sched: Enhance the pre/post scheduling logic
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/reciprocal_div.h>
68 #include <linux/unistd.h>
69 #include <linux/pagemap.h>
70 #include <linux/hrtimer.h>
71 #include <linux/tick.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
83
84 /*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93 /*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102 /*
103 * Helpers for converting nanosecond timing to jiffy resolution
104 */
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
110 /*
111 * These are the 'tuning knobs' of the scheduler:
112 *
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
115 */
116 #define DEF_TIMESLICE (100 * HZ / 1000)
117
118 /*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121 #define RUNTIME_INF ((u64)~0ULL)
122
123 #ifdef CONFIG_SMP
124
125 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
127 /*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132 {
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134 }
135
136 /*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141 {
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144 }
145 #endif
146
147 static inline int rt_policy(int policy)
148 {
149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 return 1;
151 return 0;
152 }
153
154 static inline int task_has_rt_policy(struct task_struct *p)
155 {
156 return rt_policy(p->policy);
157 }
158
159 /*
160 * This is the priority-queue data structure of the RT scheduling class:
161 */
162 struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165 };
166
167 struct rt_bandwidth {
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
173 };
174
175 static struct rt_bandwidth def_rt_bandwidth;
176
177 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180 {
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198 }
199
200 static
201 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202 {
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
211 }
212
213 static inline int rt_bandwidth_enabled(void)
214 {
215 return sysctl_sched_rt_runtime >= 0;
216 }
217
218 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219 {
220 ktime_t now;
221
222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
230 unsigned long delta;
231 ktime_t soft, hard;
232
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243 HRTIMER_MODE_ABS_PINNED, 0);
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246 }
247
248 #ifdef CONFIG_RT_GROUP_SCHED
249 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250 {
251 hrtimer_cancel(&rt_b->rt_period_timer);
252 }
253 #endif
254
255 /*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259 static DEFINE_MUTEX(sched_domains_mutex);
260
261 #ifdef CONFIG_GROUP_SCHED
262
263 #include <linux/cgroup.h>
264
265 struct cfs_rq;
266
267 static LIST_HEAD(task_groups);
268
269 /* task group related information */
270 struct task_group {
271 #ifdef CONFIG_CGROUP_SCHED
272 struct cgroup_subsys_state css;
273 #endif
274
275 #ifdef CONFIG_USER_SCHED
276 uid_t uid;
277 #endif
278
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
285 #endif
286
287 #ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
291 struct rt_bandwidth rt_bandwidth;
292 #endif
293
294 struct rcu_head rcu;
295 struct list_head list;
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
300 };
301
302 #ifdef CONFIG_USER_SCHED
303
304 /* Helper function to pass uid information to create_sched_user() */
305 void set_tg_uid(struct user_struct *user)
306 {
307 user->tg->uid = user->uid;
308 }
309
310 /*
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
314 */
315 struct task_group root_task_group;
316
317 #ifdef CONFIG_FAIR_GROUP_SCHED
318 /* Default task group's sched entity on each cpu */
319 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320 /* Default task group's cfs_rq on each cpu */
321 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322 #endif /* CONFIG_FAIR_GROUP_SCHED */
323
324 #ifdef CONFIG_RT_GROUP_SCHED
325 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327 #endif /* CONFIG_RT_GROUP_SCHED */
328 #else /* !CONFIG_USER_SCHED */
329 #define root_task_group init_task_group
330 #endif /* CONFIG_USER_SCHED */
331
332 /* task_group_lock serializes add/remove of task groups and also changes to
333 * a task group's cpu shares.
334 */
335 static DEFINE_SPINLOCK(task_group_lock);
336
337 #ifdef CONFIG_SMP
338 static int root_task_group_empty(void)
339 {
340 return list_empty(&root_task_group.children);
341 }
342 #endif
343
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 #ifdef CONFIG_USER_SCHED
346 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
347 #else /* !CONFIG_USER_SCHED */
348 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
349 #endif /* CONFIG_USER_SCHED */
350
351 /*
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
359 #define MIN_SHARES 2
360 #define MAX_SHARES (1UL << 18)
361
362 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363 #endif
364
365 /* Default task group.
366 * Every task in system belong to this group at bootup.
367 */
368 struct task_group init_task_group;
369
370 /* return group to which a task belongs */
371 static inline struct task_group *task_group(struct task_struct *p)
372 {
373 struct task_group *tg;
374
375 #ifdef CONFIG_USER_SCHED
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
379 #elif defined(CONFIG_CGROUP_SCHED)
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
382 #else
383 tg = &init_task_group;
384 #endif
385 return tg;
386 }
387
388 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
389 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
390 {
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
394 #endif
395
396 #ifdef CONFIG_RT_GROUP_SCHED
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
399 #endif
400 }
401
402 #else
403
404 #ifdef CONFIG_SMP
405 static int root_task_group_empty(void)
406 {
407 return 1;
408 }
409 #endif
410
411 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 static inline struct task_group *task_group(struct task_struct *p)
413 {
414 return NULL;
415 }
416
417 #endif /* CONFIG_GROUP_SCHED */
418
419 /* CFS-related fields in a runqueue */
420 struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
424 u64 exec_clock;
425 u64 min_vruntime;
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
437 struct sched_entity *curr, *next, *last;
438
439 unsigned int nr_spread_over;
440
441 #ifdef CONFIG_FAIR_GROUP_SCHED
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
454
455 #ifdef CONFIG_SMP
456 /*
457 * the part of load.weight contributed by tasks
458 */
459 unsigned long task_weight;
460
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
468
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
478 #endif
479 #endif
480 };
481
482 /* Real-Time classes' related field in a runqueue: */
483 struct rt_rq {
484 struct rt_prio_array active;
485 unsigned long rt_nr_running;
486 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 struct {
488 int curr; /* highest queued rt task prio */
489 #ifdef CONFIG_SMP
490 int next; /* next highest */
491 #endif
492 } highest_prio;
493 #endif
494 #ifdef CONFIG_SMP
495 unsigned long rt_nr_migratory;
496 unsigned long rt_nr_total;
497 int overloaded;
498 struct plist_head pushable_tasks;
499 #endif
500 int rt_throttled;
501 u64 rt_time;
502 u64 rt_runtime;
503 /* Nests inside the rq lock: */
504 spinlock_t rt_runtime_lock;
505
506 #ifdef CONFIG_RT_GROUP_SCHED
507 unsigned long rt_nr_boosted;
508
509 struct rq *rq;
510 struct list_head leaf_rt_rq_list;
511 struct task_group *tg;
512 struct sched_rt_entity *rt_se;
513 #endif
514 };
515
516 #ifdef CONFIG_SMP
517
518 /*
519 * We add the notion of a root-domain which will be used to define per-domain
520 * variables. Each exclusive cpuset essentially defines an island domain by
521 * fully partitioning the member cpus from any other cpuset. Whenever a new
522 * exclusive cpuset is created, we also create and attach a new root-domain
523 * object.
524 *
525 */
526 struct root_domain {
527 atomic_t refcount;
528 cpumask_var_t span;
529 cpumask_var_t online;
530
531 /*
532 * The "RT overload" flag: it gets set if a CPU has more than
533 * one runnable RT task.
534 */
535 cpumask_var_t rto_mask;
536 atomic_t rto_count;
537 #ifdef CONFIG_SMP
538 struct cpupri cpupri;
539 #endif
540 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
541 /*
542 * Preferred wake up cpu nominated by sched_mc balance that will be
543 * used when most cpus are idle in the system indicating overall very
544 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
545 */
546 unsigned int sched_mc_preferred_wakeup_cpu;
547 #endif
548 };
549
550 /*
551 * By default the system creates a single root-domain with all cpus as
552 * members (mimicking the global state we have today).
553 */
554 static struct root_domain def_root_domain;
555
556 #endif
557
558 /*
559 * This is the main, per-CPU runqueue data structure.
560 *
561 * Locking rule: those places that want to lock multiple runqueues
562 * (such as the load balancing or the thread migration code), lock
563 * acquire operations must be ordered by ascending &runqueue.
564 */
565 struct rq {
566 /* runqueue lock: */
567 spinlock_t lock;
568
569 /*
570 * nr_running and cpu_load should be in the same cacheline because
571 * remote CPUs use both these fields when doing load calculation.
572 */
573 unsigned long nr_running;
574 #define CPU_LOAD_IDX_MAX 5
575 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
576 #ifdef CONFIG_NO_HZ
577 unsigned long last_tick_seen;
578 unsigned char in_nohz_recently;
579 #endif
580 /* capture load from *all* tasks on this cpu: */
581 struct load_weight load;
582 unsigned long nr_load_updates;
583 u64 nr_switches;
584 u64 nr_migrations_in;
585
586 struct cfs_rq cfs;
587 struct rt_rq rt;
588
589 #ifdef CONFIG_FAIR_GROUP_SCHED
590 /* list of leaf cfs_rq on this cpu: */
591 struct list_head leaf_cfs_rq_list;
592 #endif
593 #ifdef CONFIG_RT_GROUP_SCHED
594 struct list_head leaf_rt_rq_list;
595 #endif
596
597 /*
598 * This is part of a global counter where only the total sum
599 * over all CPUs matters. A task can increase this counter on
600 * one CPU and if it got migrated afterwards it may decrease
601 * it on another CPU. Always updated under the runqueue lock:
602 */
603 unsigned long nr_uninterruptible;
604
605 struct task_struct *curr, *idle;
606 unsigned long next_balance;
607 struct mm_struct *prev_mm;
608
609 u64 clock;
610
611 atomic_t nr_iowait;
612
613 #ifdef CONFIG_SMP
614 struct root_domain *rd;
615 struct sched_domain *sd;
616
617 unsigned char idle_at_tick;
618 /* For active balancing */
619 int post_schedule;
620 int active_balance;
621 int push_cpu;
622 /* cpu of this runqueue: */
623 int cpu;
624 int online;
625
626 unsigned long avg_load_per_task;
627
628 struct task_struct *migration_thread;
629 struct list_head migration_queue;
630 #endif
631
632 /* calc_load related fields */
633 unsigned long calc_load_update;
634 long calc_load_active;
635
636 #ifdef CONFIG_SCHED_HRTICK
637 #ifdef CONFIG_SMP
638 int hrtick_csd_pending;
639 struct call_single_data hrtick_csd;
640 #endif
641 struct hrtimer hrtick_timer;
642 #endif
643
644 #ifdef CONFIG_SCHEDSTATS
645 /* latency stats */
646 struct sched_info rq_sched_info;
647 unsigned long long rq_cpu_time;
648 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
649
650 /* sys_sched_yield() stats */
651 unsigned int yld_count;
652
653 /* schedule() stats */
654 unsigned int sched_switch;
655 unsigned int sched_count;
656 unsigned int sched_goidle;
657
658 /* try_to_wake_up() stats */
659 unsigned int ttwu_count;
660 unsigned int ttwu_local;
661
662 /* BKL stats */
663 unsigned int bkl_count;
664 #endif
665 };
666
667 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
668
669 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
670 {
671 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
672 }
673
674 static inline int cpu_of(struct rq *rq)
675 {
676 #ifdef CONFIG_SMP
677 return rq->cpu;
678 #else
679 return 0;
680 #endif
681 }
682
683 /*
684 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
685 * See detach_destroy_domains: synchronize_sched for details.
686 *
687 * The domain tree of any CPU may only be accessed from within
688 * preempt-disabled sections.
689 */
690 #define for_each_domain(cpu, __sd) \
691 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
692
693 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
694 #define this_rq() (&__get_cpu_var(runqueues))
695 #define task_rq(p) cpu_rq(task_cpu(p))
696 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
697 #define raw_rq() (&__raw_get_cpu_var(runqueues))
698
699 inline void update_rq_clock(struct rq *rq)
700 {
701 rq->clock = sched_clock_cpu(cpu_of(rq));
702 }
703
704 /*
705 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
706 */
707 #ifdef CONFIG_SCHED_DEBUG
708 # define const_debug __read_mostly
709 #else
710 # define const_debug static const
711 #endif
712
713 /**
714 * runqueue_is_locked
715 *
716 * Returns true if the current cpu runqueue is locked.
717 * This interface allows printk to be called with the runqueue lock
718 * held and know whether or not it is OK to wake up the klogd.
719 */
720 int runqueue_is_locked(void)
721 {
722 int cpu = get_cpu();
723 struct rq *rq = cpu_rq(cpu);
724 int ret;
725
726 ret = spin_is_locked(&rq->lock);
727 put_cpu();
728 return ret;
729 }
730
731 /*
732 * Debugging: various feature bits
733 */
734
735 #define SCHED_FEAT(name, enabled) \
736 __SCHED_FEAT_##name ,
737
738 enum {
739 #include "sched_features.h"
740 };
741
742 #undef SCHED_FEAT
743
744 #define SCHED_FEAT(name, enabled) \
745 (1UL << __SCHED_FEAT_##name) * enabled |
746
747 const_debug unsigned int sysctl_sched_features =
748 #include "sched_features.h"
749 0;
750
751 #undef SCHED_FEAT
752
753 #ifdef CONFIG_SCHED_DEBUG
754 #define SCHED_FEAT(name, enabled) \
755 #name ,
756
757 static __read_mostly char *sched_feat_names[] = {
758 #include "sched_features.h"
759 NULL
760 };
761
762 #undef SCHED_FEAT
763
764 static int sched_feat_show(struct seq_file *m, void *v)
765 {
766 int i;
767
768 for (i = 0; sched_feat_names[i]; i++) {
769 if (!(sysctl_sched_features & (1UL << i)))
770 seq_puts(m, "NO_");
771 seq_printf(m, "%s ", sched_feat_names[i]);
772 }
773 seq_puts(m, "\n");
774
775 return 0;
776 }
777
778 static ssize_t
779 sched_feat_write(struct file *filp, const char __user *ubuf,
780 size_t cnt, loff_t *ppos)
781 {
782 char buf[64];
783 char *cmp = buf;
784 int neg = 0;
785 int i;
786
787 if (cnt > 63)
788 cnt = 63;
789
790 if (copy_from_user(&buf, ubuf, cnt))
791 return -EFAULT;
792
793 buf[cnt] = 0;
794
795 if (strncmp(buf, "NO_", 3) == 0) {
796 neg = 1;
797 cmp += 3;
798 }
799
800 for (i = 0; sched_feat_names[i]; i++) {
801 int len = strlen(sched_feat_names[i]);
802
803 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
804 if (neg)
805 sysctl_sched_features &= ~(1UL << i);
806 else
807 sysctl_sched_features |= (1UL << i);
808 break;
809 }
810 }
811
812 if (!sched_feat_names[i])
813 return -EINVAL;
814
815 filp->f_pos += cnt;
816
817 return cnt;
818 }
819
820 static int sched_feat_open(struct inode *inode, struct file *filp)
821 {
822 return single_open(filp, sched_feat_show, NULL);
823 }
824
825 static struct file_operations sched_feat_fops = {
826 .open = sched_feat_open,
827 .write = sched_feat_write,
828 .read = seq_read,
829 .llseek = seq_lseek,
830 .release = single_release,
831 };
832
833 static __init int sched_init_debug(void)
834 {
835 debugfs_create_file("sched_features", 0644, NULL, NULL,
836 &sched_feat_fops);
837
838 return 0;
839 }
840 late_initcall(sched_init_debug);
841
842 #endif
843
844 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
845
846 /*
847 * Number of tasks to iterate in a single balance run.
848 * Limited because this is done with IRQs disabled.
849 */
850 const_debug unsigned int sysctl_sched_nr_migrate = 32;
851
852 /*
853 * ratelimit for updating the group shares.
854 * default: 0.25ms
855 */
856 unsigned int sysctl_sched_shares_ratelimit = 250000;
857
858 /*
859 * Inject some fuzzyness into changing the per-cpu group shares
860 * this avoids remote rq-locks at the expense of fairness.
861 * default: 4
862 */
863 unsigned int sysctl_sched_shares_thresh = 4;
864
865 /*
866 * period over which we measure -rt task cpu usage in us.
867 * default: 1s
868 */
869 unsigned int sysctl_sched_rt_period = 1000000;
870
871 static __read_mostly int scheduler_running;
872
873 /*
874 * part of the period that we allow rt tasks to run in us.
875 * default: 0.95s
876 */
877 int sysctl_sched_rt_runtime = 950000;
878
879 static inline u64 global_rt_period(void)
880 {
881 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
882 }
883
884 static inline u64 global_rt_runtime(void)
885 {
886 if (sysctl_sched_rt_runtime < 0)
887 return RUNTIME_INF;
888
889 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
890 }
891
892 #ifndef prepare_arch_switch
893 # define prepare_arch_switch(next) do { } while (0)
894 #endif
895 #ifndef finish_arch_switch
896 # define finish_arch_switch(prev) do { } while (0)
897 #endif
898
899 static inline int task_current(struct rq *rq, struct task_struct *p)
900 {
901 return rq->curr == p;
902 }
903
904 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
905 static inline int task_running(struct rq *rq, struct task_struct *p)
906 {
907 return task_current(rq, p);
908 }
909
910 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
911 {
912 }
913
914 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
915 {
916 #ifdef CONFIG_DEBUG_SPINLOCK
917 /* this is a valid case when another task releases the spinlock */
918 rq->lock.owner = current;
919 #endif
920 /*
921 * If we are tracking spinlock dependencies then we have to
922 * fix up the runqueue lock - which gets 'carried over' from
923 * prev into current:
924 */
925 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
926
927 spin_unlock_irq(&rq->lock);
928 }
929
930 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
931 static inline int task_running(struct rq *rq, struct task_struct *p)
932 {
933 #ifdef CONFIG_SMP
934 return p->oncpu;
935 #else
936 return task_current(rq, p);
937 #endif
938 }
939
940 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
941 {
942 #ifdef CONFIG_SMP
943 /*
944 * We can optimise this out completely for !SMP, because the
945 * SMP rebalancing from interrupt is the only thing that cares
946 * here.
947 */
948 next->oncpu = 1;
949 #endif
950 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
951 spin_unlock_irq(&rq->lock);
952 #else
953 spin_unlock(&rq->lock);
954 #endif
955 }
956
957 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
958 {
959 #ifdef CONFIG_SMP
960 /*
961 * After ->oncpu is cleared, the task can be moved to a different CPU.
962 * We must ensure this doesn't happen until the switch is completely
963 * finished.
964 */
965 smp_wmb();
966 prev->oncpu = 0;
967 #endif
968 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
969 local_irq_enable();
970 #endif
971 }
972 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
973
974 /*
975 * __task_rq_lock - lock the runqueue a given task resides on.
976 * Must be called interrupts disabled.
977 */
978 static inline struct rq *__task_rq_lock(struct task_struct *p)
979 __acquires(rq->lock)
980 {
981 for (;;) {
982 struct rq *rq = task_rq(p);
983 spin_lock(&rq->lock);
984 if (likely(rq == task_rq(p)))
985 return rq;
986 spin_unlock(&rq->lock);
987 }
988 }
989
990 /*
991 * task_rq_lock - lock the runqueue a given task resides on and disable
992 * interrupts. Note the ordering: we can safely lookup the task_rq without
993 * explicitly disabling preemption.
994 */
995 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
996 __acquires(rq->lock)
997 {
998 struct rq *rq;
999
1000 for (;;) {
1001 local_irq_save(*flags);
1002 rq = task_rq(p);
1003 spin_lock(&rq->lock);
1004 if (likely(rq == task_rq(p)))
1005 return rq;
1006 spin_unlock_irqrestore(&rq->lock, *flags);
1007 }
1008 }
1009
1010 void task_rq_unlock_wait(struct task_struct *p)
1011 {
1012 struct rq *rq = task_rq(p);
1013
1014 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1015 spin_unlock_wait(&rq->lock);
1016 }
1017
1018 static void __task_rq_unlock(struct rq *rq)
1019 __releases(rq->lock)
1020 {
1021 spin_unlock(&rq->lock);
1022 }
1023
1024 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1025 __releases(rq->lock)
1026 {
1027 spin_unlock_irqrestore(&rq->lock, *flags);
1028 }
1029
1030 /*
1031 * this_rq_lock - lock this runqueue and disable interrupts.
1032 */
1033 static struct rq *this_rq_lock(void)
1034 __acquires(rq->lock)
1035 {
1036 struct rq *rq;
1037
1038 local_irq_disable();
1039 rq = this_rq();
1040 spin_lock(&rq->lock);
1041
1042 return rq;
1043 }
1044
1045 #ifdef CONFIG_SCHED_HRTICK
1046 /*
1047 * Use HR-timers to deliver accurate preemption points.
1048 *
1049 * Its all a bit involved since we cannot program an hrt while holding the
1050 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1051 * reschedule event.
1052 *
1053 * When we get rescheduled we reprogram the hrtick_timer outside of the
1054 * rq->lock.
1055 */
1056
1057 /*
1058 * Use hrtick when:
1059 * - enabled by features
1060 * - hrtimer is actually high res
1061 */
1062 static inline int hrtick_enabled(struct rq *rq)
1063 {
1064 if (!sched_feat(HRTICK))
1065 return 0;
1066 if (!cpu_active(cpu_of(rq)))
1067 return 0;
1068 return hrtimer_is_hres_active(&rq->hrtick_timer);
1069 }
1070
1071 static void hrtick_clear(struct rq *rq)
1072 {
1073 if (hrtimer_active(&rq->hrtick_timer))
1074 hrtimer_cancel(&rq->hrtick_timer);
1075 }
1076
1077 /*
1078 * High-resolution timer tick.
1079 * Runs from hardirq context with interrupts disabled.
1080 */
1081 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1082 {
1083 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1084
1085 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1086
1087 spin_lock(&rq->lock);
1088 update_rq_clock(rq);
1089 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1090 spin_unlock(&rq->lock);
1091
1092 return HRTIMER_NORESTART;
1093 }
1094
1095 #ifdef CONFIG_SMP
1096 /*
1097 * called from hardirq (IPI) context
1098 */
1099 static void __hrtick_start(void *arg)
1100 {
1101 struct rq *rq = arg;
1102
1103 spin_lock(&rq->lock);
1104 hrtimer_restart(&rq->hrtick_timer);
1105 rq->hrtick_csd_pending = 0;
1106 spin_unlock(&rq->lock);
1107 }
1108
1109 /*
1110 * Called to set the hrtick timer state.
1111 *
1112 * called with rq->lock held and irqs disabled
1113 */
1114 static void hrtick_start(struct rq *rq, u64 delay)
1115 {
1116 struct hrtimer *timer = &rq->hrtick_timer;
1117 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1118
1119 hrtimer_set_expires(timer, time);
1120
1121 if (rq == this_rq()) {
1122 hrtimer_restart(timer);
1123 } else if (!rq->hrtick_csd_pending) {
1124 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1125 rq->hrtick_csd_pending = 1;
1126 }
1127 }
1128
1129 static int
1130 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1131 {
1132 int cpu = (int)(long)hcpu;
1133
1134 switch (action) {
1135 case CPU_UP_CANCELED:
1136 case CPU_UP_CANCELED_FROZEN:
1137 case CPU_DOWN_PREPARE:
1138 case CPU_DOWN_PREPARE_FROZEN:
1139 case CPU_DEAD:
1140 case CPU_DEAD_FROZEN:
1141 hrtick_clear(cpu_rq(cpu));
1142 return NOTIFY_OK;
1143 }
1144
1145 return NOTIFY_DONE;
1146 }
1147
1148 static __init void init_hrtick(void)
1149 {
1150 hotcpu_notifier(hotplug_hrtick, 0);
1151 }
1152 #else
1153 /*
1154 * Called to set the hrtick timer state.
1155 *
1156 * called with rq->lock held and irqs disabled
1157 */
1158 static void hrtick_start(struct rq *rq, u64 delay)
1159 {
1160 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1161 HRTIMER_MODE_REL_PINNED, 0);
1162 }
1163
1164 static inline void init_hrtick(void)
1165 {
1166 }
1167 #endif /* CONFIG_SMP */
1168
1169 static void init_rq_hrtick(struct rq *rq)
1170 {
1171 #ifdef CONFIG_SMP
1172 rq->hrtick_csd_pending = 0;
1173
1174 rq->hrtick_csd.flags = 0;
1175 rq->hrtick_csd.func = __hrtick_start;
1176 rq->hrtick_csd.info = rq;
1177 #endif
1178
1179 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1180 rq->hrtick_timer.function = hrtick;
1181 }
1182 #else /* CONFIG_SCHED_HRTICK */
1183 static inline void hrtick_clear(struct rq *rq)
1184 {
1185 }
1186
1187 static inline void init_rq_hrtick(struct rq *rq)
1188 {
1189 }
1190
1191 static inline void init_hrtick(void)
1192 {
1193 }
1194 #endif /* CONFIG_SCHED_HRTICK */
1195
1196 /*
1197 * resched_task - mark a task 'to be rescheduled now'.
1198 *
1199 * On UP this means the setting of the need_resched flag, on SMP it
1200 * might also involve a cross-CPU call to trigger the scheduler on
1201 * the target CPU.
1202 */
1203 #ifdef CONFIG_SMP
1204
1205 #ifndef tsk_is_polling
1206 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1207 #endif
1208
1209 static void resched_task(struct task_struct *p)
1210 {
1211 int cpu;
1212
1213 assert_spin_locked(&task_rq(p)->lock);
1214
1215 if (test_tsk_need_resched(p))
1216 return;
1217
1218 set_tsk_need_resched(p);
1219
1220 cpu = task_cpu(p);
1221 if (cpu == smp_processor_id())
1222 return;
1223
1224 /* NEED_RESCHED must be visible before we test polling */
1225 smp_mb();
1226 if (!tsk_is_polling(p))
1227 smp_send_reschedule(cpu);
1228 }
1229
1230 static void resched_cpu(int cpu)
1231 {
1232 struct rq *rq = cpu_rq(cpu);
1233 unsigned long flags;
1234
1235 if (!spin_trylock_irqsave(&rq->lock, flags))
1236 return;
1237 resched_task(cpu_curr(cpu));
1238 spin_unlock_irqrestore(&rq->lock, flags);
1239 }
1240
1241 #ifdef CONFIG_NO_HZ
1242 /*
1243 * When add_timer_on() enqueues a timer into the timer wheel of an
1244 * idle CPU then this timer might expire before the next timer event
1245 * which is scheduled to wake up that CPU. In case of a completely
1246 * idle system the next event might even be infinite time into the
1247 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1248 * leaves the inner idle loop so the newly added timer is taken into
1249 * account when the CPU goes back to idle and evaluates the timer
1250 * wheel for the next timer event.
1251 */
1252 void wake_up_idle_cpu(int cpu)
1253 {
1254 struct rq *rq = cpu_rq(cpu);
1255
1256 if (cpu == smp_processor_id())
1257 return;
1258
1259 /*
1260 * This is safe, as this function is called with the timer
1261 * wheel base lock of (cpu) held. When the CPU is on the way
1262 * to idle and has not yet set rq->curr to idle then it will
1263 * be serialized on the timer wheel base lock and take the new
1264 * timer into account automatically.
1265 */
1266 if (rq->curr != rq->idle)
1267 return;
1268
1269 /*
1270 * We can set TIF_RESCHED on the idle task of the other CPU
1271 * lockless. The worst case is that the other CPU runs the
1272 * idle task through an additional NOOP schedule()
1273 */
1274 set_tsk_need_resched(rq->idle);
1275
1276 /* NEED_RESCHED must be visible before we test polling */
1277 smp_mb();
1278 if (!tsk_is_polling(rq->idle))
1279 smp_send_reschedule(cpu);
1280 }
1281 #endif /* CONFIG_NO_HZ */
1282
1283 #else /* !CONFIG_SMP */
1284 static void resched_task(struct task_struct *p)
1285 {
1286 assert_spin_locked(&task_rq(p)->lock);
1287 set_tsk_need_resched(p);
1288 }
1289 #endif /* CONFIG_SMP */
1290
1291 #if BITS_PER_LONG == 32
1292 # define WMULT_CONST (~0UL)
1293 #else
1294 # define WMULT_CONST (1UL << 32)
1295 #endif
1296
1297 #define WMULT_SHIFT 32
1298
1299 /*
1300 * Shift right and round:
1301 */
1302 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1303
1304 /*
1305 * delta *= weight / lw
1306 */
1307 static unsigned long
1308 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1309 struct load_weight *lw)
1310 {
1311 u64 tmp;
1312
1313 if (!lw->inv_weight) {
1314 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1315 lw->inv_weight = 1;
1316 else
1317 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1318 / (lw->weight+1);
1319 }
1320
1321 tmp = (u64)delta_exec * weight;
1322 /*
1323 * Check whether we'd overflow the 64-bit multiplication:
1324 */
1325 if (unlikely(tmp > WMULT_CONST))
1326 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1327 WMULT_SHIFT/2);
1328 else
1329 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1330
1331 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1332 }
1333
1334 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1335 {
1336 lw->weight += inc;
1337 lw->inv_weight = 0;
1338 }
1339
1340 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1341 {
1342 lw->weight -= dec;
1343 lw->inv_weight = 0;
1344 }
1345
1346 /*
1347 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1348 * of tasks with abnormal "nice" values across CPUs the contribution that
1349 * each task makes to its run queue's load is weighted according to its
1350 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1351 * scaled version of the new time slice allocation that they receive on time
1352 * slice expiry etc.
1353 */
1354
1355 #define WEIGHT_IDLEPRIO 3
1356 #define WMULT_IDLEPRIO 1431655765
1357
1358 /*
1359 * Nice levels are multiplicative, with a gentle 10% change for every
1360 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1361 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1362 * that remained on nice 0.
1363 *
1364 * The "10% effect" is relative and cumulative: from _any_ nice level,
1365 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1366 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1367 * If a task goes up by ~10% and another task goes down by ~10% then
1368 * the relative distance between them is ~25%.)
1369 */
1370 static const int prio_to_weight[40] = {
1371 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1372 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1373 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1374 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1375 /* 0 */ 1024, 820, 655, 526, 423,
1376 /* 5 */ 335, 272, 215, 172, 137,
1377 /* 10 */ 110, 87, 70, 56, 45,
1378 /* 15 */ 36, 29, 23, 18, 15,
1379 };
1380
1381 /*
1382 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1383 *
1384 * In cases where the weight does not change often, we can use the
1385 * precalculated inverse to speed up arithmetics by turning divisions
1386 * into multiplications:
1387 */
1388 static const u32 prio_to_wmult[40] = {
1389 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1390 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1391 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1392 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1393 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1394 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1395 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1396 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1397 };
1398
1399 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1400
1401 /*
1402 * runqueue iterator, to support SMP load-balancing between different
1403 * scheduling classes, without having to expose their internal data
1404 * structures to the load-balancing proper:
1405 */
1406 struct rq_iterator {
1407 void *arg;
1408 struct task_struct *(*start)(void *);
1409 struct task_struct *(*next)(void *);
1410 };
1411
1412 #ifdef CONFIG_SMP
1413 static unsigned long
1414 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 unsigned long max_load_move, struct sched_domain *sd,
1416 enum cpu_idle_type idle, int *all_pinned,
1417 int *this_best_prio, struct rq_iterator *iterator);
1418
1419 static int
1420 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1421 struct sched_domain *sd, enum cpu_idle_type idle,
1422 struct rq_iterator *iterator);
1423 #endif
1424
1425 /* Time spent by the tasks of the cpu accounting group executing in ... */
1426 enum cpuacct_stat_index {
1427 CPUACCT_STAT_USER, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1429
1430 CPUACCT_STAT_NSTATS,
1431 };
1432
1433 #ifdef CONFIG_CGROUP_CPUACCT
1434 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1435 static void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val);
1437 #else
1438 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1439 static inline void cpuacct_update_stats(struct task_struct *tsk,
1440 enum cpuacct_stat_index idx, cputime_t val) {}
1441 #endif
1442
1443 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1444 {
1445 update_load_add(&rq->load, load);
1446 }
1447
1448 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1449 {
1450 update_load_sub(&rq->load, load);
1451 }
1452
1453 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1454 typedef int (*tg_visitor)(struct task_group *, void *);
1455
1456 /*
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1459 */
1460 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1461 {
1462 struct task_group *parent, *child;
1463 int ret;
1464
1465 rcu_read_lock();
1466 parent = &root_task_group;
1467 down:
1468 ret = (*down)(parent, data);
1469 if (ret)
1470 goto out_unlock;
1471 list_for_each_entry_rcu(child, &parent->children, siblings) {
1472 parent = child;
1473 goto down;
1474
1475 up:
1476 continue;
1477 }
1478 ret = (*up)(parent, data);
1479 if (ret)
1480 goto out_unlock;
1481
1482 child = parent;
1483 parent = parent->parent;
1484 if (parent)
1485 goto up;
1486 out_unlock:
1487 rcu_read_unlock();
1488
1489 return ret;
1490 }
1491
1492 static int tg_nop(struct task_group *tg, void *data)
1493 {
1494 return 0;
1495 }
1496 #endif
1497
1498 #ifdef CONFIG_SMP
1499 static unsigned long source_load(int cpu, int type);
1500 static unsigned long target_load(int cpu, int type);
1501 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1502
1503 static unsigned long cpu_avg_load_per_task(int cpu)
1504 {
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1507
1508 if (nr_running)
1509 rq->avg_load_per_task = rq->load.weight / nr_running;
1510 else
1511 rq->avg_load_per_task = 0;
1512
1513 return rq->avg_load_per_task;
1514 }
1515
1516 #ifdef CONFIG_FAIR_GROUP_SCHED
1517
1518 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1519
1520 /*
1521 * Calculate and set the cpu's group shares.
1522 */
1523 static void
1524 update_group_shares_cpu(struct task_group *tg, int cpu,
1525 unsigned long sd_shares, unsigned long sd_rq_weight)
1526 {
1527 unsigned long rq_weight;
1528 unsigned long shares;
1529 int boost = 0;
1530
1531 if (!tg->se[cpu])
1532 return;
1533
1534 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1535 if (!rq_weight) {
1536 boost = 1;
1537 rq_weight = NICE_0_LOAD;
1538 }
1539
1540 /*
1541 * \Sum shares * rq_weight
1542 * shares = -----------------------
1543 * \Sum rq_weight
1544 *
1545 */
1546 shares = (sd_shares * rq_weight) / sd_rq_weight;
1547 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1548
1549 if (abs(shares - tg->se[cpu]->load.weight) >
1550 sysctl_sched_shares_thresh) {
1551 struct rq *rq = cpu_rq(cpu);
1552 unsigned long flags;
1553
1554 spin_lock_irqsave(&rq->lock, flags);
1555 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1556 __set_se_shares(tg->se[cpu], shares);
1557 spin_unlock_irqrestore(&rq->lock, flags);
1558 }
1559 }
1560
1561 /*
1562 * Re-compute the task group their per cpu shares over the given domain.
1563 * This needs to be done in a bottom-up fashion because the rq weight of a
1564 * parent group depends on the shares of its child groups.
1565 */
1566 static int tg_shares_up(struct task_group *tg, void *data)
1567 {
1568 unsigned long weight, rq_weight = 0, eff_weight = 0;
1569 unsigned long shares = 0;
1570 struct sched_domain *sd = data;
1571 int i;
1572
1573 for_each_cpu(i, sched_domain_span(sd)) {
1574 /*
1575 * If there are currently no tasks on the cpu pretend there
1576 * is one of average load so that when a new task gets to
1577 * run here it will not get delayed by group starvation.
1578 */
1579 weight = tg->cfs_rq[i]->load.weight;
1580 tg->cfs_rq[i]->rq_weight = weight;
1581 rq_weight += weight;
1582
1583 if (!weight)
1584 weight = NICE_0_LOAD;
1585
1586 eff_weight += weight;
1587 shares += tg->cfs_rq[i]->shares;
1588 }
1589
1590 if ((!shares && rq_weight) || shares > tg->shares)
1591 shares = tg->shares;
1592
1593 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1594 shares = tg->shares;
1595
1596 for_each_cpu(i, sched_domain_span(sd)) {
1597 unsigned long sd_rq_weight = rq_weight;
1598
1599 if (!tg->cfs_rq[i]->rq_weight)
1600 sd_rq_weight = eff_weight;
1601
1602 update_group_shares_cpu(tg, i, shares, sd_rq_weight);
1603 }
1604
1605 return 0;
1606 }
1607
1608 /*
1609 * Compute the cpu's hierarchical load factor for each task group.
1610 * This needs to be done in a top-down fashion because the load of a child
1611 * group is a fraction of its parents load.
1612 */
1613 static int tg_load_down(struct task_group *tg, void *data)
1614 {
1615 unsigned long load;
1616 long cpu = (long)data;
1617
1618 if (!tg->parent) {
1619 load = cpu_rq(cpu)->load.weight;
1620 } else {
1621 load = tg->parent->cfs_rq[cpu]->h_load;
1622 load *= tg->cfs_rq[cpu]->shares;
1623 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1624 }
1625
1626 tg->cfs_rq[cpu]->h_load = load;
1627
1628 return 0;
1629 }
1630
1631 static void update_shares(struct sched_domain *sd)
1632 {
1633 s64 elapsed;
1634 u64 now;
1635
1636 if (root_task_group_empty())
1637 return;
1638
1639 now = cpu_clock(raw_smp_processor_id());
1640 elapsed = now - sd->last_update;
1641
1642 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1643 sd->last_update = now;
1644 walk_tg_tree(tg_nop, tg_shares_up, sd);
1645 }
1646 }
1647
1648 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1649 {
1650 if (root_task_group_empty())
1651 return;
1652
1653 spin_unlock(&rq->lock);
1654 update_shares(sd);
1655 spin_lock(&rq->lock);
1656 }
1657
1658 static void update_h_load(long cpu)
1659 {
1660 if (root_task_group_empty())
1661 return;
1662
1663 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1664 }
1665
1666 #else
1667
1668 static inline void update_shares(struct sched_domain *sd)
1669 {
1670 }
1671
1672 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1673 {
1674 }
1675
1676 #endif
1677
1678 #ifdef CONFIG_PREEMPT
1679
1680 /*
1681 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1682 * way at the expense of forcing extra atomic operations in all
1683 * invocations. This assures that the double_lock is acquired using the
1684 * same underlying policy as the spinlock_t on this architecture, which
1685 * reduces latency compared to the unfair variant below. However, it
1686 * also adds more overhead and therefore may reduce throughput.
