1672823aabfe15052df86101528e68afccbcd012
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/nmi.h>
34 #include <linux/init.h>
35 #include <linux/uaccess.h>
36 #include <linux/highmem.h>
37 #include <linux/smp_lock.h>
38 #include <asm/mmu_context.h>
39 #include <linux/interrupt.h>
40 #include <linux/capability.h>
41 #include <linux/completion.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/debug_locks.h>
44 #include <linux/perf_event.h>
45 #include <linux/security.h>
46 #include <linux/notifier.h>
47 #include <linux/profile.h>
48 #include <linux/freezer.h>
49 #include <linux/vmalloc.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/pid_namespace.h>
53 #include <linux/smp.h>
54 #include <linux/threads.h>
55 #include <linux/timer.h>
56 #include <linux/rcupdate.h>
57 #include <linux/cpu.h>
58 #include <linux/cpuset.h>
59 #include <linux/percpu.h>
60 #include <linux/kthread.h>
61 #include <linux/proc_fs.h>
62 #include <linux/seq_file.h>
63 #include <linux/sysctl.h>
64 #include <linux/syscalls.h>
65 #include <linux/times.h>
66 #include <linux/tsacct_kern.h>
67 #include <linux/kprobes.h>
68 #include <linux/delayacct.h>
69 #include <linux/unistd.h>
70 #include <linux/pagemap.h>
71 #include <linux/hrtimer.h>
72 #include <linux/tick.h>
73 #include <linux/debugfs.h>
74 #include <linux/ctype.h>
75 #include <linux/ftrace.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
84
85 /*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94 /*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103 /*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
111 /*
112 * These are the 'tuning knobs' of the scheduler:
113 *
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
116 */
117 #define DEF_TIMESLICE (100 * HZ / 1000)
118
119 /*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122 #define RUNTIME_INF ((u64)~0ULL)
123
124 static inline int rt_policy(int policy)
125 {
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 return 1;
128 return 0;
129 }
130
131 static inline int task_has_rt_policy(struct task_struct *p)
132 {
133 return rt_policy(p->policy);
134 }
135
136 /*
137 * This is the priority-queue data structure of the RT scheduling class:
138 */
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142 };
143
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock;
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
150 };
151
152 static struct rt_bandwidth def_rt_bandwidth;
153
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157 {
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 }
176
177 static
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179 {
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
184
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 }
189
190 static inline int rt_bandwidth_enabled(void)
191 {
192 return sysctl_sched_rt_runtime >= 0;
193 }
194
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196 {
197 ktime_t now;
198
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
205 raw_spin_lock(&rt_b->rt_runtime_lock);
206 for (;;) {
207 unsigned long delta;
208 ktime_t soft, hard;
209
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
221 }
222 raw_spin_unlock(&rt_b->rt_runtime_lock);
223 }
224
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227 {
228 hrtimer_cancel(&rt_b->rt_period_timer);
229 }
230 #endif
231
232 /*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236 static DEFINE_MUTEX(sched_domains_mutex);
237
238 #ifdef CONFIG_GROUP_SCHED
239
240 #include <linux/cgroup.h>
241
242 struct cfs_rq;
243
244 static LIST_HEAD(task_groups);
245
246 /* task group related information */
247 struct task_group {
248 #ifdef CONFIG_CGROUP_SCHED
249 struct cgroup_subsys_state css;
250 #endif
251
252 #ifdef CONFIG_USER_SCHED
253 uid_t uid;
254 #endif
255
256 #ifdef CONFIG_FAIR_GROUP_SCHED
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
262 #endif
263
264 #ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
268 struct rt_bandwidth rt_bandwidth;
269 #endif
270
271 struct rcu_head rcu;
272 struct list_head list;
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
277 };
278
279 #ifdef CONFIG_USER_SCHED
280
281 /* Helper function to pass uid information to create_sched_user() */
282 void set_tg_uid(struct user_struct *user)
283 {
284 user->tg->uid = user->uid;
285 }
286
287 /*
288 * Root task group.
289 * Every UID task group (including init_task_group aka UID-0) will
290 * be a child to this group.
291 */
292 struct task_group root_task_group;
293
294 #ifdef CONFIG_FAIR_GROUP_SCHED
295 /* Default task group's sched entity on each cpu */
296 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
297 /* Default task group's cfs_rq on each cpu */
298 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
299 #endif /* CONFIG_FAIR_GROUP_SCHED */
300
301 #ifdef CONFIG_RT_GROUP_SCHED
302 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
304 #endif /* CONFIG_RT_GROUP_SCHED */
305 #else /* !CONFIG_USER_SCHED */
306 #define root_task_group init_task_group
307 #endif /* CONFIG_USER_SCHED */
308
309 /* task_group_lock serializes add/remove of task groups and also changes to
310 * a task group's cpu shares.
311 */
312 static DEFINE_SPINLOCK(task_group_lock);
313
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315
316 #ifdef CONFIG_SMP
317 static int root_task_group_empty(void)
318 {
319 return list_empty(&root_task_group.children);
320 }
321 #endif
322
323 #ifdef CONFIG_USER_SCHED
324 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
325 #else /* !CONFIG_USER_SCHED */
326 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
327 #endif /* CONFIG_USER_SCHED */
328
329 /*
330 * A weight of 0 or 1 can cause arithmetics problems.
331 * A weight of a cfs_rq is the sum of weights of which entities
332 * are queued on this cfs_rq, so a weight of a entity should not be
333 * too large, so as the shares value of a task group.
334 * (The default weight is 1024 - so there's no practical
335 * limitation from this.)
336 */
337 #define MIN_SHARES 2
338 #define MAX_SHARES (1UL << 18)
339
340 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
341 #endif
342
343 /* Default task group.
344 * Every task in system belong to this group at bootup.
345 */
346 struct task_group init_task_group;
347
348 /* return group to which a task belongs */
349 static inline struct task_group *task_group(struct task_struct *p)
350 {
351 struct task_group *tg;
352
353 #ifdef CONFIG_USER_SCHED
354 rcu_read_lock();
355 tg = __task_cred(p)->user->tg;
356 rcu_read_unlock();
357 #elif defined(CONFIG_CGROUP_SCHED)
358 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
359 struct task_group, css);
360 #else
361 tg = &init_task_group;
362 #endif
363 return tg;
364 }
365
366 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
367 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
368 {
369 #ifdef CONFIG_FAIR_GROUP_SCHED
370 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
371 p->se.parent = task_group(p)->se[cpu];
372 #endif
373
374 #ifdef CONFIG_RT_GROUP_SCHED
375 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
376 p->rt.parent = task_group(p)->rt_se[cpu];
377 #endif
378 }
379
380 #else
381
382 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
383 static inline struct task_group *task_group(struct task_struct *p)
384 {
385 return NULL;
386 }
387
388 #endif /* CONFIG_GROUP_SCHED */
389
390 /* CFS-related fields in a runqueue */
391 struct cfs_rq {
392 struct load_weight load;
393 unsigned long nr_running;
394
395 u64 exec_clock;
396 u64 min_vruntime;
397
398 struct rb_root tasks_timeline;
399 struct rb_node *rb_leftmost;
400
401 struct list_head tasks;
402 struct list_head *balance_iterator;
403
404 /*
405 * 'curr' points to currently running entity on this cfs_rq.
406 * It is set to NULL otherwise (i.e when none are currently running).
407 */
408 struct sched_entity *curr, *next, *last;
409
410 unsigned int nr_spread_over;
411
412 #ifdef CONFIG_FAIR_GROUP_SCHED
413 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
414
415 /*
416 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
417 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
418 * (like users, containers etc.)
419 *
420 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
421 * list is used during load balance.
422 */
423 struct list_head leaf_cfs_rq_list;
424 struct task_group *tg; /* group that "owns" this runqueue */
425
426 #ifdef CONFIG_SMP
427 /*
428 * the part of load.weight contributed by tasks
429 */
430 unsigned long task_weight;
431
432 /*
433 * h_load = weight * f(tg)
434 *
435 * Where f(tg) is the recursive weight fraction assigned to
436 * this group.
437 */
438 unsigned long h_load;
439
440 /*
441 * this cpu's part of tg->shares
442 */
443 unsigned long shares;
444
445 /*
446 * load.weight at the time we set shares
447 */
448 unsigned long rq_weight;
449 #endif
450 #endif
451 };
452
453 /* Real-Time classes' related field in a runqueue: */
454 struct rt_rq {
455 struct rt_prio_array active;
456 unsigned long rt_nr_running;
457 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
458 struct {
459 int curr; /* highest queued rt task prio */
460 #ifdef CONFIG_SMP
461 int next; /* next highest */
462 #endif
463 } highest_prio;
464 #endif
465 #ifdef CONFIG_SMP
466 unsigned long rt_nr_migratory;
467 unsigned long rt_nr_total;
468 int overloaded;
469 struct plist_head pushable_tasks;
470 #endif
471 int rt_throttled;
472 u64 rt_time;
473 u64 rt_runtime;
474 /* Nests inside the rq lock: */
475 raw_spinlock_t rt_runtime_lock;
476
477 #ifdef CONFIG_RT_GROUP_SCHED
478 unsigned long rt_nr_boosted;
479
480 struct rq *rq;
481 struct list_head leaf_rt_rq_list;
482 struct task_group *tg;
483 struct sched_rt_entity *rt_se;
484 #endif
485 };
486
487 #ifdef CONFIG_SMP
488
489 /*
490 * We add the notion of a root-domain which will be used to define per-domain
491 * variables. Each exclusive cpuset essentially defines an island domain by
492 * fully partitioning the member cpus from any other cpuset. Whenever a new
493 * exclusive cpuset is created, we also create and attach a new root-domain
494 * object.
495 *
496 */
497 struct root_domain {
498 atomic_t refcount;
499 cpumask_var_t span;
500 cpumask_var_t online;
501
502 /*
503 * The "RT overload" flag: it gets set if a CPU has more than
504 * one runnable RT task.
505 */
506 cpumask_var_t rto_mask;
507 atomic_t rto_count;
508 #ifdef CONFIG_SMP
509 struct cpupri cpupri;
510 #endif
511 };
512
513 /*
514 * By default the system creates a single root-domain with all cpus as
515 * members (mimicking the global state we have today).
516 */
517 static struct root_domain def_root_domain;
518
519 #endif
520
521 /*
522 * This is the main, per-CPU runqueue data structure.
523 *
524 * Locking rule: those places that want to lock multiple runqueues
525 * (such as the load balancing or the thread migration code), lock
526 * acquire operations must be ordered by ascending &runqueue.
527 */
528 struct rq {
529 /* runqueue lock: */
530 raw_spinlock_t lock;
531
532 /*
533 * nr_running and cpu_load should be in the same cacheline because
534 * remote CPUs use both these fields when doing load calculation.
535 */
536 unsigned long nr_running;
537 #define CPU_LOAD_IDX_MAX 5
538 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
539 #ifdef CONFIG_NO_HZ
540 unsigned char in_nohz_recently;
541 #endif
542 /* capture load from *all* tasks on this cpu: */
543 struct load_weight load;
544 unsigned long nr_load_updates;
545 u64 nr_switches;
546
547 struct cfs_rq cfs;
548 struct rt_rq rt;
549
550 #ifdef CONFIG_FAIR_GROUP_SCHED
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list;
553 #endif
554 #ifdef CONFIG_RT_GROUP_SCHED
555 struct list_head leaf_rt_rq_list;
556 #endif
557
558 /*
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
563 */
564 unsigned long nr_uninterruptible;
565
566 struct task_struct *curr, *idle;
567 unsigned long next_balance;
568 struct mm_struct *prev_mm;
569
570 u64 clock;
571
572 atomic_t nr_iowait;
573
574 #ifdef CONFIG_SMP
575 struct root_domain *rd;
576 struct sched_domain *sd;
577
578 unsigned char idle_at_tick;
579 /* For active balancing */
580 int post_schedule;
581 int active_balance;
582 int push_cpu;
583 /* cpu of this runqueue: */
584 int cpu;
585 int online;
586
587 unsigned long avg_load_per_task;
588
589 struct task_struct *migration_thread;
590 struct list_head migration_queue;
591
592 u64 rt_avg;
593 u64 age_stamp;
594 u64 idle_stamp;
595 u64 avg_idle;
596 #endif
597
598 /* calc_load related fields */
599 unsigned long calc_load_update;
600 long calc_load_active;
601
602 #ifdef CONFIG_SCHED_HRTICK
603 #ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606 #endif
607 struct hrtimer hrtick_timer;
608 #endif
609
610 #ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
613 unsigned long long rq_cpu_time;
614 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
615
616 /* sys_sched_yield() stats */
617 unsigned int yld_count;
618
619 /* schedule() stats */
620 unsigned int sched_switch;
621 unsigned int sched_count;
622 unsigned int sched_goidle;
623
624 /* try_to_wake_up() stats */
625 unsigned int ttwu_count;
626 unsigned int ttwu_local;
627
628 /* BKL stats */
629 unsigned int bkl_count;
630 #endif
631 };
632
633 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
634
635 static inline
636 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
637 {
638 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
639 }
640
641 static inline int cpu_of(struct rq *rq)
642 {
643 #ifdef CONFIG_SMP
644 return rq->cpu;
645 #else
646 return 0;
647 #endif
648 }
649
650 /*
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
652 * See detach_destroy_domains: synchronize_sched for details.
653 *
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
656 */
657 #define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
659
660 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661 #define this_rq() (&__get_cpu_var(runqueues))
662 #define task_rq(p) cpu_rq(task_cpu(p))
663 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
664 #define raw_rq() (&__raw_get_cpu_var(runqueues))
665
666 inline void update_rq_clock(struct rq *rq)
667 {
668 rq->clock = sched_clock_cpu(cpu_of(rq));
669 }
670
671 /*
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
673 */
674 #ifdef CONFIG_SCHED_DEBUG
675 # define const_debug __read_mostly
676 #else
677 # define const_debug static const
678 #endif
679
680 /**
681 * runqueue_is_locked
682 * @cpu: the processor in question.
683 *
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
687 */
688 int runqueue_is_locked(int cpu)
689 {
690 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
691 }
692
693 /*
694 * Debugging: various feature bits
695 */
696
697 #define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
699
700 enum {
701 #include "sched_features.h"
702 };
703
704 #undef SCHED_FEAT
705
706 #define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
708
709 const_debug unsigned int sysctl_sched_features =
710 #include "sched_features.h"
711 0;
712
713 #undef SCHED_FEAT
714
715 #ifdef CONFIG_SCHED_DEBUG
716 #define SCHED_FEAT(name, enabled) \
717 #name ,
718
719 static __read_mostly char *sched_feat_names[] = {
720 #include "sched_features.h"
721 NULL
722 };
723
724 #undef SCHED_FEAT
725
726 static int sched_feat_show(struct seq_file *m, void *v)
727 {
728 int i;
729
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
734 }
735 seq_puts(m, "\n");
736
737 return 0;
738 }
739
740 static ssize_t
741 sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
743 {
744 char buf[64];
745 char *cmp = buf;
746 int neg = 0;
747 int i;
748
749 if (cnt > 63)
750 cnt = 63;
751
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
754
755 buf[cnt] = 0;
756
757 if (strncmp(buf, "NO_", 3) == 0) {
758 neg = 1;
759 cmp += 3;
760 }
761
762 for (i = 0; sched_feat_names[i]; i++) {
763 int len = strlen(sched_feat_names[i]);
764
765 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
771 }
772 }
773
774 if (!sched_feat_names[i])
775 return -EINVAL;
776
777 *ppos += cnt;
778
779 return cnt;
780 }
781
782 static int sched_feat_open(struct inode *inode, struct file *filp)
783 {
784 return single_open(filp, sched_feat_show, NULL);
785 }
786
787 static const struct file_operations sched_feat_fops = {
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
793 };
794
795 static __init int sched_init_debug(void)
796 {
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801 }
802 late_initcall(sched_init_debug);
803
804 #endif
805
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
807
808 /*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
814 /*
815 * ratelimit for updating the group shares.
816 * default: 0.25ms
817 */
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
819 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
820
821 /*
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
825 */
826 unsigned int sysctl_sched_shares_thresh = 4;
827
828 /*
829 * period over which we average the RT time consumption, measured
830 * in ms.
831 *
832 * default: 1s
833 */
834 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
835
836 /*
837 * period over which we measure -rt task cpu usage in us.
838 * default: 1s
839 */
840 unsigned int sysctl_sched_rt_period = 1000000;
841
842 static __read_mostly int scheduler_running;
843
844 /*
845 * part of the period that we allow rt tasks to run in us.
846 * default: 0.95s
847 */
848 int sysctl_sched_rt_runtime = 950000;
849
850 static inline u64 global_rt_period(void)
851 {
852 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
853 }
854
855 static inline u64 global_rt_runtime(void)
856 {
857 if (sysctl_sched_rt_runtime < 0)
858 return RUNTIME_INF;
859
860 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
861 }
862
863 #ifndef prepare_arch_switch
864 # define prepare_arch_switch(next) do { } while (0)
865 #endif
866 #ifndef finish_arch_switch
867 # define finish_arch_switch(prev) do { } while (0)
868 #endif
869
870 static inline int task_current(struct rq *rq, struct task_struct *p)
871 {
872 return rq->curr == p;
873 }
874
875 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
876 static inline int task_running(struct rq *rq, struct task_struct *p)
877 {
878 return task_current(rq, p);
879 }
880
881 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
882 {
883 }
884
885 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
886 {
887 #ifdef CONFIG_DEBUG_SPINLOCK
888 /* this is a valid case when another task releases the spinlock */
889 rq->lock.owner = current;
890 #endif
891 /*
892 * If we are tracking spinlock dependencies then we have to
893 * fix up the runqueue lock - which gets 'carried over' from
894 * prev into current:
895 */
896 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
897
898 raw_spin_unlock_irq(&rq->lock);
899 }
900
901 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
902 static inline int task_running(struct rq *rq, struct task_struct *p)
903 {
904 #ifdef CONFIG_SMP
905 return p->oncpu;
906 #else
907 return task_current(rq, p);
908 #endif
909 }
910
911 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
912 {
913 #ifdef CONFIG_SMP
914 /*
915 * We can optimise this out completely for !SMP, because the
916 * SMP rebalancing from interrupt is the only thing that cares
917 * here.
918 */
919 next->oncpu = 1;
920 #endif
921 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
922 raw_spin_unlock_irq(&rq->lock);
923 #else
924 raw_spin_unlock(&rq->lock);
925 #endif
926 }
927
928 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
929 {
930 #ifdef CONFIG_SMP
931 /*
932 * After ->oncpu is cleared, the task can be moved to a different CPU.
933 * We must ensure this doesn't happen until the switch is completely
934 * finished.
935 */
936 smp_wmb();
937 prev->oncpu = 0;
938 #endif
939 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 local_irq_enable();
941 #endif
942 }
943 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
944
945 /*
946 * __task_rq_lock - lock the runqueue a given task resides on.
947 * Must be called interrupts disabled.
948 */
949 static inline struct rq *__task_rq_lock(struct task_struct *p)
950 __acquires(rq->lock)
951 {
952 for (;;) {
953 struct rq *rq = task_rq(p);
954 raw_spin_lock(&rq->lock);
955 if (likely(rq == task_rq(p)))
956 return rq;
957 raw_spin_unlock(&rq->lock);
958 }
959 }
960
961 /*
962 * task_rq_lock - lock the runqueue a given task resides on and disable
963 * interrupts. Note the ordering: we can safely lookup the task_rq without
964 * explicitly disabling preemption.
965 */
966 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
967 __acquires(rq->lock)
968 {
969 struct rq *rq;
970
971 for (;;) {
972 local_irq_save(*flags);
973 rq = task_rq(p);
974 raw_spin_lock(&rq->lock);
975 if (likely(rq == task_rq(p)))
976 return rq;
977 raw_spin_unlock_irqrestore(&rq->lock, *flags);
978 }
979 }
980
981 void task_rq_unlock_wait(struct task_struct *p)
982 {
983 struct rq *rq = task_rq(p);
984
985 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
986 raw_spin_unlock_wait(&rq->lock);
987 }
988
989 static void __task_rq_unlock(struct rq *rq)
990 __releases(rq->lock)
991 {
992 raw_spin_unlock(&rq->lock);
993 }
994
995 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
996 __releases(rq->lock)
997 {
998 raw_spin_unlock_irqrestore(&rq->lock, *flags);
999 }
1000
1001 /*
1002 * this_rq_lock - lock this runqueue and disable interrupts.
1003 */
1004 static struct rq *this_rq_lock(void)
1005 __acquires(rq->lock)
1006 {
1007 struct rq *rq;
1008
1009 local_irq_disable();
1010 rq = this_rq();
1011 raw_spin_lock(&rq->lock);
1012
1013 return rq;
1014 }
1015
1016 #ifdef CONFIG_SCHED_HRTICK
1017 /*
1018 * Use HR-timers to deliver accurate preemption points.
1019 *
1020 * Its all a bit involved since we cannot program an hrt while holding the
1021 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * reschedule event.
1023 *
1024 * When we get rescheduled we reprogram the hrtick_timer outside of the
1025 * rq->lock.
1026 */
1027
1028 /*
1029 * Use hrtick when:
1030 * - enabled by features
1031 * - hrtimer is actually high res
1032 */
1033 static inline int hrtick_enabled(struct rq *rq)
1034 {
1035 if (!sched_feat(HRTICK))
1036 return 0;
1037 if (!cpu_active(cpu_of(rq)))
1038 return 0;
1039 return hrtimer_is_hres_active(&rq->hrtick_timer);
1040 }
1041
1042 static void hrtick_clear(struct rq *rq)
1043 {
1044 if (hrtimer_active(&rq->hrtick_timer))
1045 hrtimer_cancel(&rq->hrtick_timer);
1046 }
1047
1048 /*
1049 * High-resolution timer tick.
1050 * Runs from hardirq context with interrupts disabled.
1051 */
1052 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1053 {
1054 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1055
1056 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1057
1058 raw_spin_lock(&rq->lock);
1059 update_rq_clock(rq);
1060 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1061 raw_spin_unlock(&rq->lock);
1062
1063 return HRTIMER_NORESTART;
1064 }
1065
1066 #ifdef CONFIG_SMP
1067 /*
1068 * called from hardirq (IPI) context
1069 */
1070 static void __hrtick_start(void *arg)
1071 {
1072 struct rq *rq = arg;
1073
1074 raw_spin_lock(&rq->lock);
1075 hrtimer_restart(&rq->hrtick_timer);
1076 rq->hrtick_csd_pending = 0;
1077 raw_spin_unlock(&rq->lock);
1078 }
1079
1080 /*
1081 * Called to set the hrtick timer state.
1082 *
1083 * called with rq->lock held and irqs disabled
1084 */
1085 static void hrtick_start(struct rq *rq, u64 delay)
1086 {
1087 struct hrtimer *timer = &rq->hrtick_timer;
1088 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1089
1090 hrtimer_set_expires(timer, time);
1091
1092 if (rq == this_rq()) {
1093 hrtimer_restart(timer);
1094 } else if (!rq->hrtick_csd_pending) {
1095 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1096 rq->hrtick_csd_pending = 1;
1097 }
1098 }
1099
1100 static int
1101 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1102 {
1103 int cpu = (int)(long)hcpu;
1104
1105 switch (action) {
1106 case CPU_UP_CANCELED:
1107 case CPU_UP_CANCELED_FROZEN:
1108 case CPU_DOWN_PREPARE:
1109 case CPU_DOWN_PREPARE_FROZEN:
1110 case CPU_DEAD:
1111 case CPU_DEAD_FROZEN:
1112 hrtick_clear(cpu_rq(cpu));
1113 return NOTIFY_OK;
1114 }
1115
1116 return NOTIFY_DONE;
1117 }
1118
1119 static __init void init_hrtick(void)
1120 {
1121 hotcpu_notifier(hotplug_hrtick, 0);
1122 }
1123 #else
1124 /*
1125 * Called to set the hrtick timer state.
1126 *
1127 * called with rq->lock held and irqs disabled
1128 */
1129 static void hrtick_start(struct rq *rq, u64 delay)
1130 {
1131 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1132 HRTIMER_MODE_REL_PINNED, 0);
1133 }
1134
1135 static inline void init_hrtick(void)
1136 {
1137 }
1138 #endif /* CONFIG_SMP */
1139
1140 static void init_rq_hrtick(struct rq *rq)
1141 {
1142 #ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
1144
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148 #endif
1149
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
1152 }
1153 #else /* CONFIG_SCHED_HRTICK */
1154 static inline void hrtick_clear(struct rq *rq)
1155 {
1156 }
1157
1158 static inline void init_rq_hrtick(struct rq *rq)
1159 {
1160 }
1161
1162 static inline void init_hrtick(void)
1163 {
1164 }
1165 #endif /* CONFIG_SCHED_HRTICK */
1166
1167 /*
1168 * resched_task - mark a task 'to be rescheduled now'.
1169 *
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1173 */
1174 #ifdef CONFIG_SMP
1175
1176 #ifndef tsk_is_polling
1177 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178 #endif
1179
1180 static void resched_task(struct task_struct *p)
1181 {
1182 int cpu;
1183
1184 assert_raw_spin_locked(&task_rq(p)->lock);
1185
1186 if (test_tsk_need_resched(p))
1187 return;
1188
1189 set_tsk_need_resched(p);
1190
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1194
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1199 }
1200
1201 static void resched_cpu(int cpu)
1202 {
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1205
1206 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 raw_spin_unlock_irqrestore(&rq->lock, flags);
1210 }
1211
1212 #ifdef CONFIG_NO_HZ
1213 /*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223 void wake_up_idle_cpu(int cpu)
1224 {
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
1245 set_tsk_need_resched(rq->idle);
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251 }
1252 #endif /* CONFIG_NO_HZ */
1253
1254 static u64 sched_avg_period(void)
1255 {
1256 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1257 }
1258
1259 static void sched_avg_update(struct rq *rq)
1260 {
1261 s64 period = sched_avg_period();
1262
1263 while ((s64)(rq->clock - rq->age_stamp) > period) {
1264 rq->age_stamp += period;
1265 rq->rt_avg /= 2;
1266 }
1267 }
1268
1269 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1270 {
1271 rq->rt_avg += rt_delta;
1272 sched_avg_update(rq);
1273 }
1274
1275 #else /* !CONFIG_SMP */
1276 static void resched_task(struct task_struct *p)
1277 {
1278 assert_raw_spin_locked(&task_rq(p)->lock);
1279 set_tsk_need_resched(p);
1280 }
1281
1282 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1283 {
1284 }
1285 #endif /* CONFIG_SMP */
1286
1287 #if BITS_PER_LONG == 32
1288 # define WMULT_CONST (~0UL)
1289 #else
1290 # define WMULT_CONST (1UL << 32)
1291 #endif
1292
1293 #define WMULT_SHIFT 32
1294
1295 /*
1296 * Shift right and round:
1297 */
1298 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1299
1300 /*
1301 * delta *= weight / lw
1302 */
1303 static unsigned long
1304 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1306 {
1307 u64 tmp;
1308
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1315 }
1316
1317 tmp = (u64)delta_exec * weight;
1318 /*
1319 * Check whether we'd overflow the 64-bit multiplication:
1320 */
1321 if (unlikely(tmp > WMULT_CONST))
1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1323 WMULT_SHIFT/2);
1324 else
1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1326
1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1328 }
1329
1330 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1331 {
1332 lw->weight += inc;
1333 lw->inv_weight = 0;
1334 }
1335
1336 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1337 {
1338 lw->weight -= dec;
1339 lw->inv_weight = 0;
1340 }
1341
1342 /*
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1349 */
1350
1351 #define WEIGHT_IDLEPRIO 3
1352 #define WMULT_IDLEPRIO 1431655765
1353
1354 /*
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1359 *
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
1365 */
1366 static const int prio_to_weight[40] = {
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
1375 };
1376
1377 /*
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 *
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1383 */
1384 static const u32 prio_to_wmult[40] = {
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1393 };
1394
1395 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1396
1397 /*
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1401 */
1402 struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1406 };
1407
1408 #ifdef CONFIG_SMP
1409 static unsigned long
1410 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1414
1415 static int
1416 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
1419 #endif
1420
1421 /* Time spent by the tasks of the cpu accounting group executing in ... */
1422 enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1425
1426 CPUACCT_STAT_NSTATS,
1427 };
1428
1429 #ifdef CONFIG_CGROUP_CPUACCT
1430 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1431 static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
1433 #else
1434 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1435 static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
1437 #endif
1438
1439 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1440 {
1441 update_load_add(&rq->load, load);
1442 }
1443
1444 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1445 {
1446 update_load_sub(&rq->load, load);
1447 }
1448
1449 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1450 typedef int (*tg_visitor)(struct task_group *, void *);
1451
1452 /*
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1455 */
1456 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1457 {
1458 struct task_group *parent, *child;
1459 int ret;
1460
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463 down:
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1470
1471 up:
1472 continue;
1473 }
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
1477
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
1482 out_unlock:
1483 rcu_read_unlock();
1484
1485 return ret;
1486 }
1487
1488 static int tg_nop(struct task_group *tg, void *data)
1489 {
1490 return 0;
1491 }
1492 #endif
1493
1494 #ifdef CONFIG_SMP
1495 /* Used instead of source_load when we know the type == 0 */
1496 static unsigned long weighted_cpuload(const int cpu)
1497 {
1498 return cpu_rq(cpu)->load.weight;
1499 }
1500
1501 /*
1502 * Return a low guess at the load of a migration-source cpu weighted
1503 * according to the scheduling class and "nice" value.
1504 *
1505 * We want to under-estimate the load of migration sources, to
1506 * balance conservatively.
1507 */
1508 static unsigned long source_load(int cpu, int type)
1509 {
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long total = weighted_cpuload(cpu);
1512
1513 if (type == 0 || !sched_feat(LB_BIAS))
1514 return total;
1515
1516 return min(rq->cpu_load[type-1], total);
1517 }
1518
1519 /*
1520 * Return a high guess at the load of a migration-target cpu weighted
1521 * according to the scheduling class and "nice" value.
1522 */
1523 static unsigned long target_load(int cpu, int type)
1524 {
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long total = weighted_cpuload(cpu);
1527
1528 if (type == 0 || !sched_feat(LB_BIAS))
1529 return total;
1530
1531 return max(rq->cpu_load[type-1], total);
1532 }
1533
1534 static struct sched_group *group_of(int cpu)
1535 {
1536 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1537
1538 if (!sd)
1539 return NULL;
1540
1541 return sd->groups;
1542 }
1543
1544 static unsigned long power_of(int cpu)
1545 {
1546 struct sched_group *group = group_of(cpu);
1547
1548 if (!group)
1549 return SCHED_LOAD_SCALE;
1550
1551 return group->cpu_power;
1552 }
1553
1554 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1555
1556 static unsigned long cpu_avg_load_per_task(int cpu)
1557 {
1558 struct rq *rq = cpu_rq(cpu);
1559 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1560
1561 if (nr_running)
1562 rq->avg_load_per_task = rq->load.weight / nr_running;
1563 else
1564 rq->avg_load_per_task = 0;
1565
1566 return rq->avg_load_per_task;
1567 }
1568
1569 #ifdef CONFIG_FAIR_GROUP_SCHED
1570
1571 static __read_mostly unsigned long *update_shares_data;
1572
1573 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1574
1575 /*
1576 * Calculate and set the cpu's group shares.
1577 */
1578 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
1581 unsigned long *usd_rq_weight)
1582 {
1583 unsigned long shares, rq_weight;
1584 int boost = 0;
1585
1586 rq_weight = usd_rq_weight[cpu];
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1590 }
1591
1592 /*
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
1596 */
1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1599
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
1604
1605 raw_spin_lock_irqsave(&rq->lock, flags);
1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1608 __set_se_shares(tg->se[cpu], shares);
1609 raw_spin_unlock_irqrestore(&rq->lock, flags);
1610 }
1611 }
1612
1613 /*
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
1617 */
1618 static int tg_shares_up(struct task_group *tg, void *data)
1619 {
1620 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1621 unsigned long *usd_rq_weight;
1622 struct sched_domain *sd = data;
1623 unsigned long flags;
1624 int i;
1625
1626 if (!tg->se[0])
1627 return 0;
1628
1629 local_irq_save(flags);
1630 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1631
1632 for_each_cpu(i, sched_domain_span(sd)) {
1633 weight = tg->cfs_rq[i]->load.weight;
1634 usd_rq_weight[i] = weight;
1635
1636 rq_weight += weight;
1637 /*
1638 * If there are currently no tasks on the cpu pretend there
1639 * is one of average load so that when a new task gets to
1640 * run here it will not get delayed by group starvation.
1641 */
1642 if (!weight)
1643 weight = NICE_0_LOAD;
1644
1645 sum_weight += weight;
1646 shares += tg->cfs_rq[i]->shares;
1647 }
1648
1649 if (!rq_weight)
1650 rq_weight = sum_weight;
1651
1652 if ((!shares && rq_weight) || shares > tg->shares)
1653 shares = tg->shares;
1654
1655 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1656 shares = tg->shares;
1657
1658 for_each_cpu(i, sched_domain_span(sd))
1659 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1660
1661 local_irq_restore(flags);
1662
1663 return 0;
1664 }
1665
1666 /*
1667 * Compute the cpu's hierarchical load factor for each task group.
1668 * This needs to be done in a top-down fashion because the load of a child
1669 * group is a fraction of its parents load.
1670 */
1671 static int tg_load_down(struct task_group *tg, void *data)
1672 {
1673 unsigned long load;
1674 long cpu = (long)data;
1675
1676 if (!tg->parent) {
1677 load = cpu_rq(cpu)->load.weight;
1678 } else {
1679 load = tg->parent->cfs_rq[cpu]->h_load;
1680 load *= tg->cfs_rq[cpu]->shares;
1681 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1682 }
1683
1684 tg->cfs_rq[cpu]->h_load = load;
1685
1686 return 0;
1687 }
1688
1689 static void update_shares(struct sched_domain *sd)
1690 {
1691 s64 elapsed;
1692 u64 now;
1693
1694 if (root_task_group_empty())
1695 return;
1696
1697 now = cpu_clock(raw_smp_processor_id());
1698 elapsed = now - sd->last_update;
1699
1700 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1701 sd->last_update = now;
1702 walk_tg_tree(tg_nop, tg_shares_up, sd);
1703 }
1704 }
1705
1706 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1707 {
1708 if (root_task_group_empty())
1709 return;
1710
1711 raw_spin_unlock(&rq->lock);
1712 update_shares(sd);
1713 raw_spin_lock(&rq->lock);
1714 }
1715
1716 static void update_h_load(long cpu)
1717 {
1718 if (root_task_group_empty())
1719 return;
1720
1721 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1722 }
1723
1724 #else
1725
1726 static inline void update_shares(struct sched_domain *sd)
1727 {
1728 }
1729
1730 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1731 {
1732 }
1733
1734 #endif
1735
1736 #ifdef CONFIG_PREEMPT
1737
1738 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1739
1740 /*
1741 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1742 * way at the expense of forcing extra atomic operations in all
1743 * invocations. This assures that the double_lock is acquired using the
1744 * same underlying policy as the spinlock_t on this architecture, which
1745 * reduces latency compared to the unfair variant below. However, it
1746 * also adds more overhead and therefore may reduce throughput.
1747 */
1748 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 __releases(this_rq->lock)
1750 __acquires(busiest->lock)
1751 __acquires(this_rq->lock)
1752 {
1753 raw_spin_unlock(&this_rq->lock);
1754 double_rq_lock(this_rq, busiest);
1755
1756 return 1;
1757 }
1758
1759 #else
1760 /*
1761 * Unfair double_lock_balance: Optimizes throughput at the expense of
1762 * latency by eliminating extra atomic operations when the locks are
1763 * already in proper order on entry. This favors lower cpu-ids and will
1764 * grant the double lock to lower cpus over higher ids under contention,
1765 * regardless of entry order into the function.
1766 */
1767 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1768 __releases(this_rq->lock)
1769 __acquires(busiest->lock)
1770 __acquires(this_rq->lock)
1771 {
1772 int ret = 0;
1773
1774 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1775 if (busiest < this_rq) {
1776 raw_spin_unlock(&this_rq->lock);
1777 raw_spin_lock(&busiest->lock);
1778 raw_spin_lock_nested(&this_rq->lock,
1779 SINGLE_DEPTH_NESTING);
1780 ret = 1;
1781 } else
1782 raw_spin_lock_nested(&busiest->lock,
1783 SINGLE_DEPTH_NESTING);
1784 }
1785 return ret;
1786 }
1787
1788 #endif /* CONFIG_PREEMPT */
1789
1790 /*
1791 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1792 */
1793 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1794 {
1795 if (unlikely(!irqs_disabled())) {
1796 /* printk() doesn't work good under rq->lock */
1797 raw_spin_unlock(&this_rq->lock);
1798 BUG_ON(1);
1799 }
1800
1801 return _double_lock_balance(this_rq, busiest);
1802 }
1803
1804 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1805 __releases(busiest->lock)
1806 {
1807 raw_spin_unlock(&busiest->lock);
1808 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1809 }
1810 #endif
1811
1812 #ifdef CONFIG_FAIR_GROUP_SCHED
1813 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1814 {
1815 #ifdef CONFIG_SMP
1816 cfs_rq->shares = shares;
1817 #endif
1818 }
1819 #endif
1820
1821 static void calc_load_account_active(struct rq *this_rq);
1822 static void update_sysctl(void);
1823 static int get_update_sysctl_factor(void);
1824
1825 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1826 {
1827 set_task_rq(p, cpu);
1828 #ifdef CONFIG_SMP
1829 /*
1830 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1831 * successfuly executed on another CPU. We must ensure that updates of
1832 * per-task data have been completed by this moment.
