sched: Use rcu in sched_get/set_affinity()
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/nmi.h>
34 #include <linux/init.h>
35 #include <linux/uaccess.h>
36 #include <linux/highmem.h>
37 #include <linux/smp_lock.h>
38 #include <asm/mmu_context.h>
39 #include <linux/interrupt.h>
40 #include <linux/capability.h>
41 #include <linux/completion.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/debug_locks.h>
44 #include <linux/perf_event.h>
45 #include <linux/security.h>
46 #include <linux/notifier.h>
47 #include <linux/profile.h>
48 #include <linux/freezer.h>
49 #include <linux/vmalloc.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/pid_namespace.h>
53 #include <linux/smp.h>
54 #include <linux/threads.h>
55 #include <linux/timer.h>
56 #include <linux/rcupdate.h>
57 #include <linux/cpu.h>
58 #include <linux/cpuset.h>
59 #include <linux/percpu.h>
60 #include <linux/kthread.h>
61 #include <linux/proc_fs.h>
62 #include <linux/seq_file.h>
63 #include <linux/sysctl.h>
64 #include <linux/syscalls.h>
65 #include <linux/times.h>
66 #include <linux/tsacct_kern.h>
67 #include <linux/kprobes.h>
68 #include <linux/delayacct.h>
69 #include <linux/unistd.h>
70 #include <linux/pagemap.h>
71 #include <linux/hrtimer.h>
72 #include <linux/tick.h>
73 #include <linux/debugfs.h>
74 #include <linux/ctype.h>
75 #include <linux/ftrace.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
84
85 /*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94 /*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103 /*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
111 /*
112 * These are the 'tuning knobs' of the scheduler:
113 *
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
116 */
117 #define DEF_TIMESLICE (100 * HZ / 1000)
118
119 /*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122 #define RUNTIME_INF ((u64)~0ULL)
123
124 static inline int rt_policy(int policy)
125 {
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 return 1;
128 return 0;
129 }
130
131 static inline int task_has_rt_policy(struct task_struct *p)
132 {
133 return rt_policy(p->policy);
134 }
135
136 /*
137 * This is the priority-queue data structure of the RT scheduling class:
138 */
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142 };
143
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 spinlock_t rt_runtime_lock;
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
150 };
151
152 static struct rt_bandwidth def_rt_bandwidth;
153
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157 {
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 }
176
177 static
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179 {
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
183 spin_lock_init(&rt_b->rt_runtime_lock);
184
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 }
189
190 static inline int rt_bandwidth_enabled(void)
191 {
192 return sysctl_sched_rt_runtime >= 0;
193 }
194
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196 {
197 ktime_t now;
198
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
205 spin_lock(&rt_b->rt_runtime_lock);
206 for (;;) {
207 unsigned long delta;
208 ktime_t soft, hard;
209
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
221 }
222 spin_unlock(&rt_b->rt_runtime_lock);
223 }
224
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227 {
228 hrtimer_cancel(&rt_b->rt_period_timer);
229 }
230 #endif
231
232 /*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236 static DEFINE_MUTEX(sched_domains_mutex);
237
238 #ifdef CONFIG_GROUP_SCHED
239
240 #include <linux/cgroup.h>
241
242 struct cfs_rq;
243
244 static LIST_HEAD(task_groups);
245
246 /* task group related information */
247 struct task_group {
248 #ifdef CONFIG_CGROUP_SCHED
249 struct cgroup_subsys_state css;
250 #endif
251
252 #ifdef CONFIG_USER_SCHED
253 uid_t uid;
254 #endif
255
256 #ifdef CONFIG_FAIR_GROUP_SCHED
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
262 #endif
263
264 #ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
268 struct rt_bandwidth rt_bandwidth;
269 #endif
270
271 struct rcu_head rcu;
272 struct list_head list;
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
277 };
278
279 #ifdef CONFIG_USER_SCHED
280
281 /* Helper function to pass uid information to create_sched_user() */
282 void set_tg_uid(struct user_struct *user)
283 {
284 user->tg->uid = user->uid;
285 }
286
287 /*
288 * Root task group.
289 * Every UID task group (including init_task_group aka UID-0) will
290 * be a child to this group.
291 */
292 struct task_group root_task_group;
293
294 #ifdef CONFIG_FAIR_GROUP_SCHED
295 /* Default task group's sched entity on each cpu */
296 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
297 /* Default task group's cfs_rq on each cpu */
298 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
299 #endif /* CONFIG_FAIR_GROUP_SCHED */
300
301 #ifdef CONFIG_RT_GROUP_SCHED
302 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
304 #endif /* CONFIG_RT_GROUP_SCHED */
305 #else /* !CONFIG_USER_SCHED */
306 #define root_task_group init_task_group
307 #endif /* CONFIG_USER_SCHED */
308
309 /* task_group_lock serializes add/remove of task groups and also changes to
310 * a task group's cpu shares.
311 */
312 static DEFINE_SPINLOCK(task_group_lock);
313
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315
316 #ifdef CONFIG_SMP
317 static int root_task_group_empty(void)
318 {
319 return list_empty(&root_task_group.children);
320 }
321 #endif
322
323 #ifdef CONFIG_USER_SCHED
324 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
325 #else /* !CONFIG_USER_SCHED */
326 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
327 #endif /* CONFIG_USER_SCHED */
328
329 /*
330 * A weight of 0 or 1 can cause arithmetics problems.
331 * A weight of a cfs_rq is the sum of weights of which entities
332 * are queued on this cfs_rq, so a weight of a entity should not be
333 * too large, so as the shares value of a task group.
334 * (The default weight is 1024 - so there's no practical
335 * limitation from this.)
336 */
337 #define MIN_SHARES 2
338 #define MAX_SHARES (1UL << 18)
339
340 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
341 #endif
342
343 /* Default task group.
344 * Every task in system belong to this group at bootup.
345 */
346 struct task_group init_task_group;
347
348 /* return group to which a task belongs */
349 static inline struct task_group *task_group(struct task_struct *p)
350 {
351 struct task_group *tg;
352
353 #ifdef CONFIG_USER_SCHED
354 rcu_read_lock();
355 tg = __task_cred(p)->user->tg;
356 rcu_read_unlock();
357 #elif defined(CONFIG_CGROUP_SCHED)
358 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
359 struct task_group, css);
360 #else
361 tg = &init_task_group;
362 #endif
363 return tg;
364 }
365
366 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
367 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
368 {
369 #ifdef CONFIG_FAIR_GROUP_SCHED
370 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
371 p->se.parent = task_group(p)->se[cpu];
372 #endif
373
374 #ifdef CONFIG_RT_GROUP_SCHED
375 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
376 p->rt.parent = task_group(p)->rt_se[cpu];
377 #endif
378 }
379
380 #else
381
382 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
383 static inline struct task_group *task_group(struct task_struct *p)
384 {
385 return NULL;
386 }
387
388 #endif /* CONFIG_GROUP_SCHED */
389
390 /* CFS-related fields in a runqueue */
391 struct cfs_rq {
392 struct load_weight load;
393 unsigned long nr_running;
394
395 u64 exec_clock;
396 u64 min_vruntime;
397
398 struct rb_root tasks_timeline;
399 struct rb_node *rb_leftmost;
400
401 struct list_head tasks;
402 struct list_head *balance_iterator;
403
404 /*
405 * 'curr' points to currently running entity on this cfs_rq.
406 * It is set to NULL otherwise (i.e when none are currently running).
407 */
408 struct sched_entity *curr, *next, *last;
409
410 unsigned int nr_spread_over;
411
412 #ifdef CONFIG_FAIR_GROUP_SCHED
413 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
414
415 /*
416 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
417 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
418 * (like users, containers etc.)
419 *
420 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
421 * list is used during load balance.
422 */
423 struct list_head leaf_cfs_rq_list;
424 struct task_group *tg; /* group that "owns" this runqueue */
425
426 #ifdef CONFIG_SMP
427 /*
428 * the part of load.weight contributed by tasks
429 */
430 unsigned long task_weight;
431
432 /*
433 * h_load = weight * f(tg)
434 *
435 * Where f(tg) is the recursive weight fraction assigned to
436 * this group.
437 */
438 unsigned long h_load;
439
440 /*
441 * this cpu's part of tg->shares
442 */
443 unsigned long shares;
444
445 /*
446 * load.weight at the time we set shares
447 */
448 unsigned long rq_weight;
449 #endif
450 #endif
451 };
452
453 /* Real-Time classes' related field in a runqueue: */
454 struct rt_rq {
455 struct rt_prio_array active;
456 unsigned long rt_nr_running;
457 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
458 struct {
459 int curr; /* highest queued rt task prio */
460 #ifdef CONFIG_SMP
461 int next; /* next highest */
462 #endif
463 } highest_prio;
464 #endif
465 #ifdef CONFIG_SMP
466 unsigned long rt_nr_migratory;
467 unsigned long rt_nr_total;
468 int overloaded;
469 struct plist_head pushable_tasks;
470 #endif
471 int rt_throttled;
472 u64 rt_time;
473 u64 rt_runtime;
474 /* Nests inside the rq lock: */
475 spinlock_t rt_runtime_lock;
476
477 #ifdef CONFIG_RT_GROUP_SCHED
478 unsigned long rt_nr_boosted;
479
480 struct rq *rq;
481 struct list_head leaf_rt_rq_list;
482 struct task_group *tg;
483 struct sched_rt_entity *rt_se;
484 #endif
485 };
486
487 #ifdef CONFIG_SMP
488
489 /*
490 * We add the notion of a root-domain which will be used to define per-domain
491 * variables. Each exclusive cpuset essentially defines an island domain by
492 * fully partitioning the member cpus from any other cpuset. Whenever a new
493 * exclusive cpuset is created, we also create and attach a new root-domain
494 * object.
495 *
496 */
497 struct root_domain {
498 atomic_t refcount;
499 cpumask_var_t span;
500 cpumask_var_t online;
501
502 /*
503 * The "RT overload" flag: it gets set if a CPU has more than
504 * one runnable RT task.
505 */
506 cpumask_var_t rto_mask;
507 atomic_t rto_count;
508 #ifdef CONFIG_SMP
509 struct cpupri cpupri;
510 #endif
511 };
512
513 /*
514 * By default the system creates a single root-domain with all cpus as
515 * members (mimicking the global state we have today).
516 */
517 static struct root_domain def_root_domain;
518
519 #endif
520
521 /*
522 * This is the main, per-CPU runqueue data structure.
523 *
524 * Locking rule: those places that want to lock multiple runqueues
525 * (such as the load balancing or the thread migration code), lock
526 * acquire operations must be ordered by ascending &runqueue.
527 */
528 struct rq {
529 /* runqueue lock: */
530 spinlock_t lock;
531
532 /*
533 * nr_running and cpu_load should be in the same cacheline because
534 * remote CPUs use both these fields when doing load calculation.
535 */
536 unsigned long nr_running;
537 #define CPU_LOAD_IDX_MAX 5
538 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
539 #ifdef CONFIG_NO_HZ
540 unsigned char in_nohz_recently;
541 #endif
542 /* capture load from *all* tasks on this cpu: */
543 struct load_weight load;
544 unsigned long nr_load_updates;
545 u64 nr_switches;
546
547 struct cfs_rq cfs;
548 struct rt_rq rt;
549
550 #ifdef CONFIG_FAIR_GROUP_SCHED
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list;
553 #endif
554 #ifdef CONFIG_RT_GROUP_SCHED
555 struct list_head leaf_rt_rq_list;
556 #endif
557
558 /*
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
563 */
564 unsigned long nr_uninterruptible;
565
566 struct task_struct *curr, *idle;
567 unsigned long next_balance;
568 struct mm_struct *prev_mm;
569
570 u64 clock;
571
572 atomic_t nr_iowait;
573
574 #ifdef CONFIG_SMP
575 struct root_domain *rd;
576 struct sched_domain *sd;
577
578 unsigned char idle_at_tick;
579 /* For active balancing */
580 int post_schedule;
581 int active_balance;
582 int push_cpu;
583 /* cpu of this runqueue: */
584 int cpu;
585 int online;
586
587 unsigned long avg_load_per_task;
588
589 struct task_struct *migration_thread;
590 struct list_head migration_queue;
591
592 u64 rt_avg;
593 u64 age_stamp;
594 u64 idle_stamp;
595 u64 avg_idle;
596 #endif
597
598 /* calc_load related fields */
599 unsigned long calc_load_update;
600 long calc_load_active;
601
602 #ifdef CONFIG_SCHED_HRTICK
603 #ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606 #endif
607 struct hrtimer hrtick_timer;
608 #endif
609
610 #ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
613 unsigned long long rq_cpu_time;
614 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
615
616 /* sys_sched_yield() stats */
617 unsigned int yld_count;
618
619 /* schedule() stats */
620 unsigned int sched_switch;
621 unsigned int sched_count;
622 unsigned int sched_goidle;
623
624 /* try_to_wake_up() stats */
625 unsigned int ttwu_count;
626 unsigned int ttwu_local;
627
628 /* BKL stats */
629 unsigned int bkl_count;
630 #endif
631 };
632
633 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
634
635 static inline
636 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
637 {
638 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
639 }
640
641 static inline int cpu_of(struct rq *rq)
642 {
643 #ifdef CONFIG_SMP
644 return rq->cpu;
645 #else
646 return 0;
647 #endif
648 }
649
650 /*
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
652 * See detach_destroy_domains: synchronize_sched for details.
653 *
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
656 */
657 #define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
659
660 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661 #define this_rq() (&__get_cpu_var(runqueues))
662 #define task_rq(p) cpu_rq(task_cpu(p))
663 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
664 #define raw_rq() (&__raw_get_cpu_var(runqueues))
665
666 inline void update_rq_clock(struct rq *rq)
667 {
668 rq->clock = sched_clock_cpu(cpu_of(rq));
669 }
670
671 /*
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
673 */
674 #ifdef CONFIG_SCHED_DEBUG
675 # define const_debug __read_mostly
676 #else
677 # define const_debug static const
678 #endif
679
680 /**
681 * runqueue_is_locked
682 * @cpu: the processor in question.
683 *
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
687 */
688 int runqueue_is_locked(int cpu)
689 {
690 return spin_is_locked(&cpu_rq(cpu)->lock);
691 }
692
693 /*
694 * Debugging: various feature bits
695 */
696
697 #define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
699
700 enum {
701 #include "sched_features.h"
702 };
703
704 #undef SCHED_FEAT
705
706 #define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
708
709 const_debug unsigned int sysctl_sched_features =
710 #include "sched_features.h"
711 0;
712
713 #undef SCHED_FEAT
714
715 #ifdef CONFIG_SCHED_DEBUG
716 #define SCHED_FEAT(name, enabled) \
717 #name ,
718
719 static __read_mostly char *sched_feat_names[] = {
720 #include "sched_features.h"
721 NULL
722 };
723
724 #undef SCHED_FEAT
725
726 static int sched_feat_show(struct seq_file *m, void *v)
727 {
728 int i;
729
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
734 }
735 seq_puts(m, "\n");
736
737 return 0;
738 }
739
740 static ssize_t
741 sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
743 {
744 char buf[64];
745 char *cmp = buf;
746 int neg = 0;
747 int i;
748
749 if (cnt > 63)
750 cnt = 63;
751
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
754
755 buf[cnt] = 0;
756
757 if (strncmp(buf, "NO_", 3) == 0) {
758 neg = 1;
759 cmp += 3;
760 }
761
762 for (i = 0; sched_feat_names[i]; i++) {
763 int len = strlen(sched_feat_names[i]);
764
765 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
771 }
772 }
773
774 if (!sched_feat_names[i])
775 return -EINVAL;
776
777 *ppos += cnt;
778
779 return cnt;
780 }
781
782 static int sched_feat_open(struct inode *inode, struct file *filp)
783 {
784 return single_open(filp, sched_feat_show, NULL);
785 }
786
787 static const struct file_operations sched_feat_fops = {
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
793 };
794
795 static __init int sched_init_debug(void)
796 {
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801 }
802 late_initcall(sched_init_debug);
803
804 #endif
805
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
807
808 /*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
814 /*
815 * ratelimit for updating the group shares.
816 * default: 0.25ms
817 */
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
819 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
820
821 /*
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
825 */
826 unsigned int sysctl_sched_shares_thresh = 4;
827
828 /*
829 * period over which we average the RT time consumption, measured
830 * in ms.
831 *
832 * default: 1s
833 */
834 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
835
836 /*
837 * period over which we measure -rt task cpu usage in us.
838 * default: 1s
839 */
840 unsigned int sysctl_sched_rt_period = 1000000;
841
842 static __read_mostly int scheduler_running;
843
844 /*
845 * part of the period that we allow rt tasks to run in us.
846 * default: 0.95s
847 */
848 int sysctl_sched_rt_runtime = 950000;
849
850 static inline u64 global_rt_period(void)
851 {
852 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
853 }
854
855 static inline u64 global_rt_runtime(void)
856 {
857 if (sysctl_sched_rt_runtime < 0)
858 return RUNTIME_INF;
859
860 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
861 }
862
863 #ifndef prepare_arch_switch
864 # define prepare_arch_switch(next) do { } while (0)
865 #endif
866 #ifndef finish_arch_switch
867 # define finish_arch_switch(prev) do { } while (0)
868 #endif
869
870 static inline int task_current(struct rq *rq, struct task_struct *p)
871 {
872 return rq->curr == p;
873 }
874
875 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
876 static inline int task_running(struct rq *rq, struct task_struct *p)
877 {
878 return task_current(rq, p);
879 }
880
881 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
882 {
883 }
884
885 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
886 {
887 #ifdef CONFIG_DEBUG_SPINLOCK
888 /* this is a valid case when another task releases the spinlock */
889 rq->lock.owner = current;
890 #endif
891 /*
892 * If we are tracking spinlock dependencies then we have to
893 * fix up the runqueue lock - which gets 'carried over' from
894 * prev into current:
895 */
896 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
897
898 spin_unlock_irq(&rq->lock);
899 }
900
901 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
902 static inline int task_running(struct rq *rq, struct task_struct *p)
903 {
904 #ifdef CONFIG_SMP
905 return p->oncpu;
906 #else
907 return task_current(rq, p);
908 #endif
909 }
910
911 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
912 {
913 #ifdef CONFIG_SMP
914 /*
915 * We can optimise this out completely for !SMP, because the
916 * SMP rebalancing from interrupt is the only thing that cares
917 * here.
918 */
919 next->oncpu = 1;
920 #endif
921 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
922 spin_unlock_irq(&rq->lock);
923 #else
924 spin_unlock(&rq->lock);
925 #endif
926 }
927
928 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
929 {
930 #ifdef CONFIG_SMP
931 /*
932 * After ->oncpu is cleared, the task can be moved to a different CPU.
933 * We must ensure this doesn't happen until the switch is completely
934 * finished.
935 */
936 smp_wmb();
937 prev->oncpu = 0;
938 #endif
939 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 local_irq_enable();
941 #endif
942 }
943 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
944
945 /*
946 * __task_rq_lock - lock the runqueue a given task resides on.
947 * Must be called interrupts disabled.
948 */
949 static inline struct rq *__task_rq_lock(struct task_struct *p)
950 __acquires(rq->lock)
951 {
952 for (;;) {
953 struct rq *rq = task_rq(p);
954 spin_lock(&rq->lock);
955 if (likely(rq == task_rq(p)))
956 return rq;
957 spin_unlock(&rq->lock);
958 }
959 }
960
961 /*
962 * task_rq_lock - lock the runqueue a given task resides on and disable
963 * interrupts. Note the ordering: we can safely lookup the task_rq without
964 * explicitly disabling preemption.
965 */
966 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
967 __acquires(rq->lock)
968 {
969 struct rq *rq;
970
971 for (;;) {
972 local_irq_save(*flags);
973 rq = task_rq(p);
974 spin_lock(&rq->lock);
975 if (likely(rq == task_rq(p)))
976 return rq;
977 spin_unlock_irqrestore(&rq->lock, *flags);
978 }
979 }
980
981 void task_rq_unlock_wait(struct task_struct *p)
982 {
983 struct rq *rq = task_rq(p);
984
985 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
986 spin_unlock_wait(&rq->lock);
987 }
988
989 static void __task_rq_unlock(struct rq *rq)
990 __releases(rq->lock)
991 {
992 spin_unlock(&rq->lock);
993 }
994
995 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
996 __releases(rq->lock)
997 {
998 spin_unlock_irqrestore(&rq->lock, *flags);
999 }
1000
1001 /*
1002 * this_rq_lock - lock this runqueue and disable interrupts.
1003 */
1004 static struct rq *this_rq_lock(void)
1005 __acquires(rq->lock)
1006 {
1007 struct rq *rq;
1008
1009 local_irq_disable();
1010 rq = this_rq();
1011 spin_lock(&rq->lock);
1012
1013 return rq;
1014 }
1015
1016 #ifdef CONFIG_SCHED_HRTICK
1017 /*
1018 * Use HR-timers to deliver accurate preemption points.
1019 *
1020 * Its all a bit involved since we cannot program an hrt while holding the
1021 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * reschedule event.
1023 *
1024 * When we get rescheduled we reprogram the hrtick_timer outside of the
1025 * rq->lock.
1026 */
1027
1028 /*
1029 * Use hrtick when:
1030 * - enabled by features
1031 * - hrtimer is actually high res
1032 */
1033 static inline int hrtick_enabled(struct rq *rq)
1034 {
1035 if (!sched_feat(HRTICK))
1036 return 0;
1037 if (!cpu_active(cpu_of(rq)))
1038 return 0;
1039 return hrtimer_is_hres_active(&rq->hrtick_timer);
1040 }
1041
1042 static void hrtick_clear(struct rq *rq)
1043 {
1044 if (hrtimer_active(&rq->hrtick_timer))
1045 hrtimer_cancel(&rq->hrtick_timer);
1046 }
1047
1048 /*
1049 * High-resolution timer tick.
1050 * Runs from hardirq context with interrupts disabled.
1051 */
1052 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1053 {
1054 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1055
1056 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1057
1058 spin_lock(&rq->lock);
1059 update_rq_clock(rq);
1060 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1061 spin_unlock(&rq->lock);
1062
1063 return HRTIMER_NORESTART;
1064 }
1065
1066 #ifdef CONFIG_SMP
1067 /*
1068 * called from hardirq (IPI) context
1069 */
1070 static void __hrtick_start(void *arg)
1071 {
1072 struct rq *rq = arg;
1073
1074 spin_lock(&rq->lock);
1075 hrtimer_restart(&rq->hrtick_timer);
1076 rq->hrtick_csd_pending = 0;
1077 spin_unlock(&rq->lock);
1078 }
1079
1080 /*
1081 * Called to set the hrtick timer state.
1082 *
1083 * called with rq->lock held and irqs disabled
1084 */
1085 static void hrtick_start(struct rq *rq, u64 delay)
1086 {
1087 struct hrtimer *timer = &rq->hrtick_timer;
1088 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1089
1090 hrtimer_set_expires(timer, time);
1091
1092 if (rq == this_rq()) {
1093 hrtimer_restart(timer);
1094 } else if (!rq->hrtick_csd_pending) {
1095 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1096 rq->hrtick_csd_pending = 1;
1097 }
1098 }
1099
1100 static int
1101 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1102 {
1103 int cpu = (int)(long)hcpu;
1104
1105 switch (action) {
1106 case CPU_UP_CANCELED:
1107 case CPU_UP_CANCELED_FROZEN:
1108 case CPU_DOWN_PREPARE:
1109 case CPU_DOWN_PREPARE_FROZEN:
1110 case CPU_DEAD:
1111 case CPU_DEAD_FROZEN:
1112 hrtick_clear(cpu_rq(cpu));
1113 return NOTIFY_OK;
1114 }
1115
1116 return NOTIFY_DONE;
1117 }
1118
1119 static __init void init_hrtick(void)
1120 {
1121 hotcpu_notifier(hotplug_hrtick, 0);
1122 }
1123 #else
1124 /*
1125 * Called to set the hrtick timer state.
1126 *
1127 * called with rq->lock held and irqs disabled
1128 */
1129 static void hrtick_start(struct rq *rq, u64 delay)
1130 {
1131 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1132 HRTIMER_MODE_REL_PINNED, 0);
1133 }
1134
1135 static inline void init_hrtick(void)
1136 {
1137 }
1138 #endif /* CONFIG_SMP */
1139
1140 static void init_rq_hrtick(struct rq *rq)
1141 {
1142 #ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
1144
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148 #endif
1149
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
1152 }
1153 #else /* CONFIG_SCHED_HRTICK */
1154 static inline void hrtick_clear(struct rq *rq)
1155 {
1156 }
1157
1158 static inline void init_rq_hrtick(struct rq *rq)
1159 {
1160 }
1161
1162 static inline void init_hrtick(void)
1163 {
1164 }
1165 #endif /* CONFIG_SCHED_HRTICK */
1166
1167 /*
1168 * resched_task - mark a task 'to be rescheduled now'.
1169 *
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1173 */
1174 #ifdef CONFIG_SMP
1175
1176 #ifndef tsk_is_polling
1177 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178 #endif
1179
1180 static void resched_task(struct task_struct *p)
1181 {
1182 int cpu;
1183
1184 assert_spin_locked(&task_rq(p)->lock);
1185
1186 if (test_tsk_need_resched(p))
1187 return;
1188
1189 set_tsk_need_resched(p);
1190
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1194
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1199 }
1200
1201 static void resched_cpu(int cpu)
1202 {
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1205
1206 if (!spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 spin_unlock_irqrestore(&rq->lock, flags);
1210 }
1211
1212 #ifdef CONFIG_NO_HZ
1213 /*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223 void wake_up_idle_cpu(int cpu)
1224 {
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
1245 set_tsk_need_resched(rq->idle);
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251 }
1252 #endif /* CONFIG_NO_HZ */
1253
1254 static u64 sched_avg_period(void)
1255 {
1256 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1257 }
1258
1259 static void sched_avg_update(struct rq *rq)
1260 {
1261 s64 period = sched_avg_period();
1262
1263 while ((s64)(rq->clock - rq->age_stamp) > period) {
1264 rq->age_stamp += period;
1265 rq->rt_avg /= 2;
1266 }
1267 }
1268
1269 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1270 {
1271 rq->rt_avg += rt_delta;
1272 sched_avg_update(rq);
1273 }
1274
1275 #else /* !CONFIG_SMP */
1276 static void resched_task(struct task_struct *p)
1277 {
1278 assert_spin_locked(&task_rq(p)->lock);
1279 set_tsk_need_resched(p);
1280 }
1281
1282 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1283 {
1284 }
1285 #endif /* CONFIG_SMP */
1286
1287 #if BITS_PER_LONG == 32
1288 # define WMULT_CONST (~0UL)
1289 #else
1290 # define WMULT_CONST (1UL << 32)
1291 #endif
1292
1293 #define WMULT_SHIFT 32
1294
1295 /*
1296 * Shift right and round:
1297 */
1298 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1299
1300 /*
1301 * delta *= weight / lw
1302 */
1303 static unsigned long
1304 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1306 {
1307 u64 tmp;
1308
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1315 }
1316
1317 tmp = (u64)delta_exec * weight;
1318 /*
1319 * Check whether we'd overflow the 64-bit multiplication:
1320 */
1321 if (unlikely(tmp > WMULT_CONST))
1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1323 WMULT_SHIFT/2);
1324 else
1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1326
1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1328 }
1329
1330 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1331 {
1332 lw->weight += inc;
1333 lw->inv_weight = 0;
1334 }
1335
1336 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1337 {
1338 lw->weight -= dec;
1339 lw->inv_weight = 0;
1340 }
1341
1342 /*
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1349 */
1350
1351 #define WEIGHT_IDLEPRIO 3
1352 #define WMULT_IDLEPRIO 1431655765
1353
1354 /*
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1359 *
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
1365 */
1366 static const int prio_to_weight[40] = {
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
1375 };
1376
1377 /*
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 *
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1383 */
1384 static const u32 prio_to_wmult[40] = {
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1393 };
1394
1395 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1396
1397 /*
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1401 */
1402 struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1406 };
1407
1408 #ifdef CONFIG_SMP
1409 static unsigned long
1410 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1414
1415 static int
1416 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
1419 #endif
1420
1421 /* Time spent by the tasks of the cpu accounting group executing in ... */
1422 enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1425
1426 CPUACCT_STAT_NSTATS,
1427 };
1428
1429 #ifdef CONFIG_CGROUP_CPUACCT
1430 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1431 static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
1433 #else
1434 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1435 static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
1437 #endif
1438
1439 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1440 {
1441 update_load_add(&rq->load, load);
1442 }
1443
1444 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1445 {
1446 update_load_sub(&rq->load, load);
1447 }
1448
1449 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1450 typedef int (*tg_visitor)(struct task_group *, void *);
1451
1452 /*
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1455 */
1456 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1457 {
1458 struct task_group *parent, *child;
1459 int ret;
1460
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463 down:
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1470
1471 up:
1472 continue;
1473 }
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
1477
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
1482 out_unlock:
1483 rcu_read_unlock();
1484
1485 return ret;
1486 }
1487
1488 static int tg_nop(struct task_group *tg, void *data)
1489 {
1490 return 0;
1491 }
1492 #endif
1493
1494 #ifdef CONFIG_SMP
1495 /* Used instead of source_load when we know the type == 0 */
1496 static unsigned long weighted_cpuload(const int cpu)
1497 {
1498 return cpu_rq(cpu)->load.weight;
1499 }
1500
1501 /*
1502 * Return a low guess at the load of a migration-source cpu weighted
1503 * according to the scheduling class and "nice" value.
1504 *
1505 * We want to under-estimate the load of migration sources, to
1506 * balance conservatively.
1507 */
1508 static unsigned long source_load(int cpu, int type)
1509 {
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long total = weighted_cpuload(cpu);
1512
1513 if (type == 0 || !sched_feat(LB_BIAS))
1514 return total;
1515
1516 return min(rq->cpu_load[type-1], total);
1517 }
1518
1519 /*
1520 * Return a high guess at the load of a migration-target cpu weighted
1521 * according to the scheduling class and "nice" value.
1522 */
1523 static unsigned long target_load(int cpu, int type)
1524 {
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long total = weighted_cpuload(cpu);
1527
1528 if (type == 0 || !sched_feat(LB_BIAS))
1529 return total;
1530
1531 return max(rq->cpu_load[type-1], total);
1532 }
1533
1534 static struct sched_group *group_of(int cpu)
1535 {
1536 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1537
1538 if (!sd)
1539 return NULL;
1540
1541 return sd->groups;
1542 }
1543
1544 static unsigned long power_of(int cpu)
1545 {
1546 struct sched_group *group = group_of(cpu);
1547
1548 if (!group)
1549 return SCHED_LOAD_SCALE;
1550
1551 return group->cpu_power;
1552 }
1553
1554 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1555
1556 static unsigned long cpu_avg_load_per_task(int cpu)
1557 {
1558 struct rq *rq = cpu_rq(cpu);
1559 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1560
1561 if (nr_running)
1562 rq->avg_load_per_task = rq->load.weight / nr_running;
1563 else
1564 rq->avg_load_per_task = 0;
1565
1566 return rq->avg_load_per_task;
1567 }
1568
1569 #ifdef CONFIG_FAIR_GROUP_SCHED
1570
1571 static __read_mostly unsigned long *update_shares_data;
1572
1573 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1574
1575 /*
1576 * Calculate and set the cpu's group shares.
1577 */
1578 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
1581 unsigned long *usd_rq_weight)
1582 {
1583 unsigned long shares, rq_weight;
1584 int boost = 0;
1585
1586 rq_weight = usd_rq_weight[cpu];
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1590 }
1591
1592 /*
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
1596 */
1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1599
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
1604
1605 spin_lock_irqsave(&rq->lock, flags);
1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1608 __set_se_shares(tg->se[cpu], shares);
1609 spin_unlock_irqrestore(&rq->lock, flags);
1610 }
1611 }
1612
1613 /*
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
1617 */
1618 static int tg_shares_up(struct task_group *tg, void *data)
1619 {
1620 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1621 unsigned long *usd_rq_weight;
1622 struct sched_domain *sd = data;
1623 unsigned long flags;
1624 int i;
1625
1626 if (!tg->se[0])
1627 return 0;
1628
1629 local_irq_save(flags);
1630 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1631
1632 for_each_cpu(i, sched_domain_span(sd)) {
1633 weight = tg->cfs_rq[i]->load.weight;
1634 usd_rq_weight[i] = weight;
1635
1636 rq_weight += weight;
1637 /*
1638 * If there are currently no tasks on the cpu pretend there
1639 * is one of average load so that when a new task gets to
1640 * run here it will not get delayed by group starvation.
1641 */
1642 if (!weight)
1643 weight = NICE_0_LOAD;
1644
1645 sum_weight += weight;
1646 shares += tg->cfs_rq[i]->shares;
1647 }
1648
1649 if (!rq_weight)
1650 rq_weight = sum_weight;
1651
1652 if ((!shares && rq_weight) || shares > tg->shares)
1653 shares = tg->shares;
1654
1655 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1656 shares = tg->shares;
1657
1658 for_each_cpu(i, sched_domain_span(sd))
1659 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1660
1661 local_irq_restore(flags);
1662
1663 return 0;
1664 }
1665
1666 /*
1667 * Compute the cpu's hierarchical load factor for each task group.
1668 * This needs to be done in a top-down fashion because the load of a child
1669 * group is a fraction of its parents load.
1670 */
1671 static int tg_load_down(struct task_group *tg, void *data)
1672 {
1673 unsigned long load;
1674 long cpu = (long)data;
1675
1676 if (!tg->parent) {
1677 load = cpu_rq(cpu)->load.weight;
1678 } else {
1679 load = tg->parent->cfs_rq[cpu]->h_load;
1680 load *= tg->cfs_rq[cpu]->shares;
1681 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1682 }
1683
1684 tg->cfs_rq[cpu]->h_load = load;
1685
1686 return 0;
1687 }
1688
1689 static void update_shares(struct sched_domain *sd)
1690 {
1691 s64 elapsed;
1692 u64 now;
1693
1694 if (root_task_group_empty())
1695 return;
1696
1697 now = cpu_clock(raw_smp_processor_id());
1698 elapsed = now - sd->last_update;
1699
1700 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1701 sd->last_update = now;
1702 walk_tg_tree(tg_nop, tg_shares_up, sd);
1703 }
1704 }
1705
1706 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1707 {
1708 if (root_task_group_empty())
1709 return;
1710
1711 spin_unlock(&rq->lock);
1712 update_shares(sd);
1713 spin_lock(&rq->lock);
1714 }
1715
1716 static void update_h_load(long cpu)
1717 {
1718 if (root_task_group_empty())
1719 return;
1720
1721 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1722 }
1723
1724 #else
1725
1726 static inline void update_shares(struct sched_domain *sd)
1727 {
1728 }
1729
1730 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1731 {
1732 }
1733
1734 #endif
1735
1736 #ifdef CONFIG_PREEMPT
1737
1738 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1739
1740 /*
1741 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1742 * way at the expense of forcing extra atomic operations in all
1743 * invocations. This assures that the double_lock is acquired using the
1744 * same underlying policy as the spinlock_t on this architecture, which
1745 * reduces latency compared to the unfair variant below. However, it
1746 * also adds more overhead and therefore may reduce throughput.
1747 */
1748 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 __releases(this_rq->lock)
1750 __acquires(busiest->lock)
1751 __acquires(this_rq->lock)
1752 {
1753 spin_unlock(&this_rq->lock);
1754 double_rq_lock(this_rq, busiest);
1755
1756 return 1;
1757 }
1758
1759 #else
1760 /*
1761 * Unfair double_lock_balance: Optimizes throughput at the expense of
1762 * latency by eliminating extra atomic operations when the locks are
1763 * already in proper order on entry. This favors lower cpu-ids and will
1764 * grant the double lock to lower cpus over higher ids under contention,
1765 * regardless of entry order into the function.
1766 */
1767 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1768 __releases(this_rq->lock)
1769 __acquires(busiest->lock)
1770 __acquires(this_rq->lock)
1771 {
1772 int ret = 0;
1773
1774 if (unlikely(!spin_trylock(&busiest->lock))) {
1775 if (busiest < this_rq) {
1776 spin_unlock(&this_rq->lock);
1777 spin_lock(&busiest->lock);
1778 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1779 ret = 1;
1780 } else
1781 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1782 }
1783 return ret;
1784 }
1785
1786 #endif /* CONFIG_PREEMPT */
1787
1788 /*
1789 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1790 */
1791 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1792 {
1793 if (unlikely(!irqs_disabled())) {
1794 /* printk() doesn't work good under rq->lock */
1795 spin_unlock(&this_rq->lock);
1796 BUG_ON(1);
1797 }
1798
1799 return _double_lock_balance(this_rq, busiest);
1800 }
1801
1802 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1803 __releases(busiest->lock)
1804 {
1805 spin_unlock(&busiest->lock);
1806 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1807 }
1808 #endif
1809
1810 #ifdef CONFIG_FAIR_GROUP_SCHED
1811 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1812 {
1813 #ifdef CONFIG_SMP
1814 cfs_rq->shares = shares;
1815 #endif
1816 }
1817 #endif
1818
1819 static void calc_load_account_active(struct rq *this_rq);
1820 static void update_sysctl(void);
1821 static int get_update_sysctl_factor(void);
1822
1823 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1824 {
1825 set_task_rq(p, cpu);
1826 #ifdef CONFIG_SMP
1827 /*
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1831 */
1832 smp_wmb();
1833 task_thread_info(p)->cpu = cpu;
1834 #endif
1835 }
1836
1837 #include "sched_stats.h"
1838 #include "sched_idletask.c"
1839 #include "sched_fair.c"
1840 #include "sched_rt.c"
1841 #ifdef CONFIG_SCHED_DEBUG
1842 # include "sched_debug.c"
1843 #endif
1844
1845 #define sched_class_highest (&rt_sched_class)
1846 #define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next)
1848
1849 static void inc_nr_running(struct rq *rq)
1850 {
1851 rq->nr_running++;
1852 }
1853
1854 static void dec_nr_running(struct rq *rq)
1855 {
1856 rq->nr_running--;
1857 }
1858
1859 static void set_load_weight(struct task_struct *p)
1860 {
1861 if (task_has_rt_policy(p)) {
1862 p->se.load.weight = prio_to_weight[0] * 2;
1863 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1864 return;
1865 }
1866
1867 /*
1868 * SCHED_IDLE tasks get minimal weight:
1869 */
1870 if (p->policy == SCHED_IDLE) {
1871 p->se.load.weight = WEIGHT_IDLEPRIO;
1872 p->se.load.inv_weight = WMULT_IDLEPRIO;
1873 return;
1874 }
1875
1876 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1877 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1878 }
1879
1880 static void update_avg(u64 *avg, u64 sample)
1881 {
1882 s64 diff = sample - *avg;
1883 *avg += diff >> 3;
1884 }
1885
1886 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1887 {
1888 if (wakeup)
1889 p->se.start_runtime = p->se.sum_exec_runtime;
1890
1891 sched_info_queued(p);
1892 p->sched_class->enqueue_task(rq, p, wakeup);
1893 p->se.on_rq = 1;
1894 }
1895
1896 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1897 {
1898 if (sleep) {
1899 if (p->se.last_wakeup) {
1900 update_avg(&p->se.avg_overlap,
1901 p->se.sum_exec_runtime - p->se.last_wakeup);
1902 p->se.last_wakeup = 0;
1903 } else {
1904 update_avg(&p->se.avg_wakeup,
1905 sysctl_sched_wakeup_granularity);
1906 }
1907 }
1908
1909 sched_info_dequeued(p);
1910 p->sched_class->dequeue_task(rq, p, sleep);
1911 p->se.on_rq = 0;
1912 }
1913
1914 /*
1915 * __normal_prio - return the priority that is based on the static prio
1916 */
1917 static inline int __normal_prio(struct task_struct *p)
1918 {
1919 return p->static_prio;
1920 }
1921
1922 /*
1923 * Calculate the expected normal priority: i.e. priority
1924 * without taking RT-inheritance into account. Might be
1925 * boosted by interactivity modifiers. Changes upon fork,
1926 * setprio syscalls, and whenever the interactivity
1927 * estimator recalculates.
