sched: Convert to struct llist
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78 #ifdef CONFIG_PARAVIRT
79 #include <asm/paravirt.h>
80 #endif
81
82 #include "sched_cpupri.h"
83 #include "workqueue_sched.h"
84 #include "sched_autogroup.h"
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/sched.h>
88
89 /*
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 * and back.
93 */
94 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97
98 /*
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
102 */
103 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106
107 /*
108 * Helpers for converting nanosecond timing to jiffy resolution
109 */
110 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
111
112 #define NICE_0_LOAD SCHED_LOAD_SCALE
113 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
114
115 /*
116 * These are the 'tuning knobs' of the scheduler:
117 *
118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
119 * Timeslices get refilled after they expire.
120 */
121 #define DEF_TIMESLICE (100 * HZ / 1000)
122
123 /*
124 * single value that denotes runtime == period, ie unlimited time.
125 */
126 #define RUNTIME_INF ((u64)~0ULL)
127
128 static inline int rt_policy(int policy)
129 {
130 if (policy == SCHED_FIFO || policy == SCHED_RR)
131 return 1;
132 return 0;
133 }
134
135 static inline int task_has_rt_policy(struct task_struct *p)
136 {
137 return rt_policy(p->policy);
138 }
139
140 /*
141 * This is the priority-queue data structure of the RT scheduling class:
142 */
143 struct rt_prio_array {
144 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
145 struct list_head queue[MAX_RT_PRIO];
146 };
147
148 struct rt_bandwidth {
149 /* nests inside the rq lock: */
150 raw_spinlock_t rt_runtime_lock;
151 ktime_t rt_period;
152 u64 rt_runtime;
153 struct hrtimer rt_period_timer;
154 };
155
156 static struct rt_bandwidth def_rt_bandwidth;
157
158 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
159
160 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
161 {
162 struct rt_bandwidth *rt_b =
163 container_of(timer, struct rt_bandwidth, rt_period_timer);
164 ktime_t now;
165 int overrun;
166 int idle = 0;
167
168 for (;;) {
169 now = hrtimer_cb_get_time(timer);
170 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
171
172 if (!overrun)
173 break;
174
175 idle = do_sched_rt_period_timer(rt_b, overrun);
176 }
177
178 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179 }
180
181 static
182 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
183 {
184 rt_b->rt_period = ns_to_ktime(period);
185 rt_b->rt_runtime = runtime;
186
187 raw_spin_lock_init(&rt_b->rt_runtime_lock);
188
189 hrtimer_init(&rt_b->rt_period_timer,
190 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
191 rt_b->rt_period_timer.function = sched_rt_period_timer;
192 }
193
194 static inline int rt_bandwidth_enabled(void)
195 {
196 return sysctl_sched_rt_runtime >= 0;
197 }
198
199 static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
200 {
201 unsigned long delta;
202 ktime_t soft, hard, now;
203
204 for (;;) {
205 if (hrtimer_active(period_timer))
206 break;
207
208 now = hrtimer_cb_get_time(period_timer);
209 hrtimer_forward(period_timer, now, period);
210
211 soft = hrtimer_get_softexpires(period_timer);
212 hard = hrtimer_get_expires(period_timer);
213 delta = ktime_to_ns(ktime_sub(hard, soft));
214 __hrtimer_start_range_ns(period_timer, soft, delta,
215 HRTIMER_MODE_ABS_PINNED, 0);
216 }
217 }
218
219 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220 {
221 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
222 return;
223
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 return;
226
227 raw_spin_lock(&rt_b->rt_runtime_lock);
228 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
229 raw_spin_unlock(&rt_b->rt_runtime_lock);
230 }
231
232 #ifdef CONFIG_RT_GROUP_SCHED
233 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
234 {
235 hrtimer_cancel(&rt_b->rt_period_timer);
236 }
237 #endif
238
239 /*
240 * sched_domains_mutex serializes calls to init_sched_domains,
241 * detach_destroy_domains and partition_sched_domains.
242 */
243 static DEFINE_MUTEX(sched_domains_mutex);
244
245 #ifdef CONFIG_CGROUP_SCHED
246
247 #include <linux/cgroup.h>
248
249 struct cfs_rq;
250
251 static LIST_HEAD(task_groups);
252
253 struct cfs_bandwidth {
254 #ifdef CONFIG_CFS_BANDWIDTH
255 raw_spinlock_t lock;
256 ktime_t period;
257 u64 quota, runtime;
258 s64 hierarchal_quota;
259 u64 runtime_expires;
260
261 int idle, timer_active;
262 struct hrtimer period_timer, slack_timer;
263 struct list_head throttled_cfs_rq;
264
265 /* statistics */
266 int nr_periods, nr_throttled;
267 u64 throttled_time;
268 #endif
269 };
270
271 /* task group related information */
272 struct task_group {
273 struct cgroup_subsys_state css;
274
275 #ifdef CONFIG_FAIR_GROUP_SCHED
276 /* schedulable entities of this group on each cpu */
277 struct sched_entity **se;
278 /* runqueue "owned" by this group on each cpu */
279 struct cfs_rq **cfs_rq;
280 unsigned long shares;
281
282 atomic_t load_weight;
283 #endif
284
285 #ifdef CONFIG_RT_GROUP_SCHED
286 struct sched_rt_entity **rt_se;
287 struct rt_rq **rt_rq;
288
289 struct rt_bandwidth rt_bandwidth;
290 #endif
291
292 struct rcu_head rcu;
293 struct list_head list;
294
295 struct task_group *parent;
296 struct list_head siblings;
297 struct list_head children;
298
299 #ifdef CONFIG_SCHED_AUTOGROUP
300 struct autogroup *autogroup;
301 #endif
302
303 struct cfs_bandwidth cfs_bandwidth;
304 };
305
306 /* task_group_lock serializes the addition/removal of task groups */
307 static DEFINE_SPINLOCK(task_group_lock);
308
309 #ifdef CONFIG_FAIR_GROUP_SCHED
310
311 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
312
313 /*
314 * A weight of 0 or 1 can cause arithmetics problems.
315 * A weight of a cfs_rq is the sum of weights of which entities
316 * are queued on this cfs_rq, so a weight of a entity should not be
317 * too large, so as the shares value of a task group.
318 * (The default weight is 1024 - so there's no practical
319 * limitation from this.)
320 */
321 #define MIN_SHARES (1UL << 1)
322 #define MAX_SHARES (1UL << 18)
323
324 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
325 #endif
326
327 /* Default task group.
328 * Every task in system belong to this group at bootup.
329 */
330 struct task_group root_task_group;
331
332 #endif /* CONFIG_CGROUP_SCHED */
333
334 /* CFS-related fields in a runqueue */
335 struct cfs_rq {
336 struct load_weight load;
337 unsigned long nr_running, h_nr_running;
338
339 u64 exec_clock;
340 u64 min_vruntime;
341 #ifndef CONFIG_64BIT
342 u64 min_vruntime_copy;
343 #endif
344
345 struct rb_root tasks_timeline;
346 struct rb_node *rb_leftmost;
347
348 struct list_head tasks;
349 struct list_head *balance_iterator;
350
351 /*
352 * 'curr' points to currently running entity on this cfs_rq.
353 * It is set to NULL otherwise (i.e when none are currently running).
354 */
355 struct sched_entity *curr, *next, *last, *skip;
356
357 #ifdef CONFIG_SCHED_DEBUG
358 unsigned int nr_spread_over;
359 #endif
360
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
363
364 /*
365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
367 * (like users, containers etc.)
368 *
369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
370 * list is used during load balance.
371 */
372 int on_list;
373 struct list_head leaf_cfs_rq_list;
374 struct task_group *tg; /* group that "owns" this runqueue */
375
376 #ifdef CONFIG_SMP
377 /*
378 * the part of load.weight contributed by tasks
379 */
380 unsigned long task_weight;
381
382 /*
383 * h_load = weight * f(tg)
384 *
385 * Where f(tg) is the recursive weight fraction assigned to
386 * this group.
387 */
388 unsigned long h_load;
389
390 /*
391 * Maintaining per-cpu shares distribution for group scheduling
392 *
393 * load_stamp is the last time we updated the load average
394 * load_last is the last time we updated the load average and saw load
395 * load_unacc_exec_time is currently unaccounted execution time
396 */
397 u64 load_avg;
398 u64 load_period;
399 u64 load_stamp, load_last, load_unacc_exec_time;
400
401 unsigned long load_contribution;
402 #endif
403 #ifdef CONFIG_CFS_BANDWIDTH
404 int runtime_enabled;
405 u64 runtime_expires;
406 s64 runtime_remaining;
407
408 u64 throttled_timestamp;
409 int throttled, throttle_count;
410 struct list_head throttled_list;
411 #endif
412 #endif
413 };
414
415 #ifdef CONFIG_FAIR_GROUP_SCHED
416 #ifdef CONFIG_CFS_BANDWIDTH
417 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
418 {
419 return &tg->cfs_bandwidth;
420 }
421
422 static inline u64 default_cfs_period(void);
423 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
424 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
425
426 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
427 {
428 struct cfs_bandwidth *cfs_b =
429 container_of(timer, struct cfs_bandwidth, slack_timer);
430 do_sched_cfs_slack_timer(cfs_b);
431
432 return HRTIMER_NORESTART;
433 }
434
435 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
436 {
437 struct cfs_bandwidth *cfs_b =
438 container_of(timer, struct cfs_bandwidth, period_timer);
439 ktime_t now;
440 int overrun;
441 int idle = 0;
442
443 for (;;) {
444 now = hrtimer_cb_get_time(timer);
445 overrun = hrtimer_forward(timer, now, cfs_b->period);
446
447 if (!overrun)
448 break;
449
450 idle = do_sched_cfs_period_timer(cfs_b, overrun);
451 }
452
453 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
454 }
455
456 static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
457 {
458 raw_spin_lock_init(&cfs_b->lock);
459 cfs_b->runtime = 0;
460 cfs_b->quota = RUNTIME_INF;
461 cfs_b->period = ns_to_ktime(default_cfs_period());
462
463 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
464 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
465 cfs_b->period_timer.function = sched_cfs_period_timer;
466 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
467 cfs_b->slack_timer.function = sched_cfs_slack_timer;
468 }
469
470 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
471 {
472 cfs_rq->runtime_enabled = 0;
473 INIT_LIST_HEAD(&cfs_rq->throttled_list);
474 }
475
476 /* requires cfs_b->lock, may release to reprogram timer */
477 static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
478 {
479 /*
480 * The timer may be active because we're trying to set a new bandwidth
481 * period or because we're racing with the tear-down path
482 * (timer_active==0 becomes visible before the hrtimer call-back
483 * terminates). In either case we ensure that it's re-programmed
484 */
485 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
486 raw_spin_unlock(&cfs_b->lock);
487 /* ensure cfs_b->lock is available while we wait */
488 hrtimer_cancel(&cfs_b->period_timer);
489
490 raw_spin_lock(&cfs_b->lock);
491 /* if someone else restarted the timer then we're done */
492 if (cfs_b->timer_active)
493 return;
494 }
495
496 cfs_b->timer_active = 1;
497 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
498 }
499
500 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
501 {
502 hrtimer_cancel(&cfs_b->period_timer);
503 hrtimer_cancel(&cfs_b->slack_timer);
504 }
505 #else
506 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
507 static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
508 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
509
510 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
511 {
512 return NULL;
513 }
514 #endif /* CONFIG_CFS_BANDWIDTH */
515 #endif /* CONFIG_FAIR_GROUP_SCHED */
516
517 /* Real-Time classes' related field in a runqueue: */
518 struct rt_rq {
519 struct rt_prio_array active;
520 unsigned long rt_nr_running;
521 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
522 struct {
523 int curr; /* highest queued rt task prio */
524 #ifdef CONFIG_SMP
525 int next; /* next highest */
526 #endif
527 } highest_prio;
528 #endif
529 #ifdef CONFIG_SMP
530 unsigned long rt_nr_migratory;
531 unsigned long rt_nr_total;
532 int overloaded;
533 struct plist_head pushable_tasks;
534 #endif
535 int rt_throttled;
536 u64 rt_time;
537 u64 rt_runtime;
538 /* Nests inside the rq lock: */
539 raw_spinlock_t rt_runtime_lock;
540
541 #ifdef CONFIG_RT_GROUP_SCHED
542 unsigned long rt_nr_boosted;
543
544 struct rq *rq;
545 struct list_head leaf_rt_rq_list;
546 struct task_group *tg;
547 #endif
548 };
549
550 #ifdef CONFIG_SMP
551
552 /*
553 * We add the notion of a root-domain which will be used to define per-domain
554 * variables. Each exclusive cpuset essentially defines an island domain by
555 * fully partitioning the member cpus from any other cpuset. Whenever a new
556 * exclusive cpuset is created, we also create and attach a new root-domain
557 * object.
558 *
559 */
560 struct root_domain {
561 atomic_t refcount;
562 atomic_t rto_count;
563 struct rcu_head rcu;
564 cpumask_var_t span;
565 cpumask_var_t online;
566
567 /*
568 * The "RT overload" flag: it gets set if a CPU has more than
569 * one runnable RT task.
570 */
571 cpumask_var_t rto_mask;
572 struct cpupri cpupri;
573 };
574
575 /*
576 * By default the system creates a single root-domain with all cpus as
577 * members (mimicking the global state we have today).
578 */
579 static struct root_domain def_root_domain;
580
581 #endif /* CONFIG_SMP */
582
583 /*
584 * This is the main, per-CPU runqueue data structure.
585 *
586 * Locking rule: those places that want to lock multiple runqueues
587 * (such as the load balancing or the thread migration code), lock
588 * acquire operations must be ordered by ascending &runqueue.
589 */
590 struct rq {
591 /* runqueue lock: */
592 raw_spinlock_t lock;
593
594 /*
595 * nr_running and cpu_load should be in the same cacheline because
596 * remote CPUs use both these fields when doing load calculation.
597 */
598 unsigned long nr_running;
599 #define CPU_LOAD_IDX_MAX 5
600 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
601 unsigned long last_load_update_tick;
602 #ifdef CONFIG_NO_HZ
603 u64 nohz_stamp;
604 unsigned char nohz_balance_kick;
605 #endif
606 int skip_clock_update;
607
608 /* capture load from *all* tasks on this cpu: */
609 struct load_weight load;
610 unsigned long nr_load_updates;
611 u64 nr_switches;
612
613 struct cfs_rq cfs;
614 struct rt_rq rt;
615
616 #ifdef CONFIG_FAIR_GROUP_SCHED
617 /* list of leaf cfs_rq on this cpu: */
618 struct list_head leaf_cfs_rq_list;
619 #endif
620 #ifdef CONFIG_RT_GROUP_SCHED
621 struct list_head leaf_rt_rq_list;
622 #endif
623
624 /*
625 * This is part of a global counter where only the total sum
626 * over all CPUs matters. A task can increase this counter on
627 * one CPU and if it got migrated afterwards it may decrease
628 * it on another CPU. Always updated under the runqueue lock:
629 */
630 unsigned long nr_uninterruptible;
631
632 struct task_struct *curr, *idle, *stop;
633 unsigned long next_balance;
634 struct mm_struct *prev_mm;
635
636 u64 clock;
637 u64 clock_task;
638
639 atomic_t nr_iowait;
640
641 #ifdef CONFIG_SMP
642 struct root_domain *rd;
643 struct sched_domain *sd;
644
645 unsigned long cpu_power;
646
647 unsigned char idle_at_tick;
648 /* For active balancing */
649 int post_schedule;
650 int active_balance;
651 int push_cpu;
652 struct cpu_stop_work active_balance_work;
653 /* cpu of this runqueue: */
654 int cpu;
655 int online;
656
657 u64 rt_avg;
658 u64 age_stamp;
659 u64 idle_stamp;
660 u64 avg_idle;
661 #endif
662
663 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
664 u64 prev_irq_time;
665 #endif
666 #ifdef CONFIG_PARAVIRT
667 u64 prev_steal_time;
668 #endif
669 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
670 u64 prev_steal_time_rq;
671 #endif
672
673 /* calc_load related fields */
674 unsigned long calc_load_update;
675 long calc_load_active;
676
677 #ifdef CONFIG_SCHED_HRTICK
678 #ifdef CONFIG_SMP
679 int hrtick_csd_pending;
680 struct call_single_data hrtick_csd;
681 #endif
682 struct hrtimer hrtick_timer;
683 #endif
684
685 #ifdef CONFIG_SCHEDSTATS
686 /* latency stats */
687 struct sched_info rq_sched_info;
688 unsigned long long rq_cpu_time;
689 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
690
691 /* sys_sched_yield() stats */
692 unsigned int yld_count;
693
694 /* schedule() stats */
695 unsigned int sched_switch;
696 unsigned int sched_count;
697 unsigned int sched_goidle;
698
699 /* try_to_wake_up() stats */
700 unsigned int ttwu_count;
701 unsigned int ttwu_local;
702 #endif
703
704 #ifdef CONFIG_SMP
705 struct llist_head wake_list;
706 #endif
707 };
708
709 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
710
711
712 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
713
714 static inline int cpu_of(struct rq *rq)
715 {
716 #ifdef CONFIG_SMP
717 return rq->cpu;
718 #else
719 return 0;
720 #endif
721 }
722
723 #define rcu_dereference_check_sched_domain(p) \
724 rcu_dereference_check((p), \
725 lockdep_is_held(&sched_domains_mutex))
726
727 /*
728 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
729 * See detach_destroy_domains: synchronize_sched for details.
730 *
731 * The domain tree of any CPU may only be accessed from within
732 * preempt-disabled sections.
733 */
734 #define for_each_domain(cpu, __sd) \
735 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
736
737 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
738 #define this_rq() (&__get_cpu_var(runqueues))
739 #define task_rq(p) cpu_rq(task_cpu(p))
740 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
741 #define raw_rq() (&__raw_get_cpu_var(runqueues))
742
743 #ifdef CONFIG_CGROUP_SCHED
744
745 /*
746 * Return the group to which this tasks belongs.
747 *
748 * We use task_subsys_state_check() and extend the RCU verification with
749 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
750 * task it moves into the cgroup. Therefore by holding either of those locks,
751 * we pin the task to the current cgroup.
752 */
753 static inline struct task_group *task_group(struct task_struct *p)
754 {
755 struct task_group *tg;
756 struct cgroup_subsys_state *css;
757
758 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
759 lockdep_is_held(&p->pi_lock) ||
760 lockdep_is_held(&task_rq(p)->lock));
761 tg = container_of(css, struct task_group, css);
762
763 return autogroup_task_group(p, tg);
764 }
765
766 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
767 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
768 {
769 #ifdef CONFIG_FAIR_GROUP_SCHED
770 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
771 p->se.parent = task_group(p)->se[cpu];
772 #endif
773
774 #ifdef CONFIG_RT_GROUP_SCHED
775 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
776 p->rt.parent = task_group(p)->rt_se[cpu];
777 #endif
778 }
779
780 #else /* CONFIG_CGROUP_SCHED */
781
782 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
783 static inline struct task_group *task_group(struct task_struct *p)
784 {
785 return NULL;
786 }
787
788 #endif /* CONFIG_CGROUP_SCHED */
789
790 static void update_rq_clock_task(struct rq *rq, s64 delta);
791
792 static void update_rq_clock(struct rq *rq)
793 {
794 s64 delta;
795
796 if (rq->skip_clock_update > 0)
797 return;
798
799 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
800 rq->clock += delta;
801 update_rq_clock_task(rq, delta);
802 }
803
804 /*
805 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
806 */
807 #ifdef CONFIG_SCHED_DEBUG
808 # define const_debug __read_mostly
809 #else
810 # define const_debug static const
811 #endif
812
813 /**
814 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
815 * @cpu: the processor in question.
816 *
817 * This interface allows printk to be called with the runqueue lock
818 * held and know whether or not it is OK to wake up the klogd.
819 */
820 int runqueue_is_locked(int cpu)
821 {
822 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
823 }
824
825 /*
826 * Debugging: various feature bits
827 */
828
829 #define SCHED_FEAT(name, enabled) \
830 __SCHED_FEAT_##name ,
831
832 enum {
833 #include "sched_features.h"
834 };
835
836 #undef SCHED_FEAT
837
838 #define SCHED_FEAT(name, enabled) \
839 (1UL << __SCHED_FEAT_##name) * enabled |
840
841 const_debug unsigned int sysctl_sched_features =
842 #include "sched_features.h"
843 0;
844
845 #undef SCHED_FEAT
846
847 #ifdef CONFIG_SCHED_DEBUG
848 #define SCHED_FEAT(name, enabled) \
849 #name ,
850
851 static __read_mostly char *sched_feat_names[] = {
852 #include "sched_features.h"
853 NULL
854 };
855
856 #undef SCHED_FEAT
857
858 static int sched_feat_show(struct seq_file *m, void *v)
859 {
860 int i;
861
862 for (i = 0; sched_feat_names[i]; i++) {
863 if (!(sysctl_sched_features & (1UL << i)))
864 seq_puts(m, "NO_");
865 seq_printf(m, "%s ", sched_feat_names[i]);
866 }
867 seq_puts(m, "\n");
868
869 return 0;
870 }
871
872 static ssize_t
873 sched_feat_write(struct file *filp, const char __user *ubuf,
874 size_t cnt, loff_t *ppos)
875 {
876 char buf[64];
877 char *cmp;
878 int neg = 0;
879 int i;
880
881 if (cnt > 63)
882 cnt = 63;
883
884 if (copy_from_user(&buf, ubuf, cnt))
885 return -EFAULT;
886
887 buf[cnt] = 0;
888 cmp = strstrip(buf);
889
890 if (strncmp(cmp, "NO_", 3) == 0) {
891 neg = 1;
892 cmp += 3;
893 }
894
895 for (i = 0; sched_feat_names[i]; i++) {
896 if (strcmp(cmp, sched_feat_names[i]) == 0) {
897 if (neg)
898 sysctl_sched_features &= ~(1UL << i);
899 else
900 sysctl_sched_features |= (1UL << i);
901 break;
902 }
903 }
904
905 if (!sched_feat_names[i])
906 return -EINVAL;
907
908 *ppos += cnt;
909
910 return cnt;
911 }
912
913 static int sched_feat_open(struct inode *inode, struct file *filp)
914 {
915 return single_open(filp, sched_feat_show, NULL);
916 }
917
918 static const struct file_operations sched_feat_fops = {
919 .open = sched_feat_open,
920 .write = sched_feat_write,
921 .read = seq_read,
922 .llseek = seq_lseek,
923 .release = single_release,
924 };
925
926 static __init int sched_init_debug(void)
927 {
928 debugfs_create_file("sched_features", 0644, NULL, NULL,
929 &sched_feat_fops);
930
931 return 0;
932 }
933 late_initcall(sched_init_debug);
934
935 #endif
936
937 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
938
939 /*
940 * Number of tasks to iterate in a single balance run.
941 * Limited because this is done with IRQs disabled.
942 */
943 const_debug unsigned int sysctl_sched_nr_migrate = 32;
944
945 /*
946 * period over which we average the RT time consumption, measured
947 * in ms.
948 *
949 * default: 1s
950 */
951 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
952
953 /*
954 * period over which we measure -rt task cpu usage in us.
955 * default: 1s
956 */
957 unsigned int sysctl_sched_rt_period = 1000000;
958
959 static __read_mostly int scheduler_running;
960
961 /*
962 * part of the period that we allow rt tasks to run in us.
963 * default: 0.95s
964 */
965 int sysctl_sched_rt_runtime = 950000;
966
967 static inline u64 global_rt_period(void)
968 {
969 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
970 }
971
972 static inline u64 global_rt_runtime(void)
973 {
974 if (sysctl_sched_rt_runtime < 0)
975 return RUNTIME_INF;
976
977 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
978 }
979
980 #ifndef prepare_arch_switch
981 # define prepare_arch_switch(next) do { } while (0)
982 #endif
983 #ifndef finish_arch_switch
984 # define finish_arch_switch(prev) do { } while (0)
985 #endif
986
987 static inline int task_current(struct rq *rq, struct task_struct *p)
988 {
989 return rq->curr == p;
990 }
991
992 static inline int task_running(struct rq *rq, struct task_struct *p)
993 {
994 #ifdef CONFIG_SMP
995 return p->on_cpu;
996 #else
997 return task_current(rq, p);
998 #endif
999 }
1000
1001 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1002 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1003 {
1004 #ifdef CONFIG_SMP
1005 /*
1006 * We can optimise this out completely for !SMP, because the
1007 * SMP rebalancing from interrupt is the only thing that cares
1008 * here.
1009 */
1010 next->on_cpu = 1;
1011 #endif
1012 }
1013
1014 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1015 {
1016 #ifdef CONFIG_SMP
1017 /*
1018 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1019 * We must ensure this doesn't happen until the switch is completely
1020 * finished.
1021 */
1022 smp_wmb();
1023 prev->on_cpu = 0;
1024 #endif
1025 #ifdef CONFIG_DEBUG_SPINLOCK
1026 /* this is a valid case when another task releases the spinlock */
1027 rq->lock.owner = current;
1028 #endif
1029 /*
1030 * If we are tracking spinlock dependencies then we have to
1031 * fix up the runqueue lock - which gets 'carried over' from
1032 * prev into current:
1033 */
1034 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1035
1036 raw_spin_unlock_irq(&rq->lock);
1037 }
1038
1039 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1040 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1041 {
1042 #ifdef CONFIG_SMP
1043 /*
1044 * We can optimise this out completely for !SMP, because the
1045 * SMP rebalancing from interrupt is the only thing that cares
1046 * here.
1047 */
1048 next->on_cpu = 1;
1049 #endif
1050 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1051 raw_spin_unlock_irq(&rq->lock);
1052 #else
1053 raw_spin_unlock(&rq->lock);
1054 #endif
1055 }
1056
1057 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1058 {
1059 #ifdef CONFIG_SMP
1060 /*
1061 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1062 * We must ensure this doesn't happen until the switch is completely
1063 * finished.
1064 */
1065 smp_wmb();
1066 prev->on_cpu = 0;
1067 #endif
1068 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1069 local_irq_enable();
1070 #endif
1071 }
1072 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1073
1074 /*
1075 * __task_rq_lock - lock the rq @p resides on.
1076 */
1077 static inline struct rq *__task_rq_lock(struct task_struct *p)
1078 __acquires(rq->lock)
1079 {
1080 struct rq *rq;
1081
1082 lockdep_assert_held(&p->pi_lock);
1083
1084 for (;;) {
1085 rq = task_rq(p);
1086 raw_spin_lock(&rq->lock);
1087 if (likely(rq == task_rq(p)))
1088 return rq;
1089 raw_spin_unlock(&rq->lock);
1090 }
1091 }
1092
1093 /*
1094 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1095 */
1096 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1097 __acquires(p->pi_lock)
1098 __acquires(rq->lock)
1099 {
1100 struct rq *rq;
1101
1102 for (;;) {
1103 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1104 rq = task_rq(p);
1105 raw_spin_lock(&rq->lock);
1106 if (likely(rq == task_rq(p)))
1107 return rq;
1108 raw_spin_unlock(&rq->lock);
1109 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1110 }
1111 }
1112
1113 static void __task_rq_unlock(struct rq *rq)
1114 __releases(rq->lock)
1115 {
1116 raw_spin_unlock(&rq->lock);
1117 }
1118
1119 static inline void
1120 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1121 __releases(rq->lock)
1122 __releases(p->pi_lock)
1123 {
1124 raw_spin_unlock(&rq->lock);
1125 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1126 }
1127
1128 /*
1129 * this_rq_lock - lock this runqueue and disable interrupts.
1130 */
1131 static struct rq *this_rq_lock(void)
1132 __acquires(rq->lock)
1133 {
1134 struct rq *rq;
1135
1136 local_irq_disable();
1137 rq = this_rq();
1138 raw_spin_lock(&rq->lock);
1139
1140 return rq;
1141 }
1142
1143 #ifdef CONFIG_SCHED_HRTICK
1144 /*
1145 * Use HR-timers to deliver accurate preemption points.
1146 *
1147 * Its all a bit involved since we cannot program an hrt while holding the
1148 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1149 * reschedule event.
1150 *
1151 * When we get rescheduled we reprogram the hrtick_timer outside of the
1152 * rq->lock.
1153 */
1154
1155 /*
1156 * Use hrtick when:
1157 * - enabled by features
1158 * - hrtimer is actually high res
1159 */
1160 static inline int hrtick_enabled(struct rq *rq)
1161 {
1162 if (!sched_feat(HRTICK))
1163 return 0;
1164 if (!cpu_active(cpu_of(rq)))
1165 return 0;
1166 return hrtimer_is_hres_active(&rq->hrtick_timer);
1167 }
1168
1169 static void hrtick_clear(struct rq *rq)
1170 {
1171 if (hrtimer_active(&rq->hrtick_timer))
1172 hrtimer_cancel(&rq->hrtick_timer);
1173 }
1174
1175 /*
1176 * High-resolution timer tick.
1177 * Runs from hardirq context with interrupts disabled.
1178 */
1179 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1180 {
1181 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1182
1183 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1184
1185 raw_spin_lock(&rq->lock);
1186 update_rq_clock(rq);
1187 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1188 raw_spin_unlock(&rq->lock);
1189
1190 return HRTIMER_NORESTART;
1191 }
1192
1193 #ifdef CONFIG_SMP
1194 /*
1195 * called from hardirq (IPI) context
1196 */
1197 static void __hrtick_start(void *arg)
1198 {
1199 struct rq *rq = arg;
1200
1201 raw_spin_lock(&rq->lock);
1202 hrtimer_restart(&rq->hrtick_timer);
1203 rq->hrtick_csd_pending = 0;
1204 raw_spin_unlock(&rq->lock);
1205 }
1206
1207 /*
1208 * Called to set the hrtick timer state.
1209 *
1210 * called with rq->lock held and irqs disabled
1211 */
1212 static void hrtick_start(struct rq *rq, u64 delay)
1213 {
1214 struct hrtimer *timer = &rq->hrtick_timer;
1215 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1216
1217 hrtimer_set_expires(timer, time);
1218
1219 if (rq == this_rq()) {
1220 hrtimer_restart(timer);
1221 } else if (!rq->hrtick_csd_pending) {
1222 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1223 rq->hrtick_csd_pending = 1;
1224 }
1225 }
1226
1227 static int
1228 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1229 {
1230 int cpu = (int)(long)hcpu;
1231
1232 switch (action) {
1233 case CPU_UP_CANCELED:
1234 case CPU_UP_CANCELED_FROZEN:
1235 case CPU_DOWN_PREPARE:
1236 case CPU_DOWN_PREPARE_FROZEN:
1237 case CPU_DEAD:
1238 case CPU_DEAD_FROZEN:
1239 hrtick_clear(cpu_rq(cpu));
1240 return NOTIFY_OK;
1241 }
1242
1243 return NOTIFY_DONE;
1244 }
1245
1246 static __init void init_hrtick(void)
1247 {
1248 hotcpu_notifier(hotplug_hrtick, 0);
1249 }
1250 #else
1251 /*
1252 * Called to set the hrtick timer state.
1253 *
1254 * called with rq->lock held and irqs disabled
1255 */
1256 static void hrtick_start(struct rq *rq, u64 delay)
1257 {
1258 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1259 HRTIMER_MODE_REL_PINNED, 0);
1260 }
1261
1262 static inline void init_hrtick(void)
1263 {
1264 }
1265 #endif /* CONFIG_SMP */
1266
1267 static void init_rq_hrtick(struct rq *rq)
1268 {
1269 #ifdef CONFIG_SMP
1270 rq->hrtick_csd_pending = 0;
1271
1272 rq->hrtick_csd.flags = 0;
1273 rq->hrtick_csd.func = __hrtick_start;
1274 rq->hrtick_csd.info = rq;
1275 #endif
1276
1277 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1278 rq->hrtick_timer.function = hrtick;
1279 }
1280 #else /* CONFIG_SCHED_HRTICK */
1281 static inline void hrtick_clear(struct rq *rq)
1282 {
1283 }
1284
1285 static inline void init_rq_hrtick(struct rq *rq)
1286 {
1287 }
1288
1289 static inline void init_hrtick(void)
1290 {
1291 }
1292 #endif /* CONFIG_SCHED_HRTICK */
1293
1294 /*
1295 * resched_task - mark a task 'to be rescheduled now'.
1296 *
1297 * On UP this means the setting of the need_resched flag, on SMP it
1298 * might also involve a cross-CPU call to trigger the scheduler on
1299 * the target CPU.
1300 */
1301 #ifdef CONFIG_SMP
1302
1303 #ifndef tsk_is_polling
1304 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1305 #endif
1306
1307 static void resched_task(struct task_struct *p)
1308 {
1309 int cpu;
1310
1311 assert_raw_spin_locked(&task_rq(p)->lock);
1312
1313 if (test_tsk_need_resched(p))
1314 return;
1315
1316 set_tsk_need_resched(p);
1317
1318 cpu = task_cpu(p);
1319 if (cpu == smp_processor_id())
1320 return;
1321
1322 /* NEED_RESCHED must be visible before we test polling */
1323 smp_mb();
1324 if (!tsk_is_polling(p))
1325 smp_send_reschedule(cpu);
1326 }
1327
1328 static void resched_cpu(int cpu)
1329 {
1330 struct rq *rq = cpu_rq(cpu);
1331 unsigned long flags;
1332
1333 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1334 return;
1335 resched_task(cpu_curr(cpu));
1336 raw_spin_unlock_irqrestore(&rq->lock, flags);
1337 }
1338
1339 #ifdef CONFIG_NO_HZ
1340 /*
1341 * In the semi idle case, use the nearest busy cpu for migrating timers
1342 * from an idle cpu. This is good for power-savings.
1343 *
1344 * We don't do similar optimization for completely idle system, as
1345 * selecting an idle cpu will add more delays to the timers than intended
1346 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1347 */
1348 int get_nohz_timer_target(void)
1349 {
1350 int cpu = smp_processor_id();
1351 int i;
1352 struct sched_domain *sd;
1353
1354 rcu_read_lock();
1355 for_each_domain(cpu, sd) {
1356 for_each_cpu(i, sched_domain_span(sd)) {
1357 if (!idle_cpu(i)) {
1358 cpu = i;
1359 goto unlock;
1360 }
1361 }
1362 }
1363 unlock:
1364 rcu_read_unlock();
1365 return cpu;
1366 }
1367 /*
1368 * When add_timer_on() enqueues a timer into the timer wheel of an
1369 * idle CPU then this timer might expire before the next timer event
1370 * which is scheduled to wake up that CPU. In case of a completely
1371 * idle system the next event might even be infinite time into the
1372 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1373 * leaves the inner idle loop so the newly added timer is taken into
1374 * account when the CPU goes back to idle and evaluates the timer
1375 * wheel for the next timer event.