1833 */
1834 smp_wmb();
1835 task_thread_info(p)->cpu = cpu;
1836 #endif
1837 }
1838
1839 #include "sched_stats.h"
1840 #include "sched_idletask.c"
1841 #include "sched_fair.c"
1842 #include "sched_rt.c"
1843 #ifdef CONFIG_SCHED_DEBUG
1844 # include "sched_debug.c"
1845 #endif
1846
1847 #define sched_class_highest (&rt_sched_class)
1848 #define for_each_class(class) \
1849 for (class = sched_class_highest; class; class = class->next)
1850
1851 static void inc_nr_running(struct rq *rq)
1852 {
1853 rq->nr_running++;
1854 }
1855
1856 static void dec_nr_running(struct rq *rq)
1857 {
1858 rq->nr_running--;
1859 }
1860
1861 static void set_load_weight(struct task_struct *p)
1862 {
1863 if (task_has_rt_policy(p)) {
1864 p->se.load.weight = prio_to_weight[0] * 2;
1865 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1866 return;
1867 }
1868
1869 /*
1870 * SCHED_IDLE tasks get minimal weight:
1871 */
1872 if (p->policy == SCHED_IDLE) {
1873 p->se.load.weight = WEIGHT_IDLEPRIO;
1874 p->se.load.inv_weight = WMULT_IDLEPRIO;
1875 return;
1876 }
1877
1878 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1879 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1880 }
1881
1882 static void update_avg(u64 *avg, u64 sample)
1883 {
1884 s64 diff = sample - *avg;
1885 *avg += diff >> 3;
1886 }
1887
1888 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1889 {
1890 if (wakeup)
1891 p->se.start_runtime = p->se.sum_exec_runtime;
1892
1893 sched_info_queued(p);
1894 p->sched_class->enqueue_task(rq, p, wakeup);
1895 p->se.on_rq = 1;
1896 }
1897
1898 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1899 {
1900 if (sleep) {
1901 if (p->se.last_wakeup) {
1902 update_avg(&p->se.avg_overlap,
1903 p->se.sum_exec_runtime - p->se.last_wakeup);
1904 p->se.last_wakeup = 0;
1905 } else {
1906 update_avg(&p->se.avg_wakeup,
1907 sysctl_sched_wakeup_granularity);
1908 }
1909 }
1910
1911 sched_info_dequeued(p);
1912 p->sched_class->dequeue_task(rq, p, sleep);
1913 p->se.on_rq = 0;
1914 }
1915
1916 /*
1917 * __normal_prio - return the priority that is based on the static prio
1918 */
1919 static inline int __normal_prio(struct task_struct *p)
1920 {
1921 return p->static_prio;
1922 }
1923
1924 /*
1925 * Calculate the expected normal priority: i.e. priority
1926 * without taking RT-inheritance into account. Might be
1927 * boosted by interactivity modifiers. Changes upon fork,
1928 * setprio syscalls, and whenever the interactivity
1929 * estimator recalculates.
1930 */
1931 static inline int normal_prio(struct task_struct *p)
1932 {
1933 int prio;
1934
1935 if (task_has_rt_policy(p))
1936 prio = MAX_RT_PRIO-1 - p->rt_priority;
1937 else
1938 prio = __normal_prio(p);
1939 return prio;
1940 }
1941
1942 /*
1943 * Calculate the current priority, i.e. the priority
1944 * taken into account by the scheduler. This value might
1945 * be boosted by RT tasks, or might be boosted by
1946 * interactivity modifiers. Will be RT if the task got
1947 * RT-boosted. If not then it returns p->normal_prio.
1948 */
1949 static int effective_prio(struct task_struct *p)
1950 {
1951 p->normal_prio = normal_prio(p);
1952 /*
1953 * If we are RT tasks or we were boosted to RT priority,
1954 * keep the priority unchanged. Otherwise, update priority
1955 * to the normal priority:
1956 */
1957 if (!rt_prio(p->prio))
1958 return p->normal_prio;
1959 return p->prio;
1960 }
1961
1962 /*
1963 * activate_task - move a task to the runqueue.
1964 */
1965 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1966 {
1967 if (task_contributes_to_load(p))
1968 rq->nr_uninterruptible--;
1969
1970 enqueue_task(rq, p, wakeup);
1971 inc_nr_running(rq);
1972 }
1973
1974 /*
1975 * deactivate_task - remove a task from the runqueue.
1976 */
1977 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1978 {
1979 if (task_contributes_to_load(p))
1980 rq->nr_uninterruptible++;
1981
1982 dequeue_task(rq, p, sleep);
1983 dec_nr_running(rq);
1984 }
1985
1986 /**
1987 * task_curr - is this task currently executing on a CPU?
1988 * @p: the task in question.
1989 */
1990 inline int task_curr(const struct task_struct *p)
1991 {
1992 return cpu_curr(task_cpu(p)) == p;
1993 }
1994
1995 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1996 const struct sched_class *prev_class,
1997 int oldprio, int running)
1998 {
1999 if (prev_class != p->sched_class) {
2000 if (prev_class->switched_from)
2001 prev_class->switched_from(rq, p, running);
2002 p->sched_class->switched_to(rq, p, running);
2003 } else
2004 p->sched_class->prio_changed(rq, p, oldprio, running);
2005 }
2006
2007 /**
2008 * kthread_bind - bind a just-created kthread to a cpu.
2009 * @p: thread created by kthread_create().
2010 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2011 *
2012 * Description: This function is equivalent to set_cpus_allowed(),
2013 * except that @cpu doesn't need to be online, and the thread must be
2014 * stopped (i.e., just returned from kthread_create()).
2015 *
2016 * Function lives here instead of kthread.c because it messes with
2017 * scheduler internals which require locking.
2018 */
2019 void kthread_bind(struct task_struct *p, unsigned int cpu)
2020 {
2021 struct rq *rq = cpu_rq(cpu);
2022 unsigned long flags;
2023
2024 /* Must have done schedule() in kthread() before we set_task_cpu */
2025 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2026 WARN_ON(1);
2027 return;
2028 }
2029
2030 raw_spin_lock_irqsave(&rq->lock, flags);
2031 update_rq_clock(rq);
2032 set_task_cpu(p, cpu);
2033 p->cpus_allowed = cpumask_of_cpu(cpu);
2034 p->rt.nr_cpus_allowed = 1;
2035 p->flags |= PF_THREAD_BOUND;
2036 raw_spin_unlock_irqrestore(&rq->lock, flags);
2037 }
2038 EXPORT_SYMBOL(kthread_bind);
2039
2040 #ifdef CONFIG_SMP
2041 /*
2042 * Is this task likely cache-hot:
2043 */
2044 static int
2045 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2046 {
2047 s64 delta;
2048
2049 if (p->sched_class != &fair_sched_class)
2050 return 0;
2051
2052 /*
2053 * Buddy candidates are cache hot:
2054 */
2055 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2056 (&p->se == cfs_rq_of(&p->se)->next ||
2057 &p->se == cfs_rq_of(&p->se)->last))
2058 return 1;
2059
2060 if (sysctl_sched_migration_cost == -1)
2061 return 1;
2062 if (sysctl_sched_migration_cost == 0)
2063 return 0;
2064
2065 delta = now - p->se.exec_start;
2066
2067 return delta < (s64)sysctl_sched_migration_cost;
2068 }
2069
2070
2071 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2072 {
2073 int old_cpu = task_cpu(p);
2074 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2075 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2076
2077 trace_sched_migrate_task(p, new_cpu);
2078
2079 if (old_cpu != new_cpu) {
2080 p->se.nr_migrations++;
2081 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2082 1, 1, NULL, 0);
2083 }
2084 p->se.vruntime -= old_cfsrq->min_vruntime -
2085 new_cfsrq->min_vruntime;
2086
2087 __set_task_cpu(p, new_cpu);
2088 }
2089
2090 struct migration_req {
2091 struct list_head list;
2092
2093 struct task_struct *task;
2094 int dest_cpu;
2095
2096 struct completion done;
2097 };
2098
2099 /*
2100 * The task's runqueue lock must be held.
2101 * Returns true if you have to wait for migration thread.
2102 */
2103 static int
2104 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2105 {
2106 struct rq *rq = task_rq(p);
2107
2108 /*
2109 * If the task is not on a runqueue (and not running), then
2110 * it is sufficient to simply update the task's cpu field.
2111 */
2112 if (!p->se.on_rq && !task_running(rq, p)) {
2113 update_rq_clock(rq);
2114 set_task_cpu(p, dest_cpu);
2115 return 0;
2116 }
2117
2118 init_completion(&req->done);
2119 req->task = p;
2120 req->dest_cpu = dest_cpu;
2121 list_add(&req->list, &rq->migration_queue);
2122
2123 return 1;
2124 }
2125
2126 /*
2127 * wait_task_context_switch - wait for a thread to complete at least one
2128 * context switch.
2129 *
2130 * @p must not be current.
2131 */
2132 void wait_task_context_switch(struct task_struct *p)
2133 {
2134 unsigned long nvcsw, nivcsw, flags;
2135 int running;
2136 struct rq *rq;
2137
2138 nvcsw = p->nvcsw;
2139 nivcsw = p->nivcsw;
2140 for (;;) {
2141 /*
2142 * The runqueue is assigned before the actual context
2143 * switch. We need to take the runqueue lock.
2144 *
2145 * We could check initially without the lock but it is
2146 * very likely that we need to take the lock in every
2147 * iteration.
2148 */
2149 rq = task_rq_lock(p, &flags);
2150 running = task_running(rq, p);
2151 task_rq_unlock(rq, &flags);
2152
2153 if (likely(!running))
2154 break;
2155 /*
2156 * The switch count is incremented before the actual
2157 * context switch. We thus wait for two switches to be
2158 * sure at least one completed.
2159 */
2160 if ((p->nvcsw - nvcsw) > 1)
2161 break;
2162 if ((p->nivcsw - nivcsw) > 1)
2163 break;
2164
2165 cpu_relax();
2166 }
2167 }
2168
2169 /*
2170 * wait_task_inactive - wait for a thread to unschedule.
2171 *
2172 * If @match_state is nonzero, it's the @p->state value just checked and
2173 * not expected to change. If it changes, i.e. @p might have woken up,
2174 * then return zero. When we succeed in waiting for @p to be off its CPU,
2175 * we return a positive number (its total switch count). If a second call
2176 * a short while later returns the same number, the caller can be sure that
2177 * @p has remained unscheduled the whole time.
2178 *
2179 * The caller must ensure that the task *will* unschedule sometime soon,
2180 * else this function might spin for a *long* time. This function can't
2181 * be called with interrupts off, or it may introduce deadlock with
2182 * smp_call_function() if an IPI is sent by the same process we are
2183 * waiting to become inactive.
2184 */
2185 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2186 {
2187 unsigned long flags;
2188 int running, on_rq;
2189 unsigned long ncsw;
2190 struct rq *rq;
2191
2192 for (;;) {
2193 /*
2194 * We do the initial early heuristics without holding
2195 * any task-queue locks at all. We'll only try to get
2196 * the runqueue lock when things look like they will
2197 * work out!
2198 */
2199 rq = task_rq(p);
2200
2201 /*
2202 * If the task is actively running on another CPU
2203 * still, just relax and busy-wait without holding
2204 * any locks.
2205 *
2206 * NOTE! Since we don't hold any locks, it's not
2207 * even sure that "rq" stays as the right runqueue!
2208 * But we don't care, since "task_running()" will
2209 * return false if the runqueue has changed and p
2210 * is actually now running somewhere else!
2211 */
2212 while (task_running(rq, p)) {
2213 if (match_state && unlikely(p->state != match_state))
2214 return 0;
2215 cpu_relax();
2216 }
2217
2218 /*
2219 * Ok, time to look more closely! We need the rq
2220 * lock now, to be *sure*. If we're wrong, we'll
2221 * just go back and repeat.
2222 */
2223 rq = task_rq_lock(p, &flags);
2224 trace_sched_wait_task(rq, p);
2225 running = task_running(rq, p);
2226 on_rq = p->se.on_rq;
2227 ncsw = 0;
2228 if (!match_state || p->state == match_state)
2229 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2230 task_rq_unlock(rq, &flags);
2231
2232 /*
2233 * If it changed from the expected state, bail out now.
2234 */
2235 if (unlikely(!ncsw))
2236 break;
2237
2238 /*
2239 * Was it really running after all now that we
2240 * checked with the proper locks actually held?
2241 *
2242 * Oops. Go back and try again..
2243 */
2244 if (unlikely(running)) {
2245 cpu_relax();
2246 continue;
2247 }
2248
2249 /*
2250 * It's not enough that it's not actively running,
2251 * it must be off the runqueue _entirely_, and not
2252 * preempted!
2253 *
2254 * So if it was still runnable (but just not actively
2255 * running right now), it's preempted, and we should
2256 * yield - it could be a while.
2257 */
2258 if (unlikely(on_rq)) {
2259 schedule_timeout_uninterruptible(1);
2260 continue;
2261 }
2262
2263 /*
2264 * Ahh, all good. It wasn't running, and it wasn't
2265 * runnable, which means that it will never become
2266 * running in the future either. We're all done!
2267 */
2268 break;
2269 }
2270
2271 return ncsw;
2272 }
2273
2274 /***
2275 * kick_process - kick a running thread to enter/exit the kernel
2276 * @p: the to-be-kicked thread
2277 *
2278 * Cause a process which is running on another CPU to enter
2279 * kernel-mode, without any delay. (to get signals handled.)
2280 *
2281 * NOTE: this function doesnt have to take the runqueue lock,
2282 * because all it wants to ensure is that the remote task enters
2283 * the kernel. If the IPI races and the task has been migrated
2284 * to another CPU then no harm is done and the purpose has been
2285 * achieved as well.
2286 */
2287 void kick_process(struct task_struct *p)
2288 {
2289 int cpu;
2290
2291 preempt_disable();
2292 cpu = task_cpu(p);
2293 if ((cpu != smp_processor_id()) && task_curr(p))
2294 smp_send_reschedule(cpu);
2295 preempt_enable();
2296 }
2297 EXPORT_SYMBOL_GPL(kick_process);
2298 #endif /* CONFIG_SMP */
2299
2300 /**
2301 * task_oncpu_function_call - call a function on the cpu on which a task runs
2302 * @p: the task to evaluate
2303 * @func: the function to be called
2304 * @info: the function call argument
2305 *
2306 * Calls the function @func when the task is currently running. This might
2307 * be on the current CPU, which just calls the function directly
2308 */
2309 void task_oncpu_function_call(struct task_struct *p,
2310 void (*func) (void *info), void *info)
2311 {
2312 int cpu;
2313
2314 preempt_disable();
2315 cpu = task_cpu(p);
2316 if (task_curr(p))
2317 smp_call_function_single(cpu, func, info, 1);
2318 preempt_enable();
2319 }
2320
2321 #ifdef CONFIG_SMP
2322 static inline
2323 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2324 {
2325 return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2326 }
2327 #endif
2328
2329 /***
2330 * try_to_wake_up - wake up a thread
2331 * @p: the to-be-woken-up thread
2332 * @state: the mask of task states that can be woken
2333 * @sync: do a synchronous wakeup?
2334 *
2335 * Put it on the run-queue if it's not already there. The "current"
2336 * thread is always on the run-queue (except when the actual
2337 * re-schedule is in progress), and as such you're allowed to do
2338 * the simpler "current->state = TASK_RUNNING" to mark yourself
2339 * runnable without the overhead of this.
2340 *
2341 * returns failure only if the task is already active.
2342 */
2343 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2344 int wake_flags)
2345 {
2346 int cpu, orig_cpu, this_cpu, success = 0;
2347 unsigned long flags;
2348 struct rq *rq, *orig_rq;
2349
2350 if (!sched_feat(SYNC_WAKEUPS))
2351 wake_flags &= ~WF_SYNC;
2352
2353 this_cpu = get_cpu();
2354
2355 smp_wmb();
2356 rq = orig_rq = task_rq_lock(p, &flags);
2357 update_rq_clock(rq);
2358 if (!(p->state & state))
2359 goto out;
2360
2361 if (p->se.on_rq)
2362 goto out_running;
2363
2364 cpu = task_cpu(p);
2365 orig_cpu = cpu;
2366
2367 #ifdef CONFIG_SMP
2368 if (unlikely(task_running(rq, p)))
2369 goto out_activate;
2370
2371 /*
2372 * In order to handle concurrent wakeups and release the rq->lock
2373 * we put the task in TASK_WAKING state.
2374 *
2375 * First fix up the nr_uninterruptible count:
2376 */
2377 if (task_contributes_to_load(p))
2378 rq->nr_uninterruptible--;
2379 p->state = TASK_WAKING;
2380 __task_rq_unlock(rq);
2381
2382 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2383 if (cpu != orig_cpu)
2384 set_task_cpu(p, cpu);
2385
2386 rq = __task_rq_lock(p);
2387 update_rq_clock(rq);
2388
2389 WARN_ON(p->state != TASK_WAKING);
2390 cpu = task_cpu(p);
2391
2392 #ifdef CONFIG_SCHEDSTATS
2393 schedstat_inc(rq, ttwu_count);
2394 if (cpu == this_cpu)
2395 schedstat_inc(rq, ttwu_local);
2396 else {
2397 struct sched_domain *sd;
2398 for_each_domain(this_cpu, sd) {
2399 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2400 schedstat_inc(sd, ttwu_wake_remote);
2401 break;
2402 }
2403 }
2404 }
2405 #endif /* CONFIG_SCHEDSTATS */
2406
2407 out_activate:
2408 #endif /* CONFIG_SMP */
2409 schedstat_inc(p, se.nr_wakeups);
2410 if (wake_flags & WF_SYNC)
2411 schedstat_inc(p, se.nr_wakeups_sync);
2412 if (orig_cpu != cpu)
2413 schedstat_inc(p, se.nr_wakeups_migrate);
2414 if (cpu == this_cpu)
2415 schedstat_inc(p, se.nr_wakeups_local);
2416 else
2417 schedstat_inc(p, se.nr_wakeups_remote);
2418 activate_task(rq, p, 1);
2419 success = 1;
2420
2421 /*
2422 * Only attribute actual wakeups done by this task.
2423 */
2424 if (!in_interrupt()) {
2425 struct sched_entity *se = &current->se;
2426 u64 sample = se->sum_exec_runtime;
2427
2428 if (se->last_wakeup)
2429 sample -= se->last_wakeup;
2430 else
2431 sample -= se->start_runtime;
2432 update_avg(&se->avg_wakeup, sample);
2433
2434 se->last_wakeup = se->sum_exec_runtime;
2435 }
2436
2437 out_running:
2438 trace_sched_wakeup(rq, p, success);
2439 check_preempt_curr(rq, p, wake_flags);
2440
2441 p->state = TASK_RUNNING;
2442 #ifdef CONFIG_SMP
2443 if (p->sched_class->task_wake_up)
2444 p->sched_class->task_wake_up(rq, p);
2445
2446 if (unlikely(rq->idle_stamp)) {
2447 u64 delta = rq->clock - rq->idle_stamp;
2448 u64 max = 2*sysctl_sched_migration_cost;
2449
2450 if (delta > max)
2451 rq->avg_idle = max;
2452 else
2453 update_avg(&rq->avg_idle, delta);
2454 rq->idle_stamp = 0;
2455 }
2456 #endif
2457 out:
2458 task_rq_unlock(rq, &flags);
2459 put_cpu();
2460
2461 return success;
2462 }
2463
2464 /**
2465 * wake_up_process - Wake up a specific process
2466 * @p: The process to be woken up.
2467 *
2468 * Attempt to wake up the nominated process and move it to the set of runnable
2469 * processes. Returns 1 if the process was woken up, 0 if it was already
2470 * running.
2471 *
2472 * It may be assumed that this function implies a write memory barrier before
2473 * changing the task state if and only if any tasks are woken up.
2474 */
2475 int wake_up_process(struct task_struct *p)
2476 {
2477 return try_to_wake_up(p, TASK_ALL, 0);
2478 }
2479 EXPORT_SYMBOL(wake_up_process);
2480
2481 int wake_up_state(struct task_struct *p, unsigned int state)
2482 {
2483 return try_to_wake_up(p, state, 0);
2484 }
2485
2486 /*
2487 * Perform scheduler related setup for a newly forked process p.
2488 * p is forked by current.
2489 *
2490 * __sched_fork() is basic setup used by init_idle() too:
2491 */
2492 static void __sched_fork(struct task_struct *p)
2493 {
2494 p->se.exec_start = 0;
2495 p->se.sum_exec_runtime = 0;
2496 p->se.prev_sum_exec_runtime = 0;
2497 p->se.nr_migrations = 0;
2498 p->se.last_wakeup = 0;
2499 p->se.avg_overlap = 0;
2500 p->se.start_runtime = 0;
2501 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2502
2503 #ifdef CONFIG_SCHEDSTATS
2504 p->se.wait_start = 0;
2505 p->se.wait_max = 0;
2506 p->se.wait_count = 0;
2507 p->se.wait_sum = 0;
2508
2509 p->se.sleep_start = 0;
2510 p->se.sleep_max = 0;
2511 p->se.sum_sleep_runtime = 0;
2512
2513 p->se.block_start = 0;
2514 p->se.block_max = 0;
2515 p->se.exec_max = 0;
2516 p->se.slice_max = 0;
2517
2518 p->se.nr_migrations_cold = 0;
2519 p->se.nr_failed_migrations_affine = 0;
2520 p->se.nr_failed_migrations_running = 0;
2521 p->se.nr_failed_migrations_hot = 0;
2522 p->se.nr_forced_migrations = 0;
2523
2524 p->se.nr_wakeups = 0;
2525 p->se.nr_wakeups_sync = 0;
2526 p->se.nr_wakeups_migrate = 0;
2527 p->se.nr_wakeups_local = 0;
2528 p->se.nr_wakeups_remote = 0;
2529 p->se.nr_wakeups_affine = 0;
2530 p->se.nr_wakeups_affine_attempts = 0;
2531 p->se.nr_wakeups_passive = 0;
2532 p->se.nr_wakeups_idle = 0;
2533
2534 #endif
2535
2536 INIT_LIST_HEAD(&p->rt.run_list);
2537 p->se.on_rq = 0;
2538 INIT_LIST_HEAD(&p->se.group_node);
2539
2540 #ifdef CONFIG_PREEMPT_NOTIFIERS
2541 INIT_HLIST_HEAD(&p->preempt_notifiers);
2542 #endif
2543 }
2544
2545 /*
2546 * fork()/clone()-time setup:
2547 */
2548 void sched_fork(struct task_struct *p, int clone_flags)
2549 {
2550 int cpu = get_cpu();
2551
2552 __sched_fork(p);
2553 /*
2554 * We mark the process as waking here. This guarantees that
2555 * nobody will actually run it, and a signal or other external
2556 * event cannot wake it up and insert it on the runqueue either.
2557 */
2558 p->state = TASK_WAKING;
2559
2560 /*
2561 * Revert to default priority/policy on fork if requested.
2562 */
2563 if (unlikely(p->sched_reset_on_fork)) {
2564 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2565 p->policy = SCHED_NORMAL;
2566 p->normal_prio = p->static_prio;
2567 }
2568
2569 if (PRIO_TO_NICE(p->static_prio) < 0) {
2570 p->static_prio = NICE_TO_PRIO(0);
2571 p->normal_prio = p->static_prio;
2572 set_load_weight(p);
2573 }
2574
2575 /*
2576 * We don't need the reset flag anymore after the fork. It has
2577 * fulfilled its duty:
2578 */
2579 p->sched_reset_on_fork = 0;
2580 }
2581
2582 /*
2583 * Make sure we do not leak PI boosting priority to the child.
2584 */
2585 p->prio = current->normal_prio;
2586
2587 if (!rt_prio(p->prio))
2588 p->sched_class = &fair_sched_class;
2589
2590 if (p->sched_class->task_fork)
2591 p->sched_class->task_fork(p);
2592
2593 #ifdef CONFIG_SMP
2594 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2595 #endif
2596 set_task_cpu(p, cpu);
2597
2598 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2599 if (likely(sched_info_on()))
2600 memset(&p->sched_info, 0, sizeof(p->sched_info));
2601 #endif
2602 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2603 p->oncpu = 0;
2604 #endif
2605 #ifdef CONFIG_PREEMPT
2606 /* Want to start with kernel preemption disabled. */
2607 task_thread_info(p)->preempt_count = 1;
2608 #endif
2609 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2610
2611 put_cpu();
2612 }
2613
2614 /*
2615 * wake_up_new_task - wake up a newly created task for the first time.
2616 *
2617 * This function will do some initial scheduler statistics housekeeping
2618 * that must be done for every newly created context, then puts the task
2619 * on the runqueue and wakes it.
2620 */
2621 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2622 {
2623 unsigned long flags;
2624 struct rq *rq;
2625
2626 rq = task_rq_lock(p, &flags);
2627 BUG_ON(p->state != TASK_WAKING);
2628 p->state = TASK_RUNNING;
2629 update_rq_clock(rq);
2630 activate_task(rq, p, 0);
2631 trace_sched_wakeup_new(rq, p, 1);
2632 check_preempt_curr(rq, p, WF_FORK);
2633 #ifdef CONFIG_SMP
2634 if (p->sched_class->task_wake_up)
2635 p->sched_class->task_wake_up(rq, p);
2636 #endif
2637 task_rq_unlock(rq, &flags);
2638 }
2639
2640 #ifdef CONFIG_PREEMPT_NOTIFIERS
2641
2642 /**
2643 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2644 * @notifier: notifier struct to register
2645 */
2646 void preempt_notifier_register(struct preempt_notifier *notifier)
2647 {
2648 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2649 }
2650 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2651
2652 /**
2653 * preempt_notifier_unregister - no longer interested in preemption notifications
2654 * @notifier: notifier struct to unregister
2655 *
2656 * This is safe to call from within a preemption notifier.
2657 */
2658 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2659 {
2660 hlist_del(&notifier->link);
2661 }
2662 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2663
2664 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2665 {
2666 struct preempt_notifier *notifier;
2667 struct hlist_node *node;
2668
2669 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2670 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2671 }
2672
2673 static void
2674 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2675 struct task_struct *next)
2676 {
2677 struct preempt_notifier *notifier;
2678 struct hlist_node *node;
2679
2680 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2681 notifier->ops->sched_out(notifier, next);
2682 }
2683
2684 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2685
2686 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2687 {
2688 }
2689
2690 static void
2691 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2692 struct task_struct *next)
2693 {
2694 }
2695
2696 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2697
2698 /**
2699 * prepare_task_switch - prepare to switch tasks
2700 * @rq: the runqueue preparing to switch
2701 * @prev: the current task that is being switched out
2702 * @next: the task we are going to switch to.
2703 *
2704 * This is called with the rq lock held and interrupts off. It must
2705 * be paired with a subsequent finish_task_switch after the context
2706 * switch.
2707 *
2708 * prepare_task_switch sets up locking and calls architecture specific
2709 * hooks.
2710 */
2711 static inline void
2712 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2713 struct task_struct *next)
2714 {
2715 fire_sched_out_preempt_notifiers(prev, next);
2716 prepare_lock_switch(rq, next);
2717 prepare_arch_switch(next);
2718 }
2719
2720 /**
2721 * finish_task_switch - clean up after a task-switch
2722 * @rq: runqueue associated with task-switch
2723 * @prev: the thread we just switched away from.
2724 *
2725 * finish_task_switch must be called after the context switch, paired
2726 * with a prepare_task_switch call before the context switch.
2727 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2728 * and do any other architecture-specific cleanup actions.
2729 *
2730 * Note that we may have delayed dropping an mm in context_switch(). If
2731 * so, we finish that here outside of the runqueue lock. (Doing it
2732 * with the lock held can cause deadlocks; see schedule() for
2733 * details.)
2734 */
2735 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2736 __releases(rq->lock)
2737 {
2738 struct mm_struct *mm = rq->prev_mm;
2739 long prev_state;
2740
2741 rq->prev_mm = NULL;
2742
2743 /*
2744 * A task struct has one reference for the use as "current".
2745 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2746 * schedule one last time. The schedule call will never return, and
2747 * the scheduled task must drop that reference.
2748 * The test for TASK_DEAD must occur while the runqueue locks are
2749 * still held, otherwise prev could be scheduled on another cpu, die
2750 * there before we look at prev->state, and then the reference would
2751 * be dropped twice.
2752 * Manfred Spraul <manfred@colorfullife.com>
2753 */
2754 prev_state = prev->state;
2755 finish_arch_switch(prev);
2756 perf_event_task_sched_in(current, cpu_of(rq));
2757 finish_lock_switch(rq, prev);
2758
2759 fire_sched_in_preempt_notifiers(current);
2760 if (mm)
2761 mmdrop(mm);
2762 if (unlikely(prev_state == TASK_DEAD)) {
2763 /*
2764 * Remove function-return probe instances associated with this
2765 * task and put them back on the free list.
2766 */
2767 kprobe_flush_task(prev);
2768 put_task_struct(prev);
2769 }
2770 }
2771
2772 #ifdef CONFIG_SMP
2773
2774 /* assumes rq->lock is held */
2775 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2776 {
2777 if (prev->sched_class->pre_schedule)
2778 prev->sched_class->pre_schedule(rq, prev);
2779 }
2780
2781 /* rq->lock is NOT held, but preemption is disabled */
2782 static inline void post_schedule(struct rq *rq)
2783 {
2784 if (rq->post_schedule) {
2785 unsigned long flags;
2786
2787 raw_spin_lock_irqsave(&rq->lock, flags);
2788 if (rq->curr->sched_class->post_schedule)
2789 rq->curr->sched_class->post_schedule(rq);
2790 raw_spin_unlock_irqrestore(&rq->lock, flags);
2791
2792 rq->post_schedule = 0;
2793 }
2794 }
2795
2796 #else
2797
2798 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2799 {
2800 }
2801
2802 static inline void post_schedule(struct rq *rq)
2803 {
2804 }
2805
2806 #endif
2807
2808 /**
2809 * schedule_tail - first thing a freshly forked thread must call.
2810 * @prev: the thread we just switched away from.
2811 */
2812 asmlinkage void schedule_tail(struct task_struct *prev)
2813 __releases(rq->lock)
2814 {
2815 struct rq *rq = this_rq();
2816
2817 finish_task_switch(rq, prev);
2818
2819 /*
2820 * FIXME: do we need to worry about rq being invalidated by the
2821 * task_switch?
2822 */
2823 post_schedule(rq);
2824
2825 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2826 /* In this case, finish_task_switch does not reenable preemption */
2827 preempt_enable();
2828 #endif
2829 if (current->set_child_tid)
2830 put_user(task_pid_vnr(current), current->set_child_tid);
2831 }
2832
2833 /*
2834 * context_switch - switch to the new MM and the new
2835 * thread's register state.
2836 */
2837 static inline void
2838 context_switch(struct rq *rq, struct task_struct *prev,
2839 struct task_struct *next)
2840 {
2841 struct mm_struct *mm, *oldmm;
2842
2843 prepare_task_switch(rq, prev, next);
2844 trace_sched_switch(rq, prev, next);
2845 mm = next->mm;
2846 oldmm = prev->active_mm;
2847 /*
2848 * For paravirt, this is coupled with an exit in switch_to to
2849 * combine the page table reload and the switch backend into
2850 * one hypercall.
2851 */
2852 arch_start_context_switch(prev);
2853
2854 if (likely(!mm)) {
2855 next->active_mm = oldmm;
2856 atomic_inc(&oldmm->mm_count);
2857 enter_lazy_tlb(oldmm, next);
2858 } else
2859 switch_mm(oldmm, mm, next);
2860
2861 if (likely(!prev->mm)) {
2862 prev->active_mm = NULL;
2863 rq->prev_mm = oldmm;
2864 }
2865 /*
2866 * Since the runqueue lock will be released by the next
2867 * task (which is an invalid locking op but in the case
2868 * of the scheduler it's an obvious special-case), so we
2869 * do an early lockdep release here:
2870 */
2871 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2872 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2873 #endif
2874
2875 /* Here we just switch the register state and the stack. */
2876 switch_to(prev, next, prev);
2877
2878 barrier();
2879 /*
2880 * this_rq must be evaluated again because prev may have moved
2881 * CPUs since it called schedule(), thus the 'rq' on its stack
2882 * frame will be invalid.
2883 */
2884 finish_task_switch(this_rq(), prev);
2885 }
2886
2887 /*
2888 * nr_running, nr_uninterruptible and nr_context_switches:
2889 *
2890 * externally visible scheduler statistics: current number of runnable
2891 * threads, current number of uninterruptible-sleeping threads, total
2892 * number of context switches performed since bootup.
2893 */
2894 unsigned long nr_running(void)
2895 {
2896 unsigned long i, sum = 0;
2897
2898 for_each_online_cpu(i)
2899 sum += cpu_rq(i)->nr_running;
2900
2901 return sum;
2902 }
2903
2904 unsigned long nr_uninterruptible(void)
2905 {
2906 unsigned long i, sum = 0;
2907
2908 for_each_possible_cpu(i)
2909 sum += cpu_rq(i)->nr_uninterruptible;
2910
2911 /*
2912 * Since we read the counters lockless, it might be slightly
2913 * inaccurate. Do not allow it to go below zero though:
2914 */
2915 if (unlikely((long)sum < 0))
2916 sum = 0;
2917
2918 return sum;
2919 }
2920
2921 unsigned long long nr_context_switches(void)
2922 {
2923 int i;
2924 unsigned long long sum = 0;
2925
2926 for_each_possible_cpu(i)
2927 sum += cpu_rq(i)->nr_switches;
2928
2929 return sum;
2930 }
2931
2932 unsigned long nr_iowait(void)
2933 {
2934 unsigned long i, sum = 0;
2935
2936 for_each_possible_cpu(i)
2937 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2938
2939 return sum;
2940 }
2941
2942 unsigned long nr_iowait_cpu(void)
2943 {
2944 struct rq *this = this_rq();
2945 return atomic_read(&this->nr_iowait);
2946 }
2947
2948 unsigned long this_cpu_load(void)
2949 {
2950 struct rq *this = this_rq();
2951 return this->cpu_load[0];
2952 }
2953
2954
2955 /* Variables and functions for calc_load */
2956 static atomic_long_t calc_load_tasks;
2957 static unsigned long calc_load_update;
2958 unsigned long avenrun[3];
2959 EXPORT_SYMBOL(avenrun);
2960
2961 /**
2962 * get_avenrun - get the load average array
2963 * @loads: pointer to dest load array
2964 * @offset: offset to add
2965 * @shift: shift count to shift the result left
2966 *
2967 * These values are estimates at best, so no need for locking.
2968 */
2969 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2970 {
2971 loads[0] = (avenrun[0] + offset) << shift;
2972 loads[1] = (avenrun[1] + offset) << shift;
2973 loads[2] = (avenrun[2] + offset) << shift;
2974 }
2975
2976 static unsigned long
2977 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2978 {
2979 load *= exp;
2980 load += active * (FIXED_1 - exp);
2981 return load >> FSHIFT;
2982 }
2983
2984 /*
2985 * calc_load - update the avenrun load estimates 10 ticks after the
2986 * CPUs have updated calc_load_tasks.
2987 */
2988 void calc_global_load(void)
2989 {
2990 unsigned long upd = calc_load_update + 10;
2991 long active;
2992
2993 if (time_before(jiffies, upd))
2994 return;
2995
2996 active = atomic_long_read(&calc_load_tasks);
2997 active = active > 0 ? active * FIXED_1 : 0;
2998
2999 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3000 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3001 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3002
3003 calc_load_update += LOAD_FREQ;
3004 }
3005
3006 /*
3007 * Either called from update_cpu_load() or from a cpu going idle
3008 */
3009 static void calc_load_account_active(struct rq *this_rq)
3010 {
3011 long nr_active, delta;
3012
3013 nr_active = this_rq->nr_running;
3014 nr_active += (long) this_rq->nr_uninterruptible;
3015
3016 if (nr_active != this_rq->calc_load_active) {
3017 delta = nr_active - this_rq->calc_load_active;
3018 this_rq->calc_load_active = nr_active;
3019 atomic_long_add(delta, &calc_load_tasks);
3020 }
3021 }
3022
3023 /*
3024 * Update rq->cpu_load[] statistics. This function is usually called every
3025 * scheduler tick (TICK_NSEC).
3026 */
3027 static void update_cpu_load(struct rq *this_rq)
3028 {
3029 unsigned long this_load = this_rq->load.weight;
3030 int i, scale;
3031
3032 this_rq->nr_load_updates++;
3033
3034 /* Update our load: */
3035 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3036 unsigned long old_load, new_load;
3037
3038 /* scale is effectively 1 << i now, and >> i divides by scale */
3039
3040 old_load = this_rq->cpu_load[i];
3041 new_load = this_load;
3042 /*
3043 * Round up the averaging division if load is increasing. This
3044 * prevents us from getting stuck on 9 if the load is 10, for
3045 * example.
3046 */
3047 if (new_load > old_load)
3048 new_load += scale-1;
3049 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3050 }
3051
3052 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3053 this_rq->calc_load_update += LOAD_FREQ;
3054 calc_load_account_active(this_rq);
3055 }
3056 }
3057
3058 #ifdef CONFIG_SMP
3059
3060 /*
3061 * double_rq_lock - safely lock two runqueues
3062 *
3063 * Note this does not disable interrupts like task_rq_lock,
3064 * you need to do so manually before calling.
3065 */
3066 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3067 __acquires(rq1->lock)
3068 __acquires(rq2->lock)
3069 {
3070 BUG_ON(!irqs_disabled());
3071 if (rq1 == rq2) {
3072 raw_spin_lock(&rq1->lock);
3073 __acquire(rq2->lock); /* Fake it out ;) */
3074 } else {
3075 if (rq1 < rq2) {
3076 raw_spin_lock(&rq1->lock);
3077 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3078 } else {
3079 raw_spin_lock(&rq2->lock);
3080 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3081 }
3082 }
3083 update_rq_clock(rq1);
3084 update_rq_clock(rq2);
3085 }
3086
3087 /*
3088 * double_rq_unlock - safely unlock two runqueues
3089 *
3090 * Note this does not restore interrupts like task_rq_unlock,
3091 * you need to do so manually after calling.
3092 */
3093 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3094 __releases(rq1->lock)
3095 __releases(rq2->lock)
3096 {
3097 raw_spin_unlock(&rq1->lock);
3098 if (rq1 != rq2)
3099 raw_spin_unlock(&rq2->lock);
3100 else
3101 __release(rq2->lock);
3102 }
3103
3104 /*
3105 * If dest_cpu is allowed for this process, migrate the task to it.
3106 * This is accomplished by forcing the cpu_allowed mask to only
3107 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3108 * the cpu_allowed mask is restored.
3109 */
3110 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3111 {
3112 struct migration_req req;
3113 unsigned long flags;
3114 struct rq *rq;
3115
3116 rq = task_rq_lock(p, &flags);
3117 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3118 || unlikely(!cpu_active(dest_cpu)))
3119 goto out;
3120
3121 /* force the process onto the specified CPU */
3122 if (migrate_task(p, dest_cpu, &req)) {
3123 /* Need to wait for migration thread (might exit: take ref). */
3124 struct task_struct *mt = rq->migration_thread;
3125
3126 get_task_struct(mt);
3127 task_rq_unlock(rq, &flags);
3128 wake_up_process(mt);
3129 put_task_struct(mt);
3130 wait_for_completion(&req.done);
3131
3132 return;
3133 }
3134 out:
3135 task_rq_unlock(rq, &flags);
3136 }
3137
3138 /*
3139 * sched_exec - execve() is a valuable balancing opportunity, because at
3140 * this point the task has the smallest effective memory and cache footprint.
