sched: undo some of the recent changes
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
65
66 #include <asm/tlb.h>
67
68 /*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73 unsigned long long __attribute__((weak)) sched_clock(void)
74 {
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76 }
77
78 /*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87 /*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96 /*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
105 /*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
111 */
112 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 #ifdef CONFIG_SMP
116 /*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 {
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123 }
124
125 /*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 {
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 }
134 #endif
135
136 #define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
138
139 /*
140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 * to time slice values: [800ms ... 100ms ... 5ms]
142 */
143 static unsigned int static_prio_timeslice(int static_prio)
144 {
145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
147
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
152 }
153
154 static inline int rt_policy(int policy)
155 {
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
159 }
160
161 static inline int task_has_rt_policy(struct task_struct *p)
162 {
163 return rt_policy(p->policy);
164 }
165
166 /*
167 * This is the priority-queue data structure of the RT scheduling class:
168 */
169 struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
172 };
173
174 #ifdef CONFIG_FAIR_GROUP_SCHED
175
176 struct cfs_rq;
177
178 /* task group related information */
179 struct task_grp {
180 /* schedulable entities of this group on each cpu */
181 struct sched_entity **se;
182 /* runqueue "owned" by this group on each cpu */
183 struct cfs_rq **cfs_rq;
184 unsigned long shares;
185 };
186
187 /* Default task group's sched entity on each cpu */
188 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
189 /* Default task group's cfs_rq on each cpu */
190 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
191
192 static struct sched_entity *init_sched_entity_p[NR_CPUS];
193 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
194
195 /* Default task group.
196 * Every task in system belong to this group at bootup.
197 */
198 struct task_grp init_task_grp = {
199 .se = init_sched_entity_p,
200 .cfs_rq = init_cfs_rq_p,
201 };
202
203 #ifdef CONFIG_FAIR_USER_SCHED
204 #define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
205 #else
206 #define INIT_TASK_GRP_LOAD NICE_0_LOAD
207 #endif
208
209 static int init_task_grp_load = INIT_TASK_GRP_LOAD;
210
211 /* return group to which a task belongs */
212 static inline struct task_grp *task_grp(struct task_struct *p)
213 {
214 struct task_grp *tg;
215
216 #ifdef CONFIG_FAIR_USER_SCHED
217 tg = p->user->tg;
218 #else
219 tg = &init_task_grp;
220 #endif
221
222 return tg;
223 }
224
225 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
226 static inline void set_task_cfs_rq(struct task_struct *p)
227 {
228 p->se.cfs_rq = task_grp(p)->cfs_rq[task_cpu(p)];
229 p->se.parent = task_grp(p)->se[task_cpu(p)];
230 }
231
232 #else
233
234 static inline void set_task_cfs_rq(struct task_struct *p) { }
235
236 #endif /* CONFIG_FAIR_GROUP_SCHED */
237
238 /* CFS-related fields in a runqueue */
239 struct cfs_rq {
240 struct load_weight load;
241 unsigned long nr_running;
242
243 u64 exec_clock;
244 u64 min_vruntime;
245
246 struct rb_root tasks_timeline;
247 struct rb_node *rb_leftmost;
248 struct rb_node *rb_load_balance_curr;
249 /* 'curr' points to currently running entity on this cfs_rq.
250 * It is set to NULL otherwise (i.e when none are currently running).
251 */
252 struct sched_entity *curr;
253
254 unsigned long nr_spread_over;
255
256 #ifdef CONFIG_FAIR_GROUP_SCHED
257 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
258
259 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
260 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
261 * (like users, containers etc.)
262 *
263 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
264 * list is used during load balance.
265 */
266 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
267 struct task_grp *tg; /* group that "owns" this runqueue */
268 struct rcu_head rcu;
269 #endif
270 };
271
272 /* Real-Time classes' related field in a runqueue: */
273 struct rt_rq {
274 struct rt_prio_array active;
275 int rt_load_balance_idx;
276 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
277 };
278
279 /*
280 * This is the main, per-CPU runqueue data structure.
281 *
282 * Locking rule: those places that want to lock multiple runqueues
283 * (such as the load balancing or the thread migration code), lock
284 * acquire operations must be ordered by ascending &runqueue.
285 */
286 struct rq {
287 spinlock_t lock; /* runqueue lock */
288
289 /*
290 * nr_running and cpu_load should be in the same cacheline because
291 * remote CPUs use both these fields when doing load calculation.
292 */
293 unsigned long nr_running;
294 #define CPU_LOAD_IDX_MAX 5
295 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
296 unsigned char idle_at_tick;
297 #ifdef CONFIG_NO_HZ
298 unsigned char in_nohz_recently;
299 #endif
300 struct load_weight load; /* capture load from *all* tasks on this cpu */
301 unsigned long nr_load_updates;
302 u64 nr_switches;
303
304 struct cfs_rq cfs;
305 #ifdef CONFIG_FAIR_GROUP_SCHED
306 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
307 #endif
308 struct rt_rq rt;
309
310 /*
311 * This is part of a global counter where only the total sum
312 * over all CPUs matters. A task can increase this counter on
313 * one CPU and if it got migrated afterwards it may decrease
314 * it on another CPU. Always updated under the runqueue lock:
315 */
316 unsigned long nr_uninterruptible;
317
318 struct task_struct *curr, *idle;
319 unsigned long next_balance;
320 struct mm_struct *prev_mm;
321
322 u64 clock, prev_clock_raw;
323 s64 clock_max_delta;
324
325 unsigned int clock_warps, clock_overflows;
326 u64 idle_clock;
327 unsigned int clock_deep_idle_events;
328 u64 tick_timestamp;
329
330 atomic_t nr_iowait;
331
332 #ifdef CONFIG_SMP
333 struct sched_domain *sd;
334
335 /* For active balancing */
336 int active_balance;
337 int push_cpu;
338 int cpu; /* cpu of this runqueue */
339
340 struct task_struct *migration_thread;
341 struct list_head migration_queue;
342 #endif
343
344 #ifdef CONFIG_SCHEDSTATS
345 /* latency stats */
346 struct sched_info rq_sched_info;
347
348 /* sys_sched_yield() stats */
349 unsigned long yld_exp_empty;
350 unsigned long yld_act_empty;
351 unsigned long yld_both_empty;
352 unsigned long yld_cnt;
353
354 /* schedule() stats */
355 unsigned long sched_switch;
356 unsigned long sched_cnt;
357 unsigned long sched_goidle;
358
359 /* try_to_wake_up() stats */
360 unsigned long ttwu_cnt;
361 unsigned long ttwu_local;
362
363 /* BKL stats */
364 unsigned long bkl_cnt;
365 #endif
366 struct lock_class_key rq_lock_key;
367 };
368
369 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
370 static DEFINE_MUTEX(sched_hotcpu_mutex);
371
372 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
373 {
374 rq->curr->sched_class->check_preempt_curr(rq, p);
375 }
376
377 static inline int cpu_of(struct rq *rq)
378 {
379 #ifdef CONFIG_SMP
380 return rq->cpu;
381 #else
382 return 0;
383 #endif
384 }
385
386 /*
387 * Update the per-runqueue clock, as finegrained as the platform can give
388 * us, but without assuming monotonicity, etc.:
389 */
390 static void __update_rq_clock(struct rq *rq)
391 {
392 u64 prev_raw = rq->prev_clock_raw;
393 u64 now = sched_clock();
394 s64 delta = now - prev_raw;
395 u64 clock = rq->clock;
396
397 #ifdef CONFIG_SCHED_DEBUG
398 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
399 #endif
400 /*
401 * Protect against sched_clock() occasionally going backwards:
402 */
403 if (unlikely(delta < 0)) {
404 clock++;
405 rq->clock_warps++;
406 } else {
407 /*
408 * Catch too large forward jumps too:
409 */
410 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
411 if (clock < rq->tick_timestamp + TICK_NSEC)
412 clock = rq->tick_timestamp + TICK_NSEC;
413 else
414 clock++;
415 rq->clock_overflows++;
416 } else {
417 if (unlikely(delta > rq->clock_max_delta))
418 rq->clock_max_delta = delta;
419 clock += delta;
420 }
421 }
422
423 rq->prev_clock_raw = now;
424 rq->clock = clock;
425 }
426
427 static void update_rq_clock(struct rq *rq)
428 {
429 if (likely(smp_processor_id() == cpu_of(rq)))
430 __update_rq_clock(rq);
431 }
432
433 /*
434 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
435 * See detach_destroy_domains: synchronize_sched for details.
436 *
437 * The domain tree of any CPU may only be accessed from within
438 * preempt-disabled sections.
439 */
440 #define for_each_domain(cpu, __sd) \
441 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
442
443 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
444 #define this_rq() (&__get_cpu_var(runqueues))
445 #define task_rq(p) cpu_rq(task_cpu(p))
446 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
447
448 /*
449 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
450 */
451 #ifdef CONFIG_SCHED_DEBUG
452 # define const_debug __read_mostly
453 #else
454 # define const_debug static const
455 #endif
456
457 /*
458 * Debugging: various feature bits
459 */
460 enum {
461 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
462 SCHED_FEAT_START_DEBIT = 2,
463 SCHED_FEAT_USE_TREE_AVG = 4,
464 SCHED_FEAT_APPROX_AVG = 8,
465 };
466
467 const_debug unsigned int sysctl_sched_features =
468 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
469 SCHED_FEAT_START_DEBIT *1 |
470 SCHED_FEAT_USE_TREE_AVG *0 |
471 SCHED_FEAT_APPROX_AVG *0;
472
473 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
474
475 /*
476 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
477 * clock constructed from sched_clock():
478 */
479 unsigned long long cpu_clock(int cpu)
480 {
481 unsigned long long now;
482 unsigned long flags;
483 struct rq *rq;
484
485 local_irq_save(flags);
486 rq = cpu_rq(cpu);
487 update_rq_clock(rq);
488 now = rq->clock;
489 local_irq_restore(flags);
490
491 return now;
492 }
493
494 #ifndef prepare_arch_switch
495 # define prepare_arch_switch(next) do { } while (0)
496 #endif
497 #ifndef finish_arch_switch
498 # define finish_arch_switch(prev) do { } while (0)
499 #endif
500
501 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
502 static inline int task_running(struct rq *rq, struct task_struct *p)
503 {
504 return rq->curr == p;
505 }
506
507 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
508 {
509 }
510
511 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
512 {
513 #ifdef CONFIG_DEBUG_SPINLOCK
514 /* this is a valid case when another task releases the spinlock */
515 rq->lock.owner = current;
516 #endif
517 /*
518 * If we are tracking spinlock dependencies then we have to
519 * fix up the runqueue lock - which gets 'carried over' from
520 * prev into current:
521 */
522 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
523
524 spin_unlock_irq(&rq->lock);
525 }
526
527 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
528 static inline int task_running(struct rq *rq, struct task_struct *p)
529 {
530 #ifdef CONFIG_SMP
531 return p->oncpu;
532 #else
533 return rq->curr == p;
534 #endif
535 }
536
537 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
538 {
539 #ifdef CONFIG_SMP
540 /*
541 * We can optimise this out completely for !SMP, because the
542 * SMP rebalancing from interrupt is the only thing that cares
543 * here.
544 */
545 next->oncpu = 1;
546 #endif
547 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
548 spin_unlock_irq(&rq->lock);
549 #else
550 spin_unlock(&rq->lock);
551 #endif
552 }
553
554 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
555 {
556 #ifdef CONFIG_SMP
557 /*
558 * After ->oncpu is cleared, the task can be moved to a different CPU.
559 * We must ensure this doesn't happen until the switch is completely
560 * finished.
561 */
562 smp_wmb();
563 prev->oncpu = 0;
564 #endif
565 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
566 local_irq_enable();
567 #endif
568 }
569 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
570
571 /*
572 * __task_rq_lock - lock the runqueue a given task resides on.
573 * Must be called interrupts disabled.
574 */
575 static inline struct rq *__task_rq_lock(struct task_struct *p)
576 __acquires(rq->lock)
577 {
578 struct rq *rq;
579
580 repeat_lock_task:
581 rq = task_rq(p);
582 spin_lock(&rq->lock);
583 if (unlikely(rq != task_rq(p))) {
584 spin_unlock(&rq->lock);
585 goto repeat_lock_task;
586 }
587 return rq;
588 }
589
590 /*
591 * task_rq_lock - lock the runqueue a given task resides on and disable
592 * interrupts. Note the ordering: we can safely lookup the task_rq without
593 * explicitly disabling preemption.
594 */
595 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
596 __acquires(rq->lock)
597 {
598 struct rq *rq;
599
600 repeat_lock_task:
601 local_irq_save(*flags);
602 rq = task_rq(p);
603 spin_lock(&rq->lock);
604 if (unlikely(rq != task_rq(p))) {
605 spin_unlock_irqrestore(&rq->lock, *flags);
606 goto repeat_lock_task;
607 }
608 return rq;
609 }
610
611 static inline void __task_rq_unlock(struct rq *rq)
612 __releases(rq->lock)
613 {
614 spin_unlock(&rq->lock);
615 }
616
617 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
618 __releases(rq->lock)
619 {
620 spin_unlock_irqrestore(&rq->lock, *flags);
621 }
622
623 /*
624 * this_rq_lock - lock this runqueue and disable interrupts.
625 */
626 static inline struct rq *this_rq_lock(void)
627 __acquires(rq->lock)
628 {
629 struct rq *rq;
630
631 local_irq_disable();
632 rq = this_rq();
633 spin_lock(&rq->lock);
634
635 return rq;
636 }
637
638 /*
639 * We are going deep-idle (irqs are disabled):
640 */
641 void sched_clock_idle_sleep_event(void)
642 {
643 struct rq *rq = cpu_rq(smp_processor_id());
644
645 spin_lock(&rq->lock);
646 __update_rq_clock(rq);
647 spin_unlock(&rq->lock);
648 rq->clock_deep_idle_events++;
649 }
650 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
651
652 /*
653 * We just idled delta nanoseconds (called with irqs disabled):
654 */
655 void sched_clock_idle_wakeup_event(u64 delta_ns)
656 {
657 struct rq *rq = cpu_rq(smp_processor_id());
658 u64 now = sched_clock();
659
660 rq->idle_clock += delta_ns;
661 /*
662 * Override the previous timestamp and ignore all
663 * sched_clock() deltas that occured while we idled,
664 * and use the PM-provided delta_ns to advance the
665 * rq clock:
666 */
667 spin_lock(&rq->lock);
668 rq->prev_clock_raw = now;
669 rq->clock += delta_ns;
670 spin_unlock(&rq->lock);
671 }
672 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
673
674 /*
675 * resched_task - mark a task 'to be rescheduled now'.
676 *
677 * On UP this means the setting of the need_resched flag, on SMP it
678 * might also involve a cross-CPU call to trigger the scheduler on
679 * the target CPU.
680 */
681 #ifdef CONFIG_SMP
682
683 #ifndef tsk_is_polling
684 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
685 #endif
686
687 static void resched_task(struct task_struct *p)
688 {
689 int cpu;
690
691 assert_spin_locked(&task_rq(p)->lock);
692
693 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
694 return;
695
696 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
697
698 cpu = task_cpu(p);
699 if (cpu == smp_processor_id())
700 return;
701
702 /* NEED_RESCHED must be visible before we test polling */
703 smp_mb();
704 if (!tsk_is_polling(p))
705 smp_send_reschedule(cpu);
706 }
707
708 static void resched_cpu(int cpu)
709 {
710 struct rq *rq = cpu_rq(cpu);
711 unsigned long flags;
712
713 if (!spin_trylock_irqsave(&rq->lock, flags))
714 return;
715 resched_task(cpu_curr(cpu));
716 spin_unlock_irqrestore(&rq->lock, flags);
717 }
718 #else
719 static inline void resched_task(struct task_struct *p)
720 {
721 assert_spin_locked(&task_rq(p)->lock);
722 set_tsk_need_resched(p);
723 }
724 #endif
725
726 #if BITS_PER_LONG == 32
727 # define WMULT_CONST (~0UL)
728 #else
729 # define WMULT_CONST (1UL << 32)
730 #endif
731
732 #define WMULT_SHIFT 32
733
734 /*
735 * Shift right and round:
736 */
737 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
738
739 static unsigned long
740 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
741 struct load_weight *lw)
742 {
743 u64 tmp;
744
745 if (unlikely(!lw->inv_weight))
746 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
747
748 tmp = (u64)delta_exec * weight;
749 /*
750 * Check whether we'd overflow the 64-bit multiplication:
751 */
752 if (unlikely(tmp > WMULT_CONST))
753 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
754 WMULT_SHIFT/2);
755 else
756 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
757
758 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
759 }
760
761 static inline unsigned long
762 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
763 {
764 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
765 }
766
767 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
768 {
769 lw->weight += inc;
770 }
771
772 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
773 {
774 lw->weight -= dec;
775 }
776
777 /*
778 * To aid in avoiding the subversion of "niceness" due to uneven distribution
779 * of tasks with abnormal "nice" values across CPUs the contribution that
780 * each task makes to its run queue's load is weighted according to its
781 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
782 * scaled version of the new time slice allocation that they receive on time
783 * slice expiry etc.
784 */
785
786 #define WEIGHT_IDLEPRIO 2
787 #define WMULT_IDLEPRIO (1 << 31)
788
789 /*
790 * Nice levels are multiplicative, with a gentle 10% change for every
791 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
792 * nice 1, it will get ~10% less CPU time than another CPU-bound task
793 * that remained on nice 0.
794 *
795 * The "10% effect" is relative and cumulative: from _any_ nice level,
796 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
797 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
798 * If a task goes up by ~10% and another task goes down by ~10% then
799 * the relative distance between them is ~25%.)
800 */
801 static const int prio_to_weight[40] = {
802 /* -20 */ 88761, 71755, 56483, 46273, 36291,
803 /* -15 */ 29154, 23254, 18705, 14949, 11916,
804 /* -10 */ 9548, 7620, 6100, 4904, 3906,
805 /* -5 */ 3121, 2501, 1991, 1586, 1277,
806 /* 0 */ 1024, 820, 655, 526, 423,
807 /* 5 */ 335, 272, 215, 172, 137,
808 /* 10 */ 110, 87, 70, 56, 45,
809 /* 15 */ 36, 29, 23, 18, 15,
810 };
811
812 /*
813 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
814 *
815 * In cases where the weight does not change often, we can use the
816 * precalculated inverse to speed up arithmetics by turning divisions
817 * into multiplications:
818 */
819 static const u32 prio_to_wmult[40] = {
820 /* -20 */ 48388, 59856, 76040, 92818, 118348,
821 /* -15 */ 147320, 184698, 229616, 287308, 360437,
822 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
823 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
824 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
825 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
826 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
827 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
828 };
829
830 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
831
832 /*
833 * runqueue iterator, to support SMP load-balancing between different
834 * scheduling classes, without having to expose their internal data
835 * structures to the load-balancing proper:
836 */
837 struct rq_iterator {
838 void *arg;
839 struct task_struct *(*start)(void *);
840 struct task_struct *(*next)(void *);
841 };
842
843 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
844 unsigned long max_nr_move, unsigned long max_load_move,
845 struct sched_domain *sd, enum cpu_idle_type idle,
846 int *all_pinned, unsigned long *load_moved,
847 int *this_best_prio, struct rq_iterator *iterator);
848
849 #include "sched_stats.h"
850 #include "sched_rt.c"
851 #include "sched_fair.c"
852 #include "sched_idletask.c"
853 #ifdef CONFIG_SCHED_DEBUG
854 # include "sched_debug.c"
855 #endif
856
857 #define sched_class_highest (&rt_sched_class)
858
859 /*
860 * Update delta_exec, delta_fair fields for rq.
861 *
862 * delta_fair clock advances at a rate inversely proportional to
863 * total load (rq->load.weight) on the runqueue, while
864 * delta_exec advances at the same rate as wall-clock (provided
865 * cpu is not idle).
866 *
867 * delta_exec / delta_fair is a measure of the (smoothened) load on this
868 * runqueue over any given interval. This (smoothened) load is used
869 * during load balance.
870 *
871 * This function is called /before/ updating rq->load
872 * and when switching tasks.
873 */
874 static inline void inc_load(struct rq *rq, const struct task_struct *p)
875 {
876 update_load_add(&rq->load, p->se.load.weight);
877 }
878
879 static inline void dec_load(struct rq *rq, const struct task_struct *p)
880 {
881 update_load_sub(&rq->load, p->se.load.weight);
882 }
883
884 static void inc_nr_running(struct task_struct *p, struct rq *rq)
885 {
886 rq->nr_running++;
887 inc_load(rq, p);
888 }
889
890 static void dec_nr_running(struct task_struct *p, struct rq *rq)
891 {
892 rq->nr_running--;
893 dec_load(rq, p);
894 }
895
896 static void set_load_weight(struct task_struct *p)
897 {
898 if (task_has_rt_policy(p)) {
899 p->se.load.weight = prio_to_weight[0] * 2;
900 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
901 return;
902 }
903
904 /*
905 * SCHED_IDLE tasks get minimal weight:
906 */
907 if (p->policy == SCHED_IDLE) {
908 p->se.load.weight = WEIGHT_IDLEPRIO;
909 p->se.load.inv_weight = WMULT_IDLEPRIO;
910 return;
911 }
912
913 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
914 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
915 }
916
917 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
918 {
919 sched_info_queued(p);
920 p->sched_class->enqueue_task(rq, p, wakeup);
921 p->se.on_rq = 1;
922 }
923
924 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
925 {
926 p->sched_class->dequeue_task(rq, p, sleep);
927 p->se.on_rq = 0;
928 }
929
930 /*
931 * __normal_prio - return the priority that is based on the static prio
932 */
933 static inline int __normal_prio(struct task_struct *p)
934 {
935 return p->static_prio;
936 }
937
938 /*
939 * Calculate the expected normal priority: i.e. priority
940 * without taking RT-inheritance into account. Might be
941 * boosted by interactivity modifiers. Changes upon fork,
942 * setprio syscalls, and whenever the interactivity
943 * estimator recalculates.
944 */
945 static inline int normal_prio(struct task_struct *p)
946 {
947 int prio;
948
949 if (task_has_rt_policy(p))
950 prio = MAX_RT_PRIO-1 - p->rt_priority;
951 else
952 prio = __normal_prio(p);
953 return prio;
954 }
955
956 /*
957 * Calculate the current priority, i.e. the priority
958 * taken into account by the scheduler. This value might
959 * be boosted by RT tasks, or might be boosted by
960 * interactivity modifiers. Will be RT if the task got
961 * RT-boosted. If not then it returns p->normal_prio.
962 */
963 static int effective_prio(struct task_struct *p)
964 {
965 p->normal_prio = normal_prio(p);
966 /*
967 * If we are RT tasks or we were boosted to RT priority,
968 * keep the priority unchanged. Otherwise, update priority
969 * to the normal priority:
970 */
971 if (!rt_prio(p->prio))
972 return p->normal_prio;
973 return p->prio;
974 }
975
976 /*
977 * activate_task - move a task to the runqueue.
978 */
979 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
980 {
981 if (p->state == TASK_UNINTERRUPTIBLE)
982 rq->nr_uninterruptible--;
983
984 enqueue_task(rq, p, wakeup);
985 inc_nr_running(p, rq);
986 }
987
988 /*
989 * activate_idle_task - move idle task to the _front_ of runqueue.
990 */
991 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
992 {
993 update_rq_clock(rq);
994
995 if (p->state == TASK_UNINTERRUPTIBLE)
996 rq->nr_uninterruptible--;
997
998 enqueue_task(rq, p, 0);
999 inc_nr_running(p, rq);
1000 }
1001
1002 /*
1003 * deactivate_task - remove a task from the runqueue.
1004 */
1005 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1006 {
1007 if (p->state == TASK_UNINTERRUPTIBLE)
1008 rq->nr_uninterruptible++;
1009
1010 dequeue_task(rq, p, sleep);
1011 dec_nr_running(p, rq);
1012 }
1013
1014 /**
1015 * task_curr - is this task currently executing on a CPU?
1016 * @p: the task in question.
1017 */
1018 inline int task_curr(const struct task_struct *p)
1019 {
1020 return cpu_curr(task_cpu(p)) == p;
1021 }
1022
1023 /* Used instead of source_load when we know the type == 0 */
1024 unsigned long weighted_cpuload(const int cpu)
1025 {
1026 return cpu_rq(cpu)->load.weight;
1027 }
1028
1029 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1030 {
1031 #ifdef CONFIG_SMP
1032 task_thread_info(p)->cpu = cpu;
1033 #endif
1034 set_task_cfs_rq(p);
1035 }
1036
1037 #ifdef CONFIG_SMP
1038
1039 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1040 {
1041 int old_cpu = task_cpu(p);
1042 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1043 u64 clock_offset;
1044
1045 clock_offset = old_rq->clock - new_rq->clock;
1046
1047 #ifdef CONFIG_SCHEDSTATS
1048 if (p->se.wait_start)
1049 p->se.wait_start -= clock_offset;
1050 if (p->se.sleep_start)
1051 p->se.sleep_start -= clock_offset;
1052 if (p->se.block_start)
1053 p->se.block_start -= clock_offset;
1054 #endif
1055 p->se.vruntime -= old_rq->cfs.min_vruntime - new_rq->cfs.min_vruntime;
1056
1057 __set_task_cpu(p, new_cpu);
1058 }
1059
1060 struct migration_req {
1061 struct list_head list;
1062
1063 struct task_struct *task;
1064 int dest_cpu;
1065
1066 struct completion done;
1067 };
1068
1069 /*
1070 * The task's runqueue lock must be held.
1071 * Returns true if you have to wait for migration thread.
