEMPT_ACTIVE);
4139 local_irq_enable();
4140 schedule();
4141 local_irq_disable();
4142 sub_preempt_count(PREEMPT_ACTIVE);
4143
4144 /*
4145 * Check again in case we missed a preemption opportunity
4146 * between schedule and now.
4147 */
4148 barrier();
4149 } while (need_resched());
4150 }
4151
4152 #endif /* CONFIG_PREEMPT */
4153
4154 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4155 void *key)
4156 {
4157 return try_to_wake_up(curr->private, mode, wake_flags);
4158 }
4159 EXPORT_SYMBOL(default_wake_function);
4160
4161 /*
4162 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4163 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4164 * number) then we wake all the non-exclusive tasks and one exclusive task.
4165 *
4166 * There are circumstances in which we can try to wake a task which has already
4167 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4168 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4169 */
4170 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4171 int nr_exclusive, int wake_flags, void *key)
4172 {
4173 wait_queue_t *curr, *next;
4174
4175 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4176 unsigned flags = curr->flags;
4177
4178 if (curr->func(curr, mode, wake_flags, key) &&
4179 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4180 break;
4181 }
4182 }
4183
4184 /**
4185 * __wake_up - wake up threads blocked on a waitqueue.
4186 * @q: the waitqueue
4187 * @mode: which threads
4188 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4189 * @key: is directly passed to the wakeup function
4190 *
4191 * It may be assumed that this function implies a write memory barrier before
4192 * changing the task state if and only if any tasks are woken up.
4193 */
4194 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4195 int nr_exclusive, void *key)
4196 {
4197 unsigned long flags;
4198
4199 spin_lock_irqsave(&q->lock, flags);
4200 __wake_up_common(q, mode, nr_exclusive, 0, key);
4201 spin_unlock_irqrestore(&q->lock, flags);
4202 }
4203 EXPORT_SYMBOL(__wake_up);
4204
4205 /*
4206 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4207 */
4208 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4209 {
4210 __wake_up_common(q, mode, 1, 0, NULL);
4211 }
4212 EXPORT_SYMBOL_GPL(__wake_up_locked);
4213
4214 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4215 {
4216 __wake_up_common(q, mode, 1, 0, key);
4217 }
4218
4219 /**
4220 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4221 * @q: the waitqueue
4222 * @mode: which threads
4223 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4224 * @key: opaque value to be passed to wakeup targets
4225 *
4226 * The sync wakeup differs that the waker knows that it will schedule
4227 * away soon, so while the target thread will be woken up, it will not
4228 * be migrated to another CPU - ie. the two threads are 'synchronized'
4229 * with each other. This can prevent needless bouncing between CPUs.
4230 *
4231 * On UP it can prevent extra preemption.
4232 *
4233 * It may be assumed that this function implies a write memory barrier before
4234 * changing the task state if and only if any tasks are woken up.
4235 */
4236 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4237 int nr_exclusive, void *key)
4238 {
4239 unsigned long flags;
4240 int wake_flags = WF_SYNC;
4241
4242 if (unlikely(!q))
4243 return;
4244
4245 if (unlikely(!nr_exclusive))
4246 wake_flags = 0;
4247
4248 spin_lock_irqsave(&q->lock, flags);
4249 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4250 spin_unlock_irqrestore(&q->lock, flags);
4251 }
4252 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4253
4254 /*
4255 * __wake_up_sync - see __wake_up_sync_key()
4256 */
4257 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4258 {
4259 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4260 }
4261 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4262
4263 /**
4264 * complete: - signals a single thread waiting on this completion
4265 * @x: holds the state of this particular completion
4266 *
4267 * This will wake up a single thread waiting on this completion. Threads will be
4268 * awakened in the same order in which they were queued.
4269 *
4270 * See also complete_all(), wait_for_completion() and related routines.
4271 *
4272 * It may be assumed that this function implies a write memory barrier before
4273 * changing the task state if and only if any tasks are woken up.
4274 */
4275 void complete(struct completion *x)
4276 {
4277 unsigned long flags;
4278
4279 spin_lock_irqsave(&x->wait.lock, flags);
4280 x->done++;
4281 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4282 spin_unlock_irqrestore(&x->wait.lock, flags);
4283 }
4284 EXPORT_SYMBOL(complete);
4285
4286 /**
4287 * complete_all: - signals all threads waiting on this completion
4288 * @x: holds the state of this particular completion
4289 *
4290 * This will wake up all threads waiting on this particular completion event.
4291 *
4292 * It may be assumed that this function implies a write memory barrier before
4293 * changing the task state if and only if any tasks are woken up.
4294 */
4295 void complete_all(struct completion *x)
4296 {
4297 unsigned long flags;
4298
4299 spin_lock_irqsave(&x->wait.lock, flags);
4300 x->done += UINT_MAX/2;
4301 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4302 spin_unlock_irqrestore(&x->wait.lock, flags);
4303 }
4304 EXPORT_SYMBOL(complete_all);
4305
4306 static inline long __sched
4307 do_wait_for_common(struct completion *x, long timeout, int state)
4308 {
4309 if (!x->done) {
4310 DECLARE_WAITQUEUE(wait, current);
4311
4312 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4313 do {
4314 if (signal_pending_state(state, current)) {
4315 timeout = -ERESTARTSYS;
4316 break;
4317 }
4318 __set_current_state(state);
4319 spin_unlock_irq(&x->wait.lock);
4320 timeout = schedule_timeout(timeout);
4321 spin_lock_irq(&x->wait.lock);
4322 } while (!x->done && timeout);
4323 __remove_wait_queue(&x->wait, &wait);
4324 if (!x->done)
4325 return timeout;
4326 }
4327 x->done--;
4328 return timeout ?: 1;
4329 }
4330
4331 static long __sched
4332 wait_for_common(struct completion *x, long timeout, int state)
4333 {
4334 might_sleep();
4335
4336 spin_lock_irq(&x->wait.lock);
4337 timeout = do_wait_for_common(x, timeout, state);
4338 spin_unlock_irq(&x->wait.lock);
4339 return timeout;
4340 }
4341
4342 /**
4343 * wait_for_completion: - waits for completion of a task
4344 * @x: holds the state of this particular completion
4345 *
4346 * This waits to be signaled for completion of a specific task. It is NOT
4347 * interruptible and there is no timeout.
4348 *
4349 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4350 * and interrupt capability. Also see complete().
4351 */
4352 void __sched wait_for_completion(struct completion *x)
4353 {
4354 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4355 }
4356 EXPORT_SYMBOL(wait_for_completion);
4357
4358 /**
4359 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4360 * @x: holds the state of this particular completion
4361 * @timeout: timeout value in jiffies
4362 *
4363 * This waits for either a completion of a specific task to be signaled or for a
4364 * specified timeout to expire. The timeout is in jiffies. It is not
4365 * interruptible.
4366 */
4367 unsigned long __sched
4368 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4369 {
4370 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4371 }
4372 EXPORT_SYMBOL(wait_for_completion_timeout);
4373
4374 /**
4375 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4376 * @x: holds the state of this particular completion
4377 *
4378 * This waits for completion of a specific task to be signaled. It is
4379 * interruptible.
4380 */
4381 int __sched wait_for_completion_interruptible(struct completion *x)
4382 {
4383 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4384 if (t == -ERESTARTSYS)
4385 return t;
4386 return 0;
4387 }
4388 EXPORT_SYMBOL(wait_for_completion_interruptible);
4389
4390 /**
4391 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4392 * @x: holds the state of this particular completion
4393 * @timeout: timeout value in jiffies
4394 *
4395 * This waits for either a completion of a specific task to be signaled or for a
4396 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4397 */
4398 long __sched
4399 wait_for_completion_interruptible_timeout(struct completion *x,
4400 unsigned long timeout)
4401 {
4402 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4403 }
4404 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4405
4406 /**
4407 * wait_for_completion_killable: - waits for completion of a task (killable)
4408 * @x: holds the state of this particular completion
4409 *
4410 * This waits to be signaled for completion of a specific task. It can be
4411 * interrupted by a kill signal.
4412 */
4413 int __sched wait_for_completion_killable(struct completion *x)
4414 {
4415 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4416 if (t == -ERESTARTSYS)
4417 return t;
4418 return 0;
4419 }
4420 EXPORT_SYMBOL(wait_for_completion_killable);
4421
4422 /**
4423 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4424 * @x: holds the state of this particular completion
4425 * @timeout: timeout value in jiffies
4426 *
4427 * This waits for either a completion of a specific task to be
4428 * signaled or for a specified timeout to expire. It can be
4429 * interrupted by a kill signal. The timeout is in jiffies.
4430 */
4431 long __sched
4432 wait_for_completion_killable_timeout(struct completion *x,
4433 unsigned long timeout)
4434 {
4435 return wait_for_common(x, timeout, TASK_KILLABLE);
4436 }
4437 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4438
4439 /**
4440 * try_wait_for_completion - try to decrement a completion without blocking
4441 * @x: completion structure
4442 *
4443 * Returns: 0 if a decrement cannot be done without blocking
4444 * 1 if a decrement succeeded.
4445 *
4446 * If a completion is being used as a counting completion,
4447 * attempt to decrement the counter without blocking. This
4448 * enables us to avoid waiting if the resource the completion
4449 * is protecting is not available.
4450 */
4451 bool try_wait_for_completion(struct completion *x)
4452 {
4453 unsigned long flags;
4454 int ret = 1;
4455
4456 spin_lock_irqsave(&x->wait.lock, flags);
4457 if (!x->done)
4458 ret = 0;
4459 else
4460 x->done--;
4461 spin_unlock_irqrestore(&x->wait.lock, flags);
4462 return ret;
4463 }
4464 EXPORT_SYMBOL(try_wait_for_completion);
4465
4466 /**
4467 * completion_done - Test to see if a completion has any waiters
4468 * @x: completion structure
4469 *
4470 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4471 * 1 if there are no waiters.
4472 *
4473 */
4474 bool completion_done(struct completion *x)
4475 {
4476 unsigned long flags;
4477 int ret = 1;
4478
4479 spin_lock_irqsave(&x->wait.lock, flags);
4480 if (!x->done)
4481 ret = 0;
4482 spin_unlock_irqrestore(&x->wait.lock, flags);
4483 return ret;
4484 }
4485 EXPORT_SYMBOL(completion_done);
4486
4487 static long __sched
4488 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4489 {
4490 unsigned long flags;
4491 wait_queue_t wait;
4492
4493 init_waitqueue_entry(&wait, current);
4494
4495 __set_current_state(state);
4496
4497 spin_lock_irqsave(&q->lock, flags);
4498 __add_wait_queue(q, &wait);
4499 spin_unlock(&q->lock);
4500 timeout = schedule_timeout(timeout);
4501 spin_lock_irq(&q->lock);
4502 __remove_wait_queue(q, &wait);
4503 spin_unlock_irqrestore(&q->lock, flags);
4504
4505 return timeout;
4506 }
4507
4508 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4509 {
4510 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4511 }
4512 EXPORT_SYMBOL(interruptible_sleep_on);
4513
4514 long __sched
4515 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4516 {
4517 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4518 }
4519 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4520
4521 void __sched sleep_on(wait_queue_head_t *q)
4522 {
4523 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4524 }
4525 EXPORT_SYMBOL(sleep_on);
4526
4527 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4528 {
4529 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4530 }
4531 EXPORT_SYMBOL(sleep_on_timeout);
4532
4533 #ifdef CONFIG_RT_MUTEXES
4534
4535 /*
4536 * rt_mutex_setprio - set the current priority of a task
4537 * @p: task
4538 * @prio: prio value (kernel-internal form)
4539 *
4540 * This function changes the 'effective' priority of a task. It does
4541 * not touch ->normal_prio like __setscheduler().
4542 *
4543 * Used by the rt_mutex code to implement priority inheritance logic.
4544 */
4545 void rt_mutex_setprio(struct task_struct *p, int prio)
4546 {
4547 unsigned long flags;
4548 int oldprio, on_rq, running;
4549 struct rq *rq;
4550 const struct sched_class *prev_class;
4551
4552 BUG_ON(prio < 0 || prio > MAX_PRIO);
4553
4554 rq = task_rq_lock(p, &flags);
4555
4556 trace_sched_pi_setprio(p, prio);
4557 oldprio = p->prio;
4558 prev_class = p->sched_class;
4559 on_rq = p->se.on_rq;
4560 running = task_current(rq, p);
4561 if (on_rq)
4562 dequeue_task(rq, p, 0);
4563 if (running)
4564 p->sched_class->put_prev_task(rq, p);
4565
4566 if (rt_prio(prio))
4567 p->sched_class = &rt_sched_class;
4568 else
4569 p->sched_class = &fair_sched_class;
4570
4571 p->prio = prio;
4572
4573 if (running)
4574 p->sched_class->set_curr_task(rq);
4575 if (on_rq) {
4576 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4577
4578 check_class_changed(rq, p, prev_class, oldprio, running);
4579 }
4580 task_rq_unlock(rq, &flags);
4581 }
4582
4583 #endif
4584
4585 void set_user_nice(struct task_struct *p, long nice)
4586 {
4587 int old_prio, delta, on_rq;
4588 unsigned long flags;
4589 struct rq *rq;
4590
4591 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4592 return;
4593 /*
4594 * We have to be careful, if called from sys_setpriority(),
4595 * the task might be in the middle of scheduling on another CPU.
4596 */
4597 rq = task_rq_lock(p, &flags);
4598 /*
4599 * The RT priorities are set via sched_setscheduler(), but we still
4600 * allow the 'normal' nice value to be set - but as expected
4601 * it wont have any effect on scheduling until the task is
4602 * SCHED_FIFO/SCHED_RR:
4603 */
4604 if (task_has_rt_policy(p)) {
4605 p->static_prio = NICE_TO_PRIO(nice);
4606 goto out_unlock;
4607 }
4608 on_rq = p->se.on_rq;
4609 if (on_rq)
4610 dequeue_task(rq, p, 0);
4611
4612 p->static_prio = NICE_TO_PRIO(nice);
4613 set_load_weight(p);
4614 old_prio = p->prio;
4615 p->prio = effective_prio(p);
4616 delta = p->prio - old_prio;
4617
4618 if (on_rq) {
4619 enqueue_task(rq, p, 0);
4620 /*
4621 * If the task increased its priority or is running and
4622 * lowered its priority, then reschedule its CPU:
4623 */
4624 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4625 resched_task(rq->curr);
4626 }
4627 out_unlock:
4628 task_rq_unlock(rq, &flags);
4629 }
4630 EXPORT_SYMBOL(set_user_nice);
4631
4632 /*
4633 * can_nice - check if a task can reduce its nice value
4634 * @p: task
4635 * @nice: nice value
4636 */
4637 int can_nice(const struct task_struct *p, const int nice)
4638 {
4639 /* convert nice value [19,-20] to rlimit style value [1,40] */
4640 int nice_rlim = 20 - nice;
4641
4642 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4643 capable(CAP_SYS_NICE));
4644 }
4645
4646 #ifdef __ARCH_WANT_SYS_NICE
4647
4648 /*
4649 * sys_nice - change the priority of the current process.
4650 * @increment: priority increment
4651 *
4652 * sys_setpriority is a more generic, but much slower function that
4653 * does similar things.
4654 */
4655 SYSCALL_DEFINE1(nice, int, increment)
4656 {
4657 long nice, retval;
4658
4659 /*
4660 * Setpriority might change our priority at the same moment.
4661 * We don't have to worry. Conceptually one call occurs first
4662 * and we have a single winner.
4663 */
4664 if (increment < -40)
4665 increment = -40;
4666 if (increment > 40)
4667 increment = 40;
4668
4669 nice = TASK_NICE(current) + increment;
4670 if (nice < -20)
4671 nice = -20;
4672 if (nice > 19)
4673 nice = 19;
4674
4675 if (increment < 0 && !can_nice(current, nice))
4676 return -EPERM;
4677
4678 retval = security_task_setnice(current, nice);
4679 if (retval)
4680 return retval;
4681
4682 set_user_nice(current, nice);
4683 return 0;
4684 }
4685
4686 #endif
4687
4688 /**
4689 * task_prio - return the priority value of a given task.
4690 * @p: the task in question.
4691 *
4692 * This is the priority value as seen by users in /proc.
4693 * RT tasks are offset by -200. Normal tasks are centered
4694 * around 0, value goes from -16 to +15.
4695 */
4696 int task_prio(const struct task_struct *p)
4697 {
4698 return p->prio - MAX_RT_PRIO;
4699 }
4700
4701 /**
4702 * task_nice - return the nice value of a given task.
4703 * @p: the task in question.
4704 */
4705 int task_nice(const struct task_struct *p)
4706 {
4707 return TASK_NICE(p);
4708 }
4709 EXPORT_SYMBOL(task_nice);
4710
4711 /**
4712 * idle_cpu - is a given cpu idle currently?
4713 * @cpu: the processor in question.
4714 */
4715 int idle_cpu(int cpu)
4716 {
4717 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4718 }
4719
4720 /**
4721 * idle_task - return the idle task for a given cpu.
4722 * @cpu: the processor in question.
4723 */
4724 struct task_struct *idle_task(int cpu)
4725 {
4726 return cpu_rq(cpu)->idle;
4727 }
4728
4729 /**
4730 * find_process_by_pid - find a process with a matching PID value.
4731 * @pid: the pid in question.
4732 */
4733 static struct task_struct *find_process_by_pid(pid_t pid)
4734 {
4735 return pid ? find_task_by_vpid(pid) : current;
4736 }
4737
4738 /* Actually do priority change: must hold rq lock. */
4739 static void
4740 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4741 {
4742 BUG_ON(p->se.on_rq);
4743
4744 p->policy = policy;
4745 p->rt_priority = prio;
4746 p->normal_prio = normal_prio(p);
4747 /* we are holding p->pi_lock already */
4748 p->prio = rt_mutex_getprio(p);
4749 if (rt_prio(p->prio))
4750 p->sched_class = &rt_sched_class;
4751 else
4752 p->sched_class = &fair_sched_class;
4753 set_load_weight(p);
4754 }
4755
4756 /*
4757 * check the target process has a UID that matches the current process's
4758 */
4759 static bool check_same_owner(struct task_struct *p)
4760 {
4761 const struct cred *cred = current_cred(), *pcred;
4762 bool match;
4763
4764 rcu_read_lock();
4765 pcred = __task_cred(p);
4766 match = (cred->euid == pcred->euid ||
4767 cred->euid == pcred->uid);
4768 rcu_read_unlock();
4769 return match;
4770 }
4771
4772 static int __sched_setscheduler(struct task_struct *p, int policy,
4773 const struct sched_param *param, bool user)
4774 {
4775 int retval, oldprio, oldpolicy = -1, on_rq, running;
4776 unsigned long flags;
4777 const struct sched_class *prev_class;
4778 struct rq *rq;
4779 int reset_on_fork;
4780
4781 /* may grab non-irq protected spin_locks */
4782 BUG_ON(in_interrupt());
4783 recheck:
4784 /* double check policy once rq lock held */
4785 if (policy < 0) {
4786 reset_on_fork = p->sched_reset_on_fork;
4787 policy = oldpolicy = p->policy;
4788 } else {
4789 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4790 policy &= ~SCHED_RESET_ON_FORK;
4791
4792 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4793 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4794 policy != SCHED_IDLE)
4795 return -EINVAL;
4796 }
4797
4798 /*
4799 * Valid priorities for SCHED_FIFO and SCHED_RR are
4800 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4801 * SCHED_BATCH and SCHED_IDLE is 0.
