sched: wake-balance fixes
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/kthread.h>
56 #include <linux/seq_file.h>
57 #include <linux/sysctl.h>
58 #include <linux/syscalls.h>
59 #include <linux/times.h>
60 #include <linux/tsacct_kern.h>
61 #include <linux/kprobes.h>
62 #include <linux/delayacct.h>
63 #include <linux/reciprocal_div.h>
64 #include <linux/unistd.h>
65 #include <linux/pagemap.h>
66
67 #include <asm/tlb.h>
68 #include <asm/irq_regs.h>
69
70 /*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75 unsigned long long __attribute__((weak)) sched_clock(void)
76 {
77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78 }
79
80 /*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89 /*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98 /*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
103
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
107 /*
108 * These are the 'tuning knobs' of the scheduler:
109 *
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
112 */
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 #ifdef CONFIG_SMP
116 /*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 {
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123 }
124
125 /*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 {
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 }
134 #endif
135
136 static inline int rt_policy(int policy)
137 {
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141 }
142
143 static inline int task_has_rt_policy(struct task_struct *p)
144 {
145 return rt_policy(p->policy);
146 }
147
148 /*
149 * This is the priority-queue data structure of the RT scheduling class:
150 */
151 struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154 };
155
156 #ifdef CONFIG_FAIR_GROUP_SCHED
157
158 #include <linux/cgroup.h>
159
160 struct cfs_rq;
161
162 /* task group related information */
163 struct task_group {
164 #ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166 #endif
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
171
172 /*
173 * shares assigned to a task group governs how much of cpu bandwidth
174 * is allocated to the group. The more shares a group has, the more is
175 * the cpu bandwidth allocated to it.
176 *
177 * For ex, lets say that there are three task groups, A, B and C which
178 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
179 * cpu bandwidth allocated by the scheduler to task groups A, B and C
180 * should be:
181 *
182 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
183 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
184 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
185 *
186 * The weight assigned to a task group's schedulable entities on every
187 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
188 * group's shares. For ex: lets say that task group A has been
189 * assigned shares of 1000 and there are two CPUs in a system. Then,
190 *
191 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
192 *
193 * Note: It's not necessary that each of a task's group schedulable
194 * entity have the same weight on all CPUs. If the group
195 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
196 * better distribution of weight could be:
197 *
198 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
199 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
200 *
201 * rebalance_shares() is responsible for distributing the shares of a
202 * task groups like this among the group's schedulable entities across
203 * cpus.
204 *
205 */
206 unsigned long shares;
207
208 struct rcu_head rcu;
209 };
210
211 /* Default task group's sched entity on each cpu */
212 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
213 /* Default task group's cfs_rq on each cpu */
214 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
215
216 static struct sched_entity *init_sched_entity_p[NR_CPUS];
217 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
218
219 /* task_group_mutex serializes add/remove of task groups and also changes to
220 * a task group's cpu shares.
221 */
222 static DEFINE_MUTEX(task_group_mutex);
223
224 /* doms_cur_mutex serializes access to doms_cur[] array */
225 static DEFINE_MUTEX(doms_cur_mutex);
226
227 #ifdef CONFIG_SMP
228 /* kernel thread that runs rebalance_shares() periodically */
229 static struct task_struct *lb_monitor_task;
230 static int load_balance_monitor(void *unused);
231 #endif
232
233 static void set_se_shares(struct sched_entity *se, unsigned long shares);
234
235 /* Default task group.
236 * Every task in system belong to this group at bootup.
237 */
238 struct task_group init_task_group = {
239 .se = init_sched_entity_p,
240 .cfs_rq = init_cfs_rq_p,
241 };
242
243 #ifdef CONFIG_FAIR_USER_SCHED
244 # define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
245 #else
246 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
247 #endif
248
249 #define MIN_GROUP_SHARES 2
250
251 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
252
253 /* return group to which a task belongs */
254 static inline struct task_group *task_group(struct task_struct *p)
255 {
256 struct task_group *tg;
257
258 #ifdef CONFIG_FAIR_USER_SCHED
259 tg = p->user->tg;
260 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
261 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
262 struct task_group, css);
263 #else
264 tg = &init_task_group;
265 #endif
266 return tg;
267 }
268
269 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
270 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
271 {
272 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
273 p->se.parent = task_group(p)->se[cpu];
274 }
275
276 static inline void lock_task_group_list(void)
277 {
278 mutex_lock(&task_group_mutex);
279 }
280
281 static inline void unlock_task_group_list(void)
282 {
283 mutex_unlock(&task_group_mutex);
284 }
285
286 static inline void lock_doms_cur(void)
287 {
288 mutex_lock(&doms_cur_mutex);
289 }
290
291 static inline void unlock_doms_cur(void)
292 {
293 mutex_unlock(&doms_cur_mutex);
294 }
295
296 #else
297
298 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
299 static inline void lock_task_group_list(void) { }
300 static inline void unlock_task_group_list(void) { }
301 static inline void lock_doms_cur(void) { }
302 static inline void unlock_doms_cur(void) { }
303
304 #endif /* CONFIG_FAIR_GROUP_SCHED */
305
306 /* CFS-related fields in a runqueue */
307 struct cfs_rq {
308 struct load_weight load;
309 unsigned long nr_running;
310
311 u64 exec_clock;
312 u64 min_vruntime;
313
314 struct rb_root tasks_timeline;
315 struct rb_node *rb_leftmost;
316 struct rb_node *rb_load_balance_curr;
317 /* 'curr' points to currently running entity on this cfs_rq.
318 * It is set to NULL otherwise (i.e when none are currently running).
319 */
320 struct sched_entity *curr;
321
322 unsigned long nr_spread_over;
323
324 #ifdef CONFIG_FAIR_GROUP_SCHED
325 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
326
327 /*
328 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
329 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
330 * (like users, containers etc.)
331 *
332 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
333 * list is used during load balance.
334 */
335 struct list_head leaf_cfs_rq_list;
336 struct task_group *tg; /* group that "owns" this runqueue */
337 #endif
338 };
339
340 /* Real-Time classes' related field in a runqueue: */
341 struct rt_rq {
342 struct rt_prio_array active;
343 int rt_load_balance_idx;
344 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
345 unsigned long rt_nr_running;
346 unsigned long rt_nr_migratory;
347 /* highest queued rt task prio */
348 int highest_prio;
349 int overloaded;
350 };
351
352 /*
353 * This is the main, per-CPU runqueue data structure.
354 *
355 * Locking rule: those places that want to lock multiple runqueues
356 * (such as the load balancing or the thread migration code), lock
357 * acquire operations must be ordered by ascending &runqueue.
358 */
359 struct rq {
360 /* runqueue lock: */
361 spinlock_t lock;
362
363 /*
364 * nr_running and cpu_load should be in the same cacheline because
365 * remote CPUs use both these fields when doing load calculation.
366 */
367 unsigned long nr_running;
368 #define CPU_LOAD_IDX_MAX 5
369 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
370 unsigned char idle_at_tick;
371 #ifdef CONFIG_NO_HZ
372 unsigned char in_nohz_recently;
373 #endif
374 /* capture load from *all* tasks on this cpu: */
375 struct load_weight load;
376 unsigned long nr_load_updates;
377 u64 nr_switches;
378
379 struct cfs_rq cfs;
380 #ifdef CONFIG_FAIR_GROUP_SCHED
381 /* list of leaf cfs_rq on this cpu: */
382 struct list_head leaf_cfs_rq_list;
383 #endif
384 struct rt_rq rt;
385
386 /*
387 * This is part of a global counter where only the total sum
388 * over all CPUs matters. A task can increase this counter on
389 * one CPU and if it got migrated afterwards it may decrease
390 * it on another CPU. Always updated under the runqueue lock:
391 */
392 unsigned long nr_uninterruptible;
393
394 struct task_struct *curr, *idle;
395 unsigned long next_balance;
396 struct mm_struct *prev_mm;
397
398 u64 clock, prev_clock_raw;
399 s64 clock_max_delta;
400
401 unsigned int clock_warps, clock_overflows;
402 u64 idle_clock;
403 unsigned int clock_deep_idle_events;
404 u64 tick_timestamp;
405
406 atomic_t nr_iowait;
407
408 #ifdef CONFIG_SMP
409 struct sched_domain *sd;
410
411 /* For active balancing */
412 int active_balance;
413 int push_cpu;
414 /* cpu of this runqueue: */
415 int cpu;
416
417 struct task_struct *migration_thread;
418 struct list_head migration_queue;
419 #endif
420
421 #ifdef CONFIG_SCHEDSTATS
422 /* latency stats */
423 struct sched_info rq_sched_info;
424
425 /* sys_sched_yield() stats */
426 unsigned int yld_exp_empty;
427 unsigned int yld_act_empty;
428 unsigned int yld_both_empty;
429 unsigned int yld_count;
430
431 /* schedule() stats */
432 unsigned int sched_switch;
433 unsigned int sched_count;
434 unsigned int sched_goidle;
435
436 /* try_to_wake_up() stats */
437 unsigned int ttwu_count;
438 unsigned int ttwu_local;
439
440 /* BKL stats */
441 unsigned int bkl_count;
442 #endif
443 struct lock_class_key rq_lock_key;
444 };
445
446 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
447
448 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
449 {
450 rq->curr->sched_class->check_preempt_curr(rq, p);
451 }
452
453 static inline int cpu_of(struct rq *rq)
454 {
455 #ifdef CONFIG_SMP
456 return rq->cpu;
457 #else
458 return 0;
459 #endif
460 }
461
462 /*
463 * Update the per-runqueue clock, as finegrained as the platform can give
464 * us, but without assuming monotonicity, etc.:
465 */
466 static void __update_rq_clock(struct rq *rq)
467 {
468 u64 prev_raw = rq->prev_clock_raw;
469 u64 now = sched_clock();
470 s64 delta = now - prev_raw;
471 u64 clock = rq->clock;
472
473 #ifdef CONFIG_SCHED_DEBUG
474 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
475 #endif
476 /*
477 * Protect against sched_clock() occasionally going backwards:
478 */
479 if (unlikely(delta < 0)) {
480 clock++;
481 rq->clock_warps++;
482 } else {
483 /*
484 * Catch too large forward jumps too:
485 */
486 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
487 if (clock < rq->tick_timestamp + TICK_NSEC)
488 clock = rq->tick_timestamp + TICK_NSEC;
489 else
490 clock++;
491 rq->clock_overflows++;
492 } else {
493 if (unlikely(delta > rq->clock_max_delta))
494 rq->clock_max_delta = delta;
495 clock += delta;
496 }
497 }
498
499 rq->prev_clock_raw = now;
500 rq->clock = clock;
501 }
502
503 static void update_rq_clock(struct rq *rq)
504 {
505 if (likely(smp_processor_id() == cpu_of(rq)))
506 __update_rq_clock(rq);
507 }
508
509 /*
510 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
511 * See detach_destroy_domains: synchronize_sched for details.
512 *
513 * The domain tree of any CPU may only be accessed from within
514 * preempt-disabled sections.
515 */
516 #define for_each_domain(cpu, __sd) \
517 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
518
519 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
520 #define this_rq() (&__get_cpu_var(runqueues))
521 #define task_rq(p) cpu_rq(task_cpu(p))
522 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
523
524 /*
525 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
526 */
527 #ifdef CONFIG_SCHED_DEBUG
528 # define const_debug __read_mostly
529 #else
530 # define const_debug static const
531 #endif
532
533 /*
534 * Debugging: various feature bits
535 */
536 enum {
537 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
538 SCHED_FEAT_WAKEUP_PREEMPT = 2,
539 SCHED_FEAT_START_DEBIT = 4,
540 SCHED_FEAT_TREE_AVG = 8,
541 SCHED_FEAT_APPROX_AVG = 16,
542 };
543
544 const_debug unsigned int sysctl_sched_features =
545 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
546 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
547 SCHED_FEAT_START_DEBIT * 1 |
548 SCHED_FEAT_TREE_AVG * 0 |
549 SCHED_FEAT_APPROX_AVG * 0;
550
551 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
552
553 /*
554 * Number of tasks to iterate in a single balance run.
555 * Limited because this is done with IRQs disabled.
556 */
557 const_debug unsigned int sysctl_sched_nr_migrate = 32;
558
559 /*
560 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
561 * clock constructed from sched_clock():
562 */
563 unsigned long long cpu_clock(int cpu)
564 {
565 unsigned long long now;
566 unsigned long flags;
567 struct rq *rq;
568
569 local_irq_save(flags);
570 rq = cpu_rq(cpu);
571 /*
572 * Only call sched_clock() if the scheduler has already been
573 * initialized (some code might call cpu_clock() very early):
574 */
575 if (rq->idle)
576 update_rq_clock(rq);
577 now = rq->clock;
578 local_irq_restore(flags);
579
580 return now;
581 }
582 EXPORT_SYMBOL_GPL(cpu_clock);
583
584 #ifndef prepare_arch_switch
585 # define prepare_arch_switch(next) do { } while (0)
586 #endif
587 #ifndef finish_arch_switch
588 # define finish_arch_switch(prev) do { } while (0)
589 #endif
590
591 static inline int task_current(struct rq *rq, struct task_struct *p)
592 {
593 return rq->curr == p;
594 }
595
596 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
597 static inline int task_running(struct rq *rq, struct task_struct *p)
598 {
599 return task_current(rq, p);
600 }
601
602 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
603 {
604 }
605
606 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
607 {
608 #ifdef CONFIG_DEBUG_SPINLOCK
609 /* this is a valid case when another task releases the spinlock */
610 rq->lock.owner = current;
611 #endif
612 /*
613 * If we are tracking spinlock dependencies then we have to
614 * fix up the runqueue lock - which gets 'carried over' from
615 * prev into current:
616 */
617 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
618
619 spin_unlock_irq(&rq->lock);
620 }
621
622 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
623 static inline int task_running(struct rq *rq, struct task_struct *p)
624 {
625 #ifdef CONFIG_SMP
626 return p->oncpu;
627 #else
628 return task_current(rq, p);
629 #endif
630 }
631
632 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
633 {
634 #ifdef CONFIG_SMP
635 /*
636 * We can optimise this out completely for !SMP, because the
637 * SMP rebalancing from interrupt is the only thing that cares
638 * here.
639 */
640 next->oncpu = 1;
641 #endif
642 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
643 spin_unlock_irq(&rq->lock);
644 #else
645 spin_unlock(&rq->lock);
646 #endif
647 }
648
649 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
650 {
651 #ifdef CONFIG_SMP
652 /*
653 * After ->oncpu is cleared, the task can be moved to a different CPU.
654 * We must ensure this doesn't happen until the switch is completely
655 * finished.
656 */
657 smp_wmb();
658 prev->oncpu = 0;
659 #endif
660 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
661 local_irq_enable();
662 #endif
663 }
664 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
665
666 /*
667 * __task_rq_lock - lock the runqueue a given task resides on.
668 * Must be called interrupts disabled.
669 */
670 static inline struct rq *__task_rq_lock(struct task_struct *p)
671 __acquires(rq->lock)
672 {
673 for (;;) {
674 struct rq *rq = task_rq(p);
675 spin_lock(&rq->lock);
676 if (likely(rq == task_rq(p)))
677 return rq;
678 spin_unlock(&rq->lock);
679 }
680 }
681
682 /*
683 * task_rq_lock - lock the runqueue a given task resides on and disable
684 * interrupts. Note the ordering: we can safely lookup the task_rq without
685 * explicitly disabling preemption.
686 */
687 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
688 __acquires(rq->lock)
689 {
690 struct rq *rq;
691
692 for (;;) {
693 local_irq_save(*flags);
694 rq = task_rq(p);
695 spin_lock(&rq->lock);
696 if (likely(rq == task_rq(p)))
697 return rq;
698 spin_unlock_irqrestore(&rq->lock, *flags);
699 }
700 }
701
702 static void __task_rq_unlock(struct rq *rq)
703 __releases(rq->lock)
704 {
705 spin_unlock(&rq->lock);
706 }
707
708 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
709 __releases(rq->lock)
710 {
711 spin_unlock_irqrestore(&rq->lock, *flags);
712 }
713
714 /*
715 * this_rq_lock - lock this runqueue and disable interrupts.
716 */
717 static struct rq *this_rq_lock(void)
718 __acquires(rq->lock)
719 {
720 struct rq *rq;
721
722 local_irq_disable();
723 rq = this_rq();
724 spin_lock(&rq->lock);
725
726 return rq;
727 }
728
729 /*
730 * We are going deep-idle (irqs are disabled):
731 */
732 void sched_clock_idle_sleep_event(void)
733 {
734 struct rq *rq = cpu_rq(smp_processor_id());
735
736 spin_lock(&rq->lock);
737 __update_rq_clock(rq);
738 spin_unlock(&rq->lock);
739 rq->clock_deep_idle_events++;
740 }
741 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
742
743 /*
744 * We just idled delta nanoseconds (called with irqs disabled):
745 */
746 void sched_clock_idle_wakeup_event(u64 delta_ns)
747 {
748 struct rq *rq = cpu_rq(smp_processor_id());
749 u64 now = sched_clock();
750
751 touch_softlockup_watchdog();
752 rq->idle_clock += delta_ns;
753 /*
754 * Override the previous timestamp and ignore all
755 * sched_clock() deltas that occured while we idled,
756 * and use the PM-provided delta_ns to advance the
757 * rq clock:
758 */
759 spin_lock(&rq->lock);
760 rq->prev_clock_raw = now;
761 rq->clock += delta_ns;
762 spin_unlock(&rq->lock);
763 }
764 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
765
766 /*
767 * resched_task - mark a task 'to be rescheduled now'.
768 *
769 * On UP this means the setting of the need_resched flag, on SMP it
770 * might also involve a cross-CPU call to trigger the scheduler on
771 * the target CPU.
772 */
773 #ifdef CONFIG_SMP
774
775 #ifndef tsk_is_polling
776 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
777 #endif
778
779 static void resched_task(struct task_struct *p)
780 {
781 int cpu;
782
783 assert_spin_locked(&task_rq(p)->lock);
784
785 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
786 return;
787
788 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
789
790 cpu = task_cpu(p);
791 if (cpu == smp_processor_id())
792 return;
793
794 /* NEED_RESCHED must be visible before we test polling */
795 smp_mb();
796 if (!tsk_is_polling(p))
797 smp_send_reschedule(cpu);
798 }
799
800 static void resched_cpu(int cpu)
801 {
802 struct rq *rq = cpu_rq(cpu);
803 unsigned long flags;
804
805 if (!spin_trylock_irqsave(&rq->lock, flags))
806 return;
807 resched_task(cpu_curr(cpu));
808 spin_unlock_irqrestore(&rq->lock, flags);
809 }
810 #else
811 static inline void resched_task(struct task_struct *p)
812 {
813 assert_spin_locked(&task_rq(p)->lock);
814 set_tsk_need_resched(p);
815 }
816 #endif
817
818 #if BITS_PER_LONG == 32
819 # define WMULT_CONST (~0UL)
820 #else
821 # define WMULT_CONST (1UL << 32)
822 #endif
823
824 #define WMULT_SHIFT 32
825
826 /*
827 * Shift right and round:
828 */
829 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
830
831 static unsigned long
832 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
833 struct load_weight *lw)
834 {
835 u64 tmp;
836
837 if (unlikely(!lw->inv_weight))
838 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
839
840 tmp = (u64)delta_exec * weight;
841 /*
842 * Check whether we'd overflow the 64-bit multiplication:
843 */
844 if (unlikely(tmp > WMULT_CONST))
845 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
846 WMULT_SHIFT/2);
847 else
848 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
849
850 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
851 }
852
853 static inline unsigned long
854 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
855 {
856 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
857 }
858
859 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
860 {
861 lw->weight += inc;
862 }
863
864 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
865 {
866 lw->weight -= dec;
867 }
868
869 /*
870 * To aid in avoiding the subversion of "niceness" due to uneven distribution
871 * of tasks with abnormal "nice" values across CPUs the contribution that
872 * each task makes to its run queue's load is weighted according to its
873 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
874 * scaled version of the new time slice allocation that they receive on time
875 * slice expiry etc.
876 */
877
878 #define WEIGHT_IDLEPRIO 2
879 #define WMULT_IDLEPRIO (1 << 31)
880
881 /*
882 * Nice levels are multiplicative, with a gentle 10% change for every
883 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
884 * nice 1, it will get ~10% less CPU time than another CPU-bound task
885 * that remained on nice 0.
886 *
887 * The "10% effect" is relative and cumulative: from _any_ nice level,
888 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
889 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
890 * If a task goes up by ~10% and another task goes down by ~10% then
891 * the relative distance between them is ~25%.)
892 */
893 static const int prio_to_weight[40] = {
894 /* -20 */ 88761, 71755, 56483, 46273, 36291,
895 /* -15 */ 29154, 23254, 18705, 14949, 11916,
896 /* -10 */ 9548, 7620, 6100, 4904, 3906,
897 /* -5 */ 3121, 2501, 1991, 1586, 1277,
898 /* 0 */ 1024, 820, 655, 526, 423,
899 /* 5 */ 335, 272, 215, 172, 137,
900 /* 10 */ 110, 87, 70, 56, 45,
901 /* 15 */ 36, 29, 23, 18, 15,
902 };
903
904 /*
905 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
906 *
907 * In cases where the weight does not change often, we can use the
908 * precalculated inverse to speed up arithmetics by turning divisions
909 * into multiplications:
910 */
911 static const u32 prio_to_wmult[40] = {
912 /* -20 */ 48388, 59856, 76040, 92818, 118348,
913 /* -15 */ 147320, 184698, 229616, 287308, 360437,
914 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
915 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
916 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
917 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
918 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
919 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
920 };
921
922 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
923
924 /*
925 * runqueue iterator, to support SMP load-balancing between different
926 * scheduling classes, without having to expose their internal data
927 * structures to the load-balancing proper:
928 */
929 struct rq_iterator {
930 void *arg;
931 struct task_struct *(*start)(void *);
932 struct task_struct *(*next)(void *);
933 };
934
935 #ifdef CONFIG_SMP
936 static unsigned long
937 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
938 unsigned long max_load_move, struct sched_domain *sd,
939 enum cpu_idle_type idle, int *all_pinned,
940 int *this_best_prio, struct rq_iterator *iterator);
941
942 static int
943 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
944 struct sched_domain *sd, enum cpu_idle_type idle,
945 struct rq_iterator *iterator);
946 #endif
947
948 #ifdef CONFIG_CGROUP_CPUACCT
949 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
950 #else
951 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
952 #endif
953
954 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
955 {
956 update_load_add(&rq->load, load);
957 }
958
959 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
960 {
961 update_load_sub(&rq->load, load);
962 }
963
964 #ifdef CONFIG_SMP
965 static unsigned long source_load(int cpu, int type);
966 static unsigned long target_load(int cpu, int type);
967 static unsigned long cpu_avg_load_per_task(int cpu);
968 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
969 #endif /* CONFIG_SMP */
970
971 #include "sched_stats.h"
972 #include "sched_idletask.c"
973 #include "sched_fair.c"
974 #include "sched_rt.c"
975 #ifdef CONFIG_SCHED_DEBUG
976 # include "sched_debug.c"
977 #endif
978
979 #define sched_class_highest (&rt_sched_class)
980
981 static void inc_nr_running(struct task_struct *p, struct rq *rq)
982 {
983 rq->nr_running++;
984 }
985
986 static void dec_nr_running(struct task_struct *p, struct rq *rq)
987 {
988 rq->nr_running--;
989 }
990
991 static void set_load_weight(struct task_struct *p)
992 {
993 if (task_has_rt_policy(p)) {
994 p->se.load.weight = prio_to_weight[0] * 2;
995 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
996 return;
997 }
998
999 /*
1000 * SCHED_IDLE tasks get minimal weight:
1001 */
1002 if (p->policy == SCHED_IDLE) {
1003 p->se.load.weight = WEIGHT_IDLEPRIO;
1004 p->se.load.inv_weight = WMULT_IDLEPRIO;
1005 return;
1006 }
1007
1008 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1009 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1010 }
1011
1012 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1013 {
1014 sched_info_queued(p);
1015 p->sched_class->enqueue_task(rq, p, wakeup);
1016 p->se.on_rq = 1;
1017 }
1018
1019 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1020 {
1021 p->sched_class->dequeue_task(rq, p, sleep);
1022 p->se.on_rq = 0;
1023 }
1024
1025 /*
1026 * __normal_prio - return the priority that is based on the static prio
1027 */
1028 static inline int __normal_prio(struct task_struct *p)
1029 {
1030 return p->static_prio;
1031 }
1032
1033 /*
1034 * Calculate the expected normal priority: i.e. priority
1035 * without taking RT-inheritance into account. Might be
1036 * boosted by interactivity modifiers. Changes upon fork,
1037 * setprio syscalls, and whenever the interactivity
1038 * estimator recalculates.
1039 */
1040 static inline int normal_prio(struct task_struct *p)
1041 {
1042 int prio;
1043
1044 if (task_has_rt_policy(p))
1045 prio = MAX_RT_PRIO-1 - p->rt_priority;
1046 else
1047 prio = __normal_prio(p);
1048 return prio;
1049 }
1050
1051 /*
1052 * Calculate the current priority, i.e. the priority
1053 * taken into account by the scheduler. This value might
1054 * be boosted by RT tasks, or might be boosted by
1055 * interactivity modifiers. Will be RT if the task got
1056 * RT-boosted. If not then it returns p->normal_prio.
1057 */
1058 static int effective_prio(struct task_struct *p)
1059 {
1060 p->normal_prio = normal_prio(p);
1061 /*
1062 * If we are RT tasks or we were boosted to RT priority,
1063 * keep the priority unchanged. Otherwise, update priority
1064 * to the normal priority:
1065 */
1066 if (!rt_prio(p->prio))
1067 return p->normal_prio;
1068 return p->prio;
1069 }
1070
1071 /*
1072 * activate_task - move a task to the runqueue.
1073 */
1074 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1075 {
1076 if (p->state == TASK_UNINTERRUPTIBLE)
1077 rq->nr_uninterruptible--;
1078
1079 enqueue_task(rq, p, wakeup);
1080 inc_nr_running(p, rq);
1081 }
1082
1083 /*
1084 * deactivate_task - remove a task from the runqueue.
1085 */
1086 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1087 {
1088 if (p->state == TASK_UNINTERRUPTIBLE)
1089 rq->nr_uninterruptible++;
1090
1091 dequeue_task(rq, p, sleep);
1092 dec_nr_running(p, rq);
1093 }
1094
1095 /**
1096 * task_curr - is this task currently executing on a CPU?
1097 * @p: the task in question.
1098 */
1099 inline int task_curr(const struct task_struct *p)
1100 {
1101 return cpu_curr(task_cpu(p)) == p;
1102 }
1103
1104 /* Used instead of source_load when we know the type == 0 */
1105 unsigned long weighted_cpuload(const int cpu)
1106 {
1107 return cpu_rq(cpu)->load.weight;
1108 }
1109
1110 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1111 {
1112 set_task_cfs_rq(p, cpu);
1113 #ifdef CONFIG_SMP
1114 /*
1115 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1116 * successfuly executed on another CPU. We must ensure that updates of
1117 * per-task data have been completed by this moment.