1072 */
1073 static int
1074 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1075 {
1076 struct rq *rq = task_rq(p);
1077
1078 /*
1079 * If the task is not on a runqueue (and not running), then
1080 * it is sufficient to simply update the task's cpu field.
1081 */
1082 if (!p->se.on_rq && !task_running(rq, p)) {
1083 set_task_cpu(p, dest_cpu);
1084 return 0;
1085 }
1086
1087 init_completion(&req->done);
1088 req->task = p;
1089 req->dest_cpu = dest_cpu;
1090 list_add(&req->list, &rq->migration_queue);
1091
1092 return 1;
1093 }
1094
1095 /*
1096 * wait_task_inactive - wait for a thread to unschedule.
1097 *
1098 * The caller must ensure that the task *will* unschedule sometime soon,
1099 * else this function might spin for a *long* time. This function can't
1100 * be called with interrupts off, or it may introduce deadlock with
1101 * smp_call_function() if an IPI is sent by the same process we are
1102 * waiting to become inactive.
1103 */
1104 void wait_task_inactive(struct task_struct *p)
1105 {
1106 unsigned long flags;
1107 int running, on_rq;
1108 struct rq *rq;
1109
1110 repeat:
1111 /*
1112 * We do the initial early heuristics without holding
1113 * any task-queue locks at all. We'll only try to get
1114 * the runqueue lock when things look like they will
1115 * work out!
1116 */
1117 rq = task_rq(p);
1118
1119 /*
1120 * If the task is actively running on another CPU
1121 * still, just relax and busy-wait without holding
1122 * any locks.
1123 *
1124 * NOTE! Since we don't hold any locks, it's not
1125 * even sure that "rq" stays as the right runqueue!
1126 * But we don't care, since "task_running()" will
1127 * return false if the runqueue has changed and p
1128 * is actually now running somewhere else!
1129 */
1130 while (task_running(rq, p))
1131 cpu_relax();
1132
1133 /*
1134 * Ok, time to look more closely! We need the rq
1135 * lock now, to be *sure*. If we're wrong, we'll
1136 * just go back and repeat.
1137 */
1138 rq = task_rq_lock(p, &flags);
1139 running = task_running(rq, p);
1140 on_rq = p->se.on_rq;
1141 task_rq_unlock(rq, &flags);
1142
1143 /*
1144 * Was it really running after all now that we
1145 * checked with the proper locks actually held?
1146 *
1147 * Oops. Go back and try again..
1148 */
1149 if (unlikely(running)) {
1150 cpu_relax();
1151 goto repeat;
1152 }
1153
1154 /*
1155 * It's not enough that it's not actively running,
1156 * it must be off the runqueue _entirely_, and not
1157 * preempted!
1158 *
1159 * So if it wa still runnable (but just not actively
1160 * running right now), it's preempted, and we should
1161 * yield - it could be a while.
1162 */
1163 if (unlikely(on_rq)) {
1164 yield();
1165 goto repeat;
1166 }
1167
1168 /*
1169 * Ahh, all good. It wasn't running, and it wasn't
1170 * runnable, which means that it will never become
1171 * running in the future either. We're all done!
1172 */
1173 }
1174
1175 /***
1176 * kick_process - kick a running thread to enter/exit the kernel
1177 * @p: the to-be-kicked thread
1178 *
1179 * Cause a process which is running on another CPU to enter
1180 * kernel-mode, without any delay. (to get signals handled.)
1181 *
1182 * NOTE: this function doesnt have to take the runqueue lock,
1183 * because all it wants to ensure is that the remote task enters
1184 * the kernel. If the IPI races and the task has been migrated
1185 * to another CPU then no harm is done and the purpose has been
1186 * achieved as well.
1187 */
1188 void kick_process(struct task_struct *p)
1189 {
1190 int cpu;
1191
1192 preempt_disable();
1193 cpu = task_cpu(p);
1194 if ((cpu != smp_processor_id()) && task_curr(p))
1195 smp_send_reschedule(cpu);
1196 preempt_enable();
1197 }
1198
1199 /*
1200 * Return a low guess at the load of a migration-source cpu weighted
1201 * according to the scheduling class and "nice" value.
1202 *
1203 * We want to under-estimate the load of migration sources, to
1204 * balance conservatively.
1205 */
1206 static inline unsigned long source_load(int cpu, int type)
1207 {
1208 struct rq *rq = cpu_rq(cpu);
1209 unsigned long total = weighted_cpuload(cpu);
1210
1211 if (type == 0)
1212 return total;
1213
1214 return min(rq->cpu_load[type-1], total);
1215 }
1216
1217 /*
1218 * Return a high guess at the load of a migration-target cpu weighted
1219 * according to the scheduling class and "nice" value.
1220 */
1221 static inline unsigned long target_load(int cpu, int type)
1222 {
1223 struct rq *rq = cpu_rq(cpu);
1224 unsigned long total = weighted_cpuload(cpu);
1225
1226 if (type == 0)
1227 return total;
1228
1229 return max(rq->cpu_load[type-1], total);
1230 }
1231
1232 /*
1233 * Return the average load per task on the cpu's run queue
1234 */
1235 static inline unsigned long cpu_avg_load_per_task(int cpu)
1236 {
1237 struct rq *rq = cpu_rq(cpu);
1238 unsigned long total = weighted_cpuload(cpu);
1239 unsigned long n = rq->nr_running;
1240
1241 return n ? total / n : SCHED_LOAD_SCALE;
1242 }
1243
1244 /*
1245 * find_idlest_group finds and returns the least busy CPU group within the
1246 * domain.
1247 */
1248 static struct sched_group *
1249 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1250 {
1251 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1252 unsigned long min_load = ULONG_MAX, this_load = 0;
1253 int load_idx = sd->forkexec_idx;
1254 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1255
1256 do {
1257 unsigned long load, avg_load;
1258 int local_group;
1259 int i;
1260
1261 /* Skip over this group if it has no CPUs allowed */
1262 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1263 goto nextgroup;
1264
1265 local_group = cpu_isset(this_cpu, group->cpumask);
1266
1267 /* Tally up the load of all CPUs in the group */
1268 avg_load = 0;
1269
1270 for_each_cpu_mask(i, group->cpumask) {
1271 /* Bias balancing toward cpus of our domain */
1272 if (local_group)
1273 load = source_load(i, load_idx);
1274 else
1275 load = target_load(i, load_idx);
1276
1277 avg_load += load;
1278 }
1279
1280 /* Adjust by relative CPU power of the group */
1281 avg_load = sg_div_cpu_power(group,
1282 avg_load * SCHED_LOAD_SCALE);
1283
1284 if (local_group) {
1285 this_load = avg_load;
1286 this = group;
1287 } else if (avg_load < min_load) {
1288 min_load = avg_load;
1289 idlest = group;
1290 }
1291 nextgroup:
1292 group = group->next;
1293 } while (group != sd->groups);
1294
1295 if (!idlest || 100*this_load < imbalance*min_load)
1296 return NULL;
1297 return idlest;
1298 }
1299
1300 /*
1301 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1302 */
1303 static int
1304 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1305 {
1306 cpumask_t tmp;
1307 unsigned long load, min_load = ULONG_MAX;
1308 int idlest = -1;
1309 int i;
1310
1311 /* Traverse only the allowed CPUs */
1312 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1313
1314 for_each_cpu_mask(i, tmp) {
1315 load = weighted_cpuload(i);
1316
1317 if (load < min_load || (load == min_load && i == this_cpu)) {
1318 min_load = load;
1319 idlest = i;
1320 }
1321 }
1322
1323 return idlest;
1324 }
1325
1326 /*
1327 * sched_balance_self: balance the current task (running on cpu) in domains
1328 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1329 * SD_BALANCE_EXEC.
1330 *
1331 * Balance, ie. select the least loaded group.
1332 *
1333 * Returns the target CPU number, or the same CPU if no balancing is needed.
1334 *
1335 * preempt must be disabled.
1336 */
1337 static int sched_balance_self(int cpu, int flag)
1338 {
1339 struct task_struct *t = current;
1340 struct sched_domain *tmp, *sd = NULL;
1341
1342 for_each_domain(cpu, tmp) {
1343 /*
1344 * If power savings logic is enabled for a domain, stop there.
1345 */
1346 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1347 break;
1348 if (tmp->flags & flag)
1349 sd = tmp;
1350 }
1351
1352 while (sd) {
1353 cpumask_t span;
1354 struct sched_group *group;
1355 int new_cpu, weight;
1356
1357 if (!(sd->flags & flag)) {
1358 sd = sd->child;
1359 continue;
1360 }
1361
1362 span = sd->span;
1363 group = find_idlest_group(sd, t, cpu);
1364 if (!group) {
1365 sd = sd->child;
1366 continue;
1367 }
1368
1369 new_cpu = find_idlest_cpu(group, t, cpu);
1370 if (new_cpu == -1 || new_cpu == cpu) {
1371 /* Now try balancing at a lower domain level of cpu */
1372 sd = sd->child;
1373 continue;
1374 }
1375
1376 /* Now try balancing at a lower domain level of new_cpu */
1377 cpu = new_cpu;
1378 sd = NULL;
1379 weight = cpus_weight(span);
1380 for_each_domain(cpu, tmp) {
1381 if (weight <= cpus_weight(tmp->span))
1382 break;
1383 if (tmp->flags & flag)
1384 sd = tmp;
1385 }
1386 /* while loop will break here if sd == NULL */
1387 }
1388
1389 return cpu;
1390 }
1391
1392 #endif /* CONFIG_SMP */
1393
1394 /*
1395 * wake_idle() will wake a task on an idle cpu if task->cpu is
1396 * not idle and an idle cpu is available. The span of cpus to
1397 * search starts with cpus closest then further out as needed,
1398 * so we always favor a closer, idle cpu.
1399 *
1400 * Returns the CPU we should wake onto.
1401 */
1402 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1403 static int wake_idle(int cpu, struct task_struct *p)
1404 {
1405 cpumask_t tmp;
1406 struct sched_domain *sd;
1407 int i;
1408
1409 /*
1410 * If it is idle, then it is the best cpu to run this task.
1411 *
1412 * This cpu is also the best, if it has more than one task already.
1413 * Siblings must be also busy(in most cases) as they didn't already
1414 * pickup the extra load from this cpu and hence we need not check
1415 * sibling runqueue info. This will avoid the checks and cache miss
1416 * penalities associated with that.
1417 */
1418 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1419 return cpu;
1420
1421 for_each_domain(cpu, sd) {
1422 if (sd->flags & SD_WAKE_IDLE) {
1423 cpus_and(tmp, sd->span, p->cpus_allowed);
1424 for_each_cpu_mask(i, tmp) {
1425 if (idle_cpu(i))
1426 return i;
1427 }
1428 } else {
1429 break;
1430 }
1431 }
1432 return cpu;
1433 }
1434 #else
1435 static inline int wake_idle(int cpu, struct task_struct *p)
1436 {
1437 return cpu;
1438 }
1439 #endif
1440
1441 /***
1442 * try_to_wake_up - wake up a thread
1443 * @p: the to-be-woken-up thread
1444 * @state: the mask of task states that can be woken
1445 * @sync: do a synchronous wakeup?
1446 *
1447 * Put it on the run-queue if it's not already there. The "current"
1448 * thread is always on the run-queue (except when the actual
1449 * re-schedule is in progress), and as such you're allowed to do
1450 * the simpler "current->state = TASK_RUNNING" to mark yourself
1451 * runnable without the overhead of this.
1452 *
1453 * returns failure only if the task is already active.
1454 */
1455 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1456 {
1457 int cpu, this_cpu, success = 0;
1458 unsigned long flags;
1459 long old_state;
1460 struct rq *rq;
1461 #ifdef CONFIG_SMP
1462 struct sched_domain *sd, *this_sd = NULL;
1463 unsigned long load, this_load;
1464 int new_cpu;
1465 #endif
1466
1467 rq = task_rq_lock(p, &flags);
1468 old_state = p->state;
1469 if (!(old_state & state))
1470 goto out;
1471
1472 if (p->se.on_rq)
1473 goto out_running;
1474
1475 cpu = task_cpu(p);
1476 this_cpu = smp_processor_id();
1477
1478 #ifdef CONFIG_SMP
1479 if (unlikely(task_running(rq, p)))
1480 goto out_activate;
1481
1482 new_cpu = cpu;
1483
1484 schedstat_inc(rq, ttwu_cnt);
1485 if (cpu == this_cpu) {
1486 schedstat_inc(rq, ttwu_local);
1487 goto out_set_cpu;
1488 }
1489
1490 for_each_domain(this_cpu, sd) {
1491 if (cpu_isset(cpu, sd->span)) {
1492 schedstat_inc(sd, ttwu_wake_remote);
1493 this_sd = sd;
1494 break;
1495 }
1496 }
1497
1498 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1499 goto out_set_cpu;
1500
1501 /*
1502 * Check for affine wakeup and passive balancing possibilities.
1503 */
1504 if (this_sd) {
1505 int idx = this_sd->wake_idx;
1506 unsigned int imbalance;
1507
1508 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1509
1510 load = source_load(cpu, idx);
1511 this_load = target_load(this_cpu, idx);
1512
1513 new_cpu = this_cpu; /* Wake to this CPU if we can */
1514
1515 if (this_sd->flags & SD_WAKE_AFFINE) {
1516 unsigned long tl = this_load;
1517 unsigned long tl_per_task;
1518
1519 tl_per_task = cpu_avg_load_per_task(this_cpu);
1520
1521 /*
1522 * If sync wakeup then subtract the (maximum possible)
1523 * effect of the currently running task from the load
1524 * of the current CPU:
1525 */
1526 if (sync)
1527 tl -= current->se.load.weight;
1528
1529 if ((tl <= load &&
1530 tl + target_load(cpu, idx) <= tl_per_task) ||
1531 100*(tl + p->se.load.weight) <= imbalance*load) {
1532 /*
1533 * This domain has SD_WAKE_AFFINE and
1534 * p is cache cold in this domain, and
1535 * there is no bad imbalance.
1536 */
1537 schedstat_inc(this_sd, ttwu_move_affine);
1538 goto out_set_cpu;
1539 }
1540 }
1541
1542 /*
1543 * Start passive balancing when half the imbalance_pct
1544 * limit is reached.
1545 */
1546 if (this_sd->flags & SD_WAKE_BALANCE) {
1547 if (imbalance*this_load <= 100*load) {
1548 schedstat_inc(this_sd, ttwu_move_balance);
1549 goto out_set_cpu;
1550 }
1551 }
1552 }
1553
1554 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1555 out_set_cpu:
1556 new_cpu = wake_idle(new_cpu, p);
1557 if (new_cpu != cpu) {
1558 set_task_cpu(p, new_cpu);
1559 task_rq_unlock(rq, &flags);
1560 /* might preempt at this point */
1561 rq = task_rq_lock(p, &flags);
1562 old_state = p->state;
1563 if (!(old_state & state))
1564 goto out;
1565 if (p->se.on_rq)
1566 goto out_running;
1567
1568 this_cpu = smp_processor_id();
1569 cpu = task_cpu(p);
1570 }
1571
1572 out_activate:
1573 #endif /* CONFIG_SMP */
1574 update_rq_clock(rq);
1575 activate_task(rq, p, 1);
1576 /*
1577 * Sync wakeups (i.e. those types of wakeups where the waker
1578 * has indicated that it will leave the CPU in short order)
1579 * don't trigger a preemption, if the woken up task will run on
1580 * this cpu. (in this case the 'I will reschedule' promise of
1581 * the waker guarantees that the freshly woken up task is going
1582 * to be considered on this CPU.)
1583 */
1584 if (!sync || cpu != this_cpu)
1585 check_preempt_curr(rq, p);
1586 success = 1;
1587
1588 out_running:
1589 p->state = TASK_RUNNING;
1590 out:
1591 task_rq_unlock(rq, &flags);
1592
1593 return success;
1594 }
1595
1596 int fastcall wake_up_process(struct task_struct *p)
1597 {
1598 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1599 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1600 }
1601 EXPORT_SYMBOL(wake_up_process);
1602
1603 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1604 {
1605 return try_to_wake_up(p, state, 0);
1606 }
1607
1608 /*
1609 * Perform scheduler related setup for a newly forked process p.
1610 * p is forked by current.
1611 *
1612 * __sched_fork() is basic setup used by init_idle() too:
1613 */
1614 static void __sched_fork(struct task_struct *p)
1615 {
1616 p->se.exec_start = 0;
1617 p->se.sum_exec_runtime = 0;
1618 p->se.prev_sum_exec_runtime = 0;
1619
1620 #ifdef CONFIG_SCHEDSTATS
1621 p->se.wait_start = 0;
1622 p->se.sum_sleep_runtime = 0;
1623 p->se.sleep_start = 0;
1624 p->se.block_start = 0;
1625 p->se.sleep_max = 0;
1626 p->se.block_max = 0;
1627 p->se.exec_max = 0;
1628 p->se.slice_max = 0;
1629 p->se.wait_max = 0;
1630 #endif
1631
1632 INIT_LIST_HEAD(&p->run_list);
1633 p->se.on_rq = 0;
1634
1635 #ifdef CONFIG_PREEMPT_NOTIFIERS
1636 INIT_HLIST_HEAD(&p->preempt_notifiers);
1637 #endif
1638
1639 /*
1640 * We mark the process as running here, but have not actually
1641 * inserted it onto the runqueue yet. This guarantees that
1642 * nobody will actually run it, and a signal or other external
1643 * event cannot wake it up and insert it on the runqueue either.
1644 */
1645 p->state = TASK_RUNNING;
1646 }
1647
1648 /*
1649 * fork()/clone()-time setup:
1650 */
1651 void sched_fork(struct task_struct *p, int clone_flags)
1652 {
1653 int cpu = get_cpu();
1654
1655 __sched_fork(p);
1656
1657 #ifdef CONFIG_SMP
1658 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1659 #endif
1660 __set_task_cpu(p, cpu);
1661
1662 /*
1663 * Make sure we do not leak PI boosting priority to the child:
1664 */
1665 p->prio = current->normal_prio;
1666
1667 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1668 if (likely(sched_info_on()))
1669 memset(&p->sched_info, 0, sizeof(p->sched_info));
1670 #endif
1671 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1672 p->oncpu = 0;
1673 #endif
1674 #ifdef CONFIG_PREEMPT
1675 /* Want to start with kernel preemption disabled. */
1676 task_thread_info(p)->preempt_count = 1;
1677 #endif
1678 put_cpu();
1679 }
1680
1681 /*
1682 * wake_up_new_task - wake up a newly created task for the first time.
1683 *
1684 * This function will do some initial scheduler statistics housekeeping
1685 * that must be done for every newly created context, then puts the task
1686 * on the runqueue and wakes it.
1687 */
1688 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1689 {
1690 unsigned long flags;
1691 struct rq *rq;
1692 int this_cpu;
1693
1694 rq = task_rq_lock(p, &flags);
1695 BUG_ON(p->state != TASK_RUNNING);
1696 this_cpu = smp_processor_id(); /* parent's CPU */
1697 update_rq_clock(rq);
1698
1699 p->prio = effective_prio(p);
1700
1701 if (rt_prio(p->prio))
1702 p->sched_class = &rt_sched_class;
1703 else
1704 p->sched_class = &fair_sched_class;
1705
1706 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1707 !current->se.on_rq) {
1708 activate_task(rq, p, 0);
1709 } else {
1710 /*
1711 * Let the scheduling class do new task startup
1712 * management (if any):
1713 */
1714 p->sched_class->task_new(rq, p);
1715 inc_nr_running(p, rq);
1716 }
1717 check_preempt_curr(rq, p);
1718 task_rq_unlock(rq, &flags);
1719 }
1720
1721 #ifdef CONFIG_PREEMPT_NOTIFIERS
1722
1723 /**
1724 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1725 * @notifier: notifier struct to register
1726 */
1727 void preempt_notifier_register(struct preempt_notifier *notifier)
1728 {
1729 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1730 }
1731 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1732
1733 /**
1734 * preempt_notifier_unregister - no longer interested in preemption notifications
1735 * @notifier: notifier struct to unregister
1736 *
1737 * This is safe to call from within a preemption notifier.
1738 */
1739 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1740 {
1741 hlist_del(&notifier->link);
1742 }
1743 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1744
1745 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1746 {
1747 struct preempt_notifier *notifier;
1748 struct hlist_node *node;
1749
1750 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1751 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1752 }
1753
1754 static void
1755 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1756 struct task_struct *next)
1757 {
1758 struct preempt_notifier *notifier;
1759 struct hlist_node *node;
1760
1761 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1762 notifier->ops->sched_out(notifier, next);
1763 }
1764
1765 #else
1766
1767 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1768 {
1769 }
1770
1771 static void
1772 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1773 struct task_struct *next)
1774 {
1775 }
1776
1777 #endif
1778
1779 /**
1780 * prepare_task_switch - prepare to switch tasks
1781 * @rq: the runqueue preparing to switch
1782 * @prev: the current task that is being switched out
1783 * @next: the task we are going to switch to.
1784 *
1785 * This is called with the rq lock held and interrupts off. It must
1786 * be paired with a subsequent finish_task_switch after the context
1787 * switch.
1788 *
1789 * prepare_task_switch sets up locking and calls architecture specific
1790 * hooks.
1791 */
1792 static inline void
1793 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1794 struct task_struct *next)
1795 {
1796 fire_sched_out_preempt_notifiers(prev, next);
1797 prepare_lock_switch(rq, next);
1798 prepare_arch_switch(next);
1799 }
1800
1801 /**
1802 * finish_task_switch - clean up after a task-switch
1803 * @rq: runqueue associated with task-switch
1804 * @prev: the thread we just switched away from.
1805 *
1806 * finish_task_switch must be called after the context switch, paired
1807 * with a prepare_task_switch call before the context switch.
1808 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1809 * and do any other architecture-specific cleanup actions.
1810 *
1811 * Note that we may have delayed dropping an mm in context_switch(). If
1812 * so, we finish that here outside of the runqueue lock. (Doing it
1813 * with the lock held can cause deadlocks; see schedule() for
1814 * details.)
1815 */
1816 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1817 __releases(rq->lock)
1818 {
1819 struct mm_struct *mm = rq->prev_mm;
1820 long prev_state;
1821
1822 rq->prev_mm = NULL;
1823
1824 /*
1825 * A task struct has one reference for the use as "current".
1826 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1827 * schedule one last time. The schedule call will never return, and
1828 * the scheduled task must drop that reference.
1829 * The test for TASK_DEAD must occur while the runqueue locks are
1830 * still held, otherwise prev could be scheduled on another cpu, die
1831 * there before we look at prev->state, and then the reference would
1832 * be dropped twice.
1833 * Manfred Spraul <manfred@colorfullife.com>
1834 */
1835 prev_state = prev->state;
1836 finish_arch_switch(prev);
1837 finish_lock_switch(rq, prev);
1838 fire_sched_in_preempt_notifiers(current);
1839 if (mm)
1840 mmdrop(mm);
1841 if (unlikely(prev_state == TASK_DEAD)) {
1842 /*
1843 * Remove function-return probe instances associated with this
1844 * task and put them back on the free list.
1845 */
1846 kprobe_flush_task(prev);
1847 put_task_struct(prev);
1848 }
1849 }
1850
1851 /**
1852 * schedule_tail - first thing a freshly forked thread must call.
1853 * @prev: the thread we just switched away from.
1854 */
1855 asmlinkage void schedule_tail(struct task_struct *prev)
1856 __releases(rq->lock)
1857 {
1858 struct rq *rq = this_rq();
1859
1860 finish_task_switch(rq, prev);
1861 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1862 /* In this case, finish_task_switch does not reenable preemption */
1863 preempt_enable();
1864 #endif
1865 if (current->set_child_tid)
1866 put_user(current->pid, current->set_child_tid);
1867 }
1868
1869 /*
1870 * context_switch - switch to the new MM and the new
1871 * thread's register state.
1872 */
1873 static inline void
1874 context_switch(struct rq *rq, struct task_struct *prev,
1875 struct task_struct *next)
1876 {
1877 struct mm_struct *mm, *oldmm;
1878
1879 prepare_task_switch(rq, prev, next);
1880 mm = next->mm;
1881 oldmm = prev->active_mm;
1882 /*
1883 * For paravirt, this is coupled with an exit in switch_to to
1884 * combine the page table reload and the switch backend into
1885 * one hypercall.
1886 */
1887 arch_enter_lazy_cpu_mode();
1888
1889 if (unlikely(!mm)) {
1890 next->active_mm = oldmm;
1891 atomic_inc(&oldmm->mm_count);
1892 enter_lazy_tlb(oldmm, next);
1893 } else
1894 switch_mm(oldmm, mm, next);
1895
1896 if (unlikely(!prev->mm)) {
1897 prev->active_mm = NULL;
1898 rq->prev_mm = oldmm;
1899 }
1900 /*
1901 * Since the runqueue lock will be released by the next
1902 * task (which is an invalid locking op but in the case
1903 * of the scheduler it's an obvious special-case), so we
1904 * do an early lockdep release here:
1905 */
1906 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1907 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1908 #endif
1909
1910 /* Here we just switch the register state and the stack. */
1911 switch_to(prev, next, prev);
1912
1913 barrier();
1914 /*
1915 * this_rq must be evaluated again because prev may have moved
1916 * CPUs since it called schedule(), thus the 'rq' on its stack
1917 * frame will be invalid.
1918 */
1919 finish_task_switch(this_rq(), prev);
1920 }
1921
1922 /*
1923 * nr_running, nr_uninterruptible and nr_context_switches:
1924 *
1925 * externally visible scheduler statistics: current number of runnable
1926 * threads, current number of uninterruptible-sleeping threads, total
1927 * number of context switches performed since bootup.