1928 */
1929 static inline int normal_prio(struct task_struct *p)
1930 {
1931 int prio;
1932
1933 if (task_has_rt_policy(p))
1934 prio = MAX_RT_PRIO-1 - p->rt_priority;
1935 else
1936 prio = __normal_prio(p);
1937 return prio;
1938 }
1939
1940 /*
1941 * Calculate the current priority, i.e. the priority
1942 * taken into account by the scheduler. This value might
1943 * be boosted by RT tasks, or might be boosted by
1944 * interactivity modifiers. Will be RT if the task got
1945 * RT-boosted. If not then it returns p->normal_prio.
1946 */
1947 static int effective_prio(struct task_struct *p)
1948 {
1949 p->normal_prio = normal_prio(p);
1950 /*
1951 * If we are RT tasks or we were boosted to RT priority,
1952 * keep the priority unchanged. Otherwise, update priority
1953 * to the normal priority:
1954 */
1955 if (!rt_prio(p->prio))
1956 return p->normal_prio;
1957 return p->prio;
1958 }
1959
1960 /*
1961 * activate_task - move a task to the runqueue.
1962 */
1963 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1964 {
1965 if (task_contributes_to_load(p))
1966 rq->nr_uninterruptible--;
1967
1968 enqueue_task(rq, p, wakeup);
1969 inc_nr_running(rq);
1970 }
1971
1972 /*
1973 * deactivate_task - remove a task from the runqueue.
1974 */
1975 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1976 {
1977 if (task_contributes_to_load(p))
1978 rq->nr_uninterruptible++;
1979
1980 dequeue_task(rq, p, sleep);
1981 dec_nr_running(rq);
1982 }
1983
1984 /**
1985 * task_curr - is this task currently executing on a CPU?
1986 * @p: the task in question.
1987 */
1988 inline int task_curr(const struct task_struct *p)
1989 {
1990 return cpu_curr(task_cpu(p)) == p;
1991 }
1992
1993 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1994 const struct sched_class *prev_class,
1995 int oldprio, int running)
1996 {
1997 if (prev_class != p->sched_class) {
1998 if (prev_class->switched_from)
1999 prev_class->switched_from(rq, p, running);
2000 p->sched_class->switched_to(rq, p, running);
2001 } else
2002 p->sched_class->prio_changed(rq, p, oldprio, running);
2003 }
2004
2005 /**
2006 * kthread_bind - bind a just-created kthread to a cpu.
2007 * @p: thread created by kthread_create().
2008 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2009 *
2010 * Description: This function is equivalent to set_cpus_allowed(),
2011 * except that @cpu doesn't need to be online, and the thread must be
2012 * stopped (i.e., just returned from kthread_create()).
2013 *
2014 * Function lives here instead of kthread.c because it messes with
2015 * scheduler internals which require locking.
2016 */
2017 void kthread_bind(struct task_struct *p, unsigned int cpu)
2018 {
2019 struct rq *rq = cpu_rq(cpu);
2020 unsigned long flags;
2021
2022 /* Must have done schedule() in kthread() before we set_task_cpu */
2023 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2024 WARN_ON(1);
2025 return;
2026 }
2027
2028 spin_lock_irqsave(&rq->lock, flags);
2029 update_rq_clock(rq);
2030 set_task_cpu(p, cpu);
2031 p->cpus_allowed = cpumask_of_cpu(cpu);
2032 p->rt.nr_cpus_allowed = 1;
2033 p->flags |= PF_THREAD_BOUND;
2034 spin_unlock_irqrestore(&rq->lock, flags);
2035 }
2036 EXPORT_SYMBOL(kthread_bind);
2037
2038 #ifdef CONFIG_SMP
2039 /*
2040 * Is this task likely cache-hot:
2041 */
2042 static int
2043 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2044 {
2045 s64 delta;
2046
2047 /*
2048 * Buddy candidates are cache hot:
2049 */
2050 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2051 (&p->se == cfs_rq_of(&p->se)->next ||
2052 &p->se == cfs_rq_of(&p->se)->last))
2053 return 1;
2054
2055 if (p->sched_class != &fair_sched_class)
2056 return 0;
2057
2058 if (sysctl_sched_migration_cost == -1)
2059 return 1;
2060 if (sysctl_sched_migration_cost == 0)
2061 return 0;
2062
2063 delta = now - p->se.exec_start;
2064
2065 return delta < (s64)sysctl_sched_migration_cost;
2066 }
2067
2068
2069 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2070 {
2071 int old_cpu = task_cpu(p);
2072 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2073 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2074
2075 trace_sched_migrate_task(p, new_cpu);
2076
2077 if (old_cpu != new_cpu) {
2078 p->se.nr_migrations++;
2079 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2080 1, 1, NULL, 0);
2081 }
2082 p->se.vruntime -= old_cfsrq->min_vruntime -
2083 new_cfsrq->min_vruntime;
2084
2085 __set_task_cpu(p, new_cpu);
2086 }
2087
2088 struct migration_req {
2089 struct list_head list;
2090
2091 struct task_struct *task;
2092 int dest_cpu;
2093
2094 struct completion done;
2095 };
2096
2097 /*
2098 * The task's runqueue lock must be held.
2099 * Returns true if you have to wait for migration thread.
2100 */
2101 static int
2102 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2103 {
2104 struct rq *rq = task_rq(p);
2105
2106 /*
2107 * If the task is not on a runqueue (and not running), then
2108 * it is sufficient to simply update the task's cpu field.
2109 */
2110 if (!p->se.on_rq && !task_running(rq, p)) {
2111 update_rq_clock(rq);
2112 set_task_cpu(p, dest_cpu);
2113 return 0;
2114 }
2115
2116 init_completion(&req->done);
2117 req->task = p;
2118 req->dest_cpu = dest_cpu;
2119 list_add(&req->list, &rq->migration_queue);
2120
2121 return 1;
2122 }
2123
2124 /*
2125 * wait_task_context_switch - wait for a thread to complete at least one
2126 * context switch.
2127 *
2128 * @p must not be current.
2129 */
2130 void wait_task_context_switch(struct task_struct *p)
2131 {
2132 unsigned long nvcsw, nivcsw, flags;
2133 int running;
2134 struct rq *rq;
2135
2136 nvcsw = p->nvcsw;
2137 nivcsw = p->nivcsw;
2138 for (;;) {
2139 /*
2140 * The runqueue is assigned before the actual context
2141 * switch. We need to take the runqueue lock.
2142 *
2143 * We could check initially without the lock but it is
2144 * very likely that we need to take the lock in every
2145 * iteration.
2146 */
2147 rq = task_rq_lock(p, &flags);
2148 running = task_running(rq, p);
2149 task_rq_unlock(rq, &flags);
2150
2151 if (likely(!running))
2152 break;
2153 /*
2154 * The switch count is incremented before the actual
2155 * context switch. We thus wait for two switches to be
2156 * sure at least one completed.
2157 */
2158 if ((p->nvcsw - nvcsw) > 1)
2159 break;
2160 if ((p->nivcsw - nivcsw) > 1)
2161 break;
2162
2163 cpu_relax();
2164 }
2165 }
2166
2167 /*
2168 * wait_task_inactive - wait for a thread to unschedule.
2169 *
2170 * If @match_state is nonzero, it's the @p->state value just checked and
2171 * not expected to change. If it changes, i.e. @p might have woken up,
2172 * then return zero. When we succeed in waiting for @p to be off its CPU,
2173 * we return a positive number (its total switch count). If a second call
2174 * a short while later returns the same number, the caller can be sure that
2175 * @p has remained unscheduled the whole time.
2176 *
2177 * The caller must ensure that the task *will* unschedule sometime soon,
2178 * else this function might spin for a *long* time. This function can't
2179 * be called with interrupts off, or it may introduce deadlock with
2180 * smp_call_function() if an IPI is sent by the same process we are
2181 * waiting to become inactive.
2182 */
2183 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2184 {
2185 unsigned long flags;
2186 int running, on_rq;
2187 unsigned long ncsw;
2188 struct rq *rq;
2189
2190 for (;;) {
2191 /*
2192 * We do the initial early heuristics without holding
2193 * any task-queue locks at all. We'll only try to get
2194 * the runqueue lock when things look like they will
2195 * work out!
2196 */
2197 rq = task_rq(p);
2198
2199 /*
2200 * If the task is actively running on another CPU
2201 * still, just relax and busy-wait without holding
2202 * any locks.
2203 *
2204 * NOTE! Since we don't hold any locks, it's not
2205 * even sure that "rq" stays as the right runqueue!
2206 * But we don't care, since "task_running()" will
2207 * return false if the runqueue has changed and p
2208 * is actually now running somewhere else!
2209 */
2210 while (task_running(rq, p)) {
2211 if (match_state && unlikely(p->state != match_state))
2212 return 0;
2213 cpu_relax();
2214 }
2215
2216 /*
2217 * Ok, time to look more closely! We need the rq
2218 * lock now, to be *sure*. If we're wrong, we'll
2219 * just go back and repeat.
2220 */
2221 rq = task_rq_lock(p, &flags);
2222 trace_sched_wait_task(rq, p);
2223 running = task_running(rq, p);
2224 on_rq = p->se.on_rq;
2225 ncsw = 0;
2226 if (!match_state || p->state == match_state)
2227 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2228 task_rq_unlock(rq, &flags);
2229
2230 /*
2231 * If it changed from the expected state, bail out now.
2232 */
2233 if (unlikely(!ncsw))
2234 break;
2235
2236 /*
2237 * Was it really running after all now that we
2238 * checked with the proper locks actually held?
2239 *
2240 * Oops. Go back and try again..
2241 */
2242 if (unlikely(running)) {
2243 cpu_relax();
2244 continue;
2245 }
2246
2247 /*
2248 * It's not enough that it's not actively running,
2249 * it must be off the runqueue _entirely_, and not
2250 * preempted!
2251 *
2252 * So if it was still runnable (but just not actively
2253 * running right now), it's preempted, and we should
2254 * yield - it could be a while.
2255 */
2256 if (unlikely(on_rq)) {
2257 schedule_timeout_uninterruptible(1);
2258 continue;
2259 }
2260
2261 /*
2262 * Ahh, all good. It wasn't running, and it wasn't
2263 * runnable, which means that it will never become
2264 * running in the future either. We're all done!
2265 */
2266 break;
2267 }
2268
2269 return ncsw;
2270 }
2271
2272 /***
2273 * kick_process - kick a running thread to enter/exit the kernel
2274 * @p: the to-be-kicked thread
2275 *
2276 * Cause a process which is running on another CPU to enter
2277 * kernel-mode, without any delay. (to get signals handled.)
2278 *
2279 * NOTE: this function doesnt have to take the runqueue lock,
2280 * because all it wants to ensure is that the remote task enters
2281 * the kernel. If the IPI races and the task has been migrated
2282 * to another CPU then no harm is done and the purpose has been
2283 * achieved as well.
2284 */
2285 void kick_process(struct task_struct *p)
2286 {
2287 int cpu;
2288
2289 preempt_disable();
2290 cpu = task_cpu(p);
2291 if ((cpu != smp_processor_id()) && task_curr(p))
2292 smp_send_reschedule(cpu);
2293 preempt_enable();
2294 }
2295 EXPORT_SYMBOL_GPL(kick_process);
2296 #endif /* CONFIG_SMP */
2297
2298 /**
2299 * task_oncpu_function_call - call a function on the cpu on which a task runs
2300 * @p: the task to evaluate
2301 * @func: the function to be called
2302 * @info: the function call argument
2303 *
2304 * Calls the function @func when the task is currently running. This might
2305 * be on the current CPU, which just calls the function directly
2306 */
2307 void task_oncpu_function_call(struct task_struct *p,
2308 void (*func) (void *info), void *info)
2309 {
2310 int cpu;
2311
2312 preempt_disable();
2313 cpu = task_cpu(p);
2314 if (task_curr(p))
2315 smp_call_function_single(cpu, func, info, 1);
2316 preempt_enable();
2317 }
2318
2319 #ifdef CONFIG_SMP
2320 static inline
2321 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2322 {
2323 return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2324 }
2325 #endif
2326
2327 /***
2328 * try_to_wake_up - wake up a thread
2329 * @p: the to-be-woken-up thread
2330 * @state: the mask of task states that can be woken
2331 * @sync: do a synchronous wakeup?
2332 *
2333 * Put it on the run-queue if it's not already there. The "current"
2334 * thread is always on the run-queue (except when the actual
2335 * re-schedule is in progress), and as such you're allowed to do
2336 * the simpler "current->state = TASK_RUNNING" to mark yourself
2337 * runnable without the overhead of this.
2338 *
2339 * returns failure only if the task is already active.
2340 */
2341 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2342 int wake_flags)
2343 {
2344 int cpu, orig_cpu, this_cpu, success = 0;
2345 unsigned long flags;
2346 struct rq *rq, *orig_rq;
2347
2348 if (!sched_feat(SYNC_WAKEUPS))
2349 wake_flags &= ~WF_SYNC;
2350
2351 this_cpu = get_cpu();
2352
2353 smp_wmb();
2354 rq = orig_rq = task_rq_lock(p, &flags);
2355 update_rq_clock(rq);
2356 if (!(p->state & state))
2357 goto out;
2358
2359 if (p->se.on_rq)
2360 goto out_running;
2361
2362 cpu = task_cpu(p);
2363 orig_cpu = cpu;
2364
2365 #ifdef CONFIG_SMP
2366 if (unlikely(task_running(rq, p)))
2367 goto out_activate;
2368
2369 /*
2370 * In order to handle concurrent wakeups and release the rq->lock
2371 * we put the task in TASK_WAKING state.
2372 *
2373 * First fix up the nr_uninterruptible count:
2374 */
2375 if (task_contributes_to_load(p))
2376 rq->nr_uninterruptible--;
2377 p->state = TASK_WAKING;
2378 __task_rq_unlock(rq);
2379
2380 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2381 if (cpu != orig_cpu)
2382 set_task_cpu(p, cpu);
2383
2384 rq = __task_rq_lock(p);
2385 update_rq_clock(rq);
2386
2387 WARN_ON(p->state != TASK_WAKING);
2388 cpu = task_cpu(p);
2389
2390 #ifdef CONFIG_SCHEDSTATS
2391 schedstat_inc(rq, ttwu_count);
2392 if (cpu == this_cpu)
2393 schedstat_inc(rq, ttwu_local);
2394 else {
2395 struct sched_domain *sd;
2396 for_each_domain(this_cpu, sd) {
2397 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398 schedstat_inc(sd, ttwu_wake_remote);
2399 break;
2400 }
2401 }
2402 }
2403 #endif /* CONFIG_SCHEDSTATS */
2404
2405 out_activate:
2406 #endif /* CONFIG_SMP */
2407 schedstat_inc(p, se.nr_wakeups);
2408 if (wake_flags & WF_SYNC)
2409 schedstat_inc(p, se.nr_wakeups_sync);
2410 if (orig_cpu != cpu)
2411 schedstat_inc(p, se.nr_wakeups_migrate);
2412 if (cpu == this_cpu)
2413 schedstat_inc(p, se.nr_wakeups_local);
2414 else
2415 schedstat_inc(p, se.nr_wakeups_remote);
2416 activate_task(rq, p, 1);
2417 success = 1;
2418
2419 /*
2420 * Only attribute actual wakeups done by this task.
2421 */
2422 if (!in_interrupt()) {
2423 struct sched_entity *se = &current->se;
2424 u64 sample = se->sum_exec_runtime;
2425
2426 if (se->last_wakeup)
2427 sample -= se->last_wakeup;
2428 else
2429 sample -= se->start_runtime;
2430 update_avg(&se->avg_wakeup, sample);
2431
2432 se->last_wakeup = se->sum_exec_runtime;
2433 }
2434
2435 out_running:
2436 trace_sched_wakeup(rq, p, success);
2437 check_preempt_curr(rq, p, wake_flags);
2438
2439 p->state = TASK_RUNNING;
2440 #ifdef CONFIG_SMP
2441 if (p->sched_class->task_wake_up)
2442 p->sched_class->task_wake_up(rq, p);
2443
2444 if (unlikely(rq->idle_stamp)) {
2445 u64 delta = rq->clock - rq->idle_stamp;
2446 u64 max = 2*sysctl_sched_migration_cost;
2447
2448 if (delta > max)
2449 rq->avg_idle = max;
2450 else
2451 update_avg(&rq->avg_idle, delta);
2452 rq->idle_stamp = 0;
2453 }
2454 #endif
2455 out:
2456 task_rq_unlock(rq, &flags);
2457 put_cpu();
2458
2459 return success;
2460 }
2461
2462 /**
2463 * wake_up_process - Wake up a specific process
2464 * @p: The process to be woken up.
2465 *
2466 * Attempt to wake up the nominated process and move it to the set of runnable
2467 * processes. Returns 1 if the process was woken up, 0 if it was already
2468 * running.
2469 *
2470 * It may be assumed that this function implies a write memory barrier before
2471 * changing the task state if and only if any tasks are woken up.
2472 */
2473 int wake_up_process(struct task_struct *p)
2474 {
2475 return try_to_wake_up(p, TASK_ALL, 0);
2476 }
2477 EXPORT_SYMBOL(wake_up_process);
2478
2479 int wake_up_state(struct task_struct *p, unsigned int state)
2480 {
2481 return try_to_wake_up(p, state, 0);
2482 }
2483
2484 /*
2485 * Perform scheduler related setup for a newly forked process p.
2486 * p is forked by current.
2487 *
2488 * __sched_fork() is basic setup used by init_idle() too:
2489 */
2490 static void __sched_fork(struct task_struct *p)
2491 {
2492 p->se.exec_start = 0;
2493 p->se.sum_exec_runtime = 0;
2494 p->se.prev_sum_exec_runtime = 0;
2495 p->se.nr_migrations = 0;
2496 p->se.last_wakeup = 0;
2497 p->se.avg_overlap = 0;
2498 p->se.start_runtime = 0;
2499 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2500
2501 #ifdef CONFIG_SCHEDSTATS
2502 p->se.wait_start = 0;
2503 p->se.wait_max = 0;
2504 p->se.wait_count = 0;
2505 p->se.wait_sum = 0;
2506
2507 p->se.sleep_start = 0;
2508 p->se.sleep_max = 0;
2509 p->se.sum_sleep_runtime = 0;
2510
2511 p->se.block_start = 0;
2512 p->se.block_max = 0;
2513 p->se.exec_max = 0;
2514 p->se.slice_max = 0;
2515
2516 p->se.nr_migrations_cold = 0;
2517 p->se.nr_failed_migrations_affine = 0;
2518 p->se.nr_failed_migrations_running = 0;
2519 p->se.nr_failed_migrations_hot = 0;
2520 p->se.nr_forced_migrations = 0;
2521
2522 p->se.nr_wakeups = 0;
2523 p->se.nr_wakeups_sync = 0;
2524 p->se.nr_wakeups_migrate = 0;
2525 p->se.nr_wakeups_local = 0;
2526 p->se.nr_wakeups_remote = 0;
2527 p->se.nr_wakeups_affine = 0;
2528 p->se.nr_wakeups_affine_attempts = 0;
2529 p->se.nr_wakeups_passive = 0;
2530 p->se.nr_wakeups_idle = 0;
2531
2532 #endif
2533
2534 INIT_LIST_HEAD(&p->rt.run_list);
2535 p->se.on_rq = 0;
2536 INIT_LIST_HEAD(&p->se.group_node);
2537
2538 #ifdef CONFIG_PREEMPT_NOTIFIERS
2539 INIT_HLIST_HEAD(&p->preempt_notifiers);
2540 #endif
2541
2542 /*
2543 * We mark the process as running here, but have not actually
2544 * inserted it onto the runqueue yet. This guarantees that
2545 * nobody will actually run it, and a signal or other external
2546 * event cannot wake it up and insert it on the runqueue either.
2547 */
2548 p->state = TASK_RUNNING;
2549 }
2550
2551 /*
2552 * fork()/clone()-time setup:
2553 */
2554 void sched_fork(struct task_struct *p, int clone_flags)
2555 {
2556 int cpu = get_cpu();
2557
2558 __sched_fork(p);
2559
2560 /*
2561 * Revert to default priority/policy on fork if requested.
2562 */
2563 if (unlikely(p->sched_reset_on_fork)) {
2564 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2565 p->policy = SCHED_NORMAL;
2566 p->normal_prio = p->static_prio;
2567 }
2568
2569 if (PRIO_TO_NICE(p->static_prio) < 0) {
2570 p->static_prio = NICE_TO_PRIO(0);
2571 p->normal_prio = p->static_prio;
2572 set_load_weight(p);
2573 }
2574
2575 /*
2576 * We don't need the reset flag anymore after the fork. It has
2577 * fulfilled its duty:
2578 */
2579 p->sched_reset_on_fork = 0;
2580 }
2581
2582 /*
2583 * Make sure we do not leak PI boosting priority to the child.
2584 */
2585 p->prio = current->normal_prio;
2586
2587 if (!rt_prio(p->prio))
2588 p->sched_class = &fair_sched_class;
2589
2590 if (p->sched_class->task_fork)
2591 p->sched_class->task_fork(p);
2592
2593 #ifdef CONFIG_SMP
2594 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2595 #endif
2596 set_task_cpu(p, cpu);
2597
2598 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2599 if (likely(sched_info_on()))
2600 memset(&p->sched_info, 0, sizeof(p->sched_info));
2601 #endif
2602 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2603 p->oncpu = 0;
2604 #endif
2605 #ifdef CONFIG_PREEMPT
2606 /* Want to start with kernel preemption disabled. */
2607 task_thread_info(p)->preempt_count = 1;
2608 #endif
2609 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2610
2611 put_cpu();
2612 }
2613
2614 /*
2615 * wake_up_new_task - wake up a newly created task for the first time.
2616 *
2617 * This function will do some initial scheduler statistics housekeeping
2618 * that must be done for every newly created context, then puts the task
2619 * on the runqueue and wakes it.
2620 */
2621 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2622 {
2623 unsigned long flags;
2624 struct rq *rq;
2625
2626 rq = task_rq_lock(p, &flags);
2627 BUG_ON(p->state != TASK_RUNNING);
2628 update_rq_clock(rq);
2629 activate_task(rq, p, 0);
2630 trace_sched_wakeup_new(rq, p, 1);
2631 check_preempt_curr(rq, p, WF_FORK);
2632 #ifdef CONFIG_SMP
2633 if (p->sched_class->task_wake_up)
2634 p->sched_class->task_wake_up(rq, p);
2635 #endif
2636 task_rq_unlock(rq, &flags);
2637 }
2638
2639 #ifdef CONFIG_PREEMPT_NOTIFIERS
2640
2641 /**
2642 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2643 * @notifier: notifier struct to register
2644 */
2645 void preempt_notifier_register(struct preempt_notifier *notifier)
2646 {
2647 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2648 }
2649 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2650
2651 /**
2652 * preempt_notifier_unregister - no longer interested in preemption notifications
2653 * @notifier: notifier struct to unregister
2654 *
2655 * This is safe to call from within a preemption notifier.
2656 */
2657 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2658 {
2659 hlist_del(&notifier->link);
2660 }
2661 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2662
2663 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2664 {
2665 struct preempt_notifier *notifier;
2666 struct hlist_node *node;
2667
2668 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2669 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2670 }
2671
2672 static void
2673 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2674 struct task_struct *next)
2675 {
2676 struct preempt_notifier *notifier;
2677 struct hlist_node *node;
2678
2679 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2680 notifier->ops->sched_out(notifier, next);
2681 }
2682
2683 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2684
2685 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2686 {
2687 }
2688
2689 static void
2690 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2691 struct task_struct *next)
2692 {
2693 }
2694
2695 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2696
2697 /**
2698 * prepare_task_switch - prepare to switch tasks
2699 * @rq: the runqueue preparing to switch
2700 * @prev: the current task that is being switched out
2701 * @next: the task we are going to switch to.
2702 *
2703 * This is called with the rq lock held and interrupts off. It must
2704 * be paired with a subsequent finish_task_switch after the context
2705 * switch.
2706 *
2707 * prepare_task_switch sets up locking and calls architecture specific
2708 * hooks.
2709 */
2710 static inline void
2711 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2712 struct task_struct *next)
2713 {
2714 fire_sched_out_preempt_notifiers(prev, next);
2715 prepare_lock_switch(rq, next);
2716 prepare_arch_switch(next);
2717 }
2718
2719 /**
2720 * finish_task_switch - clean up after a task-switch
2721 * @rq: runqueue associated with task-switch
2722 * @prev: the thread we just switched away from.
2723 *
2724 * finish_task_switch must be called after the context switch, paired
2725 * with a prepare_task_switch call before the context switch.
2726 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2727 * and do any other architecture-specific cleanup actions.
2728 *
2729 * Note that we may have delayed dropping an mm in context_switch(). If
2730 * so, we finish that here outside of the runqueue lock. (Doing it
2731 * with the lock held can cause deadlocks; see schedule() for
2732 * details.)
2733 */
2734 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2735 __releases(rq->lock)
2736 {
2737 struct mm_struct *mm = rq->prev_mm;
2738 long prev_state;
2739
2740 rq->prev_mm = NULL;
2741
2742 /*
2743 * A task struct has one reference for the use as "current".
2744 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2745 * schedule one last time. The schedule call will never return, and
2746 * the scheduled task must drop that reference.
2747 * The test for TASK_DEAD must occur while the runqueue locks are
2748 * still held, otherwise prev could be scheduled on another cpu, die
2749 * there before we look at prev->state, and then the reference would
2750 * be dropped twice.
2751 * Manfred Spraul <manfred@colorfullife.com>
2752 */
2753 prev_state = prev->state;
2754 finish_arch_switch(prev);
2755 perf_event_task_sched_in(current, cpu_of(rq));
2756 finish_lock_switch(rq, prev);
2757
2758 fire_sched_in_preempt_notifiers(current);
2759 if (mm)
2760 mmdrop(mm);
2761 if (unlikely(prev_state == TASK_DEAD)) {
2762 /*
2763 * Remove function-return probe instances associated with this
2764 * task and put them back on the free list.
2765 */
2766 kprobe_flush_task(prev);
2767 put_task_struct(prev);
2768 }
2769 }
2770
2771 #ifdef CONFIG_SMP
2772
2773 /* assumes rq->lock is held */
2774 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2775 {
2776 if (prev->sched_class->pre_schedule)
2777 prev->sched_class->pre_schedule(rq, prev);
2778 }
2779
2780 /* rq->lock is NOT held, but preemption is disabled */
2781 static inline void post_schedule(struct rq *rq)
2782 {
2783 if (rq->post_schedule) {
2784 unsigned long flags;
2785
2786 spin_lock_irqsave(&rq->lock, flags);
2787 if (rq->curr->sched_class->post_schedule)
2788 rq->curr->sched_class->post_schedule(rq);
2789 spin_unlock_irqrestore(&rq->lock, flags);
2790
2791 rq->post_schedule = 0;
2792 }
2793 }
2794
2795 #else
2796
2797 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2798 {
2799 }
2800
2801 static inline void post_schedule(struct rq *rq)
2802 {
2803 }
2804
2805 #endif
2806
2807 /**
2808 * schedule_tail - first thing a freshly forked thread must call.
2809 * @prev: the thread we just switched away from.
2810 */
2811 asmlinkage void schedule_tail(struct task_struct *prev)
2812 __releases(rq->lock)
2813 {
2814 struct rq *rq = this_rq();
2815
2816 finish_task_switch(rq, prev);
2817
2818 /*
2819 * FIXME: do we need to worry about rq being invalidated by the
2820 * task_switch?
2821 */
2822 post_schedule(rq);
2823
2824 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2825 /* In this case, finish_task_switch does not reenable preemption */
2826 preempt_enable();
2827 #endif
2828 if (current->set_child_tid)
2829 put_user(task_pid_vnr(current), current->set_child_tid);
2830 }
2831
2832 /*
2833 * context_switch - switch to the new MM and the new
2834 * thread's register state.
2835 */
2836 static inline void
2837 context_switch(struct rq *rq, struct task_struct *prev,
2838 struct task_struct *next)
2839 {
2840 struct mm_struct *mm, *oldmm;
2841
2842 prepare_task_switch(rq, prev, next);
2843 trace_sched_switch(rq, prev, next);
2844 mm = next->mm;
2845 oldmm = prev->active_mm;
2846 /*
2847 * For paravirt, this is coupled with an exit in switch_to to
2848 * combine the page table reload and the switch backend into
2849 * one hypercall.
2850 */
2851 arch_start_context_switch(prev);
2852
2853 if (likely(!mm)) {
2854 next->active_mm = oldmm;
2855 atomic_inc(&oldmm->mm_count);
2856 enter_lazy_tlb(oldmm, next);
2857 } else
2858 switch_mm(oldmm, mm, next);
2859
2860 if (likely(!prev->mm)) {
2861 prev->active_mm = NULL;
2862 rq->prev_mm = oldmm;
2863 }
2864 /*
2865 * Since the runqueue lock will be released by the next
2866 * task (which is an invalid locking op but in the case
2867 * of the scheduler it's an obvious special-case), so we
2868 * do an early lockdep release here:
2869 */
2870 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2871 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2872 #endif
2873
2874 /* Here we just switch the register state and the stack. */
2875 switch_to(prev, next, prev);
2876
2877 barrier();
2878 /*
2879 * this_rq must be evaluated again because prev may have moved
2880 * CPUs since it called schedule(), thus the 'rq' on its stack
2881 * frame will be invalid.
2882 */
2883 finish_task_switch(this_rq(), prev);
2884 }
2885
2886 /*
2887 * nr_running, nr_uninterruptible and nr_context_switches:
2888 *
2889 * externally visible scheduler statistics: current number of runnable
2890 * threads, current number of uninterruptible-sleeping threads, total
2891 * number of context switches performed since bootup.
2892 */
2893 unsigned long nr_running(void)
2894 {
2895 unsigned long i, sum = 0;
2896
2897 for_each_online_cpu(i)
2898 sum += cpu_rq(i)->nr_running;
2899
2900 return sum;
2901 }
2902
2903 unsigned long nr_uninterruptible(void)
2904 {
2905 unsigned long i, sum = 0;
2906
2907 for_each_possible_cpu(i)
2908 sum += cpu_rq(i)->nr_uninterruptible;
2909
2910 /*
2911 * Since we read the counters lockless, it might be slightly
2912 * inaccurate. Do not allow it to go below zero though:
2913 */
2914 if (unlikely((long)sum < 0))
2915 sum = 0;
2916
2917 return sum;
2918 }
2919
2920 unsigned long long nr_context_switches(void)
2921 {
2922 int i;
2923 unsigned long long sum = 0;
2924
2925 for_each_possible_cpu(i)
2926 sum += cpu_rq(i)->nr_switches;
2927
2928 return sum;
2929 }
2930
2931 unsigned long nr_iowait(void)
2932 {
2933 unsigned long i, sum = 0;
2934
2935 for_each_possible_cpu(i)
2936 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2937
2938 return sum;
2939 }
2940
2941 unsigned long nr_iowait_cpu(void)
2942 {
2943 struct rq *this = this_rq();
2944 return atomic_read(&this->nr_iowait);
2945 }
2946
2947 unsigned long this_cpu_load(void)
2948 {
2949 struct rq *this = this_rq();
2950 return this->cpu_load[0];
2951 }
2952
2953
2954 /* Variables and functions for calc_load */
2955 static atomic_long_t calc_load_tasks;
2956 static unsigned long calc_load_update;
2957 unsigned long avenrun[3];
2958 EXPORT_SYMBOL(avenrun);
2959
2960 /**
2961 * get_avenrun - get the load average array
2962 * @loads: pointer to dest load array
2963 * @offset: offset to add
2964 * @shift: shift count to shift the result left
2965 *
2966 * These values are estimates at best, so no need for locking.
2967 */
2968 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2969 {
2970 loads[0] = (avenrun[0] + offset) << shift;
2971 loads[1] = (avenrun[1] + offset) << shift;
2972 loads[2] = (avenrun[2] + offset) << shift;
2973 }
2974
2975 static unsigned long
2976 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2977 {
2978 load *= exp;
2979 load += active * (FIXED_1 - exp);
2980 return load >> FSHIFT;
2981 }
2982
2983 /*
2984 * calc_load - update the avenrun load estimates 10 ticks after the
2985 * CPUs have updated calc_load_tasks.
2986 */
2987 void calc_global_load(void)
2988 {
2989 unsigned long upd = calc_load_update + 10;
2990 long active;
2991
2992 if (time_before(jiffies, upd))
2993 return;
2994
2995 active = atomic_long_read(&calc_load_tasks);
2996 active = active > 0 ? active * FIXED_1 : 0;
2997
2998 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2999 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3000 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3001
3002 calc_load_update += LOAD_FREQ;
3003 }
3004
3005 /*
3006 * Either called from update_cpu_load() or from a cpu going idle
3007 */
3008 static void calc_load_account_active(struct rq *this_rq)
3009 {
3010 long nr_active, delta;
3011
3012 nr_active = this_rq->nr_running;
3013 nr_active += (long) this_rq->nr_uninterruptible;
3014
3015 if (nr_active != this_rq->calc_load_active) {
3016 delta = nr_active - this_rq->calc_load_active;
3017 this_rq->calc_load_active = nr_active;
3018 atomic_long_add(delta, &calc_load_tasks);
3019 }
3020 }
3021
3022 /*
3023 * Update rq->cpu_load[] statistics. This function is usually called every
3024 * scheduler tick (TICK_NSEC).
3025 */
3026 static void update_cpu_load(struct rq *this_rq)
3027 {
3028 unsigned long this_load = this_rq->load.weight;
3029 int i, scale;
3030
3031 this_rq->nr_load_updates++;
3032
3033 /* Update our load: */
3034 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3035 unsigned long old_load, new_load;
3036
3037 /* scale is effectively 1 << i now, and >> i divides by scale */
3038
3039 old_load = this_rq->cpu_load[i];
3040 new_load = this_load;
3041 /*
3042 * Round up the averaging division if load is increasing. This
3043 * prevents us from getting stuck on 9 if the load is 10, for
3044 * example.
3045 */
3046 if (new_load > old_load)
3047 new_load += scale-1;
3048 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3049 }
3050
3051 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3052 this_rq->calc_load_update += LOAD_FREQ;
3053 calc_load_account_active(this_rq);
3054 }
3055 }
3056
3057 #ifdef CONFIG_SMP
3058
3059 /*
3060 * double_rq_lock - safely lock two runqueues
3061 *
3062 * Note this does not disable interrupts like task_rq_lock,
3063 * you need to do so manually before calling.
3064 */
3065 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3066 __acquires(rq1->lock)
3067 __acquires(rq2->lock)
3068 {
3069 BUG_ON(!irqs_disabled());
3070 if (rq1 == rq2) {
3071 spin_lock(&rq1->lock);
3072 __acquire(rq2->lock); /* Fake it out ;) */
3073 } else {
3074 if (rq1 < rq2) {
3075 spin_lock(&rq1->lock);
3076 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3077 } else {
3078 spin_lock(&rq2->lock);
3079 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3080 }
3081 }
3082 update_rq_clock(rq1);
3083 update_rq_clock(rq2);
3084 }
3085
3086 /*
3087 * double_rq_unlock - safely unlock two runqueues
3088 *
3089 * Note this does not restore interrupts like task_rq_unlock,
3090 * you need to do so manually after calling.
3091 */
3092 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3093 __releases(rq1->lock)
3094 __releases(rq2->lock)
3095 {
3096 spin_unlock(&rq1->lock);
3097 if (rq1 != rq2)
3098 spin_unlock(&rq2->lock);
3099 else
3100 __release(rq2->lock);
3101 }
3102
3103 /*
3104 * If dest_cpu is allowed for this process, migrate the task to it.
3105 * This is accomplished by forcing the cpu_allowed mask to only
3106 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3107 * the cpu_allowed mask is restored.
3108 */
3109 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3110 {
3111 struct migration_req req;
3112 unsigned long flags;
3113 struct rq *rq;
3114
3115 rq = task_rq_lock(p, &flags);
3116 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3117 || unlikely(!cpu_active(dest_cpu)))
3118 goto out;
3119
3120 /* force the process onto the specified CPU */
3121 if (migrate_task(p, dest_cpu, &req)) {
3122 /* Need to wait for migration thread (might exit: take ref). */
3123 struct task_struct *mt = rq->migration_thread;
3124
3125 get_task_struct(mt);
3126 task_rq_unlock(rq, &flags);
3127 wake_up_process(mt);
3128 put_task_struct(mt);
3129 wait_for_completion(&req.done);
3130
3131 return;
3132 }
3133 out:
3134 task_rq_unlock(rq, &flags);
3135 }
3136
3137 /*
3138 * sched_exec - execve() is a valuable balancing opportunity, because at
3139 * this point the task has the smallest effective memory and cache footprint.
