e00c92d22655da8c80ca4d734d41e43fdadb1f78
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 /*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91 /*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100 /*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
108 /*
109 * These are the 'tuning knobs' of the scheduler:
110 *
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
113 */
114 #define DEF_TIMESLICE (100 * HZ / 1000)
115
116 /*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119 #define RUNTIME_INF ((u64)~0ULL)
120
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
126
127 #ifdef CONFIG_SMP
128 /*
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 */
132 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133 {
134 return reciprocal_divide(load, sg->reciprocal_cpu_power);
135 }
136
137 /*
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
140 */
141 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142 {
143 sg->__cpu_power += val;
144 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145 }
146 #endif
147
148 static inline int rt_policy(int policy)
149 {
150 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
151 return 1;
152 return 0;
153 }
154
155 static inline int task_has_rt_policy(struct task_struct *p)
156 {
157 return rt_policy(p->policy);
158 }
159
160 /*
161 * This is the priority-queue data structure of the RT scheduling class:
162 */
163 struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
166 };
167
168 struct rt_bandwidth {
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
174 };
175
176 static struct rt_bandwidth def_rt_bandwidth;
177
178 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179
180 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181 {
182 struct rt_bandwidth *rt_b =
183 container_of(timer, struct rt_bandwidth, rt_period_timer);
184 ktime_t now;
185 int overrun;
186 int idle = 0;
187
188 for (;;) {
189 now = hrtimer_cb_get_time(timer);
190 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191
192 if (!overrun)
193 break;
194
195 idle = do_sched_rt_period_timer(rt_b, overrun);
196 }
197
198 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
199 }
200
201 static
202 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203 {
204 rt_b->rt_period = ns_to_ktime(period);
205 rt_b->rt_runtime = runtime;
206
207 spin_lock_init(&rt_b->rt_runtime_lock);
208
209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer;
212 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
213 }
214
215 static inline int rt_bandwidth_enabled(void)
216 {
217 return sysctl_sched_rt_runtime >= 0;
218 }
219
220 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
221 {
222 ktime_t now;
223
224 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
225 return;
226
227 if (hrtimer_active(&rt_b->rt_period_timer))
228 return;
229
230 spin_lock(&rt_b->rt_runtime_lock);
231 for (;;) {
232 if (hrtimer_active(&rt_b->rt_period_timer))
233 break;
234
235 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
236 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
237 hrtimer_start_expires(&rt_b->rt_period_timer,
238 HRTIMER_MODE_ABS);
239 }
240 spin_unlock(&rt_b->rt_runtime_lock);
241 }
242
243 #ifdef CONFIG_RT_GROUP_SCHED
244 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
245 {
246 hrtimer_cancel(&rt_b->rt_period_timer);
247 }
248 #endif
249
250 /*
251 * sched_domains_mutex serializes calls to arch_init_sched_domains,
252 * detach_destroy_domains and partition_sched_domains.
253 */
254 static DEFINE_MUTEX(sched_domains_mutex);
255
256 #ifdef CONFIG_GROUP_SCHED
257
258 #include <linux/cgroup.h>
259
260 struct cfs_rq;
261
262 static LIST_HEAD(task_groups);
263
264 /* task group related information */
265 struct task_group {
266 #ifdef CONFIG_CGROUP_SCHED
267 struct cgroup_subsys_state css;
268 #endif
269
270 #ifdef CONFIG_USER_SCHED
271 uid_t uid;
272 #endif
273
274 #ifdef CONFIG_FAIR_GROUP_SCHED
275 /* schedulable entities of this group on each cpu */
276 struct sched_entity **se;
277 /* runqueue "owned" by this group on each cpu */
278 struct cfs_rq **cfs_rq;
279 unsigned long shares;
280 #endif
281
282 #ifdef CONFIG_RT_GROUP_SCHED
283 struct sched_rt_entity **rt_se;
284 struct rt_rq **rt_rq;
285
286 struct rt_bandwidth rt_bandwidth;
287 #endif
288
289 struct rcu_head rcu;
290 struct list_head list;
291
292 struct task_group *parent;
293 struct list_head siblings;
294 struct list_head children;
295 };
296
297 #ifdef CONFIG_USER_SCHED
298
299 /* Helper function to pass uid information to create_sched_user() */
300 void set_tg_uid(struct user_struct *user)
301 {
302 user->tg->uid = user->uid;
303 }
304
305 /*
306 * Root task group.