1118 */
1119 smp_wmb();
1120 task_thread_info(p)->cpu = cpu;
1121 #endif
1122 }
1123
1124 #ifdef CONFIG_SMP
1125
1126 /*
1127 * Is this task likely cache-hot:
1128 */
1129 static int
1130 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1131 {
1132 s64 delta;
1133
1134 if (p->sched_class != &fair_sched_class)
1135 return 0;
1136
1137 if (sysctl_sched_migration_cost == -1)
1138 return 1;
1139 if (sysctl_sched_migration_cost == 0)
1140 return 0;
1141
1142 delta = now - p->se.exec_start;
1143
1144 return delta < (s64)sysctl_sched_migration_cost;
1145 }
1146
1147
1148 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1149 {
1150 int old_cpu = task_cpu(p);
1151 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1152 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1153 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1154 u64 clock_offset;
1155
1156 clock_offset = old_rq->clock - new_rq->clock;
1157
1158 #ifdef CONFIG_SCHEDSTATS
1159 if (p->se.wait_start)
1160 p->se.wait_start -= clock_offset;
1161 if (p->se.sleep_start)
1162 p->se.sleep_start -= clock_offset;
1163 if (p->se.block_start)
1164 p->se.block_start -= clock_offset;
1165 if (old_cpu != new_cpu) {
1166 schedstat_inc(p, se.nr_migrations);
1167 if (task_hot(p, old_rq->clock, NULL))
1168 schedstat_inc(p, se.nr_forced2_migrations);
1169 }
1170 #endif
1171 p->se.vruntime -= old_cfsrq->min_vruntime -
1172 new_cfsrq->min_vruntime;
1173
1174 __set_task_cpu(p, new_cpu);
1175 }
1176
1177 struct migration_req {
1178 struct list_head list;
1179
1180 struct task_struct *task;
1181 int dest_cpu;
1182
1183 struct completion done;
1184 };
1185
1186 /*
1187 * The task's runqueue lock must be held.
1188 * Returns true if you have to wait for migration thread.
1189 */
1190 static int
1191 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1192 {
1193 struct rq *rq = task_rq(p);
1194
1195 /*
1196 * If the task is not on a runqueue (and not running), then
1197 * it is sufficient to simply update the task's cpu field.
1198 */
1199 if (!p->se.on_rq && !task_running(rq, p)) {
1200 set_task_cpu(p, dest_cpu);
1201 return 0;
1202 }
1203
1204 init_completion(&req->done);
1205 req->task = p;
1206 req->dest_cpu = dest_cpu;
1207 list_add(&req->list, &rq->migration_queue);
1208
1209 return 1;
1210 }
1211
1212 /*
1213 * wait_task_inactive - wait for a thread to unschedule.
1214 *
1215 * The caller must ensure that the task *will* unschedule sometime soon,
1216 * else this function might spin for a *long* time. This function can't
1217 * be called with interrupts off, or it may introduce deadlock with
1218 * smp_call_function() if an IPI is sent by the same process we are
1219 * waiting to become inactive.
1220 */
1221 void wait_task_inactive(struct task_struct *p)
1222 {
1223 unsigned long flags;
1224 int running, on_rq;
1225 struct rq *rq;
1226
1227 for (;;) {
1228 /*
1229 * We do the initial early heuristics without holding
1230 * any task-queue locks at all. We'll only try to get
1231 * the runqueue lock when things look like they will
1232 * work out!
1233 */
1234 rq = task_rq(p);
1235
1236 /*
1237 * If the task is actively running on another CPU
1238 * still, just relax and busy-wait without holding
1239 * any locks.
1240 *
1241 * NOTE! Since we don't hold any locks, it's not
1242 * even sure that "rq" stays as the right runqueue!
1243 * But we don't care, since "task_running()" will
1244 * return false if the runqueue has changed and p
1245 * is actually now running somewhere else!
1246 */
1247 while (task_running(rq, p))
1248 cpu_relax();
1249
1250 /*
1251 * Ok, time to look more closely! We need the rq
1252 * lock now, to be *sure*. If we're wrong, we'll
1253 * just go back and repeat.
1254 */
1255 rq = task_rq_lock(p, &flags);
1256 running = task_running(rq, p);
1257 on_rq = p->se.on_rq;
1258 task_rq_unlock(rq, &flags);
1259
1260 /*
1261 * Was it really running after all now that we
1262 * checked with the proper locks actually held?
1263 *
1264 * Oops. Go back and try again..
1265 */
1266 if (unlikely(running)) {
1267 cpu_relax();
1268 continue;
1269 }
1270
1271 /*
1272 * It's not enough that it's not actively running,
1273 * it must be off the runqueue _entirely_, and not
1274 * preempted!
1275 *
1276 * So if it wa still runnable (but just not actively
1277 * running right now), it's preempted, and we should
1278 * yield - it could be a while.
1279 */
1280 if (unlikely(on_rq)) {
1281 schedule_timeout_uninterruptible(1);
1282 continue;
1283 }
1284
1285 /*
1286 * Ahh, all good. It wasn't running, and it wasn't
1287 * runnable, which means that it will never become
1288 * running in the future either. We're all done!
1289 */
1290 break;
1291 }
1292 }
1293
1294 /***
1295 * kick_process - kick a running thread to enter/exit the kernel
1296 * @p: the to-be-kicked thread
1297 *
1298 * Cause a process which is running on another CPU to enter
1299 * kernel-mode, without any delay. (to get signals handled.)
1300 *
1301 * NOTE: this function doesnt have to take the runqueue lock,
1302 * because all it wants to ensure is that the remote task enters
1303 * the kernel. If the IPI races and the task has been migrated
1304 * to another CPU then no harm is done and the purpose has been
1305 * achieved as well.
1306 */
1307 void kick_process(struct task_struct *p)
1308 {
1309 int cpu;
1310
1311 preempt_disable();
1312 cpu = task_cpu(p);
1313 if ((cpu != smp_processor_id()) && task_curr(p))
1314 smp_send_reschedule(cpu);
1315 preempt_enable();
1316 }
1317
1318 /*
1319 * Return a low guess at the load of a migration-source cpu weighted
1320 * according to the scheduling class and "nice" value.
1321 *
1322 * We want to under-estimate the load of migration sources, to
1323 * balance conservatively.
1324 */
1325 static unsigned long source_load(int cpu, int type)
1326 {
1327 struct rq *rq = cpu_rq(cpu);
1328 unsigned long total = weighted_cpuload(cpu);
1329
1330 if (type == 0)
1331 return total;
1332
1333 return min(rq->cpu_load[type-1], total);
1334 }
1335
1336 /*
1337 * Return a high guess at the load of a migration-target cpu weighted
1338 * according to the scheduling class and "nice" value.
1339 */
1340 static unsigned long target_load(int cpu, int type)
1341 {
1342 struct rq *rq = cpu_rq(cpu);
1343 unsigned long total = weighted_cpuload(cpu);
1344
1345 if (type == 0)
1346 return total;
1347
1348 return max(rq->cpu_load[type-1], total);
1349 }
1350
1351 /*
1352 * Return the average load per task on the cpu's run queue
1353 */
1354 static unsigned long cpu_avg_load_per_task(int cpu)
1355 {
1356 struct rq *rq = cpu_rq(cpu);
1357 unsigned long total = weighted_cpuload(cpu);
1358 unsigned long n = rq->nr_running;
1359
1360 return n ? total / n : SCHED_LOAD_SCALE;
1361 }
1362
1363 /*
1364 * find_idlest_group finds and returns the least busy CPU group within the
1365 * domain.
1366 */
1367 static struct sched_group *
1368 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1369 {
1370 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1371 unsigned long min_load = ULONG_MAX, this_load = 0;
1372 int load_idx = sd->forkexec_idx;
1373 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1374
1375 do {
1376 unsigned long load, avg_load;
1377 int local_group;
1378 int i;
1379
1380 /* Skip over this group if it has no CPUs allowed */
1381 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1382 continue;
1383
1384 local_group = cpu_isset(this_cpu, group->cpumask);
1385
1386 /* Tally up the load of all CPUs in the group */
1387 avg_load = 0;
1388
1389 for_each_cpu_mask(i, group->cpumask) {
1390 /* Bias balancing toward cpus of our domain */
1391 if (local_group)
1392 load = source_load(i, load_idx);
1393 else
1394 load = target_load(i, load_idx);
1395
1396 avg_load += load;
1397 }
1398
1399 /* Adjust by relative CPU power of the group */
1400 avg_load = sg_div_cpu_power(group,
1401 avg_load * SCHED_LOAD_SCALE);
1402
1403 if (local_group) {
1404 this_load = avg_load;
1405 this = group;
1406 } else if (avg_load < min_load) {
1407 min_load = avg_load;
1408 idlest = group;
1409 }
1410 } while (group = group->next, group != sd->groups);
1411
1412 if (!idlest || 100*this_load < imbalance*min_load)
1413 return NULL;
1414 return idlest;
1415 }
1416
1417 /*
1418 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1419 */
1420 static int
1421 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1422 {
1423 cpumask_t tmp;
1424 unsigned long load, min_load = ULONG_MAX;
1425 int idlest = -1;
1426 int i;
1427
1428 /* Traverse only the allowed CPUs */
1429 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1430
1431 for_each_cpu_mask(i, tmp) {
1432 load = weighted_cpuload(i);
1433
1434 if (load < min_load || (load == min_load && i == this_cpu)) {
1435 min_load = load;
1436 idlest = i;
1437 }
1438 }
1439
1440 return idlest;
1441 }
1442
1443 /*
1444 * sched_balance_self: balance the current task (running on cpu) in domains
1445 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1446 * SD_BALANCE_EXEC.
1447 *
1448 * Balance, ie. select the least loaded group.
1449 *
1450 * Returns the target CPU number, or the same CPU if no balancing is needed.
1451 *
1452 * preempt must be disabled.
1453 */
1454 static int sched_balance_self(int cpu, int flag)
1455 {
1456 struct task_struct *t = current;
1457 struct sched_domain *tmp, *sd = NULL;
1458
1459 for_each_domain(cpu, tmp) {
1460 /*
1461 * If power savings logic is enabled for a domain, stop there.
1462 */
1463 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1464 break;
1465 if (tmp->flags & flag)
1466 sd = tmp;
1467 }
1468
1469 while (sd) {
1470 cpumask_t span;
1471 struct sched_group *group;
1472 int new_cpu, weight;
1473
1474 if (!(sd->flags & flag)) {
1475 sd = sd->child;
1476 continue;
1477 }
1478
1479 span = sd->span;
1480 group = find_idlest_group(sd, t, cpu);
1481 if (!group) {
1482 sd = sd->child;
1483 continue;
1484 }
1485
1486 new_cpu = find_idlest_cpu(group, t, cpu);
1487 if (new_cpu == -1 || new_cpu == cpu) {
1488 /* Now try balancing at a lower domain level of cpu */
1489 sd = sd->child;
1490 continue;
1491 }
1492
1493 /* Now try balancing at a lower domain level of new_cpu */
1494 cpu = new_cpu;
1495 sd = NULL;
1496 weight = cpus_weight(span);
1497 for_each_domain(cpu, tmp) {
1498 if (weight <= cpus_weight(tmp->span))
1499 break;
1500 if (tmp->flags & flag)
1501 sd = tmp;
1502 }
1503 /* while loop will break here if sd == NULL */
1504 }
1505
1506 return cpu;
1507 }
1508
1509 #endif /* CONFIG_SMP */
1510
1511 /***
1512 * try_to_wake_up - wake up a thread
1513 * @p: the to-be-woken-up thread
1514 * @state: the mask of task states that can be woken
1515 * @sync: do a synchronous wakeup?
1516 *
1517 * Put it on the run-queue if it's not already there. The "current"
1518 * thread is always on the run-queue (except when the actual
1519 * re-schedule is in progress), and as such you're allowed to do
1520 * the simpler "current->state = TASK_RUNNING" to mark yourself
1521 * runnable without the overhead of this.
1522 *
1523 * returns failure only if the task is already active.
1524 */
1525 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1526 {
1527 int cpu, orig_cpu, this_cpu, success = 0;
1528 unsigned long flags;
1529 long old_state;
1530 struct rq *rq;
1531 #ifdef CONFIG_SMP
1532 int new_cpu;
1533 #endif
1534
1535 rq = task_rq_lock(p, &flags);
1536 old_state = p->state;
1537 if (!(old_state & state))
1538 goto out;
1539
1540 if (p->se.on_rq)
1541 goto out_running;
1542
1543 cpu = task_cpu(p);
1544 orig_cpu = cpu;
1545 this_cpu = smp_processor_id();
1546
1547 #ifdef CONFIG_SMP
1548 if (unlikely(task_running(rq, p)))
1549 goto out_activate;
1550
1551 new_cpu = p->sched_class->select_task_rq(p, sync);
1552 if (new_cpu != cpu) {
1553 set_task_cpu(p, new_cpu);
1554 task_rq_unlock(rq, &flags);
1555 /* might preempt at this point */
1556 rq = task_rq_lock(p, &flags);
1557 old_state = p->state;
1558 if (!(old_state & state))
1559 goto out;
1560 if (p->se.on_rq)
1561 goto out_running;
1562
1563 this_cpu = smp_processor_id();
1564 cpu = task_cpu(p);
1565 }
1566
1567 #ifdef CONFIG_SCHEDSTATS
1568 schedstat_inc(rq, ttwu_count);
1569 if (cpu == this_cpu)
1570 schedstat_inc(rq, ttwu_local);
1571 else {
1572 struct sched_domain *sd;
1573 for_each_domain(this_cpu, sd) {
1574 if (cpu_isset(cpu, sd->span)) {
1575 schedstat_inc(sd, ttwu_wake_remote);
1576 break;
1577 }
1578 }
1579 }
1580
1581 #endif
1582
1583
1584 out_activate:
1585 #endif /* CONFIG_SMP */
1586 schedstat_inc(p, se.nr_wakeups);
1587 if (sync)
1588 schedstat_inc(p, se.nr_wakeups_sync);
1589 if (orig_cpu != cpu)
1590 schedstat_inc(p, se.nr_wakeups_migrate);
1591 if (cpu == this_cpu)
1592 schedstat_inc(p, se.nr_wakeups_local);
1593 else
1594 schedstat_inc(p, se.nr_wakeups_remote);
1595 update_rq_clock(rq);
1596 activate_task(rq, p, 1);
1597 check_preempt_curr(rq, p);
1598 success = 1;
1599
1600 out_running:
1601 p->state = TASK_RUNNING;
1602 wakeup_balance_rt(rq, p);
1603 out:
1604 task_rq_unlock(rq, &flags);
1605
1606 return success;
1607 }
1608
1609 int fastcall wake_up_process(struct task_struct *p)
1610 {
1611 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1612 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1613 }
1614 EXPORT_SYMBOL(wake_up_process);
1615
1616 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1617 {
1618 return try_to_wake_up(p, state, 0);
1619 }
1620
1621 /*
1622 * Perform scheduler related setup for a newly forked process p.
1623 * p is forked by current.
1624 *
1625 * __sched_fork() is basic setup used by init_idle() too:
1626 */
1627 static void __sched_fork(struct task_struct *p)
1628 {
1629 p->se.exec_start = 0;
1630 p->se.sum_exec_runtime = 0;
1631 p->se.prev_sum_exec_runtime = 0;
1632
1633 #ifdef CONFIG_SCHEDSTATS
1634 p->se.wait_start = 0;
1635 p->se.sum_sleep_runtime = 0;
1636 p->se.sleep_start = 0;
1637 p->se.block_start = 0;
1638 p->se.sleep_max = 0;
1639 p->se.block_max = 0;
1640 p->se.exec_max = 0;
1641 p->se.slice_max = 0;
1642 p->se.wait_max = 0;
1643 #endif
1644
1645 INIT_LIST_HEAD(&p->run_list);
1646 p->se.on_rq = 0;
1647
1648 #ifdef CONFIG_PREEMPT_NOTIFIERS
1649 INIT_HLIST_HEAD(&p->preempt_notifiers);
1650 #endif
1651
1652 /*
1653 * We mark the process as running here, but have not actually
1654 * inserted it onto the runqueue yet. This guarantees that
1655 * nobody will actually run it, and a signal or other external
1656 * event cannot wake it up and insert it on the runqueue either.
1657 */
1658 p->state = TASK_RUNNING;
1659 }
1660
1661 /*
1662 * fork()/clone()-time setup:
1663 */
1664 void sched_fork(struct task_struct *p, int clone_flags)
1665 {
1666 int cpu = get_cpu();
1667
1668 __sched_fork(p);
1669
1670 #ifdef CONFIG_SMP
1671 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1672 #endif
1673 set_task_cpu(p, cpu);
1674
1675 /*
1676 * Make sure we do not leak PI boosting priority to the child:
1677 */
1678 p->prio = current->normal_prio;
1679 if (!rt_prio(p->prio))
1680 p->sched_class = &fair_sched_class;
1681
1682 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1683 if (likely(sched_info_on()))
1684 memset(&p->sched_info, 0, sizeof(p->sched_info));
1685 #endif
1686 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1687 p->oncpu = 0;
1688 #endif
1689 #ifdef CONFIG_PREEMPT
1690 /* Want to start with kernel preemption disabled. */
1691 task_thread_info(p)->preempt_count = 1;
1692 #endif
1693 put_cpu();
1694 }
1695
1696 /*
1697 * wake_up_new_task - wake up a newly created task for the first time.
1698 *
1699 * This function will do some initial scheduler statistics housekeeping
1700 * that must be done for every newly created context, then puts the task
1701 * on the runqueue and wakes it.
1702 */
1703 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1704 {
1705 unsigned long flags;
1706 struct rq *rq;
1707
1708 rq = task_rq_lock(p, &flags);
1709 BUG_ON(p->state != TASK_RUNNING);
1710 update_rq_clock(rq);
1711
1712 p->prio = effective_prio(p);
1713
1714 if (!p->sched_class->task_new || !current->se.on_rq) {
1715 activate_task(rq, p, 0);
1716 } else {
1717 /*
1718 * Let the scheduling class do new task startup
1719 * management (if any):
1720 */
1721 p->sched_class->task_new(rq, p);
1722 inc_nr_running(p, rq);
1723 }
1724 check_preempt_curr(rq, p);
1725 task_rq_unlock(rq, &flags);
1726 }
1727
1728 #ifdef CONFIG_PREEMPT_NOTIFIERS
1729
1730 /**
1731 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1732 * @notifier: notifier struct to register
1733 */
1734 void preempt_notifier_register(struct preempt_notifier *notifier)
1735 {
1736 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1737 }
1738 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1739
1740 /**
1741 * preempt_notifier_unregister - no longer interested in preemption notifications
1742 * @notifier: notifier struct to unregister
1743 *
1744 * This is safe to call from within a preemption notifier.
1745 */
1746 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1747 {
1748 hlist_del(&notifier->link);
1749 }
1750 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1751
1752 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1753 {
1754 struct preempt_notifier *notifier;
1755 struct hlist_node *node;
1756
1757 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1758 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1759 }
1760
1761 static void
1762 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1763 struct task_struct *next)
1764 {
1765 struct preempt_notifier *notifier;
1766 struct hlist_node *node;
1767
1768 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1769 notifier->ops->sched_out(notifier, next);
1770 }
1771
1772 #else
1773
1774 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1775 {
1776 }
1777
1778 static void
1779 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1780 struct task_struct *next)
1781 {
1782 }
1783
1784 #endif
1785
1786 /**
1787 * prepare_task_switch - prepare to switch tasks
1788 * @rq: the runqueue preparing to switch
1789 * @prev: the current task that is being switched out
1790 * @next: the task we are going to switch to.
1791 *
1792 * This is called with the rq lock held and interrupts off. It must
1793 * be paired with a subsequent finish_task_switch after the context
1794 * switch.
1795 *
1796 * prepare_task_switch sets up locking and calls architecture specific
1797 * hooks.
1798 */
1799 static inline void
1800 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1801 struct task_struct *next)
1802 {
1803 fire_sched_out_preempt_notifiers(prev, next);
1804 prepare_lock_switch(rq, next);
1805 prepare_arch_switch(next);
1806 }
1807
1808 /**
1809 * finish_task_switch - clean up after a task-switch
1810 * @rq: runqueue associated with task-switch
1811 * @prev: the thread we just switched away from.
1812 *
1813 * finish_task_switch must be called after the context switch, paired
1814 * with a prepare_task_switch call before the context switch.
1815 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1816 * and do any other architecture-specific cleanup actions.
1817 *
1818 * Note that we may have delayed dropping an mm in context_switch(). If
1819 * so, we finish that here outside of the runqueue lock. (Doing it
1820 * with the lock held can cause deadlocks; see schedule() for
1821 * details.)
1822 */
1823 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1824 __releases(rq->lock)
1825 {
1826 struct mm_struct *mm = rq->prev_mm;
1827 long prev_state;
1828
1829 rq->prev_mm = NULL;
1830
1831 /*
1832 * A task struct has one reference for the use as "current".
1833 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1834 * schedule one last time. The schedule call will never return, and
1835 * the scheduled task must drop that reference.
1836 * The test for TASK_DEAD must occur while the runqueue locks are
1837 * still held, otherwise prev could be scheduled on another cpu, die
1838 * there before we look at prev->state, and then the reference would
1839 * be dropped twice.
1840 * Manfred Spraul <manfred@colorfullife.com>
1841 */
1842 prev_state = prev->state;
1843 finish_arch_switch(prev);
1844 finish_lock_switch(rq, prev);
1845 schedule_tail_balance_rt(rq);
1846
1847 fire_sched_in_preempt_notifiers(current);
1848 if (mm)
1849 mmdrop(mm);
1850 if (unlikely(prev_state == TASK_DEAD)) {
1851 /*
1852 * Remove function-return probe instances associated with this
1853 * task and put them back on the free list.
1854 */
1855 kprobe_flush_task(prev);
1856 put_task_struct(prev);
1857 }
1858 }
1859
1860 /**
1861 * schedule_tail - first thing a freshly forked thread must call.
1862 * @prev: the thread we just switched away from.
1863 */
1864 asmlinkage void schedule_tail(struct task_struct *prev)
1865 __releases(rq->lock)
1866 {
1867 struct rq *rq = this_rq();
1868
1869 finish_task_switch(rq, prev);
1870 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1871 /* In this case, finish_task_switch does not reenable preemption */
1872 preempt_enable();
1873 #endif
1874 if (current->set_child_tid)
1875 put_user(task_pid_vnr(current), current->set_child_tid);
1876 }
1877
1878 /*
1879 * context_switch - switch to the new MM and the new
1880 * thread's register state.
1881 */
1882 static inline void
1883 context_switch(struct rq *rq, struct task_struct *prev,
1884 struct task_struct *next)
1885 {
1886 struct mm_struct *mm, *oldmm;
1887
1888 prepare_task_switch(rq, prev, next);
1889 mm = next->mm;
1890 oldmm = prev->active_mm;
1891 /*
1892 * For paravirt, this is coupled with an exit in switch_to to
1893 * combine the page table reload and the switch backend into
1894 * one hypercall.
1895 */
1896 arch_enter_lazy_cpu_mode();
1897
1898 if (unlikely(!mm)) {
1899 next->active_mm = oldmm;
1900 atomic_inc(&oldmm->mm_count);
1901 enter_lazy_tlb(oldmm, next);
1902 } else
1903 switch_mm(oldmm, mm, next);
1904
1905 if (unlikely(!prev->mm)) {
1906 prev->active_mm = NULL;
1907 rq->prev_mm = oldmm;
1908 }
1909 /*
1910 * Since the runqueue lock will be released by the next
1911 * task (which is an invalid locking op but in the case
1912 * of the scheduler it's an obvious special-case), so we
1913 * do an early lockdep release here:
1914 */
1915 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1916 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1917 #endif
1918
1919 /* Here we just switch the register state and the stack. */
1920 switch_to(prev, next, prev);
1921
1922 barrier();
1923 /*
1924 * this_rq must be evaluated again because prev may have moved
1925 * CPUs since it called schedule(), thus the 'rq' on its stack
1926 * frame will be invalid.
1927 */
1928 finish_task_switch(this_rq(), prev);
1929 }
1930
1931 /*
1932 * nr_running, nr_uninterruptible and nr_context_switches:
1933 *
1934 * externally visible scheduler statistics: current number of runnable
1935 * threads, current number of uninterruptible-sleeping threads, total
1936 * number of context switches performed since bootup.
1937 */
1938 unsigned long nr_running(void)
1939 {
1940 unsigned long i, sum = 0;
1941
1942 for_each_online_cpu(i)
1943 sum += cpu_rq(i)->nr_running;
1944
1945 return sum;
1946 }
1947
1948 unsigned long nr_uninterruptible(void)
1949 {
1950 unsigned long i, sum = 0;
1951
1952 for_each_possible_cpu(i)
1953 sum += cpu_rq(i)->nr_uninterruptible;
1954
1955 /*
1956 * Since we read the counters lockless, it might be slightly
1957 * inaccurate. Do not allow it to go below zero though:
1958 */
1959 if (unlikely((long)sum < 0))
1960 sum = 0;
1961
1962 return sum;
1963 }
1964
1965 unsigned long long nr_context_switches(void)
1966 {
1967 int i;
1968 unsigned long long sum = 0;
1969
1970 for_each_possible_cpu(i)
1971 sum += cpu_rq(i)->nr_switches;
1972
1973 return sum;
1974 }
1975
1976 unsigned long nr_iowait(void)
1977 {
1978 unsigned long i, sum = 0;
1979
1980 for_each_possible_cpu(i)
1981 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1982
1983 return sum;
1984 }
1985
1986 unsigned long nr_active(void)
1987 {
1988 unsigned long i, running = 0, uninterruptible = 0;
1989
1990 for_each_online_cpu(i) {
1991 running += cpu_rq(i)->nr_running;
1992 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1993 }
1994
1995 if (unlikely((long)uninterruptible < 0))
1996 uninterruptible = 0;
1997
1998 return running + uninterruptible;
1999 }
2000
2001 /*
2002 * Update rq->cpu_load[] statistics. This function is usually called every
2003 * scheduler tick (TICK_NSEC).
2004 */
2005 static void update_cpu_load(struct rq *this_rq)
2006 {
2007 unsigned long this_load = this_rq->load.weight;
2008 int i, scale;
2009
2010 this_rq->nr_load_updates++;
2011
2012 /* Update our load: */
2013 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2014 unsigned long old_load, new_load;
2015
2016 /* scale is effectively 1 << i now, and >> i divides by scale */
2017
2018 old_load = this_rq->cpu_load[i];
2019 new_load = this_load;
2020 /*
2021 * Round up the averaging division if load is increasing. This
2022 * prevents us from getting stuck on 9 if the load is 10, for
2023 * example.
2024 */
2025 if (new_load > old_load)
2026 new_load += scale-1;
2027 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2028 }
2029 }
2030
2031 #ifdef CONFIG_SMP
2032
2033 /*
2034 * double_rq_lock - safely lock two runqueues
2035 *
2036 * Note this does not disable interrupts like task_rq_lock,
2037 * you need to do so manually before calling.
2038 */
2039 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2040 __acquires(rq1->lock)
2041 __acquires(rq2->lock)
2042 {
2043 BUG_ON(!irqs_disabled());
2044 if (rq1 == rq2) {
2045 spin_lock(&rq1->lock);
2046 __acquire(rq2->lock); /* Fake it out ;) */
2047 } else {
2048 if (rq1 < rq2) {
2049 spin_lock(&rq1->lock);
2050 spin_lock(&rq2->lock);
2051 } else {
2052 spin_lock(&rq2->lock);
2053 spin_lock(&rq1->lock);
2054 }
2055 }
2056 update_rq_clock(rq1);
2057 update_rq_clock(rq2);
2058 }
2059
2060 /*
2061 * double_rq_unlock - safely unlock two runqueues
2062 *
2063 * Note this does not restore interrupts like task_rq_unlock,
2064 * you need to do so manually after calling.