3140 */
3141 void sched_exec(void)
3142 {
3143 int new_cpu, this_cpu = get_cpu();
3144 new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
3145 put_cpu();
3146 if (new_cpu != this_cpu)
3147 sched_migrate_task(current, new_cpu);
3148 }
3149
3150 /*
3151 * pull_task - move a task from a remote runqueue to the local runqueue.
3152 * Both runqueues must be locked.
3153 */
3154 static void pull_task(struct rq *src_rq, struct task_struct *p,
3155 struct rq *this_rq, int this_cpu)
3156 {
3157 deactivate_task(src_rq, p, 0);
3158 set_task_cpu(p, this_cpu);
3159 activate_task(this_rq, p, 0);
3160 check_preempt_curr(this_rq, p, 0);
3161 }
3162
3163 /*
3164 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3165 */
3166 static
3167 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3168 struct sched_domain *sd, enum cpu_idle_type idle,
3169 int *all_pinned)
3170 {
3171 int tsk_cache_hot = 0;
3172 /*
3173 * We do not migrate tasks that are:
3174 * 1) running (obviously), or
3175 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3176 * 3) are cache-hot on their current CPU.
3177 */
3178 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3179 schedstat_inc(p, se.nr_failed_migrations_affine);
3180 return 0;
3181 }
3182 *all_pinned = 0;
3183
3184 if (task_running(rq, p)) {
3185 schedstat_inc(p, se.nr_failed_migrations_running);
3186 return 0;
3187 }
3188
3189 /*
3190 * Aggressive migration if:
3191 * 1) task is cache cold, or
3192 * 2) too many balance attempts have failed.
3193 */
3194
3195 tsk_cache_hot = task_hot(p, rq->clock, sd);
3196 if (!tsk_cache_hot ||
3197 sd->nr_balance_failed > sd->cache_nice_tries) {
3198 #ifdef CONFIG_SCHEDSTATS
3199 if (tsk_cache_hot) {
3200 schedstat_inc(sd, lb_hot_gained[idle]);
3201 schedstat_inc(p, se.nr_forced_migrations);
3202 }
3203 #endif
3204 return 1;
3205 }
3206
3207 if (tsk_cache_hot) {
3208 schedstat_inc(p, se.nr_failed_migrations_hot);
3209 return 0;
3210 }
3211 return 1;
3212 }
3213
3214 static unsigned long
3215 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3216 unsigned long max_load_move, struct sched_domain *sd,
3217 enum cpu_idle_type idle, int *all_pinned,
3218 int *this_best_prio, struct rq_iterator *iterator)
3219 {
3220 int loops = 0, pulled = 0, pinned = 0;
3221 struct task_struct *p;
3222 long rem_load_move = max_load_move;
3223
3224 if (max_load_move == 0)
3225 goto out;
3226
3227 pinned = 1;
3228
3229 /*
3230 * Start the load-balancing iterator:
3231 */
3232 p = iterator->start(iterator->arg);
3233 next:
3234 if (!p || loops++ > sysctl_sched_nr_migrate)
3235 goto out;
3236
3237 if ((p->se.load.weight >> 1) > rem_load_move ||
3238 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3239 p = iterator->next(iterator->arg);
3240 goto next;
3241 }
3242
3243 pull_task(busiest, p, this_rq, this_cpu);
3244 pulled++;
3245 rem_load_move -= p->se.load.weight;
3246
3247 #ifdef CONFIG_PREEMPT
3248 /*
3249 * NEWIDLE balancing is a source of latency, so preemptible kernels
3250 * will stop after the first task is pulled to minimize the critical
3251 * section.
3252 */
3253 if (idle == CPU_NEWLY_IDLE)
3254 goto out;
3255 #endif
3256
3257 /*
3258 * We only want to steal up to the prescribed amount of weighted load.
3259 */
3260 if (rem_load_move > 0) {
3261 if (p->prio < *this_best_prio)
3262 *this_best_prio = p->prio;
3263 p = iterator->next(iterator->arg);
3264 goto next;
3265 }
3266 out:
3267 /*
3268 * Right now, this is one of only two places pull_task() is called,
3269 * so we can safely collect pull_task() stats here rather than
3270 * inside pull_task().
3271 */
3272 schedstat_add(sd, lb_gained[idle], pulled);
3273
3274 if (all_pinned)
3275 *all_pinned = pinned;
3276
3277 return max_load_move - rem_load_move;
3278 }
3279
3280 /*
3281 * move_tasks tries to move up to max_load_move weighted load from busiest to
3282 * this_rq, as part of a balancing operation within domain "sd".
3283 * Returns 1 if successful and 0 otherwise.
3284 *
3285 * Called with both runqueues locked.
3286 */
3287 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3288 unsigned long max_load_move,
3289 struct sched_domain *sd, enum cpu_idle_type idle,
3290 int *all_pinned)
3291 {
3292 const struct sched_class *class = sched_class_highest;
3293 unsigned long total_load_moved = 0;
3294 int this_best_prio = this_rq->curr->prio;
3295
3296 do {
3297 total_load_moved +=
3298 class->load_balance(this_rq, this_cpu, busiest,
3299 max_load_move - total_load_moved,
3300 sd, idle, all_pinned, &this_best_prio);
3301 class = class->next;
3302
3303 #ifdef CONFIG_PREEMPT
3304 /*
3305 * NEWIDLE balancing is a source of latency, so preemptible
3306 * kernels will stop after the first task is pulled to minimize
3307 * the critical section.
3308 */
3309 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3310 break;
3311 #endif
3312 } while (class && max_load_move > total_load_moved);
3313
3314 return total_load_moved > 0;
3315 }
3316
3317 static int
3318 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3319 struct sched_domain *sd, enum cpu_idle_type idle,
3320 struct rq_iterator *iterator)
3321 {
3322 struct task_struct *p = iterator->start(iterator->arg);
3323 int pinned = 0;
3324
3325 while (p) {
3326 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3327 pull_task(busiest, p, this_rq, this_cpu);
3328 /*
3329 * Right now, this is only the second place pull_task()
3330 * is called, so we can safely collect pull_task()
3331 * stats here rather than inside pull_task().
3332 */
3333 schedstat_inc(sd, lb_gained[idle]);
3334
3335 return 1;
3336 }
3337 p = iterator->next(iterator->arg);
3338 }
3339
3340 return 0;
3341 }
3342
3343 /*
3344 * move_one_task tries to move exactly one task from busiest to this_rq, as
3345 * part of active balancing operations within "domain".
3346 * Returns 1 if successful and 0 otherwise.
3347 *
3348 * Called with both runqueues locked.
3349 */
3350 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3351 struct sched_domain *sd, enum cpu_idle_type idle)
3352 {
3353 const struct sched_class *class;
3354
3355 for_each_class(class) {
3356 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3357 return 1;
3358 }
3359
3360 return 0;
3361 }
3362 /********** Helpers for find_busiest_group ************************/
3363 /*
3364 * sd_lb_stats - Structure to store the statistics of a sched_domain
3365 * during load balancing.
3366 */
3367 struct sd_lb_stats {
3368 struct sched_group *busiest; /* Busiest group in this sd */
3369 struct sched_group *this; /* Local group in this sd */
3370 unsigned long total_load; /* Total load of all groups in sd */
3371 unsigned long total_pwr; /* Total power of all groups in sd */
3372 unsigned long avg_load; /* Average load across all groups in sd */
3373
3374 /** Statistics of this group */
3375 unsigned long this_load;
3376 unsigned long this_load_per_task;
3377 unsigned long this_nr_running;
3378
3379 /* Statistics of the busiest group */
3380 unsigned long max_load;
3381 unsigned long busiest_load_per_task;
3382 unsigned long busiest_nr_running;
3383
3384 int group_imb; /* Is there imbalance in this sd */
3385 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3386 int power_savings_balance; /* Is powersave balance needed for this sd */
3387 struct sched_group *group_min; /* Least loaded group in sd */
3388 struct sched_group *group_leader; /* Group which relieves group_min */
3389 unsigned long min_load_per_task; /* load_per_task in group_min */
3390 unsigned long leader_nr_running; /* Nr running of group_leader */
3391 unsigned long min_nr_running; /* Nr running of group_min */
3392 #endif
3393 };
3394
3395 /*
3396 * sg_lb_stats - stats of a sched_group required for load_balancing
3397 */
3398 struct sg_lb_stats {
3399 unsigned long avg_load; /*Avg load across the CPUs of the group */
3400 unsigned long group_load; /* Total load over the CPUs of the group */
3401 unsigned long sum_nr_running; /* Nr tasks running in the group */
3402 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3403 unsigned long group_capacity;
3404 int group_imb; /* Is there an imbalance in the group ? */
3405 };
3406
3407 /**
3408 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3409 * @group: The group whose first cpu is to be returned.
3410 */
3411 static inline unsigned int group_first_cpu(struct sched_group *group)
3412 {
3413 return cpumask_first(sched_group_cpus(group));
3414 }
3415
3416 /**
3417 * get_sd_load_idx - Obtain the load index for a given sched domain.
3418 * @sd: The sched_domain whose load_idx is to be obtained.
3419 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3420 */
3421 static inline int get_sd_load_idx(struct sched_domain *sd,
3422 enum cpu_idle_type idle)
3423 {
3424 int load_idx;
3425
3426 switch (idle) {
3427 case CPU_NOT_IDLE:
3428 load_idx = sd->busy_idx;
3429 break;
3430
3431 case CPU_NEWLY_IDLE:
3432 load_idx = sd->newidle_idx;
3433 break;
3434 default:
3435 load_idx = sd->idle_idx;
3436 break;
3437 }
3438
3439 return load_idx;
3440 }
3441
3442
3443 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3444 /**
3445 * init_sd_power_savings_stats - Initialize power savings statistics for
3446 * the given sched_domain, during load balancing.
3447 *
3448 * @sd: Sched domain whose power-savings statistics are to be initialized.
3449 * @sds: Variable containing the statistics for sd.
3450 * @idle: Idle status of the CPU at which we're performing load-balancing.
3451 */
3452 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3453 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3454 {
3455 /*
3456 * Busy processors will not participate in power savings
3457 * balance.
3458 */
3459 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3460 sds->power_savings_balance = 0;
3461 else {
3462 sds->power_savings_balance = 1;
3463 sds->min_nr_running = ULONG_MAX;
3464 sds->leader_nr_running = 0;
3465 }
3466 }
3467
3468 /**
3469 * update_sd_power_savings_stats - Update the power saving stats for a
3470 * sched_domain while performing load balancing.
3471 *
3472 * @group: sched_group belonging to the sched_domain under consideration.
3473 * @sds: Variable containing the statistics of the sched_domain
3474 * @local_group: Does group contain the CPU for which we're performing
3475 * load balancing ?
3476 * @sgs: Variable containing the statistics of the group.
3477 */
3478 static inline void update_sd_power_savings_stats(struct sched_group *group,
3479 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3480 {
3481
3482 if (!sds->power_savings_balance)
3483 return;
3484
3485 /*
3486 * If the local group is idle or completely loaded
3487 * no need to do power savings balance at this domain
3488 */
3489 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3490 !sds->this_nr_running))
3491 sds->power_savings_balance = 0;
3492
3493 /*
3494 * If a group is already running at full capacity or idle,
3495 * don't include that group in power savings calculations
3496 */
3497 if (!sds->power_savings_balance ||
3498 sgs->sum_nr_running >= sgs->group_capacity ||
3499 !sgs->sum_nr_running)
3500 return;
3501
3502 /*
3503 * Calculate the group which has the least non-idle load.
3504 * This is the group from where we need to pick up the load
3505 * for saving power
3506 */
3507 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3508 (sgs->sum_nr_running == sds->min_nr_running &&
3509 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3510 sds->group_min = group;
3511 sds->min_nr_running = sgs->sum_nr_running;
3512 sds->min_load_per_task = sgs->sum_weighted_load /
3513 sgs->sum_nr_running;
3514 }
3515
3516 /*
3517 * Calculate the group which is almost near its
3518 * capacity but still has some space to pick up some load
3519 * from other group and save more power
3520 */
3521 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3522 return;
3523
3524 if (sgs->sum_nr_running > sds->leader_nr_running ||
3525 (sgs->sum_nr_running == sds->leader_nr_running &&
3526 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3527 sds->group_leader = group;
3528 sds->leader_nr_running = sgs->sum_nr_running;
3529 }
3530 }
3531
3532 /**
3533 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3534 * @sds: Variable containing the statistics of the sched_domain
3535 * under consideration.
3536 * @this_cpu: Cpu at which we're currently performing load-balancing.
3537 * @imbalance: Variable to store the imbalance.
3538 *
3539 * Description:
3540 * Check if we have potential to perform some power-savings balance.
3541 * If yes, set the busiest group to be the least loaded group in the
3542 * sched_domain, so that it's CPUs can be put to idle.
3543 *
3544 * Returns 1 if there is potential to perform power-savings balance.
3545 * Else returns 0.
3546 */
3547 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3548 int this_cpu, unsigned long *imbalance)
3549 {
3550 if (!sds->power_savings_balance)
3551 return 0;
3552
3553 if (sds->this != sds->group_leader ||
3554 sds->group_leader == sds->group_min)
3555 return 0;
3556
3557 *imbalance = sds->min_load_per_task;
3558 sds->busiest = sds->group_min;
3559
3560 return 1;
3561
3562 }
3563 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3564 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3565 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3566 {
3567 return;
3568 }
3569
3570 static inline void update_sd_power_savings_stats(struct sched_group *group,
3571 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3572 {
3573 return;
3574 }
3575
3576 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3577 int this_cpu, unsigned long *imbalance)
3578 {
3579 return 0;
3580 }
3581 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3582
3583
3584 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3585 {
3586 return SCHED_LOAD_SCALE;
3587 }
3588
3589 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3590 {
3591 return default_scale_freq_power(sd, cpu);
3592 }
3593
3594 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3595 {
3596 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3597 unsigned long smt_gain = sd->smt_gain;
3598
3599 smt_gain /= weight;
3600
3601 return smt_gain;
3602 }
3603
3604 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3605 {
3606 return default_scale_smt_power(sd, cpu);
3607 }
3608
3609 unsigned long scale_rt_power(int cpu)
3610 {
3611 struct rq *rq = cpu_rq(cpu);
3612 u64 total, available;
3613
3614 sched_avg_update(rq);
3615
3616 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3617 available = total - rq->rt_avg;
3618
3619 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3620 total = SCHED_LOAD_SCALE;
3621
3622 total >>= SCHED_LOAD_SHIFT;
3623
3624 return div_u64(available, total);
3625 }
3626
3627 static void update_cpu_power(struct sched_domain *sd, int cpu)
3628 {
3629 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3630 unsigned long power = SCHED_LOAD_SCALE;
3631 struct sched_group *sdg = sd->groups;
3632
3633 if (sched_feat(ARCH_POWER))
3634 power *= arch_scale_freq_power(sd, cpu);
3635 else
3636 power *= default_scale_freq_power(sd, cpu);
3637
3638 power >>= SCHED_LOAD_SHIFT;
3639
3640 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3641 if (sched_feat(ARCH_POWER))
3642 power *= arch_scale_smt_power(sd, cpu);
3643 else
3644 power *= default_scale_smt_power(sd, cpu);
3645
3646 power >>= SCHED_LOAD_SHIFT;
3647 }
3648
3649 power *= scale_rt_power(cpu);
3650 power >>= SCHED_LOAD_SHIFT;
3651
3652 if (!power)
3653 power = 1;
3654
3655 sdg->cpu_power = power;
3656 }
3657
3658 static void update_group_power(struct sched_domain *sd, int cpu)
3659 {
3660 struct sched_domain *child = sd->child;
3661 struct sched_group *group, *sdg = sd->groups;
3662 unsigned long power;
3663
3664 if (!child) {
3665 update_cpu_power(sd, cpu);
3666 return;
3667 }
3668
3669 power = 0;
3670
3671 group = child->groups;
3672 do {
3673 power += group->cpu_power;
3674 group = group->next;
3675 } while (group != child->groups);
3676
3677 sdg->cpu_power = power;
3678 }
3679
3680 /**
3681 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3682 * @sd: The sched_domain whose statistics are to be updated.
3683 * @group: sched_group whose statistics are to be updated.
3684 * @this_cpu: Cpu for which load balance is currently performed.
3685 * @idle: Idle status of this_cpu
3686 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3687 * @sd_idle: Idle status of the sched_domain containing group.
3688 * @local_group: Does group contain this_cpu.
3689 * @cpus: Set of cpus considered for load balancing.
3690 * @balance: Should we balance.
3691 * @sgs: variable to hold the statistics for this group.
3692 */
3693 static inline void update_sg_lb_stats(struct sched_domain *sd,
3694 struct sched_group *group, int this_cpu,
3695 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3696 int local_group, const struct cpumask *cpus,
3697 int *balance, struct sg_lb_stats *sgs)
3698 {
3699 unsigned long load, max_cpu_load, min_cpu_load;
3700 int i;
3701 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3702 unsigned long sum_avg_load_per_task;
3703 unsigned long avg_load_per_task;
3704
3705 if (local_group) {
3706 balance_cpu = group_first_cpu(group);
3707 if (balance_cpu == this_cpu)
3708 update_group_power(sd, this_cpu);
3709 }
3710
3711 /* Tally up the load of all CPUs in the group */
3712 sum_avg_load_per_task = avg_load_per_task = 0;
3713 max_cpu_load = 0;
3714 min_cpu_load = ~0UL;
3715
3716 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3717 struct rq *rq = cpu_rq(i);
3718
3719 if (*sd_idle && rq->nr_running)
3720 *sd_idle = 0;
3721
3722 /* Bias balancing toward cpus of our domain */
3723 if (local_group) {
3724 if (idle_cpu(i) && !first_idle_cpu) {
3725 first_idle_cpu = 1;
3726 balance_cpu = i;
3727 }
3728
3729 load = target_load(i, load_idx);
3730 } else {
3731 load = source_load(i, load_idx);
3732 if (load > max_cpu_load)
3733 max_cpu_load = load;
3734 if (min_cpu_load > load)
3735 min_cpu_load = load;
3736 }
3737
3738 sgs->group_load += load;
3739 sgs->sum_nr_running += rq->nr_running;
3740 sgs->sum_weighted_load += weighted_cpuload(i);
3741
3742 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3743 }
3744
3745 /*
3746 * First idle cpu or the first cpu(busiest) in this sched group
3747 * is eligible for doing load balancing at this and above
3748 * domains. In the newly idle case, we will allow all the cpu's
3749 * to do the newly idle load balance.
3750 */
3751 if (idle != CPU_NEWLY_IDLE && local_group &&
3752 balance_cpu != this_cpu && balance) {
3753 *balance = 0;
3754 return;
3755 }
3756
3757 /* Adjust by relative CPU power of the group */
3758 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3759
3760
3761 /*
3762 * Consider the group unbalanced when the imbalance is larger
3763 * than the average weight of two tasks.
3764 *
3765 * APZ: with cgroup the avg task weight can vary wildly and
3766 * might not be a suitable number - should we keep a
3767 * normalized nr_running number somewhere that negates
3768 * the hierarchy?
3769 */
3770 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3771 group->cpu_power;
3772
3773 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3774 sgs->group_imb = 1;
3775
3776 sgs->group_capacity =
3777 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3778 }
3779
3780 /**
3781 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3782 * @sd: sched_domain whose statistics are to be updated.
3783 * @this_cpu: Cpu for which load balance is currently performed.
3784 * @idle: Idle status of this_cpu
3785 * @sd_idle: Idle status of the sched_domain containing group.
3786 * @cpus: Set of cpus considered for load balancing.
3787 * @balance: Should we balance.
3788 * @sds: variable to hold the statistics for this sched_domain.
3789 */
3790 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3791 enum cpu_idle_type idle, int *sd_idle,
3792 const struct cpumask *cpus, int *balance,
3793 struct sd_lb_stats *sds)
3794 {
3795 struct sched_domain *child = sd->child;
3796 struct sched_group *group = sd->groups;
3797 struct sg_lb_stats sgs;
3798 int load_idx, prefer_sibling = 0;
3799
3800 if (child && child->flags & SD_PREFER_SIBLING)
3801 prefer_sibling = 1;
3802
3803 init_sd_power_savings_stats(sd, sds, idle);
3804 load_idx = get_sd_load_idx(sd, idle);
3805
3806 do {
3807 int local_group;
3808
3809 local_group = cpumask_test_cpu(this_cpu,
3810 sched_group_cpus(group));
3811 memset(&sgs, 0, sizeof(sgs));
3812 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3813 local_group, cpus, balance, &sgs);
3814
3815 if (local_group && balance && !(*balance))
3816 return;
3817
3818 sds->total_load += sgs.group_load;
3819 sds->total_pwr += group->cpu_power;
3820
3821 /*
3822 * In case the child domain prefers tasks go to siblings
3823 * first, lower the group capacity to one so that we'll try
3824 * and move all the excess tasks away.
3825 */
3826 if (prefer_sibling)
3827 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3828
3829 if (local_group) {
3830 sds->this_load = sgs.avg_load;
3831 sds->this = group;
3832 sds->this_nr_running = sgs.sum_nr_running;
3833 sds->this_load_per_task = sgs.sum_weighted_load;
3834 } else if (sgs.avg_load > sds->max_load &&
3835 (sgs.sum_nr_running > sgs.group_capacity ||
3836 sgs.group_imb)) {
3837 sds->max_load = sgs.avg_load;
3838 sds->busiest = group;
3839 sds->busiest_nr_running = sgs.sum_nr_running;
3840 sds->busiest_load_per_task = sgs.sum_weighted_load;
3841 sds->group_imb = sgs.group_imb;
3842 }
3843
3844 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3845 group = group->next;
3846 } while (group != sd->groups);
3847 }
3848
3849 /**
3850 * fix_small_imbalance - Calculate the minor imbalance that exists
3851 * amongst the groups of a sched_domain, during
3852 * load balancing.
3853 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3854 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3855 * @imbalance: Variable to store the imbalance.
3856 */
3857 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3858 int this_cpu, unsigned long *imbalance)
3859 {
3860 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3861 unsigned int imbn = 2;
3862
3863 if (sds->this_nr_running) {
3864 sds->this_load_per_task /= sds->this_nr_running;
3865 if (sds->busiest_load_per_task >
3866 sds->this_load_per_task)
3867 imbn = 1;
3868 } else
3869 sds->this_load_per_task =
3870 cpu_avg_load_per_task(this_cpu);
3871
3872 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3873 sds->busiest_load_per_task * imbn) {
3874 *imbalance = sds->busiest_load_per_task;
3875 return;
3876 }
3877
3878 /*
3879 * OK, we don't have enough imbalance to justify moving tasks,
3880 * however we may be able to increase total CPU power used by
3881 * moving them.
3882 */
3883
3884 pwr_now += sds->busiest->cpu_power *
3885 min(sds->busiest_load_per_task, sds->max_load);
3886 pwr_now += sds->this->cpu_power *
3887 min(sds->this_load_per_task, sds->this_load);
3888 pwr_now /= SCHED_LOAD_SCALE;
3889
3890 /* Amount of load we'd subtract */
3891 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3892 sds->busiest->cpu_power;
3893 if (sds->max_load > tmp)
3894 pwr_move += sds->busiest->cpu_power *
3895 min(sds->busiest_load_per_task, sds->max_load - tmp);
3896
3897 /* Amount of load we'd add */
3898 if (sds->max_load * sds->busiest->cpu_power <
3899 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3900 tmp = (sds->max_load * sds->busiest->cpu_power) /
3901 sds->this->cpu_power;
3902 else
3903 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3904 sds->this->cpu_power;
3905 pwr_move += sds->this->cpu_power *
3906 min(sds->this_load_per_task, sds->this_load + tmp);
3907 pwr_move /= SCHED_LOAD_SCALE;
3908
3909 /* Move if we gain throughput */
3910 if (pwr_move > pwr_now)
3911 *imbalance = sds->busiest_load_per_task;
3912 }
3913
3914 /**
3915 * calculate_imbalance - Calculate the amount of imbalance present within the
3916 * groups of a given sched_domain during load balance.
3917 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3918 * @this_cpu: Cpu for which currently load balance is being performed.
3919 * @imbalance: The variable to store the imbalance.
3920 */
3921 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3922 unsigned long *imbalance)
3923 {
3924 unsigned long max_pull;
3925 /*
3926 * In the presence of smp nice balancing, certain scenarios can have
3927 * max load less than avg load(as we skip the groups at or below
3928 * its cpu_power, while calculating max_load..)
3929 */
3930 if (sds->max_load < sds->avg_load) {
3931 *imbalance = 0;
3932 return fix_small_imbalance(sds, this_cpu, imbalance);
3933 }
3934
3935 /* Don't want to pull so many tasks that a group would go idle */
3936 max_pull = min(sds->max_load - sds->avg_load,
3937 sds->max_load - sds->busiest_load_per_task);
3938
3939 /* How much load to actually move to equalise the imbalance */
3940 *imbalance = min(max_pull * sds->busiest->cpu_power,
3941 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3942 / SCHED_LOAD_SCALE;
3943
3944 /*
3945 * if *imbalance is less than the average load per runnable task
3946 * there is no gaurantee that any tasks will be moved so we'll have
3947 * a think about bumping its value to force at least one task to be
3948 * moved
3949 */
3950 if (*imbalance < sds->busiest_load_per_task)
3951 return fix_small_imbalance(sds, this_cpu, imbalance);
3952
3953 }
3954 /******* find_busiest_group() helpers end here *********************/
3955
3956 /**
3957 * find_busiest_group - Returns the busiest group within the sched_domain
3958 * if there is an imbalance. If there isn't an imbalance, and
3959 * the user has opted for power-savings, it returns a group whose
3960 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3961 * such a group exists.
3962 *
3963 * Also calculates the amount of weighted load which should be moved
3964 * to restore balance.
3965 *
3966 * @sd: The sched_domain whose busiest group is to be returned.
3967 * @this_cpu: The cpu for which load balancing is currently being performed.
3968 * @imbalance: Variable which stores amount of weighted load which should
3969 * be moved to restore balance/put a group to idle.
3970 * @idle: The idle status of this_cpu.
3971 * @sd_idle: The idleness of sd
3972 * @cpus: The set of CPUs under consideration for load-balancing.
3973 * @balance: Pointer to a variable indicating if this_cpu
3974 * is the appropriate cpu to perform load balancing at this_level.
3975 *
3976 * Returns: - the busiest group if imbalance exists.
3977 * - If no imbalance and user has opted for power-savings balance,
3978 * return the least loaded group whose CPUs can be
3979 * put to idle by rebalancing its tasks onto our group.
3980 */
3981 static struct sched_group *
3982 find_busiest_group(struct sched_domain *sd, int this_cpu,
3983 unsigned long *imbalance, enum cpu_idle_type idle,
3984 int *sd_idle, const struct cpumask *cpus, int *balance)
3985 {
3986 struct sd_lb_stats sds;
3987
3988 memset(&sds, 0, sizeof(sds));
3989
3990 /*
3991 * Compute the various statistics relavent for load balancing at
3992 * this level.
3993 */
3994 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3995 balance, &sds);
3996
3997 /* Cases where imbalance does not exist from POV of this_cpu */
3998 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3999 * at this level.
4000 * 2) There is no busy sibling group to pull from.
4001 * 3) This group is the busiest group.
4002 * 4) This group is more busy than the avg busieness at this
4003 * sched_domain.
4004 * 5) The imbalance is within the specified limit.
4005 * 6) Any rebalance would lead to ping-pong
4006 */
4007 if (balance && !(*balance))
4008 goto ret;
4009
4010 if (!sds.busiest || sds.busiest_nr_running == 0)
4011 goto out_balanced;
4012
4013 if (sds.this_load >= sds.max_load)
4014 goto out_balanced;
4015
4016 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4017
4018 if (sds.this_load >= sds.avg_load)
4019 goto out_balanced;
4020
4021 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4022 goto out_balanced;
4023
4024 sds.busiest_load_per_task /= sds.busiest_nr_running;
4025 if (sds.group_imb)
4026 sds.busiest_load_per_task =
4027 min(sds.busiest_load_per_task, sds.avg_load);
4028
4029 /*
4030 * We're trying to get all the cpus to the average_load, so we don't
4031 * want to push ourselves above the average load, nor do we wish to
4032 * reduce the max loaded cpu below the average load, as either of these
4033 * actions would just result in more rebalancing later, and ping-pong
4034 * tasks around. Thus we look for the minimum possible imbalance.
4035 * Negative imbalances (*we* are more loaded than anyone else) will
4036 * be counted as no imbalance for these purposes -- we can't fix that
4037 * by pulling tasks to us. Be careful of negative numbers as they'll
4038 * appear as very large values with unsigned longs.
4039 */
4040 if (sds.max_load <= sds.busiest_load_per_task)
4041 goto out_balanced;
4042
4043 /* Looks like there is an imbalance. Compute it */
4044 calculate_imbalance(&sds, this_cpu, imbalance);
4045 return sds.busiest;
4046
4047 out_balanced:
4048 /*
4049 * There is no obvious imbalance. But check if we can do some balancing
4050 * to save power.
4051 */
4052 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4053 return sds.busiest;
4054 ret:
4055 *imbalance = 0;
4056 return NULL;
4057 }
4058
4059 /*
4060 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4061 */
4062 static struct rq *
4063 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4064 unsigned long imbalance, const struct cpumask *cpus)
4065 {
4066 struct rq *busiest = NULL, *rq;
4067 unsigned long max_load = 0;
4068 int i;
4069
4070 for_each_cpu(i, sched_group_cpus(group)) {
4071 unsigned long power = power_of(i);
4072 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4073 unsigned long wl;
4074
4075 if (!cpumask_test_cpu(i, cpus))
4076 continue;
4077
4078 rq = cpu_rq(i);
4079 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4080 wl /= power;
4081
4082 if (capacity && rq->nr_running == 1 && wl > imbalance)
4083 continue;
4084
4085 if (wl > max_load) {
4086 max_load = wl;
4087 busiest = rq;
4088 }
4089 }
4090
4091 return busiest;
4092 }
4093
4094 /*
4095 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4096 * so long as it is large enough.
4097 */
4098 #define MAX_PINNED_INTERVAL 512
4099
4100 /* Working cpumask for load_balance and load_balance_newidle. */
4101 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4102
4103 /*
4104 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4105 * tasks if there is an imbalance.
4106 */
4107 static int load_balance(int this_cpu, struct rq *this_rq,
4108 struct sched_domain *sd, enum cpu_idle_type idle,
4109 int *balance)
4110 {
4111 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4112 struct sched_group *group;
4113 unsigned long imbalance;
4114 struct rq *busiest;
4115 unsigned long flags;
4116 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4117
4118 cpumask_copy(cpus, cpu_active_mask);
4119
4120 /*
4121 * When power savings policy is enabled for the parent domain, idle
4122 * sibling can pick up load irrespective of busy siblings. In this case,
4123 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4124 * portraying it as CPU_NOT_IDLE.
4125 */
4126 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4127 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4128 sd_idle = 1;
4129
4130 schedstat_inc(sd, lb_count[idle]);
4131
4132 redo:
4133 update_shares(sd);
4134 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4135 cpus, balance);
4136
4137 if (*balance == 0)
4138 goto out_balanced;
4139
4140 if (!group) {
4141 schedstat_inc(sd, lb_nobusyg[idle]);
4142 goto out_balanced;
4143 }
4144
4145 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4146 if (!busiest) {
4147 schedstat_inc(sd, lb_nobusyq[idle]);
4148 goto out_balanced;
4149 }
4150
4151 BUG_ON(busiest == this_rq);
4152
4153 schedstat_add(sd, lb_imbalance[idle], imbalance);
4154
4155 ld_moved = 0;
4156 if (busiest->nr_running > 1) {
4157 /*
4158 * Attempt to move tasks. If find_busiest_group has found
4159 * an imbalance but busiest->nr_running <= 1, the group is
4160 * still unbalanced. ld_moved simply stays zero, so it is
4161 * correctly treated as an imbalance.
4162 */
4163 local_irq_save(flags);
4164 double_rq_lock(this_rq, busiest);
4165 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4166 imbalance, sd, idle, &all_pinned);
4167 double_rq_unlock(this_rq, busiest);
4168 local_irq_restore(flags);
4169
4170 /*
4171 * some other cpu did the load balance for us.
4172 */
4173 if (ld_moved && this_cpu != smp_processor_id())
4174 resched_cpu(this_cpu);
4175
4176 /* All tasks on this runqueue were pinned by CPU affinity */
4177 if (unlikely(all_pinned)) {
4178 cpumask_clear_cpu(cpu_of(busiest), cpus);
4179 if (!cpumask_empty(cpus))
4180 goto redo;
4181 goto out_balanced;
4182 }
4183 }
4184
4185 if (!ld_moved) {
4186 schedstat_inc(sd, lb_failed[idle]);
4187 sd->nr_balance_failed++;
4188
4189 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4190
4191 spin_lock_irqsave(&busiest->lock, flags);
4192
4193 /* don't kick the migration_thread, if the curr
4194 * task on busiest cpu can't be moved to this_cpu
4195 */
4196 if (!cpumask_test_cpu(this_cpu,
4197 &busiest->curr->cpus_allowed)) {
4198 spin_unlock_irqrestore(&busiest->lock, flags);
4199 all_pinned = 1;
4200 goto out_one_pinned;
4201 }
4202
4203 if (!busiest->active_balance) {
4204 busiest->active_balance = 1;
4205 busiest->push_cpu = this_cpu;
4206 active_balance = 1;
4207 }
4208 spin_unlock_irqrestore(&busiest->lock, flags);
4209 if (active_balance)
4210 wake_up_process(busiest->migration_thread);
4211
4212 /*
4213 * We've kicked active balancing, reset the failure
4214 * counter.
4215 */
4216 sd->nr_balance_failed = sd->cache_nice_tries+1;
4217 }
4218 } else
4219 sd->nr_balance_failed = 0;
4220
4221 if (likely(!active_balance)) {
4222 /* We were unbalanced, so reset the balancing interval */
4223 sd->balance_interval = sd->min_interval;
4224 } else {
4225 /*
4226 * If we've begun active balancing, start to back off. This
4227 * case may not be covered by the all_pinned logic if there
4228 * is only 1 task on the busy runqueue (because we don't call
4229 * move_tasks).
4230 */
4231 if (sd->balance_interval < sd->max_interval)
4232 sd->balance_interval *= 2;
4233 }
4234
4235 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4236 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4237 ld_moved = -1;
4238
4239 goto out;
4240
4241 out_balanced:
4242 schedstat_inc(sd, lb_balanced[idle]);
4243
4244 sd->nr_balance_failed = 0;
4245
4246 out_one_pinned:
4247 /* tune up the balancing interval */
4248 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4249 (sd->balance_interval < sd->max_interval))
4250 sd->balance_interval *= 2;
4251
4252 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4253 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4254 ld_moved = -1;
4255 else
4256 ld_moved = 0;
4257 out:
4258 if (ld_moved)
4259 update_shares(sd);
4260 return ld_moved;
4261 }
4262
4263 /*
4264 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4265 * tasks if there is an imbalance.
4266 *
4267 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4268 * this_rq is locked.
4269 */
4270 static int
4271 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4272 {
4273 struct sched_group *group;
4274 struct rq *busiest = NULL;
4275 unsigned long imbalance;
4276 int ld_moved = 0;
4277 int sd_idle = 0;
4278 int all_pinned = 0;
4279 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4280
4281 cpumask_copy(cpus, cpu_active_mask);
4282
4283 /*
4284 * When power savings policy is enabled for the parent domain, idle
4285 * sibling can pick up load irrespective of busy siblings. In this case,
4286 * let the state of idle sibling percolate up as IDLE, instead of
4287 * portraying it as CPU_NOT_IDLE.
4288 */
4289 if (sd->flags & SD_SHARE_CPUPOWER &&
4290 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4291 sd_idle = 1;
4292
4293 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4294 redo:
4295 update_shares_locked(this_rq, sd);
4296 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4297 &sd_idle, cpus, NULL);
4298 if (!group) {
4299 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4300 goto out_balanced;
4301 }
4302
4303 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4304 if (!busiest) {
4305 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4306 goto out_balanced;
4307 }
4308
4309 BUG_ON(busiest == this_rq);
4310
4311 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4312
4313 ld_moved = 0;
4314 if (busiest->nr_running > 1) {
4315 /* Attempt to move tasks */
4316 double_lock_balance(this_rq, busiest);
4317 /* this_rq->clock is already updated */
4318 update_rq_clock(busiest);
4319 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4320 imbalance, sd, CPU_NEWLY_IDLE,
4321 &all_pinned);
4322 double_unlock_balance(this_rq, busiest);
4323
4324 if (unlikely(all_pinned)) {
4325 cpumask_clear_cpu(cpu_of(busiest), cpus);
4326 if (!cpumask_empty(cpus))
4327 goto redo;
4328 }
4329 }
4330
4331 if (!ld_moved) {
4332 int active_balance = 0;
4333
4334 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4335 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4336 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4337 return -1;
4338
4339 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4340 return -1;
4341
4342 if (sd->nr_balance_failed++ < 2)
4343 return -1;
4344
4345 /*
4346 * The only task running in a non-idle cpu can be moved to this
4347 * cpu in an attempt to completely freeup the other CPU
4348 * package. The same method used to move task in load_balance()
4349 * have been extended for load_balance_newidle() to speedup
4350 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4351 *
4352 * The package power saving logic comes from
4353 * find_busiest_group(). If there are no imbalance, then
4354 * f_b_g() will return NULL. However when sched_mc={1,2} then
4355 * f_b_g() will select a group from which a running task may be
4356 * pulled to this cpu in order to make the other package idle.
4357 * If there is no opportunity to make a package idle and if
4358 * there are no imbalance, then f_b_g() will return NULL and no
4359 * action will be taken in load_balance_newidle().
4360 *
4361 * Under normal task pull operation due to imbalance, there
4362 * will be more than one task in the source run queue and
4363 * move_tasks() will succeed. ld_moved will be true and this
4364 * active balance code will not be triggered.