307 * Every UID task group (including init_task_group aka UID-0) will
308 * be a child to this group.
309 */
310 struct task_group root_task_group;
311
312 #ifdef CONFIG_FAIR_GROUP_SCHED
313 /* Default task group's sched entity on each cpu */
314 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
315 /* Default task group's cfs_rq on each cpu */
316 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
317 #endif /* CONFIG_FAIR_GROUP_SCHED */
318
319 #ifdef CONFIG_RT_GROUP_SCHED
320 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
321 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
322 #endif /* CONFIG_RT_GROUP_SCHED */
323 #else /* !CONFIG_USER_SCHED */
324 #define root_task_group init_task_group
325 #endif /* CONFIG_USER_SCHED */
326
327 /* task_group_lock serializes add/remove of task groups and also changes to
328 * a task group's cpu shares.
329 */
330 static DEFINE_SPINLOCK(task_group_lock);
331
332 #ifdef CONFIG_FAIR_GROUP_SCHED
333 #ifdef CONFIG_USER_SCHED
334 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
335 #else /* !CONFIG_USER_SCHED */
336 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
337 #endif /* CONFIG_USER_SCHED */
338
339 /*
340 * A weight of 0 or 1 can cause arithmetics problems.
341 * A weight of a cfs_rq is the sum of weights of which entities
342 * are queued on this cfs_rq, so a weight of a entity should not be
343 * too large, so as the shares value of a task group.
344 * (The default weight is 1024 - so there's no practical
345 * limitation from this.)
346 */
347 #define MIN_SHARES 2
348 #define MAX_SHARES (1UL << 18)
349
350 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
351 #endif
352
353 /* Default task group.
354 * Every task in system belong to this group at bootup.
355 */
356 struct task_group init_task_group;
357
358 /* return group to which a task belongs */
359 static inline struct task_group *task_group(struct task_struct *p)
360 {
361 struct task_group *tg;
362
363 #ifdef CONFIG_USER_SCHED
364 tg = p->user->tg;
365 #elif defined(CONFIG_CGROUP_SCHED)
366 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
367 struct task_group, css);
368 #else
369 tg = &init_task_group;
370 #endif
371 return tg;
372 }
373
374 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
375 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
376 {
377 #ifdef CONFIG_FAIR_GROUP_SCHED
378 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
379 p->se.parent = task_group(p)->se[cpu];
380 #endif
381
382 #ifdef CONFIG_RT_GROUP_SCHED
383 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
384 p->rt.parent = task_group(p)->rt_se[cpu];
385 #endif
386 }
387
388 #else
389
390 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
391 static inline struct task_group *task_group(struct task_struct *p)
392 {
393 return NULL;
394 }
395
396 #endif /* CONFIG_GROUP_SCHED */
397
398 /* CFS-related fields in a runqueue */
399 struct cfs_rq {
400 struct load_weight load;
401 unsigned long nr_running;
402
403 u64 exec_clock;
404 u64 min_vruntime;
405
406 struct rb_root tasks_timeline;
407 struct rb_node *rb_leftmost;
408
409 struct list_head tasks;
410 struct list_head *balance_iterator;
411
412 /*
413 * 'curr' points to currently running entity on this cfs_rq.
414 * It is set to NULL otherwise (i.e when none are currently running).
415 */
416 struct sched_entity *curr, *next, *last;
417
418 unsigned int nr_spread_over;
419
420 #ifdef CONFIG_FAIR_GROUP_SCHED
421 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
422
423 /*
424 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
425 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
426 * (like users, containers etc.)
427 *
428 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
429 * list is used during load balance.
430 */
431 struct list_head leaf_cfs_rq_list;
432 struct task_group *tg; /* group that "owns" this runqueue */
433
434 #ifdef CONFIG_SMP
435 /*
436 * the part of load.weight contributed by tasks
437 */
438 unsigned long task_weight;
439
440 /*
441 * h_load = weight * f(tg)
442 *
443 * Where f(tg) is the recursive weight fraction assigned to
444 * this group.