1376 */
1377 void wake_up_idle_cpu(int cpu)
1378 {
1379 struct rq *rq = cpu_rq(cpu);
1380
1381 if (cpu == smp_processor_id())
1382 return;
1383
1384 /*
1385 * This is safe, as this function is called with the timer
1386 * wheel base lock of (cpu) held. When the CPU is on the way
1387 * to idle and has not yet set rq->curr to idle then it will
1388 * be serialized on the timer wheel base lock and take the new
1389 * timer into account automatically.
1390 */
1391 if (rq->curr != rq->idle)
1392 return;
1393
1394 /*
1395 * We can set TIF_RESCHED on the idle task of the other CPU
1396 * lockless. The worst case is that the other CPU runs the
1397 * idle task through an additional NOOP schedule()
1398 */
1399 set_tsk_need_resched(rq->idle);
1400
1401 /* NEED_RESCHED must be visible before we test polling */
1402 smp_mb();
1403 if (!tsk_is_polling(rq->idle))
1404 smp_send_reschedule(cpu);
1405 }
1406
1407 #endif /* CONFIG_NO_HZ */
1408
1409 static u64 sched_avg_period(void)
1410 {
1411 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1412 }
1413
1414 static void sched_avg_update(struct rq *rq)
1415 {
1416 s64 period = sched_avg_period();
1417
1418 while ((s64)(rq->clock - rq->age_stamp) > period) {
1419 /*
1420 * Inline assembly required to prevent the compiler
1421 * optimising this loop into a divmod call.
1422 * See __iter_div_u64_rem() for another example of this.
1423 */
1424 asm("" : "+rm" (rq->age_stamp));
1425 rq->age_stamp += period;
1426 rq->rt_avg /= 2;
1427 }
1428 }
1429
1430 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1431 {
1432 rq->rt_avg += rt_delta;
1433 sched_avg_update(rq);
1434 }
1435
1436 #else /* !CONFIG_SMP */
1437 static void resched_task(struct task_struct *p)
1438 {
1439 assert_raw_spin_locked(&task_rq(p)->lock);
1440 set_tsk_need_resched(p);
1441 }
1442
1443 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1444 {
1445 }
1446
1447 static void sched_avg_update(struct rq *rq)
1448 {
1449 }
1450 #endif /* CONFIG_SMP */
1451
1452 #if BITS_PER_LONG == 32
1453 # define WMULT_CONST (~0UL)
1454 #else
1455 # define WMULT_CONST (1UL << 32)
1456 #endif
1457
1458 #define WMULT_SHIFT 32
1459
1460 /*
1461 * Shift right and round:
1462 */
1463 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1464
1465 /*
1466 * delta *= weight / lw
1467 */
1468 static unsigned long
1469 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1470 struct load_weight *lw)
1471 {
1472 u64 tmp;
1473
1474 /*
1475 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1476 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1477 * 2^SCHED_LOAD_RESOLUTION.
1478 */
1479 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1480 tmp = (u64)delta_exec * scale_load_down(weight);
1481 else
1482 tmp = (u64)delta_exec;
1483
1484 if (!lw->inv_weight) {
1485 unsigned long w = scale_load_down(lw->weight);
1486
1487 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1488 lw->inv_weight = 1;
1489 else if (unlikely(!w))
1490 lw->inv_weight = WMULT_CONST;
1491 else
1492 lw->inv_weight = WMULT_CONST / w;
1493 }
1494
1495 /*
1496 * Check whether we'd overflow the 64-bit multiplication:
1497 */
1498 if (unlikely(tmp > WMULT_CONST))
1499 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1500 WMULT_SHIFT/2);
1501 else
1502 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1503
1504 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1505 }
1506
1507 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1508 {
1509 lw->weight += inc;
1510 lw->inv_weight = 0;
1511 }
1512
1513 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1514 {
1515 lw->weight -= dec;
1516 lw->inv_weight = 0;
1517 }
1518
1519 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1520 {
1521 lw->weight = w;
1522 lw->inv_weight = 0;
1523 }
1524
1525 /*
1526 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1527 * of tasks with abnormal "nice" values across CPUs the contribution that
1528 * each task makes to its run queue's load is weighted according to its
1529 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1530 * scaled version of the new time slice allocation that they receive on time
1531 * slice expiry etc.
1532 */
1533
1534 #define WEIGHT_IDLEPRIO 3
1535 #define WMULT_IDLEPRIO 1431655765
1536
1537 /*
1538 * Nice levels are multiplicative, with a gentle 10% change for every
1539 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1540 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1541 * that remained on nice 0.
1542 *
1543 * The "10% effect" is relative and cumulative: from _any_ nice level,
1544 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1545 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1546 * If a task goes up by ~10% and another task goes down by ~10% then
1547 * the relative distance between them is ~25%.)
1548 */
1549 static const int prio_to_weight[40] = {
1550 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1551 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1552 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1553 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1554 /* 0 */ 1024, 820, 655, 526, 423,
1555 /* 5 */ 335, 272, 215, 172, 137,
1556 /* 10 */ 110, 87, 70, 56, 45,
1557 /* 15 */ 36, 29, 23, 18, 15,
1558 };
1559
1560 /*
1561 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1562 *
1563 * In cases where the weight does not change often, we can use the
1564 * precalculated inverse to speed up arithmetics by turning divisions
1565 * into multiplications:
1566 */
1567 static const u32 prio_to_wmult[40] = {
1568 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1569 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1570 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1571 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1572 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1573 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1574 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1575 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1576 };
1577
1578 /* Time spent by the tasks of the cpu accounting group executing in ... */
1579 enum cpuacct_stat_index {
1580 CPUACCT_STAT_USER, /* ... user mode */
1581 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1582
1583 CPUACCT_STAT_NSTATS,
1584 };
1585
1586 #ifdef CONFIG_CGROUP_CPUACCT
1587 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1588 static void cpuacct_update_stats(struct task_struct *tsk,
1589 enum cpuacct_stat_index idx, cputime_t val);
1590 #else
1591 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1592 static inline void cpuacct_update_stats(struct task_struct *tsk,
1593 enum cpuacct_stat_index idx, cputime_t val) {}
1594 #endif
1595
1596 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1597 {
1598 update_load_add(&rq->load, load);
1599 }
1600
1601 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1602 {
1603 update_load_sub(&rq->load, load);
1604 }
1605
1606 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1607 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1608 typedef int (*tg_visitor)(struct task_group *, void *);
1609
1610 /*
1611 * Iterate task_group tree rooted at *from, calling @down when first entering a
1612 * node and @up when leaving it for the final time.
1613 *
1614 * Caller must hold rcu_lock or sufficient equivalent.
1615 */
1616 static int walk_tg_tree_from(struct task_group *from,
1617 tg_visitor down, tg_visitor up, void *data)
1618 {
1619 struct task_group *parent, *child;
1620 int ret;
1621
1622 parent = from;
1623
1624 down:
1625 ret = (*down)(parent, data);
1626 if (ret)
1627 goto out;
1628 list_for_each_entry_rcu(child, &parent->children, siblings) {
1629 parent = child;
1630 goto down;
1631
1632 up:
1633 continue;
1634 }
1635 ret = (*up)(parent, data);
1636 if (ret || parent == from)
1637 goto out;
1638
1639 child = parent;
1640 parent = parent->parent;
1641 if (parent)
1642 goto up;
1643 out:
1644 return ret;
1645 }
1646
1647 /*
1648 * Iterate the full tree, calling @down when first entering a node and @up when
1649 * leaving it for the final time.
1650 *
1651 * Caller must hold rcu_lock or sufficient equivalent.
1652 */
1653
1654 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1655 {
1656 return walk_tg_tree_from(&root_task_group, down, up, data);
1657 }
1658
1659 static int tg_nop(struct task_group *tg, void *data)
1660 {
1661 return 0;
1662 }
1663 #endif
1664
1665 #ifdef CONFIG_SMP
1666 /* Used instead of source_load when we know the type == 0 */
1667 static unsigned long weighted_cpuload(const int cpu)
1668 {
1669 return cpu_rq(cpu)->load.weight;
1670 }
1671
1672 /*
1673 * Return a low guess at the load of a migration-source cpu weighted
1674 * according to the scheduling class and "nice" value.
1675 *
1676 * We want to under-estimate the load of migration sources, to
1677 * balance conservatively.
1678 */
1679 static unsigned long source_load(int cpu, int type)
1680 {
1681 struct rq *rq = cpu_rq(cpu);
1682 unsigned long total = weighted_cpuload(cpu);
1683
1684 if (type == 0 || !sched_feat(LB_BIAS))
1685 return total;
1686
1687 return min(rq->cpu_load[type-1], total);
1688 }
1689
1690 /*
1691 * Return a high guess at the load of a migration-target cpu weighted
1692 * according to the scheduling class and "nice" value.
1693 */
1694 static unsigned long target_load(int cpu, int type)
1695 {
1696 struct rq *rq = cpu_rq(cpu);
1697 unsigned long total = weighted_cpuload(cpu);
1698
1699 if (type == 0 || !sched_feat(LB_BIAS))
1700 return total;
1701
1702 return max(rq->cpu_load[type-1], total);
1703 }
1704
1705 static unsigned long power_of(int cpu)
1706 {
1707 return cpu_rq(cpu)->cpu_power;
1708 }
1709
1710 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1711
1712 static unsigned long cpu_avg_load_per_task(int cpu)
1713 {
1714 struct rq *rq = cpu_rq(cpu);
1715 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1716
1717 if (nr_running)
1718 return rq->load.weight / nr_running;
1719
1720 return 0;
1721 }
1722
1723 #ifdef CONFIG_PREEMPT
1724
1725 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1726
1727 /*
1728 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1729 * way at the expense of forcing extra atomic operations in all
1730 * invocations. This assures that the double_lock is acquired using the
1731 * same underlying policy as the spinlock_t on this architecture, which
1732 * reduces latency compared to the unfair variant below. However, it
1733 * also adds more overhead and therefore may reduce throughput.
1734 */
1735 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1736 __releases(this_rq->lock)
1737 __acquires(busiest->lock)
1738 __acquires(this_rq->lock)
1739 {
1740 raw_spin_unlock(&this_rq->lock);
1741 double_rq_lock(this_rq, busiest);
1742
1743 return 1;
1744 }
1745
1746 #else
1747 /*
1748 * Unfair double_lock_balance: Optimizes throughput at the expense of
1749 * latency by eliminating extra atomic operations when the locks are
1750 * already in proper order on entry. This favors lower cpu-ids and will
1751 * grant the double lock to lower cpus over higher ids under contention,
1752 * regardless of entry order into the function.
1753 */
1754 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1755 __releases(this_rq->lock)
1756 __acquires(busiest->lock)
1757 __acquires(this_rq->lock)
1758 {
1759 int ret = 0;
1760
1761 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1762 if (busiest < this_rq) {
1763 raw_spin_unlock(&this_rq->lock);
1764 raw_spin_lock(&busiest->lock);
1765 raw_spin_lock_nested(&this_rq->lock,
1766 SINGLE_DEPTH_NESTING);
1767 ret = 1;
1768 } else
1769 raw_spin_lock_nested(&busiest->lock,
1770 SINGLE_DEPTH_NESTING);
1771 }
1772 return ret;
1773 }
1774
1775 #endif /* CONFIG_PREEMPT */
1776
1777 /*
1778 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1779 */
1780 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1781 {
1782 if (unlikely(!irqs_disabled())) {
1783 /* printk() doesn't work good under rq->lock */
1784 raw_spin_unlock(&this_rq->lock);
1785 BUG_ON(1);
1786 }
1787
1788 return _double_lock_balance(this_rq, busiest);
1789 }
1790
1791 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1792 __releases(busiest->lock)
1793 {
1794 raw_spin_unlock(&busiest->lock);
1795 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1796 }
1797
1798 /*
1799 * double_rq_lock - safely lock two runqueues
1800 *
1801 * Note this does not disable interrupts like task_rq_lock,
1802 * you need to do so manually before calling.
1803 */
1804 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1805 __acquires(rq1->lock)
1806 __acquires(rq2->lock)
1807 {
1808 BUG_ON(!irqs_disabled());
1809 if (rq1 == rq2) {
1810 raw_spin_lock(&rq1->lock);
1811 __acquire(rq2->lock); /* Fake it out ;) */
1812 } else {
1813 if (rq1 < rq2) {
1814 raw_spin_lock(&rq1->lock);
1815 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1816 } else {
1817 raw_spin_lock(&rq2->lock);
1818 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1819 }
1820 }
1821 }
1822
1823 /*
1824 * double_rq_unlock - safely unlock two runqueues
1825 *
1826 * Note this does not restore interrupts like task_rq_unlock,
1827 * you need to do so manually after calling.
1828 */
1829 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1830 __releases(rq1->lock)
1831 __releases(rq2->lock)
1832 {
1833 raw_spin_unlock(&rq1->lock);
1834 if (rq1 != rq2)
1835 raw_spin_unlock(&rq2->lock);
1836 else
1837 __release(rq2->lock);
1838 }
1839
1840 #else /* CONFIG_SMP */
1841
1842 /*
1843 * double_rq_lock - safely lock two runqueues
1844 *
1845 * Note this does not disable interrupts like task_rq_lock,
1846 * you need to do so manually before calling.
1847 */
1848 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1849 __acquires(rq1->lock)
1850 __acquires(rq2->lock)
1851 {
1852 BUG_ON(!irqs_disabled());
1853 BUG_ON(rq1 != rq2);
1854 raw_spin_lock(&rq1->lock);
1855 __acquire(rq2->lock); /* Fake it out ;) */
1856 }
1857
1858 /*
1859 * double_rq_unlock - safely unlock two runqueues
1860 *
1861 * Note this does not restore interrupts like task_rq_unlock,
1862 * you need to do so manually after calling.
1863 */
1864 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1865 __releases(rq1->lock)
1866 __releases(rq2->lock)
1867 {
1868 BUG_ON(rq1 != rq2);
1869 raw_spin_unlock(&rq1->lock);
1870 __release(rq2->lock);
1871 }
1872
1873 #endif
1874
1875 static void calc_load_account_idle(struct rq *this_rq);
1876 static void update_sysctl(void);
1877 static int get_update_sysctl_factor(void);
1878 static void update_cpu_load(struct rq *this_rq);
1879
1880 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1881 {
1882 set_task_rq(p, cpu);
1883 #ifdef CONFIG_SMP
1884 /*
1885 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1886 * successfuly executed on another CPU. We must ensure that updates of
1887 * per-task data have been completed by this moment.
1888 */
1889 smp_wmb();
1890 task_thread_info(p)->cpu = cpu;
1891 #endif
1892 }
1893
1894 static const struct sched_class rt_sched_class;
1895
1896 #define sched_class_highest (&stop_sched_class)
1897 #define for_each_class(class) \
1898 for (class = sched_class_highest; class; class = class->next)
1899
1900 #include "sched_stats.h"
1901
1902 static void inc_nr_running(struct rq *rq)
1903 {
1904 rq->nr_running++;
1905 }
1906
1907 static void dec_nr_running(struct rq *rq)
1908 {
1909 rq->nr_running--;
1910 }
1911
1912 static void set_load_weight(struct task_struct *p)
1913 {
1914 int prio = p->static_prio - MAX_RT_PRIO;
1915 struct load_weight *load = &p->se.load;
1916
1917 /*
1918 * SCHED_IDLE tasks get minimal weight:
1919 */
1920 if (p->policy == SCHED_IDLE) {
1921 load->weight = scale_load(WEIGHT_IDLEPRIO);
1922 load->inv_weight = WMULT_IDLEPRIO;
1923 return;
1924 }
1925
1926 load->weight = scale_load(prio_to_weight[prio]);
1927 load->inv_weight = prio_to_wmult[prio];
1928 }
1929
1930 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1931 {
1932 update_rq_clock(rq);
1933 sched_info_queued(p);
1934 p->sched_class->enqueue_task(rq, p, flags);
1935 }
1936
1937 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1938 {
1939 update_rq_clock(rq);
1940 sched_info_dequeued(p);
1941 p->sched_class->dequeue_task(rq, p, flags);
1942 }
1943
1944 /*
1945 * activate_task - move a task to the runqueue.
1946 */
1947 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1948 {
1949 if (task_contributes_to_load(p))
1950 rq->nr_uninterruptible--;
1951
1952 enqueue_task(rq, p, flags);
1953 }
1954
1955 /*
1956 * deactivate_task - remove a task from the runqueue.
1957 */
1958 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1959 {
1960 if (task_contributes_to_load(p))
1961 rq->nr_uninterruptible++;
1962
1963 dequeue_task(rq, p, flags);
1964 }
1965
1966 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1967
1968 /*
1969 * There are no locks covering percpu hardirq/softirq time.
1970 * They are only modified in account_system_vtime, on corresponding CPU
1971 * with interrupts disabled. So, writes are safe.
1972 * They are read and saved off onto struct rq in update_rq_clock().
1973 * This may result in other CPU reading this CPU's irq time and can
1974 * race with irq/account_system_vtime on this CPU. We would either get old
1975 * or new value with a side effect of accounting a slice of irq time to wrong
1976 * task when irq is in progress while we read rq->clock. That is a worthy
1977 * compromise in place of having locks on each irq in account_system_time.
1978 */
1979 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1980 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1981
1982 static DEFINE_PER_CPU(u64, irq_start_time);
1983 static int sched_clock_irqtime;
1984
1985 void enable_sched_clock_irqtime(void)
1986 {
1987 sched_clock_irqtime = 1;
1988 }
1989
1990 void disable_sched_clock_irqtime(void)
1991 {
1992 sched_clock_irqtime = 0;
1993 }
1994
1995 #ifndef CONFIG_64BIT
1996 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1997
1998 static inline void irq_time_write_begin(void)
1999 {
2000 __this_cpu_inc(irq_time_seq.sequence);
2001 smp_wmb();
2002 }
2003
2004 static inline void irq_time_write_end(void)
2005 {
2006 smp_wmb();
2007 __this_cpu_inc(irq_time_seq.sequence);
2008 }
2009
2010 static inline u64 irq_time_read(int cpu)
2011 {
2012 u64 irq_time;
2013 unsigned seq;
2014
2015 do {
2016 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
2017 irq_time = per_cpu(cpu_softirq_time, cpu) +
2018 per_cpu(cpu_hardirq_time, cpu);
2019 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
2020
2021 return irq_time;
2022 }
2023 #else /* CONFIG_64BIT */
2024 static inline void irq_time_write_begin(void)
2025 {
2026 }
2027
2028 static inline void irq_time_write_end(void)
2029 {
2030 }
2031
2032 static inline u64 irq_time_read(int cpu)
2033 {
2034 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
2035 }
2036 #endif /* CONFIG_64BIT */
2037
2038 /*
2039 * Called before incrementing preempt_count on {soft,}irq_enter
2040 * and before decrementing preempt_count on {soft,}irq_exit.
2041 */
2042 void account_system_vtime(struct task_struct *curr)
2043 {
2044 unsigned long flags;
2045 s64 delta;
2046 int cpu;
2047
2048 if (!sched_clock_irqtime)
2049 return;
2050
2051 local_irq_save(flags);
2052
2053 cpu = smp_processor_id();
2054 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2055 __this_cpu_add(irq_start_time, delta);
2056
2057 irq_time_write_begin();
2058 /*
2059 * We do not account for softirq time from ksoftirqd here.
2060 * We want to continue accounting softirq time to ksoftirqd thread
2061 * in that case, so as not to confuse scheduler with a special task
2062 * that do not consume any time, but still wants to run.
2063 */
2064 if (hardirq_count())
2065 __this_cpu_add(cpu_hardirq_time, delta);
2066 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
2067 __this_cpu_add(cpu_softirq_time, delta);
2068
2069 irq_time_write_end();
2070 local_irq_restore(flags);
2071 }
2072 EXPORT_SYMBOL_GPL(account_system_vtime);
2073
2074 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2075
2076 #ifdef CONFIG_PARAVIRT
2077 static inline u64 steal_ticks(u64 steal)
2078 {
2079 if (unlikely(steal > NSEC_PER_SEC))
2080 return div_u64(steal, TICK_NSEC);
2081
2082 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
2083 }
2084 #endif
2085
2086 static void update_rq_clock_task(struct rq *rq, s64 delta)
2087 {
2088 /*
2089 * In theory, the compile should just see 0 here, and optimize out the call
2090 * to sched_rt_avg_update. But I don't trust it...
2091 */
2092 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2093 s64 steal = 0, irq_delta = 0;
2094 #endif
2095 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2096 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
2097
2098 /*
2099 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2100 * this case when a previous update_rq_clock() happened inside a
2101 * {soft,}irq region.
2102 *
2103 * When this happens, we stop ->clock_task and only update the
2104 * prev_irq_time stamp to account for the part that fit, so that a next
2105 * update will consume the rest. This ensures ->clock_task is
2106 * monotonic.
2107 *
2108 * It does however cause some slight miss-attribution of {soft,}irq
2109 * time, a more accurate solution would be to update the irq_time using
2110 * the current rq->clock timestamp, except that would require using
2111 * atomic ops.
2112 */
2113 if (irq_delta > delta)
2114 irq_delta = delta;
2115
2116 rq->prev_irq_time += irq_delta;
2117 delta -= irq_delta;
2118 #endif
2119 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2120 if (static_branch((&paravirt_steal_rq_enabled))) {
2121 u64 st;
2122
2123 steal = paravirt_steal_clock(cpu_of(rq));
2124 steal -= rq->prev_steal_time_rq;
2125
2126 if (unlikely(steal > delta))
2127 steal = delta;
2128
2129 st = steal_ticks(steal);
2130 steal = st * TICK_NSEC;
2131
2132 rq->prev_steal_time_rq += steal;
2133
2134 delta -= steal;
2135 }
2136 #endif
2137
2138 rq->clock_task += delta;
2139
2140 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2141 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2142 sched_rt_avg_update(rq, irq_delta + steal);
2143 #endif
2144 }
2145
2146 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2147 static int irqtime_account_hi_update(void)
2148 {
2149 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2150 unsigned long flags;
2151 u64 latest_ns;
2152 int ret = 0;
2153
2154 local_irq_save(flags);
2155 latest_ns = this_cpu_read(cpu_hardirq_time);
2156 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2157 ret = 1;
2158 local_irq_restore(flags);
2159 return ret;
2160 }
2161
2162 static int irqtime_account_si_update(void)
2163 {
2164 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2165 unsigned long flags;
2166 u64 latest_ns;
2167 int ret = 0;
2168
2169 local_irq_save(flags);
2170 latest_ns = this_cpu_read(cpu_softirq_time);
2171 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2172 ret = 1;
2173 local_irq_restore(flags);
2174 return ret;
2175 }
2176
2177 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2178
2179 #define sched_clock_irqtime (0)
2180
2181 #endif
2182
2183 #include "sched_idletask.c"
2184 #include "sched_fair.c"
2185 #include "sched_rt.c"
2186 #include "sched_autogroup.c"
2187 #include "sched_stoptask.c"
2188 #ifdef CONFIG_SCHED_DEBUG
2189 # include "sched_debug.c"
2190 #endif
2191
2192 void sched_set_stop_task(int cpu, struct task_struct *stop)
2193 {
2194 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2195 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2196
2197 if (stop) {
2198 /*
2199 * Make it appear like a SCHED_FIFO task, its something
2200 * userspace knows about and won't get confused about.
2201 *
2202 * Also, it will make PI more or less work without too
2203 * much confusion -- but then, stop work should not
2204 * rely on PI working anyway.
2205 */
2206 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2207
2208 stop->sched_class = &stop_sched_class;
2209 }
2210
2211 cpu_rq(cpu)->stop = stop;
2212
2213 if (old_stop) {
2214 /*
2215 * Reset it back to a normal scheduling class so that
2216 * it can die in pieces.
2217 */
2218 old_stop->sched_class = &rt_sched_class;
2219 }
2220 }
2221
2222 /*
2223 * __normal_prio - return the priority that is based on the static prio
2224 */
2225 static inline int __normal_prio(struct task_struct *p)
2226 {
2227 return p->static_prio;
2228 }
2229
2230 /*
2231 * Calculate the expected normal priority: i.e. priority
2232 * without taking RT-inheritance into account. Might be
2233 * boosted by interactivity modifiers. Changes upon fork,
2234 * setprio syscalls, and whenever the interactivity
2235 * estimator recalculates.
2236 */
2237 static inline int normal_prio(struct task_struct *p)
2238 {
2239 int prio;
2240
2241 if (task_has_rt_policy(p))
2242 prio = MAX_RT_PRIO-1 - p->rt_priority;
2243 else
2244 prio = __normal_prio(p);
2245 return prio;
2246 }
2247
2248 /*
2249 * Calculate the current priority, i.e. the priority
2250 * taken into account by the scheduler. This value might
2251 * be boosted by RT tasks, or might be boosted by
2252 * interactivity modifiers. Will be RT if the task got
2253 * RT-boosted. If not then it returns p->normal_prio.
2254 */
2255 static int effective_prio(struct task_struct *p)
2256 {
2257 p->normal_prio = normal_prio(p);
2258 /*
2259 * If we are RT tasks or we were boosted to RT priority,
2260 * keep the priority unchanged. Otherwise, update priority
2261 * to the normal priority:
2262 */
2263 if (!rt_prio(p->prio))
2264 return p->normal_prio;
2265 return p->prio;
2266 }
2267
2268 /**
2269 * task_curr - is this task currently executing on a CPU?
2270 * @p: the task in question.
2271 */
2272 inline int task_curr(const struct task_struct *p)
2273 {
2274 return cpu_curr(task_cpu(p)) == p;
2275 }
2276
2277 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2278 const struct sched_class *prev_class,
2279 int oldprio)
2280 {
2281 if (prev_class != p->sched_class) {
2282 if (prev_class->switched_from)
2283 prev_class->switched_from(rq, p);
2284 p->sched_class->switched_to(rq, p);
2285 } else if (oldprio != p->prio)
2286 p->sched_class->prio_changed(rq, p, oldprio);
2287 }
2288
2289 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2290 {
2291 const struct sched_class *class;
2292
2293 if (p->sched_class == rq->curr->sched_class) {
2294 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2295 } else {
2296 for_each_class(class) {
2297 if (class == rq->curr->sched_class)
2298 break;
2299 if (class == p->sched_class) {
2300 resched_task(rq->curr);
2301 break;
2302 }
2303 }
2304 }
2305
2306 /*
2307 * A queue event has occurred, and we're going to schedule. In
2308 * this case, we can save a useless back to back clock update.
2309 */
2310 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2311 rq->skip_clock_update = 1;
2312 }
2313
2314 #ifdef CONFIG_SMP
2315 /*
2316 * Is this task likely cache-hot:
2317 */
2318 static int
2319 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2320 {
2321 s64 delta;
2322
2323 if (p->sched_class != &fair_sched_class)
2324 return 0;
2325
2326 if (unlikely(p->policy == SCHED_IDLE))
2327 return 0;
2328
2329 /*
2330 * Buddy candidates are cache hot:
2331 */
2332 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2333 (&p->se == cfs_rq_of(&p->se)->next ||
2334 &p->se == cfs_rq_of(&p->se)->last))
2335 return 1;
2336
2337 if (sysctl_sched_migration_cost == -1)
2338 return 1;
2339 if (sysctl_sched_migration_cost == 0)
2340 return 0;
2341
2342 delta = now - p->se.exec_start;
2343
2344 return delta < (s64)sysctl_sched_migration_cost;
2345 }
2346
2347 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2348 {
2349 #ifdef CONFIG_SCHED_DEBUG
2350 /*
2351 * We should never call set_task_cpu() on a blocked task,
2352 * ttwu() will sort out the placement.
2353 */
2354 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2355 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2356
2357 #ifdef CONFIG_LOCKDEP
2358 /*
2359 * The caller should hold either p->pi_lock or rq->lock, when changing
2360 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2361 *
2362 * sched_move_task() holds both and thus holding either pins the cgroup,
2363 * see set_task_rq().
2364 *
2365 * Furthermore, all task_rq users should acquire both locks, see
2366 * task_rq_lock().
2367 */
2368 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2369 lockdep_is_held(&task_rq(p)->lock)));
2370 #endif
2371 #endif
2372
2373 trace_sched_migrate_task(p, new_cpu);
2374
2375 if (task_cpu(p) != new_cpu) {
2376 p->se.nr_migrations++;
2377 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
2378 }
2379
2380 __set_task_cpu(p, new_cpu);
2381 }
2382
2383 struct migration_arg {
2384 struct task_struct *task;
2385 int dest_cpu;
2386 };
2387
2388 static int migration_cpu_stop(void *data);
2389
2390 /*
2391 * wait_task_inactive - wait for a thread to unschedule.
2392 *
2393 * If @match_state is nonzero, it's the @p->state value just checked and
2394 * not expected to change. If it changes, i.e. @p might have woken up,
2395 * then return zero. When we succeed in waiting for @p to be off its CPU,
2396 * we return a positive number (its total switch count). If a second call
2397 * a short while later returns the same number, the caller can be sure that
2398 * @p has remained unscheduled the whole time.
2399 *
2400 * The caller must ensure that the task *will* unschedule sometime soon,
2401 * else this function might spin for a *long* time. This function can't
2402 * be called with interrupts off, or it may introduce deadlock with
2403 * smp_call_function() if an IPI is sent by the same process we are
2404 * waiting to become inactive.
2405 */
2406 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2407 {
2408 unsigned long flags;
2409 int running, on_rq;
2410 unsigned long ncsw;
2411 struct rq *rq;
2412
2413 for (;;) {
2414 /*
2415 * We do the initial early heuristics without holding
2416 * any task-queue locks at all. We'll only try to get
2417 * the runqueue lock when things look like they will
2418 * work out!
2419 */
2420 rq = task_rq(p);
2421
2422 /*
2423 * If the task is actively running on another CPU
2424 * still, just relax and busy-wait without holding
2425 * any locks.
2426 *
2427 * NOTE! Since we don't hold any locks, it's not
2428 * even sure that "rq" stays as the right runqueue!
2429 * But we don't care, since "task_running()" will
2430 * return false if the runqueue has changed and p
2431 * is actually now running somewhere else!
2432 */
2433 while (task_running(rq, p)) {
2434 if (match_state && unlikely(p->state != match_state))
2435 return 0;
2436 cpu_relax();
2437 }
2438
2439 /*
2440 * Ok, time to look more closely! We need the rq
2441 * lock now, to be *sure*. If we're wrong, we'll
2442 * just go back and repeat.
2443 */
2444 rq = task_rq_lock(p, &flags);
2445 trace_sched_wait_task(p);
2446 running = task_running(rq, p);
2447 on_rq = p->on_rq;
2448 ncsw = 0;
2449 if (!match_state || p->state == match_state)
2450 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2451 task_rq_unlock(rq, p, &flags);
2452
2453 /*
2454 * If it changed from the expected state, bail out now.
2455 */
2456 if (unlikely(!ncsw))
2457 break;
2458
2459 /*
2460 * Was it really running after all now that we
2461 * checked with the proper locks actually held?
2462 *
2463 * Oops. Go back and try again..
2464 */
2465 if (unlikely(running)) {
2466 cpu_relax();
2467 continue;
2468 }
2469
2470 /*
2471 * It's not enough that it's not actively running,
2472 * it must be off the runqueue _entirely_, and not
2473 * preempted!
2474 *
2475 * So if it was still runnable (but just not actively
2476 * running right now), it's preempted, and we should
2477 * yield - it could be a while.
2478 */
2479 if (unlikely(on_rq)) {
2480 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2481
2482 set_current_state(TASK_UNINTERRUPTIBLE);
2483 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2484 continue;
2485 }
2486
2487 /*
2488 * Ahh, all good. It wasn't running, and it wasn't
2489 * runnable, which means that it will never become
2490 * running in the future either. We're all done!
2491 */
2492 break;
2493 }
2494
2495 return ncsw;
2496 }
2497
2498 /***
2499 * kick_process - kick a running thread to enter/exit the kernel
2500 * @p: the to-be-kicked thread
2501 *
2502 * Cause a process which is running on another CPU to enter
2503 * kernel-mode, without any delay. (to get signals handled.)
2504 *
2505 * NOTE: this function doesn't have to take the runqueue lock,
2506 * because all it wants to ensure is that the remote task enters
2507 * the kernel. If the IPI races and the task has been migrated
2508 * to another CPU then no harm is done and the purpose has been
2509 * achieved as well.
2510 */
2511 void kick_process(struct task_struct *p)
2512 {
2513 int cpu;
2514
2515 preempt_disable();
2516 cpu = task_cpu(p);
2517 if ((cpu != smp_processor_id()) && task_curr(p))
2518 smp_send_reschedule(cpu);
2519 preempt_enable();
2520 }
2521 EXPORT_SYMBOL_GPL(kick_process);
2522 #endif /* CONFIG_SMP */
2523
2524 #ifdef CONFIG_SMP
2525 /*
2526 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2527 */
2528 static int select_fallback_rq(int cpu, struct task_struct *p)
2529 {
2530 int dest_cpu;
2531 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2532
2533 /* Look for allowed, online CPU in same node. */
2534 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2535 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2536 return dest_cpu;
2537
2538 /* Any allowed, online CPU? */
2539 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2540 if (dest_cpu < nr_cpu_ids)
2541 return dest_cpu;
2542
2543 /* No more Mr. Nice Guy. */
2544 dest_cpu = cpuset_cpus_allowed_fallback(p);
2545 /*
2546 * Don't tell them about moving exiting tasks or
2547 * kernel threads (both mm NULL), since they never
2548 * leave kernel.
2549 */
2550 if (p->mm && printk_ratelimit()) {
2551 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2552 task_pid_nr(p), p->comm, cpu);
2553 }
2554
2555 return dest_cpu;
2556 }
2557
2558 /*
2559 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2560 */
2561 static inline
2562 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2563 {
2564 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2565
2566 /*
2567 * In order not to call set_task_cpu() on a blocking task we need
2568 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2569 * cpu.
2570 *
2571 * Since this is common to all placement strategies, this lives here.