1928 */
1929 unsigned long nr_running(void)
1930 {
1931 unsigned long i, sum = 0;
1932
1933 for_each_online_cpu(i)
1934 sum += cpu_rq(i)->nr_running;
1935
1936 return sum;
1937 }
1938
1939 unsigned long nr_uninterruptible(void)
1940 {
1941 unsigned long i, sum = 0;
1942
1943 for_each_possible_cpu(i)
1944 sum += cpu_rq(i)->nr_uninterruptible;
1945
1946 /*
1947 * Since we read the counters lockless, it might be slightly
1948 * inaccurate. Do not allow it to go below zero though:
1949 */
1950 if (unlikely((long)sum < 0))
1951 sum = 0;
1952
1953 return sum;
1954 }
1955
1956 unsigned long long nr_context_switches(void)
1957 {
1958 int i;
1959 unsigned long long sum = 0;
1960
1961 for_each_possible_cpu(i)
1962 sum += cpu_rq(i)->nr_switches;
1963
1964 return sum;
1965 }
1966
1967 unsigned long nr_iowait(void)
1968 {
1969 unsigned long i, sum = 0;
1970
1971 for_each_possible_cpu(i)
1972 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1973
1974 return sum;
1975 }
1976
1977 unsigned long nr_active(void)
1978 {
1979 unsigned long i, running = 0, uninterruptible = 0;
1980
1981 for_each_online_cpu(i) {
1982 running += cpu_rq(i)->nr_running;
1983 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1984 }
1985
1986 if (unlikely((long)uninterruptible < 0))
1987 uninterruptible = 0;
1988
1989 return running + uninterruptible;
1990 }
1991
1992 /*
1993 * Update rq->cpu_load[] statistics. This function is usually called every
1994 * scheduler tick (TICK_NSEC).
1995 */
1996 static void update_cpu_load(struct rq *this_rq)
1997 {
1998 unsigned long this_load = this_rq->load.weight;
1999 int i, scale;
2000
2001 this_rq->nr_load_updates++;
2002
2003 /* Update our load: */
2004 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2005 unsigned long old_load, new_load;
2006
2007 /* scale is effectively 1 << i now, and >> i divides by scale */
2008
2009 old_load = this_rq->cpu_load[i];
2010 new_load = this_load;
2011 /*
2012 * Round up the averaging division if load is increasing. This
2013 * prevents us from getting stuck on 9 if the load is 10, for
2014 * example.
2015 */
2016 if (new_load > old_load)
2017 new_load += scale-1;
2018 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2019 }
2020 }
2021
2022 #ifdef CONFIG_SMP
2023
2024 /*
2025 * double_rq_lock - safely lock two runqueues
2026 *
2027 * Note this does not disable interrupts like task_rq_lock,
2028 * you need to do so manually before calling.
2029 */
2030 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2031 __acquires(rq1->lock)
2032 __acquires(rq2->lock)
2033 {
2034 BUG_ON(!irqs_disabled());
2035 if (rq1 == rq2) {
2036 spin_lock(&rq1->lock);
2037 __acquire(rq2->lock); /* Fake it out ;) */
2038 } else {
2039 if (rq1 < rq2) {
2040 spin_lock(&rq1->lock);
2041 spin_lock(&rq2->lock);
2042 } else {
2043 spin_lock(&rq2->lock);
2044 spin_lock(&rq1->lock);
2045 }
2046 }
2047 update_rq_clock(rq1);
2048 update_rq_clock(rq2);
2049 }
2050
2051 /*
2052 * double_rq_unlock - safely unlock two runqueues
2053 *
2054 * Note this does not restore interrupts like task_rq_unlock,
2055 * you need to do so manually after calling.
2056 */
2057 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2058 __releases(rq1->lock)
2059 __releases(rq2->lock)
2060 {
2061 spin_unlock(&rq1->lock);
2062 if (rq1 != rq2)
2063 spin_unlock(&rq2->lock);
2064 else
2065 __release(rq2->lock);
2066 }
2067
2068 /*
2069 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2070 */
2071 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2072 __releases(this_rq->lock)
2073 __acquires(busiest->lock)
2074 __acquires(this_rq->lock)
2075 {
2076 if (unlikely(!irqs_disabled())) {
2077 /* printk() doesn't work good under rq->lock */
2078 spin_unlock(&this_rq->lock);
2079 BUG_ON(1);
2080 }
2081 if (unlikely(!spin_trylock(&busiest->lock))) {
2082 if (busiest < this_rq) {
2083 spin_unlock(&this_rq->lock);
2084 spin_lock(&busiest->lock);
2085 spin_lock(&this_rq->lock);
2086 } else
2087 spin_lock(&busiest->lock);
2088 }
2089 }
2090
2091 /*
2092 * If dest_cpu is allowed for this process, migrate the task to it.
2093 * This is accomplished by forcing the cpu_allowed mask to only
2094 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2095 * the cpu_allowed mask is restored.
2096 */
2097 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2098 {
2099 struct migration_req req;
2100 unsigned long flags;
2101 struct rq *rq;
2102
2103 rq = task_rq_lock(p, &flags);
2104 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2105 || unlikely(cpu_is_offline(dest_cpu)))
2106 goto out;
2107
2108 /* force the process onto the specified CPU */
2109 if (migrate_task(p, dest_cpu, &req)) {
2110 /* Need to wait for migration thread (might exit: take ref). */
2111 struct task_struct *mt = rq->migration_thread;
2112
2113 get_task_struct(mt);
2114 task_rq_unlock(rq, &flags);
2115 wake_up_process(mt);
2116 put_task_struct(mt);
2117 wait_for_completion(&req.done);
2118
2119 return;
2120 }
2121 out:
2122 task_rq_unlock(rq, &flags);
2123 }
2124
2125 /*
2126 * sched_exec - execve() is a valuable balancing opportunity, because at
2127 * this point the task has the smallest effective memory and cache footprint.
2128 */
2129 void sched_exec(void)
2130 {
2131 int new_cpu, this_cpu = get_cpu();
2132 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2133 put_cpu();
2134 if (new_cpu != this_cpu)
2135 sched_migrate_task(current, new_cpu);
2136 }
2137
2138 /*
2139 * pull_task - move a task from a remote runqueue to the local runqueue.
2140 * Both runqueues must be locked.
2141 */
2142 static void pull_task(struct rq *src_rq, struct task_struct *p,
2143 struct rq *this_rq, int this_cpu)
2144 {
2145 deactivate_task(src_rq, p, 0);
2146 set_task_cpu(p, this_cpu);
2147 activate_task(this_rq, p, 0);
2148 /*
2149 * Note that idle threads have a prio of MAX_PRIO, for this test
2150 * to be always true for them.
2151 */
2152 check_preempt_curr(this_rq, p);
2153 }
2154
2155 /*
2156 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2157 */
2158 static
2159 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2160 struct sched_domain *sd, enum cpu_idle_type idle,
2161 int *all_pinned)
2162 {
2163 /*
2164 * We do not migrate tasks that are:
2165 * 1) running (obviously), or
2166 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2167 * 3) are cache-hot on their current CPU.
2168 */
2169 if (!cpu_isset(this_cpu, p->cpus_allowed))
2170 return 0;
2171 *all_pinned = 0;
2172
2173 if (task_running(rq, p))
2174 return 0;
2175
2176 return 1;
2177 }
2178
2179 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2180 unsigned long max_nr_move, unsigned long max_load_move,
2181 struct sched_domain *sd, enum cpu_idle_type idle,
2182 int *all_pinned, unsigned long *load_moved,
2183 int *this_best_prio, struct rq_iterator *iterator)
2184 {
2185 int pulled = 0, pinned = 0, skip_for_load;
2186 struct task_struct *p;
2187 long rem_load_move = max_load_move;
2188
2189 if (max_nr_move == 0 || max_load_move == 0)
2190 goto out;
2191
2192 pinned = 1;
2193
2194 /*
2195 * Start the load-balancing iterator:
2196 */
2197 p = iterator->start(iterator->arg);
2198 next:
2199 if (!p)
2200 goto out;
2201 /*
2202 * To help distribute high priority tasks accross CPUs we don't
2203 * skip a task if it will be the highest priority task (i.e. smallest
2204 * prio value) on its new queue regardless of its load weight
2205 */
2206 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2207 SCHED_LOAD_SCALE_FUZZ;
2208 if ((skip_for_load && p->prio >= *this_best_prio) ||
2209 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2210 p = iterator->next(iterator->arg);
2211 goto next;
2212 }
2213
2214 pull_task(busiest, p, this_rq, this_cpu);
2215 pulled++;
2216 rem_load_move -= p->se.load.weight;
2217
2218 /*
2219 * We only want to steal up to the prescribed number of tasks
2220 * and the prescribed amount of weighted load.
2221 */
2222 if (pulled < max_nr_move && rem_load_move > 0) {
2223 if (p->prio < *this_best_prio)
2224 *this_best_prio = p->prio;
2225 p = iterator->next(iterator->arg);
2226 goto next;
2227 }
2228 out:
2229 /*
2230 * Right now, this is the only place pull_task() is called,
2231 * so we can safely collect pull_task() stats here rather than
2232 * inside pull_task().
2233 */
2234 schedstat_add(sd, lb_gained[idle], pulled);
2235
2236 if (all_pinned)
2237 *all_pinned = pinned;
2238 *load_moved = max_load_move - rem_load_move;
2239 return pulled;
2240 }
2241
2242 /*
2243 * move_tasks tries to move up to max_load_move weighted load from busiest to
2244 * this_rq, as part of a balancing operation within domain "sd".
2245 * Returns 1 if successful and 0 otherwise.
2246 *
2247 * Called with both runqueues locked.
2248 */
2249 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2250 unsigned long max_load_move,
2251 struct sched_domain *sd, enum cpu_idle_type idle,
2252 int *all_pinned)
2253 {
2254 struct sched_class *class = sched_class_highest;
2255 unsigned long total_load_moved = 0;
2256 int this_best_prio = this_rq->curr->prio;
2257
2258 do {
2259 total_load_moved +=
2260 class->load_balance(this_rq, this_cpu, busiest,
2261 ULONG_MAX, max_load_move - total_load_moved,
2262 sd, idle, all_pinned, &this_best_prio);
2263 class = class->next;
2264 } while (class && max_load_move > total_load_moved);
2265
2266 return total_load_moved > 0;
2267 }
2268
2269 /*
2270 * move_one_task tries to move exactly one task from busiest to this_rq, as
2271 * part of active balancing operations within "domain".
2272 * Returns 1 if successful and 0 otherwise.
2273 *
2274 * Called with both runqueues locked.
2275 */
2276 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2277 struct sched_domain *sd, enum cpu_idle_type idle)
2278 {
2279 struct sched_class *class;
2280 int this_best_prio = MAX_PRIO;
2281
2282 for (class = sched_class_highest; class; class = class->next)
2283 if (class->load_balance(this_rq, this_cpu, busiest,
2284 1, ULONG_MAX, sd, idle, NULL,
2285 &this_best_prio))
2286 return 1;
2287
2288 return 0;
2289 }
2290
2291 /*
2292 * find_busiest_group finds and returns the busiest CPU group within the
2293 * domain. It calculates and returns the amount of weighted load which
2294 * should be moved to restore balance via the imbalance parameter.
2295 */
2296 static struct sched_group *
2297 find_busiest_group(struct sched_domain *sd, int this_cpu,
2298 unsigned long *imbalance, enum cpu_idle_type idle,
2299 int *sd_idle, cpumask_t *cpus, int *balance)
2300 {
2301 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2302 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2303 unsigned long max_pull;
2304 unsigned long busiest_load_per_task, busiest_nr_running;
2305 unsigned long this_load_per_task, this_nr_running;
2306 int load_idx;
2307 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2308 int power_savings_balance = 1;
2309 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2310 unsigned long min_nr_running = ULONG_MAX;
2311 struct sched_group *group_min = NULL, *group_leader = NULL;
2312 #endif
2313
2314 max_load = this_load = total_load = total_pwr = 0;
2315 busiest_load_per_task = busiest_nr_running = 0;
2316 this_load_per_task = this_nr_running = 0;
2317 if (idle == CPU_NOT_IDLE)
2318 load_idx = sd->busy_idx;
2319 else if (idle == CPU_NEWLY_IDLE)
2320 load_idx = sd->newidle_idx;
2321 else
2322 load_idx = sd->idle_idx;
2323
2324 do {
2325 unsigned long load, group_capacity;
2326 int local_group;
2327 int i;
2328 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2329 unsigned long sum_nr_running, sum_weighted_load;
2330
2331 local_group = cpu_isset(this_cpu, group->cpumask);
2332
2333 if (local_group)
2334 balance_cpu = first_cpu(group->cpumask);
2335
2336 /* Tally up the load of all CPUs in the group */
2337 sum_weighted_load = sum_nr_running = avg_load = 0;
2338
2339 for_each_cpu_mask(i, group->cpumask) {
2340 struct rq *rq;
2341
2342 if (!cpu_isset(i, *cpus))
2343 continue;
2344
2345 rq = cpu_rq(i);
2346
2347 if (*sd_idle && rq->nr_running)
2348 *sd_idle = 0;
2349
2350 /* Bias balancing toward cpus of our domain */
2351 if (local_group) {
2352 if (idle_cpu(i) && !first_idle_cpu) {
2353 first_idle_cpu = 1;
2354 balance_cpu = i;
2355 }
2356
2357 load = target_load(i, load_idx);
2358 } else
2359 load = source_load(i, load_idx);
2360
2361 avg_load += load;
2362 sum_nr_running += rq->nr_running;
2363 sum_weighted_load += weighted_cpuload(i);
2364 }
2365
2366 /*
2367 * First idle cpu or the first cpu(busiest) in this sched group
2368 * is eligible for doing load balancing at this and above
2369 * domains. In the newly idle case, we will allow all the cpu's
2370 * to do the newly idle load balance.
2371 */
2372 if (idle != CPU_NEWLY_IDLE && local_group &&
2373 balance_cpu != this_cpu && balance) {
2374 *balance = 0;
2375 goto ret;
2376 }
2377
2378 total_load += avg_load;
2379 total_pwr += group->__cpu_power;
2380
2381 /* Adjust by relative CPU power of the group */
2382 avg_load = sg_div_cpu_power(group,
2383 avg_load * SCHED_LOAD_SCALE);
2384
2385 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2386
2387 if (local_group) {
2388 this_load = avg_load;
2389 this = group;
2390 this_nr_running = sum_nr_running;
2391 this_load_per_task = sum_weighted_load;
2392 } else if (avg_load > max_load &&
2393 sum_nr_running > group_capacity) {
2394 max_load = avg_load;
2395 busiest = group;
2396 busiest_nr_running = sum_nr_running;
2397 busiest_load_per_task = sum_weighted_load;
2398 }
2399
2400 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2401 /*
2402 * Busy processors will not participate in power savings
2403 * balance.
2404 */
2405 if (idle == CPU_NOT_IDLE ||
2406 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2407 goto group_next;
2408
2409 /*
2410 * If the local group is idle or completely loaded
2411 * no need to do power savings balance at this domain
2412 */
2413 if (local_group && (this_nr_running >= group_capacity ||
2414 !this_nr_running))
2415 power_savings_balance = 0;
2416
2417 /*
2418 * If a group is already running at full capacity or idle,
2419 * don't include that group in power savings calculations
2420 */
2421 if (!power_savings_balance || sum_nr_running >= group_capacity
2422 || !sum_nr_running)
2423 goto group_next;
2424
2425 /*
2426 * Calculate the group which has the least non-idle load.
2427 * This is the group from where we need to pick up the load
2428 * for saving power
2429 */
2430 if ((sum_nr_running < min_nr_running) ||
2431 (sum_nr_running == min_nr_running &&
2432 first_cpu(group->cpumask) <
2433 first_cpu(group_min->cpumask))) {
2434 group_min = group;
2435 min_nr_running = sum_nr_running;
2436 min_load_per_task = sum_weighted_load /
2437 sum_nr_running;
2438 }
2439
2440 /*
2441 * Calculate the group which is almost near its
2442 * capacity but still has some space to pick up some load
2443 * from other group and save more power
2444 */
2445 if (sum_nr_running <= group_capacity - 1) {
2446 if (sum_nr_running > leader_nr_running ||
2447 (sum_nr_running == leader_nr_running &&
2448 first_cpu(group->cpumask) >
2449 first_cpu(group_leader->cpumask))) {
2450 group_leader = group;
2451 leader_nr_running = sum_nr_running;
2452 }
2453 }
2454 group_next:
2455 #endif
2456 group = group->next;
2457 } while (group != sd->groups);
2458
2459 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2460 goto out_balanced;
2461
2462 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2463
2464 if (this_load >= avg_load ||
2465 100*max_load <= sd->imbalance_pct*this_load)
2466 goto out_balanced;
2467
2468 busiest_load_per_task /= busiest_nr_running;
2469 /*
2470 * We're trying to get all the cpus to the average_load, so we don't
2471 * want to push ourselves above the average load, nor do we wish to
2472 * reduce the max loaded cpu below the average load, as either of these
2473 * actions would just result in more rebalancing later, and ping-pong
2474 * tasks around. Thus we look for the minimum possible imbalance.
2475 * Negative imbalances (*we* are more loaded than anyone else) will
2476 * be counted as no imbalance for these purposes -- we can't fix that
2477 * by pulling tasks to us. Be careful of negative numbers as they'll
2478 * appear as very large values with unsigned longs.
2479 */
2480 if (max_load <= busiest_load_per_task)
2481 goto out_balanced;
2482
2483 /*
2484 * In the presence of smp nice balancing, certain scenarios can have
2485 * max load less than avg load(as we skip the groups at or below
2486 * its cpu_power, while calculating max_load..)
2487 */
2488 if (max_load < avg_load) {
2489 *imbalance = 0;
2490 goto small_imbalance;
2491 }
2492
2493 /* Don't want to pull so many tasks that a group would go idle */
2494 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2495
2496 /* How much load to actually move to equalise the imbalance */
2497 *imbalance = min(max_pull * busiest->__cpu_power,
2498 (avg_load - this_load) * this->__cpu_power)
2499 / SCHED_LOAD_SCALE;
2500
2501 /*
2502 * if *imbalance is less than the average load per runnable task
2503 * there is no gaurantee that any tasks will be moved so we'll have
2504 * a think about bumping its value to force at least one task to be
2505 * moved
2506 */
2507 if (*imbalance < busiest_load_per_task) {
2508 unsigned long tmp, pwr_now, pwr_move;
2509 unsigned int imbn;
2510
2511 small_imbalance:
2512 pwr_move = pwr_now = 0;
2513 imbn = 2;
2514 if (this_nr_running) {
2515 this_load_per_task /= this_nr_running;
2516 if (busiest_load_per_task > this_load_per_task)
2517 imbn = 1;
2518 } else
2519 this_load_per_task = SCHED_LOAD_SCALE;
2520
2521 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2522 busiest_load_per_task * imbn) {
2523 *imbalance = busiest_load_per_task;
2524 return busiest;
2525 }
2526
2527 /*
2528 * OK, we don't have enough imbalance to justify moving tasks,
2529 * however we may be able to increase total CPU power used by
2530 * moving them.
2531 */
2532
2533 pwr_now += busiest->__cpu_power *
2534 min(busiest_load_per_task, max_load);
2535 pwr_now += this->__cpu_power *
2536 min(this_load_per_task, this_load);
2537 pwr_now /= SCHED_LOAD_SCALE;
2538
2539 /* Amount of load we'd subtract */
2540 tmp = sg_div_cpu_power(busiest,
2541 busiest_load_per_task * SCHED_LOAD_SCALE);
2542 if (max_load > tmp)
2543 pwr_move += busiest->__cpu_power *
2544 min(busiest_load_per_task, max_load - tmp);
2545
2546 /* Amount of load we'd add */
2547 if (max_load * busiest->__cpu_power <
2548 busiest_load_per_task * SCHED_LOAD_SCALE)
2549 tmp = sg_div_cpu_power(this,
2550 max_load * busiest->__cpu_power);
2551 else
2552 tmp = sg_div_cpu_power(this,
2553 busiest_load_per_task * SCHED_LOAD_SCALE);
2554 pwr_move += this->__cpu_power *
2555 min(this_load_per_task, this_load + tmp);
2556 pwr_move /= SCHED_LOAD_SCALE;
2557
2558 /* Move if we gain throughput */
2559 if (pwr_move > pwr_now)
2560 *imbalance = busiest_load_per_task;
2561 }
2562
2563 return busiest;
2564
2565 out_balanced:
2566 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2567 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2568 goto ret;
2569
2570 if (this == group_leader && group_leader != group_min) {
2571 *imbalance = min_load_per_task;
2572 return group_min;
2573 }
2574 #endif
2575 ret:
2576 *imbalance = 0;
2577 return NULL;
2578 }
2579
2580 /*
2581 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2582 */
2583 static struct rq *
2584 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2585 unsigned long imbalance, cpumask_t *cpus)
2586 {
2587 struct rq *busiest = NULL, *rq;
2588 unsigned long max_load = 0;
2589 int i;
2590
2591 for_each_cpu_mask(i, group->cpumask) {
2592 unsigned long wl;
2593
2594 if (!cpu_isset(i, *cpus))
2595 continue;
2596
2597 rq = cpu_rq(i);
2598 wl = weighted_cpuload(i);
2599
2600 if (rq->nr_running == 1 && wl > imbalance)
2601 continue;
2602
2603 if (wl > max_load) {
2604 max_load = wl;
2605 busiest = rq;
2606 }
2607 }
2608
2609 return busiest;
2610 }
2611
2612 /*
2613 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2614 * so long as it is large enough.
2615 */
2616 #define MAX_PINNED_INTERVAL 512
2617
2618 /*
2619 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2620 * tasks if there is an imbalance.
2621 */
2622 static int load_balance(int this_cpu, struct rq *this_rq,
2623 struct sched_domain *sd, enum cpu_idle_type idle,
2624 int *balance)
2625 {
2626 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2627 struct sched_group *group;
2628 unsigned long imbalance;
2629 struct rq *busiest;
2630 cpumask_t cpus = CPU_MASK_ALL;
2631 unsigned long flags;
2632
2633 /*
2634 * When power savings policy is enabled for the parent domain, idle
2635 * sibling can pick up load irrespective of busy siblings. In this case,
2636 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2637 * portraying it as CPU_NOT_IDLE.
2638 */
2639 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2640 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2641 sd_idle = 1;
2642
2643 schedstat_inc(sd, lb_cnt[idle]);
2644
2645 redo:
2646 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2647 &cpus, balance);
2648
2649 if (*balance == 0)
2650 goto out_balanced;
2651
2652 if (!group) {
2653 schedstat_inc(sd, lb_nobusyg[idle]);
2654 goto out_balanced;
2655 }
2656
2657 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2658 if (!busiest) {
2659 schedstat_inc(sd, lb_nobusyq[idle]);
2660 goto out_balanced;
2661 }
2662
2663 BUG_ON(busiest == this_rq);
2664
2665 schedstat_add(sd, lb_imbalance[idle], imbalance);
2666
2667 ld_moved = 0;
2668 if (busiest->nr_running > 1) {
2669 /*
2670 * Attempt to move tasks. If find_busiest_group has found
2671 * an imbalance but busiest->nr_running <= 1, the group is
2672 * still unbalanced. ld_moved simply stays zero, so it is
2673 * correctly treated as an imbalance.
2674 */
2675 local_irq_save(flags);
2676 double_rq_lock(this_rq, busiest);
2677 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2678 imbalance, sd, idle, &all_pinned);
2679 double_rq_unlock(this_rq, busiest);
2680 local_irq_restore(flags);
2681
2682 /*
2683 * some other cpu did the load balance for us.
2684 */
2685 if (ld_moved && this_cpu != smp_processor_id())
2686 resched_cpu(this_cpu);
2687
2688 /* All tasks on this runqueue were pinned by CPU affinity */
2689 if (unlikely(all_pinned)) {
2690 cpu_clear(cpu_of(busiest), cpus);
2691 if (!cpus_empty(cpus))
2692 goto redo;
2693 goto out_balanced;
2694 }
2695 }
2696
2697 if (!ld_moved) {
2698 schedstat_inc(sd, lb_failed[idle]);
2699 sd->nr_balance_failed++;
2700
2701 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2702
2703 spin_lock_irqsave(&busiest->lock, flags);
2704
2705 /* don't kick the migration_thread, if the curr
2706 * task on busiest cpu can't be moved to this_cpu
2707 */
2708 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2709 spin_unlock_irqrestore(&busiest->lock, flags);
2710 all_pinned = 1;
2711 goto out_one_pinned;
2712 }
2713
2714 if (!busiest->active_balance) {
2715 busiest->active_balance = 1;
2716 busiest->push_cpu = this_cpu;
2717 active_balance = 1;
2718 }
2719 spin_unlock_irqrestore(&busiest->lock, flags);
2720 if (active_balance)
2721 wake_up_process(busiest->migration_thread);
2722
2723 /*
2724 * We've kicked active balancing, reset the failure
2725 * counter.
2726 */
2727 sd->nr_balance_failed = sd->cache_nice_tries+1;
2728 }
2729 } else
2730 sd->nr_balance_failed = 0;
2731
2732 if (likely(!active_balance)) {
2733 /* We were unbalanced, so reset the balancing interval */
2734 sd->balance_interval = sd->min_interval;
2735 } else {
2736 /*
2737 * If we've begun active balancing, start to back off. This
2738 * case may not be covered by the all_pinned logic if there
2739 * is only 1 task on the busy runqueue (because we don't call
2740 * move_tasks).