445 */
446 unsigned long h_load;
447
448 /*
449 * this cpu's part of tg->shares
450 */
451 unsigned long shares;
452
453 /*
454 * load.weight at the time we set shares
455 */
456 unsigned long rq_weight;
457 #endif
458 #endif
459 };
460
461 /* Real-Time classes' related field in a runqueue: */
462 struct rt_rq {
463 struct rt_prio_array active;
464 unsigned long rt_nr_running;
465 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
466 int highest_prio; /* highest queued rt task prio */
467 #endif
468 #ifdef CONFIG_SMP
469 unsigned long rt_nr_migratory;
470 int overloaded;
471 #endif
472 int rt_throttled;
473 u64 rt_time;
474 u64 rt_runtime;
475 /* Nests inside the rq lock: */
476 spinlock_t rt_runtime_lock;
477
478 #ifdef CONFIG_RT_GROUP_SCHED
479 unsigned long rt_nr_boosted;
480
481 struct rq *rq;
482 struct list_head leaf_rt_rq_list;
483 struct task_group *tg;
484 struct sched_rt_entity *rt_se;
485 #endif
486 };
487
488 #ifdef CONFIG_SMP
489
490 /*
491 * We add the notion of a root-domain which will be used to define per-domain
492 * variables. Each exclusive cpuset essentially defines an island domain by
493 * fully partitioning the member cpus from any other cpuset. Whenever a new
494 * exclusive cpuset is created, we also create and attach a new root-domain
495 * object.
496 *
497 */
498 struct root_domain {
499 atomic_t refcount;
500 cpumask_var_t span;
501 cpumask_var_t online;
502
503 /*
504 * The "RT overload" flag: it gets set if a CPU has more than
505 * one runnable RT task.
506 */
507 cpumask_var_t rto_mask;
508 atomic_t rto_count;
509 #ifdef CONFIG_SMP
510 struct cpupri cpupri;
511 #endif
512 };
513
514 /*
515 * By default the system creates a single root-domain with all cpus as
516 * members (mimicking the global state we have today).
517 */
518 static struct root_domain def_root_domain;
519
520 #endif
521
522 /*
523 * This is the main, per-CPU runqueue data structure.
524 *
525 * Locking rule: those places that want to lock multiple runqueues
526 * (such as the load balancing or the thread migration code), lock
527 * acquire operations must be ordered by ascending &runqueue.
528 */
529 struct rq {
530 /* runqueue lock: */
531 spinlock_t lock;
532
533 /*
534 * nr_running and cpu_load should be in the same cacheline because
535 * remote CPUs use both these fields when doing load calculation.
536 */
537 unsigned long nr_running;
538 #define CPU_LOAD_IDX_MAX 5
539 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
540 unsigned char idle_at_tick;
541 #ifdef CONFIG_NO_HZ
542 unsigned long last_tick_seen;
543 unsigned char in_nohz_recently;
544 #endif
545 /* capture load from *all* tasks on this cpu: */
546 struct load_weight load;
547 unsigned long nr_load_updates;
548 u64 nr_switches;
549
550 struct cfs_rq cfs;
551 struct rt_rq rt;
552
553 #ifdef CONFIG_FAIR_GROUP_SCHED
554 /* list of leaf cfs_rq on this cpu: */
555 struct list_head leaf_cfs_rq_list;
556 #endif
557 #ifdef CONFIG_RT_GROUP_SCHED
558 struct list_head leaf_rt_rq_list;
559 #endif
560
561 /*
562 * This is part of a global counter where only the total sum
563 * over all CPUs matters. A task can increase this counter on
564 * one CPU and if it got migrated afterwards it may decrease
565 * it on another CPU. Always updated under the runqueue lock:
566 */
567 unsigned long nr_uninterruptible;
568
569 struct task_struct *curr, *idle;
570 unsigned long next_balance;
571 struct mm_struct *prev_mm;
572
573 u64 clock;
574
575 atomic_t nr_iowait;
576
577 #ifdef CONFIG_SMP
578 struct root_domain *rd;
579 struct sched_domain *sd;
580
581 /* For active balancing */
582 int active_balance;
583 int push_cpu;
584 /* cpu of this runqueue: */
585 int cpu;
586 int online;
587
588 unsigned long avg_load_per_task;
589
590 struct task_struct *migration_thread;
591 struct list_head migration_queue;
592 #endif
593
594 #ifdef CONFIG_SCHED_HRTICK