2572 *
2573 * [ this allows ->select_task() to simply return task_cpu(p) and
2574 * not worry about this generic constraint ]
2575 */
2576 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2577 !cpu_online(cpu)))
2578 cpu = select_fallback_rq(task_cpu(p), p);
2579
2580 return cpu;
2581 }
2582
2583 static void update_avg(u64 *avg, u64 sample)
2584 {
2585 s64 diff = sample - *avg;
2586 *avg += diff >> 3;
2587 }
2588 #endif
2589
2590 static void
2591 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2592 {
2593 #ifdef CONFIG_SCHEDSTATS
2594 struct rq *rq = this_rq();
2595
2596 #ifdef CONFIG_SMP
2597 int this_cpu = smp_processor_id();
2598
2599 if (cpu == this_cpu) {
2600 schedstat_inc(rq, ttwu_local);
2601 schedstat_inc(p, se.statistics.nr_wakeups_local);
2602 } else {
2603 struct sched_domain *sd;
2604
2605 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2606 rcu_read_lock();
2607 for_each_domain(this_cpu, sd) {
2608 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2609 schedstat_inc(sd, ttwu_wake_remote);
2610 break;
2611 }
2612 }
2613 rcu_read_unlock();
2614 }
2615
2616 if (wake_flags & WF_MIGRATED)
2617 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2618
2619 #endif /* CONFIG_SMP */
2620
2621 schedstat_inc(rq, ttwu_count);
2622 schedstat_inc(p, se.statistics.nr_wakeups);
2623
2624 if (wake_flags & WF_SYNC)
2625 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2626
2627 #endif /* CONFIG_SCHEDSTATS */
2628 }
2629
2630 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2631 {
2632 activate_task(rq, p, en_flags);
2633 p->on_rq = 1;
2634
2635 /* if a worker is waking up, notify workqueue */
2636 if (p->flags & PF_WQ_WORKER)
2637 wq_worker_waking_up(p, cpu_of(rq));
2638 }
2639
2640 /*
2641 * Mark the task runnable and perform wakeup-preemption.
2642 */
2643 static void
2644 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2645 {
2646 trace_sched_wakeup(p, true);
2647 check_preempt_curr(rq, p, wake_flags);
2648
2649 p->state = TASK_RUNNING;
2650 #ifdef CONFIG_SMP
2651 if (p->sched_class->task_woken)
2652 p->sched_class->task_woken(rq, p);
2653
2654 if (rq->idle_stamp) {
2655 u64 delta = rq->clock - rq->idle_stamp;
2656 u64 max = 2*sysctl_sched_migration_cost;
2657
2658 if (delta > max)
2659 rq->avg_idle = max;
2660 else
2661 update_avg(&rq->avg_idle, delta);
2662 rq->idle_stamp = 0;
2663 }
2664 #endif
2665 }
2666
2667 static void
2668 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2669 {
2670 #ifdef CONFIG_SMP
2671 if (p->sched_contributes_to_load)
2672 rq->nr_uninterruptible--;
2673 #endif
2674
2675 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2676 ttwu_do_wakeup(rq, p, wake_flags);
2677 }
2678
2679 /*
2680 * Called in case the task @p isn't fully descheduled from its runqueue,
2681 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2682 * since all we need to do is flip p->state to TASK_RUNNING, since
2683 * the task is still ->on_rq.
2684 */
2685 static int ttwu_remote(struct task_struct *p, int wake_flags)
2686 {
2687 struct rq *rq;
2688 int ret = 0;
2689
2690 rq = __task_rq_lock(p);
2691 if (p->on_rq) {
2692 ttwu_do_wakeup(rq, p, wake_flags);
2693 ret = 1;
2694 }
2695 __task_rq_unlock(rq);
2696
2697 return ret;
2698 }
2699
2700 #ifdef CONFIG_SMP
2701 static void sched_ttwu_pending(void)
2702 {
2703 struct rq *rq = this_rq();
2704 struct llist_node *llist = llist_del_all(&rq->wake_list);
2705 struct task_struct *p;
2706
2707 raw_spin_lock(&rq->lock);
2708
2709 while (llist) {
2710 p = llist_entry(llist, struct task_struct, wake_entry);
2711 llist = llist_next(llist);
2712 ttwu_do_activate(rq, p, 0);
2713 }
2714
2715 raw_spin_unlock(&rq->lock);
2716 }
2717
2718 void scheduler_ipi(void)
2719 {
2720 if (llist_empty(&this_rq()->wake_list))
2721 return;
2722
2723 /*
2724 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2725 * traditionally all their work was done from the interrupt return
2726 * path. Now that we actually do some work, we need to make sure
2727 * we do call them.
2728 *
2729 * Some archs already do call them, luckily irq_enter/exit nest
2730 * properly.
2731 *
2732 * Arguably we should visit all archs and update all handlers,
2733 * however a fair share of IPIs are still resched only so this would
2734 * somewhat pessimize the simple resched case.
2735 */
2736 irq_enter();
2737 sched_ttwu_pending();
2738 irq_exit();
2739 }
2740
2741 static void ttwu_queue_remote(struct task_struct *p, int cpu)
2742 {
2743 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
2744 smp_send_reschedule(cpu);
2745 }
2746
2747 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2748 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2749 {
2750 struct rq *rq;
2751 int ret = 0;
2752
2753 rq = __task_rq_lock(p);
2754 if (p->on_cpu) {
2755 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2756 ttwu_do_wakeup(rq, p, wake_flags);
2757 ret = 1;
2758 }
2759 __task_rq_unlock(rq);
2760
2761 return ret;
2762
2763 }
2764 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2765 #endif /* CONFIG_SMP */
2766
2767 static void ttwu_queue(struct task_struct *p, int cpu)
2768 {
2769 struct rq *rq = cpu_rq(cpu);
2770
2771 #if defined(CONFIG_SMP)
2772 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2773 sched_clock_cpu(cpu); /* sync clocks x-cpu */
2774 ttwu_queue_remote(p, cpu);
2775 return;
2776 }
2777 #endif
2778
2779 raw_spin_lock(&rq->lock);
2780 ttwu_do_activate(rq, p, 0);
2781 raw_spin_unlock(&rq->lock);
2782 }
2783
2784 /**
2785 * try_to_wake_up - wake up a thread
2786 * @p: the thread to be awakened
2787 * @state: the mask of task states that can be woken
2788 * @wake_flags: wake modifier flags (WF_*)
2789 *
2790 * Put it on the run-queue if it's not already there. The "current"
2791 * thread is always on the run-queue (except when the actual
2792 * re-schedule is in progress), and as such you're allowed to do
2793 * the simpler "current->state = TASK_RUNNING" to mark yourself
2794 * runnable without the overhead of this.
2795 *
2796 * Returns %true if @p was woken up, %false if it was already running
2797 * or @state didn't match @p's state.
2798 */
2799 static int
2800 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2801 {
2802 unsigned long flags;
2803 int cpu, success = 0;
2804
2805 smp_wmb();
2806 raw_spin_lock_irqsave(&p->pi_lock, flags);
2807 if (!(p->state & state))
2808 goto out;
2809
2810 success = 1; /* we're going to change ->state */
2811 cpu = task_cpu(p);
2812
2813 if (p->on_rq && ttwu_remote(p, wake_flags))
2814 goto stat;
2815
2816 #ifdef CONFIG_SMP
2817 /*
2818 * If the owning (remote) cpu is still in the middle of schedule() with
2819 * this task as prev, wait until its done referencing the task.
2820 */
2821 while (p->on_cpu) {
2822 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2823 /*
2824 * In case the architecture enables interrupts in
2825 * context_switch(), we cannot busy wait, since that
2826 * would lead to deadlocks when an interrupt hits and
2827 * tries to wake up @prev. So bail and do a complete
2828 * remote wakeup.
2829 */
2830 if (ttwu_activate_remote(p, wake_flags))
2831 goto stat;
2832 #else
2833 cpu_relax();
2834 #endif
2835 }
2836 /*
2837 * Pairs with the smp_wmb() in finish_lock_switch().
2838 */
2839 smp_rmb();
2840
2841 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2842 p->state = TASK_WAKING;
2843
2844 if (p->sched_class->task_waking)
2845 p->sched_class->task_waking(p);
2846
2847 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2848 if (task_cpu(p) != cpu) {
2849 wake_flags |= WF_MIGRATED;
2850 set_task_cpu(p, cpu);
2851 }
2852 #endif /* CONFIG_SMP */
2853
2854 ttwu_queue(p, cpu);
2855 stat:
2856 ttwu_stat(p, cpu, wake_flags);
2857 out:
2858 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2859
2860 return success;
2861 }
2862
2863 /**
2864 * try_to_wake_up_local - try to wake up a local task with rq lock held
2865 * @p: the thread to be awakened
2866 *
2867 * Put @p on the run-queue if it's not already there. The caller must
2868 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2869 * the current task.
2870 */
2871 static void try_to_wake_up_local(struct task_struct *p)
2872 {
2873 struct rq *rq = task_rq(p);
2874
2875 BUG_ON(rq != this_rq());
2876 BUG_ON(p == current);
2877 lockdep_assert_held(&rq->lock);
2878
2879 if (!raw_spin_trylock(&p->pi_lock)) {
2880 raw_spin_unlock(&rq->lock);
2881 raw_spin_lock(&p->pi_lock);
2882 raw_spin_lock(&rq->lock);
2883 }
2884
2885 if (!(p->state & TASK_NORMAL))
2886 goto out;
2887
2888 if (!p->on_rq)
2889 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2890
2891 ttwu_do_wakeup(rq, p, 0);
2892 ttwu_stat(p, smp_processor_id(), 0);
2893 out:
2894 raw_spin_unlock(&p->pi_lock);
2895 }
2896
2897 /**
2898 * wake_up_process - Wake up a specific process
2899 * @p: The process to be woken up.
2900 *
2901 * Attempt to wake up the nominated process and move it to the set of runnable
2902 * processes. Returns 1 if the process was woken up, 0 if it was already
2903 * running.
2904 *
2905 * It may be assumed that this function implies a write memory barrier before
2906 * changing the task state if and only if any tasks are woken up.
2907 */
2908 int wake_up_process(struct task_struct *p)
2909 {
2910 return try_to_wake_up(p, TASK_ALL, 0);
2911 }
2912 EXPORT_SYMBOL(wake_up_process);
2913
2914 int wake_up_state(struct task_struct *p, unsigned int state)
2915 {
2916 return try_to_wake_up(p, state, 0);
2917 }
2918
2919 /*
2920 * Perform scheduler related setup for a newly forked process p.
2921 * p is forked by current.
2922 *
2923 * __sched_fork() is basic setup used by init_idle() too:
2924 */
2925 static void __sched_fork(struct task_struct *p)
2926 {
2927 p->on_rq = 0;
2928
2929 p->se.on_rq = 0;
2930 p->se.exec_start = 0;
2931 p->se.sum_exec_runtime = 0;
2932 p->se.prev_sum_exec_runtime = 0;
2933 p->se.nr_migrations = 0;
2934 p->se.vruntime = 0;
2935 INIT_LIST_HEAD(&p->se.group_node);
2936
2937 #ifdef CONFIG_SCHEDSTATS
2938 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2939 #endif
2940
2941 INIT_LIST_HEAD(&p->rt.run_list);
2942
2943 #ifdef CONFIG_PREEMPT_NOTIFIERS
2944 INIT_HLIST_HEAD(&p->preempt_notifiers);
2945 #endif
2946 }
2947
2948 /*
2949 * fork()/clone()-time setup:
2950 */
2951 void sched_fork(struct task_struct *p)
2952 {
2953 unsigned long flags;
2954 int cpu = get_cpu();
2955
2956 __sched_fork(p);
2957 /*
2958 * We mark the process as running here. This guarantees that
2959 * nobody will actually run it, and a signal or other external
2960 * event cannot wake it up and insert it on the runqueue either.
2961 */
2962 p->state = TASK_RUNNING;
2963
2964 /*
2965 * Make sure we do not leak PI boosting priority to the child.
2966 */
2967 p->prio = current->normal_prio;
2968
2969 /*
2970 * Revert to default priority/policy on fork if requested.
2971 */
2972 if (unlikely(p->sched_reset_on_fork)) {
2973 if (task_has_rt_policy(p)) {
2974 p->policy = SCHED_NORMAL;
2975 p->static_prio = NICE_TO_PRIO(0);
2976 p->rt_priority = 0;
2977 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2978 p->static_prio = NICE_TO_PRIO(0);
2979
2980 p->prio = p->normal_prio = __normal_prio(p);
2981 set_load_weight(p);
2982
2983 /*
2984 * We don't need the reset flag anymore after the fork. It has
2985 * fulfilled its duty:
2986 */
2987 p->sched_reset_on_fork = 0;
2988 }
2989
2990 if (!rt_prio(p->prio))
2991 p->sched_class = &fair_sched_class;
2992
2993 if (p->sched_class->task_fork)
2994 p->sched_class->task_fork(p);
2995
2996 /*
2997 * The child is not yet in the pid-hash so no cgroup attach races,
2998 * and the cgroup is pinned to this child due to cgroup_fork()
2999 * is ran before sched_fork().
3000 *
3001 * Silence PROVE_RCU.
3002 */
3003 raw_spin_lock_irqsave(&p->pi_lock, flags);
3004 set_task_cpu(p, cpu);
3005 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3006
3007 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
3008 if (likely(sched_info_on()))
3009 memset(&p->sched_info, 0, sizeof(p->sched_info));
3010 #endif
3011 #if defined(CONFIG_SMP)
3012 p->on_cpu = 0;
3013 #endif
3014 #ifdef CONFIG_PREEMPT_COUNT
3015 /* Want to start with kernel preemption disabled. */
3016 task_thread_info(p)->preempt_count = 1;
3017 #endif
3018 #ifdef CONFIG_SMP
3019 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3020 #endif
3021
3022 put_cpu();
3023 }
3024
3025 /*
3026 * wake_up_new_task - wake up a newly created task for the first time.
3027 *
3028 * This function will do some initial scheduler statistics housekeeping
3029 * that must be done for every newly created context, then puts the task
3030 * on the runqueue and wakes it.
3031 */
3032 void wake_up_new_task(struct task_struct *p)
3033 {
3034 unsigned long flags;
3035 struct rq *rq;
3036
3037 raw_spin_lock_irqsave(&p->pi_lock, flags);
3038 #ifdef CONFIG_SMP
3039 /*
3040 * Fork balancing, do it here and not earlier because:
3041 * - cpus_allowed can change in the fork path
3042 * - any previously selected cpu might disappear through hotplug
3043 */
3044 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
3045 #endif
3046
3047 rq = __task_rq_lock(p);
3048 activate_task(rq, p, 0);
3049 p->on_rq = 1;
3050 trace_sched_wakeup_new(p, true);
3051 check_preempt_curr(rq, p, WF_FORK);
3052 #ifdef CONFIG_SMP
3053 if (p->sched_class->task_woken)
3054 p->sched_class->task_woken(rq, p);
3055 #endif
3056 task_rq_unlock(rq, p, &flags);
3057 }
3058
3059 #ifdef CONFIG_PREEMPT_NOTIFIERS
3060
3061 /**
3062 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3063 * @notifier: notifier struct to register
3064 */
3065 void preempt_notifier_register(struct preempt_notifier *notifier)
3066 {
3067 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3068 }
3069 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3070
3071 /**
3072 * preempt_notifier_unregister - no longer interested in preemption notifications
3073 * @notifier: notifier struct to unregister
3074 *
3075 * This is safe to call from within a preemption notifier.
3076 */
3077 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3078 {
3079 hlist_del(&notifier->link);
3080 }
3081 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3082
3083 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3084 {
3085 struct preempt_notifier *notifier;
3086 struct hlist_node *node;
3087
3088 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3089 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3090 }
3091
3092 static void
3093 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3094 struct task_struct *next)
3095 {
3096 struct preempt_notifier *notifier;
3097 struct hlist_node *node;
3098
3099 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3100 notifier->ops->sched_out(notifier, next);
3101 }
3102
3103 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3104
3105 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3106 {
3107 }
3108
3109 static void
3110 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3111 struct task_struct *next)
3112 {
3113 }
3114
3115 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3116
3117 /**
3118 * prepare_task_switch - prepare to switch tasks
3119 * @rq: the runqueue preparing to switch
3120 * @prev: the current task that is being switched out
3121 * @next: the task we are going to switch to.
3122 *
3123 * This is called with the rq lock held and interrupts off. It must
3124 * be paired with a subsequent finish_task_switch after the context
3125 * switch.
3126 *
3127 * prepare_task_switch sets up locking and calls architecture specific
3128 * hooks.
3129 */
3130 static inline void
3131 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3132 struct task_struct *next)
3133 {
3134 sched_info_switch(prev, next);
3135 perf_event_task_sched_out(prev, next);
3136 fire_sched_out_preempt_notifiers(prev, next);
3137 prepare_lock_switch(rq, next);
3138 prepare_arch_switch(next);
3139 trace_sched_switch(prev, next);
3140 }
3141
3142 /**
3143 * finish_task_switch - clean up after a task-switch
3144 * @rq: runqueue associated with task-switch
3145 * @prev: the thread we just switched away from.
3146 *
3147 * finish_task_switch must be called after the context switch, paired
3148 * with a prepare_task_switch call before the context switch.
3149 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3150 * and do any other architecture-specific cleanup actions.
3151 *
3152 * Note that we may have delayed dropping an mm in context_switch(). If
3153 * so, we finish that here outside of the runqueue lock. (Doing it
3154 * with the lock held can cause deadlocks; see schedule() for
3155 * details.)
3156 */
3157 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
3158 __releases(rq->lock)
3159 {
3160 struct mm_struct *mm = rq->prev_mm;
3161 long prev_state;
3162
3163 rq->prev_mm = NULL;
3164
3165 /*
3166 * A task struct has one reference for the use as "current".
3167 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3168 * schedule one last time. The schedule call will never return, and
3169 * the scheduled task must drop that reference.
3170 * The test for TASK_DEAD must occur while the runqueue locks are
3171 * still held, otherwise prev could be scheduled on another cpu, die
3172 * there before we look at prev->state, and then the reference would
3173 * be dropped twice.
3174 * Manfred Spraul <manfred@colorfullife.com>
3175 */
3176 prev_state = prev->state;
3177 finish_arch_switch(prev);
3178 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3179 local_irq_disable();
3180 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3181 perf_event_task_sched_in(prev, current);
3182 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3183 local_irq_enable();
3184 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3185 finish_lock_switch(rq, prev);
3186
3187 fire_sched_in_preempt_notifiers(current);
3188 if (mm)
3189 mmdrop(mm);
3190 if (unlikely(prev_state == TASK_DEAD)) {
3191 /*
3192 * Remove function-return probe instances associated with this
3193 * task and put them back on the free list.
3194 */
3195 kprobe_flush_task(prev);
3196 put_task_struct(prev);
3197 }
3198 }
3199
3200 #ifdef CONFIG_SMP
3201
3202 /* assumes rq->lock is held */
3203 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3204 {
3205 if (prev->sched_class->pre_schedule)
3206 prev->sched_class->pre_schedule(rq, prev);
3207 }
3208
3209 /* rq->lock is NOT held, but preemption is disabled */
3210 static inline void post_schedule(struct rq *rq)
3211 {
3212 if (rq->post_schedule) {
3213 unsigned long flags;
3214
3215 raw_spin_lock_irqsave(&rq->lock, flags);
3216 if (rq->curr->sched_class->post_schedule)
3217 rq->curr->sched_class->post_schedule(rq);
3218 raw_spin_unlock_irqrestore(&rq->lock, flags);
3219
3220 rq->post_schedule = 0;
3221 }
3222 }
3223
3224 #else
3225
3226 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3227 {
3228 }
3229
3230 static inline void post_schedule(struct rq *rq)
3231 {
3232 }
3233
3234 #endif
3235
3236 /**
3237 * schedule_tail - first thing a freshly forked thread must call.
3238 * @prev: the thread we just switched away from.
3239 */
3240 asmlinkage void schedule_tail(struct task_struct *prev)
3241 __releases(rq->lock)
3242 {
3243 struct rq *rq = this_rq();
3244
3245 finish_task_switch(rq, prev);
3246
3247 /*
3248 * FIXME: do we need to worry about rq being invalidated by the
3249 * task_switch?
3250 */
3251 post_schedule(rq);
3252
3253 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3254 /* In this case, finish_task_switch does not reenable preemption */
3255 preempt_enable();
3256 #endif
3257 if (current->set_child_tid)
3258 put_user(task_pid_vnr(current), current->set_child_tid);
3259 }
3260
3261 /*
3262 * context_switch - switch to the new MM and the new
3263 * thread's register state.
3264 */
3265 static inline void
3266 context_switch(struct rq *rq, struct task_struct *prev,
3267 struct task_struct *next)
3268 {
3269 struct mm_struct *mm, *oldmm;
3270
3271 prepare_task_switch(rq, prev, next);
3272
3273 mm = next->mm;
3274 oldmm = prev->active_mm;
3275 /*
3276 * For paravirt, this is coupled with an exit in switch_to to
3277 * combine the page table reload and the switch backend into
3278 * one hypercall.
3279 */
3280 arch_start_context_switch(prev);
3281
3282 if (!mm) {
3283 next->active_mm = oldmm;
3284 atomic_inc(&oldmm->mm_count);
3285 enter_lazy_tlb(oldmm, next);
3286 } else
3287 switch_mm(oldmm, mm, next);
3288
3289 if (!prev->mm) {
3290 prev->active_mm = NULL;
3291 rq->prev_mm = oldmm;
3292 }
3293 /*
3294 * Since the runqueue lock will be released by the next
3295 * task (which is an invalid locking op but in the case
3296 * of the scheduler it's an obvious special-case), so we
3297 * do an early lockdep release here:
3298 */
3299 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3300 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3301 #endif
3302
3303 /* Here we just switch the register state and the stack. */
3304 switch_to(prev, next, prev);
3305
3306 barrier();
3307 /*
3308 * this_rq must be evaluated again because prev may have moved
3309 * CPUs since it called schedule(), thus the 'rq' on its stack
3310 * frame will be invalid.
3311 */
3312 finish_task_switch(this_rq(), prev);
3313 }
3314
3315 /*
3316 * nr_running, nr_uninterruptible and nr_context_switches:
3317 *
3318 * externally visible scheduler statistics: current number of runnable
3319 * threads, current number of uninterruptible-sleeping threads, total
3320 * number of context switches performed since bootup.
3321 */
3322 unsigned long nr_running(void)
3323 {
3324 unsigned long i, sum = 0;
3325
3326 for_each_online_cpu(i)
3327 sum += cpu_rq(i)->nr_running;
3328
3329 return sum;
3330 }
3331
3332 unsigned long nr_uninterruptible(void)
3333 {
3334 unsigned long i, sum = 0;
3335
3336 for_each_possible_cpu(i)
3337 sum += cpu_rq(i)->nr_uninterruptible;
3338
3339 /*
3340 * Since we read the counters lockless, it might be slightly
3341 * inaccurate. Do not allow it to go below zero though:
3342 */
3343 if (unlikely((long)sum < 0))
3344 sum = 0;
3345
3346 return sum;
3347 }
3348
3349 unsigned long long nr_context_switches(void)
3350 {
3351 int i;
3352 unsigned long long sum = 0;
3353
3354 for_each_possible_cpu(i)
3355 sum += cpu_rq(i)->nr_switches;
3356
3357 return sum;
3358 }
3359
3360 unsigned long nr_iowait(void)
3361 {
3362 unsigned long i, sum = 0;
3363
3364 for_each_possible_cpu(i)
3365 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3366
3367 return sum;
3368 }
3369
3370 unsigned long nr_iowait_cpu(int cpu)
3371 {
3372 struct rq *this = cpu_rq(cpu);
3373 return atomic_read(&this->nr_iowait);
3374 }
3375
3376 unsigned long this_cpu_load(void)
3377 {
3378 struct rq *this = this_rq();
3379 return this->cpu_load[0];
3380 }
3381
3382
3383 /* Variables and functions for calc_load */
3384 static atomic_long_t calc_load_tasks;
3385 static unsigned long calc_load_update;
3386 unsigned long avenrun[3];
3387 EXPORT_SYMBOL(avenrun);
3388
3389 static long calc_load_fold_active(struct rq *this_rq)
3390 {
3391 long nr_active, delta = 0;
3392
3393 nr_active = this_rq->nr_running;
3394 nr_active += (long) this_rq->nr_uninterruptible;
3395
3396 if (nr_active != this_rq->calc_load_active) {
3397 delta = nr_active - this_rq->calc_load_active;
3398 this_rq->calc_load_active = nr_active;
3399 }
3400
3401 return delta;
3402 }
3403
3404 static unsigned long
3405 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3406 {
3407 load *= exp;
3408 load += active * (FIXED_1 - exp);
3409 load += 1UL << (FSHIFT - 1);
3410 return load >> FSHIFT;
3411 }
3412
3413 #ifdef CONFIG_NO_HZ
3414 /*
3415 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3416 *
3417 * When making the ILB scale, we should try to pull this in as well.
3418 */
3419 static atomic_long_t calc_load_tasks_idle;
3420
3421 static void calc_load_account_idle(struct rq *this_rq)
3422 {
3423 long delta;
3424
3425 delta = calc_load_fold_active(this_rq);
3426 if (delta)
3427 atomic_long_add(delta, &calc_load_tasks_idle);
3428 }
3429
3430 static long calc_load_fold_idle(void)
3431 {
3432 long delta = 0;
3433
3434 /*
3435 * Its got a race, we don't care...
3436 */
3437 if (atomic_long_read(&calc_load_tasks_idle))
3438 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3439
3440 return delta;
3441 }
3442
3443 /**
3444 * fixed_power_int - compute: x^n, in O(log n) time
3445 *
3446 * @x: base of the power
3447 * @frac_bits: fractional bits of @x
3448 * @n: power to raise @x to.
3449 *
3450 * By exploiting the relation between the definition of the natural power
3451 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3452 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3453 * (where: n_i \elem {0, 1}, the binary vector representing n),
3454 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3455 * of course trivially computable in O(log_2 n), the length of our binary
3456 * vector.
3457 */
3458 static unsigned long
3459 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3460 {
3461 unsigned long result = 1UL << frac_bits;
3462
3463 if (n) for (;;) {
3464 if (n & 1) {
3465 result *= x;
3466 result += 1UL << (frac_bits - 1);
3467 result >>= frac_bits;
3468 }
3469 n >>= 1;
3470 if (!n)
3471 break;
3472 x *= x;
3473 x += 1UL << (frac_bits - 1);
3474 x >>= frac_bits;
3475 }
3476
3477 return result;
3478 }
3479
3480 /*
3481 * a1 = a0 * e + a * (1 - e)
3482 *
3483 * a2 = a1 * e + a * (1 - e)
3484 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3485 * = a0 * e^2 + a * (1 - e) * (1 + e)
3486 *
3487 * a3 = a2 * e + a * (1 - e)
3488 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3489 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3490 *
3491 * ...
3492 *
3493 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3494 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3495 * = a0 * e^n + a * (1 - e^n)
3496 *
3497 * [1] application of the geometric series:
3498 *
3499 * n 1 - x^(n+1)
3500 * S_n := \Sum x^i = -------------
3501 * i=0 1 - x
3502 */
3503 static unsigned long
3504 calc_load_n(unsigned long load, unsigned long exp,
3505 unsigned long active, unsigned int n)
3506 {
3507
3508 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3509 }
3510
3511 /*
3512 * NO_HZ can leave us missing all per-cpu ticks calling
3513 * calc_load_account_active(), but since an idle CPU folds its delta into
3514 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3515 * in the pending idle delta if our idle period crossed a load cycle boundary.
3516 *
3517 * Once we've updated the global active value, we need to apply the exponential
3518 * weights adjusted to the number of cycles missed.
3519 */
3520 static void calc_global_nohz(unsigned long ticks)
3521 {
3522 long delta, active, n;
3523
3524 if (time_before(jiffies, calc_load_update))
3525 return;
3526
3527 /*
3528 * If we crossed a calc_load_update boundary, make sure to fold
3529 * any pending idle changes, the respective CPUs might have
3530 * missed the tick driven calc_load_account_active() update
3531 * due to NO_HZ.
3532 */
3533 delta = calc_load_fold_idle();
3534 if (delta)
3535 atomic_long_add(delta, &calc_load_tasks);
3536
3537 /*
3538 * If we were idle for multiple load cycles, apply them.
3539 */
3540 if (ticks >= LOAD_FREQ) {
3541 n = ticks / LOAD_FREQ;
3542
3543 active = atomic_long_read(&calc_load_tasks);
3544 active = active > 0 ? active * FIXED_1 : 0;
3545
3546 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3547 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3548 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3549
3550 calc_load_update += n * LOAD_FREQ;
3551 }
3552
3553 /*
3554 * Its possible the remainder of the above division also crosses
3555 * a LOAD_FREQ period, the regular check in calc_global_load()
3556 * which comes after this will take care of that.
3557 *
3558 * Consider us being 11 ticks before a cycle completion, and us
3559 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3560 * age us 4 cycles, and the test in calc_global_load() will
3561 * pick up the final one.
3562 */
3563 }
3564 #else
3565 static void calc_load_account_idle(struct rq *this_rq)
3566 {
3567 }
3568
3569 static inline long calc_load_fold_idle(void)
3570 {
3571 return 0;
3572 }
3573
3574 static void calc_global_nohz(unsigned long ticks)
3575 {
3576 }
3577 #endif
3578
3579 /**
3580 * get_avenrun - get the load average array
3581 * @loads: pointer to dest load array
3582 * @offset: offset to add
3583 * @shift: shift count to shift the result left
3584 *
3585 * These values are estimates at best, so no need for locking.
3586 */
3587 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3588 {
3589 loads[0] = (avenrun[0] + offset) << shift;
3590 loads[1] = (avenrun[1] + offset) << shift;
3591 loads[2] = (avenrun[2] + offset) << shift;
3592 }
3593
3594 /*
3595 * calc_load - update the avenrun load estimates 10 ticks after the
3596 * CPUs have updated calc_load_tasks.
3597 */
3598 void calc_global_load(unsigned long ticks)
3599 {
3600 long active;
3601
3602 calc_global_nohz(ticks);
3603
3604 if (time_before(jiffies, calc_load_update + 10))
3605 return;
3606
3607 active = atomic_long_read(&calc_load_tasks);
3608 active = active > 0 ? active * FIXED_1 : 0;
3609
3610 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3611 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3612 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3613
3614 calc_load_update += LOAD_FREQ;
3615 }
3616
3617 /*
3618 * Called from update_cpu_load() to periodically update this CPU's
3619 * active count.
3620 */
3621 static void calc_load_account_active(struct rq *this_rq)
3622 {
3623 long delta;
3624
3625 if (time_before(jiffies, this_rq->calc_load_update))
3626 return;
3627
3628 delta = calc_load_fold_active(this_rq);
3629 delta += calc_load_fold_idle();
3630 if (delta)
3631 atomic_long_add(delta, &calc_load_tasks);
3632
3633 this_rq->calc_load_update += LOAD_FREQ;
3634 }
3635
3636 /*
3637 * The exact cpuload at various idx values, calculated at every tick would be
3638 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3639 *
3640 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3641 * on nth tick when cpu may be busy, then we have:
3642 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3643 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3644 *
3645 * decay_load_missed() below does efficient calculation of
3646 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3647 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3648 *
3649 * The calculation is approximated on a 128 point scale.
3650 * degrade_zero_ticks is the number of ticks after which load at any
3651 * particular idx is approximated to be zero.
3652 * degrade_factor is a precomputed table, a row for each load idx.
3653 * Each column corresponds to degradation factor for a power of two ticks,
3654 * based on 128 point scale.
3655 * Example:
3656 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3657 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3658 *
3659 * With this power of 2 load factors, we can degrade the load n times
3660 * by looking at 1 bits in n and doing as many mult/shift instead of
3661 * n mult/shifts needed by the exact degradation.
3662 */
3663 #define DEGRADE_SHIFT 7
3664 static const unsigned char
3665 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3666 static const unsigned char
3667 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3668 {0, 0, 0, 0, 0, 0, 0, 0},
3669 {64, 32, 8, 0, 0, 0, 0, 0},
3670 {96, 72, 40, 12, 1, 0, 0},
3671 {112, 98, 75, 43, 15, 1, 0},
3672 {120, 112, 98, 76, 45, 16, 2} };
3673
3674 /*
3675 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3676 * would be when CPU is idle and so we just decay the old load without
3677 * adding any new load.
3678 */
3679 static unsigned long
3680 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3681 {
3682 int j = 0;
3683
3684 if (!missed_updates)
3685 return load;
3686
3687 if (missed_updates >= degrade_zero_ticks[idx])
3688 return 0;
3689
3690 if (idx == 1)
3691 return load >> missed_updates;
3692
3693 while (missed_updates) {
3694 if (missed_updates % 2)
3695 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3696
3697 missed_updates >>= 1;
3698 j++;
3699 }
3700 return load;
3701 }
3702
3703 /*
3704 * Update rq->cpu_load[] statistics. This function is usually called every
3705 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3706 * every tick. We fix it up based on jiffies.
3707 */
3708 static void update_cpu_load(struct rq *this_rq)
3709 {
3710 unsigned long this_load = this_rq->load.weight;
3711 unsigned long curr_jiffies = jiffies;
3712 unsigned long pending_updates;
3713 int i, scale;
3714
3715 this_rq->nr_load_updates++;
3716
3717 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3718 if (curr_jiffies == this_rq->last_load_update_tick)
3719 return;
3720
3721 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3722 this_rq->last_load_update_tick = curr_jiffies;
3723
3724 /* Update our load: */
3725 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3726 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3727 unsigned long old_load, new_load;
3728
3729 /* scale is effectively 1 << i now, and >> i divides by scale */
3730
3731 old_load = this_rq->cpu_load[i];
3732 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3733 new_load = this_load;
3734 /*
3735 * Round up the averaging division if load is increasing. This
3736 * prevents us from getting stuck on 9 if the load is 10, for
3737 * example.
3738 */
3739 if (new_load > old_load)
3740 new_load += scale - 1;
3741
3742 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3743 }
3744
3745 sched_avg_update(this_rq);
3746 }
3747
3748 static void update_cpu_load_active(struct rq *this_rq)
3749 {
3750 update_cpu_load(this_rq);
3751
3752 calc_load_account_active(this_rq);
3753 }
3754
3755 #ifdef CONFIG_SMP
3756
3757 /*
3758 * sched_exec - execve() is a valuable balancing opportunity, because at
3759 * this point the task has the smallest effective memory and cache footprint.