1687 */
1688 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1689 __releases(this_rq->lock)
1690 __acquires(busiest->lock)
1691 __acquires(this_rq->lock)
1692 {
1693 spin_unlock(&this_rq->lock);
1694 double_rq_lock(this_rq, busiest);
1695
1696 return 1;
1697 }
1698
1699 #else
1700 /*
1701 * Unfair double_lock_balance: Optimizes throughput at the expense of
1702 * latency by eliminating extra atomic operations when the locks are
1703 * already in proper order on entry. This favors lower cpu-ids and will
1704 * grant the double lock to lower cpus over higher ids under contention,
1705 * regardless of entry order into the function.
1706 */
1707 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1708 __releases(this_rq->lock)
1709 __acquires(busiest->lock)
1710 __acquires(this_rq->lock)
1711 {
1712 int ret = 0;
1713
1714 if (unlikely(!spin_trylock(&busiest->lock))) {
1715 if (busiest < this_rq) {
1716 spin_unlock(&this_rq->lock);
1717 spin_lock(&busiest->lock);
1718 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1719 ret = 1;
1720 } else
1721 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1722 }
1723 return ret;
1724 }
1725
1726 #endif /* CONFIG_PREEMPT */
1727
1728 /*
1729 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1730 */
1731 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1732 {
1733 if (unlikely(!irqs_disabled())) {
1734 /* printk() doesn't work good under rq->lock */
1735 spin_unlock(&this_rq->lock);
1736 BUG_ON(1);
1737 }
1738
1739 return _double_lock_balance(this_rq, busiest);
1740 }
1741
1742 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1743 __releases(busiest->lock)
1744 {
1745 spin_unlock(&busiest->lock);
1746 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1747 }
1748 #endif
1749
1750 #ifdef CONFIG_FAIR_GROUP_SCHED
1751 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1752 {
1753 #ifdef CONFIG_SMP
1754 cfs_rq->shares = shares;
1755 #endif
1756 }
1757 #endif
1758
1759 static void calc_load_account_active(struct rq *this_rq);
1760
1761 #include "sched_stats.h"
1762 #include "sched_idletask.c"
1763 #include "sched_fair.c"
1764 #include "sched_rt.c"
1765 #ifdef CONFIG_SCHED_DEBUG
1766 # include "sched_debug.c"
1767 #endif
1768
1769 #define sched_class_highest (&rt_sched_class)
1770 #define for_each_class(class) \
1771 for (class = sched_class_highest; class; class = class->next)
1772
1773 static void inc_nr_running(struct rq *rq)
1774 {
1775 rq->nr_running++;
1776 }
1777
1778 static void dec_nr_running(struct rq *rq)
1779 {
1780 rq->nr_running--;
1781 }
1782
1783 static void set_load_weight(struct task_struct *p)
1784 {
1785 if (task_has_rt_policy(p)) {
1786 p->se.load.weight = prio_to_weight[0] * 2;
1787 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1788 return;
1789 }
1790
1791 /*
1792 * SCHED_IDLE tasks get minimal weight:
1793 */
1794 if (p->policy == SCHED_IDLE) {
1795 p->se.load.weight = WEIGHT_IDLEPRIO;
1796 p->se.load.inv_weight = WMULT_IDLEPRIO;
1797 return;
1798 }
1799
1800 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1801 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1802 }
1803
1804 static void update_avg(u64 *avg, u64 sample)
1805 {
1806 s64 diff = sample - *avg;
1807 *avg += diff >> 3;
1808 }
1809
1810 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1811 {
1812 if (wakeup)
1813 p->se.start_runtime = p->se.sum_exec_runtime;
1814
1815 sched_info_queued(p);
1816 p->sched_class->enqueue_task(rq, p, wakeup);
1817 p->se.on_rq = 1;
1818 }
1819
1820 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1821 {
1822 if (sleep) {
1823 if (p->se.last_wakeup) {
1824 update_avg(&p->se.avg_overlap,
1825 p->se.sum_exec_runtime - p->se.last_wakeup);
1826 p->se.last_wakeup = 0;
1827 } else {
1828 update_avg(&p->se.avg_wakeup,
1829 sysctl_sched_wakeup_granularity);
1830 }
1831 }
1832
1833 sched_info_dequeued(p);
1834 p->sched_class->dequeue_task(rq, p, sleep);
1835 p->se.on_rq = 0;
1836 }
1837
1838 /*
1839 * __normal_prio - return the priority that is based on the static prio
1840 */
1841 static inline int __normal_prio(struct task_struct *p)
1842 {
1843 return p->static_prio;
1844 }
1845
1846 /*
1847 * Calculate the expected normal priority: i.e. priority
1848 * without taking RT-inheritance into account. Might be
1849 * boosted by interactivity modifiers. Changes upon fork,
1850 * setprio syscalls, and whenever the interactivity
1851 * estimator recalculates.
1852 */
1853 static inline int normal_prio(struct task_struct *p)
1854 {
1855 int prio;
1856
1857 if (task_has_rt_policy(p))
1858 prio = MAX_RT_PRIO-1 - p->rt_priority;
1859 else
1860 prio = __normal_prio(p);
1861 return prio;
1862 }
1863
1864 /*
1865 * Calculate the current priority, i.e. the priority
1866 * taken into account by the scheduler. This value might
1867 * be boosted by RT tasks, or might be boosted by
1868 * interactivity modifiers. Will be RT if the task got
1869 * RT-boosted. If not then it returns p->normal_prio.
1870 */
1871 static int effective_prio(struct task_struct *p)
1872 {
1873 p->normal_prio = normal_prio(p);
1874 /*
1875 * If we are RT tasks or we were boosted to RT priority,
1876 * keep the priority unchanged. Otherwise, update priority
1877 * to the normal priority:
1878 */
1879 if (!rt_prio(p->prio))
1880 return p->normal_prio;
1881 return p->prio;
1882 }
1883
1884 /*
1885 * activate_task - move a task to the runqueue.
1886 */
1887 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1888 {
1889 if (task_contributes_to_load(p))
1890 rq->nr_uninterruptible--;
1891
1892 enqueue_task(rq, p, wakeup);
1893 inc_nr_running(rq);
1894 }
1895
1896 /*
1897 * deactivate_task - remove a task from the runqueue.
1898 */
1899 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1900 {
1901 if (task_contributes_to_load(p))
1902 rq->nr_uninterruptible++;
1903
1904 dequeue_task(rq, p, sleep);
1905 dec_nr_running(rq);
1906 }
1907
1908 /**
1909 * task_curr - is this task currently executing on a CPU?
1910 * @p: the task in question.
1911 */
1912 inline int task_curr(const struct task_struct *p)
1913 {
1914 return cpu_curr(task_cpu(p)) == p;
1915 }
1916
1917 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1918 {
1919 set_task_rq(p, cpu);
1920 #ifdef CONFIG_SMP
1921 /*
1922 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1923 * successfuly executed on another CPU. We must ensure that updates of
1924 * per-task data have been completed by this moment.
1925 */
1926 smp_wmb();
1927 task_thread_info(p)->cpu = cpu;
1928 #endif
1929 }
1930
1931 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1932 const struct sched_class *prev_class,
1933 int oldprio, int running)
1934 {
1935 if (prev_class != p->sched_class) {
1936 if (prev_class->switched_from)
1937 prev_class->switched_from(rq, p, running);
1938 p->sched_class->switched_to(rq, p, running);
1939 } else
1940 p->sched_class->prio_changed(rq, p, oldprio, running);
1941 }
1942
1943 #ifdef CONFIG_SMP
1944
1945 /* Used instead of source_load when we know the type == 0 */
1946 static unsigned long weighted_cpuload(const int cpu)
1947 {
1948 return cpu_rq(cpu)->load.weight;
1949 }
1950
1951 /*
1952 * Is this task likely cache-hot:
1953 */
1954 static int
1955 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1956 {
1957 s64 delta;
1958
1959 /*
1960 * Buddy candidates are cache hot:
1961 */
1962 if (sched_feat(CACHE_HOT_BUDDY) &&
1963 (&p->se == cfs_rq_of(&p->se)->next ||
1964 &p->se == cfs_rq_of(&p->se)->last))
1965 return 1;
1966
1967 if (p->sched_class != &fair_sched_class)
1968 return 0;
1969
1970 if (sysctl_sched_migration_cost == -1)
1971 return 1;
1972 if (sysctl_sched_migration_cost == 0)
1973 return 0;
1974
1975 delta = now - p->se.exec_start;
1976
1977 return delta < (s64)sysctl_sched_migration_cost;
1978 }
1979
1980
1981 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1982 {
1983 int old_cpu = task_cpu(p);
1984 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1985 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1986 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1987 u64 clock_offset;
1988
1989 clock_offset = old_rq->clock - new_rq->clock;
1990
1991 trace_sched_migrate_task(p, new_cpu);
1992
1993 #ifdef CONFIG_SCHEDSTATS
1994 if (p->se.wait_start)
1995 p->se.wait_start -= clock_offset;
1996 if (p->se.sleep_start)
1997 p->se.sleep_start -= clock_offset;
1998 if (p->se.block_start)
1999 p->se.block_start -= clock_offset;
2000 #endif
2001 if (old_cpu != new_cpu) {
2002 p->se.nr_migrations++;
2003 new_rq->nr_migrations_in++;
2004 #ifdef CONFIG_SCHEDSTATS
2005 if (task_hot(p, old_rq->clock, NULL))
2006 schedstat_inc(p, se.nr_forced2_migrations);
2007 #endif
2008 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2009 1, 1, NULL, 0);
2010 }
2011 p->se.vruntime -= old_cfsrq->min_vruntime -
2012 new_cfsrq->min_vruntime;
2013
2014 __set_task_cpu(p, new_cpu);
2015 }
2016
2017 struct migration_req {
2018 struct list_head list;
2019
2020 struct task_struct *task;
2021 int dest_cpu;
2022
2023 struct completion done;
2024 };
2025
2026 /*
2027 * The task's runqueue lock must be held.
2028 * Returns true if you have to wait for migration thread.
2029 */
2030 static int
2031 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2032 {
2033 struct rq *rq = task_rq(p);
2034
2035 /*
2036 * If the task is not on a runqueue (and not running), then
2037 * it is sufficient to simply update the task's cpu field.
2038 */
2039 if (!p->se.on_rq && !task_running(rq, p)) {
2040 set_task_cpu(p, dest_cpu);
2041 return 0;
2042 }
2043
2044 init_completion(&req->done);
2045 req->task = p;
2046 req->dest_cpu = dest_cpu;
2047 list_add(&req->list, &rq->migration_queue);
2048
2049 return 1;
2050 }
2051
2052 /*
2053 * wait_task_context_switch - wait for a thread to complete at least one
2054 * context switch.
2055 *
2056 * @p must not be current.
2057 */
2058 void wait_task_context_switch(struct task_struct *p)
2059 {
2060 unsigned long nvcsw, nivcsw, flags;
2061 int running;
2062 struct rq *rq;
2063
2064 nvcsw = p->nvcsw;
2065 nivcsw = p->nivcsw;
2066 for (;;) {
2067 /*
2068 * The runqueue is assigned before the actual context
2069 * switch. We need to take the runqueue lock.
2070 *
2071 * We could check initially without the lock but it is
2072 * very likely that we need to take the lock in every
2073 * iteration.
2074 */
2075 rq = task_rq_lock(p, &flags);
2076 running = task_running(rq, p);
2077 task_rq_unlock(rq, &flags);
2078
2079 if (likely(!running))
2080 break;
2081 /*
2082 * The switch count is incremented before the actual
2083 * context switch. We thus wait for two switches to be
2084 * sure at least one completed.
2085 */
2086 if ((p->nvcsw - nvcsw) > 1)
2087 break;
2088 if ((p->nivcsw - nivcsw) > 1)
2089 break;
2090
2091 cpu_relax();
2092 }
2093 }
2094
2095 /*
2096 * wait_task_inactive - wait for a thread to unschedule.
2097 *
2098 * If @match_state is nonzero, it's the @p->state value just checked and
2099 * not expected to change. If it changes, i.e. @p might have woken up,
2100 * then return zero. When we succeed in waiting for @p to be off its CPU,
2101 * we return a positive number (its total switch count). If a second call
2102 * a short while later returns the same number, the caller can be sure that
2103 * @p has remained unscheduled the whole time.
2104 *
2105 * The caller must ensure that the task *will* unschedule sometime soon,
2106 * else this function might spin for a *long* time. This function can't
2107 * be called with interrupts off, or it may introduce deadlock with
2108 * smp_call_function() if an IPI is sent by the same process we are
2109 * waiting to become inactive.
2110 */
2111 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2112 {
2113 unsigned long flags;
2114 int running, on_rq;
2115 unsigned long ncsw;
2116 struct rq *rq;
2117
2118 for (;;) {
2119 /*
2120 * We do the initial early heuristics without holding
2121 * any task-queue locks at all. We'll only try to get
2122 * the runqueue lock when things look like they will
2123 * work out!
2124 */
2125 rq = task_rq(p);
2126
2127 /*
2128 * If the task is actively running on another CPU
2129 * still, just relax and busy-wait without holding
2130 * any locks.
2131 *
2132 * NOTE! Since we don't hold any locks, it's not
2133 * even sure that "rq" stays as the right runqueue!
2134 * But we don't care, since "task_running()" will
2135 * return false if the runqueue has changed and p
2136 * is actually now running somewhere else!
2137 */
2138 while (task_running(rq, p)) {
2139 if (match_state && unlikely(p->state != match_state))
2140 return 0;
2141 cpu_relax();
2142 }
2143
2144 /*
2145 * Ok, time to look more closely! We need the rq
2146 * lock now, to be *sure*. If we're wrong, we'll
2147 * just go back and repeat.
2148 */
2149 rq = task_rq_lock(p, &flags);
2150 trace_sched_wait_task(rq, p);
2151 running = task_running(rq, p);
2152 on_rq = p->se.on_rq;
2153 ncsw = 0;
2154 if (!match_state || p->state == match_state)
2155 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2156 task_rq_unlock(rq, &flags);
2157
2158 /*
2159 * If it changed from the expected state, bail out now.
2160 */
2161 if (unlikely(!ncsw))
2162 break;
2163
2164 /*
2165 * Was it really running after all now that we
2166 * checked with the proper locks actually held?
2167 *
2168 * Oops. Go back and try again..
2169 */
2170 if (unlikely(running)) {
2171 cpu_relax();
2172 continue;
2173 }
2174
2175 /*
2176 * It's not enough that it's not actively running,
2177 * it must be off the runqueue _entirely_, and not
2178 * preempted!
2179 *
2180 * So if it was still runnable (but just not actively
2181 * running right now), it's preempted, and we should
2182 * yield - it could be a while.
2183 */
2184 if (unlikely(on_rq)) {
2185 schedule_timeout_uninterruptible(1);
2186 continue;
2187 }
2188
2189 /*
2190 * Ahh, all good. It wasn't running, and it wasn't
2191 * runnable, which means that it will never become
2192 * running in the future either. We're all done!
2193 */
2194 break;
2195 }
2196
2197 return ncsw;
2198 }
2199
2200 /***
2201 * kick_process - kick a running thread to enter/exit the kernel
2202 * @p: the to-be-kicked thread
2203 *
2204 * Cause a process which is running on another CPU to enter
2205 * kernel-mode, without any delay. (to get signals handled.)
2206 *
2207 * NOTE: this function doesnt have to take the runqueue lock,
2208 * because all it wants to ensure is that the remote task enters
2209 * the kernel. If the IPI races and the task has been migrated
2210 * to another CPU then no harm is done and the purpose has been
2211 * achieved as well.
2212 */
2213 void kick_process(struct task_struct *p)
2214 {
2215 int cpu;
2216
2217 preempt_disable();
2218 cpu = task_cpu(p);
2219 if ((cpu != smp_processor_id()) && task_curr(p))
2220 smp_send_reschedule(cpu);
2221 preempt_enable();
2222 }
2223 EXPORT_SYMBOL_GPL(kick_process);
2224
2225 /*
2226 * Return a low guess at the load of a migration-source cpu weighted
2227 * according to the scheduling class and "nice" value.
2228 *
2229 * We want to under-estimate the load of migration sources, to
2230 * balance conservatively.
2231 */
2232 static unsigned long source_load(int cpu, int type)
2233 {
2234 struct rq *rq = cpu_rq(cpu);
2235 unsigned long total = weighted_cpuload(cpu);
2236
2237 if (type == 0 || !sched_feat(LB_BIAS))
2238 return total;
2239
2240 return min(rq->cpu_load[type-1], total);
2241 }
2242
2243 /*
2244 * Return a high guess at the load of a migration-target cpu weighted
2245 * according to the scheduling class and "nice" value.
2246 */
2247 static unsigned long target_load(int cpu, int type)
2248 {
2249 struct rq *rq = cpu_rq(cpu);
2250 unsigned long total = weighted_cpuload(cpu);
2251
2252 if (type == 0 || !sched_feat(LB_BIAS))
2253 return total;
2254
2255 return max(rq->cpu_load[type-1], total);
2256 }
2257
2258 /*
2259 * find_idlest_group finds and returns the least busy CPU group within the
2260 * domain.
2261 */
2262 static struct sched_group *
2263 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2264 {
2265 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2266 unsigned long min_load = ULONG_MAX, this_load = 0;
2267 int load_idx = sd->forkexec_idx;
2268 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2269
2270 do {
2271 unsigned long load, avg_load;
2272 int local_group;
2273 int i;
2274
2275 /* Skip over this group if it has no CPUs allowed */
2276 if (!cpumask_intersects(sched_group_cpus(group),
2277 &p->cpus_allowed))
2278 continue;
2279
2280 local_group = cpumask_test_cpu(this_cpu,
2281 sched_group_cpus(group));
2282
2283 /* Tally up the load of all CPUs in the group */
2284 avg_load = 0;
2285
2286 for_each_cpu(i, sched_group_cpus(group)) {
2287 /* Bias balancing toward cpus of our domain */
2288 if (local_group)
2289 load = source_load(i, load_idx);
2290 else
2291 load = target_load(i, load_idx);
2292
2293 avg_load += load;
2294 }
2295
2296 /* Adjust by relative CPU power of the group */
2297 avg_load = sg_div_cpu_power(group,
2298 avg_load * SCHED_LOAD_SCALE);
2299
2300 if (local_group) {
2301 this_load = avg_load;
2302 this = group;
2303 } else if (avg_load < min_load) {
2304 min_load = avg_load;
2305 idlest = group;
2306 }
2307 } while (group = group->next, group != sd->groups);
2308
2309 if (!idlest || 100*this_load < imbalance*min_load)
2310 return NULL;
2311 return idlest;
2312 }
2313
2314 /*
2315 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2316 */
2317 static int
2318 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2319 {
2320 unsigned long load, min_load = ULONG_MAX;
2321 int idlest = -1;
2322 int i;
2323
2324 /* Traverse only the allowed CPUs */
2325 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2326 load = weighted_cpuload(i);
2327
2328 if (load < min_load || (load == min_load && i == this_cpu)) {
2329 min_load = load;
2330 idlest = i;
2331 }
2332 }
2333
2334 return idlest;
2335 }
2336
2337 /*
2338 * sched_balance_self: balance the current task (running on cpu) in domains
2339 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2340 * SD_BALANCE_EXEC.
2341 *
2342 * Balance, ie. select the least loaded group.
2343 *
2344 * Returns the target CPU number, or the same CPU if no balancing is needed.
2345 *
2346 * preempt must be disabled.
2347 */
2348 static int sched_balance_self(int cpu, int flag)
2349 {
2350 struct task_struct *t = current;
2351 struct sched_domain *tmp, *sd = NULL;
2352
2353 for_each_domain(cpu, tmp) {
2354 /*
2355 * If power savings logic is enabled for a domain, stop there.
2356 */
2357 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2358 break;
2359 if (tmp->flags & flag)
2360 sd = tmp;
2361 }
2362
2363 if (sd)
2364 update_shares(sd);
2365
2366 while (sd) {
2367 struct sched_group *group;
2368 int new_cpu, weight;
2369
2370 if (!(sd->flags & flag)) {
2371 sd = sd->child;
2372 continue;
2373 }
2374
2375 group = find_idlest_group(sd, t, cpu);
2376 if (!group) {
2377 sd = sd->child;
2378 continue;
2379 }
2380
2381 new_cpu = find_idlest_cpu(group, t, cpu);
2382 if (new_cpu == -1 || new_cpu == cpu) {
2383 /* Now try balancing at a lower domain level of cpu */
2384 sd = sd->child;
2385 continue;
2386 }
2387
2388 /* Now try balancing at a lower domain level of new_cpu */
2389 cpu = new_cpu;
2390 weight = cpumask_weight(sched_domain_span(sd));
2391 sd = NULL;
2392 for_each_domain(cpu, tmp) {
2393 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2394 break;
2395 if (tmp->flags & flag)
2396 sd = tmp;
2397 }
2398 /* while loop will break here if sd == NULL */
2399 }
2400
2401 return cpu;
2402 }
2403
2404 #endif /* CONFIG_SMP */
2405
2406 /**
2407 * task_oncpu_function_call - call a function on the cpu on which a task runs
2408 * @p: the task to evaluate
2409 * @func: the function to be called
2410 * @info: the function call argument
2411 *
2412 * Calls the function @func when the task is currently running. This might
2413 * be on the current CPU, which just calls the function directly
2414 */
2415 void task_oncpu_function_call(struct task_struct *p,
2416 void (*func) (void *info), void *info)
2417 {
2418 int cpu;
2419
2420 preempt_disable();
2421 cpu = task_cpu(p);
2422 if (task_curr(p))
2423 smp_call_function_single(cpu, func, info, 1);
2424 preempt_enable();
2425 }
2426
2427 /***
2428 * try_to_wake_up - wake up a thread
2429 * @p: the to-be-woken-up thread
2430 * @state: the mask of task states that can be woken
2431 * @sync: do a synchronous wakeup?
2432 *
2433 * Put it on the run-queue if it's not already there. The "current"
2434 * thread is always on the run-queue (except when the actual
2435 * re-schedule is in progress), and as such you're allowed to do
2436 * the simpler "current->state = TASK_RUNNING" to mark yourself
2437 * runnable without the overhead of this.
2438 *
2439 * returns failure only if the task is already active.
2440 */
2441 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2442 {
2443 int cpu, orig_cpu, this_cpu, success = 0;
2444 unsigned long flags;
2445 long old_state;
2446 struct rq *rq;
2447
2448 if (!sched_feat(SYNC_WAKEUPS))
2449 sync = 0;
2450
2451 #ifdef CONFIG_SMP
2452 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2453 struct sched_domain *sd;
2454
2455 this_cpu = raw_smp_processor_id();
2456 cpu = task_cpu(p);
2457
2458 for_each_domain(this_cpu, sd) {
2459 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2460 update_shares(sd);
2461 break;
2462 }
2463 }
2464 }
2465 #endif
2466
2467 smp_wmb();
2468 rq = task_rq_lock(p, &flags);
2469 update_rq_clock(rq);
2470 old_state = p->state;
2471 if (!(old_state & state))
2472 goto out;
2473
2474 if (p->se.on_rq)
2475 goto out_running;
2476
2477 cpu = task_cpu(p);
2478 orig_cpu = cpu;
2479 this_cpu = smp_processor_id();
2480
2481 #ifdef CONFIG_SMP
2482 if (unlikely(task_running(rq, p)))
2483 goto out_activate;
2484
2485 cpu = p->sched_class->select_task_rq(p, sync);
2486 if (cpu != orig_cpu) {
2487 set_task_cpu(p, cpu);
2488 task_rq_unlock(rq, &flags);
2489 /* might preempt at this point */
2490 rq = task_rq_lock(p, &flags);
2491 old_state = p->state;
2492 if (!(old_state & state))
2493 goto out;
2494 if (p->se.on_rq)
2495 goto out_running;
2496
2497 this_cpu = smp_processor_id();
2498 cpu = task_cpu(p);
2499 }
2500
2501 #ifdef CONFIG_SCHEDSTATS
2502 schedstat_inc(rq, ttwu_count);
2503 if (cpu == this_cpu)
2504 schedstat_inc(rq, ttwu_local);
2505 else {
2506 struct sched_domain *sd;
2507 for_each_domain(this_cpu, sd) {
2508 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2509 schedstat_inc(sd, ttwu_wake_remote);
2510 break;
2511 }
2512 }
2513 }
2514 #endif /* CONFIG_SCHEDSTATS */
2515
2516 out_activate:
2517 #endif /* CONFIG_SMP */
2518 schedstat_inc(p, se.nr_wakeups);
2519 if (sync)
2520 schedstat_inc(p, se.nr_wakeups_sync);
2521 if (orig_cpu != cpu)
2522 schedstat_inc(p, se.nr_wakeups_migrate);
2523 if (cpu == this_cpu)
2524 schedstat_inc(p, se.nr_wakeups_local);
2525 else
2526 schedstat_inc(p, se.nr_wakeups_remote);
2527 activate_task(rq, p, 1);
2528 success = 1;
2529
2530 /*
2531 * Only attribute actual wakeups done by this task.
2532 */
2533 if (!in_interrupt()) {
2534 struct sched_entity *se = &current->se;
2535 u64 sample = se->sum_exec_runtime;
2536
2537 if (se->last_wakeup)
2538 sample -= se->last_wakeup;
2539 else
2540 sample -= se->start_runtime;
2541 update_avg(&se->avg_wakeup, sample);
2542
2543 se->last_wakeup = se->sum_exec_runtime;
2544 }
2545
2546 out_running:
2547 trace_sched_wakeup(rq, p, success);
2548 check_preempt_curr(rq, p, sync);
2549
2550 p->state = TASK_RUNNING;
2551 #ifdef CONFIG_SMP
2552 if (p->sched_class->task_wake_up)
2553 p->sched_class->task_wake_up(rq, p);
2554 #endif
2555 out:
2556 task_rq_unlock(rq, &flags);
2557
2558 return success;
2559 }
2560
2561 /**
2562 * wake_up_process - Wake up a specific process
2563 * @p: The process to be woken up.
2564 *
2565 * Attempt to wake up the nominated process and move it to the set of runnable
2566 * processes. Returns 1 if the process was woken up, 0 if it was already
2567 * running.
2568 *
2569 * It may be assumed that this function implies a write memory barrier before
2570 * changing the task state if and only if any tasks are woken up.
2571 */
2572 int wake_up_process(struct task_struct *p)
2573 {
2574 return try_to_wake_up(p, TASK_ALL, 0);
2575 }
2576 EXPORT_SYMBOL(wake_up_process);
2577
2578 int wake_up_state(struct task_struct *p, unsigned int state)
2579 {
2580 return try_to_wake_up(p, state, 0);
2581 }
2582
2583 /*
2584 * Perform scheduler related setup for a newly forked process p.
2585 * p is forked by current.
2586 *
2587 * __sched_fork() is basic setup used by init_idle() too:
2588 */
2589 static void __sched_fork(struct task_struct *p)
2590 {
2591 p->se.exec_start = 0;
2592 p->se.sum_exec_runtime = 0;
2593 p->se.prev_sum_exec_runtime = 0;
2594 p->se.nr_migrations = 0;
2595 p->se.last_wakeup = 0;
2596 p->se.avg_overlap = 0;
2597 p->se.start_runtime = 0;
2598 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2599
2600 #ifdef CONFIG_SCHEDSTATS
2601 p->se.wait_start = 0;
2602 p->se.wait_max = 0;
2603 p->se.wait_count = 0;
2604 p->se.wait_sum = 0;
2605
2606 p->se.sleep_start = 0;
2607 p->se.sleep_max = 0;
2608 p->se.sum_sleep_runtime = 0;
2609
2610 p->se.block_start = 0;
2611 p->se.block_max = 0;
2612 p->se.exec_max = 0;
2613 p->se.slice_max = 0;
2614
2615 p->se.nr_migrations_cold = 0;
2616 p->se.nr_failed_migrations_affine = 0;
2617 p->se.nr_failed_migrations_running = 0;
2618 p->se.nr_failed_migrations_hot = 0;
2619 p->se.nr_forced_migrations = 0;
2620 p->se.nr_forced2_migrations = 0;
2621
2622 p->se.nr_wakeups = 0;
2623 p->se.nr_wakeups_sync = 0;
2624 p->se.nr_wakeups_migrate = 0;
2625 p->se.nr_wakeups_local = 0;
2626 p->se.nr_wakeups_remote = 0;
2627 p->se.nr_wakeups_affine = 0;
2628 p->se.nr_wakeups_affine_attempts = 0;
2629 p->se.nr_wakeups_passive = 0;
2630 p->se.nr_wakeups_idle = 0;
2631
2632 #endif
2633
2634 INIT_LIST_HEAD(&p->rt.run_list);
2635 p->se.on_rq = 0;
2636 INIT_LIST_HEAD(&p->se.group_node);
2637
2638 #ifdef CONFIG_PREEMPT_NOTIFIERS
2639 INIT_HLIST_HEAD(&p->preempt_notifiers);
2640 #endif
2641
2642 /*
2643 * We mark the process as running here, but have not actually
2644 * inserted it onto the runqueue yet. This guarantees that
2645 * nobody will actually run it, and a signal or other external
2646 * event cannot wake it up and insert it on the runqueue either.
2647 */
2648 p->state = TASK_RUNNING;
2649 }
2650
2651 /*
2652 * fork()/clone()-time setup:
2653 */
2654 void sched_fork(struct task_struct *p, int clone_flags)
2655 {
2656 int cpu = get_cpu();
2657
2658 __sched_fork(p);
2659
2660 #ifdef CONFIG_SMP
2661 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2662 #endif
2663 set_task_cpu(p, cpu);
2664
2665 /*
2666 * Make sure we do not leak PI boosting priority to the child.
2667 */
2668 p->prio = current->normal_prio;
2669
2670 /*
2671 * Revert to default priority/policy on fork if requested.
2672 */
2673 if (unlikely(p->sched_reset_on_fork)) {
2674 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2675 p->policy = SCHED_NORMAL;
2676
2677 if (p->normal_prio < DEFAULT_PRIO)
2678 p->prio = DEFAULT_PRIO;
2679
2680 if (PRIO_TO_NICE(p->static_prio) < 0) {
2681 p->static_prio = NICE_TO_PRIO(0);
2682 set_load_weight(p);
2683 }
2684
2685 /*
2686 * We don't need the reset flag anymore after the fork. It has
2687 * fulfilled its duty:
2688 */
2689 p->sched_reset_on_fork = 0;
2690 }
2691
2692 if (!rt_prio(p->prio))
2693 p->sched_class = &fair_sched_class;
2694
2695 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2696 if (likely(sched_info_on()))
2697 memset(&p->sched_info, 0, sizeof(p->sched_info));
2698 #endif
2699 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2700 p->oncpu = 0;
2701 #endif
2702 #ifdef CONFIG_PREEMPT
2703 /* Want to start with kernel preemption disabled. */
2704 task_thread_info(p)->preempt_count = 1;
2705 #endif
2706 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2707
2708 put_cpu();
2709 }
2710
2711 /*
2712 * wake_up_new_task - wake up a newly created task for the first time.
2713 *
2714 * This function will do some initial scheduler statistics housekeeping
2715 * that must be done for every newly created context, then puts the task
2716 * on the runqueue and wakes it.
2717 */
2718 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2719 {
2720 unsigned long flags;
2721 struct rq *rq;
2722
2723 rq = task_rq_lock(p, &flags);
2724 BUG_ON(p->state != TASK_RUNNING);
2725 update_rq_clock(rq);
2726
2727 p->prio = effective_prio(p);
2728
2729 if (!p->sched_class->task_new || !current->se.on_rq) {
2730 activate_task(rq, p, 0);
2731 } else {
2732 /*
2733 * Let the scheduling class do new task startup
2734 * management (if any):
2735 */
2736 p->sched_class->task_new(rq, p);
2737 inc_nr_running(rq);
2738 }
2739 trace_sched_wakeup_new(rq, p, 1);
2740 check_preempt_curr(rq, p, 0);
2741 #ifdef CONFIG_SMP
2742 if (p->sched_class->task_wake_up)
2743 p->sched_class->task_wake_up(rq, p);
2744 #endif
2745 task_rq_unlock(rq, &flags);
2746 }
2747
2748 #ifdef CONFIG_PREEMPT_NOTIFIERS
2749
2750 /**
2751 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2752 * @notifier: notifier struct to register
2753 */
2754 void preempt_notifier_register(struct preempt_notifier *notifier)
2755 {
2756 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2757 }
2758 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2759
2760 /**
2761 * preempt_notifier_unregister - no longer interested in preemption notifications
2762 * @notifier: notifier struct to unregister
2763 *
2764 * This is safe to call from within a preemption notifier.
2765 */
2766 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2767 {
2768 hlist_del(&notifier->link);
2769 }
2770 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2771
2772 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2773 {
2774 struct preempt_notifier *notifier;
2775 struct hlist_node *node;
2776
2777 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2778 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2779 }
2780
2781 static void
2782 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2783 struct task_struct *next)
2784 {
2785 struct preempt_notifier *notifier;
2786 struct hlist_node *node;
2787
2788 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2789 notifier->ops->sched_out(notifier, next);
2790 }
2791
2792 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2793
2794 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2795 {
2796 }
2797
2798 static void
2799 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2800 struct task_struct *next)
2801 {
2802 }
2803
2804 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2805
2806 /**
2807 * prepare_task_switch - prepare to switch tasks
2808 * @rq: the runqueue preparing to switch
2809 * @prev: the current task that is being switched out
2810 * @next: the task we are going to switch to.
2811 *
2812 * This is called with the rq lock held and interrupts off. It must
2813 * be paired with a subsequent finish_task_switch after the context
2814 * switch.
2815 *
2816 * prepare_task_switch sets up locking and calls architecture specific
2817 * hooks.
2818 */
2819 static inline void
2820 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2821 struct task_struct *next)
2822 {
2823 fire_sched_out_preempt_notifiers(prev, next);
2824 prepare_lock_switch(rq, next);
2825 prepare_arch_switch(next);
2826 }
2827
2828 /**
2829 * finish_task_switch - clean up after a task-switch
2830 * @rq: runqueue associated with task-switch
2831 * @prev: the thread we just switched away from.
2832 *
2833 * finish_task_switch must be called after the context switch, paired
2834 * with a prepare_task_switch call before the context switch.
2835 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2836 * and do any other architecture-specific cleanup actions.
2837 *
2838 * Note that we may have delayed dropping an mm in context_switch(). If
2839 * so, we finish that here outside of the runqueue lock. (Doing it
2840 * with the lock held can cause deadlocks; see schedule() for
2841 * details.)
2842 */
2843 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2844 __releases(rq->lock)
2845 {
2846 struct mm_struct *mm = rq->prev_mm;
2847 long prev_state;
2848
2849 rq->prev_mm = NULL;
2850
2851 /*
2852 * A task struct has one reference for the use as "current".
2853 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2854 * schedule one last time. The schedule call will never return, and
2855 * the scheduled task must drop that reference.
2856 * The test for TASK_DEAD must occur while the runqueue locks are
2857 * still held, otherwise prev could be scheduled on another cpu, die
2858 * there before we look at prev->state, and then the reference would
2859 * be dropped twice.
2860 * Manfred Spraul <manfred@colorfullife.com>
2861 */
2862 prev_state = prev->state;
2863 finish_arch_switch(prev);
2864 perf_counter_task_sched_in(current, cpu_of(rq));
2865 finish_lock_switch(rq, prev);
2866
2867 fire_sched_in_preempt_notifiers(current);
2868 if (mm)
2869 mmdrop(mm);
2870 if (unlikely(prev_state == TASK_DEAD)) {
2871 /*
2872 * Remove function-return probe instances associated with this
2873 * task and put them back on the free list.
2874 */
2875 kprobe_flush_task(prev);
2876 put_task_struct(prev);
2877 }
2878 }
2879
2880 #ifdef CONFIG_SMP
2881
2882 /* assumes rq->lock is held */
2883 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2884 {
2885 if (prev->sched_class->pre_schedule)
2886 prev->sched_class->pre_schedule(rq, prev);
2887 }
2888
2889 /* rq->lock is NOT held, but preemption is disabled */
2890 static inline void post_schedule(struct rq *rq)
2891 {
2892 if (rq->post_schedule) {
2893 unsigned long flags;
2894
2895 spin_lock_irqsave(&rq->lock, flags);
2896 if (rq->curr->sched_class->post_schedule)
2897 rq->curr->sched_class->post_schedule(rq);
2898 spin_unlock_irqrestore(&rq->lock, flags);
2899
2900 rq->post_schedule = 0;
2901 }
2902 }
2903
2904 #else
2905
2906 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2907 {
2908 }
2909
2910 static inline void post_schedule(struct rq *rq)
2911 {
2912 }
2913
2914 #endif
2915
2916 /**
2917 * schedule_tail - first thing a freshly forked thread must call.
2918 * @prev: the thread we just switched away from.
2919 */
2920 asmlinkage void schedule_tail(struct task_struct *prev)
2921 __releases(rq->lock)
2922 {
2923 struct rq *rq = this_rq();
2924
2925 finish_task_switch(rq, prev);
2926
2927 /*
2928 * FIXME: do we need to worry about rq being invalidated by the
2929 * task_switch?
2930 */
2931 post_schedule(rq);
2932
2933 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2934 /* In this case, finish_task_switch does not reenable preemption */
2935 preempt_enable();
2936 #endif
2937 if (current->set_child_tid)
2938 put_user(task_pid_vnr(current), current->set_child_tid);
2939 }
2940
2941 /*
2942 * context_switch - switch to the new MM and the new
2943 * thread's register state.
2944 */
2945 static inline void
2946 context_switch(struct rq *rq, struct task_struct *prev,
2947 struct task_struct *next)
2948 {
2949 struct mm_struct *mm, *oldmm;
2950
2951 prepare_task_switch(rq, prev, next);
2952 trace_sched_switch(rq, prev, next);
2953 mm = next->mm;
2954 oldmm = prev->active_mm;
2955 /*
2956 * For paravirt, this is coupled with an exit in switch_to to
2957 * combine the page table reload and the switch backend into
2958 * one hypercall.