595 #ifdef CONFIG_SMP
596 int hrtick_csd_pending;
597 struct call_single_data hrtick_csd;
598 #endif
599 struct hrtimer hrtick_timer;
600 #endif
601
602 #ifdef CONFIG_SCHEDSTATS
603 /* latency stats */
604 struct sched_info rq_sched_info;
605
606 /* sys_sched_yield() stats */
607 unsigned int yld_exp_empty;
608 unsigned int yld_act_empty;
609 unsigned int yld_both_empty;
610 unsigned int yld_count;
611
612 /* schedule() stats */
613 unsigned int sched_switch;
614 unsigned int sched_count;
615 unsigned int sched_goidle;
616
617 /* try_to_wake_up() stats */
618 unsigned int ttwu_count;
619 unsigned int ttwu_local;
620
621 /* BKL stats */
622 unsigned int bkl_count;
623 #endif
624 };
625
626 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
627
628 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
629 {
630 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
631 }
632
633 static inline int cpu_of(struct rq *rq)
634 {
635 #ifdef CONFIG_SMP
636 return rq->cpu;
637 #else
638 return 0;
639 #endif
640 }
641
642 /*
643 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
644 * See detach_destroy_domains: synchronize_sched for details.
645 *
646 * The domain tree of any CPU may only be accessed from within
647 * preempt-disabled sections.
648 */
649 #define for_each_domain(cpu, __sd) \
650 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
651
652 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
653 #define this_rq() (&__get_cpu_var(runqueues))
654 #define task_rq(p) cpu_rq(task_cpu(p))
655 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
656
657 static inline void update_rq_clock(struct rq *rq)
658 {
659 rq->clock = sched_clock_cpu(cpu_of(rq));
660 }
661
662 /*
663 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
664 */
665 #ifdef CONFIG_SCHED_DEBUG
666 # define const_debug __read_mostly
667 #else
668 # define const_debug static const
669 #endif
670
671 /**
672 * runqueue_is_locked
673 *
674 * Returns true if the current cpu runqueue is locked.
675 * This interface allows printk to be called with the runqueue lock
676 * held and know whether or not it is OK to wake up the klogd.
677 */
678 int runqueue_is_locked(void)
679 {
680 int cpu = get_cpu();
681 struct rq *rq = cpu_rq(cpu);
682 int ret;
683
684 ret = spin_is_locked(&rq->lock);
685 put_cpu();
686 return ret;
687 }
688
689 /*
690 * Debugging: various feature bits
691 */
692
693 #define SCHED_FEAT(name, enabled) \
694 __SCHED_FEAT_##name ,
695
696 enum {
697 #include "sched_features.h"
698 };
699
700 #undef SCHED_FEAT
701
702 #define SCHED_FEAT(name, enabled) \
703 (1UL << __SCHED_FEAT_##name) * enabled |
704
705 const_debug unsigned int sysctl_sched_features =
706 #include "sched_features.h"
707 0;
708
709 #undef SCHED_FEAT
710
711 #ifdef CONFIG_SCHED_DEBUG
712 #define SCHED_FEAT(name, enabled) \
713 #name ,
714
715 static __read_mostly char *sched_feat_names[] = {
716 #include "sched_features.h"
717 NULL
718 };
719
720 #undef SCHED_FEAT
721
722 static int sched_feat_show(struct seq_file *m, void *v)
723 {
724 int i;
725
726 for (i = 0; sched_feat_names[i]; i++) {
727 if (!(sysctl_sched_features & (1UL << i)))
728 seq_puts(m, "NO_");
729 seq_printf(m, "%s ", sched_feat_names[i]);
730 }
731 seq_puts(m, "\n");
732
733 return 0;
734 }
735
736 static ssize_t
737 sched_feat_write(struct file *filp, const char __user *ubuf,
738 size_t cnt, loff_t *ppos)
739 {
740 char buf[64];
741 char *cmp = buf;
742 int neg = 0;
743 int i;
744
745 if (cnt > 63)
746 cnt = 63;
747
748 if (copy_from_user(&buf, ubuf, cnt))
749 return -EFAULT;
750
751 buf[cnt] = 0;
752
753 if (strncmp(buf, "NO_", 3) == 0) {
754 neg = 1;
755 cmp += 3;
756 }
757
758 for (i = 0; sched_feat_names[i]; i++) {
759 int len = strlen(sched_feat_names[i]);
760
761 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
762 if (neg)
763 sysctl_sched_features &= ~(1UL << i);
764 else