3760 */
3761 void sched_exec(void)
3762 {
3763 struct task_struct *p = current;
3764 unsigned long flags;
3765 int dest_cpu;
3766
3767 raw_spin_lock_irqsave(&p->pi_lock, flags);
3768 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3769 if (dest_cpu == smp_processor_id())
3770 goto unlock;
3771
3772 if (likely(cpu_active(dest_cpu))) {
3773 struct migration_arg arg = { p, dest_cpu };
3774
3775 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3776 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3777 return;
3778 }
3779 unlock:
3780 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3781 }
3782
3783 #endif
3784
3785 DEFINE_PER_CPU(struct kernel_stat, kstat);
3786
3787 EXPORT_PER_CPU_SYMBOL(kstat);
3788
3789 /*
3790 * Return any ns on the sched_clock that have not yet been accounted in
3791 * @p in case that task is currently running.
3792 *
3793 * Called with task_rq_lock() held on @rq.
3794 */
3795 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3796 {
3797 u64 ns = 0;
3798
3799 if (task_current(rq, p)) {
3800 update_rq_clock(rq);
3801 ns = rq->clock_task - p->se.exec_start;
3802 if ((s64)ns < 0)
3803 ns = 0;
3804 }
3805
3806 return ns;
3807 }
3808
3809 unsigned long long task_delta_exec(struct task_struct *p)
3810 {
3811 unsigned long flags;
3812 struct rq *rq;
3813 u64 ns = 0;
3814
3815 rq = task_rq_lock(p, &flags);
3816 ns = do_task_delta_exec(p, rq);
3817 task_rq_unlock(rq, p, &flags);
3818
3819 return ns;
3820 }
3821
3822 /*
3823 * Return accounted runtime for the task.
3824 * In case the task is currently running, return the runtime plus current's
3825 * pending runtime that have not been accounted yet.
3826 */
3827 unsigned long long task_sched_runtime(struct task_struct *p)
3828 {
3829 unsigned long flags;
3830 struct rq *rq;
3831 u64 ns = 0;
3832
3833 rq = task_rq_lock(p, &flags);
3834 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3835 task_rq_unlock(rq, p, &flags);
3836
3837 return ns;
3838 }
3839
3840 /*
3841 * Account user cpu time to a process.
3842 * @p: the process that the cpu time gets accounted to
3843 * @cputime: the cpu time spent in user space since the last update
3844 * @cputime_scaled: cputime scaled by cpu frequency
3845 */
3846 void account_user_time(struct task_struct *p, cputime_t cputime,
3847 cputime_t cputime_scaled)
3848 {
3849 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3850 cputime64_t tmp;
3851
3852 /* Add user time to process. */
3853 p->utime = cputime_add(p->utime, cputime);
3854 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3855 account_group_user_time(p, cputime);
3856
3857 /* Add user time to cpustat. */
3858 tmp = cputime_to_cputime64(cputime);
3859 if (TASK_NICE(p) > 0)
3860 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3861 else
3862 cpustat->user = cputime64_add(cpustat->user, tmp);
3863
3864 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3865 /* Account for user time used */
3866 acct_update_integrals(p);
3867 }
3868
3869 /*
3870 * Account guest cpu time to a process.
3871 * @p: the process that the cpu time gets accounted to
3872 * @cputime: the cpu time spent in virtual machine since the last update
3873 * @cputime_scaled: cputime scaled by cpu frequency
3874 */
3875 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3876 cputime_t cputime_scaled)
3877 {
3878 cputime64_t tmp;
3879 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3880
3881 tmp = cputime_to_cputime64(cputime);
3882
3883 /* Add guest time to process. */
3884 p->utime = cputime_add(p->utime, cputime);
3885 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3886 account_group_user_time(p, cputime);
3887 p->gtime = cputime_add(p->gtime, cputime);
3888
3889 /* Add guest time to cpustat. */
3890 if (TASK_NICE(p) > 0) {
3891 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3892 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3893 } else {
3894 cpustat->user = cputime64_add(cpustat->user, tmp);
3895 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3896 }
3897 }
3898
3899 /*
3900 * Account system cpu time to a process and desired cpustat field
3901 * @p: the process that the cpu time gets accounted to
3902 * @cputime: the cpu time spent in kernel space since the last update
3903 * @cputime_scaled: cputime scaled by cpu frequency
3904 * @target_cputime64: pointer to cpustat field that has to be updated
3905 */
3906 static inline
3907 void __account_system_time(struct task_struct *p, cputime_t cputime,
3908 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3909 {
3910 cputime64_t tmp = cputime_to_cputime64(cputime);
3911
3912 /* Add system time to process. */
3913 p->stime = cputime_add(p->stime, cputime);
3914 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3915 account_group_system_time(p, cputime);
3916
3917 /* Add system time to cpustat. */
3918 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3919 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3920
3921 /* Account for system time used */
3922 acct_update_integrals(p);
3923 }
3924
3925 /*
3926 * Account system cpu time to a process.
3927 * @p: the process that the cpu time gets accounted to
3928 * @hardirq_offset: the offset to subtract from hardirq_count()
3929 * @cputime: the cpu time spent in kernel space since the last update
3930 * @cputime_scaled: cputime scaled by cpu frequency
3931 */
3932 void account_system_time(struct task_struct *p, int hardirq_offset,
3933 cputime_t cputime, cputime_t cputime_scaled)
3934 {
3935 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3936 cputime64_t *target_cputime64;
3937
3938 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3939 account_guest_time(p, cputime, cputime_scaled);
3940 return;
3941 }
3942
3943 if (hardirq_count() - hardirq_offset)
3944 target_cputime64 = &cpustat->irq;
3945 else if (in_serving_softirq())
3946 target_cputime64 = &cpustat->softirq;
3947 else
3948 target_cputime64 = &cpustat->system;
3949
3950 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3951 }
3952
3953 /*
3954 * Account for involuntary wait time.
3955 * @cputime: the cpu time spent in involuntary wait
3956 */
3957 void account_steal_time(cputime_t cputime)
3958 {
3959 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3960 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3961
3962 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3963 }
3964
3965 /*
3966 * Account for idle time.
3967 * @cputime: the cpu time spent in idle wait
3968 */
3969 void account_idle_time(cputime_t cputime)
3970 {
3971 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3972 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3973 struct rq *rq = this_rq();
3974
3975 if (atomic_read(&rq->nr_iowait) > 0)
3976 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3977 else
3978 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3979 }
3980
3981 static __always_inline bool steal_account_process_tick(void)
3982 {
3983 #ifdef CONFIG_PARAVIRT
3984 if (static_branch(&paravirt_steal_enabled)) {
3985 u64 steal, st = 0;
3986
3987 steal = paravirt_steal_clock(smp_processor_id());
3988 steal -= this_rq()->prev_steal_time;
3989
3990 st = steal_ticks(steal);
3991 this_rq()->prev_steal_time += st * TICK_NSEC;
3992
3993 account_steal_time(st);
3994 return st;
3995 }
3996 #endif
3997 return false;
3998 }
3999
4000 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4001
4002 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
4003 /*
4004 * Account a tick to a process and cpustat
4005 * @p: the process that the cpu time gets accounted to
4006 * @user_tick: is the tick from userspace
4007 * @rq: the pointer to rq
4008 *
4009 * Tick demultiplexing follows the order
4010 * - pending hardirq update
4011 * - pending softirq update
4012 * - user_time
4013 * - idle_time
4014 * - system time
4015 * - check for guest_time
4016 * - else account as system_time
4017 *
4018 * Check for hardirq is done both for system and user time as there is
4019 * no timer going off while we are on hardirq and hence we may never get an
4020 * opportunity to update it solely in system time.
4021 * p->stime and friends are only updated on system time and not on irq
4022 * softirq as those do not count in task exec_runtime any more.
4023 */
4024 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4025 struct rq *rq)
4026 {
4027 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4028 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
4029 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4030
4031 if (steal_account_process_tick())
4032 return;
4033
4034 if (irqtime_account_hi_update()) {
4035 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4036 } else if (irqtime_account_si_update()) {
4037 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4038 } else if (this_cpu_ksoftirqd() == p) {
4039 /*
4040 * ksoftirqd time do not get accounted in cpu_softirq_time.
4041 * So, we have to handle it separately here.
4042 * Also, p->stime needs to be updated for ksoftirqd.
4043 */
4044 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4045 &cpustat->softirq);
4046 } else if (user_tick) {
4047 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4048 } else if (p == rq->idle) {
4049 account_idle_time(cputime_one_jiffy);
4050 } else if (p->flags & PF_VCPU) { /* System time or guest time */
4051 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
4052 } else {
4053 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4054 &cpustat->system);
4055 }
4056 }
4057
4058 static void irqtime_account_idle_ticks(int ticks)
4059 {
4060 int i;
4061 struct rq *rq = this_rq();
4062
4063 for (i = 0; i < ticks; i++)
4064 irqtime_account_process_tick(current, 0, rq);
4065 }
4066 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
4067 static void irqtime_account_idle_ticks(int ticks) {}
4068 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4069 struct rq *rq) {}
4070 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
4071
4072 /*
4073 * Account a single tick of cpu time.
4074 * @p: the process that the cpu time gets accounted to
4075 * @user_tick: indicates if the tick is a user or a system tick
4076 */
4077 void account_process_tick(struct task_struct *p, int user_tick)
4078 {
4079 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4080 struct rq *rq = this_rq();
4081
4082 if (sched_clock_irqtime) {
4083 irqtime_account_process_tick(p, user_tick, rq);
4084 return;
4085 }
4086
4087 if (steal_account_process_tick())
4088 return;
4089
4090 if (user_tick)
4091 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4092 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4093 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
4094 one_jiffy_scaled);
4095 else
4096 account_idle_time(cputime_one_jiffy);
4097 }
4098
4099 /*
4100 * Account multiple ticks of steal time.
4101 * @p: the process from which the cpu time has been stolen
4102 * @ticks: number of stolen ticks
4103 */
4104 void account_steal_ticks(unsigned long ticks)
4105 {
4106 account_steal_time(jiffies_to_cputime(ticks));
4107 }
4108
4109 /*
4110 * Account multiple ticks of idle time.
4111 * @ticks: number of stolen ticks
4112 */
4113 void account_idle_ticks(unsigned long ticks)
4114 {
4115
4116 if (sched_clock_irqtime) {
4117 irqtime_account_idle_ticks(ticks);
4118 return;
4119 }
4120
4121 account_idle_time(jiffies_to_cputime(ticks));
4122 }
4123
4124 #endif
4125
4126 /*
4127 * Use precise platform statistics if available:
4128 */
4129 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4130 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4131 {
4132 *ut = p->utime;
4133 *st = p->stime;
4134 }
4135
4136 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4137 {
4138 struct task_cputime cputime;
4139
4140 thread_group_cputime(p, &cputime);
4141
4142 *ut = cputime.utime;
4143 *st = cputime.stime;
4144 }
4145 #else
4146
4147 #ifndef nsecs_to_cputime
4148 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
4149 #endif
4150
4151 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4152 {
4153 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
4154
4155 /*
4156 * Use CFS's precise accounting:
4157 */
4158 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
4159
4160 if (total) {
4161 u64 temp = rtime;
4162
4163 temp *= utime;
4164 do_div(temp, total);
4165 utime = (cputime_t)temp;
4166 } else
4167 utime = rtime;
4168
4169 /*
4170 * Compare with previous values, to keep monotonicity:
4171 */
4172 p->prev_utime = max(p->prev_utime, utime);
4173 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4174
4175 *ut = p->prev_utime;
4176 *st = p->prev_stime;
4177 }
4178
4179 /*
4180 * Must be called with siglock held.
4181 */
4182 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4183 {
4184 struct signal_struct *sig = p->signal;
4185 struct task_cputime cputime;
4186 cputime_t rtime, utime, total;
4187
4188 thread_group_cputime(p, &cputime);
4189
4190 total = cputime_add(cputime.utime, cputime.stime);
4191 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4192
4193 if (total) {
4194 u64 temp = rtime;
4195
4196 temp *= cputime.utime;
4197 do_div(temp, total);
4198 utime = (cputime_t)temp;
4199 } else
4200 utime = rtime;
4201
4202 sig->prev_utime = max(sig->prev_utime, utime);
4203 sig->prev_stime = max(sig->prev_stime,
4204 cputime_sub(rtime, sig->prev_utime));
4205
4206 *ut = sig->prev_utime;
4207 *st = sig->prev_stime;
4208 }
4209 #endif
4210
4211 /*
4212 * This function gets called by the timer code, with HZ frequency.
4213 * We call it with interrupts disabled.
4214 */
4215 void scheduler_tick(void)
4216 {
4217 int cpu = smp_processor_id();
4218 struct rq *rq = cpu_rq(cpu);
4219 struct task_struct *curr = rq->curr;
4220
4221 sched_clock_tick();
4222
4223 raw_spin_lock(&rq->lock);
4224 update_rq_clock(rq);
4225 update_cpu_load_active(rq);
4226 curr->sched_class->task_tick(rq, curr, 0);
4227 raw_spin_unlock(&rq->lock);
4228
4229 perf_event_task_tick();
4230
4231 #ifdef CONFIG_SMP
4232 rq->idle_at_tick = idle_cpu(cpu);
4233 trigger_load_balance(rq, cpu);
4234 #endif
4235 }
4236
4237 notrace unsigned long get_parent_ip(unsigned long addr)
4238 {
4239 if (in_lock_functions(addr)) {
4240 addr = CALLER_ADDR2;
4241 if (in_lock_functions(addr))
4242 addr = CALLER_ADDR3;
4243 }
4244 return addr;
4245 }
4246
4247 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4248 defined(CONFIG_PREEMPT_TRACER))
4249
4250 void __kprobes add_preempt_count(int val)
4251 {
4252 #ifdef CONFIG_DEBUG_PREEMPT
4253 /*
4254 * Underflow?
4255 */
4256 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4257 return;
4258 #endif
4259 preempt_count() += val;
4260 #ifdef CONFIG_DEBUG_PREEMPT
4261 /*
4262 * Spinlock count overflowing soon?
4263 */
4264 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4265 PREEMPT_MASK - 10);
4266 #endif
4267 if (preempt_count() == val)
4268 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4269 }
4270 EXPORT_SYMBOL(add_preempt_count);
4271
4272 void __kprobes sub_preempt_count(int val)
4273 {
4274 #ifdef CONFIG_DEBUG_PREEMPT
4275 /*
4276 * Underflow?
4277 */
4278 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4279 return;
4280 /*
4281 * Is the spinlock portion underflowing?
4282 */
4283 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4284 !(preempt_count() & PREEMPT_MASK)))
4285 return;
4286 #endif
4287
4288 if (preempt_count() == val)
4289 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4290 preempt_count() -= val;
4291 }
4292 EXPORT_SYMBOL(sub_preempt_count);
4293
4294 #endif
4295
4296 /*
4297 * Print scheduling while atomic bug:
4298 */
4299 static noinline void __schedule_bug(struct task_struct *prev)
4300 {
4301 struct pt_regs *regs = get_irq_regs();
4302
4303 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4304 prev->comm, prev->pid, preempt_count());
4305
4306 debug_show_held_locks(prev);
4307 print_modules();
4308 if (irqs_disabled())
4309 print_irqtrace_events(prev);
4310
4311 if (regs)
4312 show_regs(regs);
4313 else
4314 dump_stack();
4315 }
4316
4317 /*
4318 * Various schedule()-time debugging checks and statistics:
4319 */
4320 static inline void schedule_debug(struct task_struct *prev)
4321 {
4322 /*
4323 * Test if we are atomic. Since do_exit() needs to call into
4324 * schedule() atomically, we ignore that path for now.
4325 * Otherwise, whine if we are scheduling when we should not be.
4326 */
4327 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4328 __schedule_bug(prev);
4329
4330 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4331
4332 schedstat_inc(this_rq(), sched_count);
4333 }
4334
4335 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4336 {
4337 if (prev->on_rq || rq->skip_clock_update < 0)
4338 update_rq_clock(rq);
4339 prev->sched_class->put_prev_task(rq, prev);
4340 }
4341
4342 /*
4343 * Pick up the highest-prio task:
4344 */
4345 static inline struct task_struct *
4346 pick_next_task(struct rq *rq)
4347 {
4348 const struct sched_class *class;
4349 struct task_struct *p;
4350
4351 /*
4352 * Optimization: we know that if all tasks are in
4353 * the fair class we can call that function directly:
4354 */
4355 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
4356 p = fair_sched_class.pick_next_task(rq);
4357 if (likely(p))
4358 return p;
4359 }
4360
4361 for_each_class(class) {
4362 p = class->pick_next_task(rq);
4363 if (p)
4364 return p;
4365 }
4366
4367 BUG(); /* the idle class will always have a runnable task */
4368 }
4369
4370 /*
4371 * __schedule() is the main scheduler function.
4372 */
4373 static void __sched __schedule(void)
4374 {
4375 struct task_struct *prev, *next;
4376 unsigned long *switch_count;
4377 struct rq *rq;
4378 int cpu;
4379
4380 need_resched:
4381 preempt_disable();
4382 cpu = smp_processor_id();
4383 rq = cpu_rq(cpu);
4384 rcu_note_context_switch(cpu);
4385 prev = rq->curr;
4386
4387 schedule_debug(prev);
4388
4389 if (sched_feat(HRTICK))
4390 hrtick_clear(rq);
4391
4392 raw_spin_lock_irq(&rq->lock);
4393
4394 switch_count = &prev->nivcsw;
4395 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4396 if (unlikely(signal_pending_state(prev->state, prev))) {
4397 prev->state = TASK_RUNNING;
4398 } else {
4399 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4400 prev->on_rq = 0;
4401
4402 /*
4403 * If a worker went to sleep, notify and ask workqueue
4404 * whether it wants to wake up a task to maintain
4405 * concurrency.
4406 */
4407 if (prev->flags & PF_WQ_WORKER) {
4408 struct task_struct *to_wakeup;
4409
4410 to_wakeup = wq_worker_sleeping(prev, cpu);
4411 if (to_wakeup)
4412 try_to_wake_up_local(to_wakeup);
4413 }
4414 }
4415 switch_count = &prev->nvcsw;
4416 }
4417
4418 pre_schedule(rq, prev);
4419
4420 if (unlikely(!rq->nr_running))
4421 idle_balance(cpu, rq);
4422
4423 put_prev_task(rq, prev);
4424 next = pick_next_task(rq);
4425 clear_tsk_need_resched(prev);
4426 rq->skip_clock_update = 0;
4427
4428 if (likely(prev != next)) {
4429 rq->nr_switches++;
4430 rq->curr = next;
4431 ++*switch_count;
4432
4433 context_switch(rq, prev, next); /* unlocks the rq */
4434 /*
4435 * The context switch have flipped the stack from under us
4436 * and restored the local variables which were saved when
4437 * this task called schedule() in the past. prev == current
4438 * is still correct, but it can be moved to another cpu/rq.
4439 */
4440 cpu = smp_processor_id();
4441 rq = cpu_rq(cpu);
4442 } else
4443 raw_spin_unlock_irq(&rq->lock);
4444
4445 post_schedule(rq);
4446
4447 preempt_enable_no_resched();
4448 if (need_resched())
4449 goto need_resched;
4450 }
4451
4452 static inline void sched_submit_work(struct task_struct *tsk)
4453 {
4454 if (!tsk->state)
4455 return;
4456 /*
4457 * If we are going to sleep and we have plugged IO queued,
4458 * make sure to submit it to avoid deadlocks.
4459 */
4460 if (blk_needs_flush_plug(tsk))
4461 blk_schedule_flush_plug(tsk);
4462 }
4463
4464 asmlinkage void __sched schedule(void)
4465 {
4466 struct task_struct *tsk = current;
4467
4468 sched_submit_work(tsk);
4469 __schedule();
4470 }
4471 EXPORT_SYMBOL(schedule);
4472
4473 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4474
4475 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4476 {
4477 if (lock->owner != owner)
4478 return false;
4479
4480 /*
4481 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4482 * lock->owner still matches owner, if that fails, owner might
4483 * point to free()d memory, if it still matches, the rcu_read_lock()
4484 * ensures the memory stays valid.
4485 */
4486 barrier();
4487
4488 return owner->on_cpu;
4489 }
4490
4491 /*
4492 * Look out! "owner" is an entirely speculative pointer
4493 * access and not reliable.
4494 */
4495 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4496 {
4497 if (!sched_feat(OWNER_SPIN))
4498 return 0;
4499
4500 rcu_read_lock();
4501 while (owner_running(lock, owner)) {
4502 if (need_resched())
4503 break;
4504
4505 arch_mutex_cpu_relax();
4506 }
4507 rcu_read_unlock();
4508
4509 /*
4510 * We break out the loop above on need_resched() and when the
4511 * owner changed, which is a sign for heavy contention. Return
4512 * success only when lock->owner is NULL.
4513 */
4514 return lock->owner == NULL;
4515 }
4516 #endif
4517
4518 #ifdef CONFIG_PREEMPT
4519 /*
4520 * this is the entry point to schedule() from in-kernel preemption
4521 * off of preempt_enable. Kernel preemptions off return from interrupt
4522 * occur there and call schedule directly.
4523 */
4524 asmlinkage void __sched notrace preempt_schedule(void)
4525 {
4526 struct thread_info *ti = current_thread_info();
4527
4528 /*
4529 * If there is a non-zero preempt_count or interrupts are disabled,
4530 * we do not want to preempt the current task. Just return..
4531 */
4532 if (likely(ti->preempt_count || irqs_disabled()))
4533 return;
4534
4535 do {
4536 add_preempt_count_notrace(PREEMPT_ACTIVE);
4537 __schedule();
4538 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4539
4540 /*
4541 * Check again in case we missed a preemption opportunity
4542 * between schedule and now.
4543 */
4544 barrier();
4545 } while (need_resched());
4546 }
4547 EXPORT_SYMBOL(preempt_schedule);
4548
4549 /*
4550 * this is the entry point to schedule() from kernel preemption
4551 * off of irq context.
4552 * Note, that this is called and return with irqs disabled. This will
4553 * protect us against recursive calling from irq.
4554 */
4555 asmlinkage void __sched preempt_schedule_irq(void)
4556 {
4557 struct thread_info *ti = current_thread_info();
4558
4559 /* Catch callers which need to be fixed */
4560 BUG_ON(ti->preempt_count || !irqs_disabled());
4561
4562 do {
4563 add_preempt_count(PREEMPT_ACTIVE);
4564 local_irq_enable();
4565 __schedule();
4566 local_irq_disable();
4567 sub_preempt_count(PREEMPT_ACTIVE);
4568
4569 /*
4570 * Check again in case we missed a preemption opportunity
4571 * between schedule and now.
4572 */
4573 barrier();
4574 } while (need_resched());
4575 }
4576
4577 #endif /* CONFIG_PREEMPT */
4578
4579 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4580 void *key)
4581 {
4582 return try_to_wake_up(curr->private, mode, wake_flags);
4583 }
4584 EXPORT_SYMBOL(default_wake_function);
4585
4586 /*
4587 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4588 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4589 * number) then we wake all the non-exclusive tasks and one exclusive task.
4590 *
4591 * There are circumstances in which we can try to wake a task which has already
4592 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4593 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4594 */
4595 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4596 int nr_exclusive, int wake_flags, void *key)
4597 {
4598 wait_queue_t *curr, *next;
4599
4600 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4601 unsigned flags = curr->flags;
4602
4603 if (curr->func(curr, mode, wake_flags, key) &&
4604 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4605 break;
4606 }
4607 }
4608
4609 /**
4610 * __wake_up - wake up threads blocked on a waitqueue.
4611 * @q: the waitqueue
4612 * @mode: which threads
4613 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4614 * @key: is directly passed to the wakeup function
4615 *
4616 * It may be assumed that this function implies a write memory barrier before
4617 * changing the task state if and only if any tasks are woken up.
4618 */
4619 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4620 int nr_exclusive, void *key)
4621 {
4622 unsigned long flags;
4623
4624 spin_lock_irqsave(&q->lock, flags);
4625 __wake_up_common(q, mode, nr_exclusive, 0, key);
4626 spin_unlock_irqrestore(&q->lock, flags);
4627 }
4628 EXPORT_SYMBOL(__wake_up);
4629
4630 /*
4631 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4632 */
4633 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4634 {
4635 __wake_up_common(q, mode, 1, 0, NULL);
4636 }
4637 EXPORT_SYMBOL_GPL(__wake_up_locked);
4638
4639 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4640 {
4641 __wake_up_common(q, mode, 1, 0, key);
4642 }
4643 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4644
4645 /**
4646 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4647 * @q: the waitqueue
4648 * @mode: which threads
4649 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4650 * @key: opaque value to be passed to wakeup targets
4651 *
4652 * The sync wakeup differs that the waker knows that it will schedule
4653 * away soon, so while the target thread will be woken up, it will not
4654 * be migrated to another CPU - ie. the two threads are 'synchronized'
4655 * with each other. This can prevent needless bouncing between CPUs.
4656 *
4657 * On UP it can prevent extra preemption.
4658 *
4659 * It may be assumed that this function implies a write memory barrier before
4660 * changing the task state if and only if any tasks are woken up.
4661 */
4662 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4663 int nr_exclusive, void *key)
4664 {
4665 unsigned long flags;
4666 int wake_flags = WF_SYNC;
4667
4668 if (unlikely(!q))
4669 return;
4670
4671 if (unlikely(!nr_exclusive))
4672 wake_flags = 0;
4673
4674 spin_lock_irqsave(&q->lock, flags);
4675 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4676 spin_unlock_irqrestore(&q->lock, flags);
4677 }
4678 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4679
4680 /*
4681 * __wake_up_sync - see __wake_up_sync_key()
4682 */
4683 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4684 {
4685 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4686 }
4687 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4688
4689 /**
4690 * complete: - signals a single thread waiting on this completion
4691 * @x: holds the state of this particular completion
4692 *
4693 * This will wake up a single thread waiting on this completion. Threads will be
4694 * awakened in the same order in which they were queued.
4695 *
4696 * See also complete_all(), wait_for_completion() and related routines.
4697 *
4698 * It may be assumed that this function implies a write memory barrier before
4699 * changing the task state if and only if any tasks are woken up.
4700 */
4701 void complete(struct completion *x)
4702 {
4703 unsigned long flags;
4704
4705 spin_lock_irqsave(&x->wait.lock, flags);
4706 x->done++;
4707 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4708 spin_unlock_irqrestore(&x->wait.lock, flags);
4709 }
4710 EXPORT_SYMBOL(complete);
4711
4712 /**
4713 * complete_all: - signals all threads waiting on this completion
4714 * @x: holds the state of this particular completion
4715 *
4716 * This will wake up all threads waiting on this particular completion event.
4717 *
4718 * It may be assumed that this function implies a write memory barrier before
4719 * changing the task state if and only if any tasks are woken up.
4720 */
4721 void complete_all(struct completion *x)
4722 {
4723 unsigned long flags;
4724
4725 spin_lock_irqsave(&x->wait.lock, flags);
4726 x->done += UINT_MAX/2;
4727 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4728 spin_unlock_irqrestore(&x->wait.lock, flags);
4729 }
4730 EXPORT_SYMBOL(complete_all);
4731
4732 static inline long __sched
4733 do_wait_for_common(struct completion *x, long timeout, int state)
4734 {
4735 if (!x->done) {
4736 DECLARE_WAITQUEUE(wait, current);
4737
4738 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4739 do {
4740 if (signal_pending_state(state, current)) {
4741 timeout = -ERESTARTSYS;
4742 break;
4743 }
4744 __set_current_state(state);
4745 spin_unlock_irq(&x->wait.lock);
4746 timeout = schedule_timeout(timeout);
4747 spin_lock_irq(&x->wait.lock);
4748 } while (!x->done && timeout);
4749 __remove_wait_queue(&x->wait, &wait);
4750 if (!x->done)
4751 return timeout;
4752 }
4753 x->done--;
4754 return timeout ?: 1;
4755 }
4756
4757 static long __sched
4758 wait_for_common(struct completion *x, long timeout, int state)
4759 {
4760 might_sleep();
4761
4762 spin_lock_irq(&x->wait.lock);
4763 timeout = do_wait_for_common(x, timeout, state);
4764 spin_unlock_irq(&x->wait.lock);
4765 return timeout;
4766 }
4767
4768 /**
4769 * wait_for_completion: - waits for completion of a task
4770 * @x: holds the state of this particular completion
4771 *
4772 * This waits to be signaled for completion of a specific task. It is NOT
4773 * interruptible and there is no timeout.
4774 *
4775 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4776 * and interrupt capability. Also see complete().
4777 */
4778 void __sched wait_for_completion(struct completion *x)
4779 {
4780 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4781 }
4782 EXPORT_SYMBOL(wait_for_completion);
4783
4784 /**
4785 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4786 * @x: holds the state of this particular completion
4787 * @timeout: timeout value in jiffies
4788 *
4789 * This waits for either a completion of a specific task to be signaled or for a
4790 * specified timeout to expire. The timeout is in jiffies. It is not
4791 * interruptible.
4792 */
4793 unsigned long __sched
4794 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4795 {
4796 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4797 }
4798 EXPORT_SYMBOL(wait_for_completion_timeout);
4799
4800 /**
4801 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4802 * @x: holds the state of this particular completion
4803 *
4804 * This waits for completion of a specific task to be signaled. It is
4805 * interruptible.
4806 */
4807 int __sched wait_for_completion_interruptible(struct completion *x)
4808 {
4809 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4810 if (t == -ERESTARTSYS)
4811 return t;
4812 return 0;
4813 }
4814 EXPORT_SYMBOL(wait_for_completion_interruptible);
4815
4816 /**
4817 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4818 * @x: holds the state of this particular completion
4819 * @timeout: timeout value in jiffies
4820 *
4821 * This waits for either a completion of a specific task to be signaled or for a
4822 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4823 */
4824 long __sched
4825 wait_for_completion_interruptible_timeout(struct completion *x,
4826 unsigned long timeout)
4827 {
4828 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4829 }
4830 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4831
4832 /**
4833 * wait_for_completion_killable: - waits for completion of a task (killable)
4834 * @x: holds the state of this particular completion
4835 *
4836 * This waits to be signaled for completion of a specific task. It can be
4837 * interrupted by a kill signal.
4838 */
4839 int __sched wait_for_completion_killable(struct completion *x)
4840 {
4841 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4842 if (t == -ERESTARTSYS)
4843 return t;
4844 return 0;
4845 }
4846 EXPORT_SYMBOL(wait_for_completion_killable);
4847
4848 /**
4849 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4850 * @x: holds the state of this particular completion
4851 * @timeout: timeout value in jiffies
4852 *
4853 * This waits for either a completion of a specific task to be
4854 * signaled or for a specified timeout to expire. It can be
4855 * interrupted by a kill signal. The timeout is in jiffies.
4856 */
4857 long __sched
4858 wait_for_completion_killable_timeout(struct completion *x,
4859 unsigned long timeout)
4860 {
4861 return wait_for_common(x, timeout, TASK_KILLABLE);
4862 }
4863 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4864
4865 /**
4866 * try_wait_for_completion - try to decrement a completion without blocking
4867 * @x: completion structure
4868 *
4869 * Returns: 0 if a decrement cannot be done without blocking
4870 * 1 if a decrement succeeded.
4871 *
4872 * If a completion is being used as a counting completion,
4873 * attempt to decrement the counter without blocking. This
4874 * enables us to avoid waiting if the resource the completion
4875 * is protecting is not available.
4876 */
4877 bool try_wait_for_completion(struct completion *x)
4878 {
4879 unsigned long flags;
4880 int ret = 1;
4881
4882 spin_lock_irqsave(&x->wait.lock, flags);
4883 if (!x->done)
4884 ret = 0;
4885 else
4886 x->done--;
4887 spin_unlock_irqrestore(&x->wait.lock, flags);
4888 return ret;
4889 }
4890 EXPORT_SYMBOL(try_wait_for_completion);
4891
4892 /**
4893 * completion_done - Test to see if a completion has any waiters
4894 * @x: completion structure
4895 *
4896 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4897 * 1 if there are no waiters.
4898 *
4899 */
4900 bool completion_done(struct completion *x)
4901 {
4902 unsigned long flags;
4903 int ret = 1;
4904
4905 spin_lock_irqsave(&x->wait.lock, flags);
4906 if (!x->done)
4907 ret = 0;
4908 spin_unlock_irqrestore(&x->wait.lock, flags);
4909 return ret;
4910 }
4911 EXPORT_SYMBOL(completion_done);
4912
4913 static long __sched
4914 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4915 {
4916 unsigned long flags;
4917 wait_queue_t wait;
4918
4919 init_waitqueue_entry(&wait, current);
4920
4921 __set_current_state(state);
4922
4923 spin_lock_irqsave(&q->lock, flags);
4924 __add_wait_queue(q, &wait);
4925 spin_unlock(&q->lock);
4926 timeout = schedule_timeout(timeout);
4927 spin_lock_irq(&q->lock);
4928 __remove_wait_queue(q, &wait);
4929 spin_unlock_irqrestore(&q->lock, flags);
4930
4931 return timeout;
4932 }
4933
4934 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4935 {
4936 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4937 }
4938 EXPORT_SYMBOL(interruptible_sleep_on);
4939
4940 long __sched
4941 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4942 {
4943 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4944 }
4945 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4946
4947 void __sched sleep_on(wait_queue_head_t *q)
4948 {
4949 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4950 }
4951 EXPORT_SYMBOL(sleep_on);
4952
4953 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4954 {
4955 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4956 }
4957 EXPORT_SYMBOL(sleep_on_timeout);
4958
4959 #ifdef CONFIG_RT_MUTEXES
4960
4961 /*
4962 * rt_mutex_setprio - set the current priority of a task
4963 * @p: task
4964 * @prio: prio value (kernel-internal form)
4965 *
4966 * This function changes the 'effective' priority of a task. It does
4967 * not touch ->normal_prio like __setscheduler().
4968 *
4969 * Used by the rt_mutex code to implement priority inheritance logic.