3141 */
3142 void sched_exec(void)
3143 {
3144 int new_cpu, this_cpu = get_cpu();
3145 new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
3146 put_cpu();
3147 if (new_cpu != this_cpu)
3148 sched_migrate_task(current, new_cpu);
3149 }
3150
3151 /*
3152 * pull_task - move a task from a remote runqueue to the local runqueue.
3153 * Both runqueues must be locked.
3154 */
3155 static void pull_task(struct rq *src_rq, struct task_struct *p,
3156 struct rq *this_rq, int this_cpu)
3157 {
3158 deactivate_task(src_rq, p, 0);
3159 set_task_cpu(p, this_cpu);
3160 activate_task(this_rq, p, 0);
3161 check_preempt_curr(this_rq, p, 0);
3162 }
3163
3164 /*
3165 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3166 */
3167 static
3168 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3169 struct sched_domain *sd, enum cpu_idle_type idle,
3170 int *all_pinned)
3171 {
3172 int tsk_cache_hot = 0;
3173 /*
3174 * We do not migrate tasks that are:
3175 * 1) running (obviously), or
3176 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3177 * 3) are cache-hot on their current CPU.
3178 */
3179 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3180 schedstat_inc(p, se.nr_failed_migrations_affine);
3181 return 0;
3182 }
3183 *all_pinned = 0;
3184
3185 if (task_running(rq, p)) {
3186 schedstat_inc(p, se.nr_failed_migrations_running);
3187 return 0;
3188 }
3189
3190 /*
3191 * Aggressive migration if:
3192 * 1) task is cache cold, or
3193 * 2) too many balance attempts have failed.
3194 */
3195
3196 tsk_cache_hot = task_hot(p, rq->clock, sd);
3197 if (!tsk_cache_hot ||
3198 sd->nr_balance_failed > sd->cache_nice_tries) {
3199 #ifdef CONFIG_SCHEDSTATS
3200 if (tsk_cache_hot) {
3201 schedstat_inc(sd, lb_hot_gained[idle]);
3202 schedstat_inc(p, se.nr_forced_migrations);
3203 }
3204 #endif
3205 return 1;
3206 }
3207
3208 if (tsk_cache_hot) {
3209 schedstat_inc(p, se.nr_failed_migrations_hot);
3210 return 0;
3211 }
3212 return 1;
3213 }
3214
3215 static unsigned long
3216 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3217 unsigned long max_load_move, struct sched_domain *sd,
3218 enum cpu_idle_type idle, int *all_pinned,
3219 int *this_best_prio, struct rq_iterator *iterator)
3220 {
3221 int loops = 0, pulled = 0, pinned = 0;
3222 struct task_struct *p;
3223 long rem_load_move = max_load_move;
3224
3225 if (max_load_move == 0)
3226 goto out;
3227
3228 pinned = 1;
3229
3230 /*
3231 * Start the load-balancing iterator:
3232 */
3233 p = iterator->start(iterator->arg);
3234 next:
3235 if (!p || loops++ > sysctl_sched_nr_migrate)
3236 goto out;
3237
3238 if ((p->se.load.weight >> 1) > rem_load_move ||
3239 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3240 p = iterator->next(iterator->arg);
3241 goto next;
3242 }
3243
3244 pull_task(busiest, p, this_rq, this_cpu);
3245 pulled++;
3246 rem_load_move -= p->se.load.weight;
3247
3248 #ifdef CONFIG_PREEMPT
3249 /*
3250 * NEWIDLE balancing is a source of latency, so preemptible kernels
3251 * will stop after the first task is pulled to minimize the critical
3252 * section.
3253 */
3254 if (idle == CPU_NEWLY_IDLE)
3255 goto out;
3256 #endif
3257
3258 /*
3259 * We only want to steal up to the prescribed amount of weighted load.
3260 */
3261 if (rem_load_move > 0) {
3262 if (p->prio < *this_best_prio)
3263 *this_best_prio = p->prio;
3264 p = iterator->next(iterator->arg);
3265 goto next;
3266 }
3267 out:
3268 /*
3269 * Right now, this is one of only two places pull_task() is called,
3270 * so we can safely collect pull_task() stats here rather than
3271 * inside pull_task().
3272 */
3273 schedstat_add(sd, lb_gained[idle], pulled);
3274
3275 if (all_pinned)
3276 *all_pinned = pinned;
3277
3278 return max_load_move - rem_load_move;
3279 }
3280
3281 /*
3282 * move_tasks tries to move up to max_load_move weighted load from busiest to
3283 * this_rq, as part of a balancing operation within domain "sd".
3284 * Returns 1 if successful and 0 otherwise.
3285 *
3286 * Called with both runqueues locked.
3287 */
3288 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3289 unsigned long max_load_move,
3290 struct sched_domain *sd, enum cpu_idle_type idle,
3291 int *all_pinned)
3292 {
3293 const struct sched_class *class = sched_class_highest;
3294 unsigned long total_load_moved = 0;
3295 int this_best_prio = this_rq->curr->prio;
3296
3297 do {
3298 total_load_moved +=
3299 class->load_balance(this_rq, this_cpu, busiest,
3300 max_load_move - total_load_moved,
3301 sd, idle, all_pinned, &this_best_prio);
3302 class = class->next;
3303
3304 #ifdef CONFIG_PREEMPT
3305 /*
3306 * NEWIDLE balancing is a source of latency, so preemptible
3307 * kernels will stop after the first task is pulled to minimize
3308 * the critical section.
3309 */
3310 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3311 break;
3312 #endif
3313 } while (class && max_load_move > total_load_moved);
3314
3315 return total_load_moved > 0;
3316 }
3317
3318 static int
3319 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3320 struct sched_domain *sd, enum cpu_idle_type idle,
3321 struct rq_iterator *iterator)
3322 {
3323 struct task_struct *p = iterator->start(iterator->arg);
3324 int pinned = 0;
3325
3326 while (p) {
3327 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3328 pull_task(busiest, p, this_rq, this_cpu);
3329 /*
3330 * Right now, this is only the second place pull_task()
3331 * is called, so we can safely collect pull_task()
3332 * stats here rather than inside pull_task().
3333 */
3334 schedstat_inc(sd, lb_gained[idle]);
3335
3336 return 1;
3337 }
3338 p = iterator->next(iterator->arg);
3339 }
3340
3341 return 0;
3342 }
3343
3344 /*
3345 * move_one_task tries to move exactly one task from busiest to this_rq, as
3346 * part of active balancing operations within "domain".
3347 * Returns 1 if successful and 0 otherwise.
3348 *
3349 * Called with both runqueues locked.
3350 */
3351 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3352 struct sched_domain *sd, enum cpu_idle_type idle)
3353 {
3354 const struct sched_class *class;
3355
3356 for_each_class(class) {
3357 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3358 return 1;
3359 }
3360
3361 return 0;
3362 }
3363 /********** Helpers for find_busiest_group ************************/
3364 /*
3365 * sd_lb_stats - Structure to store the statistics of a sched_domain
3366 * during load balancing.
3367 */
3368 struct sd_lb_stats {
3369 struct sched_group *busiest; /* Busiest group in this sd */
3370 struct sched_group *this; /* Local group in this sd */
3371 unsigned long total_load; /* Total load of all groups in sd */
3372 unsigned long total_pwr; /* Total power of all groups in sd */
3373 unsigned long avg_load; /* Average load across all groups in sd */
3374
3375 /** Statistics of this group */
3376 unsigned long this_load;
3377 unsigned long this_load_per_task;
3378 unsigned long this_nr_running;
3379
3380 /* Statistics of the busiest group */
3381 unsigned long max_load;
3382 unsigned long busiest_load_per_task;
3383 unsigned long busiest_nr_running;
3384
3385 int group_imb; /* Is there imbalance in this sd */
3386 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3387 int power_savings_balance; /* Is powersave balance needed for this sd */
3388 struct sched_group *group_min; /* Least loaded group in sd */
3389 struct sched_group *group_leader; /* Group which relieves group_min */
3390 unsigned long min_load_per_task; /* load_per_task in group_min */
3391 unsigned long leader_nr_running; /* Nr running of group_leader */
3392 unsigned long min_nr_running; /* Nr running of group_min */
3393 #endif
3394 };
3395
3396 /*
3397 * sg_lb_stats - stats of a sched_group required for load_balancing
3398 */
3399 struct sg_lb_stats {
3400 unsigned long avg_load; /*Avg load across the CPUs of the group */
3401 unsigned long group_load; /* Total load over the CPUs of the group */
3402 unsigned long sum_nr_running; /* Nr tasks running in the group */
3403 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3404 unsigned long group_capacity;
3405 int group_imb; /* Is there an imbalance in the group ? */
3406 };
3407
3408 /**
3409 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3410 * @group: The group whose first cpu is to be returned.
3411 */
3412 static inline unsigned int group_first_cpu(struct sched_group *group)
3413 {
3414 return cpumask_first(sched_group_cpus(group));
3415 }
3416
3417 /**
3418 * get_sd_load_idx - Obtain the load index for a given sched domain.
3419 * @sd: The sched_domain whose load_idx is to be obtained.
3420 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3421 */
3422 static inline int get_sd_load_idx(struct sched_domain *sd,
3423 enum cpu_idle_type idle)
3424 {
3425 int load_idx;
3426
3427 switch (idle) {
3428 case CPU_NOT_IDLE:
3429 load_idx = sd->busy_idx;
3430 break;
3431
3432 case CPU_NEWLY_IDLE:
3433 load_idx = sd->newidle_idx;
3434 break;
3435 default:
3436 load_idx = sd->idle_idx;
3437 break;
3438 }
3439
3440 return load_idx;
3441 }
3442
3443
3444 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3445 /**
3446 * init_sd_power_savings_stats - Initialize power savings statistics for
3447 * the given sched_domain, during load balancing.
3448 *
3449 * @sd: Sched domain whose power-savings statistics are to be initialized.
3450 * @sds: Variable containing the statistics for sd.
3451 * @idle: Idle status of the CPU at which we're performing load-balancing.
3452 */
3453 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3454 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3455 {
3456 /*
3457 * Busy processors will not participate in power savings
3458 * balance.
3459 */
3460 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3461 sds->power_savings_balance = 0;
3462 else {
3463 sds->power_savings_balance = 1;
3464 sds->min_nr_running = ULONG_MAX;
3465 sds->leader_nr_running = 0;
3466 }
3467 }
3468
3469 /**
3470 * update_sd_power_savings_stats - Update the power saving stats for a
3471 * sched_domain while performing load balancing.
3472 *
3473 * @group: sched_group belonging to the sched_domain under consideration.
3474 * @sds: Variable containing the statistics of the sched_domain
3475 * @local_group: Does group contain the CPU for which we're performing
3476 * load balancing ?
3477 * @sgs: Variable containing the statistics of the group.
3478 */
3479 static inline void update_sd_power_savings_stats(struct sched_group *group,
3480 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3481 {
3482
3483 if (!sds->power_savings_balance)
3484 return;
3485
3486 /*
3487 * If the local group is idle or completely loaded
3488 * no need to do power savings balance at this domain
3489 */
3490 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3491 !sds->this_nr_running))
3492 sds->power_savings_balance = 0;
3493
3494 /*
3495 * If a group is already running at full capacity or idle,
3496 * don't include that group in power savings calculations
3497 */
3498 if (!sds->power_savings_balance ||
3499 sgs->sum_nr_running >= sgs->group_capacity ||
3500 !sgs->sum_nr_running)
3501 return;
3502
3503 /*
3504 * Calculate the group which has the least non-idle load.
3505 * This is the group from where we need to pick up the load
3506 * for saving power
3507 */
3508 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3509 (sgs->sum_nr_running == sds->min_nr_running &&
3510 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3511 sds->group_min = group;
3512 sds->min_nr_running = sgs->sum_nr_running;
3513 sds->min_load_per_task = sgs->sum_weighted_load /
3514 sgs->sum_nr_running;
3515 }
3516
3517 /*
3518 * Calculate the group which is almost near its
3519 * capacity but still has some space to pick up some load
3520 * from other group and save more power
3521 */
3522 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3523 return;
3524
3525 if (sgs->sum_nr_running > sds->leader_nr_running ||
3526 (sgs->sum_nr_running == sds->leader_nr_running &&
3527 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3528 sds->group_leader = group;
3529 sds->leader_nr_running = sgs->sum_nr_running;
3530 }
3531 }
3532
3533 /**
3534 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3535 * @sds: Variable containing the statistics of the sched_domain
3536 * under consideration.
3537 * @this_cpu: Cpu at which we're currently performing load-balancing.
3538 * @imbalance: Variable to store the imbalance.
3539 *
3540 * Description:
3541 * Check if we have potential to perform some power-savings balance.
3542 * If yes, set the busiest group to be the least loaded group in the
3543 * sched_domain, so that it's CPUs can be put to idle.
3544 *
3545 * Returns 1 if there is potential to perform power-savings balance.
3546 * Else returns 0.
3547 */
3548 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3549 int this_cpu, unsigned long *imbalance)
3550 {
3551 if (!sds->power_savings_balance)
3552 return 0;
3553
3554 if (sds->this != sds->group_leader ||
3555 sds->group_leader == sds->group_min)
3556 return 0;
3557
3558 *imbalance = sds->min_load_per_task;
3559 sds->busiest = sds->group_min;
3560
3561 return 1;
3562
3563 }
3564 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3565 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3566 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3567 {
3568 return;
3569 }
3570
3571 static inline void update_sd_power_savings_stats(struct sched_group *group,
3572 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3573 {
3574 return;
3575 }
3576
3577 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3578 int this_cpu, unsigned long *imbalance)
3579 {
3580 return 0;
3581 }
3582 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3583
3584
3585 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3586 {
3587 return SCHED_LOAD_SCALE;
3588 }
3589
3590 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3591 {
3592 return default_scale_freq_power(sd, cpu);
3593 }
3594
3595 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3596 {
3597 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3598 unsigned long smt_gain = sd->smt_gain;
3599
3600 smt_gain /= weight;
3601
3602 return smt_gain;
3603 }
3604
3605 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3606 {
3607 return default_scale_smt_power(sd, cpu);
3608 }
3609
3610 unsigned long scale_rt_power(int cpu)
3611 {
3612 struct rq *rq = cpu_rq(cpu);
3613 u64 total, available;
3614
3615 sched_avg_update(rq);
3616
3617 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3618 available = total - rq->rt_avg;
3619
3620 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3621 total = SCHED_LOAD_SCALE;
3622
3623 total >>= SCHED_LOAD_SHIFT;
3624
3625 return div_u64(available, total);
3626 }
3627
3628 static void update_cpu_power(struct sched_domain *sd, int cpu)
3629 {
3630 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3631 unsigned long power = SCHED_LOAD_SCALE;
3632 struct sched_group *sdg = sd->groups;
3633
3634 if (sched_feat(ARCH_POWER))
3635 power *= arch_scale_freq_power(sd, cpu);
3636 else
3637 power *= default_scale_freq_power(sd, cpu);
3638
3639 power >>= SCHED_LOAD_SHIFT;
3640
3641 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3642 if (sched_feat(ARCH_POWER))
3643 power *= arch_scale_smt_power(sd, cpu);
3644 else
3645 power *= default_scale_smt_power(sd, cpu);
3646
3647 power >>= SCHED_LOAD_SHIFT;
3648 }
3649
3650 power *= scale_rt_power(cpu);
3651 power >>= SCHED_LOAD_SHIFT;
3652
3653 if (!power)
3654 power = 1;
3655
3656 sdg->cpu_power = power;
3657 }
3658
3659 static void update_group_power(struct sched_domain *sd, int cpu)
3660 {
3661 struct sched_domain *child = sd->child;
3662 struct sched_group *group, *sdg = sd->groups;
3663 unsigned long power;
3664
3665 if (!child) {
3666 update_cpu_power(sd, cpu);
3667 return;
3668 }
3669
3670 power = 0;
3671
3672 group = child->groups;
3673 do {
3674 power += group->cpu_power;
3675 group = group->next;
3676 } while (group != child->groups);
3677
3678 sdg->cpu_power = power;
3679 }
3680
3681 /**
3682 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3683 * @sd: The sched_domain whose statistics are to be updated.
3684 * @group: sched_group whose statistics are to be updated.
3685 * @this_cpu: Cpu for which load balance is currently performed.
3686 * @idle: Idle status of this_cpu
3687 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3688 * @sd_idle: Idle status of the sched_domain containing group.
3689 * @local_group: Does group contain this_cpu.
3690 * @cpus: Set of cpus considered for load balancing.
3691 * @balance: Should we balance.
3692 * @sgs: variable to hold the statistics for this group.
3693 */
3694 static inline void update_sg_lb_stats(struct sched_domain *sd,
3695 struct sched_group *group, int this_cpu,
3696 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3697 int local_group, const struct cpumask *cpus,
3698 int *balance, struct sg_lb_stats *sgs)
3699 {
3700 unsigned long load, max_cpu_load, min_cpu_load;
3701 int i;
3702 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3703 unsigned long sum_avg_load_per_task;
3704 unsigned long avg_load_per_task;
3705
3706 if (local_group) {
3707 balance_cpu = group_first_cpu(group);
3708 if (balance_cpu == this_cpu)
3709 update_group_power(sd, this_cpu);
3710 }
3711
3712 /* Tally up the load of all CPUs in the group */
3713 sum_avg_load_per_task = avg_load_per_task = 0;
3714 max_cpu_load = 0;
3715 min_cpu_load = ~0UL;
3716
3717 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3718 struct rq *rq = cpu_rq(i);
3719
3720 if (*sd_idle && rq->nr_running)
3721 *sd_idle = 0;
3722
3723 /* Bias balancing toward cpus of our domain */
3724 if (local_group) {
3725 if (idle_cpu(i) && !first_idle_cpu) {
3726 first_idle_cpu = 1;
3727 balance_cpu = i;
3728 }
3729
3730 load = target_load(i, load_idx);
3731 } else {
3732 load = source_load(i, load_idx);
3733 if (load > max_cpu_load)
3734 max_cpu_load = load;
3735 if (min_cpu_load > load)
3736 min_cpu_load = load;
3737 }
3738
3739 sgs->group_load += load;
3740 sgs->sum_nr_running += rq->nr_running;
3741 sgs->sum_weighted_load += weighted_cpuload(i);
3742
3743 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3744 }
3745
3746 /*
3747 * First idle cpu or the first cpu(busiest) in this sched group
3748 * is eligible for doing load balancing at this and above
3749 * domains. In the newly idle case, we will allow all the cpu's
3750 * to do the newly idle load balance.
3751 */
3752 if (idle != CPU_NEWLY_IDLE && local_group &&
3753 balance_cpu != this_cpu && balance) {
3754 *balance = 0;
3755 return;
3756 }
3757
3758 /* Adjust by relative CPU power of the group */
3759 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3760
3761
3762 /*
3763 * Consider the group unbalanced when the imbalance is larger
3764 * than the average weight of two tasks.
3765 *
3766 * APZ: with cgroup the avg task weight can vary wildly and
3767 * might not be a suitable number - should we keep a
3768 * normalized nr_running number somewhere that negates
3769 * the hierarchy?
3770 */
3771 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3772 group->cpu_power;
3773
3774 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3775 sgs->group_imb = 1;
3776
3777 sgs->group_capacity =
3778 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3779 }
3780
3781 /**
3782 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3783 * @sd: sched_domain whose statistics are to be updated.
3784 * @this_cpu: Cpu for which load balance is currently performed.
3785 * @idle: Idle status of this_cpu
3786 * @sd_idle: Idle status of the sched_domain containing group.
3787 * @cpus: Set of cpus considered for load balancing.
3788 * @balance: Should we balance.
3789 * @sds: variable to hold the statistics for this sched_domain.
3790 */
3791 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3792 enum cpu_idle_type idle, int *sd_idle,
3793 const struct cpumask *cpus, int *balance,
3794 struct sd_lb_stats *sds)
3795 {
3796 struct sched_domain *child = sd->child;
3797 struct sched_group *group = sd->groups;
3798 struct sg_lb_stats sgs;
3799 int load_idx, prefer_sibling = 0;
3800
3801 if (child && child->flags & SD_PREFER_SIBLING)
3802 prefer_sibling = 1;
3803
3804 init_sd_power_savings_stats(sd, sds, idle);
3805 load_idx = get_sd_load_idx(sd, idle);
3806
3807 do {
3808 int local_group;
3809
3810 local_group = cpumask_test_cpu(this_cpu,
3811 sched_group_cpus(group));
3812 memset(&sgs, 0, sizeof(sgs));
3813 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3814 local_group, cpus, balance, &sgs);
3815
3816 if (local_group && balance && !(*balance))
3817 return;
3818
3819 sds->total_load += sgs.group_load;
3820 sds->total_pwr += group->cpu_power;
3821
3822 /*
3823 * In case the child domain prefers tasks go to siblings
3824 * first, lower the group capacity to one so that we'll try
3825 * and move all the excess tasks away.
3826 */
3827 if (prefer_sibling)
3828 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3829
3830 if (local_group) {
3831 sds->this_load = sgs.avg_load;
3832 sds->this = group;
3833 sds->this_nr_running = sgs.sum_nr_running;
3834 sds->this_load_per_task = sgs.sum_weighted_load;
3835 } else if (sgs.avg_load > sds->max_load &&
3836 (sgs.sum_nr_running > sgs.group_capacity ||
3837 sgs.group_imb)) {
3838 sds->max_load = sgs.avg_load;
3839 sds->busiest = group;
3840 sds->busiest_nr_running = sgs.sum_nr_running;
3841 sds->busiest_load_per_task = sgs.sum_weighted_load;
3842 sds->group_imb = sgs.group_imb;
3843 }
3844
3845 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3846 group = group->next;
3847 } while (group != sd->groups);
3848 }
3849
3850 /**
3851 * fix_small_imbalance - Calculate the minor imbalance that exists
3852 * amongst the groups of a sched_domain, during
3853 * load balancing.
3854 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3855 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3856 * @imbalance: Variable to store the imbalance.
3857 */
3858 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3859 int this_cpu, unsigned long *imbalance)
3860 {
3861 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3862 unsigned int imbn = 2;
3863
3864 if (sds->this_nr_running) {
3865 sds->this_load_per_task /= sds->this_nr_running;
3866 if (sds->busiest_load_per_task >
3867 sds->this_load_per_task)
3868 imbn = 1;
3869 } else
3870 sds->this_load_per_task =
3871 cpu_avg_load_per_task(this_cpu);
3872
3873 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3874 sds->busiest_load_per_task * imbn) {
3875 *imbalance = sds->busiest_load_per_task;
3876 return;
3877 }
3878
3879 /*
3880 * OK, we don't have enough imbalance to justify moving tasks,
3881 * however we may be able to increase total CPU power used by
3882 * moving them.
3883 */
3884
3885 pwr_now += sds->busiest->cpu_power *
3886 min(sds->busiest_load_per_task, sds->max_load);
3887 pwr_now += sds->this->cpu_power *
3888 min(sds->this_load_per_task, sds->this_load);
3889 pwr_now /= SCHED_LOAD_SCALE;
3890
3891 /* Amount of load we'd subtract */
3892 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3893 sds->busiest->cpu_power;
3894 if (sds->max_load > tmp)
3895 pwr_move += sds->busiest->cpu_power *
3896 min(sds->busiest_load_per_task, sds->max_load - tmp);
3897
3898 /* Amount of load we'd add */
3899 if (sds->max_load * sds->busiest->cpu_power <
3900 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3901 tmp = (sds->max_load * sds->busiest->cpu_power) /
3902 sds->this->cpu_power;
3903 else
3904 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3905 sds->this->cpu_power;
3906 pwr_move += sds->this->cpu_power *
3907 min(sds->this_load_per_task, sds->this_load + tmp);
3908 pwr_move /= SCHED_LOAD_SCALE;
3909
3910 /* Move if we gain throughput */
3911 if (pwr_move > pwr_now)
3912 *imbalance = sds->busiest_load_per_task;
3913 }
3914
3915 /**
3916 * calculate_imbalance - Calculate the amount of imbalance present within the
3917 * groups of a given sched_domain during load balance.
3918 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3919 * @this_cpu: Cpu for which currently load balance is being performed.
3920 * @imbalance: The variable to store the imbalance.
3921 */
3922 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3923 unsigned long *imbalance)
3924 {
3925 unsigned long max_pull;
3926 /*
3927 * In the presence of smp nice balancing, certain scenarios can have
3928 * max load less than avg load(as we skip the groups at or below
3929 * its cpu_power, while calculating max_load..)
3930 */
3931 if (sds->max_load < sds->avg_load) {
3932 *imbalance = 0;
3933 return fix_small_imbalance(sds, this_cpu, imbalance);
3934 }
3935
3936 /* Don't want to pull so many tasks that a group would go idle */
3937 max_pull = min(sds->max_load - sds->avg_load,
3938 sds->max_load - sds->busiest_load_per_task);
3939
3940 /* How much load to actually move to equalise the imbalance */
3941 *imbalance = min(max_pull * sds->busiest->cpu_power,
3942 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3943 / SCHED_LOAD_SCALE;
3944
3945 /*
3946 * if *imbalance is less than the average load per runnable task
3947 * there is no gaurantee that any tasks will be moved so we'll have
3948 * a think about bumping its value to force at least one task to be
3949 * moved
3950 */
3951 if (*imbalance < sds->busiest_load_per_task)
3952 return fix_small_imbalance(sds, this_cpu, imbalance);
3953
3954 }
3955 /******* find_busiest_group() helpers end here *********************/
3956
3957 /**
3958 * find_busiest_group - Returns the busiest group within the sched_domain
3959 * if there is an imbalance. If there isn't an imbalance, and
3960 * the user has opted for power-savings, it returns a group whose
3961 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3962 * such a group exists.
3963 *
3964 * Also calculates the amount of weighted load which should be moved
3965 * to restore balance.
3966 *
3967 * @sd: The sched_domain whose busiest group is to be returned.
3968 * @this_cpu: The cpu for which load balancing is currently being performed.
3969 * @imbalance: Variable which stores amount of weighted load which should
3970 * be moved to restore balance/put a group to idle.
3971 * @idle: The idle status of this_cpu.
3972 * @sd_idle: The idleness of sd
3973 * @cpus: The set of CPUs under consideration for load-balancing.
3974 * @balance: Pointer to a variable indicating if this_cpu
3975 * is the appropriate cpu to perform load balancing at this_level.
3976 *
3977 * Returns: - the busiest group if imbalance exists.
3978 * - If no imbalance and user has opted for power-savings balance,
3979 * return the least loaded group whose CPUs can be
3980 * put to idle by rebalancing its tasks onto our group.
3981 */
3982 static struct sched_group *
3983 find_busiest_group(struct sched_domain *sd, int this_cpu,
3984 unsigned long *imbalance, enum cpu_idle_type idle,
3985 int *sd_idle, const struct cpumask *cpus, int *balance)
3986 {
3987 struct sd_lb_stats sds;
3988
3989 memset(&sds, 0, sizeof(sds));
3990
3991 /*
3992 * Compute the various statistics relavent for load balancing at
3993 * this level.
3994 */
3995 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3996 balance, &sds);
3997
3998 /* Cases where imbalance does not exist from POV of this_cpu */
3999 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4000 * at this level.
4001 * 2) There is no busy sibling group to pull from.
4002 * 3) This group is the busiest group.
4003 * 4) This group is more busy than the avg busieness at this
4004 * sched_domain.
4005 * 5) The imbalance is within the specified limit.
4006 * 6) Any rebalance would lead to ping-pong
4007 */
4008 if (balance && !(*balance))
4009 goto ret;
4010
4011 if (!sds.busiest || sds.busiest_nr_running == 0)
4012 goto out_balanced;
4013
4014 if (sds.this_load >= sds.max_load)
4015 goto out_balanced;
4016
4017 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4018
4019 if (sds.this_load >= sds.avg_load)
4020 goto out_balanced;
4021
4022 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4023 goto out_balanced;
4024
4025 sds.busiest_load_per_task /= sds.busiest_nr_running;
4026 if (sds.group_imb)
4027 sds.busiest_load_per_task =
4028 min(sds.busiest_load_per_task, sds.avg_load);
4029
4030 /*
4031 * We're trying to get all the cpus to the average_load, so we don't
4032 * want to push ourselves above the average load, nor do we wish to
4033 * reduce the max loaded cpu below the average load, as either of these
4034 * actions would just result in more rebalancing later, and ping-pong
4035 * tasks around. Thus we look for the minimum possible imbalance.
4036 * Negative imbalances (*we* are more loaded than anyone else) will
4037 * be counted as no imbalance for these purposes -- we can't fix that
4038 * by pulling tasks to us. Be careful of negative numbers as they'll
4039 * appear as very large values with unsigned longs.
4040 */
4041 if (sds.max_load <= sds.busiest_load_per_task)
4042 goto out_balanced;
4043
4044 /* Looks like there is an imbalance. Compute it */
4045 calculate_imbalance(&sds, this_cpu, imbalance);
4046 return sds.busiest;
4047
4048 out_balanced:
4049 /*
4050 * There is no obvious imbalance. But check if we can do some balancing
4051 * to save power.
4052 */
4053 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4054 return sds.busiest;
4055 ret:
4056 *imbalance = 0;
4057 return NULL;
4058 }
4059
4060 /*
4061 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4062 */
4063 static struct rq *
4064 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4065 unsigned long imbalance, const struct cpumask *cpus)
4066 {
4067 struct rq *busiest = NULL, *rq;
4068 unsigned long max_load = 0;
4069 int i;
4070
4071 for_each_cpu(i, sched_group_cpus(group)) {
4072 unsigned long power = power_of(i);
4073 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4074 unsigned long wl;
4075
4076 if (!cpumask_test_cpu(i, cpus))
4077 continue;
4078
4079 rq = cpu_rq(i);
4080 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4081 wl /= power;
4082
4083 if (capacity && rq->nr_running == 1 && wl > imbalance)
4084 continue;
4085
4086 if (wl > max_load) {
4087 max_load = wl;
4088 busiest = rq;
4089 }
4090 }
4091
4092 return busiest;
4093 }
4094
4095 /*
4096 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4097 * so long as it is large enough.
4098 */
4099 #define MAX_PINNED_INTERVAL 512
4100
4101 /* Working cpumask for load_balance and load_balance_newidle. */
4102 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4103
4104 /*
4105 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4106 * tasks if there is an imbalance.
4107 */
4108 static int load_balance(int this_cpu, struct rq *this_rq,
4109 struct sched_domain *sd, enum cpu_idle_type idle,
4110 int *balance)
4111 {
4112 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4113 struct sched_group *group;
4114 unsigned long imbalance;
4115 struct rq *busiest;
4116 unsigned long flags;
4117 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4118
4119 cpumask_copy(cpus, cpu_active_mask);
4120
4121 /*
4122 * When power savings policy is enabled for the parent domain, idle
4123 * sibling can pick up load irrespective of busy siblings. In this case,
4124 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4125 * portraying it as CPU_NOT_IDLE.
4126 */
4127 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4128 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4129 sd_idle = 1;
4130
4131 schedstat_inc(sd, lb_count[idle]);
4132
4133 redo:
4134 update_shares(sd);
4135 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4136 cpus, balance);
4137
4138 if (*balance == 0)
4139 goto out_balanced;
4140
4141 if (!group) {
4142 schedstat_inc(sd, lb_nobusyg[idle]);
4143 goto out_balanced;
4144 }
4145
4146 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4147 if (!busiest) {
4148 schedstat_inc(sd, lb_nobusyq[idle]);
4149 goto out_balanced;
4150 }
4151
4152 BUG_ON(busiest == this_rq);
4153
4154 schedstat_add(sd, lb_imbalance[idle], imbalance);
4155
4156 ld_moved = 0;
4157 if (busiest->nr_running > 1) {
4158 /*
4159 * Attempt to move tasks. If find_busiest_group has found
4160 * an imbalance but busiest->nr_running <= 1, the group is
4161 * still unbalanced. ld_moved simply stays zero, so it is
4162 * correctly treated as an imbalance.
4163 */
4164 local_irq_save(flags);
4165 double_rq_lock(this_rq, busiest);
4166 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4167 imbalance, sd, idle, &all_pinned);
4168 double_rq_unlock(this_rq, busiest);
4169 local_irq_restore(flags);
4170
4171 /*
4172 * some other cpu did the load balance for us.
4173 */
4174 if (ld_moved && this_cpu != smp_processor_id())
4175 resched_cpu(this_cpu);
4176
4177 /* All tasks on this runqueue were pinned by CPU affinity */
4178 if (unlikely(all_pinned)) {
4179 cpumask_clear_cpu(cpu_of(busiest), cpus);
4180 if (!cpumask_empty(cpus))
4181 goto redo;
4182 goto out_balanced;
4183 }
4184 }
4185
4186 if (!ld_moved) {
4187 schedstat_inc(sd, lb_failed[idle]);
4188 sd->nr_balance_failed++;
4189
4190 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4191
4192 raw_spin_lock_irqsave(&busiest->lock, flags);
4193
4194 /* don't kick the migration_thread, if the curr
4195 * task on busiest cpu can't be moved to this_cpu
4196 */
4197 if (!cpumask_test_cpu(this_cpu,
4198 &busiest->curr->cpus_allowed)) {
4199 raw_spin_unlock_irqrestore(&busiest->lock,
4200 flags);
4201 all_pinned = 1;
4202 goto out_one_pinned;
4203 }
4204
4205 if (!busiest->active_balance) {
4206 busiest->active_balance = 1;
4207 busiest->push_cpu = this_cpu;
4208 active_balance = 1;
4209 }
4210 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4211 if (active_balance)
4212 wake_up_process(busiest->migration_thread);
4213
4214 /*
4215 * We've kicked active balancing, reset the failure
4216 * counter.
4217 */
4218 sd->nr_balance_failed = sd->cache_nice_tries+1;
4219 }
4220 } else
4221 sd->nr_balance_failed = 0;
4222
4223 if (likely(!active_balance)) {
4224 /* We were unbalanced, so reset the balancing interval */
4225 sd->balance_interval = sd->min_interval;
4226 } else {
4227 /*
4228 * If we've begun active balancing, start to back off. This
4229 * case may not be covered by the all_pinned logic if there
4230 * is only 1 task on the busy runqueue (because we don't call
4231 * move_tasks).
4232 */
4233 if (sd->balance_interval < sd->max_interval)
4234 sd->balance_interval *= 2;
4235 }
4236
4237 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4238 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4239 ld_moved = -1;
4240
4241 goto out;
4242
4243 out_balanced:
4244 schedstat_inc(sd, lb_balanced[idle]);
4245
4246 sd->nr_balance_failed = 0;
4247
4248 out_one_pinned:
4249 /* tune up the balancing interval */
4250 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4251 (sd->balance_interval < sd->max_interval))
4252 sd->balance_interval *= 2;
4253
4254 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4255 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4256 ld_moved = -1;
4257 else
4258 ld_moved = 0;
4259 out:
4260 if (ld_moved)
4261 update_shares(sd);
4262 return ld_moved;
4263 }
4264
4265 /*
4266 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4267 * tasks if there is an imbalance.
4268 *
4269 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4270 * this_rq is locked.
4271 */
4272 static int
4273 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4274 {
4275 struct sched_group *group;
4276 struct rq *busiest = NULL;
4277 unsigned long imbalance;
4278 int ld_moved = 0;
4279 int sd_idle = 0;
4280 int all_pinned = 0;
4281 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4282
4283 cpumask_copy(cpus, cpu_active_mask);
4284
4285 /*
4286 * When power savings policy is enabled for the parent domain, idle
4287 * sibling can pick up load irrespective of busy siblings. In this case,
4288 * let the state of idle sibling percolate up as IDLE, instead of
4289 * portraying it as CPU_NOT_IDLE.
4290 */
4291 if (sd->flags & SD_SHARE_CPUPOWER &&
4292 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4293 sd_idle = 1;
4294
4295 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4296 redo:
4297 update_shares_locked(this_rq, sd);
4298 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4299 &sd_idle, cpus, NULL);
4300 if (!group) {
4301 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4302 goto out_balanced;
4303 }
4304
4305 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4306 if (!busiest) {
4307 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4308 goto out_balanced;
4309 }
4310
4311 BUG_ON(busiest == this_rq);
4312
4313 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4314
4315 ld_moved = 0;
4316 if (busiest->nr_running > 1) {
4317 /* Attempt to move tasks */
4318 double_lock_balance(this_rq, busiest);
4319 /* this_rq->clock is already updated */
4320 update_rq_clock(busiest);
4321 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4322 imbalance, sd, CPU_NEWLY_IDLE,
4323 &all_pinned);
4324 double_unlock_balance(this_rq, busiest);
4325
4326 if (unlikely(all_pinned)) {
4327 cpumask_clear_cpu(cpu_of(busiest), cpus);
4328 if (!cpumask_empty(cpus))
4329 goto redo;
4330 }
4331 }
4332
4333 if (!ld_moved) {
4334 int active_balance = 0;
4335
4336 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4337 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4338 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4339 return -1;
4340
4341 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4342 return -1;
4343
4344 if (sd->nr_balance_failed++ < 2)
4345 return -1;
4346
4347 /*
4348 * The only task running in a non-idle cpu can be moved to this
4349 * cpu in an attempt to completely freeup the other CPU
4350 * package. The same method used to move task in load_balance()
4351 * have been extended for load_balance_newidle() to speedup
4352 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4353 *
4354 * The package power saving logic comes from
4355 * find_busiest_group(). If there are no imbalance, then
4356 * f_b_g() will return NULL. However when sched_mc={1,2} then
4357 * f_b_g() will select a group from which a running task may be
4358 * pulled to this cpu in order to make the other package idle.
4359 * If there is no opportunity to make a package idle and if
4360 * there are no imbalance, then f_b_g() will return NULL and no
4361 * action will be taken in load_balance_newidle().
4362 *
4363 * Under normal task pull operation due to imbalance, there
4364 * will be more than one task in the source run queue and
4365 * move_tasks() will succeed. ld_moved will be true and this
4366 * active balance code will not be triggered.