2065 */
2066 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2067 __releases(rq1->lock)
2068 __releases(rq2->lock)
2069 {
2070 spin_unlock(&rq1->lock);
2071 if (rq1 != rq2)
2072 spin_unlock(&rq2->lock);
2073 else
2074 __release(rq2->lock);
2075 }
2076
2077 /*
2078 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2079 */
2080 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2081 __releases(this_rq->lock)
2082 __acquires(busiest->lock)
2083 __acquires(this_rq->lock)
2084 {
2085 int ret = 0;
2086
2087 if (unlikely(!irqs_disabled())) {
2088 /* printk() doesn't work good under rq->lock */
2089 spin_unlock(&this_rq->lock);
2090 BUG_ON(1);
2091 }
2092 if (unlikely(!spin_trylock(&busiest->lock))) {
2093 if (busiest < this_rq) {
2094 spin_unlock(&this_rq->lock);
2095 spin_lock(&busiest->lock);
2096 spin_lock(&this_rq->lock);
2097 ret = 1;
2098 } else
2099 spin_lock(&busiest->lock);
2100 }
2101 return ret;
2102 }
2103
2104 /*
2105 * If dest_cpu is allowed for this process, migrate the task to it.
2106 * This is accomplished by forcing the cpu_allowed mask to only
2107 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2108 * the cpu_allowed mask is restored.
2109 */
2110 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2111 {
2112 struct migration_req req;
2113 unsigned long flags;
2114 struct rq *rq;
2115
2116 rq = task_rq_lock(p, &flags);
2117 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2118 || unlikely(cpu_is_offline(dest_cpu)))
2119 goto out;
2120
2121 /* force the process onto the specified CPU */
2122 if (migrate_task(p, dest_cpu, &req)) {
2123 /* Need to wait for migration thread (might exit: take ref). */
2124 struct task_struct *mt = rq->migration_thread;
2125
2126 get_task_struct(mt);
2127 task_rq_unlock(rq, &flags);
2128 wake_up_process(mt);
2129 put_task_struct(mt);
2130 wait_for_completion(&req.done);
2131
2132 return;
2133 }
2134 out:
2135 task_rq_unlock(rq, &flags);
2136 }
2137
2138 /*
2139 * sched_exec - execve() is a valuable balancing opportunity, because at
2140 * this point the task has the smallest effective memory and cache footprint.
2141 */
2142 void sched_exec(void)
2143 {
2144 int new_cpu, this_cpu = get_cpu();
2145 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2146 put_cpu();
2147 if (new_cpu != this_cpu)
2148 sched_migrate_task(current, new_cpu);
2149 }
2150
2151 /*
2152 * pull_task - move a task from a remote runqueue to the local runqueue.
2153 * Both runqueues must be locked.
2154 */
2155 static void pull_task(struct rq *src_rq, struct task_struct *p,
2156 struct rq *this_rq, int this_cpu)
2157 {
2158 deactivate_task(src_rq, p, 0);
2159 set_task_cpu(p, this_cpu);
2160 activate_task(this_rq, p, 0);
2161 /*
2162 * Note that idle threads have a prio of MAX_PRIO, for this test
2163 * to be always true for them.
2164 */
2165 check_preempt_curr(this_rq, p);
2166 }
2167
2168 /*
2169 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2170 */
2171 static
2172 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2173 struct sched_domain *sd, enum cpu_idle_type idle,
2174 int *all_pinned)
2175 {
2176 /*
2177 * We do not migrate tasks that are:
2178 * 1) running (obviously), or
2179 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2180 * 3) are cache-hot on their current CPU.
2181 */
2182 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2183 schedstat_inc(p, se.nr_failed_migrations_affine);
2184 return 0;
2185 }
2186 *all_pinned = 0;
2187
2188 if (task_running(rq, p)) {
2189 schedstat_inc(p, se.nr_failed_migrations_running);
2190 return 0;
2191 }
2192
2193 /*
2194 * Aggressive migration if:
2195 * 1) task is cache cold, or
2196 * 2) too many balance attempts have failed.
2197 */
2198
2199 if (!task_hot(p, rq->clock, sd) ||
2200 sd->nr_balance_failed > sd->cache_nice_tries) {
2201 #ifdef CONFIG_SCHEDSTATS
2202 if (task_hot(p, rq->clock, sd)) {
2203 schedstat_inc(sd, lb_hot_gained[idle]);
2204 schedstat_inc(p, se.nr_forced_migrations);
2205 }
2206 #endif
2207 return 1;
2208 }
2209
2210 if (task_hot(p, rq->clock, sd)) {
2211 schedstat_inc(p, se.nr_failed_migrations_hot);
2212 return 0;
2213 }
2214 return 1;
2215 }
2216
2217 static unsigned long
2218 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2219 unsigned long max_load_move, struct sched_domain *sd,
2220 enum cpu_idle_type idle, int *all_pinned,
2221 int *this_best_prio, struct rq_iterator *iterator)
2222 {
2223 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2224 struct task_struct *p;
2225 long rem_load_move = max_load_move;
2226
2227 if (max_load_move == 0)
2228 goto out;
2229
2230 pinned = 1;
2231
2232 /*
2233 * Start the load-balancing iterator:
2234 */
2235 p = iterator->start(iterator->arg);
2236 next:
2237 if (!p || loops++ > sysctl_sched_nr_migrate)
2238 goto out;
2239 /*
2240 * To help distribute high priority tasks across CPUs we don't
2241 * skip a task if it will be the highest priority task (i.e. smallest
2242 * prio value) on its new queue regardless of its load weight
2243 */
2244 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2245 SCHED_LOAD_SCALE_FUZZ;
2246 if ((skip_for_load && p->prio >= *this_best_prio) ||
2247 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2248 p = iterator->next(iterator->arg);
2249 goto next;
2250 }
2251
2252 pull_task(busiest, p, this_rq, this_cpu);
2253 pulled++;
2254 rem_load_move -= p->se.load.weight;
2255
2256 /*
2257 * We only want to steal up to the prescribed amount of weighted load.
2258 */
2259 if (rem_load_move > 0) {
2260 if (p->prio < *this_best_prio)
2261 *this_best_prio = p->prio;
2262 p = iterator->next(iterator->arg);
2263 goto next;
2264 }
2265 out:
2266 /*
2267 * Right now, this is one of only two places pull_task() is called,
2268 * so we can safely collect pull_task() stats here rather than
2269 * inside pull_task().
2270 */
2271 schedstat_add(sd, lb_gained[idle], pulled);
2272
2273 if (all_pinned)
2274 *all_pinned = pinned;
2275
2276 return max_load_move - rem_load_move;
2277 }
2278
2279 /*
2280 * move_tasks tries to move up to max_load_move weighted load from busiest to
2281 * this_rq, as part of a balancing operation within domain "sd".
2282 * Returns 1 if successful and 0 otherwise.
2283 *
2284 * Called with both runqueues locked.
2285 */
2286 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2287 unsigned long max_load_move,
2288 struct sched_domain *sd, enum cpu_idle_type idle,
2289 int *all_pinned)
2290 {
2291 const struct sched_class *class = sched_class_highest;
2292 unsigned long total_load_moved = 0;
2293 int this_best_prio = this_rq->curr->prio;
2294
2295 do {
2296 total_load_moved +=
2297 class->load_balance(this_rq, this_cpu, busiest,
2298 max_load_move - total_load_moved,
2299 sd, idle, all_pinned, &this_best_prio);
2300 class = class->next;
2301 } while (class && max_load_move > total_load_moved);
2302
2303 return total_load_moved > 0;
2304 }
2305
2306 static int
2307 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2308 struct sched_domain *sd, enum cpu_idle_type idle,
2309 struct rq_iterator *iterator)
2310 {
2311 struct task_struct *p = iterator->start(iterator->arg);
2312 int pinned = 0;
2313
2314 while (p) {
2315 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2316 pull_task(busiest, p, this_rq, this_cpu);
2317 /*
2318 * Right now, this is only the second place pull_task()
2319 * is called, so we can safely collect pull_task()
2320 * stats here rather than inside pull_task().
2321 */
2322 schedstat_inc(sd, lb_gained[idle]);
2323
2324 return 1;
2325 }
2326 p = iterator->next(iterator->arg);
2327 }
2328
2329 return 0;
2330 }
2331
2332 /*
2333 * move_one_task tries to move exactly one task from busiest to this_rq, as
2334 * part of active balancing operations within "domain".
2335 * Returns 1 if successful and 0 otherwise.
2336 *
2337 * Called with both runqueues locked.
2338 */
2339 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2340 struct sched_domain *sd, enum cpu_idle_type idle)
2341 {
2342 const struct sched_class *class;
2343
2344 for (class = sched_class_highest; class; class = class->next)
2345 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2346 return 1;
2347
2348 return 0;
2349 }
2350
2351 /*
2352 * find_busiest_group finds and returns the busiest CPU group within the
2353 * domain. It calculates and returns the amount of weighted load which
2354 * should be moved to restore balance via the imbalance parameter.
2355 */
2356 static struct sched_group *
2357 find_busiest_group(struct sched_domain *sd, int this_cpu,
2358 unsigned long *imbalance, enum cpu_idle_type idle,
2359 int *sd_idle, cpumask_t *cpus, int *balance)
2360 {
2361 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2362 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2363 unsigned long max_pull;
2364 unsigned long busiest_load_per_task, busiest_nr_running;
2365 unsigned long this_load_per_task, this_nr_running;
2366 int load_idx, group_imb = 0;
2367 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2368 int power_savings_balance = 1;
2369 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2370 unsigned long min_nr_running = ULONG_MAX;
2371 struct sched_group *group_min = NULL, *group_leader = NULL;
2372 #endif
2373
2374 max_load = this_load = total_load = total_pwr = 0;
2375 busiest_load_per_task = busiest_nr_running = 0;
2376 this_load_per_task = this_nr_running = 0;
2377 if (idle == CPU_NOT_IDLE)
2378 load_idx = sd->busy_idx;
2379 else if (idle == CPU_NEWLY_IDLE)
2380 load_idx = sd->newidle_idx;
2381 else
2382 load_idx = sd->idle_idx;
2383
2384 do {
2385 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2386 int local_group;
2387 int i;
2388 int __group_imb = 0;
2389 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2390 unsigned long sum_nr_running, sum_weighted_load;
2391
2392 local_group = cpu_isset(this_cpu, group->cpumask);
2393
2394 if (local_group)
2395 balance_cpu = first_cpu(group->cpumask);
2396
2397 /* Tally up the load of all CPUs in the group */
2398 sum_weighted_load = sum_nr_running = avg_load = 0;
2399 max_cpu_load = 0;
2400 min_cpu_load = ~0UL;
2401
2402 for_each_cpu_mask(i, group->cpumask) {
2403 struct rq *rq;
2404
2405 if (!cpu_isset(i, *cpus))
2406 continue;
2407
2408 rq = cpu_rq(i);
2409
2410 if (*sd_idle && rq->nr_running)
2411 *sd_idle = 0;
2412
2413 /* Bias balancing toward cpus of our domain */
2414 if (local_group) {
2415 if (idle_cpu(i) && !first_idle_cpu) {
2416 first_idle_cpu = 1;
2417 balance_cpu = i;
2418 }
2419
2420 load = target_load(i, load_idx);
2421 } else {
2422 load = source_load(i, load_idx);
2423 if (load > max_cpu_load)
2424 max_cpu_load = load;
2425 if (min_cpu_load > load)
2426 min_cpu_load = load;
2427 }
2428
2429 avg_load += load;
2430 sum_nr_running += rq->nr_running;
2431 sum_weighted_load += weighted_cpuload(i);
2432 }
2433
2434 /*
2435 * First idle cpu or the first cpu(busiest) in this sched group
2436 * is eligible for doing load balancing at this and above
2437 * domains. In the newly idle case, we will allow all the cpu's
2438 * to do the newly idle load balance.
2439 */
2440 if (idle != CPU_NEWLY_IDLE && local_group &&
2441 balance_cpu != this_cpu && balance) {
2442 *balance = 0;
2443 goto ret;
2444 }
2445
2446 total_load += avg_load;
2447 total_pwr += group->__cpu_power;
2448
2449 /* Adjust by relative CPU power of the group */
2450 avg_load = sg_div_cpu_power(group,
2451 avg_load * SCHED_LOAD_SCALE);
2452
2453 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2454 __group_imb = 1;
2455
2456 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2457
2458 if (local_group) {
2459 this_load = avg_load;
2460 this = group;
2461 this_nr_running = sum_nr_running;
2462 this_load_per_task = sum_weighted_load;
2463 } else if (avg_load > max_load &&
2464 (sum_nr_running > group_capacity || __group_imb)) {
2465 max_load = avg_load;
2466 busiest = group;
2467 busiest_nr_running = sum_nr_running;
2468 busiest_load_per_task = sum_weighted_load;
2469 group_imb = __group_imb;
2470 }
2471
2472 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2473 /*
2474 * Busy processors will not participate in power savings
2475 * balance.
2476 */
2477 if (idle == CPU_NOT_IDLE ||
2478 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2479 goto group_next;
2480
2481 /*
2482 * If the local group is idle or completely loaded
2483 * no need to do power savings balance at this domain
2484 */
2485 if (local_group && (this_nr_running >= group_capacity ||
2486 !this_nr_running))
2487 power_savings_balance = 0;
2488
2489 /*
2490 * If a group is already running at full capacity or idle,
2491 * don't include that group in power savings calculations
2492 */
2493 if (!power_savings_balance || sum_nr_running >= group_capacity
2494 || !sum_nr_running)
2495 goto group_next;
2496
2497 /*
2498 * Calculate the group which has the least non-idle load.
2499 * This is the group from where we need to pick up the load
2500 * for saving power
2501 */
2502 if ((sum_nr_running < min_nr_running) ||
2503 (sum_nr_running == min_nr_running &&
2504 first_cpu(group->cpumask) <
2505 first_cpu(group_min->cpumask))) {
2506 group_min = group;
2507 min_nr_running = sum_nr_running;
2508 min_load_per_task = sum_weighted_load /
2509 sum_nr_running;
2510 }
2511
2512 /*
2513 * Calculate the group which is almost near its
2514 * capacity but still has some space to pick up some load
2515 * from other group and save more power
2516 */
2517 if (sum_nr_running <= group_capacity - 1) {
2518 if (sum_nr_running > leader_nr_running ||
2519 (sum_nr_running == leader_nr_running &&
2520 first_cpu(group->cpumask) >
2521 first_cpu(group_leader->cpumask))) {
2522 group_leader = group;
2523 leader_nr_running = sum_nr_running;
2524 }
2525 }
2526 group_next:
2527 #endif
2528 group = group->next;
2529 } while (group != sd->groups);
2530
2531 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2532 goto out_balanced;
2533
2534 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2535
2536 if (this_load >= avg_load ||
2537 100*max_load <= sd->imbalance_pct*this_load)
2538 goto out_balanced;
2539
2540 busiest_load_per_task /= busiest_nr_running;
2541 if (group_imb)
2542 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2543
2544 /*
2545 * We're trying to get all the cpus to the average_load, so we don't
2546 * want to push ourselves above the average load, nor do we wish to
2547 * reduce the max loaded cpu below the average load, as either of these
2548 * actions would just result in more rebalancing later, and ping-pong
2549 * tasks around. Thus we look for the minimum possible imbalance.
2550 * Negative imbalances (*we* are more loaded than anyone else) will
2551 * be counted as no imbalance for these purposes -- we can't fix that
2552 * by pulling tasks to us. Be careful of negative numbers as they'll
2553 * appear as very large values with unsigned longs.
2554 */
2555 if (max_load <= busiest_load_per_task)
2556 goto out_balanced;
2557
2558 /*
2559 * In the presence of smp nice balancing, certain scenarios can have
2560 * max load less than avg load(as we skip the groups at or below
2561 * its cpu_power, while calculating max_load..)
2562 */
2563 if (max_load < avg_load) {
2564 *imbalance = 0;
2565 goto small_imbalance;
2566 }
2567
2568 /* Don't want to pull so many tasks that a group would go idle */
2569 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2570
2571 /* How much load to actually move to equalise the imbalance */
2572 *imbalance = min(max_pull * busiest->__cpu_power,
2573 (avg_load - this_load) * this->__cpu_power)
2574 / SCHED_LOAD_SCALE;
2575
2576 /*
2577 * if *imbalance is less than the average load per runnable task
2578 * there is no gaurantee that any tasks will be moved so we'll have
2579 * a think about bumping its value to force at least one task to be
2580 * moved
2581 */
2582 if (*imbalance < busiest_load_per_task) {
2583 unsigned long tmp, pwr_now, pwr_move;
2584 unsigned int imbn;
2585
2586 small_imbalance:
2587 pwr_move = pwr_now = 0;
2588 imbn = 2;
2589 if (this_nr_running) {
2590 this_load_per_task /= this_nr_running;
2591 if (busiest_load_per_task > this_load_per_task)
2592 imbn = 1;
2593 } else
2594 this_load_per_task = SCHED_LOAD_SCALE;
2595
2596 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2597 busiest_load_per_task * imbn) {
2598 *imbalance = busiest_load_per_task;
2599 return busiest;
2600 }
2601
2602 /*
2603 * OK, we don't have enough imbalance to justify moving tasks,
2604 * however we may be able to increase total CPU power used by
2605 * moving them.
2606 */
2607
2608 pwr_now += busiest->__cpu_power *
2609 min(busiest_load_per_task, max_load);
2610 pwr_now += this->__cpu_power *
2611 min(this_load_per_task, this_load);
2612 pwr_now /= SCHED_LOAD_SCALE;
2613
2614 /* Amount of load we'd subtract */
2615 tmp = sg_div_cpu_power(busiest,
2616 busiest_load_per_task * SCHED_LOAD_SCALE);
2617 if (max_load > tmp)
2618 pwr_move += busiest->__cpu_power *
2619 min(busiest_load_per_task, max_load - tmp);
2620
2621 /* Amount of load we'd add */
2622 if (max_load * busiest->__cpu_power <
2623 busiest_load_per_task * SCHED_LOAD_SCALE)
2624 tmp = sg_div_cpu_power(this,
2625 max_load * busiest->__cpu_power);
2626 else
2627 tmp = sg_div_cpu_power(this,
2628 busiest_load_per_task * SCHED_LOAD_SCALE);
2629 pwr_move += this->__cpu_power *
2630 min(this_load_per_task, this_load + tmp);
2631 pwr_move /= SCHED_LOAD_SCALE;
2632
2633 /* Move if we gain throughput */
2634 if (pwr_move > pwr_now)
2635 *imbalance = busiest_load_per_task;
2636 }
2637
2638 return busiest;
2639
2640 out_balanced:
2641 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2642 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2643 goto ret;
2644
2645 if (this == group_leader && group_leader != group_min) {
2646 *imbalance = min_load_per_task;
2647 return group_min;
2648 }
2649 #endif
2650 ret:
2651 *imbalance = 0;
2652 return NULL;
2653 }
2654
2655 /*
2656 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2657 */
2658 static struct rq *
2659 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2660 unsigned long imbalance, cpumask_t *cpus)
2661 {
2662 struct rq *busiest = NULL, *rq;
2663 unsigned long max_load = 0;
2664 int i;
2665
2666 for_each_cpu_mask(i, group->cpumask) {
2667 unsigned long wl;
2668
2669 if (!cpu_isset(i, *cpus))
2670 continue;
2671
2672 rq = cpu_rq(i);
2673 wl = weighted_cpuload(i);
2674
2675 if (rq->nr_running == 1 && wl > imbalance)
2676 continue;
2677
2678 if (wl > max_load) {
2679 max_load = wl;
2680 busiest = rq;
2681 }
2682 }
2683
2684 return busiest;
2685 }
2686
2687 /*
2688 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2689 * so long as it is large enough.
2690 */
2691 #define MAX_PINNED_INTERVAL 512
2692
2693 /*
2694 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2695 * tasks if there is an imbalance.
2696 */
2697 static int load_balance(int this_cpu, struct rq *this_rq,
2698 struct sched_domain *sd, enum cpu_idle_type idle,
2699 int *balance)
2700 {
2701 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2702 struct sched_group *group;
2703 unsigned long imbalance;
2704 struct rq *busiest;
2705 cpumask_t cpus = CPU_MASK_ALL;
2706 unsigned long flags;
2707
2708 /*
2709 * When power savings policy is enabled for the parent domain, idle
2710 * sibling can pick up load irrespective of busy siblings. In this case,
2711 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2712 * portraying it as CPU_NOT_IDLE.
2713 */
2714 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2715 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2716 sd_idle = 1;
2717
2718 schedstat_inc(sd, lb_count[idle]);
2719
2720 redo:
2721 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2722 &cpus, balance);
2723
2724 if (*balance == 0)
2725 goto out_balanced;
2726
2727 if (!group) {
2728 schedstat_inc(sd, lb_nobusyg[idle]);
2729 goto out_balanced;
2730 }
2731
2732 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2733 if (!busiest) {
2734 schedstat_inc(sd, lb_nobusyq[idle]);
2735 goto out_balanced;
2736 }
2737
2738 BUG_ON(busiest == this_rq);
2739
2740 schedstat_add(sd, lb_imbalance[idle], imbalance);
2741
2742 ld_moved = 0;
2743 if (busiest->nr_running > 1) {
2744 /*
2745 * Attempt to move tasks. If find_busiest_group has found
2746 * an imbalance but busiest->nr_running <= 1, the group is
2747 * still unbalanced. ld_moved simply stays zero, so it is
2748 * correctly treated as an imbalance.
2749 */
2750 local_irq_save(flags);
2751 double_rq_lock(this_rq, busiest);
2752 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2753 imbalance, sd, idle, &all_pinned);
2754 double_rq_unlock(this_rq, busiest);
2755 local_irq_restore(flags);
2756
2757 /*
2758 * some other cpu did the load balance for us.
2759 */
2760 if (ld_moved && this_cpu != smp_processor_id())
2761 resched_cpu(this_cpu);
2762
2763 /* All tasks on this runqueue were pinned by CPU affinity */
2764 if (unlikely(all_pinned)) {
2765 cpu_clear(cpu_of(busiest), cpus);
2766 if (!cpus_empty(cpus))
2767 goto redo;
2768 goto out_balanced;
2769 }
2770 }
2771
2772 if (!ld_moved) {
2773 schedstat_inc(sd, lb_failed[idle]);
2774 sd->nr_balance_failed++;
2775
2776 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2777
2778 spin_lock_irqsave(&busiest->lock, flags);
2779
2780 /* don't kick the migration_thread, if the curr
2781 * task on busiest cpu can't be moved to this_cpu
2782 */
2783 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2784 spin_unlock_irqrestore(&busiest->lock, flags);
2785 all_pinned = 1;
2786 goto out_one_pinned;
2787 }
2788
2789 if (!busiest->active_balance) {
2790 busiest->active_balance = 1;
2791 busiest->push_cpu = this_cpu;
2792 active_balance = 1;
2793 }
2794 spin_unlock_irqrestore(&busiest->lock, flags);
2795 if (active_balance)
2796 wake_up_process(busiest->migration_thread);
2797
2798 /*
2799 * We've kicked active balancing, reset the failure
2800 * counter.
2801 */
2802 sd->nr_balance_failed = sd->cache_nice_tries+1;
2803 }
2804 } else
2805 sd->nr_balance_failed = 0;
2806
2807 if (likely(!active_balance)) {
2808 /* We were unbalanced, so reset the balancing interval */
2809 sd->balance_interval = sd->min_interval;
2810 } else {
2811 /*
2812 * If we've begun active balancing, start to back off. This
2813 * case may not be covered by the all_pinned logic if there
2814 * is only 1 task on the busy runqueue (because we don't call
2815 * move_tasks).
2816 */
2817 if (sd->balance_interval < sd->max_interval)
2818 sd->balance_interval *= 2;
2819 }
2820
2821 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2822 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2823 return -1;
2824 return ld_moved;
2825
2826 out_balanced:
2827 schedstat_inc(sd, lb_balanced[idle]);
2828
2829 sd->nr_balance_failed = 0;
2830
2831 out_one_pinned:
2832 /* tune up the balancing interval */
2833 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2834 (sd->balance_interval < sd->max_interval))
2835 sd->balance_interval *= 2;
2836
2837 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2838 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2839 return -1;
2840 return 0;
2841 }
2842
2843 /*
2844 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2845 * tasks if there is an imbalance.
2846 *
2847 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2848 * this_rq is locked.
2849 */
2850 static int
2851 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2852 {
2853 struct sched_group *group;
2854 struct rq *busiest = NULL;
2855 unsigned long imbalance;
2856 int ld_moved = 0;
2857 int sd_idle = 0;
2858 int all_pinned = 0;
2859 cpumask_t cpus = CPU_MASK_ALL;
2860
2861 /*
2862 * When power savings policy is enabled for the parent domain, idle
2863 * sibling can pick up load irrespective of busy siblings. In this case,
2864 * let the state of idle sibling percolate up as IDLE, instead of
2865 * portraying it as CPU_NOT_IDLE.
2866 */
2867 if (sd->flags & SD_SHARE_CPUPOWER &&
2868 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2869 sd_idle = 1;
2870
2871 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2872 redo:
2873 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2874 &sd_idle, &cpus, NULL);
2875 if (!group) {
2876 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2877 goto out_balanced;
2878 }
2879
2880 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2881 &cpus);
2882 if (!busiest) {
2883 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2884 goto out_balanced;
2885 }
2886
2887 BUG_ON(busiest == this_rq);
2888
2889 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2890
2891 ld_moved = 0;
2892 if (busiest->nr_running > 1) {
2893 /* Attempt to move tasks */
2894 double_lock_balance(this_rq, busiest);
2895 /* this_rq->clock is already updated */
2896 update_rq_clock(busiest);
2897 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2898 imbalance, sd, CPU_NEWLY_IDLE,
2899 &all_pinned);
2900 spin_unlock(&busiest->lock);
2901
2902 if (unlikely(all_pinned)) {
2903 cpu_clear(cpu_of(busiest), cpus);
2904 if (!cpus_empty(cpus))
2905 goto redo;
2906 }
2907 }
2908
2909 if (!ld_moved) {
2910 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2911 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2912 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2913 return -1;
2914 } else
2915 sd->nr_balance_failed = 0;
2916
2917 return ld_moved;
2918
2919 out_balanced:
2920 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2921 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2922 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2923 return -1;
2924 sd->nr_balance_failed = 0;
2925
2926 return 0;
2927 }
2928
2929 /*
2930 * idle_balance is called by schedule() if this_cpu is about to become
2931 * idle. Attempts to pull tasks from other CPUs.
2932 */
2933 static void idle_balance(int this_cpu, struct rq *this_rq)
2934 {
2935 struct sched_domain *sd;
2936 int pulled_task = -1;
2937 unsigned long next_balance = jiffies + HZ;
2938
2939 for_each_domain(this_cpu, sd) {
2940 unsigned long interval;
2941
2942 if (!(sd->flags & SD_LOAD_BALANCE))
2943 continue;
2944
2945 if (sd->flags & SD_BALANCE_NEWIDLE)
2946 /* If we've pulled tasks over stop searching: */
2947 pulled_task = load_balance_newidle(this_cpu,
2948 this_rq, sd);
2949
2950 interval = msecs_to_jiffies(sd->balance_interval);
2951 if (time_after(next_balance, sd->last_balance + interval))
2952 next_balance = sd->last_balance + interval;
2953 if (pulled_task)
2954 break;
2955 }
2956 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2957 /*
2958 * We are going idle. next_balance may be set based on
2959 * a busy processor. So reset next_balance.
2960 */
2961 this_rq->next_balance = next_balance;
2962 }
2963 }
2964
2965 /*
2966 * active_load_balance is run by migration threads. It pushes running tasks
2967 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2968 * running on each physical CPU where possible, and avoids physical /
2969 * logical imbalances.
2970 *
2971 * Called with busiest_rq locked.
2972 */
2973 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2974 {
2975 int target_cpu = busiest_rq->push_cpu;
2976 struct sched_domain *sd;
2977 struct rq *target_rq;
2978
2979 /* Is there any task to move? */
2980 if (busiest_rq->nr_running <= 1)
2981 return;
2982
2983 target_rq = cpu_rq(target_cpu);
2984
2985 /*
2986 * This condition is "impossible", if it occurs
2987 * we need to fix it. Originally reported by
2988 * Bjorn Helgaas on a 128-cpu setup.