4970 */
4971 void rt_mutex_setprio(struct task_struct *p, int prio)
4972 {
4973 int oldprio, on_rq, running;
4974 struct rq *rq;
4975 const struct sched_class *prev_class;
4976
4977 BUG_ON(prio < 0 || prio > MAX_PRIO);
4978
4979 rq = __task_rq_lock(p);
4980
4981 trace_sched_pi_setprio(p, prio);
4982 oldprio = p->prio;
4983 prev_class = p->sched_class;
4984 on_rq = p->on_rq;
4985 running = task_current(rq, p);
4986 if (on_rq)
4987 dequeue_task(rq, p, 0);
4988 if (running)
4989 p->sched_class->put_prev_task(rq, p);
4990
4991 if (rt_prio(prio))
4992 p->sched_class = &rt_sched_class;
4993 else
4994 p->sched_class = &fair_sched_class;
4995
4996 p->prio = prio;
4997
4998 if (running)
4999 p->sched_class->set_curr_task(rq);
5000 if (on_rq)
5001 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
5002
5003 check_class_changed(rq, p, prev_class, oldprio);
5004 __task_rq_unlock(rq);
5005 }
5006
5007 #endif
5008
5009 void set_user_nice(struct task_struct *p, long nice)
5010 {
5011 int old_prio, delta, on_rq;
5012 unsigned long flags;
5013 struct rq *rq;
5014
5015 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5016 return;
5017 /*
5018 * We have to be careful, if called from sys_setpriority(),
5019 * the task might be in the middle of scheduling on another CPU.
5020 */
5021 rq = task_rq_lock(p, &flags);
5022 /*
5023 * The RT priorities are set via sched_setscheduler(), but we still
5024 * allow the 'normal' nice value to be set - but as expected
5025 * it wont have any effect on scheduling until the task is
5026 * SCHED_FIFO/SCHED_RR:
5027 */
5028 if (task_has_rt_policy(p)) {
5029 p->static_prio = NICE_TO_PRIO(nice);
5030 goto out_unlock;
5031 }
5032 on_rq = p->on_rq;
5033 if (on_rq)
5034 dequeue_task(rq, p, 0);
5035
5036 p->static_prio = NICE_TO_PRIO(nice);
5037 set_load_weight(p);
5038 old_prio = p->prio;
5039 p->prio = effective_prio(p);
5040 delta = p->prio - old_prio;
5041
5042 if (on_rq) {
5043 enqueue_task(rq, p, 0);
5044 /*
5045 * If the task increased its priority or is running and
5046 * lowered its priority, then reschedule its CPU:
5047 */
5048 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5049 resched_task(rq->curr);
5050 }
5051 out_unlock:
5052 task_rq_unlock(rq, p, &flags);
5053 }
5054 EXPORT_SYMBOL(set_user_nice);
5055
5056 /*
5057 * can_nice - check if a task can reduce its nice value
5058 * @p: task
5059 * @nice: nice value
5060 */
5061 int can_nice(const struct task_struct *p, const int nice)
5062 {
5063 /* convert nice value [19,-20] to rlimit style value [1,40] */
5064 int nice_rlim = 20 - nice;
5065
5066 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5067 capable(CAP_SYS_NICE));
5068 }
5069
5070 #ifdef __ARCH_WANT_SYS_NICE
5071
5072 /*
5073 * sys_nice - change the priority of the current process.
5074 * @increment: priority increment
5075 *
5076 * sys_setpriority is a more generic, but much slower function that
5077 * does similar things.
5078 */
5079 SYSCALL_DEFINE1(nice, int, increment)
5080 {
5081 long nice, retval;
5082
5083 /*
5084 * Setpriority might change our priority at the same moment.
5085 * We don't have to worry. Conceptually one call occurs first
5086 * and we have a single winner.
5087 */
5088 if (increment < -40)
5089 increment = -40;
5090 if (increment > 40)
5091 increment = 40;
5092
5093 nice = TASK_NICE(current) + increment;
5094 if (nice < -20)
5095 nice = -20;
5096 if (nice > 19)
5097 nice = 19;
5098
5099 if (increment < 0 && !can_nice(current, nice))
5100 return -EPERM;
5101
5102 retval = security_task_setnice(current, nice);
5103 if (retval)
5104 return retval;
5105
5106 set_user_nice(current, nice);
5107 return 0;
5108 }
5109
5110 #endif
5111
5112 /**
5113 * task_prio - return the priority value of a given task.
5114 * @p: the task in question.
5115 *
5116 * This is the priority value as seen by users in /proc.
5117 * RT tasks are offset by -200. Normal tasks are centered
5118 * around 0, value goes from -16 to +15.
5119 */
5120 int task_prio(const struct task_struct *p)
5121 {
5122 return p->prio - MAX_RT_PRIO;
5123 }
5124
5125 /**
5126 * task_nice - return the nice value of a given task.
5127 * @p: the task in question.
5128 */
5129 int task_nice(const struct task_struct *p)
5130 {
5131 return TASK_NICE(p);
5132 }
5133 EXPORT_SYMBOL(task_nice);
5134
5135 /**
5136 * idle_cpu - is a given cpu idle currently?
5137 * @cpu: the processor in question.
5138 */
5139 int idle_cpu(int cpu)
5140 {
5141 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5142 }
5143
5144 /**
5145 * idle_task - return the idle task for a given cpu.
5146 * @cpu: the processor in question.
5147 */
5148 struct task_struct *idle_task(int cpu)
5149 {
5150 return cpu_rq(cpu)->idle;
5151 }
5152
5153 /**
5154 * find_process_by_pid - find a process with a matching PID value.
5155 * @pid: the pid in question.
5156 */
5157 static struct task_struct *find_process_by_pid(pid_t pid)
5158 {
5159 return pid ? find_task_by_vpid(pid) : current;
5160 }
5161
5162 /* Actually do priority change: must hold rq lock. */
5163 static void
5164 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5165 {
5166 p->policy = policy;
5167 p->rt_priority = prio;
5168 p->normal_prio = normal_prio(p);
5169 /* we are holding p->pi_lock already */
5170 p->prio = rt_mutex_getprio(p);
5171 if (rt_prio(p->prio))
5172 p->sched_class = &rt_sched_class;
5173 else
5174 p->sched_class = &fair_sched_class;
5175 set_load_weight(p);
5176 }
5177
5178 /*
5179 * check the target process has a UID that matches the current process's
5180 */
5181 static bool check_same_owner(struct task_struct *p)
5182 {
5183 const struct cred *cred = current_cred(), *pcred;
5184 bool match;
5185
5186 rcu_read_lock();
5187 pcred = __task_cred(p);
5188 if (cred->user->user_ns == pcred->user->user_ns)
5189 match = (cred->euid == pcred->euid ||
5190 cred->euid == pcred->uid);
5191 else
5192 match = false;
5193 rcu_read_unlock();
5194 return match;
5195 }
5196
5197 static int __sched_setscheduler(struct task_struct *p, int policy,
5198 const struct sched_param *param, bool user)
5199 {
5200 int retval, oldprio, oldpolicy = -1, on_rq, running;
5201 unsigned long flags;
5202 const struct sched_class *prev_class;
5203 struct rq *rq;
5204 int reset_on_fork;
5205
5206 /* may grab non-irq protected spin_locks */
5207 BUG_ON(in_interrupt());
5208 recheck:
5209 /* double check policy once rq lock held */
5210 if (policy < 0) {
5211 reset_on_fork = p->sched_reset_on_fork;
5212 policy = oldpolicy = p->policy;
5213 } else {
5214 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5215 policy &= ~SCHED_RESET_ON_FORK;
5216
5217 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5218 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5219 policy != SCHED_IDLE)
5220 return -EINVAL;
5221 }
5222
5223 /*
5224 * Valid priorities for SCHED_FIFO and SCHED_RR are
5225 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5226 * SCHED_BATCH and SCHED_IDLE is 0.
5227 */
5228 if (param->sched_priority < 0 ||
5229 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5230 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5231 return -EINVAL;
5232 if (rt_policy(policy) != (param->sched_priority != 0))
5233 return -EINVAL;
5234
5235 /*
5236 * Allow unprivileged RT tasks to decrease priority:
5237 */
5238 if (user && !capable(CAP_SYS_NICE)) {
5239 if (rt_policy(policy)) {
5240 unsigned long rlim_rtprio =
5241 task_rlimit(p, RLIMIT_RTPRIO);
5242
5243 /* can't set/change the rt policy */
5244 if (policy != p->policy && !rlim_rtprio)
5245 return -EPERM;
5246
5247 /* can't increase priority */
5248 if (param->sched_priority > p->rt_priority &&
5249 param->sched_priority > rlim_rtprio)
5250 return -EPERM;
5251 }
5252
5253 /*
5254 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5255 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5256 */
5257 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5258 if (!can_nice(p, TASK_NICE(p)))
5259 return -EPERM;
5260 }
5261
5262 /* can't change other user's priorities */
5263 if (!check_same_owner(p))
5264 return -EPERM;
5265
5266 /* Normal users shall not reset the sched_reset_on_fork flag */
5267 if (p->sched_reset_on_fork && !reset_on_fork)
5268 return -EPERM;
5269 }
5270
5271 if (user) {
5272 retval = security_task_setscheduler(p);
5273 if (retval)
5274 return retval;
5275 }
5276
5277 /*
5278 * make sure no PI-waiters arrive (or leave) while we are
5279 * changing the priority of the task:
5280 *
5281 * To be able to change p->policy safely, the appropriate
5282 * runqueue lock must be held.
5283 */
5284 rq = task_rq_lock(p, &flags);
5285
5286 /*
5287 * Changing the policy of the stop threads its a very bad idea
5288 */
5289 if (p == rq->stop) {
5290 task_rq_unlock(rq, p, &flags);
5291 return -EINVAL;
5292 }
5293
5294 /*
5295 * If not changing anything there's no need to proceed further:
5296 */
5297 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5298 param->sched_priority == p->rt_priority))) {
5299
5300 __task_rq_unlock(rq);
5301 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5302 return 0;
5303 }
5304
5305 #ifdef CONFIG_RT_GROUP_SCHED
5306 if (user) {
5307 /*
5308 * Do not allow realtime tasks into groups that have no runtime
5309 * assigned.
5310 */
5311 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5312 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5313 !task_group_is_autogroup(task_group(p))) {
5314 task_rq_unlock(rq, p, &flags);
5315 return -EPERM;
5316 }
5317 }
5318 #endif
5319
5320 /* recheck policy now with rq lock held */
5321 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5322 policy = oldpolicy = -1;
5323 task_rq_unlock(rq, p, &flags);
5324 goto recheck;
5325 }
5326 on_rq = p->on_rq;
5327 running = task_current(rq, p);
5328 if (on_rq)
5329 deactivate_task(rq, p, 0);
5330 if (running)
5331 p->sched_class->put_prev_task(rq, p);
5332
5333 p->sched_reset_on_fork = reset_on_fork;
5334
5335 oldprio = p->prio;
5336 prev_class = p->sched_class;
5337 __setscheduler(rq, p, policy, param->sched_priority);
5338
5339 if (running)
5340 p->sched_class->set_curr_task(rq);
5341 if (on_rq)
5342 activate_task(rq, p, 0);
5343
5344 check_class_changed(rq, p, prev_class, oldprio);
5345 task_rq_unlock(rq, p, &flags);
5346
5347 rt_mutex_adjust_pi(p);
5348
5349 return 0;
5350 }
5351
5352 /**
5353 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5354 * @p: the task in question.
5355 * @policy: new policy.
5356 * @param: structure containing the new RT priority.
5357 *
5358 * NOTE that the task may be already dead.
5359 */
5360 int sched_setscheduler(struct task_struct *p, int policy,
5361 const struct sched_param *param)
5362 {
5363 return __sched_setscheduler(p, policy, param, true);
5364 }
5365 EXPORT_SYMBOL_GPL(sched_setscheduler);
5366
5367 /**
5368 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5369 * @p: the task in question.
5370 * @policy: new policy.
5371 * @param: structure containing the new RT priority.
5372 *
5373 * Just like sched_setscheduler, only don't bother checking if the
5374 * current context has permission. For example, this is needed in
5375 * stop_machine(): we create temporary high priority worker threads,
5376 * but our caller might not have that capability.
5377 */
5378 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5379 const struct sched_param *param)
5380 {
5381 return __sched_setscheduler(p, policy, param, false);
5382 }
5383
5384 static int
5385 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5386 {
5387 struct sched_param lparam;
5388 struct task_struct *p;
5389 int retval;
5390
5391 if (!param || pid < 0)
5392 return -EINVAL;
5393 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5394 return -EFAULT;
5395
5396 rcu_read_lock();
5397 retval = -ESRCH;
5398 p = find_process_by_pid(pid);
5399 if (p != NULL)
5400 retval = sched_setscheduler(p, policy, &lparam);
5401 rcu_read_unlock();
5402
5403 return retval;
5404 }
5405
5406 /**
5407 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5408 * @pid: the pid in question.
5409 * @policy: new policy.
5410 * @param: structure containing the new RT priority.
5411 */
5412 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5413 struct sched_param __user *, param)
5414 {
5415 /* negative values for policy are not valid */
5416 if (policy < 0)
5417 return -EINVAL;
5418
5419 return do_sched_setscheduler(pid, policy, param);
5420 }
5421
5422 /**
5423 * sys_sched_setparam - set/change the RT priority of a thread
5424 * @pid: the pid in question.
5425 * @param: structure containing the new RT priority.
5426 */
5427 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5428 {
5429 return do_sched_setscheduler(pid, -1, param);
5430 }
5431
5432 /**
5433 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5434 * @pid: the pid in question.
5435 */
5436 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5437 {
5438 struct task_struct *p;
5439 int retval;
5440
5441 if (pid < 0)
5442 return -EINVAL;
5443
5444 retval = -ESRCH;
5445 rcu_read_lock();
5446 p = find_process_by_pid(pid);
5447 if (p) {
5448 retval = security_task_getscheduler(p);
5449 if (!retval)
5450 retval = p->policy
5451 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5452 }
5453 rcu_read_unlock();
5454 return retval;
5455 }
5456
5457 /**
5458 * sys_sched_getparam - get the RT priority of a thread
5459 * @pid: the pid in question.
5460 * @param: structure containing the RT priority.
5461 */
5462 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5463 {
5464 struct sched_param lp;
5465 struct task_struct *p;
5466 int retval;
5467
5468 if (!param || pid < 0)
5469 return -EINVAL;
5470
5471 rcu_read_lock();
5472 p = find_process_by_pid(pid);
5473 retval = -ESRCH;
5474 if (!p)
5475 goto out_unlock;
5476
5477 retval = security_task_getscheduler(p);
5478 if (retval)
5479 goto out_unlock;
5480
5481 lp.sched_priority = p->rt_priority;
5482 rcu_read_unlock();
5483
5484 /*
5485 * This one might sleep, we cannot do it with a spinlock held ...
5486 */
5487 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5488
5489 return retval;
5490
5491 out_unlock:
5492 rcu_read_unlock();
5493 return retval;
5494 }
5495
5496 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5497 {
5498 cpumask_var_t cpus_allowed, new_mask;
5499 struct task_struct *p;
5500 int retval;
5501
5502 get_online_cpus();
5503 rcu_read_lock();
5504
5505 p = find_process_by_pid(pid);
5506 if (!p) {
5507 rcu_read_unlock();
5508 put_online_cpus();
5509 return -ESRCH;
5510 }
5511
5512 /* Prevent p going away */
5513 get_task_struct(p);
5514 rcu_read_unlock();
5515
5516 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5517 retval = -ENOMEM;
5518 goto out_put_task;
5519 }
5520 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5521 retval = -ENOMEM;
5522 goto out_free_cpus_allowed;
5523 }
5524 retval = -EPERM;
5525 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5526 goto out_unlock;
5527
5528 retval = security_task_setscheduler(p);
5529 if (retval)
5530 goto out_unlock;
5531
5532 cpuset_cpus_allowed(p, cpus_allowed);
5533 cpumask_and(new_mask, in_mask, cpus_allowed);
5534 again:
5535 retval = set_cpus_allowed_ptr(p, new_mask);
5536
5537 if (!retval) {
5538 cpuset_cpus_allowed(p, cpus_allowed);
5539 if (!cpumask_subset(new_mask, cpus_allowed)) {
5540 /*
5541 * We must have raced with a concurrent cpuset
5542 * update. Just reset the cpus_allowed to the
5543 * cpuset's cpus_allowed
5544 */
5545 cpumask_copy(new_mask, cpus_allowed);
5546 goto again;
5547 }
5548 }
5549 out_unlock:
5550 free_cpumask_var(new_mask);
5551 out_free_cpus_allowed:
5552 free_cpumask_var(cpus_allowed);
5553 out_put_task:
5554 put_task_struct(p);
5555 put_online_cpus();
5556 return retval;
5557 }
5558
5559 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5560 struct cpumask *new_mask)
5561 {
5562 if (len < cpumask_size())
5563 cpumask_clear(new_mask);
5564 else if (len > cpumask_size())
5565 len = cpumask_size();
5566
5567 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5568 }
5569
5570 /**
5571 * sys_sched_setaffinity - set the cpu affinity of a process
5572 * @pid: pid of the process
5573 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5574 * @user_mask_ptr: user-space pointer to the new cpu mask
5575 */
5576 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5577 unsigned long __user *, user_mask_ptr)
5578 {
5579 cpumask_var_t new_mask;
5580 int retval;
5581
5582 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5583 return -ENOMEM;
5584
5585 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5586 if (retval == 0)
5587 retval = sched_setaffinity(pid, new_mask);
5588 free_cpumask_var(new_mask);
5589 return retval;
5590 }
5591
5592 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5593 {
5594 struct task_struct *p;
5595 unsigned long flags;
5596 int retval;
5597
5598 get_online_cpus();
5599 rcu_read_lock();
5600
5601 retval = -ESRCH;
5602 p = find_process_by_pid(pid);
5603 if (!p)
5604 goto out_unlock;
5605
5606 retval = security_task_getscheduler(p);
5607 if (retval)
5608 goto out_unlock;
5609
5610 raw_spin_lock_irqsave(&p->pi_lock, flags);
5611 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5612 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5613
5614 out_unlock:
5615 rcu_read_unlock();
5616 put_online_cpus();
5617
5618 return retval;
5619 }
5620
5621 /**
5622 * sys_sched_getaffinity - get the cpu affinity of a process
5623 * @pid: pid of the process
5624 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5625 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5626 */
5627 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5628 unsigned long __user *, user_mask_ptr)
5629 {
5630 int ret;
5631 cpumask_var_t mask;
5632
5633 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5634 return -EINVAL;
5635 if (len & (sizeof(unsigned long)-1))
5636 return -EINVAL;
5637
5638 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5639 return -ENOMEM;
5640
5641 ret = sched_getaffinity(pid, mask);
5642 if (ret == 0) {
5643 size_t retlen = min_t(size_t, len, cpumask_size());
5644
5645 if (copy_to_user(user_mask_ptr, mask, retlen))
5646 ret = -EFAULT;
5647 else
5648 ret = retlen;
5649 }
5650 free_cpumask_var(mask);
5651
5652 return ret;
5653 }
5654
5655 /**
5656 * sys_sched_yield - yield the current processor to other threads.
5657 *
5658 * This function yields the current CPU to other tasks. If there are no
5659 * other threads running on this CPU then this function will return.
5660 */
5661 SYSCALL_DEFINE0(sched_yield)
5662 {
5663 struct rq *rq = this_rq_lock();
5664
5665 schedstat_inc(rq, yld_count);
5666 current->sched_class->yield_task(rq);
5667
5668 /*
5669 * Since we are going to call schedule() anyway, there's
5670 * no need to preempt or enable interrupts:
5671 */
5672 __release(rq->lock);
5673 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5674 do_raw_spin_unlock(&rq->lock);
5675 preempt_enable_no_resched();
5676
5677 schedule();
5678
5679 return 0;
5680 }
5681
5682 static inline int should_resched(void)
5683 {
5684 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5685 }
5686
5687 static void __cond_resched(void)
5688 {
5689 add_preempt_count(PREEMPT_ACTIVE);
5690 __schedule();
5691 sub_preempt_count(PREEMPT_ACTIVE);
5692 }
5693
5694 int __sched _cond_resched(void)
5695 {
5696 if (should_resched()) {
5697 __cond_resched();
5698 return 1;
5699 }
5700 return 0;
5701 }
5702 EXPORT_SYMBOL(_cond_resched);
5703
5704 /*
5705 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5706 * call schedule, and on return reacquire the lock.
5707 *
5708 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5709 * operations here to prevent schedule() from being called twice (once via
5710 * spin_unlock(), once by hand).
5711 */
5712 int __cond_resched_lock(spinlock_t *lock)
5713 {
5714 int resched = should_resched();
5715 int ret = 0;
5716
5717 lockdep_assert_held(lock);
5718
5719 if (spin_needbreak(lock) || resched) {
5720 spin_unlock(lock);
5721 if (resched)
5722 __cond_resched();
5723 else
5724 cpu_relax();
5725 ret = 1;
5726 spin_lock(lock);
5727 }
5728 return ret;
5729 }
5730 EXPORT_SYMBOL(__cond_resched_lock);
5731
5732 int __sched __cond_resched_softirq(void)
5733 {
5734 BUG_ON(!in_softirq());
5735
5736 if (should_resched()) {
5737 local_bh_enable();
5738 __cond_resched();
5739 local_bh_disable();
5740 return 1;
5741 }
5742 return 0;
5743 }
5744 EXPORT_SYMBOL(__cond_resched_softirq);
5745
5746 /**
5747 * yield - yield the current processor to other threads.
5748 *
5749 * This is a shortcut for kernel-space yielding - it marks the
5750 * thread runnable and calls sys_sched_yield().
5751 */
5752 void __sched yield(void)
5753 {
5754 set_current_state(TASK_RUNNING);
5755 sys_sched_yield();
5756 }
5757 EXPORT_SYMBOL(yield);
5758
5759 /**
5760 * yield_to - yield the current processor to another thread in
5761 * your thread group, or accelerate that thread toward the
5762 * processor it's on.
5763 * @p: target task
5764 * @preempt: whether task preemption is allowed or not
5765 *
5766 * It's the caller's job to ensure that the target task struct
5767 * can't go away on us before we can do any checks.
5768 *
5769 * Returns true if we indeed boosted the target task.
5770 */
5771 bool __sched yield_to(struct task_struct *p, bool preempt)
5772 {
5773 struct task_struct *curr = current;
5774 struct rq *rq, *p_rq;
5775 unsigned long flags;
5776 bool yielded = 0;
5777
5778 local_irq_save(flags);
5779 rq = this_rq();
5780
5781 again:
5782 p_rq = task_rq(p);
5783 double_rq_lock(rq, p_rq);
5784 while (task_rq(p) != p_rq) {
5785 double_rq_unlock(rq, p_rq);
5786 goto again;
5787 }
5788
5789 if (!curr->sched_class->yield_to_task)
5790 goto out;
5791
5792 if (curr->sched_class != p->sched_class)
5793 goto out;
5794
5795 if (task_running(p_rq, p) || p->state)
5796 goto out;
5797
5798 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5799 if (yielded) {
5800 schedstat_inc(rq, yld_count);
5801 /*
5802 * Make p's CPU reschedule; pick_next_entity takes care of
5803 * fairness.
5804 */
5805 if (preempt && rq != p_rq)
5806 resched_task(p_rq->curr);
5807 }
5808
5809 out:
5810 double_rq_unlock(rq, p_rq);
5811 local_irq_restore(flags);
5812
5813 if (yielded)
5814 schedule();
5815
5816 return yielded;
5817 }
5818 EXPORT_SYMBOL_GPL(yield_to);
5819
5820 /*
5821 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5822 * that process accounting knows that this is a task in IO wait state.
5823 */
5824 void __sched io_schedule(void)
5825 {
5826 struct rq *rq = raw_rq();
5827
5828 delayacct_blkio_start();
5829 atomic_inc(&rq->nr_iowait);
5830 blk_flush_plug(current);
5831 current->in_iowait = 1;
5832 schedule();
5833 current->in_iowait = 0;
5834 atomic_dec(&rq->nr_iowait);
5835 delayacct_blkio_end();
5836 }
5837 EXPORT_SYMBOL(io_schedule);
5838
5839 long __sched io_schedule_timeout(long timeout)
5840 {
5841 struct rq *rq = raw_rq();
5842 long ret;
5843
5844 delayacct_blkio_start();
5845 atomic_inc(&rq->nr_iowait);
5846 blk_flush_plug(current);
5847 current->in_iowait = 1;
5848 ret = schedule_timeout(timeout);
5849 current->in_iowait = 0;
5850 atomic_dec(&rq->nr_iowait);
5851 delayacct_blkio_end();
5852 return ret;
5853 }
5854
5855 /**
5856 * sys_sched_get_priority_max - return maximum RT priority.
5857 * @policy: scheduling class.
5858 *
5859 * this syscall returns the maximum rt_priority that can be used
5860 * by a given scheduling class.
5861 */
5862 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5863 {
5864 int ret = -EINVAL;
5865
5866 switch (policy) {
5867 case SCHED_FIFO:
5868 case SCHED_RR:
5869 ret = MAX_USER_RT_PRIO-1;
5870 break;
5871 case SCHED_NORMAL:
5872 case SCHED_BATCH:
5873 case SCHED_IDLE:
5874 ret = 0;
5875 break;
5876 }
5877 return ret;
5878 }
5879
5880 /**
5881 * sys_sched_get_priority_min - return minimum RT priority.
5882 * @policy: scheduling class.
5883 *
5884 * this syscall returns the minimum rt_priority that can be used
5885 * by a given scheduling class.
5886 */
5887 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5888 {
5889 int ret = -EINVAL;
5890
5891 switch (policy) {
5892 case SCHED_FIFO:
5893 case SCHED_RR:
5894 ret = 1;
5895 break;
5896 case SCHED_NORMAL:
5897 case SCHED_BATCH:
5898 case SCHED_IDLE:
5899 ret = 0;
5900 }
5901 return ret;
5902 }
5903
5904 /**
5905 * sys_sched_rr_get_interval - return the default timeslice of a process.
5906 * @pid: pid of the process.
5907 * @interval: userspace pointer to the timeslice value.
5908 *
5909 * this syscall writes the default timeslice value of a given process
5910 * into the user-space timespec buffer. A value of '0' means infinity.
5911 */
5912 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5913 struct timespec __user *, interval)
5914 {
5915 struct task_struct *p;
5916 unsigned int time_slice;
5917 unsigned long flags;
5918 struct rq *rq;
5919 int retval;
5920 struct timespec t;
5921
5922 if (pid < 0)
5923 return -EINVAL;
5924
5925 retval = -ESRCH;
5926 rcu_read_lock();
5927 p = find_process_by_pid(pid);
5928 if (!p)
5929 goto out_unlock;
5930
5931 retval = security_task_getscheduler(p);
5932 if (retval)
5933 goto out_unlock;
5934
5935 rq = task_rq_lock(p, &flags);
5936 time_slice = p->sched_class->get_rr_interval(rq, p);
5937 task_rq_unlock(rq, p, &flags);
5938
5939 rcu_read_unlock();
5940 jiffies_to_timespec(time_slice, &t);
5941 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5942 return retval;
5943
5944 out_unlock:
5945 rcu_read_unlock();
5946 return retval;
5947 }
5948
5949 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5950
5951 void sched_show_task(struct task_struct *p)
5952 {
5953 unsigned long free = 0;
5954 unsigned state;
5955
5956 state = p->state ? __ffs(p->state) + 1 : 0;
5957 printk(KERN_INFO "%-15.15s %c", p->comm,
5958 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5959 #if BITS_PER_LONG == 32
5960 if (state == TASK_RUNNING)
5961 printk(KERN_CONT " running ");
5962 else
5963 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5964 #else
5965 if (state == TASK_RUNNING)
5966 printk(KERN_CONT " running task ");
5967 else
5968 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5969 #endif
5970 #ifdef CONFIG_DEBUG_STACK_USAGE
5971 free = stack_not_used(p);
5972 #endif
5973 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5974 task_pid_nr(p), task_pid_nr(p->real_parent),
5975 (unsigned long)task_thread_info(p)->flags);
5976
5977 show_stack(p, NULL);
5978 }
5979
5980 void show_state_filter(unsigned long state_filter)
5981 {
5982 struct task_struct *g, *p;
5983
5984 #if BITS_PER_LONG == 32
5985 printk(KERN_INFO
5986 " task PC stack pid father\n");
5987 #else
5988 printk(KERN_INFO
5989 " task PC stack pid father\n");
5990 #endif
5991 read_lock(&tasklist_lock);
5992 do_each_thread(g, p) {
5993 /*
5994 * reset the NMI-timeout, listing all files on a slow
5995 * console might take a lot of time:
5996 */
5997 touch_nmi_watchdog();
5998 if (!state_filter || (p->state & state_filter))
5999 sched_show_task(p);
6000 } while_each_thread(g, p);
6001
6002 touch_all_softlockup_watchdogs();
6003
6004 #ifdef CONFIG_SCHED_DEBUG
6005 sysrq_sched_debug_show();
6006 #endif
6007 read_unlock(&tasklist_lock);
6008 /*
6009 * Only show locks if all tasks are dumped:
6010 */
6011 if (!state_filter)
6012 debug_show_all_locks();
6013 }
6014
6015 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6016 {
6017 idle->sched_class = &idle_sched_class;
6018 }
6019
6020 /**
6021 * init_idle - set up an idle thread for a given CPU
6022 * @idle: task in question
6023 * @cpu: cpu the idle task belongs to
6024 *
6025 * NOTE: this function does not set the idle thread's NEED_RESCHED
6026 * flag, to make booting more robust.
6027 */
6028 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6029 {
6030 struct rq *rq = cpu_rq(cpu);
6031 unsigned long flags;
6032
6033 raw_spin_lock_irqsave(&rq->lock, flags);
6034
6035 __sched_fork(idle);
6036 idle->state = TASK_RUNNING;
6037 idle->se.exec_start = sched_clock();
6038
6039 do_set_cpus_allowed(idle, cpumask_of(cpu));
6040 /*
6041 * We're having a chicken and egg problem, even though we are
6042 * holding rq->lock, the cpu isn't yet set to this cpu so the
6043 * lockdep check in task_group() will fail.
6044 *
6045 * Similar case to sched_fork(). / Alternatively we could
6046 * use task_rq_lock() here and obtain the other rq->lock.
6047 *
6048 * Silence PROVE_RCU
6049 */
6050 rcu_read_lock();
6051 __set_task_cpu(idle, cpu);
6052 rcu_read_unlock();
6053
6054 rq->curr = rq->idle = idle;
6055 #if defined(CONFIG_SMP)
6056 idle->on_cpu = 1;
6057 #endif
6058 raw_spin_unlock_irqrestore(&rq->lock, flags);
6059
6060 /* Set the preempt count _outside_ the spinlocks! */
6061 task_thread_info(idle)->preempt_count = 0;
6062
6063 /*
6064 * The idle tasks have their own, simple scheduling class:
6065 */
6066 idle->sched_class = &idle_sched_class;
6067 ftrace_graph_init_idle_task(idle, cpu);
6068 }
6069
6070 /*
6071 * In a system that switches off the HZ timer nohz_cpu_mask
6072 * indicates which cpus entered this state. This is used
6073 * in the rcu update to wait only for active cpus. For system
6074 * which do not switch off the HZ timer nohz_cpu_mask should
6075 * always be CPU_BITS_NONE.
6076 */
6077 cpumask_var_t nohz_cpu_mask;
6078
6079 /*
6080 * Increase the granularity value when there are more CPUs,
6081 * because with more CPUs the 'effective latency' as visible
6082 * to users decreases. But the relationship is not linear,
6083 * so pick a second-best guess by going with the log2 of the
6084 * number of CPUs.
6085 *
6086 * This idea comes from the SD scheduler of Con Kolivas:
6087 */
6088 static int get_update_sysctl_factor(void)
6089 {
6090 unsigned int cpus = min_t(int, num_online_cpus(), 8);
6091 unsigned int factor;
6092
6093 switch (sysctl_sched_tunable_scaling) {
6094 case SCHED_TUNABLESCALING_NONE:
6095 factor = 1;
6096 break;
6097 case SCHED_TUNABLESCALING_LINEAR:
6098 factor = cpus;
6099 break;
6100 case SCHED_TUNABLESCALING_LOG:
6101 default:
6102 factor = 1 + ilog2(cpus);
6103 break;
6104 }
6105
6106 return factor;
6107 }
6108
6109 static void update_sysctl(void)
6110 {
6111 unsigned int factor = get_update_sysctl_factor();
6112
6113 #define SET_SYSCTL(name) \
6114 (sysctl_##name = (factor) * normalized_sysctl_##name)
6115 SET_SYSCTL(sched_min_granularity);
6116 SET_SYSCTL(sched_latency);
6117 SET_SYSCTL(sched_wakeup_granularity);
6118 #undef SET_SYSCTL
6119 }
6120
6121 static inline void sched_init_granularity(void)
6122 {
6123 update_sysctl();
6124 }
6125
6126 #ifdef CONFIG_SMP
6127 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6128 {
6129 if (p->sched_class && p->sched_class->set_cpus_allowed)
6130 p->sched_class->set_cpus_allowed(p, new_mask);
6131 else {
6132 cpumask_copy(&p->cpus_allowed, new_mask);
6133 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6134 }
6135 }
6136
6137 /*
6138 * This is how migration works:
6139 *
6140 * 1) we invoke migration_cpu_stop() on the target CPU using
6141 * stop_one_cpu().
6142 * 2) stopper starts to run (implicitly forcing the migrated thread
6143 * off the CPU)
6144 * 3) it checks whether the migrated task is still in the wrong runqueue.
6145 * 4) if it's in the wrong runqueue then the migration thread removes
6146 * it and puts it into the right queue.
6147 * 5) stopper completes and stop_one_cpu() returns and the migration
6148 * is done.
6149 */
6150
6151 /*
6152 * Change a given task's CPU affinity. Migrate the thread to a
6153 * proper CPU and schedule it away if the CPU it's executing on
6154 * is removed from the allowed bitmask.
6155 *
6156 * NOTE: the caller must have a valid reference to the task, the
6157 * task must not exit() & deallocate itself prematurely. The
6158 * call is not atomic; no spinlocks may be held.