4365 */
4366
4367 /* Lock busiest in correct order while this_rq is held */
4368 double_lock_balance(this_rq, busiest);
4369
4370 /*
4371 * don't kick the migration_thread, if the curr
4372 * task on busiest cpu can't be moved to this_cpu
4373 */
4374 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4375 double_unlock_balance(this_rq, busiest);
4376 all_pinned = 1;
4377 return ld_moved;
4378 }
4379
4380 if (!busiest->active_balance) {
4381 busiest->active_balance = 1;
4382 busiest->push_cpu = this_cpu;
4383 active_balance = 1;
4384 }
4385
4386 double_unlock_balance(this_rq, busiest);
4387 /*
4388 * Should not call ttwu while holding a rq->lock
4389 */
4390 spin_unlock(&this_rq->lock);
4391 if (active_balance)
4392 wake_up_process(busiest->migration_thread);
4393 spin_lock(&this_rq->lock);
4394
4395 } else
4396 sd->nr_balance_failed = 0;
4397
4398 update_shares_locked(this_rq, sd);
4399 return ld_moved;
4400
4401 out_balanced:
4402 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4403 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4404 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4405 return -1;
4406 sd->nr_balance_failed = 0;
4407
4408 return 0;
4409 }
4410
4411 /*
4412 * idle_balance is called by schedule() if this_cpu is about to become
4413 * idle. Attempts to pull tasks from other CPUs.
4414 */
4415 static void idle_balance(int this_cpu, struct rq *this_rq)
4416 {
4417 struct sched_domain *sd;
4418 int pulled_task = 0;
4419 unsigned long next_balance = jiffies + HZ;
4420
4421 this_rq->idle_stamp = this_rq->clock;
4422
4423 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4424 return;
4425
4426 for_each_domain(this_cpu, sd) {
4427 unsigned long interval;
4428
4429 if (!(sd->flags & SD_LOAD_BALANCE))
4430 continue;
4431
4432 if (sd->flags & SD_BALANCE_NEWIDLE)
4433 /* If we've pulled tasks over stop searching: */
4434 pulled_task = load_balance_newidle(this_cpu, this_rq,
4435 sd);
4436
4437 interval = msecs_to_jiffies(sd->balance_interval);
4438 if (time_after(next_balance, sd->last_balance + interval))
4439 next_balance = sd->last_balance + interval;
4440 if (pulled_task) {
4441 this_rq->idle_stamp = 0;
4442 break;
4443 }
4444 }
4445 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4446 /*
4447 * We are going idle. next_balance may be set based on
4448 * a busy processor. So reset next_balance.
4449 */
4450 this_rq->next_balance = next_balance;
4451 }
4452 }
4453
4454 /*
4455 * active_load_balance is run by migration threads. It pushes running tasks
4456 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4457 * running on each physical CPU where possible, and avoids physical /
4458 * logical imbalances.
4459 *
4460 * Called with busiest_rq locked.
4461 */
4462 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4463 {
4464 int target_cpu = busiest_rq->push_cpu;
4465 struct sched_domain *sd;
4466 struct rq *target_rq;
4467
4468 /* Is there any task to move? */
4469 if (busiest_rq->nr_running <= 1)
4470 return;
4471
4472 target_rq = cpu_rq(target_cpu);
4473
4474 /*
4475 * This condition is "impossible", if it occurs
4476 * we need to fix it. Originally reported by
4477 * Bjorn Helgaas on a 128-cpu setup.
4478 */
4479 BUG_ON(busiest_rq == target_rq);
4480
4481 /* move a task from busiest_rq to target_rq */
4482 double_lock_balance(busiest_rq, target_rq);
4483 update_rq_clock(busiest_rq);
4484 update_rq_clock(target_rq);
4485
4486 /* Search for an sd spanning us and the target CPU. */
4487 for_each_domain(target_cpu, sd) {
4488 if ((sd->flags & SD_LOAD_BALANCE) &&
4489 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4490 break;
4491 }
4492
4493 if (likely(sd)) {
4494 schedstat_inc(sd, alb_count);
4495
4496 if (move_one_task(target_rq, target_cpu, busiest_rq,
4497 sd, CPU_IDLE))
4498 schedstat_inc(sd, alb_pushed);
4499 else
4500 schedstat_inc(sd, alb_failed);
4501 }
4502 double_unlock_balance(busiest_rq, target_rq);
4503 }
4504
4505 #ifdef CONFIG_NO_HZ
4506 static struct {
4507 atomic_t load_balancer;
4508 cpumask_var_t cpu_mask;
4509 cpumask_var_t ilb_grp_nohz_mask;
4510 } nohz ____cacheline_aligned = {
4511 .load_balancer = ATOMIC_INIT(-1),
4512 };
4513
4514 int get_nohz_load_balancer(void)
4515 {
4516 return atomic_read(&nohz.load_balancer);
4517 }
4518
4519 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4520 /**
4521 * lowest_flag_domain - Return lowest sched_domain containing flag.
4522 * @cpu: The cpu whose lowest level of sched domain is to
4523 * be returned.
4524 * @flag: The flag to check for the lowest sched_domain
4525 * for the given cpu.
4526 *
4527 * Returns the lowest sched_domain of a cpu which contains the given flag.
4528 */
4529 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4530 {
4531 struct sched_domain *sd;
4532
4533 for_each_domain(cpu, sd)
4534 if (sd && (sd->flags & flag))
4535 break;
4536
4537 return sd;
4538 }
4539
4540 /**
4541 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4542 * @cpu: The cpu whose domains we're iterating over.
4543 * @sd: variable holding the value of the power_savings_sd
4544 * for cpu.
4545 * @flag: The flag to filter the sched_domains to be iterated.
4546 *
4547 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4548 * set, starting from the lowest sched_domain to the highest.
4549 */
4550 #define for_each_flag_domain(cpu, sd, flag) \
4551 for (sd = lowest_flag_domain(cpu, flag); \
4552 (sd && (sd->flags & flag)); sd = sd->parent)
4553
4554 /**
4555 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4556 * @ilb_group: group to be checked for semi-idleness
4557 *
4558 * Returns: 1 if the group is semi-idle. 0 otherwise.
4559 *
4560 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4561 * and atleast one non-idle CPU. This helper function checks if the given
4562 * sched_group is semi-idle or not.
4563 */
4564 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4565 {
4566 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4567 sched_group_cpus(ilb_group));
4568
4569 /*
4570 * A sched_group is semi-idle when it has atleast one busy cpu
4571 * and atleast one idle cpu.
4572 */
4573 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4574 return 0;
4575
4576 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4577 return 0;
4578
4579 return 1;
4580 }
4581 /**
4582 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4583 * @cpu: The cpu which is nominating a new idle_load_balancer.
4584 *
4585 * Returns: Returns the id of the idle load balancer if it exists,
4586 * Else, returns >= nr_cpu_ids.
4587 *
4588 * This algorithm picks the idle load balancer such that it belongs to a
4589 * semi-idle powersavings sched_domain. The idea is to try and avoid
4590 * completely idle packages/cores just for the purpose of idle load balancing
4591 * when there are other idle cpu's which are better suited for that job.
4592 */
4593 static int find_new_ilb(int cpu)
4594 {
4595 struct sched_domain *sd;
4596 struct sched_group *ilb_group;
4597
4598 /*
4599 * Have idle load balancer selection from semi-idle packages only
4600 * when power-aware load balancing is enabled
4601 */
4602 if (!(sched_smt_power_savings || sched_mc_power_savings))
4603 goto out_done;
4604
4605 /*
4606 * Optimize for the case when we have no idle CPUs or only one
4607 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4608 */
4609 if (cpumask_weight(nohz.cpu_mask) < 2)
4610 goto out_done;
4611
4612 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4613 ilb_group = sd->groups;
4614
4615 do {
4616 if (is_semi_idle_group(ilb_group))
4617 return cpumask_first(nohz.ilb_grp_nohz_mask);
4618
4619 ilb_group = ilb_group->next;
4620
4621 } while (ilb_group != sd->groups);
4622 }
4623
4624 out_done:
4625 return cpumask_first(nohz.cpu_mask);
4626 }
4627 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4628 static inline int find_new_ilb(int call_cpu)
4629 {
4630 return cpumask_first(nohz.cpu_mask);
4631 }
4632 #endif
4633
4634 /*
4635 * This routine will try to nominate the ilb (idle load balancing)
4636 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4637 * load balancing on behalf of all those cpus. If all the cpus in the system
4638 * go into this tickless mode, then there will be no ilb owner (as there is
4639 * no need for one) and all the cpus will sleep till the next wakeup event
4640 * arrives...
4641 *
4642 * For the ilb owner, tick is not stopped. And this tick will be used
4643 * for idle load balancing. ilb owner will still be part of
4644 * nohz.cpu_mask..
4645 *
4646 * While stopping the tick, this cpu will become the ilb owner if there
4647 * is no other owner. And will be the owner till that cpu becomes busy
4648 * or if all cpus in the system stop their ticks at which point
4649 * there is no need for ilb owner.
4650 *
4651 * When the ilb owner becomes busy, it nominates another owner, during the
4652 * next busy scheduler_tick()
4653 */
4654 int select_nohz_load_balancer(int stop_tick)
4655 {
4656 int cpu = smp_processor_id();
4657
4658 if (stop_tick) {
4659 cpu_rq(cpu)->in_nohz_recently = 1;
4660
4661 if (!cpu_active(cpu)) {
4662 if (atomic_read(&nohz.load_balancer) != cpu)
4663 return 0;
4664
4665 /*
4666 * If we are going offline and still the leader,
4667 * give up!
4668 */
4669 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4670 BUG();
4671
4672 return 0;
4673 }
4674
4675 cpumask_set_cpu(cpu, nohz.cpu_mask);
4676
4677 /* time for ilb owner also to sleep */
4678 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4679 if (atomic_read(&nohz.load_balancer) == cpu)
4680 atomic_set(&nohz.load_balancer, -1);
4681 return 0;
4682 }
4683
4684 if (atomic_read(&nohz.load_balancer) == -1) {
4685 /* make me the ilb owner */
4686 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4687 return 1;
4688 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4689 int new_ilb;
4690
4691 if (!(sched_smt_power_savings ||
4692 sched_mc_power_savings))
4693 return 1;
4694 /*
4695 * Check to see if there is a more power-efficient
4696 * ilb.
4697 */
4698 new_ilb = find_new_ilb(cpu);
4699 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4700 atomic_set(&nohz.load_balancer, -1);
4701 resched_cpu(new_ilb);
4702 return 0;
4703 }
4704 return 1;
4705 }
4706 } else {
4707 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4708 return 0;
4709
4710 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4711
4712 if (atomic_read(&nohz.load_balancer) == cpu)
4713 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4714 BUG();
4715 }
4716 return 0;
4717 }
4718 #endif
4719
4720 static DEFINE_SPINLOCK(balancing);
4721
4722 /*
4723 * It checks each scheduling domain to see if it is due to be balanced,
4724 * and initiates a balancing operation if so.
4725 *
4726 * Balancing parameters are set up in arch_init_sched_domains.
4727 */
4728 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4729 {
4730 int balance = 1;
4731 struct rq *rq = cpu_rq(cpu);
4732 unsigned long interval;
4733 struct sched_domain *sd;
4734 /* Earliest time when we have to do rebalance again */
4735 unsigned long next_balance = jiffies + 60*HZ;
4736 int update_next_balance = 0;
4737 int need_serialize;
4738
4739 for_each_domain(cpu, sd) {
4740 if (!(sd->flags & SD_LOAD_BALANCE))
4741 continue;
4742
4743 interval = sd->balance_interval;
4744 if (idle != CPU_IDLE)
4745 interval *= sd->busy_factor;
4746
4747 /* scale ms to jiffies */
4748 interval = msecs_to_jiffies(interval);
4749 if (unlikely(!interval))
4750 interval = 1;
4751 if (interval > HZ*NR_CPUS/10)
4752 interval = HZ*NR_CPUS/10;
4753
4754 need_serialize = sd->flags & SD_SERIALIZE;
4755
4756 if (need_serialize) {
4757 if (!spin_trylock(&balancing))
4758 goto out;
4759 }
4760
4761 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4762 if (load_balance(cpu, rq, sd, idle, &balance)) {
4763 /*
4764 * We've pulled tasks over so either we're no
4765 * longer idle, or one of our SMT siblings is
4766 * not idle.
4767 */
4768 idle = CPU_NOT_IDLE;
4769 }
4770 sd->last_balance = jiffies;
4771 }
4772 if (need_serialize)
4773 spin_unlock(&balancing);
4774 out:
4775 if (time_after(next_balance, sd->last_balance + interval)) {
4776 next_balance = sd->last_balance + interval;
4777 update_next_balance = 1;
4778 }
4779
4780 /*
4781 * Stop the load balance at this level. There is another
4782 * CPU in our sched group which is doing load balancing more
4783 * actively.
4784 */
4785 if (!balance)
4786 break;
4787 }
4788
4789 /*
4790 * next_balance will be updated only when there is a need.
4791 * When the cpu is attached to null domain for ex, it will not be
4792 * updated.
4793 */
4794 if (likely(update_next_balance))
4795 rq->next_balance = next_balance;
4796 }
4797
4798 /*
4799 * run_rebalance_domains is triggered when needed from the scheduler tick.
4800 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4801 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4802 */
4803 static void run_rebalance_domains(struct softirq_action *h)
4804 {
4805 int this_cpu = smp_processor_id();
4806 struct rq *this_rq = cpu_rq(this_cpu);
4807 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4808 CPU_IDLE : CPU_NOT_IDLE;
4809
4810 rebalance_domains(this_cpu, idle);
4811
4812 #ifdef CONFIG_NO_HZ
4813 /*
4814 * If this cpu is the owner for idle load balancing, then do the
4815 * balancing on behalf of the other idle cpus whose ticks are
4816 * stopped.
4817 */
4818 if (this_rq->idle_at_tick &&
4819 atomic_read(&nohz.load_balancer) == this_cpu) {
4820 struct rq *rq;
4821 int balance_cpu;
4822
4823 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4824 if (balance_cpu == this_cpu)
4825 continue;
4826
4827 /*
4828 * If this cpu gets work to do, stop the load balancing
4829 * work being done for other cpus. Next load
4830 * balancing owner will pick it up.
4831 */
4832 if (need_resched())
4833 break;
4834
4835 rebalance_domains(balance_cpu, CPU_IDLE);
4836
4837 rq = cpu_rq(balance_cpu);
4838 if (time_after(this_rq->next_balance, rq->next_balance))
4839 this_rq->next_balance = rq->next_balance;
4840 }
4841 }
4842 #endif
4843 }
4844
4845 static inline int on_null_domain(int cpu)
4846 {
4847 return !rcu_dereference(cpu_rq(cpu)->sd);
4848 }
4849
4850 /*
4851 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4852 *
4853 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4854 * idle load balancing owner or decide to stop the periodic load balancing,
4855 * if the whole system is idle.
4856 */
4857 static inline void trigger_load_balance(struct rq *rq, int cpu)
4858 {
4859 #ifdef CONFIG_NO_HZ
4860 /*
4861 * If we were in the nohz mode recently and busy at the current
4862 * scheduler tick, then check if we need to nominate new idle
4863 * load balancer.
4864 */
4865 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4866 rq->in_nohz_recently = 0;
4867
4868 if (atomic_read(&nohz.load_balancer) == cpu) {
4869 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4870 atomic_set(&nohz.load_balancer, -1);
4871 }
4872
4873 if (atomic_read(&nohz.load_balancer) == -1) {
4874 int ilb = find_new_ilb(cpu);
4875
4876 if (ilb < nr_cpu_ids)
4877 resched_cpu(ilb);
4878 }
4879 }
4880
4881 /*
4882 * If this cpu is idle and doing idle load balancing for all the
4883 * cpus with ticks stopped, is it time for that to stop?
4884 */
4885 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4886 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4887 resched_cpu(cpu);
4888 return;
4889 }
4890
4891 /*
4892 * If this cpu is idle and the idle load balancing is done by
4893 * someone else, then no need raise the SCHED_SOFTIRQ
4894 */
4895 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4896 cpumask_test_cpu(cpu, nohz.cpu_mask))
4897 return;
4898 #endif
4899 /* Don't need to rebalance while attached to NULL domain */
4900 if (time_after_eq(jiffies, rq->next_balance) &&
4901 likely(!on_null_domain(cpu)))
4902 raise_softirq(SCHED_SOFTIRQ);
4903 }
4904
4905 #else /* CONFIG_SMP */
4906
4907 /*
4908 * on UP we do not need to balance between CPUs:
4909 */
4910 static inline void idle_balance(int cpu, struct rq *rq)
4911 {
4912 }
4913
4914 #endif
4915
4916 DEFINE_PER_CPU(struct kernel_stat, kstat);
4917
4918 EXPORT_PER_CPU_SYMBOL(kstat);
4919
4920 /*
4921 * Return any ns on the sched_clock that have not yet been accounted in
4922 * @p in case that task is currently running.
4923 *
4924 * Called with task_rq_lock() held on @rq.
4925 */
4926 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4927 {
4928 u64 ns = 0;
4929
4930 if (task_current(rq, p)) {
4931 update_rq_clock(rq);
4932 ns = rq->clock - p->se.exec_start;
4933 if ((s64)ns < 0)
4934 ns = 0;
4935 }
4936
4937 return ns;
4938 }
4939
4940 unsigned long long task_delta_exec(struct task_struct *p)
4941 {
4942 unsigned long flags;
4943 struct rq *rq;
4944 u64 ns = 0;
4945
4946 rq = task_rq_lock(p, &flags);
4947 ns = do_task_delta_exec(p, rq);
4948 task_rq_unlock(rq, &flags);
4949
4950 return ns;
4951 }
4952
4953 /*
4954 * Return accounted runtime for the task.
4955 * In case the task is currently running, return the runtime plus current's
4956 * pending runtime that have not been accounted yet.
4957 */
4958 unsigned long long task_sched_runtime(struct task_struct *p)
4959 {
4960 unsigned long flags;
4961 struct rq *rq;
4962 u64 ns = 0;
4963
4964 rq = task_rq_lock(p, &flags);
4965 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4966 task_rq_unlock(rq, &flags);
4967
4968 return ns;
4969 }
4970
4971 /*
4972 * Return sum_exec_runtime for the thread group.
4973 * In case the task is currently running, return the sum plus current's
4974 * pending runtime that have not been accounted yet.
4975 *
4976 * Note that the thread group might have other running tasks as well,
4977 * so the return value not includes other pending runtime that other
4978 * running tasks might have.
4979 */
4980 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4981 {
4982 struct task_cputime totals;
4983 unsigned long flags;
4984 struct rq *rq;
4985 u64 ns;
4986
4987 rq = task_rq_lock(p, &flags);
4988 thread_group_cputime(p, &totals);
4989 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4990 task_rq_unlock(rq, &flags);
4991
4992 return ns;
4993 }
4994
4995 /*
4996 * Account user cpu time to a process.
4997 * @p: the process that the cpu time gets accounted to
4998 * @cputime: the cpu time spent in user space since the last update
4999 * @cputime_scaled: cputime scaled by cpu frequency
5000 */
5001 void account_user_time(struct task_struct *p, cputime_t cputime,
5002 cputime_t cputime_scaled)
5003 {
5004 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5005 cputime64_t tmp;
5006
5007 /* Add user time to process. */
5008 p->utime = cputime_add(p->utime, cputime);
5009 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5010 account_group_user_time(p, cputime);
5011
5012 /* Add user time to cpustat. */
5013 tmp = cputime_to_cputime64(cputime);
5014 if (TASK_NICE(p) > 0)
5015 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5016 else
5017 cpustat->user = cputime64_add(cpustat->user, tmp);
5018
5019 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5020 /* Account for user time used */
5021 acct_update_integrals(p);
5022 }
5023
5024 /*
5025 * Account guest cpu time to a process.
5026 * @p: the process that the cpu time gets accounted to
5027 * @cputime: the cpu time spent in virtual machine since the last update
5028 * @cputime_scaled: cputime scaled by cpu frequency
5029 */
5030 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5031 cputime_t cputime_scaled)
5032 {
5033 cputime64_t tmp;
5034 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5035
5036 tmp = cputime_to_cputime64(cputime);
5037
5038 /* Add guest time to process. */
5039 p->utime = cputime_add(p->utime, cputime);
5040 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5041 account_group_user_time(p, cputime);
5042 p->gtime = cputime_add(p->gtime, cputime);
5043
5044 /* Add guest time to cpustat. */
5045 if (TASK_NICE(p) > 0) {
5046 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5047 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5048 } else {
5049 cpustat->user = cputime64_add(cpustat->user, tmp);
5050 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5051 }
5052 }
5053
5054 /*
5055 * Account system cpu time to a process.
5056 * @p: the process that the cpu time gets accounted to
5057 * @hardirq_offset: the offset to subtract from hardirq_count()
5058 * @cputime: the cpu time spent in kernel space since the last update
5059 * @cputime_scaled: cputime scaled by cpu frequency
5060 */
5061 void account_system_time(struct task_struct *p, int hardirq_offset,
5062 cputime_t cputime, cputime_t cputime_scaled)
5063 {
5064 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5065 cputime64_t tmp;
5066
5067 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5068 account_guest_time(p, cputime, cputime_scaled);
5069 return;
5070 }
5071
5072 /* Add system time to process. */
5073 p->stime = cputime_add(p->stime, cputime);
5074 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5075 account_group_system_time(p, cputime);
5076
5077 /* Add system time to cpustat. */
5078 tmp = cputime_to_cputime64(cputime);
5079 if (hardirq_count() - hardirq_offset)
5080 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5081 else if (softirq_count())
5082 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5083 else
5084 cpustat->system = cputime64_add(cpustat->system, tmp);
5085
5086 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5087
5088 /* Account for system time used */
5089 acct_update_integrals(p);
5090 }
5091
5092 /*
5093 * Account for involuntary wait time.
5094 * @steal: the cpu time spent in involuntary wait
5095 */
5096 void account_steal_time(cputime_t cputime)
5097 {
5098 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5099 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5100
5101 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5102 }
5103
5104 /*
5105 * Account for idle time.
5106 * @cputime: the cpu time spent in idle wait
5107 */
5108 void account_idle_time(cputime_t cputime)
5109 {
5110 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5111 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5112 struct rq *rq = this_rq();
5113
5114 if (atomic_read(&rq->nr_iowait) > 0)
5115 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5116 else
5117 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5118 }
5119
5120 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5121
5122 /*
5123 * Account a single tick of cpu time.
5124 * @p: the process that the cpu time gets accounted to
5125 * @user_tick: indicates if the tick is a user or a system tick
5126 */
5127 void account_process_tick(struct task_struct *p, int user_tick)
5128 {
5129 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5130 struct rq *rq = this_rq();
5131
5132 if (user_tick)
5133 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5134 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5135 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5136 one_jiffy_scaled);
5137 else
5138 account_idle_time(cputime_one_jiffy);
5139 }
5140
5141 /*
5142 * Account multiple ticks of steal time.
5143 * @p: the process from which the cpu time has been stolen
5144 * @ticks: number of stolen ticks
5145 */
5146 void account_steal_ticks(unsigned long ticks)
5147 {
5148 account_steal_time(jiffies_to_cputime(ticks));
5149 }
5150
5151 /*
5152 * Account multiple ticks of idle time.
5153 * @ticks: number of stolen ticks
5154 */
5155 void account_idle_ticks(unsigned long ticks)
5156 {
5157 account_idle_time(jiffies_to_cputime(ticks));
5158 }
5159
5160 #endif
5161
5162 /*
5163 * Use precise platform statistics if available:
5164 */
5165 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5166 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5167 {
5168 *ut = p->utime;
5169 *st = p->stime;
5170 }
5171
5172 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5173 {
5174 struct task_cputime cputime;
5175
5176 thread_group_cputime(p, &cputime);
5177
5178 *ut = cputime.utime;
5179 *st = cputime.stime;
5180 }
5181 #else
5182
5183 #ifndef nsecs_to_cputime
5184 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5185 #endif
5186
5187 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5188 {
5189 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5190
5191 /*
5192 * Use CFS's precise accounting:
5193 */
5194 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5195
5196 if (total) {
5197 u64 temp;
5198
5199 temp = (u64)(rtime * utime);
5200 do_div(temp, total);
5201 utime = (cputime_t)temp;
5202 } else
5203 utime = rtime;
5204
5205 /*
5206 * Compare with previous values, to keep monotonicity:
5207 */
5208 p->prev_utime = max(p->prev_utime, utime);
5209 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5210
5211 *ut = p->prev_utime;
5212 *st = p->prev_stime;
5213 }
5214
5215 /*
5216 * Must be called with siglock held.
5217 */
5218 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5219 {
5220 struct signal_struct *sig = p->signal;
5221 struct task_cputime cputime;
5222 cputime_t rtime, utime, total;
5223
5224 thread_group_cputime(p, &cputime);
5225
5226 total = cputime_add(cputime.utime, cputime.stime);
5227 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5228
5229 if (total) {
5230 u64 temp;
5231
5232 temp = (u64)(rtime * cputime.utime);
5233 do_div(temp, total);
5234 utime = (cputime_t)temp;
5235 } else
5236 utime = rtime;
5237
5238 sig->prev_utime = max(sig->prev_utime, utime);
5239 sig->prev_stime = max(sig->prev_stime,
5240 cputime_sub(rtime, sig->prev_utime));
5241
5242 *ut = sig->prev_utime;
5243 *st = sig->prev_stime;
5244 }
5245 #endif
5246
5247 /*
5248 * This function gets called by the timer code, with HZ frequency.
5249 * We call it with interrupts disabled.
5250 *
5251 * It also gets called by the fork code, when changing the parent's
5252 * timeslices.
5253 */
5254 void scheduler_tick(void)
5255 {
5256 int cpu = smp_processor_id();
5257 struct rq *rq = cpu_rq(cpu);
5258 struct task_struct *curr = rq->curr;
5259
5260 sched_clock_tick();
5261
5262 spin_lock(&rq->lock);
5263 update_rq_clock(rq);
5264 update_cpu_load(rq);
5265 curr->sched_class->task_tick(rq, curr, 0);
5266 spin_unlock(&rq->lock);
5267
5268 perf_event_task_tick(curr, cpu);
5269
5270 #ifdef CONFIG_SMP
5271 rq->idle_at_tick = idle_cpu(cpu);
5272 trigger_load_balance(rq, cpu);
5273 #endif
5274 }
5275
5276 notrace unsigned long get_parent_ip(unsigned long addr)
5277 {
5278 if (in_lock_functions(addr)) {
5279 addr = CALLER_ADDR2;
5280 if (in_lock_functions(addr))
5281 addr = CALLER_ADDR3;
5282 }
5283 return addr;
5284 }
5285
5286 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5287 defined(CONFIG_PREEMPT_TRACER))
5288
5289 void __kprobes add_preempt_count(int val)
5290 {
5291 #ifdef CONFIG_DEBUG_PREEMPT
5292 /*
5293 * Underflow?
5294 */
5295 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5296 return;
5297 #endif
5298 preempt_count() += val;
5299 #ifdef CONFIG_DEBUG_PREEMPT
5300 /*
5301 * Spinlock count overflowing soon?
5302 */
5303 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5304 PREEMPT_MASK - 10);
5305 #endif
5306 if (preempt_count() == val)
5307 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5308 }
5309 EXPORT_SYMBOL(add_preempt_count);
5310
5311 void __kprobes sub_preempt_count(int val)
5312 {
5313 #ifdef CONFIG_DEBUG_PREEMPT
5314 /*
5315 * Underflow?
5316 */
5317 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5318 return;
5319 /*
5320 * Is the spinlock portion underflowing?
5321 */
5322 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5323 !(preempt_count() & PREEMPT_MASK)))
5324 return;
5325 #endif
5326
5327 if (preempt_count() == val)
5328 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5329 preempt_count() -= val;
5330 }
5331 EXPORT_SYMBOL(sub_preempt_count);
5332
5333 #endif
5334
5335 /*
5336 * Print scheduling while atomic bug:
5337 */
5338 static noinline void __schedule_bug(struct task_struct *prev)
5339 {
5340 struct pt_regs *regs = get_irq_regs();
5341
5342 pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
5343 prev->comm, prev->pid, preempt_count());
5344
5345 debug_show_held_locks(prev);
5346 print_modules();
5347 if (irqs_disabled())
5348 print_irqtrace_events(prev);
5349
5350 if (regs)
5351 show_regs(regs);
5352 else
5353 dump_stack();
5354 }
5355
5356 /*
5357 * Various schedule()-time debugging checks and statistics:
5358 */
5359 static inline void schedule_debug(struct task_struct *prev)
5360 {
5361 /*
5362 * Test if we are atomic. Since do_exit() needs to call into
5363 * schedule() atomically, we ignore that path for now.
5364 * Otherwise, whine if we are scheduling when we should not be.
5365 */
5366 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5367 __schedule_bug(prev);
5368
5369 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5370
5371 schedstat_inc(this_rq(), sched_count);
5372 #ifdef CONFIG_SCHEDSTATS
5373 if (unlikely(prev->lock_depth >= 0)) {
5374 schedstat_inc(this_rq(), bkl_count);
5375 schedstat_inc(prev, sched_info.bkl_count);
5376 }
5377 #endif
5378 }
5379
5380 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5381 {
5382 if (prev->state == TASK_RUNNING) {
5383 u64 runtime = prev->se.sum_exec_runtime;
5384
5385 runtime -= prev->se.prev_sum_exec_runtime;
5386 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5387
5388 /*
5389 * In order to avoid avg_overlap growing stale when we are
5390 * indeed overlapping and hence not getting put to sleep, grow
5391 * the avg_overlap on preemption.
5392 *
5393 * We use the average preemption runtime because that
5394 * correlates to the amount of cache footprint a task can
5395 * build up.
5396 */
5397 update_avg(&prev->se.avg_overlap, runtime);
5398 }
5399 prev->sched_class->put_prev_task(rq, prev);
5400 }
5401
5402 /*
5403 * Pick up the highest-prio task:
5404 */
5405 static inline struct task_struct *
5406 pick_next_task(struct rq *rq)
5407 {
5408 const struct sched_class *class;
5409 struct task_struct *p;
5410
5411 /*
5412 * Optimization: we know that if all tasks are in
5413 * the fair class we can call that function directly:
5414 */
5415 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5416 p = fair_sched_class.pick_next_task(rq);
5417 if (likely(p))
5418 return p;
5419 }
5420
5421 class = sched_class_highest;
5422 for ( ; ; ) {
5423 p = class->pick_next_task(rq);
5424 if (p)
5425 return p;
5426 /*
5427 * Will never be NULL as the idle class always
5428 * returns a non-NULL p:
5429 */
5430 class = class->next;
5431 }
5432 }
5433
5434 /*
5435 * schedule() is the main scheduler function.
5436 */
5437 asmlinkage void __sched schedule(void)
5438 {
5439 struct task_struct *prev, *next;
5440 unsigned long *switch_count;
5441 struct rq *rq;
5442 int cpu;
5443
5444 need_resched:
5445 preempt_disable();
5446 cpu = smp_processor_id();
5447 rq = cpu_rq(cpu);
5448 rcu_sched_qs(cpu);
5449 prev = rq->curr;
5450 switch_count = &prev->nivcsw;
5451
5452 release_kernel_lock(prev);
5453 need_resched_nonpreemptible:
5454
5455 schedule_debug(prev);
5456
5457 if (sched_feat(HRTICK))
5458 hrtick_clear(rq);
5459
5460 spin_lock_irq(&rq->lock);
5461 update_rq_clock(rq);
5462 clear_tsk_need_resched(prev);
5463
5464 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5465 if (unlikely(signal_pending_state(prev->state, prev)))
5466 prev->state = TASK_RUNNING;
5467 else
5468 deactivate_task(rq, prev, 1);
5469 switch_count = &prev->nvcsw;
5470 }
5471
5472 pre_schedule(rq, prev);
5473
5474 if (unlikely(!rq->nr_running))
5475 idle_balance(cpu, rq);
5476
5477 put_prev_task(rq, prev);
5478 next = pick_next_task(rq);
5479
5480 if (likely(prev != next)) {
5481 sched_info_switch(prev, next);
5482 perf_event_task_sched_out(prev, next, cpu);
5483
5484 rq->nr_switches++;
5485 rq->curr = next;
5486 ++*switch_count;
5487
5488 context_switch(rq, prev, next); /* unlocks the rq */
5489 /*
5490 * the context switch might have flipped the stack from under
5491 * us, hence refresh the local variables.
5492 */
5493 cpu = smp_processor_id();
5494 rq = cpu_rq(cpu);
5495 } else
5496 spin_unlock_irq(&rq->lock);
5497
5498 post_schedule(rq);
5499
5500 if (unlikely(reacquire_kernel_lock(current) < 0))
5501 goto need_resched_nonpreemptible;
5502
5503 preempt_enable_no_resched();
5504 if (need_resched())
5505 goto need_resched;
5506 }
5507 EXPORT_SYMBOL(schedule);
5508
5509 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5510 /*
5511 * Look out! "owner" is an entirely speculative pointer
5512 * access and not reliable.
5513 */
5514 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5515 {
5516 unsigned int cpu;
5517 struct rq *rq;
5518
5519 if (!sched_feat(OWNER_SPIN))
5520 return 0;
5521
5522 #ifdef CONFIG_DEBUG_PAGEALLOC
5523 /*
5524 * Need to access the cpu field knowing that
5525 * DEBUG_PAGEALLOC could have unmapped it if
5526 * the mutex owner just released it and exited.
5527 */
5528 if (probe_kernel_address(&owner->cpu, cpu))
5529 goto out;
5530 #else
5531 cpu = owner->cpu;
5532 #endif
5533
5534 /*
5535 * Even if the access succeeded (likely case),
5536 * the cpu field may no longer be valid.
5537 */
5538 if (cpu >= nr_cpumask_bits)
5539 goto out;
5540
5541 /*
5542 * We need to validate that we can do a
5543 * get_cpu() and that we have the percpu area.
5544 */
5545 if (!cpu_online(cpu))
5546 goto out;
5547
5548 rq = cpu_rq(cpu);
5549
5550 for (;;) {
5551 /*
5552 * Owner changed, break to re-assess state.
5553 */
5554 if (lock->owner != owner)
5555 break;
5556
5557 /*
5558 * Is that owner really running on that cpu?
5559 */
5560 if (task_thread_info(rq->curr) != owner || need_resched())
5561 return 0;
5562
5563 cpu_relax();
5564 }
5565 out:
5566 return 1;
5567 }
5568 #endif
5569
5570 #ifdef CONFIG_PREEMPT
5571 /*
5572 * this is the entry point to schedule() from in-kernel preemption
5573 * off of preempt_enable. Kernel preemptions off return from interrupt
5574 * occur there and call schedule directly.
5575 */
5576 asmlinkage void __sched preempt_schedule(void)
5577 {
5578 struct thread_info *ti = current_thread_info();
5579
5580 /*
5581 * If there is a non-zero preempt_count or interrupts are disabled,
5582 * we do not want to preempt the current task. Just return..
5583 */
5584 if (likely(ti->preempt_count || irqs_disabled()))
5585 return;
5586
5587 do {
5588 add_preempt_count(PREEMPT_ACTIVE);
5589 schedule();
5590 sub_preempt_count(PREEMPT_ACTIVE);
5591
5592 /*
5593 * Check again in case we missed a preemption opportunity
5594 * between schedule and now.
5595 */
5596 barrier();
5597 } while (need_resched());
5598 }
5599 EXPORT_SYMBOL(preempt_schedule);
5600
5601 /*
5602 * this is the entry point to schedule() from kernel preemption
5603 * off of irq context.
5604 * Note, that this is called and return with irqs disabled. This will
5605 * protect us against recursive calling from irq.
5606 */
5607 asmlinkage void __sched preempt_schedule_irq(void)
5608 {
5609 struct thread_info *ti = current_thread_info();
5610
5611 /* Catch callers which need to be fixed */
5612 BUG_ON(ti->preempt_count || !irqs_disabled());
5613
5614 do {
5615 add_preempt_count(PREEMPT_ACTIVE);
5616 local_irq_enable();
5617 schedule();
5618 local_irq_disable();
5619 sub_preempt_count(PREEMPT_ACTIVE);
5620
5621 /*
5622 * Check again in case we missed a preemption opportunity
5623 * between schedule and now.
5624 */
5625 barrier();
5626 } while (need_resched());
5627 }
5628
5629 #endif /* CONFIG_PREEMPT */
5630
5631 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5632 void *key)
5633 {
5634 return try_to_wake_up(curr->private, mode, wake_flags);
5635 }
5636 EXPORT_SYMBOL(default_wake_function);
5637
5638 /*
5639 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5640 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5641 * number) then we wake all the non-exclusive tasks and one exclusive task.
5642 *
5643 * There are circumstances in which we can try to wake a task which has already
5644 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5645 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5646 */
5647 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5648 int nr_exclusive, int wake_flags, void *key)
5649 {
5650 wait_queue_t *curr, *next;
5651
5652 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5653 unsigned flags = curr->flags;
5654
5655 if (curr->func(curr, mode, wake_flags, key) &&
5656 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5657 break;
5658 }
5659 }
5660
5661 /**
5662 * __wake_up - wake up threads blocked on a waitqueue.
5663 * @q: the waitqueue
5664 * @mode: which threads
5665 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5666 * @key: is directly passed to the wakeup function
5667 *
5668 * It may be assumed that this function implies a write memory barrier before
5669 * changing the task state if and only if any tasks are woken up.
5670 */
5671 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5672 int nr_exclusive, void *key)
5673 {
5674 unsigned long flags;
5675
5676 spin_lock_irqsave(&q->lock, flags);
5677 __wake_up_common(q, mode, nr_exclusive, 0, key);
5678 spin_unlock_irqrestore(&q->lock, flags);
5679 }
5680 EXPORT_SYMBOL(__wake_up);
5681
5682 /*
5683 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5684 */
5685 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5686 {
5687 __wake_up_common(q, mode, 1, 0, NULL);
5688 }
5689
5690 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5691 {
5692 __wake_up_common(q, mode, 1, 0, key);
5693 }
5694
5695 /**
5696 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5697 * @q: the waitqueue
5698 * @mode: which threads
5699 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5700 * @key: opaque value to be passed to wakeup targets
5701 *
5702 * The sync wakeup differs that the waker knows that it will schedule
5703 * away soon, so while the target thread will be woken up, it will not
5704 * be migrated to another CPU - ie. the two threads are 'synchronized'
5705 * with each other. This can prevent needless bouncing between CPUs.
5706 *
5707 * On UP it can prevent extra preemption.
5708 *
5709 * It may be assumed that this function implies a write memory barrier before
5710 * changing the task state if and only if any tasks are woken up.