4802 */
4803 if (param->sched_priority < 0 ||
4804 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4805 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4806 return -EINVAL;
4807 if (rt_policy(policy) != (param->sched_priority != 0))
4808 return -EINVAL;
4809
4810 /*
4811 * Allow unprivileged RT tasks to decrease priority:
4812 */
4813 if (user && !capable(CAP_SYS_NICE)) {
4814 if (rt_policy(policy)) {
4815 unsigned long rlim_rtprio =
4816 task_rlimit(p, RLIMIT_RTPRIO);
4817
4818 /* can't set/change the rt policy */
4819 if (policy != p->policy && !rlim_rtprio)
4820 return -EPERM;
4821
4822 /* can't increase priority */
4823 if (param->sched_priority > p->rt_priority &&
4824 param->sched_priority > rlim_rtprio)
4825 return -EPERM;
4826 }
4827 /*
4828 * Like positive nice levels, dont allow tasks to
4829 * move out of SCHED_IDLE either:
4830 */
4831 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4832 return -EPERM;
4833
4834 /* can't change other user's priorities */
4835 if (!check_same_owner(p))
4836 return -EPERM;
4837
4838 /* Normal users shall not reset the sched_reset_on_fork flag */
4839 if (p->sched_reset_on_fork && !reset_on_fork)
4840 return -EPERM;
4841 }
4842
4843 if (user) {
4844 retval = security_task_setscheduler(p);
4845 if (retval)
4846 return retval;
4847 }
4848
4849 /*
4850 * make sure no PI-waiters arrive (or leave) while we are
4851 * changing the priority of the task:
4852 */
4853 raw_spin_lock_irqsave(&p->pi_lock, flags);
4854 /*
4855 * To be able to change p->policy safely, the apropriate
4856 * runqueue lock must be held.
4857 */
4858 rq = __task_rq_lock(p);
4859
4860 /*
4861 * Changing the policy of the stop threads its a very bad idea
4862 */
4863 if (p == rq->stop) {
4864 __task_rq_unlock(rq);
4865 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4866 return -EINVAL;
4867 }
4868
4869 #ifdef CONFIG_RT_GROUP_SCHED
4870 if (user) {
4871 /*
4872 * Do not allow realtime tasks into groups that have no runtime
4873 * assigned.
4874 */
4875 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4876 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4877 __task_rq_unlock(rq);
4878 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4879 return -EPERM;
4880 }
4881 }
4882 #endif
4883
4884 /* recheck policy now with rq lock held */
4885 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4886 policy = oldpolicy = -1;
4887 __task_rq_unlock(rq);
4888 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4889 goto recheck;
4890 }
4891 on_rq = p->se.on_rq;
4892 running = task_current(rq, p);
4893 if (on_rq)
4894 deactivate_task(rq, p, 0);
4895 if (running)
4896 p->sched_class->put_prev_task(rq, p);
4897
4898 p->sched_reset_on_fork = reset_on_fork;
4899
4900 oldprio = p->prio;
4901 prev_class = p->sched_class;
4902 __setscheduler(rq, p, policy, param->sched_priority);
4903
4904 if (running)
4905 p->sched_class->set_curr_task(rq);
4906 if (on_rq) {
4907 activate_task(rq, p, 0);
4908
4909 check_class_changed(rq, p, prev_class, oldprio, running);
4910 }
4911 __task_rq_unlock(rq);
4912 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4913
4914 rt_mutex_adjust_pi(p);
4915
4916 return 0;
4917 }
4918
4919 /**
4920 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4921 * @p: the task in question.
4922 * @policy: new policy.
4923 * @param: structure containing the new RT priority.
4924 *
4925 * NOTE that the task may be already dead.
4926 */
4927 int sched_setscheduler(struct task_struct *p, int policy,
4928 const struct sched_param *param)
4929 {
4930 return __sched_setscheduler(p, policy, param, true);
4931 }
4932 EXPORT_SYMBOL_GPL(sched_setscheduler);
4933
4934 /**
4935 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4936 * @p: the task in question.
4937 * @policy: new policy.
4938 * @param: structure containing the new RT priority.
4939 *
4940 * Just like sched_setscheduler, only don't bother checking if the
4941 * current context has permission. For example, this is needed in
4942 * stop_machine(): we create temporary high priority worker threads,
4943 * but our caller might not have that capability.
4944 */
4945 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4946 const struct sched_param *param)
4947 {
4948 return __sched_setscheduler(p, policy, param, false);
4949 }
4950
4951 static int
4952 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4953 {
4954 struct sched_param lparam;
4955 struct task_struct *p;
4956 int retval;
4957
4958 if (!param || pid < 0)
4959 return -EINVAL;
4960 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4961 return -EFAULT;
4962
4963 rcu_read_lock();
4964 retval = -ESRCH;
4965 p = find_process_by_pid(pid);
4966 if (p != NULL)
4967 retval = sched_setscheduler(p, policy, &lparam);
4968 rcu_read_unlock();
4969
4970 return retval;
4971 }
4972
4973 /**
4974 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4975 * @pid: the pid in question.
4976 * @policy: new policy.
4977 * @param: structure containing the new RT priority.
4978 */
4979 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4980 struct sched_param __user *, param)
4981 {
4982 /* negative values for policy are not valid */
4983 if (policy < 0)
4984 return -EINVAL;
4985
4986 return do_sched_setscheduler(pid, policy, param);
4987 }
4988
4989 /**
4990 * sys_sched_setparam - set/change the RT priority of a thread
4991 * @pid: the pid in question.
4992 * @param: structure containing the new RT priority.
4993 */
4994 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4995 {
4996 return do_sched_setscheduler(pid, -1, param);
4997 }
4998
4999 /**
5000 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5001 * @pid: the pid in question.
5002 */
5003 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5004 {
5005 struct task_struct *p;
5006 int retval;
5007
5008 if (pid < 0)
5009 return -EINVAL;
5010
5011 retval = -ESRCH;
5012 rcu_read_lock();
5013 p = find_process_by_pid(pid);
5014 if (p) {
5015 retval = security_task_getscheduler(p);
5016 if (!retval)
5017 retval = p->policy
5018 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5019 }
5020 rcu_read_unlock();
5021 return retval;
5022 }
5023
5024 /**
5025 * sys_sched_getparam - get the RT priority of a thread
5026 * @pid: the pid in question.
5027 * @param: structure containing the RT priority.
5028 */
5029 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5030 {
5031 struct sched_param lp;
5032 struct task_struct *p;
5033 int retval;
5034
5035 if (!param || pid < 0)
5036 return -EINVAL;
5037
5038 rcu_read_lock();
5039 p = find_process_by_pid(pid);
5040 retval = -ESRCH;
5041 if (!p)
5042 goto out_unlock;
5043
5044 retval = security_task_getscheduler(p);
5045 if (retval)
5046 goto out_unlock;
5047
5048 lp.sched_priority = p->rt_priority;
5049 rcu_read_unlock();
5050
5051 /*
5052 * This one might sleep, we cannot do it with a spinlock held ...
5053 */
5054 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5055
5056 return retval;
5057
5058 out_unlock:
5059 rcu_read_unlock();
5060 return retval;
5061 }
5062
5063 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5064 {
5065 cpumask_var_t cpus_allowed, new_mask;
5066 struct task_struct *p;
5067 int retval;
5068
5069 get_online_cpus();
5070 rcu_read_lock();
5071
5072 p = find_process_by_pid(pid);
5073 if (!p) {
5074 rcu_read_unlock();
5075 put_online_cpus();
5076 return -ESRCH;
5077 }
5078
5079 /* Prevent p going away */
5080 get_task_struct(p);
5081 rcu_read_unlock();
5082
5083 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5084 retval = -ENOMEM;
5085 goto out_put_task;
5086 }
5087 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5088 retval = -ENOMEM;
5089 goto out_free_cpus_allowed;
5090 }
5091 retval = -EPERM;
5092 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5093 goto out_unlock;
5094
5095 retval = security_task_setscheduler(p);
5096 if (retval)
5097 goto out_unlock;
5098
5099 cpuset_cpus_allowed(p, cpus_allowed);
5100 cpumask_and(new_mask, in_mask, cpus_allowed);
5101 again:
5102 retval = set_cpus_allowed_ptr(p, new_mask);
5103
5104 if (!retval) {
5105 cpuset_cpus_allowed(p, cpus_allowed);
5106 if (!cpumask_subset(new_mask, cpus_allowed)) {
5107 /*
5108 * We must have raced with a concurrent cpuset
5109 * update. Just reset the cpus_allowed to the
5110 * cpuset's cpus_allowed
5111 */
5112 cpumask_copy(new_mask, cpus_allowed);
5113 goto again;
5114 }
5115 }
5116 out_unlock:
5117 free_cpumask_var(new_mask);
5118 out_free_cpus_allowed:
5119 free_cpumask_var(cpus_allowed);
5120 out_put_task:
5121 put_task_struct(p);
5122 put_online_cpus();
5123 return retval;
5124 }
5125
5126 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5127 struct cpumask *new_mask)
5128 {
5129 if (len < cpumask_size())
5130 cpumask_clear(new_mask);
5131 else if (len > cpumask_size())
5132 len = cpumask_size();
5133
5134 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5135 }
5136
5137 /**
5138 * sys_sched_setaffinity - set the cpu affinity of a process
5139 * @pid: pid of the process
5140 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5141 * @user_mask_ptr: user-space pointer to the new cpu mask
5142 */
5143 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5144 unsigned long __user *, user_mask_ptr)
5145 {
5146 cpumask_var_t new_mask;
5147 int retval;
5148
5149 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5150 return -ENOMEM;
5151
5152 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5153 if (retval == 0)
5154 retval = sched_setaffinity(pid, new_mask);
5155 free_cpumask_var(new_mask);
5156 return retval;
5157 }
5158
5159 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5160 {
5161 struct task_struct *p;
5162 unsigned long flags;
5163 struct rq *rq;
5164 int retval;
5165
5166 get_online_cpus();
5167 rcu_read_lock();
5168
5169 retval = -ESRCH;
5170 p = find_process_by_pid(pid);
5171 if (!p)
5172 goto out_unlock;
5173
5174 retval = security_task_getscheduler(p);
5175 if (retval)
5176 goto out_unlock;
5177
5178 rq = task_rq_lock(p, &flags);
5179 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5180 task_rq_unlock(rq, &flags);
5181
5182 out_unlock:
5183 rcu_read_unlock();
5184 put_online_cpus();
5185
5186 return retval;
5187 }
5188
5189 /**
5190 * sys_sched_getaffinity - get the cpu affinity of a process
5191 * @pid: pid of the process
5192 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5193 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5194 */
5195 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5196 unsigned long __user *, user_mask_ptr)
5197 {
5198 int ret;
5199 cpumask_var_t mask;
5200
5201 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5202 return -EINVAL;
5203 if (len & (sizeof(unsigned long)-1))
5204 return -EINVAL;
5205
5206 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5207 return -ENOMEM;
5208
5209 ret = sched_getaffinity(pid, mask);
5210 if (ret == 0) {
5211 size_t retlen = min_t(size_t, len, cpumask_size());
5212
5213 if (copy_to_user(user_mask_ptr, mask, retlen))
5214 ret = -EFAULT;
5215 else
5216 ret = retlen;
5217 }
5218 free_cpumask_var(mask);
5219
5220 return ret;
5221 }
5222
5223 /**
5224 * sys_sched_yield - yield the current processor to other threads.
5225 *
5226 * This function yields the current CPU to other tasks. If there are no
5227 * other threads running on this CPU then this function will return.
5228 */
5229 SYSCALL_DEFINE0(sched_yield)
5230 {
5231 struct rq *rq = this_rq_lock();
5232
5233 schedstat_inc(rq, yld_count);
5234 current->sched_class->yield_task(rq);
5235
5236 /*
5237 * Since we are going to call schedule() anyway, there's
5238 * no need to preempt or enable interrupts:
5239 */
5240 __release(rq->lock);
5241 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5242 do_raw_spin_unlock(&rq->lock);
5243 preempt_enable_no_resched();
5244
5245 schedule();
5246
5247 return 0;
5248 }
5249
5250 static inline int should_resched(void)
5251 {
5252 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5253 }
5254
5255 static void __cond_resched(void)
5256 {
5257 add_preempt_count(PREEMPT_ACTIVE);
5258 schedule();
5259 sub_preempt_count(PREEMPT_ACTIVE);
5260 }
5261
5262 int __sched _cond_resched(void)
5263 {
5264 if (should_resched()) {
5265 __cond_resched();
5266 return 1;
5267 }
5268 return 0;
5269 }
5270 EXPORT_SYMBOL(_cond_resched);
5271
5272 /*
5273 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5274 * call schedule, and on return reacquire the lock.
5275 *
5276 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5277 * operations here to prevent schedule() from being called twice (once via
5278 * spin_unlock(), once by hand).
5279 */
5280 int __cond_resched_lock(spinlock_t *lock)
5281 {
5282 int resched = should_resched();
5283 int ret = 0;
5284
5285 lockdep_assert_held(lock);
5286
5287 if (spin_needbreak(lock) || resched) {
5288 spin_unlock(lock);
5289 if (resched)
5290 __cond_resched();
5291 else
5292 cpu_relax();
5293 ret = 1;
5294 spin_lock(lock);
5295 }
5296 return ret;
5297 }
5298 EXPORT_SYMBOL(__cond_resched_lock);
5299
5300 int __sched __cond_resched_softirq(void)
5301 {
5302 BUG_ON(!in_softirq());
5303
5304 if (should_resched()) {
5305 local_bh_enable();
5306 __cond_resched();
5307 local_bh_disable();
5308 return 1;
5309 }
5310 return 0;
5311 }
5312 EXPORT_SYMBOL(__cond_resched_softirq);
5313
5314 /**
5315 * yield - yield the current processor to other threads.
5316 *
5317 * This is a shortcut for kernel-space yielding - it marks the
5318 * thread runnable and calls sys_sched_yield().
5319 */
5320 void __sched yield(void)
5321 {
5322 set_current_state(TASK_RUNNING);
5323 sys_sched_yield();
5324 }
5325 EXPORT_SYMBOL(yield);
5326
5327 /*
5328 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5329 * that process accounting knows that this is a task in IO wait state.
5330 */
5331 void __sched io_schedule(void)
5332 {
5333 struct rq *rq = raw_rq();
5334
5335 delayacct_blkio_start();
5336 atomic_inc(&rq->nr_iowait);
5337 current->in_iowait = 1;
5338 schedule();
5339 current->in_iowait = 0;
5340 atomic_dec(&rq->nr_iowait);
5341 delayacct_blkio_end();
5342 }
5343 EXPORT_SYMBOL(io_schedule);
5344
5345 long __sched io_schedule_timeout(long timeout)
5346 {
5347 struct rq *rq = raw_rq();
5348 long ret;
5349
5350 delayacct_blkio_start();
5351 atomic_inc(&rq->nr_iowait);
5352 current->in_iowait = 1;
5353 ret = schedule_timeout(timeout);
5354 current->in_iowait = 0;
5355 atomic_dec(&rq->nr_iowait);
5356 delayacct_blkio_end();
5357 return ret;
5358 }
5359
5360 /**
5361 * sys_sched_get_priority_max - return maximum RT priority.
5362 * @policy: scheduling class.
5363 *
5364 * this syscall returns the maximum rt_priority that can be used
5365 * by a given scheduling class.
5366 */
5367 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5368 {
5369 int ret = -EINVAL;
5370
5371 switch (policy) {
5372 case SCHED_FIFO:
5373 case SCHED_RR:
5374 ret = MAX_USER_RT_PRIO-1;
5375 break;
5376 case SCHED_NORMAL:
5377 case SCHED_BATCH:
5378 case SCHED_IDLE:
5379 ret = 0;
5380 break;
5381 }
5382 return ret;
5383 }
5384
5385 /**
5386 * sys_sched_get_priority_min - return minimum RT priority.
5387 * @policy: scheduling class.
5388 *
5389 * this syscall returns the minimum rt_priority that can be used
5390 * by a given scheduling class.
5391 */
5392 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5393 {
5394 int ret = -EINVAL;
5395
5396 switch (policy) {
5397 case SCHED_FIFO:
5398 case SCHED_RR:
5399 ret = 1;
5400 break;
5401 case SCHED_NORMAL:
5402 case SCHED_BATCH:
5403 case SCHED_IDLE:
5404 ret = 0;
5405 }
5406 return ret;
5407 }
5408
5409 /**
5410 * sys_sched_rr_get_interval - return the default timeslice of a process.
5411 * @pid: pid of the process.
5412 * @interval: userspace pointer to the timeslice value.
5413 *
5414 * this syscall writes the default timeslice value of a given process
5415 * into the user-space timespec buffer. A value of '0' means infinity.