765 sysctl_sched_features |= (1UL << i);
766 break;
767 }
768 }
769
770 if (!sched_feat_names[i])
771 return -EINVAL;
772
773 filp->f_pos += cnt;
774
775 return cnt;
776 }
777
778 static int sched_feat_open(struct inode *inode, struct file *filp)
779 {
780 return single_open(filp, sched_feat_show, NULL);
781 }
782
783 static struct file_operations sched_feat_fops = {
784 .open = sched_feat_open,
785 .write = sched_feat_write,
786 .read = seq_read,
787 .llseek = seq_lseek,
788 .release = single_release,
789 };
790
791 static __init int sched_init_debug(void)
792 {
793 debugfs_create_file("sched_features", 0644, NULL, NULL,
794 &sched_feat_fops);
795
796 return 0;
797 }
798 late_initcall(sched_init_debug);
799
800 #endif
801
802 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
803
804 /*
805 * Number of tasks to iterate in a single balance run.
806 * Limited because this is done with IRQs disabled.
807 */
808 const_debug unsigned int sysctl_sched_nr_migrate = 32;
809
810 /*
811 * ratelimit for updating the group shares.
812 * default: 0.25ms
813 */
814 unsigned int sysctl_sched_shares_ratelimit = 250000;
815
816 /*
817 * Inject some fuzzyness into changing the per-cpu group shares
818 * this avoids remote rq-locks at the expense of fairness.
819 * default: 4
820 */
821 unsigned int sysctl_sched_shares_thresh = 4;
822
823 /*
824 * period over which we measure -rt task cpu usage in us.
825 * default: 1s
826 */
827 unsigned int sysctl_sched_rt_period = 1000000;
828
829 static __read_mostly int scheduler_running;
830
831 /*
832 * part of the period that we allow rt tasks to run in us.
833 * default: 0.95s
834 */
835 int sysctl_sched_rt_runtime = 950000;
836
837 static inline u64 global_rt_period(void)
838 {
839 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
840 }
841
842 static inline u64 global_rt_runtime(void)
843 {
844 if (sysctl_sched_rt_runtime < 0)
845 return RUNTIME_INF;
846
847 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
848 }
849
850 #ifndef prepare_arch_switch
851 # define prepare_arch_switch(next) do { } while (0)
852 #endif
853 #ifndef finish_arch_switch
854 # define finish_arch_switch(prev) do { } while (0)
855 #endif
856
857 static inline int task_current(struct rq *rq, struct task_struct *p)
858 {
859 return rq->curr == p;
860 }
861
862 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
863 static inline int task_running(struct rq *rq, struct task_struct *p)
864 {
865 return task_current(rq, p);
866 }
867
868 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
869 {
870 }
871
872 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
873 {
874 #ifdef CONFIG_DEBUG_SPINLOCK
875 /* this is a valid case when another task releases the spinlock */
876 rq->lock.owner = current;
877 #endif
878 /*
879 * If we are tracking spinlock dependencies then we have to
880 * fix up the runqueue lock - which gets 'carried over' from
881 * prev into current:
882 */
883 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
884
885 spin_unlock_irq(&rq->lock);
886 }
887
888 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
889 static inline int task_running(struct rq *rq, struct task_struct *p)
890 {
891 #ifdef CONFIG_SMP
892 return p->oncpu;
893 #else
894 return task_current(rq, p);
895 #endif
896 }
897
898 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
899 {
900 #ifdef CONFIG_SMP
901 /*
902 * We can optimise this out completely for !SMP, because the
903 * SMP rebalancing from interrupt is the only thing that cares
904 * here.
905 */
906 next->oncpu = 1;
907 #endif
908 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
909 spin_unlock_irq(&rq->lock);
910 #else
911 spin_unlock(&rq->lock);
912 #endif
913 }
914
915 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
916 {
917 #ifdef CONFIG_SMP
918 /*
919 * After ->oncpu is cleared, the task can be moved to a different CPU.