5711 */
5712 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5713 int nr_exclusive, void *key)
5714 {
5715 unsigned long flags;
5716 int wake_flags = WF_SYNC;
5717
5718 if (unlikely(!q))
5719 return;
5720
5721 if (unlikely(!nr_exclusive))
5722 wake_flags = 0;
5723
5724 spin_lock_irqsave(&q->lock, flags);
5725 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5726 spin_unlock_irqrestore(&q->lock, flags);
5727 }
5728 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5729
5730 /*
5731 * __wake_up_sync - see __wake_up_sync_key()
5732 */
5733 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5734 {
5735 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5736 }
5737 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5738
5739 /**
5740 * complete: - signals a single thread waiting on this completion
5741 * @x: holds the state of this particular completion
5742 *
5743 * This will wake up a single thread waiting on this completion. Threads will be
5744 * awakened in the same order in which they were queued.
5745 *
5746 * See also complete_all(), wait_for_completion() and related routines.
5747 *
5748 * It may be assumed that this function implies a write memory barrier before
5749 * changing the task state if and only if any tasks are woken up.
5750 */
5751 void complete(struct completion *x)
5752 {
5753 unsigned long flags;
5754
5755 spin_lock_irqsave(&x->wait.lock, flags);
5756 x->done++;
5757 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5758 spin_unlock_irqrestore(&x->wait.lock, flags);
5759 }
5760 EXPORT_SYMBOL(complete);
5761
5762 /**
5763 * complete_all: - signals all threads waiting on this completion
5764 * @x: holds the state of this particular completion
5765 *
5766 * This will wake up all threads waiting on this particular completion event.
5767 *
5768 * It may be assumed that this function implies a write memory barrier before
5769 * changing the task state if and only if any tasks are woken up.
5770 */
5771 void complete_all(struct completion *x)
5772 {
5773 unsigned long flags;
5774
5775 spin_lock_irqsave(&x->wait.lock, flags);
5776 x->done += UINT_MAX/2;
5777 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5778 spin_unlock_irqrestore(&x->wait.lock, flags);
5779 }
5780 EXPORT_SYMBOL(complete_all);
5781
5782 static inline long __sched
5783 do_wait_for_common(struct completion *x, long timeout, int state)
5784 {
5785 if (!x->done) {
5786 DECLARE_WAITQUEUE(wait, current);
5787
5788 wait.flags |= WQ_FLAG_EXCLUSIVE;
5789 __add_wait_queue_tail(&x->wait, &wait);
5790 do {
5791 if (signal_pending_state(state, current)) {
5792 timeout = -ERESTARTSYS;
5793 break;
5794 }
5795 __set_current_state(state);
5796 spin_unlock_irq(&x->wait.lock);
5797 timeout = schedule_timeout(timeout);
5798 spin_lock_irq(&x->wait.lock);
5799 } while (!x->done && timeout);
5800 __remove_wait_queue(&x->wait, &wait);
5801 if (!x->done)
5802 return timeout;
5803 }
5804 x->done--;
5805 return timeout ?: 1;
5806 }
5807
5808 static long __sched
5809 wait_for_common(struct completion *x, long timeout, int state)
5810 {
5811 might_sleep();
5812
5813 spin_lock_irq(&x->wait.lock);
5814 timeout = do_wait_for_common(x, timeout, state);
5815 spin_unlock_irq(&x->wait.lock);
5816 return timeout;
5817 }
5818
5819 /**
5820 * wait_for_completion: - waits for completion of a task
5821 * @x: holds the state of this particular completion
5822 *
5823 * This waits to be signaled for completion of a specific task. It is NOT
5824 * interruptible and there is no timeout.
5825 *
5826 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5827 * and interrupt capability. Also see complete().
5828 */
5829 void __sched wait_for_completion(struct completion *x)
5830 {
5831 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5832 }
5833 EXPORT_SYMBOL(wait_for_completion);
5834
5835 /**
5836 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5837 * @x: holds the state of this particular completion
5838 * @timeout: timeout value in jiffies
5839 *
5840 * This waits for either a completion of a specific task to be signaled or for a
5841 * specified timeout to expire. The timeout is in jiffies. It is not
5842 * interruptible.
5843 */
5844 unsigned long __sched
5845 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5846 {
5847 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5848 }
5849 EXPORT_SYMBOL(wait_for_completion_timeout);
5850
5851 /**
5852 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5853 * @x: holds the state of this particular completion
5854 *
5855 * This waits for completion of a specific task to be signaled. It is
5856 * interruptible.
5857 */
5858 int __sched wait_for_completion_interruptible(struct completion *x)
5859 {
5860 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5861 if (t == -ERESTARTSYS)
5862 return t;
5863 return 0;
5864 }
5865 EXPORT_SYMBOL(wait_for_completion_interruptible);
5866
5867 /**
5868 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5869 * @x: holds the state of this particular completion
5870 * @timeout: timeout value in jiffies
5871 *
5872 * This waits for either a completion of a specific task to be signaled or for a
5873 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5874 */
5875 unsigned long __sched
5876 wait_for_completion_interruptible_timeout(struct completion *x,
5877 unsigned long timeout)
5878 {
5879 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5880 }
5881 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5882
5883 /**
5884 * wait_for_completion_killable: - waits for completion of a task (killable)
5885 * @x: holds the state of this particular completion
5886 *
5887 * This waits to be signaled for completion of a specific task. It can be
5888 * interrupted by a kill signal.
5889 */
5890 int __sched wait_for_completion_killable(struct completion *x)
5891 {
5892 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5893 if (t == -ERESTARTSYS)
5894 return t;
5895 return 0;
5896 }
5897 EXPORT_SYMBOL(wait_for_completion_killable);
5898
5899 /**
5900 * try_wait_for_completion - try to decrement a completion without blocking
5901 * @x: completion structure
5902 *
5903 * Returns: 0 if a decrement cannot be done without blocking
5904 * 1 if a decrement succeeded.
5905 *
5906 * If a completion is being used as a counting completion,
5907 * attempt to decrement the counter without blocking. This
5908 * enables us to avoid waiting if the resource the completion
5909 * is protecting is not available.
5910 */
5911 bool try_wait_for_completion(struct completion *x)
5912 {
5913 unsigned long flags;
5914 int ret = 1;
5915
5916 spin_lock_irqsave(&x->wait.lock, flags);
5917 if (!x->done)
5918 ret = 0;
5919 else
5920 x->done--;
5921 spin_unlock_irqrestore(&x->wait.lock, flags);
5922 return ret;
5923 }
5924 EXPORT_SYMBOL(try_wait_for_completion);
5925
5926 /**
5927 * completion_done - Test to see if a completion has any waiters
5928 * @x: completion structure
5929 *
5930 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5931 * 1 if there are no waiters.
5932 *
5933 */
5934 bool completion_done(struct completion *x)
5935 {
5936 unsigned long flags;
5937 int ret = 1;
5938
5939 spin_lock_irqsave(&x->wait.lock, flags);
5940 if (!x->done)
5941 ret = 0;
5942 spin_unlock_irqrestore(&x->wait.lock, flags);
5943 return ret;
5944 }
5945 EXPORT_SYMBOL(completion_done);
5946
5947 static long __sched
5948 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5949 {
5950 unsigned long flags;
5951 wait_queue_t wait;
5952
5953 init_waitqueue_entry(&wait, current);
5954
5955 __set_current_state(state);
5956
5957 spin_lock_irqsave(&q->lock, flags);
5958 __add_wait_queue(q, &wait);
5959 spin_unlock(&q->lock);
5960 timeout = schedule_timeout(timeout);
5961 spin_lock_irq(&q->lock);
5962 __remove_wait_queue(q, &wait);
5963 spin_unlock_irqrestore(&q->lock, flags);
5964
5965 return timeout;
5966 }
5967
5968 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5969 {
5970 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5971 }
5972 EXPORT_SYMBOL(interruptible_sleep_on);
5973
5974 long __sched
5975 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5976 {
5977 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5978 }
5979 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5980
5981 void __sched sleep_on(wait_queue_head_t *q)
5982 {
5983 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5984 }
5985 EXPORT_SYMBOL(sleep_on);
5986
5987 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5988 {
5989 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5990 }
5991 EXPORT_SYMBOL(sleep_on_timeout);
5992
5993 #ifdef CONFIG_RT_MUTEXES
5994
5995 /*
5996 * rt_mutex_setprio - set the current priority of a task
5997 * @p: task
5998 * @prio: prio value (kernel-internal form)
5999 *
6000 * This function changes the 'effective' priority of a task. It does
6001 * not touch ->normal_prio like __setscheduler().
6002 *
6003 * Used by the rt_mutex code to implement priority inheritance logic.
6004 */
6005 void rt_mutex_setprio(struct task_struct *p, int prio)
6006 {
6007 unsigned long flags;
6008 int oldprio, on_rq, running;
6009 struct rq *rq;
6010 const struct sched_class *prev_class = p->sched_class;
6011
6012 BUG_ON(prio < 0 || prio > MAX_PRIO);
6013
6014 rq = task_rq_lock(p, &flags);
6015 update_rq_clock(rq);
6016
6017 oldprio = p->prio;
6018 on_rq = p->se.on_rq;
6019 running = task_current(rq, p);
6020 if (on_rq)
6021 dequeue_task(rq, p, 0);
6022 if (running)
6023 p->sched_class->put_prev_task(rq, p);
6024
6025 if (rt_prio(prio))
6026 p->sched_class = &rt_sched_class;
6027 else
6028 p->sched_class = &fair_sched_class;
6029
6030 p->prio = prio;
6031
6032 if (running)
6033 p->sched_class->set_curr_task(rq);
6034 if (on_rq) {
6035 enqueue_task(rq, p, 0);
6036
6037 check_class_changed(rq, p, prev_class, oldprio, running);
6038 }
6039 task_rq_unlock(rq, &flags);
6040 }
6041
6042 #endif
6043
6044 void set_user_nice(struct task_struct *p, long nice)
6045 {
6046 int old_prio, delta, on_rq;
6047 unsigned long flags;
6048 struct rq *rq;
6049
6050 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6051 return;
6052 /*
6053 * We have to be careful, if called from sys_setpriority(),
6054 * the task might be in the middle of scheduling on another CPU.
6055 */
6056 rq = task_rq_lock(p, &flags);
6057 update_rq_clock(rq);
6058 /*
6059 * The RT priorities are set via sched_setscheduler(), but we still
6060 * allow the 'normal' nice value to be set - but as expected
6061 * it wont have any effect on scheduling until the task is
6062 * SCHED_FIFO/SCHED_RR:
6063 */
6064 if (task_has_rt_policy(p)) {
6065 p->static_prio = NICE_TO_PRIO(nice);
6066 goto out_unlock;
6067 }
6068 on_rq = p->se.on_rq;
6069 if (on_rq)
6070 dequeue_task(rq, p, 0);
6071
6072 p->static_prio = NICE_TO_PRIO(nice);
6073 set_load_weight(p);
6074 old_prio = p->prio;
6075 p->prio = effective_prio(p);
6076 delta = p->prio - old_prio;
6077
6078 if (on_rq) {
6079 enqueue_task(rq, p, 0);
6080 /*
6081 * If the task increased its priority or is running and
6082 * lowered its priority, then reschedule its CPU:
6083 */
6084 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6085 resched_task(rq->curr);
6086 }
6087 out_unlock:
6088 task_rq_unlock(rq, &flags);
6089 }
6090 EXPORT_SYMBOL(set_user_nice);
6091
6092 /*
6093 * can_nice - check if a task can reduce its nice value
6094 * @p: task
6095 * @nice: nice value
6096 */
6097 int can_nice(const struct task_struct *p, const int nice)
6098 {
6099 /* convert nice value [19,-20] to rlimit style value [1,40] */
6100 int nice_rlim = 20 - nice;
6101
6102 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6103 capable(CAP_SYS_NICE));
6104 }
6105
6106 #ifdef __ARCH_WANT_SYS_NICE
6107
6108 /*
6109 * sys_nice - change the priority of the current process.
6110 * @increment: priority increment
6111 *
6112 * sys_setpriority is a more generic, but much slower function that
6113 * does similar things.
6114 */
6115 SYSCALL_DEFINE1(nice, int, increment)
6116 {
6117 long nice, retval;
6118
6119 /*
6120 * Setpriority might change our priority at the same moment.
6121 * We don't have to worry. Conceptually one call occurs first
6122 * and we have a single winner.
6123 */
6124 if (increment < -40)
6125 increment = -40;
6126 if (increment > 40)
6127 increment = 40;
6128
6129 nice = TASK_NICE(current) + increment;
6130 if (nice < -20)
6131 nice = -20;
6132 if (nice > 19)
6133 nice = 19;
6134
6135 if (increment < 0 && !can_nice(current, nice))
6136 return -EPERM;
6137
6138 retval = security_task_setnice(current, nice);
6139 if (retval)
6140 return retval;
6141
6142 set_user_nice(current, nice);
6143 return 0;
6144 }
6145
6146 #endif
6147
6148 /**
6149 * task_prio - return the priority value of a given task.
6150 * @p: the task in question.
6151 *
6152 * This is the priority value as seen by users in /proc.
6153 * RT tasks are offset by -200. Normal tasks are centered
6154 * around 0, value goes from -16 to +15.
6155 */
6156 int task_prio(const struct task_struct *p)
6157 {
6158 return p->prio - MAX_RT_PRIO;
6159 }
6160
6161 /**
6162 * task_nice - return the nice value of a given task.
6163 * @p: the task in question.
6164 */
6165 int task_nice(const struct task_struct *p)
6166 {
6167 return TASK_NICE(p);
6168 }
6169 EXPORT_SYMBOL(task_nice);
6170
6171 /**
6172 * idle_cpu - is a given cpu idle currently?
6173 * @cpu: the processor in question.
6174 */
6175 int idle_cpu(int cpu)
6176 {
6177 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6178 }
6179
6180 /**
6181 * idle_task - return the idle task for a given cpu.
6182 * @cpu: the processor in question.
6183 */
6184 struct task_struct *idle_task(int cpu)
6185 {
6186 return cpu_rq(cpu)->idle;
6187 }
6188
6189 /**
6190 * find_process_by_pid - find a process with a matching PID value.
6191 * @pid: the pid in question.
6192 */
6193 static struct task_struct *find_process_by_pid(pid_t pid)
6194 {
6195 return pid ? find_task_by_vpid(pid) : current;
6196 }
6197
6198 /* Actually do priority change: must hold rq lock. */
6199 static void
6200 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6201 {
6202 BUG_ON(p->se.on_rq);
6203
6204 p->policy = policy;
6205 p->rt_priority = prio;
6206 p->normal_prio = normal_prio(p);
6207 /* we are holding p->pi_lock already */
6208 p->prio = rt_mutex_getprio(p);
6209 if (rt_prio(p->prio))
6210 p->sched_class = &rt_sched_class;
6211 else
6212 p->sched_class = &fair_sched_class;
6213 set_load_weight(p);
6214 }
6215
6216 /*
6217 * check the target process has a UID that matches the current process's
6218 */
6219 static bool check_same_owner(struct task_struct *p)
6220 {
6221 const struct cred *cred = current_cred(), *pcred;
6222 bool match;
6223
6224 rcu_read_lock();
6225 pcred = __task_cred(p);
6226 match = (cred->euid == pcred->euid ||
6227 cred->euid == pcred->uid);
6228 rcu_read_unlock();
6229 return match;
6230 }
6231
6232 static int __sched_setscheduler(struct task_struct *p, int policy,
6233 struct sched_param *param, bool user)
6234 {
6235 int retval, oldprio, oldpolicy = -1, on_rq, running;
6236 unsigned long flags;
6237 const struct sched_class *prev_class = p->sched_class;
6238 struct rq *rq;
6239 int reset_on_fork;
6240
6241 /* may grab non-irq protected spin_locks */
6242 BUG_ON(in_interrupt());
6243 recheck:
6244 /* double check policy once rq lock held */
6245 if (policy < 0) {
6246 reset_on_fork = p->sched_reset_on_fork;
6247 policy = oldpolicy = p->policy;
6248 } else {
6249 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6250 policy &= ~SCHED_RESET_ON_FORK;
6251
6252 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6253 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6254 policy != SCHED_IDLE)
6255 return -EINVAL;
6256 }
6257
6258 /*
6259 * Valid priorities for SCHED_FIFO and SCHED_RR are
6260 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6261 * SCHED_BATCH and SCHED_IDLE is 0.
6262 */
6263 if (param->sched_priority < 0 ||
6264 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6265 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6266 return -EINVAL;
6267 if (rt_policy(policy) != (param->sched_priority != 0))
6268 return -EINVAL;
6269
6270 /*
6271 * Allow unprivileged RT tasks to decrease priority:
6272 */
6273 if (user && !capable(CAP_SYS_NICE)) {
6274 if (rt_policy(policy)) {
6275 unsigned long rlim_rtprio;
6276
6277 if (!lock_task_sighand(p, &flags))
6278 return -ESRCH;
6279 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6280 unlock_task_sighand(p, &flags);
6281
6282 /* can't set/change the rt policy */
6283 if (policy != p->policy && !rlim_rtprio)
6284 return -EPERM;
6285
6286 /* can't increase priority */
6287 if (param->sched_priority > p->rt_priority &&
6288 param->sched_priority > rlim_rtprio)
6289 return -EPERM;
6290 }
6291 /*
6292 * Like positive nice levels, dont allow tasks to
6293 * move out of SCHED_IDLE either:
6294 */
6295 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6296 return -EPERM;
6297
6298 /* can't change other user's priorities */
6299 if (!check_same_owner(p))
6300 return -EPERM;
6301
6302 /* Normal users shall not reset the sched_reset_on_fork flag */
6303 if (p->sched_reset_on_fork && !reset_on_fork)
6304 return -EPERM;
6305 }
6306
6307 if (user) {
6308 #ifdef CONFIG_RT_GROUP_SCHED
6309 /*
6310 * Do not allow realtime tasks into groups that have no runtime
6311 * assigned.
6312 */
6313 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6314 task_group(p)->rt_bandwidth.rt_runtime == 0)
6315 return -EPERM;
6316 #endif
6317
6318 retval = security_task_setscheduler(p, policy, param);
6319 if (retval)
6320 return retval;
6321 }
6322
6323 /*
6324 * make sure no PI-waiters arrive (or leave) while we are
6325 * changing the priority of the task:
6326 */
6327 spin_lock_irqsave(&p->pi_lock, flags);
6328 /*
6329 * To be able to change p->policy safely, the apropriate
6330 * runqueue lock must be held.
6331 */
6332 rq = __task_rq_lock(p);
6333 /* recheck policy now with rq lock held */
6334 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6335 policy = oldpolicy = -1;
6336 __task_rq_unlock(rq);
6337 spin_unlock_irqrestore(&p->pi_lock, flags);
6338 goto recheck;
6339 }
6340 update_rq_clock(rq);
6341 on_rq = p->se.on_rq;
6342 running = task_current(rq, p);
6343 if (on_rq)
6344 deactivate_task(rq, p, 0);
6345 if (running)
6346 p->sched_class->put_prev_task(rq, p);
6347
6348 p->sched_reset_on_fork = reset_on_fork;
6349
6350 oldprio = p->prio;
6351 __setscheduler(rq, p, policy, param->sched_priority);
6352
6353 if (running)
6354 p->sched_class->set_curr_task(rq);
6355 if (on_rq) {
6356 activate_task(rq, p, 0);
6357
6358 check_class_changed(rq, p, prev_class, oldprio, running);
6359 }
6360 __task_rq_unlock(rq);
6361 spin_unlock_irqrestore(&p->pi_lock, flags);
6362
6363 rt_mutex_adjust_pi(p);
6364
6365 return 0;
6366 }
6367
6368 /**
6369 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6370 * @p: the task in question.
6371 * @policy: new policy.
6372 * @param: structure containing the new RT priority.
6373 *
6374 * NOTE that the task may be already dead.
6375 */
6376 int sched_setscheduler(struct task_struct *p, int policy,
6377 struct sched_param *param)
6378 {
6379 return __sched_setscheduler(p, policy, param, true);
6380 }
6381 EXPORT_SYMBOL_GPL(sched_setscheduler);
6382
6383 /**
6384 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6385 * @p: the task in question.
6386 * @policy: new policy.
6387 * @param: structure containing the new RT priority.
6388 *
6389 * Just like sched_setscheduler, only don't bother checking if the
6390 * current context has permission. For example, this is needed in
6391 * stop_machine(): we create temporary high priority worker threads,
6392 * but our caller might not have that capability.
6393 */
6394 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6395 struct sched_param *param)
6396 {
6397 return __sched_setscheduler(p, policy, param, false);
6398 }
6399
6400 static int
6401 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6402 {
6403 struct sched_param lparam;
6404 struct task_struct *p;
6405 int retval;
6406
6407 if (!param || pid < 0)
6408 return -EINVAL;
6409 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6410 return -EFAULT;
6411
6412 rcu_read_lock();
6413 retval = -ESRCH;
6414 p = find_process_by_pid(pid);
6415 if (p != NULL)
6416 retval = sched_setscheduler(p, policy, &lparam);
6417 rcu_read_unlock();
6418
6419 return retval;
6420 }
6421
6422 /**
6423 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6424 * @pid: the pid in question.
6425 * @policy: new policy.
6426 * @param: structure containing the new RT priority.
6427 */
6428 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6429 struct sched_param __user *, param)
6430 {
6431 /* negative values for policy are not valid */
6432 if (policy < 0)
6433 return -EINVAL;
6434
6435 return do_sched_setscheduler(pid, policy, param);
6436 }
6437
6438 /**
6439 * sys_sched_setparam - set/change the RT priority of a thread
6440 * @pid: the pid in question.
6441 * @param: structure containing the new RT priority.
6442 */
6443 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6444 {
6445 return do_sched_setscheduler(pid, -1, param);
6446 }
6447
6448 /**
6449 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6450 * @pid: the pid in question.
6451 */
6452 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6453 {
6454 struct task_struct *p;
6455 int retval;
6456
6457 if (pid < 0)
6458 return -EINVAL;
6459
6460 retval = -ESRCH;
6461 rcu_read_lock();
6462 p = find_process_by_pid(pid);
6463 if (p) {
6464 retval = security_task_getscheduler(p);
6465 if (!retval)
6466 retval = p->policy
6467 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6468 }
6469 rcu_read_unlock();
6470 return retval;
6471 }
6472
6473 /**
6474 * sys_sched_getparam - get the RT priority of a thread
6475 * @pid: the pid in question.
6476 * @param: structure containing the RT priority.
6477 */
6478 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6479 {
6480 struct sched_param lp;
6481 struct task_struct *p;
6482 int retval;
6483
6484 if (!param || pid < 0)
6485 return -EINVAL;
6486
6487 rcu_read_lock();
6488 p = find_process_by_pid(pid);
6489 retval = -ESRCH;
6490 if (!p)
6491 goto out_unlock;
6492
6493 retval = security_task_getscheduler(p);
6494 if (retval)
6495 goto out_unlock;
6496
6497 lp.sched_priority = p->rt_priority;
6498 rcu_read_unlock();
6499
6500 /*
6501 * This one might sleep, we cannot do it with a spinlock held ...
6502 */
6503 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6504
6505 return retval;
6506
6507 out_unlock:
6508 rcu_read_unlock();
6509 return retval;
6510 }
6511
6512 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6513 {
6514 cpumask_var_t cpus_allowed, new_mask;
6515 struct task_struct *p;
6516 int retval;
6517
6518 get_online_cpus();
6519 rcu_read_lock();
6520
6521 p = find_process_by_pid(pid);
6522 if (!p) {
6523 rcu_read_unlock();
6524 put_online_cpus();
6525 return -ESRCH;
6526 }
6527
6528 /* Prevent p going away */
6529 get_task_struct(p);
6530 rcu_read_unlock();
6531
6532 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6533 retval = -ENOMEM;
6534 goto out_put_task;
6535 }
6536 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6537 retval = -ENOMEM;
6538 goto out_free_cpus_allowed;
6539 }
6540 retval = -EPERM;
6541 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6542 goto out_unlock;
6543
6544 retval = security_task_setscheduler(p, 0, NULL);
6545 if (retval)
6546 goto out_unlock;
6547
6548 cpuset_cpus_allowed(p, cpus_allowed);
6549 cpumask_and(new_mask, in_mask, cpus_allowed);
6550 again:
6551 retval = set_cpus_allowed_ptr(p, new_mask);
6552
6553 if (!retval) {
6554 cpuset_cpus_allowed(p, cpus_allowed);
6555 if (!cpumask_subset(new_mask, cpus_allowed)) {
6556 /*
6557 * We must have raced with a concurrent cpuset
6558 * update. Just reset the cpus_allowed to the
6559 * cpuset's cpus_allowed
6560 */
6561 cpumask_copy(new_mask, cpus_allowed);
6562 goto again;
6563 }
6564 }
6565 out_unlock:
6566 free_cpumask_var(new_mask);
6567 out_free_cpus_allowed:
6568 free_cpumask_var(cpus_allowed);
6569 out_put_task:
6570 put_task_struct(p);
6571 put_online_cpus();
6572 return retval;
6573 }
6574
6575 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6576 struct cpumask *new_mask)
6577 {
6578 if (len < cpumask_size())
6579 cpumask_clear(new_mask);
6580 else if (len > cpumask_size())
6581 len = cpumask_size();
6582
6583 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6584 }
6585
6586 /**
6587 * sys_sched_setaffinity - set the cpu affinity of a process
6588 * @pid: pid of the process
6589 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6590 * @user_mask_ptr: user-space pointer to the new cpu mask
6591 */
6592 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6593 unsigned long __user *, user_mask_ptr)
6594 {
6595 cpumask_var_t new_mask;
6596 int retval;
6597
6598 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6599 return -ENOMEM;
6600
6601 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6602 if (retval == 0)
6603 retval = sched_setaffinity(pid, new_mask);
6604 free_cpumask_var(new_mask);
6605 return retval;
6606 }
6607
6608 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6609 {
6610 struct task_struct *p;
6611 unsigned long flags;
6612 struct rq *rq;
6613 int retval;
6614
6615 get_online_cpus();
6616 rcu_read_lock();
6617
6618 retval = -ESRCH;
6619 p = find_process_by_pid(pid);
6620 if (!p)
6621 goto out_unlock;
6622
6623 retval = security_task_getscheduler(p);
6624 if (retval)
6625 goto out_unlock;
6626
6627 rq = task_rq_lock(p, &flags);
6628 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6629 task_rq_unlock(rq, &flags);
6630
6631 out_unlock:
6632 rcu_read_unlock();
6633 put_online_cpus();
6634
6635 return retval;
6636 }
6637
6638 /**
6639 * sys_sched_getaffinity - get the cpu affinity of a process
6640 * @pid: pid of the process
6641 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6642 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6643 */
6644 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6645 unsigned long __user *, user_mask_ptr)
6646 {
6647 int ret;
6648 cpumask_var_t mask;
6649
6650 if (len < cpumask_size())
6651 return -EINVAL;
6652
6653 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6654 return -ENOMEM;
6655
6656 ret = sched_getaffinity(pid, mask);
6657 if (ret == 0) {
6658 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6659 ret = -EFAULT;
6660 else
6661 ret = cpumask_size();
6662 }
6663 free_cpumask_var(mask);
6664
6665 return ret;
6666 }
6667
6668 /**
6669 * sys_sched_yield - yield the current processor to other threads.
6670 *
6671 * This function yields the current CPU to other tasks. If there are no
6672 * other threads running on this CPU then this function will return.
6673 */
6674 SYSCALL_DEFINE0(sched_yield)
6675 {
6676 struct rq *rq = this_rq_lock();
6677
6678 schedstat_inc(rq, yld_count);
6679 current->sched_class->yield_task(rq);
6680
6681 /*
6682 * Since we are going to call schedule() anyway, there's
6683 * no need to preempt or enable interrupts:
6684 */
6685 __release(rq->lock);
6686 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6687 _raw_spin_unlock(&rq->lock);
6688 preempt_enable_no_resched();
6689
6690 schedule();
6691
6692 return 0;
6693 }
6694
6695 static inline int should_resched(void)
6696 {
6697 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6698 }
6699
6700 static void __cond_resched(void)
6701 {
6702 add_preempt_count(PREEMPT_ACTIVE);
6703 schedule();
6704 sub_preempt_count(PREEMPT_ACTIVE);
6705 }
6706
6707 int __sched _cond_resched(void)
6708 {
6709 if (should_resched()) {
6710 __cond_resched();
6711 return 1;
6712 }
6713 return 0;
6714 }
6715 EXPORT_SYMBOL(_cond_resched);
6716
6717 /*
6718 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6719 * call schedule, and on return reacquire the lock.
6720 *
6721 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6722 * operations here to prevent schedule() from being called twice (once via
6723 * spin_unlock(), once by hand).
6724 */
6725 int __cond_resched_lock(spinlock_t *lock)
6726 {
6727 int resched = should_resched();
6728 int ret = 0;
6729
6730 lockdep_assert_held(lock);
6731
6732 if (spin_needbreak(lock) || resched) {
6733 spin_unlock(lock);
6734 if (resched)
6735 __cond_resched();
6736 else
6737 cpu_relax();
6738 ret = 1;
6739 spin_lock(lock);
6740 }
6741 return ret;
6742 }
6743 EXPORT_SYMBOL(__cond_resched_lock);
6744
6745 int __sched __cond_resched_softirq(void)
6746 {
6747 BUG_ON(!in_softirq());
6748
6749 if (should_resched()) {
6750 local_bh_enable();
6751 __cond_resched();
6752 local_bh_disable();
6753 return 1;
6754 }
6755 return 0;
6756 }
6757 EXPORT_SYMBOL(__cond_resched_softirq);
6758
6759 /**
6760 * yield - yield the current processor to other threads.
6761 *
6762 * This is a shortcut for kernel-space yielding - it marks the
6763 * thread runnable and calls sys_sched_yield().
6764 */
6765 void __sched yield(void)
6766 {
6767 set_current_state(TASK_RUNNING);
6768 sys_sched_yield();
6769 }
6770 EXPORT_SYMBOL(yield);
6771
6772 /*
6773 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6774 * that process accounting knows that this is a task in IO wait state.
6775 */
6776 void __sched io_schedule(void)
6777 {
6778 struct rq *rq = raw_rq();
6779
6780 delayacct_blkio_start();
6781 atomic_inc(&rq->nr_iowait);
6782 current->in_iowait = 1;
6783 schedule();
6784 current->in_iowait = 0;
6785 atomic_dec(&rq->nr_iowait);
6786 delayacct_blkio_end();
6787 }
6788 EXPORT_SYMBOL(io_schedule);
6789
6790 long __sched io_schedule_timeout(long timeout)
6791 {
6792 struct rq *rq = raw_rq();
6793 long ret;
6794
6795 delayacct_blkio_start();
6796 atomic_inc(&rq->nr_iowait);
6797 current->in_iowait = 1;
6798 ret = schedule_timeout(timeout);
6799 current->in_iowait = 0;
6800 atomic_dec(&rq->nr_iowait);
6801 delayacct_blkio_end();
6802 return ret;
6803 }
6804
6805 /**
6806 * sys_sched_get_priority_max - return maximum RT priority.
6807 * @policy: scheduling class.
6808 *
6809 * this syscall returns the maximum rt_priority that can be used
6810 * by a given scheduling class.
6811 */
6812 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6813 {
6814 int ret = -EINVAL;
6815
6816 switch (policy) {
6817 case SCHED_FIFO:
6818 case SCHED_RR:
6819 ret = MAX_USER_RT_PRIO-1;
6820 break;
6821 case SCHED_NORMAL:
6822 case SCHED_BATCH:
6823 case SCHED_IDLE:
6824 ret = 0;
6825 break;
6826 }
6827 return ret;
6828 }
6829
6830 /**
6831 * sys_sched_get_priority_min - return minimum RT priority.
6832 * @policy: scheduling class.
6833 *
6834 * this syscall returns the minimum rt_priority that can be used
6835 * by a given scheduling class.
6836 */
6837 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6838 {
6839 int ret = -EINVAL;
6840
6841 switch (policy) {
6842 case SCHED_FIFO:
6843 case SCHED_RR:
6844 ret = 1;
6845 break;
6846 case SCHED_NORMAL:
6847 case SCHED_BATCH:
6848 case SCHED_IDLE:
6849 ret = 0;
6850 }
6851 return ret;
6852 }
6853
6854 /**
6855 * sys_sched_rr_get_interval - return the default timeslice of a process.
6856 * @pid: pid of the process.
6857 * @interval: userspace pointer to the timeslice value.
6858 *
6859 * this syscall writes the default timeslice value of a given process
6860 * into the user-space timespec buffer. A value of '0' means infinity.
6861 */
6862 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6863 struct timespec __user *, interval)
6864 {
6865 struct task_struct *p;
6866 unsigned int time_slice;
6867 unsigned long flags;
6868 struct rq *rq;
6869 int retval;
6870 struct timespec t;
6871
6872 if (pid < 0)
6873 return -EINVAL;
6874
6875 retval = -ESRCH;
6876 read_lock(&tasklist_lock);
6877 p = find_process_by_pid(pid);
6878 if (!p)
6879 goto out_unlock;
6880
6881 retval = security_task_getscheduler(p);
6882 if (retval)
6883 goto out_unlock;
6884
6885 rq = task_rq_lock(p, &flags);
6886 time_slice = p->sched_class->get_rr_interval(rq, p);
6887 task_rq_unlock(rq, &flags);
6888
6889 read_unlock(&tasklist_lock);
6890 jiffies_to_timespec(time_slice, &t);
6891 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6892 return retval;
6893
6894 out_unlock:
6895 read_unlock(&tasklist_lock);
6896 return retval;
6897 }
6898
6899 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6900
6901 void sched_show_task(struct task_struct *p)
6902 {
6903 unsigned long free = 0;
6904 unsigned state;
6905
6906 state = p->state ? __ffs(p->state) + 1 : 0;
6907 pr_info("%-13.13s %c", p->comm,
6908 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6909 #if BITS_PER_LONG == 32
6910 if (state == TASK_RUNNING)
6911 pr_cont(" running ");
6912 else
6913 pr_cont(" %08lx ", thread_saved_pc(p));
6914 #else
6915 if (state == TASK_RUNNING)
6916 pr_cont(" running task ");
6917 else
6918 pr_cont(" %016lx ", thread_saved_pc(p));
6919 #endif
6920 #ifdef CONFIG_DEBUG_STACK_USAGE
6921 free = stack_not_used(p);
6922 #endif
6923 pr_cont("%5lu %5d %6d 0x%08lx\n", free,
6924 task_pid_nr(p), task_pid_nr(p->real_parent),
6925 (unsigned long)task_thread_info(p)->flags);
6926
6927 show_stack(p, NULL);
6928 }
6929
6930 void show_state_filter(unsigned long state_filter)
6931 {
6932 struct task_struct *g, *p;
6933
6934 #if BITS_PER_LONG == 32
6935 pr_info(" task PC stack pid father\n");
6936 #else
6937 pr_info(" task PC stack pid father\n");
6938 #endif
6939 read_lock(&tasklist_lock);
6940 do_each_thread(g, p) {
6941 /*
6942 * reset the NMI-timeout, listing all files on a slow
6943 * console might take alot of time:
6944 */
6945 touch_nmi_watchdog();
6946 if (!state_filter || (p->state & state_filter))
6947 sched_show_task(p);
6948 } while_each_thread(g, p);
6949
6950 touch_all_softlockup_watchdogs();
6951
6952 #ifdef CONFIG_SCHED_DEBUG
6953 sysrq_sched_debug_show();
6954 #endif
6955 read_unlock(&tasklist_lock);
6956 /*
6957 * Only show locks if all tasks are dumped:
6958 */
6959 if (!state_filter)
6960 debug_show_all_locks();
6961 }
6962
6963 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6964 {
6965 idle->sched_class = &idle_sched_class;
6966 }
6967
6968 /**
6969 * init_idle - set up an idle thread for a given CPU
6970 * @idle: task in question
6971 * @cpu: cpu the idle task belongs to
6972 *
6973 * NOTE: this function does not set the idle thread's NEED_RESCHED
6974 * flag, to make booting more robust.
6975 */
6976 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6977 {
6978 struct rq *rq = cpu_rq(cpu);
6979 unsigned long flags;
6980
6981 spin_lock_irqsave(&rq->lock, flags);
6982
6983 __sched_fork(idle);
6984 idle->se.exec_start = sched_clock();
6985
6986 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6987 __set_task_cpu(idle, cpu);
6988
6989 rq->curr = rq->idle = idle;
6990 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6991 idle->oncpu = 1;
6992 #endif
6993 spin_unlock_irqrestore(&rq->lock, flags);
6994
6995 /* Set the preempt count _outside_ the spinlocks! */
6996 #if defined(CONFIG_PREEMPT)
6997 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6998 #else
6999 task_thread_info(idle)->preempt_count = 0;
7000 #endif
7001 /*
7002 * The idle tasks have their own, simple scheduling class:
7003 */
7004 idle->sched_class = &idle_sched_class;
7005 ftrace_graph_init_task(idle);
7006 }
7007
7008 /*
7009 * In a system that switches off the HZ timer nohz_cpu_mask
7010 * indicates which cpus entered this state. This is used
7011 * in the rcu update to wait only for active cpus. For system
7012 * which do not switch off the HZ timer nohz_cpu_mask should
7013 * always be CPU_BITS_NONE.
7014 */
7015 cpumask_var_t nohz_cpu_mask;
7016
7017 /*
7018 * Increase the granularity value when there are more CPUs,
7019 * because with more CPUs the 'effective latency' as visible
7020 * to users decreases. But the relationship is not linear,
7021 * so pick a second-best guess by going with the log2 of the
7022 * number of CPUs.
7023 *
7024 * This idea comes from the SD scheduler of Con Kolivas:
7025 */
7026 static int get_update_sysctl_factor(void)
7027 {
7028 unsigned int cpus = min_t(int, num_online_cpus(), 8);
7029 unsigned int factor;
7030
7031 switch (sysctl_sched_tunable_scaling) {
7032 case SCHED_TUNABLESCALING_NONE:
7033 factor = 1;
7034 break;
7035 case SCHED_TUNABLESCALING_LINEAR:
7036 factor = cpus;
7037 break;
7038 case SCHED_TUNABLESCALING_LOG:
7039 default:
7040 factor = 1 + ilog2(cpus);
7041 break;
7042 }
7043
7044 return factor;
7045 }
7046
7047 static void update_sysctl(void)
7048 {
7049 unsigned int factor = get_update_sysctl_factor();
7050
7051 #define SET_SYSCTL(name) \
7052 (sysctl_##name = (factor) * normalized_sysctl_##name)
7053 SET_SYSCTL(sched_min_granularity);
7054 SET_SYSCTL(sched_latency);
7055 SET_SYSCTL(sched_wakeup_granularity);
7056 SET_SYSCTL(sched_shares_ratelimit);
7057 #undef SET_SYSCTL
7058 }
7059
7060 static inline void sched_init_granularity(void)
7061 {
7062 update_sysctl();
7063 }
7064
7065 #ifdef CONFIG_SMP
7066 /*
7067 * This is how migration works:
7068 *
7069 * 1) we queue a struct migration_req structure in the source CPU's
7070 * runqueue and wake up that CPU's migration thread.