5416 */
5417 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5418 struct timespec __user *, interval)
5419 {
5420 struct task_struct *p;
5421 unsigned int time_slice;
5422 unsigned long flags;
5423 struct rq *rq;
5424 int retval;
5425 struct timespec t;
5426
5427 if (pid < 0)
5428 return -EINVAL;
5429
5430 retval = -ESRCH;
5431 rcu_read_lock();
5432 p = find_process_by_pid(pid);
5433 if (!p)
5434 goto out_unlock;
5435
5436 retval = security_task_getscheduler(p);
5437 if (retval)
5438 goto out_unlock;
5439
5440 rq = task_rq_lock(p, &flags);
5441 time_slice = p->sched_class->get_rr_interval(rq, p);
5442 task_rq_unlock(rq, &flags);
5443
5444 rcu_read_unlock();
5445 jiffies_to_timespec(time_slice, &t);
5446 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5447 return retval;
5448
5449 out_unlock:
5450 rcu_read_unlock();
5451 return retval;
5452 }
5453
5454 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5455
5456 void sched_show_task(struct task_struct *p)
5457 {
5458 unsigned long free = 0;
5459 unsigned state;
5460
5461 state = p->state ? __ffs(p->state) + 1 : 0;
5462 printk(KERN_INFO "%-15.15s %c", p->comm,
5463 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5464 #if BITS_PER_LONG == 32
5465 if (state == TASK_RUNNING)
5466 printk(KERN_CONT " running ");
5467 else
5468 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5469 #else
5470 if (state == TASK_RUNNING)
5471 printk(KERN_CONT " running task ");
5472 else
5473 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5474 #endif
5475 #ifdef CONFIG_DEBUG_STACK_USAGE
5476 free = stack_not_used(p);
5477 #endif
5478 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5479 task_pid_nr(p), task_pid_nr(p->real_parent),
5480 (unsigned long)task_thread_info(p)->flags);
5481
5482 show_stack(p, NULL);
5483 }
5484
5485 void show_state_filter(unsigned long state_filter)
5486 {
5487 struct task_struct *g, *p;
5488
5489 #if BITS_PER_LONG == 32
5490 printk(KERN_INFO
5491 " task PC stack pid father\n");
5492 #else
5493 printk(KERN_INFO
5494 " task PC stack pid father\n");
5495 #endif
5496 read_lock(&tasklist_lock);
5497 do_each_thread(g, p) {
5498 /*
5499 * reset the NMI-timeout, listing all files on a slow
5500 * console might take alot of time:
5501 */
5502 touch_nmi_watchdog();
5503 if (!state_filter || (p->state & state_filter))
5504 sched_show_task(p);
5505 } while_each_thread(g, p);
5506
5507 touch_all_softlockup_watchdogs();
5508
5509 #ifdef CONFIG_SCHED_DEBUG
5510 sysrq_sched_debug_show();
5511 #endif
5512 read_unlock(&tasklist_lock);
5513 /*
5514 * Only show locks if all tasks are dumped:
5515 */
5516 if (!state_filter)
5517 debug_show_all_locks();
5518 }
5519
5520 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5521 {
5522 idle->sched_class = &idle_sched_class;
5523 }
5524
5525 /**
5526 * init_idle - set up an idle thread for a given CPU
5527 * @idle: task in question
5528 * @cpu: cpu the idle task belongs to
5529 *
5530 * NOTE: this function does not set the idle thread's NEED_RESCHED
5531 * flag, to make booting more robust.
5532 */
5533 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5534 {
5535 struct rq *rq = cpu_rq(cpu);
5536 unsigned long flags;
5537
5538 raw_spin_lock_irqsave(&rq->lock, flags);
5539
5540 __sched_fork(idle);
5541 idle->state = TASK_RUNNING;
5542 idle->se.exec_start = sched_clock();
5543
5544 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5545 /*
5546 * We're having a chicken and egg problem, even though we are
5547 * holding rq->lock, the cpu isn't yet set to this cpu so the
5548 * lockdep check in task_group() will fail.
5549 *
5550 * Similar case to sched_fork(). / Alternatively we could
5551 * use task_rq_lock() here and obtain the other rq->lock.
5552 *
5553 * Silence PROVE_RCU
5554 */
5555 rcu_read_lock();
5556 __set_task_cpu(idle, cpu);
5557 rcu_read_unlock();
5558
5559 rq->curr = rq->idle = idle;
5560 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5561 idle->oncpu = 1;
5562 #endif
5563 raw_spin_unlock_irqrestore(&rq->lock, flags);
5564
5565 /* Set the preempt count _outside_ the spinlocks! */
5566 #if defined(CONFIG_PREEMPT)
5567 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5568 #else
5569 task_thread_info(idle)->preempt_count = 0;
5570 #endif
5571 /*
5572 * The idle tasks have their own, simple scheduling class:
5573 */
5574 idle->sched_class = &idle_sched_class;
5575 ftrace_graph_init_task(idle);
5576 }
5577
5578 /*
5579 * In a system that switches off the HZ timer nohz_cpu_mask
5580 * indicates which cpus entered this state. This is used
5581 * in the rcu update to wait only for active cpus. For system
5582 * which do not switch off the HZ timer nohz_cpu_mask should
5583 * always be CPU_BITS_NONE.
5584 */
5585 cpumask_var_t nohz_cpu_mask;
5586
5587 /*
5588 * Increase the granularity value when there are more CPUs,
5589 * because with more CPUs the 'effective latency' as visible
5590 * to users decreases. But the relationship is not linear,
5591 * so pick a second-best guess by going with the log2 of the
5592 * number of CPUs.
5593 *
5594 * This idea comes from the SD scheduler of Con Kolivas:
5595 */
5596 static int get_update_sysctl_factor(void)
5597 {
5598 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5599 unsigned int factor;
5600
5601 switch (sysctl_sched_tunable_scaling) {
5602 case SCHED_TUNABLESCALING_NONE:
5603 factor = 1;
5604 break;
5605 case SCHED_TUNABLESCALING_LINEAR:
5606 factor = cpus;
5607 break;
5608 case SCHED_TUNABLESCALING_LOG:
5609 default:
5610 factor = 1 + ilog2(cpus);
5611 break;
5612 }
5613
5614 return factor;
5615 }
5616
5617 static void update_sysctl(void)
5618 {
5619 unsigned int factor = get_update_sysctl_factor();
5620
5621 #define SET_SYSCTL(name) \
5622 (sysctl_##name = (factor) * normalized_sysctl_##name)
5623 SET_SYSCTL(sched_min_granularity);
5624 SET_SYSCTL(sched_latency);
5625 SET_SYSCTL(sched_wakeup_granularity);
5626 #undef SET_SYSCTL
5627 }
5628
5629 static inline void sched_init_granularity(void)
5630 {
5631 update_sysctl();
5632 }
5633
5634 #ifdef CONFIG_SMP
5635 /*
5636 * This is how migration works:
5637 *
5638 * 1) we invoke migration_cpu_stop() on the target CPU using
5639 * stop_one_cpu().
5640 * 2) stopper starts to run (implicitly forcing the migrated thread
5641 * off the CPU)
5642 * 3) it checks whether the migrated task is still in the wrong runqueue.
5643 * 4) if it's in the wrong runqueue then the migration thread removes
5644 * it and puts it into the right queue.
5645 * 5) stopper completes and stop_one_cpu() returns and the migration
5646 * is done.
5647 */
5648
5649 /*
5650 * Change a given task's CPU affinity. Migrate the thread to a
5651 * proper CPU and schedule it away if the CPU it's executing on
5652 * is removed from the allowed bitmask.
5653 *
5654 * NOTE: the caller must have a valid reference to the task, the
5655 * task must not exit() & deallocate itself prematurely. The
5656 * call is not atomic; no spinlocks may be held.
5657 */
5658 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5659 {
5660 unsigned long flags;
5661 struct rq *rq;
5662 unsigned int dest_cpu;
5663 int ret = 0;
5664
5665 /*
5666 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5667 * drop the rq->lock and still rely on ->cpus_allowed.
5668 */
5669 again:
5670 while (task_is_waking(p))
5671 cpu_relax();
5672 rq = task_rq_lock(p, &flags);
5673 if (task_is_waking(p)) {
5674 task_rq_unlock(rq, &flags);
5675 goto again;
5676 }
5677
5678 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5679 ret = -EINVAL;
5680 goto out;
5681 }
5682
5683 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5684 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5685 ret = -EINVAL;
5686 goto out;
5687 }
5688
5689 if (p->sched_class->set_cpus_allowed)
5690 p->sched_class->set_cpus_allowed(p, new_mask);
5691 else {
5692 cpumask_copy(&p->cpus_allowed, new_mask);
5693 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5694 }
5695
5696 /* Can the task run on the task's current CPU? If so, we're done */
5697 if (cpumask_test_cpu(task_cpu(p), new_mask))
5698 goto out;
5699
5700 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5701 if (migrate_task(p, rq)) {
5702 struct migration_arg arg = { p, dest_cpu };
5703 /* Need help from migration thread: drop lock and wait. */
5704 task_rq_unlock(rq, &flags);
5705 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5706 tlb_migrate_finish(p->mm);
5707 return 0;
5708 }
5709 out:
5710 task_rq_unlock(rq, &flags);
5711
5712 return ret;
5713 }
5714 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5715
5716 /*
5717 * Move (not current) task off this cpu, onto dest cpu. We're doing
5718 * this because either it can't run here any more (set_cpus_allowed()
5719 * away from this CPU, or CPU going down), or because we're
5720 * attempting to rebalance this task on exec (sched_exec).
5721 *
5722 * So we race with normal scheduler movements, but that's OK, as long
5723 * as the task is no longer on this CPU.
5724 *
5725 * Returns non-zero if task was successfully migrated.
5726 */
5727 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5728 {
5729 struct rq *rq_dest, *rq_src;
5730 int ret = 0;
5731
5732 if (unlikely(!cpu_active(dest_cpu)))
5733 return ret;
5734
5735 rq_src = cpu_rq(src_cpu);
5736 rq_dest = cpu_rq(dest_cpu);
5737
5738 double_rq_lock(rq_src, rq_dest);
5739 /* Already moved. */
5740 if (task_cpu(p) != src_cpu)
5741 goto done;
5742 /* Affinity changed (again). */
5743 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5744 goto fail;
5745
5746 /*
5747 * If we're not on a rq, the next wake-up will ensure we're
5748 * placed properly.
5749 */
5750 if (p->se.on_rq) {
5751 deactivate_task(rq_src, p, 0);
5752 set_task_cpu(p, dest_cpu);
5753 activate_task(rq_dest, p, 0);
5754 check_preempt_curr(rq_dest, p, 0);
5755 }
5756 done:
5757 ret = 1;
5758 fail:
5759 double_rq_unlock(rq_src, rq_dest);
5760 return ret;
5761 }
5762
5763 /*
5764 * migration_cpu_stop - this will be executed by a highprio stopper thread
5765 * and performs thread migration by bumping thread off CPU then
5766 * 'pushing' onto another runqueue.
5767 */
5768 static int migration_cpu_stop(void *data)
5769 {
5770 struct migration_arg *arg = data;
5771
5772 /*
5773 * The original target cpu might have gone down and we might
5774 * be on another cpu but it doesn't matter.
5775 */
5776 local_irq_disable();
5777 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5778 local_irq_enable();
5779 return 0;
5780 }
5781
5782 #ifdef CONFIG_HOTPLUG_CPU
5783
5784 /*
5785 * Ensures that the idle task is using init_mm right before its cpu goes
5786 * offline.
5787 */
5788 void idle_task_exit(void)
5789 {
5790 struct mm_struct *mm = current->active_mm;
5791
5792 BUG_ON(cpu_online(smp_processor_id()));
5793
5794 if (mm != &init_mm)
5795 switch_mm(mm, &init_mm, current);
5796 mmdrop(mm);
5797 }
5798
5799 /*
5800 * While a dead CPU has no uninterruptible tasks queued at this point,
5801 * it might still have a nonzero ->nr_uninterruptible counter, because
5802 * for performance reasons the counter is not stricly tracking tasks to
5803 * their home CPUs. So we just add the counter to another CPU's counter,
5804 * to keep the global sum constant after CPU-down:
5805 */
5806 static void migrate_nr_uninterruptible(struct rq *rq_src)
5807 {
5808 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5809
5810 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5811 rq_src->nr_uninterruptible = 0;
5812 }
5813
5814 /*
5815 * remove the tasks which were accounted by rq from calc_load_tasks.
5816 */
5817 static void calc_global_load_remove(struct rq *rq)
5818 {
5819 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5820 rq->calc_load_active = 0;
5821 }
5822
5823 /*
5824 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5825 * try_to_wake_up()->select_task_rq().
5826 *
5827 * Called with rq->lock held even though we'er in stop_machine() and
5828 * there's no concurrency possible, we hold the required locks anyway
5829 * because of lock validation efforts.
5830 */
5831 static void migrate_tasks(unsigned int dead_cpu)
5832 {
5833 struct rq *rq = cpu_rq(dead_cpu);
5834 struct task_struct *next, *stop = rq->stop;
5835 int dest_cpu;
5836
5837 /*
5838 * Fudge the rq selection such that the below task selection loop
5839 * doesn't get stuck on the currently eligible stop task.
5840 *
5841 * We're currently inside stop_machine() and the rq is either stuck
5842 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5843 * either way we should never end up calling schedule() until we're
5844 * done here.
5845 */
5846 rq->stop = NULL;
5847
5848 for ( ; ; ) {
5849 /*
5850 * There's this thread running, bail when that's the only
5851 * remaining thread.
5852 */
5853 if (rq->nr_running == 1)
5854 break;
5855
5856 next = pick_next_task(rq);
5857 BUG_ON(!next);
5858 next->sched_class->put_prev_task(rq, next);
5859
5860 /* Find suitable destination for @next, with force if needed. */
5861 dest_cpu = select_fallback_rq(dead_cpu, next);
5862 raw_spin_unlock(&rq->lock);
5863
5864 __migrate_task(next, dead_cpu, dest_cpu);
5865
5866 raw_spin_lock(&rq->lock);
5867 }
5868
5869 rq->stop = stop;
5870 }
5871
5872 #endif /* CONFIG_HOTPLUG_CPU */
5873
5874 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5875
5876 static struct ctl_table sd_ctl_dir[] = {
5877 {
5878 .procname = "sched_domain",
5879 .mode = 0555,
5880 },
5881 {}
5882 };
5883
5884 static struct ctl_table sd_ctl_root[] = {
5885 {
5886 .procname = "kernel",
5887 .mode = 0555,
5888 .child = sd_ctl_dir,
5889 },
5890 {}
5891 };
5892
5893 static struct ctl_table *sd_alloc_ctl_entry(int n)
5894 {
5895 struct ctl_table *entry =
5896 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5897
5898 return entry;
5899 }
5900
5901 static void sd_free_ctl_entry(struct ctl_table **tablep)
5902 {
5903 struct ctl_table *entry;
5904
5905 /*
5906 * In the intermediate directories, both the child directory and
5907 * procname are dynamically allocated and could fail but the mode
5908 * will always be set. In the lowest directory the names are
5909 * static strings and all have proc handlers.
5910 */
5911 for (entry = *tablep; entry->mode; entry++) {
5912 if (entry->child)
5913 sd_free_ctl_entry(&entry->child);
5914 if (entry->proc_handler == NULL)
5915 kfree(entry->procname);
5916 }
5917
5918 kfree(*tablep);
5919 *tablep = NULL;
5920 }
5921
5922 static void
5923 set_table_entry(struct ctl_table *entry,
5924 const char *procname, void *data, int maxlen,
5925 mode_t mode, proc_handler *proc_handler)
5926 {
5927 entry->procname = procname;
5928 entry->data = data;
5929 entry->maxlen = maxlen;
5930 entry->mode = mode;
5931 entry->proc_handler = proc_handler;
5932 }
5933
5934 static struct ctl_table *
5935 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5936 {
5937 struct ctl_table *table = sd_alloc_ctl_entry(13);
5938
5939 if (table == NULL)
5940 return NULL;
5941
5942 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5943 sizeof(long), 0644, proc_doulongvec_minmax);
5944 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5945 sizeof(long), 0644, proc_doulongvec_minmax);
5946 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5947 sizeof(int), 0644, proc_dointvec_minmax);
5948 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5949 sizeof(int), 0644, proc_dointvec_minmax);
5950 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5951 sizeof(int), 0644, proc_dointvec_minmax);
5952 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5953 sizeof(int), 0644, proc_dointvec_minmax);
5954 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5955 sizeof(int), 0644, proc_dointvec_minmax);
5956 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5957 sizeof(int), 0644, proc_dointvec_minmax);
5958 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5959 sizeof(int), 0644, proc_dointvec_minmax);
5960 set_table_entry(&table[9], "cache_nice_tries",
5961 &sd->cache_nice_tries,
5962 sizeof(int), 0644, proc_dointvec_minmax);
5963 set_table_entry(&table[10], "flags", &sd->flags,
5964 sizeof(int), 0644, proc_dointvec_minmax);
5965 set_table_entry(&table[11], "name", sd->name,
5966 CORENAME_MAX_SIZE, 0444, proc_dostring);
5967 /* &table[12] is terminator */
5968
5969 return table;
5970 }
5971
5972 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5973 {
5974 struct ctl_table *entry, *table;
5975 struct sched_domain *sd;
5976 int domain_num = 0, i;
5977 char buf[32];
5978
5979 for_each_domain(cpu, sd)
5980 domain_num++;
5981 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5982 if (table == NULL)
5983 return NULL;
5984
5985 i = 0;
5986 for_each_domain(cpu, sd) {
5987 snprintf(buf, 32, "domain%d", i);
5988 entry->procname = kstrdup(buf, GFP_KERNEL);
5989 entry->mode = 0555;
5990 entry->child = sd_alloc_ctl_domain_table(sd);
5991 entry++;
5992 i++;
5993 }
5994 return table;
5995 }
5996
5997 static struct ctl_table_header *sd_sysctl_header;
5998 static void register_sched_domain_sysctl(void)
5999 {
6000 int i, cpu_num = num_possible_cpus();
6001 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6002 char buf[32];
6003
6004 WARN_ON(sd_ctl_dir[0].child);
6005 sd_ctl_dir[0].child = entry;
6006
6007 if (entry == NULL)
6008 return;
6009
6010 for_each_possible_cpu(i) {
6011 snprintf(buf, 32, "cpu%d", i);
6012 entry->procname = kstrdup(buf, GFP_KERNEL);
6013 entry->mode = 0555;
6014 entry->child = sd_alloc_ctl_cpu_table(i);
6015 entry++;
6016 }
6017
6018 WARN_ON(sd_sysctl_header);
6019 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6020 }
6021
6022 /* may be called multiple times per register */
6023 static void unregister_sched_domain_sysctl(void)
6024 {
6025 if (sd_sysctl_header)
6026 unregister_sysctl_table(sd_sysctl_header);
6027 sd_sysctl_header = NULL;
6028 if (sd_ctl_dir[0].child)
6029 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6030 }
6031 #else
6032 static void register_sched_domain_sysctl(void)
6033 {
6034 }
6035 static void unregister_sched_domain_sysctl(void)
6036 {
6037 }
6038 #endif
6039
6040 static void set_rq_online(struct rq *rq)
6041 {
6042 if (!rq->online) {
6043 const struct sched_class *class;
6044
6045 cpumask_set_cpu(rq->cpu, rq->rd->online);
6046 rq->online = 1;
6047
6048 for_each_class(class) {
6049 if (class->rq_online)
6050 class->rq_online(rq);
6051 }
6052 }
6053 }
6054
6055 static void set_rq_offline(struct rq *rq)
6056 {
6057 if (rq->online) {
6058 const struct sched_class *class;
6059
6060 for_each_class(class) {
6061 if (class->rq_offline)
6062 class->rq_offline(rq);
6063 }
6064
6065 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6066 rq->online = 0;
6067 }
6068 }
6069
6070 /*
6071 * migration_call - callback that gets triggered when a CPU is added.