2989 */
2990 BUG_ON(busiest_rq == target_rq);
2991
2992 /* move a task from busiest_rq to target_rq */
2993 double_lock_balance(busiest_rq, target_rq);
2994 update_rq_clock(busiest_rq);
2995 update_rq_clock(target_rq);
2996
2997 /* Search for an sd spanning us and the target CPU. */
2998 for_each_domain(target_cpu, sd) {
2999 if ((sd->flags & SD_LOAD_BALANCE) &&
3000 cpu_isset(busiest_cpu, sd->span))
3001 break;
3002 }
3003
3004 if (likely(sd)) {
3005 schedstat_inc(sd, alb_count);
3006
3007 if (move_one_task(target_rq, target_cpu, busiest_rq,
3008 sd, CPU_IDLE))
3009 schedstat_inc(sd, alb_pushed);
3010 else
3011 schedstat_inc(sd, alb_failed);
3012 }
3013 spin_unlock(&target_rq->lock);
3014 }
3015
3016 #ifdef CONFIG_NO_HZ
3017 static struct {
3018 atomic_t load_balancer;
3019 cpumask_t cpu_mask;
3020 } nohz ____cacheline_aligned = {
3021 .load_balancer = ATOMIC_INIT(-1),
3022 .cpu_mask = CPU_MASK_NONE,
3023 };
3024
3025 /*
3026 * This routine will try to nominate the ilb (idle load balancing)
3027 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3028 * load balancing on behalf of all those cpus. If all the cpus in the system
3029 * go into this tickless mode, then there will be no ilb owner (as there is
3030 * no need for one) and all the cpus will sleep till the next wakeup event
3031 * arrives...
3032 *
3033 * For the ilb owner, tick is not stopped. And this tick will be used
3034 * for idle load balancing. ilb owner will still be part of
3035 * nohz.cpu_mask..
3036 *
3037 * While stopping the tick, this cpu will become the ilb owner if there
3038 * is no other owner. And will be the owner till that cpu becomes busy
3039 * or if all cpus in the system stop their ticks at which point
3040 * there is no need for ilb owner.
3041 *
3042 * When the ilb owner becomes busy, it nominates another owner, during the
3043 * next busy scheduler_tick()
3044 */
3045 int select_nohz_load_balancer(int stop_tick)
3046 {
3047 int cpu = smp_processor_id();
3048
3049 if (stop_tick) {
3050 cpu_set(cpu, nohz.cpu_mask);
3051 cpu_rq(cpu)->in_nohz_recently = 1;
3052
3053 /*
3054 * If we are going offline and still the leader, give up!
3055 */
3056 if (cpu_is_offline(cpu) &&
3057 atomic_read(&nohz.load_balancer) == cpu) {
3058 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3059 BUG();
3060 return 0;
3061 }
3062
3063 /* time for ilb owner also to sleep */
3064 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3065 if (atomic_read(&nohz.load_balancer) == cpu)
3066 atomic_set(&nohz.load_balancer, -1);
3067 return 0;
3068 }
3069
3070 if (atomic_read(&nohz.load_balancer) == -1) {
3071 /* make me the ilb owner */
3072 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3073 return 1;
3074 } else if (atomic_read(&nohz.load_balancer) == cpu)
3075 return 1;
3076 } else {
3077 if (!cpu_isset(cpu, nohz.cpu_mask))
3078 return 0;
3079
3080 cpu_clear(cpu, nohz.cpu_mask);
3081
3082 if (atomic_read(&nohz.load_balancer) == cpu)
3083 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3084 BUG();
3085 }
3086 return 0;
3087 }
3088 #endif
3089
3090 static DEFINE_SPINLOCK(balancing);
3091
3092 /*
3093 * It checks each scheduling domain to see if it is due to be balanced,
3094 * and initiates a balancing operation if so.
3095 *
3096 * Balancing parameters are set up in arch_init_sched_domains.
3097 */
3098 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3099 {
3100 int balance = 1;
3101 struct rq *rq = cpu_rq(cpu);
3102 unsigned long interval;
3103 struct sched_domain *sd;
3104 /* Earliest time when we have to do rebalance again */
3105 unsigned long next_balance = jiffies + 60*HZ;
3106 int update_next_balance = 0;
3107
3108 for_each_domain(cpu, sd) {
3109 if (!(sd->flags & SD_LOAD_BALANCE))
3110 continue;
3111
3112 interval = sd->balance_interval;
3113 if (idle != CPU_IDLE)
3114 interval *= sd->busy_factor;
3115
3116 /* scale ms to jiffies */
3117 interval = msecs_to_jiffies(interval);
3118 if (unlikely(!interval))
3119 interval = 1;
3120 if (interval > HZ*NR_CPUS/10)
3121 interval = HZ*NR_CPUS/10;
3122
3123
3124 if (sd->flags & SD_SERIALIZE) {
3125 if (!spin_trylock(&balancing))
3126 goto out;
3127 }
3128
3129 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3130 if (load_balance(cpu, rq, sd, idle, &balance)) {
3131 /*
3132 * We've pulled tasks over so either we're no
3133 * longer idle, or one of our SMT siblings is
3134 * not idle.
3135 */
3136 idle = CPU_NOT_IDLE;
3137 }
3138 sd->last_balance = jiffies;
3139 }
3140 if (sd->flags & SD_SERIALIZE)
3141 spin_unlock(&balancing);
3142 out:
3143 if (time_after(next_balance, sd->last_balance + interval)) {
3144 next_balance = sd->last_balance + interval;
3145 update_next_balance = 1;
3146 }
3147
3148 /*
3149 * Stop the load balance at this level. There is another
3150 * CPU in our sched group which is doing load balancing more
3151 * actively.
3152 */
3153 if (!balance)
3154 break;
3155 }
3156
3157 /*
3158 * next_balance will be updated only when there is a need.
3159 * When the cpu is attached to null domain for ex, it will not be
3160 * updated.
3161 */
3162 if (likely(update_next_balance))
3163 rq->next_balance = next_balance;
3164 }
3165
3166 /*
3167 * run_rebalance_domains is triggered when needed from the scheduler tick.
3168 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3169 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3170 */
3171 static void run_rebalance_domains(struct softirq_action *h)
3172 {
3173 int this_cpu = smp_processor_id();
3174 struct rq *this_rq = cpu_rq(this_cpu);
3175 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3176 CPU_IDLE : CPU_NOT_IDLE;
3177
3178 rebalance_domains(this_cpu, idle);
3179
3180 #ifdef CONFIG_NO_HZ
3181 /*
3182 * If this cpu is the owner for idle load balancing, then do the
3183 * balancing on behalf of the other idle cpus whose ticks are
3184 * stopped.
3185 */
3186 if (this_rq->idle_at_tick &&
3187 atomic_read(&nohz.load_balancer) == this_cpu) {
3188 cpumask_t cpus = nohz.cpu_mask;
3189 struct rq *rq;
3190 int balance_cpu;
3191
3192 cpu_clear(this_cpu, cpus);
3193 for_each_cpu_mask(balance_cpu, cpus) {
3194 /*
3195 * If this cpu gets work to do, stop the load balancing
3196 * work being done for other cpus. Next load
3197 * balancing owner will pick it up.
3198 */
3199 if (need_resched())
3200 break;
3201
3202 rebalance_domains(balance_cpu, CPU_IDLE);
3203
3204 rq = cpu_rq(balance_cpu);
3205 if (time_after(this_rq->next_balance, rq->next_balance))
3206 this_rq->next_balance = rq->next_balance;
3207 }
3208 }
3209 #endif
3210 }
3211
3212 /*
3213 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3214 *
3215 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3216 * idle load balancing owner or decide to stop the periodic load balancing,
3217 * if the whole system is idle.
3218 */
3219 static inline void trigger_load_balance(struct rq *rq, int cpu)
3220 {
3221 #ifdef CONFIG_NO_HZ
3222 /*
3223 * If we were in the nohz mode recently and busy at the current
3224 * scheduler tick, then check if we need to nominate new idle
3225 * load balancer.
3226 */
3227 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3228 rq->in_nohz_recently = 0;
3229
3230 if (atomic_read(&nohz.load_balancer) == cpu) {
3231 cpu_clear(cpu, nohz.cpu_mask);
3232 atomic_set(&nohz.load_balancer, -1);
3233 }
3234
3235 if (atomic_read(&nohz.load_balancer) == -1) {
3236 /*
3237 * simple selection for now: Nominate the
3238 * first cpu in the nohz list to be the next
3239 * ilb owner.
3240 *
3241 * TBD: Traverse the sched domains and nominate
3242 * the nearest cpu in the nohz.cpu_mask.
3243 */
3244 int ilb = first_cpu(nohz.cpu_mask);
3245
3246 if (ilb != NR_CPUS)
3247 resched_cpu(ilb);
3248 }
3249 }
3250
3251 /*
3252 * If this cpu is idle and doing idle load balancing for all the
3253 * cpus with ticks stopped, is it time for that to stop?
3254 */
3255 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3256 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3257 resched_cpu(cpu);
3258 return;
3259 }
3260
3261 /*
3262 * If this cpu is idle and the idle load balancing is done by
3263 * someone else, then no need raise the SCHED_SOFTIRQ
3264 */
3265 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3266 cpu_isset(cpu, nohz.cpu_mask))
3267 return;
3268 #endif
3269 if (time_after_eq(jiffies, rq->next_balance))
3270 raise_softirq(SCHED_SOFTIRQ);
3271 }
3272
3273 #else /* CONFIG_SMP */
3274
3275 /*
3276 * on UP we do not need to balance between CPUs:
3277 */
3278 static inline void idle_balance(int cpu, struct rq *rq)
3279 {
3280 }
3281
3282 #endif
3283
3284 DEFINE_PER_CPU(struct kernel_stat, kstat);
3285
3286 EXPORT_PER_CPU_SYMBOL(kstat);
3287
3288 /*
3289 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3290 * that have not yet been banked in case the task is currently running.
3291 */
3292 unsigned long long task_sched_runtime(struct task_struct *p)
3293 {
3294 unsigned long flags;
3295 u64 ns, delta_exec;
3296 struct rq *rq;
3297
3298 rq = task_rq_lock(p, &flags);
3299 ns = p->se.sum_exec_runtime;
3300 if (task_current(rq, p)) {
3301 update_rq_clock(rq);
3302 delta_exec = rq->clock - p->se.exec_start;
3303 if ((s64)delta_exec > 0)
3304 ns += delta_exec;
3305 }
3306 task_rq_unlock(rq, &flags);
3307
3308 return ns;
3309 }
3310
3311 /*
3312 * Account user cpu time to a process.
3313 * @p: the process that the cpu time gets accounted to
3314 * @cputime: the cpu time spent in user space since the last update
3315 */
3316 void account_user_time(struct task_struct *p, cputime_t cputime)
3317 {
3318 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3319 cputime64_t tmp;
3320
3321 p->utime = cputime_add(p->utime, cputime);
3322
3323 /* Add user time to cpustat. */
3324 tmp = cputime_to_cputime64(cputime);
3325 if (TASK_NICE(p) > 0)
3326 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3327 else
3328 cpustat->user = cputime64_add(cpustat->user, tmp);
3329 }
3330
3331 /*
3332 * Account guest cpu time to a process.
3333 * @p: the process that the cpu time gets accounted to
3334 * @cputime: the cpu time spent in virtual machine since the last update
3335 */
3336 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3337 {
3338 cputime64_t tmp;
3339 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3340
3341 tmp = cputime_to_cputime64(cputime);
3342
3343 p->utime = cputime_add(p->utime, cputime);
3344 p->gtime = cputime_add(p->gtime, cputime);
3345
3346 cpustat->user = cputime64_add(cpustat->user, tmp);
3347 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3348 }
3349
3350 /*
3351 * Account scaled user cpu time to a process.
3352 * @p: the process that the cpu time gets accounted to
3353 * @cputime: the cpu time spent in user space since the last update
3354 */
3355 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3356 {
3357 p->utimescaled = cputime_add(p->utimescaled, cputime);
3358 }
3359
3360 /*
3361 * Account system cpu time to a process.
3362 * @p: the process that the cpu time gets accounted to
3363 * @hardirq_offset: the offset to subtract from hardirq_count()
3364 * @cputime: the cpu time spent in kernel space since the last update
3365 */
3366 void account_system_time(struct task_struct *p, int hardirq_offset,
3367 cputime_t cputime)
3368 {
3369 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3370 struct rq *rq = this_rq();
3371 cputime64_t tmp;
3372
3373 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3374 return account_guest_time(p, cputime);
3375
3376 p->stime = cputime_add(p->stime, cputime);
3377
3378 /* Add system time to cpustat. */
3379 tmp = cputime_to_cputime64(cputime);
3380 if (hardirq_count() - hardirq_offset)
3381 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3382 else if (softirq_count())
3383 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3384 else if (p != rq->idle)
3385 cpustat->system = cputime64_add(cpustat->system, tmp);
3386 else if (atomic_read(&rq->nr_iowait) > 0)
3387 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3388 else
3389 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3390 /* Account for system time used */
3391 acct_update_integrals(p);
3392 }
3393
3394 /*
3395 * Account scaled system cpu time to a process.
3396 * @p: the process that the cpu time gets accounted to
3397 * @hardirq_offset: the offset to subtract from hardirq_count()
3398 * @cputime: the cpu time spent in kernel space since the last update
3399 */
3400 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3401 {
3402 p->stimescaled = cputime_add(p->stimescaled, cputime);
3403 }
3404
3405 /*
3406 * Account for involuntary wait time.
3407 * @p: the process from which the cpu time has been stolen
3408 * @steal: the cpu time spent in involuntary wait
3409 */
3410 void account_steal_time(struct task_struct *p, cputime_t steal)
3411 {
3412 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3413 cputime64_t tmp = cputime_to_cputime64(steal);
3414 struct rq *rq = this_rq();
3415
3416 if (p == rq->idle) {
3417 p->stime = cputime_add(p->stime, steal);
3418 if (atomic_read(&rq->nr_iowait) > 0)
3419 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3420 else
3421 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3422 } else
3423 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3424 }
3425
3426 /*
3427 * This function gets called by the timer code, with HZ frequency.
3428 * We call it with interrupts disabled.
3429 *
3430 * It also gets called by the fork code, when changing the parent's
3431 * timeslices.
3432 */
3433 void scheduler_tick(void)
3434 {
3435 int cpu = smp_processor_id();
3436 struct rq *rq = cpu_rq(cpu);
3437 struct task_struct *curr = rq->curr;
3438 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3439
3440 spin_lock(&rq->lock);
3441 __update_rq_clock(rq);
3442 /*
3443 * Let rq->clock advance by at least TICK_NSEC:
3444 */
3445 if (unlikely(rq->clock < next_tick))
3446 rq->clock = next_tick;
3447 rq->tick_timestamp = rq->clock;
3448 update_cpu_load(rq);
3449 if (curr != rq->idle) /* FIXME: needed? */
3450 curr->sched_class->task_tick(rq, curr);
3451 spin_unlock(&rq->lock);
3452
3453 #ifdef CONFIG_SMP
3454 rq->idle_at_tick = idle_cpu(cpu);
3455 trigger_load_balance(rq, cpu);
3456 #endif
3457 }
3458
3459 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3460
3461 void fastcall add_preempt_count(int val)
3462 {
3463 /*
3464 * Underflow?
3465 */
3466 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3467 return;
3468 preempt_count() += val;
3469 /*
3470 * Spinlock count overflowing soon?
3471 */
3472 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3473 PREEMPT_MASK - 10);
3474 }
3475 EXPORT_SYMBOL(add_preempt_count);
3476
3477 void fastcall sub_preempt_count(int val)
3478 {
3479 /*
3480 * Underflow?
3481 */
3482 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3483 return;
3484 /*
3485 * Is the spinlock portion underflowing?
3486 */
3487 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3488 !(preempt_count() & PREEMPT_MASK)))
3489 return;
3490
3491 preempt_count() -= val;
3492 }
3493 EXPORT_SYMBOL(sub_preempt_count);
3494
3495 #endif
3496
3497 /*
3498 * Print scheduling while atomic bug:
3499 */
3500 static noinline void __schedule_bug(struct task_struct *prev)
3501 {
3502 struct pt_regs *regs = get_irq_regs();
3503
3504 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3505 prev->comm, prev->pid, preempt_count());
3506
3507 debug_show_held_locks(prev);
3508 if (irqs_disabled())
3509 print_irqtrace_events(prev);
3510
3511 if (regs)
3512 show_regs(regs);
3513 else
3514 dump_stack();
3515 }
3516
3517 /*
3518 * Various schedule()-time debugging checks and statistics:
3519 */
3520 static inline void schedule_debug(struct task_struct *prev)
3521 {
3522 /*
3523 * Test if we are atomic. Since do_exit() needs to call into
3524 * schedule() atomically, we ignore that path for now.
3525 * Otherwise, whine if we are scheduling when we should not be.
3526 */
3527 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3528 __schedule_bug(prev);
3529
3530 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3531
3532 schedstat_inc(this_rq(), sched_count);
3533 #ifdef CONFIG_SCHEDSTATS
3534 if (unlikely(prev->lock_depth >= 0)) {
3535 schedstat_inc(this_rq(), bkl_count);
3536 schedstat_inc(prev, sched_info.bkl_count);
3537 }
3538 #endif
3539 }
3540
3541 /*
3542 * Pick up the highest-prio task:
3543 */
3544 static inline struct task_struct *
3545 pick_next_task(struct rq *rq, struct task_struct *prev)
3546 {
3547 const struct sched_class *class;
3548 struct task_struct *p;
3549
3550 /*
3551 * Optimization: we know that if all tasks are in
3552 * the fair class we can call that function directly:
3553 */
3554 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3555 p = fair_sched_class.pick_next_task(rq);
3556 if (likely(p))
3557 return p;
3558 }
3559
3560 class = sched_class_highest;
3561 for ( ; ; ) {
3562 p = class->pick_next_task(rq);
3563 if (p)
3564 return p;
3565 /*
3566 * Will never be NULL as the idle class always
3567 * returns a non-NULL p:
3568 */
3569 class = class->next;
3570 }
3571 }
3572
3573 /*
3574 * schedule() is the main scheduler function.
3575 */
3576 asmlinkage void __sched schedule(void)
3577 {
3578 struct task_struct *prev, *next;
3579 long *switch_count;
3580 struct rq *rq;
3581 int cpu;
3582
3583 need_resched:
3584 preempt_disable();
3585 cpu = smp_processor_id();
3586 rq = cpu_rq(cpu);
3587 rcu_qsctr_inc(cpu);
3588 prev = rq->curr;
3589 switch_count = &prev->nivcsw;
3590
3591 release_kernel_lock(prev);
3592 need_resched_nonpreemptible:
3593
3594 schedule_debug(prev);
3595
3596 /*
3597 * Do the rq-clock update outside the rq lock:
3598 */
3599 local_irq_disable();
3600 __update_rq_clock(rq);
3601 spin_lock(&rq->lock);
3602 clear_tsk_need_resched(prev);
3603
3604 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3605 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3606 unlikely(signal_pending(prev)))) {
3607 prev->state = TASK_RUNNING;
3608 } else {
3609 deactivate_task(rq, prev, 1);
3610 }
3611 switch_count = &prev->nvcsw;
3612 }
3613
3614 schedule_balance_rt(rq, prev);
3615
3616 if (unlikely(!rq->nr_running))
3617 idle_balance(cpu, rq);
3618
3619 prev->sched_class->put_prev_task(rq, prev);
3620 next = pick_next_task(rq, prev);
3621
3622 sched_info_switch(prev, next);
3623
3624 if (likely(prev != next)) {
3625 rq->nr_switches++;
3626 rq->curr = next;
3627 ++*switch_count;
3628
3629 context_switch(rq, prev, next); /* unlocks the rq */
3630 } else
3631 spin_unlock_irq(&rq->lock);
3632
3633 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3634 cpu = smp_processor_id();
3635 rq = cpu_rq(cpu);
3636 goto need_resched_nonpreemptible;
3637 }
3638 preempt_enable_no_resched();
3639 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3640 goto need_resched;
3641 }
3642 EXPORT_SYMBOL(schedule);
3643
3644 #ifdef CONFIG_PREEMPT
3645 /*
3646 * this is the entry point to schedule() from in-kernel preemption
3647 * off of preempt_enable. Kernel preemptions off return from interrupt
3648 * occur there and call schedule directly.
3649 */
3650 asmlinkage void __sched preempt_schedule(void)
3651 {
3652 struct thread_info *ti = current_thread_info();
3653 #ifdef CONFIG_PREEMPT_BKL
3654 struct task_struct *task = current;
3655 int saved_lock_depth;
3656 #endif
3657 /*
3658 * If there is a non-zero preempt_count or interrupts are disabled,
3659 * we do not want to preempt the current task. Just return..
3660 */
3661 if (likely(ti->preempt_count || irqs_disabled()))
3662 return;
3663
3664 do {
3665 add_preempt_count(PREEMPT_ACTIVE);
3666
3667 /*
3668 * We keep the big kernel semaphore locked, but we
3669 * clear ->lock_depth so that schedule() doesnt
3670 * auto-release the semaphore:
3671 */
3672 #ifdef CONFIG_PREEMPT_BKL
3673 saved_lock_depth = task->lock_depth;
3674 task->lock_depth = -1;
3675 #endif
3676 schedule();
3677 #ifdef CONFIG_PREEMPT_BKL
3678 task->lock_depth = saved_lock_depth;
3679 #endif
3680 sub_preempt_count(PREEMPT_ACTIVE);
3681
3682 /*
3683 * Check again in case we missed a preemption opportunity
3684 * between schedule and now.
3685 */
3686 barrier();
3687 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3688 }
3689 EXPORT_SYMBOL(preempt_schedule);
3690
3691 /*
3692 * this is the entry point to schedule() from kernel preemption
3693 * off of irq context.
3694 * Note, that this is called and return with irqs disabled. This will
3695 * protect us against recursive calling from irq.
3696 */
3697 asmlinkage void __sched preempt_schedule_irq(void)
3698 {
3699 struct thread_info *ti = current_thread_info();
3700 #ifdef CONFIG_PREEMPT_BKL
3701 struct task_struct *task = current;
3702 int saved_lock_depth;
3703 #endif
3704 /* Catch callers which need to be fixed */
3705 BUG_ON(ti->preempt_count || !irqs_disabled());
3706
3707 do {
3708 add_preempt_count(PREEMPT_ACTIVE);
3709
3710 /*
3711 * We keep the big kernel semaphore locked, but we
3712 * clear ->lock_depth so that schedule() doesnt
3713 * auto-release the semaphore:
3714 */
3715 #ifdef CONFIG_PREEMPT_BKL
3716 saved_lock_depth = task->lock_depth;
3717 task->lock_depth = -1;
3718 #endif
3719 local_irq_enable();
3720 schedule();
3721 local_irq_disable();
3722 #ifdef CONFIG_PREEMPT_BKL
3723 task->lock_depth = saved_lock_depth;
3724 #endif
3725 sub_preempt_count(PREEMPT_ACTIVE);
3726
3727 /*
3728 * Check again in case we missed a preemption opportunity
3729 * between schedule and now.
3730 */
3731 barrier();
3732 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3733 }
3734
3735 #endif /* CONFIG_PREEMPT */
3736
3737 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3738 void *key)
3739 {
3740 return try_to_wake_up(curr->private, mode, sync);
3741 }
3742 EXPORT_SYMBOL(default_wake_function);
3743
3744 /*
3745 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3746 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3747 * number) then we wake all the non-exclusive tasks and one exclusive task.
3748 *
3749 * There are circumstances in which we can try to wake a task which has already
3750 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3751 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3752 */
3753 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3754 int nr_exclusive, int sync, void *key)
3755 {
3756 wait_queue_t *curr, *next;
3757
3758 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3759 unsigned flags = curr->flags;
3760
3761 if (curr->func(curr, mode, sync, key) &&
3762 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3763 break;
3764 }
3765 }
3766
3767 /**
3768 * __wake_up - wake up threads blocked on a waitqueue.
3769 * @q: the waitqueue
3770 * @mode: which threads
3771 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3772 * @key: is directly passed to the wakeup function
3773 */
3774 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3775 int nr_exclusive, void *key)
3776 {
3777 unsigned long flags;
3778
3779 spin_lock_irqsave(&q->lock, flags);
3780 __wake_up_common(q, mode, nr_exclusive, 0, key);
3781 spin_unlock_irqrestore(&q->lock, flags);
3782 }
3783 EXPORT_SYMBOL(__wake_up);
3784
3785 /*
3786 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3787 */
3788 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3789 {
3790 __wake_up_common(q, mode, 1, 0, NULL);
3791 }
3792
3793 /**
3794 * __wake_up_sync - wake up threads blocked on a waitqueue.
3795 * @q: the waitqueue
3796 * @mode: which threads
3797 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3798 *
3799 * The sync wakeup differs that the waker knows that it will schedule
3800 * away soon, so while the target thread will be woken up, it will not
3801 * be migrated to another CPU - ie. the two threads are 'synchronized'
3802 * with each other. This can prevent needless bouncing between CPUs.
3803 *
3804 * On UP it can prevent extra preemption.
3805 */
3806 void fastcall
3807 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3808 {
3809 unsigned long flags;
3810 int sync = 1;
3811
3812 if (unlikely(!q))
3813 return;
3814
3815 if (unlikely(!nr_exclusive))
3816 sync = 0;
3817
3818 spin_lock_irqsave(&q->lock, flags);
3819 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3820 spin_unlock_irqrestore(&q->lock, flags);
3821 }
3822 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3823
3824 void complete(struct completion *x)
3825 {
3826 unsigned long flags;
3827
3828 spin_lock_irqsave(&x->wait.lock, flags);
3829 x->done++;
3830 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3831 1, 0, NULL);
3832 spin_unlock_irqrestore(&x->wait.lock, flags);
3833 }
3834 EXPORT_SYMBOL(complete);
3835
3836 void complete_all(struct completion *x)
3837 {
3838 unsigned long flags;
3839
3840 spin_lock_irqsave(&x->wait.lock, flags);
3841 x->done += UINT_MAX/2;
3842 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3843 0, 0, NULL);
3844 spin_unlock_irqrestore(&x->wait.lock, flags);
3845 }
3846 EXPORT_SYMBOL(complete_all);
3847
3848 static inline long __sched
3849 do_wait_for_common(struct completion *x, long timeout, int state)
3850 {
3851 if (!x->done) {
3852 DECLARE_WAITQUEUE(wait, current);
3853
3854 wait.flags |= WQ_FLAG_EXCLUSIVE;
3855 __add_wait_queue_tail(&x->wait, &wait);
3856 do {
3857 if (state == TASK_INTERRUPTIBLE &&
3858 signal_pending(current)) {
3859 __remove_wait_queue(&x->wait, &wait);
3860 return -ERESTARTSYS;
3861 }
3862 __set_current_state(state);
3863 spin_unlock_irq(&x->wait.lock);
3864 timeout = schedule_timeout(timeout);
3865 spin_lock_irq(&x->wait.lock);
3866 if (!timeout) {
3867 __remove_wait_queue(&x->wait, &wait);
3868 return timeout;
3869 }
3870 } while (!x->done);
3871 __remove_wait_queue(&x->wait, &wait);
3872 }
3873 x->done--;
3874 return timeout;
3875 }
3876
3877 static long __sched
3878 wait_for_common(struct completion *x, long timeout, int state)
3879 {
3880 might_sleep();
3881
3882 spin_lock_irq(&x->wait.lock);
3883 timeout = do_wait_for_common(x, timeout, state);
3884 spin_unlock_irq(&x->wait.lock);
3885 return timeout;
3886 }
3887
3888 void __sched wait_for_completion(struct completion *x)
3889 {
3890 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3891 }
3892 EXPORT_SYMBOL(wait_for_completion);
3893
3894 unsigned long __sched
3895 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3896 {
3897 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3898 }
3899 EXPORT_SYMBOL(wait_for_completion_timeout);
3900
3901 int __sched wait_for_completion_interruptible(struct completion *x)
3902 {
3903 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3904 if (t == -ERESTARTSYS)
3905 return t;
3906 return 0;
3907 }
3908 EXPORT_SYMBOL(wait_for_completion_interruptible);
3909
3910 unsigned long __sched
3911 wait_for_completion_interruptible_timeout(struct completion *x,
3912 unsigned long timeout)
3913 {
3914 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3915 }
3916 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3917
3918 static long __sched
3919 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3920 {
3921 unsigned long flags;
3922 wait_queue_t wait;
3923
3924 init_waitqueue_entry(&wait, current);
3925
3926 __set_current_state(state);
3927
3928 spin_lock_irqsave(&q->lock, flags);
3929 __add_wait_queue(q, &wait);
3930 spin_unlock(&q->lock);
3931 timeout = schedule_timeout(timeout);
3932 spin_lock_irq(&q->lock);
3933 __remove_wait_queue(q, &wait);
3934 spin_unlock_irqrestore(&q->lock, flags);
3935
3936 return timeout;
3937 }
3938
3939 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3940 {
3941 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3942 }
3943 EXPORT_SYMBOL(interruptible_sleep_on);
3944
3945 long __sched
3946 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3947 {
3948 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3949 }
3950 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3951
3952 void __sched sleep_on(wait_queue_head_t *q)
3953 {
3954 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3955 }
3956 EXPORT_SYMBOL(sleep_on);
3957
3958 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3959 {
3960 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3961 }
3962 EXPORT_SYMBOL(sleep_on_timeout);
3963
3964 #ifdef CONFIG_RT_MUTEXES
3965
3966 /*
3967 * rt_mutex_setprio - set the current priority of a task
3968 * @p: task
3969 * @prio: prio value (kernel-internal form)
3970 *
3971 * This function changes the 'effective' priority of a task. It does
3972 * not touch ->normal_prio like __setscheduler().