2741 */
2742 if (sd->balance_interval < sd->max_interval)
2743 sd->balance_interval *= 2;
2744 }
2745
2746 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2747 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2748 return -1;
2749 return ld_moved;
2750
2751 out_balanced:
2752 schedstat_inc(sd, lb_balanced[idle]);
2753
2754 sd->nr_balance_failed = 0;
2755
2756 out_one_pinned:
2757 /* tune up the balancing interval */
2758 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2759 (sd->balance_interval < sd->max_interval))
2760 sd->balance_interval *= 2;
2761
2762 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2763 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2764 return -1;
2765 return 0;
2766 }
2767
2768 /*
2769 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2770 * tasks if there is an imbalance.
2771 *
2772 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2773 * this_rq is locked.
2774 */
2775 static int
2776 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2777 {
2778 struct sched_group *group;
2779 struct rq *busiest = NULL;
2780 unsigned long imbalance;
2781 int ld_moved = 0;
2782 int sd_idle = 0;
2783 int all_pinned = 0;
2784 cpumask_t cpus = CPU_MASK_ALL;
2785
2786 /*
2787 * When power savings policy is enabled for the parent domain, idle
2788 * sibling can pick up load irrespective of busy siblings. In this case,
2789 * let the state of idle sibling percolate up as IDLE, instead of
2790 * portraying it as CPU_NOT_IDLE.
2791 */
2792 if (sd->flags & SD_SHARE_CPUPOWER &&
2793 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2794 sd_idle = 1;
2795
2796 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2797 redo:
2798 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2799 &sd_idle, &cpus, NULL);
2800 if (!group) {
2801 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2802 goto out_balanced;
2803 }
2804
2805 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2806 &cpus);
2807 if (!busiest) {
2808 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2809 goto out_balanced;
2810 }
2811
2812 BUG_ON(busiest == this_rq);
2813
2814 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2815
2816 ld_moved = 0;
2817 if (busiest->nr_running > 1) {
2818 /* Attempt to move tasks */
2819 double_lock_balance(this_rq, busiest);
2820 /* this_rq->clock is already updated */
2821 update_rq_clock(busiest);
2822 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2823 imbalance, sd, CPU_NEWLY_IDLE,
2824 &all_pinned);
2825 spin_unlock(&busiest->lock);
2826
2827 if (unlikely(all_pinned)) {
2828 cpu_clear(cpu_of(busiest), cpus);
2829 if (!cpus_empty(cpus))
2830 goto redo;
2831 }
2832 }
2833
2834 if (!ld_moved) {
2835 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2836 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2837 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2838 return -1;
2839 } else
2840 sd->nr_balance_failed = 0;
2841
2842 return ld_moved;
2843
2844 out_balanced:
2845 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2846 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2847 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2848 return -1;
2849 sd->nr_balance_failed = 0;
2850
2851 return 0;
2852 }
2853
2854 /*
2855 * idle_balance is called by schedule() if this_cpu is about to become
2856 * idle. Attempts to pull tasks from other CPUs.
2857 */
2858 static void idle_balance(int this_cpu, struct rq *this_rq)
2859 {
2860 struct sched_domain *sd;
2861 int pulled_task = -1;
2862 unsigned long next_balance = jiffies + HZ;
2863
2864 for_each_domain(this_cpu, sd) {
2865 unsigned long interval;
2866
2867 if (!(sd->flags & SD_LOAD_BALANCE))
2868 continue;
2869
2870 if (sd->flags & SD_BALANCE_NEWIDLE)
2871 /* If we've pulled tasks over stop searching: */
2872 pulled_task = load_balance_newidle(this_cpu,
2873 this_rq, sd);
2874
2875 interval = msecs_to_jiffies(sd->balance_interval);
2876 if (time_after(next_balance, sd->last_balance + interval))
2877 next_balance = sd->last_balance + interval;
2878 if (pulled_task)
2879 break;
2880 }
2881 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2882 /*
2883 * We are going idle. next_balance may be set based on
2884 * a busy processor. So reset next_balance.
2885 */
2886 this_rq->next_balance = next_balance;
2887 }
2888 }
2889
2890 /*
2891 * active_load_balance is run by migration threads. It pushes running tasks
2892 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2893 * running on each physical CPU where possible, and avoids physical /
2894 * logical imbalances.
2895 *
2896 * Called with busiest_rq locked.
2897 */
2898 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2899 {
2900 int target_cpu = busiest_rq->push_cpu;
2901 struct sched_domain *sd;
2902 struct rq *target_rq;
2903
2904 /* Is there any task to move? */
2905 if (busiest_rq->nr_running <= 1)
2906 return;
2907
2908 target_rq = cpu_rq(target_cpu);
2909
2910 /*
2911 * This condition is "impossible", if it occurs
2912 * we need to fix it. Originally reported by
2913 * Bjorn Helgaas on a 128-cpu setup.
2914 */
2915 BUG_ON(busiest_rq == target_rq);
2916
2917 /* move a task from busiest_rq to target_rq */
2918 double_lock_balance(busiest_rq, target_rq);
2919 update_rq_clock(busiest_rq);
2920 update_rq_clock(target_rq);
2921
2922 /* Search for an sd spanning us and the target CPU. */
2923 for_each_domain(target_cpu, sd) {
2924 if ((sd->flags & SD_LOAD_BALANCE) &&
2925 cpu_isset(busiest_cpu, sd->span))
2926 break;
2927 }
2928
2929 if (likely(sd)) {
2930 schedstat_inc(sd, alb_cnt);
2931
2932 if (move_one_task(target_rq, target_cpu, busiest_rq,
2933 sd, CPU_IDLE))
2934 schedstat_inc(sd, alb_pushed);
2935 else
2936 schedstat_inc(sd, alb_failed);
2937 }
2938 spin_unlock(&target_rq->lock);
2939 }
2940
2941 #ifdef CONFIG_NO_HZ
2942 static struct {
2943 atomic_t load_balancer;
2944 cpumask_t cpu_mask;
2945 } nohz ____cacheline_aligned = {
2946 .load_balancer = ATOMIC_INIT(-1),
2947 .cpu_mask = CPU_MASK_NONE,
2948 };
2949
2950 /*
2951 * This routine will try to nominate the ilb (idle load balancing)
2952 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2953 * load balancing on behalf of all those cpus. If all the cpus in the system
2954 * go into this tickless mode, then there will be no ilb owner (as there is
2955 * no need for one) and all the cpus will sleep till the next wakeup event
2956 * arrives...
2957 *
2958 * For the ilb owner, tick is not stopped. And this tick will be used
2959 * for idle load balancing. ilb owner will still be part of
2960 * nohz.cpu_mask..
2961 *
2962 * While stopping the tick, this cpu will become the ilb owner if there
2963 * is no other owner. And will be the owner till that cpu becomes busy
2964 * or if all cpus in the system stop their ticks at which point
2965 * there is no need for ilb owner.
2966 *
2967 * When the ilb owner becomes busy, it nominates another owner, during the
2968 * next busy scheduler_tick()
2969 */
2970 int select_nohz_load_balancer(int stop_tick)
2971 {
2972 int cpu = smp_processor_id();
2973
2974 if (stop_tick) {
2975 cpu_set(cpu, nohz.cpu_mask);
2976 cpu_rq(cpu)->in_nohz_recently = 1;
2977
2978 /*
2979 * If we are going offline and still the leader, give up!
2980 */
2981 if (cpu_is_offline(cpu) &&
2982 atomic_read(&nohz.load_balancer) == cpu) {
2983 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2984 BUG();
2985 return 0;
2986 }
2987
2988 /* time for ilb owner also to sleep */
2989 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2990 if (atomic_read(&nohz.load_balancer) == cpu)
2991 atomic_set(&nohz.load_balancer, -1);
2992 return 0;
2993 }
2994
2995 if (atomic_read(&nohz.load_balancer) == -1) {
2996 /* make me the ilb owner */
2997 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2998 return 1;
2999 } else if (atomic_read(&nohz.load_balancer) == cpu)
3000 return 1;
3001 } else {
3002 if (!cpu_isset(cpu, nohz.cpu_mask))
3003 return 0;
3004
3005 cpu_clear(cpu, nohz.cpu_mask);
3006
3007 if (atomic_read(&nohz.load_balancer) == cpu)
3008 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3009 BUG();
3010 }
3011 return 0;
3012 }
3013 #endif
3014
3015 static DEFINE_SPINLOCK(balancing);
3016
3017 /*
3018 * It checks each scheduling domain to see if it is due to be balanced,
3019 * and initiates a balancing operation if so.
3020 *
3021 * Balancing parameters are set up in arch_init_sched_domains.
3022 */
3023 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3024 {
3025 int balance = 1;
3026 struct rq *rq = cpu_rq(cpu);
3027 unsigned long interval;
3028 struct sched_domain *sd;
3029 /* Earliest time when we have to do rebalance again */
3030 unsigned long next_balance = jiffies + 60*HZ;
3031 int update_next_balance = 0;
3032
3033 for_each_domain(cpu, sd) {
3034 if (!(sd->flags & SD_LOAD_BALANCE))
3035 continue;
3036
3037 interval = sd->balance_interval;
3038 if (idle != CPU_IDLE)
3039 interval *= sd->busy_factor;
3040
3041 /* scale ms to jiffies */
3042 interval = msecs_to_jiffies(interval);
3043 if (unlikely(!interval))
3044 interval = 1;
3045 if (interval > HZ*NR_CPUS/10)
3046 interval = HZ*NR_CPUS/10;
3047
3048
3049 if (sd->flags & SD_SERIALIZE) {
3050 if (!spin_trylock(&balancing))
3051 goto out;
3052 }
3053
3054 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3055 if (load_balance(cpu, rq, sd, idle, &balance)) {
3056 /*
3057 * We've pulled tasks over so either we're no
3058 * longer idle, or one of our SMT siblings is
3059 * not idle.
3060 */
3061 idle = CPU_NOT_IDLE;
3062 }
3063 sd->last_balance = jiffies;
3064 }
3065 if (sd->flags & SD_SERIALIZE)
3066 spin_unlock(&balancing);
3067 out:
3068 if (time_after(next_balance, sd->last_balance + interval)) {
3069 next_balance = sd->last_balance + interval;
3070 update_next_balance = 1;
3071 }
3072
3073 /*
3074 * Stop the load balance at this level. There is another
3075 * CPU in our sched group which is doing load balancing more
3076 * actively.
3077 */
3078 if (!balance)
3079 break;
3080 }
3081
3082 /*
3083 * next_balance will be updated only when there is a need.
3084 * When the cpu is attached to null domain for ex, it will not be
3085 * updated.
3086 */
3087 if (likely(update_next_balance))
3088 rq->next_balance = next_balance;
3089 }
3090
3091 /*
3092 * run_rebalance_domains is triggered when needed from the scheduler tick.
3093 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3094 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3095 */
3096 static void run_rebalance_domains(struct softirq_action *h)
3097 {
3098 int this_cpu = smp_processor_id();
3099 struct rq *this_rq = cpu_rq(this_cpu);
3100 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3101 CPU_IDLE : CPU_NOT_IDLE;
3102
3103 rebalance_domains(this_cpu, idle);
3104
3105 #ifdef CONFIG_NO_HZ
3106 /*
3107 * If this cpu is the owner for idle load balancing, then do the
3108 * balancing on behalf of the other idle cpus whose ticks are
3109 * stopped.
3110 */
3111 if (this_rq->idle_at_tick &&
3112 atomic_read(&nohz.load_balancer) == this_cpu) {
3113 cpumask_t cpus = nohz.cpu_mask;
3114 struct rq *rq;
3115 int balance_cpu;
3116
3117 cpu_clear(this_cpu, cpus);
3118 for_each_cpu_mask(balance_cpu, cpus) {
3119 /*
3120 * If this cpu gets work to do, stop the load balancing
3121 * work being done for other cpus. Next load
3122 * balancing owner will pick it up.
3123 */
3124 if (need_resched())
3125 break;
3126
3127 rebalance_domains(balance_cpu, CPU_IDLE);
3128
3129 rq = cpu_rq(balance_cpu);
3130 if (time_after(this_rq->next_balance, rq->next_balance))
3131 this_rq->next_balance = rq->next_balance;
3132 }
3133 }
3134 #endif
3135 }
3136
3137 /*
3138 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3139 *
3140 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3141 * idle load balancing owner or decide to stop the periodic load balancing,
3142 * if the whole system is idle.
3143 */
3144 static inline void trigger_load_balance(struct rq *rq, int cpu)
3145 {
3146 #ifdef CONFIG_NO_HZ
3147 /*
3148 * If we were in the nohz mode recently and busy at the current
3149 * scheduler tick, then check if we need to nominate new idle
3150 * load balancer.
3151 */
3152 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3153 rq->in_nohz_recently = 0;
3154
3155 if (atomic_read(&nohz.load_balancer) == cpu) {
3156 cpu_clear(cpu, nohz.cpu_mask);
3157 atomic_set(&nohz.load_balancer, -1);
3158 }
3159
3160 if (atomic_read(&nohz.load_balancer) == -1) {
3161 /*
3162 * simple selection for now: Nominate the
3163 * first cpu in the nohz list to be the next
3164 * ilb owner.
3165 *
3166 * TBD: Traverse the sched domains and nominate
3167 * the nearest cpu in the nohz.cpu_mask.
3168 */
3169 int ilb = first_cpu(nohz.cpu_mask);
3170
3171 if (ilb != NR_CPUS)
3172 resched_cpu(ilb);
3173 }
3174 }
3175
3176 /*
3177 * If this cpu is idle and doing idle load balancing for all the
3178 * cpus with ticks stopped, is it time for that to stop?
3179 */
3180 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3181 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3182 resched_cpu(cpu);
3183 return;
3184 }
3185
3186 /*
3187 * If this cpu is idle and the idle load balancing is done by
3188 * someone else, then no need raise the SCHED_SOFTIRQ
3189 */
3190 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3191 cpu_isset(cpu, nohz.cpu_mask))
3192 return;
3193 #endif
3194 if (time_after_eq(jiffies, rq->next_balance))
3195 raise_softirq(SCHED_SOFTIRQ);
3196 }
3197
3198 #else /* CONFIG_SMP */
3199
3200 /*
3201 * on UP we do not need to balance between CPUs:
3202 */
3203 static inline void idle_balance(int cpu, struct rq *rq)
3204 {
3205 }
3206
3207 /* Avoid "used but not defined" warning on UP */
3208 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3209 unsigned long max_nr_move, unsigned long max_load_move,
3210 struct sched_domain *sd, enum cpu_idle_type idle,
3211 int *all_pinned, unsigned long *load_moved,
3212 int *this_best_prio, struct rq_iterator *iterator)
3213 {
3214 *load_moved = 0;
3215
3216 return 0;
3217 }
3218
3219 #endif
3220
3221 DEFINE_PER_CPU(struct kernel_stat, kstat);
3222
3223 EXPORT_PER_CPU_SYMBOL(kstat);
3224
3225 /*
3226 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3227 * that have not yet been banked in case the task is currently running.
3228 */
3229 unsigned long long task_sched_runtime(struct task_struct *p)
3230 {
3231 unsigned long flags;
3232 u64 ns, delta_exec;
3233 struct rq *rq;
3234
3235 rq = task_rq_lock(p, &flags);
3236 ns = p->se.sum_exec_runtime;
3237 if (rq->curr == p) {
3238 update_rq_clock(rq);
3239 delta_exec = rq->clock - p->se.exec_start;
3240 if ((s64)delta_exec > 0)
3241 ns += delta_exec;
3242 }
3243 task_rq_unlock(rq, &flags);
3244
3245 return ns;
3246 }
3247
3248 /*
3249 * Account user cpu time to a process.
3250 * @p: the process that the cpu time gets accounted to
3251 * @hardirq_offset: the offset to subtract from hardirq_count()
3252 * @cputime: the cpu time spent in user space since the last update
3253 */
3254 void account_user_time(struct task_struct *p, cputime_t cputime)
3255 {
3256 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3257 cputime64_t tmp;
3258
3259 p->utime = cputime_add(p->utime, cputime);
3260
3261 /* Add user time to cpustat. */
3262 tmp = cputime_to_cputime64(cputime);
3263 if (TASK_NICE(p) > 0)
3264 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3265 else
3266 cpustat->user = cputime64_add(cpustat->user, tmp);
3267 }
3268
3269 /*
3270 * Account system cpu time to a process.
3271 * @p: the process that the cpu time gets accounted to
3272 * @hardirq_offset: the offset to subtract from hardirq_count()
3273 * @cputime: the cpu time spent in kernel space since the last update
3274 */
3275 void account_system_time(struct task_struct *p, int hardirq_offset,
3276 cputime_t cputime)
3277 {
3278 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3279 struct rq *rq = this_rq();
3280 cputime64_t tmp;
3281
3282 p->stime = cputime_add(p->stime, cputime);
3283
3284 /* Add system time to cpustat. */
3285 tmp = cputime_to_cputime64(cputime);
3286 if (hardirq_count() - hardirq_offset)
3287 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3288 else if (softirq_count())
3289 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3290 else if (p != rq->idle)
3291 cpustat->system = cputime64_add(cpustat->system, tmp);
3292 else if (atomic_read(&rq->nr_iowait) > 0)
3293 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3294 else
3295 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3296 /* Account for system time used */
3297 acct_update_integrals(p);
3298 }
3299
3300 /*
3301 * Account for involuntary wait time.
3302 * @p: the process from which the cpu time has been stolen
3303 * @steal: the cpu time spent in involuntary wait
3304 */
3305 void account_steal_time(struct task_struct *p, cputime_t steal)
3306 {
3307 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3308 cputime64_t tmp = cputime_to_cputime64(steal);
3309 struct rq *rq = this_rq();
3310
3311 if (p == rq->idle) {
3312 p->stime = cputime_add(p->stime, steal);
3313 if (atomic_read(&rq->nr_iowait) > 0)
3314 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3315 else
3316 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3317 } else
3318 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3319 }
3320
3321 /*
3322 * This function gets called by the timer code, with HZ frequency.
3323 * We call it with interrupts disabled.
3324 *
3325 * It also gets called by the fork code, when changing the parent's
3326 * timeslices.
3327 */
3328 void scheduler_tick(void)
3329 {
3330 int cpu = smp_processor_id();
3331 struct rq *rq = cpu_rq(cpu);
3332 struct task_struct *curr = rq->curr;
3333 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3334
3335 spin_lock(&rq->lock);
3336 __update_rq_clock(rq);
3337 /*
3338 * Let rq->clock advance by at least TICK_NSEC:
3339 */
3340 if (unlikely(rq->clock < next_tick))
3341 rq->clock = next_tick;
3342 rq->tick_timestamp = rq->clock;
3343 update_cpu_load(rq);
3344 if (curr != rq->idle) /* FIXME: needed? */
3345 curr->sched_class->task_tick(rq, curr);
3346 spin_unlock(&rq->lock);
3347
3348 #ifdef CONFIG_SMP
3349 rq->idle_at_tick = idle_cpu(cpu);
3350 trigger_load_balance(rq, cpu);
3351 #endif
3352 }
3353
3354 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3355
3356 void fastcall add_preempt_count(int val)
3357 {
3358 /*
3359 * Underflow?
3360 */
3361 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3362 return;
3363 preempt_count() += val;
3364 /*
3365 * Spinlock count overflowing soon?
3366 */
3367 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3368 PREEMPT_MASK - 10);
3369 }
3370 EXPORT_SYMBOL(add_preempt_count);
3371
3372 void fastcall sub_preempt_count(int val)
3373 {
3374 /*
3375 * Underflow?
3376 */
3377 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3378 return;
3379 /*
3380 * Is the spinlock portion underflowing?
3381 */
3382 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3383 !(preempt_count() & PREEMPT_MASK)))
3384 return;
3385
3386 preempt_count() -= val;
3387 }
3388 EXPORT_SYMBOL(sub_preempt_count);
3389
3390 #endif
3391
3392 /*
3393 * Print scheduling while atomic bug:
3394 */
3395 static noinline void __schedule_bug(struct task_struct *prev)
3396 {
3397 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3398 prev->comm, preempt_count(), prev->pid);
3399 debug_show_held_locks(prev);
3400 if (irqs_disabled())
3401 print_irqtrace_events(prev);
3402 dump_stack();
3403 }
3404
3405 /*
3406 * Various schedule()-time debugging checks and statistics:
3407 */
3408 static inline void schedule_debug(struct task_struct *prev)
3409 {
3410 /*
3411 * Test if we are atomic. Since do_exit() needs to call into
3412 * schedule() atomically, we ignore that path for now.
3413 * Otherwise, whine if we are scheduling when we should not be.
3414 */
3415 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3416 __schedule_bug(prev);
3417
3418 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3419
3420 schedstat_inc(this_rq(), sched_cnt);
3421 #ifdef CONFIG_SCHEDSTATS
3422 if (unlikely(prev->lock_depth >= 0)) {
3423 schedstat_inc(this_rq(), bkl_cnt);
3424 schedstat_inc(prev, sched_info.bkl_cnt);
3425 }
3426 #endif
3427 }
3428
3429 /*
3430 * Pick up the highest-prio task:
3431 */
3432 static inline struct task_struct *
3433 pick_next_task(struct rq *rq, struct task_struct *prev)
3434 {
3435 struct sched_class *class;
3436 struct task_struct *p;
3437
3438 /*
3439 * Optimization: we know that if all tasks are in
3440 * the fair class we can call that function directly:
3441 */
3442 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3443 p = fair_sched_class.pick_next_task(rq);
3444 if (likely(p))
3445 return p;
3446 }
3447
3448 class = sched_class_highest;
3449 for ( ; ; ) {
3450 p = class->pick_next_task(rq);
3451 if (p)
3452 return p;
3453 /*
3454 * Will never be NULL as the idle class always
3455 * returns a non-NULL p:
3456 */
3457 class = class->next;
3458 }
3459 }
3460
3461 /*
3462 * schedule() is the main scheduler function.
3463 */
3464 asmlinkage void __sched schedule(void)
3465 {
3466 struct task_struct *prev, *next;
3467 long *switch_count;
3468 struct rq *rq;
3469 int cpu;
3470
3471 need_resched:
3472 preempt_disable();
3473 cpu = smp_processor_id();
3474 rq = cpu_rq(cpu);
3475 rcu_qsctr_inc(cpu);
3476 prev = rq->curr;
3477 switch_count = &prev->nivcsw;
3478
3479 release_kernel_lock(prev);
3480 need_resched_nonpreemptible:
3481
3482 schedule_debug(prev);
3483
3484 spin_lock_irq(&rq->lock);
3485 clear_tsk_need_resched(prev);
3486 __update_rq_clock(rq);
3487
3488 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3489 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3490 unlikely(signal_pending(prev)))) {
3491 prev->state = TASK_RUNNING;
3492 } else {
3493 deactivate_task(rq, prev, 1);
3494 }
3495 switch_count = &prev->nvcsw;
3496 }
3497
3498 if (unlikely(!rq->nr_running))
3499 idle_balance(cpu, rq);
3500
3501 prev->sched_class->put_prev_task(rq, prev);
3502 next = pick_next_task(rq, prev);
3503
3504 sched_info_switch(prev, next);
3505
3506 if (likely(prev != next)) {
3507 rq->nr_switches++;
3508 rq->curr = next;
3509 ++*switch_count;
3510
3511 context_switch(rq, prev, next); /* unlocks the rq */
3512 } else
3513 spin_unlock_irq(&rq->lock);
3514
3515 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3516 cpu = smp_processor_id();
3517 rq = cpu_rq(cpu);
3518 goto need_resched_nonpreemptible;
3519 }
3520 preempt_enable_no_resched();
3521 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3522 goto need_resched;
3523 }
3524 EXPORT_SYMBOL(schedule);
3525
3526 #ifdef CONFIG_PREEMPT
3527 /*
3528 * this is the entry point to schedule() from in-kernel preemption
3529 * off of preempt_enable. Kernel preemptions off return from interrupt
3530 * occur there and call schedule directly.
3531 */
3532 asmlinkage void __sched preempt_schedule(void)
3533 {
3534 struct thread_info *ti = current_thread_info();
3535 #ifdef CONFIG_PREEMPT_BKL
3536 struct task_struct *task = current;
3537 int saved_lock_depth;
3538 #endif
3539 /*
3540 * If there is a non-zero preempt_count or interrupts are disabled,
3541 * we do not want to preempt the current task. Just return..
3542 */
3543 if (likely(ti->preempt_count || irqs_disabled()))
3544 return;
3545
3546 need_resched:
3547 add_preempt_count(PREEMPT_ACTIVE);
3548 /*
3549 * We keep the big kernel semaphore locked, but we
3550 * clear ->lock_depth so that schedule() doesnt
3551 * auto-release the semaphore:
3552 */
3553 #ifdef CONFIG_PREEMPT_BKL
3554 saved_lock_depth = task->lock_depth;
3555 task->lock_depth = -1;
3556 #endif
3557 schedule();
3558 #ifdef CONFIG_PREEMPT_BKL
3559 task->lock_depth = saved_lock_depth;
3560 #endif
3561 sub_preempt_count(PREEMPT_ACTIVE);
3562
3563 /* we could miss a preemption opportunity between schedule and now */
3564 barrier();
3565 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3566 goto need_resched;
3567 }
3568 EXPORT_SYMBOL(preempt_schedule);
3569
3570 /*
3571 * this is the entry point to schedule() from kernel preemption
3572 * off of irq context.
3573 * Note, that this is called and return with irqs disabled. This will
3574 * protect us against recursive calling from irq.