4367 */
4368
4369 /* Lock busiest in correct order while this_rq is held */
4370 double_lock_balance(this_rq, busiest);
4371
4372 /*
4373 * don't kick the migration_thread, if the curr
4374 * task on busiest cpu can't be moved to this_cpu
4375 */
4376 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4377 double_unlock_balance(this_rq, busiest);
4378 all_pinned = 1;
4379 return ld_moved;
4380 }
4381
4382 if (!busiest->active_balance) {
4383 busiest->active_balance = 1;
4384 busiest->push_cpu = this_cpu;
4385 active_balance = 1;
4386 }
4387
4388 double_unlock_balance(this_rq, busiest);
4389 /*
4390 * Should not call ttwu while holding a rq->lock
4391 */
4392 raw_spin_unlock(&this_rq->lock);
4393 if (active_balance)
4394 wake_up_process(busiest->migration_thread);
4395 raw_spin_lock(&this_rq->lock);
4396
4397 } else
4398 sd->nr_balance_failed = 0;
4399
4400 update_shares_locked(this_rq, sd);
4401 return ld_moved;
4402
4403 out_balanced:
4404 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4405 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4406 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4407 return -1;
4408 sd->nr_balance_failed = 0;
4409
4410 return 0;
4411 }
4412
4413 /*
4414 * idle_balance is called by schedule() if this_cpu is about to become
4415 * idle. Attempts to pull tasks from other CPUs.
4416 */
4417 static void idle_balance(int this_cpu, struct rq *this_rq)
4418 {
4419 struct sched_domain *sd;
4420 int pulled_task = 0;
4421 unsigned long next_balance = jiffies + HZ;
4422
4423 this_rq->idle_stamp = this_rq->clock;
4424
4425 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4426 return;
4427
4428 for_each_domain(this_cpu, sd) {
4429 unsigned long interval;
4430
4431 if (!(sd->flags & SD_LOAD_BALANCE))
4432 continue;
4433
4434 if (sd->flags & SD_BALANCE_NEWIDLE)
4435 /* If we've pulled tasks over stop searching: */
4436 pulled_task = load_balance_newidle(this_cpu, this_rq,
4437 sd);
4438
4439 interval = msecs_to_jiffies(sd->balance_interval);
4440 if (time_after(next_balance, sd->last_balance + interval))
4441 next_balance = sd->last_balance + interval;
4442 if (pulled_task) {
4443 this_rq->idle_stamp = 0;
4444 break;
4445 }
4446 }
4447 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4448 /*
4449 * We are going idle. next_balance may be set based on
4450 * a busy processor. So reset next_balance.
4451 */
4452 this_rq->next_balance = next_balance;
4453 }
4454 }
4455
4456 /*
4457 * active_load_balance is run by migration threads. It pushes running tasks
4458 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4459 * running on each physical CPU where possible, and avoids physical /
4460 * logical imbalances.
4461 *
4462 * Called with busiest_rq locked.
4463 */
4464 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4465 {
4466 int target_cpu = busiest_rq->push_cpu;
4467 struct sched_domain *sd;
4468 struct rq *target_rq;
4469
4470 /* Is there any task to move? */
4471 if (busiest_rq->nr_running <= 1)
4472 return;
4473
4474 target_rq = cpu_rq(target_cpu);
4475
4476 /*
4477 * This condition is "impossible", if it occurs
4478 * we need to fix it. Originally reported by
4479 * Bjorn Helgaas on a 128-cpu setup.
4480 */
4481 BUG_ON(busiest_rq == target_rq);
4482
4483 /* move a task from busiest_rq to target_rq */
4484 double_lock_balance(busiest_rq, target_rq);
4485 update_rq_clock(busiest_rq);
4486 update_rq_clock(target_rq);
4487
4488 /* Search for an sd spanning us and the target CPU. */
4489 for_each_domain(target_cpu, sd) {
4490 if ((sd->flags & SD_LOAD_BALANCE) &&
4491 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4492 break;
4493 }
4494
4495 if (likely(sd)) {
4496 schedstat_inc(sd, alb_count);
4497
4498 if (move_one_task(target_rq, target_cpu, busiest_rq,
4499 sd, CPU_IDLE))
4500 schedstat_inc(sd, alb_pushed);
4501 else
4502 schedstat_inc(sd, alb_failed);
4503 }
4504 double_unlock_balance(busiest_rq, target_rq);
4505 }
4506
4507 #ifdef CONFIG_NO_HZ
4508 static struct {
4509 atomic_t load_balancer;
4510 cpumask_var_t cpu_mask;
4511 cpumask_var_t ilb_grp_nohz_mask;
4512 } nohz ____cacheline_aligned = {
4513 .load_balancer = ATOMIC_INIT(-1),
4514 };
4515
4516 int get_nohz_load_balancer(void)
4517 {
4518 return atomic_read(&nohz.load_balancer);
4519 }
4520
4521 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4522 /**
4523 * lowest_flag_domain - Return lowest sched_domain containing flag.
4524 * @cpu: The cpu whose lowest level of sched domain is to
4525 * be returned.
4526 * @flag: The flag to check for the lowest sched_domain
4527 * for the given cpu.
4528 *
4529 * Returns the lowest sched_domain of a cpu which contains the given flag.
4530 */
4531 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4532 {
4533 struct sched_domain *sd;
4534
4535 for_each_domain(cpu, sd)
4536 if (sd && (sd->flags & flag))
4537 break;
4538
4539 return sd;
4540 }
4541
4542 /**
4543 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4544 * @cpu: The cpu whose domains we're iterating over.
4545 * @sd: variable holding the value of the power_savings_sd
4546 * for cpu.
4547 * @flag: The flag to filter the sched_domains to be iterated.
4548 *
4549 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4550 * set, starting from the lowest sched_domain to the highest.
4551 */
4552 #define for_each_flag_domain(cpu, sd, flag) \
4553 for (sd = lowest_flag_domain(cpu, flag); \
4554 (sd && (sd->flags & flag)); sd = sd->parent)
4555
4556 /**
4557 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4558 * @ilb_group: group to be checked for semi-idleness
4559 *
4560 * Returns: 1 if the group is semi-idle. 0 otherwise.
4561 *
4562 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4563 * and atleast one non-idle CPU. This helper function checks if the given
4564 * sched_group is semi-idle or not.
4565 */
4566 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4567 {
4568 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4569 sched_group_cpus(ilb_group));
4570
4571 /*
4572 * A sched_group is semi-idle when it has atleast one busy cpu
4573 * and atleast one idle cpu.
4574 */
4575 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4576 return 0;
4577
4578 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4579 return 0;
4580
4581 return 1;
4582 }
4583 /**
4584 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4585 * @cpu: The cpu which is nominating a new idle_load_balancer.
4586 *
4587 * Returns: Returns the id of the idle load balancer if it exists,
4588 * Else, returns >= nr_cpu_ids.
4589 *
4590 * This algorithm picks the idle load balancer such that it belongs to a
4591 * semi-idle powersavings sched_domain. The idea is to try and avoid
4592 * completely idle packages/cores just for the purpose of idle load balancing
4593 * when there are other idle cpu's which are better suited for that job.
4594 */
4595 static int find_new_ilb(int cpu)
4596 {
4597 struct sched_domain *sd;
4598 struct sched_group *ilb_group;
4599
4600 /*
4601 * Have idle load balancer selection from semi-idle packages only
4602 * when power-aware load balancing is enabled
4603 */
4604 if (!(sched_smt_power_savings || sched_mc_power_savings))
4605 goto out_done;
4606
4607 /*
4608 * Optimize for the case when we have no idle CPUs or only one
4609 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4610 */
4611 if (cpumask_weight(nohz.cpu_mask) < 2)
4612 goto out_done;
4613
4614 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4615 ilb_group = sd->groups;
4616
4617 do {
4618 if (is_semi_idle_group(ilb_group))
4619 return cpumask_first(nohz.ilb_grp_nohz_mask);
4620
4621 ilb_group = ilb_group->next;
4622
4623 } while (ilb_group != sd->groups);
4624 }
4625
4626 out_done:
4627 return cpumask_first(nohz.cpu_mask);
4628 }
4629 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4630 static inline int find_new_ilb(int call_cpu)
4631 {
4632 return cpumask_first(nohz.cpu_mask);
4633 }
4634 #endif
4635
4636 /*
4637 * This routine will try to nominate the ilb (idle load balancing)
4638 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4639 * load balancing on behalf of all those cpus. If all the cpus in the system
4640 * go into this tickless mode, then there will be no ilb owner (as there is
4641 * no need for one) and all the cpus will sleep till the next wakeup event
4642 * arrives...
4643 *
4644 * For the ilb owner, tick is not stopped. And this tick will be used
4645 * for idle load balancing. ilb owner will still be part of
4646 * nohz.cpu_mask..
4647 *
4648 * While stopping the tick, this cpu will become the ilb owner if there
4649 * is no other owner. And will be the owner till that cpu becomes busy
4650 * or if all cpus in the system stop their ticks at which point
4651 * there is no need for ilb owner.
4652 *
4653 * When the ilb owner becomes busy, it nominates another owner, during the
4654 * next busy scheduler_tick()
4655 */
4656 int select_nohz_load_balancer(int stop_tick)
4657 {
4658 int cpu = smp_processor_id();
4659
4660 if (stop_tick) {
4661 cpu_rq(cpu)->in_nohz_recently = 1;
4662
4663 if (!cpu_active(cpu)) {
4664 if (atomic_read(&nohz.load_balancer) != cpu)
4665 return 0;
4666
4667 /*
4668 * If we are going offline and still the leader,
4669 * give up!
4670 */
4671 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4672 BUG();
4673
4674 return 0;
4675 }
4676
4677 cpumask_set_cpu(cpu, nohz.cpu_mask);
4678
4679 /* time for ilb owner also to sleep */
4680 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4681 if (atomic_read(&nohz.load_balancer) == cpu)
4682 atomic_set(&nohz.load_balancer, -1);
4683 return 0;
4684 }
4685
4686 if (atomic_read(&nohz.load_balancer) == -1) {
4687 /* make me the ilb owner */
4688 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4689 return 1;
4690 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4691 int new_ilb;
4692
4693 if (!(sched_smt_power_savings ||
4694 sched_mc_power_savings))
4695 return 1;
4696 /*
4697 * Check to see if there is a more power-efficient
4698 * ilb.
4699 */
4700 new_ilb = find_new_ilb(cpu);
4701 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4702 atomic_set(&nohz.load_balancer, -1);
4703 resched_cpu(new_ilb);
4704 return 0;
4705 }
4706 return 1;
4707 }
4708 } else {
4709 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4710 return 0;
4711
4712 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4713
4714 if (atomic_read(&nohz.load_balancer) == cpu)
4715 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4716 BUG();
4717 }
4718 return 0;
4719 }
4720 #endif
4721
4722 static DEFINE_SPINLOCK(balancing);
4723
4724 /*
4725 * It checks each scheduling domain to see if it is due to be balanced,
4726 * and initiates a balancing operation if so.
4727 *
4728 * Balancing parameters are set up in arch_init_sched_domains.
4729 */
4730 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4731 {
4732 int balance = 1;
4733 struct rq *rq = cpu_rq(cpu);
4734 unsigned long interval;
4735 struct sched_domain *sd;
4736 /* Earliest time when we have to do rebalance again */
4737 unsigned long next_balance = jiffies + 60*HZ;
4738 int update_next_balance = 0;
4739 int need_serialize;
4740
4741 for_each_domain(cpu, sd) {
4742 if (!(sd->flags & SD_LOAD_BALANCE))
4743 continue;
4744
4745 interval = sd->balance_interval;
4746 if (idle != CPU_IDLE)
4747 interval *= sd->busy_factor;
4748
4749 /* scale ms to jiffies */
4750 interval = msecs_to_jiffies(interval);
4751 if (unlikely(!interval))
4752 interval = 1;
4753 if (interval > HZ*NR_CPUS/10)
4754 interval = HZ*NR_CPUS/10;
4755
4756 need_serialize = sd->flags & SD_SERIALIZE;
4757
4758 if (need_serialize) {
4759 if (!spin_trylock(&balancing))
4760 goto out;
4761 }
4762
4763 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4764 if (load_balance(cpu, rq, sd, idle, &balance)) {
4765 /*
4766 * We've pulled tasks over so either we're no
4767 * longer idle, or one of our SMT siblings is
4768 * not idle.
4769 */
4770 idle = CPU_NOT_IDLE;
4771 }
4772 sd->last_balance = jiffies;
4773 }
4774 if (need_serialize)
4775 spin_unlock(&balancing);
4776 out:
4777 if (time_after(next_balance, sd->last_balance + interval)) {
4778 next_balance = sd->last_balance + interval;
4779 update_next_balance = 1;
4780 }
4781
4782 /*
4783 * Stop the load balance at this level. There is another
4784 * CPU in our sched group which is doing load balancing more
4785 * actively.
4786 */
4787 if (!balance)
4788 break;
4789 }
4790
4791 /*
4792 * next_balance will be updated only when there is a need.
4793 * When the cpu is attached to null domain for ex, it will not be
4794 * updated.
4795 */
4796 if (likely(update_next_balance))
4797 rq->next_balance = next_balance;
4798 }
4799
4800 /*
4801 * run_rebalance_domains is triggered when needed from the scheduler tick.
4802 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4803 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4804 */
4805 static void run_rebalance_domains(struct softirq_action *h)
4806 {
4807 int this_cpu = smp_processor_id();
4808 struct rq *this_rq = cpu_rq(this_cpu);
4809 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4810 CPU_IDLE : CPU_NOT_IDLE;
4811
4812 rebalance_domains(this_cpu, idle);
4813
4814 #ifdef CONFIG_NO_HZ
4815 /*
4816 * If this cpu is the owner for idle load balancing, then do the
4817 * balancing on behalf of the other idle cpus whose ticks are
4818 * stopped.
4819 */
4820 if (this_rq->idle_at_tick &&
4821 atomic_read(&nohz.load_balancer) == this_cpu) {
4822 struct rq *rq;
4823 int balance_cpu;
4824
4825 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4826 if (balance_cpu == this_cpu)
4827 continue;
4828
4829 /*
4830 * If this cpu gets work to do, stop the load balancing
4831 * work being done for other cpus. Next load
4832 * balancing owner will pick it up.
4833 */
4834 if (need_resched())
4835 break;
4836
4837 rebalance_domains(balance_cpu, CPU_IDLE);
4838
4839 rq = cpu_rq(balance_cpu);
4840 if (time_after(this_rq->next_balance, rq->next_balance))
4841 this_rq->next_balance = rq->next_balance;
4842 }
4843 }
4844 #endif
4845 }
4846
4847 static inline int on_null_domain(int cpu)
4848 {
4849 return !rcu_dereference(cpu_rq(cpu)->sd);
4850 }
4851
4852 /*
4853 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4854 *
4855 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4856 * idle load balancing owner or decide to stop the periodic load balancing,
4857 * if the whole system is idle.
4858 */
4859 static inline void trigger_load_balance(struct rq *rq, int cpu)
4860 {
4861 #ifdef CONFIG_NO_HZ
4862 /*
4863 * If we were in the nohz mode recently and busy at the current
4864 * scheduler tick, then check if we need to nominate new idle
4865 * load balancer.
4866 */
4867 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4868 rq->in_nohz_recently = 0;
4869
4870 if (atomic_read(&nohz.load_balancer) == cpu) {
4871 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4872 atomic_set(&nohz.load_balancer, -1);
4873 }
4874
4875 if (atomic_read(&nohz.load_balancer) == -1) {
4876 int ilb = find_new_ilb(cpu);
4877
4878 if (ilb < nr_cpu_ids)
4879 resched_cpu(ilb);
4880 }
4881 }
4882
4883 /*
4884 * If this cpu is idle and doing idle load balancing for all the
4885 * cpus with ticks stopped, is it time for that to stop?
4886 */
4887 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4888 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4889 resched_cpu(cpu);
4890 return;
4891 }
4892
4893 /*
4894 * If this cpu is idle and the idle load balancing is done by
4895 * someone else, then no need raise the SCHED_SOFTIRQ
4896 */
4897 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4898 cpumask_test_cpu(cpu, nohz.cpu_mask))
4899 return;
4900 #endif
4901 /* Don't need to rebalance while attached to NULL domain */
4902 if (time_after_eq(jiffies, rq->next_balance) &&
4903 likely(!on_null_domain(cpu)))
4904 raise_softirq(SCHED_SOFTIRQ);
4905 }
4906
4907 #else /* CONFIG_SMP */
4908
4909 /*
4910 * on UP we do not need to balance between CPUs:
4911 */
4912 static inline void idle_balance(int cpu, struct rq *rq)
4913 {
4914 }
4915
4916 #endif
4917
4918 DEFINE_PER_CPU(struct kernel_stat, kstat);
4919
4920 EXPORT_PER_CPU_SYMBOL(kstat);
4921
4922 /*
4923 * Return any ns on the sched_clock that have not yet been accounted in
4924 * @p in case that task is currently running.
4925 *
4926 * Called with task_rq_lock() held on @rq.
4927 */
4928 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4929 {
4930 u64 ns = 0;
4931
4932 if (task_current(rq, p)) {
4933 update_rq_clock(rq);
4934 ns = rq->clock - p->se.exec_start;
4935 if ((s64)ns < 0)
4936 ns = 0;
4937 }
4938
4939 return ns;
4940 }
4941
4942 unsigned long long task_delta_exec(struct task_struct *p)
4943 {
4944 unsigned long flags;
4945 struct rq *rq;
4946 u64 ns = 0;
4947
4948 rq = task_rq_lock(p, &flags);
4949 ns = do_task_delta_exec(p, rq);
4950 task_rq_unlock(rq, &flags);
4951
4952 return ns;
4953 }
4954
4955 /*
4956 * Return accounted runtime for the task.
4957 * In case the task is currently running, return the runtime plus current's
4958 * pending runtime that have not been accounted yet.
4959 */
4960 unsigned long long task_sched_runtime(struct task_struct *p)
4961 {
4962 unsigned long flags;
4963 struct rq *rq;
4964 u64 ns = 0;
4965
4966 rq = task_rq_lock(p, &flags);
4967 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4968 task_rq_unlock(rq, &flags);
4969
4970 return ns;
4971 }
4972
4973 /*
4974 * Return sum_exec_runtime for the thread group.
4975 * In case the task is currently running, return the sum plus current's
4976 * pending runtime that have not been accounted yet.
4977 *
4978 * Note that the thread group might have other running tasks as well,
4979 * so the return value not includes other pending runtime that other
4980 * running tasks might have.
4981 */
4982 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4983 {
4984 struct task_cputime totals;
4985 unsigned long flags;
4986 struct rq *rq;
4987 u64 ns;
4988
4989 rq = task_rq_lock(p, &flags);
4990 thread_group_cputime(p, &totals);
4991 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4992 task_rq_unlock(rq, &flags);
4993
4994 return ns;
4995 }
4996
4997 /*
4998 * Account user cpu time to a process.
4999 * @p: the process that the cpu time gets accounted to
5000 * @cputime: the cpu time spent in user space since the last update
5001 * @cputime_scaled: cputime scaled by cpu frequency
5002 */
5003 void account_user_time(struct task_struct *p, cputime_t cputime,
5004 cputime_t cputime_scaled)
5005 {
5006 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5007 cputime64_t tmp;
5008
5009 /* Add user time to process. */
5010 p->utime = cputime_add(p->utime, cputime);
5011 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5012 account_group_user_time(p, cputime);
5013
5014 /* Add user time to cpustat. */
5015 tmp = cputime_to_cputime64(cputime);
5016 if (TASK_NICE(p) > 0)
5017 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5018 else
5019 cpustat->user = cputime64_add(cpustat->user, tmp);
5020
5021 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5022 /* Account for user time used */
5023 acct_update_integrals(p);
5024 }
5025
5026 /*
5027 * Account guest cpu time to a process.
5028 * @p: the process that the cpu time gets accounted to
5029 * @cputime: the cpu time spent in virtual machine since the last update
5030 * @cputime_scaled: cputime scaled by cpu frequency
5031 */
5032 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5033 cputime_t cputime_scaled)
5034 {
5035 cputime64_t tmp;
5036 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5037
5038 tmp = cputime_to_cputime64(cputime);
5039
5040 /* Add guest time to process. */
5041 p->utime = cputime_add(p->utime, cputime);
5042 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5043 account_group_user_time(p, cputime);
5044 p->gtime = cputime_add(p->gtime, cputime);
5045
5046 /* Add guest time to cpustat. */
5047 if (TASK_NICE(p) > 0) {
5048 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5049 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5050 } else {
5051 cpustat->user = cputime64_add(cpustat->user, tmp);
5052 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5053 }
5054 }
5055
5056 /*
5057 * Account system cpu time to a process.
5058 * @p: the process that the cpu time gets accounted to
5059 * @hardirq_offset: the offset to subtract from hardirq_count()
5060 * @cputime: the cpu time spent in kernel space since the last update
5061 * @cputime_scaled: cputime scaled by cpu frequency
5062 */
5063 void account_system_time(struct task_struct *p, int hardirq_offset,
5064 cputime_t cputime, cputime_t cputime_scaled)
5065 {
5066 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5067 cputime64_t tmp;
5068
5069 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5070 account_guest_time(p, cputime, cputime_scaled);
5071 return;
5072 }
5073
5074 /* Add system time to process. */
5075 p->stime = cputime_add(p->stime, cputime);
5076 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5077 account_group_system_time(p, cputime);
5078
5079 /* Add system time to cpustat. */
5080 tmp = cputime_to_cputime64(cputime);
5081 if (hardirq_count() - hardirq_offset)
5082 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5083 else if (softirq_count())
5084 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5085 else
5086 cpustat->system = cputime64_add(cpustat->system, tmp);
5087
5088 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5089
5090 /* Account for system time used */
5091 acct_update_integrals(p);
5092 }
5093
5094 /*
5095 * Account for involuntary wait time.
5096 * @steal: the cpu time spent in involuntary wait
5097 */
5098 void account_steal_time(cputime_t cputime)
5099 {
5100 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5101 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5102
5103 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5104 }
5105
5106 /*
5107 * Account for idle time.
5108 * @cputime: the cpu time spent in idle wait
5109 */
5110 void account_idle_time(cputime_t cputime)
5111 {
5112 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5113 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5114 struct rq *rq = this_rq();
5115
5116 if (atomic_read(&rq->nr_iowait) > 0)
5117 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5118 else
5119 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5120 }
5121
5122 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5123
5124 /*
5125 * Account a single tick of cpu time.
5126 * @p: the process that the cpu time gets accounted to
5127 * @user_tick: indicates if the tick is a user or a system tick
5128 */
5129 void account_process_tick(struct task_struct *p, int user_tick)
5130 {
5131 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5132 struct rq *rq = this_rq();
5133
5134 if (user_tick)
5135 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5136 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5137 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5138 one_jiffy_scaled);
5139 else
5140 account_idle_time(cputime_one_jiffy);
5141 }
5142
5143 /*
5144 * Account multiple ticks of steal time.
5145 * @p: the process from which the cpu time has been stolen
5146 * @ticks: number of stolen ticks
5147 */
5148 void account_steal_ticks(unsigned long ticks)
5149 {
5150 account_steal_time(jiffies_to_cputime(ticks));
5151 }
5152
5153 /*
5154 * Account multiple ticks of idle time.
5155 * @ticks: number of stolen ticks
5156 */
5157 void account_idle_ticks(unsigned long ticks)
5158 {
5159 account_idle_time(jiffies_to_cputime(ticks));
5160 }
5161
5162 #endif
5163
5164 /*
5165 * Use precise platform statistics if available:
5166 */
5167 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5168 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5169 {
5170 *ut = p->utime;
5171 *st = p->stime;
5172 }
5173
5174 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5175 {
5176 struct task_cputime cputime;
5177
5178 thread_group_cputime(p, &cputime);
5179
5180 *ut = cputime.utime;
5181 *st = cputime.stime;
5182 }
5183 #else
5184
5185 #ifndef nsecs_to_cputime
5186 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5187 #endif
5188
5189 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5190 {
5191 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5192
5193 /*
5194 * Use CFS's precise accounting:
5195 */
5196 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5197
5198 if (total) {
5199 u64 temp;
5200
5201 temp = (u64)(rtime * utime);
5202 do_div(temp, total);
5203 utime = (cputime_t)temp;
5204 } else
5205 utime = rtime;
5206
5207 /*
5208 * Compare with previous values, to keep monotonicity:
5209 */
5210 p->prev_utime = max(p->prev_utime, utime);
5211 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5212
5213 *ut = p->prev_utime;
5214 *st = p->prev_stime;
5215 }
5216
5217 /*
5218 * Must be called with siglock held.
5219 */
5220 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5221 {
5222 struct signal_struct *sig = p->signal;
5223 struct task_cputime cputime;
5224 cputime_t rtime, utime, total;
5225
5226 thread_group_cputime(p, &cputime);
5227
5228 total = cputime_add(cputime.utime, cputime.stime);
5229 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5230
5231 if (total) {
5232 u64 temp;
5233
5234 temp = (u64)(rtime * cputime.utime);
5235 do_div(temp, total);
5236 utime = (cputime_t)temp;
5237 } else
5238 utime = rtime;
5239
5240 sig->prev_utime = max(sig->prev_utime, utime);
5241 sig->prev_stime = max(sig->prev_stime,
5242 cputime_sub(rtime, sig->prev_utime));
5243
5244 *ut = sig->prev_utime;
5245 *st = sig->prev_stime;
5246 }
5247 #endif
5248
5249 /*
5250 * This function gets called by the timer code, with HZ frequency.
5251 * We call it with interrupts disabled.
5252 *
5253 * It also gets called by the fork code, when changing the parent's
5254 * timeslices.
5255 */
5256 void scheduler_tick(void)
5257 {
5258 int cpu = smp_processor_id();
5259 struct rq *rq = cpu_rq(cpu);
5260 struct task_struct *curr = rq->curr;
5261
5262 sched_clock_tick();
5263
5264 raw_spin_lock(&rq->lock);
5265 update_rq_clock(rq);
5266 update_cpu_load(rq);
5267 curr->sched_class->task_tick(rq, curr, 0);
5268 raw_spin_unlock(&rq->lock);
5269
5270 perf_event_task_tick(curr, cpu);
5271
5272 #ifdef CONFIG_SMP
5273 rq->idle_at_tick = idle_cpu(cpu);
5274 trigger_load_balance(rq, cpu);
5275 #endif
5276 }
5277
5278 notrace unsigned long get_parent_ip(unsigned long addr)
5279 {
5280 if (in_lock_functions(addr)) {
5281 addr = CALLER_ADDR2;
5282 if (in_lock_functions(addr))
5283 addr = CALLER_ADDR3;
5284 }
5285 return addr;
5286 }
5287
5288 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5289 defined(CONFIG_PREEMPT_TRACER))
5290
5291 void __kprobes add_preempt_count(int val)
5292 {
5293 #ifdef CONFIG_DEBUG_PREEMPT
5294 /*
5295 * Underflow?
5296 */
5297 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5298 return;
5299 #endif
5300 preempt_count() += val;
5301 #ifdef CONFIG_DEBUG_PREEMPT
5302 /*
5303 * Spinlock count overflowing soon?
5304 */
5305 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5306 PREEMPT_MASK - 10);
5307 #endif
5308 if (preempt_count() == val)
5309 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5310 }
5311 EXPORT_SYMBOL(add_preempt_count);
5312
5313 void __kprobes sub_preempt_count(int val)
5314 {
5315 #ifdef CONFIG_DEBUG_PREEMPT
5316 /*
5317 * Underflow?
5318 */
5319 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5320 return;
5321 /*
5322 * Is the spinlock portion underflowing?
5323 */
5324 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5325 !(preempt_count() & PREEMPT_MASK)))
5326 return;
5327 #endif
5328
5329 if (preempt_count() == val)
5330 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5331 preempt_count() -= val;
5332 }
5333 EXPORT_SYMBOL(sub_preempt_count);
5334
5335 #endif
5336
5337 /*
5338 * Print scheduling while atomic bug:
5339 */
5340 static noinline void __schedule_bug(struct task_struct *prev)
5341 {
5342 struct pt_regs *regs = get_irq_regs();
5343
5344 pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
5345 prev->comm, prev->pid, preempt_count());
5346
5347 debug_show_held_locks(prev);
5348 print_modules();
5349 if (irqs_disabled())
5350 print_irqtrace_events(prev);
5351
5352 if (regs)
5353 show_regs(regs);
5354 else
5355 dump_stack();
5356 }
5357
5358 /*
5359 * Various schedule()-time debugging checks and statistics:
5360 */
5361 static inline void schedule_debug(struct task_struct *prev)
5362 {
5363 /*
5364 * Test if we are atomic. Since do_exit() needs to call into
5365 * schedule() atomically, we ignore that path for now.
5366 * Otherwise, whine if we are scheduling when we should not be.
5367 */
5368 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5369 __schedule_bug(prev);
5370
5371 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5372
5373 schedstat_inc(this_rq(), sched_count);
5374 #ifdef CONFIG_SCHEDSTATS
5375 if (unlikely(prev->lock_depth >= 0)) {
5376 schedstat_inc(this_rq(), bkl_count);
5377 schedstat_inc(prev, sched_info.bkl_count);
5378 }
5379 #endif
5380 }
5381
5382 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5383 {
5384 if (prev->state == TASK_RUNNING) {
5385 u64 runtime = prev->se.sum_exec_runtime;
5386
5387 runtime -= prev->se.prev_sum_exec_runtime;
5388 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5389
5390 /*
5391 * In order to avoid avg_overlap growing stale when we are
5392 * indeed overlapping and hence not getting put to sleep, grow
5393 * the avg_overlap on preemption.
5394 *
5395 * We use the average preemption runtime because that
5396 * correlates to the amount of cache footprint a task can
5397 * build up.
5398 */
5399 update_avg(&prev->se.avg_overlap, runtime);
5400 }
5401 prev->sched_class->put_prev_task(rq, prev);
5402 }
5403
5404 /*
5405 * Pick up the highest-prio task:
5406 */
5407 static inline struct task_struct *
5408 pick_next_task(struct rq *rq)
5409 {
5410 const struct sched_class *class;
5411 struct task_struct *p;
5412
5413 /*
5414 * Optimization: we know that if all tasks are in
5415 * the fair class we can call that function directly:
5416 */
5417 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5418 p = fair_sched_class.pick_next_task(rq);
5419 if (likely(p))
5420 return p;
5421 }
5422
5423 class = sched_class_highest;
5424 for ( ; ; ) {
5425 p = class->pick_next_task(rq);
5426 if (p)
5427 return p;
5428 /*
5429 * Will never be NULL as the idle class always
5430 * returns a non-NULL p:
5431 */
5432 class = class->next;
5433 }
5434 }
5435
5436 /*
5437 * schedule() is the main scheduler function.
5438 */
5439 asmlinkage void __sched schedule(void)
5440 {
5441 struct task_struct *prev, *next;
5442 unsigned long *switch_count;
5443 struct rq *rq;
5444 int cpu;
5445
5446 need_resched:
5447 preempt_disable();
5448 cpu = smp_processor_id();
5449 rq = cpu_rq(cpu);
5450 rcu_sched_qs(cpu);
5451 prev = rq->curr;
5452 switch_count = &prev->nivcsw;
5453
5454 release_kernel_lock(prev);
5455 need_resched_nonpreemptible:
5456
5457 schedule_debug(prev);
5458
5459 if (sched_feat(HRTICK))
5460 hrtick_clear(rq);
5461
5462 raw_spin_lock_irq(&rq->lock);
5463 update_rq_clock(rq);
5464 clear_tsk_need_resched(prev);
5465
5466 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5467 if (unlikely(signal_pending_state(prev->state, prev)))
5468 prev->state = TASK_RUNNING;
5469 else
5470 deactivate_task(rq, prev, 1);
5471 switch_count = &prev->nvcsw;
5472 }
5473
5474 pre_schedule(rq, prev);
5475
5476 if (unlikely(!rq->nr_running))
5477 idle_balance(cpu, rq);
5478
5479 put_prev_task(rq, prev);
5480 next = pick_next_task(rq);
5481
5482 if (likely(prev != next)) {
5483 sched_info_switch(prev, next);
5484 perf_event_task_sched_out(prev, next, cpu);
5485
5486 rq->nr_switches++;
5487 rq->curr = next;
5488 ++*switch_count;
5489
5490 context_switch(rq, prev, next); /* unlocks the rq */
5491 /*
5492 * the context switch might have flipped the stack from under
5493 * us, hence refresh the local variables.
5494 */
5495 cpu = smp_processor_id();
5496 rq = cpu_rq(cpu);
5497 } else
5498 raw_spin_unlock_irq(&rq->lock);
5499
5500 post_schedule(rq);
5501
5502 if (unlikely(reacquire_kernel_lock(current) < 0))
5503 goto need_resched_nonpreemptible;
5504
5505 preempt_enable_no_resched();
5506 if (need_resched())
5507 goto need_resched;
5508 }
5509 EXPORT_SYMBOL(schedule);
5510
5511 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5512 /*
5513 * Look out! "owner" is an entirely speculative pointer
5514 * access and not reliable.
5515 */
5516 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5517 {
5518 unsigned int cpu;
5519 struct rq *rq;
5520
5521 if (!sched_feat(OWNER_SPIN))
5522 return 0;
5523
5524 #ifdef CONFIG_DEBUG_PAGEALLOC
5525 /*
5526 * Need to access the cpu field knowing that
5527 * DEBUG_PAGEALLOC could have unmapped it if
5528 * the mutex owner just released it and exited.
5529 */
5530 if (probe_kernel_address(&owner->cpu, cpu))
5531 goto out;
5532 #else
5533 cpu = owner->cpu;
5534 #endif
5535
5536 /*
5537 * Even if the access succeeded (likely case),
5538 * the cpu field may no longer be valid.
5539 */
5540 if (cpu >= nr_cpumask_bits)
5541 goto out;
5542
5543 /*
5544 * We need to validate that we can do a
5545 * get_cpu() and that we have the percpu area.
5546 */
5547 if (!cpu_online(cpu))
5548 goto out;
5549
5550 rq = cpu_rq(cpu);
5551
5552 for (;;) {
5553 /*
5554 * Owner changed, break to re-assess state.
5555 */
5556 if (lock->owner != owner)
5557 break;
5558
5559 /*
5560 * Is that owner really running on that cpu?
5561 */
5562 if (task_thread_info(rq->curr) != owner || need_resched())
5563 return 0;
5564
5565 cpu_relax();
5566 }
5567 out:
5568 return 1;
5569 }
5570 #endif
5571
5572 #ifdef CONFIG_PREEMPT
5573 /*
5574 * this is the entry point to schedule() from in-kernel preemption
5575 * off of preempt_enable. Kernel preemptions off return from interrupt
5576 * occur there and call schedule directly.
5577 */
5578 asmlinkage void __sched preempt_schedule(void)
5579 {
5580 struct thread_info *ti = current_thread_info();
5581
5582 /*
5583 * If there is a non-zero preempt_count or interrupts are disabled,
5584 * we do not want to preempt the current task. Just return..
5585 */
5586 if (likely(ti->preempt_count || irqs_disabled()))
5587 return;
5588
5589 do {
5590 add_preempt_count(PREEMPT_ACTIVE);
5591 schedule();
5592 sub_preempt_count(PREEMPT_ACTIVE);
5593
5594 /*
5595 * Check again in case we missed a preemption opportunity
5596 * between schedule and now.
5597 */
5598 barrier();
5599 } while (need_resched());
5600 }
5601 EXPORT_SYMBOL(preempt_schedule);
5602
5603 /*
5604 * this is the entry point to schedule() from kernel preemption
5605 * off of irq context.
5606 * Note, that this is called and return with irqs disabled. This will
5607 * protect us against recursive calling from irq.
5608 */
5609 asmlinkage void __sched preempt_schedule_irq(void)
5610 {
5611 struct thread_info *ti = current_thread_info();
5612
5613 /* Catch callers which need to be fixed */
5614 BUG_ON(ti->preempt_count || !irqs_disabled());
5615
5616 do {
5617 add_preempt_count(PREEMPT_ACTIVE);
5618 local_irq_enable();
5619 schedule();
5620 local_irq_disable();
5621 sub_preempt_count(PREEMPT_ACTIVE);
5622
5623 /*
5624 * Check again in case we missed a preemption opportunity
5625 * between schedule and now.
5626 */
5627 barrier();
5628 } while (need_resched());
5629 }
5630
5631 #endif /* CONFIG_PREEMPT */
5632
5633 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5634 void *key)
5635 {
5636 return try_to_wake_up(curr->private, mode, wake_flags);
5637 }
5638 EXPORT_SYMBOL(default_wake_function);
5639
5640 /*
5641 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5642 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5643 * number) then we wake all the non-exclusive tasks and one exclusive task.
5644 *
5645 * There are circumstances in which we can try to wake a task which has already
5646 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5647 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5648 */
5649 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5650 int nr_exclusive, int wake_flags, void *key)
5651 {
5652 wait_queue_t *curr, *next;
5653
5654 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5655 unsigned flags = curr->flags;
5656
5657 if (curr->func(curr, mode, wake_flags, key) &&
5658 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5659 break;
5660 }
5661 }
5662
5663 /**
5664 * __wake_up - wake up threads blocked on a waitqueue.
5665 * @q: the waitqueue
5666 * @mode: which threads
5667 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5668 * @key: is directly passed to the wakeup function
5669 *
5670 * It may be assumed that this function implies a write memory barrier before
5671 * changing the task state if and only if any tasks are woken up.
5672 */
5673 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5674 int nr_exclusive, void *key)
5675 {
5676 unsigned long flags;
5677
5678 spin_lock_irqsave(&q->lock, flags);
5679 __wake_up_common(q, mode, nr_exclusive, 0, key);
5680 spin_unlock_irqrestore(&q->lock, flags);
5681 }
5682 EXPORT_SYMBOL(__wake_up);
5683
5684 /*
5685 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5686 */
5687 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5688 {
5689 __wake_up_common(q, mode, 1, 0, NULL);
5690 }
5691
5692 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5693 {
5694 __wake_up_common(q, mode, 1, 0, key);
5695 }
5696
5697 /**
5698 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5699 * @q: the waitqueue
5700 * @mode: which threads
5701 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5702 * @key: opaque value to be passed to wakeup targets
5703 *
5704 * The sync wakeup differs that the waker knows that it will schedule
5705 * away soon, so while the target thread will be woken up, it will not
5706 * be migrated to another CPU - ie. the two threads are 'synchronized'
5707 * with each other. This can prevent needless bouncing between CPUs.
5708 *
5709 * On UP it can prevent extra preemption.
5710 *
5711 * It may be assumed that this function implies a write memory barrier before
5712 * changing the task state if and only if any tasks are woken up.