7071 * 2) we down() the locked semaphore => thread blocks.
7072 * 3) migration thread wakes up (implicitly it forces the migrated
7073 * thread off the CPU)
7074 * 4) it gets the migration request and checks whether the migrated
7075 * task is still in the wrong runqueue.
7076 * 5) if it's in the wrong runqueue then the migration thread removes
7077 * it and puts it into the right queue.
7078 * 6) migration thread up()s the semaphore.
7079 * 7) we wake up and the migration is done.
7080 */
7081
7082 /*
7083 * Change a given task's CPU affinity. Migrate the thread to a
7084 * proper CPU and schedule it away if the CPU it's executing on
7085 * is removed from the allowed bitmask.
7086 *
7087 * NOTE: the caller must have a valid reference to the task, the
7088 * task must not exit() & deallocate itself prematurely. The
7089 * call is not atomic; no spinlocks may be held.
7090 */
7091 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7092 {
7093 struct migration_req req;
7094 unsigned long flags;
7095 struct rq *rq;
7096 int ret = 0;
7097
7098 rq = task_rq_lock(p, &flags);
7099 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7100 ret = -EINVAL;
7101 goto out;
7102 }
7103
7104 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7105 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7106 ret = -EINVAL;
7107 goto out;
7108 }
7109
7110 if (p->sched_class->set_cpus_allowed)
7111 p->sched_class->set_cpus_allowed(p, new_mask);
7112 else {
7113 cpumask_copy(&p->cpus_allowed, new_mask);
7114 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7115 }
7116
7117 /* Can the task run on the task's current CPU? If so, we're done */
7118 if (cpumask_test_cpu(task_cpu(p), new_mask))
7119 goto out;
7120
7121 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7122 /* Need help from migration thread: drop lock and wait. */
7123 struct task_struct *mt = rq->migration_thread;
7124
7125 get_task_struct(mt);
7126 task_rq_unlock(rq, &flags);
7127 wake_up_process(rq->migration_thread);
7128 put_task_struct(mt);
7129 wait_for_completion(&req.done);
7130 tlb_migrate_finish(p->mm);
7131 return 0;
7132 }
7133 out:
7134 task_rq_unlock(rq, &flags);
7135
7136 return ret;
7137 }
7138 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7139
7140 /*
7141 * Move (not current) task off this cpu, onto dest cpu. We're doing
7142 * this because either it can't run here any more (set_cpus_allowed()
7143 * away from this CPU, or CPU going down), or because we're
7144 * attempting to rebalance this task on exec (sched_exec).
7145 *
7146 * So we race with normal scheduler movements, but that's OK, as long
7147 * as the task is no longer on this CPU.
7148 *
7149 * Returns non-zero if task was successfully migrated.
7150 */
7151 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7152 {
7153 struct rq *rq_dest, *rq_src;
7154 int ret = 0, on_rq;
7155
7156 if (unlikely(!cpu_active(dest_cpu)))
7157 return ret;
7158
7159 rq_src = cpu_rq(src_cpu);
7160 rq_dest = cpu_rq(dest_cpu);
7161
7162 double_rq_lock(rq_src, rq_dest);
7163 /* Already moved. */
7164 if (task_cpu(p) != src_cpu)
7165 goto done;
7166 /* Affinity changed (again). */
7167 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7168 goto fail;
7169
7170 on_rq = p->se.on_rq;
7171 if (on_rq)
7172 deactivate_task(rq_src, p, 0);
7173
7174 set_task_cpu(p, dest_cpu);
7175 if (on_rq) {
7176 activate_task(rq_dest, p, 0);
7177 check_preempt_curr(rq_dest, p, 0);
7178 }
7179 done:
7180 ret = 1;
7181 fail:
7182 double_rq_unlock(rq_src, rq_dest);
7183 return ret;
7184 }
7185
7186 #define RCU_MIGRATION_IDLE 0
7187 #define RCU_MIGRATION_NEED_QS 1
7188 #define RCU_MIGRATION_GOT_QS 2
7189 #define RCU_MIGRATION_MUST_SYNC 3
7190
7191 /*
7192 * migration_thread - this is a highprio system thread that performs
7193 * thread migration by bumping thread off CPU then 'pushing' onto
7194 * another runqueue.
7195 */
7196 static int migration_thread(void *data)
7197 {
7198 int badcpu;
7199 int cpu = (long)data;
7200 struct rq *rq;
7201
7202 rq = cpu_rq(cpu);
7203 BUG_ON(rq->migration_thread != current);
7204
7205 set_current_state(TASK_INTERRUPTIBLE);
7206 while (!kthread_should_stop()) {
7207 struct migration_req *req;
7208 struct list_head *head;
7209
7210 spin_lock_irq(&rq->lock);
7211
7212 if (cpu_is_offline(cpu)) {
7213 spin_unlock_irq(&rq->lock);
7214 break;
7215 }
7216
7217 if (rq->active_balance) {
7218 active_load_balance(rq, cpu);
7219 rq->active_balance = 0;
7220 }
7221
7222 head = &rq->migration_queue;
7223
7224 if (list_empty(head)) {
7225 spin_unlock_irq(&rq->lock);
7226 schedule();
7227 set_current_state(TASK_INTERRUPTIBLE);
7228 continue;
7229 }
7230 req = list_entry(head->next, struct migration_req, list);
7231 list_del_init(head->next);
7232
7233 if (req->task != NULL) {
7234 spin_unlock(&rq->lock);
7235 __migrate_task(req->task, cpu, req->dest_cpu);
7236 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7237 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7238 spin_unlock(&rq->lock);
7239 } else {
7240 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7241 spin_unlock(&rq->lock);
7242 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7243 }
7244 local_irq_enable();
7245
7246 complete(&req->done);
7247 }
7248 __set_current_state(TASK_RUNNING);
7249
7250 return 0;
7251 }
7252
7253 #ifdef CONFIG_HOTPLUG_CPU
7254
7255 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7256 {
7257 int ret;
7258
7259 local_irq_disable();
7260 ret = __migrate_task(p, src_cpu, dest_cpu);
7261 local_irq_enable();
7262 return ret;
7263 }
7264
7265 /*
7266 * Figure out where task on dead CPU should go, use force if necessary.
7267 */
7268 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7269 {
7270 int dest_cpu;
7271 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7272
7273 again:
7274 /* Look for allowed, online CPU in same node. */
7275 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7276 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7277 goto move;
7278
7279 /* Any allowed, online CPU? */
7280 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7281 if (dest_cpu < nr_cpu_ids)
7282 goto move;
7283
7284 /* No more Mr. Nice Guy. */
7285 if (dest_cpu >= nr_cpu_ids) {
7286 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7287 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
7288
7289 /*
7290 * Don't tell them about moving exiting tasks or
7291 * kernel threads (both mm NULL), since they never
7292 * leave kernel.
7293 */
7294 if (p->mm && printk_ratelimit()) {
7295 pr_info("process %d (%s) no longer affine to cpu%d\n",
7296 task_pid_nr(p), p->comm, dead_cpu);
7297 }
7298 }
7299
7300 move:
7301 /* It can have affinity changed while we were choosing. */
7302 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7303 goto again;
7304 }
7305
7306 /*
7307 * While a dead CPU has no uninterruptible tasks queued at this point,
7308 * it might still have a nonzero ->nr_uninterruptible counter, because
7309 * for performance reasons the counter is not stricly tracking tasks to
7310 * their home CPUs. So we just add the counter to another CPU's counter,
7311 * to keep the global sum constant after CPU-down:
7312 */
7313 static void migrate_nr_uninterruptible(struct rq *rq_src)
7314 {
7315 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7316 unsigned long flags;
7317
7318 local_irq_save(flags);
7319 double_rq_lock(rq_src, rq_dest);
7320 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7321 rq_src->nr_uninterruptible = 0;
7322 double_rq_unlock(rq_src, rq_dest);
7323 local_irq_restore(flags);
7324 }
7325
7326 /* Run through task list and migrate tasks from the dead cpu. */
7327 static void migrate_live_tasks(int src_cpu)
7328 {
7329 struct task_struct *p, *t;
7330
7331 read_lock(&tasklist_lock);
7332
7333 do_each_thread(t, p) {
7334 if (p == current)
7335 continue;
7336
7337 if (task_cpu(p) == src_cpu)
7338 move_task_off_dead_cpu(src_cpu, p);
7339 } while_each_thread(t, p);
7340
7341 read_unlock(&tasklist_lock);
7342 }
7343
7344 /*
7345 * Schedules idle task to be the next runnable task on current CPU.
7346 * It does so by boosting its priority to highest possible.
7347 * Used by CPU offline code.
7348 */
7349 void sched_idle_next(void)
7350 {
7351 int this_cpu = smp_processor_id();
7352 struct rq *rq = cpu_rq(this_cpu);
7353 struct task_struct *p = rq->idle;
7354 unsigned long flags;
7355
7356 /* cpu has to be offline */
7357 BUG_ON(cpu_online(this_cpu));
7358
7359 /*
7360 * Strictly not necessary since rest of the CPUs are stopped by now
7361 * and interrupts disabled on the current cpu.
7362 */
7363 spin_lock_irqsave(&rq->lock, flags);
7364
7365 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7366
7367 update_rq_clock(rq);
7368 activate_task(rq, p, 0);
7369
7370 spin_unlock_irqrestore(&rq->lock, flags);
7371 }
7372
7373 /*
7374 * Ensures that the idle task is using init_mm right before its cpu goes
7375 * offline.
7376 */
7377 void idle_task_exit(void)
7378 {
7379 struct mm_struct *mm = current->active_mm;
7380
7381 BUG_ON(cpu_online(smp_processor_id()));
7382
7383 if (mm != &init_mm)
7384 switch_mm(mm, &init_mm, current);
7385 mmdrop(mm);
7386 }
7387
7388 /* called under rq->lock with disabled interrupts */
7389 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7390 {
7391 struct rq *rq = cpu_rq(dead_cpu);
7392
7393 /* Must be exiting, otherwise would be on tasklist. */
7394 BUG_ON(!p->exit_state);
7395
7396 /* Cannot have done final schedule yet: would have vanished. */
7397 BUG_ON(p->state == TASK_DEAD);
7398
7399 get_task_struct(p);
7400
7401 /*
7402 * Drop lock around migration; if someone else moves it,
7403 * that's OK. No task can be added to this CPU, so iteration is
7404 * fine.
7405 */
7406 spin_unlock_irq(&rq->lock);
7407 move_task_off_dead_cpu(dead_cpu, p);
7408 spin_lock_irq(&rq->lock);
7409
7410 put_task_struct(p);
7411 }
7412
7413 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7414 static void migrate_dead_tasks(unsigned int dead_cpu)
7415 {
7416 struct rq *rq = cpu_rq(dead_cpu);
7417 struct task_struct *next;
7418
7419 for ( ; ; ) {
7420 if (!rq->nr_running)
7421 break;
7422 update_rq_clock(rq);
7423 next = pick_next_task(rq);
7424 if (!next)
7425 break;
7426 next->sched_class->put_prev_task(rq, next);
7427 migrate_dead(dead_cpu, next);
7428
7429 }
7430 }
7431
7432 /*
7433 * remove the tasks which were accounted by rq from calc_load_tasks.
7434 */
7435 static void calc_global_load_remove(struct rq *rq)
7436 {
7437 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7438 rq->calc_load_active = 0;
7439 }
7440 #endif /* CONFIG_HOTPLUG_CPU */
7441
7442 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7443
7444 static struct ctl_table sd_ctl_dir[] = {
7445 {
7446 .procname = "sched_domain",
7447 .mode = 0555,
7448 },
7449 {}
7450 };
7451
7452 static struct ctl_table sd_ctl_root[] = {
7453 {
7454 .procname = "kernel",
7455 .mode = 0555,
7456 .child = sd_ctl_dir,
7457 },
7458 {}
7459 };
7460
7461 static struct ctl_table *sd_alloc_ctl_entry(int n)
7462 {
7463 struct ctl_table *entry =
7464 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7465
7466 return entry;
7467 }
7468
7469 static void sd_free_ctl_entry(struct ctl_table **tablep)
7470 {
7471 struct ctl_table *entry;
7472
7473 /*
7474 * In the intermediate directories, both the child directory and
7475 * procname are dynamically allocated and could fail but the mode
7476 * will always be set. In the lowest directory the names are
7477 * static strings and all have proc handlers.
7478 */
7479 for (entry = *tablep; entry->mode; entry++) {
7480 if (entry->child)
7481 sd_free_ctl_entry(&entry->child);
7482 if (entry->proc_handler == NULL)
7483 kfree(entry->procname);
7484 }
7485
7486 kfree(*tablep);
7487 *tablep = NULL;
7488 }
7489
7490 static void
7491 set_table_entry(struct ctl_table *entry,
7492 const char *procname, void *data, int maxlen,
7493 mode_t mode, proc_handler *proc_handler)
7494 {
7495 entry->procname = procname;
7496 entry->data = data;
7497 entry->maxlen = maxlen;
7498 entry->mode = mode;
7499 entry->proc_handler = proc_handler;
7500 }
7501
7502 static struct ctl_table *
7503 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7504 {
7505 struct ctl_table *table = sd_alloc_ctl_entry(13);
7506
7507 if (table == NULL)
7508 return NULL;
7509
7510 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7511 sizeof(long), 0644, proc_doulongvec_minmax);
7512 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7513 sizeof(long), 0644, proc_doulongvec_minmax);
7514 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7515 sizeof(int), 0644, proc_dointvec_minmax);
7516 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7517 sizeof(int), 0644, proc_dointvec_minmax);
7518 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7519 sizeof(int), 0644, proc_dointvec_minmax);
7520 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7521 sizeof(int), 0644, proc_dointvec_minmax);
7522 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7523 sizeof(int), 0644, proc_dointvec_minmax);
7524 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7525 sizeof(int), 0644, proc_dointvec_minmax);
7526 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7527 sizeof(int), 0644, proc_dointvec_minmax);
7528 set_table_entry(&table[9], "cache_nice_tries",
7529 &sd->cache_nice_tries,
7530 sizeof(int), 0644, proc_dointvec_minmax);
7531 set_table_entry(&table[10], "flags", &sd->flags,
7532 sizeof(int), 0644, proc_dointvec_minmax);
7533 set_table_entry(&table[11], "name", sd->name,
7534 CORENAME_MAX_SIZE, 0444, proc_dostring);
7535 /* &table[12] is terminator */
7536
7537 return table;
7538 }
7539
7540 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7541 {
7542 struct ctl_table *entry, *table;
7543 struct sched_domain *sd;
7544 int domain_num = 0, i;
7545 char buf[32];
7546
7547 for_each_domain(cpu, sd)
7548 domain_num++;
7549 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7550 if (table == NULL)
7551 return NULL;
7552
7553 i = 0;
7554 for_each_domain(cpu, sd) {
7555 snprintf(buf, 32, "domain%d", i);
7556 entry->procname = kstrdup(buf, GFP_KERNEL);
7557 entry->mode = 0555;
7558 entry->child = sd_alloc_ctl_domain_table(sd);
7559 entry++;
7560 i++;
7561 }
7562 return table;
7563 }
7564
7565 static struct ctl_table_header *sd_sysctl_header;
7566 static void register_sched_domain_sysctl(void)
7567 {
7568 int i, cpu_num = num_possible_cpus();
7569 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7570 char buf[32];
7571
7572 WARN_ON(sd_ctl_dir[0].child);
7573 sd_ctl_dir[0].child = entry;
7574
7575 if (entry == NULL)
7576 return;
7577
7578 for_each_possible_cpu(i) {
7579 snprintf(buf, 32, "cpu%d", i);
7580 entry->procname = kstrdup(buf, GFP_KERNEL);
7581 entry->mode = 0555;
7582 entry->child = sd_alloc_ctl_cpu_table(i);
7583 entry++;
7584 }
7585
7586 WARN_ON(sd_sysctl_header);
7587 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7588 }
7589
7590 /* may be called multiple times per register */
7591 static void unregister_sched_domain_sysctl(void)
7592 {
7593 if (sd_sysctl_header)
7594 unregister_sysctl_table(sd_sysctl_header);
7595 sd_sysctl_header = NULL;
7596 if (sd_ctl_dir[0].child)
7597 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7598 }
7599 #else
7600 static void register_sched_domain_sysctl(void)
7601 {
7602 }
7603 static void unregister_sched_domain_sysctl(void)
7604 {
7605 }
7606 #endif
7607
7608 static void set_rq_online(struct rq *rq)
7609 {
7610 if (!rq->online) {
7611 const struct sched_class *class;
7612
7613 cpumask_set_cpu(rq->cpu, rq->rd->online);
7614 rq->online = 1;
7615
7616 for_each_class(class) {
7617 if (class->rq_online)
7618 class->rq_online(rq);
7619 }
7620 }
7621 }
7622
7623 static void set_rq_offline(struct rq *rq)
7624 {
7625 if (rq->online) {
7626 const struct sched_class *class;
7627
7628 for_each_class(class) {
7629 if (class->rq_offline)
7630 class->rq_offline(rq);
7631 }
7632
7633 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7634 rq->online = 0;
7635 }
7636 }
7637
7638 /*
7639 * migration_call - callback that gets triggered when a CPU is added.
7640 * Here we can start up the necessary migration thread for the new CPU.
7641 */
7642 static int __cpuinit
7643 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7644 {
7645 struct task_struct *p;
7646 int cpu = (long)hcpu;
7647 unsigned long flags;
7648 struct rq *rq;
7649
7650 switch (action) {
7651
7652 case CPU_UP_PREPARE:
7653 case CPU_UP_PREPARE_FROZEN:
7654 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7655 if (IS_ERR(p))
7656 return NOTIFY_BAD;
7657 kthread_bind(p, cpu);
7658 /* Must be high prio: stop_machine expects to yield to it. */
7659 rq = task_rq_lock(p, &flags);
7660 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7661 task_rq_unlock(rq, &flags);
7662 get_task_struct(p);
7663 cpu_rq(cpu)->migration_thread = p;
7664 rq->calc_load_update = calc_load_update;
7665 break;
7666
7667 case CPU_ONLINE:
7668 case CPU_ONLINE_FROZEN:
7669 /* Strictly unnecessary, as first user will wake it. */
7670 wake_up_process(cpu_rq(cpu)->migration_thread);
7671
7672 /* Update our root-domain */
7673 rq = cpu_rq(cpu);
7674 spin_lock_irqsave(&rq->lock, flags);
7675 if (rq->rd) {
7676 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7677
7678 set_rq_online(rq);
7679 }
7680 spin_unlock_irqrestore(&rq->lock, flags);
7681 break;
7682
7683 #ifdef CONFIG_HOTPLUG_CPU
7684 case CPU_UP_CANCELED:
7685 case CPU_UP_CANCELED_FROZEN:
7686 if (!cpu_rq(cpu)->migration_thread)
7687 break;
7688 /* Unbind it from offline cpu so it can run. Fall thru. */
7689 kthread_bind(cpu_rq(cpu)->migration_thread,
7690 cpumask_any(cpu_online_mask));
7691 kthread_stop(cpu_rq(cpu)->migration_thread);
7692 put_task_struct(cpu_rq(cpu)->migration_thread);
7693 cpu_rq(cpu)->migration_thread = NULL;
7694 break;
7695
7696 case CPU_DEAD:
7697 case CPU_DEAD_FROZEN:
7698 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7699 migrate_live_tasks(cpu);
7700 rq = cpu_rq(cpu);
7701 kthread_stop(rq->migration_thread);
7702 put_task_struct(rq->migration_thread);
7703 rq->migration_thread = NULL;
7704 /* Idle task back to normal (off runqueue, low prio) */
7705 spin_lock_irq(&rq->lock);
7706 update_rq_clock(rq);
7707 deactivate_task(rq, rq->idle, 0);
7708 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7709 rq->idle->sched_class = &idle_sched_class;
7710 migrate_dead_tasks(cpu);
7711 spin_unlock_irq(&rq->lock);
7712 cpuset_unlock();
7713 migrate_nr_uninterruptible(rq);
7714 BUG_ON(rq->nr_running != 0);
7715 calc_global_load_remove(rq);
7716 /*
7717 * No need to migrate the tasks: it was best-effort if
7718 * they didn't take sched_hotcpu_mutex. Just wake up
7719 * the requestors.
7720 */
7721 spin_lock_irq(&rq->lock);
7722 while (!list_empty(&rq->migration_queue)) {
7723 struct migration_req *req;
7724
7725 req = list_entry(rq->migration_queue.next,
7726 struct migration_req, list);
7727 list_del_init(&req->list);
7728 spin_unlock_irq(&rq->lock);
7729 complete(&req->done);
7730 spin_lock_irq(&rq->lock);
7731 }
7732 spin_unlock_irq(&rq->lock);
7733 break;
7734
7735 case CPU_DYING:
7736 case CPU_DYING_FROZEN:
7737 /* Update our root-domain */
7738 rq = cpu_rq(cpu);
7739 spin_lock_irqsave(&rq->lock, flags);
7740 if (rq->rd) {
7741 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7742 set_rq_offline(rq);
7743 }
7744 spin_unlock_irqrestore(&rq->lock, flags);
7745 break;
7746 #endif
7747 }
7748 return NOTIFY_OK;
7749 }
7750
7751 /*
7752 * Register at high priority so that task migration (migrate_all_tasks)
7753 * happens before everything else. This has to be lower priority than
7754 * the notifier in the perf_event subsystem, though.
7755 */
7756 static struct notifier_block __cpuinitdata migration_notifier = {
7757 .notifier_call = migration_call,
7758 .priority = 10
7759 };
7760
7761 static int __init migration_init(void)
7762 {
7763 void *cpu = (void *)(long)smp_processor_id();
7764 int err;
7765
7766 /* Start one for the boot CPU: */
7767 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7768 BUG_ON(err == NOTIFY_BAD);
7769 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7770 register_cpu_notifier(&migration_notifier);
7771
7772 return 0;
7773 }
7774 early_initcall(migration_init);
7775 #endif
7776
7777 #ifdef CONFIG_SMP
7778
7779 #ifdef CONFIG_SCHED_DEBUG
7780
7781 static __read_mostly int sched_domain_debug_enabled;
7782
7783 static int __init sched_domain_debug_setup(char *str)
7784 {
7785 sched_domain_debug_enabled = 1;
7786
7787 return 0;
7788 }
7789 early_param("sched_debug", sched_domain_debug_setup);
7790
7791 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7792 struct cpumask *groupmask)
7793 {
7794 struct sched_group *group = sd->groups;
7795 char str[256];
7796
7797 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7798 cpumask_clear(groupmask);
7799
7800 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7801
7802 if (!(sd->flags & SD_LOAD_BALANCE)) {
7803 pr_cont("does not load-balance\n");
7804 if (sd->parent)
7805 pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
7806 return -1;
7807 }
7808
7809 pr_cont("span %s level %s\n", str, sd->name);
7810
7811 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7812 pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
7813 }
7814 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7815 pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
7816 }
7817
7818 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7819 do {
7820 if (!group) {
7821 pr_cont("\n");
7822 pr_err("ERROR: group is NULL\n");
7823 break;
7824 }
7825
7826 if (!group->cpu_power) {
7827 pr_cont("\n");
7828 pr_err("ERROR: domain->cpu_power not set\n");
7829 break;
7830 }
7831
7832 if (!cpumask_weight(sched_group_cpus(group))) {
7833 pr_cont("\n");
7834 pr_err("ERROR: empty group\n");
7835 break;
7836 }
7837
7838 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7839 pr_cont("\n");
7840 pr_err("ERROR: repeated CPUs\n");
7841 break;
7842 }
7843
7844 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7845
7846 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7847
7848 pr_cont(" %s", str);
7849 if (group->cpu_power != SCHED_LOAD_SCALE) {
7850 pr_cont(" (cpu_power = %d)", group->cpu_power);
7851 }
7852
7853 group = group->next;
7854 } while (group != sd->groups);
7855 pr_cont("\n");
7856
7857 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7858 pr_err("ERROR: groups don't span domain->span\n");
7859
7860 if (sd->parent &&
7861 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7862 pr_err("ERROR: parent span is not a superset of domain->span\n");
7863 return 0;
7864 }
7865
7866 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7867 {
7868 cpumask_var_t groupmask;
7869 int level = 0;
7870
7871 if (!sched_domain_debug_enabled)
7872 return;
7873
7874 if (!sd) {
7875 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7876 return;
7877 }
7878
7879 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7880
7881 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7882 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7883 return;
7884 }
7885
7886 for (;;) {
7887 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7888 break;
7889 level++;
7890 sd = sd->parent;
7891 if (!sd)
7892 break;
7893 }
7894 free_cpumask_var(groupmask);
7895 }
7896 #else /* !CONFIG_SCHED_DEBUG */
7897 # define sched_domain_debug(sd, cpu) do { } while (0)
7898 #endif /* CONFIG_SCHED_DEBUG */
7899
7900 static int sd_degenerate(struct sched_domain *sd)
7901 {
7902 if (cpumask_weight(sched_domain_span(sd)) == 1)
7903 return 1;
7904
7905 /* Following flags need at least 2 groups */
7906 if (sd->flags & (SD_LOAD_BALANCE |
7907 SD_BALANCE_NEWIDLE |
7908 SD_BALANCE_FORK |
7909 SD_BALANCE_EXEC |
7910 SD_SHARE_CPUPOWER |
7911 SD_SHARE_PKG_RESOURCES)) {
7912 if (sd->groups != sd->groups->next)
7913 return 0;
7914 }
7915
7916 /* Following flags don't use groups */
7917 if (sd->flags & (SD_WAKE_AFFINE))
7918 return 0;
7919
7920 return 1;
7921 }
7922
7923 static int
7924 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7925 {
7926 unsigned long cflags = sd->flags, pflags = parent->flags;
7927
7928 if (sd_degenerate(parent))
7929 return 1;
7930
7931 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7932 return 0;
7933
7934 /* Flags needing groups don't count if only 1 group in parent */
7935 if (parent->groups == parent->groups->next) {
7936 pflags &= ~(SD_LOAD_BALANCE |
7937 SD_BALANCE_NEWIDLE |
7938 SD_BALANCE_FORK |
7939 SD_BALANCE_EXEC |
7940 SD_SHARE_CPUPOWER |
7941 SD_SHARE_PKG_RESOURCES);
7942 if (nr_node_ids == 1)
7943 pflags &= ~SD_SERIALIZE;
7944 }
7945 if (~cflags & pflags)
7946 return 0;
7947
7948 return 1;
7949 }
7950
7951 static void free_rootdomain(struct root_domain *rd)
7952 {
7953 synchronize_sched();
7954
7955 cpupri_cleanup(&rd->cpupri);
7956
7957 free_cpumask_var(rd->rto_mask);
7958 free_cpumask_var(rd->online);
7959 free_cpumask_var(rd->span);
7960 kfree(rd);
7961 }
7962
7963 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7964 {
7965 struct root_domain *old_rd = NULL;
7966 unsigned long flags;
7967
7968 spin_lock_irqsave(&rq->lock, flags);
7969
7970 if (rq->rd) {
7971 old_rd = rq->rd;
7972
7973 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7974 set_rq_offline(rq);
7975
7976 cpumask_clear_cpu(rq->cpu, old_rd->span);
7977
7978 /*
7979 * If we dont want to free the old_rt yet then
7980 * set old_rd to NULL to skip the freeing later
7981 * in this function:
7982 */
7983 if (!atomic_dec_and_test(&old_rd->refcount))
7984 old_rd = NULL;
7985 }
7986
7987 atomic_inc(&rd->refcount);
7988 rq->rd = rd;
7989
7990 cpumask_set_cpu(rq->cpu, rd->span);
7991 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7992 set_rq_online(rq);
7993
7994 spin_unlock_irqrestore(&rq->lock, flags);
7995
7996 if (old_rd)
7997 free_rootdomain(old_rd);
7998 }
7999
8000 static int init_rootdomain(struct root_domain *rd, bool bootmem)
8001 {
8002 gfp_t gfp = GFP_KERNEL;
8003
8004 memset(rd, 0, sizeof(*rd));
8005
8006 if (bootmem)
8007 gfp = GFP_NOWAIT;
8008
8009 if (!alloc_cpumask_var(&rd->span, gfp))
8010 goto out;
8011 if (!alloc_cpumask_var(&rd->online, gfp))
8012 goto free_span;
8013 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8014 goto free_online;
8015
8016 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8017 goto free_rto_mask;
8018 return 0;
8019
8020 free_rto_mask:
8021 free_cpumask_var(rd->rto_mask);
8022 free_online:
8023 free_cpumask_var(rd->online);
8024 free_span:
8025 free_cpumask_var(rd->span);
8026 out:
8027 return -ENOMEM;
8028 }
8029
8030 static void init_defrootdomain(void)
8031 {
8032 init_rootdomain(&def_root_domain, true);
8033
8034 atomic_set(&def_root_domain.refcount, 1);
8035 }
8036
8037 static struct root_domain *alloc_rootdomain(void)
8038 {
8039 struct root_domain *rd;
8040
8041 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8042 if (!rd)
8043 return NULL;
8044
8045 if (init_rootdomain(rd, false) != 0) {
8046 kfree(rd);
8047 return NULL;
8048 }
8049
8050 return rd;
8051 }
8052
8053 /*
8054 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8055 * hold the hotplug lock.
8056 */
8057 static void
8058 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8059 {
8060 struct rq *rq = cpu_rq(cpu);
8061 struct sched_domain *tmp;
8062
8063 /* Remove the sched domains which do not contribute to scheduling. */
8064 for (tmp = sd; tmp; ) {
8065 struct sched_domain *parent = tmp->parent;
8066 if (!parent)
8067 break;
8068
8069 if (sd_parent_degenerate(tmp, parent)) {
8070 tmp->parent = parent->parent;
8071 if (parent->parent)
8072 parent->parent->child = tmp;
8073 } else
8074 tmp = tmp->parent;
8075 }
8076
8077 if (sd && sd_degenerate(sd)) {
8078 sd = sd->parent;
8079 if (sd)
8080 sd->child = NULL;
8081 }
8082
8083 sched_domain_debug(sd, cpu);
8084
8085 rq_attach_root(rq, rd);
8086 rcu_assign_pointer(rq->sd, sd);
8087 }
8088
8089 /* cpus with isolated domains */
8090 static cpumask_var_t cpu_isolated_map;
8091
8092 /* Setup the mask of cpus configured for isolated domains */
8093 static int __init isolated_cpu_setup(char *str)
8094 {
8095 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8096 cpulist_parse(str, cpu_isolated_map);
8097 return 1;
8098 }
8099
8100 __setup("isolcpus=", isolated_cpu_setup);
8101
8102 /*
8103 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8104 * to a function which identifies what group(along with sched group) a CPU
8105 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8106 * (due to the fact that we keep track of groups covered with a struct cpumask).
8107 *
8108 * init_sched_build_groups will build a circular linked list of the groups
8109 * covered by the given span, and will set each group's ->cpumask correctly,
8110 * and ->cpu_power to 0.
8111 */
8112 static void
8113 init_sched_build_groups(const struct cpumask *span,
8114 const struct cpumask *cpu_map,
8115 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8116 struct sched_group **sg,
8117 struct cpumask *tmpmask),
8118 struct cpumask *covered, struct cpumask *tmpmask)
8119 {
8120 struct sched_group *first = NULL, *last = NULL;
8121 int i;
8122
8123 cpumask_clear(covered);
8124
8125 for_each_cpu(i, span) {
8126 struct sched_group *sg;
8127 int group = group_fn(i, cpu_map, &sg, tmpmask);
8128 int j;
8129
8130 if (cpumask_test_cpu(i, covered))
8131 continue;
8132
8133 cpumask_clear(sched_group_cpus(sg));
8134 sg->cpu_power = 0;
8135
8136 for_each_cpu(j, span) {
8137 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8138 continue;
8139
8140 cpumask_set_cpu(j, covered);
8141 cpumask_set_cpu(j, sched_group_cpus(sg));
8142 }
8143 if (!first)
8144 first = sg;
8145 if (last)
8146 last->next = sg;
8147 last = sg;
8148 }
8149 last->next = first;
8150 }
8151
8152 #define SD_NODES_PER_DOMAIN 16
8153
8154 #ifdef CONFIG_NUMA
8155
8156 /**
8157 * find_next_best_node - find the next node to include in a sched_domain
8158 * @node: node whose sched_domain we're building
8159 * @used_nodes: nodes already in the sched_domain
8160 *
8161 * Find the next node to include in a given scheduling domain. Simply
8162 * finds the closest node not already in the @used_nodes map.
8163 *
8164 * Should use nodemask_t.
8165 */
8166 static int find_next_best_node(int node, nodemask_t *used_nodes)
8167 {
8168 int i, n, val, min_val, best_node = 0;
8169
8170 min_val = INT_MAX;
8171
8172 for (i = 0; i < nr_node_ids; i++) {
8173 /* Start at @node */
8174 n = (node + i) % nr_node_ids;
8175
8176 if (!nr_cpus_node(n))
8177 continue;
8178
8179 /* Skip already used nodes */
8180 if (node_isset(n, *used_nodes))
8181 continue;
8182
8183 /* Simple min distance search */
8184 val = node_distance(node, n);
8185
8186 if (val < min_val) {
8187 min_val = val;
8188 best_node = n;
8189 }
8190 }
8191
8192 node_set(best_node, *used_nodes);
8193 return best_node;
8194 }
8195
8196 /**
8197 * sched_domain_node_span - get a cpumask for a node's sched_domain
8198 * @node: node whose cpumask we're constructing
8199 * @span: resulting cpumask
8200 *
8201 * Given a node, construct a good cpumask for its sched_domain to span. It
8202 * should be one that prevents unnecessary balancing, but also spreads tasks
8203 * out optimally.
8204 */
8205 static void sched_domain_node_span(int node, struct cpumask *span)
8206 {
8207 nodemask_t used_nodes;
8208 int i;
8209
8210 cpumask_clear(span);
8211 nodes_clear(used_nodes);
8212
8213 cpumask_or(span, span, cpumask_of_node(node));
8214 node_set(node, used_nodes);
8215
8216 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8217 int next_node = find_next_best_node(node, &used_nodes);
8218
8219 cpumask_or(span, span, cpumask_of_node(next_node));
8220 }
8221 }
8222 #endif /* CONFIG_NUMA */
8223
8224 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8225
8226 /*
8227 * The cpus mask in sched_group and sched_domain hangs off the end.
8228 *
8229 * ( See the the comments in include/linux/sched.h:struct sched_group
8230 * and struct sched_domain. )
8231 */
8232 struct static_sched_group {
8233 struct sched_group sg;
8234 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8235 };
8236
8237 struct static_sched_domain {
8238 struct sched_domain sd;
8239 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8240 };
8241
8242 struct s_data {
8243 #ifdef CONFIG_NUMA
8244 int sd_allnodes;
8245 cpumask_var_t domainspan;
8246 cpumask_var_t covered;
8247 cpumask_var_t notcovered;
8248 #endif
8249 cpumask_var_t nodemask;
8250 cpumask_var_t this_sibling_map;
8251 cpumask_var_t this_core_map;
8252 cpumask_var_t send_covered;
8253 cpumask_var_t tmpmask;
8254 struct sched_group **sched_group_nodes;
8255 struct root_domain *rd;
8256 };
8257
8258 enum s_alloc {
8259 sa_sched_groups = 0,
8260 sa_rootdomain,
8261 sa_tmpmask,
8262 sa_send_covered,
8263 sa_this_core_map,
8264 sa_this_sibling_map,
8265 sa_nodemask,
8266 sa_sched_group_nodes,
8267 #ifdef CONFIG_NUMA
8268 sa_notcovered,
8269 sa_covered,
8270 sa_domainspan,
8271 #endif
8272 sa_none,
8273 };
8274
8275 /*
8276 * SMT sched-domains:
8277 */
8278 #ifdef CONFIG_SCHED_SMT
8279 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8280 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8281
8282 static int
8283 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8284 struct sched_group **sg, struct cpumask *unused)
8285 {
8286 if (sg)
8287 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8288 return cpu;
8289 }
8290 #endif /* CONFIG_SCHED_SMT */
8291
8292 /*
8293 * multi-core sched-domains:
8294 */
8295 #ifdef CONFIG_SCHED_MC
8296 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8297 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8298 #endif /* CONFIG_SCHED_MC */
8299
8300 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8301 static int
8302 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8303 struct sched_group **sg, struct cpumask *mask)
8304 {
8305 int group;
8306
8307 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8308 group = cpumask_first(mask);
8309 if (sg)
8310 *sg = &per_cpu(sched_group_core, group).sg;
8311 return group;
8312 }
8313 #elif defined(CONFIG_SCHED_MC)
8314 static int
8315 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8316 struct sched_group **sg, struct cpumask *unused)
8317 {
8318 if (sg)
8319 *sg = &per_cpu(sched_group_core, cpu).sg;
8320 return cpu;
8321 }
8322 #endif
8323
8324 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8325 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8326
8327 static int
8328 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8329 struct sched_group **sg, struct cpumask *mask)
8330 {
8331 int group;
8332 #ifdef CONFIG_SCHED_MC
8333 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8334 group = cpumask_first(mask);
8335 #elif defined(CONFIG_SCHED_SMT)
8336 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8337 group = cpumask_first(mask);
8338 #else
8339 group = cpu;
8340 #endif
8341 if (sg)
8342 *sg = &per_cpu(sched_group_phys, group).sg;
8343 return group;
8344 }
8345
8346 #ifdef CONFIG_NUMA
8347 /*
8348 * The init_sched_build_groups can't handle what we want to do with node
8349 * groups, so roll our own. Now each node has its own list of groups which
8350 * gets dynamically allocated.
8351 */
8352 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8353 static struct sched_group ***sched_group_nodes_bycpu;
8354
8355 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8356 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8357
8358 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8359 struct sched_group **sg,
8360 struct cpumask *nodemask)
8361 {
8362 int group;
8363
8364 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8365 group = cpumask_first(nodemask);
8366
8367 if (sg)
8368 *sg = &per_cpu(sched_group_allnodes, group).sg;
8369 return group;
8370 }
8371
8372 static void init_numa_sched_groups_power(struct sched_group *group_head)
8373 {
8374 struct sched_group *sg = group_head;
8375 int j;
8376
8377 if (!sg)
8378 return;
8379 do {
8380 for_each_cpu(j, sched_group_cpus(sg)) {
8381 struct sched_domain *sd;
8382
8383 sd = &per_cpu(phys_domains, j).sd;
8384 if (j != group_first_cpu(sd->groups)) {
8385 /*
8386 * Only add "power" once for each
8387 * physical package.