6159 */
6160 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6161 {
6162 unsigned long flags;
6163 struct rq *rq;
6164 unsigned int dest_cpu;
6165 int ret = 0;
6166
6167 rq = task_rq_lock(p, &flags);
6168
6169 if (cpumask_equal(&p->cpus_allowed, new_mask))
6170 goto out;
6171
6172 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
6173 ret = -EINVAL;
6174 goto out;
6175 }
6176
6177 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6178 ret = -EINVAL;
6179 goto out;
6180 }
6181
6182 do_set_cpus_allowed(p, new_mask);
6183
6184 /* Can the task run on the task's current CPU? If so, we're done */
6185 if (cpumask_test_cpu(task_cpu(p), new_mask))
6186 goto out;
6187
6188 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6189 if (p->on_rq) {
6190 struct migration_arg arg = { p, dest_cpu };
6191 /* Need help from migration thread: drop lock and wait. */
6192 task_rq_unlock(rq, p, &flags);
6193 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
6194 tlb_migrate_finish(p->mm);
6195 return 0;
6196 }
6197 out:
6198 task_rq_unlock(rq, p, &flags);
6199
6200 return ret;
6201 }
6202 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6203
6204 /*
6205 * Move (not current) task off this cpu, onto dest cpu. We're doing
6206 * this because either it can't run here any more (set_cpus_allowed()
6207 * away from this CPU, or CPU going down), or because we're
6208 * attempting to rebalance this task on exec (sched_exec).
6209 *
6210 * So we race with normal scheduler movements, but that's OK, as long
6211 * as the task is no longer on this CPU.
6212 *
6213 * Returns non-zero if task was successfully migrated.
6214 */
6215 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6216 {
6217 struct rq *rq_dest, *rq_src;
6218 int ret = 0;
6219
6220 if (unlikely(!cpu_active(dest_cpu)))
6221 return ret;
6222
6223 rq_src = cpu_rq(src_cpu);
6224 rq_dest = cpu_rq(dest_cpu);
6225
6226 raw_spin_lock(&p->pi_lock);
6227 double_rq_lock(rq_src, rq_dest);
6228 /* Already moved. */
6229 if (task_cpu(p) != src_cpu)
6230 goto done;
6231 /* Affinity changed (again). */
6232 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6233 goto fail;
6234
6235 /*
6236 * If we're not on a rq, the next wake-up will ensure we're
6237 * placed properly.
6238 */
6239 if (p->on_rq) {
6240 deactivate_task(rq_src, p, 0);
6241 set_task_cpu(p, dest_cpu);
6242 activate_task(rq_dest, p, 0);
6243 check_preempt_curr(rq_dest, p, 0);
6244 }
6245 done:
6246 ret = 1;
6247 fail:
6248 double_rq_unlock(rq_src, rq_dest);
6249 raw_spin_unlock(&p->pi_lock);
6250 return ret;
6251 }
6252
6253 /*
6254 * migration_cpu_stop - this will be executed by a highprio stopper thread
6255 * and performs thread migration by bumping thread off CPU then
6256 * 'pushing' onto another runqueue.
6257 */
6258 static int migration_cpu_stop(void *data)
6259 {
6260 struct migration_arg *arg = data;
6261
6262 /*
6263 * The original target cpu might have gone down and we might
6264 * be on another cpu but it doesn't matter.
6265 */
6266 local_irq_disable();
6267 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6268 local_irq_enable();
6269 return 0;
6270 }
6271
6272 #ifdef CONFIG_HOTPLUG_CPU
6273
6274 /*
6275 * Ensures that the idle task is using init_mm right before its cpu goes
6276 * offline.
6277 */
6278 void idle_task_exit(void)
6279 {
6280 struct mm_struct *mm = current->active_mm;
6281
6282 BUG_ON(cpu_online(smp_processor_id()));
6283
6284 if (mm != &init_mm)
6285 switch_mm(mm, &init_mm, current);
6286 mmdrop(mm);
6287 }
6288
6289 /*
6290 * While a dead CPU has no uninterruptible tasks queued at this point,
6291 * it might still have a nonzero ->nr_uninterruptible counter, because
6292 * for performance reasons the counter is not stricly tracking tasks to
6293 * their home CPUs. So we just add the counter to another CPU's counter,
6294 * to keep the global sum constant after CPU-down:
6295 */
6296 static void migrate_nr_uninterruptible(struct rq *rq_src)
6297 {
6298 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6299
6300 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6301 rq_src->nr_uninterruptible = 0;
6302 }
6303
6304 /*
6305 * remove the tasks which were accounted by rq from calc_load_tasks.
6306 */
6307 static void calc_global_load_remove(struct rq *rq)
6308 {
6309 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6310 rq->calc_load_active = 0;
6311 }
6312
6313 #ifdef CONFIG_CFS_BANDWIDTH
6314 static void unthrottle_offline_cfs_rqs(struct rq *rq)
6315 {
6316 struct cfs_rq *cfs_rq;
6317
6318 for_each_leaf_cfs_rq(rq, cfs_rq) {
6319 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6320
6321 if (!cfs_rq->runtime_enabled)
6322 continue;
6323
6324 /*
6325 * clock_task is not advancing so we just need to make sure
6326 * there's some valid quota amount
6327 */
6328 cfs_rq->runtime_remaining = cfs_b->quota;
6329 if (cfs_rq_throttled(cfs_rq))
6330 unthrottle_cfs_rq(cfs_rq);
6331 }
6332 }
6333 #else
6334 static void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6335 #endif
6336
6337 /*
6338 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6339 * try_to_wake_up()->select_task_rq().
6340 *
6341 * Called with rq->lock held even though we'er in stop_machine() and
6342 * there's no concurrency possible, we hold the required locks anyway
6343 * because of lock validation efforts.
6344 */
6345 static void migrate_tasks(unsigned int dead_cpu)
6346 {
6347 struct rq *rq = cpu_rq(dead_cpu);
6348 struct task_struct *next, *stop = rq->stop;
6349 int dest_cpu;
6350
6351 /*
6352 * Fudge the rq selection such that the below task selection loop
6353 * doesn't get stuck on the currently eligible stop task.
6354 *
6355 * We're currently inside stop_machine() and the rq is either stuck
6356 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6357 * either way we should never end up calling schedule() until we're
6358 * done here.
6359 */
6360 rq->stop = NULL;
6361
6362 /* Ensure any throttled groups are reachable by pick_next_task */
6363 unthrottle_offline_cfs_rqs(rq);
6364
6365 for ( ; ; ) {
6366 /*
6367 * There's this thread running, bail when that's the only
6368 * remaining thread.
6369 */
6370 if (rq->nr_running == 1)
6371 break;
6372
6373 next = pick_next_task(rq);
6374 BUG_ON(!next);
6375 next->sched_class->put_prev_task(rq, next);
6376
6377 /* Find suitable destination for @next, with force if needed. */
6378 dest_cpu = select_fallback_rq(dead_cpu, next);
6379 raw_spin_unlock(&rq->lock);
6380
6381 __migrate_task(next, dead_cpu, dest_cpu);
6382
6383 raw_spin_lock(&rq->lock);
6384 }
6385
6386 rq->stop = stop;
6387 }
6388
6389 #endif /* CONFIG_HOTPLUG_CPU */
6390
6391 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6392
6393 static struct ctl_table sd_ctl_dir[] = {
6394 {
6395 .procname = "sched_domain",
6396 .mode = 0555,
6397 },
6398 {}
6399 };
6400
6401 static struct ctl_table sd_ctl_root[] = {
6402 {
6403 .procname = "kernel",
6404 .mode = 0555,
6405 .child = sd_ctl_dir,
6406 },
6407 {}
6408 };
6409
6410 static struct ctl_table *sd_alloc_ctl_entry(int n)
6411 {
6412 struct ctl_table *entry =
6413 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6414
6415 return entry;
6416 }
6417
6418 static void sd_free_ctl_entry(struct ctl_table **tablep)
6419 {
6420 struct ctl_table *entry;
6421
6422 /*
6423 * In the intermediate directories, both the child directory and
6424 * procname are dynamically allocated and could fail but the mode
6425 * will always be set. In the lowest directory the names are
6426 * static strings and all have proc handlers.
6427 */
6428 for (entry = *tablep; entry->mode; entry++) {
6429 if (entry->child)
6430 sd_free_ctl_entry(&entry->child);
6431 if (entry->proc_handler == NULL)
6432 kfree(entry->procname);
6433 }
6434
6435 kfree(*tablep);
6436 *tablep = NULL;
6437 }
6438
6439 static void
6440 set_table_entry(struct ctl_table *entry,
6441 const char *procname, void *data, int maxlen,
6442 mode_t mode, proc_handler *proc_handler)
6443 {
6444 entry->procname = procname;
6445 entry->data = data;
6446 entry->maxlen = maxlen;
6447 entry->mode = mode;
6448 entry->proc_handler = proc_handler;
6449 }
6450
6451 static struct ctl_table *
6452 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6453 {
6454 struct ctl_table *table = sd_alloc_ctl_entry(13);
6455
6456 if (table == NULL)
6457 return NULL;
6458
6459 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6460 sizeof(long), 0644, proc_doulongvec_minmax);
6461 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6462 sizeof(long), 0644, proc_doulongvec_minmax);
6463 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6464 sizeof(int), 0644, proc_dointvec_minmax);
6465 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6466 sizeof(int), 0644, proc_dointvec_minmax);
6467 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6468 sizeof(int), 0644, proc_dointvec_minmax);
6469 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6470 sizeof(int), 0644, proc_dointvec_minmax);
6471 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6472 sizeof(int), 0644, proc_dointvec_minmax);
6473 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6474 sizeof(int), 0644, proc_dointvec_minmax);
6475 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6476 sizeof(int), 0644, proc_dointvec_minmax);
6477 set_table_entry(&table[9], "cache_nice_tries",
6478 &sd->cache_nice_tries,
6479 sizeof(int), 0644, proc_dointvec_minmax);
6480 set_table_entry(&table[10], "flags", &sd->flags,
6481 sizeof(int), 0644, proc_dointvec_minmax);
6482 set_table_entry(&table[11], "name", sd->name,
6483 CORENAME_MAX_SIZE, 0444, proc_dostring);
6484 /* &table[12] is terminator */
6485
6486 return table;
6487 }
6488
6489 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6490 {
6491 struct ctl_table *entry, *table;
6492 struct sched_domain *sd;
6493 int domain_num = 0, i;
6494 char buf[32];
6495
6496 for_each_domain(cpu, sd)
6497 domain_num++;
6498 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6499 if (table == NULL)
6500 return NULL;
6501
6502 i = 0;
6503 for_each_domain(cpu, sd) {
6504 snprintf(buf, 32, "domain%d", i);
6505 entry->procname = kstrdup(buf, GFP_KERNEL);
6506 entry->mode = 0555;
6507 entry->child = sd_alloc_ctl_domain_table(sd);
6508 entry++;
6509 i++;
6510 }
6511 return table;
6512 }
6513
6514 static struct ctl_table_header *sd_sysctl_header;
6515 static void register_sched_domain_sysctl(void)
6516 {
6517 int i, cpu_num = num_possible_cpus();
6518 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6519 char buf[32];
6520
6521 WARN_ON(sd_ctl_dir[0].child);
6522 sd_ctl_dir[0].child = entry;
6523
6524 if (entry == NULL)
6525 return;
6526
6527 for_each_possible_cpu(i) {
6528 snprintf(buf, 32, "cpu%d", i);
6529 entry->procname = kstrdup(buf, GFP_KERNEL);
6530 entry->mode = 0555;
6531 entry->child = sd_alloc_ctl_cpu_table(i);
6532 entry++;
6533 }
6534
6535 WARN_ON(sd_sysctl_header);
6536 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6537 }
6538
6539 /* may be called multiple times per register */
6540 static void unregister_sched_domain_sysctl(void)
6541 {
6542 if (sd_sysctl_header)
6543 unregister_sysctl_table(sd_sysctl_header);
6544 sd_sysctl_header = NULL;
6545 if (sd_ctl_dir[0].child)
6546 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6547 }
6548 #else
6549 static void register_sched_domain_sysctl(void)
6550 {
6551 }
6552 static void unregister_sched_domain_sysctl(void)
6553 {
6554 }
6555 #endif
6556
6557 static void set_rq_online(struct rq *rq)
6558 {
6559 if (!rq->online) {
6560 const struct sched_class *class;
6561
6562 cpumask_set_cpu(rq->cpu, rq->rd->online);
6563 rq->online = 1;
6564
6565 for_each_class(class) {
6566 if (class->rq_online)
6567 class->rq_online(rq);
6568 }
6569 }
6570 }
6571
6572 static void set_rq_offline(struct rq *rq)
6573 {
6574 if (rq->online) {
6575 const struct sched_class *class;
6576
6577 for_each_class(class) {
6578 if (class->rq_offline)
6579 class->rq_offline(rq);
6580 }
6581
6582 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6583 rq->online = 0;
6584 }
6585 }
6586
6587 /*
6588 * migration_call - callback that gets triggered when a CPU is added.
6589 * Here we can start up the necessary migration thread for the new CPU.
6590 */
6591 static int __cpuinit
6592 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6593 {
6594 int cpu = (long)hcpu;
6595 unsigned long flags;
6596 struct rq *rq = cpu_rq(cpu);
6597
6598 switch (action & ~CPU_TASKS_FROZEN) {
6599
6600 case CPU_UP_PREPARE:
6601 rq->calc_load_update = calc_load_update;
6602 break;
6603
6604 case CPU_ONLINE:
6605 /* Update our root-domain */
6606 raw_spin_lock_irqsave(&rq->lock, flags);
6607 if (rq->rd) {
6608 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6609
6610 set_rq_online(rq);
6611 }
6612 raw_spin_unlock_irqrestore(&rq->lock, flags);
6613 break;
6614
6615 #ifdef CONFIG_HOTPLUG_CPU
6616 case CPU_DYING:
6617 sched_ttwu_pending();
6618 /* Update our root-domain */
6619 raw_spin_lock_irqsave(&rq->lock, flags);
6620 if (rq->rd) {
6621 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6622 set_rq_offline(rq);
6623 }
6624 migrate_tasks(cpu);
6625 BUG_ON(rq->nr_running != 1); /* the migration thread */
6626 raw_spin_unlock_irqrestore(&rq->lock, flags);
6627
6628 migrate_nr_uninterruptible(rq);
6629 calc_global_load_remove(rq);
6630 break;
6631 #endif
6632 }
6633
6634 update_max_interval();
6635
6636 return NOTIFY_OK;
6637 }
6638
6639 /*
6640 * Register at high priority so that task migration (migrate_all_tasks)
6641 * happens before everything else. This has to be lower priority than
6642 * the notifier in the perf_event subsystem, though.
6643 */
6644 static struct notifier_block __cpuinitdata migration_notifier = {
6645 .notifier_call = migration_call,
6646 .priority = CPU_PRI_MIGRATION,
6647 };
6648
6649 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6650 unsigned long action, void *hcpu)
6651 {
6652 switch (action & ~CPU_TASKS_FROZEN) {
6653 case CPU_ONLINE:
6654 case CPU_DOWN_FAILED:
6655 set_cpu_active((long)hcpu, true);
6656 return NOTIFY_OK;
6657 default:
6658 return NOTIFY_DONE;
6659 }
6660 }
6661
6662 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6663 unsigned long action, void *hcpu)
6664 {
6665 switch (action & ~CPU_TASKS_FROZEN) {
6666 case CPU_DOWN_PREPARE:
6667 set_cpu_active((long)hcpu, false);
6668 return NOTIFY_OK;
6669 default:
6670 return NOTIFY_DONE;
6671 }
6672 }
6673
6674 static int __init migration_init(void)
6675 {
6676 void *cpu = (void *)(long)smp_processor_id();
6677 int err;
6678
6679 /* Initialize migration for the boot CPU */
6680 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6681 BUG_ON(err == NOTIFY_BAD);
6682 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6683 register_cpu_notifier(&migration_notifier);
6684
6685 /* Register cpu active notifiers */
6686 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6687 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6688
6689 return 0;
6690 }
6691 early_initcall(migration_init);
6692 #endif
6693
6694 #ifdef CONFIG_SMP
6695
6696 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6697
6698 #ifdef CONFIG_SCHED_DEBUG
6699
6700 static __read_mostly int sched_domain_debug_enabled;
6701
6702 static int __init sched_domain_debug_setup(char *str)
6703 {
6704 sched_domain_debug_enabled = 1;
6705
6706 return 0;
6707 }
6708 early_param("sched_debug", sched_domain_debug_setup);
6709
6710 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6711 struct cpumask *groupmask)
6712 {
6713 struct sched_group *group = sd->groups;
6714 char str[256];
6715
6716 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6717 cpumask_clear(groupmask);
6718
6719 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6720
6721 if (!(sd->flags & SD_LOAD_BALANCE)) {
6722 printk("does not load-balance\n");
6723 if (sd->parent)
6724 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6725 " has parent");
6726 return -1;
6727 }
6728
6729 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6730
6731 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6732 printk(KERN_ERR "ERROR: domain->span does not contain "
6733 "CPU%d\n", cpu);
6734 }
6735 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6736 printk(KERN_ERR "ERROR: domain->groups does not contain"
6737 " CPU%d\n", cpu);
6738 }
6739
6740 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6741 do {
6742 if (!group) {
6743 printk("\n");
6744 printk(KERN_ERR "ERROR: group is NULL\n");
6745 break;
6746 }
6747
6748 if (!group->sgp->power) {
6749 printk(KERN_CONT "\n");
6750 printk(KERN_ERR "ERROR: domain->cpu_power not "
6751 "set\n");
6752 break;
6753 }
6754
6755 if (!cpumask_weight(sched_group_cpus(group))) {
6756 printk(KERN_CONT "\n");
6757 printk(KERN_ERR "ERROR: empty group\n");
6758 break;
6759 }
6760
6761 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6762 printk(KERN_CONT "\n");
6763 printk(KERN_ERR "ERROR: repeated CPUs\n");
6764 break;
6765 }
6766
6767 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6768
6769 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6770
6771 printk(KERN_CONT " %s", str);
6772 if (group->sgp->power != SCHED_POWER_SCALE) {
6773 printk(KERN_CONT " (cpu_power = %d)",
6774 group->sgp->power);
6775 }
6776
6777 group = group->next;
6778 } while (group != sd->groups);
6779 printk(KERN_CONT "\n");
6780
6781 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6782 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6783
6784 if (sd->parent &&
6785 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6786 printk(KERN_ERR "ERROR: parent span is not a superset "
6787 "of domain->span\n");
6788 return 0;
6789 }
6790
6791 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6792 {
6793 int level = 0;
6794
6795 if (!sched_domain_debug_enabled)
6796 return;
6797
6798 if (!sd) {
6799 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6800 return;
6801 }
6802
6803 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6804
6805 for (;;) {
6806 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
6807 break;
6808 level++;
6809 sd = sd->parent;
6810 if (!sd)
6811 break;
6812 }
6813 }
6814 #else /* !CONFIG_SCHED_DEBUG */
6815 # define sched_domain_debug(sd, cpu) do { } while (0)
6816 #endif /* CONFIG_SCHED_DEBUG */
6817
6818 static int sd_degenerate(struct sched_domain *sd)
6819 {
6820 if (cpumask_weight(sched_domain_span(sd)) == 1)
6821 return 1;
6822
6823 /* Following flags need at least 2 groups */
6824 if (sd->flags & (SD_LOAD_BALANCE |
6825 SD_BALANCE_NEWIDLE |
6826 SD_BALANCE_FORK |
6827 SD_BALANCE_EXEC |
6828 SD_SHARE_CPUPOWER |
6829 SD_SHARE_PKG_RESOURCES)) {
6830 if (sd->groups != sd->groups->next)
6831 return 0;
6832 }
6833
6834 /* Following flags don't use groups */
6835 if (sd->flags & (SD_WAKE_AFFINE))
6836 return 0;
6837
6838 return 1;
6839 }
6840
6841 static int
6842 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6843 {
6844 unsigned long cflags = sd->flags, pflags = parent->flags;
6845
6846 if (sd_degenerate(parent))
6847 return 1;
6848
6849 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6850 return 0;
6851
6852 /* Flags needing groups don't count if only 1 group in parent */
6853 if (parent->groups == parent->groups->next) {
6854 pflags &= ~(SD_LOAD_BALANCE |
6855 SD_BALANCE_NEWIDLE |
6856 SD_BALANCE_FORK |
6857 SD_BALANCE_EXEC |
6858 SD_SHARE_CPUPOWER |
6859 SD_SHARE_PKG_RESOURCES);
6860 if (nr_node_ids == 1)
6861 pflags &= ~SD_SERIALIZE;
6862 }
6863 if (~cflags & pflags)
6864 return 0;
6865
6866 return 1;
6867 }
6868
6869 static void free_rootdomain(struct rcu_head *rcu)
6870 {
6871 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6872
6873 cpupri_cleanup(&rd->cpupri);
6874 free_cpumask_var(rd->rto_mask);
6875 free_cpumask_var(rd->online);
6876 free_cpumask_var(rd->span);
6877 kfree(rd);
6878 }
6879
6880 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6881 {
6882 struct root_domain *old_rd = NULL;
6883 unsigned long flags;
6884
6885 raw_spin_lock_irqsave(&rq->lock, flags);
6886
6887 if (rq->rd) {
6888 old_rd = rq->rd;
6889
6890 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6891 set_rq_offline(rq);
6892
6893 cpumask_clear_cpu(rq->cpu, old_rd->span);
6894
6895 /*
6896 * If we dont want to free the old_rt yet then
6897 * set old_rd to NULL to skip the freeing later
6898 * in this function:
6899 */
6900 if (!atomic_dec_and_test(&old_rd->refcount))
6901 old_rd = NULL;
6902 }
6903
6904 atomic_inc(&rd->refcount);
6905 rq->rd = rd;
6906
6907 cpumask_set_cpu(rq->cpu, rd->span);
6908 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6909 set_rq_online(rq);
6910
6911 raw_spin_unlock_irqrestore(&rq->lock, flags);
6912
6913 if (old_rd)
6914 call_rcu_sched(&old_rd->rcu, free_rootdomain);
6915 }
6916
6917 static int init_rootdomain(struct root_domain *rd)
6918 {
6919 memset(rd, 0, sizeof(*rd));
6920
6921 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6922 goto out;
6923 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6924 goto free_span;
6925 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6926 goto free_online;
6927
6928 if (cpupri_init(&rd->cpupri) != 0)
6929 goto free_rto_mask;
6930 return 0;
6931
6932 free_rto_mask:
6933 free_cpumask_var(rd->rto_mask);
6934 free_online:
6935 free_cpumask_var(rd->online);
6936 free_span:
6937 free_cpumask_var(rd->span);
6938 out:
6939 return -ENOMEM;
6940 }
6941
6942 static void init_defrootdomain(void)
6943 {
6944 init_rootdomain(&def_root_domain);
6945
6946 atomic_set(&def_root_domain.refcount, 1);
6947 }
6948
6949 static struct root_domain *alloc_rootdomain(void)
6950 {
6951 struct root_domain *rd;
6952
6953 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6954 if (!rd)
6955 return NULL;
6956
6957 if (init_rootdomain(rd) != 0) {
6958 kfree(rd);
6959 return NULL;
6960 }
6961
6962 return rd;
6963 }
6964
6965 static void free_sched_groups(struct sched_group *sg, int free_sgp)
6966 {
6967 struct sched_group *tmp, *first;
6968
6969 if (!sg)
6970 return;
6971
6972 first = sg;
6973 do {
6974 tmp = sg->next;
6975
6976 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
6977 kfree(sg->sgp);
6978
6979 kfree(sg);
6980 sg = tmp;
6981 } while (sg != first);
6982 }
6983
6984 static void free_sched_domain(struct rcu_head *rcu)
6985 {
6986 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6987
6988 /*
6989 * If its an overlapping domain it has private groups, iterate and
6990 * nuke them all.
6991 */
6992 if (sd->flags & SD_OVERLAP) {
6993 free_sched_groups(sd->groups, 1);
6994 } else if (atomic_dec_and_test(&sd->groups->ref)) {
6995 kfree(sd->groups->sgp);
6996 kfree(sd->groups);
6997 }
6998 kfree(sd);
6999 }
7000
7001 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
7002 {
7003 call_rcu(&sd->rcu, free_sched_domain);
7004 }
7005
7006 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
7007 {
7008 for (; sd; sd = sd->parent)
7009 destroy_sched_domain(sd, cpu);
7010 }
7011
7012 /*
7013 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7014 * hold the hotplug lock.
7015 */
7016 static void
7017 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7018 {
7019 struct rq *rq = cpu_rq(cpu);
7020 struct sched_domain *tmp;
7021
7022 /* Remove the sched domains which do not contribute to scheduling. */
7023 for (tmp = sd; tmp; ) {
7024 struct sched_domain *parent = tmp->parent;
7025 if (!parent)
7026 break;
7027
7028 if (sd_parent_degenerate(tmp, parent)) {
7029 tmp->parent = parent->parent;
7030 if (parent->parent)
7031 parent->parent->child = tmp;
7032 destroy_sched_domain(parent, cpu);
7033 } else
7034 tmp = tmp->parent;
7035 }
7036
7037 if (sd && sd_degenerate(sd)) {
7038 tmp = sd;
7039 sd = sd->parent;
7040 destroy_sched_domain(tmp, cpu);
7041 if (sd)
7042 sd->child = NULL;
7043 }
7044
7045 sched_domain_debug(sd, cpu);
7046
7047 rq_attach_root(rq, rd);
7048 tmp = rq->sd;
7049 rcu_assign_pointer(rq->sd, sd);
7050 destroy_sched_domains(tmp, cpu);
7051 }
7052
7053 /* cpus with isolated domains */
7054 static cpumask_var_t cpu_isolated_map;
7055
7056 /* Setup the mask of cpus configured for isolated domains */
7057 static int __init isolated_cpu_setup(char *str)
7058 {
7059 alloc_bootmem_cpumask_var(&cpu_isolated_map);
7060 cpulist_parse(str, cpu_isolated_map);
7061 return 1;
7062 }
7063
7064 __setup("isolcpus=", isolated_cpu_setup);
7065
7066 #define SD_NODES_PER_DOMAIN 16
7067
7068 #ifdef CONFIG_NUMA
7069
7070 /**
7071 * find_next_best_node - find the next node to include in a sched_domain
7072 * @node: node whose sched_domain we're building
7073 * @used_nodes: nodes already in the sched_domain
7074 *
7075 * Find the next node to include in a given scheduling domain. Simply
7076 * finds the closest node not already in the @used_nodes map.
7077 *
7078 * Should use nodemask_t.
7079 */
7080 static int find_next_best_node(int node, nodemask_t *used_nodes)
7081 {
7082 int i, n, val, min_val, best_node = -1;
7083
7084 min_val = INT_MAX;
7085
7086 for (i = 0; i < nr_node_ids; i++) {
7087 /* Start at @node */
7088 n = (node + i) % nr_node_ids;
7089
7090 if (!nr_cpus_node(n))
7091 continue;
7092
7093 /* Skip already used nodes */
7094 if (node_isset(n, *used_nodes))
7095 continue;
7096
7097 /* Simple min distance search */
7098 val = node_distance(node, n);
7099
7100 if (val < min_val) {
7101 min_val = val;
7102 best_node = n;
7103 }
7104 }
7105
7106 if (best_node != -1)
7107 node_set(best_node, *used_nodes);
7108 return best_node;
7109 }
7110
7111 /**
7112 * sched_domain_node_span - get a cpumask for a node's sched_domain
7113 * @node: node whose cpumask we're constructing
7114 * @span: resulting cpumask
7115 *
7116 * Given a node, construct a good cpumask for its sched_domain to span. It
7117 * should be one that prevents unnecessary balancing, but also spreads tasks
7118 * out optimally.
7119 */
7120 static void sched_domain_node_span(int node, struct cpumask *span)
7121 {
7122 nodemask_t used_nodes;
7123 int i;
7124
7125 cpumask_clear(span);
7126 nodes_clear(used_nodes);
7127
7128 cpumask_or(span, span, cpumask_of_node(node));
7129 node_set(node, used_nodes);
7130
7131 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7132 int next_node = find_next_best_node(node, &used_nodes);
7133 if (next_node < 0)
7134 break;
7135 cpumask_or(span, span, cpumask_of_node(next_node));
7136 }
7137 }
7138
7139 static const struct cpumask *cpu_node_mask(int cpu)
7140 {
7141 lockdep_assert_held(&sched_domains_mutex);
7142
7143 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7144
7145 return sched_domains_tmpmask;
7146 }
7147
7148 static const struct cpumask *cpu_allnodes_mask(int cpu)
7149 {
7150 return cpu_possible_mask;
7151 }
7152 #endif /* CONFIG_NUMA */
7153
7154 static const struct cpumask *cpu_cpu_mask(int cpu)
7155 {
7156 return cpumask_of_node(cpu_to_node(cpu));
7157 }
7158
7159 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7160
7161 struct sd_data {
7162 struct sched_domain **__percpu sd;
7163 struct sched_group **__percpu sg;
7164 struct sched_group_power **__percpu sgp;
7165 };
7166
7167 struct s_data {
7168 struct sched_domain ** __percpu sd;
7169 struct root_domain *rd;
7170 };
7171
7172 enum s_alloc {
7173 sa_rootdomain,
7174 sa_sd,
7175 sa_sd_storage,
7176 sa_none,
7177 };
7178
7179 struct sched_domain_topology_level;
7180
7181 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
7182 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7183
7184 #define SDTL_OVERLAP 0x01
7185
7186 struct sched_domain_topology_level {
7187 sched_domain_init_f init;
7188 sched_domain_mask_f mask;
7189 int flags;
7190 struct sd_data data;
7191 };
7192
7193 static int
7194 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7195 {
7196 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7197 const struct cpumask *span = sched_domain_span(sd);
7198 struct cpumask *covered = sched_domains_tmpmask;
7199 struct sd_data *sdd = sd->private;
7200 struct sched_domain *child;
7201 int i;
7202
7203 cpumask_clear(covered);
7204
7205 for_each_cpu(i, span) {
7206 struct cpumask *sg_span;
7207
7208 if (cpumask_test_cpu(i, covered))
7209 continue;
7210
7211 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7212 GFP_KERNEL, cpu_to_node(i));
7213
7214 if (!sg)
7215 goto fail;
7216
7217 sg_span = sched_group_cpus(sg);
7218
7219 child = *per_cpu_ptr(sdd->sd, i);
7220 if (child->child) {
7221 child = child->child;
7222 cpumask_copy(sg_span, sched_domain_span(child));
7223 } else
7224 cpumask_set_cpu(i, sg_span);
7225
7226 cpumask_or(covered, covered, sg_span);
7227
7228 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7229 atomic_inc(&sg->sgp->ref);
7230
7231 if (cpumask_test_cpu(cpu, sg_span))
7232 groups = sg;
7233
7234 if (!first)
7235 first = sg;
7236 if (last)
7237 last->next = sg;
7238 last = sg;
7239 last->next = first;
7240 }
7241 sd->groups = groups;
7242
7243 return 0;
7244
7245 fail:
7246 free_sched_groups(first, 0);
7247
7248 return -ENOMEM;
7249 }
7250
7251 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
7252 {
7253 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7254 struct sched_domain *child = sd->child;
7255
7256 if (child)
7257 cpu = cpumask_first(sched_domain_span(child));
7258
7259 if (sg) {
7260 *sg = *per_cpu_ptr(sdd->sg, cpu);
7261 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
7262 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
7263 }
7264
7265 return cpu;
7266 }
7267
7268 /*
7269 * build_sched_groups will build a circular linked list of the groups
7270 * covered by the given span, and will set each group's ->cpumask correctly,
7271 * and ->cpu_power to 0.
7272 *
7273 * Assumes the sched_domain tree is fully constructed
7274 */
7275 static int
7276 build_sched_groups(struct sched_domain *sd, int cpu)
7277 {
7278 struct sched_group *first = NULL, *last = NULL;
7279 struct sd_data *sdd = sd->private;
7280 const struct cpumask *span = sched_domain_span(sd);
7281 struct cpumask *covered;
7282 int i;
7283
7284 get_group(cpu, sdd, &sd->groups);
7285 atomic_inc(&sd->groups->ref);
7286
7287 if (cpu != cpumask_first(sched_domain_span(sd)))
7288 return 0;
7289
7290 lockdep_assert_held(&sched_domains_mutex);
7291 covered = sched_domains_tmpmask;
7292
7293 cpumask_clear(covered);
7294
7295 for_each_cpu(i, span) {
7296 struct sched_group *sg;
7297 int group = get_group(i, sdd, &sg);
7298 int j;
7299
7300 if (cpumask_test_cpu(i, covered))
7301 continue;
7302
7303 cpumask_clear(sched_group_cpus(sg));
7304 sg->sgp->power = 0;
7305
7306 for_each_cpu(j, span) {
7307 if (get_group(j, sdd, NULL) != group)
7308 continue;
7309
7310 cpumask_set_cpu(j, covered);
7311 cpumask_set_cpu(j, sched_group_cpus(sg));
7312 }
7313
7314 if (!first)
7315 first = sg;
7316 if (last)
7317 last->next = sg;
7318 last = sg;
7319 }
7320 last->next = first;
7321
7322 return 0;
7323 }
7324
7325 /*
7326 * Initialize sched groups cpu_power.
7327 *
7328 * cpu_power indicates the capacity of sched group, which is used while
7329 * distributing the load between different sched groups in a sched domain.
7330 * Typically cpu_power for all the groups in a sched domain will be same unless
7331 * there are asymmetries in the topology. If there are asymmetries, group
7332 * having more cpu_power will pickup more load compared to the group having
7333 * less cpu_power.