5713 */
5714 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5715 int nr_exclusive, void *key)
5716 {
5717 unsigned long flags;
5718 int wake_flags = WF_SYNC;
5719
5720 if (unlikely(!q))
5721 return;
5722
5723 if (unlikely(!nr_exclusive))
5724 wake_flags = 0;
5725
5726 spin_lock_irqsave(&q->lock, flags);
5727 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5728 spin_unlock_irqrestore(&q->lock, flags);
5729 }
5730 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5731
5732 /*
5733 * __wake_up_sync - see __wake_up_sync_key()
5734 */
5735 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5736 {
5737 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5738 }
5739 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5740
5741 /**
5742 * complete: - signals a single thread waiting on this completion
5743 * @x: holds the state of this particular completion
5744 *
5745 * This will wake up a single thread waiting on this completion. Threads will be
5746 * awakened in the same order in which they were queued.
5747 *
5748 * See also complete_all(), wait_for_completion() and related routines.
5749 *
5750 * It may be assumed that this function implies a write memory barrier before
5751 * changing the task state if and only if any tasks are woken up.
5752 */
5753 void complete(struct completion *x)
5754 {
5755 unsigned long flags;
5756
5757 spin_lock_irqsave(&x->wait.lock, flags);
5758 x->done++;
5759 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5760 spin_unlock_irqrestore(&x->wait.lock, flags);
5761 }
5762 EXPORT_SYMBOL(complete);
5763
5764 /**
5765 * complete_all: - signals all threads waiting on this completion
5766 * @x: holds the state of this particular completion
5767 *
5768 * This will wake up all threads waiting on this particular completion event.
5769 *
5770 * It may be assumed that this function implies a write memory barrier before
5771 * changing the task state if and only if any tasks are woken up.
5772 */
5773 void complete_all(struct completion *x)
5774 {
5775 unsigned long flags;
5776
5777 spin_lock_irqsave(&x->wait.lock, flags);
5778 x->done += UINT_MAX/2;
5779 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5780 spin_unlock_irqrestore(&x->wait.lock, flags);
5781 }
5782 EXPORT_SYMBOL(complete_all);
5783
5784 static inline long __sched
5785 do_wait_for_common(struct completion *x, long timeout, int state)
5786 {
5787 if (!x->done) {
5788 DECLARE_WAITQUEUE(wait, current);
5789
5790 wait.flags |= WQ_FLAG_EXCLUSIVE;
5791 __add_wait_queue_tail(&x->wait, &wait);
5792 do {
5793 if (signal_pending_state(state, current)) {
5794 timeout = -ERESTARTSYS;
5795 break;
5796 }
5797 __set_current_state(state);
5798 spin_unlock_irq(&x->wait.lock);
5799 timeout = schedule_timeout(timeout);
5800 spin_lock_irq(&x->wait.lock);
5801 } while (!x->done && timeout);
5802 __remove_wait_queue(&x->wait, &wait);
5803 if (!x->done)
5804 return timeout;
5805 }
5806 x->done--;
5807 return timeout ?: 1;
5808 }
5809
5810 static long __sched
5811 wait_for_common(struct completion *x, long timeout, int state)
5812 {
5813 might_sleep();
5814
5815 spin_lock_irq(&x->wait.lock);
5816 timeout = do_wait_for_common(x, timeout, state);
5817 spin_unlock_irq(&x->wait.lock);
5818 return timeout;
5819 }
5820
5821 /**
5822 * wait_for_completion: - waits for completion of a task
5823 * @x: holds the state of this particular completion
5824 *
5825 * This waits to be signaled for completion of a specific task. It is NOT
5826 * interruptible and there is no timeout.
5827 *
5828 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5829 * and interrupt capability. Also see complete().
5830 */
5831 void __sched wait_for_completion(struct completion *x)
5832 {
5833 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5834 }
5835 EXPORT_SYMBOL(wait_for_completion);
5836
5837 /**
5838 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5839 * @x: holds the state of this particular completion
5840 * @timeout: timeout value in jiffies
5841 *
5842 * This waits for either a completion of a specific task to be signaled or for a
5843 * specified timeout to expire. The timeout is in jiffies. It is not
5844 * interruptible.
5845 */
5846 unsigned long __sched
5847 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5848 {
5849 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5850 }
5851 EXPORT_SYMBOL(wait_for_completion_timeout);
5852
5853 /**
5854 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5855 * @x: holds the state of this particular completion
5856 *
5857 * This waits for completion of a specific task to be signaled. It is
5858 * interruptible.
5859 */
5860 int __sched wait_for_completion_interruptible(struct completion *x)
5861 {
5862 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5863 if (t == -ERESTARTSYS)
5864 return t;
5865 return 0;
5866 }
5867 EXPORT_SYMBOL(wait_for_completion_interruptible);
5868
5869 /**
5870 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5871 * @x: holds the state of this particular completion
5872 * @timeout: timeout value in jiffies
5873 *
5874 * This waits for either a completion of a specific task to be signaled or for a
5875 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5876 */
5877 unsigned long __sched
5878 wait_for_completion_interruptible_timeout(struct completion *x,
5879 unsigned long timeout)
5880 {
5881 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5882 }
5883 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5884
5885 /**
5886 * wait_for_completion_killable: - waits for completion of a task (killable)
5887 * @x: holds the state of this particular completion
5888 *
5889 * This waits to be signaled for completion of a specific task. It can be
5890 * interrupted by a kill signal.
5891 */
5892 int __sched wait_for_completion_killable(struct completion *x)
5893 {
5894 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5895 if (t == -ERESTARTSYS)
5896 return t;
5897 return 0;
5898 }
5899 EXPORT_SYMBOL(wait_for_completion_killable);
5900
5901 /**
5902 * try_wait_for_completion - try to decrement a completion without blocking
5903 * @x: completion structure
5904 *
5905 * Returns: 0 if a decrement cannot be done without blocking
5906 * 1 if a decrement succeeded.
5907 *
5908 * If a completion is being used as a counting completion,
5909 * attempt to decrement the counter without blocking. This
5910 * enables us to avoid waiting if the resource the completion
5911 * is protecting is not available.
5912 */
5913 bool try_wait_for_completion(struct completion *x)
5914 {
5915 unsigned long flags;
5916 int ret = 1;
5917
5918 spin_lock_irqsave(&x->wait.lock, flags);
5919 if (!x->done)
5920 ret = 0;
5921 else
5922 x->done--;
5923 spin_unlock_irqrestore(&x->wait.lock, flags);
5924 return ret;
5925 }
5926 EXPORT_SYMBOL(try_wait_for_completion);
5927
5928 /**
5929 * completion_done - Test to see if a completion has any waiters
5930 * @x: completion structure
5931 *
5932 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5933 * 1 if there are no waiters.
5934 *
5935 */
5936 bool completion_done(struct completion *x)
5937 {
5938 unsigned long flags;
5939 int ret = 1;
5940
5941 spin_lock_irqsave(&x->wait.lock, flags);
5942 if (!x->done)
5943 ret = 0;
5944 spin_unlock_irqrestore(&x->wait.lock, flags);
5945 return ret;
5946 }
5947 EXPORT_SYMBOL(completion_done);
5948
5949 static long __sched
5950 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5951 {
5952 unsigned long flags;
5953 wait_queue_t wait;
5954
5955 init_waitqueue_entry(&wait, current);
5956
5957 __set_current_state(state);
5958
5959 spin_lock_irqsave(&q->lock, flags);
5960 __add_wait_queue(q, &wait);
5961 spin_unlock(&q->lock);
5962 timeout = schedule_timeout(timeout);
5963 spin_lock_irq(&q->lock);
5964 __remove_wait_queue(q, &wait);
5965 spin_unlock_irqrestore(&q->lock, flags);
5966
5967 return timeout;
5968 }
5969
5970 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5971 {
5972 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5973 }
5974 EXPORT_SYMBOL(interruptible_sleep_on);
5975
5976 long __sched
5977 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5978 {
5979 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5980 }
5981 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5982
5983 void __sched sleep_on(wait_queue_head_t *q)
5984 {
5985 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5986 }
5987 EXPORT_SYMBOL(sleep_on);
5988
5989 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5990 {
5991 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5992 }
5993 EXPORT_SYMBOL(sleep_on_timeout);
5994
5995 #ifdef CONFIG_RT_MUTEXES
5996
5997 /*
5998 * rt_mutex_setprio - set the current priority of a task
5999 * @p: task
6000 * @prio: prio value (kernel-internal form)
6001 *
6002 * This function changes the 'effective' priority of a task. It does
6003 * not touch ->normal_prio like __setscheduler().
6004 *
6005 * Used by the rt_mutex code to implement priority inheritance logic.
6006 */
6007 void rt_mutex_setprio(struct task_struct *p, int prio)
6008 {
6009 unsigned long flags;
6010 int oldprio, on_rq, running;
6011 struct rq *rq;
6012 const struct sched_class *prev_class = p->sched_class;
6013
6014 BUG_ON(prio < 0 || prio > MAX_PRIO);
6015
6016 rq = task_rq_lock(p, &flags);
6017 update_rq_clock(rq);
6018
6019 oldprio = p->prio;
6020 on_rq = p->se.on_rq;
6021 running = task_current(rq, p);
6022 if (on_rq)
6023 dequeue_task(rq, p, 0);
6024 if (running)
6025 p->sched_class->put_prev_task(rq, p);
6026
6027 if (rt_prio(prio))
6028 p->sched_class = &rt_sched_class;
6029 else
6030 p->sched_class = &fair_sched_class;
6031
6032 p->prio = prio;
6033
6034 if (running)
6035 p->sched_class->set_curr_task(rq);
6036 if (on_rq) {
6037 enqueue_task(rq, p, 0);
6038
6039 check_class_changed(rq, p, prev_class, oldprio, running);
6040 }
6041 task_rq_unlock(rq, &flags);
6042 }
6043
6044 #endif
6045
6046 void set_user_nice(struct task_struct *p, long nice)
6047 {
6048 int old_prio, delta, on_rq;
6049 unsigned long flags;
6050 struct rq *rq;
6051
6052 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6053 return;
6054 /*
6055 * We have to be careful, if called from sys_setpriority(),
6056 * the task might be in the middle of scheduling on another CPU.
6057 */
6058 rq = task_rq_lock(p, &flags);
6059 update_rq_clock(rq);
6060 /*
6061 * The RT priorities are set via sched_setscheduler(), but we still
6062 * allow the 'normal' nice value to be set - but as expected
6063 * it wont have any effect on scheduling until the task is
6064 * SCHED_FIFO/SCHED_RR:
6065 */
6066 if (task_has_rt_policy(p)) {
6067 p->static_prio = NICE_TO_PRIO(nice);
6068 goto out_unlock;
6069 }
6070 on_rq = p->se.on_rq;
6071 if (on_rq)
6072 dequeue_task(rq, p, 0);
6073
6074 p->static_prio = NICE_TO_PRIO(nice);
6075 set_load_weight(p);
6076 old_prio = p->prio;
6077 p->prio = effective_prio(p);
6078 delta = p->prio - old_prio;
6079
6080 if (on_rq) {
6081 enqueue_task(rq, p, 0);
6082 /*
6083 * If the task increased its priority or is running and
6084 * lowered its priority, then reschedule its CPU:
6085 */
6086 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6087 resched_task(rq->curr);
6088 }
6089 out_unlock:
6090 task_rq_unlock(rq, &flags);
6091 }
6092 EXPORT_SYMBOL(set_user_nice);
6093
6094 /*
6095 * can_nice - check if a task can reduce its nice value
6096 * @p: task
6097 * @nice: nice value
6098 */
6099 int can_nice(const struct task_struct *p, const int nice)
6100 {
6101 /* convert nice value [19,-20] to rlimit style value [1,40] */
6102 int nice_rlim = 20 - nice;
6103
6104 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6105 capable(CAP_SYS_NICE));
6106 }
6107
6108 #ifdef __ARCH_WANT_SYS_NICE
6109
6110 /*
6111 * sys_nice - change the priority of the current process.
6112 * @increment: priority increment
6113 *
6114 * sys_setpriority is a more generic, but much slower function that
6115 * does similar things.
6116 */
6117 SYSCALL_DEFINE1(nice, int, increment)
6118 {
6119 long nice, retval;
6120
6121 /*
6122 * Setpriority might change our priority at the same moment.
6123 * We don't have to worry. Conceptually one call occurs first
6124 * and we have a single winner.
6125 */
6126 if (increment < -40)
6127 increment = -40;
6128 if (increment > 40)
6129 increment = 40;
6130
6131 nice = TASK_NICE(current) + increment;
6132 if (nice < -20)
6133 nice = -20;
6134 if (nice > 19)
6135 nice = 19;
6136
6137 if (increment < 0 && !can_nice(current, nice))
6138 return -EPERM;
6139
6140 retval = security_task_setnice(current, nice);
6141 if (retval)
6142 return retval;
6143
6144 set_user_nice(current, nice);
6145 return 0;
6146 }
6147
6148 #endif
6149
6150 /**
6151 * task_prio - return the priority value of a given task.
6152 * @p: the task in question.
6153 *
6154 * This is the priority value as seen by users in /proc.
6155 * RT tasks are offset by -200. Normal tasks are centered
6156 * around 0, value goes from -16 to +15.
6157 */
6158 int task_prio(const struct task_struct *p)
6159 {
6160 return p->prio - MAX_RT_PRIO;
6161 }
6162
6163 /**
6164 * task_nice - return the nice value of a given task.
6165 * @p: the task in question.
6166 */
6167 int task_nice(const struct task_struct *p)
6168 {
6169 return TASK_NICE(p);
6170 }
6171 EXPORT_SYMBOL(task_nice);
6172
6173 /**
6174 * idle_cpu - is a given cpu idle currently?
6175 * @cpu: the processor in question.
6176 */
6177 int idle_cpu(int cpu)
6178 {
6179 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6180 }
6181
6182 /**
6183 * idle_task - return the idle task for a given cpu.
6184 * @cpu: the processor in question.
6185 */
6186 struct task_struct *idle_task(int cpu)
6187 {
6188 return cpu_rq(cpu)->idle;
6189 }
6190
6191 /**
6192 * find_process_by_pid - find a process with a matching PID value.
6193 * @pid: the pid in question.
6194 */
6195 static struct task_struct *find_process_by_pid(pid_t pid)
6196 {
6197 return pid ? find_task_by_vpid(pid) : current;
6198 }
6199
6200 /* Actually do priority change: must hold rq lock. */
6201 static void
6202 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6203 {
6204 BUG_ON(p->se.on_rq);
6205
6206 p->policy = policy;
6207 p->rt_priority = prio;
6208 p->normal_prio = normal_prio(p);
6209 /* we are holding p->pi_lock already */
6210 p->prio = rt_mutex_getprio(p);
6211 if (rt_prio(p->prio))
6212 p->sched_class = &rt_sched_class;
6213 else
6214 p->sched_class = &fair_sched_class;
6215 set_load_weight(p);
6216 }
6217
6218 /*
6219 * check the target process has a UID that matches the current process's
6220 */
6221 static bool check_same_owner(struct task_struct *p)
6222 {
6223 const struct cred *cred = current_cred(), *pcred;
6224 bool match;
6225
6226 rcu_read_lock();
6227 pcred = __task_cred(p);
6228 match = (cred->euid == pcred->euid ||
6229 cred->euid == pcred->uid);
6230 rcu_read_unlock();
6231 return match;
6232 }
6233
6234 static int __sched_setscheduler(struct task_struct *p, int policy,
6235 struct sched_param *param, bool user)
6236 {
6237 int retval, oldprio, oldpolicy = -1, on_rq, running;
6238 unsigned long flags;
6239 const struct sched_class *prev_class = p->sched_class;
6240 struct rq *rq;
6241 int reset_on_fork;
6242
6243 /* may grab non-irq protected spin_locks */
6244 BUG_ON(in_interrupt());
6245 recheck:
6246 /* double check policy once rq lock held */
6247 if (policy < 0) {
6248 reset_on_fork = p->sched_reset_on_fork;
6249 policy = oldpolicy = p->policy;
6250 } else {
6251 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6252 policy &= ~SCHED_RESET_ON_FORK;
6253
6254 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6255 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6256 policy != SCHED_IDLE)
6257 return -EINVAL;
6258 }
6259
6260 /*
6261 * Valid priorities for SCHED_FIFO and SCHED_RR are
6262 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6263 * SCHED_BATCH and SCHED_IDLE is 0.
6264 */
6265 if (param->sched_priority < 0 ||
6266 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6267 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6268 return -EINVAL;
6269 if (rt_policy(policy) != (param->sched_priority != 0))
6270 return -EINVAL;
6271
6272 /*
6273 * Allow unprivileged RT tasks to decrease priority:
6274 */
6275 if (user && !capable(CAP_SYS_NICE)) {
6276 if (rt_policy(policy)) {
6277 unsigned long rlim_rtprio;
6278
6279 if (!lock_task_sighand(p, &flags))
6280 return -ESRCH;
6281 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6282 unlock_task_sighand(p, &flags);
6283
6284 /* can't set/change the rt policy */
6285 if (policy != p->policy && !rlim_rtprio)
6286 return -EPERM;
6287
6288 /* can't increase priority */
6289 if (param->sched_priority > p->rt_priority &&
6290 param->sched_priority > rlim_rtprio)
6291 return -EPERM;
6292 }
6293 /*
6294 * Like positive nice levels, dont allow tasks to
6295 * move out of SCHED_IDLE either:
6296 */
6297 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6298 return -EPERM;
6299
6300 /* can't change other user's priorities */
6301 if (!check_same_owner(p))
6302 return -EPERM;
6303
6304 /* Normal users shall not reset the sched_reset_on_fork flag */
6305 if (p->sched_reset_on_fork && !reset_on_fork)
6306 return -EPERM;
6307 }
6308
6309 if (user) {
6310 #ifdef CONFIG_RT_GROUP_SCHED
6311 /*
6312 * Do not allow realtime tasks into groups that have no runtime
6313 * assigned.
6314 */
6315 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6316 task_group(p)->rt_bandwidth.rt_runtime == 0)
6317 return -EPERM;
6318 #endif
6319
6320 retval = security_task_setscheduler(p, policy, param);
6321 if (retval)
6322 return retval;
6323 }
6324
6325 /*
6326 * make sure no PI-waiters arrive (or leave) while we are
6327 * changing the priority of the task:
6328 */
6329 raw_spin_lock_irqsave(&p->pi_lock, flags);
6330 /*
6331 * To be able to change p->policy safely, the apropriate
6332 * runqueue lock must be held.
6333 */
6334 rq = __task_rq_lock(p);
6335 /* recheck policy now with rq lock held */
6336 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6337 policy = oldpolicy = -1;
6338 __task_rq_unlock(rq);
6339 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6340 goto recheck;
6341 }
6342 update_rq_clock(rq);
6343 on_rq = p->se.on_rq;
6344 running = task_current(rq, p);
6345 if (on_rq)
6346 deactivate_task(rq, p, 0);
6347 if (running)
6348 p->sched_class->put_prev_task(rq, p);
6349
6350 p->sched_reset_on_fork = reset_on_fork;
6351
6352 oldprio = p->prio;
6353 __setscheduler(rq, p, policy, param->sched_priority);
6354
6355 if (running)
6356 p->sched_class->set_curr_task(rq);
6357 if (on_rq) {
6358 activate_task(rq, p, 0);
6359
6360 check_class_changed(rq, p, prev_class, oldprio, running);
6361 }
6362 __task_rq_unlock(rq);
6363 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6364
6365 rt_mutex_adjust_pi(p);
6366
6367 return 0;
6368 }
6369
6370 /**
6371 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6372 * @p: the task in question.
6373 * @policy: new policy.
6374 * @param: structure containing the new RT priority.
6375 *
6376 * NOTE that the task may be already dead.
6377 */
6378 int sched_setscheduler(struct task_struct *p, int policy,
6379 struct sched_param *param)
6380 {
6381 return __sched_setscheduler(p, policy, param, true);
6382 }
6383 EXPORT_SYMBOL_GPL(sched_setscheduler);
6384
6385 /**
6386 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6387 * @p: the task in question.
6388 * @policy: new policy.
6389 * @param: structure containing the new RT priority.
6390 *
6391 * Just like sched_setscheduler, only don't bother checking if the
6392 * current context has permission. For example, this is needed in
6393 * stop_machine(): we create temporary high priority worker threads,
6394 * but our caller might not have that capability.
6395 */
6396 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6397 struct sched_param *param)
6398 {
6399 return __sched_setscheduler(p, policy, param, false);
6400 }
6401
6402 static int
6403 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6404 {
6405 struct sched_param lparam;
6406 struct task_struct *p;
6407 int retval;
6408
6409 if (!param || pid < 0)
6410 return -EINVAL;
6411 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6412 return -EFAULT;
6413
6414 rcu_read_lock();
6415 retval = -ESRCH;
6416 p = find_process_by_pid(pid);
6417 if (p != NULL)
6418 retval = sched_setscheduler(p, policy, &lparam);
6419 rcu_read_unlock();
6420
6421 return retval;
6422 }
6423
6424 /**
6425 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6426 * @pid: the pid in question.
6427 * @policy: new policy.
6428 * @param: structure containing the new RT priority.
6429 */
6430 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6431 struct sched_param __user *, param)
6432 {
6433 /* negative values for policy are not valid */
6434 if (policy < 0)
6435 return -EINVAL;
6436
6437 return do_sched_setscheduler(pid, policy, param);
6438 }
6439
6440 /**
6441 * sys_sched_setparam - set/change the RT priority of a thread
6442 * @pid: the pid in question.
6443 * @param: structure containing the new RT priority.
6444 */
6445 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6446 {
6447 return do_sched_setscheduler(pid, -1, param);
6448 }
6449
6450 /**
6451 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6452 * @pid: the pid in question.
6453 */
6454 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6455 {
6456 struct task_struct *p;
6457 int retval;
6458
6459 if (pid < 0)
6460 return -EINVAL;
6461
6462 retval = -ESRCH;
6463 rcu_read_lock();
6464 p = find_process_by_pid(pid);
6465 if (p) {
6466 retval = security_task_getscheduler(p);
6467 if (!retval)
6468 retval = p->policy
6469 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6470 }
6471 rcu_read_unlock();
6472 return retval;
6473 }
6474
6475 /**
6476 * sys_sched_getparam - get the RT priority of a thread
6477 * @pid: the pid in question.
6478 * @param: structure containing the RT priority.
6479 */
6480 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6481 {
6482 struct sched_param lp;
6483 struct task_struct *p;
6484 int retval;
6485
6486 if (!param || pid < 0)
6487 return -EINVAL;
6488
6489 rcu_read_lock();
6490 p = find_process_by_pid(pid);
6491 retval = -ESRCH;
6492 if (!p)
6493 goto out_unlock;
6494
6495 retval = security_task_getscheduler(p);
6496 if (retval)
6497 goto out_unlock;
6498
6499 lp.sched_priority = p->rt_priority;
6500 rcu_read_unlock();
6501
6502 /*
6503 * This one might sleep, we cannot do it with a spinlock held ...
6504 */
6505 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6506
6507 return retval;
6508
6509 out_unlock:
6510 rcu_read_unlock();
6511 return retval;
6512 }
6513
6514 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6515 {
6516 cpumask_var_t cpus_allowed, new_mask;
6517 struct task_struct *p;
6518 int retval;
6519
6520 get_online_cpus();
6521 rcu_read_lock();
6522
6523 p = find_process_by_pid(pid);
6524 if (!p) {
6525 rcu_read_unlock();
6526 put_online_cpus();
6527 return -ESRCH;
6528 }
6529
6530 /* Prevent p going away */
6531 get_task_struct(p);
6532 rcu_read_unlock();
6533
6534 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6535 retval = -ENOMEM;
6536 goto out_put_task;
6537 }
6538 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6539 retval = -ENOMEM;
6540 goto out_free_cpus_allowed;
6541 }
6542 retval = -EPERM;
6543 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6544 goto out_unlock;
6545
6546 retval = security_task_setscheduler(p, 0, NULL);
6547 if (retval)
6548 goto out_unlock;
6549
6550 cpuset_cpus_allowed(p, cpus_allowed);
6551 cpumask_and(new_mask, in_mask, cpus_allowed);
6552 again:
6553 retval = set_cpus_allowed_ptr(p, new_mask);
6554
6555 if (!retval) {
6556 cpuset_cpus_allowed(p, cpus_allowed);
6557 if (!cpumask_subset(new_mask, cpus_allowed)) {
6558 /*
6559 * We must have raced with a concurrent cpuset
6560 * update. Just reset the cpus_allowed to the
6561 * cpuset's cpus_allowed
6562 */
6563 cpumask_copy(new_mask, cpus_allowed);
6564 goto again;
6565 }
6566 }
6567 out_unlock:
6568 free_cpumask_var(new_mask);
6569 out_free_cpus_allowed:
6570 free_cpumask_var(cpus_allowed);
6571 out_put_task:
6572 put_task_struct(p);
6573 put_online_cpus();
6574 return retval;
6575 }
6576
6577 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6578 struct cpumask *new_mask)
6579 {
6580 if (len < cpumask_size())
6581 cpumask_clear(new_mask);
6582 else if (len > cpumask_size())
6583 len = cpumask_size();
6584
6585 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6586 }
6587
6588 /**
6589 * sys_sched_setaffinity - set the cpu affinity of a process
6590 * @pid: pid of the process
6591 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6592 * @user_mask_ptr: user-space pointer to the new cpu mask
6593 */
6594 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6595 unsigned long __user *, user_mask_ptr)
6596 {
6597 cpumask_var_t new_mask;
6598 int retval;
6599
6600 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6601 return -ENOMEM;
6602
6603 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6604 if (retval == 0)
6605 retval = sched_setaffinity(pid, new_mask);
6606 free_cpumask_var(new_mask);
6607 return retval;
6608 }
6609
6610 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6611 {
6612 struct task_struct *p;
6613 unsigned long flags;
6614 struct rq *rq;
6615 int retval;
6616
6617 get_online_cpus();
6618 rcu_read_lock();
6619
6620 retval = -ESRCH;
6621 p = find_process_by_pid(pid);
6622 if (!p)
6623 goto out_unlock;
6624
6625 retval = security_task_getscheduler(p);
6626 if (retval)
6627 goto out_unlock;
6628
6629 rq = task_rq_lock(p, &flags);
6630 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6631 task_rq_unlock(rq, &flags);
6632
6633 out_unlock:
6634 rcu_read_unlock();
6635 put_online_cpus();
6636
6637 return retval;
6638 }
6639
6640 /**
6641 * sys_sched_getaffinity - get the cpu affinity of a process
6642 * @pid: pid of the process
6643 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6644 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6645 */
6646 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6647 unsigned long __user *, user_mask_ptr)
6648 {
6649 int ret;
6650 cpumask_var_t mask;
6651
6652 if (len < cpumask_size())
6653 return -EINVAL;
6654
6655 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6656 return -ENOMEM;
6657
6658 ret = sched_getaffinity(pid, mask);
6659 if (ret == 0) {
6660 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6661 ret = -EFAULT;
6662 else
6663 ret = cpumask_size();
6664 }
6665 free_cpumask_var(mask);
6666
6667 return ret;
6668 }
6669
6670 /**
6671 * sys_sched_yield - yield the current processor to other threads.
6672 *
6673 * This function yields the current CPU to other tasks. If there are no
6674 * other threads running on this CPU then this function will return.
6675 */
6676 SYSCALL_DEFINE0(sched_yield)
6677 {
6678 struct rq *rq = this_rq_lock();
6679
6680 schedstat_inc(rq, yld_count);
6681 current->sched_class->yield_task(rq);
6682
6683 /*
6684 * Since we are going to call schedule() anyway, there's
6685 * no need to preempt or enable interrupts:
6686 */
6687 __release(rq->lock);
6688 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6689 do_raw_spin_unlock(&rq->lock);
6690 preempt_enable_no_resched();
6691
6692 schedule();
6693
6694 return 0;
6695 }
6696
6697 static inline int should_resched(void)
6698 {
6699 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6700 }
6701
6702 static void __cond_resched(void)
6703 {
6704 add_preempt_count(PREEMPT_ACTIVE);
6705 schedule();
6706 sub_preempt_count(PREEMPT_ACTIVE);
6707 }
6708
6709 int __sched _cond_resched(void)
6710 {
6711 if (should_resched()) {
6712 __cond_resched();
6713 return 1;
6714 }
6715 return 0;
6716 }
6717 EXPORT_SYMBOL(_cond_resched);
6718
6719 /*
6720 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6721 * call schedule, and on return reacquire the lock.
6722 *
6723 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6724 * operations here to prevent schedule() from being called twice (once via
6725 * spin_unlock(), once by hand).
6726 */
6727 int __cond_resched_lock(spinlock_t *lock)
6728 {
6729 int resched = should_resched();
6730 int ret = 0;
6731
6732 lockdep_assert_held(lock);
6733
6734 if (spin_needbreak(lock) || resched) {
6735 spin_unlock(lock);
6736 if (resched)
6737 __cond_resched();
6738 else
6739 cpu_relax();
6740 ret = 1;
6741 spin_lock(lock);
6742 }
6743 return ret;
6744 }
6745 EXPORT_SYMBOL(__cond_resched_lock);
6746
6747 int __sched __cond_resched_softirq(void)
6748 {
6749 BUG_ON(!in_softirq());
6750
6751 if (should_resched()) {
6752 local_bh_enable();
6753 __cond_resched();
6754 local_bh_disable();
6755 return 1;
6756 }
6757 return 0;
6758 }
6759 EXPORT_SYMBOL(__cond_resched_softirq);
6760
6761 /**
6762 * yield - yield the current processor to other threads.
6763 *
6764 * This is a shortcut for kernel-space yielding - it marks the
6765 * thread runnable and calls sys_sched_yield().
6766 */
6767 void __sched yield(void)
6768 {
6769 set_current_state(TASK_RUNNING);
6770 sys_sched_yield();
6771 }
6772 EXPORT_SYMBOL(yield);
6773
6774 /*
6775 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6776 * that process accounting knows that this is a task in IO wait state.
6777 */
6778 void __sched io_schedule(void)
6779 {
6780 struct rq *rq = raw_rq();
6781
6782 delayacct_blkio_start();
6783 atomic_inc(&rq->nr_iowait);
6784 current->in_iowait = 1;
6785 schedule();
6786 current->in_iowait = 0;
6787 atomic_dec(&rq->nr_iowait);
6788 delayacct_blkio_end();
6789 }
6790 EXPORT_SYMBOL(io_schedule);
6791
6792 long __sched io_schedule_timeout(long timeout)
6793 {
6794 struct rq *rq = raw_rq();
6795 long ret;
6796
6797 delayacct_blkio_start();
6798 atomic_inc(&rq->nr_iowait);
6799 current->in_iowait = 1;
6800 ret = schedule_timeout(timeout);
6801 current->in_iowait = 0;
6802 atomic_dec(&rq->nr_iowait);
6803 delayacct_blkio_end();
6804 return ret;
6805 }
6806
6807 /**
6808 * sys_sched_get_priority_max - return maximum RT priority.
6809 * @policy: scheduling class.
6810 *
6811 * this syscall returns the maximum rt_priority that can be used
6812 * by a given scheduling class.
6813 */
6814 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6815 {
6816 int ret = -EINVAL;
6817
6818 switch (policy) {
6819 case SCHED_FIFO:
6820 case SCHED_RR:
6821 ret = MAX_USER_RT_PRIO-1;
6822 break;
6823 case SCHED_NORMAL:
6824 case SCHED_BATCH:
6825 case SCHED_IDLE:
6826 ret = 0;
6827 break;
6828 }
6829 return ret;
6830 }
6831
6832 /**
6833 * sys_sched_get_priority_min - return minimum RT priority.
6834 * @policy: scheduling class.
6835 *
6836 * this syscall returns the minimum rt_priority that can be used
6837 * by a given scheduling class.
6838 */
6839 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6840 {
6841 int ret = -EINVAL;
6842
6843 switch (policy) {
6844 case SCHED_FIFO:
6845 case SCHED_RR:
6846 ret = 1;
6847 break;
6848 case SCHED_NORMAL:
6849 case SCHED_BATCH:
6850 case SCHED_IDLE:
6851 ret = 0;
6852 }
6853 return ret;
6854 }
6855
6856 /**
6857 * sys_sched_rr_get_interval - return the default timeslice of a process.
6858 * @pid: pid of the process.
6859 * @interval: userspace pointer to the timeslice value.
6860 *
6861 * this syscall writes the default timeslice value of a given process
6862 * into the user-space timespec buffer. A value of '0' means infinity.
6863 */
6864 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6865 struct timespec __user *, interval)
6866 {
6867 struct task_struct *p;
6868 unsigned int time_slice;
6869 unsigned long flags;
6870 struct rq *rq;
6871 int retval;
6872 struct timespec t;
6873
6874 if (pid < 0)
6875 return -EINVAL;
6876
6877 retval = -ESRCH;
6878 rcu_read_lock();
6879 p = find_process_by_pid(pid);
6880 if (!p)
6881 goto out_unlock;
6882
6883 retval = security_task_getscheduler(p);
6884 if (retval)
6885 goto out_unlock;
6886
6887 rq = task_rq_lock(p, &flags);
6888 time_slice = p->sched_class->get_rr_interval(rq, p);
6889 task_rq_unlock(rq, &flags);
6890
6891 rcu_read_unlock();
6892 jiffies_to_timespec(time_slice, &t);
6893 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6894 return retval;
6895
6896 out_unlock:
6897 rcu_read_unlock();
6898 return retval;
6899 }
6900
6901 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6902
6903 void sched_show_task(struct task_struct *p)
6904 {
6905 unsigned long free = 0;
6906 unsigned state;
6907
6908 state = p->state ? __ffs(p->state) + 1 : 0;
6909 pr_info("%-13.13s %c", p->comm,
6910 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6911 #if BITS_PER_LONG == 32
6912 if (state == TASK_RUNNING)
6913 pr_cont(" running ");
6914 else
6915 pr_cont(" %08lx ", thread_saved_pc(p));
6916 #else
6917 if (state == TASK_RUNNING)
6918 pr_cont(" running task ");
6919 else
6920 pr_cont(" %016lx ", thread_saved_pc(p));
6921 #endif
6922 #ifdef CONFIG_DEBUG_STACK_USAGE
6923 free = stack_not_used(p);
6924 #endif
6925 pr_cont("%5lu %5d %6d 0x%08lx\n", free,
6926 task_pid_nr(p), task_pid_nr(p->real_parent),
6927 (unsigned long)task_thread_info(p)->flags);
6928
6929 show_stack(p, NULL);
6930 }
6931
6932 void show_state_filter(unsigned long state_filter)
6933 {
6934 struct task_struct *g, *p;
6935
6936 #if BITS_PER_LONG == 32
6937 pr_info(" task PC stack pid father\n");
6938 #else
6939 pr_info(" task PC stack pid father\n");
6940 #endif
6941 read_lock(&tasklist_lock);
6942 do_each_thread(g, p) {
6943 /*
6944 * reset the NMI-timeout, listing all files on a slow
6945 * console might take alot of time:
6946 */
6947 touch_nmi_watchdog();
6948 if (!state_filter || (p->state & state_filter))
6949 sched_show_task(p);
6950 } while_each_thread(g, p);
6951
6952 touch_all_softlockup_watchdogs();
6953
6954 #ifdef CONFIG_SCHED_DEBUG
6955 sysrq_sched_debug_show();
6956 #endif
6957 read_unlock(&tasklist_lock);
6958 /*
6959 * Only show locks if all tasks are dumped:
6960 */
6961 if (!state_filter)
6962 debug_show_all_locks();
6963 }
6964
6965 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6966 {
6967 idle->sched_class = &idle_sched_class;
6968 }
6969
6970 /**
6971 * init_idle - set up an idle thread for a given CPU
6972 * @idle: task in question
6973 * @cpu: cpu the idle task belongs to
6974 *
6975 * NOTE: this function does not set the idle thread's NEED_RESCHED
6976 * flag, to make booting more robust.
6977 */
6978 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6979 {
6980 struct rq *rq = cpu_rq(cpu);
6981 unsigned long flags;
6982
6983 raw_spin_lock_irqsave(&rq->lock, flags);
6984
6985 __sched_fork(idle);
6986 idle->state = TASK_RUNNING;
6987 idle->se.exec_start = sched_clock();
6988
6989 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6990 __set_task_cpu(idle, cpu);
6991
6992 rq->curr = rq->idle = idle;
6993 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6994 idle->oncpu = 1;
6995 #endif
6996 raw_spin_unlock_irqrestore(&rq->lock, flags);
6997
6998 /* Set the preempt count _outside_ the spinlocks! */
6999 #if defined(CONFIG_PREEMPT)
7000 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7001 #else
7002 task_thread_info(idle)->preempt_count = 0;
7003 #endif
7004 /*
7005 * The idle tasks have their own, simple scheduling class:
7006 */
7007 idle->sched_class = &idle_sched_class;
7008 ftrace_graph_init_task(idle);
7009 }
7010
7011 /*
7012 * In a system that switches off the HZ timer nohz_cpu_mask
7013 * indicates which cpus entered this state. This is used
7014 * in the rcu update to wait only for active cpus. For system
7015 * which do not switch off the HZ timer nohz_cpu_mask should
7016 * always be CPU_BITS_NONE.
7017 */
7018 cpumask_var_t nohz_cpu_mask;
7019
7020 /*
7021 * Increase the granularity value when there are more CPUs,
7022 * because with more CPUs the 'effective latency' as visible
7023 * to users decreases. But the relationship is not linear,
7024 * so pick a second-best guess by going with the log2 of the
7025 * number of CPUs.
7026 *
7027 * This idea comes from the SD scheduler of Con Kolivas:
7028 */
7029 static int get_update_sysctl_factor(void)
7030 {
7031 unsigned int cpus = min_t(int, num_online_cpus(), 8);
7032 unsigned int factor;
7033
7034 switch (sysctl_sched_tunable_scaling) {
7035 case SCHED_TUNABLESCALING_NONE:
7036 factor = 1;
7037 break;
7038 case SCHED_TUNABLESCALING_LINEAR:
7039 factor = cpus;
7040 break;
7041 case SCHED_TUNABLESCALING_LOG:
7042 default:
7043 factor = 1 + ilog2(cpus);
7044 break;
7045 }
7046
7047 return factor;
7048 }
7049
7050 static void update_sysctl(void)
7051 {
7052 unsigned int factor = get_update_sysctl_factor();
7053
7054 #define SET_SYSCTL(name) \
7055 (sysctl_##name = (factor) * normalized_sysctl_##name)
7056 SET_SYSCTL(sched_min_granularity);
7057 SET_SYSCTL(sched_latency);
7058 SET_SYSCTL(sched_wakeup_granularity);
7059 SET_SYSCTL(sched_shares_ratelimit);
7060 #undef SET_SYSCTL
7061 }
7062
7063 static inline void sched_init_granularity(void)
7064 {
7065 update_sysctl();
7066 }
7067
7068 #ifdef CONFIG_SMP
7069 /*
7070 * This is how migration works:
7071 *
7072 * 1) we queue a struct migration_req structure in the source CPU's
7073 * runqueue and wake up that CPU's migration thread.