3973 *
3974 * Used by the rt_mutex code to implement priority inheritance logic.
3975 */
3976 void rt_mutex_setprio(struct task_struct *p, int prio)
3977 {
3978 unsigned long flags;
3979 int oldprio, on_rq, running;
3980 struct rq *rq;
3981
3982 BUG_ON(prio < 0 || prio > MAX_PRIO);
3983
3984 rq = task_rq_lock(p, &flags);
3985 update_rq_clock(rq);
3986
3987 oldprio = p->prio;
3988 on_rq = p->se.on_rq;
3989 running = task_current(rq, p);
3990 if (on_rq) {
3991 dequeue_task(rq, p, 0);
3992 if (running)
3993 p->sched_class->put_prev_task(rq, p);
3994 }
3995
3996 if (rt_prio(prio))
3997 p->sched_class = &rt_sched_class;
3998 else
3999 p->sched_class = &fair_sched_class;
4000
4001 p->prio = prio;
4002
4003 if (on_rq) {
4004 if (running)
4005 p->sched_class->set_curr_task(rq);
4006 enqueue_task(rq, p, 0);
4007 /*
4008 * Reschedule if we are currently running on this runqueue and
4009 * our priority decreased, or if we are not currently running on
4010 * this runqueue and our priority is higher than the current's
4011 */
4012 if (running) {
4013 if (p->prio > oldprio)
4014 resched_task(rq->curr);
4015 } else {
4016 check_preempt_curr(rq, p);
4017 }
4018 }
4019 task_rq_unlock(rq, &flags);
4020 }
4021
4022 #endif
4023
4024 void set_user_nice(struct task_struct *p, long nice)
4025 {
4026 int old_prio, delta, on_rq;
4027 unsigned long flags;
4028 struct rq *rq;
4029
4030 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4031 return;
4032 /*
4033 * We have to be careful, if called from sys_setpriority(),
4034 * the task might be in the middle of scheduling on another CPU.
4035 */
4036 rq = task_rq_lock(p, &flags);
4037 update_rq_clock(rq);
4038 /*
4039 * The RT priorities are set via sched_setscheduler(), but we still
4040 * allow the 'normal' nice value to be set - but as expected
4041 * it wont have any effect on scheduling until the task is
4042 * SCHED_FIFO/SCHED_RR:
4043 */
4044 if (task_has_rt_policy(p)) {
4045 p->static_prio = NICE_TO_PRIO(nice);
4046 goto out_unlock;
4047 }
4048 on_rq = p->se.on_rq;
4049 if (on_rq)
4050 dequeue_task(rq, p, 0);
4051
4052 p->static_prio = NICE_TO_PRIO(nice);
4053 set_load_weight(p);
4054 old_prio = p->prio;
4055 p->prio = effective_prio(p);
4056 delta = p->prio - old_prio;
4057
4058 if (on_rq) {
4059 enqueue_task(rq, p, 0);
4060 /*
4061 * If the task increased its priority or is running and
4062 * lowered its priority, then reschedule its CPU:
4063 */
4064 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4065 resched_task(rq->curr);
4066 }
4067 out_unlock:
4068 task_rq_unlock(rq, &flags);
4069 }
4070 EXPORT_SYMBOL(set_user_nice);
4071
4072 /*
4073 * can_nice - check if a task can reduce its nice value
4074 * @p: task
4075 * @nice: nice value
4076 */
4077 int can_nice(const struct task_struct *p, const int nice)
4078 {
4079 /* convert nice value [19,-20] to rlimit style value [1,40] */
4080 int nice_rlim = 20 - nice;
4081
4082 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4083 capable(CAP_SYS_NICE));
4084 }
4085
4086 #ifdef __ARCH_WANT_SYS_NICE
4087
4088 /*
4089 * sys_nice - change the priority of the current process.
4090 * @increment: priority increment
4091 *
4092 * sys_setpriority is a more generic, but much slower function that
4093 * does similar things.
4094 */
4095 asmlinkage long sys_nice(int increment)
4096 {
4097 long nice, retval;
4098
4099 /*
4100 * Setpriority might change our priority at the same moment.
4101 * We don't have to worry. Conceptually one call occurs first
4102 * and we have a single winner.
4103 */
4104 if (increment < -40)
4105 increment = -40;
4106 if (increment > 40)
4107 increment = 40;
4108
4109 nice = PRIO_TO_NICE(current->static_prio) + increment;
4110 if (nice < -20)
4111 nice = -20;
4112 if (nice > 19)
4113 nice = 19;
4114
4115 if (increment < 0 && !can_nice(current, nice))
4116 return -EPERM;
4117
4118 retval = security_task_setnice(current, nice);
4119 if (retval)
4120 return retval;
4121
4122 set_user_nice(current, nice);
4123 return 0;
4124 }
4125
4126 #endif
4127
4128 /**
4129 * task_prio - return the priority value of a given task.
4130 * @p: the task in question.
4131 *
4132 * This is the priority value as seen by users in /proc.
4133 * RT tasks are offset by -200. Normal tasks are centered
4134 * around 0, value goes from -16 to +15.
4135 */
4136 int task_prio(const struct task_struct *p)
4137 {
4138 return p->prio - MAX_RT_PRIO;
4139 }
4140
4141 /**
4142 * task_nice - return the nice value of a given task.
4143 * @p: the task in question.
4144 */
4145 int task_nice(const struct task_struct *p)
4146 {
4147 return TASK_NICE(p);
4148 }
4149 EXPORT_SYMBOL_GPL(task_nice);
4150
4151 /**
4152 * idle_cpu - is a given cpu idle currently?
4153 * @cpu: the processor in question.
4154 */
4155 int idle_cpu(int cpu)
4156 {
4157 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4158 }
4159
4160 /**
4161 * idle_task - return the idle task for a given cpu.
4162 * @cpu: the processor in question.
4163 */
4164 struct task_struct *idle_task(int cpu)
4165 {
4166 return cpu_rq(cpu)->idle;
4167 }
4168
4169 /**
4170 * find_process_by_pid - find a process with a matching PID value.
4171 * @pid: the pid in question.
4172 */
4173 static struct task_struct *find_process_by_pid(pid_t pid)
4174 {
4175 return pid ? find_task_by_vpid(pid) : current;
4176 }
4177
4178 /* Actually do priority change: must hold rq lock. */
4179 static void
4180 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4181 {
4182 BUG_ON(p->se.on_rq);
4183
4184 p->policy = policy;
4185 switch (p->policy) {
4186 case SCHED_NORMAL:
4187 case SCHED_BATCH:
4188 case SCHED_IDLE:
4189 p->sched_class = &fair_sched_class;
4190 break;
4191 case SCHED_FIFO:
4192 case SCHED_RR:
4193 p->sched_class = &rt_sched_class;
4194 break;
4195 }
4196
4197 p->rt_priority = prio;
4198 p->normal_prio = normal_prio(p);
4199 /* we are holding p->pi_lock already */
4200 p->prio = rt_mutex_getprio(p);
4201 set_load_weight(p);
4202 }
4203
4204 /**
4205 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4206 * @p: the task in question.
4207 * @policy: new policy.
4208 * @param: structure containing the new RT priority.
4209 *
4210 * NOTE that the task may be already dead.
4211 */
4212 int sched_setscheduler(struct task_struct *p, int policy,
4213 struct sched_param *param)
4214 {
4215 int retval, oldprio, oldpolicy = -1, on_rq, running;
4216 unsigned long flags;
4217 struct rq *rq;
4218
4219 /* may grab non-irq protected spin_locks */
4220 BUG_ON(in_interrupt());
4221 recheck:
4222 /* double check policy once rq lock held */
4223 if (policy < 0)
4224 policy = oldpolicy = p->policy;
4225 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4226 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4227 policy != SCHED_IDLE)
4228 return -EINVAL;
4229 /*
4230 * Valid priorities for SCHED_FIFO and SCHED_RR are
4231 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4232 * SCHED_BATCH and SCHED_IDLE is 0.
4233 */
4234 if (param->sched_priority < 0 ||
4235 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4236 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4237 return -EINVAL;
4238 if (rt_policy(policy) != (param->sched_priority != 0))
4239 return -EINVAL;
4240
4241 /*
4242 * Allow unprivileged RT tasks to decrease priority:
4243 */
4244 if (!capable(CAP_SYS_NICE)) {
4245 if (rt_policy(policy)) {
4246 unsigned long rlim_rtprio;
4247
4248 if (!lock_task_sighand(p, &flags))
4249 return -ESRCH;
4250 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4251 unlock_task_sighand(p, &flags);
4252
4253 /* can't set/change the rt policy */
4254 if (policy != p->policy && !rlim_rtprio)
4255 return -EPERM;
4256
4257 /* can't increase priority */
4258 if (param->sched_priority > p->rt_priority &&
4259 param->sched_priority > rlim_rtprio)
4260 return -EPERM;
4261 }
4262 /*
4263 * Like positive nice levels, dont allow tasks to
4264 * move out of SCHED_IDLE either:
4265 */
4266 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4267 return -EPERM;
4268
4269 /* can't change other user's priorities */
4270 if ((current->euid != p->euid) &&
4271 (current->euid != p->uid))
4272 return -EPERM;
4273 }
4274
4275 retval = security_task_setscheduler(p, policy, param);
4276 if (retval)
4277 return retval;
4278 /*
4279 * make sure no PI-waiters arrive (or leave) while we are
4280 * changing the priority of the task:
4281 */
4282 spin_lock_irqsave(&p->pi_lock, flags);
4283 /*
4284 * To be able to change p->policy safely, the apropriate
4285 * runqueue lock must be held.
4286 */
4287 rq = __task_rq_lock(p);
4288 /* recheck policy now with rq lock held */
4289 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4290 policy = oldpolicy = -1;
4291 __task_rq_unlock(rq);
4292 spin_unlock_irqrestore(&p->pi_lock, flags);
4293 goto recheck;
4294 }
4295 update_rq_clock(rq);
4296 on_rq = p->se.on_rq;
4297 running = task_current(rq, p);
4298 if (on_rq) {
4299 deactivate_task(rq, p, 0);
4300 if (running)
4301 p->sched_class->put_prev_task(rq, p);
4302 }
4303
4304 oldprio = p->prio;
4305 __setscheduler(rq, p, policy, param->sched_priority);
4306
4307 if (on_rq) {
4308 if (running)
4309 p->sched_class->set_curr_task(rq);
4310 activate_task(rq, p, 0);
4311 /*
4312 * Reschedule if we are currently running on this runqueue and
4313 * our priority decreased, or if we are not currently running on
4314 * this runqueue and our priority is higher than the current's
4315 */
4316 if (running) {
4317 if (p->prio > oldprio)
4318 resched_task(rq->curr);
4319 } else {
4320 check_preempt_curr(rq, p);
4321 }
4322 }
4323 __task_rq_unlock(rq);
4324 spin_unlock_irqrestore(&p->pi_lock, flags);
4325
4326 rt_mutex_adjust_pi(p);
4327
4328 return 0;
4329 }
4330 EXPORT_SYMBOL_GPL(sched_setscheduler);
4331
4332 static int
4333 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4334 {
4335 struct sched_param lparam;
4336 struct task_struct *p;
4337 int retval;
4338
4339 if (!param || pid < 0)
4340 return -EINVAL;
4341 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4342 return -EFAULT;
4343
4344 rcu_read_lock();
4345 retval = -ESRCH;
4346 p = find_process_by_pid(pid);
4347 if (p != NULL)
4348 retval = sched_setscheduler(p, policy, &lparam);
4349 rcu_read_unlock();
4350
4351 return retval;
4352 }
4353
4354 /**
4355 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4356 * @pid: the pid in question.
4357 * @policy: new policy.
4358 * @param: structure containing the new RT priority.
4359 */
4360 asmlinkage long
4361 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4362 {
4363 /* negative values for policy are not valid */
4364 if (policy < 0)
4365 return -EINVAL;
4366
4367 return do_sched_setscheduler(pid, policy, param);
4368 }
4369
4370 /**
4371 * sys_sched_setparam - set/change the RT priority of a thread
4372 * @pid: the pid in question.
4373 * @param: structure containing the new RT priority.
4374 */
4375 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4376 {
4377 return do_sched_setscheduler(pid, -1, param);
4378 }
4379
4380 /**
4381 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4382 * @pid: the pid in question.
4383 */
4384 asmlinkage long sys_sched_getscheduler(pid_t pid)
4385 {
4386 struct task_struct *p;
4387 int retval;
4388
4389 if (pid < 0)
4390 return -EINVAL;
4391
4392 retval = -ESRCH;
4393 read_lock(&tasklist_lock);
4394 p = find_process_by_pid(pid);
4395 if (p) {
4396 retval = security_task_getscheduler(p);
4397 if (!retval)
4398 retval = p->policy;
4399 }
4400 read_unlock(&tasklist_lock);
4401 return retval;
4402 }
4403
4404 /**
4405 * sys_sched_getscheduler - get the RT priority of a thread
4406 * @pid: the pid in question.
4407 * @param: structure containing the RT priority.
4408 */
4409 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4410 {
4411 struct sched_param lp;
4412 struct task_struct *p;
4413 int retval;
4414
4415 if (!param || pid < 0)
4416 return -EINVAL;
4417
4418 read_lock(&tasklist_lock);
4419 p = find_process_by_pid(pid);
4420 retval = -ESRCH;
4421 if (!p)
4422 goto out_unlock;
4423
4424 retval = security_task_getscheduler(p);
4425 if (retval)
4426 goto out_unlock;
4427
4428 lp.sched_priority = p->rt_priority;
4429 read_unlock(&tasklist_lock);
4430
4431 /*
4432 * This one might sleep, we cannot do it with a spinlock held ...
4433 */
4434 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4435
4436 return retval;
4437
4438 out_unlock:
4439 read_unlock(&tasklist_lock);
4440 return retval;
4441 }
4442
4443 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4444 {
4445 cpumask_t cpus_allowed;
4446 struct task_struct *p;
4447 int retval;
4448
4449 get_online_cpus();
4450 read_lock(&tasklist_lock);
4451
4452 p = find_process_by_pid(pid);
4453 if (!p) {
4454 read_unlock(&tasklist_lock);
4455 put_online_cpus();
4456 return -ESRCH;
4457 }
4458
4459 /*
4460 * It is not safe to call set_cpus_allowed with the
4461 * tasklist_lock held. We will bump the task_struct's
4462 * usage count and then drop tasklist_lock.
4463 */
4464 get_task_struct(p);
4465 read_unlock(&tasklist_lock);
4466
4467 retval = -EPERM;
4468 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4469 !capable(CAP_SYS_NICE))
4470 goto out_unlock;
4471
4472 retval = security_task_setscheduler(p, 0, NULL);
4473 if (retval)
4474 goto out_unlock;
4475
4476 cpus_allowed = cpuset_cpus_allowed(p);
4477 cpus_and(new_mask, new_mask, cpus_allowed);
4478 again:
4479 retval = set_cpus_allowed(p, new_mask);
4480
4481 if (!retval) {
4482 cpus_allowed = cpuset_cpus_allowed(p);
4483 if (!cpus_subset(new_mask, cpus_allowed)) {
4484 /*
4485 * We must have raced with a concurrent cpuset
4486 * update. Just reset the cpus_allowed to the
4487 * cpuset's cpus_allowed
4488 */
4489 new_mask = cpus_allowed;
4490 goto again;
4491 }
4492 }
4493 out_unlock:
4494 put_task_struct(p);
4495 put_online_cpus();
4496 return retval;
4497 }
4498
4499 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4500 cpumask_t *new_mask)
4501 {
4502 if (len < sizeof(cpumask_t)) {
4503 memset(new_mask, 0, sizeof(cpumask_t));
4504 } else if (len > sizeof(cpumask_t)) {
4505 len = sizeof(cpumask_t);
4506 }
4507 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4508 }
4509
4510 /**
4511 * sys_sched_setaffinity - set the cpu affinity of a process
4512 * @pid: pid of the process
4513 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4514 * @user_mask_ptr: user-space pointer to the new cpu mask
4515 */
4516 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4517 unsigned long __user *user_mask_ptr)
4518 {
4519 cpumask_t new_mask;
4520 int retval;
4521
4522 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4523 if (retval)
4524 return retval;
4525
4526 return sched_setaffinity(pid, new_mask);
4527 }
4528
4529 /*
4530 * Represents all cpu's present in the system
4531 * In systems capable of hotplug, this map could dynamically grow
4532 * as new cpu's are detected in the system via any platform specific
4533 * method, such as ACPI for e.g.
4534 */
4535
4536 cpumask_t cpu_present_map __read_mostly;
4537 EXPORT_SYMBOL(cpu_present_map);
4538
4539 #ifndef CONFIG_SMP
4540 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4541 EXPORT_SYMBOL(cpu_online_map);
4542
4543 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4544 EXPORT_SYMBOL(cpu_possible_map);
4545 #endif
4546
4547 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4548 {
4549 struct task_struct *p;
4550 int retval;
4551
4552 get_online_cpus();
4553 read_lock(&tasklist_lock);
4554
4555 retval = -ESRCH;
4556 p = find_process_by_pid(pid);
4557 if (!p)
4558 goto out_unlock;
4559
4560 retval = security_task_getscheduler(p);
4561 if (retval)
4562 goto out_unlock;
4563
4564 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4565
4566 out_unlock:
4567 read_unlock(&tasklist_lock);
4568 put_online_cpus();
4569
4570 return retval;
4571 }
4572
4573 /**
4574 * sys_sched_getaffinity - get the cpu affinity of a process
4575 * @pid: pid of the process
4576 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4577 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4578 */
4579 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4580 unsigned long __user *user_mask_ptr)
4581 {
4582 int ret;
4583 cpumask_t mask;
4584
4585 if (len < sizeof(cpumask_t))
4586 return -EINVAL;
4587
4588 ret = sched_getaffinity(pid, &mask);
4589 if (ret < 0)
4590 return ret;
4591
4592 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4593 return -EFAULT;
4594
4595 return sizeof(cpumask_t);
4596 }
4597
4598 /**
4599 * sys_sched_yield - yield the current processor to other threads.
4600 *
4601 * This function yields the current CPU to other tasks. If there are no
4602 * other threads running on this CPU then this function will return.
4603 */
4604 asmlinkage long sys_sched_yield(void)
4605 {
4606 struct rq *rq = this_rq_lock();
4607
4608 schedstat_inc(rq, yld_count);
4609 current->sched_class->yield_task(rq);
4610
4611 /*
4612 * Since we are going to call schedule() anyway, there's
4613 * no need to preempt or enable interrupts:
4614 */
4615 __release(rq->lock);
4616 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4617 _raw_spin_unlock(&rq->lock);
4618 preempt_enable_no_resched();
4619
4620 schedule();
4621
4622 return 0;
4623 }
4624
4625 static void __cond_resched(void)
4626 {
4627 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4628 __might_sleep(__FILE__, __LINE__);
4629 #endif
4630 /*
4631 * The BKS might be reacquired before we have dropped
4632 * PREEMPT_ACTIVE, which could trigger a second
4633 * cond_resched() call.
4634 */
4635 do {
4636 add_preempt_count(PREEMPT_ACTIVE);
4637 schedule();
4638 sub_preempt_count(PREEMPT_ACTIVE);
4639 } while (need_resched());
4640 }
4641
4642 int __sched cond_resched(void)
4643 {
4644 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4645 system_state == SYSTEM_RUNNING) {
4646 __cond_resched();
4647 return 1;
4648 }
4649 return 0;
4650 }
4651 EXPORT_SYMBOL(cond_resched);
4652
4653 /*
4654 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4655 * call schedule, and on return reacquire the lock.
4656 *
4657 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4658 * operations here to prevent schedule() from being called twice (once via
4659 * spin_unlock(), once by hand).
4660 */
4661 int cond_resched_lock(spinlock_t *lock)
4662 {
4663 int ret = 0;
4664
4665 if (need_lockbreak(lock)) {
4666 spin_unlock(lock);
4667 cpu_relax();
4668 ret = 1;
4669 spin_lock(lock);
4670 }
4671 if (need_resched() && system_state == SYSTEM_RUNNING) {
4672 spin_release(&lock->dep_map, 1, _THIS_IP_);
4673 _raw_spin_unlock(lock);
4674 preempt_enable_no_resched();
4675 __cond_resched();
4676 ret = 1;
4677 spin_lock(lock);
4678 }
4679 return ret;
4680 }
4681 EXPORT_SYMBOL(cond_resched_lock);
4682
4683 int __sched cond_resched_softirq(void)
4684 {
4685 BUG_ON(!in_softirq());
4686
4687 if (need_resched() && system_state == SYSTEM_RUNNING) {
4688 local_bh_enable();
4689 __cond_resched();
4690 local_bh_disable();
4691 return 1;
4692 }
4693 return 0;
4694 }
4695 EXPORT_SYMBOL(cond_resched_softirq);
4696
4697 /**
4698 * yield - yield the current processor to other threads.
4699 *
4700 * This is a shortcut for kernel-space yielding - it marks the
4701 * thread runnable and calls sys_sched_yield().
4702 */
4703 void __sched yield(void)
4704 {
4705 set_current_state(TASK_RUNNING);
4706 sys_sched_yield();
4707 }
4708 EXPORT_SYMBOL(yield);
4709
4710 /*
4711 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4712 * that process accounting knows that this is a task in IO wait state.
4713 *
4714 * But don't do that if it is a deliberate, throttling IO wait (this task
4715 * has set its backing_dev_info: the queue against which it should throttle)
4716 */
4717 void __sched io_schedule(void)
4718 {
4719 struct rq *rq = &__raw_get_cpu_var(runqueues);
4720
4721 delayacct_blkio_start();
4722 atomic_inc(&rq->nr_iowait);
4723 schedule();
4724 atomic_dec(&rq->nr_iowait);
4725 delayacct_blkio_end();
4726 }
4727 EXPORT_SYMBOL(io_schedule);
4728
4729 long __sched io_schedule_timeout(long timeout)
4730 {
4731 struct rq *rq = &__raw_get_cpu_var(runqueues);
4732 long ret;
4733
4734 delayacct_blkio_start();
4735 atomic_inc(&rq->nr_iowait);
4736 ret = schedule_timeout(timeout);
4737 atomic_dec(&rq->nr_iowait);
4738 delayacct_blkio_end();
4739 return ret;
4740 }
4741
4742 /**
4743 * sys_sched_get_priority_max - return maximum RT priority.
4744 * @policy: scheduling class.
4745 *
4746 * this syscall returns the maximum rt_priority that can be used
4747 * by a given scheduling class.
4748 */
4749 asmlinkage long sys_sched_get_priority_max(int policy)
4750 {
4751 int ret = -EINVAL;
4752
4753 switch (policy) {
4754 case SCHED_FIFO:
4755 case SCHED_RR:
4756 ret = MAX_USER_RT_PRIO-1;
4757 break;
4758 case SCHED_NORMAL:
4759 case SCHED_BATCH:
4760 case SCHED_IDLE:
4761 ret = 0;
4762 break;
4763 }
4764 return ret;
4765 }
4766
4767 /**
4768 * sys_sched_get_priority_min - return minimum RT priority.
4769 * @policy: scheduling class.
4770 *
4771 * this syscall returns the minimum rt_priority that can be used
4772 * by a given scheduling class.
4773 */
4774 asmlinkage long sys_sched_get_priority_min(int policy)
4775 {
4776 int ret = -EINVAL;
4777
4778 switch (policy) {
4779 case SCHED_FIFO:
4780 case SCHED_RR:
4781 ret = 1;
4782 break;
4783 case SCHED_NORMAL:
4784 case SCHED_BATCH:
4785 case SCHED_IDLE:
4786 ret = 0;
4787 }
4788 return ret;
4789 }
4790
4791 /**
4792 * sys_sched_rr_get_interval - return the default timeslice of a process.
4793 * @pid: pid of the process.
4794 * @interval: userspace pointer to the timeslice value.
4795 *
4796 * this syscall writes the default timeslice value of a given process
4797 * into the user-space timespec buffer. A value of '0' means infinity.