3575 */
3576 asmlinkage void __sched preempt_schedule_irq(void)
3577 {
3578 struct thread_info *ti = current_thread_info();
3579 #ifdef CONFIG_PREEMPT_BKL
3580 struct task_struct *task = current;
3581 int saved_lock_depth;
3582 #endif
3583 /* Catch callers which need to be fixed */
3584 BUG_ON(ti->preempt_count || !irqs_disabled());
3585
3586 need_resched:
3587 add_preempt_count(PREEMPT_ACTIVE);
3588 /*
3589 * We keep the big kernel semaphore locked, but we
3590 * clear ->lock_depth so that schedule() doesnt
3591 * auto-release the semaphore:
3592 */
3593 #ifdef CONFIG_PREEMPT_BKL
3594 saved_lock_depth = task->lock_depth;
3595 task->lock_depth = -1;
3596 #endif
3597 local_irq_enable();
3598 schedule();
3599 local_irq_disable();
3600 #ifdef CONFIG_PREEMPT_BKL
3601 task->lock_depth = saved_lock_depth;
3602 #endif
3603 sub_preempt_count(PREEMPT_ACTIVE);
3604
3605 /* we could miss a preemption opportunity between schedule and now */
3606 barrier();
3607 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3608 goto need_resched;
3609 }
3610
3611 #endif /* CONFIG_PREEMPT */
3612
3613 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3614 void *key)
3615 {
3616 return try_to_wake_up(curr->private, mode, sync);
3617 }
3618 EXPORT_SYMBOL(default_wake_function);
3619
3620 /*
3621 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3622 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3623 * number) then we wake all the non-exclusive tasks and one exclusive task.
3624 *
3625 * There are circumstances in which we can try to wake a task which has already
3626 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3627 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3628 */
3629 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3630 int nr_exclusive, int sync, void *key)
3631 {
3632 wait_queue_t *curr, *next;
3633
3634 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3635 unsigned flags = curr->flags;
3636
3637 if (curr->func(curr, mode, sync, key) &&
3638 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3639 break;
3640 }
3641 }
3642
3643 /**
3644 * __wake_up - wake up threads blocked on a waitqueue.
3645 * @q: the waitqueue
3646 * @mode: which threads
3647 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3648 * @key: is directly passed to the wakeup function
3649 */
3650 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3651 int nr_exclusive, void *key)
3652 {
3653 unsigned long flags;
3654
3655 spin_lock_irqsave(&q->lock, flags);
3656 __wake_up_common(q, mode, nr_exclusive, 0, key);
3657 spin_unlock_irqrestore(&q->lock, flags);
3658 }
3659 EXPORT_SYMBOL(__wake_up);
3660
3661 /*
3662 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3663 */
3664 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3665 {
3666 __wake_up_common(q, mode, 1, 0, NULL);
3667 }
3668
3669 /**
3670 * __wake_up_sync - wake up threads blocked on a waitqueue.
3671 * @q: the waitqueue
3672 * @mode: which threads
3673 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3674 *
3675 * The sync wakeup differs that the waker knows that it will schedule
3676 * away soon, so while the target thread will be woken up, it will not
3677 * be migrated to another CPU - ie. the two threads are 'synchronized'
3678 * with each other. This can prevent needless bouncing between CPUs.
3679 *
3680 * On UP it can prevent extra preemption.
3681 */
3682 void fastcall
3683 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3684 {
3685 unsigned long flags;
3686 int sync = 1;
3687
3688 if (unlikely(!q))
3689 return;
3690
3691 if (unlikely(!nr_exclusive))
3692 sync = 0;
3693
3694 spin_lock_irqsave(&q->lock, flags);
3695 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3696 spin_unlock_irqrestore(&q->lock, flags);
3697 }
3698 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3699
3700 void fastcall complete(struct completion *x)
3701 {
3702 unsigned long flags;
3703
3704 spin_lock_irqsave(&x->wait.lock, flags);
3705 x->done++;
3706 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3707 1, 0, NULL);
3708 spin_unlock_irqrestore(&x->wait.lock, flags);
3709 }
3710 EXPORT_SYMBOL(complete);
3711
3712 void fastcall complete_all(struct completion *x)
3713 {
3714 unsigned long flags;
3715
3716 spin_lock_irqsave(&x->wait.lock, flags);
3717 x->done += UINT_MAX/2;
3718 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3719 0, 0, NULL);
3720 spin_unlock_irqrestore(&x->wait.lock, flags);
3721 }
3722 EXPORT_SYMBOL(complete_all);
3723
3724 void fastcall __sched wait_for_completion(struct completion *x)
3725 {
3726 might_sleep();
3727
3728 spin_lock_irq(&x->wait.lock);
3729 if (!x->done) {
3730 DECLARE_WAITQUEUE(wait, current);
3731
3732 wait.flags |= WQ_FLAG_EXCLUSIVE;
3733 __add_wait_queue_tail(&x->wait, &wait);
3734 do {
3735 __set_current_state(TASK_UNINTERRUPTIBLE);
3736 spin_unlock_irq(&x->wait.lock);
3737 schedule();
3738 spin_lock_irq(&x->wait.lock);
3739 } while (!x->done);
3740 __remove_wait_queue(&x->wait, &wait);
3741 }
3742 x->done--;
3743 spin_unlock_irq(&x->wait.lock);
3744 }
3745 EXPORT_SYMBOL(wait_for_completion);
3746
3747 unsigned long fastcall __sched
3748 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3749 {
3750 might_sleep();
3751
3752 spin_lock_irq(&x->wait.lock);
3753 if (!x->done) {
3754 DECLARE_WAITQUEUE(wait, current);
3755
3756 wait.flags |= WQ_FLAG_EXCLUSIVE;
3757 __add_wait_queue_tail(&x->wait, &wait);
3758 do {
3759 __set_current_state(TASK_UNINTERRUPTIBLE);
3760 spin_unlock_irq(&x->wait.lock);
3761 timeout = schedule_timeout(timeout);
3762 spin_lock_irq(&x->wait.lock);
3763 if (!timeout) {
3764 __remove_wait_queue(&x->wait, &wait);
3765 goto out;
3766 }
3767 } while (!x->done);
3768 __remove_wait_queue(&x->wait, &wait);
3769 }
3770 x->done--;
3771 out:
3772 spin_unlock_irq(&x->wait.lock);
3773 return timeout;
3774 }
3775 EXPORT_SYMBOL(wait_for_completion_timeout);
3776
3777 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3778 {
3779 int ret = 0;
3780
3781 might_sleep();
3782
3783 spin_lock_irq(&x->wait.lock);
3784 if (!x->done) {
3785 DECLARE_WAITQUEUE(wait, current);
3786
3787 wait.flags |= WQ_FLAG_EXCLUSIVE;
3788 __add_wait_queue_tail(&x->wait, &wait);
3789 do {
3790 if (signal_pending(current)) {
3791 ret = -ERESTARTSYS;
3792 __remove_wait_queue(&x->wait, &wait);
3793 goto out;
3794 }
3795 __set_current_state(TASK_INTERRUPTIBLE);
3796 spin_unlock_irq(&x->wait.lock);
3797 schedule();
3798 spin_lock_irq(&x->wait.lock);
3799 } while (!x->done);
3800 __remove_wait_queue(&x->wait, &wait);
3801 }
3802 x->done--;
3803 out:
3804 spin_unlock_irq(&x->wait.lock);
3805
3806 return ret;
3807 }
3808 EXPORT_SYMBOL(wait_for_completion_interruptible);
3809
3810 unsigned long fastcall __sched
3811 wait_for_completion_interruptible_timeout(struct completion *x,
3812 unsigned long timeout)
3813 {
3814 might_sleep();
3815
3816 spin_lock_irq(&x->wait.lock);
3817 if (!x->done) {
3818 DECLARE_WAITQUEUE(wait, current);
3819
3820 wait.flags |= WQ_FLAG_EXCLUSIVE;
3821 __add_wait_queue_tail(&x->wait, &wait);
3822 do {
3823 if (signal_pending(current)) {
3824 timeout = -ERESTARTSYS;
3825 __remove_wait_queue(&x->wait, &wait);
3826 goto out;
3827 }
3828 __set_current_state(TASK_INTERRUPTIBLE);
3829 spin_unlock_irq(&x->wait.lock);
3830 timeout = schedule_timeout(timeout);
3831 spin_lock_irq(&x->wait.lock);
3832 if (!timeout) {
3833 __remove_wait_queue(&x->wait, &wait);
3834 goto out;
3835 }
3836 } while (!x->done);
3837 __remove_wait_queue(&x->wait, &wait);
3838 }
3839 x->done--;
3840 out:
3841 spin_unlock_irq(&x->wait.lock);
3842 return timeout;
3843 }
3844 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3845
3846 static inline void
3847 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3848 {
3849 spin_lock_irqsave(&q->lock, *flags);
3850 __add_wait_queue(q, wait);
3851 spin_unlock(&q->lock);
3852 }
3853
3854 static inline void
3855 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3856 {
3857 spin_lock_irq(&q->lock);
3858 __remove_wait_queue(q, wait);
3859 spin_unlock_irqrestore(&q->lock, *flags);
3860 }
3861
3862 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3863 {
3864 unsigned long flags;
3865 wait_queue_t wait;
3866
3867 init_waitqueue_entry(&wait, current);
3868
3869 current->state = TASK_INTERRUPTIBLE;
3870
3871 sleep_on_head(q, &wait, &flags);
3872 schedule();
3873 sleep_on_tail(q, &wait, &flags);
3874 }
3875 EXPORT_SYMBOL(interruptible_sleep_on);
3876
3877 long __sched
3878 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3879 {
3880 unsigned long flags;
3881 wait_queue_t wait;
3882
3883 init_waitqueue_entry(&wait, current);
3884
3885 current->state = TASK_INTERRUPTIBLE;
3886
3887 sleep_on_head(q, &wait, &flags);
3888 timeout = schedule_timeout(timeout);
3889 sleep_on_tail(q, &wait, &flags);
3890
3891 return timeout;
3892 }
3893 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3894
3895 void __sched sleep_on(wait_queue_head_t *q)
3896 {
3897 unsigned long flags;
3898 wait_queue_t wait;
3899
3900 init_waitqueue_entry(&wait, current);
3901
3902 current->state = TASK_UNINTERRUPTIBLE;
3903
3904 sleep_on_head(q, &wait, &flags);
3905 schedule();
3906 sleep_on_tail(q, &wait, &flags);
3907 }
3908 EXPORT_SYMBOL(sleep_on);
3909
3910 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3911 {
3912 unsigned long flags;
3913 wait_queue_t wait;
3914
3915 init_waitqueue_entry(&wait, current);
3916
3917 current->state = TASK_UNINTERRUPTIBLE;
3918
3919 sleep_on_head(q, &wait, &flags);
3920 timeout = schedule_timeout(timeout);
3921 sleep_on_tail(q, &wait, &flags);
3922
3923 return timeout;
3924 }
3925 EXPORT_SYMBOL(sleep_on_timeout);
3926
3927 #ifdef CONFIG_RT_MUTEXES
3928
3929 /*
3930 * rt_mutex_setprio - set the current priority of a task
3931 * @p: task
3932 * @prio: prio value (kernel-internal form)
3933 *
3934 * This function changes the 'effective' priority of a task. It does
3935 * not touch ->normal_prio like __setscheduler().
3936 *
3937 * Used by the rt_mutex code to implement priority inheritance logic.
3938 */
3939 void rt_mutex_setprio(struct task_struct *p, int prio)
3940 {
3941 unsigned long flags;
3942 int oldprio, on_rq, running;
3943 struct rq *rq;
3944
3945 BUG_ON(prio < 0 || prio > MAX_PRIO);
3946
3947 rq = task_rq_lock(p, &flags);
3948 update_rq_clock(rq);
3949
3950 oldprio = p->prio;
3951 on_rq = p->se.on_rq;
3952 running = task_running(rq, p);
3953 if (on_rq) {
3954 dequeue_task(rq, p, 0);
3955 if (running)
3956 p->sched_class->put_prev_task(rq, p);
3957 }
3958
3959 if (rt_prio(prio))
3960 p->sched_class = &rt_sched_class;
3961 else
3962 p->sched_class = &fair_sched_class;
3963
3964 p->prio = prio;
3965
3966 if (on_rq) {
3967 if (running)
3968 p->sched_class->set_curr_task(rq);
3969 enqueue_task(rq, p, 0);
3970 /*
3971 * Reschedule if we are currently running on this runqueue and
3972 * our priority decreased, or if we are not currently running on
3973 * this runqueue and our priority is higher than the current's
3974 */
3975 if (running) {
3976 if (p->prio > oldprio)
3977 resched_task(rq->curr);
3978 } else {
3979 check_preempt_curr(rq, p);
3980 }
3981 }
3982 task_rq_unlock(rq, &flags);
3983 }
3984
3985 #endif
3986
3987 void set_user_nice(struct task_struct *p, long nice)
3988 {
3989 int old_prio, delta, on_rq;
3990 unsigned long flags;
3991 struct rq *rq;
3992
3993 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3994 return;
3995 /*
3996 * We have to be careful, if called from sys_setpriority(),
3997 * the task might be in the middle of scheduling on another CPU.
3998 */
3999 rq = task_rq_lock(p, &flags);
4000 update_rq_clock(rq);
4001 /*
4002 * The RT priorities are set via sched_setscheduler(), but we still
4003 * allow the 'normal' nice value to be set - but as expected
4004 * it wont have any effect on scheduling until the task is
4005 * SCHED_FIFO/SCHED_RR:
4006 */
4007 if (task_has_rt_policy(p)) {
4008 p->static_prio = NICE_TO_PRIO(nice);
4009 goto out_unlock;
4010 }
4011 on_rq = p->se.on_rq;
4012 if (on_rq) {
4013 dequeue_task(rq, p, 0);
4014 dec_load(rq, p);
4015 }
4016
4017 p->static_prio = NICE_TO_PRIO(nice);
4018 set_load_weight(p);
4019 old_prio = p->prio;
4020 p->prio = effective_prio(p);
4021 delta = p->prio - old_prio;
4022
4023 if (on_rq) {
4024 enqueue_task(rq, p, 0);
4025 inc_load(rq, p);
4026 /*
4027 * If the task increased its priority or is running and
4028 * lowered its priority, then reschedule its CPU:
4029 */
4030 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4031 resched_task(rq->curr);
4032 }
4033 out_unlock:
4034 task_rq_unlock(rq, &flags);
4035 }
4036 EXPORT_SYMBOL(set_user_nice);
4037
4038 /*
4039 * can_nice - check if a task can reduce its nice value
4040 * @p: task
4041 * @nice: nice value
4042 */
4043 int can_nice(const struct task_struct *p, const int nice)
4044 {
4045 /* convert nice value [19,-20] to rlimit style value [1,40] */
4046 int nice_rlim = 20 - nice;
4047
4048 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4049 capable(CAP_SYS_NICE));
4050 }
4051
4052 #ifdef __ARCH_WANT_SYS_NICE
4053
4054 /*
4055 * sys_nice - change the priority of the current process.
4056 * @increment: priority increment
4057 *
4058 * sys_setpriority is a more generic, but much slower function that
4059 * does similar things.
4060 */
4061 asmlinkage long sys_nice(int increment)
4062 {
4063 long nice, retval;
4064
4065 /*
4066 * Setpriority might change our priority at the same moment.
4067 * We don't have to worry. Conceptually one call occurs first
4068 * and we have a single winner.
4069 */
4070 if (increment < -40)
4071 increment = -40;
4072 if (increment > 40)
4073 increment = 40;
4074
4075 nice = PRIO_TO_NICE(current->static_prio) + increment;
4076 if (nice < -20)
4077 nice = -20;
4078 if (nice > 19)
4079 nice = 19;
4080
4081 if (increment < 0 && !can_nice(current, nice))
4082 return -EPERM;
4083
4084 retval = security_task_setnice(current, nice);
4085 if (retval)
4086 return retval;
4087
4088 set_user_nice(current, nice);
4089 return 0;
4090 }
4091
4092 #endif
4093
4094 /**
4095 * task_prio - return the priority value of a given task.
4096 * @p: the task in question.
4097 *
4098 * This is the priority value as seen by users in /proc.
4099 * RT tasks are offset by -200. Normal tasks are centered
4100 * around 0, value goes from -16 to +15.
4101 */
4102 int task_prio(const struct task_struct *p)
4103 {
4104 return p->prio - MAX_RT_PRIO;
4105 }
4106
4107 /**
4108 * task_nice - return the nice value of a given task.
4109 * @p: the task in question.
4110 */
4111 int task_nice(const struct task_struct *p)
4112 {
4113 return TASK_NICE(p);
4114 }
4115 EXPORT_SYMBOL_GPL(task_nice);
4116
4117 /**
4118 * idle_cpu - is a given cpu idle currently?
4119 * @cpu: the processor in question.
4120 */
4121 int idle_cpu(int cpu)
4122 {
4123 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4124 }
4125
4126 /**
4127 * idle_task - return the idle task for a given cpu.
4128 * @cpu: the processor in question.
4129 */
4130 struct task_struct *idle_task(int cpu)
4131 {
4132 return cpu_rq(cpu)->idle;
4133 }
4134
4135 /**
4136 * find_process_by_pid - find a process with a matching PID value.
4137 * @pid: the pid in question.
4138 */
4139 static inline struct task_struct *find_process_by_pid(pid_t pid)
4140 {
4141 return pid ? find_task_by_pid(pid) : current;
4142 }
4143
4144 /* Actually do priority change: must hold rq lock. */
4145 static void
4146 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4147 {
4148 BUG_ON(p->se.on_rq);
4149
4150 p->policy = policy;
4151 switch (p->policy) {
4152 case SCHED_NORMAL:
4153 case SCHED_BATCH:
4154 case SCHED_IDLE:
4155 p->sched_class = &fair_sched_class;
4156 break;
4157 case SCHED_FIFO:
4158 case SCHED_RR:
4159 p->sched_class = &rt_sched_class;
4160 break;
4161 }
4162
4163 p->rt_priority = prio;
4164 p->normal_prio = normal_prio(p);
4165 /* we are holding p->pi_lock already */
4166 p->prio = rt_mutex_getprio(p);
4167 set_load_weight(p);
4168 }
4169
4170 /**
4171 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4172 * @p: the task in question.
4173 * @policy: new policy.
4174 * @param: structure containing the new RT priority.
4175 *
4176 * NOTE that the task may be already dead.
4177 */
4178 int sched_setscheduler(struct task_struct *p, int policy,
4179 struct sched_param *param)
4180 {
4181 int retval, oldprio, oldpolicy = -1, on_rq, running;
4182 unsigned long flags;
4183 struct rq *rq;
4184
4185 /* may grab non-irq protected spin_locks */
4186 BUG_ON(in_interrupt());
4187 recheck:
4188 /* double check policy once rq lock held */
4189 if (policy < 0)
4190 policy = oldpolicy = p->policy;
4191 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4192 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4193 policy != SCHED_IDLE)
4194 return -EINVAL;
4195 /*
4196 * Valid priorities for SCHED_FIFO and SCHED_RR are
4197 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4198 * SCHED_BATCH and SCHED_IDLE is 0.
4199 */
4200 if (param->sched_priority < 0 ||
4201 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4202 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4203 return -EINVAL;
4204 if (rt_policy(policy) != (param->sched_priority != 0))
4205 return -EINVAL;
4206
4207 /*
4208 * Allow unprivileged RT tasks to decrease priority:
4209 */
4210 if (!capable(CAP_SYS_NICE)) {
4211 if (rt_policy(policy)) {
4212 unsigned long rlim_rtprio;
4213
4214 if (!lock_task_sighand(p, &flags))
4215 return -ESRCH;
4216 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4217 unlock_task_sighand(p, &flags);
4218
4219 /* can't set/change the rt policy */
4220 if (policy != p->policy && !rlim_rtprio)
4221 return -EPERM;
4222
4223 /* can't increase priority */
4224 if (param->sched_priority > p->rt_priority &&
4225 param->sched_priority > rlim_rtprio)
4226 return -EPERM;
4227 }
4228 /*
4229 * Like positive nice levels, dont allow tasks to
4230 * move out of SCHED_IDLE either:
4231 */
4232 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4233 return -EPERM;
4234
4235 /* can't change other user's priorities */
4236 if ((current->euid != p->euid) &&
4237 (current->euid != p->uid))
4238 return -EPERM;
4239 }
4240
4241 retval = security_task_setscheduler(p, policy, param);
4242 if (retval)
4243 return retval;
4244 /*
4245 * make sure no PI-waiters arrive (or leave) while we are
4246 * changing the priority of the task:
4247 */
4248 spin_lock_irqsave(&p->pi_lock, flags);
4249 /*
4250 * To be able to change p->policy safely, the apropriate
4251 * runqueue lock must be held.
4252 */
4253 rq = __task_rq_lock(p);
4254 /* recheck policy now with rq lock held */
4255 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4256 policy = oldpolicy = -1;
4257 __task_rq_unlock(rq);
4258 spin_unlock_irqrestore(&p->pi_lock, flags);
4259 goto recheck;
4260 }
4261 update_rq_clock(rq);
4262 on_rq = p->se.on_rq;
4263 running = task_running(rq, p);
4264 if (on_rq) {
4265 deactivate_task(rq, p, 0);
4266 if (running)
4267 p->sched_class->put_prev_task(rq, p);
4268 }
4269
4270 oldprio = p->prio;
4271 __setscheduler(rq, p, policy, param->sched_priority);
4272
4273 if (on_rq) {
4274 if (running)
4275 p->sched_class->set_curr_task(rq);
4276 activate_task(rq, p, 0);
4277 /*
4278 * Reschedule if we are currently running on this runqueue and
4279 * our priority decreased, or if we are not currently running on
4280 * this runqueue and our priority is higher than the current's
4281 */
4282 if (running) {
4283 if (p->prio > oldprio)
4284 resched_task(rq->curr);
4285 } else {
4286 check_preempt_curr(rq, p);
4287 }
4288 }
4289 __task_rq_unlock(rq);
4290 spin_unlock_irqrestore(&p->pi_lock, flags);
4291
4292 rt_mutex_adjust_pi(p);
4293
4294 return 0;
4295 }
4296 EXPORT_SYMBOL_GPL(sched_setscheduler);
4297
4298 static int
4299 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4300 {
4301 struct sched_param lparam;
4302 struct task_struct *p;
4303 int retval;
4304
4305 if (!param || pid < 0)
4306 return -EINVAL;
4307 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4308 return -EFAULT;
4309
4310 rcu_read_lock();
4311 retval = -ESRCH;
4312 p = find_process_by_pid(pid);
4313 if (p != NULL)
4314 retval = sched_setscheduler(p, policy, &lparam);
4315 rcu_read_unlock();
4316
4317 return retval;
4318 }
4319
4320 /**
4321 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4322 * @pid: the pid in question.
4323 * @policy: new policy.
4324 * @param: structure containing the new RT priority.
4325 */
4326 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4327 struct sched_param __user *param)
4328 {
4329 /* negative values for policy are not valid */
4330 if (policy < 0)
4331 return -EINVAL;
4332
4333 return do_sched_setscheduler(pid, policy, param);
4334 }
4335
4336 /**
4337 * sys_sched_setparam - set/change the RT priority of a thread
4338 * @pid: the pid in question.
4339 * @param: structure containing the new RT priority.
4340 */
4341 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4342 {
4343 return do_sched_setscheduler(pid, -1, param);
4344 }
4345
4346 /**
4347 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4348 * @pid: the pid in question.
4349 */
4350 asmlinkage long sys_sched_getscheduler(pid_t pid)
4351 {
4352 struct task_struct *p;
4353 int retval = -EINVAL;
4354
4355 if (pid < 0)
4356 goto out_nounlock;
4357
4358 retval = -ESRCH;
4359 read_lock(&tasklist_lock);
4360 p = find_process_by_pid(pid);
4361 if (p) {
4362 retval = security_task_getscheduler(p);
4363 if (!retval)
4364 retval = p->policy;
4365 }
4366 read_unlock(&tasklist_lock);
4367
4368 out_nounlock:
4369 return retval;
4370 }
4371
4372 /**
4373 * sys_sched_getscheduler - get the RT priority of a thread
4374 * @pid: the pid in question.
4375 * @param: structure containing the RT priority.
4376 */
4377 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4378 {
4379 struct sched_param lp;
4380 struct task_struct *p;
4381 int retval = -EINVAL;
4382
4383 if (!param || pid < 0)
4384 goto out_nounlock;
4385
4386 read_lock(&tasklist_lock);
4387 p = find_process_by_pid(pid);
4388 retval = -ESRCH;
4389 if (!p)
4390 goto out_unlock;
4391
4392 retval = security_task_getscheduler(p);
4393 if (retval)
4394 goto out_unlock;
4395
4396 lp.sched_priority = p->rt_priority;
4397 read_unlock(&tasklist_lock);
4398
4399 /*
4400 * This one might sleep, we cannot do it with a spinlock held ...
4401 */
4402 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4403
4404 out_nounlock:
4405 return retval;
4406
4407 out_unlock:
4408 read_unlock(&tasklist_lock);
4409 return retval;
4410 }
4411
4412 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4413 {
4414 cpumask_t cpus_allowed;
4415 struct task_struct *p;
4416 int retval;
4417
4418 mutex_lock(&sched_hotcpu_mutex);
4419 read_lock(&tasklist_lock);
4420
4421 p = find_process_by_pid(pid);
4422 if (!p) {
4423 read_unlock(&tasklist_lock);
4424 mutex_unlock(&sched_hotcpu_mutex);
4425 return -ESRCH;
4426 }
4427
4428 /*
4429 * It is not safe to call set_cpus_allowed with the
4430 * tasklist_lock held. We will bump the task_struct's
4431 * usage count and then drop tasklist_lock.