6072 * Here we can start up the necessary migration thread for the new CPU.
6073 */
6074 static int __cpuinit
6075 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6076 {
6077 int cpu = (long)hcpu;
6078 unsigned long flags;
6079 struct rq *rq = cpu_rq(cpu);
6080
6081 switch (action & ~CPU_TASKS_FROZEN) {
6082
6083 case CPU_UP_PREPARE:
6084 rq->calc_load_update = calc_load_update;
6085 break;
6086
6087 case CPU_ONLINE:
6088 /* Update our root-domain */
6089 raw_spin_lock_irqsave(&rq->lock, flags);
6090 if (rq->rd) {
6091 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6092
6093 set_rq_online(rq);
6094 }
6095 raw_spin_unlock_irqrestore(&rq->lock, flags);
6096 break;
6097
6098 #ifdef CONFIG_HOTPLUG_CPU
6099 case CPU_DYING:
6100 /* Update our root-domain */
6101 raw_spin_lock_irqsave(&rq->lock, flags);
6102 if (rq->rd) {
6103 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6104 set_rq_offline(rq);
6105 }
6106 migrate_tasks(cpu);
6107 BUG_ON(rq->nr_running != 1); /* the migration thread */
6108 raw_spin_unlock_irqrestore(&rq->lock, flags);
6109
6110 migrate_nr_uninterruptible(rq);
6111 calc_global_load_remove(rq);
6112 break;
6113 #endif
6114 }
6115 return NOTIFY_OK;
6116 }
6117
6118 /*
6119 * Register at high priority so that task migration (migrate_all_tasks)
6120 * happens before everything else. This has to be lower priority than
6121 * the notifier in the perf_event subsystem, though.
6122 */
6123 static struct notifier_block __cpuinitdata migration_notifier = {
6124 .notifier_call = migration_call,
6125 .priority = CPU_PRI_MIGRATION,
6126 };
6127
6128 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6129 unsigned long action, void *hcpu)
6130 {
6131 switch (action & ~CPU_TASKS_FROZEN) {
6132 case CPU_ONLINE:
6133 case CPU_DOWN_FAILED:
6134 set_cpu_active((long)hcpu, true);
6135 return NOTIFY_OK;
6136 default:
6137 return NOTIFY_DONE;
6138 }
6139 }
6140
6141 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6142 unsigned long action, void *hcpu)
6143 {
6144 switch (action & ~CPU_TASKS_FROZEN) {
6145 case CPU_DOWN_PREPARE:
6146 set_cpu_active((long)hcpu, false);
6147 return NOTIFY_OK;
6148 default:
6149 return NOTIFY_DONE;
6150 }
6151 }
6152
6153 static int __init migration_init(void)
6154 {
6155 void *cpu = (void *)(long)smp_processor_id();
6156 int err;
6157
6158 /* Initialize migration for the boot CPU */
6159 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6160 BUG_ON(err == NOTIFY_BAD);
6161 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6162 register_cpu_notifier(&migration_notifier);
6163
6164 /* Register cpu active notifiers */
6165 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6166 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6167
6168 return 0;
6169 }
6170 early_initcall(migration_init);
6171 #endif
6172
6173 #ifdef CONFIG_SMP
6174
6175 #ifdef CONFIG_SCHED_DEBUG
6176
6177 static __read_mostly int sched_domain_debug_enabled;
6178
6179 static int __init sched_domain_debug_setup(char *str)
6180 {
6181 sched_domain_debug_enabled = 1;
6182
6183 return 0;
6184 }
6185 early_param("sched_debug", sched_domain_debug_setup);
6186
6187 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6188 struct cpumask *groupmask)
6189 {
6190 struct sched_group *group = sd->groups;
6191 char str[256];
6192
6193 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6194 cpumask_clear(groupmask);
6195
6196 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6197
6198 if (!(sd->flags & SD_LOAD_BALANCE)) {
6199 printk("does not load-balance\n");
6200 if (sd->parent)
6201 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6202 " has parent");
6203 return -1;
6204 }
6205
6206 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6207
6208 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6209 printk(KERN_ERR "ERROR: domain->span does not contain "
6210 "CPU%d\n", cpu);
6211 }
6212 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6213 printk(KERN_ERR "ERROR: domain->groups does not contain"
6214 " CPU%d\n", cpu);
6215 }
6216
6217 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6218 do {
6219 if (!group) {
6220 printk("\n");
6221 printk(KERN_ERR "ERROR: group is NULL\n");
6222 break;
6223 }
6224
6225 if (!group->cpu_power) {
6226 printk(KERN_CONT "\n");
6227 printk(KERN_ERR "ERROR: domain->cpu_power not "
6228 "set\n");
6229 break;
6230 }
6231
6232 if (!cpumask_weight(sched_group_cpus(group))) {
6233 printk(KERN_CONT "\n");
6234 printk(KERN_ERR "ERROR: empty group\n");
6235 break;
6236 }
6237
6238 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6239 printk(KERN_CONT "\n");
6240 printk(KERN_ERR "ERROR: repeated CPUs\n");
6241 break;
6242 }
6243
6244 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6245
6246 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6247
6248 printk(KERN_CONT " %s", str);
6249 if (group->cpu_power != SCHED_LOAD_SCALE) {
6250 printk(KERN_CONT " (cpu_power = %d)",
6251 group->cpu_power);
6252 }
6253
6254 group = group->next;
6255 } while (group != sd->groups);
6256 printk(KERN_CONT "\n");
6257
6258 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6259 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6260
6261 if (sd->parent &&
6262 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6263 printk(KERN_ERR "ERROR: parent span is not a superset "
6264 "of domain->span\n");
6265 return 0;
6266 }
6267
6268 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6269 {
6270 cpumask_var_t groupmask;
6271 int level = 0;
6272
6273 if (!sched_domain_debug_enabled)
6274 return;
6275
6276 if (!sd) {
6277 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6278 return;
6279 }
6280
6281 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6282
6283 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6284 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6285 return;
6286 }
6287
6288 for (;;) {
6289 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6290 break;
6291 level++;
6292 sd = sd->parent;
6293 if (!sd)
6294 break;
6295 }
6296 free_cpumask_var(groupmask);
6297 }
6298 #else /* !CONFIG_SCHED_DEBUG */
6299 # define sched_domain_debug(sd, cpu) do { } while (0)
6300 #endif /* CONFIG_SCHED_DEBUG */
6301
6302 static int sd_degenerate(struct sched_domain *sd)
6303 {
6304 if (cpumask_weight(sched_domain_span(sd)) == 1)
6305 return 1;
6306
6307 /* Following flags need at least 2 groups */
6308 if (sd->flags & (SD_LOAD_BALANCE |
6309 SD_BALANCE_NEWIDLE |
6310 SD_BALANCE_FORK |
6311 SD_BALANCE_EXEC |
6312 SD_SHARE_CPUPOWER |
6313 SD_SHARE_PKG_RESOURCES)) {
6314 if (sd->groups != sd->groups->next)
6315 return 0;
6316 }
6317
6318 /* Following flags don't use groups */
6319 if (sd->flags & (SD_WAKE_AFFINE))
6320 return 0;
6321
6322 return 1;
6323 }
6324
6325 static int
6326 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6327 {
6328 unsigned long cflags = sd->flags, pflags = parent->flags;
6329
6330 if (sd_degenerate(parent))
6331 return 1;
6332
6333 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6334 return 0;
6335
6336 /* Flags needing groups don't count if only 1 group in parent */
6337 if (parent->groups == parent->groups->next) {
6338 pflags &= ~(SD_LOAD_BALANCE |
6339 SD_BALANCE_NEWIDLE |
6340 SD_BALANCE_FORK |
6341 SD_BALANCE_EXEC |
6342 SD_SHARE_CPUPOWER |
6343 SD_SHARE_PKG_RESOURCES);
6344 if (nr_node_ids == 1)
6345 pflags &= ~SD_SERIALIZE;
6346 }
6347 if (~cflags & pflags)
6348 return 0;
6349
6350 return 1;
6351 }
6352
6353 static void free_rootdomain(struct root_domain *rd)
6354 {
6355 synchronize_sched();
6356
6357 cpupri_cleanup(&rd->cpupri);
6358
6359 free_cpumask_var(rd->rto_mask);
6360 free_cpumask_var(rd->online);
6361 free_cpumask_var(rd->span);
6362 kfree(rd);
6363 }
6364
6365 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6366 {
6367 struct root_domain *old_rd = NULL;
6368 unsigned long flags;
6369
6370 raw_spin_lock_irqsave(&rq->lock, flags);
6371
6372 if (rq->rd) {
6373 old_rd = rq->rd;
6374
6375 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6376 set_rq_offline(rq);
6377
6378 cpumask_clear_cpu(rq->cpu, old_rd->span);
6379
6380 /*
6381 * If we dont want to free the old_rt yet then
6382 * set old_rd to NULL to skip the freeing later
6383 * in this function:
6384 */
6385 if (!atomic_dec_and_test(&old_rd->refcount))
6386 old_rd = NULL;
6387 }
6388
6389 atomic_inc(&rd->refcount);
6390 rq->rd = rd;
6391
6392 cpumask_set_cpu(rq->cpu, rd->span);
6393 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6394 set_rq_online(rq);
6395
6396 raw_spin_unlock_irqrestore(&rq->lock, flags);
6397
6398 if (old_rd)
6399 free_rootdomain(old_rd);
6400 }
6401
6402 static int init_rootdomain(struct root_domain *rd)
6403 {
6404 memset(rd, 0, sizeof(*rd));
6405
6406 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6407 goto out;
6408 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6409 goto free_span;
6410 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6411 goto free_online;
6412
6413 if (cpupri_init(&rd->cpupri) != 0)
6414 goto free_rto_mask;
6415 return 0;
6416
6417 free_rto_mask:
6418 free_cpumask_var(rd->rto_mask);
6419 free_online:
6420 free_cpumask_var(rd->online);
6421 free_span:
6422 free_cpumask_var(rd->span);
6423 out:
6424 return -ENOMEM;
6425 }
6426
6427 static void init_defrootdomain(void)
6428 {
6429 init_rootdomain(&def_root_domain);
6430
6431 atomic_set(&def_root_domain.refcount, 1);
6432 }
6433
6434 static struct root_domain *alloc_rootdomain(void)
6435 {
6436 struct root_domain *rd;
6437
6438 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6439 if (!rd)
6440 return NULL;
6441
6442 if (init_rootdomain(rd) != 0) {
6443 kfree(rd);
6444 return NULL;
6445 }
6446
6447 return rd;
6448 }
6449
6450 /*
6451 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6452 * hold the hotplug lock.
6453 */
6454 static void
6455 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6456 {
6457 struct rq *rq = cpu_rq(cpu);
6458 struct sched_domain *tmp;
6459
6460 for (tmp = sd; tmp; tmp = tmp->parent)
6461 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6462
6463 /* Remove the sched domains which do not contribute to scheduling. */
6464 for (tmp = sd; tmp; ) {
6465 struct sched_domain *parent = tmp->parent;
6466 if (!parent)
6467 break;
6468
6469 if (sd_parent_degenerate(tmp, parent)) {
6470 tmp->parent = parent->parent;
6471 if (parent->parent)
6472 parent->parent->child = tmp;
6473 } else
6474 tmp = tmp->parent;
6475 }
6476
6477 if (sd && sd_degenerate(sd)) {
6478 sd = sd->parent;
6479 if (sd)
6480 sd->child = NULL;
6481 }
6482
6483 sched_domain_debug(sd, cpu);
6484
6485 rq_attach_root(rq, rd);
6486 rcu_assign_pointer(rq->sd, sd);
6487 }
6488
6489 /* cpus with isolated domains */
6490 static cpumask_var_t cpu_isolated_map;
6491
6492 /* Setup the mask of cpus configured for isolated domains */
6493 static int __init isolated_cpu_setup(char *str)
6494 {
6495 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6496 cpulist_parse(str, cpu_isolated_map);
6497 return 1;
6498 }
6499
6500 __setup("isolcpus=", isolated_cpu_setup);
6501
6502 /*
6503 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6504 * to a function which identifies what group(along with sched group) a CPU
6505 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6506 * (due to the fact that we keep track of groups covered with a struct cpumask).
6507 *
6508 * init_sched_build_groups will build a circular linked list of the groups
6509 * covered by the given span, and will set each group's ->cpumask correctly,
6510 * and ->cpu_power to 0.
6511 */
6512 static void
6513 init_sched_build_groups(const struct cpumask *span,
6514 const struct cpumask *cpu_map,
6515 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6516 struct sched_group **sg,
6517 struct cpumask *tmpmask),
6518 struct cpumask *covered, struct cpumask *tmpmask)
6519 {
6520 struct sched_group *first = NULL, *last = NULL;
6521 int i;
6522
6523 cpumask_clear(covered);
6524
6525 for_each_cpu(i, span) {
6526 struct sched_group *sg;
6527 int group = group_fn(i, cpu_map, &sg, tmpmask);
6528 int j;
6529
6530 if (cpumask_test_cpu(i, covered))
6531 continue;
6532
6533 cpumask_clear(sched_group_cpus(sg));
6534 sg->cpu_power = 0;
6535
6536 for_each_cpu(j, span) {
6537 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6538 continue;
6539
6540 cpumask_set_cpu(j, covered);
6541 cpumask_set_cpu(j, sched_group_cpus(sg));
6542 }
6543 if (!first)
6544 first = sg;
6545 if (last)
6546 last->next = sg;
6547 last = sg;
6548 }
6549 last->next = first;
6550 }
6551
6552 #define SD_NODES_PER_DOMAIN 16
6553
6554 #ifdef CONFIG_NUMA
6555
6556 /**
6557 * find_next_best_node - find the next node to include in a sched_domain
6558 * @node: node whose sched_domain we're building
6559 * @used_nodes: nodes already in the sched_domain
6560 *
6561 * Find the next node to include in a given scheduling domain. Simply
6562 * finds the closest node not already in the @used_nodes map.
6563 *
6564 * Should use nodemask_t.
6565 */
6566 static int find_next_best_node(int node, nodemask_t *used_nodes)
6567 {
6568 int i, n, val, min_val, best_node = 0;
6569
6570 min_val = INT_MAX;
6571
6572 for (i = 0; i < nr_node_ids; i++) {
6573 /* Start at @node */
6574 n = (node + i) % nr_node_ids;
6575
6576 if (!nr_cpus_node(n))
6577 continue;
6578
6579 /* Skip already used nodes */
6580 if (node_isset(n, *used_nodes))
6581 continue;
6582
6583 /* Simple min distance search */
6584 val = node_distance(node, n);
6585
6586 if (val < min_val) {
6587 min_val = val;
6588 best_node = n;
6589 }
6590 }
6591
6592 node_set(best_node, *used_nodes);
6593 return best_node;
6594 }
6595
6596 /**
6597 * sched_domain_node_span - get a cpumask for a node's sched_domain
6598 * @node: node whose cpumask we're constructing
6599 * @span: resulting cpumask
6600 *
6601 * Given a node, construct a good cpumask for its sched_domain to span. It
6602 * should be one that prevents unnecessary balancing, but also spreads tasks
6603 * out optimally.
6604 */
6605 static void sched_domain_node_span(int node, struct cpumask *span)
6606 {
6607 nodemask_t used_nodes;
6608 int i;
6609
6610 cpumask_clear(span);
6611 nodes_clear(used_nodes);
6612
6613 cpumask_or(span, span, cpumask_of_node(node));
6614 node_set(node, used_nodes);
6615
6616 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6617 int next_node = find_next_best_node(node, &used_nodes);
6618
6619 cpumask_or(span, span, cpumask_of_node(next_node));
6620 }
6621 }
6622 #endif /* CONFIG_NUMA */
6623
6624 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6625
6626 /*
6627 * The cpus mask in sched_group and sched_domain hangs off the end.
6628 *
6629 * ( See the the comments in include/linux/sched.h:struct sched_group
6630 * and struct sched_domain. )
6631 */
6632 struct static_sched_group {
6633 struct sched_group sg;
6634 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6635 };
6636
6637 struct static_sched_domain {
6638 struct sched_domain sd;
6639 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6640 };
6641
6642 struct s_data {
6643 #ifdef CONFIG_NUMA
6644 int sd_allnodes;
6645 cpumask_var_t domainspan;
6646 cpumask_var_t covered;
6647 cpumask_var_t notcovered;
6648 #endif
6649 cpumask_var_t nodemask;
6650 cpumask_var_t this_sibling_map;
6651 cpumask_var_t this_core_map;
6652 cpumask_var_t this_book_map;
6653 cpumask_var_t send_covered;
6654 cpumask_var_t tmpmask;
6655 struct sched_group **sched_group_nodes;
6656 struct root_domain *rd;
6657 };
6658
6659 enum s_alloc {
6660 sa_sched_groups = 0,
6661 sa_rootdomain,
6662 sa_tmpmask,
6663 sa_send_covered,
6664 sa_this_book_map,
6665 sa_this_core_map,
6666 sa_this_sibling_map,
6667 sa_nodemask,
6668 sa_sched_group_nodes,
6669 #ifdef CONFIG_NUMA
6670 sa_notcovered,
6671 sa_covered,
6672 sa_domainspan,
6673 #endif
6674 sa_none,
6675 };
6676
6677 /*
6678 * SMT sched-domains:
6679 */
6680 #ifdef CONFIG_SCHED_SMT
6681 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6682 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6683
6684 static int
6685 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6686 struct sched_group **sg, struct cpumask *unused)
6687 {
6688 if (sg)
6689 *sg = &per_cpu(sched_groups, cpu).sg;
6690 return cpu;
6691 }
6692 #endif /* CONFIG_SCHED_SMT */
6693
6694 /*
6695 * multi-core sched-domains:
6696 */
6697 #ifdef CONFIG_SCHED_MC
6698 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6699 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6700
6701 static int
6702 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6703 struct sched_group **sg, struct cpumask *mask)
6704 {
6705 int group;
6706 #ifdef CONFIG_SCHED_SMT
6707 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6708 group = cpumask_first(mask);
6709 #else
6710 group = cpu;
6711 #endif
6712 if (sg)
6713 *sg = &per_cpu(sched_group_core, group).sg;
6714 return group;
6715 }
6716 #endif /* CONFIG_SCHED_MC */
6717
6718 /*
6719 * book sched-domains:
6720 */
6721 #ifdef CONFIG_SCHED_BOOK
6722 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6723 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6724
6725 static int
6726 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6727 struct sched_group **sg, struct cpumask *mask)
6728 {
6729 int group = cpu;
6730 #ifdef CONFIG_SCHED_MC
6731 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6732 group = cpumask_first(mask);
6733 #elif defined(CONFIG_SCHED_SMT)
6734 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6735 group = cpumask_first(mask);
6736 #endif
6737 if (sg)
6738 *sg = &per_cpu(sched_group_book, group).sg;
6739 return group;
6740 }
6741 #endif /* CONFIG_SCHED_BOOK */
6742
6743 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6744 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6745
6746 static int
6747 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6748 struct sched_group **sg, struct cpumask *mask)
6749 {
6750 int group;
6751 #ifdef CONFIG_SCHED_BOOK
6752 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6753 group = cpumask_first(mask);
6754 #elif defined(CONFIG_SCHED_MC)
6755 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6756 group = cpumask_first(mask);
6757 #elif defined(CONFIG_SCHED_SMT)
6758 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6759 group = cpumask_first(mask);
6760 #else
6761 group = cpu;
6762 #endif
6763 if (sg)
6764 *sg = &per_cpu(sched_group_phys, group).sg;
6765 return group;
6766 }
6767
6768 #ifdef CONFIG_NUMA
6769 /*
6770 * The init_sched_build_groups can't handle what we want to do with node
6771 * groups, so roll our own. Now each node has its own list of groups which
6772 * gets dynamically allocated.