2959 */
2960 arch_start_context_switch(prev);
2961
2962 if (unlikely(!mm)) {
2963 next->active_mm = oldmm;
2964 atomic_inc(&oldmm->mm_count);
2965 enter_lazy_tlb(oldmm, next);
2966 } else
2967 switch_mm(oldmm, mm, next);
2968
2969 if (unlikely(!prev->mm)) {
2970 prev->active_mm = NULL;
2971 rq->prev_mm = oldmm;
2972 }
2973 /*
2974 * Since the runqueue lock will be released by the next
2975 * task (which is an invalid locking op but in the case
2976 * of the scheduler it's an obvious special-case), so we
2977 * do an early lockdep release here:
2978 */
2979 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2980 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2981 #endif
2982
2983 /* Here we just switch the register state and the stack. */
2984 switch_to(prev, next, prev);
2985
2986 barrier();
2987 /*
2988 * this_rq must be evaluated again because prev may have moved
2989 * CPUs since it called schedule(), thus the 'rq' on its stack
2990 * frame will be invalid.
2991 */
2992 finish_task_switch(this_rq(), prev);
2993 }
2994
2995 /*
2996 * nr_running, nr_uninterruptible and nr_context_switches:
2997 *
2998 * externally visible scheduler statistics: current number of runnable
2999 * threads, current number of uninterruptible-sleeping threads, total
3000 * number of context switches performed since bootup.
3001 */
3002 unsigned long nr_running(void)
3003 {
3004 unsigned long i, sum = 0;
3005
3006 for_each_online_cpu(i)
3007 sum += cpu_rq(i)->nr_running;
3008
3009 return sum;
3010 }
3011
3012 unsigned long nr_uninterruptible(void)
3013 {
3014 unsigned long i, sum = 0;
3015
3016 for_each_possible_cpu(i)
3017 sum += cpu_rq(i)->nr_uninterruptible;
3018
3019 /*
3020 * Since we read the counters lockless, it might be slightly
3021 * inaccurate. Do not allow it to go below zero though:
3022 */
3023 if (unlikely((long)sum < 0))
3024 sum = 0;
3025
3026 return sum;
3027 }
3028
3029 unsigned long long nr_context_switches(void)
3030 {
3031 int i;
3032 unsigned long long sum = 0;
3033
3034 for_each_possible_cpu(i)
3035 sum += cpu_rq(i)->nr_switches;
3036
3037 return sum;
3038 }
3039
3040 unsigned long nr_iowait(void)
3041 {
3042 unsigned long i, sum = 0;
3043
3044 for_each_possible_cpu(i)
3045 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3046
3047 return sum;
3048 }
3049
3050 /* Variables and functions for calc_load */
3051 static atomic_long_t calc_load_tasks;
3052 static unsigned long calc_load_update;
3053 unsigned long avenrun[3];
3054 EXPORT_SYMBOL(avenrun);
3055
3056 /**
3057 * get_avenrun - get the load average array
3058 * @loads: pointer to dest load array
3059 * @offset: offset to add
3060 * @shift: shift count to shift the result left
3061 *
3062 * These values are estimates at best, so no need for locking.
3063 */
3064 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3065 {
3066 loads[0] = (avenrun[0] + offset) << shift;
3067 loads[1] = (avenrun[1] + offset) << shift;
3068 loads[2] = (avenrun[2] + offset) << shift;
3069 }
3070
3071 static unsigned long
3072 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3073 {
3074 load *= exp;
3075 load += active * (FIXED_1 - exp);
3076 return load >> FSHIFT;
3077 }
3078
3079 /*
3080 * calc_load - update the avenrun load estimates 10 ticks after the
3081 * CPUs have updated calc_load_tasks.
3082 */
3083 void calc_global_load(void)
3084 {
3085 unsigned long upd = calc_load_update + 10;
3086 long active;
3087
3088 if (time_before(jiffies, upd))
3089 return;
3090
3091 active = atomic_long_read(&calc_load_tasks);
3092 active = active > 0 ? active * FIXED_1 : 0;
3093
3094 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3095 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3096 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3097
3098 calc_load_update += LOAD_FREQ;
3099 }
3100
3101 /*
3102 * Either called from update_cpu_load() or from a cpu going idle
3103 */
3104 static void calc_load_account_active(struct rq *this_rq)
3105 {
3106 long nr_active, delta;
3107
3108 nr_active = this_rq->nr_running;
3109 nr_active += (long) this_rq->nr_uninterruptible;
3110
3111 if (nr_active != this_rq->calc_load_active) {
3112 delta = nr_active - this_rq->calc_load_active;
3113 this_rq->calc_load_active = nr_active;
3114 atomic_long_add(delta, &calc_load_tasks);
3115 }
3116 }
3117
3118 /*
3119 * Externally visible per-cpu scheduler statistics:
3120 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3121 */
3122 u64 cpu_nr_migrations(int cpu)
3123 {
3124 return cpu_rq(cpu)->nr_migrations_in;
3125 }
3126
3127 /*
3128 * Update rq->cpu_load[] statistics. This function is usually called every
3129 * scheduler tick (TICK_NSEC).
3130 */
3131 static void update_cpu_load(struct rq *this_rq)
3132 {
3133 unsigned long this_load = this_rq->load.weight;
3134 int i, scale;
3135
3136 this_rq->nr_load_updates++;
3137
3138 /* Update our load: */
3139 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3140 unsigned long old_load, new_load;
3141
3142 /* scale is effectively 1 << i now, and >> i divides by scale */
3143
3144 old_load = this_rq->cpu_load[i];
3145 new_load = this_load;
3146 /*
3147 * Round up the averaging division if load is increasing. This
3148 * prevents us from getting stuck on 9 if the load is 10, for
3149 * example.
3150 */
3151 if (new_load > old_load)
3152 new_load += scale-1;
3153 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3154 }
3155
3156 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3157 this_rq->calc_load_update += LOAD_FREQ;
3158 calc_load_account_active(this_rq);
3159 }
3160 }
3161
3162 #ifdef CONFIG_SMP
3163
3164 /*
3165 * double_rq_lock - safely lock two runqueues
3166 *
3167 * Note this does not disable interrupts like task_rq_lock,
3168 * you need to do so manually before calling.
3169 */
3170 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3171 __acquires(rq1->lock)
3172 __acquires(rq2->lock)
3173 {
3174 BUG_ON(!irqs_disabled());
3175 if (rq1 == rq2) {
3176 spin_lock(&rq1->lock);
3177 __acquire(rq2->lock); /* Fake it out ;) */
3178 } else {
3179 if (rq1 < rq2) {
3180 spin_lock(&rq1->lock);
3181 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3182 } else {
3183 spin_lock(&rq2->lock);
3184 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3185 }
3186 }
3187 update_rq_clock(rq1);
3188 update_rq_clock(rq2);
3189 }
3190
3191 /*
3192 * double_rq_unlock - safely unlock two runqueues
3193 *
3194 * Note this does not restore interrupts like task_rq_unlock,
3195 * you need to do so manually after calling.
3196 */
3197 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3198 __releases(rq1->lock)
3199 __releases(rq2->lock)
3200 {
3201 spin_unlock(&rq1->lock);
3202 if (rq1 != rq2)
3203 spin_unlock(&rq2->lock);
3204 else
3205 __release(rq2->lock);
3206 }
3207
3208 /*
3209 * If dest_cpu is allowed for this process, migrate the task to it.
3210 * This is accomplished by forcing the cpu_allowed mask to only
3211 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3212 * the cpu_allowed mask is restored.
3213 */
3214 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3215 {
3216 struct migration_req req;
3217 unsigned long flags;
3218 struct rq *rq;
3219
3220 rq = task_rq_lock(p, &flags);
3221 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3222 || unlikely(!cpu_active(dest_cpu)))
3223 goto out;
3224
3225 /* force the process onto the specified CPU */
3226 if (migrate_task(p, dest_cpu, &req)) {
3227 /* Need to wait for migration thread (might exit: take ref). */
3228 struct task_struct *mt = rq->migration_thread;
3229
3230 get_task_struct(mt);
3231 task_rq_unlock(rq, &flags);
3232 wake_up_process(mt);
3233 put_task_struct(mt);
3234 wait_for_completion(&req.done);
3235
3236 return;
3237 }
3238 out:
3239 task_rq_unlock(rq, &flags);
3240 }
3241
3242 /*
3243 * sched_exec - execve() is a valuable balancing opportunity, because at
3244 * this point the task has the smallest effective memory and cache footprint.
3245 */
3246 void sched_exec(void)
3247 {
3248 int new_cpu, this_cpu = get_cpu();
3249 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3250 put_cpu();
3251 if (new_cpu != this_cpu)
3252 sched_migrate_task(current, new_cpu);
3253 }
3254
3255 /*
3256 * pull_task - move a task from a remote runqueue to the local runqueue.
3257 * Both runqueues must be locked.
3258 */
3259 static void pull_task(struct rq *src_rq, struct task_struct *p,
3260 struct rq *this_rq, int this_cpu)
3261 {
3262 deactivate_task(src_rq, p, 0);
3263 set_task_cpu(p, this_cpu);
3264 activate_task(this_rq, p, 0);
3265 /*
3266 * Note that idle threads have a prio of MAX_PRIO, for this test
3267 * to be always true for them.
3268 */
3269 check_preempt_curr(this_rq, p, 0);
3270 }
3271
3272 /*
3273 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3274 */
3275 static
3276 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3277 struct sched_domain *sd, enum cpu_idle_type idle,
3278 int *all_pinned)
3279 {
3280 int tsk_cache_hot = 0;
3281 /*
3282 * We do not migrate tasks that are:
3283 * 1) running (obviously), or
3284 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3285 * 3) are cache-hot on their current CPU.
3286 */
3287 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3288 schedstat_inc(p, se.nr_failed_migrations_affine);
3289 return 0;
3290 }
3291 *all_pinned = 0;
3292
3293 if (task_running(rq, p)) {
3294 schedstat_inc(p, se.nr_failed_migrations_running);
3295 return 0;
3296 }
3297
3298 /*
3299 * Aggressive migration if:
3300 * 1) task is cache cold, or
3301 * 2) too many balance attempts have failed.
3302 */
3303
3304 tsk_cache_hot = task_hot(p, rq->clock, sd);
3305 if (!tsk_cache_hot ||
3306 sd->nr_balance_failed > sd->cache_nice_tries) {
3307 #ifdef CONFIG_SCHEDSTATS
3308 if (tsk_cache_hot) {
3309 schedstat_inc(sd, lb_hot_gained[idle]);
3310 schedstat_inc(p, se.nr_forced_migrations);
3311 }
3312 #endif
3313 return 1;
3314 }
3315
3316 if (tsk_cache_hot) {
3317 schedstat_inc(p, se.nr_failed_migrations_hot);
3318 return 0;
3319 }
3320 return 1;
3321 }
3322
3323 static unsigned long
3324 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3325 unsigned long max_load_move, struct sched_domain *sd,
3326 enum cpu_idle_type idle, int *all_pinned,
3327 int *this_best_prio, struct rq_iterator *iterator)
3328 {
3329 int loops = 0, pulled = 0, pinned = 0;
3330 struct task_struct *p;
3331 long rem_load_move = max_load_move;
3332
3333 if (max_load_move == 0)
3334 goto out;
3335
3336 pinned = 1;
3337
3338 /*
3339 * Start the load-balancing iterator:
3340 */
3341 p = iterator->start(iterator->arg);
3342 next:
3343 if (!p || loops++ > sysctl_sched_nr_migrate)
3344 goto out;
3345
3346 if ((p->se.load.weight >> 1) > rem_load_move ||
3347 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3348 p = iterator->next(iterator->arg);
3349 goto next;
3350 }
3351
3352 pull_task(busiest, p, this_rq, this_cpu);
3353 pulled++;
3354 rem_load_move -= p->se.load.weight;
3355
3356 #ifdef CONFIG_PREEMPT
3357 /*
3358 * NEWIDLE balancing is a source of latency, so preemptible kernels
3359 * will stop after the first task is pulled to minimize the critical
3360 * section.
3361 */
3362 if (idle == CPU_NEWLY_IDLE)
3363 goto out;
3364 #endif
3365
3366 /*
3367 * We only want to steal up to the prescribed amount of weighted load.
3368 */
3369 if (rem_load_move > 0) {
3370 if (p->prio < *this_best_prio)
3371 *this_best_prio = p->prio;
3372 p = iterator->next(iterator->arg);
3373 goto next;
3374 }
3375 out:
3376 /*
3377 * Right now, this is one of only two places pull_task() is called,
3378 * so we can safely collect pull_task() stats here rather than
3379 * inside pull_task().
3380 */
3381 schedstat_add(sd, lb_gained[idle], pulled);
3382
3383 if (all_pinned)
3384 *all_pinned = pinned;
3385
3386 return max_load_move - rem_load_move;
3387 }
3388
3389 /*
3390 * move_tasks tries to move up to max_load_move weighted load from busiest to
3391 * this_rq, as part of a balancing operation within domain "sd".
3392 * Returns 1 if successful and 0 otherwise.
3393 *
3394 * Called with both runqueues locked.
3395 */
3396 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3397 unsigned long max_load_move,
3398 struct sched_domain *sd, enum cpu_idle_type idle,
3399 int *all_pinned)
3400 {
3401 const struct sched_class *class = sched_class_highest;
3402 unsigned long total_load_moved = 0;
3403 int this_best_prio = this_rq->curr->prio;
3404
3405 do {
3406 total_load_moved +=
3407 class->load_balance(this_rq, this_cpu, busiest,
3408 max_load_move - total_load_moved,
3409 sd, idle, all_pinned, &this_best_prio);
3410 class = class->next;
3411
3412 #ifdef CONFIG_PREEMPT
3413 /*
3414 * NEWIDLE balancing is a source of latency, so preemptible
3415 * kernels will stop after the first task is pulled to minimize
3416 * the critical section.
3417 */
3418 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3419 break;
3420 #endif
3421 } while (class && max_load_move > total_load_moved);
3422
3423 return total_load_moved > 0;
3424 }
3425
3426 static int
3427 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3428 struct sched_domain *sd, enum cpu_idle_type idle,
3429 struct rq_iterator *iterator)
3430 {
3431 struct task_struct *p = iterator->start(iterator->arg);
3432 int pinned = 0;
3433
3434 while (p) {
3435 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3436 pull_task(busiest, p, this_rq, this_cpu);
3437 /*
3438 * Right now, this is only the second place pull_task()
3439 * is called, so we can safely collect pull_task()
3440 * stats here rather than inside pull_task().
3441 */
3442 schedstat_inc(sd, lb_gained[idle]);
3443
3444 return 1;
3445 }
3446 p = iterator->next(iterator->arg);
3447 }
3448
3449 return 0;
3450 }
3451
3452 /*
3453 * move_one_task tries to move exactly one task from busiest to this_rq, as
3454 * part of active balancing operations within "domain".
3455 * Returns 1 if successful and 0 otherwise.
3456 *
3457 * Called with both runqueues locked.
3458 */
3459 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3460 struct sched_domain *sd, enum cpu_idle_type idle)
3461 {
3462 const struct sched_class *class;
3463
3464 for (class = sched_class_highest; class; class = class->next)
3465 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3466 return 1;
3467
3468 return 0;
3469 }
3470 /********** Helpers for find_busiest_group ************************/
3471 /*
3472 * sd_lb_stats - Structure to store the statistics of a sched_domain
3473 * during load balancing.
3474 */
3475 struct sd_lb_stats {
3476 struct sched_group *busiest; /* Busiest group in this sd */
3477 struct sched_group *this; /* Local group in this sd */
3478 unsigned long total_load; /* Total load of all groups in sd */
3479 unsigned long total_pwr; /* Total power of all groups in sd */
3480 unsigned long avg_load; /* Average load across all groups in sd */
3481
3482 /** Statistics of this group */
3483 unsigned long this_load;
3484 unsigned long this_load_per_task;
3485 unsigned long this_nr_running;
3486
3487 /* Statistics of the busiest group */
3488 unsigned long max_load;
3489 unsigned long busiest_load_per_task;
3490 unsigned long busiest_nr_running;
3491
3492 int group_imb; /* Is there imbalance in this sd */
3493 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3494 int power_savings_balance; /* Is powersave balance needed for this sd */
3495 struct sched_group *group_min; /* Least loaded group in sd */
3496 struct sched_group *group_leader; /* Group which relieves group_min */
3497 unsigned long min_load_per_task; /* load_per_task in group_min */
3498 unsigned long leader_nr_running; /* Nr running of group_leader */
3499 unsigned long min_nr_running; /* Nr running of group_min */
3500 #endif
3501 };
3502
3503 /*
3504 * sg_lb_stats - stats of a sched_group required for load_balancing
3505 */
3506 struct sg_lb_stats {
3507 unsigned long avg_load; /*Avg load across the CPUs of the group */
3508 unsigned long group_load; /* Total load over the CPUs of the group */
3509 unsigned long sum_nr_running; /* Nr tasks running in the group */
3510 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3511 unsigned long group_capacity;
3512 int group_imb; /* Is there an imbalance in the group ? */
3513 };
3514
3515 /**
3516 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3517 * @group: The group whose first cpu is to be returned.
3518 */
3519 static inline unsigned int group_first_cpu(struct sched_group *group)
3520 {
3521 return cpumask_first(sched_group_cpus(group));
3522 }
3523
3524 /**
3525 * get_sd_load_idx - Obtain the load index for a given sched domain.
3526 * @sd: The sched_domain whose load_idx is to be obtained.
3527 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3528 */
3529 static inline int get_sd_load_idx(struct sched_domain *sd,
3530 enum cpu_idle_type idle)
3531 {
3532 int load_idx;
3533
3534 switch (idle) {
3535 case CPU_NOT_IDLE:
3536 load_idx = sd->busy_idx;
3537 break;
3538
3539 case CPU_NEWLY_IDLE:
3540 load_idx = sd->newidle_idx;
3541 break;
3542 default:
3543 load_idx = sd->idle_idx;
3544 break;
3545 }
3546
3547 return load_idx;
3548 }
3549
3550
3551 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3552 /**
3553 * init_sd_power_savings_stats - Initialize power savings statistics for
3554 * the given sched_domain, during load balancing.
3555 *
3556 * @sd: Sched domain whose power-savings statistics are to be initialized.
3557 * @sds: Variable containing the statistics for sd.
3558 * @idle: Idle status of the CPU at which we're performing load-balancing.
3559 */
3560 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3561 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3562 {
3563 /*
3564 * Busy processors will not participate in power savings
3565 * balance.
3566 */
3567 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3568 sds->power_savings_balance = 0;
3569 else {
3570 sds->power_savings_balance = 1;
3571 sds->min_nr_running = ULONG_MAX;
3572 sds->leader_nr_running = 0;
3573 }
3574 }
3575
3576 /**
3577 * update_sd_power_savings_stats - Update the power saving stats for a
3578 * sched_domain while performing load balancing.
3579 *
3580 * @group: sched_group belonging to the sched_domain under consideration.
3581 * @sds: Variable containing the statistics of the sched_domain
3582 * @local_group: Does group contain the CPU for which we're performing
3583 * load balancing ?
3584 * @sgs: Variable containing the statistics of the group.
3585 */
3586 static inline void update_sd_power_savings_stats(struct sched_group *group,
3587 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3588 {
3589
3590 if (!sds->power_savings_balance)
3591 return;
3592
3593 /*
3594 * If the local group is idle or completely loaded
3595 * no need to do power savings balance at this domain
3596 */
3597 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3598 !sds->this_nr_running))
3599 sds->power_savings_balance = 0;
3600
3601 /*
3602 * If a group is already running at full capacity or idle,
3603 * don't include that group in power savings calculations
3604 */
3605 if (!sds->power_savings_balance ||
3606 sgs->sum_nr_running >= sgs->group_capacity ||
3607 !sgs->sum_nr_running)
3608 return;
3609
3610 /*
3611 * Calculate the group which has the least non-idle load.
3612 * This is the group from where we need to pick up the load
3613 * for saving power
3614 */
3615 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3616 (sgs->sum_nr_running == sds->min_nr_running &&
3617 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3618 sds->group_min = group;
3619 sds->min_nr_running = sgs->sum_nr_running;
3620 sds->min_load_per_task = sgs->sum_weighted_load /
3621 sgs->sum_nr_running;
3622 }
3623
3624 /*
3625 * Calculate the group which is almost near its
3626 * capacity but still has some space to pick up some load
3627 * from other group and save more power
3628 */
3629 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3630 return;
3631
3632 if (sgs->sum_nr_running > sds->leader_nr_running ||
3633 (sgs->sum_nr_running == sds->leader_nr_running &&
3634 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3635 sds->group_leader = group;
3636 sds->leader_nr_running = sgs->sum_nr_running;
3637 }
3638 }
3639
3640 /**
3641 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3642 * @sds: Variable containing the statistics of the sched_domain
3643 * under consideration.
3644 * @this_cpu: Cpu at which we're currently performing load-balancing.
3645 * @imbalance: Variable to store the imbalance.
3646 *
3647 * Description:
3648 * Check if we have potential to perform some power-savings balance.
3649 * If yes, set the busiest group to be the least loaded group in the
3650 * sched_domain, so that it's CPUs can be put to idle.
3651 *
3652 * Returns 1 if there is potential to perform power-savings balance.
3653 * Else returns 0.
3654 */
3655 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3656 int this_cpu, unsigned long *imbalance)
3657 {
3658 if (!sds->power_savings_balance)
3659 return 0;
3660
3661 if (sds->this != sds->group_leader ||
3662 sds->group_leader == sds->group_min)
3663 return 0;
3664
3665 *imbalance = sds->min_load_per_task;
3666 sds->busiest = sds->group_min;
3667
3668 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3669 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3670 group_first_cpu(sds->group_leader);
3671 }
3672
3673 return 1;
3674
3675 }
3676 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3677 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3678 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3679 {
3680 return;
3681 }
3682
3683 static inline void update_sd_power_savings_stats(struct sched_group *group,
3684 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3685 {
3686 return;
3687 }
3688
3689 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3690 int this_cpu, unsigned long *imbalance)
3691 {
3692 return 0;
3693 }
3694 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3695
3696
3697 /**
3698 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3699 * @group: sched_group whose statistics are to be updated.
3700 * @this_cpu: Cpu for which load balance is currently performed.
3701 * @idle: Idle status of this_cpu
3702 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3703 * @sd_idle: Idle status of the sched_domain containing group.
3704 * @local_group: Does group contain this_cpu.
3705 * @cpus: Set of cpus considered for load balancing.
3706 * @balance: Should we balance.
3707 * @sgs: variable to hold the statistics for this group.
3708 */
3709 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3710 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3711 int local_group, const struct cpumask *cpus,
3712 int *balance, struct sg_lb_stats *sgs)
3713 {
3714 unsigned long load, max_cpu_load, min_cpu_load;
3715 int i;
3716 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3717 unsigned long sum_avg_load_per_task;
3718 unsigned long avg_load_per_task;
3719
3720 if (local_group)
3721 balance_cpu = group_first_cpu(group);
3722
3723 /* Tally up the load of all CPUs in the group */
3724 sum_avg_load_per_task = avg_load_per_task = 0;
3725 max_cpu_load = 0;
3726 min_cpu_load = ~0UL;
3727
3728 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3729 struct rq *rq = cpu_rq(i);
3730
3731 if (*sd_idle && rq->nr_running)
3732 *sd_idle = 0;
3733
3734 /* Bias balancing toward cpus of our domain */
3735 if (local_group) {
3736 if (idle_cpu(i) && !first_idle_cpu) {
3737 first_idle_cpu = 1;
3738 balance_cpu = i;
3739 }
3740
3741 load = target_load(i, load_idx);
3742 } else {
3743 load = source_load(i, load_idx);
3744 if (load > max_cpu_load)
3745 max_cpu_load = load;
3746 if (min_cpu_load > load)
3747 min_cpu_load = load;
3748 }
3749
3750 sgs->group_load += load;
3751 sgs->sum_nr_running += rq->nr_running;
3752 sgs->sum_weighted_load += weighted_cpuload(i);
3753
3754 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3755 }
3756
3757 /*
3758 * First idle cpu or the first cpu(busiest) in this sched group
3759 * is eligible for doing load balancing at this and above
3760 * domains. In the newly idle case, we will allow all the cpu's
3761 * to do the newly idle load balance.
3762 */
3763 if (idle != CPU_NEWLY_IDLE && local_group &&
3764 balance_cpu != this_cpu && balance) {
3765 *balance = 0;
3766 return;
3767 }
3768
3769 /* Adjust by relative CPU power of the group */
3770 sgs->avg_load = sg_div_cpu_power(group,
3771 sgs->group_load * SCHED_LOAD_SCALE);
3772
3773
3774 /*
3775 * Consider the group unbalanced when the imbalance is larger
3776 * than the average weight of two tasks.
3777 *
3778 * APZ: with cgroup the avg task weight can vary wildly and
3779 * might not be a suitable number - should we keep a
3780 * normalized nr_running number somewhere that negates
3781 * the hierarchy?
3782 */
3783 avg_load_per_task = sg_div_cpu_power(group,
3784 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3785
3786 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3787 sgs->group_imb = 1;
3788
3789 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3790
3791 }
3792
3793 /**
3794 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3795 * @sd: sched_domain whose statistics are to be updated.
3796 * @this_cpu: Cpu for which load balance is currently performed.
3797 * @idle: Idle status of this_cpu
3798 * @sd_idle: Idle status of the sched_domain containing group.
3799 * @cpus: Set of cpus considered for load balancing.
3800 * @balance: Should we balance.
3801 * @sds: variable to hold the statistics for this sched_domain.
3802 */
3803 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3804 enum cpu_idle_type idle, int *sd_idle,
3805 const struct cpumask *cpus, int *balance,
3806 struct sd_lb_stats *sds)
3807 {
3808 struct sched_group *group = sd->groups;
3809 struct sg_lb_stats sgs;
3810 int load_idx;
3811
3812 init_sd_power_savings_stats(sd, sds, idle);
3813 load_idx = get_sd_load_idx(sd, idle);
3814
3815 do {
3816 int local_group;
3817
3818 local_group = cpumask_test_cpu(this_cpu,
3819 sched_group_cpus(group));
3820 memset(&sgs, 0, sizeof(sgs));
3821 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3822 local_group, cpus, balance, &sgs);
3823
3824 if (local_group && balance && !(*balance))
3825 return;
3826
3827 sds->total_load += sgs.group_load;
3828 sds->total_pwr += group->__cpu_power;
3829
3830 if (local_group) {
3831 sds->this_load = sgs.avg_load;
3832 sds->this = group;
3833 sds->this_nr_running = sgs.sum_nr_running;
3834 sds->this_load_per_task = sgs.sum_weighted_load;
3835 } else if (sgs.avg_load > sds->max_load &&
3836 (sgs.sum_nr_running > sgs.group_capacity ||
3837 sgs.group_imb)) {
3838 sds->max_load = sgs.avg_load;
3839 sds->busiest = group;
3840 sds->busiest_nr_running = sgs.sum_nr_running;
3841 sds->busiest_load_per_task = sgs.sum_weighted_load;
3842 sds->group_imb = sgs.group_imb;
3843 }
3844
3845 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3846 group = group->next;
3847 } while (group != sd->groups);
3848
3849 }
3850
3851 /**
3852 * fix_small_imbalance - Calculate the minor imbalance that exists
3853 * amongst the groups of a sched_domain, during
3854 * load balancing.
3855 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3856 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3857 * @imbalance: Variable to store the imbalance.
3858 */
3859 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3860 int this_cpu, unsigned long *imbalance)
3861 {
3862 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3863 unsigned int imbn = 2;
3864
3865 if (sds->this_nr_running) {
3866 sds->this_load_per_task /= sds->this_nr_running;
3867 if (sds->busiest_load_per_task >
3868 sds->this_load_per_task)
3869 imbn = 1;
3870 } else
3871 sds->this_load_per_task =
3872 cpu_avg_load_per_task(this_cpu);
3873
3874 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3875 sds->busiest_load_per_task * imbn) {
3876 *imbalance = sds->busiest_load_per_task;
3877 return;
3878 }
3879
3880 /*
3881 * OK, we don't have enough imbalance to justify moving tasks,
3882 * however we may be able to increase total CPU power used by
3883 * moving them.
3884 */
3885
3886 pwr_now += sds->busiest->__cpu_power *
3887 min(sds->busiest_load_per_task, sds->max_load);
3888 pwr_now += sds->this->__cpu_power *
3889 min(sds->this_load_per_task, sds->this_load);
3890 pwr_now /= SCHED_LOAD_SCALE;
3891
3892 /* Amount of load we'd subtract */
3893 tmp = sg_div_cpu_power(sds->busiest,
3894 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3895 if (sds->max_load > tmp)
3896 pwr_move += sds->busiest->__cpu_power *
3897 min(sds->busiest_load_per_task, sds->max_load - tmp);
3898
3899 /* Amount of load we'd add */
3900 if (sds->max_load * sds->busiest->__cpu_power <
3901 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3902 tmp = sg_div_cpu_power(sds->this,
3903 sds->max_load * sds->busiest->__cpu_power);
3904 else
3905 tmp = sg_div_cpu_power(sds->this,
3906 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3907 pwr_move += sds->this->__cpu_power *
3908 min(sds->this_load_per_task, sds->this_load + tmp);
3909 pwr_move /= SCHED_LOAD_SCALE;
3910
3911 /* Move if we gain throughput */
3912 if (pwr_move > pwr_now)
3913 *imbalance = sds->busiest_load_per_task;
3914 }
3915
3916 /**
3917 * calculate_imbalance - Calculate the amount of imbalance present within the
3918 * groups of a given sched_domain during load balance.
3919 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3920 * @this_cpu: Cpu for which currently load balance is being performed.
3921 * @imbalance: The variable to store the imbalance.
3922 */
3923 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3924 unsigned long *imbalance)
3925 {
3926 unsigned long max_pull;
3927 /*
3928 * In the presence of smp nice balancing, certain scenarios can have
3929 * max load less than avg load(as we skip the groups at or below
3930 * its cpu_power, while calculating max_load..)
3931 */
3932 if (sds->max_load < sds->avg_load) {
3933 *imbalance = 0;
3934 return fix_small_imbalance(sds, this_cpu, imbalance);
3935 }
3936
3937 /* Don't want to pull so many tasks that a group would go idle */
3938 max_pull = min(sds->max_load - sds->avg_load,
3939 sds->max_load - sds->busiest_load_per_task);
3940
3941 /* How much load to actually move to equalise the imbalance */
3942 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3943 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3944 / SCHED_LOAD_SCALE;
3945
3946 /*
3947 * if *imbalance is less than the average load per runnable task
3948 * there is no gaurantee that any tasks will be moved so we'll have
3949 * a think about bumping its value to force at least one task to be
3950 * moved
3951 */
3952 if (*imbalance < sds->busiest_load_per_task)
3953 return fix_small_imbalance(sds, this_cpu, imbalance);
3954
3955 }
3956 /******* find_busiest_group() helpers end here *********************/
3957
3958 /**
3959 * find_busiest_group - Returns the busiest group within the sched_domain
3960 * if there is an imbalance. If there isn't an imbalance, and
3961 * the user has opted for power-savings, it returns a group whose
3962 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3963 * such a group exists.
3964 *
3965 * Also calculates the amount of weighted load which should be moved
3966 * to restore balance.
3967 *
3968 * @sd: The sched_domain whose busiest group is to be returned.
3969 * @this_cpu: The cpu for which load balancing is currently being performed.
3970 * @imbalance: Variable which stores amount of weighted load which should
3971 * be moved to restore balance/put a group to idle.
3972 * @idle: The idle status of this_cpu.
3973 * @sd_idle: The idleness of sd
3974 * @cpus: The set of CPUs under consideration for load-balancing.
3975 * @balance: Pointer to a variable indicating if this_cpu
3976 * is the appropriate cpu to perform load balancing at this_level.
3977 *
3978 * Returns: - the busiest group if imbalance exists.
3979 * - If no imbalance and user has opted for power-savings balance,
3980 * return the least loaded group whose CPUs can be
3981 * put to idle by rebalancing its tasks onto our group.
3982 */
3983 static struct sched_group *
3984 find_busiest_group(struct sched_domain *sd, int this_cpu,
3985 unsigned long *imbalance, enum cpu_idle_type idle,
3986 int *sd_idle, const struct cpumask *cpus, int *balance)
3987 {
3988 struct sd_lb_stats sds;
3989
3990 memset(&sds, 0, sizeof(sds));
3991
3992 /*
3993 * Compute the various statistics relavent for load balancing at
3994 * this level.
3995 */
3996 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3997 balance, &sds);
3998
3999 /* Cases where imbalance does not exist from POV of this_cpu */
4000 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4001 * at this level.
4002 * 2) There is no busy sibling group to pull from.
4003 * 3) This group is the busiest group.
4004 * 4) This group is more busy than the avg busieness at this
4005 * sched_domain.
4006 * 5) The imbalance is within the specified limit.
4007 * 6) Any rebalance would lead to ping-pong
4008 */
4009 if (balance && !(*balance))
4010 goto ret;
4011
4012 if (!sds.busiest || sds.busiest_nr_running == 0)
4013 goto out_balanced;
4014
4015 if (sds.this_load >= sds.max_load)
4016 goto out_balanced;
4017
4018 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4019
4020 if (sds.this_load >= sds.avg_load)
4021 goto out_balanced;
4022
4023 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4024 goto out_balanced;
4025
4026 sds.busiest_load_per_task /= sds.busiest_nr_running;
4027 if (sds.group_imb)
4028 sds.busiest_load_per_task =
4029 min(sds.busiest_load_per_task, sds.avg_load);
4030
4031 /*
4032 * We're trying to get all the cpus to the average_load, so we don't
4033 * want to push ourselves above the average load, nor do we wish to
4034 * reduce the max loaded cpu below the average load, as either of these
4035 * actions would just result in more rebalancing later, and ping-pong
4036 * tasks around. Thus we look for the minimum possible imbalance.
4037 * Negative imbalances (*we* are more loaded than anyone else) will
4038 * be counted as no imbalance for these purposes -- we can't fix that
4039 * by pulling tasks to us. Be careful of negative numbers as they'll
4040 * appear as very large values with unsigned longs.
4041 */
4042 if (sds.max_load <= sds.busiest_load_per_task)
4043 goto out_balanced;
4044
4045 /* Looks like there is an imbalance. Compute it */
4046 calculate_imbalance(&sds, this_cpu, imbalance);
4047 return sds.busiest;
4048
4049 out_balanced:
4050 /*
4051 * There is no obvious imbalance. But check if we can do some balancing
4052 * to save power.
4053 */
4054 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4055 return sds.busiest;
4056 ret:
4057 *imbalance = 0;
4058 return NULL;
4059 }
4060
4061 /*
4062 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4063 */
4064 static struct rq *
4065 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4066 unsigned long imbalance, const struct cpumask *cpus)
4067 {
4068 struct rq *busiest = NULL, *rq;
4069 unsigned long max_load = 0;
4070 int i;
4071
4072 for_each_cpu(i, sched_group_cpus(group)) {
4073 unsigned long wl;
4074
4075 if (!cpumask_test_cpu(i, cpus))
4076 continue;
4077
4078 rq = cpu_rq(i);
4079 wl = weighted_cpuload(i);
4080
4081 if (rq->nr_running == 1 && wl > imbalance)
4082 continue;
4083
4084 if (wl > max_load) {
4085 max_load = wl;
4086 busiest = rq;
4087 }
4088 }
4089
4090 return busiest;
4091 }
4092
4093 /*
4094 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4095 * so long as it is large enough.
4096 */
4097 #define MAX_PINNED_INTERVAL 512
4098
4099 /* Working cpumask for load_balance and load_balance_newidle. */
4100 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4101
4102 /*
4103 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4104 * tasks if there is an imbalance.
4105 */
4106 static int load_balance(int this_cpu, struct rq *this_rq,
4107 struct sched_domain *sd, enum cpu_idle_type idle,
4108 int *balance)
4109 {
4110 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4111 struct sched_group *group;
4112 unsigned long imbalance;
4113 struct rq *busiest;
4114 unsigned long flags;
4115 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4116
4117 cpumask_setall(cpus);
4118
4119 /*
4120 * When power savings policy is enabled for the parent domain, idle
4121 * sibling can pick up load irrespective of busy siblings. In this case,
4122 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4123 * portraying it as CPU_NOT_IDLE.
4124 */
4125 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4126 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4127 sd_idle = 1;
4128
4129 schedstat_inc(sd, lb_count[idle]);
4130
4131 redo:
4132 update_shares(sd);
4133 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4134 cpus, balance);
4135
4136 if (*balance == 0)
4137 goto out_balanced;
4138
4139 if (!group) {
4140 schedstat_inc(sd, lb_nobusyg[idle]);
4141 goto out_balanced;
4142 }
4143
4144 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4145 if (!busiest) {
4146 schedstat_inc(sd, lb_nobusyq[idle]);
4147 goto out_balanced;
4148 }
4149
4150 BUG_ON(busiest == this_rq);
4151
4152 schedstat_add(sd, lb_imbalance[idle], imbalance);
4153
4154 ld_moved = 0;
4155 if (busiest->nr_running > 1) {
4156 /*
4157 * Attempt to move tasks. If find_busiest_group has found
4158 * an imbalance but busiest->nr_running <= 1, the group is
4159 * still unbalanced. ld_moved simply stays zero, so it is
4160 * correctly treated as an imbalance.
4161 */
4162 local_irq_save(flags);
4163 double_rq_lock(this_rq, busiest);
4164 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4165 imbalance, sd, idle, &all_pinned);
4166 double_rq_unlock(this_rq, busiest);
4167 local_irq_restore(flags);
4168
4169 /*
4170 * some other cpu did the load balance for us.