4432 */
4433 get_task_struct(p);
4434 read_unlock(&tasklist_lock);
4435
4436 retval = -EPERM;
4437 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4438 !capable(CAP_SYS_NICE))
4439 goto out_unlock;
4440
4441 retval = security_task_setscheduler(p, 0, NULL);
4442 if (retval)
4443 goto out_unlock;
4444
4445 cpus_allowed = cpuset_cpus_allowed(p);
4446 cpus_and(new_mask, new_mask, cpus_allowed);
4447 retval = set_cpus_allowed(p, new_mask);
4448
4449 out_unlock:
4450 put_task_struct(p);
4451 mutex_unlock(&sched_hotcpu_mutex);
4452 return retval;
4453 }
4454
4455 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4456 cpumask_t *new_mask)
4457 {
4458 if (len < sizeof(cpumask_t)) {
4459 memset(new_mask, 0, sizeof(cpumask_t));
4460 } else if (len > sizeof(cpumask_t)) {
4461 len = sizeof(cpumask_t);
4462 }
4463 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4464 }
4465
4466 /**
4467 * sys_sched_setaffinity - set the cpu affinity of a process
4468 * @pid: pid of the process
4469 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4470 * @user_mask_ptr: user-space pointer to the new cpu mask
4471 */
4472 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4473 unsigned long __user *user_mask_ptr)
4474 {
4475 cpumask_t new_mask;
4476 int retval;
4477
4478 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4479 if (retval)
4480 return retval;
4481
4482 return sched_setaffinity(pid, new_mask);
4483 }
4484
4485 /*
4486 * Represents all cpu's present in the system
4487 * In systems capable of hotplug, this map could dynamically grow
4488 * as new cpu's are detected in the system via any platform specific
4489 * method, such as ACPI for e.g.
4490 */
4491
4492 cpumask_t cpu_present_map __read_mostly;
4493 EXPORT_SYMBOL(cpu_present_map);
4494
4495 #ifndef CONFIG_SMP
4496 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4497 EXPORT_SYMBOL(cpu_online_map);
4498
4499 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4500 EXPORT_SYMBOL(cpu_possible_map);
4501 #endif
4502
4503 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4504 {
4505 struct task_struct *p;
4506 int retval;
4507
4508 mutex_lock(&sched_hotcpu_mutex);
4509 read_lock(&tasklist_lock);
4510
4511 retval = -ESRCH;
4512 p = find_process_by_pid(pid);
4513 if (!p)
4514 goto out_unlock;
4515
4516 retval = security_task_getscheduler(p);
4517 if (retval)
4518 goto out_unlock;
4519
4520 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4521
4522 out_unlock:
4523 read_unlock(&tasklist_lock);
4524 mutex_unlock(&sched_hotcpu_mutex);
4525
4526 return retval;
4527 }
4528
4529 /**
4530 * sys_sched_getaffinity - get the cpu affinity of a process
4531 * @pid: pid of the process
4532 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4533 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4534 */
4535 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4536 unsigned long __user *user_mask_ptr)
4537 {
4538 int ret;
4539 cpumask_t mask;
4540
4541 if (len < sizeof(cpumask_t))
4542 return -EINVAL;
4543
4544 ret = sched_getaffinity(pid, &mask);
4545 if (ret < 0)
4546 return ret;
4547
4548 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4549 return -EFAULT;
4550
4551 return sizeof(cpumask_t);
4552 }
4553
4554 /**
4555 * sys_sched_yield - yield the current processor to other threads.
4556 *
4557 * This function yields the current CPU to other tasks. If there are no
4558 * other threads running on this CPU then this function will return.
4559 */
4560 asmlinkage long sys_sched_yield(void)
4561 {
4562 struct rq *rq = this_rq_lock();
4563
4564 schedstat_inc(rq, yld_cnt);
4565 current->sched_class->yield_task(rq);
4566
4567 /*
4568 * Since we are going to call schedule() anyway, there's
4569 * no need to preempt or enable interrupts:
4570 */
4571 __release(rq->lock);
4572 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4573 _raw_spin_unlock(&rq->lock);
4574 preempt_enable_no_resched();
4575
4576 schedule();
4577
4578 return 0;
4579 }
4580
4581 static void __cond_resched(void)
4582 {
4583 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4584 __might_sleep(__FILE__, __LINE__);
4585 #endif
4586 /*
4587 * The BKS might be reacquired before we have dropped
4588 * PREEMPT_ACTIVE, which could trigger a second
4589 * cond_resched() call.
4590 */
4591 do {
4592 add_preempt_count(PREEMPT_ACTIVE);
4593 schedule();
4594 sub_preempt_count(PREEMPT_ACTIVE);
4595 } while (need_resched());
4596 }
4597
4598 int __sched cond_resched(void)
4599 {
4600 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4601 system_state == SYSTEM_RUNNING) {
4602 __cond_resched();
4603 return 1;
4604 }
4605 return 0;
4606 }
4607 EXPORT_SYMBOL(cond_resched);
4608
4609 /*
4610 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4611 * call schedule, and on return reacquire the lock.
4612 *
4613 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4614 * operations here to prevent schedule() from being called twice (once via
4615 * spin_unlock(), once by hand).
4616 */
4617 int cond_resched_lock(spinlock_t *lock)
4618 {
4619 int ret = 0;
4620
4621 if (need_lockbreak(lock)) {
4622 spin_unlock(lock);
4623 cpu_relax();
4624 ret = 1;
4625 spin_lock(lock);
4626 }
4627 if (need_resched() && system_state == SYSTEM_RUNNING) {
4628 spin_release(&lock->dep_map, 1, _THIS_IP_);
4629 _raw_spin_unlock(lock);
4630 preempt_enable_no_resched();
4631 __cond_resched();
4632 ret = 1;
4633 spin_lock(lock);
4634 }
4635 return ret;
4636 }
4637 EXPORT_SYMBOL(cond_resched_lock);
4638
4639 int __sched cond_resched_softirq(void)
4640 {
4641 BUG_ON(!in_softirq());
4642
4643 if (need_resched() && system_state == SYSTEM_RUNNING) {
4644 local_bh_enable();
4645 __cond_resched();
4646 local_bh_disable();
4647 return 1;
4648 }
4649 return 0;
4650 }
4651 EXPORT_SYMBOL(cond_resched_softirq);
4652
4653 /**
4654 * yield - yield the current processor to other threads.
4655 *
4656 * This is a shortcut for kernel-space yielding - it marks the
4657 * thread runnable and calls sys_sched_yield().
4658 */
4659 void __sched yield(void)
4660 {
4661 set_current_state(TASK_RUNNING);
4662 sys_sched_yield();
4663 }
4664 EXPORT_SYMBOL(yield);
4665
4666 /*
4667 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4668 * that process accounting knows that this is a task in IO wait state.
4669 *
4670 * But don't do that if it is a deliberate, throttling IO wait (this task
4671 * has set its backing_dev_info: the queue against which it should throttle)
4672 */
4673 void __sched io_schedule(void)
4674 {
4675 struct rq *rq = &__raw_get_cpu_var(runqueues);
4676
4677 delayacct_blkio_start();
4678 atomic_inc(&rq->nr_iowait);
4679 schedule();
4680 atomic_dec(&rq->nr_iowait);
4681 delayacct_blkio_end();
4682 }
4683 EXPORT_SYMBOL(io_schedule);
4684
4685 long __sched io_schedule_timeout(long timeout)
4686 {
4687 struct rq *rq = &__raw_get_cpu_var(runqueues);
4688 long ret;
4689
4690 delayacct_blkio_start();
4691 atomic_inc(&rq->nr_iowait);
4692 ret = schedule_timeout(timeout);
4693 atomic_dec(&rq->nr_iowait);
4694 delayacct_blkio_end();
4695 return ret;
4696 }
4697
4698 /**
4699 * sys_sched_get_priority_max - return maximum RT priority.
4700 * @policy: scheduling class.
4701 *
4702 * this syscall returns the maximum rt_priority that can be used
4703 * by a given scheduling class.
4704 */
4705 asmlinkage long sys_sched_get_priority_max(int policy)
4706 {
4707 int ret = -EINVAL;
4708
4709 switch (policy) {
4710 case SCHED_FIFO:
4711 case SCHED_RR:
4712 ret = MAX_USER_RT_PRIO-1;
4713 break;
4714 case SCHED_NORMAL:
4715 case SCHED_BATCH:
4716 case SCHED_IDLE:
4717 ret = 0;
4718 break;
4719 }
4720 return ret;
4721 }
4722
4723 /**
4724 * sys_sched_get_priority_min - return minimum RT priority.
4725 * @policy: scheduling class.
4726 *
4727 * this syscall returns the minimum rt_priority that can be used
4728 * by a given scheduling class.
4729 */
4730 asmlinkage long sys_sched_get_priority_min(int policy)
4731 {
4732 int ret = -EINVAL;
4733
4734 switch (policy) {
4735 case SCHED_FIFO:
4736 case SCHED_RR:
4737 ret = 1;
4738 break;
4739 case SCHED_NORMAL:
4740 case SCHED_BATCH:
4741 case SCHED_IDLE:
4742 ret = 0;
4743 }
4744 return ret;
4745 }
4746
4747 /**
4748 * sys_sched_rr_get_interval - return the default timeslice of a process.
4749 * @pid: pid of the process.
4750 * @interval: userspace pointer to the timeslice value.
4751 *
4752 * this syscall writes the default timeslice value of a given process
4753 * into the user-space timespec buffer. A value of '0' means infinity.
4754 */
4755 asmlinkage
4756 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4757 {
4758 struct task_struct *p;
4759 int retval = -EINVAL;
4760 struct timespec t;
4761
4762 if (pid < 0)
4763 goto out_nounlock;
4764
4765 retval = -ESRCH;
4766 read_lock(&tasklist_lock);
4767 p = find_process_by_pid(pid);
4768 if (!p)
4769 goto out_unlock;
4770
4771 retval = security_task_getscheduler(p);
4772 if (retval)
4773 goto out_unlock;
4774
4775 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4776 0 : static_prio_timeslice(p->static_prio), &t);
4777 read_unlock(&tasklist_lock);
4778 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4779 out_nounlock:
4780 return retval;
4781 out_unlock:
4782 read_unlock(&tasklist_lock);
4783 return retval;
4784 }
4785
4786 static const char stat_nam[] = "RSDTtZX";
4787
4788 static void show_task(struct task_struct *p)
4789 {
4790 unsigned long free = 0;
4791 unsigned state;
4792
4793 state = p->state ? __ffs(p->state) + 1 : 0;
4794 printk("%-13.13s %c", p->comm,
4795 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4796 #if BITS_PER_LONG == 32
4797 if (state == TASK_RUNNING)
4798 printk(" running ");
4799 else
4800 printk(" %08lx ", thread_saved_pc(p));
4801 #else
4802 if (state == TASK_RUNNING)
4803 printk(" running task ");
4804 else
4805 printk(" %016lx ", thread_saved_pc(p));
4806 #endif
4807 #ifdef CONFIG_DEBUG_STACK_USAGE
4808 {
4809 unsigned long *n = end_of_stack(p);
4810 while (!*n)
4811 n++;
4812 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4813 }
4814 #endif
4815 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4816
4817 if (state != TASK_RUNNING)
4818 show_stack(p, NULL);
4819 }
4820
4821 void show_state_filter(unsigned long state_filter)
4822 {
4823 struct task_struct *g, *p;
4824
4825 #if BITS_PER_LONG == 32
4826 printk(KERN_INFO
4827 " task PC stack pid father\n");
4828 #else
4829 printk(KERN_INFO
4830 " task PC stack pid father\n");
4831 #endif
4832 read_lock(&tasklist_lock);
4833 do_each_thread(g, p) {
4834 /*
4835 * reset the NMI-timeout, listing all files on a slow
4836 * console might take alot of time:
4837 */
4838 touch_nmi_watchdog();
4839 if (!state_filter || (p->state & state_filter))
4840 show_task(p);
4841 } while_each_thread(g, p);
4842
4843 touch_all_softlockup_watchdogs();
4844
4845 #ifdef CONFIG_SCHED_DEBUG
4846 sysrq_sched_debug_show();
4847 #endif
4848 read_unlock(&tasklist_lock);
4849 /*
4850 * Only show locks if all tasks are dumped:
4851 */
4852 if (state_filter == -1)
4853 debug_show_all_locks();
4854 }
4855
4856 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4857 {
4858 idle->sched_class = &idle_sched_class;
4859 }
4860
4861 /**
4862 * init_idle - set up an idle thread for a given CPU
4863 * @idle: task in question
4864 * @cpu: cpu the idle task belongs to
4865 *
4866 * NOTE: this function does not set the idle thread's NEED_RESCHED
4867 * flag, to make booting more robust.
4868 */
4869 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4870 {
4871 struct rq *rq = cpu_rq(cpu);
4872 unsigned long flags;
4873
4874 __sched_fork(idle);
4875 idle->se.exec_start = sched_clock();
4876
4877 idle->prio = idle->normal_prio = MAX_PRIO;
4878 idle->cpus_allowed = cpumask_of_cpu(cpu);
4879 __set_task_cpu(idle, cpu);
4880
4881 spin_lock_irqsave(&rq->lock, flags);
4882 rq->curr = rq->idle = idle;
4883 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4884 idle->oncpu = 1;
4885 #endif
4886 spin_unlock_irqrestore(&rq->lock, flags);
4887
4888 /* Set the preempt count _outside_ the spinlocks! */
4889 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4890 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4891 #else
4892 task_thread_info(idle)->preempt_count = 0;
4893 #endif
4894 /*
4895 * The idle tasks have their own, simple scheduling class:
4896 */
4897 idle->sched_class = &idle_sched_class;
4898 }
4899
4900 /*
4901 * In a system that switches off the HZ timer nohz_cpu_mask
4902 * indicates which cpus entered this state. This is used
4903 * in the rcu update to wait only for active cpus. For system
4904 * which do not switch off the HZ timer nohz_cpu_mask should
4905 * always be CPU_MASK_NONE.
4906 */
4907 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4908
4909 #ifdef CONFIG_SMP
4910 /*
4911 * This is how migration works:
4912 *
4913 * 1) we queue a struct migration_req structure in the source CPU's
4914 * runqueue and wake up that CPU's migration thread.
4915 * 2) we down() the locked semaphore => thread blocks.
4916 * 3) migration thread wakes up (implicitly it forces the migrated
4917 * thread off the CPU)
4918 * 4) it gets the migration request and checks whether the migrated
4919 * task is still in the wrong runqueue.
4920 * 5) if it's in the wrong runqueue then the migration thread removes
4921 * it and puts it into the right queue.
4922 * 6) migration thread up()s the semaphore.
4923 * 7) we wake up and the migration is done.
4924 */
4925
4926 /*
4927 * Change a given task's CPU affinity. Migrate the thread to a
4928 * proper CPU and schedule it away if the CPU it's executing on
4929 * is removed from the allowed bitmask.
4930 *
4931 * NOTE: the caller must have a valid reference to the task, the
4932 * task must not exit() & deallocate itself prematurely. The
4933 * call is not atomic; no spinlocks may be held.
4934 */
4935 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4936 {
4937 struct migration_req req;
4938 unsigned long flags;
4939 struct rq *rq;
4940 int ret = 0;
4941
4942 rq = task_rq_lock(p, &flags);
4943 if (!cpus_intersects(new_mask, cpu_online_map)) {
4944 ret = -EINVAL;
4945 goto out;
4946 }
4947
4948 p->cpus_allowed = new_mask;
4949 /* Can the task run on the task's current CPU? If so, we're done */
4950 if (cpu_isset(task_cpu(p), new_mask))
4951 goto out;
4952
4953 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4954 /* Need help from migration thread: drop lock and wait. */
4955 task_rq_unlock(rq, &flags);
4956 wake_up_process(rq->migration_thread);
4957 wait_for_completion(&req.done);
4958 tlb_migrate_finish(p->mm);
4959 return 0;
4960 }
4961 out:
4962 task_rq_unlock(rq, &flags);
4963
4964 return ret;
4965 }
4966 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4967
4968 /*
4969 * Move (not current) task off this cpu, onto dest cpu. We're doing
4970 * this because either it can't run here any more (set_cpus_allowed()
4971 * away from this CPU, or CPU going down), or because we're
4972 * attempting to rebalance this task on exec (sched_exec).
4973 *
4974 * So we race with normal scheduler movements, but that's OK, as long
4975 * as the task is no longer on this CPU.
4976 *
4977 * Returns non-zero if task was successfully migrated.
4978 */
4979 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4980 {
4981 struct rq *rq_dest, *rq_src;
4982 int ret = 0, on_rq;
4983
4984 if (unlikely(cpu_is_offline(dest_cpu)))
4985 return ret;
4986
4987 rq_src = cpu_rq(src_cpu);
4988 rq_dest = cpu_rq(dest_cpu);
4989
4990 double_rq_lock(rq_src, rq_dest);
4991 /* Already moved. */
4992 if (task_cpu(p) != src_cpu)
4993 goto out;
4994 /* Affinity changed (again). */
4995 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4996 goto out;
4997
4998 on_rq = p->se.on_rq;
4999 if (on_rq)
5000 deactivate_task(rq_src, p, 0);
5001
5002 set_task_cpu(p, dest_cpu);
5003 if (on_rq) {
5004 activate_task(rq_dest, p, 0);
5005 check_preempt_curr(rq_dest, p);
5006 }
5007 ret = 1;
5008 out:
5009 double_rq_unlock(rq_src, rq_dest);
5010 return ret;
5011 }
5012
5013 /*
5014 * migration_thread - this is a highprio system thread that performs
5015 * thread migration by bumping thread off CPU then 'pushing' onto
5016 * another runqueue.
5017 */
5018 static int migration_thread(void *data)
5019 {
5020 int cpu = (long)data;
5021 struct rq *rq;
5022
5023 rq = cpu_rq(cpu);
5024 BUG_ON(rq->migration_thread != current);
5025
5026 set_current_state(TASK_INTERRUPTIBLE);
5027 while (!kthread_should_stop()) {
5028 struct migration_req *req;
5029 struct list_head *head;
5030
5031 spin_lock_irq(&rq->lock);
5032
5033 if (cpu_is_offline(cpu)) {
5034 spin_unlock_irq(&rq->lock);
5035 goto wait_to_die;
5036 }
5037
5038 if (rq->active_balance) {
5039 active_load_balance(rq, cpu);
5040 rq->active_balance = 0;
5041 }
5042
5043 head = &rq->migration_queue;
5044
5045 if (list_empty(head)) {
5046 spin_unlock_irq(&rq->lock);
5047 schedule();
5048 set_current_state(TASK_INTERRUPTIBLE);
5049 continue;
5050 }
5051 req = list_entry(head->next, struct migration_req, list);
5052 list_del_init(head->next);
5053
5054 spin_unlock(&rq->lock);
5055 __migrate_task(req->task, cpu, req->dest_cpu);
5056 local_irq_enable();
5057
5058 complete(&req->done);
5059 }
5060 __set_current_state(TASK_RUNNING);
5061 return 0;
5062
5063 wait_to_die:
5064 /* Wait for kthread_stop */
5065 set_current_state(TASK_INTERRUPTIBLE);
5066 while (!kthread_should_stop()) {
5067 schedule();
5068 set_current_state(TASK_INTERRUPTIBLE);
5069 }
5070 __set_current_state(TASK_RUNNING);
5071 return 0;
5072 }
5073
5074 #ifdef CONFIG_HOTPLUG_CPU
5075 /*
5076 * Figure out where task on dead CPU should go, use force if neccessary.
5077 * NOTE: interrupts should be disabled by the caller
5078 */
5079 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5080 {
5081 unsigned long flags;
5082 cpumask_t mask;
5083 struct rq *rq;
5084 int dest_cpu;
5085
5086 restart:
5087 /* On same node? */
5088 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5089 cpus_and(mask, mask, p->cpus_allowed);
5090 dest_cpu = any_online_cpu(mask);
5091
5092 /* On any allowed CPU? */
5093 if (dest_cpu == NR_CPUS)
5094 dest_cpu = any_online_cpu(p->cpus_allowed);
5095
5096 /* No more Mr. Nice Guy. */
5097 if (dest_cpu == NR_CPUS) {
5098 rq = task_rq_lock(p, &flags);
5099 cpus_setall(p->cpus_allowed);
5100 dest_cpu = any_online_cpu(p->cpus_allowed);
5101 task_rq_unlock(rq, &flags);
5102
5103 /*
5104 * Don't tell them about moving exiting tasks or
5105 * kernel threads (both mm NULL), since they never
5106 * leave kernel.
5107 */
5108 if (p->mm && printk_ratelimit())
5109 printk(KERN_INFO "process %d (%s) no "
5110 "longer affine to cpu%d\n",
5111 p->pid, p->comm, dead_cpu);
5112 }
5113 if (!__migrate_task(p, dead_cpu, dest_cpu))
5114 goto restart;
5115 }
5116
5117 /*
5118 * While a dead CPU has no uninterruptible tasks queued at this point,
5119 * it might still have a nonzero ->nr_uninterruptible counter, because
5120 * for performance reasons the counter is not stricly tracking tasks to
5121 * their home CPUs. So we just add the counter to another CPU's counter,
5122 * to keep the global sum constant after CPU-down:
5123 */
5124 static void migrate_nr_uninterruptible(struct rq *rq_src)
5125 {
5126 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5127 unsigned long flags;
5128
5129 local_irq_save(flags);
5130 double_rq_lock(rq_src, rq_dest);
5131 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5132 rq_src->nr_uninterruptible = 0;
5133 double_rq_unlock(rq_src, rq_dest);
5134 local_irq_restore(flags);
5135 }
5136
5137 /* Run through task list and migrate tasks from the dead cpu. */
5138 static void migrate_live_tasks(int src_cpu)
5139 {
5140 struct task_struct *p, *t;
5141
5142 write_lock_irq(&tasklist_lock);
5143
5144 do_each_thread(t, p) {
5145 if (p == current)
5146 continue;
5147
5148 if (task_cpu(p) == src_cpu)
5149 move_task_off_dead_cpu(src_cpu, p);
5150 } while_each_thread(t, p);
5151
5152 write_unlock_irq(&tasklist_lock);
5153 }
5154
5155 /*
5156 * Schedules idle task to be the next runnable task on current CPU.
5157 * It does so by boosting its priority to highest possible and adding it to
5158 * the _front_ of the runqueue. Used by CPU offline code.
5159 */
5160 void sched_idle_next(void)
5161 {
5162 int this_cpu = smp_processor_id();
5163 struct rq *rq = cpu_rq(this_cpu);
5164 struct task_struct *p = rq->idle;
5165 unsigned long flags;
5166
5167 /* cpu has to be offline */
5168 BUG_ON(cpu_online(this_cpu));
5169
5170 /*
5171 * Strictly not necessary since rest of the CPUs are stopped by now
5172 * and interrupts disabled on the current cpu.
5173 */
5174 spin_lock_irqsave(&rq->lock, flags);
5175
5176 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5177
5178 /* Add idle task to the _front_ of its priority queue: */
5179 activate_idle_task(p, rq);
5180
5181 spin_unlock_irqrestore(&rq->lock, flags);
5182 }
5183
5184 /*
5185 * Ensures that the idle task is using init_mm right before its cpu goes
5186 * offline.
5187 */
5188 void idle_task_exit(void)
5189 {
5190 struct mm_struct *mm = current->active_mm;
5191
5192 BUG_ON(cpu_online(smp_processor_id()));
5193
5194 if (mm != &init_mm)
5195 switch_mm(mm, &init_mm, current);
5196 mmdrop(mm);
5197 }
5198
5199 /* called under rq->lock with disabled interrupts */
5200 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5201 {
5202 struct rq *rq = cpu_rq(dead_cpu);
5203
5204 /* Must be exiting, otherwise would be on tasklist. */
5205 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5206
5207 /* Cannot have done final schedule yet: would have vanished. */
5208 BUG_ON(p->state == TASK_DEAD);
5209
5210 get_task_struct(p);
5211
5212 /*
5213 * Drop lock around migration; if someone else moves it,
5214 * that's OK. No task can be added to this CPU, so iteration is
5215 * fine.