8388 */
8389 continue;
8390 }
8391
8392 sg->cpu_power += sd->groups->cpu_power;
8393 }
8394 sg = sg->next;
8395 } while (sg != group_head);
8396 }
8397
8398 static int build_numa_sched_groups(struct s_data *d,
8399 const struct cpumask *cpu_map, int num)
8400 {
8401 struct sched_domain *sd;
8402 struct sched_group *sg, *prev;
8403 int n, j;
8404
8405 cpumask_clear(d->covered);
8406 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8407 if (cpumask_empty(d->nodemask)) {
8408 d->sched_group_nodes[num] = NULL;
8409 goto out;
8410 }
8411
8412 sched_domain_node_span(num, d->domainspan);
8413 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8414
8415 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8416 GFP_KERNEL, num);
8417 if (!sg) {
8418 pr_warning("Can not alloc domain group for node %d\n", num);
8419 return -ENOMEM;
8420 }
8421 d->sched_group_nodes[num] = sg;
8422
8423 for_each_cpu(j, d->nodemask) {
8424 sd = &per_cpu(node_domains, j).sd;
8425 sd->groups = sg;
8426 }
8427
8428 sg->cpu_power = 0;
8429 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8430 sg->next = sg;
8431 cpumask_or(d->covered, d->covered, d->nodemask);
8432
8433 prev = sg;
8434 for (j = 0; j < nr_node_ids; j++) {
8435 n = (num + j) % nr_node_ids;
8436 cpumask_complement(d->notcovered, d->covered);
8437 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8438 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8439 if (cpumask_empty(d->tmpmask))
8440 break;
8441 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8442 if (cpumask_empty(d->tmpmask))
8443 continue;
8444 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8445 GFP_KERNEL, num);
8446 if (!sg) {
8447 pr_warning("Can not alloc domain group for node %d\n",
8448 j);
8449 return -ENOMEM;
8450 }
8451 sg->cpu_power = 0;
8452 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8453 sg->next = prev->next;
8454 cpumask_or(d->covered, d->covered, d->tmpmask);
8455 prev->next = sg;
8456 prev = sg;
8457 }
8458 out:
8459 return 0;
8460 }
8461 #endif /* CONFIG_NUMA */
8462
8463 #ifdef CONFIG_NUMA
8464 /* Free memory allocated for various sched_group structures */
8465 static void free_sched_groups(const struct cpumask *cpu_map,
8466 struct cpumask *nodemask)
8467 {
8468 int cpu, i;
8469
8470 for_each_cpu(cpu, cpu_map) {
8471 struct sched_group **sched_group_nodes
8472 = sched_group_nodes_bycpu[cpu];
8473
8474 if (!sched_group_nodes)
8475 continue;
8476
8477 for (i = 0; i < nr_node_ids; i++) {
8478 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8479
8480 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8481 if (cpumask_empty(nodemask))
8482 continue;
8483
8484 if (sg == NULL)
8485 continue;
8486 sg = sg->next;
8487 next_sg:
8488 oldsg = sg;
8489 sg = sg->next;
8490 kfree(oldsg);
8491 if (oldsg != sched_group_nodes[i])
8492 goto next_sg;
8493 }
8494 kfree(sched_group_nodes);
8495 sched_group_nodes_bycpu[cpu] = NULL;
8496 }
8497 }
8498 #else /* !CONFIG_NUMA */
8499 static void free_sched_groups(const struct cpumask *cpu_map,
8500 struct cpumask *nodemask)
8501 {
8502 }
8503 #endif /* CONFIG_NUMA */
8504
8505 /*
8506 * Initialize sched groups cpu_power.
8507 *
8508 * cpu_power indicates the capacity of sched group, which is used while
8509 * distributing the load between different sched groups in a sched domain.
8510 * Typically cpu_power for all the groups in a sched domain will be same unless
8511 * there are asymmetries in the topology. If there are asymmetries, group
8512 * having more cpu_power will pickup more load compared to the group having
8513 * less cpu_power.
8514 */
8515 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8516 {
8517 struct sched_domain *child;
8518 struct sched_group *group;
8519 long power;
8520 int weight;
8521
8522 WARN_ON(!sd || !sd->groups);
8523
8524 if (cpu != group_first_cpu(sd->groups))
8525 return;
8526
8527 child = sd->child;
8528
8529 sd->groups->cpu_power = 0;
8530
8531 if (!child) {
8532 power = SCHED_LOAD_SCALE;
8533 weight = cpumask_weight(sched_domain_span(sd));
8534 /*
8535 * SMT siblings share the power of a single core.
8536 * Usually multiple threads get a better yield out of
8537 * that one core than a single thread would have,
8538 * reflect that in sd->smt_gain.
8539 */
8540 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8541 power *= sd->smt_gain;
8542 power /= weight;
8543 power >>= SCHED_LOAD_SHIFT;
8544 }
8545 sd->groups->cpu_power += power;
8546 return;
8547 }
8548
8549 /*
8550 * Add cpu_power of each child group to this groups cpu_power.
8551 */
8552 group = child->groups;
8553 do {
8554 sd->groups->cpu_power += group->cpu_power;
8555 group = group->next;
8556 } while (group != child->groups);
8557 }
8558
8559 /*
8560 * Initializers for schedule domains
8561 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8562 */
8563
8564 #ifdef CONFIG_SCHED_DEBUG
8565 # define SD_INIT_NAME(sd, type) sd->name = #type
8566 #else
8567 # define SD_INIT_NAME(sd, type) do { } while (0)
8568 #endif
8569
8570 #define SD_INIT(sd, type) sd_init_##type(sd)
8571
8572 #define SD_INIT_FUNC(type) \
8573 static noinline void sd_init_##type(struct sched_domain *sd) \
8574 { \
8575 memset(sd, 0, sizeof(*sd)); \
8576 *sd = SD_##type##_INIT; \
8577 sd->level = SD_LV_##type; \
8578 SD_INIT_NAME(sd, type); \
8579 }
8580
8581 SD_INIT_FUNC(CPU)
8582 #ifdef CONFIG_NUMA
8583 SD_INIT_FUNC(ALLNODES)
8584 SD_INIT_FUNC(NODE)
8585 #endif
8586 #ifdef CONFIG_SCHED_SMT
8587 SD_INIT_FUNC(SIBLING)
8588 #endif
8589 #ifdef CONFIG_SCHED_MC
8590 SD_INIT_FUNC(MC)
8591 #endif
8592
8593 static int default_relax_domain_level = -1;
8594
8595 static int __init setup_relax_domain_level(char *str)
8596 {
8597 unsigned long val;
8598
8599 val = simple_strtoul(str, NULL, 0);
8600 if (val < SD_LV_MAX)
8601 default_relax_domain_level = val;
8602
8603 return 1;
8604 }
8605 __setup("relax_domain_level=", setup_relax_domain_level);
8606
8607 static void set_domain_attribute(struct sched_domain *sd,
8608 struct sched_domain_attr *attr)
8609 {
8610 int request;
8611
8612 if (!attr || attr->relax_domain_level < 0) {
8613 if (default_relax_domain_level < 0)
8614 return;
8615 else
8616 request = default_relax_domain_level;
8617 } else
8618 request = attr->relax_domain_level;
8619 if (request < sd->level) {
8620 /* turn off idle balance on this domain */
8621 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8622 } else {
8623 /* turn on idle balance on this domain */
8624 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8625 }
8626 }
8627
8628 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8629 const struct cpumask *cpu_map)
8630 {
8631 switch (what) {
8632 case sa_sched_groups:
8633 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8634 d->sched_group_nodes = NULL;
8635 case sa_rootdomain:
8636 free_rootdomain(d->rd); /* fall through */
8637 case sa_tmpmask:
8638 free_cpumask_var(d->tmpmask); /* fall through */
8639 case sa_send_covered:
8640 free_cpumask_var(d->send_covered); /* fall through */
8641 case sa_this_core_map:
8642 free_cpumask_var(d->this_core_map); /* fall through */
8643 case sa_this_sibling_map:
8644 free_cpumask_var(d->this_sibling_map); /* fall through */
8645 case sa_nodemask:
8646 free_cpumask_var(d->nodemask); /* fall through */
8647 case sa_sched_group_nodes:
8648 #ifdef CONFIG_NUMA
8649 kfree(d->sched_group_nodes); /* fall through */
8650 case sa_notcovered:
8651 free_cpumask_var(d->notcovered); /* fall through */
8652 case sa_covered:
8653 free_cpumask_var(d->covered); /* fall through */
8654 case sa_domainspan:
8655 free_cpumask_var(d->domainspan); /* fall through */
8656 #endif
8657 case sa_none:
8658 break;
8659 }
8660 }
8661
8662 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8663 const struct cpumask *cpu_map)
8664 {
8665 #ifdef CONFIG_NUMA
8666 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8667 return sa_none;
8668 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8669 return sa_domainspan;
8670 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8671 return sa_covered;
8672 /* Allocate the per-node list of sched groups */
8673 d->sched_group_nodes = kcalloc(nr_node_ids,
8674 sizeof(struct sched_group *), GFP_KERNEL);
8675 if (!d->sched_group_nodes) {
8676 pr_warning("Can not alloc sched group node list\n");
8677 return sa_notcovered;
8678 }
8679 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8680 #endif
8681 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8682 return sa_sched_group_nodes;
8683 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8684 return sa_nodemask;
8685 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8686 return sa_this_sibling_map;
8687 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8688 return sa_this_core_map;
8689 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8690 return sa_send_covered;
8691 d->rd = alloc_rootdomain();
8692 if (!d->rd) {
8693 pr_warning("Cannot alloc root domain\n");
8694 return sa_tmpmask;
8695 }
8696 return sa_rootdomain;
8697 }
8698
8699 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8700 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8701 {
8702 struct sched_domain *sd = NULL;
8703 #ifdef CONFIG_NUMA
8704 struct sched_domain *parent;
8705
8706 d->sd_allnodes = 0;
8707 if (cpumask_weight(cpu_map) >
8708 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8709 sd = &per_cpu(allnodes_domains, i).sd;
8710 SD_INIT(sd, ALLNODES);
8711 set_domain_attribute(sd, attr);
8712 cpumask_copy(sched_domain_span(sd), cpu_map);
8713 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8714 d->sd_allnodes = 1;
8715 }
8716 parent = sd;
8717
8718 sd = &per_cpu(node_domains, i).sd;
8719 SD_INIT(sd, NODE);
8720 set_domain_attribute(sd, attr);
8721 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8722 sd->parent = parent;
8723 if (parent)
8724 parent->child = sd;
8725 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8726 #endif
8727 return sd;
8728 }
8729
8730 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8731 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8732 struct sched_domain *parent, int i)
8733 {
8734 struct sched_domain *sd;
8735 sd = &per_cpu(phys_domains, i).sd;
8736 SD_INIT(sd, CPU);
8737 set_domain_attribute(sd, attr);
8738 cpumask_copy(sched_domain_span(sd), d->nodemask);
8739 sd->parent = parent;
8740 if (parent)
8741 parent->child = sd;
8742 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8743 return sd;
8744 }
8745
8746 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8747 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8748 struct sched_domain *parent, int i)
8749 {
8750 struct sched_domain *sd = parent;
8751 #ifdef CONFIG_SCHED_MC
8752 sd = &per_cpu(core_domains, i).sd;
8753 SD_INIT(sd, MC);
8754 set_domain_attribute(sd, attr);
8755 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8756 sd->parent = parent;
8757 parent->child = sd;
8758 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8759 #endif
8760 return sd;
8761 }
8762
8763 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8764 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8765 struct sched_domain *parent, int i)
8766 {
8767 struct sched_domain *sd = parent;
8768 #ifdef CONFIG_SCHED_SMT
8769 sd = &per_cpu(cpu_domains, i).sd;
8770 SD_INIT(sd, SIBLING);
8771 set_domain_attribute(sd, attr);
8772 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8773 sd->parent = parent;
8774 parent->child = sd;
8775 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8776 #endif
8777 return sd;
8778 }
8779
8780 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8781 const struct cpumask *cpu_map, int cpu)
8782 {
8783 switch (l) {
8784 #ifdef CONFIG_SCHED_SMT
8785 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8786 cpumask_and(d->this_sibling_map, cpu_map,
8787 topology_thread_cpumask(cpu));
8788 if (cpu == cpumask_first(d->this_sibling_map))
8789 init_sched_build_groups(d->this_sibling_map, cpu_map,
8790 &cpu_to_cpu_group,
8791 d->send_covered, d->tmpmask);
8792 break;
8793 #endif
8794 #ifdef CONFIG_SCHED_MC
8795 case SD_LV_MC: /* set up multi-core groups */
8796 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8797 if (cpu == cpumask_first(d->this_core_map))
8798 init_sched_build_groups(d->this_core_map, cpu_map,
8799 &cpu_to_core_group,
8800 d->send_covered, d->tmpmask);
8801 break;
8802 #endif
8803 case SD_LV_CPU: /* set up physical groups */
8804 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8805 if (!cpumask_empty(d->nodemask))
8806 init_sched_build_groups(d->nodemask, cpu_map,
8807 &cpu_to_phys_group,
8808 d->send_covered, d->tmpmask);
8809 break;
8810 #ifdef CONFIG_NUMA
8811 case SD_LV_ALLNODES:
8812 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8813 d->send_covered, d->tmpmask);
8814 break;
8815 #endif
8816 default:
8817 break;
8818 }
8819 }
8820
8821 /*
8822 * Build sched domains for a given set of cpus and attach the sched domains
8823 * to the individual cpus
8824 */
8825 static int __build_sched_domains(const struct cpumask *cpu_map,
8826 struct sched_domain_attr *attr)
8827 {
8828 enum s_alloc alloc_state = sa_none;
8829 struct s_data d;
8830 struct sched_domain *sd;
8831 int i;
8832 #ifdef CONFIG_NUMA
8833 d.sd_allnodes = 0;
8834 #endif
8835
8836 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8837 if (alloc_state != sa_rootdomain)
8838 goto error;
8839 alloc_state = sa_sched_groups;
8840
8841 /*
8842 * Set up domains for cpus specified by the cpu_map.
8843 */
8844 for_each_cpu(i, cpu_map) {
8845 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8846 cpu_map);
8847
8848 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8849 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8850 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8851 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8852 }
8853
8854 for_each_cpu(i, cpu_map) {
8855 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8856 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8857 }
8858
8859 /* Set up physical groups */
8860 for (i = 0; i < nr_node_ids; i++)
8861 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8862
8863 #ifdef CONFIG_NUMA
8864 /* Set up node groups */
8865 if (d.sd_allnodes)
8866 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8867
8868 for (i = 0; i < nr_node_ids; i++)
8869 if (build_numa_sched_groups(&d, cpu_map, i))
8870 goto error;
8871 #endif
8872
8873 /* Calculate CPU power for physical packages and nodes */
8874 #ifdef CONFIG_SCHED_SMT
8875 for_each_cpu(i, cpu_map) {
8876 sd = &per_cpu(cpu_domains, i).sd;
8877 init_sched_groups_power(i, sd);
8878 }
8879 #endif
8880 #ifdef CONFIG_SCHED_MC
8881 for_each_cpu(i, cpu_map) {
8882 sd = &per_cpu(core_domains, i).sd;
8883 init_sched_groups_power(i, sd);
8884 }
8885 #endif
8886
8887 for_each_cpu(i, cpu_map) {
8888 sd = &per_cpu(phys_domains, i).sd;
8889 init_sched_groups_power(i, sd);
8890 }
8891
8892 #ifdef CONFIG_NUMA
8893 for (i = 0; i < nr_node_ids; i++)
8894 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8895
8896 if (d.sd_allnodes) {
8897 struct sched_group *sg;
8898
8899 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8900 d.tmpmask);
8901 init_numa_sched_groups_power(sg);
8902 }
8903 #endif
8904
8905 /* Attach the domains */
8906 for_each_cpu(i, cpu_map) {
8907 #ifdef CONFIG_SCHED_SMT
8908 sd = &per_cpu(cpu_domains, i).sd;
8909 #elif defined(CONFIG_SCHED_MC)
8910 sd = &per_cpu(core_domains, i).sd;
8911 #else
8912 sd = &per_cpu(phys_domains, i).sd;
8913 #endif
8914 cpu_attach_domain(sd, d.rd, i);
8915 }
8916
8917 d.sched_group_nodes = NULL; /* don't free this we still need it */
8918 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8919 return 0;
8920
8921 error:
8922 __free_domain_allocs(&d, alloc_state, cpu_map);
8923 return -ENOMEM;
8924 }
8925
8926 static int build_sched_domains(const struct cpumask *cpu_map)
8927 {
8928 return __build_sched_domains(cpu_map, NULL);
8929 }
8930
8931 static cpumask_var_t *doms_cur; /* current sched domains */
8932 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8933 static struct sched_domain_attr *dattr_cur;
8934 /* attribues of custom domains in 'doms_cur' */
8935
8936 /*
8937 * Special case: If a kmalloc of a doms_cur partition (array of
8938 * cpumask) fails, then fallback to a single sched domain,
8939 * as determined by the single cpumask fallback_doms.
8940 */
8941 static cpumask_var_t fallback_doms;
8942
8943 /*
8944 * arch_update_cpu_topology lets virtualized architectures update the
8945 * cpu core maps. It is supposed to return 1 if the topology changed
8946 * or 0 if it stayed the same.
8947 */
8948 int __attribute__((weak)) arch_update_cpu_topology(void)
8949 {
8950 return 0;
8951 }
8952
8953 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8954 {
8955 int i;
8956 cpumask_var_t *doms;
8957
8958 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8959 if (!doms)
8960 return NULL;
8961 for (i = 0; i < ndoms; i++) {
8962 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8963 free_sched_domains(doms, i);
8964 return NULL;
8965 }
8966 }
8967 return doms;
8968 }
8969
8970 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8971 {
8972 unsigned int i;
8973 for (i = 0; i < ndoms; i++)
8974 free_cpumask_var(doms[i]);
8975 kfree(doms);
8976 }
8977
8978 /*
8979 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8980 * For now this just excludes isolated cpus, but could be used to
8981 * exclude other special cases in the future.
8982 */
8983 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8984 {
8985 int err;
8986
8987 arch_update_cpu_topology();
8988 ndoms_cur = 1;
8989 doms_cur = alloc_sched_domains(ndoms_cur);
8990 if (!doms_cur)
8991 doms_cur = &fallback_doms;
8992 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
8993 dattr_cur = NULL;
8994 err = build_sched_domains(doms_cur[0]);
8995 register_sched_domain_sysctl();
8996
8997 return err;
8998 }
8999
9000 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9001 struct cpumask *tmpmask)
9002 {
9003 free_sched_groups(cpu_map, tmpmask);
9004 }
9005
9006 /*
9007 * Detach sched domains from a group of cpus specified in cpu_map
9008 * These cpus will now be attached to the NULL domain
9009 */
9010 static void detach_destroy_domains(const struct cpumask *cpu_map)
9011 {
9012 /* Save because hotplug lock held. */
9013 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9014 int i;
9015
9016 for_each_cpu(i, cpu_map)
9017 cpu_attach_domain(NULL, &def_root_domain, i);
9018 synchronize_sched();
9019 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9020 }
9021
9022 /* handle null as "default" */
9023 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9024 struct sched_domain_attr *new, int idx_new)
9025 {
9026 struct sched_domain_attr tmp;
9027
9028 /* fast path */
9029 if (!new && !cur)
9030 return 1;
9031
9032 tmp = SD_ATTR_INIT;
9033 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9034 new ? (new + idx_new) : &tmp,
9035 sizeof(struct sched_domain_attr));
9036 }
9037
9038 /*
9039 * Partition sched domains as specified by the 'ndoms_new'
9040 * cpumasks in the array doms_new[] of cpumasks. This compares
9041 * doms_new[] to the current sched domain partitioning, doms_cur[].
9042 * It destroys each deleted domain and builds each new domain.
9043 *
9044 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
9045 * The masks don't intersect (don't overlap.) We should setup one
9046 * sched domain for each mask. CPUs not in any of the cpumasks will
9047 * not be load balanced. If the same cpumask appears both in the
9048 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9049 * it as it is.
9050 *
9051 * The passed in 'doms_new' should be allocated using
9052 * alloc_sched_domains. This routine takes ownership of it and will
9053 * free_sched_domains it when done with it. If the caller failed the
9054 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9055 * and partition_sched_domains() will fallback to the single partition
9056 * 'fallback_doms', it also forces the domains to be rebuilt.
9057 *
9058 * If doms_new == NULL it will be replaced with cpu_online_mask.
9059 * ndoms_new == 0 is a special case for destroying existing domains,
9060 * and it will not create the default domain.
9061 *
9062 * Call with hotplug lock held
9063 */
9064 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9065 struct sched_domain_attr *dattr_new)
9066 {
9067 int i, j, n;
9068 int new_topology;
9069
9070 mutex_lock(&sched_domains_mutex);
9071
9072 /* always unregister in case we don't destroy any domains */
9073 unregister_sched_domain_sysctl();
9074
9075 /* Let architecture update cpu core mappings. */
9076 new_topology = arch_update_cpu_topology();
9077
9078 n = doms_new ? ndoms_new : 0;
9079
9080 /* Destroy deleted domains */
9081 for (i = 0; i < ndoms_cur; i++) {
9082 for (j = 0; j < n && !new_topology; j++) {
9083 if (cpumask_equal(doms_cur[i], doms_new[j])
9084 && dattrs_equal(dattr_cur, i, dattr_new, j))
9085 goto match1;
9086 }
9087 /* no match - a current sched domain not in new doms_new[] */
9088 detach_destroy_domains(doms_cur[i]);
9089 match1:
9090 ;
9091 }
9092
9093 if (doms_new == NULL) {
9094 ndoms_cur = 0;
9095 doms_new = &fallback_doms;
9096 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9097 WARN_ON_ONCE(dattr_new);
9098 }
9099
9100 /* Build new domains */
9101 for (i = 0; i < ndoms_new; i++) {
9102 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9103 if (cpumask_equal(doms_new[i], doms_cur[j])
9104 && dattrs_equal(dattr_new, i, dattr_cur, j))
9105 goto match2;
9106 }
9107 /* no match - add a new doms_new */
9108 __build_sched_domains(doms_new[i],
9109 dattr_new ? dattr_new + i : NULL);
9110 match2:
9111 ;
9112 }
9113
9114 /* Remember the new sched domains */
9115 if (doms_cur != &fallback_doms)
9116 free_sched_domains(doms_cur, ndoms_cur);
9117 kfree(dattr_cur); /* kfree(NULL) is safe */
9118 doms_cur = doms_new;
9119 dattr_cur = dattr_new;
9120 ndoms_cur = ndoms_new;
9121
9122 register_sched_domain_sysctl();
9123
9124 mutex_unlock(&sched_domains_mutex);
9125 }
9126
9127 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9128 static void arch_reinit_sched_domains(void)
9129 {
9130 get_online_cpus();
9131
9132 /* Destroy domains first to force the rebuild */
9133 partition_sched_domains(0, NULL, NULL);
9134
9135 rebuild_sched_domains();
9136 put_online_cpus();
9137 }
9138
9139 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9140 {
9141 unsigned int level = 0;
9142
9143 if (sscanf(buf, "%u", &level) != 1)
9144 return -EINVAL;
9145
9146 /*
9147 * level is always be positive so don't check for
9148 * level < POWERSAVINGS_BALANCE_NONE which is 0
9149 * What happens on 0 or 1 byte write,
9150 * need to check for count as well?
9151 */
9152
9153 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9154 return -EINVAL;
9155
9156 if (smt)
9157 sched_smt_power_savings = level;
9158 else
9159 sched_mc_power_savings = level;
9160
9161 arch_reinit_sched_domains();
9162
9163 return count;
9164 }
9165
9166 #ifdef CONFIG_SCHED_MC
9167 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9168 char *page)
9169 {
9170 return sprintf(page, "%u\n", sched_mc_power_savings);
9171 }
9172 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9173 const char *buf, size_t count)
9174 {
9175 return sched_power_savings_store(buf, count, 0);
9176 }
9177 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9178 sched_mc_power_savings_show,
9179 sched_mc_power_savings_store);
9180 #endif
9181
9182 #ifdef CONFIG_SCHED_SMT
9183 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9184 char *page)
9185 {
9186 return sprintf(page, "%u\n", sched_smt_power_savings);
9187 }
9188 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9189 const char *buf, size_t count)
9190 {
9191 return sched_power_savings_store(buf, count, 1);
9192 }
9193 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9194 sched_smt_power_savings_show,
9195 sched_smt_power_savings_store);
9196 #endif
9197
9198 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9199 {
9200 int err = 0;
9201
9202 #ifdef CONFIG_SCHED_SMT
9203 if (smt_capable())
9204 err = sysfs_create_file(&cls->kset.kobj,
9205 &attr_sched_smt_power_savings.attr);
9206 #endif
9207 #ifdef CONFIG_SCHED_MC
9208 if (!err && mc_capable())
9209 err = sysfs_create_file(&cls->kset.kobj,
9210 &attr_sched_mc_power_savings.attr);
9211 #endif
9212 return err;
9213 }
9214 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9215
9216 #ifndef CONFIG_CPUSETS
9217 /*
9218 * Add online and remove offline CPUs from the scheduler domains.
9219 * When cpusets are enabled they take over this function.
9220 */
9221 static int update_sched_domains(struct notifier_block *nfb,
9222 unsigned long action, void *hcpu)
9223 {
9224 switch (action) {
9225 case CPU_ONLINE:
9226 case CPU_ONLINE_FROZEN:
9227 case CPU_DOWN_PREPARE:
9228 case CPU_DOWN_PREPARE_FROZEN:
9229 case CPU_DOWN_FAILED:
9230 case CPU_DOWN_FAILED_FROZEN:
9231 partition_sched_domains(1, NULL, NULL);
9232 return NOTIFY_OK;
9233
9234 default:
9235 return NOTIFY_DONE;
9236 }
9237 }
9238 #endif
9239
9240 static int update_runtime(struct notifier_block *nfb,
9241 unsigned long action, void *hcpu)
9242 {
9243 int cpu = (int)(long)hcpu;
9244
9245 switch (action) {
9246 case CPU_DOWN_PREPARE:
9247 case CPU_DOWN_PREPARE_FROZEN:
9248 disable_runtime(cpu_rq(cpu));
9249 return NOTIFY_OK;
9250
9251 case CPU_DOWN_FAILED:
9252 case CPU_DOWN_FAILED_FROZEN:
9253 case CPU_ONLINE:
9254 case CPU_ONLINE_FROZEN:
9255 enable_runtime(cpu_rq(cpu));
9256 return NOTIFY_OK;
9257
9258 default:
9259 return NOTIFY_DONE;
9260 }
9261 }
9262
9263 void __init sched_init_smp(void)
9264 {
9265 cpumask_var_t non_isolated_cpus;
9266
9267 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9268 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9269
9270 #if defined(CONFIG_NUMA)
9271 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9272 GFP_KERNEL);
9273 BUG_ON(sched_group_nodes_bycpu == NULL);
9274 #endif
9275 get_online_cpus();
9276 mutex_lock(&sched_domains_mutex);
9277 arch_init_sched_domains(cpu_active_mask);
9278 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9279 if (cpumask_empty(non_isolated_cpus))
9280 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9281 mutex_unlock(&sched_domains_mutex);
9282 put_online_cpus();
9283
9284 #ifndef CONFIG_CPUSETS
9285 /* XXX: Theoretical race here - CPU may be hotplugged now */
9286 hotcpu_notifier(update_sched_domains, 0);
9287 #endif
9288
9289 /* RT runtime code needs to handle some hotplug events */
9290 hotcpu_notifier(update_runtime, 0);
9291
9292 init_hrtick();
9293
9294 /* Move init over to a non-isolated CPU */
9295 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9296 BUG();
9297 sched_init_granularity();
9298 free_cpumask_var(non_isolated_cpus);
9299
9300 init_sched_rt_class();
9301 }
9302 #else
9303 void __init sched_init_smp(void)
9304 {
9305 sched_init_granularity();
9306 }
9307 #endif /* CONFIG_SMP */
9308
9309 const_debug unsigned int sysctl_timer_migration = 1;
9310
9311 int in_sched_functions(unsigned long addr)
9312 {
9313 return in_lock_functions(addr) ||
9314 (addr >= (unsigned long)__sched_text_start
9315 && addr < (unsigned long)__sched_text_end);
9316 }
9317
9318 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9319 {
9320 cfs_rq->tasks_timeline = RB_ROOT;
9321 INIT_LIST_HEAD(&cfs_rq->tasks);
9322 #ifdef CONFIG_FAIR_GROUP_SCHED
9323 cfs_rq->rq = rq;
9324 #endif
9325 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9326 }
9327
9328 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9329 {
9330 struct rt_prio_array *array;
9331 int i;
9332
9333 array = &rt_rq->active;
9334 for (i = 0; i < MAX_RT_PRIO; i++) {
9335 INIT_LIST_HEAD(array->queue + i);
9336 __clear_bit(i, array->bitmap);
9337 }
9338 /* delimiter for bitsearch: */
9339 __set_bit(MAX_RT_PRIO, array->bitmap);
9340
9341 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9342 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9343 #ifdef CONFIG_SMP
9344 rt_rq->highest_prio.next = MAX_RT_PRIO;
9345 #endif
9346 #endif
9347 #ifdef CONFIG_SMP
9348 rt_rq->rt_nr_migratory = 0;
9349 rt_rq->overloaded = 0;
9350 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9351 #endif
9352
9353 rt_rq->rt_time = 0;
9354 rt_rq->rt_throttled = 0;
9355 rt_rq->rt_runtime = 0;
9356 spin_lock_init(&rt_rq->rt_runtime_lock);
9357
9358 #ifdef CONFIG_RT_GROUP_SCHED
9359 rt_rq->rt_nr_boosted = 0;
9360 rt_rq->rq = rq;
9361 #endif
9362 }
9363
9364 #ifdef CONFIG_FAIR_GROUP_SCHED
9365 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9366 struct sched_entity *se, int cpu, int add,
9367 struct sched_entity *parent)
9368 {
9369 struct rq *rq = cpu_rq(cpu);
9370 tg->cfs_rq[cpu] = cfs_rq;
9371 init_cfs_rq(cfs_rq, rq);
9372 cfs_rq->tg = tg;
9373 if (add)
9374 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9375
9376 tg->se[cpu] = se;
9377 /* se could be NULL for init_task_group */
9378 if (!se)
9379 return;
9380
9381 if (!parent)
9382 se->cfs_rq = &rq->cfs;
9383 else
9384 se->cfs_rq = parent->my_q;
9385
9386 se->my_q = cfs_rq;
9387 se->load.weight = tg->shares;
9388 se->load.inv_weight = 0;
9389 se->parent = parent;
9390 }
9391 #endif
9392
9393 #ifdef CONFIG_RT_GROUP_SCHED
9394 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9395 struct sched_rt_entity *rt_se, int cpu, int add,
9396 struct sched_rt_entity *parent)
9397 {
9398 struct rq *rq = cpu_rq(cpu);
9399
9400 tg->rt_rq[cpu] = rt_rq;
9401 init_rt_rq(rt_rq, rq);
9402 rt_rq->tg = tg;
9403 rt_rq->rt_se = rt_se;
9404 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9405 if (add)
9406 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9407
9408 tg->rt_se[cpu] = rt_se;
9409 if (!rt_se)
9410 return;
9411
9412 if (!parent)
9413 rt_se->rt_rq = &rq->rt;
9414 else
9415 rt_se->rt_rq = parent->my_q;
9416
9417 rt_se->my_q = rt_rq;
9418 rt_se->parent = parent;
9419 INIT_LIST_HEAD(&rt_se->run_list);
9420 }
9421 #endif
9422
9423 void __init sched_init(void)
9424 {
9425 int i, j;
9426 unsigned long alloc_size = 0, ptr;
9427
9428 #ifdef CONFIG_FAIR_GROUP_SCHED
9429 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9430 #endif
9431 #ifdef CONFIG_RT_GROUP_SCHED
9432 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9433 #endif
9434 #ifdef CONFIG_USER_SCHED
9435 alloc_size *= 2;
9436 #endif
9437 #ifdef CONFIG_CPUMASK_OFFSTACK
9438 alloc_size += num_possible_cpus() * cpumask_size();
9439 #endif
9440 if (alloc_size) {
9441 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9442
9443 #ifdef CONFIG_FAIR_GROUP_SCHED
9444 init_task_group.se = (struct sched_entity **)ptr;
9445 ptr += nr_cpu_ids * sizeof(void **);
9446
9447 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9448 ptr += nr_cpu_ids * sizeof(void **);
9449
9450 #ifdef CONFIG_USER_SCHED
9451 root_task_group.se = (struct sched_entity **)ptr;
9452 ptr += nr_cpu_ids * sizeof(void **);
9453
9454 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9455 ptr += nr_cpu_ids * sizeof(void **);
9456 #endif /* CONFIG_USER_SCHED */
9457 #endif /* CONFIG_FAIR_GROUP_SCHED */
9458 #ifdef CONFIG_RT_GROUP_SCHED
9459 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9460 ptr += nr_cpu_ids * sizeof(void **);
9461
9462 init_task_group.rt_rq = (struct rt_rq **)ptr;
9463 ptr += nr_cpu_ids * sizeof(void **);
9464
9465 #ifdef CONFIG_USER_SCHED
9466 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9467 ptr += nr_cpu_ids * sizeof(void **);
9468
9469 root_task_group.rt_rq = (struct rt_rq **)ptr;
9470 ptr += nr_cpu_ids * sizeof(void **);
9471 #endif /* CONFIG_USER_SCHED */
9472 #endif /* CONFIG_RT_GROUP_SCHED */
9473 #ifdef CONFIG_CPUMASK_OFFSTACK
9474 for_each_possible_cpu(i) {
9475 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9476 ptr += cpumask_size();
9477 }
9478 #endif /* CONFIG_CPUMASK_OFFSTACK */
9479 }
9480
9481 #ifdef CONFIG_SMP
9482 init_defrootdomain();
9483 #endif
9484
9485 init_rt_bandwidth(&def_rt_bandwidth,
9486 global_rt_period(), global_rt_runtime());
9487
9488 #ifdef CONFIG_RT_GROUP_SCHED
9489 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9490 global_rt_period(), global_rt_runtime());
9491 #ifdef CONFIG_USER_SCHED
9492 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9493 global_rt_period(), RUNTIME_INF);
9494 #endif /* CONFIG_USER_SCHED */
9495 #endif /* CONFIG_RT_GROUP_SCHED */
9496
9497 #ifdef CONFIG_GROUP_SCHED
9498 list_add(&init_task_group.list, &task_groups);
9499 INIT_LIST_HEAD(&init_task_group.children);
9500
9501 #ifdef CONFIG_USER_SCHED
9502 INIT_LIST_HEAD(&root_task_group.children);
9503 init_task_group.parent = &root_task_group;
9504 list_add(&init_task_group.siblings, &root_task_group.children);
9505 #endif /* CONFIG_USER_SCHED */
9506 #endif /* CONFIG_GROUP_SCHED */
9507
9508 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9509 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9510 __alignof__(unsigned long));
9511 #endif
9512 for_each_possible_cpu(i) {
9513 struct rq *rq;
9514
9515 rq = cpu_rq(i);
9516 spin_lock_init(&rq->lock);
9517 rq->nr_running = 0;
9518 rq->calc_load_active = 0;
9519 rq->calc_load_update = jiffies + LOAD_FREQ;
9520 init_cfs_rq(&rq->cfs, rq);
9521 init_rt_rq(&rq->rt, rq);
9522 #ifdef CONFIG_FAIR_GROUP_SCHED
9523 init_task_group.shares = init_task_group_load;
9524 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9525 #ifdef CONFIG_CGROUP_SCHED
9526 /*
9527 * How much cpu bandwidth does init_task_group get?
9528 *
9529 * In case of task-groups formed thr' the cgroup filesystem, it
9530 * gets 100% of the cpu resources in the system. This overall
9531 * system cpu resource is divided among the tasks of
9532 * init_task_group and its child task-groups in a fair manner,
9533 * based on each entity's (task or task-group's) weight
9534 * (se->load.weight).
9535 *
9536 * In other words, if init_task_group has 10 tasks of weight
9537 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9538 * then A0's share of the cpu resource is:
9539 *
9540 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9541 *
9542 * We achieve this by letting init_task_group's tasks sit
9543 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9544 */
9545 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9546 #elif defined CONFIG_USER_SCHED
9547 root_task_group.shares = NICE_0_LOAD;
9548 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9549 /*
9550 * In case of task-groups formed thr' the user id of tasks,
9551 * init_task_group represents tasks belonging to root user.
9552 * Hence it forms a sibling of all subsequent groups formed.
9553 * In this case, init_task_group gets only a fraction of overall
9554 * system cpu resource, based on the weight assigned to root
9555 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9556 * by letting tasks of init_task_group sit in a separate cfs_rq
9557 * (init_tg_cfs_rq) and having one entity represent this group of
9558 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9559 */
9560 init_tg_cfs_entry(&init_task_group,
9561 &per_cpu(init_tg_cfs_rq, i),
9562 &per_cpu(init_sched_entity, i), i, 1,
9563 root_task_group.se[i]);
9564
9565 #endif
9566 #endif /* CONFIG_FAIR_GROUP_SCHED */
9567
9568 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9569 #ifdef CONFIG_RT_GROUP_SCHED
9570 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9571 #ifdef CONFIG_CGROUP_SCHED
9572 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9573 #elif defined CONFIG_USER_SCHED
9574 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9575 init_tg_rt_entry(&init_task_group,
9576 &per_cpu(init_rt_rq, i),
9577 &per_cpu(init_sched_rt_entity, i), i, 1,
9578 root_task_group.rt_se[i]);
9579 #endif
9580 #endif
9581
9582 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9583 rq->cpu_load[j] = 0;
9584 #ifdef CONFIG_SMP
9585 rq->sd = NULL;
9586 rq->rd = NULL;
9587 rq->post_schedule = 0;
9588 rq->active_balance = 0;
9589 rq->next_balance = jiffies;
9590 rq->push_cpu = 0;
9591 rq->cpu = i;
9592 rq->online = 0;
9593 rq->migration_thread = NULL;
9594 rq->idle_stamp = 0;
9595 rq->avg_idle = 2*sysctl_sched_migration_cost;
9596 INIT_LIST_HEAD(&rq->migration_queue);
9597 rq_attach_root(rq, &def_root_domain);
9598 #endif
9599 init_rq_hrtick(rq);
9600 atomic_set(&rq->nr_iowait, 0);
9601 }
9602
9603 set_load_weight(&init_task);
9604
9605 #ifdef CONFIG_PREEMPT_NOTIFIERS
9606 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9607 #endif
9608
9609 #ifdef CONFIG_SMP
9610 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9611 #endif
9612
9613 #ifdef CONFIG_RT_MUTEXES
9614 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9615 #endif
9616
9617 /*
9618 * The boot idle thread does lazy MMU switching as well:
9619 */
9620 atomic_inc(&init_mm.mm_count);
9621 enter_lazy_tlb(&init_mm, current);
9622
9623 /*
9624 * Make us the idle thread. Technically, schedule() should not be
9625 * called from this thread, however somewhere below it might be,
9626 * but because we are the idle thread, we just pick up running again
9627 * when this runqueue becomes "idle".