6773 */
6774 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6775 static struct sched_group ***sched_group_nodes_bycpu;
6776
6777 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6778 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6779
6780 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6781 struct sched_group **sg,
6782 struct cpumask *nodemask)
6783 {
6784 int group;
6785
6786 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6787 group = cpumask_first(nodemask);
6788
6789 if (sg)
6790 *sg = &per_cpu(sched_group_allnodes, group).sg;
6791 return group;
6792 }
6793
6794 static void init_numa_sched_groups_power(struct sched_group *group_head)
6795 {
6796 struct sched_group *sg = group_head;
6797 int j;
6798
6799 if (!sg)
6800 return;
6801 do {
6802 for_each_cpu(j, sched_group_cpus(sg)) {
6803 struct sched_domain *sd;
6804
6805 sd = &per_cpu(phys_domains, j).sd;
6806 if (j != group_first_cpu(sd->groups)) {
6807 /*
6808 * Only add "power" once for each
6809 * physical package.
6810 */
6811 continue;
6812 }
6813
6814 sg->cpu_power += sd->groups->cpu_power;
6815 }
6816 sg = sg->next;
6817 } while (sg != group_head);
6818 }
6819
6820 static int build_numa_sched_groups(struct s_data *d,
6821 const struct cpumask *cpu_map, int num)
6822 {
6823 struct sched_domain *sd;
6824 struct sched_group *sg, *prev;
6825 int n, j;
6826
6827 cpumask_clear(d->covered);
6828 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6829 if (cpumask_empty(d->nodemask)) {
6830 d->sched_group_nodes[num] = NULL;
6831 goto out;
6832 }
6833
6834 sched_domain_node_span(num, d->domainspan);
6835 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6836
6837 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6838 GFP_KERNEL, num);
6839 if (!sg) {
6840 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6841 num);
6842 return -ENOMEM;
6843 }
6844 d->sched_group_nodes[num] = sg;
6845
6846 for_each_cpu(j, d->nodemask) {
6847 sd = &per_cpu(node_domains, j).sd;
6848 sd->groups = sg;
6849 }
6850
6851 sg->cpu_power = 0;
6852 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6853 sg->next = sg;
6854 cpumask_or(d->covered, d->covered, d->nodemask);
6855
6856 prev = sg;
6857 for (j = 0; j < nr_node_ids; j++) {
6858 n = (num + j) % nr_node_ids;
6859 cpumask_complement(d->notcovered, d->covered);
6860 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6861 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6862 if (cpumask_empty(d->tmpmask))
6863 break;
6864 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6865 if (cpumask_empty(d->tmpmask))
6866 continue;
6867 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6868 GFP_KERNEL, num);
6869 if (!sg) {
6870 printk(KERN_WARNING
6871 "Can not alloc domain group for node %d\n", j);
6872 return -ENOMEM;
6873 }
6874 sg->cpu_power = 0;
6875 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6876 sg->next = prev->next;
6877 cpumask_or(d->covered, d->covered, d->tmpmask);
6878 prev->next = sg;
6879 prev = sg;
6880 }
6881 out:
6882 return 0;
6883 }
6884 #endif /* CONFIG_NUMA */
6885
6886 #ifdef CONFIG_NUMA
6887 /* Free memory allocated for various sched_group structures */
6888 static void free_sched_groups(const struct cpumask *cpu_map,
6889 struct cpumask *nodemask)
6890 {
6891 int cpu, i;
6892
6893 for_each_cpu(cpu, cpu_map) {
6894 struct sched_group **sched_group_nodes
6895 = sched_group_nodes_bycpu[cpu];
6896
6897 if (!sched_group_nodes)
6898 continue;
6899
6900 for (i = 0; i < nr_node_ids; i++) {
6901 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6902
6903 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6904 if (cpumask_empty(nodemask))
6905 continue;
6906
6907 if (sg == NULL)
6908 continue;
6909 sg = sg->next;
6910 next_sg:
6911 oldsg = sg;
6912 sg = sg->next;
6913 kfree(oldsg);
6914 if (oldsg != sched_group_nodes[i])
6915 goto next_sg;
6916 }
6917 kfree(sched_group_nodes);
6918 sched_group_nodes_bycpu[cpu] = NULL;
6919 }
6920 }
6921 #else /* !CONFIG_NUMA */
6922 static void free_sched_groups(const struct cpumask *cpu_map,
6923 struct cpumask *nodemask)
6924 {
6925 }
6926 #endif /* CONFIG_NUMA */
6927
6928 /*
6929 * Initialize sched groups cpu_power.
6930 *
6931 * cpu_power indicates the capacity of sched group, which is used while
6932 * distributing the load between different sched groups in a sched domain.
6933 * Typically cpu_power for all the groups in a sched domain will be same unless
6934 * there are asymmetries in the topology. If there are asymmetries, group
6935 * having more cpu_power will pickup more load compared to the group having
6936 * less cpu_power.
6937 */
6938 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6939 {
6940 struct sched_domain *child;
6941 struct sched_group *group;
6942 long power;
6943 int weight;
6944
6945 WARN_ON(!sd || !sd->groups);
6946
6947 if (cpu != group_first_cpu(sd->groups))
6948 return;
6949
6950 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
6951
6952 child = sd->child;
6953
6954 sd->groups->cpu_power = 0;
6955
6956 if (!child) {
6957 power = SCHED_LOAD_SCALE;
6958 weight = cpumask_weight(sched_domain_span(sd));
6959 /*
6960 * SMT siblings share the power of a single core.
6961 * Usually multiple threads get a better yield out of
6962 * that one core than a single thread would have,
6963 * reflect that in sd->smt_gain.
6964 */
6965 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6966 power *= sd->smt_gain;
6967 power /= weight;
6968 power >>= SCHED_LOAD_SHIFT;
6969 }
6970 sd->groups->cpu_power += power;
6971 return;
6972 }
6973
6974 /*
6975 * Add cpu_power of each child group to this groups cpu_power.
6976 */
6977 group = child->groups;
6978 do {
6979 sd->groups->cpu_power += group->cpu_power;
6980 group = group->next;
6981 } while (group != child->groups);
6982 }
6983
6984 /*
6985 * Initializers for schedule domains
6986 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6987 */
6988
6989 #ifdef CONFIG_SCHED_DEBUG
6990 # define SD_INIT_NAME(sd, type) sd->name = #type
6991 #else
6992 # define SD_INIT_NAME(sd, type) do { } while (0)
6993 #endif
6994
6995 #define SD_INIT(sd, type) sd_init_##type(sd)
6996
6997 #define SD_INIT_FUNC(type) \
6998 static noinline void sd_init_##type(struct sched_domain *sd) \
6999 { \
7000 memset(sd, 0, sizeof(*sd)); \
7001 *sd = SD_##type##_INIT; \
7002 sd->level = SD_LV_##type; \
7003 SD_INIT_NAME(sd, type); \
7004 }
7005
7006 SD_INIT_FUNC(CPU)
7007 #ifdef CONFIG_NUMA
7008 SD_INIT_FUNC(ALLNODES)
7009 SD_INIT_FUNC(NODE)
7010 #endif
7011 #ifdef CONFIG_SCHED_SMT
7012 SD_INIT_FUNC(SIBLING)
7013 #endif
7014 #ifdef CONFIG_SCHED_MC
7015 SD_INIT_FUNC(MC)
7016 #endif
7017 #ifdef CONFIG_SCHED_BOOK
7018 SD_INIT_FUNC(BOOK)
7019 #endif
7020
7021 static int default_relax_domain_level = -1;
7022
7023 static int __init setup_relax_domain_level(char *str)
7024 {
7025 unsigned long val;
7026
7027 val = simple_strtoul(str, NULL, 0);
7028 if (val < SD_LV_MAX)
7029 default_relax_domain_level = val;
7030
7031 return 1;
7032 }
7033 __setup("relax_domain_level=", setup_relax_domain_level);
7034
7035 static void set_domain_attribute(struct sched_domain *sd,
7036 struct sched_domain_attr *attr)
7037 {
7038 int request;
7039
7040 if (!attr || attr->relax_domain_level < 0) {
7041 if (default_relax_domain_level < 0)
7042 return;
7043 else
7044 request = default_relax_domain_level;
7045 } else
7046 request = attr->relax_domain_level;
7047 if (request < sd->level) {
7048 /* turn off idle balance on this domain */
7049 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7050 } else {
7051 /* turn on idle balance on this domain */
7052 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7053 }
7054 }
7055
7056 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7057 const struct cpumask *cpu_map)
7058 {
7059 switch (what) {
7060 case sa_sched_groups:
7061 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7062 d->sched_group_nodes = NULL;
7063 case sa_rootdomain:
7064 free_rootdomain(d->rd); /* fall through */
7065 case sa_tmpmask:
7066 free_cpumask_var(d->tmpmask); /* fall through */
7067 case sa_send_covered:
7068 free_cpumask_var(d->send_covered); /* fall through */
7069 case sa_this_book_map:
7070 free_cpumask_var(d->this_book_map); /* fall through */
7071 case sa_this_core_map:
7072 free_cpumask_var(d->this_core_map); /* fall through */
7073 case sa_this_sibling_map:
7074 free_cpumask_var(d->this_sibling_map); /* fall through */
7075 case sa_nodemask:
7076 free_cpumask_var(d->nodemask); /* fall through */
7077 case sa_sched_group_nodes:
7078 #ifdef CONFIG_NUMA
7079 kfree(d->sched_group_nodes); /* fall through */
7080 case sa_notcovered:
7081 free_cpumask_var(d->notcovered); /* fall through */
7082 case sa_covered:
7083 free_cpumask_var(d->covered); /* fall through */
7084 case sa_domainspan:
7085 free_cpumask_var(d->domainspan); /* fall through */
7086 #endif
7087 case sa_none:
7088 break;
7089 }
7090 }
7091
7092 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7093 const struct cpumask *cpu_map)
7094 {
7095 #ifdef CONFIG_NUMA
7096 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7097 return sa_none;
7098 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7099 return sa_domainspan;
7100 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7101 return sa_covered;
7102 /* Allocate the per-node list of sched groups */
7103 d->sched_group_nodes = kcalloc(nr_node_ids,
7104 sizeof(struct sched_group *), GFP_KERNEL);
7105 if (!d->sched_group_nodes) {
7106 printk(KERN_WARNING "Can not alloc sched group node list\n");
7107 return sa_notcovered;
7108 }
7109 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7110 #endif
7111 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7112 return sa_sched_group_nodes;
7113 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7114 return sa_nodemask;
7115 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7116 return sa_this_sibling_map;
7117 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7118 return sa_this_core_map;
7119 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7120 return sa_this_book_map;
7121 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7122 return sa_send_covered;
7123 d->rd = alloc_rootdomain();
7124 if (!d->rd) {
7125 printk(KERN_WARNING "Cannot alloc root domain\n");
7126 return sa_tmpmask;
7127 }
7128 return sa_rootdomain;
7129 }
7130
7131 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7132 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7133 {
7134 struct sched_domain *sd = NULL;
7135 #ifdef CONFIG_NUMA
7136 struct sched_domain *parent;
7137
7138 d->sd_allnodes = 0;
7139 if (cpumask_weight(cpu_map) >
7140 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7141 sd = &per_cpu(allnodes_domains, i).sd;
7142 SD_INIT(sd, ALLNODES);
7143 set_domain_attribute(sd, attr);
7144 cpumask_copy(sched_domain_span(sd), cpu_map);
7145 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7146 d->sd_allnodes = 1;
7147 }
7148 parent = sd;
7149
7150 sd = &per_cpu(node_domains, i).sd;
7151 SD_INIT(sd, NODE);
7152 set_domain_attribute(sd, attr);
7153 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7154 sd->parent = parent;
7155 if (parent)
7156 parent->child = sd;
7157 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7158 #endif
7159 return sd;
7160 }
7161
7162 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7163 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7164 struct sched_domain *parent, int i)
7165 {
7166 struct sched_domain *sd;
7167 sd = &per_cpu(phys_domains, i).sd;
7168 SD_INIT(sd, CPU);
7169 set_domain_attribute(sd, attr);
7170 cpumask_copy(sched_domain_span(sd), d->nodemask);
7171 sd->parent = parent;
7172 if (parent)
7173 parent->child = sd;
7174 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7175 return sd;
7176 }
7177
7178 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7179 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7180 struct sched_domain *parent, int i)
7181 {
7182 struct sched_domain *sd = parent;
7183 #ifdef CONFIG_SCHED_BOOK
7184 sd = &per_cpu(book_domains, i).sd;
7185 SD_INIT(sd, BOOK);
7186 set_domain_attribute(sd, attr);
7187 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7188 sd->parent = parent;
7189 parent->child = sd;
7190 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7191 #endif
7192 return sd;
7193 }
7194
7195 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7196 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7197 struct sched_domain *parent, int i)
7198 {
7199 struct sched_domain *sd = parent;
7200 #ifdef CONFIG_SCHED_MC
7201 sd = &per_cpu(core_domains, i).sd;
7202 SD_INIT(sd, MC);
7203 set_domain_attribute(sd, attr);
7204 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7205 sd->parent = parent;
7206 parent->child = sd;
7207 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7208 #endif
7209 return sd;
7210 }
7211
7212 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7213 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7214 struct sched_domain *parent, int i)
7215 {
7216 struct sched_domain *sd = parent;
7217 #ifdef CONFIG_SCHED_SMT
7218 sd = &per_cpu(cpu_domains, i).sd;
7219 SD_INIT(sd, SIBLING);
7220 set_domain_attribute(sd, attr);
7221 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7222 sd->parent = parent;
7223 parent->child = sd;
7224 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7225 #endif
7226 return sd;
7227 }
7228
7229 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7230 const struct cpumask *cpu_map, int cpu)
7231 {
7232 switch (l) {
7233 #ifdef CONFIG_SCHED_SMT
7234 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7235 cpumask_and(d->this_sibling_map, cpu_map,
7236 topology_thread_cpumask(cpu));
7237 if (cpu == cpumask_first(d->this_sibling_map))
7238 init_sched_build_groups(d->this_sibling_map, cpu_map,
7239 &cpu_to_cpu_group,
7240 d->send_covered, d->tmpmask);
7241 break;
7242 #endif
7243 #ifdef CONFIG_SCHED_MC
7244 case SD_LV_MC: /* set up multi-core groups */
7245 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7246 if (cpu == cpumask_first(d->this_core_map))
7247 init_sched_build_groups(d->this_core_map, cpu_map,
7248 &cpu_to_core_group,
7249 d->send_covered, d->tmpmask);
7250 break;
7251 #endif
7252 #ifdef CONFIG_SCHED_BOOK
7253 case SD_LV_BOOK: /* set up book groups */
7254 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7255 if (cpu == cpumask_first(d->this_book_map))
7256 init_sched_build_groups(d->this_book_map, cpu_map,
7257 &cpu_to_book_group,
7258 d->send_covered, d->tmpmask);
7259 break;
7260 #endif
7261 case SD_LV_CPU: /* set up physical groups */
7262 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7263 if (!cpumask_empty(d->nodemask))
7264 init_sched_build_groups(d->nodemask, cpu_map,
7265 &cpu_to_phys_group,
7266 d->send_covered, d->tmpmask);
7267 break;
7268 #ifdef CONFIG_NUMA
7269 case SD_LV_ALLNODES:
7270 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7271 d->send_covered, d->tmpmask);
7272 break;
7273 #endif
7274 default:
7275 break;
7276 }
7277 }
7278
7279 /*
7280 * Build sched domains for a given set of cpus and attach the sched domains
7281 * to the individual cpus
7282 */
7283 static int __build_sched_domains(const struct cpumask *cpu_map,
7284 struct sched_domain_attr *attr)
7285 {
7286 enum s_alloc alloc_state = sa_none;
7287 struct s_data d;
7288 struct sched_domain *sd;
7289 int i;
7290 #ifdef CONFIG_NUMA
7291 d.sd_allnodes = 0;
7292 #endif
7293
7294 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7295 if (alloc_state != sa_rootdomain)
7296 goto error;
7297 alloc_state = sa_sched_groups;
7298
7299 /*
7300 * Set up domains for cpus specified by the cpu_map.