920 * We must ensure this doesn't happen until the switch is completely
921 * finished.
922 */
923 smp_wmb();
924 prev->oncpu = 0;
925 #endif
926 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
927 local_irq_enable();
928 #endif
929 }
930 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
931
932 /*
933 * __task_rq_lock - lock the runqueue a given task resides on.
934 * Must be called interrupts disabled.
935 */
936 static inline struct rq *__task_rq_lock(struct task_struct *p)
937 __acquires(rq->lock)
938 {
939 for (;;) {
940 struct rq *rq = task_rq(p);
941 spin_lock(&rq->lock);
942 if (likely(rq == task_rq(p)))
943 return rq;
944 spin_unlock(&rq->lock);
945 }
946 }
947
948 /*
949 * task_rq_lock - lock the runqueue a given task resides on and disable
950 * interrupts. Note the ordering: we can safely lookup the task_rq without
951 * explicitly disabling preemption.
952 */
953 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
954 __acquires(rq->lock)
955 {
956 struct rq *rq;
957
958 for (;;) {
959 local_irq_save(*flags);
960 rq = task_rq(p);
961 spin_lock(&rq->lock);
962 if (likely(rq == task_rq(p)))
963 return rq;
964 spin_unlock_irqrestore(&rq->lock, *flags);
965 }
966 }
967
968 void task_rq_unlock_wait(struct task_struct *p)
969 {
970 struct rq *rq = task_rq(p);
971
972 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
973 spin_unlock_wait(&rq->lock);
974 }
975
976 static void __task_rq_unlock(struct rq *rq)
977 __releases(rq->lock)
978 {
979 spin_unlock(&rq->lock);
980 }
981
982 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
983 __releases(rq->lock)
984 {
985 spin_unlock_irqrestore(&rq->lock, *flags);
986 }
987
988 /*
989 * this_rq_lock - lock this runqueue and disable interrupts.
990 */
991 static struct rq *this_rq_lock(void)
992 __acquires(rq->lock)
993 {
994 struct rq *rq;
995
996 local_irq_disable();
997 rq = this_rq();
998 spin_lock(&rq->lock);
999
1000 return rq;
1001 }
1002
1003 #ifdef CONFIG_SCHED_HRTICK
1004 /*
1005 * Use HR-timers to deliver accurate preemption points.
1006 *
1007 * Its all a bit involved since we cannot program an hrt while holding the
1008 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1009 * reschedule event.
1010 *
1011 * When we get rescheduled we reprogram the hrtick_timer outside of the
1012 * rq->lock.
1013 */
1014
1015 /*
1016 * Use hrtick when:
1017 * - enabled by features
1018 * - hrtimer is actually high res
1019 */
1020 static inline int hrtick_enabled(struct rq *rq)
1021 {
1022 if (!sched_feat(HRTICK))
1023 return 0;
1024 if (!cpu_active(cpu_of(rq)))
1025 return 0;
1026 return hrtimer_is_hres_active(&rq->hrtick_timer);
1027 }
1028
1029 static void hrtick_clear(struct rq *rq)
1030 {
1031 if (hrtimer_active(&rq->hrtick_timer))
1032 hrtimer_cancel(&rq->hrtick_timer);
1033 }
1034
1035 /*
1036 * High-resolution timer tick.
1037 * Runs from hardirq context with interrupts disabled.
1038 */
1039 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1040 {
1041 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1042
1043 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1044
1045 spin_lock(&rq->lock);
1046 update_rq_clock(rq);
1047 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1048 spin_unlock(&rq->lock);
1049
1050 return HRTIMER_NORESTART;
1051 }
1052
1053 #ifdef CONFIG_SMP
1054 /*
1055 * called from hardirq (IPI) context
1056 */
1057 static void __hrtick_start(void *arg)
1058 {
1059 struct rq *rq = arg;
1060
1061 spin_lock(&rq->lock);
1062 hrtimer_restart(&rq->hrtick_timer);
1063 rq->hrtick_csd_pending = 0;
1064 spin_unlock(&rq->lock);
1065 }
1066
1067 /*
1068 * Called to set the hrtick timer state.