4798 */
4799 asmlinkage
4800 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4801 {
4802 struct task_struct *p;
4803 unsigned int time_slice;
4804 int retval;
4805 struct timespec t;
4806
4807 if (pid < 0)
4808 return -EINVAL;
4809
4810 retval = -ESRCH;
4811 read_lock(&tasklist_lock);
4812 p = find_process_by_pid(pid);
4813 if (!p)
4814 goto out_unlock;
4815
4816 retval = security_task_getscheduler(p);
4817 if (retval)
4818 goto out_unlock;
4819
4820 /*
4821 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4822 * tasks that are on an otherwise idle runqueue:
4823 */
4824 time_slice = 0;
4825 if (p->policy == SCHED_RR) {
4826 time_slice = DEF_TIMESLICE;
4827 } else {
4828 struct sched_entity *se = &p->se;
4829 unsigned long flags;
4830 struct rq *rq;
4831
4832 rq = task_rq_lock(p, &flags);
4833 if (rq->cfs.load.weight)
4834 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4835 task_rq_unlock(rq, &flags);
4836 }
4837 read_unlock(&tasklist_lock);
4838 jiffies_to_timespec(time_slice, &t);
4839 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4840 return retval;
4841
4842 out_unlock:
4843 read_unlock(&tasklist_lock);
4844 return retval;
4845 }
4846
4847 static const char stat_nam[] = "RSDTtZX";
4848
4849 void sched_show_task(struct task_struct *p)
4850 {
4851 unsigned long free = 0;
4852 unsigned state;
4853
4854 state = p->state ? __ffs(p->state) + 1 : 0;
4855 printk(KERN_INFO "%-13.13s %c", p->comm,
4856 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4857 #if BITS_PER_LONG == 32
4858 if (state == TASK_RUNNING)
4859 printk(KERN_CONT " running ");
4860 else
4861 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4862 #else
4863 if (state == TASK_RUNNING)
4864 printk(KERN_CONT " running task ");
4865 else
4866 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4867 #endif
4868 #ifdef CONFIG_DEBUG_STACK_USAGE
4869 {
4870 unsigned long *n = end_of_stack(p);
4871 while (!*n)
4872 n++;
4873 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4874 }
4875 #endif
4876 printk(KERN_CONT "%5lu %5d %6d\n", free,
4877 task_pid_nr(p), task_pid_nr(p->real_parent));
4878
4879 if (state != TASK_RUNNING)
4880 show_stack(p, NULL);
4881 }
4882
4883 void show_state_filter(unsigned long state_filter)
4884 {
4885 struct task_struct *g, *p;
4886
4887 #if BITS_PER_LONG == 32
4888 printk(KERN_INFO
4889 " task PC stack pid father\n");
4890 #else
4891 printk(KERN_INFO
4892 " task PC stack pid father\n");
4893 #endif
4894 read_lock(&tasklist_lock);
4895 do_each_thread(g, p) {
4896 /*
4897 * reset the NMI-timeout, listing all files on a slow
4898 * console might take alot of time:
4899 */
4900 touch_nmi_watchdog();
4901 if (!state_filter || (p->state & state_filter))
4902 sched_show_task(p);
4903 } while_each_thread(g, p);
4904
4905 touch_all_softlockup_watchdogs();
4906
4907 #ifdef CONFIG_SCHED_DEBUG
4908 sysrq_sched_debug_show();
4909 #endif
4910 read_unlock(&tasklist_lock);
4911 /*
4912 * Only show locks if all tasks are dumped:
4913 */
4914 if (state_filter == -1)
4915 debug_show_all_locks();
4916 }
4917
4918 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4919 {
4920 idle->sched_class = &idle_sched_class;
4921 }
4922
4923 /**
4924 * init_idle - set up an idle thread for a given CPU
4925 * @idle: task in question
4926 * @cpu: cpu the idle task belongs to
4927 *
4928 * NOTE: this function does not set the idle thread's NEED_RESCHED
4929 * flag, to make booting more robust.
4930 */
4931 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4932 {
4933 struct rq *rq = cpu_rq(cpu);
4934 unsigned long flags;
4935
4936 __sched_fork(idle);
4937 idle->se.exec_start = sched_clock();
4938
4939 idle->prio = idle->normal_prio = MAX_PRIO;
4940 idle->cpus_allowed = cpumask_of_cpu(cpu);
4941 __set_task_cpu(idle, cpu);
4942
4943 spin_lock_irqsave(&rq->lock, flags);
4944 rq->curr = rq->idle = idle;
4945 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4946 idle->oncpu = 1;
4947 #endif
4948 spin_unlock_irqrestore(&rq->lock, flags);
4949
4950 /* Set the preempt count _outside_ the spinlocks! */
4951 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4952 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4953 #else
4954 task_thread_info(idle)->preempt_count = 0;
4955 #endif
4956 /*
4957 * The idle tasks have their own, simple scheduling class:
4958 */
4959 idle->sched_class = &idle_sched_class;
4960 }
4961
4962 /*
4963 * In a system that switches off the HZ timer nohz_cpu_mask
4964 * indicates which cpus entered this state. This is used
4965 * in the rcu update to wait only for active cpus. For system
4966 * which do not switch off the HZ timer nohz_cpu_mask should
4967 * always be CPU_MASK_NONE.
4968 */
4969 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4970
4971 /*
4972 * Increase the granularity value when there are more CPUs,
4973 * because with more CPUs the 'effective latency' as visible
4974 * to users decreases. But the relationship is not linear,
4975 * so pick a second-best guess by going with the log2 of the
4976 * number of CPUs.
4977 *
4978 * This idea comes from the SD scheduler of Con Kolivas:
4979 */
4980 static inline void sched_init_granularity(void)
4981 {
4982 unsigned int factor = 1 + ilog2(num_online_cpus());
4983 const unsigned long limit = 200000000;
4984
4985 sysctl_sched_min_granularity *= factor;
4986 if (sysctl_sched_min_granularity > limit)
4987 sysctl_sched_min_granularity = limit;
4988
4989 sysctl_sched_latency *= factor;
4990 if (sysctl_sched_latency > limit)
4991 sysctl_sched_latency = limit;
4992
4993 sysctl_sched_wakeup_granularity *= factor;
4994 sysctl_sched_batch_wakeup_granularity *= factor;
4995 }
4996
4997 #ifdef CONFIG_SMP
4998 /*
4999 * This is how migration works:
5000 *
5001 * 1) we queue a struct migration_req structure in the source CPU's
5002 * runqueue and wake up that CPU's migration thread.
5003 * 2) we down() the locked semaphore => thread blocks.
5004 * 3) migration thread wakes up (implicitly it forces the migrated
5005 * thread off the CPU)
5006 * 4) it gets the migration request and checks whether the migrated
5007 * task is still in the wrong runqueue.
5008 * 5) if it's in the wrong runqueue then the migration thread removes
5009 * it and puts it into the right queue.
5010 * 6) migration thread up()s the semaphore.
5011 * 7) we wake up and the migration is done.
5012 */
5013
5014 /*
5015 * Change a given task's CPU affinity. Migrate the thread to a
5016 * proper CPU and schedule it away if the CPU it's executing on
5017 * is removed from the allowed bitmask.
5018 *
5019 * NOTE: the caller must have a valid reference to the task, the
5020 * task must not exit() & deallocate itself prematurely. The
5021 * call is not atomic; no spinlocks may be held.
5022 */
5023 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5024 {
5025 struct migration_req req;
5026 unsigned long flags;
5027 struct rq *rq;
5028 int ret = 0;
5029
5030 rq = task_rq_lock(p, &flags);
5031 if (!cpus_intersects(new_mask, cpu_online_map)) {
5032 ret = -EINVAL;
5033 goto out;
5034 }
5035
5036 if (p->sched_class->set_cpus_allowed)
5037 p->sched_class->set_cpus_allowed(p, &new_mask);
5038 else {
5039 p->cpus_allowed = new_mask;
5040 p->nr_cpus_allowed = cpus_weight(new_mask);
5041 }
5042
5043 /* Can the task run on the task's current CPU? If so, we're done */
5044 if (cpu_isset(task_cpu(p), new_mask))
5045 goto out;
5046
5047 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5048 /* Need help from migration thread: drop lock and wait. */
5049 task_rq_unlock(rq, &flags);
5050 wake_up_process(rq->migration_thread);
5051 wait_for_completion(&req.done);
5052 tlb_migrate_finish(p->mm);
5053 return 0;
5054 }
5055 out:
5056 task_rq_unlock(rq, &flags);
5057
5058 return ret;
5059 }
5060 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5061
5062 /*
5063 * Move (not current) task off this cpu, onto dest cpu. We're doing
5064 * this because either it can't run here any more (set_cpus_allowed()
5065 * away from this CPU, or CPU going down), or because we're
5066 * attempting to rebalance this task on exec (sched_exec).
5067 *
5068 * So we race with normal scheduler movements, but that's OK, as long
5069 * as the task is no longer on this CPU.
5070 *
5071 * Returns non-zero if task was successfully migrated.
5072 */
5073 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5074 {
5075 struct rq *rq_dest, *rq_src;
5076 int ret = 0, on_rq;
5077
5078 if (unlikely(cpu_is_offline(dest_cpu)))
5079 return ret;
5080
5081 rq_src = cpu_rq(src_cpu);
5082 rq_dest = cpu_rq(dest_cpu);
5083
5084 double_rq_lock(rq_src, rq_dest);
5085 /* Already moved. */
5086 if (task_cpu(p) != src_cpu)
5087 goto out;
5088 /* Affinity changed (again). */
5089 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5090 goto out;
5091
5092 on_rq = p->se.on_rq;
5093 if (on_rq)
5094 deactivate_task(rq_src, p, 0);
5095
5096 set_task_cpu(p, dest_cpu);
5097 if (on_rq) {
5098 activate_task(rq_dest, p, 0);
5099 check_preempt_curr(rq_dest, p);
5100 }
5101 ret = 1;
5102 out:
5103 double_rq_unlock(rq_src, rq_dest);
5104 return ret;
5105 }
5106
5107 /*
5108 * migration_thread - this is a highprio system thread that performs
5109 * thread migration by bumping thread off CPU then 'pushing' onto
5110 * another runqueue.
5111 */
5112 static int migration_thread(void *data)
5113 {
5114 int cpu = (long)data;
5115 struct rq *rq;
5116
5117 rq = cpu_rq(cpu);
5118 BUG_ON(rq->migration_thread != current);
5119
5120 set_current_state(TASK_INTERRUPTIBLE);
5121 while (!kthread_should_stop()) {
5122 struct migration_req *req;
5123 struct list_head *head;
5124
5125 spin_lock_irq(&rq->lock);
5126
5127 if (cpu_is_offline(cpu)) {
5128 spin_unlock_irq(&rq->lock);
5129 goto wait_to_die;
5130 }
5131
5132 if (rq->active_balance) {
5133 active_load_balance(rq, cpu);
5134 rq->active_balance = 0;
5135 }
5136
5137 head = &rq->migration_queue;
5138
5139 if (list_empty(head)) {
5140 spin_unlock_irq(&rq->lock);
5141 schedule();
5142 set_current_state(TASK_INTERRUPTIBLE);
5143 continue;
5144 }
5145 req = list_entry(head->next, struct migration_req, list);
5146 list_del_init(head->next);
5147
5148 spin_unlock(&rq->lock);
5149 __migrate_task(req->task, cpu, req->dest_cpu);
5150 local_irq_enable();
5151
5152 complete(&req->done);
5153 }
5154 __set_current_state(TASK_RUNNING);
5155 return 0;
5156
5157 wait_to_die:
5158 /* Wait for kthread_stop */
5159 set_current_state(TASK_INTERRUPTIBLE);
5160 while (!kthread_should_stop()) {
5161 schedule();
5162 set_current_state(TASK_INTERRUPTIBLE);
5163 }
5164 __set_current_state(TASK_RUNNING);
5165 return 0;
5166 }
5167
5168 #ifdef CONFIG_HOTPLUG_CPU
5169
5170 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5171 {
5172 int ret;
5173
5174 local_irq_disable();
5175 ret = __migrate_task(p, src_cpu, dest_cpu);
5176 local_irq_enable();
5177 return ret;
5178 }
5179
5180 /*
5181 * Figure out where task on dead CPU should go, use force if necessary.
5182 * NOTE: interrupts should be disabled by the caller
5183 */
5184 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5185 {
5186 unsigned long flags;
5187 cpumask_t mask;
5188 struct rq *rq;
5189 int dest_cpu;
5190
5191 do {
5192 /* On same node? */
5193 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5194 cpus_and(mask, mask, p->cpus_allowed);
5195 dest_cpu = any_online_cpu(mask);
5196
5197 /* On any allowed CPU? */
5198 if (dest_cpu == NR_CPUS)
5199 dest_cpu = any_online_cpu(p->cpus_allowed);
5200
5201 /* No more Mr. Nice Guy. */
5202 if (dest_cpu == NR_CPUS) {
5203 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5204 /*
5205 * Try to stay on the same cpuset, where the
5206 * current cpuset may be a subset of all cpus.
5207 * The cpuset_cpus_allowed_locked() variant of
5208 * cpuset_cpus_allowed() will not block. It must be
5209 * called within calls to cpuset_lock/cpuset_unlock.
5210 */
5211 rq = task_rq_lock(p, &flags);
5212 p->cpus_allowed = cpus_allowed;
5213 dest_cpu = any_online_cpu(p->cpus_allowed);
5214 task_rq_unlock(rq, &flags);
5215
5216 /*
5217 * Don't tell them about moving exiting tasks or
5218 * kernel threads (both mm NULL), since they never
5219 * leave kernel.
5220 */
5221 if (p->mm && printk_ratelimit()) {
5222 printk(KERN_INFO "process %d (%s) no "
5223 "longer affine to cpu%d\n",
5224 task_pid_nr(p), p->comm, dead_cpu);
5225 }
5226 }
5227 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5228 }
5229
5230 /*
5231 * While a dead CPU has no uninterruptible tasks queued at this point,
5232 * it might still have a nonzero ->nr_uninterruptible counter, because
5233 * for performance reasons the counter is not stricly tracking tasks to
5234 * their home CPUs. So we just add the counter to another CPU's counter,
5235 * to keep the global sum constant after CPU-down:
5236 */
5237 static void migrate_nr_uninterruptible(struct rq *rq_src)
5238 {
5239 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5240 unsigned long flags;
5241
5242 local_irq_save(flags);
5243 double_rq_lock(rq_src, rq_dest);
5244 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5245 rq_src->nr_uninterruptible = 0;
5246 double_rq_unlock(rq_src, rq_dest);
5247 local_irq_restore(flags);
5248 }
5249
5250 /* Run through task list and migrate tasks from the dead cpu. */
5251 static void migrate_live_tasks(int src_cpu)
5252 {
5253 struct task_struct *p, *t;
5254
5255 read_lock(&tasklist_lock);
5256
5257 do_each_thread(t, p) {
5258 if (p == current)
5259 continue;
5260
5261 if (task_cpu(p) == src_cpu)
5262 move_task_off_dead_cpu(src_cpu, p);
5263 } while_each_thread(t, p);
5264
5265 read_unlock(&tasklist_lock);
5266 }
5267
5268 /*
5269 * Schedules idle task to be the next runnable task on current CPU.
5270 * It does so by boosting its priority to highest possible.
5271 * Used by CPU offline code.
5272 */
5273 void sched_idle_next(void)
5274 {
5275 int this_cpu = smp_processor_id();
5276 struct rq *rq = cpu_rq(this_cpu);
5277 struct task_struct *p = rq->idle;
5278 unsigned long flags;
5279
5280 /* cpu has to be offline */
5281 BUG_ON(cpu_online(this_cpu));
5282
5283 /*
5284 * Strictly not necessary since rest of the CPUs are stopped by now
5285 * and interrupts disabled on the current cpu.
5286 */
5287 spin_lock_irqsave(&rq->lock, flags);
5288
5289 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5290
5291 update_rq_clock(rq);
5292 activate_task(rq, p, 0);
5293
5294 spin_unlock_irqrestore(&rq->lock, flags);
5295 }
5296
5297 /*
5298 * Ensures that the idle task is using init_mm right before its cpu goes
5299 * offline.
5300 */
5301 void idle_task_exit(void)
5302 {
5303 struct mm_struct *mm = current->active_mm;
5304
5305 BUG_ON(cpu_online(smp_processor_id()));
5306
5307 if (mm != &init_mm)
5308 switch_mm(mm, &init_mm, current);
5309 mmdrop(mm);
5310 }
5311
5312 /* called under rq->lock with disabled interrupts */
5313 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5314 {
5315 struct rq *rq = cpu_rq(dead_cpu);
5316
5317 /* Must be exiting, otherwise would be on tasklist. */
5318 BUG_ON(!p->exit_state);
5319
5320 /* Cannot have done final schedule yet: would have vanished. */
5321 BUG_ON(p->state == TASK_DEAD);
5322
5323 get_task_struct(p);
5324
5325 /*
5326 * Drop lock around migration; if someone else moves it,
5327 * that's OK. No task can be added to this CPU, so iteration is
5328 * fine.
5329 */
5330 spin_unlock_irq(&rq->lock);
5331 move_task_off_dead_cpu(dead_cpu, p);
5332 spin_lock_irq(&rq->lock);
5333
5334 put_task_struct(p);
5335 }
5336
5337 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5338 static void migrate_dead_tasks(unsigned int dead_cpu)
5339 {
5340 struct rq *rq = cpu_rq(dead_cpu);
5341 struct task_struct *next;
5342
5343 for ( ; ; ) {
5344 if (!rq->nr_running)
5345 break;
5346 update_rq_clock(rq);
5347 next = pick_next_task(rq, rq->curr);
5348 if (!next)
5349 break;
5350 migrate_dead(dead_cpu, next);
5351
5352 }
5353 }
5354 #endif /* CONFIG_HOTPLUG_CPU */
5355
5356 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5357
5358 static struct ctl_table sd_ctl_dir[] = {
5359 {
5360 .procname = "sched_domain",
5361 .mode = 0555,
5362 },
5363 {0, },
5364 };
5365
5366 static struct ctl_table sd_ctl_root[] = {
5367 {
5368 .ctl_name = CTL_KERN,
5369 .procname = "kernel",
5370 .mode = 0555,
5371 .child = sd_ctl_dir,
5372 },
5373 {0, },
5374 };
5375
5376 static struct ctl_table *sd_alloc_ctl_entry(int n)
5377 {
5378 struct ctl_table *entry =
5379 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5380
5381 return entry;
5382 }
5383
5384 static void sd_free_ctl_entry(struct ctl_table **tablep)
5385 {
5386 struct ctl_table *entry;
5387
5388 /*
5389 * In the intermediate directories, both the child directory and
5390 * procname are dynamically allocated and could fail but the mode
5391 * will always be set. In the lowest directory the names are
5392 * static strings and all have proc handlers.
5393 */
5394 for (entry = *tablep; entry->mode; entry++) {
5395 if (entry->child)
5396 sd_free_ctl_entry(&entry->child);
5397 if (entry->proc_handler == NULL)
5398 kfree(entry->procname);
5399 }
5400
5401 kfree(*tablep);
5402 *tablep = NULL;
5403 }
5404
5405 static void
5406 set_table_entry(struct ctl_table *entry,
5407 const char *procname, void *data, int maxlen,
5408 mode_t mode, proc_handler *proc_handler)
5409 {
5410 entry->procname = procname;
5411 entry->data = data;
5412 entry->maxlen = maxlen;
5413 entry->mode = mode;
5414 entry->proc_handler = proc_handler;
5415 }
5416
5417 static struct ctl_table *
5418 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5419 {
5420 struct ctl_table *table = sd_alloc_ctl_entry(12);
5421
5422 if (table == NULL)
5423 return NULL;
5424
5425 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5426 sizeof(long), 0644, proc_doulongvec_minmax);
5427 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5428 sizeof(long), 0644, proc_doulongvec_minmax);
5429 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5430 sizeof(int), 0644, proc_dointvec_minmax);
5431 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5432 sizeof(int), 0644, proc_dointvec_minmax);
5433 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5434 sizeof(int), 0644, proc_dointvec_minmax);
5435 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5436 sizeof(int), 0644, proc_dointvec_minmax);
5437 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5438 sizeof(int), 0644, proc_dointvec_minmax);
5439 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5440 sizeof(int), 0644, proc_dointvec_minmax);
5441 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5442 sizeof(int), 0644, proc_dointvec_minmax);
5443 set_table_entry(&table[9], "cache_nice_tries",
5444 &sd->cache_nice_tries,
5445 sizeof(int), 0644, proc_dointvec_minmax);
5446 set_table_entry(&table[10], "flags", &sd->flags,
5447 sizeof(int), 0644, proc_dointvec_minmax);
5448 /* &table[11] is terminator */
5449
5450 return table;
5451 }
5452
5453 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5454 {
5455 struct ctl_table *entry, *table;
5456 struct sched_domain *sd;
5457 int domain_num = 0, i;
5458 char buf[32];
5459
5460 for_each_domain(cpu, sd)
5461 domain_num++;
5462 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5463 if (table == NULL)
5464 return NULL;
5465
5466 i = 0;
5467 for_each_domain(cpu, sd) {
5468 snprintf(buf, 32, "domain%d", i);
5469 entry->procname = kstrdup(buf, GFP_KERNEL);
5470 entry->mode = 0555;
5471 entry->child = sd_alloc_ctl_domain_table(sd);
5472 entry++;
5473 i++;
5474 }
5475 return table;
5476 }
5477
5478 static struct ctl_table_header *sd_sysctl_header;
5479 static void register_sched_domain_sysctl(void)
5480 {
5481 int i, cpu_num = num_online_cpus();
5482 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5483 char buf[32];
5484
5485 WARN_ON(sd_ctl_dir[0].child);
5486 sd_ctl_dir[0].child = entry;
5487
5488 if (entry == NULL)
5489 return;
5490
5491 for_each_online_cpu(i) {
5492 snprintf(buf, 32, "cpu%d", i);
5493 entry->procname = kstrdup(buf, GFP_KERNEL);
5494 entry->mode = 0555;
5495 entry->child = sd_alloc_ctl_cpu_table(i);
5496 entry++;
5497 }
5498
5499 WARN_ON(sd_sysctl_header);
5500 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5501 }
5502
5503 /* may be called multiple times per register */
5504 static void unregister_sched_domain_sysctl(void)
5505 {
5506 if (sd_sysctl_header)
5507 unregister_sysctl_table(sd_sysctl_header);
5508 sd_sysctl_header = NULL;
5509 if (sd_ctl_dir[0].child)
5510 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5511 }
5512 #else
5513 static void register_sched_domain_sysctl(void)
5514 {
5515 }
5516 static void unregister_sched_domain_sysctl(void)
5517 {
5518 }
5519 #endif
5520
5521 /*
5522 * migration_call - callback that gets triggered when a CPU is added.
5523 * Here we can start up the necessary migration thread for the new CPU.
5524 */
5525 static int __cpuinit
5526 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5527 {
5528 struct task_struct *p;
5529 int cpu = (long)hcpu;
5530 unsigned long flags;
5531 struct rq *rq;
5532
5533 switch (action) {
5534
5535 case CPU_UP_PREPARE:
5536 case CPU_UP_PREPARE_FROZEN:
5537 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5538 if (IS_ERR(p))
5539 return NOTIFY_BAD;
5540 kthread_bind(p, cpu);
5541 /* Must be high prio: stop_machine expects to yield to it. */
5542 rq = task_rq_lock(p, &flags);
5543 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5544 task_rq_unlock(rq, &flags);
5545 cpu_rq(cpu)->migration_thread = p;
5546 break;
5547
5548 case CPU_ONLINE:
5549 case CPU_ONLINE_FROZEN:
5550 /* Strictly unnecessary, as first user will wake it. */
5551 wake_up_process(cpu_rq(cpu)->migration_thread);
5552 break;
5553
5554 #ifdef CONFIG_HOTPLUG_CPU
5555 case CPU_UP_CANCELED:
5556 case CPU_UP_CANCELED_FROZEN:
5557 if (!cpu_rq(cpu)->migration_thread)
5558 break;
5559 /* Unbind it from offline cpu so it can run. Fall thru. */
5560 kthread_bind(cpu_rq(cpu)->migration_thread,
5561 any_online_cpu(cpu_online_map));
5562 kthread_stop(cpu_rq(cpu)->migration_thread);
5563 cpu_rq(cpu)->migration_thread = NULL;
5564 break;
5565
5566 case CPU_DEAD:
5567 case CPU_DEAD_FROZEN:
5568 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5569 migrate_live_tasks(cpu);
5570 rq = cpu_rq(cpu);
5571 kthread_stop(rq->migration_thread);
5572 rq->migration_thread = NULL;
5573 /* Idle task back to normal (off runqueue, low prio) */
5574 spin_lock_irq(&rq->lock);
5575 update_rq_clock(rq);
5576 deactivate_task(rq, rq->idle, 0);
5577 rq->idle->static_prio = MAX_PRIO;
5578 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5579 rq->idle->sched_class = &idle_sched_class;
5580 migrate_dead_tasks(cpu);
5581 spin_unlock_irq(&rq->lock);
5582 cpuset_unlock();
5583 migrate_nr_uninterruptible(rq);
5584 BUG_ON(rq->nr_running != 0);
5585
5586 /*
5587 * No need to migrate the tasks: it was best-effort if
5588 * they didn't take sched_hotcpu_mutex. Just wake up
5589 * the requestors.
5590 */
5591 spin_lock_irq(&rq->lock);
5592 while (!list_empty(&rq->migration_queue)) {
5593 struct migration_req *req;
5594
5595 req = list_entry(rq->migration_queue.next,
5596 struct migration_req, list);
5597 list_del_init(&req->list);
5598 complete(&req->done);
5599 }
5600 spin_unlock_irq(&rq->lock);
5601 break;
5602 #endif
5603 }
5604 return NOTIFY_OK;
5605 }
5606
5607 /* Register at highest priority so that task migration (migrate_all_tasks)
5608 * happens before everything else.
5609 */
5610 static struct notifier_block __cpuinitdata migration_notifier = {
5611 .notifier_call = migration_call,
5612 .priority = 10
5613 };
5614
5615 void __init migration_init(void)
5616 {
5617 void *cpu = (void *)(long)smp_processor_id();
5618 int err;
5619
5620 /* Start one for the boot CPU: */
5621 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5622 BUG_ON(err == NOTIFY_BAD);
5623 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5624 register_cpu_notifier(&migration_notifier);
5625 }
5626 #endif
5627
5628 #ifdef CONFIG_SMP
5629
5630 /* Number of possible processor ids */
5631 int nr_cpu_ids __read_mostly = NR_CPUS;
5632 EXPORT_SYMBOL(nr_cpu_ids);
5633
5634 #ifdef CONFIG_SCHED_DEBUG
5635
5636 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5637 {
5638 struct sched_group *group = sd->groups;
5639 cpumask_t groupmask;
5640 char str[NR_CPUS];
5641
5642 cpumask_scnprintf(str, NR_CPUS, sd->span);
5643 cpus_clear(groupmask);
5644
5645 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5646
5647 if (!(sd->flags & SD_LOAD_BALANCE)) {
5648 printk("does not load-balance\n");
5649 if (sd->parent)
5650 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5651 " has parent");
5652 return -1;
5653 }
5654
5655 printk(KERN_CONT "span %s\n", str);
5656
5657 if (!cpu_isset(cpu, sd->span)) {
5658 printk(KERN_ERR "ERROR: domain->span does not contain "
5659 "CPU%d\n", cpu);
5660 }
5661 if (!cpu_isset(cpu, group->cpumask)) {
5662 printk(KERN_ERR "ERROR: domain->groups does not contain"
5663 " CPU%d\n", cpu);
5664 }
5665
5666 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5667 do {
5668 if (!group) {
5669 printk("\n");
5670 printk(KERN_ERR "ERROR: group is NULL\n");
5671 break;
5672 }
5673
5674 if (!group->__cpu_power) {
5675 printk(KERN_CONT "\n");
5676 printk(KERN_ERR "ERROR: domain->cpu_power not "
5677 "set\n");
5678 break;
5679 }
5680
5681 if (!cpus_weight(group->cpumask)) {
5682 printk(KERN_CONT "\n");
5683 printk(KERN_ERR "ERROR: empty group\n");
5684 break;
5685 }
5686
5687 if (cpus_intersects(groupmask, group->cpumask)) {
5688 printk(KERN_CONT "\n");
5689 printk(KERN_ERR "ERROR: repeated CPUs\n");
5690 break;
5691 }
5692
5693 cpus_or(groupmask, groupmask, group->cpumask);
5694
5695 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5696 printk(KERN_CONT " %s", str);
5697
5698 group = group->next;
5699 } while (group != sd->groups);
5700 printk(KERN_CONT "\n");
5701
5702 if (!cpus_equal(sd->span, groupmask))
5703 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5704
5705 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5706 printk(KERN_ERR "ERROR: parent span is not a superset "
5707 "of domain->span\n");
5708 return 0;
5709 }
5710
5711 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5712 {
5713 int level = 0;
5714
5715 if (!sd) {
5716 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5717 return;
5718 }
5719
5720 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5721
5722 for (;;) {
5723 if (sched_domain_debug_one(sd, cpu, level))
5724 break;
5725 level++;
5726 sd = sd->parent;
5727 if (!sd)
5728 break;
5729 }
5730 }
5731 #else
5732 # define sched_domain_debug(sd, cpu) do { } while (0)
5733 #endif
5734
5735 static int sd_degenerate(struct sched_domain *sd)
5736 {
5737 if (cpus_weight(sd->span) == 1)
5738 return 1;
5739
5740 /* Following flags need at least 2 groups */
5741 if (sd->flags & (SD_LOAD_BALANCE |
5742 SD_BALANCE_NEWIDLE |
5743 SD_BALANCE_FORK |
5744 SD_BALANCE_EXEC |
5745 SD_SHARE_CPUPOWER |
5746 SD_SHARE_PKG_RESOURCES)) {
5747 if (sd->groups != sd->groups->next)
5748 return 0;
5749 }
5750
5751 /* Following flags don't use groups */
5752 if (sd->flags & (SD_WAKE_IDLE |
5753 SD_WAKE_AFFINE |
5754 SD_WAKE_BALANCE))
5755 return 0;
5756
5757 return 1;
5758 }
5759
5760 static int
5761 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5762 {
5763 unsigned long cflags = sd->flags, pflags = parent->flags;
5764
5765 if (sd_degenerate(parent))
5766 return 1;
5767
5768 if (!cpus_equal(sd->span, parent->span))
5769 return 0;
5770
5771 /* Does parent contain flags not in child? */
5772 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5773 if (cflags & SD_WAKE_AFFINE)
5774 pflags &= ~SD_WAKE_BALANCE;
5775 /* Flags needing groups don't count if only 1 group in parent */
5776 if (parent->groups == parent->groups->next) {
5777 pflags &= ~(SD_LOAD_BALANCE |
5778 SD_BALANCE_NEWIDLE |
5779 SD_BALANCE_FORK |
5780 SD_BALANCE_EXEC |
5781 SD_SHARE_CPUPOWER |
5782 SD_SHARE_PKG_RESOURCES);
5783 }
5784 if (~cflags & pflags)
5785 return 0;
5786
5787 return 1;
5788 }
5789
5790 /*
5791 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5792 * hold the hotplug lock.