7301 */
7302 for_each_cpu(i, cpu_map) {
7303 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7304 cpu_map);
7305
7306 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7307 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7308 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7309 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7310 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7311 }
7312
7313 for_each_cpu(i, cpu_map) {
7314 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7315 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7316 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7317 }
7318
7319 /* Set up physical groups */
7320 for (i = 0; i < nr_node_ids; i++)
7321 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7322
7323 #ifdef CONFIG_NUMA
7324 /* Set up node groups */
7325 if (d.sd_allnodes)
7326 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7327
7328 for (i = 0; i < nr_node_ids; i++)
7329 if (build_numa_sched_groups(&d, cpu_map, i))
7330 goto error;
7331 #endif
7332
7333 /* Calculate CPU power for physical packages and nodes */
7334 #ifdef CONFIG_SCHED_SMT
7335 for_each_cpu(i, cpu_map) {
7336 sd = &per_cpu(cpu_domains, i).sd;
7337 init_sched_groups_power(i, sd);
7338 }
7339 #endif
7340 #ifdef CONFIG_SCHED_MC
7341 for_each_cpu(i, cpu_map) {
7342 sd = &per_cpu(core_domains, i).sd;
7343 init_sched_groups_power(i, sd);
7344 }
7345 #endif
7346 #ifdef CONFIG_SCHED_BOOK
7347 for_each_cpu(i, cpu_map) {
7348 sd = &per_cpu(book_domains, i).sd;
7349 init_sched_groups_power(i, sd);
7350 }
7351 #endif
7352
7353 for_each_cpu(i, cpu_map) {
7354 sd = &per_cpu(phys_domains, i).sd;
7355 init_sched_groups_power(i, sd);
7356 }
7357
7358 #ifdef CONFIG_NUMA
7359 for (i = 0; i < nr_node_ids; i++)
7360 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7361
7362 if (d.sd_allnodes) {
7363 struct sched_group *sg;
7364
7365 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7366 d.tmpmask);
7367 init_numa_sched_groups_power(sg);
7368 }
7369 #endif
7370
7371 /* Attach the domains */
7372 for_each_cpu(i, cpu_map) {
7373 #ifdef CONFIG_SCHED_SMT
7374 sd = &per_cpu(cpu_domains, i).sd;
7375 #elif defined(CONFIG_SCHED_MC)
7376 sd = &per_cpu(core_domains, i).sd;
7377 #elif defined(CONFIG_SCHED_BOOK)
7378 sd = &per_cpu(book_domains, i).sd;
7379 #else
7380 sd = &per_cpu(phys_domains, i).sd;
7381 #endif
7382 cpu_attach_domain(sd, d.rd, i);
7383 }
7384
7385 d.sched_group_nodes = NULL; /* don't free this we still need it */
7386 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7387 return 0;
7388
7389 error:
7390 __free_domain_allocs(&d, alloc_state, cpu_map);
7391 return -ENOMEM;
7392 }
7393
7394 static int build_sched_domains(const struct cpumask *cpu_map)
7395 {
7396 return __build_sched_domains(cpu_map, NULL);
7397 }
7398
7399 static cpumask_var_t *doms_cur; /* current sched domains */
7400 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7401 static struct sched_domain_attr *dattr_cur;
7402 /* attribues of custom domains in 'doms_cur' */
7403
7404 /*
7405 * Special case: If a kmalloc of a doms_cur partition (array of
7406 * cpumask) fails, then fallback to a single sched domain,
7407 * as determined by the single cpumask fallback_doms.
7408 */
7409 static cpumask_var_t fallback_doms;
7410
7411 /*
7412 * arch_update_cpu_topology lets virtualized architectures update the
7413 * cpu core maps. It is supposed to return 1 if the topology changed
7414 * or 0 if it stayed the same.
7415 */
7416 int __attribute__((weak)) arch_update_cpu_topology(void)
7417 {
7418 return 0;
7419 }
7420
7421 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7422 {
7423 int i;
7424 cpumask_var_t *doms;
7425
7426 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7427 if (!doms)
7428 return NULL;
7429 for (i = 0; i < ndoms; i++) {
7430 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7431 free_sched_domains(doms, i);
7432 return NULL;
7433 }
7434 }
7435 return doms;
7436 }
7437
7438 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7439 {
7440 unsigned int i;
7441 for (i = 0; i < ndoms; i++)
7442 free_cpumask_var(doms[i]);
7443 kfree(doms);
7444 }
7445
7446 /*
7447 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7448 * For now this just excludes isolated cpus, but could be used to
7449 * exclude other special cases in the future.
7450 */
7451 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7452 {
7453 int err;
7454
7455 arch_update_cpu_topology();
7456 ndoms_cur = 1;
7457 doms_cur = alloc_sched_domains(ndoms_cur);
7458 if (!doms_cur)
7459 doms_cur = &fallback_doms;
7460 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7461 dattr_cur = NULL;
7462 err = build_sched_domains(doms_cur[0]);
7463 register_sched_domain_sysctl();
7464
7465 return err;
7466 }
7467
7468 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7469 struct cpumask *tmpmask)
7470 {
7471 free_sched_groups(cpu_map, tmpmask);
7472 }
7473
7474 /*
7475 * Detach sched domains from a group of cpus specified in cpu_map
7476 * These cpus will now be attached to the NULL domain
7477 */
7478 static void detach_destroy_domains(const struct cpumask *cpu_map)
7479 {
7480 /* Save because hotplug lock held. */
7481 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7482 int i;
7483
7484 for_each_cpu(i, cpu_map)
7485 cpu_attach_domain(NULL, &def_root_domain, i);
7486 synchronize_sched();
7487 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7488 }
7489
7490 /* handle null as "default" */
7491 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7492 struct sched_domain_attr *new, int idx_new)
7493 {
7494 struct sched_domain_attr tmp;
7495
7496 /* fast path */
7497 if (!new && !cur)
7498 return 1;
7499
7500 tmp = SD_ATTR_INIT;
7501 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7502 new ? (new + idx_new) : &tmp,
7503 sizeof(struct sched_domain_attr));
7504 }
7505
7506 /*
7507 * Partition sched domains as specified by the 'ndoms_new'
7508 * cpumasks in the array doms_new[] of cpumasks. This compares
7509 * doms_new[] to the current sched domain partitioning, doms_cur[].
7510 * It destroys each deleted domain and builds each new domain.
7511 *
7512 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7513 * The masks don't intersect (don't overlap.) We should setup one
7514 * sched domain for each mask. CPUs not in any of the cpumasks will
7515 * not be load balanced. If the same cpumask appears both in the
7516 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7517 * it as it is.
7518 *
7519 * The passed in 'doms_new' should be allocated using
7520 * alloc_sched_domains. This routine takes ownership of it and will
7521 * free_sched_domains it when done with it. If the caller failed the
7522 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7523 * and partition_sched_domains() will fallback to the single partition
7524 * 'fallback_doms', it also forces the domains to be rebuilt.
7525 *
7526 * If doms_new == NULL it will be replaced with cpu_online_mask.
7527 * ndoms_new == 0 is a special case for destroying existing domains,
7528 * and it will not create the default domain.
7529 *
7530 * Call with hotplug lock held
7531 */
7532 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7533 struct sched_domain_attr *dattr_new)
7534 {
7535 int i, j, n;
7536 int new_topology;
7537
7538 mutex_lock(&sched_domains_mutex);
7539
7540 /* always unregister in case we don't destroy any domains */
7541 unregister_sched_domain_sysctl();
7542
7543 /* Let architecture update cpu core mappings. */
7544 new_topology = arch_update_cpu_topology();
7545
7546 n = doms_new ? ndoms_new : 0;
7547
7548 /* Destroy deleted domains */
7549 for (i = 0; i < ndoms_cur; i++) {
7550 for (j = 0; j < n && !new_topology; j++) {
7551 if (cpumask_equal(doms_cur[i], doms_new[j])
7552 && dattrs_equal(dattr_cur, i, dattr_new, j))
7553 goto match1;
7554 }
7555 /* no match - a current sched domain not in new doms_new[] */
7556 detach_destroy_domains(doms_cur[i]);
7557 match1:
7558 ;
7559 }
7560
7561 if (doms_new == NULL) {
7562 ndoms_cur = 0;
7563 doms_new = &fallback_doms;
7564 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7565 WARN_ON_ONCE(dattr_new);
7566 }
7567
7568 /* Build new domains */
7569 for (i = 0; i < ndoms_new; i++) {
7570 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7571 if (cpumask_equal(doms_new[i], doms_cur[j])
7572 && dattrs_equal(dattr_new, i, dattr_cur, j))
7573 goto match2;
7574 }
7575 /* no match - add a new doms_new */
7576 __build_sched_domains(doms_new[i],
7577 dattr_new ? dattr_new + i : NULL);
7578 match2:
7579 ;
7580 }
7581
7582 /* Remember the new sched domains */
7583 if (doms_cur != &fallback_doms)
7584 free_sched_domains(doms_cur, ndoms_cur);
7585 kfree(dattr_cur); /* kfree(NULL) is safe */
7586 doms_cur = doms_new;
7587 dattr_cur = dattr_new;
7588 ndoms_cur = ndoms_new;
7589
7590 register_sched_domain_sysctl();
7591
7592 mutex_unlock(&sched_domains_mutex);
7593 }
7594
7595 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7596 static void arch_reinit_sched_domains(void)
7597 {
7598 get_online_cpus();
7599
7600 /* Destroy domains first to force the rebuild */
7601 partition_sched_domains(0, NULL, NULL);
7602
7603 rebuild_sched_domains();
7604 put_online_cpus();
7605 }
7606
7607 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7608 {
7609 unsigned int level = 0;
7610
7611 if (sscanf(buf, "%u", &level) != 1)
7612 return -EINVAL;
7613
7614 /*
7615 * level is always be positive so don't check for
7616 * level < POWERSAVINGS_BALANCE_NONE which is 0
7617 * What happens on 0 or 1 byte write,
7618 * need to check for count as well?
7619 */
7620
7621 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7622 return -EINVAL;
7623
7624 if (smt)
7625 sched_smt_power_savings = level;
7626 else
7627 sched_mc_power_savings = level;
7628
7629 arch_reinit_sched_domains();
7630
7631 return count;
7632 }
7633
7634 #ifdef CONFIG_SCHED_MC
7635 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7636 struct sysdev_class_attribute *attr,
7637 char *page)
7638 {
7639 return sprintf(page, "%u\n", sched_mc_power_savings);
7640 }
7641 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7642 struct sysdev_class_attribute *attr,
7643 const char *buf, size_t count)
7644 {
7645 return sched_power_savings_store(buf, count, 0);
7646 }
7647 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7648 sched_mc_power_savings_show,
7649 sched_mc_power_savings_store);
7650 #endif
7651
7652 #ifdef CONFIG_SCHED_SMT
7653 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7654 struct sysdev_class_attribute *attr,
7655 char *page)
7656 {
7657 return sprintf(page, "%u\n", sched_smt_power_savings);
7658 }
7659 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7660 struct sysdev_class_attribute *attr,
7661 const char *buf, size_t count)
7662 {
7663 return sched_power_savings_store(buf, count, 1);
7664 }
7665 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7666 sched_smt_power_savings_show,
7667 sched_smt_power_savings_store);
7668 #endif
7669
7670 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7671 {
7672 int err = 0;
7673
7674 #ifdef CONFIG_SCHED_SMT
7675 if (smt_capable())
7676 err = sysfs_create_file(&cls->kset.kobj,
7677 &attr_sched_smt_power_savings.attr);
7678 #endif
7679 #ifdef CONFIG_SCHED_MC
7680 if (!err && mc_capable())
7681 err = sysfs_create_file(&cls->kset.kobj,
7682 &attr_sched_mc_power_savings.attr);
7683 #endif
7684 return err;
7685 }
7686 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7687
7688 /*
7689 * Update cpusets according to cpu_active mask. If cpusets are
7690 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7691 * around partition_sched_domains().
7692 */
7693 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7694 void *hcpu)
7695 {
7696 switch (action & ~CPU_TASKS_FROZEN) {
7697 case CPU_ONLINE:
7698 case CPU_DOWN_FAILED:
7699 cpuset_update_active_cpus();
7700 return NOTIFY_OK;
7701 default:
7702 return NOTIFY_DONE;
7703 }
7704 }
7705
7706 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7707 void *hcpu)
7708 {
7709 switch (action & ~CPU_TASKS_FROZEN) {
7710 case CPU_DOWN_PREPARE:
7711 cpuset_update_active_cpus();
7712 return NOTIFY_OK;
7713 default:
7714 return NOTIFY_DONE;
7715 }
7716 }
7717
7718 static int update_runtime(struct notifier_block *nfb,
7719 unsigned long action, void *hcpu)
7720 {
7721 int cpu = (int)(long)hcpu;
7722
7723 switch (action) {
7724 case CPU_DOWN_PREPARE:
7725 case CPU_DOWN_PREPARE_FROZEN:
7726 disable_runtime(cpu_rq(cpu));
7727 return NOTIFY_OK;
7728
7729 case CPU_DOWN_FAILED:
7730 case CPU_DOWN_FAILED_FROZEN:
7731 case CPU_ONLINE:
7732 case CPU_ONLINE_FROZEN:
7733 enable_runtime(cpu_rq(cpu));
7734 return NOTIFY_OK;
7735
7736 default:
7737 return NOTIFY_DONE;
7738 }
7739 }
7740
7741 void __init sched_init_smp(void)
7742 {
7743 cpumask_var_t non_isolated_cpus;
7744
7745 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7746 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7747
7748 #if defined(CONFIG_NUMA)
7749 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7750 GFP_KERNEL);
7751 BUG_ON(sched_group_nodes_bycpu == NULL);
7752 #endif
7753 get_online_cpus();
7754 mutex_lock(&sched_domains_mutex);
7755 arch_init_sched_domains(cpu_active_mask);
7756 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7757 if (cpumask_empty(non_isolated_cpus))
7758 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7759 mutex_unlock(&sched_domains_mutex);
7760 put_online_cpus();
7761
7762 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7763 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7764
7765 /* RT runtime code needs to handle some hotplug events */
7766 hotcpu_notifier(update_runtime, 0);
7767
7768 init_hrtick();
7769
7770 /* Move init over to a non-isolated CPU */
7771 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7772 BUG();
7773 sched_init_granularity();
7774 free_cpumask_var(non_isolated_cpus);
7775
7776 init_sched_rt_class();
7777 }
7778 #else
7779 void __init sched_init_smp(void)
7780 {
7781 sched_init_granularity();
7782 }
7783 #endif /* CONFIG_SMP */
7784
7785 const_debug unsigned int sysctl_timer_migration = 1;
7786
7787 int in_sched_functions(unsigned long addr)
7788 {
7789 return in_lock_functions(addr) ||
7790 (addr >= (unsigned long)__sched_text_start
7791 && addr < (unsigned long)__sched_text_end);
7792 }
7793
7794 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7795 {
7796 cfs_rq->tasks_timeline = RB_ROOT;
7797 INIT_LIST_HEAD(&cfs_rq->tasks);
7798 #ifdef CONFIG_FAIR_GROUP_SCHED
7799 cfs_rq->rq = rq;
7800 #endif
7801 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7802 }
7803
7804 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7805 {
7806 struct rt_prio_array *array;
7807 int i;
7808
7809 array = &rt_rq->active;
7810 for (i = 0; i < MAX_RT_PRIO; i++) {
7811 INIT_LIST_HEAD(array->queue + i);
7812 __clear_bit(i, array->bitmap);
7813 }
7814 /* delimiter for bitsearch: */
7815 __set_bit(MAX_RT_PRIO, array->bitmap);
7816
7817 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7818 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7819 #ifdef CONFIG_SMP
7820 rt_rq->highest_prio.next = MAX_RT_PRIO;
7821 #endif
7822 #endif
7823 #ifdef CONFIG_SMP
7824 rt_rq->rt_nr_migratory = 0;
7825 rt_rq->overloaded = 0;
7826 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7827 #endif
7828
7829 rt_rq->rt_time = 0;
7830 rt_rq->rt_throttled = 0;
7831 rt_rq->rt_runtime = 0;
7832 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7833
7834 #ifdef CONFIG_RT_GROUP_SCHED
7835 rt_rq->rt_nr_boosted = 0;
7836 rt_rq->rq = rq;
7837 #endif
7838 }
7839
7840 #ifdef CONFIG_FAIR_GROUP_SCHED
7841 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7842 struct sched_entity *se, int cpu,
7843 struct sched_entity *parent)
7844 {
7845 struct rq *rq = cpu_rq(cpu);
7846 tg->cfs_rq[cpu] = cfs_rq;
7847 init_cfs_rq(cfs_rq, rq);
7848 cfs_rq->tg = tg;
7849
7850 tg->se[cpu] = se;
7851 /* se could be NULL for init_task_group */
7852 if (!se)
7853 return;
7854
7855 if (!parent)
7856 se->cfs_rq = &rq->cfs;
7857 else
7858 se->cfs_rq = parent->my_q;
7859
7860 se->my_q = cfs_rq;
7861 update_load_set(&se->load, 0);
7862 se->parent = parent;
7863 }
7864 #endif
7865
7866 #ifdef CONFIG_RT_GROUP_SCHED
7867 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7868 struct sched_rt_entity *rt_se, int cpu,
7869 struct sched_rt_entity *parent)
7870 {
7871 struct rq *rq = cpu_rq(cpu);
7872
7873 tg->rt_rq[cpu] = rt_rq;
7874 init_rt_rq(rt_rq, rq);
7875 rt_rq->tg = tg;
7876 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7877
7878 tg->rt_se[cpu] = rt_se;
7879 if (!rt_se)
7880 return;
7881
7882 if (!parent)
7883 rt_se->rt_rq = &rq->rt;
7884 else
7885 rt_se->rt_rq = parent->my_q;
7886
7887 rt_se->my_q = rt_rq;
7888 rt_se->parent = parent;
7889 INIT_LIST_HEAD(&rt_se->run_list);
7890 }
7891 #endif
7892
7893 void __init sched_init(void)
7894 {
7895 int i, j;
7896 unsigned long alloc_size = 0, ptr;
7897
7898 #ifdef CONFIG_FAIR_GROUP_SCHED
7899 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7900 #endif
7901 #ifdef CONFIG_RT_GROUP_SCHED
7902 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7903 #endif
7904 #ifdef CONFIG_CPUMASK_OFFSTACK
7905 alloc_size += num_possible_cpus() * cpumask_size();
7906 #endif
7907 if (alloc_size) {
7908 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7909
7910 #ifdef CONFIG_FAIR_GROUP_SCHED
7911 init_task_group.se = (struct sched_entity **)ptr;
7912 ptr += nr_cpu_ids * sizeof(void **);
7913
7914 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7915 ptr += nr_cpu_ids * sizeof(void **);
7916
7917 #endif /* CONFIG_FAIR_GROUP_SCHED */
7918 #ifdef CONFIG_RT_GROUP_SCHED
7919 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7920 ptr += nr_cpu_ids * sizeof(void **);
7921
7922 init_task_group.rt_rq = (struct rt_rq **)ptr;
7923 ptr += nr_cpu_ids * sizeof(void **);
7924
7925 #endif /* CONFIG_RT_GROUP_SCHED */
7926 #ifdef CONFIG_CPUMASK_OFFSTACK
7927 for_each_possible_cpu(i) {
7928 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7929 ptr += cpumask_size();
7930 }
7931 #endif /* CONFIG_CPUMASK_OFFSTACK */
7932 }
7933
7934 #ifdef CONFIG_SMP
7935 init_defrootdomain();
7936 #endif
7937
7938 init_rt_bandwidth(&def_rt_bandwidth,
7939 global_rt_period(), global_rt_runtime());
7940
7941 #ifdef CONFIG_RT_GROUP_SCHED
7942 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7943 global_rt_period(), global_rt_runtime());
7944 #endif /* CONFIG_RT_GROUP_SCHED */
7945
7946 #ifdef CONFIG_CGROUP_SCHED
7947 list_add(&init_task_group.list, &task_groups);
7948 INIT_LIST_HEAD(&init_task_group.children);
7949 autogroup_init(&init_task);
7950 #endif /* CONFIG_CGROUP_SCHED */
7951
7952 for_each_possible_cpu(i) {
7953 struct rq *rq;
7954
7955 rq = cpu_rq(i);
7956 raw_spin_lock_init(&rq->lock);
7957 rq->nr_running = 0;
7958 rq->calc_load_active = 0;
7959 rq->calc_load_update = jiffies + LOAD_FREQ;
7960 init_cfs_rq(&rq->cfs, rq);
7961 init_rt_rq(&rq->rt, rq);
7962 #ifdef CONFIG_FAIR_GROUP_SCHED
7963 init_task_group.shares = init_task_group_load;
7964 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7965 /*
7966 * How much cpu bandwidth does init_task_group get?