4171 */
4172 if (ld_moved && this_cpu != smp_processor_id())
4173 resched_cpu(this_cpu);
4174
4175 /* All tasks on this runqueue were pinned by CPU affinity */
4176 if (unlikely(all_pinned)) {
4177 cpumask_clear_cpu(cpu_of(busiest), cpus);
4178 if (!cpumask_empty(cpus))
4179 goto redo;
4180 goto out_balanced;
4181 }
4182 }
4183
4184 if (!ld_moved) {
4185 schedstat_inc(sd, lb_failed[idle]);
4186 sd->nr_balance_failed++;
4187
4188 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4189
4190 spin_lock_irqsave(&busiest->lock, flags);
4191
4192 /* don't kick the migration_thread, if the curr
4193 * task on busiest cpu can't be moved to this_cpu
4194 */
4195 if (!cpumask_test_cpu(this_cpu,
4196 &busiest->curr->cpus_allowed)) {
4197 spin_unlock_irqrestore(&busiest->lock, flags);
4198 all_pinned = 1;
4199 goto out_one_pinned;
4200 }
4201
4202 if (!busiest->active_balance) {
4203 busiest->active_balance = 1;
4204 busiest->push_cpu = this_cpu;
4205 active_balance = 1;
4206 }
4207 spin_unlock_irqrestore(&busiest->lock, flags);
4208 if (active_balance)
4209 wake_up_process(busiest->migration_thread);
4210
4211 /*
4212 * We've kicked active balancing, reset the failure
4213 * counter.
4214 */
4215 sd->nr_balance_failed = sd->cache_nice_tries+1;
4216 }
4217 } else
4218 sd->nr_balance_failed = 0;
4219
4220 if (likely(!active_balance)) {
4221 /* We were unbalanced, so reset the balancing interval */
4222 sd->balance_interval = sd->min_interval;
4223 } else {
4224 /*
4225 * If we've begun active balancing, start to back off. This
4226 * case may not be covered by the all_pinned logic if there
4227 * is only 1 task on the busy runqueue (because we don't call
4228 * move_tasks).
4229 */
4230 if (sd->balance_interval < sd->max_interval)
4231 sd->balance_interval *= 2;
4232 }
4233
4234 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4235 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4236 ld_moved = -1;
4237
4238 goto out;
4239
4240 out_balanced:
4241 schedstat_inc(sd, lb_balanced[idle]);
4242
4243 sd->nr_balance_failed = 0;
4244
4245 out_one_pinned:
4246 /* tune up the balancing interval */
4247 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4248 (sd->balance_interval < sd->max_interval))
4249 sd->balance_interval *= 2;
4250
4251 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4252 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4253 ld_moved = -1;
4254 else
4255 ld_moved = 0;
4256 out:
4257 if (ld_moved)
4258 update_shares(sd);
4259 return ld_moved;
4260 }
4261
4262 /*
4263 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4264 * tasks if there is an imbalance.
4265 *
4266 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4267 * this_rq is locked.
4268 */
4269 static int
4270 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4271 {
4272 struct sched_group *group;
4273 struct rq *busiest = NULL;
4274 unsigned long imbalance;
4275 int ld_moved = 0;
4276 int sd_idle = 0;
4277 int all_pinned = 0;
4278 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4279
4280 cpumask_setall(cpus);
4281
4282 /*
4283 * When power savings policy is enabled for the parent domain, idle
4284 * sibling can pick up load irrespective of busy siblings. In this case,
4285 * let the state of idle sibling percolate up as IDLE, instead of
4286 * portraying it as CPU_NOT_IDLE.
4287 */
4288 if (sd->flags & SD_SHARE_CPUPOWER &&
4289 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4290 sd_idle = 1;
4291
4292 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4293 redo:
4294 update_shares_locked(this_rq, sd);
4295 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4296 &sd_idle, cpus, NULL);
4297 if (!group) {
4298 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4299 goto out_balanced;
4300 }
4301
4302 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4303 if (!busiest) {
4304 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4305 goto out_balanced;
4306 }
4307
4308 BUG_ON(busiest == this_rq);
4309
4310 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4311
4312 ld_moved = 0;
4313 if (busiest->nr_running > 1) {
4314 /* Attempt to move tasks */
4315 double_lock_balance(this_rq, busiest);
4316 /* this_rq->clock is already updated */
4317 update_rq_clock(busiest);
4318 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4319 imbalance, sd, CPU_NEWLY_IDLE,
4320 &all_pinned);
4321 double_unlock_balance(this_rq, busiest);
4322
4323 if (unlikely(all_pinned)) {
4324 cpumask_clear_cpu(cpu_of(busiest), cpus);
4325 if (!cpumask_empty(cpus))
4326 goto redo;
4327 }
4328 }
4329
4330 if (!ld_moved) {
4331 int active_balance = 0;
4332
4333 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4334 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4335 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4336 return -1;
4337
4338 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4339 return -1;
4340
4341 if (sd->nr_balance_failed++ < 2)
4342 return -1;
4343
4344 /*
4345 * The only task running in a non-idle cpu can be moved to this
4346 * cpu in an attempt to completely freeup the other CPU
4347 * package. The same method used to move task in load_balance()
4348 * have been extended for load_balance_newidle() to speedup
4349 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4350 *
4351 * The package power saving logic comes from
4352 * find_busiest_group(). If there are no imbalance, then
4353 * f_b_g() will return NULL. However when sched_mc={1,2} then
4354 * f_b_g() will select a group from which a running task may be
4355 * pulled to this cpu in order to make the other package idle.
4356 * If there is no opportunity to make a package idle and if
4357 * there are no imbalance, then f_b_g() will return NULL and no
4358 * action will be taken in load_balance_newidle().
4359 *
4360 * Under normal task pull operation due to imbalance, there
4361 * will be more than one task in the source run queue and
4362 * move_tasks() will succeed. ld_moved will be true and this
4363 * active balance code will not be triggered.
4364 */
4365
4366 /* Lock busiest in correct order while this_rq is held */
4367 double_lock_balance(this_rq, busiest);
4368
4369 /*
4370 * don't kick the migration_thread, if the curr
4371 * task on busiest cpu can't be moved to this_cpu
4372 */
4373 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4374 double_unlock_balance(this_rq, busiest);
4375 all_pinned = 1;
4376 return ld_moved;
4377 }
4378
4379 if (!busiest->active_balance) {
4380 busiest->active_balance = 1;
4381 busiest->push_cpu = this_cpu;
4382 active_balance = 1;
4383 }
4384
4385 double_unlock_balance(this_rq, busiest);
4386 /*
4387 * Should not call ttwu while holding a rq->lock
4388 */
4389 spin_unlock(&this_rq->lock);
4390 if (active_balance)
4391 wake_up_process(busiest->migration_thread);
4392 spin_lock(&this_rq->lock);
4393
4394 } else
4395 sd->nr_balance_failed = 0;
4396
4397 update_shares_locked(this_rq, sd);
4398 return ld_moved;
4399
4400 out_balanced:
4401 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4402 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4403 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4404 return -1;
4405 sd->nr_balance_failed = 0;
4406
4407 return 0;
4408 }
4409
4410 /*
4411 * idle_balance is called by schedule() if this_cpu is about to become
4412 * idle. Attempts to pull tasks from other CPUs.
4413 */
4414 static void idle_balance(int this_cpu, struct rq *this_rq)
4415 {
4416 struct sched_domain *sd;
4417 int pulled_task = 0;
4418 unsigned long next_balance = jiffies + HZ;
4419
4420 for_each_domain(this_cpu, sd) {
4421 unsigned long interval;
4422
4423 if (!(sd->flags & SD_LOAD_BALANCE))
4424 continue;
4425
4426 if (sd->flags & SD_BALANCE_NEWIDLE)
4427 /* If we've pulled tasks over stop searching: */
4428 pulled_task = load_balance_newidle(this_cpu, this_rq,
4429 sd);
4430
4431 interval = msecs_to_jiffies(sd->balance_interval);
4432 if (time_after(next_balance, sd->last_balance + interval))
4433 next_balance = sd->last_balance + interval;
4434 if (pulled_task)
4435 break;
4436 }
4437 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4438 /*
4439 * We are going idle. next_balance may be set based on
4440 * a busy processor. So reset next_balance.
4441 */
4442 this_rq->next_balance = next_balance;
4443 }
4444 }
4445
4446 /*
4447 * active_load_balance is run by migration threads. It pushes running tasks
4448 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4449 * running on each physical CPU where possible, and avoids physical /
4450 * logical imbalances.
4451 *
4452 * Called with busiest_rq locked.
4453 */
4454 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4455 {
4456 int target_cpu = busiest_rq->push_cpu;
4457 struct sched_domain *sd;
4458 struct rq *target_rq;
4459
4460 /* Is there any task to move? */
4461 if (busiest_rq->nr_running <= 1)
4462 return;
4463
4464 target_rq = cpu_rq(target_cpu);
4465
4466 /*
4467 * This condition is "impossible", if it occurs
4468 * we need to fix it. Originally reported by
4469 * Bjorn Helgaas on a 128-cpu setup.
4470 */
4471 BUG_ON(busiest_rq == target_rq);
4472
4473 /* move a task from busiest_rq to target_rq */
4474 double_lock_balance(busiest_rq, target_rq);
4475 update_rq_clock(busiest_rq);
4476 update_rq_clock(target_rq);
4477
4478 /* Search for an sd spanning us and the target CPU. */
4479 for_each_domain(target_cpu, sd) {
4480 if ((sd->flags & SD_LOAD_BALANCE) &&
4481 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4482 break;
4483 }
4484
4485 if (likely(sd)) {
4486 schedstat_inc(sd, alb_count);
4487
4488 if (move_one_task(target_rq, target_cpu, busiest_rq,
4489 sd, CPU_IDLE))
4490 schedstat_inc(sd, alb_pushed);
4491 else
4492 schedstat_inc(sd, alb_failed);
4493 }
4494 double_unlock_balance(busiest_rq, target_rq);
4495 }
4496
4497 #ifdef CONFIG_NO_HZ
4498 static struct {
4499 atomic_t load_balancer;
4500 cpumask_var_t cpu_mask;
4501 cpumask_var_t ilb_grp_nohz_mask;
4502 } nohz ____cacheline_aligned = {
4503 .load_balancer = ATOMIC_INIT(-1),
4504 };
4505
4506 int get_nohz_load_balancer(void)
4507 {
4508 return atomic_read(&nohz.load_balancer);
4509 }
4510
4511 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4512 /**
4513 * lowest_flag_domain - Return lowest sched_domain containing flag.
4514 * @cpu: The cpu whose lowest level of sched domain is to
4515 * be returned.
4516 * @flag: The flag to check for the lowest sched_domain
4517 * for the given cpu.
4518 *
4519 * Returns the lowest sched_domain of a cpu which contains the given flag.
4520 */
4521 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4522 {
4523 struct sched_domain *sd;
4524
4525 for_each_domain(cpu, sd)
4526 if (sd && (sd->flags & flag))
4527 break;
4528
4529 return sd;
4530 }
4531
4532 /**
4533 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4534 * @cpu: The cpu whose domains we're iterating over.
4535 * @sd: variable holding the value of the power_savings_sd
4536 * for cpu.
4537 * @flag: The flag to filter the sched_domains to be iterated.
4538 *
4539 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4540 * set, starting from the lowest sched_domain to the highest.
4541 */
4542 #define for_each_flag_domain(cpu, sd, flag) \
4543 for (sd = lowest_flag_domain(cpu, flag); \
4544 (sd && (sd->flags & flag)); sd = sd->parent)
4545
4546 /**
4547 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4548 * @ilb_group: group to be checked for semi-idleness
4549 *
4550 * Returns: 1 if the group is semi-idle. 0 otherwise.
4551 *
4552 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4553 * and atleast one non-idle CPU. This helper function checks if the given
4554 * sched_group is semi-idle or not.
4555 */
4556 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4557 {
4558 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4559 sched_group_cpus(ilb_group));
4560
4561 /*
4562 * A sched_group is semi-idle when it has atleast one busy cpu
4563 * and atleast one idle cpu.
4564 */
4565 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4566 return 0;
4567
4568 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4569 return 0;
4570
4571 return 1;
4572 }
4573 /**
4574 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4575 * @cpu: The cpu which is nominating a new idle_load_balancer.
4576 *
4577 * Returns: Returns the id of the idle load balancer if it exists,
4578 * Else, returns >= nr_cpu_ids.
4579 *
4580 * This algorithm picks the idle load balancer such that it belongs to a
4581 * semi-idle powersavings sched_domain. The idea is to try and avoid
4582 * completely idle packages/cores just for the purpose of idle load balancing
4583 * when there are other idle cpu's which are better suited for that job.
4584 */
4585 static int find_new_ilb(int cpu)
4586 {
4587 struct sched_domain *sd;
4588 struct sched_group *ilb_group;
4589
4590 /*
4591 * Have idle load balancer selection from semi-idle packages only
4592 * when power-aware load balancing is enabled
4593 */
4594 if (!(sched_smt_power_savings || sched_mc_power_savings))
4595 goto out_done;
4596
4597 /*
4598 * Optimize for the case when we have no idle CPUs or only one
4599 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4600 */
4601 if (cpumask_weight(nohz.cpu_mask) < 2)
4602 goto out_done;
4603
4604 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4605 ilb_group = sd->groups;
4606
4607 do {
4608 if (is_semi_idle_group(ilb_group))
4609 return cpumask_first(nohz.ilb_grp_nohz_mask);
4610
4611 ilb_group = ilb_group->next;
4612
4613 } while (ilb_group != sd->groups);
4614 }
4615
4616 out_done:
4617 return cpumask_first(nohz.cpu_mask);
4618 }
4619 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4620 static inline int find_new_ilb(int call_cpu)
4621 {
4622 return cpumask_first(nohz.cpu_mask);
4623 }
4624 #endif
4625
4626 /*
4627 * This routine will try to nominate the ilb (idle load balancing)
4628 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4629 * load balancing on behalf of all those cpus. If all the cpus in the system
4630 * go into this tickless mode, then there will be no ilb owner (as there is
4631 * no need for one) and all the cpus will sleep till the next wakeup event
4632 * arrives...
4633 *
4634 * For the ilb owner, tick is not stopped. And this tick will be used
4635 * for idle load balancing. ilb owner will still be part of
4636 * nohz.cpu_mask..
4637 *
4638 * While stopping the tick, this cpu will become the ilb owner if there
4639 * is no other owner. And will be the owner till that cpu becomes busy
4640 * or if all cpus in the system stop their ticks at which point
4641 * there is no need for ilb owner.
4642 *
4643 * When the ilb owner becomes busy, it nominates another owner, during the
4644 * next busy scheduler_tick()
4645 */
4646 int select_nohz_load_balancer(int stop_tick)
4647 {
4648 int cpu = smp_processor_id();
4649
4650 if (stop_tick) {
4651 cpu_rq(cpu)->in_nohz_recently = 1;
4652
4653 if (!cpu_active(cpu)) {
4654 if (atomic_read(&nohz.load_balancer) != cpu)
4655 return 0;
4656
4657 /*
4658 * If we are going offline and still the leader,
4659 * give up!
4660 */
4661 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4662 BUG();
4663
4664 return 0;
4665 }
4666
4667 cpumask_set_cpu(cpu, nohz.cpu_mask);
4668
4669 /* time for ilb owner also to sleep */
4670 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4671 if (atomic_read(&nohz.load_balancer) == cpu)
4672 atomic_set(&nohz.load_balancer, -1);
4673 return 0;
4674 }
4675
4676 if (atomic_read(&nohz.load_balancer) == -1) {
4677 /* make me the ilb owner */
4678 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4679 return 1;
4680 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4681 int new_ilb;
4682
4683 if (!(sched_smt_power_savings ||
4684 sched_mc_power_savings))
4685 return 1;
4686 /*
4687 * Check to see if there is a more power-efficient
4688 * ilb.
4689 */
4690 new_ilb = find_new_ilb(cpu);
4691 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4692 atomic_set(&nohz.load_balancer, -1);
4693 resched_cpu(new_ilb);
4694 return 0;
4695 }
4696 return 1;
4697 }
4698 } else {
4699 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4700 return 0;
4701
4702 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4703
4704 if (atomic_read(&nohz.load_balancer) == cpu)
4705 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4706 BUG();
4707 }
4708 return 0;
4709 }
4710 #endif
4711
4712 static DEFINE_SPINLOCK(balancing);
4713
4714 /*
4715 * It checks each scheduling domain to see if it is due to be balanced,
4716 * and initiates a balancing operation if so.
4717 *
4718 * Balancing parameters are set up in arch_init_sched_domains.
4719 */
4720 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4721 {
4722 int balance = 1;
4723 struct rq *rq = cpu_rq(cpu);
4724 unsigned long interval;
4725 struct sched_domain *sd;
4726 /* Earliest time when we have to do rebalance again */
4727 unsigned long next_balance = jiffies + 60*HZ;
4728 int update_next_balance = 0;
4729 int need_serialize;
4730
4731 for_each_domain(cpu, sd) {
4732 if (!(sd->flags & SD_LOAD_BALANCE))
4733 continue;
4734
4735 interval = sd->balance_interval;
4736 if (idle != CPU_IDLE)
4737 interval *= sd->busy_factor;
4738
4739 /* scale ms to jiffies */
4740 interval = msecs_to_jiffies(interval);
4741 if (unlikely(!interval))
4742 interval = 1;
4743 if (interval > HZ*NR_CPUS/10)
4744 interval = HZ*NR_CPUS/10;
4745
4746 need_serialize = sd->flags & SD_SERIALIZE;
4747
4748 if (need_serialize) {
4749 if (!spin_trylock(&balancing))
4750 goto out;
4751 }
4752
4753 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4754 if (load_balance(cpu, rq, sd, idle, &balance)) {
4755 /*
4756 * We've pulled tasks over so either we're no
4757 * longer idle, or one of our SMT siblings is
4758 * not idle.
4759 */
4760 idle = CPU_NOT_IDLE;
4761 }
4762 sd->last_balance = jiffies;
4763 }
4764 if (need_serialize)
4765 spin_unlock(&balancing);
4766 out:
4767 if (time_after(next_balance, sd->last_balance + interval)) {
4768 next_balance = sd->last_balance + interval;
4769 update_next_balance = 1;
4770 }
4771
4772 /*
4773 * Stop the load balance at this level. There is another
4774 * CPU in our sched group which is doing load balancing more
4775 * actively.
4776 */
4777 if (!balance)
4778 break;
4779 }
4780
4781 /*
4782 * next_balance will be updated only when there is a need.
4783 * When the cpu is attached to null domain for ex, it will not be
4784 * updated.
4785 */
4786 if (likely(update_next_balance))
4787 rq->next_balance = next_balance;
4788 }
4789
4790 /*
4791 * run_rebalance_domains is triggered when needed from the scheduler tick.
4792 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4793 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4794 */
4795 static void run_rebalance_domains(struct softirq_action *h)
4796 {
4797 int this_cpu = smp_processor_id();
4798 struct rq *this_rq = cpu_rq(this_cpu);
4799 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4800 CPU_IDLE : CPU_NOT_IDLE;
4801
4802 rebalance_domains(this_cpu, idle);
4803
4804 #ifdef CONFIG_NO_HZ
4805 /*
4806 * If this cpu is the owner for idle load balancing, then do the
4807 * balancing on behalf of the other idle cpus whose ticks are
4808 * stopped.
4809 */
4810 if (this_rq->idle_at_tick &&
4811 atomic_read(&nohz.load_balancer) == this_cpu) {
4812 struct rq *rq;
4813 int balance_cpu;
4814
4815 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4816 if (balance_cpu == this_cpu)
4817 continue;
4818
4819 /*
4820 * If this cpu gets work to do, stop the load balancing
4821 * work being done for other cpus. Next load
4822 * balancing owner will pick it up.
4823 */
4824 if (need_resched())
4825 break;
4826
4827 rebalance_domains(balance_cpu, CPU_IDLE);
4828
4829 rq = cpu_rq(balance_cpu);
4830 if (time_after(this_rq->next_balance, rq->next_balance))
4831 this_rq->next_balance = rq->next_balance;
4832 }
4833 }
4834 #endif
4835 }
4836
4837 static inline int on_null_domain(int cpu)
4838 {
4839 return !rcu_dereference(cpu_rq(cpu)->sd);
4840 }
4841
4842 /*
4843 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4844 *
4845 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4846 * idle load balancing owner or decide to stop the periodic load balancing,
4847 * if the whole system is idle.
4848 */
4849 static inline void trigger_load_balance(struct rq *rq, int cpu)
4850 {
4851 #ifdef CONFIG_NO_HZ
4852 /*
4853 * If we were in the nohz mode recently and busy at the current
4854 * scheduler tick, then check if we need to nominate new idle
4855 * load balancer.
4856 */
4857 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4858 rq->in_nohz_recently = 0;
4859
4860 if (atomic_read(&nohz.load_balancer) == cpu) {
4861 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4862 atomic_set(&nohz.load_balancer, -1);
4863 }
4864
4865 if (atomic_read(&nohz.load_balancer) == -1) {
4866 int ilb = find_new_ilb(cpu);
4867
4868 if (ilb < nr_cpu_ids)
4869 resched_cpu(ilb);
4870 }
4871 }
4872
4873 /*
4874 * If this cpu is idle and doing idle load balancing for all the
4875 * cpus with ticks stopped, is it time for that to stop?
4876 */
4877 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4878 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4879 resched_cpu(cpu);
4880 return;
4881 }
4882
4883 /*
4884 * If this cpu is idle and the idle load balancing is done by
4885 * someone else, then no need raise the SCHED_SOFTIRQ
4886 */
4887 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4888 cpumask_test_cpu(cpu, nohz.cpu_mask))
4889 return;
4890 #endif
4891 /* Don't need to rebalance while attached to NULL domain */
4892 if (time_after_eq(jiffies, rq->next_balance) &&
4893 likely(!on_null_domain(cpu)))
4894 raise_softirq(SCHED_SOFTIRQ);
4895 }
4896
4897 #else /* CONFIG_SMP */
4898
4899 /*
4900 * on UP we do not need to balance between CPUs:
4901 */
4902 static inline void idle_balance(int cpu, struct rq *rq)
4903 {
4904 }
4905
4906 #endif
4907
4908 DEFINE_PER_CPU(struct kernel_stat, kstat);
4909
4910 EXPORT_PER_CPU_SYMBOL(kstat);
4911
4912 /*
4913 * Return any ns on the sched_clock that have not yet been accounted in
4914 * @p in case that task is currently running.
4915 *
4916 * Called with task_rq_lock() held on @rq.
4917 */
4918 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4919 {
4920 u64 ns = 0;
4921
4922 if (task_current(rq, p)) {
4923 update_rq_clock(rq);
4924 ns = rq->clock - p->se.exec_start;
4925 if ((s64)ns < 0)
4926 ns = 0;
4927 }
4928
4929 return ns;
4930 }
4931
4932 unsigned long long task_delta_exec(struct task_struct *p)
4933 {
4934 unsigned long flags;
4935 struct rq *rq;
4936 u64 ns = 0;
4937
4938 rq = task_rq_lock(p, &flags);
4939 ns = do_task_delta_exec(p, rq);
4940 task_rq_unlock(rq, &flags);
4941
4942 return ns;
4943 }
4944
4945 /*
4946 * Return accounted runtime for the task.
4947 * In case the task is currently running, return the runtime plus current's
4948 * pending runtime that have not been accounted yet.
4949 */
4950 unsigned long long task_sched_runtime(struct task_struct *p)
4951 {
4952 unsigned long flags;
4953 struct rq *rq;
4954 u64 ns = 0;
4955
4956 rq = task_rq_lock(p, &flags);
4957 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4958 task_rq_unlock(rq, &flags);
4959
4960 return ns;
4961 }
4962
4963 /*
4964 * Return sum_exec_runtime for the thread group.
4965 * In case the task is currently running, return the sum plus current's
4966 * pending runtime that have not been accounted yet.
4967 *
4968 * Note that the thread group might have other running tasks as well,
4969 * so the return value not includes other pending runtime that other
4970 * running tasks might have.
4971 */
4972 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4973 {
4974 struct task_cputime totals;
4975 unsigned long flags;
4976 struct rq *rq;
4977 u64 ns;
4978
4979 rq = task_rq_lock(p, &flags);
4980 thread_group_cputime(p, &totals);
4981 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4982 task_rq_unlock(rq, &flags);
4983
4984 return ns;
4985 }
4986
4987 /*
4988 * Account user cpu time to a process.
4989 * @p: the process that the cpu time gets accounted to
4990 * @cputime: the cpu time spent in user space since the last update
4991 * @cputime_scaled: cputime scaled by cpu frequency
4992 */
4993 void account_user_time(struct task_struct *p, cputime_t cputime,
4994 cputime_t cputime_scaled)
4995 {
4996 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4997 cputime64_t tmp;
4998
4999 /* Add user time to process. */
5000 p->utime = cputime_add(p->utime, cputime);
5001 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5002 account_group_user_time(p, cputime);
5003
5004 /* Add user time to cpustat. */
5005 tmp = cputime_to_cputime64(cputime);
5006 if (TASK_NICE(p) > 0)
5007 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5008 else
5009 cpustat->user = cputime64_add(cpustat->user, tmp);
5010
5011 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5012 /* Account for user time used */
5013 acct_update_integrals(p);
5014 }
5015
5016 /*
5017 * Account guest cpu time to a process.
5018 * @p: the process that the cpu time gets accounted to
5019 * @cputime: the cpu time spent in virtual machine since the last update
5020 * @cputime_scaled: cputime scaled by cpu frequency
5021 */
5022 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5023 cputime_t cputime_scaled)
5024 {
5025 cputime64_t tmp;
5026 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5027
5028 tmp = cputime_to_cputime64(cputime);
5029
5030 /* Add guest time to process. */
5031 p->utime = cputime_add(p->utime, cputime);
5032 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5033 account_group_user_time(p, cputime);
5034 p->gtime = cputime_add(p->gtime, cputime);
5035
5036 /* Add guest time to cpustat. */
5037 cpustat->user = cputime64_add(cpustat->user, tmp);
5038 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5039 }
5040
5041 /*
5042 * Account system cpu time to a process.
5043 * @p: the process that the cpu time gets accounted to
5044 * @hardirq_offset: the offset to subtract from hardirq_count()
5045 * @cputime: the cpu time spent in kernel space since the last update
5046 * @cputime_scaled: cputime scaled by cpu frequency
5047 */
5048 void account_system_time(struct task_struct *p, int hardirq_offset,
5049 cputime_t cputime, cputime_t cputime_scaled)
5050 {
5051 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5052 cputime64_t tmp;
5053
5054 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5055 account_guest_time(p, cputime, cputime_scaled);
5056 return;
5057 }
5058
5059 /* Add system time to process. */
5060 p->stime = cputime_add(p->stime, cputime);
5061 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5062 account_group_system_time(p, cputime);
5063
5064 /* Add system time to cpustat. */
5065 tmp = cputime_to_cputime64(cputime);
5066 if (hardirq_count() - hardirq_offset)
5067 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5068 else if (softirq_count())
5069 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5070 else
5071 cpustat->system = cputime64_add(cpustat->system, tmp);
5072
5073 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5074
5075 /* Account for system time used */
5076 acct_update_integrals(p);
5077 }
5078
5079 /*
5080 * Account for involuntary wait time.
5081 * @steal: the cpu time spent in involuntary wait
5082 */
5083 void account_steal_time(cputime_t cputime)
5084 {
5085 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5086 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5087
5088 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5089 }
5090
5091 /*
5092 * Account for idle time.
5093 * @cputime: the cpu time spent in idle wait
5094 */
5095 void account_idle_time(cputime_t cputime)
5096 {
5097 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5098 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5099 struct rq *rq = this_rq();
5100
5101 if (atomic_read(&rq->nr_iowait) > 0)
5102 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5103 else
5104 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5105 }
5106
5107 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5108
5109 /*
5110 * Account a single tick of cpu time.
5111 * @p: the process that the cpu time gets accounted to
5112 * @user_tick: indicates if the tick is a user or a system tick
5113 */
5114 void account_process_tick(struct task_struct *p, int user_tick)
5115 {
5116 cputime_t one_jiffy = jiffies_to_cputime(1);
5117 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5118 struct rq *rq = this_rq();
5119
5120 if (user_tick)
5121 account_user_time(p, one_jiffy, one_jiffy_scaled);
5122 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5123 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5124 one_jiffy_scaled);
5125 else
5126 account_idle_time(one_jiffy);
5127 }
5128
5129 /*
5130 * Account multiple ticks of steal time.
5131 * @p: the process from which the cpu time has been stolen
5132 * @ticks: number of stolen ticks
5133 */
5134 void account_steal_ticks(unsigned long ticks)
5135 {
5136 account_steal_time(jiffies_to_cputime(ticks));
5137 }
5138
5139 /*
5140 * Account multiple ticks of idle time.
5141 * @ticks: number of stolen ticks
5142 */
5143 void account_idle_ticks(unsigned long ticks)
5144 {
5145 account_idle_time(jiffies_to_cputime(ticks));
5146 }
5147
5148 #endif
5149
5150 /*
5151 * Use precise platform statistics if available:
5152 */
5153 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5154 cputime_t task_utime(struct task_struct *p)
5155 {
5156 return p->utime;
5157 }
5158
5159 cputime_t task_stime(struct task_struct *p)
5160 {
5161 return p->stime;
5162 }
5163 #else
5164 cputime_t task_utime(struct task_struct *p)
5165 {
5166 clock_t utime = cputime_to_clock_t(p->utime),
5167 total = utime + cputime_to_clock_t(p->stime);
5168 u64 temp;
5169
5170 /*
5171 * Use CFS's precise accounting:
5172 */
5173 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5174
5175 if (total) {
5176 temp *= utime;
5177 do_div(temp, total);
5178 }
5179 utime = (clock_t)temp;
5180
5181 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5182 return p->prev_utime;
5183 }
5184
5185 cputime_t task_stime(struct task_struct *p)
5186 {
5187 clock_t stime;
5188
5189 /*
5190 * Use CFS's precise accounting. (we subtract utime from
5191 * the total, to make sure the total observed by userspace
5192 * grows monotonically - apps rely on that):
5193 */
5194 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5195 cputime_to_clock_t(task_utime(p));
5196
5197 if (stime >= 0)
5198 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5199
5200 return p->prev_stime;
5201 }
5202 #endif
5203
5204 inline cputime_t task_gtime(struct task_struct *p)
5205 {
5206 return p->gtime;
5207 }
5208
5209 /*
5210 * This function gets called by the timer code, with HZ frequency.
5211 * We call it with interrupts disabled.
5212 *
5213 * It also gets called by the fork code, when changing the parent's
5214 * timeslices.
5215 */
5216 void scheduler_tick(void)
5217 {
5218 int cpu = smp_processor_id();
5219 struct rq *rq = cpu_rq(cpu);
5220 struct task_struct *curr = rq->curr;
5221
5222 sched_clock_tick();
5223
5224 spin_lock(&rq->lock);
5225 update_rq_clock(rq);
5226 update_cpu_load(rq);
5227 curr->sched_class->task_tick(rq, curr, 0);
5228 spin_unlock(&rq->lock);
5229
5230 perf_counter_task_tick(curr, cpu);
5231
5232 #ifdef CONFIG_SMP
5233 rq->idle_at_tick = idle_cpu(cpu);
5234 trigger_load_balance(rq, cpu);
5235 #endif
5236 }
5237
5238 notrace unsigned long get_parent_ip(unsigned long addr)
5239 {
5240 if (in_lock_functions(addr)) {
5241 addr = CALLER_ADDR2;
5242 if (in_lock_functions(addr))
5243 addr = CALLER_ADDR3;
5244 }
5245 return addr;
5246 }
5247
5248 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5249 defined(CONFIG_PREEMPT_TRACER))
5250
5251 void __kprobes add_preempt_count(int val)
5252 {
5253 #ifdef CONFIG_DEBUG_PREEMPT
5254 /*
5255 * Underflow?
5256 */
5257 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5258 return;
5259 #endif
5260 preempt_count() += val;
5261 #ifdef CONFIG_DEBUG_PREEMPT
5262 /*
5263 * Spinlock count overflowing soon?
5264 */
5265 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5266 PREEMPT_MASK - 10);
5267 #endif
5268 if (preempt_count() == val)
5269 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5270 }
5271 EXPORT_SYMBOL(add_preempt_count);
5272
5273 void __kprobes sub_preempt_count(int val)
5274 {
5275 #ifdef CONFIG_DEBUG_PREEMPT
5276 /*
5277 * Underflow?
5278 */
5279 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5280 return;
5281 /*
5282 * Is the spinlock portion underflowing?
5283 */
5284 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5285 !(preempt_count() & PREEMPT_MASK)))
5286 return;
5287 #endif
5288
5289 if (preempt_count() == val)
5290 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5291 preempt_count() -= val;
5292 }
5293 EXPORT_SYMBOL(sub_preempt_count);
5294
5295 #endif
5296
5297 /*
5298 * Print scheduling while atomic bug:
5299 */
5300 static noinline void __schedule_bug(struct task_struct *prev)
5301 {
5302 struct pt_regs *regs = get_irq_regs();
5303
5304 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5305 prev->comm, prev->pid, preempt_count());
5306
5307 debug_show_held_locks(prev);
5308 print_modules();
5309 if (irqs_disabled())
5310 print_irqtrace_events(prev);
5311
5312 if (regs)
5313 show_regs(regs);
5314 else
5315 dump_stack();
5316 }
5317
5318 /*
5319 * Various schedule()-time debugging checks and statistics:
5320 */
5321 static inline void schedule_debug(struct task_struct *prev)
5322 {
5323 /*
5324 * Test if we are atomic. Since do_exit() needs to call into
5325 * schedule() atomically, we ignore that path for now.
5326 * Otherwise, whine if we are scheduling when we should not be.
5327 */
5328 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5329 __schedule_bug(prev);
5330
5331 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5332
5333 schedstat_inc(this_rq(), sched_count);
5334 #ifdef CONFIG_SCHEDSTATS
5335 if (unlikely(prev->lock_depth >= 0)) {
5336 schedstat_inc(this_rq(), bkl_count);
5337 schedstat_inc(prev, sched_info.bkl_count);
5338 }
5339 #endif
5340 }
5341
5342 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5343 {
5344 if (prev->state == TASK_RUNNING) {
5345 u64 runtime = prev->se.sum_exec_runtime;
5346
5347 runtime -= prev->se.prev_sum_exec_runtime;
5348 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5349
5350 /*
5351 * In order to avoid avg_overlap growing stale when we are
5352 * indeed overlapping and hence not getting put to sleep, grow
5353 * the avg_overlap on preemption.
5354 *
5355 * We use the average preemption runtime because that
5356 * correlates to the amount of cache footprint a task can
5357 * build up.
5358 */
5359 update_avg(&prev->se.avg_overlap, runtime);
5360 }
5361 prev->sched_class->put_prev_task(rq, prev);
5362 }
5363
5364 /*
5365 * Pick up the highest-prio task:
5366 */
5367 static inline struct task_struct *
5368 pick_next_task(struct rq *rq)
5369 {
5370 const struct sched_class *class;
5371 struct task_struct *p;
5372
5373 /*
5374 * Optimization: we know that if all tasks are in
5375 * the fair class we can call that function directly:
5376 */
5377 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5378 p = fair_sched_class.pick_next_task(rq);
5379 if (likely(p))
5380 return p;
5381 }
5382
5383 class = sched_class_highest;
5384 for ( ; ; ) {
5385 p = class->pick_next_task(rq);
5386 if (p)
5387 return p;
5388 /*
5389 * Will never be NULL as the idle class always
5390 * returns a non-NULL p:
5391 */
5392 class = class->next;
5393 }
5394 }
5395
5396 /*
5397 * schedule() is the main scheduler function.
5398 */
5399 asmlinkage void __sched schedule(void)
5400 {
5401 struct task_struct *prev, *next;
5402 unsigned long *switch_count;
5403 struct rq *rq;
5404 int cpu;
5405
5406 need_resched:
5407 preempt_disable();
5408 cpu = smp_processor_id();
5409 rq = cpu_rq(cpu);
5410 rcu_qsctr_inc(cpu);
5411 prev = rq->curr;
5412 switch_count = &prev->nivcsw;
5413
5414 release_kernel_lock(prev);
5415 need_resched_nonpreemptible:
5416
5417 schedule_debug(prev);
5418
5419 if (sched_feat(HRTICK))
5420 hrtick_clear(rq);
5421
5422 spin_lock_irq(&rq->lock);
5423 update_rq_clock(rq);
5424 clear_tsk_need_resched(prev);
5425
5426 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5427 if (unlikely(signal_pending_state(prev->state, prev)))
5428 prev->state = TASK_RUNNING;
5429 else
5430 deactivate_task(rq, prev, 1);
5431 switch_count = &prev->nvcsw;
5432 }
5433
5434 pre_schedule(rq, prev);
5435
5436 if (unlikely(!rq->nr_running))
5437 idle_balance(cpu, rq);
5438
5439 put_prev_task(rq, prev);
5440 next = pick_next_task(rq);
5441
5442 if (likely(prev != next)) {
5443 sched_info_switch(prev, next);
5444 perf_counter_task_sched_out(prev, next, cpu);
5445
5446 rq->nr_switches++;
5447 rq->curr = next;
5448 ++*switch_count;
5449
5450 context_switch(rq, prev, next); /* unlocks the rq */
5451 /*
5452 * the context switch might have flipped the stack from under
5453 * us, hence refresh the local variables.
5454 */
5455 cpu = smp_processor_id();
5456 rq = cpu_rq(cpu);
5457 } else
5458 spin_unlock_irq(&rq->lock);
5459
5460 post_schedule(rq);
5461
5462 if (unlikely(reacquire_kernel_lock(current) < 0))
5463 goto need_resched_nonpreemptible;
5464
5465 preempt_enable_no_resched();
5466 if (need_resched())
5467 goto need_resched;
5468 }
5469 EXPORT_SYMBOL(schedule);
5470
5471 #ifdef CONFIG_SMP
5472 /*
5473 * Look out! "owner" is an entirely speculative pointer
5474 * access and not reliable.