7074 * 2) we down() the locked semaphore => thread blocks.
7075 * 3) migration thread wakes up (implicitly it forces the migrated
7076 * thread off the CPU)
7077 * 4) it gets the migration request and checks whether the migrated
7078 * task is still in the wrong runqueue.
7079 * 5) if it's in the wrong runqueue then the migration thread removes
7080 * it and puts it into the right queue.
7081 * 6) migration thread up()s the semaphore.
7082 * 7) we wake up and the migration is done.
7083 */
7084
7085 /*
7086 * Change a given task's CPU affinity. Migrate the thread to a
7087 * proper CPU and schedule it away if the CPU it's executing on
7088 * is removed from the allowed bitmask.
7089 *
7090 * NOTE: the caller must have a valid reference to the task, the
7091 * task must not exit() & deallocate itself prematurely. The
7092 * call is not atomic; no spinlocks may be held.
7093 */
7094 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7095 {
7096 struct migration_req req;
7097 unsigned long flags;
7098 struct rq *rq;
7099 int ret = 0;
7100
7101 rq = task_rq_lock(p, &flags);
7102 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7103 ret = -EINVAL;
7104 goto out;
7105 }
7106
7107 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7108 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7109 ret = -EINVAL;
7110 goto out;
7111 }
7112
7113 if (p->sched_class->set_cpus_allowed)
7114 p->sched_class->set_cpus_allowed(p, new_mask);
7115 else {
7116 cpumask_copy(&p->cpus_allowed, new_mask);
7117 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7118 }
7119
7120 /* Can the task run on the task's current CPU? If so, we're done */
7121 if (cpumask_test_cpu(task_cpu(p), new_mask))
7122 goto out;
7123
7124 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7125 /* Need help from migration thread: drop lock and wait. */
7126 struct task_struct *mt = rq->migration_thread;
7127
7128 get_task_struct(mt);
7129 task_rq_unlock(rq, &flags);
7130 wake_up_process(rq->migration_thread);
7131 put_task_struct(mt);
7132 wait_for_completion(&req.done);
7133 tlb_migrate_finish(p->mm);
7134 return 0;
7135 }
7136 out:
7137 task_rq_unlock(rq, &flags);
7138
7139 return ret;
7140 }
7141 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7142
7143 /*
7144 * Move (not current) task off this cpu, onto dest cpu. We're doing
7145 * this because either it can't run here any more (set_cpus_allowed()
7146 * away from this CPU, or CPU going down), or because we're
7147 * attempting to rebalance this task on exec (sched_exec).
7148 *
7149 * So we race with normal scheduler movements, but that's OK, as long
7150 * as the task is no longer on this CPU.
7151 *
7152 * Returns non-zero if task was successfully migrated.
7153 */
7154 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7155 {
7156 struct rq *rq_dest, *rq_src;
7157 int ret = 0, on_rq;
7158
7159 if (unlikely(!cpu_active(dest_cpu)))
7160 return ret;
7161
7162 rq_src = cpu_rq(src_cpu);
7163 rq_dest = cpu_rq(dest_cpu);
7164
7165 double_rq_lock(rq_src, rq_dest);
7166 /* Already moved. */
7167 if (task_cpu(p) != src_cpu)
7168 goto done;
7169 /* Affinity changed (again). */
7170 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7171 goto fail;
7172
7173 on_rq = p->se.on_rq;
7174 if (on_rq)
7175 deactivate_task(rq_src, p, 0);
7176
7177 set_task_cpu(p, dest_cpu);
7178 if (on_rq) {
7179 activate_task(rq_dest, p, 0);
7180 check_preempt_curr(rq_dest, p, 0);
7181 }
7182 done:
7183 ret = 1;
7184 fail:
7185 double_rq_unlock(rq_src, rq_dest);
7186 return ret;
7187 }
7188
7189 #define RCU_MIGRATION_IDLE 0
7190 #define RCU_MIGRATION_NEED_QS 1
7191 #define RCU_MIGRATION_GOT_QS 2
7192 #define RCU_MIGRATION_MUST_SYNC 3
7193
7194 /*
7195 * migration_thread - this is a highprio system thread that performs
7196 * thread migration by bumping thread off CPU then 'pushing' onto
7197 * another runqueue.
7198 */
7199 static int migration_thread(void *data)
7200 {
7201 int badcpu;
7202 int cpu = (long)data;
7203 struct rq *rq;
7204
7205 rq = cpu_rq(cpu);
7206 BUG_ON(rq->migration_thread != current);
7207
7208 set_current_state(TASK_INTERRUPTIBLE);
7209 while (!kthread_should_stop()) {
7210 struct migration_req *req;
7211 struct list_head *head;
7212
7213 raw_spin_lock_irq(&rq->lock);
7214
7215 if (cpu_is_offline(cpu)) {
7216 raw_spin_unlock_irq(&rq->lock);
7217 break;
7218 }
7219
7220 if (rq->active_balance) {
7221 active_load_balance(rq, cpu);
7222 rq->active_balance = 0;
7223 }
7224
7225 head = &rq->migration_queue;
7226
7227 if (list_empty(head)) {
7228 raw_spin_unlock_irq(&rq->lock);
7229 schedule();
7230 set_current_state(TASK_INTERRUPTIBLE);
7231 continue;
7232 }
7233 req = list_entry(head->next, struct migration_req, list);
7234 list_del_init(head->next);
7235
7236 if (req->task != NULL) {
7237 raw_spin_unlock(&rq->lock);
7238 __migrate_task(req->task, cpu, req->dest_cpu);
7239 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7240 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7241 raw_spin_unlock(&rq->lock);
7242 } else {
7243 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7244 raw_spin_unlock(&rq->lock);
7245 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7246 }
7247 local_irq_enable();
7248
7249 complete(&req->done);
7250 }
7251 __set_current_state(TASK_RUNNING);
7252
7253 return 0;
7254 }
7255
7256 #ifdef CONFIG_HOTPLUG_CPU
7257
7258 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7259 {
7260 int ret;
7261
7262 local_irq_disable();
7263 ret = __migrate_task(p, src_cpu, dest_cpu);
7264 local_irq_enable();
7265 return ret;
7266 }
7267
7268 /*
7269 * Figure out where task on dead CPU should go, use force if necessary.
7270 */
7271 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7272 {
7273 int dest_cpu;
7274 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7275
7276 again:
7277 /* Look for allowed, online CPU in same node. */
7278 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7279 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7280 goto move;
7281
7282 /* Any allowed, online CPU? */
7283 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7284 if (dest_cpu < nr_cpu_ids)
7285 goto move;
7286
7287 /* No more Mr. Nice Guy. */
7288 if (dest_cpu >= nr_cpu_ids) {
7289 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7290 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
7291
7292 /*
7293 * Don't tell them about moving exiting tasks or
7294 * kernel threads (both mm NULL), since they never
7295 * leave kernel.
7296 */
7297 if (p->mm && printk_ratelimit()) {
7298 pr_info("process %d (%s) no longer affine to cpu%d\n",
7299 task_pid_nr(p), p->comm, dead_cpu);
7300 }
7301 }
7302
7303 move:
7304 /* It can have affinity changed while we were choosing. */
7305 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7306 goto again;
7307 }
7308
7309 /*
7310 * While a dead CPU has no uninterruptible tasks queued at this point,
7311 * it might still have a nonzero ->nr_uninterruptible counter, because
7312 * for performance reasons the counter is not stricly tracking tasks to
7313 * their home CPUs. So we just add the counter to another CPU's counter,
7314 * to keep the global sum constant after CPU-down:
7315 */
7316 static void migrate_nr_uninterruptible(struct rq *rq_src)
7317 {
7318 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7319 unsigned long flags;
7320
7321 local_irq_save(flags);
7322 double_rq_lock(rq_src, rq_dest);
7323 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7324 rq_src->nr_uninterruptible = 0;
7325 double_rq_unlock(rq_src, rq_dest);
7326 local_irq_restore(flags);
7327 }
7328
7329 /* Run through task list and migrate tasks from the dead cpu. */
7330 static void migrate_live_tasks(int src_cpu)
7331 {
7332 struct task_struct *p, *t;
7333
7334 read_lock(&tasklist_lock);
7335
7336 do_each_thread(t, p) {
7337 if (p == current)
7338 continue;
7339
7340 if (task_cpu(p) == src_cpu)
7341 move_task_off_dead_cpu(src_cpu, p);
7342 } while_each_thread(t, p);
7343
7344 read_unlock(&tasklist_lock);
7345 }
7346
7347 /*
7348 * Schedules idle task to be the next runnable task on current CPU.
7349 * It does so by boosting its priority to highest possible.
7350 * Used by CPU offline code.
7351 */
7352 void sched_idle_next(void)
7353 {
7354 int this_cpu = smp_processor_id();
7355 struct rq *rq = cpu_rq(this_cpu);
7356 struct task_struct *p = rq->idle;
7357 unsigned long flags;
7358
7359 /* cpu has to be offline */
7360 BUG_ON(cpu_online(this_cpu));
7361
7362 /*
7363 * Strictly not necessary since rest of the CPUs are stopped by now
7364 * and interrupts disabled on the current cpu.
7365 */
7366 raw_spin_lock_irqsave(&rq->lock, flags);
7367
7368 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7369
7370 update_rq_clock(rq);
7371 activate_task(rq, p, 0);
7372
7373 raw_spin_unlock_irqrestore(&rq->lock, flags);
7374 }
7375
7376 /*
7377 * Ensures that the idle task is using init_mm right before its cpu goes
7378 * offline.
7379 */
7380 void idle_task_exit(void)
7381 {
7382 struct mm_struct *mm = current->active_mm;
7383
7384 BUG_ON(cpu_online(smp_processor_id()));
7385
7386 if (mm != &init_mm)
7387 switch_mm(mm, &init_mm, current);
7388 mmdrop(mm);
7389 }
7390
7391 /* called under rq->lock with disabled interrupts */
7392 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7393 {
7394 struct rq *rq = cpu_rq(dead_cpu);
7395
7396 /* Must be exiting, otherwise would be on tasklist. */
7397 BUG_ON(!p->exit_state);
7398
7399 /* Cannot have done final schedule yet: would have vanished. */
7400 BUG_ON(p->state == TASK_DEAD);
7401
7402 get_task_struct(p);
7403
7404 /*
7405 * Drop lock around migration; if someone else moves it,
7406 * that's OK. No task can be added to this CPU, so iteration is
7407 * fine.
7408 */
7409 raw_spin_unlock_irq(&rq->lock);
7410 move_task_off_dead_cpu(dead_cpu, p);
7411 raw_spin_lock_irq(&rq->lock);
7412
7413 put_task_struct(p);
7414 }
7415
7416 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7417 static void migrate_dead_tasks(unsigned int dead_cpu)
7418 {
7419 struct rq *rq = cpu_rq(dead_cpu);
7420 struct task_struct *next;
7421
7422 for ( ; ; ) {
7423 if (!rq->nr_running)
7424 break;
7425 update_rq_clock(rq);
7426 next = pick_next_task(rq);
7427 if (!next)
7428 break;
7429 next->sched_class->put_prev_task(rq, next);
7430 migrate_dead(dead_cpu, next);
7431
7432 }
7433 }
7434
7435 /*
7436 * remove the tasks which were accounted by rq from calc_load_tasks.
7437 */
7438 static void calc_global_load_remove(struct rq *rq)
7439 {
7440 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7441 rq->calc_load_active = 0;
7442 }
7443 #endif /* CONFIG_HOTPLUG_CPU */
7444
7445 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7446
7447 static struct ctl_table sd_ctl_dir[] = {
7448 {
7449 .procname = "sched_domain",
7450 .mode = 0555,
7451 },
7452 {}
7453 };
7454
7455 static struct ctl_table sd_ctl_root[] = {
7456 {
7457 .procname = "kernel",
7458 .mode = 0555,
7459 .child = sd_ctl_dir,
7460 },
7461 {}
7462 };
7463
7464 static struct ctl_table *sd_alloc_ctl_entry(int n)
7465 {
7466 struct ctl_table *entry =
7467 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7468
7469 return entry;
7470 }
7471
7472 static void sd_free_ctl_entry(struct ctl_table **tablep)
7473 {
7474 struct ctl_table *entry;
7475
7476 /*
7477 * In the intermediate directories, both the child directory and
7478 * procname are dynamically allocated and could fail but the mode
7479 * will always be set. In the lowest directory the names are
7480 * static strings and all have proc handlers.
7481 */
7482 for (entry = *tablep; entry->mode; entry++) {
7483 if (entry->child)
7484 sd_free_ctl_entry(&entry->child);
7485 if (entry->proc_handler == NULL)
7486 kfree(entry->procname);
7487 }
7488
7489 kfree(*tablep);
7490 *tablep = NULL;
7491 }
7492
7493 static void
7494 set_table_entry(struct ctl_table *entry,
7495 const char *procname, void *data, int maxlen,
7496 mode_t mode, proc_handler *proc_handler)
7497 {
7498 entry->procname = procname;
7499 entry->data = data;
7500 entry->maxlen = maxlen;
7501 entry->mode = mode;
7502 entry->proc_handler = proc_handler;
7503 }
7504
7505 static struct ctl_table *
7506 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7507 {
7508 struct ctl_table *table = sd_alloc_ctl_entry(13);
7509
7510 if (table == NULL)
7511 return NULL;
7512
7513 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7514 sizeof(long), 0644, proc_doulongvec_minmax);
7515 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7516 sizeof(long), 0644, proc_doulongvec_minmax);
7517 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7518 sizeof(int), 0644, proc_dointvec_minmax);
7519 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7520 sizeof(int), 0644, proc_dointvec_minmax);
7521 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7522 sizeof(int), 0644, proc_dointvec_minmax);
7523 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7524 sizeof(int), 0644, proc_dointvec_minmax);
7525 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7526 sizeof(int), 0644, proc_dointvec_minmax);
7527 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7528 sizeof(int), 0644, proc_dointvec_minmax);
7529 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7530 sizeof(int), 0644, proc_dointvec_minmax);
7531 set_table_entry(&table[9], "cache_nice_tries",
7532 &sd->cache_nice_tries,
7533 sizeof(int), 0644, proc_dointvec_minmax);
7534 set_table_entry(&table[10], "flags", &sd->flags,
7535 sizeof(int), 0644, proc_dointvec_minmax);
7536 set_table_entry(&table[11], "name", sd->name,
7537 CORENAME_MAX_SIZE, 0444, proc_dostring);
7538 /* &table[12] is terminator */
7539
7540 return table;
7541 }
7542
7543 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7544 {
7545 struct ctl_table *entry, *table;
7546 struct sched_domain *sd;
7547 int domain_num = 0, i;
7548 char buf[32];
7549
7550 for_each_domain(cpu, sd)
7551 domain_num++;
7552 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7553 if (table == NULL)
7554 return NULL;
7555
7556 i = 0;
7557 for_each_domain(cpu, sd) {
7558 snprintf(buf, 32, "domain%d", i);
7559 entry->procname = kstrdup(buf, GFP_KERNEL);
7560 entry->mode = 0555;
7561 entry->child = sd_alloc_ctl_domain_table(sd);
7562 entry++;
7563 i++;
7564 }
7565 return table;
7566 }
7567
7568 static struct ctl_table_header *sd_sysctl_header;
7569 static void register_sched_domain_sysctl(void)
7570 {
7571 int i, cpu_num = num_possible_cpus();
7572 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7573 char buf[32];
7574
7575 WARN_ON(sd_ctl_dir[0].child);
7576 sd_ctl_dir[0].child = entry;
7577
7578 if (entry == NULL)
7579 return;
7580
7581 for_each_possible_cpu(i) {
7582 snprintf(buf, 32, "cpu%d", i);
7583 entry->procname = kstrdup(buf, GFP_KERNEL);
7584 entry->mode = 0555;
7585 entry->child = sd_alloc_ctl_cpu_table(i);
7586 entry++;
7587 }
7588
7589 WARN_ON(sd_sysctl_header);
7590 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7591 }
7592
7593 /* may be called multiple times per register */
7594 static void unregister_sched_domain_sysctl(void)
7595 {
7596 if (sd_sysctl_header)
7597 unregister_sysctl_table(sd_sysctl_header);
7598 sd_sysctl_header = NULL;
7599 if (sd_ctl_dir[0].child)
7600 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7601 }
7602 #else
7603 static void register_sched_domain_sysctl(void)
7604 {
7605 }
7606 static void unregister_sched_domain_sysctl(void)
7607 {
7608 }
7609 #endif
7610
7611 static void set_rq_online(struct rq *rq)
7612 {
7613 if (!rq->online) {
7614 const struct sched_class *class;
7615
7616 cpumask_set_cpu(rq->cpu, rq->rd->online);
7617 rq->online = 1;
7618
7619 for_each_class(class) {
7620 if (class->rq_online)
7621 class->rq_online(rq);
7622 }
7623 }
7624 }
7625
7626 static void set_rq_offline(struct rq *rq)
7627 {
7628 if (rq->online) {
7629 const struct sched_class *class;
7630
7631 for_each_class(class) {
7632 if (class->rq_offline)
7633 class->rq_offline(rq);
7634 }
7635
7636 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7637 rq->online = 0;
7638 }
7639 }
7640
7641 /*
7642 * migration_call - callback that gets triggered when a CPU is added.
7643 * Here we can start up the necessary migration thread for the new CPU.
7644 */
7645 static int __cpuinit
7646 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7647 {
7648 struct task_struct *p;
7649 int cpu = (long)hcpu;
7650 unsigned long flags;
7651 struct rq *rq;
7652
7653 switch (action) {
7654
7655 case CPU_UP_PREPARE:
7656 case CPU_UP_PREPARE_FROZEN:
7657 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7658 if (IS_ERR(p))
7659 return NOTIFY_BAD;
7660 kthread_bind(p, cpu);
7661 /* Must be high prio: stop_machine expects to yield to it. */
7662 rq = task_rq_lock(p, &flags);
7663 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7664 task_rq_unlock(rq, &flags);
7665 get_task_struct(p);
7666 cpu_rq(cpu)->migration_thread = p;
7667 rq->calc_load_update = calc_load_update;
7668 break;
7669
7670 case CPU_ONLINE:
7671 case CPU_ONLINE_FROZEN:
7672 /* Strictly unnecessary, as first user will wake it. */
7673 wake_up_process(cpu_rq(cpu)->migration_thread);
7674
7675 /* Update our root-domain */
7676 rq = cpu_rq(cpu);
7677 raw_spin_lock_irqsave(&rq->lock, flags);
7678 if (rq->rd) {
7679 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7680
7681 set_rq_online(rq);
7682 }
7683 raw_spin_unlock_irqrestore(&rq->lock, flags);
7684 break;
7685
7686 #ifdef CONFIG_HOTPLUG_CPU
7687 case CPU_UP_CANCELED:
7688 case CPU_UP_CANCELED_FROZEN:
7689 if (!cpu_rq(cpu)->migration_thread)
7690 break;
7691 /* Unbind it from offline cpu so it can run. Fall thru. */
7692 kthread_bind(cpu_rq(cpu)->migration_thread,
7693 cpumask_any(cpu_online_mask));
7694 kthread_stop(cpu_rq(cpu)->migration_thread);
7695 put_task_struct(cpu_rq(cpu)->migration_thread);
7696 cpu_rq(cpu)->migration_thread = NULL;
7697 break;
7698
7699 case CPU_DEAD:
7700 case CPU_DEAD_FROZEN:
7701 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7702 migrate_live_tasks(cpu);
7703 rq = cpu_rq(cpu);
7704 kthread_stop(rq->migration_thread);
7705 put_task_struct(rq->migration_thread);
7706 rq->migration_thread = NULL;
7707 /* Idle task back to normal (off runqueue, low prio) */
7708 raw_spin_lock_irq(&rq->lock);
7709 update_rq_clock(rq);
7710 deactivate_task(rq, rq->idle, 0);
7711 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7712 rq->idle->sched_class = &idle_sched_class;
7713 migrate_dead_tasks(cpu);
7714 raw_spin_unlock_irq(&rq->lock);
7715 cpuset_unlock();
7716 migrate_nr_uninterruptible(rq);
7717 BUG_ON(rq->nr_running != 0);
7718 calc_global_load_remove(rq);
7719 /*
7720 * No need to migrate the tasks: it was best-effort if
7721 * they didn't take sched_hotcpu_mutex. Just wake up
7722 * the requestors.
7723 */
7724 raw_spin_lock_irq(&rq->lock);
7725 while (!list_empty(&rq->migration_queue)) {
7726 struct migration_req *req;
7727
7728 req = list_entry(rq->migration_queue.next,
7729 struct migration_req, list);
7730 list_del_init(&req->list);
7731 raw_spin_unlock_irq(&rq->lock);
7732 complete(&req->done);
7733 raw_spin_lock_irq(&rq->lock);
7734 }
7735 raw_spin_unlock_irq(&rq->lock);
7736 break;
7737
7738 case CPU_DYING:
7739 case CPU_DYING_FROZEN:
7740 /* Update our root-domain */
7741 rq = cpu_rq(cpu);
7742 raw_spin_lock_irqsave(&rq->lock, flags);
7743 if (rq->rd) {
7744 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7745 set_rq_offline(rq);
7746 }
7747 raw_spin_unlock_irqrestore(&rq->lock, flags);
7748 break;
7749 #endif
7750 }
7751 return NOTIFY_OK;
7752 }
7753
7754 /*
7755 * Register at high priority so that task migration (migrate_all_tasks)
7756 * happens before everything else. This has to be lower priority than
7757 * the notifier in the perf_event subsystem, though.
7758 */
7759 static struct notifier_block __cpuinitdata migration_notifier = {
7760 .notifier_call = migration_call,
7761 .priority = 10
7762 };
7763
7764 static int __init migration_init(void)
7765 {
7766 void *cpu = (void *)(long)smp_processor_id();
7767 int err;
7768
7769 /* Start one for the boot CPU: */
7770 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7771 BUG_ON(err == NOTIFY_BAD);
7772 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7773 register_cpu_notifier(&migration_notifier);
7774
7775 return 0;
7776 }
7777 early_initcall(migration_init);
7778 #endif
7779
7780 #ifdef CONFIG_SMP
7781
7782 #ifdef CONFIG_SCHED_DEBUG
7783
7784 static __read_mostly int sched_domain_debug_enabled;
7785
7786 static int __init sched_domain_debug_setup(char *str)
7787 {
7788 sched_domain_debug_enabled = 1;
7789
7790 return 0;
7791 }
7792 early_param("sched_debug", sched_domain_debug_setup);
7793
7794 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7795 struct cpumask *groupmask)
7796 {
7797 struct sched_group *group = sd->groups;
7798 char str[256];
7799
7800 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7801 cpumask_clear(groupmask);
7802
7803 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7804
7805 if (!(sd->flags & SD_LOAD_BALANCE)) {
7806 pr_cont("does not load-balance\n");
7807 if (sd->parent)
7808 pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
7809 return -1;
7810 }
7811
7812 pr_cont("span %s level %s\n", str, sd->name);
7813
7814 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7815 pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
7816 }
7817 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7818 pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
7819 }
7820
7821 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7822 do {
7823 if (!group) {
7824 pr_cont("\n");
7825 pr_err("ERROR: group is NULL\n");
7826 break;
7827 }
7828
7829 if (!group->cpu_power) {
7830 pr_cont("\n");
7831 pr_err("ERROR: domain->cpu_power not set\n");
7832 break;
7833 }
7834
7835 if (!cpumask_weight(sched_group_cpus(group))) {
7836 pr_cont("\n");
7837 pr_err("ERROR: empty group\n");
7838 break;
7839 }
7840
7841 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7842 pr_cont("\n");
7843 pr_err("ERROR: repeated CPUs\n");
7844 break;
7845 }
7846
7847 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7848
7849 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7850
7851 pr_cont(" %s", str);
7852 if (group->cpu_power != SCHED_LOAD_SCALE) {
7853 pr_cont(" (cpu_power = %d)", group->cpu_power);
7854 }
7855
7856 group = group->next;
7857 } while (group != sd->groups);
7858 pr_cont("\n");
7859
7860 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7861 pr_err("ERROR: groups don't span domain->span\n");
7862
7863 if (sd->parent &&
7864 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7865 pr_err("ERROR: parent span is not a superset of domain->span\n");
7866 return 0;
7867 }
7868
7869 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7870 {
7871 cpumask_var_t groupmask;
7872 int level = 0;
7873
7874 if (!sched_domain_debug_enabled)
7875 return;
7876
7877 if (!sd) {
7878 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7879 return;
7880 }
7881
7882 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7883
7884 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7885 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7886 return;
7887 }
7888
7889 for (;;) {
7890 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7891 break;
7892 level++;
7893 sd = sd->parent;
7894 if (!sd)
7895 break;
7896 }
7897 free_cpumask_var(groupmask);
7898 }
7899 #else /* !CONFIG_SCHED_DEBUG */
7900 # define sched_domain_debug(sd, cpu) do { } while (0)
7901 #endif /* CONFIG_SCHED_DEBUG */
7902
7903 static int sd_degenerate(struct sched_domain *sd)
7904 {
7905 if (cpumask_weight(sched_domain_span(sd)) == 1)
7906 return 1;
7907
7908 /* Following flags need at least 2 groups */
7909 if (sd->flags & (SD_LOAD_BALANCE |
7910 SD_BALANCE_NEWIDLE |
7911 SD_BALANCE_FORK |
7912 SD_BALANCE_EXEC |
7913 SD_SHARE_CPUPOWER |
7914 SD_SHARE_PKG_RESOURCES)) {
7915 if (sd->groups != sd->groups->next)
7916 return 0;
7917 }
7918
7919 /* Following flags don't use groups */
7920 if (sd->flags & (SD_WAKE_AFFINE))
7921 return 0;
7922
7923 return 1;
7924 }
7925
7926 static int
7927 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7928 {
7929 unsigned long cflags = sd->flags, pflags = parent->flags;
7930
7931 if (sd_degenerate(parent))
7932 return 1;
7933
7934 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7935 return 0;
7936
7937 /* Flags needing groups don't count if only 1 group in parent */
7938 if (parent->groups == parent->groups->next) {
7939 pflags &= ~(SD_LOAD_BALANCE |
7940 SD_BALANCE_NEWIDLE |
7941 SD_BALANCE_FORK |
7942 SD_BALANCE_EXEC |
7943 SD_SHARE_CPUPOWER |
7944 SD_SHARE_PKG_RESOURCES);
7945 if (nr_node_ids == 1)
7946 pflags &= ~SD_SERIALIZE;
7947 }
7948 if (~cflags & pflags)
7949 return 0;
7950
7951 return 1;
7952 }
7953
7954 static void free_rootdomain(struct root_domain *rd)
7955 {
7956 synchronize_sched();
7957
7958 cpupri_cleanup(&rd->cpupri);
7959
7960 free_cpumask_var(rd->rto_mask);
7961 free_cpumask_var(rd->online);
7962 free_cpumask_var(rd->span);
7963 kfree(rd);
7964 }
7965
7966 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7967 {
7968 struct root_domain *old_rd = NULL;
7969 unsigned long flags;
7970
7971 raw_spin_lock_irqsave(&rq->lock, flags);
7972
7973 if (rq->rd) {
7974 old_rd = rq->rd;
7975
7976 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7977 set_rq_offline(rq);
7978
7979 cpumask_clear_cpu(rq->cpu, old_rd->span);
7980
7981 /*
7982 * If we dont want to free the old_rt yet then
7983 * set old_rd to NULL to skip the freeing later
7984 * in this function:
7985 */
7986 if (!atomic_dec_and_test(&old_rd->refcount))
7987 old_rd = NULL;
7988 }
7989
7990 atomic_inc(&rd->refcount);
7991 rq->rd = rd;
7992
7993 cpumask_set_cpu(rq->cpu, rd->span);
7994 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7995 set_rq_online(rq);
7996
7997 raw_spin_unlock_irqrestore(&rq->lock, flags);
7998
7999 if (old_rd)
8000 free_rootdomain(old_rd);
8001 }
8002
8003 static int init_rootdomain(struct root_domain *rd, bool bootmem)
8004 {
8005 gfp_t gfp = GFP_KERNEL;
8006
8007 memset(rd, 0, sizeof(*rd));
8008
8009 if (bootmem)
8010 gfp = GFP_NOWAIT;
8011
8012 if (!alloc_cpumask_var(&rd->span, gfp))
8013 goto out;
8014 if (!alloc_cpumask_var(&rd->online, gfp))
8015 goto free_span;
8016 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8017 goto free_online;
8018
8019 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8020 goto free_rto_mask;
8021 return 0;
8022
8023 free_rto_mask:
8024 free_cpumask_var(rd->rto_mask);
8025 free_online:
8026 free_cpumask_var(rd->online);
8027 free_span:
8028 free_cpumask_var(rd->span);
8029 out:
8030 return -ENOMEM;
8031 }
8032
8033 static void init_defrootdomain(void)
8034 {
8035 init_rootdomain(&def_root_domain, true);
8036
8037 atomic_set(&def_root_domain.refcount, 1);
8038 }
8039
8040 static struct root_domain *alloc_rootdomain(void)
8041 {
8042 struct root_domain *rd;
8043
8044 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8045 if (!rd)
8046 return NULL;
8047
8048 if (init_rootdomain(rd, false) != 0) {
8049 kfree(rd);
8050 return NULL;
8051 }
8052
8053 return rd;
8054 }
8055
8056 /*
8057 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8058 * hold the hotplug lock.
8059 */
8060 static void
8061 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8062 {
8063 struct rq *rq = cpu_rq(cpu);
8064 struct sched_domain *tmp;
8065
8066 /* Remove the sched domains which do not contribute to scheduling. */
8067 for (tmp = sd; tmp; ) {
8068 struct sched_domain *parent = tmp->parent;
8069 if (!parent)
8070 break;
8071
8072 if (sd_parent_degenerate(tmp, parent)) {
8073 tmp->parent = parent->parent;
8074 if (parent->parent)
8075 parent->parent->child = tmp;
8076 } else
8077 tmp = tmp->parent;
8078 }
8079
8080 if (sd && sd_degenerate(sd)) {
8081 sd = sd->parent;
8082 if (sd)
8083 sd->child = NULL;
8084 }
8085
8086 sched_domain_debug(sd, cpu);
8087
8088 rq_attach_root(rq, rd);
8089 rcu_assign_pointer(rq->sd, sd);
8090 }
8091
8092 /* cpus with isolated domains */
8093 static cpumask_var_t cpu_isolated_map;
8094
8095 /* Setup the mask of cpus configured for isolated domains */
8096 static int __init isolated_cpu_setup(char *str)
8097 {
8098 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8099 cpulist_parse(str, cpu_isolated_map);
8100 return 1;
8101 }
8102
8103 __setup("isolcpus=", isolated_cpu_setup);
8104
8105 /*
8106 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8107 * to a function which identifies what group(along with sched group) a CPU
8108 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8109 * (due to the fact that we keep track of groups covered with a struct cpumask).
8110 *
8111 * init_sched_build_groups will build a circular linked list of the groups
8112 * covered by the given span, and will set each group's ->cpumask correctly,
8113 * and ->cpu_power to 0.
8114 */
8115 static void
8116 init_sched_build_groups(const struct cpumask *span,
8117 const struct cpumask *cpu_map,
8118 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8119 struct sched_group **sg,
8120 struct cpumask *tmpmask),
8121 struct cpumask *covered, struct cpumask *tmpmask)
8122 {
8123 struct sched_group *first = NULL, *last = NULL;
8124 int i;
8125
8126 cpumask_clear(covered);
8127
8128 for_each_cpu(i, span) {
8129 struct sched_group *sg;
8130 int group = group_fn(i, cpu_map, &sg, tmpmask);
8131 int j;
8132
8133 if (cpumask_test_cpu(i, covered))
8134 continue;
8135
8136 cpumask_clear(sched_group_cpus(sg));
8137 sg->cpu_power = 0;
8138
8139 for_each_cpu(j, span) {
8140 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8141 continue;
8142
8143 cpumask_set_cpu(j, covered);
8144 cpumask_set_cpu(j, sched_group_cpus(sg));
8145 }
8146 if (!first)
8147 first = sg;
8148 if (last)
8149 last->next = sg;
8150 last = sg;
8151 }
8152 last->next = first;
8153 }
8154
8155 #define SD_NODES_PER_DOMAIN 16
8156
8157 #ifdef CONFIG_NUMA
8158
8159 /**
8160 * find_next_best_node - find the next node to include in a sched_domain
8161 * @node: node whose sched_domain we're building
8162 * @used_nodes: nodes already in the sched_domain
8163 *
8164 * Find the next node to include in a given scheduling domain. Simply
8165 * finds the closest node not already in the @used_nodes map.
8166 *
8167 * Should use nodemask_t.
8168 */
8169 static int find_next_best_node(int node, nodemask_t *used_nodes)
8170 {
8171 int i, n, val, min_val, best_node = 0;
8172
8173 min_val = INT_MAX;
8174
8175 for (i = 0; i < nr_node_ids; i++) {
8176 /* Start at @node */
8177 n = (node + i) % nr_node_ids;
8178
8179 if (!nr_cpus_node(n))
8180 continue;
8181
8182 /* Skip already used nodes */
8183 if (node_isset(n, *used_nodes))
8184 continue;
8185
8186 /* Simple min distance search */
8187 val = node_distance(node, n);
8188
8189 if (val < min_val) {
8190 min_val = val;
8191 best_node = n;
8192 }
8193 }
8194
8195 node_set(best_node, *used_nodes);
8196 return best_node;
8197 }
8198
8199 /**
8200 * sched_domain_node_span - get a cpumask for a node's sched_domain
8201 * @node: node whose cpumask we're constructing
8202 * @span: resulting cpumask
8203 *
8204 * Given a node, construct a good cpumask for its sched_domain to span. It
8205 * should be one that prevents unnecessary balancing, but also spreads tasks
8206 * out optimally.
8207 */
8208 static void sched_domain_node_span(int node, struct cpumask *span)
8209 {
8210 nodemask_t used_nodes;
8211 int i;
8212
8213 cpumask_clear(span);
8214 nodes_clear(used_nodes);
8215
8216 cpumask_or(span, span, cpumask_of_node(node));
8217 node_set(node, used_nodes);
8218
8219 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8220 int next_node = find_next_best_node(node, &used_nodes);
8221
8222 cpumask_or(span, span, cpumask_of_node(next_node));
8223 }
8224 }
8225 #endif /* CONFIG_NUMA */
8226
8227 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8228
8229 /*
8230 * The cpus mask in sched_group and sched_domain hangs off the end.
8231 *
8232 * ( See the the comments in include/linux/sched.h:struct sched_group
8233 * and struct sched_domain. )
8234 */
8235 struct static_sched_group {
8236 struct sched_group sg;
8237 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8238 };
8239
8240 struct static_sched_domain {
8241 struct sched_domain sd;
8242 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8243 };
8244
8245 struct s_data {
8246 #ifdef CONFIG_NUMA
8247 int sd_allnodes;
8248 cpumask_var_t domainspan;
8249 cpumask_var_t covered;
8250 cpumask_var_t notcovered;
8251 #endif
8252 cpumask_var_t nodemask;
8253 cpumask_var_t this_sibling_map;
8254 cpumask_var_t this_core_map;
8255 cpumask_var_t send_covered;
8256 cpumask_var_t tmpmask;
8257 struct sched_group **sched_group_nodes;
8258 struct root_domain *rd;
8259 };
8260
8261 enum s_alloc {
8262 sa_sched_groups = 0,
8263 sa_rootdomain,
8264 sa_tmpmask,
8265 sa_send_covered,
8266 sa_this_core_map,
8267 sa_this_sibling_map,
8268 sa_nodemask,
8269 sa_sched_group_nodes,
8270 #ifdef CONFIG_NUMA
8271 sa_notcovered,
8272 sa_covered,
8273 sa_domainspan,
8274 #endif
8275 sa_none,
8276 };
8277
8278 /*
8279 * SMT sched-domains:
8280 */
8281 #ifdef CONFIG_SCHED_SMT
8282 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8283 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
8284
8285 static int
8286 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8287 struct sched_group **sg, struct cpumask *unused)
8288 {
8289 if (sg)
8290 *sg = &per_cpu(sched_groups, cpu).sg;
8291 return cpu;
8292 }
8293 #endif /* CONFIG_SCHED_SMT */
8294
8295 /*
8296 * multi-core sched-domains:
8297 */
8298 #ifdef CONFIG_SCHED_MC
8299 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8300 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8301 #endif /* CONFIG_SCHED_MC */
8302
8303 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8304 static int
8305 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8306 struct sched_group **sg, struct cpumask *mask)
8307 {
8308 int group;
8309
8310 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8311 group = cpumask_first(mask);
8312 if (sg)
8313 *sg = &per_cpu(sched_group_core, group).sg;
8314 return group;
8315 }
8316 #elif defined(CONFIG_SCHED_MC)
8317 static int
8318 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8319 struct sched_group **sg, struct cpumask *unused)
8320 {
8321 if (sg)
8322 *sg = &per_cpu(sched_group_core, cpu).sg;
8323 return cpu;
8324 }
8325 #endif
8326
8327 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8328 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8329
8330 static int
8331 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8332 struct sched_group **sg, struct cpumask *mask)
8333 {
8334 int group;
8335 #ifdef CONFIG_SCHED_MC
8336 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8337 group = cpumask_first(mask);
8338 #elif defined(CONFIG_SCHED_SMT)
8339 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8340 group = cpumask_first(mask);
8341 #else
8342 group = cpu;
8343 #endif
8344 if (sg)
8345 *sg = &per_cpu(sched_group_phys, group).sg;
8346 return group;
8347 }
8348
8349 #ifdef CONFIG_NUMA
8350 /*
8351 * The init_sched_build_groups can't handle what we want to do with node
8352 * groups, so roll our own. Now each node has its own list of groups which
8353 * gets dynamically allocated.