1069 *
1070 * called with rq->lock held and irqs disabled
1071 */
1072 static void hrtick_start(struct rq *rq, u64 delay)
1073 {
1074 struct hrtimer *timer = &rq->hrtick_timer;
1075 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1076
1077 hrtimer_set_expires(timer, time);
1078
1079 if (rq == this_rq()) {
1080 hrtimer_restart(timer);
1081 } else if (!rq->hrtick_csd_pending) {
1082 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1083 rq->hrtick_csd_pending = 1;
1084 }
1085 }
1086
1087 static int
1088 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1089 {
1090 int cpu = (int)(long)hcpu;
1091
1092 switch (action) {
1093 case CPU_UP_CANCELED:
1094 case CPU_UP_CANCELED_FROZEN:
1095 case CPU_DOWN_PREPARE:
1096 case CPU_DOWN_PREPARE_FROZEN:
1097 case CPU_DEAD:
1098 case CPU_DEAD_FROZEN:
1099 hrtick_clear(cpu_rq(cpu));
1100 return NOTIFY_OK;
1101 }
1102
1103 return NOTIFY_DONE;
1104 }
1105
1106 static __init void init_hrtick(void)
1107 {
1108 hotcpu_notifier(hotplug_hrtick, 0);
1109 }
1110 #else
1111 /*
1112 * Called to set the hrtick timer state.
1113 *
1114 * called with rq->lock held and irqs disabled
1115 */
1116 static void hrtick_start(struct rq *rq, u64 delay)
1117 {
1118 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1119 }
1120
1121 static inline void init_hrtick(void)
1122 {
1123 }
1124 #endif /* CONFIG_SMP */
1125
1126 static void init_rq_hrtick(struct rq *rq)
1127 {
1128 #ifdef CONFIG_SMP
1129 rq->hrtick_csd_pending = 0;
1130
1131 rq->hrtick_csd.flags = 0;
1132 rq->hrtick_csd.func = __hrtick_start;
1133 rq->hrtick_csd.info = rq;
1134 #endif
1135
1136 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1137 rq->hrtick_timer.function = hrtick;
1138 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1139 }
1140 #else /* CONFIG_SCHED_HRTICK */
1141 static inline void hrtick_clear(struct rq *rq)
1142 {
1143 }
1144
1145 static inline void init_rq_hrtick(struct rq *rq)
1146 {
1147 }
1148
1149 static inline void init_hrtick(void)
1150 {
1151 }
1152 #endif /* CONFIG_SCHED_HRTICK */
1153
1154 /*
1155 * resched_task - mark a task 'to be rescheduled now'.
1156 *
1157 * On UP this means the setting of the need_resched flag, on SMP it
1158 * might also involve a cross-CPU call to trigger the scheduler on
1159 * the target CPU.
1160 */
1161 #ifdef CONFIG_SMP
1162
1163 #ifndef tsk_is_polling
1164 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1165 #endif
1166
1167 static void resched_task(struct task_struct *p)
1168 {
1169 int cpu;
1170
1171 assert_spin_locked(&task_rq(p)->lock);
1172
1173 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1174 return;
1175
1176 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1177
1178 cpu = task_cpu(p);
1179 if (cpu == smp_processor_id())
1180 return;
1181
1182 /* NEED_RESCHED must be visible before we test polling */
1183 smp_mb();
1184 if (!tsk_is_polling(p))
1185 smp_send_reschedule(cpu);
1186 }
1187
1188 static void resched_cpu(int cpu)
1189 {
1190 struct rq *rq = cpu_rq(cpu);
1191 unsigned long flags;
1192
1193 if (!spin_trylock_irqsave(&rq->lock, flags))
1194 return;
1195 resched_task(cpu_curr(cpu));
1196 spin_unlock_irqrestore(&rq->lock, flags);
1197 }
1198
1199 #ifdef CONFIG_NO_HZ
1200 /*
1201 * When add_timer_on() enqueues a timer into the timer wheel of an
1202 * idle CPU then this timer might expire before the next timer event
1203 * which is scheduled to wake up that CPU. In case of a completely
1204 * idle system the next event might even be infinite time into the
1205 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1206 * leaves the inner idle loop so the newly added timer is taken into
1207 * account when the CPU goes back to idle and evaluates the timer
1208 * wheel for the next timer event.