5475 */
5476 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5477 {
5478 unsigned int cpu;
5479 struct rq *rq;
5480
5481 if (!sched_feat(OWNER_SPIN))
5482 return 0;
5483
5484 #ifdef CONFIG_DEBUG_PAGEALLOC
5485 /*
5486 * Need to access the cpu field knowing that
5487 * DEBUG_PAGEALLOC could have unmapped it if
5488 * the mutex owner just released it and exited.
5489 */
5490 if (probe_kernel_address(&owner->cpu, cpu))
5491 goto out;
5492 #else
5493 cpu = owner->cpu;
5494 #endif
5495
5496 /*
5497 * Even if the access succeeded (likely case),
5498 * the cpu field may no longer be valid.
5499 */
5500 if (cpu >= nr_cpumask_bits)
5501 goto out;
5502
5503 /*
5504 * We need to validate that we can do a
5505 * get_cpu() and that we have the percpu area.
5506 */
5507 if (!cpu_online(cpu))
5508 goto out;
5509
5510 rq = cpu_rq(cpu);
5511
5512 for (;;) {
5513 /*
5514 * Owner changed, break to re-assess state.
5515 */
5516 if (lock->owner != owner)
5517 break;
5518
5519 /*
5520 * Is that owner really running on that cpu?
5521 */
5522 if (task_thread_info(rq->curr) != owner || need_resched())
5523 return 0;
5524
5525 cpu_relax();
5526 }
5527 out:
5528 return 1;
5529 }
5530 #endif
5531
5532 #ifdef CONFIG_PREEMPT
5533 /*
5534 * this is the entry point to schedule() from in-kernel preemption
5535 * off of preempt_enable. Kernel preemptions off return from interrupt
5536 * occur there and call schedule directly.
5537 */
5538 asmlinkage void __sched preempt_schedule(void)
5539 {
5540 struct thread_info *ti = current_thread_info();
5541
5542 /*
5543 * If there is a non-zero preempt_count or interrupts are disabled,
5544 * we do not want to preempt the current task. Just return..
5545 */
5546 if (likely(ti->preempt_count || irqs_disabled()))
5547 return;
5548
5549 do {
5550 add_preempt_count(PREEMPT_ACTIVE);
5551 schedule();
5552 sub_preempt_count(PREEMPT_ACTIVE);
5553
5554 /*
5555 * Check again in case we missed a preemption opportunity
5556 * between schedule and now.
5557 */
5558 barrier();
5559 } while (need_resched());
5560 }
5561 EXPORT_SYMBOL(preempt_schedule);
5562
5563 /*
5564 * this is the entry point to schedule() from kernel preemption
5565 * off of irq context.
5566 * Note, that this is called and return with irqs disabled. This will
5567 * protect us against recursive calling from irq.
5568 */
5569 asmlinkage void __sched preempt_schedule_irq(void)
5570 {
5571 struct thread_info *ti = current_thread_info();
5572
5573 /* Catch callers which need to be fixed */
5574 BUG_ON(ti->preempt_count || !irqs_disabled());
5575
5576 do {
5577 add_preempt_count(PREEMPT_ACTIVE);
5578 local_irq_enable();
5579 schedule();
5580 local_irq_disable();
5581 sub_preempt_count(PREEMPT_ACTIVE);
5582
5583 /*
5584 * Check again in case we missed a preemption opportunity
5585 * between schedule and now.
5586 */
5587 barrier();
5588 } while (need_resched());
5589 }
5590
5591 #endif /* CONFIG_PREEMPT */
5592
5593 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5594 void *key)
5595 {
5596 return try_to_wake_up(curr->private, mode, sync);
5597 }
5598 EXPORT_SYMBOL(default_wake_function);
5599
5600 /*
5601 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5602 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5603 * number) then we wake all the non-exclusive tasks and one exclusive task.
5604 *
5605 * There are circumstances in which we can try to wake a task which has already
5606 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5607 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5608 */
5609 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5610 int nr_exclusive, int sync, void *key)
5611 {
5612 wait_queue_t *curr, *next;
5613
5614 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5615 unsigned flags = curr->flags;
5616
5617 if (curr->func(curr, mode, sync, key) &&
5618 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5619 break;
5620 }
5621 }
5622
5623 /**
5624 * __wake_up - wake up threads blocked on a waitqueue.
5625 * @q: the waitqueue
5626 * @mode: which threads
5627 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5628 * @key: is directly passed to the wakeup function
5629 *
5630 * It may be assumed that this function implies a write memory barrier before
5631 * changing the task state if and only if any tasks are woken up.
5632 */
5633 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5634 int nr_exclusive, void *key)
5635 {
5636 unsigned long flags;
5637
5638 spin_lock_irqsave(&q->lock, flags);
5639 __wake_up_common(q, mode, nr_exclusive, 0, key);
5640 spin_unlock_irqrestore(&q->lock, flags);
5641 }
5642 EXPORT_SYMBOL(__wake_up);
5643
5644 /*
5645 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5646 */
5647 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5648 {
5649 __wake_up_common(q, mode, 1, 0, NULL);
5650 }
5651
5652 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5653 {
5654 __wake_up_common(q, mode, 1, 0, key);
5655 }
5656
5657 /**
5658 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5659 * @q: the waitqueue
5660 * @mode: which threads
5661 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5662 * @key: opaque value to be passed to wakeup targets
5663 *
5664 * The sync wakeup differs that the waker knows that it will schedule
5665 * away soon, so while the target thread will be woken up, it will not
5666 * be migrated to another CPU - ie. the two threads are 'synchronized'
5667 * with each other. This can prevent needless bouncing between CPUs.
5668 *
5669 * On UP it can prevent extra preemption.
5670 *
5671 * It may be assumed that this function implies a write memory barrier before
5672 * changing the task state if and only if any tasks are woken up.
5673 */
5674 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5675 int nr_exclusive, void *key)
5676 {
5677 unsigned long flags;
5678 int sync = 1;
5679
5680 if (unlikely(!q))
5681 return;
5682
5683 if (unlikely(!nr_exclusive))
5684 sync = 0;
5685
5686 spin_lock_irqsave(&q->lock, flags);
5687 __wake_up_common(q, mode, nr_exclusive, sync, key);
5688 spin_unlock_irqrestore(&q->lock, flags);
5689 }
5690 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5691
5692 /*
5693 * __wake_up_sync - see __wake_up_sync_key()
5694 */
5695 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5696 {
5697 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5698 }
5699 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5700
5701 /**
5702 * complete: - signals a single thread waiting on this completion
5703 * @x: holds the state of this particular completion
5704 *
5705 * This will wake up a single thread waiting on this completion. Threads will be
5706 * awakened in the same order in which they were queued.
5707 *
5708 * See also complete_all(), wait_for_completion() and related routines.
5709 *
5710 * It may be assumed that this function implies a write memory barrier before
5711 * changing the task state if and only if any tasks are woken up.
5712 */
5713 void complete(struct completion *x)
5714 {
5715 unsigned long flags;
5716
5717 spin_lock_irqsave(&x->wait.lock, flags);
5718 x->done++;
5719 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5720 spin_unlock_irqrestore(&x->wait.lock, flags);
5721 }
5722 EXPORT_SYMBOL(complete);
5723
5724 /**
5725 * complete_all: - signals all threads waiting on this completion
5726 * @x: holds the state of this particular completion
5727 *
5728 * This will wake up all threads waiting on this particular completion event.
5729 *
5730 * It may be assumed that this function implies a write memory barrier before
5731 * changing the task state if and only if any tasks are woken up.
5732 */
5733 void complete_all(struct completion *x)
5734 {
5735 unsigned long flags;
5736
5737 spin_lock_irqsave(&x->wait.lock, flags);
5738 x->done += UINT_MAX/2;
5739 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5740 spin_unlock_irqrestore(&x->wait.lock, flags);
5741 }
5742 EXPORT_SYMBOL(complete_all);
5743
5744 static inline long __sched
5745 do_wait_for_common(struct completion *x, long timeout, int state)
5746 {
5747 if (!x->done) {
5748 DECLARE_WAITQUEUE(wait, current);
5749
5750 wait.flags |= WQ_FLAG_EXCLUSIVE;
5751 __add_wait_queue_tail(&x->wait, &wait);
5752 do {
5753 if (signal_pending_state(state, current)) {
5754 timeout = -ERESTARTSYS;
5755 break;
5756 }
5757 __set_current_state(state);
5758 spin_unlock_irq(&x->wait.lock);
5759 timeout = schedule_timeout(timeout);
5760 spin_lock_irq(&x->wait.lock);
5761 } while (!x->done && timeout);
5762 __remove_wait_queue(&x->wait, &wait);
5763 if (!x->done)
5764 return timeout;
5765 }
5766 x->done--;
5767 return timeout ?: 1;
5768 }
5769
5770 static long __sched
5771 wait_for_common(struct completion *x, long timeout, int state)
5772 {
5773 might_sleep();
5774
5775 spin_lock_irq(&x->wait.lock);
5776 timeout = do_wait_for_common(x, timeout, state);
5777 spin_unlock_irq(&x->wait.lock);
5778 return timeout;
5779 }
5780
5781 /**
5782 * wait_for_completion: - waits for completion of a task
5783 * @x: holds the state of this particular completion
5784 *
5785 * This waits to be signaled for completion of a specific task. It is NOT
5786 * interruptible and there is no timeout.
5787 *
5788 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5789 * and interrupt capability. Also see complete().
5790 */
5791 void __sched wait_for_completion(struct completion *x)
5792 {
5793 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5794 }
5795 EXPORT_SYMBOL(wait_for_completion);
5796
5797 /**
5798 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5799 * @x: holds the state of this particular completion
5800 * @timeout: timeout value in jiffies
5801 *
5802 * This waits for either a completion of a specific task to be signaled or for a
5803 * specified timeout to expire. The timeout is in jiffies. It is not
5804 * interruptible.
5805 */
5806 unsigned long __sched
5807 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5808 {
5809 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5810 }
5811 EXPORT_SYMBOL(wait_for_completion_timeout);
5812
5813 /**
5814 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5815 * @x: holds the state of this particular completion
5816 *
5817 * This waits for completion of a specific task to be signaled. It is
5818 * interruptible.
5819 */
5820 int __sched wait_for_completion_interruptible(struct completion *x)
5821 {
5822 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5823 if (t == -ERESTARTSYS)
5824 return t;
5825 return 0;
5826 }
5827 EXPORT_SYMBOL(wait_for_completion_interruptible);
5828
5829 /**
5830 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5831 * @x: holds the state of this particular completion
5832 * @timeout: timeout value in jiffies
5833 *
5834 * This waits for either a completion of a specific task to be signaled or for a
5835 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5836 */
5837 unsigned long __sched
5838 wait_for_completion_interruptible_timeout(struct completion *x,
5839 unsigned long timeout)
5840 {
5841 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5842 }
5843 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5844
5845 /**
5846 * wait_for_completion_killable: - waits for completion of a task (killable)
5847 * @x: holds the state of this particular completion
5848 *
5849 * This waits to be signaled for completion of a specific task. It can be
5850 * interrupted by a kill signal.
5851 */
5852 int __sched wait_for_completion_killable(struct completion *x)
5853 {
5854 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5855 if (t == -ERESTARTSYS)
5856 return t;
5857 return 0;
5858 }
5859 EXPORT_SYMBOL(wait_for_completion_killable);
5860
5861 /**
5862 * try_wait_for_completion - try to decrement a completion without blocking
5863 * @x: completion structure
5864 *
5865 * Returns: 0 if a decrement cannot be done without blocking
5866 * 1 if a decrement succeeded.
5867 *
5868 * If a completion is being used as a counting completion,
5869 * attempt to decrement the counter without blocking. This
5870 * enables us to avoid waiting if the resource the completion
5871 * is protecting is not available.
5872 */
5873 bool try_wait_for_completion(struct completion *x)
5874 {
5875 int ret = 1;
5876
5877 spin_lock_irq(&x->wait.lock);
5878 if (!x->done)
5879 ret = 0;
5880 else
5881 x->done--;
5882 spin_unlock_irq(&x->wait.lock);
5883 return ret;
5884 }
5885 EXPORT_SYMBOL(try_wait_for_completion);
5886
5887 /**
5888 * completion_done - Test to see if a completion has any waiters
5889 * @x: completion structure
5890 *
5891 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5892 * 1 if there are no waiters.
5893 *
5894 */
5895 bool completion_done(struct completion *x)
5896 {
5897 int ret = 1;
5898
5899 spin_lock_irq(&x->wait.lock);
5900 if (!x->done)
5901 ret = 0;
5902 spin_unlock_irq(&x->wait.lock);
5903 return ret;
5904 }
5905 EXPORT_SYMBOL(completion_done);
5906
5907 static long __sched
5908 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5909 {
5910 unsigned long flags;
5911 wait_queue_t wait;
5912
5913 init_waitqueue_entry(&wait, current);
5914
5915 __set_current_state(state);
5916
5917 spin_lock_irqsave(&q->lock, flags);
5918 __add_wait_queue(q, &wait);
5919 spin_unlock(&q->lock);
5920 timeout = schedule_timeout(timeout);
5921 spin_lock_irq(&q->lock);
5922 __remove_wait_queue(q, &wait);
5923 spin_unlock_irqrestore(&q->lock, flags);
5924
5925 return timeout;
5926 }
5927
5928 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5929 {
5930 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5931 }
5932 EXPORT_SYMBOL(interruptible_sleep_on);
5933
5934 long __sched
5935 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5936 {
5937 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5938 }
5939 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5940
5941 void __sched sleep_on(wait_queue_head_t *q)
5942 {
5943 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5944 }
5945 EXPORT_SYMBOL(sleep_on);
5946
5947 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5948 {
5949 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5950 }
5951 EXPORT_SYMBOL(sleep_on_timeout);
5952
5953 #ifdef CONFIG_RT_MUTEXES
5954
5955 /*
5956 * rt_mutex_setprio - set the current priority of a task
5957 * @p: task
5958 * @prio: prio value (kernel-internal form)
5959 *
5960 * This function changes the 'effective' priority of a task. It does
5961 * not touch ->normal_prio like __setscheduler().
5962 *
5963 * Used by the rt_mutex code to implement priority inheritance logic.
5964 */
5965 void rt_mutex_setprio(struct task_struct *p, int prio)
5966 {
5967 unsigned long flags;
5968 int oldprio, on_rq, running;
5969 struct rq *rq;
5970 const struct sched_class *prev_class = p->sched_class;
5971
5972 BUG_ON(prio < 0 || prio > MAX_PRIO);
5973
5974 rq = task_rq_lock(p, &flags);
5975 update_rq_clock(rq);
5976
5977 oldprio = p->prio;
5978 on_rq = p->se.on_rq;
5979 running = task_current(rq, p);
5980 if (on_rq)
5981 dequeue_task(rq, p, 0);
5982 if (running)
5983 p->sched_class->put_prev_task(rq, p);
5984
5985 if (rt_prio(prio))
5986 p->sched_class = &rt_sched_class;
5987 else
5988 p->sched_class = &fair_sched_class;
5989
5990 p->prio = prio;
5991
5992 if (running)
5993 p->sched_class->set_curr_task(rq);
5994 if (on_rq) {
5995 enqueue_task(rq, p, 0);
5996
5997 check_class_changed(rq, p, prev_class, oldprio, running);
5998 }
5999 task_rq_unlock(rq, &flags);
6000 }
6001
6002 #endif
6003
6004 void set_user_nice(struct task_struct *p, long nice)
6005 {
6006 int old_prio, delta, on_rq;
6007 unsigned long flags;
6008 struct rq *rq;
6009
6010 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6011 return;
6012 /*
6013 * We have to be careful, if called from sys_setpriority(),
6014 * the task might be in the middle of scheduling on another CPU.
6015 */
6016 rq = task_rq_lock(p, &flags);
6017 update_rq_clock(rq);
6018 /*
6019 * The RT priorities are set via sched_setscheduler(), but we still
6020 * allow the 'normal' nice value to be set - but as expected
6021 * it wont have any effect on scheduling until the task is
6022 * SCHED_FIFO/SCHED_RR:
6023 */
6024 if (task_has_rt_policy(p)) {
6025 p->static_prio = NICE_TO_PRIO(nice);
6026 goto out_unlock;
6027 }
6028 on_rq = p->se.on_rq;
6029 if (on_rq)
6030 dequeue_task(rq, p, 0);
6031
6032 p->static_prio = NICE_TO_PRIO(nice);
6033 set_load_weight(p);
6034 old_prio = p->prio;
6035 p->prio = effective_prio(p);
6036 delta = p->prio - old_prio;
6037
6038 if (on_rq) {
6039 enqueue_task(rq, p, 0);
6040 /*
6041 * If the task increased its priority or is running and
6042 * lowered its priority, then reschedule its CPU:
6043 */
6044 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6045 resched_task(rq->curr);
6046 }
6047 out_unlock:
6048 task_rq_unlock(rq, &flags);
6049 }
6050 EXPORT_SYMBOL(set_user_nice);
6051
6052 /*
6053 * can_nice - check if a task can reduce its nice value
6054 * @p: task
6055 * @nice: nice value
6056 */
6057 int can_nice(const struct task_struct *p, const int nice)
6058 {
6059 /* convert nice value [19,-20] to rlimit style value [1,40] */
6060 int nice_rlim = 20 - nice;
6061
6062 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6063 capable(CAP_SYS_NICE));
6064 }
6065
6066 #ifdef __ARCH_WANT_SYS_NICE
6067
6068 /*
6069 * sys_nice - change the priority of the current process.
6070 * @increment: priority increment
6071 *
6072 * sys_setpriority is a more generic, but much slower function that
6073 * does similar things.
6074 */
6075 SYSCALL_DEFINE1(nice, int, increment)
6076 {
6077 long nice, retval;
6078
6079 /*
6080 * Setpriority might change our priority at the same moment.
6081 * We don't have to worry. Conceptually one call occurs first
6082 * and we have a single winner.
6083 */
6084 if (increment < -40)
6085 increment = -40;
6086 if (increment > 40)
6087 increment = 40;
6088
6089 nice = TASK_NICE(current) + increment;
6090 if (nice < -20)
6091 nice = -20;
6092 if (nice > 19)
6093 nice = 19;
6094
6095 if (increment < 0 && !can_nice(current, nice))
6096 return -EPERM;
6097
6098 retval = security_task_setnice(current, nice);
6099 if (retval)
6100 return retval;
6101
6102 set_user_nice(current, nice);
6103 return 0;
6104 }
6105
6106 #endif
6107
6108 /**
6109 * task_prio - return the priority value of a given task.
6110 * @p: the task in question.
6111 *
6112 * This is the priority value as seen by users in /proc.
6113 * RT tasks are offset by -200. Normal tasks are centered
6114 * around 0, value goes from -16 to +15.
6115 */
6116 int task_prio(const struct task_struct *p)
6117 {
6118 return p->prio - MAX_RT_PRIO;
6119 }
6120
6121 /**
6122 * task_nice - return the nice value of a given task.
6123 * @p: the task in question.
6124 */
6125 int task_nice(const struct task_struct *p)
6126 {
6127 return TASK_NICE(p);
6128 }
6129 EXPORT_SYMBOL(task_nice);
6130
6131 /**
6132 * idle_cpu - is a given cpu idle currently?
6133 * @cpu: the processor in question.
6134 */
6135 int idle_cpu(int cpu)
6136 {
6137 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6138 }
6139
6140 /**
6141 * idle_task - return the idle task for a given cpu.
6142 * @cpu: the processor in question.
6143 */
6144 struct task_struct *idle_task(int cpu)
6145 {
6146 return cpu_rq(cpu)->idle;
6147 }
6148
6149 /**
6150 * find_process_by_pid - find a process with a matching PID value.
6151 * @pid: the pid in question.
6152 */
6153 static struct task_struct *find_process_by_pid(pid_t pid)
6154 {
6155 return pid ? find_task_by_vpid(pid) : current;
6156 }
6157
6158 /* Actually do priority change: must hold rq lock. */
6159 static void
6160 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6161 {
6162 BUG_ON(p->se.on_rq);
6163
6164 p->policy = policy;
6165 switch (p->policy) {
6166 case SCHED_NORMAL:
6167 case SCHED_BATCH:
6168 case SCHED_IDLE:
6169 p->sched_class = &fair_sched_class;
6170 break;
6171 case SCHED_FIFO:
6172 case SCHED_RR:
6173 p->sched_class = &rt_sched_class;
6174 break;
6175 }
6176
6177 p->rt_priority = prio;
6178 p->normal_prio = normal_prio(p);
6179 /* we are holding p->pi_lock already */
6180 p->prio = rt_mutex_getprio(p);
6181 set_load_weight(p);
6182 }
6183
6184 /*
6185 * check the target process has a UID that matches the current process's
6186 */
6187 static bool check_same_owner(struct task_struct *p)
6188 {
6189 const struct cred *cred = current_cred(), *pcred;
6190 bool match;
6191
6192 rcu_read_lock();
6193 pcred = __task_cred(p);
6194 match = (cred->euid == pcred->euid ||
6195 cred->euid == pcred->uid);
6196 rcu_read_unlock();
6197 return match;
6198 }
6199
6200 static int __sched_setscheduler(struct task_struct *p, int policy,
6201 struct sched_param *param, bool user)
6202 {
6203 int retval, oldprio, oldpolicy = -1, on_rq, running;
6204 unsigned long flags;
6205 const struct sched_class *prev_class = p->sched_class;
6206 struct rq *rq;
6207 int reset_on_fork;
6208
6209 /* may grab non-irq protected spin_locks */
6210 BUG_ON(in_interrupt());
6211 recheck:
6212 /* double check policy once rq lock held */
6213 if (policy < 0) {
6214 reset_on_fork = p->sched_reset_on_fork;
6215 policy = oldpolicy = p->policy;
6216 } else {
6217 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6218 policy &= ~SCHED_RESET_ON_FORK;
6219
6220 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6221 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6222 policy != SCHED_IDLE)
6223 return -EINVAL;
6224 }
6225
6226 /*
6227 * Valid priorities for SCHED_FIFO and SCHED_RR are
6228 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6229 * SCHED_BATCH and SCHED_IDLE is 0.
6230 */
6231 if (param->sched_priority < 0 ||
6232 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6233 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6234 return -EINVAL;
6235 if (rt_policy(policy) != (param->sched_priority != 0))
6236 return -EINVAL;
6237
6238 /*
6239 * Allow unprivileged RT tasks to decrease priority:
6240 */
6241 if (user && !capable(CAP_SYS_NICE)) {
6242 if (rt_policy(policy)) {
6243 unsigned long rlim_rtprio;
6244
6245 if (!lock_task_sighand(p, &flags))
6246 return -ESRCH;
6247 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6248 unlock_task_sighand(p, &flags);
6249
6250 /* can't set/change the rt policy */
6251 if (policy != p->policy && !rlim_rtprio)
6252 return -EPERM;
6253
6254 /* can't increase priority */
6255 if (param->sched_priority > p->rt_priority &&
6256 param->sched_priority > rlim_rtprio)
6257 return -EPERM;
6258 }
6259 /*
6260 * Like positive nice levels, dont allow tasks to
6261 * move out of SCHED_IDLE either:
6262 */
6263 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6264 return -EPERM;
6265
6266 /* can't change other user's priorities */
6267 if (!check_same_owner(p))
6268 return -EPERM;
6269
6270 /* Normal users shall not reset the sched_reset_on_fork flag */
6271 if (p->sched_reset_on_fork && !reset_on_fork)
6272 return -EPERM;
6273 }
6274
6275 if (user) {
6276 #ifdef CONFIG_RT_GROUP_SCHED
6277 /*
6278 * Do not allow realtime tasks into groups that have no runtime
6279 * assigned.
6280 */
6281 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6282 task_group(p)->rt_bandwidth.rt_runtime == 0)
6283 return -EPERM;
6284 #endif
6285
6286 retval = security_task_setscheduler(p, policy, param);
6287 if (retval)
6288 return retval;
6289 }
6290
6291 /*
6292 * make sure no PI-waiters arrive (or leave) while we are
6293 * changing the priority of the task:
6294 */
6295 spin_lock_irqsave(&p->pi_lock, flags);
6296 /*
6297 * To be able to change p->policy safely, the apropriate
6298 * runqueue lock must be held.
6299 */
6300 rq = __task_rq_lock(p);
6301 /* recheck policy now with rq lock held */
6302 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6303 policy = oldpolicy = -1;
6304 __task_rq_unlock(rq);
6305 spin_unlock_irqrestore(&p->pi_lock, flags);
6306 goto recheck;
6307 }
6308 update_rq_clock(rq);
6309 on_rq = p->se.on_rq;
6310 running = task_current(rq, p);
6311 if (on_rq)
6312 deactivate_task(rq, p, 0);
6313 if (running)
6314 p->sched_class->put_prev_task(rq, p);
6315
6316 p->sched_reset_on_fork = reset_on_fork;
6317
6318 oldprio = p->prio;
6319 __setscheduler(rq, p, policy, param->sched_priority);
6320
6321 if (running)
6322 p->sched_class->set_curr_task(rq);
6323 if (on_rq) {
6324 activate_task(rq, p, 0);
6325
6326 check_class_changed(rq, p, prev_class, oldprio, running);
6327 }
6328 __task_rq_unlock(rq);
6329 spin_unlock_irqrestore(&p->pi_lock, flags);
6330
6331 rt_mutex_adjust_pi(p);
6332
6333 return 0;
6334 }
6335
6336 /**
6337 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6338 * @p: the task in question.
6339 * @policy: new policy.
6340 * @param: structure containing the new RT priority.
6341 *
6342 * NOTE that the task may be already dead.
6343 */
6344 int sched_setscheduler(struct task_struct *p, int policy,
6345 struct sched_param *param)
6346 {
6347 return __sched_setscheduler(p, policy, param, true);
6348 }
6349 EXPORT_SYMBOL_GPL(sched_setscheduler);
6350
6351 /**
6352 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6353 * @p: the task in question.
6354 * @policy: new policy.
6355 * @param: structure containing the new RT priority.
6356 *
6357 * Just like sched_setscheduler, only don't bother checking if the
6358 * current context has permission. For example, this is needed in
6359 * stop_machine(): we create temporary high priority worker threads,
6360 * but our caller might not have that capability.
6361 */
6362 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6363 struct sched_param *param)
6364 {
6365 return __sched_setscheduler(p, policy, param, false);
6366 }
6367
6368 static int
6369 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6370 {
6371 struct sched_param lparam;
6372 struct task_struct *p;
6373 int retval;
6374
6375 if (!param || pid < 0)
6376 return -EINVAL;
6377 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6378 return -EFAULT;
6379
6380 rcu_read_lock();
6381 retval = -ESRCH;
6382 p = find_process_by_pid(pid);
6383 if (p != NULL)
6384 retval = sched_setscheduler(p, policy, &lparam);
6385 rcu_read_unlock();
6386
6387 return retval;
6388 }
6389
6390 /**
6391 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6392 * @pid: the pid in question.
6393 * @policy: new policy.
6394 * @param: structure containing the new RT priority.
6395 */
6396 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6397 struct sched_param __user *, param)
6398 {
6399 /* negative values for policy are not valid */
6400 if (policy < 0)
6401 return -EINVAL;
6402
6403 return do_sched_setscheduler(pid, policy, param);
6404 }
6405
6406 /**
6407 * sys_sched_setparam - set/change the RT priority of a thread
6408 * @pid: the pid in question.
6409 * @param: structure containing the new RT priority.
6410 */
6411 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6412 {
6413 return do_sched_setscheduler(pid, -1, param);
6414 }
6415
6416 /**
6417 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6418 * @pid: the pid in question.
6419 */
6420 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6421 {
6422 struct task_struct *p;
6423 int retval;
6424
6425 if (pid < 0)
6426 return -EINVAL;
6427
6428 retval = -ESRCH;
6429 read_lock(&tasklist_lock);
6430 p = find_process_by_pid(pid);
6431 if (p) {
6432 retval = security_task_getscheduler(p);
6433 if (!retval)
6434 retval = p->policy
6435 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6436 }
6437 read_unlock(&tasklist_lock);
6438 return retval;
6439 }
6440
6441 /**
6442 * sys_sched_getparam - get the RT priority of a thread
6443 * @pid: the pid in question.
6444 * @param: structure containing the RT priority.
6445 */
6446 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6447 {
6448 struct sched_param lp;
6449 struct task_struct *p;
6450 int retval;
6451
6452 if (!param || pid < 0)
6453 return -EINVAL;
6454
6455 read_lock(&tasklist_lock);
6456 p = find_process_by_pid(pid);
6457 retval = -ESRCH;
6458 if (!p)
6459 goto out_unlock;
6460
6461 retval = security_task_getscheduler(p);
6462 if (retval)
6463 goto out_unlock;
6464
6465 lp.sched_priority = p->rt_priority;
6466 read_unlock(&tasklist_lock);
6467
6468 /*
6469 * This one might sleep, we cannot do it with a spinlock held ...
6470 */
6471 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6472
6473 return retval;
6474
6475 out_unlock:
6476 read_unlock(&tasklist_lock);
6477 return retval;
6478 }
6479
6480 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6481 {
6482 cpumask_var_t cpus_allowed, new_mask;
6483 struct task_struct *p;
6484 int retval;
6485
6486 get_online_cpus();
6487 read_lock(&tasklist_lock);
6488
6489 p = find_process_by_pid(pid);
6490 if (!p) {
6491 read_unlock(&tasklist_lock);
6492 put_online_cpus();
6493 return -ESRCH;
6494 }
6495
6496 /*
6497 * It is not safe to call set_cpus_allowed with the
6498 * tasklist_lock held. We will bump the task_struct's
6499 * usage count and then drop tasklist_lock.
6500 */
6501 get_task_struct(p);
6502 read_unlock(&tasklist_lock);
6503
6504 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6505 retval = -ENOMEM;
6506 goto out_put_task;
6507 }
6508 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6509 retval = -ENOMEM;
6510 goto out_free_cpus_allowed;
6511 }
6512 retval = -EPERM;
6513 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6514 goto out_unlock;
6515
6516 retval = security_task_setscheduler(p, 0, NULL);
6517 if (retval)
6518 goto out_unlock;
6519
6520 cpuset_cpus_allowed(p, cpus_allowed);
6521 cpumask_and(new_mask, in_mask, cpus_allowed);
6522 again:
6523 retval = set_cpus_allowed_ptr(p, new_mask);
6524
6525 if (!retval) {
6526 cpuset_cpus_allowed(p, cpus_allowed);
6527 if (!cpumask_subset(new_mask, cpus_allowed)) {
6528 /*
6529 * We must have raced with a concurrent cpuset
6530 * update. Just reset the cpus_allowed to the
6531 * cpuset's cpus_allowed
6532 */
6533 cpumask_copy(new_mask, cpus_allowed);
6534 goto again;
6535 }
6536 }
6537 out_unlock:
6538 free_cpumask_var(new_mask);
6539 out_free_cpus_allowed:
6540 free_cpumask_var(cpus_allowed);
6541 out_put_task:
6542 put_task_struct(p);
6543 put_online_cpus();
6544 return retval;
6545 }
6546
6547 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6548 struct cpumask *new_mask)
6549 {
6550 if (len < cpumask_size())
6551 cpumask_clear(new_mask);
6552 else if (len > cpumask_size())
6553 len = cpumask_size();
6554
6555 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6556 }
6557
6558 /**
6559 * sys_sched_setaffinity - set the cpu affinity of a process
6560 * @pid: pid of the process
6561 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6562 * @user_mask_ptr: user-space pointer to the new cpu mask
6563 */
6564 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6565 unsigned long __user *, user_mask_ptr)
6566 {
6567 cpumask_var_t new_mask;
6568 int retval;
6569
6570 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6571 return -ENOMEM;
6572
6573 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6574 if (retval == 0)
6575 retval = sched_setaffinity(pid, new_mask);
6576 free_cpumask_var(new_mask);
6577 return retval;
6578 }
6579
6580 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6581 {
6582 struct task_struct *p;
6583 int retval;
6584
6585 get_online_cpus();
6586 read_lock(&tasklist_lock);
6587
6588 retval = -ESRCH;
6589 p = find_process_by_pid(pid);
6590 if (!p)
6591 goto out_unlock;
6592
6593 retval = security_task_getscheduler(p);
6594 if (retval)
6595 goto out_unlock;
6596
6597 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6598
6599 out_unlock:
6600 read_unlock(&tasklist_lock);
6601 put_online_cpus();
6602
6603 return retval;
6604 }
6605
6606 /**
6607 * sys_sched_getaffinity - get the cpu affinity of a process
6608 * @pid: pid of the process
6609 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6610 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6611 */
6612 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6613 unsigned long __user *, user_mask_ptr)
6614 {
6615 int ret;
6616 cpumask_var_t mask;
6617
6618 if (len < cpumask_size())
6619 return -EINVAL;
6620
6621 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6622 return -ENOMEM;
6623
6624 ret = sched_getaffinity(pid, mask);
6625 if (ret == 0) {
6626 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6627 ret = -EFAULT;
6628 else
6629 ret = cpumask_size();
6630 }
6631 free_cpumask_var(mask);
6632
6633 return ret;
6634 }
6635
6636 /**
6637 * sys_sched_yield - yield the current processor to other threads.
6638 *
6639 * This function yields the current CPU to other tasks. If there are no
6640 * other threads running on this CPU then this function will return.
6641 */
6642 SYSCALL_DEFINE0(sched_yield)
6643 {
6644 struct rq *rq = this_rq_lock();
6645
6646 schedstat_inc(rq, yld_count);
6647 current->sched_class->yield_task(rq);
6648
6649 /*
6650 * Since we are going to call schedule() anyway, there's
6651 * no need to preempt or enable interrupts:
6652 */
6653 __release(rq->lock);
6654 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6655 _raw_spin_unlock(&rq->lock);
6656 preempt_enable_no_resched();
6657
6658 schedule();
6659
6660 return 0;
6661 }
6662
6663 static inline int should_resched(void)
6664 {
6665 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6666 }
6667
6668 static void __cond_resched(void)
6669 {
6670 add_preempt_count(PREEMPT_ACTIVE);
6671 schedule();
6672 sub_preempt_count(PREEMPT_ACTIVE);
6673 }
6674
6675 int __sched _cond_resched(void)
6676 {
6677 if (should_resched()) {
6678 __cond_resched();
6679 return 1;
6680 }
6681 return 0;
6682 }
6683 EXPORT_SYMBOL(_cond_resched);
6684
6685 /*
6686 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6687 * call schedule, and on return reacquire the lock.
6688 *
6689 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6690 * operations here to prevent schedule() from being called twice (once via
6691 * spin_unlock(), once by hand).
6692 */
6693 int __cond_resched_lock(spinlock_t *lock)
6694 {
6695 int resched = should_resched();
6696 int ret = 0;
6697
6698 if (spin_needbreak(lock) || resched) {
6699 spin_unlock(lock);
6700 if (resched)
6701 __cond_resched();
6702 else
6703 cpu_relax();
6704 ret = 1;
6705 spin_lock(lock);
6706 }
6707 return ret;
6708 }
6709 EXPORT_SYMBOL(__cond_resched_lock);
6710
6711 int __sched __cond_resched_softirq(void)
6712 {
6713 BUG_ON(!in_softirq());
6714
6715 if (should_resched()) {
6716 local_bh_enable();
6717 __cond_resched();
6718 local_bh_disable();
6719 return 1;
6720 }
6721 return 0;
6722 }
6723 EXPORT_SYMBOL(__cond_resched_softirq);
6724
6725 /**
6726 * yield - yield the current processor to other threads.
6727 *
6728 * This is a shortcut for kernel-space yielding - it marks the
6729 * thread runnable and calls sys_sched_yield().
6730 */
6731 void __sched yield(void)
6732 {
6733 set_current_state(TASK_RUNNING);
6734 sys_sched_yield();
6735 }
6736 EXPORT_SYMBOL(yield);
6737
6738 /*
6739 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6740 * that process accounting knows that this is a task in IO wait state.
6741 *
6742 * But don't do that if it is a deliberate, throttling IO wait (this task
6743 * has set its backing_dev_info: the queue against which it should throttle)
6744 */
6745 void __sched io_schedule(void)
6746 {
6747 struct rq *rq = raw_rq();
6748
6749 delayacct_blkio_start();
6750 atomic_inc(&rq->nr_iowait);
6751 schedule();
6752 atomic_dec(&rq->nr_iowait);
6753 delayacct_blkio_end();
6754 }
6755 EXPORT_SYMBOL(io_schedule);
6756
6757 long __sched io_schedule_timeout(long timeout)
6758 {
6759 struct rq *rq = raw_rq();
6760 long ret;
6761
6762 delayacct_blkio_start();
6763 atomic_inc(&rq->nr_iowait);
6764 ret = schedule_timeout(timeout);
6765 atomic_dec(&rq->nr_iowait);
6766 delayacct_blkio_end();
6767 return ret;
6768 }
6769
6770 /**
6771 * sys_sched_get_priority_max - return maximum RT priority.
6772 * @policy: scheduling class.
6773 *
6774 * this syscall returns the maximum rt_priority that can be used
6775 * by a given scheduling class.
6776 */
6777 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6778 {
6779 int ret = -EINVAL;
6780
6781 switch (policy) {
6782 case SCHED_FIFO:
6783 case SCHED_RR:
6784 ret = MAX_USER_RT_PRIO-1;
6785 break;
6786 case SCHED_NORMAL:
6787 case SCHED_BATCH:
6788 case SCHED_IDLE:
6789 ret = 0;
6790 break;
6791 }
6792 return ret;
6793 }
6794
6795 /**
6796 * sys_sched_get_priority_min - return minimum RT priority.
6797 * @policy: scheduling class.
6798 *
6799 * this syscall returns the minimum rt_priority that can be used
6800 * by a given scheduling class.
6801 */
6802 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6803 {
6804 int ret = -EINVAL;
6805
6806 switch (policy) {
6807 case SCHED_FIFO:
6808 case SCHED_RR:
6809 ret = 1;
6810 break;
6811 case SCHED_NORMAL:
6812 case SCHED_BATCH:
6813 case SCHED_IDLE:
6814 ret = 0;
6815 }
6816 return ret;
6817 }
6818
6819 /**
6820 * sys_sched_rr_get_interval - return the default timeslice of a process.