7334 */
7335 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7336 {
7337 struct sched_group *sg = sd->groups;
7338
7339 WARN_ON(!sd || !sg);
7340
7341 do {
7342 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7343 sg = sg->next;
7344 } while (sg != sd->groups);
7345
7346 if (cpu != group_first_cpu(sg))
7347 return;
7348
7349 update_group_power(sd, cpu);
7350 }
7351
7352 /*
7353 * Initializers for schedule domains
7354 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7355 */
7356
7357 #ifdef CONFIG_SCHED_DEBUG
7358 # define SD_INIT_NAME(sd, type) sd->name = #type
7359 #else
7360 # define SD_INIT_NAME(sd, type) do { } while (0)
7361 #endif
7362
7363 #define SD_INIT_FUNC(type) \
7364 static noinline struct sched_domain * \
7365 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7366 { \
7367 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7368 *sd = SD_##type##_INIT; \
7369 SD_INIT_NAME(sd, type); \
7370 sd->private = &tl->data; \
7371 return sd; \
7372 }
7373
7374 SD_INIT_FUNC(CPU)
7375 #ifdef CONFIG_NUMA
7376 SD_INIT_FUNC(ALLNODES)
7377 SD_INIT_FUNC(NODE)
7378 #endif
7379 #ifdef CONFIG_SCHED_SMT
7380 SD_INIT_FUNC(SIBLING)
7381 #endif
7382 #ifdef CONFIG_SCHED_MC
7383 SD_INIT_FUNC(MC)
7384 #endif
7385 #ifdef CONFIG_SCHED_BOOK
7386 SD_INIT_FUNC(BOOK)
7387 #endif
7388
7389 static int default_relax_domain_level = -1;
7390 int sched_domain_level_max;
7391
7392 static int __init setup_relax_domain_level(char *str)
7393 {
7394 unsigned long val;
7395
7396 val = simple_strtoul(str, NULL, 0);
7397 if (val < sched_domain_level_max)
7398 default_relax_domain_level = val;
7399
7400 return 1;
7401 }
7402 __setup("relax_domain_level=", setup_relax_domain_level);
7403
7404 static void set_domain_attribute(struct sched_domain *sd,
7405 struct sched_domain_attr *attr)
7406 {
7407 int request;
7408
7409 if (!attr || attr->relax_domain_level < 0) {
7410 if (default_relax_domain_level < 0)
7411 return;
7412 else
7413 request = default_relax_domain_level;
7414 } else
7415 request = attr->relax_domain_level;
7416 if (request < sd->level) {
7417 /* turn off idle balance on this domain */
7418 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7419 } else {
7420 /* turn on idle balance on this domain */
7421 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7422 }
7423 }
7424
7425 static void __sdt_free(const struct cpumask *cpu_map);
7426 static int __sdt_alloc(const struct cpumask *cpu_map);
7427
7428 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7429 const struct cpumask *cpu_map)
7430 {
7431 switch (what) {
7432 case sa_rootdomain:
7433 if (!atomic_read(&d->rd->refcount))
7434 free_rootdomain(&d->rd->rcu); /* fall through */
7435 case sa_sd:
7436 free_percpu(d->sd); /* fall through */
7437 case sa_sd_storage:
7438 __sdt_free(cpu_map); /* fall through */
7439 case sa_none:
7440 break;
7441 }
7442 }
7443
7444 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7445 const struct cpumask *cpu_map)
7446 {
7447 memset(d, 0, sizeof(*d));
7448
7449 if (__sdt_alloc(cpu_map))
7450 return sa_sd_storage;
7451 d->sd = alloc_percpu(struct sched_domain *);
7452 if (!d->sd)
7453 return sa_sd_storage;
7454 d->rd = alloc_rootdomain();
7455 if (!d->rd)
7456 return sa_sd;
7457 return sa_rootdomain;
7458 }
7459
7460 /*
7461 * NULL the sd_data elements we've used to build the sched_domain and
7462 * sched_group structure so that the subsequent __free_domain_allocs()
7463 * will not free the data we're using.
7464 */
7465 static void claim_allocations(int cpu, struct sched_domain *sd)
7466 {
7467 struct sd_data *sdd = sd->private;
7468
7469 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7470 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7471
7472 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
7473 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7474
7475 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
7476 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
7477 }
7478
7479 #ifdef CONFIG_SCHED_SMT
7480 static const struct cpumask *cpu_smt_mask(int cpu)
7481 {
7482 return topology_thread_cpumask(cpu);
7483 }
7484 #endif
7485
7486 /*
7487 * Topology list, bottom-up.
7488 */
7489 static struct sched_domain_topology_level default_topology[] = {
7490 #ifdef CONFIG_SCHED_SMT
7491 { sd_init_SIBLING, cpu_smt_mask, },
7492 #endif
7493 #ifdef CONFIG_SCHED_MC
7494 { sd_init_MC, cpu_coregroup_mask, },
7495 #endif
7496 #ifdef CONFIG_SCHED_BOOK
7497 { sd_init_BOOK, cpu_book_mask, },
7498 #endif
7499 { sd_init_CPU, cpu_cpu_mask, },
7500 #ifdef CONFIG_NUMA
7501 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
7502 { sd_init_ALLNODES, cpu_allnodes_mask, },
7503 #endif
7504 { NULL, },
7505 };
7506
7507 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7508
7509 static int __sdt_alloc(const struct cpumask *cpu_map)
7510 {
7511 struct sched_domain_topology_level *tl;
7512 int j;
7513
7514 for (tl = sched_domain_topology; tl->init; tl++) {
7515 struct sd_data *sdd = &tl->data;
7516
7517 sdd->sd = alloc_percpu(struct sched_domain *);
7518 if (!sdd->sd)
7519 return -ENOMEM;
7520
7521 sdd->sg = alloc_percpu(struct sched_group *);
7522 if (!sdd->sg)
7523 return -ENOMEM;
7524
7525 sdd->sgp = alloc_percpu(struct sched_group_power *);
7526 if (!sdd->sgp)
7527 return -ENOMEM;
7528
7529 for_each_cpu(j, cpu_map) {
7530 struct sched_domain *sd;
7531 struct sched_group *sg;
7532 struct sched_group_power *sgp;
7533
7534 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7535 GFP_KERNEL, cpu_to_node(j));
7536 if (!sd)
7537 return -ENOMEM;
7538
7539 *per_cpu_ptr(sdd->sd, j) = sd;
7540
7541 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7542 GFP_KERNEL, cpu_to_node(j));
7543 if (!sg)
7544 return -ENOMEM;
7545
7546 *per_cpu_ptr(sdd->sg, j) = sg;
7547
7548 sgp = kzalloc_node(sizeof(struct sched_group_power),
7549 GFP_KERNEL, cpu_to_node(j));
7550 if (!sgp)
7551 return -ENOMEM;
7552
7553 *per_cpu_ptr(sdd->sgp, j) = sgp;
7554 }
7555 }
7556
7557 return 0;
7558 }
7559
7560 static void __sdt_free(const struct cpumask *cpu_map)
7561 {
7562 struct sched_domain_topology_level *tl;
7563 int j;
7564
7565 for (tl = sched_domain_topology; tl->init; tl++) {
7566 struct sd_data *sdd = &tl->data;
7567
7568 for_each_cpu(j, cpu_map) {
7569 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7570 if (sd && (sd->flags & SD_OVERLAP))
7571 free_sched_groups(sd->groups, 0);
7572 kfree(*per_cpu_ptr(sdd->sd, j));
7573 kfree(*per_cpu_ptr(sdd->sg, j));
7574 kfree(*per_cpu_ptr(sdd->sgp, j));
7575 }
7576 free_percpu(sdd->sd);
7577 free_percpu(sdd->sg);
7578 free_percpu(sdd->sgp);
7579 }
7580 }
7581
7582 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7583 struct s_data *d, const struct cpumask *cpu_map,
7584 struct sched_domain_attr *attr, struct sched_domain *child,
7585 int cpu)
7586 {
7587 struct sched_domain *sd = tl->init(tl, cpu);
7588 if (!sd)
7589 return child;
7590
7591 set_domain_attribute(sd, attr);
7592 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7593 if (child) {
7594 sd->level = child->level + 1;
7595 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7596 child->parent = sd;
7597 }
7598 sd->child = child;
7599
7600 return sd;
7601 }
7602
7603 /*
7604 * Build sched domains for a given set of cpus and attach the sched domains
7605 * to the individual cpus
7606 */
7607 static int build_sched_domains(const struct cpumask *cpu_map,
7608 struct sched_domain_attr *attr)
7609 {
7610 enum s_alloc alloc_state = sa_none;
7611 struct sched_domain *sd;
7612 struct s_data d;
7613 int i, ret = -ENOMEM;
7614
7615 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7616 if (alloc_state != sa_rootdomain)
7617 goto error;
7618
7619 /* Set up domains for cpus specified by the cpu_map. */
7620 for_each_cpu(i, cpu_map) {
7621 struct sched_domain_topology_level *tl;
7622
7623 sd = NULL;
7624 for (tl = sched_domain_topology; tl->init; tl++) {
7625 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7626 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7627 sd->flags |= SD_OVERLAP;
7628 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7629 break;
7630 }
7631
7632 while (sd->child)
7633 sd = sd->child;
7634
7635 *per_cpu_ptr(d.sd, i) = sd;
7636 }
7637
7638 /* Build the groups for the domains */
7639 for_each_cpu(i, cpu_map) {
7640 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7641 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7642 if (sd->flags & SD_OVERLAP) {
7643 if (build_overlap_sched_groups(sd, i))
7644 goto error;
7645 } else {
7646 if (build_sched_groups(sd, i))
7647 goto error;
7648 }
7649 }
7650 }
7651
7652 /* Calculate CPU power for physical packages and nodes */
7653 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7654 if (!cpumask_test_cpu(i, cpu_map))
7655 continue;
7656
7657 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7658 claim_allocations(i, sd);
7659 init_sched_groups_power(i, sd);
7660 }
7661 }
7662
7663 /* Attach the domains */
7664 rcu_read_lock();
7665 for_each_cpu(i, cpu_map) {
7666 sd = *per_cpu_ptr(d.sd, i);
7667 cpu_attach_domain(sd, d.rd, i);
7668 }
7669 rcu_read_unlock();
7670
7671 ret = 0;
7672 error:
7673 __free_domain_allocs(&d, alloc_state, cpu_map);
7674 return ret;
7675 }
7676
7677 static cpumask_var_t *doms_cur; /* current sched domains */
7678 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7679 static struct sched_domain_attr *dattr_cur;
7680 /* attribues of custom domains in 'doms_cur' */
7681
7682 /*
7683 * Special case: If a kmalloc of a doms_cur partition (array of
7684 * cpumask) fails, then fallback to a single sched domain,
7685 * as determined by the single cpumask fallback_doms.
7686 */
7687 static cpumask_var_t fallback_doms;
7688
7689 /*
7690 * arch_update_cpu_topology lets virtualized architectures update the
7691 * cpu core maps. It is supposed to return 1 if the topology changed
7692 * or 0 if it stayed the same.
7693 */
7694 int __attribute__((weak)) arch_update_cpu_topology(void)
7695 {
7696 return 0;
7697 }
7698
7699 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7700 {
7701 int i;
7702 cpumask_var_t *doms;
7703
7704 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7705 if (!doms)
7706 return NULL;
7707 for (i = 0; i < ndoms; i++) {
7708 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7709 free_sched_domains(doms, i);
7710 return NULL;
7711 }
7712 }
7713 return doms;
7714 }
7715
7716 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7717 {
7718 unsigned int i;
7719 for (i = 0; i < ndoms; i++)
7720 free_cpumask_var(doms[i]);
7721 kfree(doms);
7722 }
7723
7724 /*
7725 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7726 * For now this just excludes isolated cpus, but could be used to
7727 * exclude other special cases in the future.
7728 */
7729 static int init_sched_domains(const struct cpumask *cpu_map)
7730 {
7731 int err;
7732
7733 arch_update_cpu_topology();
7734 ndoms_cur = 1;
7735 doms_cur = alloc_sched_domains(ndoms_cur);
7736 if (!doms_cur)
7737 doms_cur = &fallback_doms;
7738 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7739 dattr_cur = NULL;
7740 err = build_sched_domains(doms_cur[0], NULL);
7741 register_sched_domain_sysctl();
7742
7743 return err;
7744 }
7745
7746 /*
7747 * Detach sched domains from a group of cpus specified in cpu_map
7748 * These cpus will now be attached to the NULL domain
7749 */
7750 static void detach_destroy_domains(const struct cpumask *cpu_map)
7751 {
7752 int i;
7753
7754 rcu_read_lock();
7755 for_each_cpu(i, cpu_map)
7756 cpu_attach_domain(NULL, &def_root_domain, i);
7757 rcu_read_unlock();
7758 }
7759
7760 /* handle null as "default" */
7761 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7762 struct sched_domain_attr *new, int idx_new)
7763 {
7764 struct sched_domain_attr tmp;
7765
7766 /* fast path */
7767 if (!new && !cur)
7768 return 1;
7769
7770 tmp = SD_ATTR_INIT;
7771 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7772 new ? (new + idx_new) : &tmp,
7773 sizeof(struct sched_domain_attr));
7774 }
7775
7776 /*
7777 * Partition sched domains as specified by the 'ndoms_new'
7778 * cpumasks in the array doms_new[] of cpumasks. This compares
7779 * doms_new[] to the current sched domain partitioning, doms_cur[].
7780 * It destroys each deleted domain and builds each new domain.
7781 *
7782 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7783 * The masks don't intersect (don't overlap.) We should setup one
7784 * sched domain for each mask. CPUs not in any of the cpumasks will
7785 * not be load balanced. If the same cpumask appears both in the
7786 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7787 * it as it is.
7788 *
7789 * The passed in 'doms_new' should be allocated using
7790 * alloc_sched_domains. This routine takes ownership of it and will
7791 * free_sched_domains it when done with it. If the caller failed the
7792 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7793 * and partition_sched_domains() will fallback to the single partition
7794 * 'fallback_doms', it also forces the domains to be rebuilt.
7795 *
7796 * If doms_new == NULL it will be replaced with cpu_online_mask.
7797 * ndoms_new == 0 is a special case for destroying existing domains,
7798 * and it will not create the default domain.
7799 *
7800 * Call with hotplug lock held
7801 */
7802 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7803 struct sched_domain_attr *dattr_new)
7804 {
7805 int i, j, n;
7806 int new_topology;
7807
7808 mutex_lock(&sched_domains_mutex);
7809
7810 /* always unregister in case we don't destroy any domains */
7811 unregister_sched_domain_sysctl();
7812
7813 /* Let architecture update cpu core mappings. */
7814 new_topology = arch_update_cpu_topology();
7815
7816 n = doms_new ? ndoms_new : 0;
7817
7818 /* Destroy deleted domains */
7819 for (i = 0; i < ndoms_cur; i++) {
7820 for (j = 0; j < n && !new_topology; j++) {
7821 if (cpumask_equal(doms_cur[i], doms_new[j])
7822 && dattrs_equal(dattr_cur, i, dattr_new, j))
7823 goto match1;
7824 }
7825 /* no match - a current sched domain not in new doms_new[] */
7826 detach_destroy_domains(doms_cur[i]);
7827 match1:
7828 ;
7829 }
7830
7831 if (doms_new == NULL) {
7832 ndoms_cur = 0;
7833 doms_new = &fallback_doms;
7834 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7835 WARN_ON_ONCE(dattr_new);
7836 }
7837
7838 /* Build new domains */
7839 for (i = 0; i < ndoms_new; i++) {
7840 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7841 if (cpumask_equal(doms_new[i], doms_cur[j])
7842 && dattrs_equal(dattr_new, i, dattr_cur, j))
7843 goto match2;
7844 }
7845 /* no match - add a new doms_new */
7846 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7847 match2:
7848 ;
7849 }
7850
7851 /* Remember the new sched domains */
7852 if (doms_cur != &fallback_doms)
7853 free_sched_domains(doms_cur, ndoms_cur);
7854 kfree(dattr_cur); /* kfree(NULL) is safe */
7855 doms_cur = doms_new;
7856 dattr_cur = dattr_new;
7857 ndoms_cur = ndoms_new;
7858
7859 register_sched_domain_sysctl();
7860
7861 mutex_unlock(&sched_domains_mutex);
7862 }
7863
7864 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7865 static void reinit_sched_domains(void)
7866 {
7867 get_online_cpus();
7868
7869 /* Destroy domains first to force the rebuild */
7870 partition_sched_domains(0, NULL, NULL);
7871
7872 rebuild_sched_domains();
7873 put_online_cpus();
7874 }
7875
7876 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7877 {
7878 unsigned int level = 0;
7879
7880 if (sscanf(buf, "%u", &level) != 1)
7881 return -EINVAL;
7882
7883 /*
7884 * level is always be positive so don't check for
7885 * level < POWERSAVINGS_BALANCE_NONE which is 0
7886 * What happens on 0 or 1 byte write,
7887 * need to check for count as well?
7888 */
7889
7890 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7891 return -EINVAL;
7892
7893 if (smt)
7894 sched_smt_power_savings = level;
7895 else
7896 sched_mc_power_savings = level;
7897
7898 reinit_sched_domains();
7899
7900 return count;
7901 }
7902
7903 #ifdef CONFIG_SCHED_MC
7904 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7905 struct sysdev_class_attribute *attr,
7906 char *page)
7907 {
7908 return sprintf(page, "%u\n", sched_mc_power_savings);
7909 }
7910 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7911 struct sysdev_class_attribute *attr,
7912 const char *buf, size_t count)
7913 {
7914 return sched_power_savings_store(buf, count, 0);
7915 }
7916 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7917 sched_mc_power_savings_show,
7918 sched_mc_power_savings_store);
7919 #endif
7920
7921 #ifdef CONFIG_SCHED_SMT
7922 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7923 struct sysdev_class_attribute *attr,
7924 char *page)
7925 {
7926 return sprintf(page, "%u\n", sched_smt_power_savings);
7927 }
7928 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7929 struct sysdev_class_attribute *attr,
7930 const char *buf, size_t count)
7931 {
7932 return sched_power_savings_store(buf, count, 1);
7933 }
7934 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7935 sched_smt_power_savings_show,
7936 sched_smt_power_savings_store);
7937 #endif
7938
7939 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7940 {
7941 int err = 0;
7942
7943 #ifdef CONFIG_SCHED_SMT
7944 if (smt_capable())
7945 err = sysfs_create_file(&cls->kset.kobj,
7946 &attr_sched_smt_power_savings.attr);
7947 #endif
7948 #ifdef CONFIG_SCHED_MC
7949 if (!err && mc_capable())
7950 err = sysfs_create_file(&cls->kset.kobj,
7951 &attr_sched_mc_power_savings.attr);
7952 #endif
7953 return err;
7954 }
7955 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7956
7957 /*
7958 * Update cpusets according to cpu_active mask. If cpusets are
7959 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7960 * around partition_sched_domains().
7961 */
7962 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7963 void *hcpu)
7964 {
7965 switch (action & ~CPU_TASKS_FROZEN) {
7966 case CPU_ONLINE:
7967 case CPU_DOWN_FAILED:
7968 cpuset_update_active_cpus();
7969 return NOTIFY_OK;
7970 default:
7971 return NOTIFY_DONE;
7972 }
7973 }
7974
7975 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7976 void *hcpu)
7977 {
7978 switch (action & ~CPU_TASKS_FROZEN) {
7979 case CPU_DOWN_PREPARE:
7980 cpuset_update_active_cpus();
7981 return NOTIFY_OK;
7982 default:
7983 return NOTIFY_DONE;
7984 }
7985 }
7986
7987 static int update_runtime(struct notifier_block *nfb,
7988 unsigned long action, void *hcpu)
7989 {
7990 int cpu = (int)(long)hcpu;
7991
7992 switch (action) {
7993 case CPU_DOWN_PREPARE:
7994 case CPU_DOWN_PREPARE_FROZEN:
7995 disable_runtime(cpu_rq(cpu));
7996 return NOTIFY_OK;
7997
7998 case CPU_DOWN_FAILED:
7999 case CPU_DOWN_FAILED_FROZEN:
8000 case CPU_ONLINE:
8001 case CPU_ONLINE_FROZEN:
8002 enable_runtime(cpu_rq(cpu));
8003 return NOTIFY_OK;
8004
8005 default:
8006 return NOTIFY_DONE;
8007 }
8008 }
8009
8010 void __init sched_init_smp(void)
8011 {
8012 cpumask_var_t non_isolated_cpus;
8013
8014 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8015 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8016
8017 get_online_cpus();
8018 mutex_lock(&sched_domains_mutex);
8019 init_sched_domains(cpu_active_mask);
8020 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8021 if (cpumask_empty(non_isolated_cpus))
8022 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8023 mutex_unlock(&sched_domains_mutex);
8024 put_online_cpus();
8025
8026 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
8027 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
8028
8029 /* RT runtime code needs to handle some hotplug events */
8030 hotcpu_notifier(update_runtime, 0);
8031
8032 init_hrtick();
8033
8034 /* Move init over to a non-isolated CPU */
8035 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8036 BUG();
8037 sched_init_granularity();
8038 free_cpumask_var(non_isolated_cpus);
8039
8040 init_sched_rt_class();
8041 }
8042 #else
8043 void __init sched_init_smp(void)
8044 {
8045 sched_init_granularity();
8046 }
8047 #endif /* CONFIG_SMP */
8048
8049 const_debug unsigned int sysctl_timer_migration = 1;
8050
8051 int in_sched_functions(unsigned long addr)
8052 {
8053 return in_lock_functions(addr) ||
8054 (addr >= (unsigned long)__sched_text_start
8055 && addr < (unsigned long)__sched_text_end);
8056 }
8057
8058 static void init_cfs_rq(struct cfs_rq *cfs_rq)
8059 {
8060 cfs_rq->tasks_timeline = RB_ROOT;
8061 INIT_LIST_HEAD(&cfs_rq->tasks);
8062 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8063 #ifndef CONFIG_64BIT
8064 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8065 #endif
8066 }
8067
8068 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8069 {
8070 struct rt_prio_array *array;
8071 int i;
8072
8073 array = &rt_rq->active;
8074 for (i = 0; i < MAX_RT_PRIO; i++) {
8075 INIT_LIST_HEAD(array->queue + i);
8076 __clear_bit(i, array->bitmap);
8077 }
8078 /* delimiter for bitsearch: */
8079 __set_bit(MAX_RT_PRIO, array->bitmap);
8080
8081 #if defined CONFIG_SMP
8082 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8083 rt_rq->highest_prio.next = MAX_RT_PRIO;
8084 rt_rq->rt_nr_migratory = 0;
8085 rt_rq->overloaded = 0;
8086 plist_head_init(&rt_rq->pushable_tasks);
8087 #endif
8088
8089 rt_rq->rt_time = 0;
8090 rt_rq->rt_throttled = 0;
8091 rt_rq->rt_runtime = 0;
8092 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
8093 }
8094
8095 #ifdef CONFIG_FAIR_GROUP_SCHED
8096 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8097 struct sched_entity *se, int cpu,
8098 struct sched_entity *parent)
8099 {
8100 struct rq *rq = cpu_rq(cpu);
8101
8102 cfs_rq->tg = tg;
8103 cfs_rq->rq = rq;
8104 #ifdef CONFIG_SMP
8105 /* allow initial update_cfs_load() to truncate */
8106 cfs_rq->load_stamp = 1;
8107 #endif
8108 init_cfs_rq_runtime(cfs_rq);
8109
8110 tg->cfs_rq[cpu] = cfs_rq;
8111 tg->se[cpu] = se;
8112
8113 /* se could be NULL for root_task_group */
8114 if (!se)
8115 return;
8116
8117 if (!parent)
8118 se->cfs_rq = &rq->cfs;
8119 else
8120 se->cfs_rq = parent->my_q;
8121
8122 se->my_q = cfs_rq;
8123 update_load_set(&se->load, 0);
8124 se->parent = parent;
8125 }
8126 #endif
8127
8128 #ifdef CONFIG_RT_GROUP_SCHED
8129 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8130 struct sched_rt_entity *rt_se, int cpu,
8131 struct sched_rt_entity *parent)
8132 {
8133 struct rq *rq = cpu_rq(cpu);
8134
8135 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8136 rt_rq->rt_nr_boosted = 0;
8137 rt_rq->rq = rq;
8138 rt_rq->tg = tg;
8139
8140 tg->rt_rq[cpu] = rt_rq;
8141 tg->rt_se[cpu] = rt_se;
8142
8143 if (!rt_se)
8144 return;
8145
8146 if (!parent)
8147 rt_se->rt_rq = &rq->rt;
8148 else
8149 rt_se->rt_rq = parent->my_q;
8150
8151 rt_se->my_q = rt_rq;
8152 rt_se->parent = parent;
8153 INIT_LIST_HEAD(&rt_se->run_list);
8154 }
8155 #endif
8156
8157 void __init sched_init(void)
8158 {
8159 int i, j;
8160 unsigned long alloc_size = 0, ptr;
8161
8162 #ifdef CONFIG_FAIR_GROUP_SCHED
8163 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8164 #endif
8165 #ifdef CONFIG_RT_GROUP_SCHED
8166 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8167 #endif
8168 #ifdef CONFIG_CPUMASK_OFFSTACK
8169 alloc_size += num_possible_cpus() * cpumask_size();
8170 #endif
8171 if (alloc_size) {
8172 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8173
8174 #ifdef CONFIG_FAIR_GROUP_SCHED
8175 root_task_group.se = (struct sched_entity **)ptr;
8176 ptr += nr_cpu_ids * sizeof(void **);
8177
8178 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8179 ptr += nr_cpu_ids * sizeof(void **);
8180
8181 #endif /* CONFIG_FAIR_GROUP_SCHED */
8182 #ifdef CONFIG_RT_GROUP_SCHED
8183 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8184 ptr += nr_cpu_ids * sizeof(void **);
8185
8186 root_task_group.rt_rq = (struct rt_rq **)ptr;
8187 ptr += nr_cpu_ids * sizeof(void **);
8188
8189 #endif /* CONFIG_RT_GROUP_SCHED */
8190 #ifdef CONFIG_CPUMASK_OFFSTACK
8191 for_each_possible_cpu(i) {
8192 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8193 ptr += cpumask_size();
8194 }
8195 #endif /* CONFIG_CPUMASK_OFFSTACK */
8196 }
8197
8198 #ifdef CONFIG_SMP
8199 init_defrootdomain();
8200 #endif
8201
8202 init_rt_bandwidth(&def_rt_bandwidth,
8203 global_rt_period(), global_rt_runtime());
8204
8205 #ifdef CONFIG_RT_GROUP_SCHED
8206 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8207 global_rt_period(), global_rt_runtime());
8208 #endif /* CONFIG_RT_GROUP_SCHED */
8209
8210 #ifdef CONFIG_CGROUP_SCHED
8211 list_add(&root_task_group.list, &task_groups);
8212 INIT_LIST_HEAD(&root_task_group.children);
8213 autogroup_init(&init_task);
8214 #endif /* CONFIG_CGROUP_SCHED */
8215
8216 for_each_possible_cpu(i) {
8217 struct rq *rq;
8218
8219 rq = cpu_rq(i);
8220 raw_spin_lock_init(&rq->lock);
8221 rq->nr_running = 0;
8222 rq->calc_load_active = 0;
8223 rq->calc_load_update = jiffies + LOAD_FREQ;
8224 init_cfs_rq(&rq->cfs);
8225 init_rt_rq(&rq->rt, rq);
8226 #ifdef CONFIG_FAIR_GROUP_SCHED
8227 root_task_group.shares = root_task_group_load;
8228 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8229 /*
8230 * How much cpu bandwidth does root_task_group get?
8231 *
8232 * In case of task-groups formed thr' the cgroup filesystem, it
8233 * gets 100% of the cpu resources in the system. This overall
8234 * system cpu resource is divided among the tasks of
8235 * root_task_group and its child task-groups in a fair manner,
8236 * based on each entity's (task or task-group's) weight
8237 * (se->load.weight).
8238 *
8239 * In other words, if root_task_group has 10 tasks of weight
8240 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8241 * then A0's share of the cpu resource is:
8242 *
8243 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8244 *
8245 * We achieve this by letting root_task_group's tasks sit
8246 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8247 */
8248 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
8249 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8250 #endif /* CONFIG_FAIR_GROUP_SCHED */
8251
8252 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8253 #ifdef CONFIG_RT_GROUP_SCHED
8254 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8255 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8256 #endif
8257
8258 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8259 rq->cpu_load[j] = 0;
8260
8261 rq->last_load_update_tick = jiffies;
8262
8263 #ifdef CONFIG_SMP
8264 rq->sd = NULL;
8265 rq->rd = NULL;
8266 rq->cpu_power = SCHED_POWER_SCALE;
8267 rq->post_schedule = 0;
8268 rq->active_balance = 0;
8269 rq->next_balance = jiffies;
8270 rq->push_cpu = 0;
8271 rq->cpu = i;
8272 rq->online = 0;
8273 rq->idle_stamp = 0;
8274 rq->avg_idle = 2*sysctl_sched_migration_cost;
8275 rq_attach_root(rq, &def_root_domain);
8276 #ifdef CONFIG_NO_HZ
8277 rq->nohz_balance_kick = 0;
8278 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8279 #endif
8280 #endif
8281 init_rq_hrtick(rq);
8282 atomic_set(&rq->nr_iowait, 0);
8283 }
8284
8285 set_load_weight(&init_task);
8286
8287 #ifdef CONFIG_PREEMPT_NOTIFIERS
8288 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8289 #endif
8290
8291 #ifdef CONFIG_SMP
8292 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8293 #endif
8294
8295 #ifdef CONFIG_RT_MUTEXES
8296 plist_head_init(&init_task.pi_waiters);
8297 #endif
8298
8299 /*
8300 * The boot idle thread does lazy MMU switching as well:
8301 */
8302 atomic_inc(&init_mm.mm_count);
8303 enter_lazy_tlb(&init_mm, current);
8304
8305 /*
8306 * Make us the idle thread. Technically, schedule() should not be
8307 * called from this thread, however somewhere below it might be,
8308 * but because we are the idle thread, we just pick up running again
8309 * when this runqueue becomes "idle".
8310 */
8311 init_idle(current, smp_processor_id());
8312
8313 calc_load_update = jiffies + LOAD_FREQ;
8314
8315 /*
8316 * During early bootup we pretend to be a normal task:
8317 */
8318 current->sched_class = &fair_sched_class;
8319
8320 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8321 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8322 #ifdef CONFIG_SMP
8323 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8324 #ifdef CONFIG_NO_HZ
8325 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8326 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8327 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8328 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8329 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8330 #endif
8331 /* May be allocated at isolcpus cmdline parse time */
8332 if (cpu_isolated_map == NULL)
8333 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8334 #endif /* SMP */
8335
8336 scheduler_running = 1;
8337 }
8338
8339 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8340 static inline int preempt_count_equals(int preempt_offset)
8341 {
8342 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8343
8344 return (nested == preempt_offset);
8345 }
8346
8347 void __might_sleep(const char *file, int line, int preempt_offset)
8348 {
8349 static unsigned long prev_jiffy; /* ratelimiting */
8350
8351 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8352 system_state != SYSTEM_RUNNING || oops_in_progress)
8353 return;
8354 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8355 return;
8356 prev_jiffy = jiffies;
8357
8358 printk(KERN_ERR
8359 "BUG: sleeping function called from invalid context at %s:%d\n",
8360 file, line);
8361 printk(KERN_ERR
8362 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8363 in_atomic(), irqs_disabled(),
8364 current->pid, current->comm);
8365
8366 debug_show_held_locks(current);
8367 if (irqs_disabled())
8368 print_irqtrace_events(current);
8369 dump_stack();
8370 }
8371 EXPORT_SYMBOL(__might_sleep);
8372 #endif
8373
8374 #ifdef CONFIG_MAGIC_SYSRQ
8375 static void normalize_task(struct rq *rq, struct task_struct *p)
8376 {
8377 const struct sched_class *prev_class = p->sched_class;
8378 int old_prio = p->prio;
8379 int on_rq;
8380
8381 on_rq = p->on_rq;
8382 if (on_rq)
8383 deactivate_task(rq, p, 0);
8384 __setscheduler(rq, p, SCHED_NORMAL, 0);
8385 if (on_rq) {
8386 activate_task(rq, p, 0);
8387 resched_task(rq->curr);
8388 }
8389
8390 check_class_changed(rq, p, prev_class, old_prio);
8391 }
8392
8393 void normalize_rt_tasks(void)
8394 {
8395 struct task_struct *g, *p;
8396 unsigned long flags;
8397 struct rq *rq;
8398
8399 read_lock_irqsave(&tasklist_lock, flags);
8400 do_each_thread(g, p) {
8401 /*
8402 * Only normalize user tasks:
8403 */
8404 if (!p->mm)
8405 continue;
8406
8407 p->se.exec_start = 0;
8408 #ifdef CONFIG_SCHEDSTATS
8409 p->se.statistics.wait_start = 0;
8410 p->se.statistics.sleep_start = 0;
8411 p->se.statistics.block_start = 0;
8412 #endif
8413
8414 if (!rt_task(p)) {
8415 /*
8416 * Renice negative nice level userspace
8417 * tasks back to 0:
8418 */
8419 if (TASK_NICE(p) < 0 && p->mm)
8420 set_user_nice(p, 0);
8421 continue;
8422 }
8423
8424 raw_spin_lock(&p->pi_lock);
8425 rq = __task_rq_lock(p);
8426
8427 normalize_task(rq, p);
8428
8429 __task_rq_unlock(rq);
8430 raw_spin_unlock(&p->pi_lock);
8431 } while_each_thread(g, p);
8432
8433 read_unlock_irqrestore(&tasklist_lock, flags);
8434 }
8435
8436 #endif /* CONFIG_MAGIC_SYSRQ */
8437
8438 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8439 /*
8440 * These functions are only useful for the IA64 MCA handling, or kdb.
8441 *
8442 * They can only be called when the whole system has been
8443 * stopped - every CPU needs to be quiescent, and no scheduling
8444 * activity can take place. Using them for anything else would
8445 * be a serious bug, and as a result, they aren't even visible
8446 * under any other configuration.
8447 */
8448
8449 /**
8450 * curr_task - return the current task for a given cpu.
8451 * @cpu: the processor in question.
8452 *
8453 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8454 */
8455 struct task_struct *curr_task(int cpu)
8456 {
8457 return cpu_curr(cpu);
8458 }
8459
8460 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8461
8462 #ifdef CONFIG_IA64
8463 /**
8464 * set_curr_task - set the current task for a given cpu.
8465 * @cpu: the processor in question.
8466 * @p: the task pointer to set.
8467 *
8468 * Description: This function must only be used when non-maskable interrupts
8469 * are serviced on a separate stack. It allows the architecture to switch the
8470 * notion of the current task on a cpu in a non-blocking manner. This function
8471 * must be called with all CPU's synchronized, and interrupts disabled, the
8472 * and caller must save the original value of the current task (see
8473 * curr_task() above) and restore that value before reenabling interrupts and
8474 * re-starting the system.