7967 *
7968 * In case of task-groups formed thr' the cgroup filesystem, it
7969 * gets 100% of the cpu resources in the system. This overall
7970 * system cpu resource is divided among the tasks of
7971 * init_task_group and its child task-groups in a fair manner,
7972 * based on each entity's (task or task-group's) weight
7973 * (se->load.weight).
7974 *
7975 * In other words, if init_task_group has 10 tasks of weight
7976 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7977 * then A0's share of the cpu resource is:
7978 *
7979 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7980 *
7981 * We achieve this by letting init_task_group's tasks sit
7982 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7983 */
7984 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, NULL);
7985 #endif /* CONFIG_FAIR_GROUP_SCHED */
7986
7987 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7988 #ifdef CONFIG_RT_GROUP_SCHED
7989 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7990 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, NULL);
7991 #endif
7992
7993 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7994 rq->cpu_load[j] = 0;
7995
7996 rq->last_load_update_tick = jiffies;
7997
7998 #ifdef CONFIG_SMP
7999 rq->sd = NULL;
8000 rq->rd = NULL;
8001 rq->cpu_power = SCHED_LOAD_SCALE;
8002 rq->post_schedule = 0;
8003 rq->active_balance = 0;
8004 rq->next_balance = jiffies;
8005 rq->push_cpu = 0;
8006 rq->cpu = i;
8007 rq->online = 0;
8008 rq->idle_stamp = 0;
8009 rq->avg_idle = 2*sysctl_sched_migration_cost;
8010 rq_attach_root(rq, &def_root_domain);
8011 #ifdef CONFIG_NO_HZ
8012 rq->nohz_balance_kick = 0;
8013 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8014 #endif
8015 #endif
8016 init_rq_hrtick(rq);
8017 atomic_set(&rq->nr_iowait, 0);
8018 }
8019
8020 set_load_weight(&init_task);
8021
8022 #ifdef CONFIG_PREEMPT_NOTIFIERS
8023 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8024 #endif
8025
8026 #ifdef CONFIG_SMP
8027 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8028 #endif
8029
8030 #ifdef CONFIG_RT_MUTEXES
8031 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8032 #endif
8033
8034 /*
8035 * The boot idle thread does lazy MMU switching as well:
8036 */
8037 atomic_inc(&init_mm.mm_count);
8038 enter_lazy_tlb(&init_mm, current);
8039
8040 /*
8041 * Make us the idle thread. Technically, schedule() should not be
8042 * called from this thread, however somewhere below it might be,
8043 * but because we are the idle thread, we just pick up running again
8044 * when this runqueue becomes "idle".
8045 */
8046 init_idle(current, smp_processor_id());
8047
8048 calc_load_update = jiffies + LOAD_FREQ;
8049
8050 /*
8051 * During early bootup we pretend to be a normal task:
8052 */
8053 current->sched_class = &fair_sched_class;
8054
8055 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8056 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8057 #ifdef CONFIG_SMP
8058 #ifdef CONFIG_NO_HZ
8059 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8060 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8061 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8062 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8063 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8064 #endif
8065 /* May be allocated at isolcpus cmdline parse time */
8066 if (cpu_isolated_map == NULL)
8067 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8068 #endif /* SMP */
8069
8070 scheduler_running = 1;
8071 }
8072
8073 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8074 static inline int preempt_count_equals(int preempt_offset)
8075 {
8076 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8077
8078 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8079 }
8080
8081 void __might_sleep(const char *file, int line, int preempt_offset)
8082 {
8083 #ifdef in_atomic
8084 static unsigned long prev_jiffy; /* ratelimiting */
8085
8086 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8087 system_state != SYSTEM_RUNNING || oops_in_progress)
8088 return;
8089 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8090 return;
8091 prev_jiffy = jiffies;
8092
8093 printk(KERN_ERR
8094 "BUG: sleeping function called from invalid context at %s:%d\n",
8095 file, line);
8096 printk(KERN_ERR
8097 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8098 in_atomic(), irqs_disabled(),
8099 current->pid, current->comm);
8100
8101 debug_show_held_locks(current);
8102 if (irqs_disabled())
8103 print_irqtrace_events(current);
8104 dump_stack();
8105 #endif
8106 }
8107 EXPORT_SYMBOL(__might_sleep);
8108 #endif
8109
8110 #ifdef CONFIG_MAGIC_SYSRQ
8111 static void normalize_task(struct rq *rq, struct task_struct *p)
8112 {
8113 int on_rq;
8114
8115 on_rq = p->se.on_rq;
8116 if (on_rq)
8117 deactivate_task(rq, p, 0);
8118 __setscheduler(rq, p, SCHED_NORMAL, 0);
8119 if (on_rq) {
8120 activate_task(rq, p, 0);
8121 resched_task(rq->curr);
8122 }
8123 }
8124
8125 void normalize_rt_tasks(void)
8126 {
8127 struct task_struct *g, *p;
8128 unsigned long flags;
8129 struct rq *rq;
8130
8131 read_lock_irqsave(&tasklist_lock, flags);
8132 do_each_thread(g, p) {
8133 /*
8134 * Only normalize user tasks:
8135 */
8136 if (!p->mm)
8137 continue;
8138
8139 p->se.exec_start = 0;
8140 #ifdef CONFIG_SCHEDSTATS
8141 p->se.statistics.wait_start = 0;
8142 p->se.statistics.sleep_start = 0;
8143 p->se.statistics.block_start = 0;
8144 #endif
8145
8146 if (!rt_task(p)) {
8147 /*
8148 * Renice negative nice level userspace
8149 * tasks back to 0:
8150 */
8151 if (TASK_NICE(p) < 0 && p->mm)
8152 set_user_nice(p, 0);
8153 continue;
8154 }
8155
8156 raw_spin_lock(&p->pi_lock);
8157 rq = __task_rq_lock(p);
8158
8159 normalize_task(rq, p);
8160
8161 __task_rq_unlock(rq);
8162 raw_spin_unlock(&p->pi_lock);
8163 } while_each_thread(g, p);
8164
8165 read_unlock_irqrestore(&tasklist_lock, flags);
8166 }
8167
8168 #endif /* CONFIG_MAGIC_SYSRQ */
8169
8170 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8171 /*
8172 * These functions are only useful for the IA64 MCA handling, or kdb.
8173 *
8174 * They can only be called when the whole system has been
8175 * stopped - every CPU needs to be quiescent, and no scheduling
8176 * activity can take place. Using them for anything else would
8177 * be a serious bug, and as a result, they aren't even visible
8178 * under any other configuration.
8179 */
8180
8181 /**
8182 * curr_task - return the current task for a given cpu.
8183 * @cpu: the processor in question.
8184 *
8185 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8186 */
8187 struct task_struct *curr_task(int cpu)
8188 {
8189 return cpu_curr(cpu);
8190 }
8191
8192 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8193
8194 #ifdef CONFIG_IA64
8195 /**
8196 * set_curr_task - set the current task for a given cpu.
8197 * @cpu: the processor in question.
8198 * @p: the task pointer to set.
8199 *
8200 * Description: This function must only be used when non-maskable interrupts
8201 * are serviced on a separate stack. It allows the architecture to switch the
8202 * notion of the current task on a cpu in a non-blocking manner. This function
8203 * must be called with all CPU's synchronized, and interrupts disabled, the
8204 * and caller must save the original value of the current task (see
8205 * curr_task() above) and restore that value before reenabling interrupts and
8206 * re-starting the system.
8207 *
8208 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8209 */
8210 void set_curr_task(int cpu, struct task_struct *p)
8211 {
8212 cpu_curr(cpu) = p;
8213 }
8214
8215 #endif
8216
8217 #ifdef CONFIG_FAIR_GROUP_SCHED
8218 static void free_fair_sched_group(struct task_group *tg)
8219 {
8220 int i;
8221
8222 for_each_possible_cpu(i) {
8223 if (tg->cfs_rq)
8224 kfree(tg->cfs_rq[i]);
8225 if (tg->se)
8226 kfree(tg->se[i]);
8227 }
8228
8229 kfree(tg->cfs_rq);
8230 kfree(tg->se);
8231 }
8232
8233 static
8234 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8235 {
8236 struct cfs_rq *cfs_rq;
8237 struct sched_entity *se;
8238 struct rq *rq;
8239 int i;
8240
8241 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8242 if (!tg->cfs_rq)
8243 goto err;
8244 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8245 if (!tg->se)
8246 goto err;
8247
8248 tg->shares = NICE_0_LOAD;
8249
8250 for_each_possible_cpu(i) {
8251 rq = cpu_rq(i);
8252
8253 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8254 GFP_KERNEL, cpu_to_node(i));
8255 if (!cfs_rq)
8256 goto err;
8257
8258 se = kzalloc_node(sizeof(struct sched_entity),
8259 GFP_KERNEL, cpu_to_node(i));
8260 if (!se)
8261 goto err_free_rq;
8262
8263 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8264 }
8265
8266 return 1;
8267
8268 err_free_rq:
8269 kfree(cfs_rq);
8270 err:
8271 return 0;
8272 }
8273
8274 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8275 {
8276 struct rq *rq = cpu_rq(cpu);
8277 unsigned long flags;
8278
8279 /*
8280 * Only empty task groups can be destroyed; so we can speculatively
8281 * check on_list without danger of it being re-added.
8282 */
8283 if (!tg->cfs_rq[cpu]->on_list)
8284 return;
8285
8286 raw_spin_lock_irqsave(&rq->lock, flags);
8287 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8288 raw_spin_unlock_irqrestore(&rq->lock, flags);
8289 }
8290 #else /* !CONFG_FAIR_GROUP_SCHED */
8291 static inline void free_fair_sched_group(struct task_group *tg)
8292 {
8293 }
8294
8295 static inline
8296 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8297 {
8298 return 1;
8299 }
8300
8301 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8302 {
8303 }
8304 #endif /* CONFIG_FAIR_GROUP_SCHED */
8305
8306 #ifdef CONFIG_RT_GROUP_SCHED
8307 static void free_rt_sched_group(struct task_group *tg)
8308 {
8309 int i;
8310
8311 destroy_rt_bandwidth(&tg->rt_bandwidth);
8312
8313 for_each_possible_cpu(i) {
8314 if (tg->rt_rq)
8315 kfree(tg->rt_rq[i]);
8316 if (tg->rt_se)
8317 kfree(tg->rt_se[i]);
8318 }
8319
8320 kfree(tg->rt_rq);
8321 kfree(tg->rt_se);
8322 }
8323
8324 static
8325 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8326 {
8327 struct rt_rq *rt_rq;
8328 struct sched_rt_entity *rt_se;
8329 struct rq *rq;
8330 int i;
8331
8332 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8333 if (!tg->rt_rq)
8334 goto err;
8335 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8336 if (!tg->rt_se)
8337 goto err;
8338
8339 init_rt_bandwidth(&tg->rt_bandwidth,
8340 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8341
8342 for_each_possible_cpu(i) {
8343 rq = cpu_rq(i);
8344
8345 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8346 GFP_KERNEL, cpu_to_node(i));
8347 if (!rt_rq)
8348 goto err;
8349
8350 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8351 GFP_KERNEL, cpu_to_node(i));
8352 if (!rt_se)
8353 goto err_free_rq;
8354
8355 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8356 }
8357
8358 return 1;
8359
8360 err_free_rq:
8361 kfree(rt_rq);
8362 err:
8363 return 0;
8364 }
8365 #else /* !CONFIG_RT_GROUP_SCHED */
8366 static inline void free_rt_sched_group(struct task_group *tg)
8367 {
8368 }
8369
8370 static inline
8371 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8372 {
8373 return 1;
8374 }
8375 #endif /* CONFIG_RT_GROUP_SCHED */
8376
8377 #ifdef CONFIG_CGROUP_SCHED
8378 static void free_sched_group(struct task_group *tg)
8379 {
8380 free_fair_sched_group(tg);
8381 free_rt_sched_group(tg);
8382 kfree(tg);
8383 }
8384
8385 /* allocate runqueue etc for a new task group */
8386 struct task_group *sched_create_group(struct task_group *parent)
8387 {
8388 struct task_group *tg;
8389 unsigned long flags;
8390
8391 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8392 if (!tg)
8393 return ERR_PTR(-ENOMEM);
8394
8395 if (!alloc_fair_sched_group(tg, parent))
8396 goto err;
8397
8398 if (!alloc_rt_sched_group(tg, parent))
8399 goto err;
8400
8401 spin_lock_irqsave(&task_group_lock, flags);
8402 list_add_rcu(&tg->list, &task_groups);
8403
8404 WARN_ON(!parent); /* root should already exist */
8405
8406 tg->parent = parent;
8407 INIT_LIST_HEAD(&tg->children);
8408 list_add_rcu(&tg->siblings, &parent->children);
8409 spin_unlock_irqrestore(&task_group_lock, flags);
8410
8411 return tg;
8412
8413 err:
8414 free_sched_group(tg);
8415 return ERR_PTR(-ENOMEM);
8416 }
8417
8418 /* rcu callback to free various structures associated with a task group */
8419 static void free_sched_group_rcu(struct rcu_head *rhp)
8420 {
8421 /* now it should be safe to free those cfs_rqs */
8422 free_sched_group(container_of(rhp, struct task_group, rcu));
8423 }
8424
8425 /* Destroy runqueue etc associated with a task group */
8426 void sched_destroy_group(struct task_group *tg)
8427 {
8428 unsigned long flags;
8429 int i;
8430
8431 /* end participation in shares distribution */
8432 for_each_possible_cpu(i)
8433 unregister_fair_sched_group(tg, i);
8434
8435 spin_lock_irqsave(&task_group_lock, flags);
8436 list_del_rcu(&tg->list);
8437 list_del_rcu(&tg->siblings);
8438 spin_unlock_irqrestore(&task_group_lock, flags);
8439
8440 /* wait for possible concurrent references to cfs_rqs complete */
8441 call_rcu(&tg->rcu, free_sched_group_rcu);
8442 }
8443
8444 /* change task's runqueue when it moves between groups.
8445 * The caller of this function should have put the task in its new group
8446 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8447 * reflect its new group.
8448 */
8449 void sched_move_task(struct task_struct *tsk)
8450 {
8451 int on_rq, running;
8452 unsigned long flags;
8453 struct rq *rq;
8454
8455 rq = task_rq_lock(tsk, &flags);
8456
8457 running = task_current(rq, tsk);
8458 on_rq = tsk->se.on_rq;
8459
8460 if (on_rq)
8461 dequeue_task(rq, tsk, 0);
8462 if (unlikely(running))
8463 tsk->sched_class->put_prev_task(rq, tsk);
8464
8465 #ifdef CONFIG_FAIR_GROUP_SCHED
8466 if (tsk->sched_class->task_move_group)
8467 tsk->sched_class->task_move_group(tsk, on_rq);
8468 else
8469 #endif
8470 set_task_rq(tsk, task_cpu(tsk));
8471
8472 if (unlikely(running))
8473 tsk->sched_class->set_curr_task(rq);
8474 if (on_rq)
8475 enqueue_task(rq, tsk, 0);
8476
8477 task_rq_unlock(rq, &flags);
8478 }
8479 #endif /* CONFIG_CGROUP_SCHED */
8480
8481 #ifdef CONFIG_FAIR_GROUP_SCHED
8482 static DEFINE_MUTEX(shares_mutex);
8483
8484 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8485 {
8486 int i;
8487 unsigned long flags;
8488
8489 /*
8490 * We can't change the weight of the root cgroup.
8491 */
8492 if (!tg->se[0])
8493 return -EINVAL;
8494
8495 if (shares < MIN_SHARES)
8496 shares = MIN_SHARES;
8497 else if (shares > MAX_SHARES)
8498 shares = MAX_SHARES;
8499
8500 mutex_lock(&shares_mutex);
8501 if (tg->shares == shares)
8502 goto done;
8503
8504 tg->shares = shares;
8505 for_each_possible_cpu(i) {
8506 struct rq *rq = cpu_rq(i);
8507 struct sched_entity *se;
8508
8509 se = tg->se[i];
8510 /* Propagate contribution to hierarchy */
8511 raw_spin_lock_irqsave(&rq->lock, flags);
8512 for_each_sched_entity(se)
8513 update_cfs_shares(group_cfs_rq(se), 0);
8514 raw_spin_unlock_irqrestore(&rq->lock, flags);
8515 }
8516
8517 done:
8518 mutex_unlock(&shares_mutex);
8519 return 0;
8520 }
8521
8522 unsigned long sched_group_shares(struct task_group *tg)
8523 {
8524 return tg->shares;
8525 }
8526 #endif
8527
8528 #ifdef CONFIG_RT_GROUP_SCHED
8529 /*
8530 * Ensure that the real time constraints are schedulable.