6821 * @pid: pid of the process.
6822 * @interval: userspace pointer to the timeslice value.
6823 *
6824 * this syscall writes the default timeslice value of a given process
6825 * into the user-space timespec buffer. A value of '0' means infinity.
6826 */
6827 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6828 struct timespec __user *, interval)
6829 {
6830 struct task_struct *p;
6831 unsigned int time_slice;
6832 int retval;
6833 struct timespec t;
6834
6835 if (pid < 0)
6836 return -EINVAL;
6837
6838 retval = -ESRCH;
6839 read_lock(&tasklist_lock);
6840 p = find_process_by_pid(pid);
6841 if (!p)
6842 goto out_unlock;
6843
6844 retval = security_task_getscheduler(p);
6845 if (retval)
6846 goto out_unlock;
6847
6848 /*
6849 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6850 * tasks that are on an otherwise idle runqueue:
6851 */
6852 time_slice = 0;
6853 if (p->policy == SCHED_RR) {
6854 time_slice = DEF_TIMESLICE;
6855 } else if (p->policy != SCHED_FIFO) {
6856 struct sched_entity *se = &p->se;
6857 unsigned long flags;
6858 struct rq *rq;
6859
6860 rq = task_rq_lock(p, &flags);
6861 if (rq->cfs.load.weight)
6862 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6863 task_rq_unlock(rq, &flags);
6864 }
6865 read_unlock(&tasklist_lock);
6866 jiffies_to_timespec(time_slice, &t);
6867 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6868 return retval;
6869
6870 out_unlock:
6871 read_unlock(&tasklist_lock);
6872 return retval;
6873 }
6874
6875 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6876
6877 void sched_show_task(struct task_struct *p)
6878 {
6879 unsigned long free = 0;
6880 unsigned state;
6881
6882 state = p->state ? __ffs(p->state) + 1 : 0;
6883 printk(KERN_INFO "%-13.13s %c", p->comm,
6884 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6885 #if BITS_PER_LONG == 32
6886 if (state == TASK_RUNNING)
6887 printk(KERN_CONT " running ");
6888 else
6889 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6890 #else
6891 if (state == TASK_RUNNING)
6892 printk(KERN_CONT " running task ");
6893 else
6894 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6895 #endif
6896 #ifdef CONFIG_DEBUG_STACK_USAGE
6897 free = stack_not_used(p);
6898 #endif
6899 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6900 task_pid_nr(p), task_pid_nr(p->real_parent),
6901 (unsigned long)task_thread_info(p)->flags);
6902
6903 show_stack(p, NULL);
6904 }
6905
6906 void show_state_filter(unsigned long state_filter)
6907 {
6908 struct task_struct *g, *p;
6909
6910 #if BITS_PER_LONG == 32
6911 printk(KERN_INFO
6912 " task PC stack pid father\n");
6913 #else
6914 printk(KERN_INFO
6915 " task PC stack pid father\n");
6916 #endif
6917 read_lock(&tasklist_lock);
6918 do_each_thread(g, p) {
6919 /*
6920 * reset the NMI-timeout, listing all files on a slow
6921 * console might take alot of time:
6922 */
6923 touch_nmi_watchdog();
6924 if (!state_filter || (p->state & state_filter))
6925 sched_show_task(p);
6926 } while_each_thread(g, p);
6927
6928 touch_all_softlockup_watchdogs();
6929
6930 #ifdef CONFIG_SCHED_DEBUG
6931 sysrq_sched_debug_show();
6932 #endif
6933 read_unlock(&tasklist_lock);
6934 /*
6935 * Only show locks if all tasks are dumped:
6936 */
6937 if (state_filter == -1)
6938 debug_show_all_locks();
6939 }
6940
6941 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6942 {
6943 idle->sched_class = &idle_sched_class;
6944 }
6945
6946 /**
6947 * init_idle - set up an idle thread for a given CPU
6948 * @idle: task in question
6949 * @cpu: cpu the idle task belongs to
6950 *
6951 * NOTE: this function does not set the idle thread's NEED_RESCHED
6952 * flag, to make booting more robust.
6953 */
6954 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6955 {
6956 struct rq *rq = cpu_rq(cpu);
6957 unsigned long flags;
6958
6959 spin_lock_irqsave(&rq->lock, flags);
6960
6961 __sched_fork(idle);
6962 idle->se.exec_start = sched_clock();
6963
6964 idle->prio = idle->normal_prio = MAX_PRIO;
6965 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6966 __set_task_cpu(idle, cpu);
6967
6968 rq->curr = rq->idle = idle;
6969 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6970 idle->oncpu = 1;
6971 #endif
6972 spin_unlock_irqrestore(&rq->lock, flags);
6973
6974 /* Set the preempt count _outside_ the spinlocks! */
6975 #if defined(CONFIG_PREEMPT)
6976 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6977 #else
6978 task_thread_info(idle)->preempt_count = 0;
6979 #endif
6980 /*
6981 * The idle tasks have their own, simple scheduling class:
6982 */
6983 idle->sched_class = &idle_sched_class;
6984 ftrace_graph_init_task(idle);
6985 }
6986
6987 /*
6988 * In a system that switches off the HZ timer nohz_cpu_mask
6989 * indicates which cpus entered this state. This is used
6990 * in the rcu update to wait only for active cpus. For system
6991 * which do not switch off the HZ timer nohz_cpu_mask should
6992 * always be CPU_BITS_NONE.
6993 */
6994 cpumask_var_t nohz_cpu_mask;
6995
6996 /*
6997 * Increase the granularity value when there are more CPUs,
6998 * because with more CPUs the 'effective latency' as visible
6999 * to users decreases. But the relationship is not linear,
7000 * so pick a second-best guess by going with the log2 of the
7001 * number of CPUs.
7002 *
7003 * This idea comes from the SD scheduler of Con Kolivas:
7004 */
7005 static inline void sched_init_granularity(void)
7006 {
7007 unsigned int factor = 1 + ilog2(num_online_cpus());
7008 const unsigned long limit = 200000000;
7009
7010 sysctl_sched_min_granularity *= factor;
7011 if (sysctl_sched_min_granularity > limit)
7012 sysctl_sched_min_granularity = limit;
7013
7014 sysctl_sched_latency *= factor;
7015 if (sysctl_sched_latency > limit)
7016 sysctl_sched_latency = limit;
7017
7018 sysctl_sched_wakeup_granularity *= factor;
7019
7020 sysctl_sched_shares_ratelimit *= factor;
7021 }
7022
7023 #ifdef CONFIG_SMP
7024 /*
7025 * This is how migration works:
7026 *
7027 * 1) we queue a struct migration_req structure in the source CPU's
7028 * runqueue and wake up that CPU's migration thread.
7029 * 2) we down() the locked semaphore => thread blocks.
7030 * 3) migration thread wakes up (implicitly it forces the migrated
7031 * thread off the CPU)
7032 * 4) it gets the migration request and checks whether the migrated
7033 * task is still in the wrong runqueue.
7034 * 5) if it's in the wrong runqueue then the migration thread removes
7035 * it and puts it into the right queue.
7036 * 6) migration thread up()s the semaphore.
7037 * 7) we wake up and the migration is done.
7038 */
7039
7040 /*
7041 * Change a given task's CPU affinity. Migrate the thread to a
7042 * proper CPU and schedule it away if the CPU it's executing on
7043 * is removed from the allowed bitmask.
7044 *
7045 * NOTE: the caller must have a valid reference to the task, the
7046 * task must not exit() & deallocate itself prematurely. The
7047 * call is not atomic; no spinlocks may be held.
7048 */
7049 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7050 {
7051 struct migration_req req;
7052 unsigned long flags;
7053 struct rq *rq;
7054 int ret = 0;
7055
7056 rq = task_rq_lock(p, &flags);
7057 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7058 ret = -EINVAL;
7059 goto out;
7060 }
7061
7062 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7063 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7064 ret = -EINVAL;
7065 goto out;
7066 }
7067
7068 if (p->sched_class->set_cpus_allowed)
7069 p->sched_class->set_cpus_allowed(p, new_mask);
7070 else {
7071 cpumask_copy(&p->cpus_allowed, new_mask);
7072 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7073 }
7074
7075 /* Can the task run on the task's current CPU? If so, we're done */
7076 if (cpumask_test_cpu(task_cpu(p), new_mask))
7077 goto out;
7078
7079 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7080 /* Need help from migration thread: drop lock and wait. */
7081 task_rq_unlock(rq, &flags);
7082 wake_up_process(rq->migration_thread);
7083 wait_for_completion(&req.done);
7084 tlb_migrate_finish(p->mm);
7085 return 0;
7086 }
7087 out:
7088 task_rq_unlock(rq, &flags);
7089
7090 return ret;
7091 }
7092 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7093
7094 /*
7095 * Move (not current) task off this cpu, onto dest cpu. We're doing
7096 * this because either it can't run here any more (set_cpus_allowed()
7097 * away from this CPU, or CPU going down), or because we're
7098 * attempting to rebalance this task on exec (sched_exec).
7099 *
7100 * So we race with normal scheduler movements, but that's OK, as long
7101 * as the task is no longer on this CPU.
7102 *
7103 * Returns non-zero if task was successfully migrated.
7104 */
7105 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7106 {
7107 struct rq *rq_dest, *rq_src;
7108 int ret = 0, on_rq;
7109
7110 if (unlikely(!cpu_active(dest_cpu)))
7111 return ret;
7112
7113 rq_src = cpu_rq(src_cpu);
7114 rq_dest = cpu_rq(dest_cpu);
7115
7116 double_rq_lock(rq_src, rq_dest);
7117 /* Already moved. */
7118 if (task_cpu(p) != src_cpu)
7119 goto done;
7120 /* Affinity changed (again). */
7121 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7122 goto fail;
7123
7124 on_rq = p->se.on_rq;
7125 if (on_rq)
7126 deactivate_task(rq_src, p, 0);
7127
7128 set_task_cpu(p, dest_cpu);
7129 if (on_rq) {
7130 activate_task(rq_dest, p, 0);
7131 check_preempt_curr(rq_dest, p, 0);
7132 }
7133 done:
7134 ret = 1;
7135 fail:
7136 double_rq_unlock(rq_src, rq_dest);
7137 return ret;
7138 }
7139
7140 /*
7141 * migration_thread - this is a highprio system thread that performs
7142 * thread migration by bumping thread off CPU then 'pushing' onto
7143 * another runqueue.
7144 */
7145 static int migration_thread(void *data)
7146 {
7147 int cpu = (long)data;
7148 struct rq *rq;
7149
7150 rq = cpu_rq(cpu);
7151 BUG_ON(rq->migration_thread != current);
7152
7153 set_current_state(TASK_INTERRUPTIBLE);
7154 while (!kthread_should_stop()) {
7155 struct migration_req *req;
7156 struct list_head *head;
7157
7158 spin_lock_irq(&rq->lock);
7159
7160 if (cpu_is_offline(cpu)) {
7161 spin_unlock_irq(&rq->lock);
7162 break;
7163 }
7164
7165 if (rq->active_balance) {
7166 active_load_balance(rq, cpu);
7167 rq->active_balance = 0;
7168 }
7169
7170 head = &rq->migration_queue;
7171
7172 if (list_empty(head)) {
7173 spin_unlock_irq(&rq->lock);
7174 schedule();
7175 set_current_state(TASK_INTERRUPTIBLE);
7176 continue;
7177 }
7178 req = list_entry(head->next, struct migration_req, list);
7179 list_del_init(head->next);
7180
7181 spin_unlock(&rq->lock);
7182 __migrate_task(req->task, cpu, req->dest_cpu);
7183 local_irq_enable();
7184
7185 complete(&req->done);
7186 }
7187 __set_current_state(TASK_RUNNING);
7188
7189 return 0;
7190 }
7191
7192 #ifdef CONFIG_HOTPLUG_CPU
7193
7194 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7195 {
7196 int ret;
7197
7198 local_irq_disable();
7199 ret = __migrate_task(p, src_cpu, dest_cpu);
7200 local_irq_enable();
7201 return ret;
7202 }
7203
7204 /*
7205 * Figure out where task on dead CPU should go, use force if necessary.
7206 */
7207 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7208 {
7209 int dest_cpu;
7210 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7211
7212 again:
7213 /* Look for allowed, online CPU in same node. */
7214 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7215 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7216 goto move;
7217
7218 /* Any allowed, online CPU? */
7219 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7220 if (dest_cpu < nr_cpu_ids)
7221 goto move;
7222
7223 /* No more Mr. Nice Guy. */
7224 if (dest_cpu >= nr_cpu_ids) {
7225 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7226 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7227
7228 /*
7229 * Don't tell them about moving exiting tasks or
7230 * kernel threads (both mm NULL), since they never
7231 * leave kernel.
7232 */
7233 if (p->mm && printk_ratelimit()) {
7234 printk(KERN_INFO "process %d (%s) no "
7235 "longer affine to cpu%d\n",
7236 task_pid_nr(p), p->comm, dead_cpu);
7237 }
7238 }
7239
7240 move:
7241 /* It can have affinity changed while we were choosing. */
7242 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7243 goto again;
7244 }
7245
7246 /*
7247 * While a dead CPU has no uninterruptible tasks queued at this point,
7248 * it might still have a nonzero ->nr_uninterruptible counter, because
7249 * for performance reasons the counter is not stricly tracking tasks to
7250 * their home CPUs. So we just add the counter to another CPU's counter,
7251 * to keep the global sum constant after CPU-down:
7252 */
7253 static void migrate_nr_uninterruptible(struct rq *rq_src)
7254 {
7255 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7256 unsigned long flags;
7257
7258 local_irq_save(flags);
7259 double_rq_lock(rq_src, rq_dest);
7260 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7261 rq_src->nr_uninterruptible = 0;
7262 double_rq_unlock(rq_src, rq_dest);
7263 local_irq_restore(flags);
7264 }
7265
7266 /* Run through task list and migrate tasks from the dead cpu. */
7267 static void migrate_live_tasks(int src_cpu)
7268 {
7269 struct task_struct *p, *t;
7270
7271 read_lock(&tasklist_lock);
7272
7273 do_each_thread(t, p) {
7274 if (p == current)
7275 continue;
7276
7277 if (task_cpu(p) == src_cpu)
7278 move_task_off_dead_cpu(src_cpu, p);
7279 } while_each_thread(t, p);
7280
7281 read_unlock(&tasklist_lock);
7282 }
7283
7284 /*
7285 * Schedules idle task to be the next runnable task on current CPU.
7286 * It does so by boosting its priority to highest possible.
7287 * Used by CPU offline code.
7288 */
7289 void sched_idle_next(void)
7290 {
7291 int this_cpu = smp_processor_id();
7292 struct rq *rq = cpu_rq(this_cpu);
7293 struct task_struct *p = rq->idle;
7294 unsigned long flags;
7295
7296 /* cpu has to be offline */
7297 BUG_ON(cpu_online(this_cpu));
7298
7299 /*
7300 * Strictly not necessary since rest of the CPUs are stopped by now
7301 * and interrupts disabled on the current cpu.
7302 */
7303 spin_lock_irqsave(&rq->lock, flags);
7304
7305 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7306
7307 update_rq_clock(rq);
7308 activate_task(rq, p, 0);
7309
7310 spin_unlock_irqrestore(&rq->lock, flags);
7311 }
7312
7313 /*
7314 * Ensures that the idle task is using init_mm right before its cpu goes
7315 * offline.
7316 */
7317 void idle_task_exit(void)
7318 {
7319 struct mm_struct *mm = current->active_mm;
7320
7321 BUG_ON(cpu_online(smp_processor_id()));
7322
7323 if (mm != &init_mm)
7324 switch_mm(mm, &init_mm, current);
7325 mmdrop(mm);
7326 }
7327
7328 /* called under rq->lock with disabled interrupts */
7329 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7330 {
7331 struct rq *rq = cpu_rq(dead_cpu);
7332
7333 /* Must be exiting, otherwise would be on tasklist. */
7334 BUG_ON(!p->exit_state);
7335
7336 /* Cannot have done final schedule yet: would have vanished. */
7337 BUG_ON(p->state == TASK_DEAD);
7338
7339 get_task_struct(p);
7340
7341 /*
7342 * Drop lock around migration; if someone else moves it,
7343 * that's OK. No task can be added to this CPU, so iteration is
7344 * fine.
7345 */
7346 spin_unlock_irq(&rq->lock);
7347 move_task_off_dead_cpu(dead_cpu, p);
7348 spin_lock_irq(&rq->lock);
7349
7350 put_task_struct(p);
7351 }
7352
7353 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7354 static void migrate_dead_tasks(unsigned int dead_cpu)
7355 {
7356 struct rq *rq = cpu_rq(dead_cpu);
7357 struct task_struct *next;
7358
7359 for ( ; ; ) {
7360 if (!rq->nr_running)
7361 break;
7362 update_rq_clock(rq);
7363 next = pick_next_task(rq);
7364 if (!next)
7365 break;
7366 next->sched_class->put_prev_task(rq, next);
7367 migrate_dead(dead_cpu, next);
7368
7369 }
7370 }
7371
7372 /*
7373 * remove the tasks which were accounted by rq from calc_load_tasks.
7374 */
7375 static void calc_global_load_remove(struct rq *rq)
7376 {
7377 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7378 rq->calc_load_active = 0;
7379 }
7380 #endif /* CONFIG_HOTPLUG_CPU */
7381
7382 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7383
7384 static struct ctl_table sd_ctl_dir[] = {
7385 {
7386 .procname = "sched_domain",
7387 .mode = 0555,
7388 },
7389 {0, },
7390 };
7391
7392 static struct ctl_table sd_ctl_root[] = {
7393 {
7394 .ctl_name = CTL_KERN,
7395 .procname = "kernel",
7396 .mode = 0555,
7397 .child = sd_ctl_dir,
7398 },
7399 {0, },
7400 };
7401
7402 static struct ctl_table *sd_alloc_ctl_entry(int n)
7403 {
7404 struct ctl_table *entry =
7405 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7406
7407 return entry;
7408 }
7409
7410 static void sd_free_ctl_entry(struct ctl_table **tablep)
7411 {
7412 struct ctl_table *entry;
7413
7414 /*
7415 * In the intermediate directories, both the child directory and
7416 * procname are dynamically allocated and could fail but the mode
7417 * will always be set. In the lowest directory the names are
7418 * static strings and all have proc handlers.
7419 */
7420 for (entry = *tablep; entry->mode; entry++) {
7421 if (entry->child)
7422 sd_free_ctl_entry(&entry->child);
7423 if (entry->proc_handler == NULL)
7424 kfree(entry->procname);
7425 }
7426
7427 kfree(*tablep);
7428 *tablep = NULL;
7429 }
7430
7431 static void
7432 set_table_entry(struct ctl_table *entry,
7433 const char *procname, void *data, int maxlen,
7434 mode_t mode, proc_handler *proc_handler)
7435 {
7436 entry->procname = procname;
7437 entry->data = data;
7438 entry->maxlen = maxlen;
7439 entry->mode = mode;
7440 entry->proc_handler = proc_handler;
7441 }
7442
7443 static struct ctl_table *
7444 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7445 {
7446 struct ctl_table *table = sd_alloc_ctl_entry(13);
7447
7448 if (table == NULL)
7449 return NULL;
7450
7451 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7452 sizeof(long), 0644, proc_doulongvec_minmax);
7453 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7454 sizeof(long), 0644, proc_doulongvec_minmax);
7455 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7456 sizeof(int), 0644, proc_dointvec_minmax);
7457 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7458 sizeof(int), 0644, proc_dointvec_minmax);
7459 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7460 sizeof(int), 0644, proc_dointvec_minmax);
7461 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7462 sizeof(int), 0644, proc_dointvec_minmax);
7463 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7464 sizeof(int), 0644, proc_dointvec_minmax);
7465 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7466 sizeof(int), 0644, proc_dointvec_minmax);
7467 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7468 sizeof(int), 0644, proc_dointvec_minmax);
7469 set_table_entry(&table[9], "cache_nice_tries",
7470 &sd->cache_nice_tries,
7471 sizeof(int), 0644, proc_dointvec_minmax);
7472 set_table_entry(&table[10], "flags", &sd->flags,
7473 sizeof(int), 0644, proc_dointvec_minmax);
7474 set_table_entry(&table[11], "name", sd->name,
7475 CORENAME_MAX_SIZE, 0444, proc_dostring);
7476 /* &table[12] is terminator */
7477
7478 return table;
7479 }
7480
7481 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7482 {
7483 struct ctl_table *entry, *table;
7484 struct sched_domain *sd;
7485 int domain_num = 0, i;
7486 char buf[32];
7487
7488 for_each_domain(cpu, sd)
7489 domain_num++;
7490 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7491 if (table == NULL)
7492 return NULL;
7493
7494 i = 0;
7495 for_each_domain(cpu, sd) {
7496 snprintf(buf, 32, "domain%d", i);
7497 entry->procname = kstrdup(buf, GFP_KERNEL);
7498 entry->mode = 0555;
7499 entry->child = sd_alloc_ctl_domain_table(sd);
7500 entry++;
7501 i++;
7502 }
7503 return table;
7504 }
7505
7506 static struct ctl_table_header *sd_sysctl_header;
7507 static void register_sched_domain_sysctl(void)
7508 {
7509 int i, cpu_num = num_online_cpus();
7510 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7511 char buf[32];
7512
7513 WARN_ON(sd_ctl_dir[0].child);
7514 sd_ctl_dir[0].child = entry;
7515
7516 if (entry == NULL)
7517 return;
7518
7519 for_each_online_cpu(i) {
7520 snprintf(buf, 32, "cpu%d", i);
7521 entry->procname = kstrdup(buf, GFP_KERNEL);
7522 entry->mode = 0555;
7523 entry->child = sd_alloc_ctl_cpu_table(i);
7524 entry++;
7525 }
7526
7527 WARN_ON(sd_sysctl_header);
7528 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7529 }
7530
7531 /* may be called multiple times per register */
7532 static void unregister_sched_domain_sysctl(void)
7533 {
7534 if (sd_sysctl_header)
7535 unregister_sysctl_table(sd_sysctl_header);
7536 sd_sysctl_header = NULL;
7537 if (sd_ctl_dir[0].child)
7538 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7539 }
7540 #else
7541 static void register_sched_domain_sysctl(void)
7542 {
7543 }
7544 static void unregister_sched_domain_sysctl(void)
7545 {
7546 }
7547 #endif
7548
7549 static void set_rq_online(struct rq *rq)
7550 {
7551 if (!rq->online) {
7552 const struct sched_class *class;
7553
7554 cpumask_set_cpu(rq->cpu, rq->rd->online);
7555 rq->online = 1;
7556
7557 for_each_class(class) {
7558 if (class->rq_online)
7559 class->rq_online(rq);
7560 }
7561 }
7562 }
7563
7564 static void set_rq_offline(struct rq *rq)
7565 {
7566 if (rq->online) {
7567 const struct sched_class *class;
7568
7569 for_each_class(class) {
7570 if (class->rq_offline)
7571 class->rq_offline(rq);
7572 }
7573
7574 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7575 rq->online = 0;
7576 }
7577 }
7578
7579 /*
7580 * migration_call - callback that gets triggered when a CPU is added.
7581 * Here we can start up the necessary migration thread for the new CPU.
7582 */
7583 static int __cpuinit
7584 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7585 {
7586 struct task_struct *p;
7587 int cpu = (long)hcpu;
7588 unsigned long flags;
7589 struct rq *rq;
7590
7591 switch (action) {
7592
7593 case CPU_UP_PREPARE:
7594 case CPU_UP_PREPARE_FROZEN:
7595 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7596 if (IS_ERR(p))
7597 return NOTIFY_BAD;
7598 kthread_bind(p, cpu);
7599 /* Must be high prio: stop_machine expects to yield to it. */
7600 rq = task_rq_lock(p, &flags);
7601 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7602 task_rq_unlock(rq, &flags);
7603 get_task_struct(p);
7604 cpu_rq(cpu)->migration_thread = p;
7605 rq->calc_load_update = calc_load_update;
7606 break;
7607
7608 case CPU_ONLINE:
7609 case CPU_ONLINE_FROZEN:
7610 /* Strictly unnecessary, as first user will wake it. */
7611 wake_up_process(cpu_rq(cpu)->migration_thread);
7612
7613 /* Update our root-domain */
7614 rq = cpu_rq(cpu);
7615 spin_lock_irqsave(&rq->lock, flags);
7616 if (rq->rd) {
7617 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7618
7619 set_rq_online(rq);
7620 }
7621 spin_unlock_irqrestore(&rq->lock, flags);
7622 break;
7623
7624 #ifdef CONFIG_HOTPLUG_CPU
7625 case CPU_UP_CANCELED:
7626 case CPU_UP_CANCELED_FROZEN:
7627 if (!cpu_rq(cpu)->migration_thread)
7628 break;
7629 /* Unbind it from offline cpu so it can run. Fall thru. */
7630 kthread_bind(cpu_rq(cpu)->migration_thread,
7631 cpumask_any(cpu_online_mask));
7632 kthread_stop(cpu_rq(cpu)->migration_thread);
7633 put_task_struct(cpu_rq(cpu)->migration_thread);
7634 cpu_rq(cpu)->migration_thread = NULL;
7635 break;
7636
7637 case CPU_DEAD:
7638 case CPU_DEAD_FROZEN:
7639 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7640 migrate_live_tasks(cpu);
7641 rq = cpu_rq(cpu);
7642 kthread_stop(rq->migration_thread);
7643 put_task_struct(rq->migration_thread);
7644 rq->migration_thread = NULL;
7645 /* Idle task back to normal (off runqueue, low prio) */
7646 spin_lock_irq(&rq->lock);
7647 update_rq_clock(rq);
7648 deactivate_task(rq, rq->idle, 0);
7649 rq->idle->static_prio = MAX_PRIO;
7650 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7651 rq->idle->sched_class = &idle_sched_class;
7652 migrate_dead_tasks(cpu);
7653 spin_unlock_irq(&rq->lock);
7654 cpuset_unlock();
7655 migrate_nr_uninterruptible(rq);
7656 BUG_ON(rq->nr_running != 0);
7657 calc_global_load_remove(rq);
7658 /*
7659 * No need to migrate the tasks: it was best-effort if
7660 * they didn't take sched_hotcpu_mutex. Just wake up
7661 * the requestors.
7662 */
7663 spin_lock_irq(&rq->lock);
7664 while (!list_empty(&rq->migration_queue)) {
7665 struct migration_req *req;
7666
7667 req = list_entry(rq->migration_queue.next,
7668 struct migration_req, list);
7669 list_del_init(&req->list);
7670 spin_unlock_irq(&rq->lock);
7671 complete(&req->done);
7672 spin_lock_irq(&rq->lock);
7673 }
7674 spin_unlock_irq(&rq->lock);
7675 break;
7676
7677 case CPU_DYING:
7678 case CPU_DYING_FROZEN:
7679 /* Update our root-domain */
7680 rq = cpu_rq(cpu);
7681 spin_lock_irqsave(&rq->lock, flags);
7682 if (rq->rd) {
7683 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7684 set_rq_offline(rq);
7685 }
7686 spin_unlock_irqrestore(&rq->lock, flags);
7687 break;
7688 #endif
7689 }
7690 return NOTIFY_OK;
7691 }
7692
7693 /*
7694 * Register at high priority so that task migration (migrate_all_tasks)
7695 * happens before everything else. This has to be lower priority than
7696 * the notifier in the perf_counter subsystem, though.
7697 */
7698 static struct notifier_block __cpuinitdata migration_notifier = {
7699 .notifier_call = migration_call,
7700 .priority = 10
7701 };
7702
7703 static int __init migration_init(void)
7704 {
7705 void *cpu = (void *)(long)smp_processor_id();
7706 int err;
7707
7708 /* Start one for the boot CPU: */
7709 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7710 BUG_ON(err == NOTIFY_BAD);
7711 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7712 register_cpu_notifier(&migration_notifier);
7713
7714 return 0;
7715 }
7716 early_initcall(migration_init);
7717 #endif
7718
7719 #ifdef CONFIG_SMP
7720
7721 #ifdef CONFIG_SCHED_DEBUG
7722
7723 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7724 struct cpumask *groupmask)
7725 {
7726 struct sched_group *group = sd->groups;
7727 char str[256];
7728
7729 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7730 cpumask_clear(groupmask);
7731
7732 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7733
7734 if (!(sd->flags & SD_LOAD_BALANCE)) {
7735 printk("does not load-balance\n");
7736 if (sd->parent)
7737 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7738 " has parent");
7739 return -1;
7740 }
7741
7742 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7743
7744 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7745 printk(KERN_ERR "ERROR: domain->span does not contain "
7746 "CPU%d\n", cpu);
7747 }
7748 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7749 printk(KERN_ERR "ERROR: domain->groups does not contain"
7750 " CPU%d\n", cpu);
7751 }
7752
7753 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7754 do {
7755 if (!group) {
7756 printk("\n");
7757 printk(KERN_ERR "ERROR: group is NULL\n");
7758 break;
7759 }
7760
7761 if (!group->__cpu_power) {
7762 printk(KERN_CONT "\n");
7763 printk(KERN_ERR "ERROR: domain->cpu_power not "
7764 "set\n");
7765 break;
7766 }
7767
7768 if (!cpumask_weight(sched_group_cpus(group))) {
7769 printk(KERN_CONT "\n");
7770 printk(KERN_ERR "ERROR: empty group\n");
7771 break;
7772 }
7773
7774 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7775 printk(KERN_CONT "\n");
7776 printk(KERN_ERR "ERROR: repeated CPUs\n");
7777 break;
7778 }
7779
7780 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7781
7782 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7783
7784 printk(KERN_CONT " %s", str);
7785 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7786 printk(KERN_CONT " (__cpu_power = %d)",
7787 group->__cpu_power);
7788 }
7789
7790 group = group->next;
7791 } while (group != sd->groups);
7792 printk(KERN_CONT "\n");
7793
7794 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7795 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7796
7797 if (sd->parent &&
7798 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7799 printk(KERN_ERR "ERROR: parent span is not a superset "
7800 "of domain->span\n");
7801 return 0;
7802 }
7803
7804 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7805 {
7806 cpumask_var_t groupmask;
7807 int level = 0;
7808
7809 if (!sd) {
7810 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7811 return;
7812 }
7813
7814 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7815
7816 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7817 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7818 return;
7819 }
7820
7821 for (;;) {
7822 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7823 break;
7824 level++;
7825 sd = sd->parent;
7826 if (!sd)
7827 break;
7828 }
7829 free_cpumask_var(groupmask);
7830 }
7831 #else /* !CONFIG_SCHED_DEBUG */
7832 # define sched_domain_debug(sd, cpu) do { } while (0)
7833 #endif /* CONFIG_SCHED_DEBUG */
7834
7835 static int sd_degenerate(struct sched_domain *sd)
7836 {
7837 if (cpumask_weight(sched_domain_span(sd)) == 1)
7838 return 1;
7839
7840 /* Following flags need at least 2 groups */
7841 if (sd->flags & (SD_LOAD_BALANCE |
7842 SD_BALANCE_NEWIDLE |
7843 SD_BALANCE_FORK |
7844 SD_BALANCE_EXEC |
7845 SD_SHARE_CPUPOWER |
7846 SD_SHARE_PKG_RESOURCES)) {
7847 if (sd->groups != sd->groups->next)
7848 return 0;
7849 }
7850
7851 /* Following flags don't use groups */
7852 if (sd->flags & (SD_WAKE_IDLE |
7853 SD_WAKE_AFFINE |
7854 SD_WAKE_BALANCE))
7855 return 0;
7856
7857 return 1;
7858 }
7859
7860 static int
7861 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7862 {
7863 unsigned long cflags = sd->flags, pflags = parent->flags;
7864
7865 if (sd_degenerate(parent))
7866 return 1;
7867
7868 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7869 return 0;
7870
7871 /* Does parent contain flags not in child? */
7872 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7873 if (cflags & SD_WAKE_AFFINE)
7874 pflags &= ~SD_WAKE_BALANCE;
7875 /* Flags needing groups don't count if only 1 group in parent */
7876 if (parent->groups == parent->groups->next) {
7877 pflags &= ~(SD_LOAD_BALANCE |
7878 SD_BALANCE_NEWIDLE |
7879 SD_BALANCE_FORK |
7880 SD_BALANCE_EXEC |
7881 SD_SHARE_CPUPOWER |
7882 SD_SHARE_PKG_RESOURCES);
7883 if (nr_node_ids == 1)
7884 pflags &= ~SD_SERIALIZE;
7885 }
7886 if (~cflags & pflags)
7887 return 0;
7888
7889 return 1;
7890 }
7891
7892 static void free_rootdomain(struct root_domain *rd)
7893 {
7894 cpupri_cleanup(&rd->cpupri);
7895
7896 free_cpumask_var(rd->rto_mask);
7897 free_cpumask_var(rd->online);
7898 free_cpumask_var(rd->span);
7899 kfree(rd);
7900 }
7901
7902 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7903 {
7904 struct root_domain *old_rd = NULL;
7905 unsigned long flags;
7906
7907 spin_lock_irqsave(&rq->lock, flags);
7908
7909 if (rq->rd) {
7910 old_rd = rq->rd;
7911
7912 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7913 set_rq_offline(rq);
7914
7915 cpumask_clear_cpu(rq->cpu, old_rd->span);
7916
7917 /*
7918 * If we dont want to free the old_rt yet then
7919 * set old_rd to NULL to skip the freeing later
7920 * in this function:
7921 */
7922 if (!atomic_dec_and_test(&old_rd->refcount))
7923 old_rd = NULL;
7924 }
7925
7926 atomic_inc(&rd->refcount);
7927 rq->rd = rd;
7928
7929 cpumask_set_cpu(rq->cpu, rd->span);
7930 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7931 set_rq_online(rq);
7932
7933 spin_unlock_irqrestore(&rq->lock, flags);
7934
7935 if (old_rd)
7936 free_rootdomain(old_rd);
7937 }
7938
7939 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7940 {
7941 gfp_t gfp = GFP_KERNEL;
7942
7943 memset(rd, 0, sizeof(*rd));
7944
7945 if (bootmem)
7946 gfp = GFP_NOWAIT;
7947
7948 if (!alloc_cpumask_var(&rd->span, gfp))
7949 goto out;
7950 if (!alloc_cpumask_var(&rd->online, gfp))
7951 goto free_span;
7952 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7953 goto free_online;
7954
7955 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7956 goto free_rto_mask;
7957 return 0;
7958
7959 free_rto_mask:
7960 free_cpumask_var(rd->rto_mask);
7961 free_online:
7962 free_cpumask_var(rd->online);
7963 free_span:
7964 free_cpumask_var(rd->span);
7965 out:
7966 return -ENOMEM;
7967 }
7968
7969 static void init_defrootdomain(void)
7970 {
7971 init_rootdomain(&def_root_domain, true);
7972
7973 atomic_set(&def_root_domain.refcount, 1);
7974 }
7975
7976 static struct root_domain *alloc_rootdomain(void)
7977 {
7978 struct root_domain *rd;
7979
7980 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7981 if (!rd)
7982 return NULL;
7983
7984 if (init_rootdomain(rd, false) != 0) {
7985 kfree(rd);
7986 return NULL;
7987 }
7988
7989 return rd;
7990 }
7991
7992 /*
7993 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7994 * hold the hotplug lock.
7995 */
7996 static void
7997 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7998 {
7999 struct rq *rq = cpu_rq(cpu);
8000 struct sched_domain *tmp;
8001
8002 /* Remove the sched domains which do not contribute to scheduling. */
8003 for (tmp = sd; tmp; ) {
8004 struct sched_domain *parent = tmp->parent;
8005 if (!parent)
8006 break;
8007
8008 if (sd_parent_degenerate(tmp, parent)) {
8009 tmp->parent = parent->parent;
8010 if (parent->parent)
8011 parent->parent->child = tmp;
8012 } else
8013 tmp = tmp->parent;
8014 }
8015
8016 if (sd && sd_degenerate(sd)) {
8017 sd = sd->parent;
8018 if (sd)
8019 sd->child = NULL;
8020 }
8021
8022 sched_domain_debug(sd, cpu);
8023
8024 rq_attach_root(rq, rd);
8025 rcu_assign_pointer(rq->sd, sd);
8026 }
8027
8028 /* cpus with isolated domains */
8029 static cpumask_var_t cpu_isolated_map;
8030
8031 /* Setup the mask of cpus configured for isolated domains */
8032 static int __init isolated_cpu_setup(char *str)
8033 {
8034 cpulist_parse(str, cpu_isolated_map);
8035 return 1;
8036 }
8037
8038 __setup("isolcpus=", isolated_cpu_setup);
8039
8040 /*
8041 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8042 * to a function which identifies what group(along with sched group) a CPU
8043 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8044 * (due to the fact that we keep track of groups covered with a struct cpumask).
8045 *
8046 * init_sched_build_groups will build a circular linked list of the groups
8047 * covered by the given span, and will set each group's ->cpumask correctly,
8048 * and ->cpu_power to 0.
8049 */
8050 static void
8051 init_sched_build_groups(const struct cpumask *span,
8052 const struct cpumask *cpu_map,
8053 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8054 struct sched_group **sg,
8055 struct cpumask *tmpmask),
8056 struct cpumask *covered, struct cpumask *tmpmask)
8057 {
8058 struct sched_group *first = NULL, *last = NULL;
8059 int i;
8060
8061 cpumask_clear(covered);
8062
8063 for_each_cpu(i, span) {
8064 struct sched_group *sg;
8065 int group = group_fn(i, cpu_map, &sg, tmpmask);
8066 int j;
8067
8068 if (cpumask_test_cpu(i, covered))
8069 continue;
8070
8071 cpumask_clear(sched_group_cpus(sg));
8072 sg->__cpu_power = 0;
8073
8074 for_each_cpu(j, span) {
8075 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8076 continue;
8077
8078 cpumask_set_cpu(j, covered);
8079 cpumask_set_cpu(j, sched_group_cpus(sg));
8080 }
8081 if (!first)
8082 first = sg;
8083 if (last)
8084 last->next = sg;
8085 last = sg;
8086 }
8087 last->next = first;
8088 }
8089
8090 #define SD_NODES_PER_DOMAIN 16
8091
8092 #ifdef CONFIG_NUMA
8093
8094 /**
8095 * find_next_best_node - find the next node to include in a sched_domain
8096 * @node: node whose sched_domain we're building
8097 * @used_nodes: nodes already in the sched_domain
8098 *
8099 * Find the next node to include in a given scheduling domain. Simply
8100 * finds the closest node not already in the @used_nodes map.