9628 */
9629 init_idle(current, smp_processor_id());
9630
9631 calc_load_update = jiffies + LOAD_FREQ;
9632
9633 /*
9634 * During early bootup we pretend to be a normal task:
9635 */
9636 current->sched_class = &fair_sched_class;
9637
9638 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9639 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9640 #ifdef CONFIG_SMP
9641 #ifdef CONFIG_NO_HZ
9642 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9643 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9644 #endif
9645 /* May be allocated at isolcpus cmdline parse time */
9646 if (cpu_isolated_map == NULL)
9647 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9648 #endif /* SMP */
9649
9650 perf_event_init();
9651
9652 scheduler_running = 1;
9653 }
9654
9655 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9656 static inline int preempt_count_equals(int preempt_offset)
9657 {
9658 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9659
9660 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9661 }
9662
9663 void __might_sleep(char *file, int line, int preempt_offset)
9664 {
9665 #ifdef in_atomic
9666 static unsigned long prev_jiffy; /* ratelimiting */
9667
9668 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9669 system_state != SYSTEM_RUNNING || oops_in_progress)
9670 return;
9671 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9672 return;
9673 prev_jiffy = jiffies;
9674
9675 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9676 file, line);
9677 pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9678 in_atomic(), irqs_disabled(),
9679 current->pid, current->comm);
9680
9681 debug_show_held_locks(current);
9682 if (irqs_disabled())
9683 print_irqtrace_events(current);
9684 dump_stack();
9685 #endif
9686 }
9687 EXPORT_SYMBOL(__might_sleep);
9688 #endif
9689
9690 #ifdef CONFIG_MAGIC_SYSRQ
9691 static void normalize_task(struct rq *rq, struct task_struct *p)
9692 {
9693 int on_rq;
9694
9695 update_rq_clock(rq);
9696 on_rq = p->se.on_rq;
9697 if (on_rq)
9698 deactivate_task(rq, p, 0);
9699 __setscheduler(rq, p, SCHED_NORMAL, 0);
9700 if (on_rq) {
9701 activate_task(rq, p, 0);
9702 resched_task(rq->curr);
9703 }
9704 }
9705
9706 void normalize_rt_tasks(void)
9707 {
9708 struct task_struct *g, *p;
9709 unsigned long flags;
9710 struct rq *rq;
9711
9712 read_lock_irqsave(&tasklist_lock, flags);
9713 do_each_thread(g, p) {
9714 /*
9715 * Only normalize user tasks:
9716 */
9717 if (!p->mm)
9718 continue;
9719
9720 p->se.exec_start = 0;
9721 #ifdef CONFIG_SCHEDSTATS
9722 p->se.wait_start = 0;
9723 p->se.sleep_start = 0;
9724 p->se.block_start = 0;
9725 #endif
9726
9727 if (!rt_task(p)) {
9728 /*
9729 * Renice negative nice level userspace
9730 * tasks back to 0:
9731 */
9732 if (TASK_NICE(p) < 0 && p->mm)
9733 set_user_nice(p, 0);
9734 continue;
9735 }
9736
9737 spin_lock(&p->pi_lock);
9738 rq = __task_rq_lock(p);
9739
9740 normalize_task(rq, p);
9741
9742 __task_rq_unlock(rq);
9743 spin_unlock(&p->pi_lock);
9744 } while_each_thread(g, p);
9745
9746 read_unlock_irqrestore(&tasklist_lock, flags);
9747 }
9748
9749 #endif /* CONFIG_MAGIC_SYSRQ */
9750
9751 #ifdef CONFIG_IA64
9752 /*
9753 * These functions are only useful for the IA64 MCA handling.
9754 *
9755 * They can only be called when the whole system has been
9756 * stopped - every CPU needs to be quiescent, and no scheduling
9757 * activity can take place. Using them for anything else would
9758 * be a serious bug, and as a result, they aren't even visible
9759 * under any other configuration.
9760 */
9761
9762 /**
9763 * curr_task - return the current task for a given cpu.
9764 * @cpu: the processor in question.
9765 *
9766 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9767 */
9768 struct task_struct *curr_task(int cpu)
9769 {
9770 return cpu_curr(cpu);
9771 }
9772
9773 /**
9774 * set_curr_task - set the current task for a given cpu.
9775 * @cpu: the processor in question.
9776 * @p: the task pointer to set.
9777 *
9778 * Description: This function must only be used when non-maskable interrupts
9779 * are serviced on a separate stack. It allows the architecture to switch the
9780 * notion of the current task on a cpu in a non-blocking manner. This function
9781 * must be called with all CPU's synchronized, and interrupts disabled, the
9782 * and caller must save the original value of the current task (see
9783 * curr_task() above) and restore that value before reenabling interrupts and
9784 * re-starting the system.
9785 *
9786 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9787 */
9788 void set_curr_task(int cpu, struct task_struct *p)
9789 {
9790 cpu_curr(cpu) = p;
9791 }
9792
9793 #endif
9794
9795 #ifdef CONFIG_FAIR_GROUP_SCHED
9796 static void free_fair_sched_group(struct task_group *tg)
9797 {
9798 int i;
9799
9800 for_each_possible_cpu(i) {
9801 if (tg->cfs_rq)
9802 kfree(tg->cfs_rq[i]);
9803 if (tg->se)
9804 kfree(tg->se[i]);
9805 }
9806
9807 kfree(tg->cfs_rq);
9808 kfree(tg->se);
9809 }
9810
9811 static
9812 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9813 {
9814 struct cfs_rq *cfs_rq;
9815 struct sched_entity *se;
9816 struct rq *rq;
9817 int i;
9818
9819 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9820 if (!tg->cfs_rq)
9821 goto err;
9822 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9823 if (!tg->se)
9824 goto err;
9825
9826 tg->shares = NICE_0_LOAD;
9827
9828 for_each_possible_cpu(i) {
9829 rq = cpu_rq(i);
9830
9831 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9832 GFP_KERNEL, cpu_to_node(i));
9833 if (!cfs_rq)
9834 goto err;
9835
9836 se = kzalloc_node(sizeof(struct sched_entity),
9837 GFP_KERNEL, cpu_to_node(i));
9838 if (!se)
9839 goto err_free_rq;
9840
9841 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9842 }
9843
9844 return 1;
9845
9846 err_free_rq:
9847 kfree(cfs_rq);
9848 err:
9849 return 0;
9850 }
9851
9852 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9853 {
9854 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9855 &cpu_rq(cpu)->leaf_cfs_rq_list);
9856 }
9857
9858 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9859 {
9860 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9861 }
9862 #else /* !CONFG_FAIR_GROUP_SCHED */
9863 static inline void free_fair_sched_group(struct task_group *tg)
9864 {
9865 }
9866
9867 static inline
9868 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9869 {
9870 return 1;
9871 }
9872
9873 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9874 {
9875 }
9876
9877 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9878 {
9879 }
9880 #endif /* CONFIG_FAIR_GROUP_SCHED */
9881
9882 #ifdef CONFIG_RT_GROUP_SCHED
9883 static void free_rt_sched_group(struct task_group *tg)
9884 {
9885 int i;
9886
9887 destroy_rt_bandwidth(&tg->rt_bandwidth);
9888
9889 for_each_possible_cpu(i) {
9890 if (tg->rt_rq)
9891 kfree(tg->rt_rq[i]);
9892 if (tg->rt_se)
9893 kfree(tg->rt_se[i]);
9894 }
9895
9896 kfree(tg->rt_rq);
9897 kfree(tg->rt_se);
9898 }
9899
9900 static
9901 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9902 {
9903 struct rt_rq *rt_rq;
9904 struct sched_rt_entity *rt_se;
9905 struct rq *rq;
9906 int i;
9907
9908 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9909 if (!tg->rt_rq)
9910 goto err;
9911 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9912 if (!tg->rt_se)
9913 goto err;
9914
9915 init_rt_bandwidth(&tg->rt_bandwidth,
9916 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9917
9918 for_each_possible_cpu(i) {
9919 rq = cpu_rq(i);
9920
9921 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9922 GFP_KERNEL, cpu_to_node(i));
9923 if (!rt_rq)
9924 goto err;
9925
9926 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9927 GFP_KERNEL, cpu_to_node(i));
9928 if (!rt_se)
9929 goto err_free_rq;
9930
9931 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9932 }
9933
9934 return 1;
9935
9936 err_free_rq:
9937 kfree(rt_rq);
9938 err:
9939 return 0;
9940 }
9941
9942 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9943 {
9944 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9945 &cpu_rq(cpu)->leaf_rt_rq_list);
9946 }
9947
9948 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9949 {
9950 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9951 }
9952 #else /* !CONFIG_RT_GROUP_SCHED */
9953 static inline void free_rt_sched_group(struct task_group *tg)
9954 {
9955 }
9956
9957 static inline
9958 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9959 {
9960 return 1;
9961 }
9962
9963 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9964 {
9965 }
9966
9967 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9968 {
9969 }
9970 #endif /* CONFIG_RT_GROUP_SCHED */
9971
9972 #ifdef CONFIG_GROUP_SCHED
9973 static void free_sched_group(struct task_group *tg)
9974 {
9975 free_fair_sched_group(tg);
9976 free_rt_sched_group(tg);
9977 kfree(tg);
9978 }
9979
9980 /* allocate runqueue etc for a new task group */
9981 struct task_group *sched_create_group(struct task_group *parent)
9982 {
9983 struct task_group *tg;
9984 unsigned long flags;
9985 int i;
9986
9987 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9988 if (!tg)
9989 return ERR_PTR(-ENOMEM);
9990
9991 if (!alloc_fair_sched_group(tg, parent))
9992 goto err;
9993
9994 if (!alloc_rt_sched_group(tg, parent))
9995 goto err;
9996
9997 spin_lock_irqsave(&task_group_lock, flags);
9998 for_each_possible_cpu(i) {
9999 register_fair_sched_group(tg, i);
10000 register_rt_sched_group(tg, i);
10001 }
10002 list_add_rcu(&tg->list, &task_groups);
10003
10004 WARN_ON(!parent); /* root should already exist */
10005
10006 tg->parent = parent;
10007 INIT_LIST_HEAD(&tg->children);
10008 list_add_rcu(&tg->siblings, &parent->children);
10009 spin_unlock_irqrestore(&task_group_lock, flags);
10010
10011 return tg;
10012
10013 err:
10014 free_sched_group(tg);
10015 return ERR_PTR(-ENOMEM);
10016 }
10017
10018 /* rcu callback to free various structures associated with a task group */
10019 static void free_sched_group_rcu(struct rcu_head *rhp)
10020 {
10021 /* now it should be safe to free those cfs_rqs */
10022 free_sched_group(container_of(rhp, struct task_group, rcu));
10023 }
10024
10025 /* Destroy runqueue etc associated with a task group */
10026 void sched_destroy_group(struct task_group *tg)
10027 {
10028 unsigned long flags;
10029 int i;
10030
10031 spin_lock_irqsave(&task_group_lock, flags);
10032 for_each_possible_cpu(i) {
10033 unregister_fair_sched_group(tg, i);
10034 unregister_rt_sched_group(tg, i);
10035 }
10036 list_del_rcu(&tg->list);
10037 list_del_rcu(&tg->siblings);
10038 spin_unlock_irqrestore(&task_group_lock, flags);
10039
10040 /* wait for possible concurrent references to cfs_rqs complete */
10041 call_rcu(&tg->rcu, free_sched_group_rcu);
10042 }
10043
10044 /* change task's runqueue when it moves between groups.
10045 * The caller of this function should have put the task in its new group
10046 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10047 * reflect its new group.
10048 */
10049 void sched_move_task(struct task_struct *tsk)
10050 {
10051 int on_rq, running;
10052 unsigned long flags;
10053 struct rq *rq;
10054
10055 rq = task_rq_lock(tsk, &flags);
10056
10057 update_rq_clock(rq);
10058
10059 running = task_current(rq, tsk);
10060 on_rq = tsk->se.on_rq;
10061
10062 if (on_rq)
10063 dequeue_task(rq, tsk, 0);
10064 if (unlikely(running))
10065 tsk->sched_class->put_prev_task(rq, tsk);
10066
10067 set_task_rq(tsk, task_cpu(tsk));
10068
10069 #ifdef CONFIG_FAIR_GROUP_SCHED
10070 if (tsk->sched_class->moved_group)
10071 tsk->sched_class->moved_group(tsk);
10072 #endif
10073
10074 if (unlikely(running))
10075 tsk->sched_class->set_curr_task(rq);
10076 if (on_rq)
10077 enqueue_task(rq, tsk, 0);
10078
10079 task_rq_unlock(rq, &flags);
10080 }
10081 #endif /* CONFIG_GROUP_SCHED */
10082
10083 #ifdef CONFIG_FAIR_GROUP_SCHED
10084 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10085 {
10086 struct cfs_rq *cfs_rq = se->cfs_rq;
10087 int on_rq;
10088
10089 on_rq = se->on_rq;
10090 if (on_rq)
10091 dequeue_entity(cfs_rq, se, 0);
10092
10093 se->load.weight = shares;
10094 se->load.inv_weight = 0;
10095
10096 if (on_rq)
10097 enqueue_entity(cfs_rq, se, 0);
10098 }
10099
10100 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10101 {
10102 struct cfs_rq *cfs_rq = se->cfs_rq;
10103 struct rq *rq = cfs_rq->rq;
10104 unsigned long flags;
10105
10106 spin_lock_irqsave(&rq->lock, flags);
10107 __set_se_shares(se, shares);
10108 spin_unlock_irqrestore(&rq->lock, flags);
10109 }
10110
10111 static DEFINE_MUTEX(shares_mutex);
10112
10113 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10114 {
10115 int i;
10116 unsigned long flags;
10117
10118 /*
10119 * We can't change the weight of the root cgroup.
10120 */
10121 if (!tg->se[0])
10122 return -EINVAL;
10123
10124 if (shares < MIN_SHARES)
10125 shares = MIN_SHARES;
10126 else if (shares > MAX_SHARES)
10127 shares = MAX_SHARES;
10128
10129 mutex_lock(&shares_mutex);
10130 if (tg->shares == shares)
10131 goto done;
10132
10133 spin_lock_irqsave(&task_group_lock, flags);
10134 for_each_possible_cpu(i)
10135 unregister_fair_sched_group(tg, i);
10136 list_del_rcu(&tg->siblings);
10137 spin_unlock_irqrestore(&task_group_lock, flags);
10138
10139 /* wait for any ongoing reference to this group to finish */
10140 synchronize_sched();
10141
10142 /*
10143 * Now we are free to modify the group's share on each cpu
10144 * w/o tripping rebalance_share or load_balance_fair.
10145 */
10146 tg->shares = shares;
10147 for_each_possible_cpu(i) {
10148 /*
10149 * force a rebalance
10150 */
10151 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10152 set_se_shares(tg->se[i], shares);
10153 }
10154
10155 /*
10156 * Enable load balance activity on this group, by inserting it back on
10157 * each cpu's rq->leaf_cfs_rq_list.
10158 */
10159 spin_lock_irqsave(&task_group_lock, flags);
10160 for_each_possible_cpu(i)
10161 register_fair_sched_group(tg, i);
10162 list_add_rcu(&tg->siblings, &tg->parent->children);
10163 spin_unlock_irqrestore(&task_group_lock, flags);
10164 done:
10165 mutex_unlock(&shares_mutex);
10166 return 0;
10167 }
10168
10169 unsigned long sched_group_shares(struct task_group *tg)
10170 {
10171 return tg->shares;
10172 }
10173 #endif
10174
10175 #ifdef CONFIG_RT_GROUP_SCHED
10176 /*
10177 * Ensure that the real time constraints are schedulable.
10178 */
10179 static DEFINE_MUTEX(rt_constraints_mutex);
10180
10181 static unsigned long to_ratio(u64 period, u64 runtime)
10182 {
10183 if (runtime == RUNTIME_INF)
10184 return 1ULL << 20;
10185
10186 return div64_u64(runtime << 20, period);
10187 }
10188
10189 /* Must be called with tasklist_lock held */
10190 static inline int tg_has_rt_tasks(struct task_group *tg)
10191 {
10192 struct task_struct *g, *p;
10193
10194 do_each_thread(g, p) {
10195 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10196 return 1;
10197 } while_each_thread(g, p);
10198
10199 return 0;
10200 }
10201
10202 struct rt_schedulable_data {
10203 struct task_group *tg;
10204 u64 rt_period;
10205 u64 rt_runtime;
10206 };
10207
10208 static int tg_schedulable(struct task_group *tg, void *data)
10209 {
10210 struct rt_schedulable_data *d = data;
10211 struct task_group *child;
10212 unsigned long total, sum = 0;
10213 u64 period, runtime;
10214
10215 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10216 runtime = tg->rt_bandwidth.rt_runtime;
10217
10218 if (tg == d->tg) {
10219 period = d->rt_period;
10220 runtime = d->rt_runtime;
10221 }
10222
10223 #ifdef CONFIG_USER_SCHED
10224 if (tg == &root_task_group) {
10225 period = global_rt_period();
10226 runtime = global_rt_runtime();
10227 }
10228 #endif
10229
10230 /*
10231 * Cannot have more runtime than the period.
10232 */
10233 if (runtime > period && runtime != RUNTIME_INF)
10234 return -EINVAL;
10235
10236 /*
10237 * Ensure we don't starve existing RT tasks.
10238 */
10239 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10240 return -EBUSY;
10241
10242 total = to_ratio(period, runtime);
10243
10244 /*
10245 * Nobody can have more than the global setting allows.
10246 */
10247 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10248 return -EINVAL;
10249
10250 /*
10251 * The sum of our children's runtime should not exceed our own.
10252 */
10253 list_for_each_entry_rcu(child, &tg->children, siblings) {
10254 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10255 runtime = child->rt_bandwidth.rt_runtime;
10256
10257 if (child == d->tg) {
10258 period = d->rt_period;
10259 runtime = d->rt_runtime;
10260 }
10261
10262 sum += to_ratio(period, runtime);
10263 }
10264
10265 if (sum > total)
10266 return -EINVAL;
10267
10268 return 0;
10269 }
10270
10271 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10272 {
10273 struct rt_schedulable_data data = {
10274 .tg = tg,
10275 .rt_period = period,
10276 .rt_runtime = runtime,
10277 };
10278
10279 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10280 }
10281
10282 static int tg_set_bandwidth(struct task_group *tg,
10283 u64 rt_period, u64 rt_runtime)
10284 {
10285 int i, err = 0;
10286
10287 mutex_lock(&rt_constraints_mutex);
10288 read_lock(&tasklist_lock);
10289 err = __rt_schedulable(tg, rt_period, rt_runtime);
10290 if (err)
10291 goto unlock;
10292
10293 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10294 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10295 tg->rt_bandwidth.rt_runtime = rt_runtime;
10296
10297 for_each_possible_cpu(i) {
10298 struct rt_rq *rt_rq = tg->rt_rq[i];
10299
10300 spin_lock(&rt_rq->rt_runtime_lock);
10301 rt_rq->rt_runtime = rt_runtime;
10302 spin_unlock(&rt_rq->rt_runtime_lock);
10303 }
10304 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10305 unlock:
10306 read_unlock(&tasklist_lock);
10307 mutex_unlock(&rt_constraints_mutex);
10308
10309 return err;
10310 }
10311
10312 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10313 {
10314 u64 rt_runtime, rt_period;
10315
10316 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10317 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10318 if (rt_runtime_us < 0)
10319 rt_runtime = RUNTIME_INF;
10320
10321 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10322 }
10323
10324 long sched_group_rt_runtime(struct task_group *tg)
10325 {
10326 u64 rt_runtime_us;
10327
10328 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10329 return -1;
10330
10331 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10332 do_div(rt_runtime_us, NSEC_PER_USEC);
10333 return rt_runtime_us;
10334 }
10335
10336 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10337 {
10338 u64 rt_runtime, rt_period;
10339
10340 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10341 rt_runtime = tg->rt_bandwidth.rt_runtime;
10342
10343 if (rt_period == 0)
10344 return -EINVAL;
10345
10346 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10347 }
10348
10349 long sched_group_rt_period(struct task_group *tg)
10350 {
10351 u64 rt_period_us;
10352
10353 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10354 do_div(rt_period_us, NSEC_PER_USEC);
10355 return rt_period_us;
10356 }
10357
10358 static int sched_rt_global_constraints(void)
10359 {
10360 u64 runtime, period;
10361 int ret = 0;
10362
10363 if (sysctl_sched_rt_period <= 0)
10364 return -EINVAL;
10365
10366 runtime = global_rt_runtime();
10367 period = global_rt_period();
10368
10369 /*
10370 * Sanity check on the sysctl variables.
10371 */
10372 if (runtime > period && runtime != RUNTIME_INF)
10373 return -EINVAL;
10374
10375 mutex_lock(&rt_constraints_mutex);
10376 read_lock(&tasklist_lock);
10377 ret = __rt_schedulable(NULL, 0, 0);
10378 read_unlock(&tasklist_lock);
10379 mutex_unlock(&rt_constraints_mutex);
10380
10381 return ret;
10382 }
10383
10384 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10385 {
10386 /* Don't accept realtime tasks when there is no way for them to run */
10387 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10388 return 0;
10389
10390 return 1;
10391 }
10392
10393 #else /* !CONFIG_RT_GROUP_SCHED */
10394 static int sched_rt_global_constraints(void)
10395 {
10396 unsigned long flags;
10397 int i;
10398
10399 if (sysctl_sched_rt_period <= 0)
10400 return -EINVAL;
10401
10402 /*
10403 * There's always some RT tasks in the root group
10404 * -- migration, kstopmachine etc..
10405 */
10406 if (sysctl_sched_rt_runtime == 0)
10407 return -EBUSY;
10408
10409 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10410 for_each_possible_cpu(i) {
10411 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10412
10413 spin_lock(&rt_rq->rt_runtime_lock);
10414 rt_rq->rt_runtime = global_rt_runtime();
10415 spin_unlock(&rt_rq->rt_runtime_lock);
10416 }
10417 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10418
10419 return 0;
10420 }
10421 #endif /* CONFIG_RT_GROUP_SCHED */
10422
10423 int sched_rt_handler(struct ctl_table *table, int write,
10424 void __user *buffer, size_t *lenp,
10425 loff_t *ppos)
10426 {
10427 int ret;
10428 int old_period, old_runtime;
10429 static DEFINE_MUTEX(mutex);
10430
10431 mutex_lock(&mutex);
10432 old_period = sysctl_sched_rt_period;
10433 old_runtime = sysctl_sched_rt_runtime;
10434
10435 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10436
10437 if (!ret && write) {
10438 ret = sched_rt_global_constraints();
10439 if (ret) {
10440 sysctl_sched_rt_period = old_period;
10441 sysctl_sched_rt_runtime = old_runtime;
10442 } else {
10443 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10444 def_rt_bandwidth.rt_period =
10445 ns_to_ktime(global_rt_period());
10446 }
10447 }
10448 mutex_unlock(&mutex);
10449
10450 return ret;
10451 }
10452
10453 #ifdef CONFIG_CGROUP_SCHED
10454
10455 /* return corresponding task_group object of a cgroup */
10456 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10457 {
10458 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10459 struct task_group, css);
10460 }
10461
10462 static struct cgroup_subsys_state *
10463 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10464 {
10465 struct task_group *tg, *parent;
10466
10467 if (!cgrp->parent) {
10468 /* This is early initialization for the top cgroup */
10469 return &init_task_group.css;
10470 }
10471
10472 parent = cgroup_tg(cgrp->parent);
10473 tg = sched_create_group(parent);
10474 if (IS_ERR(tg))
10475 return ERR_PTR(-ENOMEM);
10476
10477 return &tg->css;
10478 }
10479
10480 static void
10481 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10482 {
10483 struct task_group *tg = cgroup_tg(cgrp);
10484
10485 sched_destroy_group(tg);
10486 }
10487
10488 static int
10489 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10490 {
10491 #ifdef CONFIG_RT_GROUP_SCHED
10492 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10493 return -EINVAL;
10494 #else
10495 /* We don't support RT-tasks being in separate groups */
10496 if (tsk->sched_class != &fair_sched_class)
10497 return -EINVAL;
10498 #endif
10499 return 0;
10500 }
10501
10502 static int
10503 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10504 struct task_struct *tsk, bool threadgroup)
10505 {
10506 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10507 if (retval)
10508 return retval;
10509 if (threadgroup) {
10510 struct task_struct *c;
10511 rcu_read_lock();
10512 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10513 retval = cpu_cgroup_can_attach_task(cgrp, c);
10514 if (retval) {
10515 rcu_read_unlock();
10516 return retval;
10517 }
10518 }
10519 rcu_read_unlock();
10520 }
10521 return 0;
10522 }
10523
10524 static void
10525 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10526 struct cgroup *old_cont, struct task_struct *tsk,
10527 bool threadgroup)
10528 {
10529 sched_move_task(tsk);
10530 if (threadgroup) {
10531 struct task_struct *c;
10532 rcu_read_lock();
10533 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10534 sched_move_task(c);
10535 }
10536 rcu_read_unlock();
10537 }
10538 }
10539
10540 #ifdef CONFIG_FAIR_GROUP_SCHED
10541 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10542 u64 shareval)
10543 {
10544 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10545 }
10546
10547 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10548 {
10549 struct task_group *tg = cgroup_tg(cgrp);
10550
10551 return (u64) tg->shares;
10552 }
10553 #endif /* CONFIG_FAIR_GROUP_SCHED */
10554
10555 #ifdef CONFIG_RT_GROUP_SCHED
10556 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10557 s64 val)
10558 {
10559 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10560 }
10561
10562 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10563 {
10564 return sched_group_rt_runtime(cgroup_tg(cgrp));
10565 }
10566
10567 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10568 u64 rt_period_us)
10569 {
10570 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10571 }
10572
10573 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10574 {
10575 return sched_group_rt_period(cgroup_tg(cgrp));
10576 }
10577 #endif /* CONFIG_RT_GROUP_SCHED */
10578
10579 static struct cftype cpu_files[] = {
10580 #ifdef CONFIG_FAIR_GROUP_SCHED
10581 {
10582 .name = "shares",
10583 .read_u64 = cpu_shares_read_u64,
10584 .write_u64 = cpu_shares_write_u64,
10585 },
10586 #endif
10587 #ifdef CONFIG_RT_GROUP_SCHED
10588 {
10589 .name = "rt_runtime_us",
10590 .read_s64 = cpu_rt_runtime_read,
10591 .write_s64 = cpu_rt_runtime_write,
10592 },
10593 {
10594 .name = "rt_period_us",
10595 .read_u64 = cpu_rt_period_read_uint,
10596 .write_u64 = cpu_rt_period_write_uint,
10597 },
10598 #endif
10599 };
10600
10601 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10602 {
10603 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10604 }
10605
10606 struct cgroup_subsys cpu_cgroup_subsys = {
10607 .name = "cpu",
10608 .create = cpu_cgroup_create,
10609 .destroy = cpu_cgroup_destroy,
10610 .can_attach = cpu_cgroup_can_attach,
10611 .attach = cpu_cgroup_attach,
10612 .populate = cpu_cgroup_populate,
10613 .subsys_id = cpu_cgroup_subsys_id,
10614 .early_init = 1,
10615 };
10616
10617 #endif /* CONFIG_CGROUP_SCHED */
10618
10619 #ifdef CONFIG_CGROUP_CPUACCT
10620
10621 /*
10622 * CPU accounting code for task groups.
10623 *
10624 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10625 * (balbir@in.ibm.com).
10626 */
10627
10628 /* track cpu usage of a group of tasks and its child groups */
10629 struct cpuacct {
10630 struct cgroup_subsys_state css;
10631 /* cpuusage holds pointer to a u64-type object on every cpu */
10632 u64 *cpuusage;
10633 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10634 struct cpuacct *parent;
10635 };
10636
10637 struct cgroup_subsys cpuacct_subsys;
10638
10639 /* return cpu accounting group corresponding to this container */
10640 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10641 {
10642 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10643 struct cpuacct, css);
10644 }
10645
10646 /* return cpu accounting group to which this task belongs */
10647 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10648 {
10649 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10650 struct cpuacct, css);
10651 }
10652
10653 /* create a new cpu accounting group */
10654 static struct cgroup_subsys_state *cpuacct_create(
10655 struct cgroup_subsys *ss, struct cgroup *cgrp)
10656 {
10657 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10658 int i;
10659
10660 if (!ca)
10661 goto out;
10662
10663 ca->cpuusage = alloc_percpu(u64);
10664 if (!ca->cpuusage)
10665 goto out_free_ca;
10666
10667 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10668 if (percpu_counter_init(&ca->cpustat[i], 0))
10669 goto out_free_counters;
10670
10671 if (cgrp->parent)
10672 ca->parent = cgroup_ca(cgrp->parent);
10673
10674 return &ca->css;
10675
10676 out_free_counters:
10677 while (--i >= 0)
10678 percpu_counter_destroy(&ca->cpustat[i]);
10679 free_percpu(ca->cpuusage);
10680 out_free_ca:
10681 kfree(ca);
10682 out:
10683 return ERR_PTR(-ENOMEM);
10684 }
10685
10686 /* destroy an existing cpu accounting group */
10687 static void
10688 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10689 {
10690 struct cpuacct *ca = cgroup_ca(cgrp);
10691 int i;
10692
10693 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10694 percpu_counter_destroy(&ca->cpustat[i]);
10695 free_percpu(ca->cpuusage);
10696 kfree(ca);
10697 }
10698
10699 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10700 {
10701 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10702 u64 data;
10703
10704 #ifndef CONFIG_64BIT
10705 /*
10706 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10707 */
10708 spin_lock_irq(&cpu_rq(cpu)->lock);
10709 data = *cpuusage;
10710 spin_unlock_irq(&cpu_rq(cpu)->lock);
10711 #else
10712 data = *cpuusage;
10713 #endif
10714
10715 return data;
10716 }
10717
10718 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10719 {
10720 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10721
10722 #ifndef CONFIG_64BIT
10723 /*
10724 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10725 */
10726 spin_lock_irq(&cpu_rq(cpu)->lock);
10727 *cpuusage = val;
10728 spin_unlock_irq(&cpu_rq(cpu)->lock);
10729 #else
10730 *cpuusage = val;
10731 #endif
10732 }
10733
10734 /* return total cpu usage (in nanoseconds) of a group */
10735 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10736 {
10737 struct cpuacct *ca = cgroup_ca(cgrp);
10738 u64 totalcpuusage = 0;
10739 int i;
10740
10741 for_each_present_cpu(i)
10742 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10743
10744 return totalcpuusage;
10745 }
10746
10747 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10748 u64 reset)
10749 {
10750 struct cpuacct *ca = cgroup_ca(cgrp);
10751 int err = 0;
10752 int i;
10753
10754 if (reset) {
10755 err = -EINVAL;
10756 goto out;
10757 }
10758
10759 for_each_present_cpu(i)
10760 cpuacct_cpuusage_write(ca, i, 0);
10761
10762 out:
10763 return err;
10764 }
10765
10766 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10767 struct seq_file *m)
10768 {
10769 struct cpuacct *ca = cgroup_ca(cgroup);
10770 u64 percpu;
10771 int i;
10772
10773 for_each_present_cpu(i) {
10774 percpu = cpuacct_cpuusage_read(ca, i);
10775 seq_printf(m, "%llu ", (unsigned long long) percpu);
10776 }
10777 seq_printf(m, "\n");
10778 return 0;
10779 }
10780
10781 static const char *cpuacct_stat_desc[] = {
10782 [CPUACCT_STAT_USER] = "user",
10783 [CPUACCT_STAT_SYSTEM] = "system",
10784 };
10785
10786 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10787 struct cgroup_map_cb *cb)
10788 {
10789 struct cpuacct *ca = cgroup_ca(cgrp);
10790 int i;
10791
10792 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10793 s64 val = percpu_counter_read(&ca->cpustat[i]);
10794 val = cputime64_to_clock_t(val);
10795 cb->fill(cb, cpuacct_stat_desc[i], val);
10796 }
10797 return 0;
10798 }
10799
10800 static struct cftype files[] = {
10801 {
10802 .name = "usage",
10803 .read_u64 = cpuusage_read,
10804 .write_u64 = cpuusage_write,
10805 },
10806 {
10807 .name = "usage_percpu",
10808 .read_seq_string = cpuacct_percpu_seq_read,
10809 },
10810 {
10811 .name = "stat",
10812 .read_map = cpuacct_stats_show,
10813 },
10814 };
10815
10816 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10817 {
10818 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10819 }
10820
10821 /*
10822 * charge this task's execution time to its accounting group.
10823 *
10824 * called with rq->lock held.
10825 */
10826 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10827 {
10828 struct cpuacct *ca;
10829 int cpu;
10830
10831 if (unlikely(!cpuacct_subsys.active))
10832 return;
10833
10834 cpu = task_cpu(tsk);
10835
10836 rcu_read_lock();
10837
10838 ca = task_ca(tsk);
10839
10840 for (; ca; ca = ca->parent) {
10841 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10842 *cpuusage += cputime;
10843 }
10844
10845 rcu_read_unlock();
10846 }
10847
10848 /*
10849 * Charge the system/user time to the task's accounting group.
10850 */
10851 static void cpuacct_update_stats(struct task_struct *tsk,
10852 enum cpuacct_stat_index idx, cputime_t val)
10853 {
10854 struct cpuacct *ca;
10855
10856 if (unlikely(!cpuacct_subsys.active))
10857 return;
10858
10859 rcu_read_lock();
10860 ca = task_ca(tsk);
10861
10862 do {
10863 percpu_counter_add(&ca->cpustat[idx], val);
10864 ca = ca->parent;
10865 } while (ca);
10866 rcu_read_unlock();
10867 }
10868
10869 struct cgroup_subsys cpuacct_subsys = {
10870 .name = "cpuacct",
10871 .create = cpuacct_create,
10872 .destroy = cpuacct_destroy,
10873 .populate = cpuacct_populate,
10874 .subsys_id = cpuacct_subsys_id,
10875 };
10876 #endif /* CONFIG_CGROUP_CPUACCT */
10877
10878 #ifndef CONFIG_SMP
10879
10880 int rcu_expedited_torture_stats(char *page)
10881 {
10882 return 0;
10883 }
10884 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10885
10886 void synchronize_sched_expedited(void)
10887 {
10888 }
10889 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10890
10891 #else /* #ifndef CONFIG_SMP */
10892
10893 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10894 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10895
10896 #define RCU_EXPEDITED_STATE_POST -2
10897 #define RCU_EXPEDITED_STATE_IDLE -1
10898
10899 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10900
10901 int rcu_expedited_torture_stats(char *page)
10902 {
10903 int cnt = 0;
10904 int cpu;
10905
10906 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10907 for_each_online_cpu(cpu) {
10908 cnt += sprintf(&page[cnt], " %d:%d",
10909 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10910 }
10911 cnt += sprintf(&page[cnt], "\n");
10912 return cnt;
10913 }
10914 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10915
10916 static long synchronize_sched_expedited_count;
10917
10918 /*
10919 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10920 * approach to force grace period to end quickly. This consumes
10921 * significant time on all CPUs, and is thus not recommended for
10922 * any sort of common-case code.
10923 *
10924 * Note that it is illegal to call this function while holding any
10925 * lock that is acquired by a CPU-hotplug notifier. Failing to
10926 * observe this restriction will result in deadlock.
10927 */
10928 void synchronize_sched_expedited(void)
10929 {
10930 int cpu;
10931 unsigned long flags;
10932 bool need_full_sync = 0;
10933 struct rq *rq;
10934 struct migration_req *req;
10935 long snap;
10936 int trycount = 0;
10937
10938 smp_mb(); /* ensure prior mod happens before capturing snap. */
10939 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10940 get_online_cpus();
10941 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10942 put_online_cpus();
10943 if (trycount++ < 10)
10944 udelay(trycount * num_online_cpus());
10945 else {
10946 synchronize_sched();
10947 return;
10948 }
10949 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10950 smp_mb(); /* ensure test happens before caller kfree */
10951 return;
10952 }
10953 get_online_cpus();
10954 }
10955 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10956 for_each_online_cpu(cpu) {
10957 rq = cpu_rq(cpu);
10958 req = &per_cpu(rcu_migration_req, cpu);
10959 init_completion(&req->done);
10960 req->task = NULL;
10961 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10962 spin_lock_irqsave(&rq->lock, flags);
10963 list_add(&req->list, &rq->migration_queue);
10964 spin_unlock_irqrestore(&rq->lock, flags);
10965 wake_up_process(rq->migration_thread);
10966 }
10967 for_each_online_cpu(cpu) {
10968 rcu_expedited_state = cpu;
10969 req = &per_cpu(rcu_migration_req, cpu);
10970 rq = cpu_rq(cpu);
10971 wait_for_completion(&req->done);
10972 spin_lock_irqsave(&rq->lock, flags);
10973 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10974 need_full_sync = 1;
10975 req->dest_cpu = RCU_MIGRATION_IDLE;
10976 spin_unlock_irqrestore(&rq->lock, flags);
10977 }
10978 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10979 synchronize_sched_expedited_count++;
10980 mutex_unlock(&rcu_sched_expedited_mutex);
10981 put_online_cpus();
10982 if (need_full_sync)
10983 synchronize_sched();
10984 }
10985 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10986
10987 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.249914 seconds and 5 git commands to generate.