8475 *
8476 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8477 */
8478 void set_curr_task(int cpu, struct task_struct *p)
8479 {
8480 cpu_curr(cpu) = p;
8481 }
8482
8483 #endif
8484
8485 #ifdef CONFIG_FAIR_GROUP_SCHED
8486 static void free_fair_sched_group(struct task_group *tg)
8487 {
8488 int i;
8489
8490 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8491
8492 for_each_possible_cpu(i) {
8493 if (tg->cfs_rq)
8494 kfree(tg->cfs_rq[i]);
8495 if (tg->se)
8496 kfree(tg->se[i]);
8497 }
8498
8499 kfree(tg->cfs_rq);
8500 kfree(tg->se);
8501 }
8502
8503 static
8504 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8505 {
8506 struct cfs_rq *cfs_rq;
8507 struct sched_entity *se;
8508 int i;
8509
8510 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8511 if (!tg->cfs_rq)
8512 goto err;
8513 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8514 if (!tg->se)
8515 goto err;
8516
8517 tg->shares = NICE_0_LOAD;
8518
8519 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8520
8521 for_each_possible_cpu(i) {
8522 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8523 GFP_KERNEL, cpu_to_node(i));
8524 if (!cfs_rq)
8525 goto err;
8526
8527 se = kzalloc_node(sizeof(struct sched_entity),
8528 GFP_KERNEL, cpu_to_node(i));
8529 if (!se)
8530 goto err_free_rq;
8531
8532 init_cfs_rq(cfs_rq);
8533 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8534 }
8535
8536 return 1;
8537
8538 err_free_rq:
8539 kfree(cfs_rq);
8540 err:
8541 return 0;
8542 }
8543
8544 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8545 {
8546 struct rq *rq = cpu_rq(cpu);
8547 unsigned long flags;
8548
8549 /*
8550 * Only empty task groups can be destroyed; so we can speculatively
8551 * check on_list without danger of it being re-added.
8552 */
8553 if (!tg->cfs_rq[cpu]->on_list)
8554 return;
8555
8556 raw_spin_lock_irqsave(&rq->lock, flags);
8557 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8558 raw_spin_unlock_irqrestore(&rq->lock, flags);
8559 }
8560 #else /* !CONFIG_FAIR_GROUP_SCHED */
8561 static inline void free_fair_sched_group(struct task_group *tg)
8562 {
8563 }
8564
8565 static inline
8566 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8567 {
8568 return 1;
8569 }
8570
8571 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8572 {
8573 }
8574 #endif /* CONFIG_FAIR_GROUP_SCHED */
8575
8576 #ifdef CONFIG_RT_GROUP_SCHED
8577 static void free_rt_sched_group(struct task_group *tg)
8578 {
8579 int i;
8580
8581 if (tg->rt_se)
8582 destroy_rt_bandwidth(&tg->rt_bandwidth);
8583
8584 for_each_possible_cpu(i) {
8585 if (tg->rt_rq)
8586 kfree(tg->rt_rq[i]);
8587 if (tg->rt_se)
8588 kfree(tg->rt_se[i]);
8589 }
8590
8591 kfree(tg->rt_rq);
8592 kfree(tg->rt_se);
8593 }
8594
8595 static
8596 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8597 {
8598 struct rt_rq *rt_rq;
8599 struct sched_rt_entity *rt_se;
8600 int i;
8601
8602 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8603 if (!tg->rt_rq)
8604 goto err;
8605 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8606 if (!tg->rt_se)
8607 goto err;
8608
8609 init_rt_bandwidth(&tg->rt_bandwidth,
8610 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8611
8612 for_each_possible_cpu(i) {
8613 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8614 GFP_KERNEL, cpu_to_node(i));
8615 if (!rt_rq)
8616 goto err;
8617
8618 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8619 GFP_KERNEL, cpu_to_node(i));
8620 if (!rt_se)
8621 goto err_free_rq;
8622
8623 init_rt_rq(rt_rq, cpu_rq(i));
8624 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8625 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8626 }
8627
8628 return 1;
8629
8630 err_free_rq:
8631 kfree(rt_rq);
8632 err:
8633 return 0;
8634 }
8635 #else /* !CONFIG_RT_GROUP_SCHED */
8636 static inline void free_rt_sched_group(struct task_group *tg)
8637 {
8638 }
8639
8640 static inline
8641 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8642 {
8643 return 1;
8644 }
8645 #endif /* CONFIG_RT_GROUP_SCHED */
8646
8647 #ifdef CONFIG_CGROUP_SCHED
8648 static void free_sched_group(struct task_group *tg)
8649 {
8650 free_fair_sched_group(tg);
8651 free_rt_sched_group(tg);
8652 autogroup_free(tg);
8653 kfree(tg);
8654 }
8655
8656 /* allocate runqueue etc for a new task group */
8657 struct task_group *sched_create_group(struct task_group *parent)
8658 {
8659 struct task_group *tg;
8660 unsigned long flags;
8661
8662 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8663 if (!tg)
8664 return ERR_PTR(-ENOMEM);
8665
8666 if (!alloc_fair_sched_group(tg, parent))
8667 goto err;
8668
8669 if (!alloc_rt_sched_group(tg, parent))
8670 goto err;
8671
8672 spin_lock_irqsave(&task_group_lock, flags);
8673 list_add_rcu(&tg->list, &task_groups);
8674
8675 WARN_ON(!parent); /* root should already exist */
8676
8677 tg->parent = parent;
8678 INIT_LIST_HEAD(&tg->children);
8679 list_add_rcu(&tg->siblings, &parent->children);
8680 spin_unlock_irqrestore(&task_group_lock, flags);
8681
8682 return tg;
8683
8684 err:
8685 free_sched_group(tg);
8686 return ERR_PTR(-ENOMEM);
8687 }
8688
8689 /* rcu callback to free various structures associated with a task group */
8690 static void free_sched_group_rcu(struct rcu_head *rhp)
8691 {
8692 /* now it should be safe to free those cfs_rqs */
8693 free_sched_group(container_of(rhp, struct task_group, rcu));
8694 }
8695
8696 /* Destroy runqueue etc associated with a task group */
8697 void sched_destroy_group(struct task_group *tg)
8698 {
8699 unsigned long flags;
8700 int i;
8701
8702 /* end participation in shares distribution */
8703 for_each_possible_cpu(i)
8704 unregister_fair_sched_group(tg, i);
8705
8706 spin_lock_irqsave(&task_group_lock, flags);
8707 list_del_rcu(&tg->list);
8708 list_del_rcu(&tg->siblings);
8709 spin_unlock_irqrestore(&task_group_lock, flags);
8710
8711 /* wait for possible concurrent references to cfs_rqs complete */
8712 call_rcu(&tg->rcu, free_sched_group_rcu);
8713 }
8714
8715 /* change task's runqueue when it moves between groups.
8716 * The caller of this function should have put the task in its new group
8717 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8718 * reflect its new group.
8719 */
8720 void sched_move_task(struct task_struct *tsk)
8721 {
8722 int on_rq, running;
8723 unsigned long flags;
8724 struct rq *rq;
8725
8726 rq = task_rq_lock(tsk, &flags);
8727
8728 running = task_current(rq, tsk);
8729 on_rq = tsk->on_rq;
8730
8731 if (on_rq)
8732 dequeue_task(rq, tsk, 0);
8733 if (unlikely(running))
8734 tsk->sched_class->put_prev_task(rq, tsk);
8735
8736 #ifdef CONFIG_FAIR_GROUP_SCHED
8737 if (tsk->sched_class->task_move_group)
8738 tsk->sched_class->task_move_group(tsk, on_rq);
8739 else
8740 #endif
8741 set_task_rq(tsk, task_cpu(tsk));
8742
8743 if (unlikely(running))
8744 tsk->sched_class->set_curr_task(rq);
8745 if (on_rq)
8746 enqueue_task(rq, tsk, 0);
8747
8748 task_rq_unlock(rq, tsk, &flags);
8749 }
8750 #endif /* CONFIG_CGROUP_SCHED */
8751
8752 #ifdef CONFIG_FAIR_GROUP_SCHED
8753 static DEFINE_MUTEX(shares_mutex);
8754
8755 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8756 {
8757 int i;
8758 unsigned long flags;
8759
8760 /*
8761 * We can't change the weight of the root cgroup.
8762 */
8763 if (!tg->se[0])
8764 return -EINVAL;
8765
8766 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8767
8768 mutex_lock(&shares_mutex);
8769 if (tg->shares == shares)
8770 goto done;
8771
8772 tg->shares = shares;
8773 for_each_possible_cpu(i) {
8774 struct rq *rq = cpu_rq(i);
8775 struct sched_entity *se;
8776
8777 se = tg->se[i];
8778 /* Propagate contribution to hierarchy */
8779 raw_spin_lock_irqsave(&rq->lock, flags);
8780 for_each_sched_entity(se)
8781 update_cfs_shares(group_cfs_rq(se));
8782 raw_spin_unlock_irqrestore(&rq->lock, flags);
8783 }
8784
8785 done:
8786 mutex_unlock(&shares_mutex);
8787 return 0;
8788 }
8789
8790 unsigned long sched_group_shares(struct task_group *tg)
8791 {
8792 return tg->shares;
8793 }
8794 #endif
8795
8796 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
8797 static unsigned long to_ratio(u64 period, u64 runtime)
8798 {
8799 if (runtime == RUNTIME_INF)
8800 return 1ULL << 20;
8801
8802 return div64_u64(runtime << 20, period);
8803 }
8804 #endif
8805
8806 #ifdef CONFIG_RT_GROUP_SCHED
8807 /*
8808 * Ensure that the real time constraints are schedulable.
8809 */
8810 static DEFINE_MUTEX(rt_constraints_mutex);
8811
8812 /* Must be called with tasklist_lock held */
8813 static inline int tg_has_rt_tasks(struct task_group *tg)
8814 {
8815 struct task_struct *g, *p;
8816
8817 do_each_thread(g, p) {
8818 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8819 return 1;
8820 } while_each_thread(g, p);
8821
8822 return 0;
8823 }
8824
8825 struct rt_schedulable_data {
8826 struct task_group *tg;
8827 u64 rt_period;
8828 u64 rt_runtime;
8829 };
8830
8831 static int tg_rt_schedulable(struct task_group *tg, void *data)
8832 {
8833 struct rt_schedulable_data *d = data;
8834 struct task_group *child;
8835 unsigned long total, sum = 0;
8836 u64 period, runtime;
8837
8838 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8839 runtime = tg->rt_bandwidth.rt_runtime;
8840
8841 if (tg == d->tg) {
8842 period = d->rt_period;
8843 runtime = d->rt_runtime;
8844 }
8845
8846 /*
8847 * Cannot have more runtime than the period.
8848 */
8849 if (runtime > period && runtime != RUNTIME_INF)
8850 return -EINVAL;
8851
8852 /*
8853 * Ensure we don't starve existing RT tasks.
8854 */
8855 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8856 return -EBUSY;
8857
8858 total = to_ratio(period, runtime);
8859
8860 /*
8861 * Nobody can have more than the global setting allows.
8862 */
8863 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8864 return -EINVAL;
8865
8866 /*
8867 * The sum of our children's runtime should not exceed our own.
8868 */
8869 list_for_each_entry_rcu(child, &tg->children, siblings) {
8870 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8871 runtime = child->rt_bandwidth.rt_runtime;
8872
8873 if (child == d->tg) {
8874 period = d->rt_period;
8875 runtime = d->rt_runtime;
8876 }
8877
8878 sum += to_ratio(period, runtime);
8879 }
8880
8881 if (sum > total)
8882 return -EINVAL;
8883
8884 return 0;
8885 }
8886
8887 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8888 {
8889 int ret;
8890
8891 struct rt_schedulable_data data = {
8892 .tg = tg,
8893 .rt_period = period,
8894 .rt_runtime = runtime,
8895 };
8896
8897 rcu_read_lock();
8898 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8899 rcu_read_unlock();
8900
8901 return ret;
8902 }
8903
8904 static int tg_set_rt_bandwidth(struct task_group *tg,
8905 u64 rt_period, u64 rt_runtime)
8906 {
8907 int i, err = 0;
8908
8909 mutex_lock(&rt_constraints_mutex);
8910 read_lock(&tasklist_lock);
8911 err = __rt_schedulable(tg, rt_period, rt_runtime);
8912 if (err)
8913 goto unlock;
8914
8915 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8916 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8917 tg->rt_bandwidth.rt_runtime = rt_runtime;
8918
8919 for_each_possible_cpu(i) {
8920 struct rt_rq *rt_rq = tg->rt_rq[i];
8921
8922 raw_spin_lock(&rt_rq->rt_runtime_lock);
8923 rt_rq->rt_runtime = rt_runtime;
8924 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8925 }
8926 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8927 unlock:
8928 read_unlock(&tasklist_lock);
8929 mutex_unlock(&rt_constraints_mutex);
8930
8931 return err;
8932 }
8933
8934 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8935 {
8936 u64 rt_runtime, rt_period;
8937
8938 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8939 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8940 if (rt_runtime_us < 0)
8941 rt_runtime = RUNTIME_INF;
8942
8943 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8944 }
8945
8946 long sched_group_rt_runtime(struct task_group *tg)
8947 {
8948 u64 rt_runtime_us;
8949
8950 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8951 return -1;
8952
8953 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8954 do_div(rt_runtime_us, NSEC_PER_USEC);
8955 return rt_runtime_us;
8956 }
8957
8958 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8959 {
8960 u64 rt_runtime, rt_period;
8961
8962 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8963 rt_runtime = tg->rt_bandwidth.rt_runtime;
8964
8965 if (rt_period == 0)
8966 return -EINVAL;
8967
8968 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8969 }
8970
8971 long sched_group_rt_period(struct task_group *tg)
8972 {
8973 u64 rt_period_us;
8974
8975 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8976 do_div(rt_period_us, NSEC_PER_USEC);
8977 return rt_period_us;
8978 }
8979
8980 static int sched_rt_global_constraints(void)
8981 {
8982 u64 runtime, period;
8983 int ret = 0;
8984
8985 if (sysctl_sched_rt_period <= 0)
8986 return -EINVAL;
8987
8988 runtime = global_rt_runtime();
8989 period = global_rt_period();
8990
8991 /*
8992 * Sanity check on the sysctl variables.
8993 */
8994 if (runtime > period && runtime != RUNTIME_INF)
8995 return -EINVAL;
8996
8997 mutex_lock(&rt_constraints_mutex);
8998 read_lock(&tasklist_lock);
8999 ret = __rt_schedulable(NULL, 0, 0);
9000 read_unlock(&tasklist_lock);
9001 mutex_unlock(&rt_constraints_mutex);
9002
9003 return ret;
9004 }
9005
9006 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9007 {
9008 /* Don't accept realtime tasks when there is no way for them to run */
9009 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9010 return 0;
9011
9012 return 1;
9013 }
9014
9015 #else /* !CONFIG_RT_GROUP_SCHED */
9016 static int sched_rt_global_constraints(void)
9017 {
9018 unsigned long flags;
9019 int i;
9020
9021 if (sysctl_sched_rt_period <= 0)
9022 return -EINVAL;
9023
9024 /*
9025 * There's always some RT tasks in the root group
9026 * -- migration, kstopmachine etc..
9027 */
9028 if (sysctl_sched_rt_runtime == 0)
9029 return -EBUSY;
9030
9031 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9032 for_each_possible_cpu(i) {
9033 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9034
9035 raw_spin_lock(&rt_rq->rt_runtime_lock);
9036 rt_rq->rt_runtime = global_rt_runtime();
9037 raw_spin_unlock(&rt_rq->rt_runtime_lock);
9038 }
9039 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9040
9041 return 0;
9042 }
9043 #endif /* CONFIG_RT_GROUP_SCHED */
9044
9045 int sched_rt_handler(struct ctl_table *table, int write,
9046 void __user *buffer, size_t *lenp,
9047 loff_t *ppos)
9048 {
9049 int ret;
9050 int old_period, old_runtime;
9051 static DEFINE_MUTEX(mutex);
9052
9053 mutex_lock(&mutex);
9054 old_period = sysctl_sched_rt_period;
9055 old_runtime = sysctl_sched_rt_runtime;
9056
9057 ret = proc_dointvec(table, write, buffer, lenp, ppos);
9058
9059 if (!ret && write) {
9060 ret = sched_rt_global_constraints();
9061 if (ret) {
9062 sysctl_sched_rt_period = old_period;
9063 sysctl_sched_rt_runtime = old_runtime;
9064 } else {
9065 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9066 def_rt_bandwidth.rt_period =
9067 ns_to_ktime(global_rt_period());
9068 }
9069 }
9070 mutex_unlock(&mutex);
9071
9072 return ret;
9073 }
9074
9075 #ifdef CONFIG_CGROUP_SCHED
9076
9077 /* return corresponding task_group object of a cgroup */
9078 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9079 {
9080 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9081 struct task_group, css);
9082 }
9083
9084 static struct cgroup_subsys_state *
9085 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9086 {
9087 struct task_group *tg, *parent;
9088
9089 if (!cgrp->parent) {
9090 /* This is early initialization for the top cgroup */
9091 return &root_task_group.css;
9092 }
9093
9094 parent = cgroup_tg(cgrp->parent);
9095 tg = sched_create_group(parent);
9096 if (IS_ERR(tg))
9097 return ERR_PTR(-ENOMEM);
9098
9099 return &tg->css;
9100 }
9101
9102 static void
9103 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9104 {
9105 struct task_group *tg = cgroup_tg(cgrp);
9106
9107 sched_destroy_group(tg);
9108 }
9109
9110 static int
9111 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9112 {
9113 #ifdef CONFIG_RT_GROUP_SCHED
9114 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9115 return -EINVAL;
9116 #else
9117 /* We don't support RT-tasks being in separate groups */
9118 if (tsk->sched_class != &fair_sched_class)
9119 return -EINVAL;
9120 #endif
9121 return 0;
9122 }
9123
9124 static void
9125 cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9126 {
9127 sched_move_task(tsk);
9128 }
9129
9130 static void
9131 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9132 struct cgroup *old_cgrp, struct task_struct *task)
9133 {
9134 /*
9135 * cgroup_exit() is called in the copy_process() failure path.
9136 * Ignore this case since the task hasn't ran yet, this avoids
9137 * trying to poke a half freed task state from generic code.
9138 */
9139 if (!(task->flags & PF_EXITING))
9140 return;
9141
9142 sched_move_task(task);
9143 }
9144
9145 #ifdef CONFIG_FAIR_GROUP_SCHED
9146 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9147 u64 shareval)
9148 {
9149 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
9150 }
9151
9152 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9153 {
9154 struct task_group *tg = cgroup_tg(cgrp);
9155
9156 return (u64) scale_load_down(tg->shares);
9157 }
9158
9159 #ifdef CONFIG_CFS_BANDWIDTH
9160 static DEFINE_MUTEX(cfs_constraints_mutex);
9161
9162 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9163 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9164
9165 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9166
9167 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
9168 {
9169 int i, ret = 0, runtime_enabled;
9170 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9171
9172 if (tg == &root_task_group)
9173 return -EINVAL;
9174
9175 /*
9176 * Ensure we have at some amount of bandwidth every period. This is
9177 * to prevent reaching a state of large arrears when throttled via
9178 * entity_tick() resulting in prolonged exit starvation.
9179 */
9180 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9181 return -EINVAL;
9182
9183 /*
9184 * Likewise, bound things on the otherside by preventing insane quota
9185 * periods. This also allows us to normalize in computing quota
9186 * feasibility.
9187 */
9188 if (period > max_cfs_quota_period)
9189 return -EINVAL;
9190
9191 mutex_lock(&cfs_constraints_mutex);
9192 ret = __cfs_schedulable(tg, period, quota);
9193 if (ret)
9194 goto out_unlock;
9195
9196 runtime_enabled = quota != RUNTIME_INF;
9197 raw_spin_lock_irq(&cfs_b->lock);
9198 cfs_b->period = ns_to_ktime(period);
9199 cfs_b->quota = quota;
9200
9201 __refill_cfs_bandwidth_runtime(cfs_b);
9202 /* restart the period timer (if active) to handle new period expiry */
9203 if (runtime_enabled && cfs_b->timer_active) {
9204 /* force a reprogram */
9205 cfs_b->timer_active = 0;
9206 __start_cfs_bandwidth(cfs_b);
9207 }
9208 raw_spin_unlock_irq(&cfs_b->lock);
9209
9210 for_each_possible_cpu(i) {
9211 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9212 struct rq *rq = rq_of(cfs_rq);
9213
9214 raw_spin_lock_irq(&rq->lock);
9215 cfs_rq->runtime_enabled = runtime_enabled;
9216 cfs_rq->runtime_remaining = 0;
9217
9218 if (cfs_rq_throttled(cfs_rq))
9219 unthrottle_cfs_rq(cfs_rq);
9220 raw_spin_unlock_irq(&rq->lock);
9221 }
9222 out_unlock:
9223 mutex_unlock(&cfs_constraints_mutex);
9224
9225 return ret;
9226 }
9227
9228 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9229 {
9230 u64 quota, period;
9231
9232 period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9233 if (cfs_quota_us < 0)
9234 quota = RUNTIME_INF;
9235 else
9236 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9237
9238 return tg_set_cfs_bandwidth(tg, period, quota);
9239 }
9240
9241 long tg_get_cfs_quota(struct task_group *tg)
9242 {
9243 u64 quota_us;
9244
9245 if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
9246 return -1;
9247
9248 quota_us = tg_cfs_bandwidth(tg)->quota;
9249 do_div(quota_us, NSEC_PER_USEC);
9250
9251 return quota_us;
9252 }
9253
9254 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9255 {
9256 u64 quota, period;
9257
9258 period = (u64)cfs_period_us * NSEC_PER_USEC;
9259 quota = tg_cfs_bandwidth(tg)->quota;
9260
9261 if (period <= 0)
9262 return -EINVAL;
9263
9264 return tg_set_cfs_bandwidth(tg, period, quota);
9265 }
9266
9267 long tg_get_cfs_period(struct task_group *tg)
9268 {
9269 u64 cfs_period_us;
9270
9271 cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9272 do_div(cfs_period_us, NSEC_PER_USEC);
9273
9274 return cfs_period_us;
9275 }
9276
9277 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
9278 {
9279 return tg_get_cfs_quota(cgroup_tg(cgrp));
9280 }
9281
9282 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
9283 s64 cfs_quota_us)
9284 {
9285 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
9286 }
9287
9288 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
9289 {
9290 return tg_get_cfs_period(cgroup_tg(cgrp));
9291 }
9292
9293 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9294 u64 cfs_period_us)
9295 {
9296 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
9297 }
9298
9299 struct cfs_schedulable_data {
9300 struct task_group *tg;
9301 u64 period, quota;
9302 };
9303
9304 /*
9305 * normalize group quota/period to be quota/max_period
9306 * note: units are usecs
9307 */
9308 static u64 normalize_cfs_quota(struct task_group *tg,
9309 struct cfs_schedulable_data *d)
9310 {
9311 u64 quota, period;
9312
9313 if (tg == d->tg) {
9314 period = d->period;
9315 quota = d->quota;
9316 } else {
9317 period = tg_get_cfs_period(tg);
9318 quota = tg_get_cfs_quota(tg);
9319 }
9320
9321 /* note: these should typically be equivalent */
9322 if (quota == RUNTIME_INF || quota == -1)
9323 return RUNTIME_INF;
9324
9325 return to_ratio(period, quota);
9326 }
9327
9328 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9329 {
9330 struct cfs_schedulable_data *d = data;
9331 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9332 s64 quota = 0, parent_quota = -1;
9333
9334 if (!tg->parent) {
9335 quota = RUNTIME_INF;
9336 } else {
9337 struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
9338
9339 quota = normalize_cfs_quota(tg, d);
9340 parent_quota = parent_b->hierarchal_quota;
9341
9342 /*
9343 * ensure max(child_quota) <= parent_quota, inherit when no
9344 * limit is set
9345 */
9346 if (quota == RUNTIME_INF)
9347 quota = parent_quota;
9348 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9349 return -EINVAL;
9350 }
9351 cfs_b->hierarchal_quota = quota;
9352
9353 return 0;
9354 }
9355
9356 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9357 {
9358 int ret;
9359 struct cfs_schedulable_data data = {
9360 .tg = tg,
9361 .period = period,
9362 .quota = quota,
9363 };
9364
9365 if (quota != RUNTIME_INF) {
9366 do_div(data.period, NSEC_PER_USEC);
9367 do_div(data.quota, NSEC_PER_USEC);
9368 }
9369
9370 rcu_read_lock();
9371 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9372 rcu_read_unlock();
9373
9374 return ret;
9375 }
9376
9377 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
9378 struct cgroup_map_cb *cb)
9379 {
9380 struct task_group *tg = cgroup_tg(cgrp);
9381 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9382
9383 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
9384 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
9385 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
9386
9387 return 0;
9388 }
9389 #endif /* CONFIG_CFS_BANDWIDTH */
9390 #endif /* CONFIG_FAIR_GROUP_SCHED */
9391
9392 #ifdef CONFIG_RT_GROUP_SCHED
9393 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9394 s64 val)
9395 {
9396 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9397 }
9398
9399 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9400 {
9401 return sched_group_rt_runtime(cgroup_tg(cgrp));
9402 }
9403
9404 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9405 u64 rt_period_us)
9406 {
9407 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9408 }
9409
9410 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9411 {
9412 return sched_group_rt_period(cgroup_tg(cgrp));
9413 }
9414 #endif /* CONFIG_RT_GROUP_SCHED */
9415
9416 static struct cftype cpu_files[] = {
9417 #ifdef CONFIG_FAIR_GROUP_SCHED
9418 {
9419 .name = "shares",
9420 .read_u64 = cpu_shares_read_u64,
9421 .write_u64 = cpu_shares_write_u64,
9422 },
9423 #endif
9424 #ifdef CONFIG_CFS_BANDWIDTH
9425 {
9426 .name = "cfs_quota_us",
9427 .read_s64 = cpu_cfs_quota_read_s64,
9428 .write_s64 = cpu_cfs_quota_write_s64,
9429 },
9430 {
9431 .name = "cfs_period_us",
9432 .read_u64 = cpu_cfs_period_read_u64,
9433 .write_u64 = cpu_cfs_period_write_u64,
9434 },
9435 {
9436 .name = "stat",
9437 .read_map = cpu_stats_show,
9438 },
9439 #endif
9440 #ifdef CONFIG_RT_GROUP_SCHED
9441 {
9442 .name = "rt_runtime_us",
9443 .read_s64 = cpu_rt_runtime_read,
9444 .write_s64 = cpu_rt_runtime_write,
9445 },
9446 {
9447 .name = "rt_period_us",
9448 .read_u64 = cpu_rt_period_read_uint,
9449 .write_u64 = cpu_rt_period_write_uint,
9450 },
9451 #endif
9452 };
9453
9454 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9455 {
9456 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9457 }
9458
9459 struct cgroup_subsys cpu_cgroup_subsys = {
9460 .name = "cpu",
9461 .create = cpu_cgroup_create,
9462 .destroy = cpu_cgroup_destroy,
9463 .can_attach_task = cpu_cgroup_can_attach_task,
9464 .attach_task = cpu_cgroup_attach_task,
9465 .exit = cpu_cgroup_exit,
9466 .populate = cpu_cgroup_populate,
9467 .subsys_id = cpu_cgroup_subsys_id,
9468 .early_init = 1,
9469 };
9470
9471 #endif /* CONFIG_CGROUP_SCHED */
9472
9473 #ifdef CONFIG_CGROUP_CPUACCT
9474
9475 /*
9476 * CPU accounting code for task groups.
9477 *
9478 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9479 * (balbir@in.ibm.com).
9480 */
9481
9482 /* track cpu usage of a group of tasks and its child groups */
9483 struct cpuacct {
9484 struct cgroup_subsys_state css;
9485 /* cpuusage holds pointer to a u64-type object on every cpu */
9486 u64 __percpu *cpuusage;
9487 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9488 struct cpuacct *parent;
9489 };
9490
9491 struct cgroup_subsys cpuacct_subsys;
9492
9493 /* return cpu accounting group corresponding to this container */
9494 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9495 {
9496 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9497 struct cpuacct, css);
9498 }
9499
9500 /* return cpu accounting group to which this task belongs */
9501 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9502 {
9503 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9504 struct cpuacct, css);
9505 }
9506
9507 /* create a new cpu accounting group */
9508 static struct cgroup_subsys_state *cpuacct_create(
9509 struct cgroup_subsys *ss, struct cgroup *cgrp)
9510 {
9511 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9512 int i;
9513
9514 if (!ca)
9515 goto out;
9516
9517 ca->cpuusage = alloc_percpu(u64);
9518 if (!ca->cpuusage)
9519 goto out_free_ca;
9520
9521 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9522 if (percpu_counter_init(&ca->cpustat[i], 0))
9523 goto out_free_counters;
9524
9525 if (cgrp->parent)
9526 ca->parent = cgroup_ca(cgrp->parent);
9527
9528 return &ca->css;
9529
9530 out_free_counters:
9531 while (--i >= 0)
9532 percpu_counter_destroy(&ca->cpustat[i]);
9533 free_percpu(ca->cpuusage);
9534 out_free_ca:
9535 kfree(ca);
9536 out:
9537 return ERR_PTR(-ENOMEM);
9538 }
9539
9540 /* destroy an existing cpu accounting group */
9541 static void
9542 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9543 {
9544 struct cpuacct *ca = cgroup_ca(cgrp);
9545 int i;
9546
9547 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9548 percpu_counter_destroy(&ca->cpustat[i]);
9549 free_percpu(ca->cpuusage);
9550 kfree(ca);
9551 }
9552
9553 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9554 {
9555 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9556 u64 data;
9557
9558 #ifndef CONFIG_64BIT
9559 /*
9560 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9561 */
9562 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9563 data = *cpuusage;
9564 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9565 #else
9566 data = *cpuusage;
9567 #endif
9568
9569 return data;
9570 }
9571
9572 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9573 {
9574 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9575
9576 #ifndef CONFIG_64BIT
9577 /*
9578 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9579 */
9580 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9581 *cpuusage = val;
9582 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9583 #else
9584 *cpuusage = val;
9585 #endif
9586 }
9587
9588 /* return total cpu usage (in nanoseconds) of a group */
9589 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9590 {
9591 struct cpuacct *ca = cgroup_ca(cgrp);
9592 u64 totalcpuusage = 0;
9593 int i;
9594
9595 for_each_present_cpu(i)
9596 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9597
9598 return totalcpuusage;
9599 }
9600
9601 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9602 u64 reset)
9603 {
9604 struct cpuacct *ca = cgroup_ca(cgrp);
9605 int err = 0;
9606 int i;
9607
9608 if (reset) {
9609 err = -EINVAL;
9610 goto out;
9611 }
9612
9613 for_each_present_cpu(i)
9614 cpuacct_cpuusage_write(ca, i, 0);
9615
9616 out:
9617 return err;
9618 }
9619
9620 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9621 struct seq_file *m)
9622 {
9623 struct cpuacct *ca = cgroup_ca(cgroup);
9624 u64 percpu;
9625 int i;
9626
9627 for_each_present_cpu(i) {
9628 percpu = cpuacct_cpuusage_read(ca, i);
9629 seq_printf(m, "%llu ", (unsigned long long) percpu);
9630 }
9631 seq_printf(m, "\n");
9632 return 0;
9633 }
9634
9635 static const char *cpuacct_stat_desc[] = {
9636 [CPUACCT_STAT_USER] = "user",
9637 [CPUACCT_STAT_SYSTEM] = "system",
9638 };
9639
9640 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9641 struct cgroup_map_cb *cb)
9642 {
9643 struct cpuacct *ca = cgroup_ca(cgrp);
9644 int i;
9645
9646 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9647 s64 val = percpu_counter_read(&ca->cpustat[i]);
9648 val = cputime64_to_clock_t(val);
9649 cb->fill(cb, cpuacct_stat_desc[i], val);
9650 }
9651 return 0;
9652 }
9653
9654 static struct cftype files[] = {
9655 {
9656 .name = "usage",
9657 .read_u64 = cpuusage_read,
9658 .write_u64 = cpuusage_write,
9659 },
9660 {
9661 .name = "usage_percpu",
9662 .read_seq_string = cpuacct_percpu_seq_read,
9663 },
9664 {
9665 .name = "stat",
9666 .read_map = cpuacct_stats_show,
9667 },
9668 };
9669
9670 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9671 {
9672 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9673 }
9674
9675 /*
9676 * charge this task's execution time to its accounting group.
9677 *
9678 * called with rq->lock held.
9679 */
9680 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9681 {
9682 struct cpuacct *ca;
9683 int cpu;
9684
9685 if (unlikely(!cpuacct_subsys.active))
9686 return;
9687
9688 cpu = task_cpu(tsk);
9689
9690 rcu_read_lock();
9691
9692 ca = task_ca(tsk);
9693
9694 for (; ca; ca = ca->parent) {
9695 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9696 *cpuusage += cputime;
9697 }
9698
9699 rcu_read_unlock();
9700 }
9701
9702 /*
9703 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9704 * in cputime_t units. As a result, cpuacct_update_stats calls
9705 * percpu_counter_add with values large enough to always overflow the
9706 * per cpu batch limit causing bad SMP scalability.
9707 *
9708 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9709 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9710 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9711 */
9712 #ifdef CONFIG_SMP
9713 #define CPUACCT_BATCH \
9714 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9715 #else
9716 #define CPUACCT_BATCH 0
9717 #endif
9718
9719 /*
9720 * Charge the system/user time to the task's accounting group.
9721 */
9722 static void cpuacct_update_stats(struct task_struct *tsk,
9723 enum cpuacct_stat_index idx, cputime_t val)
9724 {
9725 struct cpuacct *ca;
9726 int batch = CPUACCT_BATCH;
9727
9728 if (unlikely(!cpuacct_subsys.active))
9729 return;
9730
9731 rcu_read_lock();
9732 ca = task_ca(tsk);
9733
9734 do {
9735 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9736 ca = ca->parent;
9737 } while (ca);
9738 rcu_read_unlock();
9739 }
9740
9741 struct cgroup_subsys cpuacct_subsys = {
9742 .name = "cpuacct",
9743 .create = cpuacct_create,
9744 .destroy = cpuacct_destroy,
9745 .populate = cpuacct_populate,
9746 .subsys_id = cpuacct_subsys_id,
9747 };
9748 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.256368 seconds and 5 git commands to generate.