8101 *
8102 * Should use nodemask_t.
8103 */
8104 static int find_next_best_node(int node, nodemask_t *used_nodes)
8105 {
8106 int i, n, val, min_val, best_node = 0;
8107
8108 min_val = INT_MAX;
8109
8110 for (i = 0; i < nr_node_ids; i++) {
8111 /* Start at @node */
8112 n = (node + i) % nr_node_ids;
8113
8114 if (!nr_cpus_node(n))
8115 continue;
8116
8117 /* Skip already used nodes */
8118 if (node_isset(n, *used_nodes))
8119 continue;
8120
8121 /* Simple min distance search */
8122 val = node_distance(node, n);
8123
8124 if (val < min_val) {
8125 min_val = val;
8126 best_node = n;
8127 }
8128 }
8129
8130 node_set(best_node, *used_nodes);
8131 return best_node;
8132 }
8133
8134 /**
8135 * sched_domain_node_span - get a cpumask for a node's sched_domain
8136 * @node: node whose cpumask we're constructing
8137 * @span: resulting cpumask
8138 *
8139 * Given a node, construct a good cpumask for its sched_domain to span. It
8140 * should be one that prevents unnecessary balancing, but also spreads tasks
8141 * out optimally.
8142 */
8143 static void sched_domain_node_span(int node, struct cpumask *span)
8144 {
8145 nodemask_t used_nodes;
8146 int i;
8147
8148 cpumask_clear(span);
8149 nodes_clear(used_nodes);
8150
8151 cpumask_or(span, span, cpumask_of_node(node));
8152 node_set(node, used_nodes);
8153
8154 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8155 int next_node = find_next_best_node(node, &used_nodes);
8156
8157 cpumask_or(span, span, cpumask_of_node(next_node));
8158 }
8159 }
8160 #endif /* CONFIG_NUMA */
8161
8162 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8163
8164 /*
8165 * The cpus mask in sched_group and sched_domain hangs off the end.
8166 *
8167 * ( See the the comments in include/linux/sched.h:struct sched_group
8168 * and struct sched_domain. )
8169 */
8170 struct static_sched_group {
8171 struct sched_group sg;
8172 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8173 };
8174
8175 struct static_sched_domain {
8176 struct sched_domain sd;
8177 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8178 };
8179
8180 /*
8181 * SMT sched-domains:
8182 */
8183 #ifdef CONFIG_SCHED_SMT
8184 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8185 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8186
8187 static int
8188 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8189 struct sched_group **sg, struct cpumask *unused)
8190 {
8191 if (sg)
8192 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8193 return cpu;
8194 }
8195 #endif /* CONFIG_SCHED_SMT */
8196
8197 /*
8198 * multi-core sched-domains:
8199 */
8200 #ifdef CONFIG_SCHED_MC
8201 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8202 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8203 #endif /* CONFIG_SCHED_MC */
8204
8205 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8206 static int
8207 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8208 struct sched_group **sg, struct cpumask *mask)
8209 {
8210 int group;
8211
8212 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8213 group = cpumask_first(mask);
8214 if (sg)
8215 *sg = &per_cpu(sched_group_core, group).sg;
8216 return group;
8217 }
8218 #elif defined(CONFIG_SCHED_MC)
8219 static int
8220 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8221 struct sched_group **sg, struct cpumask *unused)
8222 {
8223 if (sg)
8224 *sg = &per_cpu(sched_group_core, cpu).sg;
8225 return cpu;
8226 }
8227 #endif
8228
8229 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8230 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8231
8232 static int
8233 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8234 struct sched_group **sg, struct cpumask *mask)
8235 {
8236 int group;
8237 #ifdef CONFIG_SCHED_MC
8238 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8239 group = cpumask_first(mask);
8240 #elif defined(CONFIG_SCHED_SMT)
8241 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8242 group = cpumask_first(mask);
8243 #else
8244 group = cpu;
8245 #endif
8246 if (sg)
8247 *sg = &per_cpu(sched_group_phys, group).sg;
8248 return group;
8249 }
8250
8251 #ifdef CONFIG_NUMA
8252 /*
8253 * The init_sched_build_groups can't handle what we want to do with node
8254 * groups, so roll our own. Now each node has its own list of groups which
8255 * gets dynamically allocated.
8256 */
8257 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8258 static struct sched_group ***sched_group_nodes_bycpu;
8259
8260 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8261 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8262
8263 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8264 struct sched_group **sg,
8265 struct cpumask *nodemask)
8266 {
8267 int group;
8268
8269 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8270 group = cpumask_first(nodemask);
8271
8272 if (sg)
8273 *sg = &per_cpu(sched_group_allnodes, group).sg;
8274 return group;
8275 }
8276
8277 static void init_numa_sched_groups_power(struct sched_group *group_head)
8278 {
8279 struct sched_group *sg = group_head;
8280 int j;
8281
8282 if (!sg)
8283 return;
8284 do {
8285 for_each_cpu(j, sched_group_cpus(sg)) {
8286 struct sched_domain *sd;
8287
8288 sd = &per_cpu(phys_domains, j).sd;
8289 if (j != group_first_cpu(sd->groups)) {
8290 /*
8291 * Only add "power" once for each
8292 * physical package.
8293 */
8294 continue;
8295 }
8296
8297 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8298 }
8299 sg = sg->next;
8300 } while (sg != group_head);
8301 }
8302 #endif /* CONFIG_NUMA */
8303
8304 #ifdef CONFIG_NUMA
8305 /* Free memory allocated for various sched_group structures */
8306 static void free_sched_groups(const struct cpumask *cpu_map,
8307 struct cpumask *nodemask)
8308 {
8309 int cpu, i;
8310
8311 for_each_cpu(cpu, cpu_map) {
8312 struct sched_group **sched_group_nodes
8313 = sched_group_nodes_bycpu[cpu];
8314
8315 if (!sched_group_nodes)
8316 continue;
8317
8318 for (i = 0; i < nr_node_ids; i++) {
8319 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8320
8321 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8322 if (cpumask_empty(nodemask))
8323 continue;
8324
8325 if (sg == NULL)
8326 continue;
8327 sg = sg->next;
8328 next_sg:
8329 oldsg = sg;
8330 sg = sg->next;
8331 kfree(oldsg);
8332 if (oldsg != sched_group_nodes[i])
8333 goto next_sg;
8334 }
8335 kfree(sched_group_nodes);
8336 sched_group_nodes_bycpu[cpu] = NULL;
8337 }
8338 }
8339 #else /* !CONFIG_NUMA */
8340 static void free_sched_groups(const struct cpumask *cpu_map,
8341 struct cpumask *nodemask)
8342 {
8343 }
8344 #endif /* CONFIG_NUMA */
8345
8346 /*
8347 * Initialize sched groups cpu_power.
8348 *
8349 * cpu_power indicates the capacity of sched group, which is used while
8350 * distributing the load between different sched groups in a sched domain.
8351 * Typically cpu_power for all the groups in a sched domain will be same unless
8352 * there are asymmetries in the topology. If there are asymmetries, group
8353 * having more cpu_power will pickup more load compared to the group having
8354 * less cpu_power.
8355 *
8356 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8357 * the maximum number of tasks a group can handle in the presence of other idle
8358 * or lightly loaded groups in the same sched domain.
8359 */
8360 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8361 {
8362 struct sched_domain *child;
8363 struct sched_group *group;
8364
8365 WARN_ON(!sd || !sd->groups);
8366
8367 if (cpu != group_first_cpu(sd->groups))
8368 return;
8369
8370 child = sd->child;
8371
8372 sd->groups->__cpu_power = 0;
8373
8374 /*
8375 * For perf policy, if the groups in child domain share resources
8376 * (for example cores sharing some portions of the cache hierarchy
8377 * or SMT), then set this domain groups cpu_power such that each group
8378 * can handle only one task, when there are other idle groups in the
8379 * same sched domain.
8380 */
8381 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8382 (child->flags &
8383 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8384 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8385 return;
8386 }
8387
8388 /*
8389 * add cpu_power of each child group to this groups cpu_power
8390 */
8391 group = child->groups;
8392 do {
8393 sg_inc_cpu_power(sd->groups, group->__cpu_power);
8394 group = group->next;
8395 } while (group != child->groups);
8396 }
8397
8398 /*
8399 * Initializers for schedule domains
8400 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8401 */
8402
8403 #ifdef CONFIG_SCHED_DEBUG
8404 # define SD_INIT_NAME(sd, type) sd->name = #type
8405 #else
8406 # define SD_INIT_NAME(sd, type) do { } while (0)
8407 #endif
8408
8409 #define SD_INIT(sd, type) sd_init_##type(sd)
8410
8411 #define SD_INIT_FUNC(type) \
8412 static noinline void sd_init_##type(struct sched_domain *sd) \
8413 { \
8414 memset(sd, 0, sizeof(*sd)); \
8415 *sd = SD_##type##_INIT; \
8416 sd->level = SD_LV_##type; \
8417 SD_INIT_NAME(sd, type); \
8418 }
8419
8420 SD_INIT_FUNC(CPU)
8421 #ifdef CONFIG_NUMA
8422 SD_INIT_FUNC(ALLNODES)
8423 SD_INIT_FUNC(NODE)
8424 #endif
8425 #ifdef CONFIG_SCHED_SMT
8426 SD_INIT_FUNC(SIBLING)
8427 #endif
8428 #ifdef CONFIG_SCHED_MC
8429 SD_INIT_FUNC(MC)
8430 #endif
8431
8432 static int default_relax_domain_level = -1;
8433
8434 static int __init setup_relax_domain_level(char *str)
8435 {
8436 unsigned long val;
8437
8438 val = simple_strtoul(str, NULL, 0);
8439 if (val < SD_LV_MAX)
8440 default_relax_domain_level = val;
8441
8442 return 1;
8443 }
8444 __setup("relax_domain_level=", setup_relax_domain_level);
8445
8446 static void set_domain_attribute(struct sched_domain *sd,
8447 struct sched_domain_attr *attr)
8448 {
8449 int request;
8450
8451 if (!attr || attr->relax_domain_level < 0) {
8452 if (default_relax_domain_level < 0)
8453 return;
8454 else
8455 request = default_relax_domain_level;
8456 } else
8457 request = attr->relax_domain_level;
8458 if (request < sd->level) {
8459 /* turn off idle balance on this domain */
8460 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8461 } else {
8462 /* turn on idle balance on this domain */
8463 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8464 }
8465 }
8466
8467 /*
8468 * Build sched domains for a given set of cpus and attach the sched domains
8469 * to the individual cpus
8470 */
8471 static int __build_sched_domains(const struct cpumask *cpu_map,
8472 struct sched_domain_attr *attr)
8473 {
8474 int i, err = -ENOMEM;
8475 struct root_domain *rd;
8476 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8477 tmpmask;
8478 #ifdef CONFIG_NUMA
8479 cpumask_var_t domainspan, covered, notcovered;
8480 struct sched_group **sched_group_nodes = NULL;
8481 int sd_allnodes = 0;
8482
8483 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8484 goto out;
8485 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8486 goto free_domainspan;
8487 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8488 goto free_covered;
8489 #endif
8490
8491 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8492 goto free_notcovered;
8493 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8494 goto free_nodemask;
8495 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8496 goto free_this_sibling_map;
8497 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8498 goto free_this_core_map;
8499 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8500 goto free_send_covered;
8501
8502 #ifdef CONFIG_NUMA
8503 /*
8504 * Allocate the per-node list of sched groups
8505 */
8506 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8507 GFP_KERNEL);
8508 if (!sched_group_nodes) {
8509 printk(KERN_WARNING "Can not alloc sched group node list\n");
8510 goto free_tmpmask;
8511 }
8512 #endif
8513
8514 rd = alloc_rootdomain();
8515 if (!rd) {
8516 printk(KERN_WARNING "Cannot alloc root domain\n");
8517 goto free_sched_groups;
8518 }
8519
8520 #ifdef CONFIG_NUMA
8521 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8522 #endif
8523
8524 /*
8525 * Set up domains for cpus specified by the cpu_map.
8526 */
8527 for_each_cpu(i, cpu_map) {
8528 struct sched_domain *sd = NULL, *p;
8529
8530 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8531
8532 #ifdef CONFIG_NUMA
8533 if (cpumask_weight(cpu_map) >
8534 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8535 sd = &per_cpu(allnodes_domains, i).sd;
8536 SD_INIT(sd, ALLNODES);
8537 set_domain_attribute(sd, attr);
8538 cpumask_copy(sched_domain_span(sd), cpu_map);
8539 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8540 p = sd;
8541 sd_allnodes = 1;
8542 } else
8543 p = NULL;
8544
8545 sd = &per_cpu(node_domains, i).sd;
8546 SD_INIT(sd, NODE);
8547 set_domain_attribute(sd, attr);
8548 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8549 sd->parent = p;
8550 if (p)
8551 p->child = sd;
8552 cpumask_and(sched_domain_span(sd),
8553 sched_domain_span(sd), cpu_map);
8554 #endif
8555
8556 p = sd;
8557 sd = &per_cpu(phys_domains, i).sd;
8558 SD_INIT(sd, CPU);
8559 set_domain_attribute(sd, attr);
8560 cpumask_copy(sched_domain_span(sd), nodemask);
8561 sd->parent = p;
8562 if (p)
8563 p->child = sd;
8564 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8565
8566 #ifdef CONFIG_SCHED_MC
8567 p = sd;
8568 sd = &per_cpu(core_domains, i).sd;
8569 SD_INIT(sd, MC);
8570 set_domain_attribute(sd, attr);
8571 cpumask_and(sched_domain_span(sd), cpu_map,
8572 cpu_coregroup_mask(i));
8573 sd->parent = p;
8574 p->child = sd;
8575 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8576 #endif
8577
8578 #ifdef CONFIG_SCHED_SMT
8579 p = sd;
8580 sd = &per_cpu(cpu_domains, i).sd;
8581 SD_INIT(sd, SIBLING);
8582 set_domain_attribute(sd, attr);
8583 cpumask_and(sched_domain_span(sd),
8584 topology_thread_cpumask(i), cpu_map);
8585 sd->parent = p;
8586 p->child = sd;
8587 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8588 #endif
8589 }
8590
8591 #ifdef CONFIG_SCHED_SMT
8592 /* Set up CPU (sibling) groups */
8593 for_each_cpu(i, cpu_map) {
8594 cpumask_and(this_sibling_map,
8595 topology_thread_cpumask(i), cpu_map);
8596 if (i != cpumask_first(this_sibling_map))
8597 continue;
8598
8599 init_sched_build_groups(this_sibling_map, cpu_map,
8600 &cpu_to_cpu_group,
8601 send_covered, tmpmask);
8602 }
8603 #endif
8604
8605 #ifdef CONFIG_SCHED_MC
8606 /* Set up multi-core groups */
8607 for_each_cpu(i, cpu_map) {
8608 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8609 if (i != cpumask_first(this_core_map))
8610 continue;
8611
8612 init_sched_build_groups(this_core_map, cpu_map,
8613 &cpu_to_core_group,
8614 send_covered, tmpmask);
8615 }
8616 #endif
8617
8618 /* Set up physical groups */
8619 for (i = 0; i < nr_node_ids; i++) {
8620 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8621 if (cpumask_empty(nodemask))
8622 continue;
8623
8624 init_sched_build_groups(nodemask, cpu_map,
8625 &cpu_to_phys_group,
8626 send_covered, tmpmask);
8627 }
8628
8629 #ifdef CONFIG_NUMA
8630 /* Set up node groups */
8631 if (sd_allnodes) {
8632 init_sched_build_groups(cpu_map, cpu_map,
8633 &cpu_to_allnodes_group,
8634 send_covered, tmpmask);
8635 }
8636
8637 for (i = 0; i < nr_node_ids; i++) {
8638 /* Set up node groups */
8639 struct sched_group *sg, *prev;
8640 int j;
8641
8642 cpumask_clear(covered);
8643 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8644 if (cpumask_empty(nodemask)) {
8645 sched_group_nodes[i] = NULL;
8646 continue;
8647 }
8648
8649 sched_domain_node_span(i, domainspan);
8650 cpumask_and(domainspan, domainspan, cpu_map);
8651
8652 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8653 GFP_KERNEL, i);
8654 if (!sg) {
8655 printk(KERN_WARNING "Can not alloc domain group for "
8656 "node %d\n", i);
8657 goto error;
8658 }
8659 sched_group_nodes[i] = sg;
8660 for_each_cpu(j, nodemask) {
8661 struct sched_domain *sd;
8662
8663 sd = &per_cpu(node_domains, j).sd;
8664 sd->groups = sg;
8665 }
8666 sg->__cpu_power = 0;
8667 cpumask_copy(sched_group_cpus(sg), nodemask);
8668 sg->next = sg;
8669 cpumask_or(covered, covered, nodemask);
8670 prev = sg;
8671
8672 for (j = 0; j < nr_node_ids; j++) {
8673 int n = (i + j) % nr_node_ids;
8674
8675 cpumask_complement(notcovered, covered);
8676 cpumask_and(tmpmask, notcovered, cpu_map);
8677 cpumask_and(tmpmask, tmpmask, domainspan);
8678 if (cpumask_empty(tmpmask))
8679 break;
8680
8681 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8682 if (cpumask_empty(tmpmask))
8683 continue;
8684
8685 sg = kmalloc_node(sizeof(struct sched_group) +
8686 cpumask_size(),
8687 GFP_KERNEL, i);
8688 if (!sg) {
8689 printk(KERN_WARNING
8690 "Can not alloc domain group for node %d\n", j);
8691 goto error;
8692 }
8693 sg->__cpu_power = 0;
8694 cpumask_copy(sched_group_cpus(sg), tmpmask);
8695 sg->next = prev->next;
8696 cpumask_or(covered, covered, tmpmask);
8697 prev->next = sg;
8698 prev = sg;
8699 }
8700 }
8701 #endif
8702
8703 /* Calculate CPU power for physical packages and nodes */
8704 #ifdef CONFIG_SCHED_SMT
8705 for_each_cpu(i, cpu_map) {
8706 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8707
8708 init_sched_groups_power(i, sd);
8709 }
8710 #endif
8711 #ifdef CONFIG_SCHED_MC
8712 for_each_cpu(i, cpu_map) {
8713 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8714
8715 init_sched_groups_power(i, sd);
8716 }
8717 #endif
8718
8719 for_each_cpu(i, cpu_map) {
8720 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8721
8722 init_sched_groups_power(i, sd);
8723 }
8724
8725 #ifdef CONFIG_NUMA
8726 for (i = 0; i < nr_node_ids; i++)
8727 init_numa_sched_groups_power(sched_group_nodes[i]);
8728
8729 if (sd_allnodes) {
8730 struct sched_group *sg;
8731
8732 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8733 tmpmask);
8734 init_numa_sched_groups_power(sg);
8735 }
8736 #endif
8737
8738 /* Attach the domains */
8739 for_each_cpu(i, cpu_map) {
8740 struct sched_domain *sd;
8741 #ifdef CONFIG_SCHED_SMT
8742 sd = &per_cpu(cpu_domains, i).sd;
8743 #elif defined(CONFIG_SCHED_MC)
8744 sd = &per_cpu(core_domains, i).sd;
8745 #else
8746 sd = &per_cpu(phys_domains, i).sd;
8747 #endif
8748 cpu_attach_domain(sd, rd, i);
8749 }
8750
8751 err = 0;
8752
8753 free_tmpmask:
8754 free_cpumask_var(tmpmask);
8755 free_send_covered:
8756 free_cpumask_var(send_covered);
8757 free_this_core_map:
8758 free_cpumask_var(this_core_map);
8759 free_this_sibling_map:
8760 free_cpumask_var(this_sibling_map);
8761 free_nodemask:
8762 free_cpumask_var(nodemask);
8763 free_notcovered:
8764 #ifdef CONFIG_NUMA
8765 free_cpumask_var(notcovered);
8766 free_covered:
8767 free_cpumask_var(covered);
8768 free_domainspan:
8769 free_cpumask_var(domainspan);
8770 out:
8771 #endif
8772 return err;
8773
8774 free_sched_groups:
8775 #ifdef CONFIG_NUMA
8776 kfree(sched_group_nodes);
8777 #endif
8778 goto free_tmpmask;
8779
8780 #ifdef CONFIG_NUMA
8781 error:
8782 free_sched_groups(cpu_map, tmpmask);
8783 free_rootdomain(rd);
8784 goto free_tmpmask;
8785 #endif
8786 }
8787
8788 static int build_sched_domains(const struct cpumask *cpu_map)
8789 {
8790 return __build_sched_domains(cpu_map, NULL);
8791 }
8792
8793 static struct cpumask *doms_cur; /* current sched domains */
8794 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8795 static struct sched_domain_attr *dattr_cur;
8796 /* attribues of custom domains in 'doms_cur' */
8797
8798 /*
8799 * Special case: If a kmalloc of a doms_cur partition (array of
8800 * cpumask) fails, then fallback to a single sched domain,
8801 * as determined by the single cpumask fallback_doms.
8802 */
8803 static cpumask_var_t fallback_doms;
8804
8805 /*
8806 * arch_update_cpu_topology lets virtualized architectures update the
8807 * cpu core maps. It is supposed to return 1 if the topology changed
8808 * or 0 if it stayed the same.
8809 */
8810 int __attribute__((weak)) arch_update_cpu_topology(void)
8811 {
8812 return 0;
8813 }
8814
8815 /*
8816 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8817 * For now this just excludes isolated cpus, but could be used to
8818 * exclude other special cases in the future.
8819 */
8820 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8821 {
8822 int err;
8823
8824 arch_update_cpu_topology();
8825 ndoms_cur = 1;
8826 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8827 if (!doms_cur)
8828 doms_cur = fallback_doms;
8829 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8830 dattr_cur = NULL;
8831 err = build_sched_domains(doms_cur);
8832 register_sched_domain_sysctl();
8833
8834 return err;
8835 }
8836
8837 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8838 struct cpumask *tmpmask)
8839 {
8840 free_sched_groups(cpu_map, tmpmask);
8841 }
8842
8843 /*
8844 * Detach sched domains from a group of cpus specified in cpu_map
8845 * These cpus will now be attached to the NULL domain
8846 */
8847 static void detach_destroy_domains(const struct cpumask *cpu_map)
8848 {
8849 /* Save because hotplug lock held. */
8850 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8851 int i;
8852
8853 for_each_cpu(i, cpu_map)
8854 cpu_attach_domain(NULL, &def_root_domain, i);
8855 synchronize_sched();
8856 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8857 }
8858
8859 /* handle null as "default" */
8860 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8861 struct sched_domain_attr *new, int idx_new)
8862 {
8863 struct sched_domain_attr tmp;
8864
8865 /* fast path */
8866 if (!new && !cur)
8867 return 1;
8868
8869 tmp = SD_ATTR_INIT;
8870 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8871 new ? (new + idx_new) : &tmp,
8872 sizeof(struct sched_domain_attr));
8873 }
8874
8875 /*
8876 * Partition sched domains as specified by the 'ndoms_new'
8877 * cpumasks in the array doms_new[] of cpumasks. This compares
8878 * doms_new[] to the current sched domain partitioning, doms_cur[].
8879 * It destroys each deleted domain and builds each new domain.
8880 *
8881 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8882 * The masks don't intersect (don't overlap.) We should setup one
8883 * sched domain for each mask. CPUs not in any of the cpumasks will
8884 * not be load balanced. If the same cpumask appears both in the
8885 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8886 * it as it is.
8887 *
8888 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8889 * ownership of it and will kfree it when done with it. If the caller
8890 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8891 * ndoms_new == 1, and partition_sched_domains() will fallback to
8892 * the single partition 'fallback_doms', it also forces the domains
8893 * to be rebuilt.
8894 *
8895 * If doms_new == NULL it will be replaced with cpu_online_mask.
8896 * ndoms_new == 0 is a special case for destroying existing domains,
8897 * and it will not create the default domain.
8898 *
8899 * Call with hotplug lock held
8900 */
8901 /* FIXME: Change to struct cpumask *doms_new[] */
8902 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8903 struct sched_domain_attr *dattr_new)
8904 {
8905 int i, j, n;
8906 int new_topology;
8907
8908 mutex_lock(&sched_domains_mutex);
8909
8910 /* always unregister in case we don't destroy any domains */
8911 unregister_sched_domain_sysctl();
8912
8913 /* Let architecture update cpu core mappings. */
8914 new_topology = arch_update_cpu_topology();
8915
8916 n = doms_new ? ndoms_new : 0;
8917
8918 /* Destroy deleted domains */
8919 for (i = 0; i < ndoms_cur; i++) {
8920 for (j = 0; j < n && !new_topology; j++) {
8921 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8922 && dattrs_equal(dattr_cur, i, dattr_new, j))
8923 goto match1;
8924 }
8925 /* no match - a current sched domain not in new doms_new[] */
8926 detach_destroy_domains(doms_cur + i);
8927 match1:
8928 ;
8929 }
8930
8931 if (doms_new == NULL) {
8932 ndoms_cur = 0;
8933 doms_new = fallback_doms;
8934 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8935 WARN_ON_ONCE(dattr_new);
8936 }
8937
8938 /* Build new domains */
8939 for (i = 0; i < ndoms_new; i++) {
8940 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8941 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8942 && dattrs_equal(dattr_new, i, dattr_cur, j))
8943 goto match2;
8944 }
8945 /* no match - add a new doms_new */
8946 __build_sched_domains(doms_new + i,
8947 dattr_new ? dattr_new + i : NULL);
8948 match2:
8949 ;
8950 }
8951
8952 /* Remember the new sched domains */
8953 if (doms_cur != fallback_doms)
8954 kfree(doms_cur);
8955 kfree(dattr_cur); /* kfree(NULL) is safe */
8956 doms_cur = doms_new;
8957 dattr_cur = dattr_new;
8958 ndoms_cur = ndoms_new;
8959
8960 register_sched_domain_sysctl();
8961
8962 mutex_unlock(&sched_domains_mutex);
8963 }
8964
8965 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8966 static void arch_reinit_sched_domains(void)
8967 {
8968 get_online_cpus();
8969
8970 /* Destroy domains first to force the rebuild */
8971 partition_sched_domains(0, NULL, NULL);
8972
8973 rebuild_sched_domains();
8974 put_online_cpus();
8975 }
8976
8977 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8978 {
8979 unsigned int level = 0;
8980
8981 if (sscanf(buf, "%u", &level) != 1)
8982 return -EINVAL;
8983
8984 /*
8985 * level is always be positive so don't check for
8986 * level < POWERSAVINGS_BALANCE_NONE which is 0
8987 * What happens on 0 or 1 byte write,
8988 * need to check for count as well?
8989 */
8990
8991 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8992 return -EINVAL;
8993
8994 if (smt)
8995 sched_smt_power_savings = level;
8996 else
8997 sched_mc_power_savings = level;
8998
8999 arch_reinit_sched_domains();
9000
9001 return count;
9002 }
9003
9004 #ifdef CONFIG_SCHED_MC
9005 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9006 char *page)
9007 {
9008 return sprintf(page, "%u\n", sched_mc_power_savings);
9009 }
9010 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9011 const char *buf, size_t count)
9012 {
9013 return sched_power_savings_store(buf, count, 0);
9014 }
9015 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9016 sched_mc_power_savings_show,
9017 sched_mc_power_savings_store);
9018 #endif
9019
9020 #ifdef CONFIG_SCHED_SMT
9021 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9022 char *page)
9023 {
9024 return sprintf(page, "%u\n", sched_smt_power_savings);
9025 }
9026 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9027 const char *buf, size_t count)
9028 {
9029 return sched_power_savings_store(buf, count, 1);
9030 }
9031 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9032 sched_smt_power_savings_show,
9033 sched_smt_power_savings_store);
9034 #endif
9035
9036 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9037 {
9038 int err = 0;
9039
9040 #ifdef CONFIG_SCHED_SMT
9041 if (smt_capable())
9042 err = sysfs_create_file(&cls->kset.kobj,
9043 &attr_sched_smt_power_savings.attr);
9044 #endif
9045 #ifdef CONFIG_SCHED_MC
9046 if (!err && mc_capable())
9047 err = sysfs_create_file(&cls->kset.kobj,
9048 &attr_sched_mc_power_savings.attr);
9049 #endif
9050 return err;
9051 }
9052 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9053
9054 #ifndef CONFIG_CPUSETS
9055 /*
9056 * Add online and remove offline CPUs from the scheduler domains.
9057 * When cpusets are enabled they take over this function.
9058 */
9059 static int update_sched_domains(struct notifier_block *nfb,
9060 unsigned long action, void *hcpu)
9061 {
9062 switch (action) {
9063 case CPU_ONLINE:
9064 case CPU_ONLINE_FROZEN:
9065 case CPU_DEAD:
9066 case CPU_DEAD_FROZEN:
9067 partition_sched_domains(1, NULL, NULL);
9068 return NOTIFY_OK;
9069
9070 default:
9071 return NOTIFY_DONE;
9072 }
9073 }
9074 #endif
9075
9076 static int update_runtime(struct notifier_block *nfb,
9077 unsigned long action, void *hcpu)
9078 {
9079 int cpu = (int)(long)hcpu;
9080
9081 switch (action) {
9082 case CPU_DOWN_PREPARE:
9083 case CPU_DOWN_PREPARE_FROZEN:
9084 disable_runtime(cpu_rq(cpu));
9085 return NOTIFY_OK;
9086
9087 case CPU_DOWN_FAILED:
9088 case CPU_DOWN_FAILED_FROZEN:
9089 case CPU_ONLINE:
9090 case CPU_ONLINE_FROZEN:
9091 enable_runtime(cpu_rq(cpu));
9092 return NOTIFY_OK;
9093
9094 default:
9095 return NOTIFY_DONE;
9096 }
9097 }
9098
9099 void __init sched_init_smp(void)
9100 {
9101 cpumask_var_t non_isolated_cpus;
9102
9103 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9104
9105 #if defined(CONFIG_NUMA)
9106 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9107 GFP_KERNEL);
9108 BUG_ON(sched_group_nodes_bycpu == NULL);
9109 #endif
9110 get_online_cpus();
9111 mutex_lock(&sched_domains_mutex);
9112 arch_init_sched_domains(cpu_online_mask);
9113 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9114 if (cpumask_empty(non_isolated_cpus))
9115 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9116 mutex_unlock(&sched_domains_mutex);
9117 put_online_cpus();
9118
9119 #ifndef CONFIG_CPUSETS
9120 /* XXX: Theoretical race here - CPU may be hotplugged now */
9121 hotcpu_notifier(update_sched_domains, 0);
9122 #endif
9123
9124 /* RT runtime code needs to handle some hotplug events */
9125 hotcpu_notifier(update_runtime, 0);
9126
9127 init_hrtick();
9128
9129 /* Move init over to a non-isolated CPU */
9130 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9131 BUG();
9132 sched_init_granularity();
9133 free_cpumask_var(non_isolated_cpus);
9134
9135 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9136 init_sched_rt_class();
9137 }
9138 #else
9139 void __init sched_init_smp(void)
9140 {
9141 sched_init_granularity();
9142 }
9143 #endif /* CONFIG_SMP */
9144
9145 const_debug unsigned int sysctl_timer_migration = 1;
9146
9147 int in_sched_functions(unsigned long addr)
9148 {
9149 return in_lock_functions(addr) ||
9150 (addr >= (unsigned long)__sched_text_start
9151 && addr < (unsigned long)__sched_text_end);
9152 }
9153
9154 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9155 {
9156 cfs_rq->tasks_timeline = RB_ROOT;
9157 INIT_LIST_HEAD(&cfs_rq->tasks);
9158 #ifdef CONFIG_FAIR_GROUP_SCHED
9159 cfs_rq->rq = rq;
9160 #endif
9161 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9162 }
9163
9164 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9165 {
9166 struct rt_prio_array *array;
9167 int i;
9168
9169 array = &rt_rq->active;
9170 for (i = 0; i < MAX_RT_PRIO; i++) {
9171 INIT_LIST_HEAD(array->queue + i);
9172 __clear_bit(i, array->bitmap);
9173 }
9174 /* delimiter for bitsearch: */
9175 __set_bit(MAX_RT_PRIO, array->bitmap);
9176
9177 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9178 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9179 #ifdef CONFIG_SMP
9180 rt_rq->highest_prio.next = MAX_RT_PRIO;
9181 #endif
9182 #endif
9183 #ifdef CONFIG_SMP
9184 rt_rq->rt_nr_migratory = 0;
9185 rt_rq->overloaded = 0;
9186 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9187 #endif
9188
9189 rt_rq->rt_time = 0;
9190 rt_rq->rt_throttled = 0;
9191 rt_rq->rt_runtime = 0;
9192 spin_lock_init(&rt_rq->rt_runtime_lock);
9193
9194 #ifdef CONFIG_RT_GROUP_SCHED
9195 rt_rq->rt_nr_boosted = 0;
9196 rt_rq->rq = rq;
9197 #endif
9198 }
9199
9200 #ifdef CONFIG_FAIR_GROUP_SCHED
9201 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9202 struct sched_entity *se, int cpu, int add,
9203 struct sched_entity *parent)
9204 {
9205 struct rq *rq = cpu_rq(cpu);
9206 tg->cfs_rq[cpu] = cfs_rq;
9207 init_cfs_rq(cfs_rq, rq);
9208 cfs_rq->tg = tg;
9209 if (add)
9210 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9211
9212 tg->se[cpu] = se;
9213 /* se could be NULL for init_task_group */
9214 if (!se)
9215 return;
9216
9217 if (!parent)
9218 se->cfs_rq = &rq->cfs;
9219 else
9220 se->cfs_rq = parent->my_q;
9221
9222 se->my_q = cfs_rq;
9223 se->load.weight = tg->shares;
9224 se->load.inv_weight = 0;
9225 se->parent = parent;
9226 }
9227 #endif
9228
9229 #ifdef CONFIG_RT_GROUP_SCHED
9230 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9231 struct sched_rt_entity *rt_se, int cpu, int add,
9232 struct sched_rt_entity *parent)
9233 {
9234 struct rq *rq = cpu_rq(cpu);
9235
9236 tg->rt_rq[cpu] = rt_rq;
9237 init_rt_rq(rt_rq, rq);
9238 rt_rq->tg = tg;
9239 rt_rq->rt_se = rt_se;
9240 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9241 if (add)
9242 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9243
9244 tg->rt_se[cpu] = rt_se;
9245 if (!rt_se)
9246 return;
9247
9248 if (!parent)
9249 rt_se->rt_rq = &rq->rt;
9250 else
9251 rt_se->rt_rq = parent->my_q;
9252
9253 rt_se->my_q = rt_rq;
9254 rt_se->parent = parent;
9255 INIT_LIST_HEAD(&rt_se->run_list);
9256 }
9257 #endif
9258
9259 void __init sched_init(void)
9260 {
9261 int i, j;
9262 unsigned long alloc_size = 0, ptr;
9263
9264 #ifdef CONFIG_FAIR_GROUP_SCHED
9265 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9266 #endif
9267 #ifdef CONFIG_RT_GROUP_SCHED
9268 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9269 #endif
9270 #ifdef CONFIG_USER_SCHED
9271 alloc_size *= 2;
9272 #endif
9273 #ifdef CONFIG_CPUMASK_OFFSTACK
9274 alloc_size += num_possible_cpus() * cpumask_size();
9275 #endif
9276 /*
9277 * As sched_init() is called before page_alloc is setup,
9278 * we use alloc_bootmem().
9279 */
9280 if (alloc_size) {
9281 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9282
9283 #ifdef CONFIG_FAIR_GROUP_SCHED
9284 init_task_group.se = (struct sched_entity **)ptr;
9285 ptr += nr_cpu_ids * sizeof(void **);
9286
9287 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9288 ptr += nr_cpu_ids * sizeof(void **);
9289
9290 #ifdef CONFIG_USER_SCHED
9291 root_task_group.se = (struct sched_entity **)ptr;
9292 ptr += nr_cpu_ids * sizeof(void **);
9293
9294 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9295 ptr += nr_cpu_ids * sizeof(void **);
9296 #endif /* CONFIG_USER_SCHED */
9297 #endif /* CONFIG_FAIR_GROUP_SCHED */
9298 #ifdef CONFIG_RT_GROUP_SCHED
9299 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9300 ptr += nr_cpu_ids * sizeof(void **);
9301
9302 init_task_group.rt_rq = (struct rt_rq **)ptr;
9303 ptr += nr_cpu_ids * sizeof(void **);
9304
9305 #ifdef CONFIG_USER_SCHED
9306 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9307 ptr += nr_cpu_ids * sizeof(void **);
9308
9309 root_task_group.rt_rq = (struct rt_rq **)ptr;
9310 ptr += nr_cpu_ids * sizeof(void **);
9311 #endif /* CONFIG_USER_SCHED */
9312 #endif /* CONFIG_RT_GROUP_SCHED */
9313 #ifdef CONFIG_CPUMASK_OFFSTACK
9314 for_each_possible_cpu(i) {
9315 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9316 ptr += cpumask_size();
9317 }
9318 #endif /* CONFIG_CPUMASK_OFFSTACK */
9319 }
9320
9321 #ifdef CONFIG_SMP
9322 init_defrootdomain();
9323 #endif
9324
9325 init_rt_bandwidth(&def_rt_bandwidth,
9326 global_rt_period(), global_rt_runtime());
9327
9328 #ifdef CONFIG_RT_GROUP_SCHED
9329 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9330 global_rt_period(), global_rt_runtime());
9331 #ifdef CONFIG_USER_SCHED
9332 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9333 global_rt_period(), RUNTIME_INF);
9334 #endif /* CONFIG_USER_SCHED */
9335 #endif /* CONFIG_RT_GROUP_SCHED */
9336
9337 #ifdef CONFIG_GROUP_SCHED
9338 list_add(&init_task_group.list, &task_groups);
9339 INIT_LIST_HEAD(&init_task_group.children);
9340
9341 #ifdef CONFIG_USER_SCHED
9342 INIT_LIST_HEAD(&root_task_group.children);
9343 init_task_group.parent = &root_task_group;
9344 list_add(&init_task_group.siblings, &root_task_group.children);
9345 #endif /* CONFIG_USER_SCHED */
9346 #endif /* CONFIG_GROUP_SCHED */
9347
9348 for_each_possible_cpu(i) {
9349 struct rq *rq;
9350
9351 rq = cpu_rq(i);
9352 spin_lock_init(&rq->lock);
9353 rq->nr_running = 0;
9354 rq->calc_load_active = 0;
9355 rq->calc_load_update = jiffies + LOAD_FREQ;
9356 init_cfs_rq(&rq->cfs, rq);
9357 init_rt_rq(&rq->rt, rq);
9358 #ifdef CONFIG_FAIR_GROUP_SCHED
9359 init_task_group.shares = init_task_group_load;
9360 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9361 #ifdef CONFIG_CGROUP_SCHED
9362 /*
9363 * How much cpu bandwidth does init_task_group get?