5793 */
5794 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5795 {
5796 struct rq *rq = cpu_rq(cpu);
5797 struct sched_domain *tmp;
5798
5799 /* Remove the sched domains which do not contribute to scheduling. */
5800 for (tmp = sd; tmp; tmp = tmp->parent) {
5801 struct sched_domain *parent = tmp->parent;
5802 if (!parent)
5803 break;
5804 if (sd_parent_degenerate(tmp, parent)) {
5805 tmp->parent = parent->parent;
5806 if (parent->parent)
5807 parent->parent->child = tmp;
5808 }
5809 }
5810
5811 if (sd && sd_degenerate(sd)) {
5812 sd = sd->parent;
5813 if (sd)
5814 sd->child = NULL;
5815 }
5816
5817 sched_domain_debug(sd, cpu);
5818
5819 rcu_assign_pointer(rq->sd, sd);
5820 }
5821
5822 /* cpus with isolated domains */
5823 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5824
5825 /* Setup the mask of cpus configured for isolated domains */
5826 static int __init isolated_cpu_setup(char *str)
5827 {
5828 int ints[NR_CPUS], i;
5829
5830 str = get_options(str, ARRAY_SIZE(ints), ints);
5831 cpus_clear(cpu_isolated_map);
5832 for (i = 1; i <= ints[0]; i++)
5833 if (ints[i] < NR_CPUS)
5834 cpu_set(ints[i], cpu_isolated_map);
5835 return 1;
5836 }
5837
5838 __setup("isolcpus=", isolated_cpu_setup);
5839
5840 /*
5841 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5842 * to a function which identifies what group(along with sched group) a CPU
5843 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5844 * (due to the fact that we keep track of groups covered with a cpumask_t).
5845 *
5846 * init_sched_build_groups will build a circular linked list of the groups
5847 * covered by the given span, and will set each group's ->cpumask correctly,
5848 * and ->cpu_power to 0.
5849 */
5850 static void
5851 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5852 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5853 struct sched_group **sg))
5854 {
5855 struct sched_group *first = NULL, *last = NULL;
5856 cpumask_t covered = CPU_MASK_NONE;
5857 int i;
5858
5859 for_each_cpu_mask(i, span) {
5860 struct sched_group *sg;
5861 int group = group_fn(i, cpu_map, &sg);
5862 int j;
5863
5864 if (cpu_isset(i, covered))
5865 continue;
5866
5867 sg->cpumask = CPU_MASK_NONE;
5868 sg->__cpu_power = 0;
5869
5870 for_each_cpu_mask(j, span) {
5871 if (group_fn(j, cpu_map, NULL) != group)
5872 continue;
5873
5874 cpu_set(j, covered);
5875 cpu_set(j, sg->cpumask);
5876 }
5877 if (!first)
5878 first = sg;
5879 if (last)
5880 last->next = sg;
5881 last = sg;
5882 }
5883 last->next = first;
5884 }
5885
5886 #define SD_NODES_PER_DOMAIN 16
5887
5888 #ifdef CONFIG_NUMA
5889
5890 /**
5891 * find_next_best_node - find the next node to include in a sched_domain
5892 * @node: node whose sched_domain we're building
5893 * @used_nodes: nodes already in the sched_domain
5894 *
5895 * Find the next node to include in a given scheduling domain. Simply
5896 * finds the closest node not already in the @used_nodes map.
5897 *
5898 * Should use nodemask_t.
5899 */
5900 static int find_next_best_node(int node, unsigned long *used_nodes)
5901 {
5902 int i, n, val, min_val, best_node = 0;
5903
5904 min_val = INT_MAX;
5905
5906 for (i = 0; i < MAX_NUMNODES; i++) {
5907 /* Start at @node */
5908 n = (node + i) % MAX_NUMNODES;
5909
5910 if (!nr_cpus_node(n))
5911 continue;
5912
5913 /* Skip already used nodes */
5914 if (test_bit(n, used_nodes))
5915 continue;
5916
5917 /* Simple min distance search */
5918 val = node_distance(node, n);
5919
5920 if (val < min_val) {
5921 min_val = val;
5922 best_node = n;
5923 }
5924 }
5925
5926 set_bit(best_node, used_nodes);
5927 return best_node;
5928 }
5929
5930 /**
5931 * sched_domain_node_span - get a cpumask for a node's sched_domain
5932 * @node: node whose cpumask we're constructing
5933 * @size: number of nodes to include in this span
5934 *
5935 * Given a node, construct a good cpumask for its sched_domain to span. It
5936 * should be one that prevents unnecessary balancing, but also spreads tasks
5937 * out optimally.
5938 */
5939 static cpumask_t sched_domain_node_span(int node)
5940 {
5941 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5942 cpumask_t span, nodemask;
5943 int i;
5944
5945 cpus_clear(span);
5946 bitmap_zero(used_nodes, MAX_NUMNODES);
5947
5948 nodemask = node_to_cpumask(node);
5949 cpus_or(span, span, nodemask);
5950 set_bit(node, used_nodes);
5951
5952 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5953 int next_node = find_next_best_node(node, used_nodes);
5954
5955 nodemask = node_to_cpumask(next_node);
5956 cpus_or(span, span, nodemask);
5957 }
5958
5959 return span;
5960 }
5961 #endif
5962
5963 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5964
5965 /*
5966 * SMT sched-domains:
5967 */
5968 #ifdef CONFIG_SCHED_SMT
5969 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5970 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5971
5972 static int
5973 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
5974 {
5975 if (sg)
5976 *sg = &per_cpu(sched_group_cpus, cpu);
5977 return cpu;
5978 }
5979 #endif
5980
5981 /*
5982 * multi-core sched-domains:
5983 */
5984 #ifdef CONFIG_SCHED_MC
5985 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5986 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5987 #endif
5988
5989 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5990 static int
5991 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
5992 {
5993 int group;
5994 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5995 cpus_and(mask, mask, *cpu_map);
5996 group = first_cpu(mask);
5997 if (sg)
5998 *sg = &per_cpu(sched_group_core, group);
5999 return group;
6000 }
6001 #elif defined(CONFIG_SCHED_MC)
6002 static int
6003 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6004 {
6005 if (sg)
6006 *sg = &per_cpu(sched_group_core, cpu);
6007 return cpu;
6008 }
6009 #endif
6010
6011 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6012 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6013
6014 static int
6015 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6016 {
6017 int group;
6018 #ifdef CONFIG_SCHED_MC
6019 cpumask_t mask = cpu_coregroup_map(cpu);
6020 cpus_and(mask, mask, *cpu_map);
6021 group = first_cpu(mask);
6022 #elif defined(CONFIG_SCHED_SMT)
6023 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6024 cpus_and(mask, mask, *cpu_map);
6025 group = first_cpu(mask);
6026 #else
6027 group = cpu;
6028 #endif
6029 if (sg)
6030 *sg = &per_cpu(sched_group_phys, group);
6031 return group;
6032 }
6033
6034 #ifdef CONFIG_NUMA
6035 /*
6036 * The init_sched_build_groups can't handle what we want to do with node
6037 * groups, so roll our own. Now each node has its own list of groups which
6038 * gets dynamically allocated.
6039 */
6040 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6041 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6042
6043 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6044 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6045
6046 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6047 struct sched_group **sg)
6048 {
6049 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6050 int group;
6051
6052 cpus_and(nodemask, nodemask, *cpu_map);
6053 group = first_cpu(nodemask);
6054
6055 if (sg)
6056 *sg = &per_cpu(sched_group_allnodes, group);
6057 return group;
6058 }
6059
6060 static void init_numa_sched_groups_power(struct sched_group *group_head)
6061 {
6062 struct sched_group *sg = group_head;
6063 int j;
6064
6065 if (!sg)
6066 return;
6067 do {
6068 for_each_cpu_mask(j, sg->cpumask) {
6069 struct sched_domain *sd;
6070
6071 sd = &per_cpu(phys_domains, j);
6072 if (j != first_cpu(sd->groups->cpumask)) {
6073 /*
6074 * Only add "power" once for each
6075 * physical package.
6076 */
6077 continue;
6078 }
6079
6080 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6081 }
6082 sg = sg->next;
6083 } while (sg != group_head);
6084 }
6085 #endif
6086
6087 #ifdef CONFIG_NUMA
6088 /* Free memory allocated for various sched_group structures */
6089 static void free_sched_groups(const cpumask_t *cpu_map)
6090 {
6091 int cpu, i;
6092
6093 for_each_cpu_mask(cpu, *cpu_map) {
6094 struct sched_group **sched_group_nodes
6095 = sched_group_nodes_bycpu[cpu];
6096
6097 if (!sched_group_nodes)
6098 continue;
6099
6100 for (i = 0; i < MAX_NUMNODES; i++) {
6101 cpumask_t nodemask = node_to_cpumask(i);
6102 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6103
6104 cpus_and(nodemask, nodemask, *cpu_map);
6105 if (cpus_empty(nodemask))
6106 continue;
6107
6108 if (sg == NULL)
6109 continue;
6110 sg = sg->next;
6111 next_sg:
6112 oldsg = sg;
6113 sg = sg->next;
6114 kfree(oldsg);
6115 if (oldsg != sched_group_nodes[i])
6116 goto next_sg;
6117 }
6118 kfree(sched_group_nodes);
6119 sched_group_nodes_bycpu[cpu] = NULL;
6120 }
6121 }
6122 #else
6123 static void free_sched_groups(const cpumask_t *cpu_map)
6124 {
6125 }
6126 #endif
6127
6128 /*
6129 * Initialize sched groups cpu_power.
6130 *
6131 * cpu_power indicates the capacity of sched group, which is used while
6132 * distributing the load between different sched groups in a sched domain.
6133 * Typically cpu_power for all the groups in a sched domain will be same unless
6134 * there are asymmetries in the topology. If there are asymmetries, group
6135 * having more cpu_power will pickup more load compared to the group having
6136 * less cpu_power.
6137 *
6138 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6139 * the maximum number of tasks a group can handle in the presence of other idle
6140 * or lightly loaded groups in the same sched domain.
6141 */
6142 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6143 {
6144 struct sched_domain *child;
6145 struct sched_group *group;
6146
6147 WARN_ON(!sd || !sd->groups);
6148
6149 if (cpu != first_cpu(sd->groups->cpumask))
6150 return;
6151
6152 child = sd->child;
6153
6154 sd->groups->__cpu_power = 0;
6155
6156 /*
6157 * For perf policy, if the groups in child domain share resources
6158 * (for example cores sharing some portions of the cache hierarchy
6159 * or SMT), then set this domain groups cpu_power such that each group
6160 * can handle only one task, when there are other idle groups in the
6161 * same sched domain.
6162 */
6163 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6164 (child->flags &
6165 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6166 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6167 return;
6168 }
6169
6170 /*
6171 * add cpu_power of each child group to this groups cpu_power
6172 */
6173 group = child->groups;
6174 do {
6175 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6176 group = group->next;
6177 } while (group != child->groups);
6178 }
6179
6180 /*
6181 * Build sched domains for a given set of cpus and attach the sched domains
6182 * to the individual cpus
6183 */
6184 static int build_sched_domains(const cpumask_t *cpu_map)
6185 {
6186 int i;
6187 #ifdef CONFIG_NUMA
6188 struct sched_group **sched_group_nodes = NULL;
6189 int sd_allnodes = 0;
6190
6191 /*
6192 * Allocate the per-node list of sched groups
6193 */
6194 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6195 GFP_KERNEL);
6196 if (!sched_group_nodes) {
6197 printk(KERN_WARNING "Can not alloc sched group node list\n");
6198 return -ENOMEM;
6199 }
6200 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6201 #endif
6202
6203 /*
6204 * Set up domains for cpus specified by the cpu_map.
6205 */
6206 for_each_cpu_mask(i, *cpu_map) {
6207 struct sched_domain *sd = NULL, *p;
6208 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6209
6210 cpus_and(nodemask, nodemask, *cpu_map);
6211
6212 #ifdef CONFIG_NUMA
6213 if (cpus_weight(*cpu_map) >
6214 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6215 sd = &per_cpu(allnodes_domains, i);
6216 *sd = SD_ALLNODES_INIT;
6217 sd->span = *cpu_map;
6218 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6219 p = sd;
6220 sd_allnodes = 1;
6221 } else
6222 p = NULL;
6223
6224 sd = &per_cpu(node_domains, i);
6225 *sd = SD_NODE_INIT;
6226 sd->span = sched_domain_node_span(cpu_to_node(i));
6227 sd->parent = p;
6228 if (p)
6229 p->child = sd;
6230 cpus_and(sd->span, sd->span, *cpu_map);
6231 #endif
6232
6233 p = sd;
6234 sd = &per_cpu(phys_domains, i);
6235 *sd = SD_CPU_INIT;
6236 sd->span = nodemask;
6237 sd->parent = p;
6238 if (p)
6239 p->child = sd;
6240 cpu_to_phys_group(i, cpu_map, &sd->groups);
6241
6242 #ifdef CONFIG_SCHED_MC
6243 p = sd;
6244 sd = &per_cpu(core_domains, i);
6245 *sd = SD_MC_INIT;
6246 sd->span = cpu_coregroup_map(i);
6247 cpus_and(sd->span, sd->span, *cpu_map);
6248 sd->parent = p;
6249 p->child = sd;
6250 cpu_to_core_group(i, cpu_map, &sd->groups);
6251 #endif
6252
6253 #ifdef CONFIG_SCHED_SMT
6254 p = sd;
6255 sd = &per_cpu(cpu_domains, i);
6256 *sd = SD_SIBLING_INIT;
6257 sd->span = per_cpu(cpu_sibling_map, i);
6258 cpus_and(sd->span, sd->span, *cpu_map);
6259 sd->parent = p;
6260 p->child = sd;
6261 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6262 #endif
6263 }
6264
6265 #ifdef CONFIG_SCHED_SMT
6266 /* Set up CPU (sibling) groups */
6267 for_each_cpu_mask(i, *cpu_map) {
6268 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6269 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6270 if (i != first_cpu(this_sibling_map))
6271 continue;
6272
6273 init_sched_build_groups(this_sibling_map, cpu_map,
6274 &cpu_to_cpu_group);
6275 }
6276 #endif
6277
6278 #ifdef CONFIG_SCHED_MC
6279 /* Set up multi-core groups */
6280 for_each_cpu_mask(i, *cpu_map) {
6281 cpumask_t this_core_map = cpu_coregroup_map(i);
6282 cpus_and(this_core_map, this_core_map, *cpu_map);
6283 if (i != first_cpu(this_core_map))
6284 continue;
6285 init_sched_build_groups(this_core_map, cpu_map,
6286 &cpu_to_core_group);
6287 }
6288 #endif
6289
6290 /* Set up physical groups */
6291 for (i = 0; i < MAX_NUMNODES; i++) {
6292 cpumask_t nodemask = node_to_cpumask(i);
6293
6294 cpus_and(nodemask, nodemask, *cpu_map);
6295 if (cpus_empty(nodemask))
6296 continue;
6297
6298 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6299 }
6300
6301 #ifdef CONFIG_NUMA
6302 /* Set up node groups */
6303 if (sd_allnodes)
6304 init_sched_build_groups(*cpu_map, cpu_map,
6305 &cpu_to_allnodes_group);
6306
6307 for (i = 0; i < MAX_NUMNODES; i++) {
6308 /* Set up node groups */
6309 struct sched_group *sg, *prev;
6310 cpumask_t nodemask = node_to_cpumask(i);
6311 cpumask_t domainspan;
6312 cpumask_t covered = CPU_MASK_NONE;
6313 int j;
6314
6315 cpus_and(nodemask, nodemask, *cpu_map);
6316 if (cpus_empty(nodemask)) {
6317 sched_group_nodes[i] = NULL;
6318 continue;
6319 }
6320
6321 domainspan = sched_domain_node_span(i);
6322 cpus_and(domainspan, domainspan, *cpu_map);
6323
6324 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6325 if (!sg) {
6326 printk(KERN_WARNING "Can not alloc domain group for "
6327 "node %d\n", i);
6328 goto error;
6329 }
6330 sched_group_nodes[i] = sg;
6331 for_each_cpu_mask(j, nodemask) {
6332 struct sched_domain *sd;
6333
6334 sd = &per_cpu(node_domains, j);
6335 sd->groups = sg;
6336 }
6337 sg->__cpu_power = 0;
6338 sg->cpumask = nodemask;
6339 sg->next = sg;
6340 cpus_or(covered, covered, nodemask);
6341 prev = sg;
6342
6343 for (j = 0; j < MAX_NUMNODES; j++) {
6344 cpumask_t tmp, notcovered;
6345 int n = (i + j) % MAX_NUMNODES;
6346
6347 cpus_complement(notcovered, covered);
6348 cpus_and(tmp, notcovered, *cpu_map);
6349 cpus_and(tmp, tmp, domainspan);
6350 if (cpus_empty(tmp))
6351 break;
6352
6353 nodemask = node_to_cpumask(n);
6354 cpus_and(tmp, tmp, nodemask);
6355 if (cpus_empty(tmp))
6356 continue;
6357
6358 sg = kmalloc_node(sizeof(struct sched_group),
6359 GFP_KERNEL, i);
6360 if (!sg) {
6361 printk(KERN_WARNING
6362 "Can not alloc domain group for node %d\n", j);
6363 goto error;
6364 }
6365 sg->__cpu_power = 0;
6366 sg->cpumask = tmp;
6367 sg->next = prev->next;
6368 cpus_or(covered, covered, tmp);
6369 prev->next = sg;
6370 prev = sg;
6371 }
6372 }
6373 #endif
6374
6375 /* Calculate CPU power for physical packages and nodes */
6376 #ifdef CONFIG_SCHED_SMT
6377 for_each_cpu_mask(i, *cpu_map) {
6378 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6379
6380 init_sched_groups_power(i, sd);
6381 }
6382 #endif
6383 #ifdef CONFIG_SCHED_MC
6384 for_each_cpu_mask(i, *cpu_map) {
6385 struct sched_domain *sd = &per_cpu(core_domains, i);
6386
6387 init_sched_groups_power(i, sd);
6388 }
6389 #endif
6390
6391 for_each_cpu_mask(i, *cpu_map) {
6392 struct sched_domain *sd = &per_cpu(phys_domains, i);
6393
6394 init_sched_groups_power(i, sd);
6395 }
6396
6397 #ifdef CONFIG_NUMA
6398 for (i = 0; i < MAX_NUMNODES; i++)
6399 init_numa_sched_groups_power(sched_group_nodes[i]);
6400
6401 if (sd_allnodes) {
6402 struct sched_group *sg;
6403
6404 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6405 init_numa_sched_groups_power(sg);
6406 }
6407 #endif
6408
6409 /* Attach the domains */
6410 for_each_cpu_mask(i, *cpu_map) {
6411 struct sched_domain *sd;
6412 #ifdef CONFIG_SCHED_SMT
6413 sd = &per_cpu(cpu_domains, i);
6414 #elif defined(CONFIG_SCHED_MC)
6415 sd = &per_cpu(core_domains, i);
6416 #else
6417 sd = &per_cpu(phys_domains, i);
6418 #endif
6419 cpu_attach_domain(sd, i);
6420 }
6421
6422 return 0;
6423
6424 #ifdef CONFIG_NUMA
6425 error:
6426 free_sched_groups(cpu_map);
6427 return -ENOMEM;
6428 #endif
6429 }
6430
6431 static cpumask_t *doms_cur; /* current sched domains */
6432 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6433
6434 /*
6435 * Special case: If a kmalloc of a doms_cur partition (array of
6436 * cpumask_t) fails, then fallback to a single sched domain,
6437 * as determined by the single cpumask_t fallback_doms.
6438 */
6439 static cpumask_t fallback_doms;
6440
6441 /*
6442 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6443 * For now this just excludes isolated cpus, but could be used to
6444 * exclude other special cases in the future.
6445 */
6446 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6447 {
6448 int err;
6449
6450 ndoms_cur = 1;
6451 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6452 if (!doms_cur)
6453 doms_cur = &fallback_doms;
6454 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6455 err = build_sched_domains(doms_cur);
6456 register_sched_domain_sysctl();
6457
6458 return err;
6459 }
6460
6461 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6462 {
6463 free_sched_groups(cpu_map);
6464 }
6465
6466 /*
6467 * Detach sched domains from a group of cpus specified in cpu_map
6468 * These cpus will now be attached to the NULL domain
6469 */
6470 static void detach_destroy_domains(const cpumask_t *cpu_map)
6471 {
6472 int i;
6473
6474 unregister_sched_domain_sysctl();
6475
6476 for_each_cpu_mask(i, *cpu_map)
6477 cpu_attach_domain(NULL, i);
6478 synchronize_sched();
6479 arch_destroy_sched_domains(cpu_map);
6480 }
6481
6482 /*
6483 * Partition sched domains as specified by the 'ndoms_new'
6484 * cpumasks in the array doms_new[] of cpumasks. This compares
6485 * doms_new[] to the current sched domain partitioning, doms_cur[].
6486 * It destroys each deleted domain and builds each new domain.
6487 *
6488 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6489 * The masks don't intersect (don't overlap.) We should setup one
6490 * sched domain for each mask. CPUs not in any of the cpumasks will
6491 * not be load balanced. If the same cpumask appears both in the
6492 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6493 * it as it is.
6494 *
6495 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6496 * ownership of it and will kfree it when done with it. If the caller
6497 * failed the kmalloc call, then it can pass in doms_new == NULL,
6498 * and partition_sched_domains() will fallback to the single partition
6499 * 'fallback_doms'.
6500 *
6501 * Call with hotplug lock held
6502 */
6503 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6504 {
6505 int i, j;
6506
6507 lock_doms_cur();
6508
6509 /* always unregister in case we don't destroy any domains */
6510 unregister_sched_domain_sysctl();
6511
6512 if (doms_new == NULL) {
6513 ndoms_new = 1;
6514 doms_new = &fallback_doms;
6515 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6516 }
6517
6518 /* Destroy deleted domains */
6519 for (i = 0; i < ndoms_cur; i++) {
6520 for (j = 0; j < ndoms_new; j++) {
6521 if (cpus_equal(doms_cur[i], doms_new[j]))
6522 goto match1;
6523 }
6524 /* no match - a current sched domain not in new doms_new[] */
6525 detach_destroy_domains(doms_cur + i);
6526 match1:
6527 ;
6528 }
6529
6530 /* Build new domains */
6531 for (i = 0; i < ndoms_new; i++) {
6532 for (j = 0; j < ndoms_cur; j++) {
6533 if (cpus_equal(doms_new[i], doms_cur[j]))
6534 goto match2;
6535 }
6536 /* no match - add a new doms_new */
6537 build_sched_domains(doms_new + i);
6538 match2:
6539 ;
6540 }
6541
6542 /* Remember the new sched domains */
6543 if (doms_cur != &fallback_doms)
6544 kfree(doms_cur);
6545 doms_cur = doms_new;
6546 ndoms_cur = ndoms_new;
6547
6548 register_sched_domain_sysctl();
6549
6550 unlock_doms_cur();
6551 }
6552
6553 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6554 static int arch_reinit_sched_domains(void)
6555 {
6556 int err;
6557
6558 get_online_cpus();
6559 detach_destroy_domains(&cpu_online_map);
6560 err = arch_init_sched_domains(&cpu_online_map);
6561 put_online_cpus();
6562
6563 return err;
6564 }
6565
6566 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6567 {
6568 int ret;
6569
6570 if (buf[0] != '0' && buf[0] != '1')
6571 return -EINVAL;
6572
6573 if (smt)
6574 sched_smt_power_savings = (buf[0] == '1');
6575 else
6576 sched_mc_power_savings = (buf[0] == '1');
6577
6578 ret = arch_reinit_sched_domains();
6579
6580 return ret ? ret : count;
6581 }
6582
6583 #ifdef CONFIG_SCHED_MC
6584 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6585 {
6586 return sprintf(page, "%u\n", sched_mc_power_savings);
6587 }
6588 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6589 const char *buf, size_t count)
6590 {
6591 return sched_power_savings_store(buf, count, 0);
6592 }
6593 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6594 sched_mc_power_savings_store);
6595 #endif
6596
6597 #ifdef CONFIG_SCHED_SMT
6598 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6599 {
6600 return sprintf(page, "%u\n", sched_smt_power_savings);
6601 }
6602 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6603 const char *buf, size_t count)
6604 {
6605 return sched_power_savings_store(buf, count, 1);
6606 }
6607 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6608 sched_smt_power_savings_store);
6609 #endif
6610
6611 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6612 {
6613 int err = 0;
6614
6615 #ifdef CONFIG_SCHED_SMT
6616 if (smt_capable())
6617 err = sysfs_create_file(&cls->kset.kobj,
6618 &attr_sched_smt_power_savings.attr);
6619 #endif
6620 #ifdef CONFIG_SCHED_MC
6621 if (!err && mc_capable())
6622 err = sysfs_create_file(&cls->kset.kobj,
6623 &attr_sched_mc_power_savings.attr);
6624 #endif
6625 return err;
6626 }
6627 #endif
6628
6629 /*
6630 * Force a reinitialization of the sched domains hierarchy. The domains
6631 * and groups cannot be updated in place without racing with the balancing
6632 * code, so we temporarily attach all running cpus to the NULL domain
6633 * which will prevent rebalancing while the sched domains are recalculated.
6634 */
6635 static int update_sched_domains(struct notifier_block *nfb,
6636 unsigned long action, void *hcpu)
6637 {
6638 switch (action) {
6639 case CPU_UP_PREPARE:
6640 case CPU_UP_PREPARE_FROZEN:
6641 case CPU_DOWN_PREPARE:
6642 case CPU_DOWN_PREPARE_FROZEN:
6643 detach_destroy_domains(&cpu_online_map);
6644 return NOTIFY_OK;
6645
6646 case CPU_UP_CANCELED:
6647 case CPU_UP_CANCELED_FROZEN:
6648 case CPU_DOWN_FAILED:
6649 case CPU_DOWN_FAILED_FROZEN:
6650 case CPU_ONLINE:
6651 case CPU_ONLINE_FROZEN:
6652 case CPU_DEAD:
6653 case CPU_DEAD_FROZEN:
6654 /*
6655 * Fall through and re-initialise the domains.