5216 * NOTE: interrupts should be left disabled --dev@
5217 */
5218 spin_unlock(&rq->lock);
5219 move_task_off_dead_cpu(dead_cpu, p);
5220 spin_lock(&rq->lock);
5221
5222 put_task_struct(p);
5223 }
5224
5225 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5226 static void migrate_dead_tasks(unsigned int dead_cpu)
5227 {
5228 struct rq *rq = cpu_rq(dead_cpu);
5229 struct task_struct *next;
5230
5231 for ( ; ; ) {
5232 if (!rq->nr_running)
5233 break;
5234 update_rq_clock(rq);
5235 next = pick_next_task(rq, rq->curr);
5236 if (!next)
5237 break;
5238 migrate_dead(dead_cpu, next);
5239
5240 }
5241 }
5242 #endif /* CONFIG_HOTPLUG_CPU */
5243
5244 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5245
5246 static struct ctl_table sd_ctl_dir[] = {
5247 {
5248 .procname = "sched_domain",
5249 .mode = 0555,
5250 },
5251 {0,},
5252 };
5253
5254 static struct ctl_table sd_ctl_root[] = {
5255 {
5256 .ctl_name = CTL_KERN,
5257 .procname = "kernel",
5258 .mode = 0555,
5259 .child = sd_ctl_dir,
5260 },
5261 {0,},
5262 };
5263
5264 static struct ctl_table *sd_alloc_ctl_entry(int n)
5265 {
5266 struct ctl_table *entry =
5267 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5268
5269 BUG_ON(!entry);
5270 memset(entry, 0, n * sizeof(struct ctl_table));
5271
5272 return entry;
5273 }
5274
5275 static void
5276 set_table_entry(struct ctl_table *entry,
5277 const char *procname, void *data, int maxlen,
5278 mode_t mode, proc_handler *proc_handler)
5279 {
5280 entry->procname = procname;
5281 entry->data = data;
5282 entry->maxlen = maxlen;
5283 entry->mode = mode;
5284 entry->proc_handler = proc_handler;
5285 }
5286
5287 static struct ctl_table *
5288 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5289 {
5290 struct ctl_table *table = sd_alloc_ctl_entry(14);
5291
5292 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5293 sizeof(long), 0644, proc_doulongvec_minmax);
5294 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5295 sizeof(long), 0644, proc_doulongvec_minmax);
5296 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5297 sizeof(int), 0644, proc_dointvec_minmax);
5298 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5299 sizeof(int), 0644, proc_dointvec_minmax);
5300 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5301 sizeof(int), 0644, proc_dointvec_minmax);
5302 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5303 sizeof(int), 0644, proc_dointvec_minmax);
5304 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5305 sizeof(int), 0644, proc_dointvec_minmax);
5306 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5307 sizeof(int), 0644, proc_dointvec_minmax);
5308 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5309 sizeof(int), 0644, proc_dointvec_minmax);
5310 set_table_entry(&table[10], "cache_nice_tries",
5311 &sd->cache_nice_tries,
5312 sizeof(int), 0644, proc_dointvec_minmax);
5313 set_table_entry(&table[12], "flags", &sd->flags,
5314 sizeof(int), 0644, proc_dointvec_minmax);
5315
5316 return table;
5317 }
5318
5319 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5320 {
5321 struct ctl_table *entry, *table;
5322 struct sched_domain *sd;
5323 int domain_num = 0, i;
5324 char buf[32];
5325
5326 for_each_domain(cpu, sd)
5327 domain_num++;
5328 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5329
5330 i = 0;
5331 for_each_domain(cpu, sd) {
5332 snprintf(buf, 32, "domain%d", i);
5333 entry->procname = kstrdup(buf, GFP_KERNEL);
5334 entry->mode = 0555;
5335 entry->child = sd_alloc_ctl_domain_table(sd);
5336 entry++;
5337 i++;
5338 }
5339 return table;
5340 }
5341
5342 static struct ctl_table_header *sd_sysctl_header;
5343 static void init_sched_domain_sysctl(void)
5344 {
5345 int i, cpu_num = num_online_cpus();
5346 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5347 char buf[32];
5348
5349 sd_ctl_dir[0].child = entry;
5350
5351 for (i = 0; i < cpu_num; i++, entry++) {
5352 snprintf(buf, 32, "cpu%d", i);
5353 entry->procname = kstrdup(buf, GFP_KERNEL);
5354 entry->mode = 0555;
5355 entry->child = sd_alloc_ctl_cpu_table(i);
5356 }
5357 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5358 }
5359 #else
5360 static void init_sched_domain_sysctl(void)
5361 {
5362 }
5363 #endif
5364
5365 /*
5366 * migration_call - callback that gets triggered when a CPU is added.
5367 * Here we can start up the necessary migration thread for the new CPU.
5368 */
5369 static int __cpuinit
5370 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5371 {
5372 struct task_struct *p;
5373 int cpu = (long)hcpu;
5374 unsigned long flags;
5375 struct rq *rq;
5376
5377 switch (action) {
5378 case CPU_LOCK_ACQUIRE:
5379 mutex_lock(&sched_hotcpu_mutex);
5380 break;
5381
5382 case CPU_UP_PREPARE:
5383 case CPU_UP_PREPARE_FROZEN:
5384 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5385 if (IS_ERR(p))
5386 return NOTIFY_BAD;
5387 kthread_bind(p, cpu);
5388 /* Must be high prio: stop_machine expects to yield to it. */
5389 rq = task_rq_lock(p, &flags);
5390 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5391 task_rq_unlock(rq, &flags);
5392 cpu_rq(cpu)->migration_thread = p;
5393 break;
5394
5395 case CPU_ONLINE:
5396 case CPU_ONLINE_FROZEN:
5397 /* Strictly unneccessary, as first user will wake it. */
5398 wake_up_process(cpu_rq(cpu)->migration_thread);
5399 break;
5400
5401 #ifdef CONFIG_HOTPLUG_CPU
5402 case CPU_UP_CANCELED:
5403 case CPU_UP_CANCELED_FROZEN:
5404 if (!cpu_rq(cpu)->migration_thread)
5405 break;
5406 /* Unbind it from offline cpu so it can run. Fall thru. */
5407 kthread_bind(cpu_rq(cpu)->migration_thread,
5408 any_online_cpu(cpu_online_map));
5409 kthread_stop(cpu_rq(cpu)->migration_thread);
5410 cpu_rq(cpu)->migration_thread = NULL;
5411 break;
5412
5413 case CPU_DEAD:
5414 case CPU_DEAD_FROZEN:
5415 migrate_live_tasks(cpu);
5416 rq = cpu_rq(cpu);
5417 kthread_stop(rq->migration_thread);
5418 rq->migration_thread = NULL;
5419 /* Idle task back to normal (off runqueue, low prio) */
5420 rq = task_rq_lock(rq->idle, &flags);
5421 update_rq_clock(rq);
5422 deactivate_task(rq, rq->idle, 0);
5423 rq->idle->static_prio = MAX_PRIO;
5424 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5425 rq->idle->sched_class = &idle_sched_class;
5426 migrate_dead_tasks(cpu);
5427 task_rq_unlock(rq, &flags);
5428 migrate_nr_uninterruptible(rq);
5429 BUG_ON(rq->nr_running != 0);
5430
5431 /* No need to migrate the tasks: it was best-effort if
5432 * they didn't take sched_hotcpu_mutex. Just wake up
5433 * the requestors. */
5434 spin_lock_irq(&rq->lock);
5435 while (!list_empty(&rq->migration_queue)) {
5436 struct migration_req *req;
5437
5438 req = list_entry(rq->migration_queue.next,
5439 struct migration_req, list);
5440 list_del_init(&req->list);
5441 complete(&req->done);
5442 }
5443 spin_unlock_irq(&rq->lock);
5444 break;
5445 #endif
5446 case CPU_LOCK_RELEASE:
5447 mutex_unlock(&sched_hotcpu_mutex);
5448 break;
5449 }
5450 return NOTIFY_OK;
5451 }
5452
5453 /* Register at highest priority so that task migration (migrate_all_tasks)
5454 * happens before everything else.
5455 */
5456 static struct notifier_block __cpuinitdata migration_notifier = {
5457 .notifier_call = migration_call,
5458 .priority = 10
5459 };
5460
5461 int __init migration_init(void)
5462 {
5463 void *cpu = (void *)(long)smp_processor_id();
5464 int err;
5465
5466 /* Start one for the boot CPU: */
5467 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5468 BUG_ON(err == NOTIFY_BAD);
5469 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5470 register_cpu_notifier(&migration_notifier);
5471
5472 return 0;
5473 }
5474 #endif
5475
5476 #ifdef CONFIG_SMP
5477
5478 /* Number of possible processor ids */
5479 int nr_cpu_ids __read_mostly = NR_CPUS;
5480 EXPORT_SYMBOL(nr_cpu_ids);
5481
5482 #undef SCHED_DOMAIN_DEBUG
5483 #ifdef SCHED_DOMAIN_DEBUG
5484 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5485 {
5486 int level = 0;
5487
5488 if (!sd) {
5489 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5490 return;
5491 }
5492
5493 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5494
5495 do {
5496 int i;
5497 char str[NR_CPUS];
5498 struct sched_group *group = sd->groups;
5499 cpumask_t groupmask;
5500
5501 cpumask_scnprintf(str, NR_CPUS, sd->span);
5502 cpus_clear(groupmask);
5503
5504 printk(KERN_DEBUG);
5505 for (i = 0; i < level + 1; i++)
5506 printk(" ");
5507 printk("domain %d: ", level);
5508
5509 if (!(sd->flags & SD_LOAD_BALANCE)) {
5510 printk("does not load-balance\n");
5511 if (sd->parent)
5512 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5513 " has parent");
5514 break;
5515 }
5516
5517 printk("span %s\n", str);
5518
5519 if (!cpu_isset(cpu, sd->span))
5520 printk(KERN_ERR "ERROR: domain->span does not contain "
5521 "CPU%d\n", cpu);
5522 if (!cpu_isset(cpu, group->cpumask))
5523 printk(KERN_ERR "ERROR: domain->groups does not contain"
5524 " CPU%d\n", cpu);
5525
5526 printk(KERN_DEBUG);
5527 for (i = 0; i < level + 2; i++)
5528 printk(" ");
5529 printk("groups:");
5530 do {
5531 if (!group) {
5532 printk("\n");
5533 printk(KERN_ERR "ERROR: group is NULL\n");
5534 break;
5535 }
5536
5537 if (!group->__cpu_power) {
5538 printk("\n");
5539 printk(KERN_ERR "ERROR: domain->cpu_power not "
5540 "set\n");
5541 }
5542
5543 if (!cpus_weight(group->cpumask)) {
5544 printk("\n");
5545 printk(KERN_ERR "ERROR: empty group\n");
5546 }
5547
5548 if (cpus_intersects(groupmask, group->cpumask)) {
5549 printk("\n");
5550 printk(KERN_ERR "ERROR: repeated CPUs\n");
5551 }
5552
5553 cpus_or(groupmask, groupmask, group->cpumask);
5554
5555 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5556 printk(" %s", str);
5557
5558 group = group->next;
5559 } while (group != sd->groups);
5560 printk("\n");
5561
5562 if (!cpus_equal(sd->span, groupmask))
5563 printk(KERN_ERR "ERROR: groups don't span "
5564 "domain->span\n");
5565
5566 level++;
5567 sd = sd->parent;
5568 if (!sd)
5569 continue;
5570
5571 if (!cpus_subset(groupmask, sd->span))
5572 printk(KERN_ERR "ERROR: parent span is not a superset "
5573 "of domain->span\n");
5574
5575 } while (sd);
5576 }
5577 #else
5578 # define sched_domain_debug(sd, cpu) do { } while (0)
5579 #endif
5580
5581 static int sd_degenerate(struct sched_domain *sd)
5582 {
5583 if (cpus_weight(sd->span) == 1)
5584 return 1;
5585
5586 /* Following flags need at least 2 groups */
5587 if (sd->flags & (SD_LOAD_BALANCE |
5588 SD_BALANCE_NEWIDLE |
5589 SD_BALANCE_FORK |
5590 SD_BALANCE_EXEC |
5591 SD_SHARE_CPUPOWER |
5592 SD_SHARE_PKG_RESOURCES)) {
5593 if (sd->groups != sd->groups->next)
5594 return 0;
5595 }
5596
5597 /* Following flags don't use groups */
5598 if (sd->flags & (SD_WAKE_IDLE |
5599 SD_WAKE_AFFINE |
5600 SD_WAKE_BALANCE))
5601 return 0;
5602
5603 return 1;
5604 }
5605
5606 static int
5607 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5608 {
5609 unsigned long cflags = sd->flags, pflags = parent->flags;
5610
5611 if (sd_degenerate(parent))
5612 return 1;
5613
5614 if (!cpus_equal(sd->span, parent->span))
5615 return 0;
5616
5617 /* Does parent contain flags not in child? */
5618 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5619 if (cflags & SD_WAKE_AFFINE)
5620 pflags &= ~SD_WAKE_BALANCE;
5621 /* Flags needing groups don't count if only 1 group in parent */
5622 if (parent->groups == parent->groups->next) {
5623 pflags &= ~(SD_LOAD_BALANCE |
5624 SD_BALANCE_NEWIDLE |
5625 SD_BALANCE_FORK |
5626 SD_BALANCE_EXEC |
5627 SD_SHARE_CPUPOWER |
5628 SD_SHARE_PKG_RESOURCES);
5629 }
5630 if (~cflags & pflags)
5631 return 0;
5632
5633 return 1;
5634 }
5635
5636 /*
5637 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5638 * hold the hotplug lock.
5639 */
5640 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5641 {
5642 struct rq *rq = cpu_rq(cpu);
5643 struct sched_domain *tmp;
5644
5645 /* Remove the sched domains which do not contribute to scheduling. */
5646 for (tmp = sd; tmp; tmp = tmp->parent) {
5647 struct sched_domain *parent = tmp->parent;
5648 if (!parent)
5649 break;
5650 if (sd_parent_degenerate(tmp, parent)) {
5651 tmp->parent = parent->parent;
5652 if (parent->parent)
5653 parent->parent->child = tmp;
5654 }
5655 }
5656
5657 if (sd && sd_degenerate(sd)) {
5658 sd = sd->parent;
5659 if (sd)
5660 sd->child = NULL;
5661 }
5662
5663 sched_domain_debug(sd, cpu);
5664
5665 rcu_assign_pointer(rq->sd, sd);
5666 }
5667
5668 /* cpus with isolated domains */
5669 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5670
5671 /* Setup the mask of cpus configured for isolated domains */
5672 static int __init isolated_cpu_setup(char *str)
5673 {
5674 int ints[NR_CPUS], i;
5675
5676 str = get_options(str, ARRAY_SIZE(ints), ints);
5677 cpus_clear(cpu_isolated_map);
5678 for (i = 1; i <= ints[0]; i++)
5679 if (ints[i] < NR_CPUS)
5680 cpu_set(ints[i], cpu_isolated_map);
5681 return 1;
5682 }
5683
5684 __setup ("isolcpus=", isolated_cpu_setup);
5685
5686 /*
5687 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5688 * to a function which identifies what group(along with sched group) a CPU
5689 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5690 * (due to the fact that we keep track of groups covered with a cpumask_t).
5691 *
5692 * init_sched_build_groups will build a circular linked list of the groups
5693 * covered by the given span, and will set each group's ->cpumask correctly,
5694 * and ->cpu_power to 0.
5695 */
5696 static void
5697 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5698 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5699 struct sched_group **sg))
5700 {
5701 struct sched_group *first = NULL, *last = NULL;
5702 cpumask_t covered = CPU_MASK_NONE;
5703 int i;
5704
5705 for_each_cpu_mask(i, span) {
5706 struct sched_group *sg;
5707 int group = group_fn(i, cpu_map, &sg);
5708 int j;
5709
5710 if (cpu_isset(i, covered))
5711 continue;
5712
5713 sg->cpumask = CPU_MASK_NONE;
5714 sg->__cpu_power = 0;
5715
5716 for_each_cpu_mask(j, span) {
5717 if (group_fn(j, cpu_map, NULL) != group)
5718 continue;
5719
5720 cpu_set(j, covered);
5721 cpu_set(j, sg->cpumask);
5722 }
5723 if (!first)
5724 first = sg;
5725 if (last)
5726 last->next = sg;
5727 last = sg;
5728 }
5729 last->next = first;
5730 }
5731
5732 #define SD_NODES_PER_DOMAIN 16
5733
5734 #ifdef CONFIG_NUMA
5735
5736 /**
5737 * find_next_best_node - find the next node to include in a sched_domain
5738 * @node: node whose sched_domain we're building
5739 * @used_nodes: nodes already in the sched_domain
5740 *
5741 * Find the next node to include in a given scheduling domain. Simply
5742 * finds the closest node not already in the @used_nodes map.
5743 *
5744 * Should use nodemask_t.
5745 */
5746 static int find_next_best_node(int node, unsigned long *used_nodes)
5747 {
5748 int i, n, val, min_val, best_node = 0;
5749
5750 min_val = INT_MAX;
5751
5752 for (i = 0; i < MAX_NUMNODES; i++) {
5753 /* Start at @node */
5754 n = (node + i) % MAX_NUMNODES;
5755
5756 if (!nr_cpus_node(n))
5757 continue;
5758
5759 /* Skip already used nodes */
5760 if (test_bit(n, used_nodes))
5761 continue;
5762
5763 /* Simple min distance search */
5764 val = node_distance(node, n);
5765
5766 if (val < min_val) {
5767 min_val = val;
5768 best_node = n;
5769 }
5770 }
5771
5772 set_bit(best_node, used_nodes);
5773 return best_node;
5774 }
5775
5776 /**
5777 * sched_domain_node_span - get a cpumask for a node's sched_domain
5778 * @node: node whose cpumask we're constructing
5779 * @size: number of nodes to include in this span
5780 *
5781 * Given a node, construct a good cpumask for its sched_domain to span. It
5782 * should be one that prevents unnecessary balancing, but also spreads tasks
5783 * out optimally.
5784 */
5785 static cpumask_t sched_domain_node_span(int node)
5786 {
5787 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5788 cpumask_t span, nodemask;
5789 int i;
5790
5791 cpus_clear(span);
5792 bitmap_zero(used_nodes, MAX_NUMNODES);
5793
5794 nodemask = node_to_cpumask(node);
5795 cpus_or(span, span, nodemask);
5796 set_bit(node, used_nodes);
5797
5798 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5799 int next_node = find_next_best_node(node, used_nodes);
5800
5801 nodemask = node_to_cpumask(next_node);
5802 cpus_or(span, span, nodemask);
5803 }
5804
5805 return span;
5806 }
5807 #endif
5808
5809 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5810
5811 /*
5812 * SMT sched-domains:
5813 */
5814 #ifdef CONFIG_SCHED_SMT
5815 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5816 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5817
5818 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5819 struct sched_group **sg)
5820 {
5821 if (sg)
5822 *sg = &per_cpu(sched_group_cpus, cpu);
5823 return cpu;
5824 }
5825 #endif
5826
5827 /*
5828 * multi-core sched-domains:
5829 */
5830 #ifdef CONFIG_SCHED_MC
5831 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5832 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5833 #endif
5834
5835 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5836 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5837 struct sched_group **sg)
5838 {
5839 int group;
5840 cpumask_t mask = cpu_sibling_map[cpu];
5841 cpus_and(mask, mask, *cpu_map);
5842 group = first_cpu(mask);
5843 if (sg)
5844 *sg = &per_cpu(sched_group_core, group);
5845 return group;
5846 }
5847 #elif defined(CONFIG_SCHED_MC)
5848 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5849 struct sched_group **sg)
5850 {
5851 if (sg)
5852 *sg = &per_cpu(sched_group_core, cpu);
5853 return cpu;
5854 }
5855 #endif
5856
5857 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5858 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5859
5860 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5861 struct sched_group **sg)
5862 {
5863 int group;
5864 #ifdef CONFIG_SCHED_MC
5865 cpumask_t mask = cpu_coregroup_map(cpu);
5866 cpus_and(mask, mask, *cpu_map);
5867 group = first_cpu(mask);
5868 #elif defined(CONFIG_SCHED_SMT)
5869 cpumask_t mask = cpu_sibling_map[cpu];
5870 cpus_and(mask, mask, *cpu_map);
5871 group = first_cpu(mask);
5872 #else
5873 group = cpu;
5874 #endif
5875 if (sg)
5876 *sg = &per_cpu(sched_group_phys, group);
5877 return group;
5878 }
5879
5880 #ifdef CONFIG_NUMA
5881 /*
5882 * The init_sched_build_groups can't handle what we want to do with node
5883 * groups, so roll our own. Now each node has its own list of groups which
5884 * gets dynamically allocated.
5885 */
5886 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5887 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5888
5889 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5890 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5891
5892 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5893 struct sched_group **sg)
5894 {
5895 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5896 int group;
5897
5898 cpus_and(nodemask, nodemask, *cpu_map);
5899 group = first_cpu(nodemask);
5900
5901 if (sg)
5902 *sg = &per_cpu(sched_group_allnodes, group);
5903 return group;
5904 }
5905
5906 static void init_numa_sched_groups_power(struct sched_group *group_head)
5907 {
5908 struct sched_group *sg = group_head;
5909 int j;
5910
5911 if (!sg)
5912 return;
5913 next_sg:
5914 for_each_cpu_mask(j, sg->cpumask) {
5915 struct sched_domain *sd;
5916
5917 sd = &per_cpu(phys_domains, j);
5918 if (j != first_cpu(sd->groups->cpumask)) {
5919 /*
5920 * Only add "power" once for each
5921 * physical package.
5922 */
5923 continue;
5924 }
5925
5926 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5927 }
5928 sg = sg->next;
5929 if (sg != group_head)
5930 goto next_sg;
5931 }
5932 #endif
5933
5934 #ifdef CONFIG_NUMA
5935 /* Free memory allocated for various sched_group structures */
5936 static void free_sched_groups(const cpumask_t *cpu_map)
5937 {
5938 int cpu, i;
5939
5940 for_each_cpu_mask(cpu, *cpu_map) {
5941 struct sched_group **sched_group_nodes
5942 = sched_group_nodes_bycpu[cpu];
5943
5944 if (!sched_group_nodes)
5945 continue;
5946
5947 for (i = 0; i < MAX_NUMNODES; i++) {
5948 cpumask_t nodemask = node_to_cpumask(i);
5949 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5950
5951 cpus_and(nodemask, nodemask, *cpu_map);
5952 if (cpus_empty(nodemask))
5953 continue;
5954
5955 if (sg == NULL)
5956 continue;
5957 sg = sg->next;
5958 next_sg:
5959 oldsg = sg;
5960 sg = sg->next;
5961 kfree(oldsg);
5962 if (oldsg != sched_group_nodes[i])
5963 goto next_sg;
5964 }
5965 kfree(sched_group_nodes);
5966 sched_group_nodes_bycpu[cpu] = NULL;
5967 }
5968 }
5969 #else
5970 static void free_sched_groups(const cpumask_t *cpu_map)
5971 {
5972 }
5973 #endif
5974
5975 /*
5976 * Initialize sched groups cpu_power.
5977 *
5978 * cpu_power indicates the capacity of sched group, which is used while
5979 * distributing the load between different sched groups in a sched domain.
5980 * Typically cpu_power for all the groups in a sched domain will be same unless
5981 * there are asymmetries in the topology. If there are asymmetries, group
5982 * having more cpu_power will pickup more load compared to the group having
5983 * less cpu_power.
5984 *
5985 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5986 * the maximum number of tasks a group can handle in the presence of other idle
5987 * or lightly loaded groups in the same sched domain.
5988 */
5989 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5990 {
5991 struct sched_domain *child;
5992 struct sched_group *group;
5993
5994 WARN_ON(!sd || !sd->groups);
5995
5996 if (cpu != first_cpu(sd->groups->cpumask))
5997 return;
5998
5999 child = sd->child;
6000
6001 sd->groups->__cpu_power = 0;
6002
6003 /*
6004 * For perf policy, if the groups in child domain share resources
6005 * (for example cores sharing some portions of the cache hierarchy
6006 * or SMT), then set this domain groups cpu_power such that each group
6007 * can handle only one task, when there are other idle groups in the
6008 * same sched domain.
6009 */
6010 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6011 (child->flags &
6012 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6013 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6014 return;
6015 }
6016
6017 /*
6018 * add cpu_power of each child group to this groups cpu_power
6019 */
6020 group = child->groups;
6021 do {
6022 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6023 group = group->next;
6024 } while (group != child->groups);
6025 }
6026
6027 /*
6028 * Build sched domains for a given set of cpus and attach the sched domains
6029 * to the individual cpus
6030 */
6031 static int build_sched_domains(const cpumask_t *cpu_map)
6032 {
6033 int i;
6034 #ifdef CONFIG_NUMA
6035 struct sched_group **sched_group_nodes = NULL;
6036 int sd_allnodes = 0;
6037
6038 /*
6039 * Allocate the per-node list of sched groups
6040 */
6041 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6042 GFP_KERNEL);
6043 if (!sched_group_nodes) {
6044 printk(KERN_WARNING "Can not alloc sched group node list\n");
6045 return -ENOMEM;
6046 }
6047 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6048 #endif
6049
6050 /*
6051 * Set up domains for cpus specified by the cpu_map.