9364 *
9365 * In case of task-groups formed thr' the cgroup filesystem, it
9366 * gets 100% of the cpu resources in the system. This overall
9367 * system cpu resource is divided among the tasks of
9368 * init_task_group and its child task-groups in a fair manner,
9369 * based on each entity's (task or task-group's) weight
9370 * (se->load.weight).
9371 *
9372 * In other words, if init_task_group has 10 tasks of weight
9373 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9374 * then A0's share of the cpu resource is:
9375 *
9376 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9377 *
9378 * We achieve this by letting init_task_group's tasks sit
9379 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9380 */
9381 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9382 #elif defined CONFIG_USER_SCHED
9383 root_task_group.shares = NICE_0_LOAD;
9384 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9385 /*
9386 * In case of task-groups formed thr' the user id of tasks,
9387 * init_task_group represents tasks belonging to root user.
9388 * Hence it forms a sibling of all subsequent groups formed.
9389 * In this case, init_task_group gets only a fraction of overall
9390 * system cpu resource, based on the weight assigned to root
9391 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9392 * by letting tasks of init_task_group sit in a separate cfs_rq
9393 * (init_cfs_rq) and having one entity represent this group of
9394 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9395 */
9396 init_tg_cfs_entry(&init_task_group,
9397 &per_cpu(init_cfs_rq, i),
9398 &per_cpu(init_sched_entity, i), i, 1,
9399 root_task_group.se[i]);
9400
9401 #endif
9402 #endif /* CONFIG_FAIR_GROUP_SCHED */
9403
9404 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9405 #ifdef CONFIG_RT_GROUP_SCHED
9406 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9407 #ifdef CONFIG_CGROUP_SCHED
9408 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9409 #elif defined CONFIG_USER_SCHED
9410 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9411 init_tg_rt_entry(&init_task_group,
9412 &per_cpu(init_rt_rq, i),
9413 &per_cpu(init_sched_rt_entity, i), i, 1,
9414 root_task_group.rt_se[i]);
9415 #endif
9416 #endif
9417
9418 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9419 rq->cpu_load[j] = 0;
9420 #ifdef CONFIG_SMP
9421 rq->sd = NULL;
9422 rq->rd = NULL;
9423 rq->post_schedule = 0;
9424 rq->active_balance = 0;
9425 rq->next_balance = jiffies;
9426 rq->push_cpu = 0;
9427 rq->cpu = i;
9428 rq->online = 0;
9429 rq->migration_thread = NULL;
9430 INIT_LIST_HEAD(&rq->migration_queue);
9431 rq_attach_root(rq, &def_root_domain);
9432 #endif
9433 init_rq_hrtick(rq);
9434 atomic_set(&rq->nr_iowait, 0);
9435 }
9436
9437 set_load_weight(&init_task);
9438
9439 #ifdef CONFIG_PREEMPT_NOTIFIERS
9440 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9441 #endif
9442
9443 #ifdef CONFIG_SMP
9444 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9445 #endif
9446
9447 #ifdef CONFIG_RT_MUTEXES
9448 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9449 #endif
9450
9451 /*
9452 * The boot idle thread does lazy MMU switching as well:
9453 */
9454 atomic_inc(&init_mm.mm_count);
9455 enter_lazy_tlb(&init_mm, current);
9456
9457 /*
9458 * Make us the idle thread. Technically, schedule() should not be
9459 * called from this thread, however somewhere below it might be,
9460 * but because we are the idle thread, we just pick up running again
9461 * when this runqueue becomes "idle".
9462 */
9463 init_idle(current, smp_processor_id());
9464
9465 calc_load_update = jiffies + LOAD_FREQ;
9466
9467 /*
9468 * During early bootup we pretend to be a normal task:
9469 */
9470 current->sched_class = &fair_sched_class;
9471
9472 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9473 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9474 #ifdef CONFIG_SMP
9475 #ifdef CONFIG_NO_HZ
9476 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9477 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9478 #endif
9479 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9480 #endif /* SMP */
9481
9482 perf_counter_init();
9483
9484 scheduler_running = 1;
9485 }
9486
9487 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9488 static inline int preempt_count_equals(int preempt_offset)
9489 {
9490 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9491
9492 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9493 }
9494
9495 void __might_sleep(char *file, int line, int preempt_offset)
9496 {
9497 #ifdef in_atomic
9498 static unsigned long prev_jiffy; /* ratelimiting */
9499
9500 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9501 system_state != SYSTEM_RUNNING || oops_in_progress)
9502 return;
9503 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9504 return;
9505 prev_jiffy = jiffies;
9506
9507 printk(KERN_ERR
9508 "BUG: sleeping function called from invalid context at %s:%d\n",
9509 file, line);
9510 printk(KERN_ERR
9511 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9512 in_atomic(), irqs_disabled(),
9513 current->pid, current->comm);
9514
9515 debug_show_held_locks(current);
9516 if (irqs_disabled())
9517 print_irqtrace_events(current);
9518 dump_stack();
9519 #endif
9520 }
9521 EXPORT_SYMBOL(__might_sleep);
9522 #endif
9523
9524 #ifdef CONFIG_MAGIC_SYSRQ
9525 static void normalize_task(struct rq *rq, struct task_struct *p)
9526 {
9527 int on_rq;
9528
9529 update_rq_clock(rq);
9530 on_rq = p->se.on_rq;
9531 if (on_rq)
9532 deactivate_task(rq, p, 0);
9533 __setscheduler(rq, p, SCHED_NORMAL, 0);
9534 if (on_rq) {
9535 activate_task(rq, p, 0);
9536 resched_task(rq->curr);
9537 }
9538 }
9539
9540 void normalize_rt_tasks(void)
9541 {
9542 struct task_struct *g, *p;
9543 unsigned long flags;
9544 struct rq *rq;
9545
9546 read_lock_irqsave(&tasklist_lock, flags);
9547 do_each_thread(g, p) {
9548 /*
9549 * Only normalize user tasks:
9550 */
9551 if (!p->mm)
9552 continue;
9553
9554 p->se.exec_start = 0;
9555 #ifdef CONFIG_SCHEDSTATS
9556 p->se.wait_start = 0;
9557 p->se.sleep_start = 0;
9558 p->se.block_start = 0;
9559 #endif
9560
9561 if (!rt_task(p)) {
9562 /*
9563 * Renice negative nice level userspace
9564 * tasks back to 0:
9565 */
9566 if (TASK_NICE(p) < 0 && p->mm)
9567 set_user_nice(p, 0);
9568 continue;
9569 }
9570
9571 spin_lock(&p->pi_lock);
9572 rq = __task_rq_lock(p);
9573
9574 normalize_task(rq, p);
9575
9576 __task_rq_unlock(rq);
9577 spin_unlock(&p->pi_lock);
9578 } while_each_thread(g, p);
9579
9580 read_unlock_irqrestore(&tasklist_lock, flags);
9581 }
9582
9583 #endif /* CONFIG_MAGIC_SYSRQ */
9584
9585 #ifdef CONFIG_IA64
9586 /*
9587 * These functions are only useful for the IA64 MCA handling.
9588 *
9589 * They can only be called when the whole system has been
9590 * stopped - every CPU needs to be quiescent, and no scheduling
9591 * activity can take place. Using them for anything else would
9592 * be a serious bug, and as a result, they aren't even visible
9593 * under any other configuration.
9594 */
9595
9596 /**
9597 * curr_task - return the current task for a given cpu.
9598 * @cpu: the processor in question.
9599 *
9600 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9601 */
9602 struct task_struct *curr_task(int cpu)
9603 {
9604 return cpu_curr(cpu);
9605 }
9606
9607 /**
9608 * set_curr_task - set the current task for a given cpu.
9609 * @cpu: the processor in question.
9610 * @p: the task pointer to set.
9611 *
9612 * Description: This function must only be used when non-maskable interrupts
9613 * are serviced on a separate stack. It allows the architecture to switch the
9614 * notion of the current task on a cpu in a non-blocking manner. This function
9615 * must be called with all CPU's synchronized, and interrupts disabled, the
9616 * and caller must save the original value of the current task (see
9617 * curr_task() above) and restore that value before reenabling interrupts and
9618 * re-starting the system.
9619 *
9620 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9621 */
9622 void set_curr_task(int cpu, struct task_struct *p)
9623 {
9624 cpu_curr(cpu) = p;
9625 }
9626
9627 #endif
9628
9629 #ifdef CONFIG_FAIR_GROUP_SCHED
9630 static void free_fair_sched_group(struct task_group *tg)
9631 {
9632 int i;
9633
9634 for_each_possible_cpu(i) {
9635 if (tg->cfs_rq)
9636 kfree(tg->cfs_rq[i]);
9637 if (tg->se)
9638 kfree(tg->se[i]);
9639 }
9640
9641 kfree(tg->cfs_rq);
9642 kfree(tg->se);
9643 }
9644
9645 static
9646 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9647 {
9648 struct cfs_rq *cfs_rq;
9649 struct sched_entity *se;
9650 struct rq *rq;
9651 int i;
9652
9653 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9654 if (!tg->cfs_rq)
9655 goto err;
9656 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9657 if (!tg->se)
9658 goto err;
9659
9660 tg->shares = NICE_0_LOAD;
9661
9662 for_each_possible_cpu(i) {
9663 rq = cpu_rq(i);
9664
9665 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9666 GFP_KERNEL, cpu_to_node(i));
9667 if (!cfs_rq)
9668 goto err;
9669
9670 se = kzalloc_node(sizeof(struct sched_entity),
9671 GFP_KERNEL, cpu_to_node(i));
9672 if (!se)
9673 goto err;
9674
9675 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9676 }
9677
9678 return 1;
9679
9680 err:
9681 return 0;
9682 }
9683
9684 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9685 {
9686 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9687 &cpu_rq(cpu)->leaf_cfs_rq_list);
9688 }
9689
9690 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9691 {
9692 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9693 }
9694 #else /* !CONFG_FAIR_GROUP_SCHED */
9695 static inline void free_fair_sched_group(struct task_group *tg)
9696 {
9697 }
9698
9699 static inline
9700 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9701 {
9702 return 1;
9703 }
9704
9705 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9706 {
9707 }
9708
9709 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9710 {
9711 }
9712 #endif /* CONFIG_FAIR_GROUP_SCHED */
9713
9714 #ifdef CONFIG_RT_GROUP_SCHED
9715 static void free_rt_sched_group(struct task_group *tg)
9716 {
9717 int i;
9718
9719 destroy_rt_bandwidth(&tg->rt_bandwidth);
9720
9721 for_each_possible_cpu(i) {
9722 if (tg->rt_rq)
9723 kfree(tg->rt_rq[i]);
9724 if (tg->rt_se)
9725 kfree(tg->rt_se[i]);
9726 }
9727
9728 kfree(tg->rt_rq);
9729 kfree(tg->rt_se);
9730 }
9731
9732 static
9733 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9734 {
9735 struct rt_rq *rt_rq;
9736 struct sched_rt_entity *rt_se;
9737 struct rq *rq;
9738 int i;
9739
9740 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9741 if (!tg->rt_rq)
9742 goto err;
9743 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9744 if (!tg->rt_se)
9745 goto err;
9746
9747 init_rt_bandwidth(&tg->rt_bandwidth,
9748 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9749
9750 for_each_possible_cpu(i) {
9751 rq = cpu_rq(i);
9752
9753 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9754 GFP_KERNEL, cpu_to_node(i));
9755 if (!rt_rq)
9756 goto err;
9757
9758 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9759 GFP_KERNEL, cpu_to_node(i));
9760 if (!rt_se)
9761 goto err;
9762
9763 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9764 }
9765
9766 return 1;
9767
9768 err:
9769 return 0;
9770 }
9771
9772 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9773 {
9774 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9775 &cpu_rq(cpu)->leaf_rt_rq_list);
9776 }
9777
9778 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9779 {
9780 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9781 }
9782 #else /* !CONFIG_RT_GROUP_SCHED */
9783 static inline void free_rt_sched_group(struct task_group *tg)
9784 {
9785 }
9786
9787 static inline
9788 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9789 {
9790 return 1;
9791 }
9792
9793 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9794 {
9795 }
9796
9797 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9798 {
9799 }
9800 #endif /* CONFIG_RT_GROUP_SCHED */
9801
9802 #ifdef CONFIG_GROUP_SCHED
9803 static void free_sched_group(struct task_group *tg)
9804 {
9805 free_fair_sched_group(tg);
9806 free_rt_sched_group(tg);
9807 kfree(tg);
9808 }
9809
9810 /* allocate runqueue etc for a new task group */
9811 struct task_group *sched_create_group(struct task_group *parent)
9812 {
9813 struct task_group *tg;
9814 unsigned long flags;
9815 int i;
9816
9817 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9818 if (!tg)
9819 return ERR_PTR(-ENOMEM);
9820
9821 if (!alloc_fair_sched_group(tg, parent))
9822 goto err;
9823
9824 if (!alloc_rt_sched_group(tg, parent))
9825 goto err;
9826
9827 spin_lock_irqsave(&task_group_lock, flags);
9828 for_each_possible_cpu(i) {
9829 register_fair_sched_group(tg, i);
9830 register_rt_sched_group(tg, i);
9831 }
9832 list_add_rcu(&tg->list, &task_groups);
9833
9834 WARN_ON(!parent); /* root should already exist */
9835
9836 tg->parent = parent;
9837 INIT_LIST_HEAD(&tg->children);
9838 list_add_rcu(&tg->siblings, &parent->children);
9839 spin_unlock_irqrestore(&task_group_lock, flags);
9840
9841 return tg;
9842
9843 err:
9844 free_sched_group(tg);
9845 return ERR_PTR(-ENOMEM);
9846 }
9847
9848 /* rcu callback to free various structures associated with a task group */
9849 static void free_sched_group_rcu(struct rcu_head *rhp)
9850 {
9851 /* now it should be safe to free those cfs_rqs */
9852 free_sched_group(container_of(rhp, struct task_group, rcu));
9853 }
9854
9855 /* Destroy runqueue etc associated with a task group */
9856 void sched_destroy_group(struct task_group *tg)
9857 {
9858 unsigned long flags;
9859 int i;
9860
9861 spin_lock_irqsave(&task_group_lock, flags);
9862 for_each_possible_cpu(i) {
9863 unregister_fair_sched_group(tg, i);
9864 unregister_rt_sched_group(tg, i);
9865 }
9866 list_del_rcu(&tg->list);
9867 list_del_rcu(&tg->siblings);
9868 spin_unlock_irqrestore(&task_group_lock, flags);
9869
9870 /* wait for possible concurrent references to cfs_rqs complete */
9871 call_rcu(&tg->rcu, free_sched_group_rcu);
9872 }
9873
9874 /* change task's runqueue when it moves between groups.
9875 * The caller of this function should have put the task in its new group
9876 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9877 * reflect its new group.
9878 */
9879 void sched_move_task(struct task_struct *tsk)
9880 {
9881 int on_rq, running;
9882 unsigned long flags;
9883 struct rq *rq;
9884
9885 rq = task_rq_lock(tsk, &flags);
9886
9887 update_rq_clock(rq);
9888
9889 running = task_current(rq, tsk);
9890 on_rq = tsk->se.on_rq;
9891
9892 if (on_rq)
9893 dequeue_task(rq, tsk, 0);
9894 if (unlikely(running))
9895 tsk->sched_class->put_prev_task(rq, tsk);
9896
9897 set_task_rq(tsk, task_cpu(tsk));
9898
9899 #ifdef CONFIG_FAIR_GROUP_SCHED
9900 if (tsk->sched_class->moved_group)
9901 tsk->sched_class->moved_group(tsk);
9902 #endif
9903
9904 if (unlikely(running))
9905 tsk->sched_class->set_curr_task(rq);
9906 if (on_rq)
9907 enqueue_task(rq, tsk, 0);
9908
9909 task_rq_unlock(rq, &flags);
9910 }
9911 #endif /* CONFIG_GROUP_SCHED */
9912
9913 #ifdef CONFIG_FAIR_GROUP_SCHED
9914 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9915 {
9916 struct cfs_rq *cfs_rq = se->cfs_rq;
9917 int on_rq;
9918
9919 on_rq = se->on_rq;
9920 if (on_rq)
9921 dequeue_entity(cfs_rq, se, 0);
9922
9923 se->load.weight = shares;
9924 se->load.inv_weight = 0;
9925
9926 if (on_rq)
9927 enqueue_entity(cfs_rq, se, 0);
9928 }
9929
9930 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9931 {
9932 struct cfs_rq *cfs_rq = se->cfs_rq;
9933 struct rq *rq = cfs_rq->rq;
9934 unsigned long flags;
9935
9936 spin_lock_irqsave(&rq->lock, flags);
9937 __set_se_shares(se, shares);
9938 spin_unlock_irqrestore(&rq->lock, flags);
9939 }
9940
9941 static DEFINE_MUTEX(shares_mutex);
9942
9943 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9944 {
9945 int i;
9946 unsigned long flags;
9947
9948 /*
9949 * We can't change the weight of the root cgroup.
9950 */
9951 if (!tg->se[0])
9952 return -EINVAL;
9953
9954 if (shares < MIN_SHARES)
9955 shares = MIN_SHARES;
9956 else if (shares > MAX_SHARES)
9957 shares = MAX_SHARES;
9958
9959 mutex_lock(&shares_mutex);
9960 if (tg->shares == shares)
9961 goto done;
9962
9963 spin_lock_irqsave(&task_group_lock, flags);
9964 for_each_possible_cpu(i)
9965 unregister_fair_sched_group(tg, i);
9966 list_del_rcu(&tg->siblings);
9967 spin_unlock_irqrestore(&task_group_lock, flags);
9968
9969 /* wait for any ongoing reference to this group to finish */
9970 synchronize_sched();
9971
9972 /*
9973 * Now we are free to modify the group's share on each cpu
9974 * w/o tripping rebalance_share or load_balance_fair.
9975 */
9976 tg->shares = shares;
9977 for_each_possible_cpu(i) {
9978 /*
9979 * force a rebalance
9980 */
9981 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9982 set_se_shares(tg->se[i], shares);
9983 }
9984
9985 /*
9986 * Enable load balance activity on this group, by inserting it back on
9987 * each cpu's rq->leaf_cfs_rq_list.
9988 */
9989 spin_lock_irqsave(&task_group_lock, flags);
9990 for_each_possible_cpu(i)
9991 register_fair_sched_group(tg, i);
9992 list_add_rcu(&tg->siblings, &tg->parent->children);
9993 spin_unlock_irqrestore(&task_group_lock, flags);
9994 done:
9995 mutex_unlock(&shares_mutex);
9996 return 0;
9997 }
9998
9999 unsigned long sched_group_shares(struct task_group *tg)
10000 {
10001 return tg->shares;
10002 }
10003 #endif
10004
10005 #ifdef CONFIG_RT_GROUP_SCHED
10006 /*
10007 * Ensure that the real time constraints are schedulable.
10008 */
10009 static DEFINE_MUTEX(rt_constraints_mutex);
10010
10011 static unsigned long to_ratio(u64 period, u64 runtime)
10012 {
10013 if (runtime == RUNTIME_INF)
10014 return 1ULL << 20;
10015
10016 return div64_u64(runtime << 20, period);
10017 }
10018
10019 /* Must be called with tasklist_lock held */
10020 static inline int tg_has_rt_tasks(struct task_group *tg)
10021 {
10022 struct task_struct *g, *p;
10023
10024 do_each_thread(g, p) {
10025 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10026 return 1;
10027 } while_each_thread(g, p);
10028
10029 return 0;
10030 }
10031
10032 struct rt_schedulable_data {
10033 struct task_group *tg;
10034 u64 rt_period;
10035 u64 rt_runtime;
10036 };
10037
10038 static int tg_schedulable(struct task_group *tg, void *data)
10039 {
10040 struct rt_schedulable_data *d = data;
10041 struct task_group *child;
10042 unsigned long total, sum = 0;
10043 u64 period, runtime;
10044
10045 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10046 runtime = tg->rt_bandwidth.rt_runtime;
10047
10048 if (tg == d->tg) {
10049 period = d->rt_period;
10050 runtime = d->rt_runtime;
10051 }
10052
10053 #ifdef CONFIG_USER_SCHED
10054 if (tg == &root_task_group) {
10055 period = global_rt_period();
10056 runtime = global_rt_runtime();
10057 }
10058 #endif
10059
10060 /*
10061 * Cannot have more runtime than the period.
10062 */
10063 if (runtime > period && runtime != RUNTIME_INF)
10064 return -EINVAL;
10065
10066 /*
10067 * Ensure we don't starve existing RT tasks.
10068 */
10069 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10070 return -EBUSY;
10071
10072 total = to_ratio(period, runtime);
10073
10074 /*
10075 * Nobody can have more than the global setting allows.
10076 */
10077 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10078 return -EINVAL;
10079
10080 /*
10081 * The sum of our children's runtime should not exceed our own.
10082 */
10083 list_for_each_entry_rcu(child, &tg->children, siblings) {
10084 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10085 runtime = child->rt_bandwidth.rt_runtime;
10086
10087 if (child == d->tg) {
10088 period = d->rt_period;
10089 runtime = d->rt_runtime;
10090 }
10091
10092 sum += to_ratio(period, runtime);
10093 }
10094
10095 if (sum > total)
10096 return -EINVAL;
10097
10098 return 0;
10099 }
10100
10101 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10102 {
10103 struct rt_schedulable_data data = {
10104 .tg = tg,
10105 .rt_period = period,
10106 .rt_runtime = runtime,
10107 };
10108
10109 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10110 }
10111
10112 static int tg_set_bandwidth(struct task_group *tg,
10113 u64 rt_period, u64 rt_runtime)
10114 {
10115 int i, err = 0;
10116
10117 mutex_lock(&rt_constraints_mutex);
10118 read_lock(&tasklist_lock);
10119 err = __rt_schedulable(tg, rt_period, rt_runtime);
10120 if (err)
10121 goto unlock;
10122
10123 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10124 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10125 tg->rt_bandwidth.rt_runtime = rt_runtime;
10126
10127 for_each_possible_cpu(i) {
10128 struct rt_rq *rt_rq = tg->rt_rq[i];
10129
10130 spin_lock(&rt_rq->rt_runtime_lock);
10131 rt_rq->rt_runtime = rt_runtime;
10132 spin_unlock(&rt_rq->rt_runtime_lock);
10133 }
10134 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10135 unlock:
10136 read_unlock(&tasklist_lock);
10137 mutex_unlock(&rt_constraints_mutex);
10138
10139 return err;
10140 }
10141
10142 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10143 {
10144 u64 rt_runtime, rt_period;
10145
10146 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10147 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10148 if (rt_runtime_us < 0)
10149 rt_runtime = RUNTIME_INF;
10150
10151 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10152 }
10153
10154 long sched_group_rt_runtime(struct task_group *tg)
10155 {
10156 u64 rt_runtime_us;
10157
10158 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10159 return -1;
10160
10161 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10162 do_div(rt_runtime_us, NSEC_PER_USEC);
10163 return rt_runtime_us;
10164 }
10165
10166 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10167 {
10168 u64 rt_runtime, rt_period;
10169
10170 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10171 rt_runtime = tg->rt_bandwidth.rt_runtime;
10172
10173 if (rt_period == 0)
10174 return -EINVAL;
10175
10176 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10177 }
10178
10179 long sched_group_rt_period(struct task_group *tg)
10180 {
10181 u64 rt_period_us;
10182
10183 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10184 do_div(rt_period_us, NSEC_PER_USEC);
10185 return rt_period_us;
10186 }
10187
10188 static int sched_rt_global_constraints(void)
10189 {
10190 u64 runtime, period;
10191 int ret = 0;
10192
10193 if (sysctl_sched_rt_period <= 0)
10194 return -EINVAL;
10195
10196 runtime = global_rt_runtime();
10197 period = global_rt_period();
10198
10199 /*
10200 * Sanity check on the sysctl variables.
10201 */
10202 if (runtime > period && runtime != RUNTIME_INF)
10203 return -EINVAL;
10204
10205 mutex_lock(&rt_constraints_mutex);
10206 read_lock(&tasklist_lock);
10207 ret = __rt_schedulable(NULL, 0, 0);
10208 read_unlock(&tasklist_lock);
10209 mutex_unlock(&rt_constraints_mutex);
10210
10211 return ret;
10212 }
10213
10214 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10215 {
10216 /* Don't accept realtime tasks when there is no way for them to run */
10217 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10218 return 0;
10219
10220 return 1;
10221 }
10222
10223 #else /* !CONFIG_RT_GROUP_SCHED */
10224 static int sched_rt_global_constraints(void)
10225 {
10226 unsigned long flags;
10227 int i;
10228
10229 if (sysctl_sched_rt_period <= 0)
10230 return -EINVAL;
10231
10232 /*
10233 * There's always some RT tasks in the root group
10234 * -- migration, kstopmachine etc..
10235 */
10236 if (sysctl_sched_rt_runtime == 0)
10237 return -EBUSY;
10238
10239 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10240 for_each_possible_cpu(i) {
10241 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10242
10243 spin_lock(&rt_rq->rt_runtime_lock);
10244 rt_rq->rt_runtime = global_rt_runtime();
10245 spin_unlock(&rt_rq->rt_runtime_lock);
10246 }
10247 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10248
10249 return 0;
10250 }
10251 #endif /* CONFIG_RT_GROUP_SCHED */
10252
10253 int sched_rt_handler(struct ctl_table *table, int write,
10254 struct file *filp, void __user *buffer, size_t *lenp,
10255 loff_t *ppos)
10256 {
10257 int ret;
10258 int old_period, old_runtime;
10259 static DEFINE_MUTEX(mutex);
10260
10261 mutex_lock(&mutex);
10262 old_period = sysctl_sched_rt_period;
10263 old_runtime = sysctl_sched_rt_runtime;
10264
10265 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10266
10267 if (!ret && write) {
10268 ret = sched_rt_global_constraints();
10269 if (ret) {
10270 sysctl_sched_rt_period = old_period;
10271 sysctl_sched_rt_runtime = old_runtime;
10272 } else {
10273 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10274 def_rt_bandwidth.rt_period =
10275 ns_to_ktime(global_rt_period());
10276 }
10277 }
10278 mutex_unlock(&mutex);
10279
10280 return ret;
10281 }
10282
10283 #ifdef CONFIG_CGROUP_SCHED
10284
10285 /* return corresponding task_group object of a cgroup */
10286 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10287 {
10288 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10289 struct task_group, css);
10290 }
10291
10292 static struct cgroup_subsys_state *
10293 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10294 {
10295 struct task_group *tg, *parent;
10296
10297 if (!cgrp->parent) {
10298 /* This is early initialization for the top cgroup */
10299 return &init_task_group.css;
10300 }
10301
10302 parent = cgroup_tg(cgrp->parent);
10303 tg = sched_create_group(parent);
10304 if (IS_ERR(tg))
10305 return ERR_PTR(-ENOMEM);
10306
10307 return &tg->css;
10308 }
10309
10310 static void
10311 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10312 {
10313 struct task_group *tg = cgroup_tg(cgrp);
10314
10315 sched_destroy_group(tg);
10316 }
10317
10318 static int
10319 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10320 struct task_struct *tsk)
10321 {
10322 #ifdef CONFIG_RT_GROUP_SCHED
10323 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10324 return -EINVAL;
10325 #else
10326 /* We don't support RT-tasks being in separate groups */
10327 if (tsk->sched_class != &fair_sched_class)
10328 return -EINVAL;
10329 #endif
10330
10331 return 0;
10332 }
10333
10334 static void
10335 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10336 struct cgroup *old_cont, struct task_struct *tsk)
10337 {
10338 sched_move_task(tsk);
10339 }
10340
10341 #ifdef CONFIG_FAIR_GROUP_SCHED
10342 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10343 u64 shareval)
10344 {
10345 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10346 }
10347
10348 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10349 {
10350 struct task_group *tg = cgroup_tg(cgrp);
10351
10352 return (u64) tg->shares;
10353 }
10354 #endif /* CONFIG_FAIR_GROUP_SCHED */
10355
10356 #ifdef CONFIG_RT_GROUP_SCHED
10357 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10358 s64 val)
10359 {
10360 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10361 }
10362
10363 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10364 {
10365 return sched_group_rt_runtime(cgroup_tg(cgrp));
10366 }
10367
10368 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10369 u64 rt_period_us)
10370 {
10371 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10372 }
10373
10374 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10375 {
10376 return sched_group_rt_period(cgroup_tg(cgrp));
10377 }
10378 #endif /* CONFIG_RT_GROUP_SCHED */
10379
10380 static struct cftype cpu_files[] = {
10381 #ifdef CONFIG_FAIR_GROUP_SCHED
10382 {
10383 .name = "shares",
10384 .read_u64 = cpu_shares_read_u64,
10385 .write_u64 = cpu_shares_write_u64,
10386 },
10387 #endif
10388 #ifdef CONFIG_RT_GROUP_SCHED
10389 {
10390 .name = "rt_runtime_us",
10391 .read_s64 = cpu_rt_runtime_read,
10392 .write_s64 = cpu_rt_runtime_write,
10393 },
10394 {
10395 .name = "rt_period_us",
10396 .read_u64 = cpu_rt_period_read_uint,
10397 .write_u64 = cpu_rt_period_write_uint,
10398 },
10399 #endif
10400 };
10401
10402 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10403 {
10404 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10405 }
10406
10407 struct cgroup_subsys cpu_cgroup_subsys = {
10408 .name = "cpu",
10409 .create = cpu_cgroup_create,
10410 .destroy = cpu_cgroup_destroy,
10411 .can_attach = cpu_cgroup_can_attach,
10412 .attach = cpu_cgroup_attach,
10413 .populate = cpu_cgroup_populate,
10414 .subsys_id = cpu_cgroup_subsys_id,
10415 .early_init = 1,
10416 };
10417
10418 #endif /* CONFIG_CGROUP_SCHED */
10419
10420 #ifdef CONFIG_CGROUP_CPUACCT
10421
10422 /*
10423 * CPU accounting code for task groups.
10424 *
10425 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10426 * (balbir@in.ibm.com).
10427 */
10428
10429 /* track cpu usage of a group of tasks and its child groups */
10430 struct cpuacct {
10431 struct cgroup_subsys_state css;
10432 /* cpuusage holds pointer to a u64-type object on every cpu */
10433 u64 *cpuusage;
10434 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10435 struct cpuacct *parent;
10436 };
10437
10438 struct cgroup_subsys cpuacct_subsys;
10439
10440 /* return cpu accounting group corresponding to this container */
10441 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10442 {
10443 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10444 struct cpuacct, css);
10445 }
10446
10447 /* return cpu accounting group to which this task belongs */
10448 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10449 {
10450 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10451 struct cpuacct, css);
10452 }
10453
10454 /* create a new cpu accounting group */
10455 static struct cgroup_subsys_state *cpuacct_create(
10456 struct cgroup_subsys *ss, struct cgroup *cgrp)
10457 {
10458 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10459 int i;
10460
10461 if (!ca)
10462 goto out;
10463
10464 ca->cpuusage = alloc_percpu(u64);
10465 if (!ca->cpuusage)
10466 goto out_free_ca;
10467
10468 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10469 if (percpu_counter_init(&ca->cpustat[i], 0))
10470 goto out_free_counters;
10471
10472 if (cgrp->parent)
10473 ca->parent = cgroup_ca(cgrp->parent);
10474
10475 return &ca->css;
10476
10477 out_free_counters:
10478 while (--i >= 0)
10479 percpu_counter_destroy(&ca->cpustat[i]);
10480 free_percpu(ca->cpuusage);
10481 out_free_ca:
10482 kfree(ca);
10483 out:
10484 return ERR_PTR(-ENOMEM);
10485 }
10486
10487 /* destroy an existing cpu accounting group */
10488 static void
10489 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10490 {
10491 struct cpuacct *ca = cgroup_ca(cgrp);
10492 int i;
10493
10494 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10495 percpu_counter_destroy(&ca->cpustat[i]);
10496 free_percpu(ca->cpuusage);
10497 kfree(ca);
10498 }
10499
10500 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10501 {
10502 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10503 u64 data;
10504
10505 #ifndef CONFIG_64BIT
10506 /*
10507 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10508 */
10509 spin_lock_irq(&cpu_rq(cpu)->lock);
10510 data = *cpuusage;
10511 spin_unlock_irq(&cpu_rq(cpu)->lock);
10512 #else
10513 data = *cpuusage;
10514 #endif
10515
10516 return data;
10517 }
10518
10519 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10520 {
10521 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10522
10523 #ifndef CONFIG_64BIT
10524 /*
10525 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10526 */
10527 spin_lock_irq(&cpu_rq(cpu)->lock);
10528 *cpuusage = val;
10529 spin_unlock_irq(&cpu_rq(cpu)->lock);
10530 #else
10531 *cpuusage = val;
10532 #endif
10533 }
10534
10535 /* return total cpu usage (in nanoseconds) of a group */
10536 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10537 {
10538 struct cpuacct *ca = cgroup_ca(cgrp);
10539 u64 totalcpuusage = 0;
10540 int i;
10541
10542 for_each_present_cpu(i)
10543 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10544
10545 return totalcpuusage;
10546 }
10547
10548 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10549 u64 reset)
10550 {
10551 struct cpuacct *ca = cgroup_ca(cgrp);
10552 int err = 0;
10553 int i;
10554
10555 if (reset) {
10556 err = -EINVAL;
10557 goto out;
10558 }
10559
10560 for_each_present_cpu(i)
10561 cpuacct_cpuusage_write(ca, i, 0);
10562
10563 out:
10564 return err;
10565 }
10566
10567 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10568 struct seq_file *m)
10569 {
10570 struct cpuacct *ca = cgroup_ca(cgroup);
10571 u64 percpu;
10572 int i;
10573
10574 for_each_present_cpu(i) {
10575 percpu = cpuacct_cpuusage_read(ca, i);
10576 seq_printf(m, "%llu ", (unsigned long long) percpu);
10577 }
10578 seq_printf(m, "\n");
10579 return 0;
10580 }
10581
10582 static const char *cpuacct_stat_desc[] = {
10583 [CPUACCT_STAT_USER] = "user",
10584 [CPUACCT_STAT_SYSTEM] = "system",
10585 };
10586
10587 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10588 struct cgroup_map_cb *cb)
10589 {
10590 struct cpuacct *ca = cgroup_ca(cgrp);
10591 int i;
10592
10593 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10594 s64 val = percpu_counter_read(&ca->cpustat[i]);
10595 val = cputime64_to_clock_t(val);
10596 cb->fill(cb, cpuacct_stat_desc[i], val);
10597 }
10598 return 0;
10599 }
10600
10601 static struct cftype files[] = {
10602 {
10603 .name = "usage",
10604 .read_u64 = cpuusage_read,
10605 .write_u64 = cpuusage_write,
10606 },
10607 {
10608 .name = "usage_percpu",
10609 .read_seq_string = cpuacct_percpu_seq_read,
10610 },
10611 {
10612 .name = "stat",
10613 .read_map = cpuacct_stats_show,
10614 },
10615 };
10616
10617 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10618 {
10619 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10620 }
10621
10622 /*
10623 * charge this task's execution time to its accounting group.
10624 *
10625 * called with rq->lock held.
10626 */
10627 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10628 {
10629 struct cpuacct *ca;
10630 int cpu;
10631
10632 if (unlikely(!cpuacct_subsys.active))
10633 return;
10634
10635 cpu = task_cpu(tsk);
10636
10637 rcu_read_lock();
10638
10639 ca = task_ca(tsk);
10640
10641 for (; ca; ca = ca->parent) {
10642 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10643 *cpuusage += cputime;
10644 }
10645
10646 rcu_read_unlock();
10647 }
10648
10649 /*
10650 * Charge the system/user time to the task's accounting group.
10651 */
10652 static void cpuacct_update_stats(struct task_struct *tsk,
10653 enum cpuacct_stat_index idx, cputime_t val)
10654 {
10655 struct cpuacct *ca;
10656
10657 if (unlikely(!cpuacct_subsys.active))
10658 return;
10659
10660 rcu_read_lock();
10661 ca = task_ca(tsk);
10662
10663 do {
10664 percpu_counter_add(&ca->cpustat[idx], val);
10665 ca = ca->parent;
10666 } while (ca);
10667 rcu_read_unlock();
10668 }
10669
10670 struct cgroup_subsys cpuacct_subsys = {
10671 .name = "cpuacct",
10672 .create = cpuacct_create,
10673 .destroy = cpuacct_destroy,
10674 .populate = cpuacct_populate,
10675 .subsys_id = cpuacct_subsys_id,
10676 };
10677 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.252954 seconds and 5 git commands to generate.