6656 */
6657 break;
6658 default:
6659 return NOTIFY_DONE;
6660 }
6661
6662 /* The hotplug lock is already held by cpu_up/cpu_down */
6663 arch_init_sched_domains(&cpu_online_map);
6664
6665 return NOTIFY_OK;
6666 }
6667
6668 void __init sched_init_smp(void)
6669 {
6670 cpumask_t non_isolated_cpus;
6671
6672 get_online_cpus();
6673 arch_init_sched_domains(&cpu_online_map);
6674 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6675 if (cpus_empty(non_isolated_cpus))
6676 cpu_set(smp_processor_id(), non_isolated_cpus);
6677 put_online_cpus();
6678 /* XXX: Theoretical race here - CPU may be hotplugged now */
6679 hotcpu_notifier(update_sched_domains, 0);
6680
6681 /* Move init over to a non-isolated CPU */
6682 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6683 BUG();
6684 sched_init_granularity();
6685
6686 #ifdef CONFIG_FAIR_GROUP_SCHED
6687 if (nr_cpu_ids == 1)
6688 return;
6689
6690 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
6691 "group_balance");
6692 if (!IS_ERR(lb_monitor_task)) {
6693 lb_monitor_task->flags |= PF_NOFREEZE;
6694 wake_up_process(lb_monitor_task);
6695 } else {
6696 printk(KERN_ERR "Could not create load balance monitor thread"
6697 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
6698 }
6699 #endif
6700 }
6701 #else
6702 void __init sched_init_smp(void)
6703 {
6704 sched_init_granularity();
6705 }
6706 #endif /* CONFIG_SMP */
6707
6708 int in_sched_functions(unsigned long addr)
6709 {
6710 return in_lock_functions(addr) ||
6711 (addr >= (unsigned long)__sched_text_start
6712 && addr < (unsigned long)__sched_text_end);
6713 }
6714
6715 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6716 {
6717 cfs_rq->tasks_timeline = RB_ROOT;
6718 #ifdef CONFIG_FAIR_GROUP_SCHED
6719 cfs_rq->rq = rq;
6720 #endif
6721 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6722 }
6723
6724 void __init sched_init(void)
6725 {
6726 int highest_cpu = 0;
6727 int i, j;
6728
6729 for_each_possible_cpu(i) {
6730 struct rt_prio_array *array;
6731 struct rq *rq;
6732
6733 rq = cpu_rq(i);
6734 spin_lock_init(&rq->lock);
6735 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6736 rq->nr_running = 0;
6737 rq->clock = 1;
6738 init_cfs_rq(&rq->cfs, rq);
6739 #ifdef CONFIG_FAIR_GROUP_SCHED
6740 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6741 {
6742 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6743 struct sched_entity *se =
6744 &per_cpu(init_sched_entity, i);
6745
6746 init_cfs_rq_p[i] = cfs_rq;
6747 init_cfs_rq(cfs_rq, rq);
6748 cfs_rq->tg = &init_task_group;
6749 list_add(&cfs_rq->leaf_cfs_rq_list,
6750 &rq->leaf_cfs_rq_list);
6751
6752 init_sched_entity_p[i] = se;
6753 se->cfs_rq = &rq->cfs;
6754 se->my_q = cfs_rq;
6755 se->load.weight = init_task_group_load;
6756 se->load.inv_weight =
6757 div64_64(1ULL<<32, init_task_group_load);
6758 se->parent = NULL;
6759 }
6760 init_task_group.shares = init_task_group_load;
6761 #endif
6762
6763 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6764 rq->cpu_load[j] = 0;
6765 #ifdef CONFIG_SMP
6766 rq->sd = NULL;
6767 rq->active_balance = 0;
6768 rq->next_balance = jiffies;
6769 rq->push_cpu = 0;
6770 rq->cpu = i;
6771 rq->migration_thread = NULL;
6772 INIT_LIST_HEAD(&rq->migration_queue);
6773 rq->rt.highest_prio = MAX_RT_PRIO;
6774 rq->rt.overloaded = 0;
6775 #endif
6776 atomic_set(&rq->nr_iowait, 0);
6777
6778 array = &rq->rt.active;
6779 for (j = 0; j < MAX_RT_PRIO; j++) {
6780 INIT_LIST_HEAD(array->queue + j);
6781 __clear_bit(j, array->bitmap);
6782 }
6783 highest_cpu = i;
6784 /* delimiter for bitsearch: */
6785 __set_bit(MAX_RT_PRIO, array->bitmap);
6786 }
6787
6788 set_load_weight(&init_task);
6789
6790 #ifdef CONFIG_PREEMPT_NOTIFIERS
6791 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6792 #endif
6793
6794 #ifdef CONFIG_SMP
6795 nr_cpu_ids = highest_cpu + 1;
6796 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6797 #endif
6798
6799 #ifdef CONFIG_RT_MUTEXES
6800 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6801 #endif
6802
6803 /*
6804 * The boot idle thread does lazy MMU switching as well:
6805 */
6806 atomic_inc(&init_mm.mm_count);
6807 enter_lazy_tlb(&init_mm, current);
6808
6809 /*
6810 * Make us the idle thread. Technically, schedule() should not be
6811 * called from this thread, however somewhere below it might be,
6812 * but because we are the idle thread, we just pick up running again
6813 * when this runqueue becomes "idle".
6814 */
6815 init_idle(current, smp_processor_id());
6816 /*
6817 * During early bootup we pretend to be a normal task:
6818 */
6819 current->sched_class = &fair_sched_class;
6820 }
6821
6822 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6823 void __might_sleep(char *file, int line)
6824 {
6825 #ifdef in_atomic
6826 static unsigned long prev_jiffy; /* ratelimiting */
6827
6828 if ((in_atomic() || irqs_disabled()) &&
6829 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6830 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6831 return;
6832 prev_jiffy = jiffies;
6833 printk(KERN_ERR "BUG: sleeping function called from invalid"
6834 " context at %s:%d\n", file, line);
6835 printk("in_atomic():%d, irqs_disabled():%d\n",
6836 in_atomic(), irqs_disabled());
6837 debug_show_held_locks(current);
6838 if (irqs_disabled())
6839 print_irqtrace_events(current);
6840 dump_stack();
6841 }
6842 #endif
6843 }
6844 EXPORT_SYMBOL(__might_sleep);
6845 #endif
6846
6847 #ifdef CONFIG_MAGIC_SYSRQ
6848 static void normalize_task(struct rq *rq, struct task_struct *p)
6849 {
6850 int on_rq;
6851 update_rq_clock(rq);
6852 on_rq = p->se.on_rq;
6853 if (on_rq)
6854 deactivate_task(rq, p, 0);
6855 __setscheduler(rq, p, SCHED_NORMAL, 0);
6856 if (on_rq) {
6857 activate_task(rq, p, 0);
6858 resched_task(rq->curr);
6859 }
6860 }
6861
6862 void normalize_rt_tasks(void)
6863 {
6864 struct task_struct *g, *p;
6865 unsigned long flags;
6866 struct rq *rq;
6867
6868 read_lock_irq(&tasklist_lock);
6869 do_each_thread(g, p) {
6870 /*
6871 * Only normalize user tasks:
6872 */
6873 if (!p->mm)
6874 continue;
6875
6876 p->se.exec_start = 0;
6877 #ifdef CONFIG_SCHEDSTATS
6878 p->se.wait_start = 0;
6879 p->se.sleep_start = 0;
6880 p->se.block_start = 0;
6881 #endif
6882 task_rq(p)->clock = 0;
6883
6884 if (!rt_task(p)) {
6885 /*
6886 * Renice negative nice level userspace
6887 * tasks back to 0:
6888 */
6889 if (TASK_NICE(p) < 0 && p->mm)
6890 set_user_nice(p, 0);
6891 continue;
6892 }
6893
6894 spin_lock_irqsave(&p->pi_lock, flags);
6895 rq = __task_rq_lock(p);
6896
6897 normalize_task(rq, p);
6898
6899 __task_rq_unlock(rq);
6900 spin_unlock_irqrestore(&p->pi_lock, flags);
6901 } while_each_thread(g, p);
6902
6903 read_unlock_irq(&tasklist_lock);
6904 }
6905
6906 #endif /* CONFIG_MAGIC_SYSRQ */
6907
6908 #ifdef CONFIG_IA64
6909 /*
6910 * These functions are only useful for the IA64 MCA handling.
6911 *
6912 * They can only be called when the whole system has been
6913 * stopped - every CPU needs to be quiescent, and no scheduling
6914 * activity can take place. Using them for anything else would
6915 * be a serious bug, and as a result, they aren't even visible
6916 * under any other configuration.
6917 */
6918
6919 /**
6920 * curr_task - return the current task for a given cpu.
6921 * @cpu: the processor in question.
6922 *
6923 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6924 */
6925 struct task_struct *curr_task(int cpu)
6926 {
6927 return cpu_curr(cpu);
6928 }
6929
6930 /**
6931 * set_curr_task - set the current task for a given cpu.
6932 * @cpu: the processor in question.
6933 * @p: the task pointer to set.
6934 *
6935 * Description: This function must only be used when non-maskable interrupts
6936 * are serviced on a separate stack. It allows the architecture to switch the
6937 * notion of the current task on a cpu in a non-blocking manner. This function
6938 * must be called with all CPU's synchronized, and interrupts disabled, the
6939 * and caller must save the original value of the current task (see
6940 * curr_task() above) and restore that value before reenabling interrupts and
6941 * re-starting the system.
6942 *
6943 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6944 */
6945 void set_curr_task(int cpu, struct task_struct *p)
6946 {
6947 cpu_curr(cpu) = p;
6948 }
6949
6950 #endif
6951
6952 #ifdef CONFIG_FAIR_GROUP_SCHED
6953
6954 #ifdef CONFIG_SMP
6955 /*
6956 * distribute shares of all task groups among their schedulable entities,
6957 * to reflect load distrbution across cpus.
6958 */
6959 static int rebalance_shares(struct sched_domain *sd, int this_cpu)
6960 {
6961 struct cfs_rq *cfs_rq;
6962 struct rq *rq = cpu_rq(this_cpu);
6963 cpumask_t sdspan = sd->span;
6964 int balanced = 1;
6965
6966 /* Walk thr' all the task groups that we have */
6967 for_each_leaf_cfs_rq(rq, cfs_rq) {
6968 int i;
6969 unsigned long total_load = 0, total_shares;
6970 struct task_group *tg = cfs_rq->tg;
6971
6972 /* Gather total task load of this group across cpus */
6973 for_each_cpu_mask(i, sdspan)
6974 total_load += tg->cfs_rq[i]->load.weight;
6975
6976 /* Nothing to do if this group has no load */
6977 if (!total_load)
6978 continue;
6979
6980 /*
6981 * tg->shares represents the number of cpu shares the task group
6982 * is eligible to hold on a single cpu. On N cpus, it is
6983 * eligible to hold (N * tg->shares) number of cpu shares.
6984 */
6985 total_shares = tg->shares * cpus_weight(sdspan);
6986
6987 /*
6988 * redistribute total_shares across cpus as per the task load
6989 * distribution.
6990 */
6991 for_each_cpu_mask(i, sdspan) {
6992 unsigned long local_load, local_shares;
6993
6994 local_load = tg->cfs_rq[i]->load.weight;
6995 local_shares = (local_load * total_shares) / total_load;
6996 if (!local_shares)
6997 local_shares = MIN_GROUP_SHARES;
6998 if (local_shares == tg->se[i]->load.weight)
6999 continue;
7000
7001 spin_lock_irq(&cpu_rq(i)->lock);
7002 set_se_shares(tg->se[i], local_shares);
7003 spin_unlock_irq(&cpu_rq(i)->lock);
7004 balanced = 0;
7005 }
7006 }
7007
7008 return balanced;
7009 }
7010
7011 /*
7012 * How frequently should we rebalance_shares() across cpus?
7013 *
7014 * The more frequently we rebalance shares, the more accurate is the fairness
7015 * of cpu bandwidth distribution between task groups. However higher frequency
7016 * also implies increased scheduling overhead.
7017 *
7018 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7019 * consecutive calls to rebalance_shares() in the same sched domain.
7020 *
7021 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7022 * consecutive calls to rebalance_shares() in the same sched domain.
7023 *
7024 * These settings allows for the appropriate tradeoff between accuracy of
7025 * fairness and the associated overhead.
7026 *
7027 */
7028
7029 /* default: 8ms, units: milliseconds */
7030 const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7031
7032 /* default: 128ms, units: milliseconds */
7033 const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7034
7035 /* kernel thread that runs rebalance_shares() periodically */
7036 static int load_balance_monitor(void *unused)
7037 {
7038 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7039 struct sched_param schedparm;
7040 int ret;
7041
7042 /*
7043 * We don't want this thread's execution to be limited by the shares
7044 * assigned to default group (init_task_group). Hence make it run
7045 * as a SCHED_RR RT task at the lowest priority.
7046 */
7047 schedparm.sched_priority = 1;
7048 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7049 if (ret)
7050 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7051 " monitor thread (error = %d) \n", ret);
7052
7053 while (!kthread_should_stop()) {
7054 int i, cpu, balanced = 1;
7055
7056 /* Prevent cpus going down or coming up */
7057 get_online_cpus();
7058 /* lockout changes to doms_cur[] array */
7059 lock_doms_cur();
7060 /*
7061 * Enter a rcu read-side critical section to safely walk rq->sd
7062 * chain on various cpus and to walk task group list
7063 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7064 */
7065 rcu_read_lock();
7066
7067 for (i = 0; i < ndoms_cur; i++) {
7068 cpumask_t cpumap = doms_cur[i];
7069 struct sched_domain *sd = NULL, *sd_prev = NULL;
7070
7071 cpu = first_cpu(cpumap);
7072
7073 /* Find the highest domain at which to balance shares */
7074 for_each_domain(cpu, sd) {
7075 if (!(sd->flags & SD_LOAD_BALANCE))
7076 continue;
7077 sd_prev = sd;
7078 }
7079
7080 sd = sd_prev;
7081 /* sd == NULL? No load balance reqd in this domain */
7082 if (!sd)
7083 continue;
7084
7085 balanced &= rebalance_shares(sd, cpu);
7086 }
7087
7088 rcu_read_unlock();
7089
7090 unlock_doms_cur();
7091 put_online_cpus();
7092
7093 if (!balanced)
7094 timeout = sysctl_sched_min_bal_int_shares;
7095 else if (timeout < sysctl_sched_max_bal_int_shares)
7096 timeout *= 2;
7097
7098 msleep_interruptible(timeout);
7099 }
7100
7101 return 0;
7102 }
7103 #endif /* CONFIG_SMP */
7104
7105 /* allocate runqueue etc for a new task group */
7106 struct task_group *sched_create_group(void)
7107 {
7108 struct task_group *tg;
7109 struct cfs_rq *cfs_rq;
7110 struct sched_entity *se;
7111 struct rq *rq;
7112 int i;
7113
7114 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7115 if (!tg)
7116 return ERR_PTR(-ENOMEM);
7117
7118 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7119 if (!tg->cfs_rq)
7120 goto err;
7121 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7122 if (!tg->se)
7123 goto err;
7124
7125 for_each_possible_cpu(i) {
7126 rq = cpu_rq(i);
7127
7128 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7129 cpu_to_node(i));
7130 if (!cfs_rq)
7131 goto err;
7132
7133 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7134 cpu_to_node(i));
7135 if (!se)
7136 goto err;
7137
7138 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7139 memset(se, 0, sizeof(struct sched_entity));
7140
7141 tg->cfs_rq[i] = cfs_rq;
7142 init_cfs_rq(cfs_rq, rq);
7143 cfs_rq->tg = tg;
7144
7145 tg->se[i] = se;
7146 se->cfs_rq = &rq->cfs;
7147 se->my_q = cfs_rq;
7148 se->load.weight = NICE_0_LOAD;
7149 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7150 se->parent = NULL;
7151 }
7152
7153 tg->shares = NICE_0_LOAD;
7154
7155 lock_task_group_list();
7156 for_each_possible_cpu(i) {
7157 rq = cpu_rq(i);
7158 cfs_rq = tg->cfs_rq[i];
7159 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7160 }
7161 unlock_task_group_list();
7162
7163 return tg;
7164
7165 err:
7166 for_each_possible_cpu(i) {
7167 if (tg->cfs_rq)
7168 kfree(tg->cfs_rq[i]);
7169 if (tg->se)
7170 kfree(tg->se[i]);
7171 }
7172 kfree(tg->cfs_rq);
7173 kfree(tg->se);
7174 kfree(tg);
7175
7176 return ERR_PTR(-ENOMEM);
7177 }
7178
7179 /* rcu callback to free various structures associated with a task group */
7180 static void free_sched_group(struct rcu_head *rhp)
7181 {
7182 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7183 struct cfs_rq *cfs_rq;
7184 struct sched_entity *se;
7185 int i;
7186
7187 /* now it should be safe to free those cfs_rqs */
7188 for_each_possible_cpu(i) {
7189 cfs_rq = tg->cfs_rq[i];
7190 kfree(cfs_rq);
7191
7192 se = tg->se[i];
7193 kfree(se);
7194 }
7195
7196 kfree(tg->cfs_rq);
7197 kfree(tg->se);
7198 kfree(tg);
7199 }
7200
7201 /* Destroy runqueue etc associated with a task group */
7202 void sched_destroy_group(struct task_group *tg)
7203 {
7204 struct cfs_rq *cfs_rq = NULL;
7205 int i;
7206
7207 lock_task_group_list();
7208 for_each_possible_cpu(i) {
7209 cfs_rq = tg->cfs_rq[i];
7210 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7211 }
7212 unlock_task_group_list();
7213
7214 BUG_ON(!cfs_rq);
7215
7216 /* wait for possible concurrent references to cfs_rqs complete */
7217 call_rcu(&tg->rcu, free_sched_group);
7218 }
7219
7220 /* change task's runqueue when it moves between groups.
7221 * The caller of this function should have put the task in its new group
7222 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7223 * reflect its new group.
7224 */
7225 void sched_move_task(struct task_struct *tsk)
7226 {
7227 int on_rq, running;
7228 unsigned long flags;
7229 struct rq *rq;
7230
7231 rq = task_rq_lock(tsk, &flags);
7232
7233 if (tsk->sched_class != &fair_sched_class) {
7234 set_task_cfs_rq(tsk, task_cpu(tsk));
7235 goto done;
7236 }
7237
7238 update_rq_clock(rq);
7239
7240 running = task_current(rq, tsk);
7241 on_rq = tsk->se.on_rq;
7242
7243 if (on_rq) {
7244 dequeue_task(rq, tsk, 0);
7245 if (unlikely(running))
7246 tsk->sched_class->put_prev_task(rq, tsk);
7247 }
7248
7249 set_task_cfs_rq(tsk, task_cpu(tsk));
7250
7251 if (on_rq) {
7252 if (unlikely(running))
7253 tsk->sched_class->set_curr_task(rq);
7254 enqueue_task(rq, tsk, 0);
7255 }
7256
7257 done:
7258 task_rq_unlock(rq, &flags);
7259 }
7260
7261 /* rq->lock to be locked by caller */
7262 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7263 {
7264 struct cfs_rq *cfs_rq = se->cfs_rq;
7265 struct rq *rq = cfs_rq->rq;
7266 int on_rq;
7267
7268 if (!shares)
7269 shares = MIN_GROUP_SHARES;
7270
7271 on_rq = se->on_rq;
7272 if (on_rq) {
7273 dequeue_entity(cfs_rq, se, 0);
7274 dec_cpu_load(rq, se->load.weight);
7275 }
7276
7277 se->load.weight = shares;
7278 se->load.inv_weight = div64_64((1ULL<<32), shares);
7279
7280 if (on_rq) {
7281 enqueue_entity(cfs_rq, se, 0);
7282 inc_cpu_load(rq, se->load.weight);
7283 }
7284 }
7285
7286 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7287 {
7288 int i;
7289 struct cfs_rq *cfs_rq;
7290 struct rq *rq;
7291
7292 lock_task_group_list();
7293 if (tg->shares == shares)
7294 goto done;
7295
7296 if (shares < MIN_GROUP_SHARES)
7297 shares = MIN_GROUP_SHARES;
7298
7299 /*
7300 * Prevent any load balance activity (rebalance_shares,
7301 * load_balance_fair) from referring to this group first,
7302 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7303 */
7304 for_each_possible_cpu(i) {
7305 cfs_rq = tg->cfs_rq[i];
7306 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7307 }
7308
7309 /* wait for any ongoing reference to this group to finish */
7310 synchronize_sched();
7311
7312 /*
7313 * Now we are free to modify the group's share on each cpu
7314 * w/o tripping rebalance_share or load_balance_fair.
7315 */
7316 tg->shares = shares;
7317 for_each_possible_cpu(i) {
7318 spin_lock_irq(&cpu_rq(i)->lock);
7319 set_se_shares(tg->se[i], shares);
7320 spin_unlock_irq(&cpu_rq(i)->lock);
7321 }
7322
7323 /*
7324 * Enable load balance activity on this group, by inserting it back on
7325 * each cpu's rq->leaf_cfs_rq_list.
7326 */
7327 for_each_possible_cpu(i) {
7328 rq = cpu_rq(i);
7329 cfs_rq = tg->cfs_rq[i];
7330 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7331 }
7332 done:
7333 unlock_task_group_list();
7334 return 0;
7335 }
7336
7337 unsigned long sched_group_shares(struct task_group *tg)
7338 {
7339 return tg->shares;
7340 }
7341
7342 #endif /* CONFIG_FAIR_GROUP_SCHED */
7343
7344 #ifdef CONFIG_FAIR_CGROUP_SCHED
7345
7346 /* return corresponding task_group object of a cgroup */
7347 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7348 {
7349 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7350 struct task_group, css);
7351 }
7352
7353 static struct cgroup_subsys_state *
7354 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7355 {
7356 struct task_group *tg;
7357
7358 if (!cgrp->parent) {
7359 /* This is early initialization for the top cgroup */
7360 init_task_group.css.cgroup = cgrp;
7361 return &init_task_group.css;
7362 }
7363
7364 /* we support only 1-level deep hierarchical scheduler atm */
7365 if (cgrp->parent->parent)
7366 return ERR_PTR(-EINVAL);
7367
7368 tg = sched_create_group();
7369 if (IS_ERR(tg))
7370 return ERR_PTR(-ENOMEM);
7371
7372 /* Bind the cgroup to task_group object we just created */
7373 tg->css.cgroup = cgrp;
7374
7375 return &tg->css;
7376 }
7377
7378 static void
7379 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7380 {
7381 struct task_group *tg = cgroup_tg(cgrp);
7382
7383 sched_destroy_group(tg);
7384 }
7385
7386 static int
7387 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7388 struct task_struct *tsk)
7389 {
7390 /* We don't support RT-tasks being in separate groups */
7391 if (tsk->sched_class != &fair_sched_class)
7392 return -EINVAL;
7393
7394 return 0;
7395 }
7396
7397 static void
7398 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7399 struct cgroup *old_cont, struct task_struct *tsk)
7400 {
7401 sched_move_task(tsk);
7402 }
7403
7404 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7405 u64 shareval)
7406 {
7407 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7408 }
7409
7410 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7411 {
7412 struct task_group *tg = cgroup_tg(cgrp);
7413
7414 return (u64) tg->shares;
7415 }
7416
7417 static struct cftype cpu_files[] = {
7418 {
7419 .name = "shares",
7420 .read_uint = cpu_shares_read_uint,
7421 .write_uint = cpu_shares_write_uint,
7422 },
7423 };
7424
7425 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7426 {
7427 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7428 }
7429
7430 struct cgroup_subsys cpu_cgroup_subsys = {
7431 .name = "cpu",
7432 .create = cpu_cgroup_create,
7433 .destroy = cpu_cgroup_destroy,
7434 .can_attach = cpu_cgroup_can_attach,
7435 .attach = cpu_cgroup_attach,
7436 .populate = cpu_cgroup_populate,
7437 .subsys_id = cpu_cgroup_subsys_id,
7438 .early_init = 1,
7439 };
7440
7441 #endif /* CONFIG_FAIR_CGROUP_SCHED */
7442
7443 #ifdef CONFIG_CGROUP_CPUACCT
7444
7445 /*
7446 * CPU accounting code for task groups.
7447 *
7448 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7449 * (balbir@in.ibm.com).
7450 */
7451
7452 /* track cpu usage of a group of tasks */
7453 struct cpuacct {
7454 struct cgroup_subsys_state css;
7455 /* cpuusage holds pointer to a u64-type object on every cpu */
7456 u64 *cpuusage;
7457 };
7458
7459 struct cgroup_subsys cpuacct_subsys;
7460
7461 /* return cpu accounting group corresponding to this container */
7462 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7463 {
7464 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7465 struct cpuacct, css);
7466 }
7467
7468 /* return cpu accounting group to which this task belongs */
7469 static inline struct cpuacct *task_ca(struct task_struct *tsk)
7470 {
7471 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7472 struct cpuacct, css);
7473 }
7474
7475 /* create a new cpu accounting group */
7476 static struct cgroup_subsys_state *cpuacct_create(
7477 struct cgroup_subsys *ss, struct cgroup *cont)
7478 {
7479 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7480
7481 if (!ca)
7482 return ERR_PTR(-ENOMEM);
7483
7484 ca->cpuusage = alloc_percpu(u64);
7485 if (!ca->cpuusage) {
7486 kfree(ca);
7487 return ERR_PTR(-ENOMEM);
7488 }
7489
7490 return &ca->css;
7491 }
7492
7493 /* destroy an existing cpu accounting group */
7494 static void
7495 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7496 {
7497 struct cpuacct *ca = cgroup_ca(cont);
7498
7499 free_percpu(ca->cpuusage);
7500 kfree(ca);
7501 }
7502
7503 /* return total cpu usage (in nanoseconds) of a group */
7504 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7505 {
7506 struct cpuacct *ca = cgroup_ca(cont);
7507 u64 totalcpuusage = 0;
7508 int i;
7509
7510 for_each_possible_cpu(i) {
7511 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7512
7513 /*
7514 * Take rq->lock to make 64-bit addition safe on 32-bit
7515 * platforms.
7516 */
7517 spin_lock_irq(&cpu_rq(i)->lock);
7518 totalcpuusage += *cpuusage;
7519 spin_unlock_irq(&cpu_rq(i)->lock);
7520 }
7521
7522 return totalcpuusage;
7523 }
7524
7525 static struct cftype files[] = {
7526 {
7527 .name = "usage",
7528 .read_uint = cpuusage_read,
7529 },
7530 };
7531
7532 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7533 {
7534 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7535 }
7536
7537 /*
7538 * charge this task's execution time to its accounting group.
7539 *
7540 * called with rq->lock held.
7541 */
7542 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7543 {
7544 struct cpuacct *ca;
7545
7546 if (!cpuacct_subsys.active)
7547 return;
7548
7549 ca = task_ca(tsk);
7550 if (ca) {
7551 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7552
7553 *cpuusage += cputime;
7554 }
7555 }
7556
7557 struct cgroup_subsys cpuacct_subsys = {
7558 .name = "cpuacct",
7559 .create = cpuacct_create,
7560 .destroy = cpuacct_destroy,
7561 .populate = cpuacct_populate,
7562 .subsys_id = cpuacct_subsys_id,
7563 };
7564 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.202304 seconds and 5 git commands to generate.