6052 */
6053 for_each_cpu_mask(i, *cpu_map) {
6054 struct sched_domain *sd = NULL, *p;
6055 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6056
6057 cpus_and(nodemask, nodemask, *cpu_map);
6058
6059 #ifdef CONFIG_NUMA
6060 if (cpus_weight(*cpu_map) >
6061 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6062 sd = &per_cpu(allnodes_domains, i);
6063 *sd = SD_ALLNODES_INIT;
6064 sd->span = *cpu_map;
6065 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6066 p = sd;
6067 sd_allnodes = 1;
6068 } else
6069 p = NULL;
6070
6071 sd = &per_cpu(node_domains, i);
6072 *sd = SD_NODE_INIT;
6073 sd->span = sched_domain_node_span(cpu_to_node(i));
6074 sd->parent = p;
6075 if (p)
6076 p->child = sd;
6077 cpus_and(sd->span, sd->span, *cpu_map);
6078 #endif
6079
6080 p = sd;
6081 sd = &per_cpu(phys_domains, i);
6082 *sd = SD_CPU_INIT;
6083 sd->span = nodemask;
6084 sd->parent = p;
6085 if (p)
6086 p->child = sd;
6087 cpu_to_phys_group(i, cpu_map, &sd->groups);
6088
6089 #ifdef CONFIG_SCHED_MC
6090 p = sd;
6091 sd = &per_cpu(core_domains, i);
6092 *sd = SD_MC_INIT;
6093 sd->span = cpu_coregroup_map(i);
6094 cpus_and(sd->span, sd->span, *cpu_map);
6095 sd->parent = p;
6096 p->child = sd;
6097 cpu_to_core_group(i, cpu_map, &sd->groups);
6098 #endif
6099
6100 #ifdef CONFIG_SCHED_SMT
6101 p = sd;
6102 sd = &per_cpu(cpu_domains, i);
6103 *sd = SD_SIBLING_INIT;
6104 sd->span = cpu_sibling_map[i];
6105 cpus_and(sd->span, sd->span, *cpu_map);
6106 sd->parent = p;
6107 p->child = sd;
6108 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6109 #endif
6110 }
6111
6112 #ifdef CONFIG_SCHED_SMT
6113 /* Set up CPU (sibling) groups */
6114 for_each_cpu_mask(i, *cpu_map) {
6115 cpumask_t this_sibling_map = cpu_sibling_map[i];
6116 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6117 if (i != first_cpu(this_sibling_map))
6118 continue;
6119
6120 init_sched_build_groups(this_sibling_map, cpu_map,
6121 &cpu_to_cpu_group);
6122 }
6123 #endif
6124
6125 #ifdef CONFIG_SCHED_MC
6126 /* Set up multi-core groups */
6127 for_each_cpu_mask(i, *cpu_map) {
6128 cpumask_t this_core_map = cpu_coregroup_map(i);
6129 cpus_and(this_core_map, this_core_map, *cpu_map);
6130 if (i != first_cpu(this_core_map))
6131 continue;
6132 init_sched_build_groups(this_core_map, cpu_map,
6133 &cpu_to_core_group);
6134 }
6135 #endif
6136
6137 /* Set up physical groups */
6138 for (i = 0; i < MAX_NUMNODES; i++) {
6139 cpumask_t nodemask = node_to_cpumask(i);
6140
6141 cpus_and(nodemask, nodemask, *cpu_map);
6142 if (cpus_empty(nodemask))
6143 continue;
6144
6145 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6146 }
6147
6148 #ifdef CONFIG_NUMA
6149 /* Set up node groups */
6150 if (sd_allnodes)
6151 init_sched_build_groups(*cpu_map, cpu_map,
6152 &cpu_to_allnodes_group);
6153
6154 for (i = 0; i < MAX_NUMNODES; i++) {
6155 /* Set up node groups */
6156 struct sched_group *sg, *prev;
6157 cpumask_t nodemask = node_to_cpumask(i);
6158 cpumask_t domainspan;
6159 cpumask_t covered = CPU_MASK_NONE;
6160 int j;
6161
6162 cpus_and(nodemask, nodemask, *cpu_map);
6163 if (cpus_empty(nodemask)) {
6164 sched_group_nodes[i] = NULL;
6165 continue;
6166 }
6167
6168 domainspan = sched_domain_node_span(i);
6169 cpus_and(domainspan, domainspan, *cpu_map);
6170
6171 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6172 if (!sg) {
6173 printk(KERN_WARNING "Can not alloc domain group for "
6174 "node %d\n", i);
6175 goto error;
6176 }
6177 sched_group_nodes[i] = sg;
6178 for_each_cpu_mask(j, nodemask) {
6179 struct sched_domain *sd;
6180
6181 sd = &per_cpu(node_domains, j);
6182 sd->groups = sg;
6183 }
6184 sg->__cpu_power = 0;
6185 sg->cpumask = nodemask;
6186 sg->next = sg;
6187 cpus_or(covered, covered, nodemask);
6188 prev = sg;
6189
6190 for (j = 0; j < MAX_NUMNODES; j++) {
6191 cpumask_t tmp, notcovered;
6192 int n = (i + j) % MAX_NUMNODES;
6193
6194 cpus_complement(notcovered, covered);
6195 cpus_and(tmp, notcovered, *cpu_map);
6196 cpus_and(tmp, tmp, domainspan);
6197 if (cpus_empty(tmp))
6198 break;
6199
6200 nodemask = node_to_cpumask(n);
6201 cpus_and(tmp, tmp, nodemask);
6202 if (cpus_empty(tmp))
6203 continue;
6204
6205 sg = kmalloc_node(sizeof(struct sched_group),
6206 GFP_KERNEL, i);
6207 if (!sg) {
6208 printk(KERN_WARNING
6209 "Can not alloc domain group for node %d\n", j);
6210 goto error;
6211 }
6212 sg->__cpu_power = 0;
6213 sg->cpumask = tmp;
6214 sg->next = prev->next;
6215 cpus_or(covered, covered, tmp);
6216 prev->next = sg;
6217 prev = sg;
6218 }
6219 }
6220 #endif
6221
6222 /* Calculate CPU power for physical packages and nodes */
6223 #ifdef CONFIG_SCHED_SMT
6224 for_each_cpu_mask(i, *cpu_map) {
6225 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6226
6227 init_sched_groups_power(i, sd);
6228 }
6229 #endif
6230 #ifdef CONFIG_SCHED_MC
6231 for_each_cpu_mask(i, *cpu_map) {
6232 struct sched_domain *sd = &per_cpu(core_domains, i);
6233
6234 init_sched_groups_power(i, sd);
6235 }
6236 #endif
6237
6238 for_each_cpu_mask(i, *cpu_map) {
6239 struct sched_domain *sd = &per_cpu(phys_domains, i);
6240
6241 init_sched_groups_power(i, sd);
6242 }
6243
6244 #ifdef CONFIG_NUMA
6245 for (i = 0; i < MAX_NUMNODES; i++)
6246 init_numa_sched_groups_power(sched_group_nodes[i]);
6247
6248 if (sd_allnodes) {
6249 struct sched_group *sg;
6250
6251 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6252 init_numa_sched_groups_power(sg);
6253 }
6254 #endif
6255
6256 /* Attach the domains */
6257 for_each_cpu_mask(i, *cpu_map) {
6258 struct sched_domain *sd;
6259 #ifdef CONFIG_SCHED_SMT
6260 sd = &per_cpu(cpu_domains, i);
6261 #elif defined(CONFIG_SCHED_MC)
6262 sd = &per_cpu(core_domains, i);
6263 #else
6264 sd = &per_cpu(phys_domains, i);
6265 #endif
6266 cpu_attach_domain(sd, i);
6267 }
6268
6269 return 0;
6270
6271 #ifdef CONFIG_NUMA
6272 error:
6273 free_sched_groups(cpu_map);
6274 return -ENOMEM;
6275 #endif
6276 }
6277 /*
6278 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6279 */
6280 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6281 {
6282 cpumask_t cpu_default_map;
6283 int err;
6284
6285 /*
6286 * Setup mask for cpus without special case scheduling requirements.
6287 * For now this just excludes isolated cpus, but could be used to
6288 * exclude other special cases in the future.
6289 */
6290 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6291
6292 err = build_sched_domains(&cpu_default_map);
6293
6294 return err;
6295 }
6296
6297 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6298 {
6299 free_sched_groups(cpu_map);
6300 }
6301
6302 /*
6303 * Detach sched domains from a group of cpus specified in cpu_map
6304 * These cpus will now be attached to the NULL domain
6305 */
6306 static void detach_destroy_domains(const cpumask_t *cpu_map)
6307 {
6308 int i;
6309
6310 for_each_cpu_mask(i, *cpu_map)
6311 cpu_attach_domain(NULL, i);
6312 synchronize_sched();
6313 arch_destroy_sched_domains(cpu_map);
6314 }
6315
6316 /*
6317 * Partition sched domains as specified by the cpumasks below.
6318 * This attaches all cpus from the cpumasks to the NULL domain,
6319 * waits for a RCU quiescent period, recalculates sched
6320 * domain information and then attaches them back to the
6321 * correct sched domains
6322 * Call with hotplug lock held
6323 */
6324 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6325 {
6326 cpumask_t change_map;
6327 int err = 0;
6328
6329 cpus_and(*partition1, *partition1, cpu_online_map);
6330 cpus_and(*partition2, *partition2, cpu_online_map);
6331 cpus_or(change_map, *partition1, *partition2);
6332
6333 /* Detach sched domains from all of the affected cpus */
6334 detach_destroy_domains(&change_map);
6335 if (!cpus_empty(*partition1))
6336 err = build_sched_domains(partition1);
6337 if (!err && !cpus_empty(*partition2))
6338 err = build_sched_domains(partition2);
6339
6340 return err;
6341 }
6342
6343 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6344 static int arch_reinit_sched_domains(void)
6345 {
6346 int err;
6347
6348 mutex_lock(&sched_hotcpu_mutex);
6349 detach_destroy_domains(&cpu_online_map);
6350 err = arch_init_sched_domains(&cpu_online_map);
6351 mutex_unlock(&sched_hotcpu_mutex);
6352
6353 return err;
6354 }
6355
6356 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6357 {
6358 int ret;
6359
6360 if (buf[0] != '0' && buf[0] != '1')
6361 return -EINVAL;
6362
6363 if (smt)
6364 sched_smt_power_savings = (buf[0] == '1');
6365 else
6366 sched_mc_power_savings = (buf[0] == '1');
6367
6368 ret = arch_reinit_sched_domains();
6369
6370 return ret ? ret : count;
6371 }
6372
6373 #ifdef CONFIG_SCHED_MC
6374 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6375 {
6376 return sprintf(page, "%u\n", sched_mc_power_savings);
6377 }
6378 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6379 const char *buf, size_t count)
6380 {
6381 return sched_power_savings_store(buf, count, 0);
6382 }
6383 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6384 sched_mc_power_savings_store);
6385 #endif
6386
6387 #ifdef CONFIG_SCHED_SMT
6388 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6389 {
6390 return sprintf(page, "%u\n", sched_smt_power_savings);
6391 }
6392 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6393 const char *buf, size_t count)
6394 {
6395 return sched_power_savings_store(buf, count, 1);
6396 }
6397 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6398 sched_smt_power_savings_store);
6399 #endif
6400
6401 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6402 {
6403 int err = 0;
6404
6405 #ifdef CONFIG_SCHED_SMT
6406 if (smt_capable())
6407 err = sysfs_create_file(&cls->kset.kobj,
6408 &attr_sched_smt_power_savings.attr);
6409 #endif
6410 #ifdef CONFIG_SCHED_MC
6411 if (!err && mc_capable())
6412 err = sysfs_create_file(&cls->kset.kobj,
6413 &attr_sched_mc_power_savings.attr);
6414 #endif
6415 return err;
6416 }
6417 #endif
6418
6419 /*
6420 * Force a reinitialization of the sched domains hierarchy. The domains
6421 * and groups cannot be updated in place without racing with the balancing
6422 * code, so we temporarily attach all running cpus to the NULL domain
6423 * which will prevent rebalancing while the sched domains are recalculated.
6424 */
6425 static int update_sched_domains(struct notifier_block *nfb,
6426 unsigned long action, void *hcpu)
6427 {
6428 switch (action) {
6429 case CPU_UP_PREPARE:
6430 case CPU_UP_PREPARE_FROZEN:
6431 case CPU_DOWN_PREPARE:
6432 case CPU_DOWN_PREPARE_FROZEN:
6433 detach_destroy_domains(&cpu_online_map);
6434 return NOTIFY_OK;
6435
6436 case CPU_UP_CANCELED:
6437 case CPU_UP_CANCELED_FROZEN:
6438 case CPU_DOWN_FAILED:
6439 case CPU_DOWN_FAILED_FROZEN:
6440 case CPU_ONLINE:
6441 case CPU_ONLINE_FROZEN:
6442 case CPU_DEAD:
6443 case CPU_DEAD_FROZEN:
6444 /*
6445 * Fall through and re-initialise the domains.
6446 */
6447 break;
6448 default:
6449 return NOTIFY_DONE;
6450 }
6451
6452 /* The hotplug lock is already held by cpu_up/cpu_down */
6453 arch_init_sched_domains(&cpu_online_map);
6454
6455 return NOTIFY_OK;
6456 }
6457
6458 void __init sched_init_smp(void)
6459 {
6460 cpumask_t non_isolated_cpus;
6461
6462 mutex_lock(&sched_hotcpu_mutex);
6463 arch_init_sched_domains(&cpu_online_map);
6464 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6465 if (cpus_empty(non_isolated_cpus))
6466 cpu_set(smp_processor_id(), non_isolated_cpus);
6467 mutex_unlock(&sched_hotcpu_mutex);
6468 /* XXX: Theoretical race here - CPU may be hotplugged now */
6469 hotcpu_notifier(update_sched_domains, 0);
6470
6471 init_sched_domain_sysctl();
6472
6473 /* Move init over to a non-isolated CPU */
6474 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6475 BUG();
6476 }
6477 #else
6478 void __init sched_init_smp(void)
6479 {
6480 }
6481 #endif /* CONFIG_SMP */
6482
6483 int in_sched_functions(unsigned long addr)
6484 {
6485 /* Linker adds these: start and end of __sched functions */
6486 extern char __sched_text_start[], __sched_text_end[];
6487
6488 return in_lock_functions(addr) ||
6489 (addr >= (unsigned long)__sched_text_start
6490 && addr < (unsigned long)__sched_text_end);
6491 }
6492
6493 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6494 {
6495 cfs_rq->tasks_timeline = RB_ROOT;
6496 #ifdef CONFIG_FAIR_GROUP_SCHED
6497 cfs_rq->rq = rq;
6498 #endif
6499 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6500 }
6501
6502 void __init sched_init(void)
6503 {
6504 int highest_cpu = 0;
6505 int i, j;
6506
6507 /*
6508 * Link up the scheduling class hierarchy:
6509 */
6510 rt_sched_class.next = &fair_sched_class;
6511 fair_sched_class.next = &idle_sched_class;
6512 idle_sched_class.next = NULL;
6513
6514 for_each_possible_cpu(i) {
6515 struct rt_prio_array *array;
6516 struct rq *rq;
6517
6518 rq = cpu_rq(i);
6519 spin_lock_init(&rq->lock);
6520 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6521 rq->nr_running = 0;
6522 rq->clock = 1;
6523 init_cfs_rq(&rq->cfs, rq);
6524 #ifdef CONFIG_FAIR_GROUP_SCHED
6525 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6526 {
6527 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6528 struct sched_entity *se =
6529 &per_cpu(init_sched_entity, i);
6530
6531 init_cfs_rq_p[i] = cfs_rq;
6532 init_cfs_rq(cfs_rq, rq);
6533 cfs_rq->tg = &init_task_grp;
6534 list_add(&cfs_rq->leaf_cfs_rq_list,
6535 &rq->leaf_cfs_rq_list);
6536
6537 init_sched_entity_p[i] = se;
6538 se->cfs_rq = &rq->cfs;
6539 se->my_q = cfs_rq;
6540 se->load.weight = init_task_grp_load;
6541 se->load.inv_weight =
6542 div64_64(1ULL<<32, init_task_grp_load);
6543 se->parent = NULL;
6544 }
6545 init_task_grp.shares = init_task_grp_load;
6546 #endif
6547
6548 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6549 rq->cpu_load[j] = 0;
6550 #ifdef CONFIG_SMP
6551 rq->sd = NULL;
6552 rq->active_balance = 0;
6553 rq->next_balance = jiffies;
6554 rq->push_cpu = 0;
6555 rq->cpu = i;
6556 rq->migration_thread = NULL;
6557 INIT_LIST_HEAD(&rq->migration_queue);
6558 #endif
6559 atomic_set(&rq->nr_iowait, 0);
6560
6561 array = &rq->rt.active;
6562 for (j = 0; j < MAX_RT_PRIO; j++) {
6563 INIT_LIST_HEAD(array->queue + j);
6564 __clear_bit(j, array->bitmap);
6565 }
6566 highest_cpu = i;
6567 /* delimiter for bitsearch: */
6568 __set_bit(MAX_RT_PRIO, array->bitmap);
6569 }
6570
6571 set_load_weight(&init_task);
6572
6573 #ifdef CONFIG_PREEMPT_NOTIFIERS
6574 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6575 #endif
6576
6577 #ifdef CONFIG_SMP
6578 nr_cpu_ids = highest_cpu + 1;
6579 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6580 #endif
6581
6582 #ifdef CONFIG_RT_MUTEXES
6583 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6584 #endif
6585
6586 /*
6587 * The boot idle thread does lazy MMU switching as well:
6588 */
6589 atomic_inc(&init_mm.mm_count);
6590 enter_lazy_tlb(&init_mm, current);
6591
6592 /*
6593 * Make us the idle thread. Technically, schedule() should not be
6594 * called from this thread, however somewhere below it might be,
6595 * but because we are the idle thread, we just pick up running again
6596 * when this runqueue becomes "idle".
6597 */
6598 init_idle(current, smp_processor_id());
6599 /*
6600 * During early bootup we pretend to be a normal task:
6601 */
6602 current->sched_class = &fair_sched_class;
6603 }
6604
6605 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6606 void __might_sleep(char *file, int line)
6607 {
6608 #ifdef in_atomic
6609 static unsigned long prev_jiffy; /* ratelimiting */
6610
6611 if ((in_atomic() || irqs_disabled()) &&
6612 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6613 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6614 return;
6615 prev_jiffy = jiffies;
6616 printk(KERN_ERR "BUG: sleeping function called from invalid"
6617 " context at %s:%d\n", file, line);
6618 printk("in_atomic():%d, irqs_disabled():%d\n",
6619 in_atomic(), irqs_disabled());
6620 debug_show_held_locks(current);
6621 if (irqs_disabled())
6622 print_irqtrace_events(current);
6623 dump_stack();
6624 }
6625 #endif
6626 }
6627 EXPORT_SYMBOL(__might_sleep);
6628 #endif
6629
6630 #ifdef CONFIG_MAGIC_SYSRQ
6631 void normalize_rt_tasks(void)
6632 {
6633 struct task_struct *g, *p;
6634 unsigned long flags;
6635 struct rq *rq;
6636 int on_rq;
6637
6638 read_lock_irq(&tasklist_lock);
6639 do_each_thread(g, p) {
6640 p->se.exec_start = 0;
6641 #ifdef CONFIG_SCHEDSTATS
6642 p->se.wait_start = 0;
6643 p->se.sleep_start = 0;
6644 p->se.block_start = 0;
6645 #endif
6646 task_rq(p)->clock = 0;
6647
6648 if (!rt_task(p)) {
6649 /*
6650 * Renice negative nice level userspace
6651 * tasks back to 0:
6652 */
6653 if (TASK_NICE(p) < 0 && p->mm)
6654 set_user_nice(p, 0);
6655 continue;
6656 }
6657
6658 spin_lock_irqsave(&p->pi_lock, flags);
6659 rq = __task_rq_lock(p);
6660 #ifdef CONFIG_SMP
6661 /*
6662 * Do not touch the migration thread:
6663 */
6664 if (p == rq->migration_thread)
6665 goto out_unlock;
6666 #endif
6667
6668 update_rq_clock(rq);
6669 on_rq = p->se.on_rq;
6670 if (on_rq)
6671 deactivate_task(rq, p, 0);
6672 __setscheduler(rq, p, SCHED_NORMAL, 0);
6673 if (on_rq) {
6674 activate_task(rq, p, 0);
6675 resched_task(rq->curr);
6676 }
6677 #ifdef CONFIG_SMP
6678 out_unlock:
6679 #endif
6680 __task_rq_unlock(rq);
6681 spin_unlock_irqrestore(&p->pi_lock, flags);
6682 } while_each_thread(g, p);
6683
6684 read_unlock_irq(&tasklist_lock);
6685 }
6686
6687 #endif /* CONFIG_MAGIC_SYSRQ */
6688
6689 #ifdef CONFIG_IA64
6690 /*
6691 * These functions are only useful for the IA64 MCA handling.
6692 *
6693 * They can only be called when the whole system has been
6694 * stopped - every CPU needs to be quiescent, and no scheduling
6695 * activity can take place. Using them for anything else would
6696 * be a serious bug, and as a result, they aren't even visible
6697 * under any other configuration.
6698 */
6699
6700 /**
6701 * curr_task - return the current task for a given cpu.
6702 * @cpu: the processor in question.
6703 *
6704 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6705 */
6706 struct task_struct *curr_task(int cpu)
6707 {
6708 return cpu_curr(cpu);
6709 }
6710
6711 /**
6712 * set_curr_task - set the current task for a given cpu.
6713 * @cpu: the processor in question.
6714 * @p: the task pointer to set.
6715 *
6716 * Description: This function must only be used when non-maskable interrupts
6717 * are serviced on a separate stack. It allows the architecture to switch the
6718 * notion of the current task on a cpu in a non-blocking manner. This function
6719 * must be called with all CPU's synchronized, and interrupts disabled, the
6720 * and caller must save the original value of the current task (see
6721 * curr_task() above) and restore that value before reenabling interrupts and
6722 * re-starting the system.
6723 *
6724 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6725 */
6726 void set_curr_task(int cpu, struct task_struct *p)
6727 {
6728 cpu_curr(cpu) = p;
6729 }
6730
6731 #endif
6732
6733 #ifdef CONFIG_FAIR_GROUP_SCHED
6734
6735 /* allocate runqueue etc for a new task group */
6736 struct task_grp *sched_create_group(void)
6737 {
6738 struct task_grp *tg;
6739 struct cfs_rq *cfs_rq;
6740 struct sched_entity *se;
6741 struct rq *rq;
6742 int i;
6743
6744 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6745 if (!tg)
6746 return ERR_PTR(-ENOMEM);
6747
6748 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6749 if (!tg->cfs_rq)
6750 goto err;
6751 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6752 if (!tg->se)
6753 goto err;
6754
6755 for_each_possible_cpu(i) {
6756 rq = cpu_rq(i);
6757
6758 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6759 cpu_to_node(i));
6760 if (!cfs_rq)
6761 goto err;
6762
6763 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6764 cpu_to_node(i));
6765 if (!se)
6766 goto err;
6767
6768 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6769 memset(se, 0, sizeof(struct sched_entity));
6770
6771 tg->cfs_rq[i] = cfs_rq;
6772 init_cfs_rq(cfs_rq, rq);
6773 cfs_rq->tg = tg;
6774
6775 tg->se[i] = se;
6776 se->cfs_rq = &rq->cfs;
6777 se->my_q = cfs_rq;
6778 se->load.weight = NICE_0_LOAD;
6779 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6780 se->parent = NULL;
6781 }
6782
6783 for_each_possible_cpu(i) {
6784 rq = cpu_rq(i);
6785 cfs_rq = tg->cfs_rq[i];
6786 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6787 }
6788
6789 tg->shares = NICE_0_LOAD;
6790
6791 return tg;
6792
6793 err:
6794 for_each_possible_cpu(i) {
6795 if (tg->cfs_rq && tg->cfs_rq[i])
6796 kfree(tg->cfs_rq[i]);
6797 if (tg->se && tg->se[i])
6798 kfree(tg->se[i]);
6799 }
6800 if (tg->cfs_rq)
6801 kfree(tg->cfs_rq);
6802 if (tg->se)
6803 kfree(tg->se);
6804 if (tg)
6805 kfree(tg);
6806
6807 return ERR_PTR(-ENOMEM);
6808 }
6809
6810 /* rcu callback to free various structures associated with a task group */
6811 static void free_sched_group(struct rcu_head *rhp)
6812 {
6813 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6814 struct task_grp *tg = cfs_rq->tg;
6815 struct sched_entity *se;
6816 int i;
6817
6818 /* now it should be safe to free those cfs_rqs */
6819 for_each_possible_cpu(i) {
6820 cfs_rq = tg->cfs_rq[i];
6821 kfree(cfs_rq);
6822
6823 se = tg->se[i];
6824 kfree(se);
6825 }
6826
6827 kfree(tg->cfs_rq);
6828 kfree(tg->se);
6829 kfree(tg);
6830 }
6831
6832 /* Destroy runqueue etc associated with a task group */
6833 void sched_destroy_group(struct task_grp *tg)
6834 {
6835 struct cfs_rq *cfs_rq;
6836 int i;
6837
6838 for_each_possible_cpu(i) {
6839 cfs_rq = tg->cfs_rq[i];
6840 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6841 }
6842
6843 cfs_rq = tg->cfs_rq[0];
6844
6845 /* wait for possible concurrent references to cfs_rqs complete */
6846 call_rcu(&cfs_rq->rcu, free_sched_group);
6847 }
6848
6849 /* change task's runqueue when it moves between groups.
6850 * The caller of this function should have put the task in its new group
6851 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6852 * reflect its new group.
6853 */
6854 void sched_move_task(struct task_struct *tsk)
6855 {
6856 int on_rq, running;
6857 unsigned long flags;
6858 struct rq *rq;
6859
6860 rq = task_rq_lock(tsk, &flags);
6861
6862 if (tsk->sched_class != &fair_sched_class)
6863 goto done;
6864
6865 update_rq_clock(rq);
6866
6867 running = task_running(rq, tsk);
6868 on_rq = tsk->se.on_rq;
6869
6870 if (on_rq) {
6871 dequeue_task(rq, tsk, 0);
6872 if (unlikely(running))
6873 tsk->sched_class->put_prev_task(rq, tsk);
6874 }
6875
6876 set_task_cfs_rq(tsk);
6877
6878 if (on_rq) {
6879 if (unlikely(running))
6880 tsk->sched_class->set_curr_task(rq);
6881 enqueue_task(rq, tsk, 0);
6882 }
6883
6884 done:
6885 task_rq_unlock(rq, &flags);
6886 }
6887
6888 static void set_se_shares(struct sched_entity *se, unsigned long shares)
6889 {
6890 struct cfs_rq *cfs_rq = se->cfs_rq;
6891 struct rq *rq = cfs_rq->rq;
6892 int on_rq;
6893
6894 spin_lock_irq(&rq->lock);
6895
6896 on_rq = se->on_rq;
6897 if (on_rq)
6898 dequeue_entity(cfs_rq, se, 0);
6899
6900 se->load.weight = shares;
6901 se->load.inv_weight = div64_64((1ULL<<32), shares);
6902
6903 if (on_rq)
6904 enqueue_entity(cfs_rq, se, 0);
6905
6906 spin_unlock_irq(&rq->lock);
6907 }
6908
6909 int sched_group_set_shares(struct task_grp *tg, unsigned long shares)
6910 {
6911 int i;
6912
6913 if (tg->shares == shares)
6914 return 0;
6915
6916 /* return -EINVAL if the new value is not sane */
6917
6918 tg->shares = shares;
6919 for_each_possible_cpu(i)
6920 set_se_shares(tg->se[i], shares);
6921
6922 return 0;
6923 }
6924
6925 #endif /* CONFIG_FAIR_GROUP_SCHED */
This page took 0.171355 seconds and 5 git commands to generate.