8531 */
8532 static DEFINE_MUTEX(rt_constraints_mutex);
8533
8534 static unsigned long to_ratio(u64 period, u64 runtime)
8535 {
8536 if (runtime == RUNTIME_INF)
8537 return 1ULL << 20;
8538
8539 return div64_u64(runtime << 20, period);
8540 }
8541
8542 /* Must be called with tasklist_lock held */
8543 static inline int tg_has_rt_tasks(struct task_group *tg)
8544 {
8545 struct task_struct *g, *p;
8546
8547 do_each_thread(g, p) {
8548 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8549 return 1;
8550 } while_each_thread(g, p);
8551
8552 return 0;
8553 }
8554
8555 struct rt_schedulable_data {
8556 struct task_group *tg;
8557 u64 rt_period;
8558 u64 rt_runtime;
8559 };
8560
8561 static int tg_schedulable(struct task_group *tg, void *data)
8562 {
8563 struct rt_schedulable_data *d = data;
8564 struct task_group *child;
8565 unsigned long total, sum = 0;
8566 u64 period, runtime;
8567
8568 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8569 runtime = tg->rt_bandwidth.rt_runtime;
8570
8571 if (tg == d->tg) {
8572 period = d->rt_period;
8573 runtime = d->rt_runtime;
8574 }
8575
8576 /*
8577 * Cannot have more runtime than the period.
8578 */
8579 if (runtime > period && runtime != RUNTIME_INF)
8580 return -EINVAL;
8581
8582 /*
8583 * Ensure we don't starve existing RT tasks.
8584 */
8585 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8586 return -EBUSY;
8587
8588 total = to_ratio(period, runtime);
8589
8590 /*
8591 * Nobody can have more than the global setting allows.
8592 */
8593 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8594 return -EINVAL;
8595
8596 /*
8597 * The sum of our children's runtime should not exceed our own.
8598 */
8599 list_for_each_entry_rcu(child, &tg->children, siblings) {
8600 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8601 runtime = child->rt_bandwidth.rt_runtime;
8602
8603 if (child == d->tg) {
8604 period = d->rt_period;
8605 runtime = d->rt_runtime;
8606 }
8607
8608 sum += to_ratio(period, runtime);
8609 }
8610
8611 if (sum > total)
8612 return -EINVAL;
8613
8614 return 0;
8615 }
8616
8617 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8618 {
8619 struct rt_schedulable_data data = {
8620 .tg = tg,
8621 .rt_period = period,
8622 .rt_runtime = runtime,
8623 };
8624
8625 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8626 }
8627
8628 static int tg_set_bandwidth(struct task_group *tg,
8629 u64 rt_period, u64 rt_runtime)
8630 {
8631 int i, err = 0;
8632
8633 mutex_lock(&rt_constraints_mutex);
8634 read_lock(&tasklist_lock);
8635 err = __rt_schedulable(tg, rt_period, rt_runtime);
8636 if (err)
8637 goto unlock;
8638
8639 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8640 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8641 tg->rt_bandwidth.rt_runtime = rt_runtime;
8642
8643 for_each_possible_cpu(i) {
8644 struct rt_rq *rt_rq = tg->rt_rq[i];
8645
8646 raw_spin_lock(&rt_rq->rt_runtime_lock);
8647 rt_rq->rt_runtime = rt_runtime;
8648 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8649 }
8650 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8651 unlock:
8652 read_unlock(&tasklist_lock);
8653 mutex_unlock(&rt_constraints_mutex);
8654
8655 return err;
8656 }
8657
8658 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8659 {
8660 u64 rt_runtime, rt_period;
8661
8662 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8663 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8664 if (rt_runtime_us < 0)
8665 rt_runtime = RUNTIME_INF;
8666
8667 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8668 }
8669
8670 long sched_group_rt_runtime(struct task_group *tg)
8671 {
8672 u64 rt_runtime_us;
8673
8674 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8675 return -1;
8676
8677 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8678 do_div(rt_runtime_us, NSEC_PER_USEC);
8679 return rt_runtime_us;
8680 }
8681
8682 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8683 {
8684 u64 rt_runtime, rt_period;
8685
8686 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8687 rt_runtime = tg->rt_bandwidth.rt_runtime;
8688
8689 if (rt_period == 0)
8690 return -EINVAL;
8691
8692 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8693 }
8694
8695 long sched_group_rt_period(struct task_group *tg)
8696 {
8697 u64 rt_period_us;
8698
8699 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8700 do_div(rt_period_us, NSEC_PER_USEC);
8701 return rt_period_us;
8702 }
8703
8704 static int sched_rt_global_constraints(void)
8705 {
8706 u64 runtime, period;
8707 int ret = 0;
8708
8709 if (sysctl_sched_rt_period <= 0)
8710 return -EINVAL;
8711
8712 runtime = global_rt_runtime();
8713 period = global_rt_period();
8714
8715 /*
8716 * Sanity check on the sysctl variables.
8717 */
8718 if (runtime > period && runtime != RUNTIME_INF)
8719 return -EINVAL;
8720
8721 mutex_lock(&rt_constraints_mutex);
8722 read_lock(&tasklist_lock);
8723 ret = __rt_schedulable(NULL, 0, 0);
8724 read_unlock(&tasklist_lock);
8725 mutex_unlock(&rt_constraints_mutex);
8726
8727 return ret;
8728 }
8729
8730 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8731 {
8732 /* Don't accept realtime tasks when there is no way for them to run */
8733 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8734 return 0;
8735
8736 return 1;
8737 }
8738
8739 #else /* !CONFIG_RT_GROUP_SCHED */
8740 static int sched_rt_global_constraints(void)
8741 {
8742 unsigned long flags;
8743 int i;
8744
8745 if (sysctl_sched_rt_period <= 0)
8746 return -EINVAL;
8747
8748 /*
8749 * There's always some RT tasks in the root group
8750 * -- migration, kstopmachine etc..
8751 */
8752 if (sysctl_sched_rt_runtime == 0)
8753 return -EBUSY;
8754
8755 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8756 for_each_possible_cpu(i) {
8757 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8758
8759 raw_spin_lock(&rt_rq->rt_runtime_lock);
8760 rt_rq->rt_runtime = global_rt_runtime();
8761 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8762 }
8763 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8764
8765 return 0;
8766 }
8767 #endif /* CONFIG_RT_GROUP_SCHED */
8768
8769 int sched_rt_handler(struct ctl_table *table, int write,
8770 void __user *buffer, size_t *lenp,
8771 loff_t *ppos)
8772 {
8773 int ret;
8774 int old_period, old_runtime;
8775 static DEFINE_MUTEX(mutex);
8776
8777 mutex_lock(&mutex);
8778 old_period = sysctl_sched_rt_period;
8779 old_runtime = sysctl_sched_rt_runtime;
8780
8781 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8782
8783 if (!ret && write) {
8784 ret = sched_rt_global_constraints();
8785 if (ret) {
8786 sysctl_sched_rt_period = old_period;
8787 sysctl_sched_rt_runtime = old_runtime;
8788 } else {
8789 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8790 def_rt_bandwidth.rt_period =
8791 ns_to_ktime(global_rt_period());
8792 }
8793 }
8794 mutex_unlock(&mutex);
8795
8796 return ret;
8797 }
8798
8799 #ifdef CONFIG_CGROUP_SCHED
8800
8801 /* return corresponding task_group object of a cgroup */
8802 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8803 {
8804 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8805 struct task_group, css);
8806 }
8807
8808 static struct cgroup_subsys_state *
8809 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8810 {
8811 struct task_group *tg, *parent;
8812
8813 if (!cgrp->parent) {
8814 /* This is early initialization for the top cgroup */
8815 return &init_task_group.css;
8816 }
8817
8818 parent = cgroup_tg(cgrp->parent);
8819 tg = sched_create_group(parent);
8820 if (IS_ERR(tg))
8821 return ERR_PTR(-ENOMEM);
8822
8823 return &tg->css;
8824 }
8825
8826 static void
8827 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8828 {
8829 struct task_group *tg = cgroup_tg(cgrp);
8830
8831 sched_destroy_group(tg);
8832 }
8833
8834 static int
8835 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8836 {
8837 #ifdef CONFIG_RT_GROUP_SCHED
8838 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8839 return -EINVAL;
8840 #else
8841 /* We don't support RT-tasks being in separate groups */
8842 if (tsk->sched_class != &fair_sched_class)
8843 return -EINVAL;
8844 #endif
8845 return 0;
8846 }
8847
8848 static int
8849 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8850 struct task_struct *tsk, bool threadgroup)
8851 {
8852 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8853 if (retval)
8854 return retval;
8855 if (threadgroup) {
8856 struct task_struct *c;
8857 rcu_read_lock();
8858 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8859 retval = cpu_cgroup_can_attach_task(cgrp, c);
8860 if (retval) {
8861 rcu_read_unlock();
8862 return retval;
8863 }
8864 }
8865 rcu_read_unlock();
8866 }
8867 return 0;
8868 }
8869
8870 static void
8871 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8872 struct cgroup *old_cont, struct task_struct *tsk,
8873 bool threadgroup)
8874 {
8875 sched_move_task(tsk);
8876 if (threadgroup) {
8877 struct task_struct *c;
8878 rcu_read_lock();
8879 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8880 sched_move_task(c);
8881 }
8882 rcu_read_unlock();
8883 }
8884 }
8885
8886 #ifdef CONFIG_FAIR_GROUP_SCHED
8887 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8888 u64 shareval)
8889 {
8890 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8891 }
8892
8893 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8894 {
8895 struct task_group *tg = cgroup_tg(cgrp);
8896
8897 return (u64) tg->shares;
8898 }
8899 #endif /* CONFIG_FAIR_GROUP_SCHED */
8900
8901 #ifdef CONFIG_RT_GROUP_SCHED
8902 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8903 s64 val)
8904 {
8905 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8906 }
8907
8908 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8909 {
8910 return sched_group_rt_runtime(cgroup_tg(cgrp));
8911 }
8912
8913 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8914 u64 rt_period_us)
8915 {
8916 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8917 }
8918
8919 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8920 {
8921 return sched_group_rt_period(cgroup_tg(cgrp));
8922 }
8923 #endif /* CONFIG_RT_GROUP_SCHED */
8924
8925 static struct cftype cpu_files[] = {
8926 #ifdef CONFIG_FAIR_GROUP_SCHED
8927 {
8928 .name = "shares",
8929 .read_u64 = cpu_shares_read_u64,
8930 .write_u64 = cpu_shares_write_u64,
8931 },
8932 #endif
8933 #ifdef CONFIG_RT_GROUP_SCHED
8934 {
8935 .name = "rt_runtime_us",
8936 .read_s64 = cpu_rt_runtime_read,
8937 .write_s64 = cpu_rt_runtime_write,
8938 },
8939 {
8940 .name = "rt_period_us",
8941 .read_u64 = cpu_rt_period_read_uint,
8942 .write_u64 = cpu_rt_period_write_uint,
8943 },
8944 #endif
8945 };
8946
8947 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8948 {
8949 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8950 }
8951
8952 struct cgroup_subsys cpu_cgroup_subsys = {
8953 .name = "cpu",
8954 .create = cpu_cgroup_create,
8955 .destroy = cpu_cgroup_destroy,
8956 .can_attach = cpu_cgroup_can_attach,
8957 .attach = cpu_cgroup_attach,
8958 .populate = cpu_cgroup_populate,
8959 .subsys_id = cpu_cgroup_subsys_id,
8960 .early_init = 1,
8961 };
8962
8963 #endif /* CONFIG_CGROUP_SCHED */
8964
8965 #ifdef CONFIG_CGROUP_CPUACCT
8966
8967 /*
8968 * CPU accounting code for task groups.
8969 *
8970 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8971 * (balbir@in.ibm.com).
8972 */
8973
8974 /* track cpu usage of a group of tasks and its child groups */
8975 struct cpuacct {
8976 struct cgroup_subsys_state css;
8977 /* cpuusage holds pointer to a u64-type object on every cpu */
8978 u64 __percpu *cpuusage;
8979 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8980 struct cpuacct *parent;
8981 };
8982
8983 struct cgroup_subsys cpuacct_subsys;
8984
8985 /* return cpu accounting group corresponding to this container */
8986 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8987 {
8988 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8989 struct cpuacct, css);
8990 }
8991
8992 /* return cpu accounting group to which this task belongs */
8993 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8994 {
8995 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8996 struct cpuacct, css);
8997 }
8998
8999 /* create a new cpu accounting group */
9000 static struct cgroup_subsys_state *cpuacct_create(
9001 struct cgroup_subsys *ss, struct cgroup *cgrp)
9002 {
9003 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9004 int i;
9005
9006 if (!ca)
9007 goto out;
9008
9009 ca->cpuusage = alloc_percpu(u64);
9010 if (!ca->cpuusage)
9011 goto out_free_ca;
9012
9013 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9014 if (percpu_counter_init(&ca->cpustat[i], 0))
9015 goto out_free_counters;
9016
9017 if (cgrp->parent)
9018 ca->parent = cgroup_ca(cgrp->parent);
9019
9020 return &ca->css;
9021
9022 out_free_counters:
9023 while (--i >= 0)
9024 percpu_counter_destroy(&ca->cpustat[i]);
9025 free_percpu(ca->cpuusage);
9026 out_free_ca:
9027 kfree(ca);
9028 out:
9029 return ERR_PTR(-ENOMEM);
9030 }
9031
9032 /* destroy an existing cpu accounting group */
9033 static void
9034 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9035 {
9036 struct cpuacct *ca = cgroup_ca(cgrp);
9037 int i;
9038
9039 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9040 percpu_counter_destroy(&ca->cpustat[i]);
9041 free_percpu(ca->cpuusage);
9042 kfree(ca);
9043 }
9044
9045 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9046 {
9047 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9048 u64 data;
9049
9050 #ifndef CONFIG_64BIT
9051 /*
9052 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9053 */
9054 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9055 data = *cpuusage;
9056 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9057 #else
9058 data = *cpuusage;
9059 #endif
9060
9061 return data;
9062 }
9063
9064 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9065 {
9066 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9067
9068 #ifndef CONFIG_64BIT
9069 /*
9070 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9071 */
9072 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9073 *cpuusage = val;
9074 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9075 #else
9076 *cpuusage = val;
9077 #endif
9078 }
9079
9080 /* return total cpu usage (in nanoseconds) of a group */
9081 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9082 {
9083 struct cpuacct *ca = cgroup_ca(cgrp);
9084 u64 totalcpuusage = 0;
9085 int i;
9086
9087 for_each_present_cpu(i)
9088 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9089
9090 return totalcpuusage;
9091 }
9092
9093 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9094 u64 reset)
9095 {
9096 struct cpuacct *ca = cgroup_ca(cgrp);
9097 int err = 0;
9098 int i;
9099
9100 if (reset) {
9101 err = -EINVAL;
9102 goto out;
9103 }
9104
9105 for_each_present_cpu(i)
9106 cpuacct_cpuusage_write(ca, i, 0);
9107
9108 out:
9109 return err;
9110 }
9111
9112 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9113 struct seq_file *m)
9114 {
9115 struct cpuacct *ca = cgroup_ca(cgroup);
9116 u64 percpu;
9117 int i;
9118
9119 for_each_present_cpu(i) {
9120 percpu = cpuacct_cpuusage_read(ca, i);
9121 seq_printf(m, "%llu ", (unsigned long long) percpu);
9122 }
9123 seq_printf(m, "\n");
9124 return 0;
9125 }
9126
9127 static const char *cpuacct_stat_desc[] = {
9128 [CPUACCT_STAT_USER] = "user",
9129 [CPUACCT_STAT_SYSTEM] = "system",
9130 };
9131
9132 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9133 struct cgroup_map_cb *cb)
9134 {
9135 struct cpuacct *ca = cgroup_ca(cgrp);
9136 int i;
9137
9138 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9139 s64 val = percpu_counter_read(&ca->cpustat[i]);
9140 val = cputime64_to_clock_t(val);
9141 cb->fill(cb, cpuacct_stat_desc[i], val);
9142 }
9143 return 0;
9144 }
9145
9146 static struct cftype files[] = {
9147 {
9148 .name = "usage",
9149 .read_u64 = cpuusage_read,
9150 .write_u64 = cpuusage_write,
9151 },
9152 {
9153 .name = "usage_percpu",
9154 .read_seq_string = cpuacct_percpu_seq_read,
9155 },
9156 {
9157 .name = "stat",
9158 .read_map = cpuacct_stats_show,
9159 },
9160 };
9161
9162 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9163 {
9164 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9165 }
9166
9167 /*
9168 * charge this task's execution time to its accounting group.
9169 *
9170 * called with rq->lock held.
9171 */
9172 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9173 {
9174 struct cpuacct *ca;
9175 int cpu;
9176
9177 if (unlikely(!cpuacct_subsys.active))
9178 return;
9179
9180 cpu = task_cpu(tsk);
9181
9182 rcu_read_lock();
9183
9184 ca = task_ca(tsk);
9185
9186 for (; ca; ca = ca->parent) {
9187 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9188 *cpuusage += cputime;
9189 }
9190
9191 rcu_read_unlock();
9192 }
9193
9194 /*
9195 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9196 * in cputime_t units. As a result, cpuacct_update_stats calls
9197 * percpu_counter_add with values large enough to always overflow the
9198 * per cpu batch limit causing bad SMP scalability.
9199 *
9200 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9201 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9202 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9203 */
9204 #ifdef CONFIG_SMP
9205 #define CPUACCT_BATCH \
9206 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9207 #else
9208 #define CPUACCT_BATCH 0
9209 #endif
9210
9211 /*
9212 * Charge the system/user time to the task's accounting group.
9213 */
9214 static void cpuacct_update_stats(struct task_struct *tsk,
9215 enum cpuacct_stat_index idx, cputime_t val)
9216 {
9217 struct cpuacct *ca;
9218 int batch = CPUACCT_BATCH;
9219
9220 if (unlikely(!cpuacct_subsys.active))
9221 return;
9222
9223 rcu_read_lock();
9224 ca = task_ca(tsk);
9225
9226 do {
9227 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9228 ca = ca->parent;
9229 } while (ca);
9230 rcu_read_unlock();
9231 }
9232
9233 struct cgroup_subsys cpuacct_subsys = {
9234 .name = "cpuacct",
9235 .create = cpuacct_create,
9236 .destroy = cpuacct_destroy,
9237 .populate = cpuacct_populate,
9238 .subsys_id = cpuacct_subsys_id,
9239 };
9240 #endif /* CONFIG_CGROUP_CPUACCT */
9241
This page took 0.219143 seconds and 5 git commands to generate.