8354 */
8355 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8356 static struct sched_group ***sched_group_nodes_bycpu;
8357
8358 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8359 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8360
8361 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8362 struct sched_group **sg,
8363 struct cpumask *nodemask)
8364 {
8365 int group;
8366
8367 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8368 group = cpumask_first(nodemask);
8369
8370 if (sg)
8371 *sg = &per_cpu(sched_group_allnodes, group).sg;
8372 return group;
8373 }
8374
8375 static void init_numa_sched_groups_power(struct sched_group *group_head)
8376 {
8377 struct sched_group *sg = group_head;
8378 int j;
8379
8380 if (!sg)
8381 return;
8382 do {
8383 for_each_cpu(j, sched_group_cpus(sg)) {
8384 struct sched_domain *sd;
8385
8386 sd = &per_cpu(phys_domains, j).sd;
8387 if (j != group_first_cpu(sd->groups)) {
8388 /*
8389 * Only add "power" once for each
8390 * physical package.
8391 */
8392 continue;
8393 }
8394
8395 sg->cpu_power += sd->groups->cpu_power;
8396 }
8397 sg = sg->next;
8398 } while (sg != group_head);
8399 }
8400
8401 static int build_numa_sched_groups(struct s_data *d,
8402 const struct cpumask *cpu_map, int num)
8403 {
8404 struct sched_domain *sd;
8405 struct sched_group *sg, *prev;
8406 int n, j;
8407
8408 cpumask_clear(d->covered);
8409 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8410 if (cpumask_empty(d->nodemask)) {
8411 d->sched_group_nodes[num] = NULL;
8412 goto out;
8413 }
8414
8415 sched_domain_node_span(num, d->domainspan);
8416 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8417
8418 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8419 GFP_KERNEL, num);
8420 if (!sg) {
8421 pr_warning("Can not alloc domain group for node %d\n", num);
8422 return -ENOMEM;
8423 }
8424 d->sched_group_nodes[num] = sg;
8425
8426 for_each_cpu(j, d->nodemask) {
8427 sd = &per_cpu(node_domains, j).sd;
8428 sd->groups = sg;
8429 }
8430
8431 sg->cpu_power = 0;
8432 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8433 sg->next = sg;
8434 cpumask_or(d->covered, d->covered, d->nodemask);
8435
8436 prev = sg;
8437 for (j = 0; j < nr_node_ids; j++) {
8438 n = (num + j) % nr_node_ids;
8439 cpumask_complement(d->notcovered, d->covered);
8440 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8441 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8442 if (cpumask_empty(d->tmpmask))
8443 break;
8444 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8445 if (cpumask_empty(d->tmpmask))
8446 continue;
8447 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8448 GFP_KERNEL, num);
8449 if (!sg) {
8450 pr_warning("Can not alloc domain group for node %d\n",
8451 j);
8452 return -ENOMEM;
8453 }
8454 sg->cpu_power = 0;
8455 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8456 sg->next = prev->next;
8457 cpumask_or(d->covered, d->covered, d->tmpmask);
8458 prev->next = sg;
8459 prev = sg;
8460 }
8461 out:
8462 return 0;
8463 }
8464 #endif /* CONFIG_NUMA */
8465
8466 #ifdef CONFIG_NUMA
8467 /* Free memory allocated for various sched_group structures */
8468 static void free_sched_groups(const struct cpumask *cpu_map,
8469 struct cpumask *nodemask)
8470 {
8471 int cpu, i;
8472
8473 for_each_cpu(cpu, cpu_map) {
8474 struct sched_group **sched_group_nodes
8475 = sched_group_nodes_bycpu[cpu];
8476
8477 if (!sched_group_nodes)
8478 continue;
8479
8480 for (i = 0; i < nr_node_ids; i++) {
8481 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8482
8483 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8484 if (cpumask_empty(nodemask))
8485 continue;
8486
8487 if (sg == NULL)
8488 continue;
8489 sg = sg->next;
8490 next_sg:
8491 oldsg = sg;
8492 sg = sg->next;
8493 kfree(oldsg);
8494 if (oldsg != sched_group_nodes[i])
8495 goto next_sg;
8496 }
8497 kfree(sched_group_nodes);
8498 sched_group_nodes_bycpu[cpu] = NULL;
8499 }
8500 }
8501 #else /* !CONFIG_NUMA */
8502 static void free_sched_groups(const struct cpumask *cpu_map,
8503 struct cpumask *nodemask)
8504 {
8505 }
8506 #endif /* CONFIG_NUMA */
8507
8508 /*
8509 * Initialize sched groups cpu_power.
8510 *
8511 * cpu_power indicates the capacity of sched group, which is used while
8512 * distributing the load between different sched groups in a sched domain.
8513 * Typically cpu_power for all the groups in a sched domain will be same unless
8514 * there are asymmetries in the topology. If there are asymmetries, group
8515 * having more cpu_power will pickup more load compared to the group having
8516 * less cpu_power.
8517 */
8518 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8519 {
8520 struct sched_domain *child;
8521 struct sched_group *group;
8522 long power;
8523 int weight;
8524
8525 WARN_ON(!sd || !sd->groups);
8526
8527 if (cpu != group_first_cpu(sd->groups))
8528 return;
8529
8530 child = sd->child;
8531
8532 sd->groups->cpu_power = 0;
8533
8534 if (!child) {
8535 power = SCHED_LOAD_SCALE;
8536 weight = cpumask_weight(sched_domain_span(sd));
8537 /*
8538 * SMT siblings share the power of a single core.
8539 * Usually multiple threads get a better yield out of
8540 * that one core than a single thread would have,
8541 * reflect that in sd->smt_gain.
8542 */
8543 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8544 power *= sd->smt_gain;
8545 power /= weight;
8546 power >>= SCHED_LOAD_SHIFT;
8547 }
8548 sd->groups->cpu_power += power;
8549 return;
8550 }
8551
8552 /*
8553 * Add cpu_power of each child group to this groups cpu_power.
8554 */
8555 group = child->groups;
8556 do {
8557 sd->groups->cpu_power += group->cpu_power;
8558 group = group->next;
8559 } while (group != child->groups);
8560 }
8561
8562 /*
8563 * Initializers for schedule domains
8564 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8565 */
8566
8567 #ifdef CONFIG_SCHED_DEBUG
8568 # define SD_INIT_NAME(sd, type) sd->name = #type
8569 #else
8570 # define SD_INIT_NAME(sd, type) do { } while (0)
8571 #endif
8572
8573 #define SD_INIT(sd, type) sd_init_##type(sd)
8574
8575 #define SD_INIT_FUNC(type) \
8576 static noinline void sd_init_##type(struct sched_domain *sd) \
8577 { \
8578 memset(sd, 0, sizeof(*sd)); \
8579 *sd = SD_##type##_INIT; \
8580 sd->level = SD_LV_##type; \
8581 SD_INIT_NAME(sd, type); \
8582 }
8583
8584 SD_INIT_FUNC(CPU)
8585 #ifdef CONFIG_NUMA
8586 SD_INIT_FUNC(ALLNODES)
8587 SD_INIT_FUNC(NODE)
8588 #endif
8589 #ifdef CONFIG_SCHED_SMT
8590 SD_INIT_FUNC(SIBLING)
8591 #endif
8592 #ifdef CONFIG_SCHED_MC
8593 SD_INIT_FUNC(MC)
8594 #endif
8595
8596 static int default_relax_domain_level = -1;
8597
8598 static int __init setup_relax_domain_level(char *str)
8599 {
8600 unsigned long val;
8601
8602 val = simple_strtoul(str, NULL, 0);
8603 if (val < SD_LV_MAX)
8604 default_relax_domain_level = val;
8605
8606 return 1;
8607 }
8608 __setup("relax_domain_level=", setup_relax_domain_level);
8609
8610 static void set_domain_attribute(struct sched_domain *sd,
8611 struct sched_domain_attr *attr)
8612 {
8613 int request;
8614
8615 if (!attr || attr->relax_domain_level < 0) {
8616 if (default_relax_domain_level < 0)
8617 return;
8618 else
8619 request = default_relax_domain_level;
8620 } else
8621 request = attr->relax_domain_level;
8622 if (request < sd->level) {
8623 /* turn off idle balance on this domain */
8624 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8625 } else {
8626 /* turn on idle balance on this domain */
8627 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8628 }
8629 }
8630
8631 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8632 const struct cpumask *cpu_map)
8633 {
8634 switch (what) {
8635 case sa_sched_groups:
8636 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8637 d->sched_group_nodes = NULL;
8638 case sa_rootdomain:
8639 free_rootdomain(d->rd); /* fall through */
8640 case sa_tmpmask:
8641 free_cpumask_var(d->tmpmask); /* fall through */
8642 case sa_send_covered:
8643 free_cpumask_var(d->send_covered); /* fall through */
8644 case sa_this_core_map:
8645 free_cpumask_var(d->this_core_map); /* fall through */
8646 case sa_this_sibling_map:
8647 free_cpumask_var(d->this_sibling_map); /* fall through */
8648 case sa_nodemask:
8649 free_cpumask_var(d->nodemask); /* fall through */
8650 case sa_sched_group_nodes:
8651 #ifdef CONFIG_NUMA
8652 kfree(d->sched_group_nodes); /* fall through */
8653 case sa_notcovered:
8654 free_cpumask_var(d->notcovered); /* fall through */
8655 case sa_covered:
8656 free_cpumask_var(d->covered); /* fall through */
8657 case sa_domainspan:
8658 free_cpumask_var(d->domainspan); /* fall through */
8659 #endif
8660 case sa_none:
8661 break;
8662 }
8663 }
8664
8665 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8666 const struct cpumask *cpu_map)
8667 {
8668 #ifdef CONFIG_NUMA
8669 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8670 return sa_none;
8671 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8672 return sa_domainspan;
8673 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8674 return sa_covered;
8675 /* Allocate the per-node list of sched groups */
8676 d->sched_group_nodes = kcalloc(nr_node_ids,
8677 sizeof(struct sched_group *), GFP_KERNEL);
8678 if (!d->sched_group_nodes) {
8679 pr_warning("Can not alloc sched group node list\n");
8680 return sa_notcovered;
8681 }
8682 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8683 #endif
8684 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8685 return sa_sched_group_nodes;
8686 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8687 return sa_nodemask;
8688 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8689 return sa_this_sibling_map;
8690 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8691 return sa_this_core_map;
8692 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8693 return sa_send_covered;
8694 d->rd = alloc_rootdomain();
8695 if (!d->rd) {
8696 pr_warning("Cannot alloc root domain\n");
8697 return sa_tmpmask;
8698 }
8699 return sa_rootdomain;
8700 }
8701
8702 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8703 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8704 {
8705 struct sched_domain *sd = NULL;
8706 #ifdef CONFIG_NUMA
8707 struct sched_domain *parent;
8708
8709 d->sd_allnodes = 0;
8710 if (cpumask_weight(cpu_map) >
8711 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8712 sd = &per_cpu(allnodes_domains, i).sd;
8713 SD_INIT(sd, ALLNODES);
8714 set_domain_attribute(sd, attr);
8715 cpumask_copy(sched_domain_span(sd), cpu_map);
8716 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8717 d->sd_allnodes = 1;
8718 }
8719 parent = sd;
8720
8721 sd = &per_cpu(node_domains, i).sd;
8722 SD_INIT(sd, NODE);
8723 set_domain_attribute(sd, attr);
8724 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8725 sd->parent = parent;
8726 if (parent)
8727 parent->child = sd;
8728 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8729 #endif
8730 return sd;
8731 }
8732
8733 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8734 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8735 struct sched_domain *parent, int i)
8736 {
8737 struct sched_domain *sd;
8738 sd = &per_cpu(phys_domains, i).sd;
8739 SD_INIT(sd, CPU);
8740 set_domain_attribute(sd, attr);
8741 cpumask_copy(sched_domain_span(sd), d->nodemask);
8742 sd->parent = parent;
8743 if (parent)
8744 parent->child = sd;
8745 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8746 return sd;
8747 }
8748
8749 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8750 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8751 struct sched_domain *parent, int i)
8752 {
8753 struct sched_domain *sd = parent;
8754 #ifdef CONFIG_SCHED_MC
8755 sd = &per_cpu(core_domains, i).sd;
8756 SD_INIT(sd, MC);
8757 set_domain_attribute(sd, attr);
8758 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8759 sd->parent = parent;
8760 parent->child = sd;
8761 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8762 #endif
8763 return sd;
8764 }
8765
8766 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8767 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8768 struct sched_domain *parent, int i)
8769 {
8770 struct sched_domain *sd = parent;
8771 #ifdef CONFIG_SCHED_SMT
8772 sd = &per_cpu(cpu_domains, i).sd;
8773 SD_INIT(sd, SIBLING);
8774 set_domain_attribute(sd, attr);
8775 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8776 sd->parent = parent;
8777 parent->child = sd;
8778 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8779 #endif
8780 return sd;
8781 }
8782
8783 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8784 const struct cpumask *cpu_map, int cpu)
8785 {
8786 switch (l) {
8787 #ifdef CONFIG_SCHED_SMT
8788 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8789 cpumask_and(d->this_sibling_map, cpu_map,
8790 topology_thread_cpumask(cpu));
8791 if (cpu == cpumask_first(d->this_sibling_map))
8792 init_sched_build_groups(d->this_sibling_map, cpu_map,
8793 &cpu_to_cpu_group,
8794 d->send_covered, d->tmpmask);
8795 break;
8796 #endif
8797 #ifdef CONFIG_SCHED_MC
8798 case SD_LV_MC: /* set up multi-core groups */
8799 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8800 if (cpu == cpumask_first(d->this_core_map))
8801 init_sched_build_groups(d->this_core_map, cpu_map,
8802 &cpu_to_core_group,
8803 d->send_covered, d->tmpmask);
8804 break;
8805 #endif
8806 case SD_LV_CPU: /* set up physical groups */
8807 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8808 if (!cpumask_empty(d->nodemask))
8809 init_sched_build_groups(d->nodemask, cpu_map,
8810 &cpu_to_phys_group,
8811 d->send_covered, d->tmpmask);
8812 break;
8813 #ifdef CONFIG_NUMA
8814 case SD_LV_ALLNODES:
8815 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8816 d->send_covered, d->tmpmask);
8817 break;
8818 #endif
8819 default:
8820 break;
8821 }
8822 }
8823
8824 /*
8825 * Build sched domains for a given set of cpus and attach the sched domains
8826 * to the individual cpus
8827 */
8828 static int __build_sched_domains(const struct cpumask *cpu_map,
8829 struct sched_domain_attr *attr)
8830 {
8831 enum s_alloc alloc_state = sa_none;
8832 struct s_data d;
8833 struct sched_domain *sd;
8834 int i;
8835 #ifdef CONFIG_NUMA
8836 d.sd_allnodes = 0;
8837 #endif
8838
8839 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8840 if (alloc_state != sa_rootdomain)
8841 goto error;
8842 alloc_state = sa_sched_groups;
8843
8844 /*
8845 * Set up domains for cpus specified by the cpu_map.
8846 */
8847 for_each_cpu(i, cpu_map) {
8848 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8849 cpu_map);
8850
8851 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8852 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8853 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8854 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8855 }
8856
8857 for_each_cpu(i, cpu_map) {
8858 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8859 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8860 }
8861
8862 /* Set up physical groups */
8863 for (i = 0; i < nr_node_ids; i++)
8864 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8865
8866 #ifdef CONFIG_NUMA
8867 /* Set up node groups */
8868 if (d.sd_allnodes)
8869 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8870
8871 for (i = 0; i < nr_node_ids; i++)
8872 if (build_numa_sched_groups(&d, cpu_map, i))
8873 goto error;
8874 #endif
8875
8876 /* Calculate CPU power for physical packages and nodes */
8877 #ifdef CONFIG_SCHED_SMT
8878 for_each_cpu(i, cpu_map) {
8879 sd = &per_cpu(cpu_domains, i).sd;
8880 init_sched_groups_power(i, sd);
8881 }
8882 #endif
8883 #ifdef CONFIG_SCHED_MC
8884 for_each_cpu(i, cpu_map) {
8885 sd = &per_cpu(core_domains, i).sd;
8886 init_sched_groups_power(i, sd);
8887 }
8888 #endif
8889
8890 for_each_cpu(i, cpu_map) {
8891 sd = &per_cpu(phys_domains, i).sd;
8892 init_sched_groups_power(i, sd);
8893 }
8894
8895 #ifdef CONFIG_NUMA
8896 for (i = 0; i < nr_node_ids; i++)
8897 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8898
8899 if (d.sd_allnodes) {
8900 struct sched_group *sg;
8901
8902 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8903 d.tmpmask);
8904 init_numa_sched_groups_power(sg);
8905 }
8906 #endif
8907
8908 /* Attach the domains */
8909 for_each_cpu(i, cpu_map) {
8910 #ifdef CONFIG_SCHED_SMT
8911 sd = &per_cpu(cpu_domains, i).sd;
8912 #elif defined(CONFIG_SCHED_MC)
8913 sd = &per_cpu(core_domains, i).sd;
8914 #else
8915 sd = &per_cpu(phys_domains, i).sd;
8916 #endif
8917 cpu_attach_domain(sd, d.rd, i);
8918 }
8919
8920 d.sched_group_nodes = NULL; /* don't free this we still need it */
8921 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8922 return 0;
8923
8924 error:
8925 __free_domain_allocs(&d, alloc_state, cpu_map);
8926 return -ENOMEM;
8927 }
8928
8929 static int build_sched_domains(const struct cpumask *cpu_map)
8930 {
8931 return __build_sched_domains(cpu_map, NULL);
8932 }
8933
8934 static cpumask_var_t *doms_cur; /* current sched domains */
8935 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8936 static struct sched_domain_attr *dattr_cur;
8937 /* attribues of custom domains in 'doms_cur' */
8938
8939 /*
8940 * Special case: If a kmalloc of a doms_cur partition (array of
8941 * cpumask) fails, then fallback to a single sched domain,
8942 * as determined by the single cpumask fallback_doms.
8943 */
8944 static cpumask_var_t fallback_doms;
8945
8946 /*
8947 * arch_update_cpu_topology lets virtualized architectures update the
8948 * cpu core maps. It is supposed to return 1 if the topology changed
8949 * or 0 if it stayed the same.
8950 */
8951 int __attribute__((weak)) arch_update_cpu_topology(void)
8952 {
8953 return 0;
8954 }
8955
8956 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8957 {
8958 int i;
8959 cpumask_var_t *doms;
8960
8961 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8962 if (!doms)
8963 return NULL;
8964 for (i = 0; i < ndoms; i++) {
8965 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8966 free_sched_domains(doms, i);
8967 return NULL;
8968 }
8969 }
8970 return doms;
8971 }
8972
8973 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8974 {
8975 unsigned int i;
8976 for (i = 0; i < ndoms; i++)
8977 free_cpumask_var(doms[i]);
8978 kfree(doms);
8979 }
8980
8981 /*
8982 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8983 * For now this just excludes isolated cpus, but could be used to
8984 * exclude other special cases in the future.
8985 */
8986 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8987 {
8988 int err;
8989
8990 arch_update_cpu_topology();
8991 ndoms_cur = 1;
8992 doms_cur = alloc_sched_domains(ndoms_cur);
8993 if (!doms_cur)
8994 doms_cur = &fallback_doms;
8995 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
8996 dattr_cur = NULL;
8997 err = build_sched_domains(doms_cur[0]);
8998 register_sched_domain_sysctl();
8999
9000 return err;
9001 }
9002
9003 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9004 struct cpumask *tmpmask)
9005 {
9006 free_sched_groups(cpu_map, tmpmask);
9007 }
9008
9009 /*
9010 * Detach sched domains from a group of cpus specified in cpu_map
9011 * These cpus will now be attached to the NULL domain
9012 */
9013 static void detach_destroy_domains(const struct cpumask *cpu_map)
9014 {
9015 /* Save because hotplug lock held. */
9016 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9017 int i;
9018
9019 for_each_cpu(i, cpu_map)
9020 cpu_attach_domain(NULL, &def_root_domain, i);
9021 synchronize_sched();
9022 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9023 }
9024
9025 /* handle null as "default" */
9026 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9027 struct sched_domain_attr *new, int idx_new)
9028 {
9029 struct sched_domain_attr tmp;
9030
9031 /* fast path */
9032 if (!new && !cur)
9033 return 1;
9034
9035 tmp = SD_ATTR_INIT;
9036 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9037 new ? (new + idx_new) : &tmp,
9038 sizeof(struct sched_domain_attr));
9039 }
9040
9041 /*
9042 * Partition sched domains as specified by the 'ndoms_new'
9043 * cpumasks in the array doms_new[] of cpumasks. This compares
9044 * doms_new[] to the current sched domain partitioning, doms_cur[].
9045 * It destroys each deleted domain and builds each new domain.
9046 *
9047 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
9048 * The masks don't intersect (don't overlap.) We should setup one
9049 * sched domain for each mask. CPUs not in any of the cpumasks will
9050 * not be load balanced. If the same cpumask appears both in the
9051 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9052 * it as it is.
9053 *
9054 * The passed in 'doms_new' should be allocated using
9055 * alloc_sched_domains. This routine takes ownership of it and will
9056 * free_sched_domains it when done with it. If the caller failed the
9057 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9058 * and partition_sched_domains() will fallback to the single partition
9059 * 'fallback_doms', it also forces the domains to be rebuilt.
9060 *
9061 * If doms_new == NULL it will be replaced with cpu_online_mask.
9062 * ndoms_new == 0 is a special case for destroying existing domains,
9063 * and it will not create the default domain.
9064 *
9065 * Call with hotplug lock held
9066 */
9067 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9068 struct sched_domain_attr *dattr_new)
9069 {
9070 int i, j, n;
9071 int new_topology;
9072
9073 mutex_lock(&sched_domains_mutex);
9074
9075 /* always unregister in case we don't destroy any domains */
9076 unregister_sched_domain_sysctl();
9077
9078 /* Let architecture update cpu core mappings. */
9079 new_topology = arch_update_cpu_topology();
9080
9081 n = doms_new ? ndoms_new : 0;
9082
9083 /* Destroy deleted domains */
9084 for (i = 0; i < ndoms_cur; i++) {
9085 for (j = 0; j < n && !new_topology; j++) {
9086 if (cpumask_equal(doms_cur[i], doms_new[j])
9087 && dattrs_equal(dattr_cur, i, dattr_new, j))
9088 goto match1;
9089 }
9090 /* no match - a current sched domain not in new doms_new[] */
9091 detach_destroy_domains(doms_cur[i]);
9092 match1:
9093 ;
9094 }
9095
9096 if (doms_new == NULL) {
9097 ndoms_cur = 0;
9098 doms_new = &fallback_doms;
9099 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9100 WARN_ON_ONCE(dattr_new);
9101 }
9102
9103 /* Build new domains */
9104 for (i = 0; i < ndoms_new; i++) {
9105 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9106 if (cpumask_equal(doms_new[i], doms_cur[j])
9107 && dattrs_equal(dattr_new, i, dattr_cur, j))
9108 goto match2;
9109 }
9110 /* no match - add a new doms_new */
9111 __build_sched_domains(doms_new[i],
9112 dattr_new ? dattr_new + i : NULL);
9113 match2:
9114 ;
9115 }
9116
9117 /* Remember the new sched domains */
9118 if (doms_cur != &fallback_doms)
9119 free_sched_domains(doms_cur, ndoms_cur);
9120 kfree(dattr_cur); /* kfree(NULL) is safe */
9121 doms_cur = doms_new;
9122 dattr_cur = dattr_new;
9123 ndoms_cur = ndoms_new;
9124
9125 register_sched_domain_sysctl();
9126
9127 mutex_unlock(&sched_domains_mutex);
9128 }
9129
9130 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9131 static void arch_reinit_sched_domains(void)
9132 {
9133 get_online_cpus();
9134
9135 /* Destroy domains first to force the rebuild */
9136 partition_sched_domains(0, NULL, NULL);
9137
9138 rebuild_sched_domains();
9139 put_online_cpus();
9140 }
9141
9142 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9143 {
9144 unsigned int level = 0;
9145
9146 if (sscanf(buf, "%u", &level) != 1)
9147 return -EINVAL;
9148
9149 /*
9150 * level is always be positive so don't check for
9151 * level < POWERSAVINGS_BALANCE_NONE which is 0
9152 * What happens on 0 or 1 byte write,
9153 * need to check for count as well?
9154 */
9155
9156 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9157 return -EINVAL;
9158
9159 if (smt)
9160 sched_smt_power_savings = level;
9161 else
9162 sched_mc_power_savings = level;
9163
9164 arch_reinit_sched_domains();
9165
9166 return count;
9167 }
9168
9169 #ifdef CONFIG_SCHED_MC
9170 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9171 char *page)
9172 {
9173 return sprintf(page, "%u\n", sched_mc_power_savings);
9174 }
9175 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9176 const char *buf, size_t count)
9177 {
9178 return sched_power_savings_store(buf, count, 0);
9179 }
9180 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9181 sched_mc_power_savings_show,
9182 sched_mc_power_savings_store);
9183 #endif
9184
9185 #ifdef CONFIG_SCHED_SMT
9186 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9187 char *page)
9188 {
9189 return sprintf(page, "%u\n", sched_smt_power_savings);
9190 }
9191 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9192 const char *buf, size_t count)
9193 {
9194 return sched_power_savings_store(buf, count, 1);
9195 }
9196 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9197 sched_smt_power_savings_show,
9198 sched_smt_power_savings_store);
9199 #endif
9200
9201 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9202 {
9203 int err = 0;
9204
9205 #ifdef CONFIG_SCHED_SMT
9206 if (smt_capable())
9207 err = sysfs_create_file(&cls->kset.kobj,
9208 &attr_sched_smt_power_savings.attr);
9209 #endif
9210 #ifdef CONFIG_SCHED_MC
9211 if (!err && mc_capable())
9212 err = sysfs_create_file(&cls->kset.kobj,
9213 &attr_sched_mc_power_savings.attr);
9214 #endif
9215 return err;
9216 }
9217 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9218
9219 #ifndef CONFIG_CPUSETS
9220 /*
9221 * Add online and remove offline CPUs from the scheduler domains.
9222 * When cpusets are enabled they take over this function.
9223 */
9224 static int update_sched_domains(struct notifier_block *nfb,
9225 unsigned long action, void *hcpu)
9226 {
9227 switch (action) {
9228 case CPU_ONLINE:
9229 case CPU_ONLINE_FROZEN:
9230 case CPU_DOWN_PREPARE:
9231 case CPU_DOWN_PREPARE_FROZEN:
9232 case CPU_DOWN_FAILED:
9233 case CPU_DOWN_FAILED_FROZEN:
9234 partition_sched_domains(1, NULL, NULL);
9235 return NOTIFY_OK;
9236
9237 default:
9238 return NOTIFY_DONE;
9239 }
9240 }
9241 #endif
9242
9243 static int update_runtime(struct notifier_block *nfb,
9244 unsigned long action, void *hcpu)
9245 {
9246 int cpu = (int)(long)hcpu;
9247
9248 switch (action) {
9249 case CPU_DOWN_PREPARE:
9250 case CPU_DOWN_PREPARE_FROZEN:
9251 disable_runtime(cpu_rq(cpu));
9252 return NOTIFY_OK;
9253
9254 case CPU_DOWN_FAILED:
9255 case CPU_DOWN_FAILED_FROZEN:
9256 case CPU_ONLINE:
9257 case CPU_ONLINE_FROZEN:
9258 enable_runtime(cpu_rq(cpu));
9259 return NOTIFY_OK;
9260
9261 default:
9262 return NOTIFY_DONE;
9263 }
9264 }
9265
9266 void __init sched_init_smp(void)
9267 {
9268 cpumask_var_t non_isolated_cpus;
9269
9270 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9271 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9272
9273 #if defined(CONFIG_NUMA)
9274 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9275 GFP_KERNEL);
9276 BUG_ON(sched_group_nodes_bycpu == NULL);
9277 #endif
9278 get_online_cpus();
9279 mutex_lock(&sched_domains_mutex);
9280 arch_init_sched_domains(cpu_active_mask);
9281 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9282 if (cpumask_empty(non_isolated_cpus))
9283 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9284 mutex_unlock(&sched_domains_mutex);
9285 put_online_cpus();
9286
9287 #ifndef CONFIG_CPUSETS
9288 /* XXX: Theoretical race here - CPU may be hotplugged now */
9289 hotcpu_notifier(update_sched_domains, 0);
9290 #endif
9291
9292 /* RT runtime code needs to handle some hotplug events */
9293 hotcpu_notifier(update_runtime, 0);
9294
9295 init_hrtick();
9296
9297 /* Move init over to a non-isolated CPU */
9298 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9299 BUG();
9300 sched_init_granularity();
9301 free_cpumask_var(non_isolated_cpus);
9302
9303 init_sched_rt_class();
9304 }
9305 #else
9306 void __init sched_init_smp(void)
9307 {
9308 sched_init_granularity();
9309 }
9310 #endif /* CONFIG_SMP */
9311
9312 const_debug unsigned int sysctl_timer_migration = 1;
9313
9314 int in_sched_functions(unsigned long addr)
9315 {
9316 return in_lock_functions(addr) ||
9317 (addr >= (unsigned long)__sched_text_start
9318 && addr < (unsigned long)__sched_text_end);
9319 }
9320
9321 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9322 {
9323 cfs_rq->tasks_timeline = RB_ROOT;
9324 INIT_LIST_HEAD(&cfs_rq->tasks);
9325 #ifdef CONFIG_FAIR_GROUP_SCHED
9326 cfs_rq->rq = rq;
9327 #endif
9328 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9329 }
9330
9331 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9332 {
9333 struct rt_prio_array *array;
9334 int i;
9335
9336 array = &rt_rq->active;
9337 for (i = 0; i < MAX_RT_PRIO; i++) {
9338 INIT_LIST_HEAD(array->queue + i);
9339 __clear_bit(i, array->bitmap);
9340 }
9341 /* delimiter for bitsearch: */
9342 __set_bit(MAX_RT_PRIO, array->bitmap);
9343
9344 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9345 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9346 #ifdef CONFIG_SMP
9347 rt_rq->highest_prio.next = MAX_RT_PRIO;
9348 #endif
9349 #endif
9350 #ifdef CONFIG_SMP
9351 rt_rq->rt_nr_migratory = 0;
9352 rt_rq->overloaded = 0;
9353 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
9354 #endif
9355
9356 rt_rq->rt_time = 0;
9357 rt_rq->rt_throttled = 0;
9358 rt_rq->rt_runtime = 0;
9359 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
9360
9361 #ifdef CONFIG_RT_GROUP_SCHED
9362 rt_rq->rt_nr_boosted = 0;
9363 rt_rq->rq = rq;
9364 #endif
9365 }
9366
9367 #ifdef CONFIG_FAIR_GROUP_SCHED
9368 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9369 struct sched_entity *se, int cpu, int add,
9370 struct sched_entity *parent)
9371 {
9372 struct rq *rq = cpu_rq(cpu);
9373 tg->cfs_rq[cpu] = cfs_rq;
9374 init_cfs_rq(cfs_rq, rq);
9375 cfs_rq->tg = tg;
9376 if (add)
9377 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9378
9379 tg->se[cpu] = se;
9380 /* se could be NULL for init_task_group */
9381 if (!se)
9382 return;
9383
9384 if (!parent)
9385 se->cfs_rq = &rq->cfs;
9386 else
9387 se->cfs_rq = parent->my_q;
9388
9389 se->my_q = cfs_rq;
9390 se->load.weight = tg->shares;
9391 se->load.inv_weight = 0;
9392 se->parent = parent;
9393 }
9394 #endif
9395
9396 #ifdef CONFIG_RT_GROUP_SCHED
9397 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9398 struct sched_rt_entity *rt_se, int cpu, int add,
9399 struct sched_rt_entity *parent)
9400 {
9401 struct rq *rq = cpu_rq(cpu);
9402
9403 tg->rt_rq[cpu] = rt_rq;
9404 init_rt_rq(rt_rq, rq);
9405 rt_rq->tg = tg;
9406 rt_rq->rt_se = rt_se;
9407 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9408 if (add)
9409 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9410
9411 tg->rt_se[cpu] = rt_se;
9412 if (!rt_se)
9413 return;
9414
9415 if (!parent)
9416 rt_se->rt_rq = &rq->rt;
9417 else
9418 rt_se->rt_rq = parent->my_q;
9419
9420 rt_se->my_q = rt_rq;
9421 rt_se->parent = parent;
9422 INIT_LIST_HEAD(&rt_se->run_list);
9423 }
9424 #endif
9425
9426 void __init sched_init(void)
9427 {
9428 int i, j;
9429 unsigned long alloc_size = 0, ptr;
9430
9431 #ifdef CONFIG_FAIR_GROUP_SCHED
9432 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9433 #endif
9434 #ifdef CONFIG_RT_GROUP_SCHED
9435 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9436 #endif
9437 #ifdef CONFIG_USER_SCHED
9438 alloc_size *= 2;
9439 #endif
9440 #ifdef CONFIG_CPUMASK_OFFSTACK
9441 alloc_size += num_possible_cpus() * cpumask_size();
9442 #endif
9443 if (alloc_size) {
9444 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9445
9446 #ifdef CONFIG_FAIR_GROUP_SCHED
9447 init_task_group.se = (struct sched_entity **)ptr;
9448 ptr += nr_cpu_ids * sizeof(void **);
9449
9450 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9451 ptr += nr_cpu_ids * sizeof(void **);
9452
9453 #ifdef CONFIG_USER_SCHED
9454 root_task_group.se = (struct sched_entity **)ptr;
9455 ptr += nr_cpu_ids * sizeof(void **);
9456
9457 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9458 ptr += nr_cpu_ids * sizeof(void **);
9459 #endif /* CONFIG_USER_SCHED */
9460 #endif /* CONFIG_FAIR_GROUP_SCHED */
9461 #ifdef CONFIG_RT_GROUP_SCHED
9462 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9463 ptr += nr_cpu_ids * sizeof(void **);
9464
9465 init_task_group.rt_rq = (struct rt_rq **)ptr;
9466 ptr += nr_cpu_ids * sizeof(void **);
9467
9468 #ifdef CONFIG_USER_SCHED
9469 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9470 ptr += nr_cpu_ids * sizeof(void **);
9471
9472 root_task_group.rt_rq = (struct rt_rq **)ptr;
9473 ptr += nr_cpu_ids * sizeof(void **);
9474 #endif /* CONFIG_USER_SCHED */
9475 #endif /* CONFIG_RT_GROUP_SCHED */
9476 #ifdef CONFIG_CPUMASK_OFFSTACK
9477 for_each_possible_cpu(i) {
9478 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9479 ptr += cpumask_size();
9480 }
9481 #endif /* CONFIG_CPUMASK_OFFSTACK */
9482 }
9483
9484 #ifdef CONFIG_SMP
9485 init_defrootdomain();
9486 #endif
9487
9488 init_rt_bandwidth(&def_rt_bandwidth,
9489 global_rt_period(), global_rt_runtime());
9490
9491 #ifdef CONFIG_RT_GROUP_SCHED
9492 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9493 global_rt_period(), global_rt_runtime());
9494 #ifdef CONFIG_USER_SCHED
9495 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9496 global_rt_period(), RUNTIME_INF);
9497 #endif /* CONFIG_USER_SCHED */
9498 #endif /* CONFIG_RT_GROUP_SCHED */
9499
9500 #ifdef CONFIG_GROUP_SCHED
9501 list_add(&init_task_group.list, &task_groups);
9502 INIT_LIST_HEAD(&init_task_group.children);
9503
9504 #ifdef CONFIG_USER_SCHED
9505 INIT_LIST_HEAD(&root_task_group.children);
9506 init_task_group.parent = &root_task_group;
9507 list_add(&init_task_group.siblings, &root_task_group.children);
9508 #endif /* CONFIG_USER_SCHED */
9509 #endif /* CONFIG_GROUP_SCHED */
9510
9511 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9512 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9513 __alignof__(unsigned long));
9514 #endif
9515 for_each_possible_cpu(i) {
9516 struct rq *rq;
9517
9518 rq = cpu_rq(i);
9519 raw_spin_lock_init(&rq->lock);
9520 rq->nr_running = 0;
9521 rq->calc_load_active = 0;
9522 rq->calc_load_update = jiffies + LOAD_FREQ;
9523 init_cfs_rq(&rq->cfs, rq);
9524 init_rt_rq(&rq->rt, rq);
9525 #ifdef CONFIG_FAIR_GROUP_SCHED
9526 init_task_group.shares = init_task_group_load;
9527 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9528 #ifdef CONFIG_CGROUP_SCHED
9529 /*
9530 * How much cpu bandwidth does init_task_group get?
9531 *
9532 * In case of task-groups formed thr' the cgroup filesystem, it
9533 * gets 100% of the cpu resources in the system. This overall
9534 * system cpu resource is divided among the tasks of
9535 * init_task_group and its child task-groups in a fair manner,
9536 * based on each entity's (task or task-group's) weight
9537 * (se->load.weight).
9538 *
9539 * In other words, if init_task_group has 10 tasks of weight
9540 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9541 * then A0's share of the cpu resource is:
9542 *
9543 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9544 *
9545 * We achieve this by letting init_task_group's tasks sit
9546 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9547 */
9548 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9549 #elif defined CONFIG_USER_SCHED
9550 root_task_group.shares = NICE_0_LOAD;
9551 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9552 /*
9553 * In case of task-groups formed thr' the user id of tasks,
9554 * init_task_group represents tasks belonging to root user.
9555 * Hence it forms a sibling of all subsequent groups formed.
9556 * In this case, init_task_group gets only a fraction of overall
9557 * system cpu resource, based on the weight assigned to root
9558 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9559 * by letting tasks of init_task_group sit in a separate cfs_rq
9560 * (init_tg_cfs_rq) and having one entity represent this group of
9561 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9562 */
9563 init_tg_cfs_entry(&init_task_group,
9564 &per_cpu(init_tg_cfs_rq, i),
9565 &per_cpu(init_sched_entity, i), i, 1,
9566 root_task_group.se[i]);
9567
9568 #endif
9569 #endif /* CONFIG_FAIR_GROUP_SCHED */
9570
9571 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9572 #ifdef CONFIG_RT_GROUP_SCHED
9573 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9574 #ifdef CONFIG_CGROUP_SCHED
9575 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9576 #elif defined CONFIG_USER_SCHED
9577 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9578 init_tg_rt_entry(&init_task_group,
9579 &per_cpu(init_rt_rq_var, i),
9580 &per_cpu(init_sched_rt_entity, i), i, 1,
9581 root_task_group.rt_se[i]);
9582 #endif
9583 #endif
9584
9585 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9586 rq->cpu_load[j] = 0;
9587 #ifdef CONFIG_SMP
9588 rq->sd = NULL;
9589 rq->rd = NULL;
9590 rq->post_schedule = 0;
9591 rq->active_balance = 0;
9592 rq->next_balance = jiffies;
9593 rq->push_cpu = 0;
9594 rq->cpu = i;
9595 rq->online = 0;
9596 rq->migration_thread = NULL;
9597 rq->idle_stamp = 0;
9598 rq->avg_idle = 2*sysctl_sched_migration_cost;
9599 INIT_LIST_HEAD(&rq->migration_queue);
9600 rq_attach_root(rq, &def_root_domain);
9601 #endif
9602 init_rq_hrtick(rq);
9603 atomic_set(&rq->nr_iowait, 0);
9604 }
9605
9606 set_load_weight(&init_task);
9607
9608 #ifdef CONFIG_PREEMPT_NOTIFIERS
9609 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9610 #endif
9611
9612 #ifdef CONFIG_SMP
9613 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9614 #endif
9615
9616 #ifdef CONFIG_RT_MUTEXES
9617 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
9618 #endif
9619
9620 /*
9621 * The boot idle thread does lazy MMU switching as well:
9622 */
9623 atomic_inc(&init_mm.mm_count);
9624 enter_lazy_tlb(&init_mm, current);
9625
9626 /*
9627 * Make us the idle thread. Technically, schedule() should not be
9628 * called from this thread, however somewhere below it might be,
9629 * but because we are the idle thread, we just pick up running again
9630 * when this runqueue becomes "idle".
9631 */
9632 init_idle(current, smp_processor_id());
9633
9634 calc_load_update = jiffies + LOAD_FREQ;
9635
9636 /*
9637 * During early bootup we pretend to be a normal task:
9638 */
9639 current->sched_class = &fair_sched_class;
9640
9641 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9642 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9643 #ifdef CONFIG_SMP
9644 #ifdef CONFIG_NO_HZ
9645 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9646 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9647 #endif
9648 /* May be allocated at isolcpus cmdline parse time */
9649 if (cpu_isolated_map == NULL)
9650 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9651 #endif /* SMP */
9652
9653 perf_event_init();
9654
9655 scheduler_running = 1;
9656 }
9657
9658 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9659 static inline int preempt_count_equals(int preempt_offset)
9660 {
9661 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9662
9663 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9664 }
9665
9666 void __might_sleep(char *file, int line, int preempt_offset)
9667 {
9668 #ifdef in_atomic
9669 static unsigned long prev_jiffy; /* ratelimiting */
9670
9671 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9672 system_state != SYSTEM_RUNNING || oops_in_progress)
9673 return;
9674 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9675 return;
9676 prev_jiffy = jiffies;
9677
9678 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9679 file, line);
9680 pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9681 in_atomic(), irqs_disabled(),
9682 current->pid, current->comm);
9683
9684 debug_show_held_locks(current);
9685 if (irqs_disabled())
9686 print_irqtrace_events(current);
9687 dump_stack();
9688 #endif
9689 }
9690 EXPORT_SYMBOL(__might_sleep);
9691 #endif
9692
9693 #ifdef CONFIG_MAGIC_SYSRQ
9694 static void normalize_task(struct rq *rq, struct task_struct *p)
9695 {
9696 int on_rq;
9697
9698 update_rq_clock(rq);
9699 on_rq = p->se.on_rq;
9700 if (on_rq)
9701 deactivate_task(rq, p, 0);
9702 __setscheduler(rq, p, SCHED_NORMAL, 0);
9703 if (on_rq) {
9704 activate_task(rq, p, 0);
9705 resched_task(rq->curr);
9706 }
9707 }
9708
9709 void normalize_rt_tasks(void)
9710 {
9711 struct task_struct *g, *p;
9712 unsigned long flags;
9713 struct rq *rq;
9714
9715 read_lock_irqsave(&tasklist_lock, flags);
9716 do_each_thread(g, p) {
9717 /*
9718 * Only normalize user tasks:
9719 */
9720 if (!p->mm)
9721 continue;
9722
9723 p->se.exec_start = 0;
9724 #ifdef CONFIG_SCHEDSTATS
9725 p->se.wait_start = 0;
9726 p->se.sleep_start = 0;
9727 p->se.block_start = 0;
9728 #endif
9729
9730 if (!rt_task(p)) {
9731 /*
9732 * Renice negative nice level userspace
9733 * tasks back to 0:
9734 */
9735 if (TASK_NICE(p) < 0 && p->mm)
9736 set_user_nice(p, 0);
9737 continue;
9738 }
9739
9740 raw_spin_lock(&p->pi_lock);
9741 rq = __task_rq_lock(p);
9742
9743 normalize_task(rq, p);
9744
9745 __task_rq_unlock(rq);
9746 raw_spin_unlock(&p->pi_lock);
9747 } while_each_thread(g, p);
9748
9749 read_unlock_irqrestore(&tasklist_lock, flags);
9750 }
9751
9752 #endif /* CONFIG_MAGIC_SYSRQ */
9753
9754 #ifdef CONFIG_IA64
9755 /*
9756 * These functions are only useful for the IA64 MCA handling.
9757 *
9758 * They can only be called when the whole system has been
9759 * stopped - every CPU needs to be quiescent, and no scheduling
9760 * activity can take place. Using them for anything else would
9761 * be a serious bug, and as a result, they aren't even visible
9762 * under any other configuration.
9763 */
9764
9765 /**
9766 * curr_task - return the current task for a given cpu.
9767 * @cpu: the processor in question.
9768 *
9769 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9770 */
9771 struct task_struct *curr_task(int cpu)
9772 {
9773 return cpu_curr(cpu);
9774 }
9775
9776 /**
9777 * set_curr_task - set the current task for a given cpu.
9778 * @cpu: the processor in question.
9779 * @p: the task pointer to set.
9780 *
9781 * Description: This function must only be used when non-maskable interrupts
9782 * are serviced on a separate stack. It allows the architecture to switch the
9783 * notion of the current task on a cpu in a non-blocking manner. This function
9784 * must be called with all CPU's synchronized, and interrupts disabled, the
9785 * and caller must save the original value of the current task (see
9786 * curr_task() above) and restore that value before reenabling interrupts and
9787 * re-starting the system.
9788 *
9789 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9790 */
9791 void set_curr_task(int cpu, struct task_struct *p)
9792 {
9793 cpu_curr(cpu) = p;
9794 }
9795
9796 #endif
9797
9798 #ifdef CONFIG_FAIR_GROUP_SCHED
9799 static void free_fair_sched_group(struct task_group *tg)
9800 {
9801 int i;
9802
9803 for_each_possible_cpu(i) {
9804 if (tg->cfs_rq)
9805 kfree(tg->cfs_rq[i]);
9806 if (tg->se)
9807 kfree(tg->se[i]);
9808 }
9809
9810 kfree(tg->cfs_rq);
9811 kfree(tg->se);
9812 }
9813
9814 static
9815 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9816 {
9817 struct cfs_rq *cfs_rq;
9818 struct sched_entity *se;
9819 struct rq *rq;
9820 int i;
9821
9822 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9823 if (!tg->cfs_rq)
9824 goto err;
9825 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9826 if (!tg->se)
9827 goto err;
9828
9829 tg->shares = NICE_0_LOAD;
9830
9831 for_each_possible_cpu(i) {
9832 rq = cpu_rq(i);
9833
9834 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9835 GFP_KERNEL, cpu_to_node(i));
9836 if (!cfs_rq)
9837 goto err;
9838
9839 se = kzalloc_node(sizeof(struct sched_entity),
9840 GFP_KERNEL, cpu_to_node(i));
9841 if (!se)
9842 goto err_free_rq;
9843
9844 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9845 }
9846
9847 return 1;
9848
9849 err_free_rq:
9850 kfree(cfs_rq);
9851 err:
9852 return 0;
9853 }
9854
9855 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9856 {
9857 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9858 &cpu_rq(cpu)->leaf_cfs_rq_list);
9859 }
9860
9861 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9862 {
9863 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9864 }
9865 #else /* !CONFG_FAIR_GROUP_SCHED */
9866 static inline void free_fair_sched_group(struct task_group *tg)
9867 {
9868 }
9869
9870 static inline
9871 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9872 {
9873 return 1;
9874 }
9875
9876 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9877 {
9878 }
9879
9880 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9881 {
9882 }
9883 #endif /* CONFIG_FAIR_GROUP_SCHED */
9884
9885 #ifdef CONFIG_RT_GROUP_SCHED
9886 static void free_rt_sched_group(struct task_group *tg)
9887 {
9888 int i;
9889
9890 destroy_rt_bandwidth(&tg->rt_bandwidth);
9891
9892 for_each_possible_cpu(i) {
9893 if (tg->rt_rq)
9894 kfree(tg->rt_rq[i]);
9895 if (tg->rt_se)
9896 kfree(tg->rt_se[i]);
9897 }
9898
9899 kfree(tg->rt_rq);
9900 kfree(tg->rt_se);
9901 }
9902
9903 static
9904 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9905 {
9906 struct rt_rq *rt_rq;
9907 struct sched_rt_entity *rt_se;
9908 struct rq *rq;
9909 int i;
9910
9911 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9912 if (!tg->rt_rq)
9913 goto err;
9914 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9915 if (!tg->rt_se)
9916 goto err;
9917
9918 init_rt_bandwidth(&tg->rt_bandwidth,
9919 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9920
9921 for_each_possible_cpu(i) {
9922 rq = cpu_rq(i);
9923
9924 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9925 GFP_KERNEL, cpu_to_node(i));
9926 if (!rt_rq)
9927 goto err;
9928
9929 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9930 GFP_KERNEL, cpu_to_node(i));
9931 if (!rt_se)
9932 goto err_free_rq;
9933
9934 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9935 }
9936
9937 return 1;
9938
9939 err_free_rq:
9940 kfree(rt_rq);
9941 err:
9942 return 0;
9943 }
9944
9945 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9946 {
9947 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9948 &cpu_rq(cpu)->leaf_rt_rq_list);
9949 }
9950
9951 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9952 {
9953 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9954 }
9955 #else /* !CONFIG_RT_GROUP_SCHED */
9956 static inline void free_rt_sched_group(struct task_group *tg)
9957 {
9958 }
9959
9960 static inline
9961 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9962 {
9963 return 1;
9964 }
9965
9966 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9967 {
9968 }
9969
9970 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9971 {
9972 }
9973 #endif /* CONFIG_RT_GROUP_SCHED */
9974
9975 #ifdef CONFIG_GROUP_SCHED
9976 static void free_sched_group(struct task_group *tg)
9977 {
9978 free_fair_sched_group(tg);
9979 free_rt_sched_group(tg);
9980 kfree(tg);
9981 }
9982
9983 /* allocate runqueue etc for a new task group */
9984 struct task_group *sched_create_group(struct task_group *parent)
9985 {
9986 struct task_group *tg;
9987 unsigned long flags;
9988 int i;
9989
9990 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9991 if (!tg)
9992 return ERR_PTR(-ENOMEM);
9993
9994 if (!alloc_fair_sched_group(tg, parent))
9995 goto err;
9996
9997 if (!alloc_rt_sched_group(tg, parent))
9998 goto err;
9999
10000 spin_lock_irqsave(&task_group_lock, flags);
10001 for_each_possible_cpu(i) {
10002 register_fair_sched_group(tg, i);
10003 register_rt_sched_group(tg, i);
10004 }
10005 list_add_rcu(&tg->list, &task_groups);
10006
10007 WARN_ON(!parent); /* root should already exist */
10008
10009 tg->parent = parent;
10010 INIT_LIST_HEAD(&tg->children);
10011 list_add_rcu(&tg->siblings, &parent->children);
10012 spin_unlock_irqrestore(&task_group_lock, flags);
10013
10014 return tg;
10015
10016 err:
10017 free_sched_group(tg);
10018 return ERR_PTR(-ENOMEM);
10019 }
10020
10021 /* rcu callback to free various structures associated with a task group */
10022 static void free_sched_group_rcu(struct rcu_head *rhp)
10023 {
10024 /* now it should be safe to free those cfs_rqs */
10025 free_sched_group(container_of(rhp, struct task_group, rcu));
10026 }
10027
10028 /* Destroy runqueue etc associated with a task group */
10029 void sched_destroy_group(struct task_group *tg)
10030 {
10031 unsigned long flags;
10032 int i;
10033
10034 spin_lock_irqsave(&task_group_lock, flags);
10035 for_each_possible_cpu(i) {
10036 unregister_fair_sched_group(tg, i);
10037 unregister_rt_sched_group(tg, i);
10038 }
10039 list_del_rcu(&tg->list);
10040 list_del_rcu(&tg->siblings);
10041 spin_unlock_irqrestore(&task_group_lock, flags);
10042
10043 /* wait for possible concurrent references to cfs_rqs complete */
10044 call_rcu(&tg->rcu, free_sched_group_rcu);
10045 }
10046
10047 /* change task's runqueue when it moves between groups.
10048 * The caller of this function should have put the task in its new group
10049 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10050 * reflect its new group.
10051 */
10052 void sched_move_task(struct task_struct *tsk)
10053 {
10054 int on_rq, running;
10055 unsigned long flags;
10056 struct rq *rq;
10057
10058 rq = task_rq_lock(tsk, &flags);
10059
10060 update_rq_clock(rq);
10061
10062 running = task_current(rq, tsk);
10063 on_rq = tsk->se.on_rq;
10064
10065 if (on_rq)
10066 dequeue_task(rq, tsk, 0);
10067 if (unlikely(running))
10068 tsk->sched_class->put_prev_task(rq, tsk);
10069
10070 set_task_rq(tsk, task_cpu(tsk));
10071
10072 #ifdef CONFIG_FAIR_GROUP_SCHED
10073 if (tsk->sched_class->moved_group)
10074 tsk->sched_class->moved_group(tsk);
10075 #endif
10076
10077 if (unlikely(running))
10078 tsk->sched_class->set_curr_task(rq);
10079 if (on_rq)
10080 enqueue_task(rq, tsk, 0);
10081
10082 task_rq_unlock(rq, &flags);
10083 }
10084 #endif /* CONFIG_GROUP_SCHED */
10085
10086 #ifdef CONFIG_FAIR_GROUP_SCHED
10087 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10088 {
10089 struct cfs_rq *cfs_rq = se->cfs_rq;
10090 int on_rq;
10091
10092 on_rq = se->on_rq;
10093 if (on_rq)
10094 dequeue_entity(cfs_rq, se, 0);
10095
10096 se->load.weight = shares;
10097 se->load.inv_weight = 0;
10098
10099 if (on_rq)
10100 enqueue_entity(cfs_rq, se, 0);
10101 }
10102
10103 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10104 {
10105 struct cfs_rq *cfs_rq = se->cfs_rq;
10106 struct rq *rq = cfs_rq->rq;
10107 unsigned long flags;
10108
10109 raw_spin_lock_irqsave(&rq->lock, flags);
10110 __set_se_shares(se, shares);
10111 raw_spin_unlock_irqrestore(&rq->lock, flags);
10112 }
10113
10114 static DEFINE_MUTEX(shares_mutex);
10115
10116 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10117 {
10118 int i;
10119 unsigned long flags;
10120
10121 /*
10122 * We can't change the weight of the root cgroup.
10123 */
10124 if (!tg->se[0])
10125 return -EINVAL;
10126
10127 if (shares < MIN_SHARES)
10128 shares = MIN_SHARES;
10129 else if (shares > MAX_SHARES)
10130 shares = MAX_SHARES;
10131
10132 mutex_lock(&shares_mutex);
10133 if (tg->shares == shares)
10134 goto done;
10135
10136 spin_lock_irqsave(&task_group_lock, flags);
10137 for_each_possible_cpu(i)
10138 unregister_fair_sched_group(tg, i);
10139 list_del_rcu(&tg->siblings);
10140 spin_unlock_irqrestore(&task_group_lock, flags);
10141
10142 /* wait for any ongoing reference to this group to finish */
10143 synchronize_sched();
10144
10145 /*
10146 * Now we are free to modify the group's share on each cpu
10147 * w/o tripping rebalance_share or load_balance_fair.
10148 */
10149 tg->shares = shares;
10150 for_each_possible_cpu(i) {
10151 /*
10152 * force a rebalance
10153 */
10154 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10155 set_se_shares(tg->se[i], shares);
10156 }
10157
10158 /*
10159 * Enable load balance activity on this group, by inserting it back on
10160 * each cpu's rq->leaf_cfs_rq_list.
10161 */
10162 spin_lock_irqsave(&task_group_lock, flags);
10163 for_each_possible_cpu(i)
10164 register_fair_sched_group(tg, i);
10165 list_add_rcu(&tg->siblings, &tg->parent->children);
10166 spin_unlock_irqrestore(&task_group_lock, flags);
10167 done:
10168 mutex_unlock(&shares_mutex);
10169 return 0;
10170 }
10171
10172 unsigned long sched_group_shares(struct task_group *tg)
10173 {
10174 return tg->shares;
10175 }
10176 #endif
10177
10178 #ifdef CONFIG_RT_GROUP_SCHED
10179 /*
10180 * Ensure that the real time constraints are schedulable.
10181 */
10182 static DEFINE_MUTEX(rt_constraints_mutex);
10183
10184 static unsigned long to_ratio(u64 period, u64 runtime)
10185 {
10186 if (runtime == RUNTIME_INF)
10187 return 1ULL << 20;
10188
10189 return div64_u64(runtime << 20, period);
10190 }
10191
10192 /* Must be called with tasklist_lock held */
10193 static inline int tg_has_rt_tasks(struct task_group *tg)
10194 {
10195 struct task_struct *g, *p;
10196
10197 do_each_thread(g, p) {
10198 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10199 return 1;
10200 } while_each_thread(g, p);
10201
10202 return 0;
10203 }
10204
10205 struct rt_schedulable_data {
10206 struct task_group *tg;
10207 u64 rt_period;
10208 u64 rt_runtime;
10209 };
10210
10211 static int tg_schedulable(struct task_group *tg, void *data)
10212 {
10213 struct rt_schedulable_data *d = data;
10214 struct task_group *child;
10215 unsigned long total, sum = 0;
10216 u64 period, runtime;
10217
10218 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10219 runtime = tg->rt_bandwidth.rt_runtime;
10220
10221 if (tg == d->tg) {
10222 period = d->rt_period;
10223 runtime = d->rt_runtime;
10224 }
10225
10226 #ifdef CONFIG_USER_SCHED
10227 if (tg == &root_task_group) {
10228 period = global_rt_period();
10229 runtime = global_rt_runtime();
10230 }
10231 #endif
10232
10233 /*
10234 * Cannot have more runtime than the period.
10235 */
10236 if (runtime > period && runtime != RUNTIME_INF)
10237 return -EINVAL;
10238
10239 /*
10240 * Ensure we don't starve existing RT tasks.
10241 */
10242 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10243 return -EBUSY;
10244
10245 total = to_ratio(period, runtime);
10246
10247 /*
10248 * Nobody can have more than the global setting allows.
10249 */
10250 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10251 return -EINVAL;
10252
10253 /*
10254 * The sum of our children's runtime should not exceed our own.
10255 */
10256 list_for_each_entry_rcu(child, &tg->children, siblings) {
10257 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10258 runtime = child->rt_bandwidth.rt_runtime;
10259
10260 if (child == d->tg) {
10261 period = d->rt_period;
10262 runtime = d->rt_runtime;
10263 }
10264
10265 sum += to_ratio(period, runtime);
10266 }
10267
10268 if (sum > total)
10269 return -EINVAL;
10270
10271 return 0;
10272 }
10273
10274 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10275 {
10276 struct rt_schedulable_data data = {
10277 .tg = tg,
10278 .rt_period = period,
10279 .rt_runtime = runtime,
10280 };
10281
10282 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10283 }
10284
10285 static int tg_set_bandwidth(struct task_group *tg,
10286 u64 rt_period, u64 rt_runtime)
10287 {
10288 int i, err = 0;
10289
10290 mutex_lock(&rt_constraints_mutex);
10291 read_lock(&tasklist_lock);
10292 err = __rt_schedulable(tg, rt_period, rt_runtime);
10293 if (err)
10294 goto unlock;
10295
10296 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10297 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10298 tg->rt_bandwidth.rt_runtime = rt_runtime;
10299
10300 for_each_possible_cpu(i) {
10301 struct rt_rq *rt_rq = tg->rt_rq[i];
10302
10303 raw_spin_lock(&rt_rq->rt_runtime_lock);
10304 rt_rq->rt_runtime = rt_runtime;
10305 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10306 }
10307 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10308 unlock:
10309 read_unlock(&tasklist_lock);
10310 mutex_unlock(&rt_constraints_mutex);
10311
10312 return err;
10313 }
10314
10315 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10316 {
10317 u64 rt_runtime, rt_period;
10318
10319 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10320 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10321 if (rt_runtime_us < 0)
10322 rt_runtime = RUNTIME_INF;
10323
10324 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10325 }
10326
10327 long sched_group_rt_runtime(struct task_group *tg)
10328 {
10329 u64 rt_runtime_us;
10330
10331 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10332 return -1;
10333
10334 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10335 do_div(rt_runtime_us, NSEC_PER_USEC);
10336 return rt_runtime_us;
10337 }
10338
10339 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10340 {
10341 u64 rt_runtime, rt_period;
10342
10343 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10344 rt_runtime = tg->rt_bandwidth.rt_runtime;
10345
10346 if (rt_period == 0)
10347 return -EINVAL;
10348
10349 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10350 }
10351
10352 long sched_group_rt_period(struct task_group *tg)
10353 {
10354 u64 rt_period_us;
10355
10356 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10357 do_div(rt_period_us, NSEC_PER_USEC);
10358 return rt_period_us;
10359 }
10360
10361 static int sched_rt_global_constraints(void)
10362 {
10363 u64 runtime, period;
10364 int ret = 0;
10365
10366 if (sysctl_sched_rt_period <= 0)
10367 return -EINVAL;
10368
10369 runtime = global_rt_runtime();
10370 period = global_rt_period();
10371
10372 /*
10373 * Sanity check on the sysctl variables.
10374 */
10375 if (runtime > period && runtime != RUNTIME_INF)
10376 return -EINVAL;
10377
10378 mutex_lock(&rt_constraints_mutex);
10379 read_lock(&tasklist_lock);
10380 ret = __rt_schedulable(NULL, 0, 0);
10381 read_unlock(&tasklist_lock);
10382 mutex_unlock(&rt_constraints_mutex);
10383
10384 return ret;
10385 }
10386
10387 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10388 {
10389 /* Don't accept realtime tasks when there is no way for them to run */
10390 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10391 return 0;
10392
10393 return 1;
10394 }
10395
10396 #else /* !CONFIG_RT_GROUP_SCHED */
10397 static int sched_rt_global_constraints(void)
10398 {
10399 unsigned long flags;
10400 int i;
10401
10402 if (sysctl_sched_rt_period <= 0)
10403 return -EINVAL;
10404
10405 /*
10406 * There's always some RT tasks in the root group
10407 * -- migration, kstopmachine etc..
10408 */
10409 if (sysctl_sched_rt_runtime == 0)
10410 return -EBUSY;
10411
10412 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10413 for_each_possible_cpu(i) {
10414 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10415
10416 raw_spin_lock(&rt_rq->rt_runtime_lock);
10417 rt_rq->rt_runtime = global_rt_runtime();
10418 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10419 }
10420 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10421
10422 return 0;
10423 }
10424 #endif /* CONFIG_RT_GROUP_SCHED */
10425
10426 int sched_rt_handler(struct ctl_table *table, int write,
10427 void __user *buffer, size_t *lenp,
10428 loff_t *ppos)
10429 {
10430 int ret;
10431 int old_period, old_runtime;
10432 static DEFINE_MUTEX(mutex);
10433
10434 mutex_lock(&mutex);
10435 old_period = sysctl_sched_rt_period;
10436 old_runtime = sysctl_sched_rt_runtime;
10437
10438 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10439
10440 if (!ret && write) {
10441 ret = sched_rt_global_constraints();
10442 if (ret) {
10443 sysctl_sched_rt_period = old_period;
10444 sysctl_sched_rt_runtime = old_runtime;
10445 } else {
10446 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10447 def_rt_bandwidth.rt_period =
10448 ns_to_ktime(global_rt_period());
10449 }
10450 }
10451 mutex_unlock(&mutex);
10452
10453 return ret;
10454 }
10455
10456 #ifdef CONFIG_CGROUP_SCHED
10457
10458 /* return corresponding task_group object of a cgroup */
10459 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10460 {
10461 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10462 struct task_group, css);
10463 }
10464
10465 static struct cgroup_subsys_state *
10466 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10467 {
10468 struct task_group *tg, *parent;
10469
10470 if (!cgrp->parent) {
10471 /* This is early initialization for the top cgroup */
10472 return &init_task_group.css;
10473 }
10474
10475 parent = cgroup_tg(cgrp->parent);
10476 tg = sched_create_group(parent);
10477 if (IS_ERR(tg))
10478 return ERR_PTR(-ENOMEM);
10479
10480 return &tg->css;
10481 }
10482
10483 static void
10484 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10485 {
10486 struct task_group *tg = cgroup_tg(cgrp);
10487
10488 sched_destroy_group(tg);
10489 }
10490
10491 static int
10492 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10493 {
10494 #ifdef CONFIG_RT_GROUP_SCHED
10495 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10496 return -EINVAL;
10497 #else
10498 /* We don't support RT-tasks being in separate groups */
10499 if (tsk->sched_class != &fair_sched_class)
10500 return -EINVAL;
10501 #endif
10502 return 0;
10503 }
10504
10505 static int
10506 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10507 struct task_struct *tsk, bool threadgroup)
10508 {
10509 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10510 if (retval)
10511 return retval;
10512 if (threadgroup) {
10513 struct task_struct *c;
10514 rcu_read_lock();
10515 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10516 retval = cpu_cgroup_can_attach_task(cgrp, c);
10517 if (retval) {
10518 rcu_read_unlock();
10519 return retval;
10520 }
10521 }
10522 rcu_read_unlock();
10523 }
10524 return 0;
10525 }
10526
10527 static void
10528 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10529 struct cgroup *old_cont, struct task_struct *tsk,
10530 bool threadgroup)
10531 {
10532 sched_move_task(tsk);
10533 if (threadgroup) {
10534 struct task_struct *c;
10535 rcu_read_lock();
10536 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10537 sched_move_task(c);
10538 }
10539 rcu_read_unlock();
10540 }
10541 }
10542
10543 #ifdef CONFIG_FAIR_GROUP_SCHED
10544 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10545 u64 shareval)
10546 {
10547 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10548 }
10549
10550 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10551 {
10552 struct task_group *tg = cgroup_tg(cgrp);
10553
10554 return (u64) tg->shares;
10555 }
10556 #endif /* CONFIG_FAIR_GROUP_SCHED */
10557
10558 #ifdef CONFIG_RT_GROUP_SCHED
10559 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10560 s64 val)
10561 {
10562 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10563 }
10564
10565 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10566 {
10567 return sched_group_rt_runtime(cgroup_tg(cgrp));
10568 }
10569
10570 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10571 u64 rt_period_us)
10572 {
10573 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10574 }
10575
10576 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10577 {
10578 return sched_group_rt_period(cgroup_tg(cgrp));
10579 }
10580 #endif /* CONFIG_RT_GROUP_SCHED */
10581
10582 static struct cftype cpu_files[] = {
10583 #ifdef CONFIG_FAIR_GROUP_SCHED
10584 {
10585 .name = "shares",
10586 .read_u64 = cpu_shares_read_u64,
10587 .write_u64 = cpu_shares_write_u64,
10588 },
10589 #endif
10590 #ifdef CONFIG_RT_GROUP_SCHED
10591 {
10592 .name = "rt_runtime_us",
10593 .read_s64 = cpu_rt_runtime_read,
10594 .write_s64 = cpu_rt_runtime_write,
10595 },
10596 {
10597 .name = "rt_period_us",
10598 .read_u64 = cpu_rt_period_read_uint,
10599 .write_u64 = cpu_rt_period_write_uint,
10600 },
10601 #endif
10602 };
10603
10604 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10605 {
10606 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10607 }
10608
10609 struct cgroup_subsys cpu_cgroup_subsys = {
10610 .name = "cpu",
10611 .create = cpu_cgroup_create,
10612 .destroy = cpu_cgroup_destroy,
10613 .can_attach = cpu_cgroup_can_attach,
10614 .attach = cpu_cgroup_attach,
10615 .populate = cpu_cgroup_populate,
10616 .subsys_id = cpu_cgroup_subsys_id,
10617 .early_init = 1,
10618 };
10619
10620 #endif /* CONFIG_CGROUP_SCHED */
10621
10622 #ifdef CONFIG_CGROUP_CPUACCT
10623
10624 /*
10625 * CPU accounting code for task groups.
10626 *
10627 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10628 * (balbir@in.ibm.com).
10629 */
10630
10631 /* track cpu usage of a group of tasks and its child groups */
10632 struct cpuacct {
10633 struct cgroup_subsys_state css;
10634 /* cpuusage holds pointer to a u64-type object on every cpu */
10635 u64 *cpuusage;
10636 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10637 struct cpuacct *parent;
10638 };
10639
10640 struct cgroup_subsys cpuacct_subsys;
10641
10642 /* return cpu accounting group corresponding to this container */
10643 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10644 {
10645 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10646 struct cpuacct, css);
10647 }
10648
10649 /* return cpu accounting group to which this task belongs */
10650 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10651 {
10652 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10653 struct cpuacct, css);
10654 }
10655
10656 /* create a new cpu accounting group */
10657 static struct cgroup_subsys_state *cpuacct_create(
10658 struct cgroup_subsys *ss, struct cgroup *cgrp)
10659 {
10660 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10661 int i;
10662
10663 if (!ca)
10664 goto out;
10665
10666 ca->cpuusage = alloc_percpu(u64);
10667 if (!ca->cpuusage)
10668 goto out_free_ca;
10669
10670 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10671 if (percpu_counter_init(&ca->cpustat[i], 0))
10672 goto out_free_counters;
10673
10674 if (cgrp->parent)
10675 ca->parent = cgroup_ca(cgrp->parent);
10676
10677 return &ca->css;
10678
10679 out_free_counters:
10680 while (--i >= 0)
10681 percpu_counter_destroy(&ca->cpustat[i]);
10682 free_percpu(ca->cpuusage);
10683 out_free_ca:
10684 kfree(ca);
10685 out:
10686 return ERR_PTR(-ENOMEM);
10687 }
10688
10689 /* destroy an existing cpu accounting group */
10690 static void
10691 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10692 {
10693 struct cpuacct *ca = cgroup_ca(cgrp);
10694 int i;
10695
10696 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10697 percpu_counter_destroy(&ca->cpustat[i]);
10698 free_percpu(ca->cpuusage);
10699 kfree(ca);
10700 }
10701
10702 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10703 {
10704 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10705 u64 data;
10706
10707 #ifndef CONFIG_64BIT
10708 /*
10709 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10710 */
10711 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10712 data = *cpuusage;
10713 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10714 #else
10715 data = *cpuusage;
10716 #endif
10717
10718 return data;
10719 }
10720
10721 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10722 {
10723 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10724
10725 #ifndef CONFIG_64BIT
10726 /*
10727 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10728 */
10729 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10730 *cpuusage = val;
10731 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10732 #else
10733 *cpuusage = val;
10734 #endif
10735 }
10736
10737 /* return total cpu usage (in nanoseconds) of a group */
10738 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10739 {
10740 struct cpuacct *ca = cgroup_ca(cgrp);
10741 u64 totalcpuusage = 0;
10742 int i;
10743
10744 for_each_present_cpu(i)
10745 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10746
10747 return totalcpuusage;
10748 }
10749
10750 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10751 u64 reset)
10752 {
10753 struct cpuacct *ca = cgroup_ca(cgrp);
10754 int err = 0;
10755 int i;
10756
10757 if (reset) {
10758 err = -EINVAL;
10759 goto out;
10760 }
10761
10762 for_each_present_cpu(i)
10763 cpuacct_cpuusage_write(ca, i, 0);
10764
10765 out:
10766 return err;
10767 }
10768
10769 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10770 struct seq_file *m)
10771 {
10772 struct cpuacct *ca = cgroup_ca(cgroup);
10773 u64 percpu;
10774 int i;
10775
10776 for_each_present_cpu(i) {
10777 percpu = cpuacct_cpuusage_read(ca, i);
10778 seq_printf(m, "%llu ", (unsigned long long) percpu);
10779 }
10780 seq_printf(m, "\n");
10781 return 0;
10782 }
10783
10784 static const char *cpuacct_stat_desc[] = {
10785 [CPUACCT_STAT_USER] = "user",
10786 [CPUACCT_STAT_SYSTEM] = "system",
10787 };
10788
10789 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10790 struct cgroup_map_cb *cb)
10791 {
10792 struct cpuacct *ca = cgroup_ca(cgrp);
10793 int i;
10794
10795 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10796 s64 val = percpu_counter_read(&ca->cpustat[i]);
10797 val = cputime64_to_clock_t(val);
10798 cb->fill(cb, cpuacct_stat_desc[i], val);
10799 }
10800 return 0;
10801 }
10802
10803 static struct cftype files[] = {
10804 {
10805 .name = "usage",
10806 .read_u64 = cpuusage_read,
10807 .write_u64 = cpuusage_write,
10808 },
10809 {
10810 .name = "usage_percpu",
10811 .read_seq_string = cpuacct_percpu_seq_read,
10812 },
10813 {
10814 .name = "stat",
10815 .read_map = cpuacct_stats_show,
10816 },
10817 };
10818
10819 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10820 {
10821 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10822 }
10823
10824 /*
10825 * charge this task's execution time to its accounting group.
10826 *
10827 * called with rq->lock held.
10828 */
10829 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10830 {
10831 struct cpuacct *ca;
10832 int cpu;
10833
10834 if (unlikely(!cpuacct_subsys.active))
10835 return;
10836
10837 cpu = task_cpu(tsk);
10838
10839 rcu_read_lock();
10840
10841 ca = task_ca(tsk);
10842
10843 for (; ca; ca = ca->parent) {
10844 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10845 *cpuusage += cputime;
10846 }
10847
10848 rcu_read_unlock();
10849 }
10850
10851 /*
10852 * Charge the system/user time to the task's accounting group.
10853 */
10854 static void cpuacct_update_stats(struct task_struct *tsk,
10855 enum cpuacct_stat_index idx, cputime_t val)
10856 {
10857 struct cpuacct *ca;
10858
10859 if (unlikely(!cpuacct_subsys.active))
10860 return;
10861
10862 rcu_read_lock();
10863 ca = task_ca(tsk);
10864
10865 do {
10866 percpu_counter_add(&ca->cpustat[idx], val);
10867 ca = ca->parent;
10868 } while (ca);
10869 rcu_read_unlock();
10870 }
10871
10872 struct cgroup_subsys cpuacct_subsys = {
10873 .name = "cpuacct",
10874 .create = cpuacct_create,
10875 .destroy = cpuacct_destroy,
10876 .populate = cpuacct_populate,
10877 .subsys_id = cpuacct_subsys_id,
10878 };
10879 #endif /* CONFIG_CGROUP_CPUACCT */
10880
10881 #ifndef CONFIG_SMP
10882
10883 int rcu_expedited_torture_stats(char *page)
10884 {
10885 return 0;
10886 }
10887 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10888
10889 void synchronize_sched_expedited(void)
10890 {
10891 }
10892 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10893
10894 #else /* #ifndef CONFIG_SMP */
10895
10896 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10897 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10898
10899 #define RCU_EXPEDITED_STATE_POST -2
10900 #define RCU_EXPEDITED_STATE_IDLE -1
10901
10902 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10903
10904 int rcu_expedited_torture_stats(char *page)
10905 {
10906 int cnt = 0;
10907 int cpu;
10908
10909 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10910 for_each_online_cpu(cpu) {
10911 cnt += sprintf(&page[cnt], " %d:%d",
10912 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10913 }
10914 cnt += sprintf(&page[cnt], "\n");
10915 return cnt;
10916 }
10917 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10918
10919 static long synchronize_sched_expedited_count;
10920
10921 /*
10922 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10923 * approach to force grace period to end quickly. This consumes
10924 * significant time on all CPUs, and is thus not recommended for
10925 * any sort of common-case code.
10926 *
10927 * Note that it is illegal to call this function while holding any
10928 * lock that is acquired by a CPU-hotplug notifier. Failing to
10929 * observe this restriction will result in deadlock.
10930 */
10931 void synchronize_sched_expedited(void)
10932 {
10933 int cpu;
10934 unsigned long flags;
10935 bool need_full_sync = 0;
10936 struct rq *rq;
10937 struct migration_req *req;
10938 long snap;
10939 int trycount = 0;
10940
10941 smp_mb(); /* ensure prior mod happens before capturing snap. */
10942 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10943 get_online_cpus();
10944 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10945 put_online_cpus();
10946 if (trycount++ < 10)
10947 udelay(trycount * num_online_cpus());
10948 else {
10949 synchronize_sched();
10950 return;
10951 }
10952 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10953 smp_mb(); /* ensure test happens before caller kfree */
10954 return;
10955 }
10956 get_online_cpus();
10957 }
10958 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10959 for_each_online_cpu(cpu) {
10960 rq = cpu_rq(cpu);
10961 req = &per_cpu(rcu_migration_req, cpu);
10962 init_completion(&req->done);
10963 req->task = NULL;
10964 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10965 raw_spin_lock_irqsave(&rq->lock, flags);
10966 list_add(&req->list, &rq->migration_queue);
10967 raw_spin_unlock_irqrestore(&rq->lock, flags);
10968 wake_up_process(rq->migration_thread);
10969 }
10970 for_each_online_cpu(cpu) {
10971 rcu_expedited_state = cpu;
10972 req = &per_cpu(rcu_migration_req, cpu);
10973 rq = cpu_rq(cpu);
10974 wait_for_completion(&req->done);
10975 raw_spin_lock_irqsave(&rq->lock, flags);
10976 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10977 need_full_sync = 1;
10978 req->dest_cpu = RCU_MIGRATION_IDLE;
10979 raw_spin_unlock_irqrestore(&rq->lock, flags);
10980 }
10981 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10982 synchronize_sched_expedited_count++;
10983 mutex_unlock(&rcu_sched_expedited_mutex);
10984 put_online_cpus();
10985 if (need_full_sync)
10986 synchronize_sched();
10987 }
10988 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10989
10990 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.275542 seconds and 5 git commands to generate.