1209 */
1210 void wake_up_idle_cpu(int cpu)
1211 {
1212 struct rq *rq = cpu_rq(cpu);
1213
1214 if (cpu == smp_processor_id())
1215 return;
1216
1217 /*
1218 * This is safe, as this function is called with the timer
1219 * wheel base lock of (cpu) held. When the CPU is on the way
1220 * to idle and has not yet set rq->curr to idle then it will
1221 * be serialized on the timer wheel base lock and take the new
1222 * timer into account automatically.
1223 */
1224 if (rq->curr != rq->idle)
1225 return;
1226
1227 /*
1228 * We can set TIF_RESCHED on the idle task of the other CPU
1229 * lockless. The worst case is that the other CPU runs the
1230 * idle task through an additional NOOP schedule()
1231 */
1232 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1233
1234 /* NEED_RESCHED must be visible before we test polling */
1235 smp_mb();
1236 if (!tsk_is_polling(rq->idle))
1237 smp_send_reschedule(cpu);
1238 }
1239 #endif /* CONFIG_NO_HZ */
1240
1241 #else /* !CONFIG_SMP */
1242 static void resched_task(struct task_struct *p)
1243 {
1244 assert_spin_locked(&task_rq(p)->lock);
1245 set_tsk_need_resched(p);
1246 }
1247 #endif /* CONFIG_SMP */
1248
1249 #if BITS_PER_LONG == 32
1250 # define WMULT_CONST (~0UL)
1251 #else
1252 # define WMULT_CONST (1UL << 32)
1253 #endif
1254
1255 #define WMULT_SHIFT 32
1256
1257 /*
1258 * Shift right and round:
1259 */
1260 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1261
1262 /*
1263 * delta *= weight / lw
1264 */
1265 static unsigned long
1266 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1267 struct load_weight *lw)
1268 {
1269 u64 tmp;
1270
1271 if (!lw->inv_weight) {
1272 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1273 lw->inv_weight = 1;
1274 else
1275 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1276 / (lw->weight+1);
1277 }
1278
1279 tmp = (u64)delta_exec * weight;
1280 /*
1281 * Check whether we'd overflow the 64-bit multiplication:
1282 */
1283 if (unlikely(tmp > WMULT_CONST))
1284 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1285 WMULT_SHIFT/2);
1286 else
1287 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1288
1289 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1290 }
1291
1292 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1293 {
1294 lw->weight += inc;
1295 lw->inv_weight = 0;
1296 }
1297
1298 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1299 {
1300 lw->weight -= dec;
1301 lw->inv_weight = 0;
1302 }
1303
1304 /*
1305 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1306 * of tasks with abnormal "nice" values across CPUs the contribution that
1307 * each task makes to its run queue's load is weighted according to its
1308 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1309 * scaled version of the new time slice allocation that they receive on time
1310 * slice expiry etc.
1311 */
1312
1313 #define WEIGHT_IDLEPRIO 2
1314 #define WMULT_IDLEPRIO (1 << 31)
1315
1316 /*
1317 * Nice levels are multiplicative, with a gentle 10% change for every
1318 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1319 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1320 * that remained on nice 0.
1321 *
1322 * The "10% effect" is relative and cumulative: from _any_ nice level,
1323 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1324 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1325 * If a task goes up by ~10% and another task goes down by ~10% then
1326 * the relative distance between them is ~25%.)
1327 */
1328 static const int prio_to_weight[40] = {
1329 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1330 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1331 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1332 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1333 /* 0 */ 1024, 820, 655, 526, 423,
1334 /* 5 */ 335, 272, 215, 172, 137,
1335 /* 10 */ 110, 87, 70, 56, 45,
1336 /* 15 */ 36, 29, 23, 18, 15,
1337 };
1338
1339 /*
1340 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1341 *
1342 * In cases where the weight does not change often, we can use the
1343 * precalculated inverse to speed up arithmetics by turning divisions
1344 * into multiplications:
1345 */
1346 static const u32 prio_to_wmult[40] = {
1347 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1348 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1349 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1350 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1351 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1352 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1353 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1354 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1355 };
1356
1357 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1358
1359 /*
1360 * runqueue iterator, to support SMP load-balancing between different
1361 * scheduling classes, without having to expose their internal data
1362 * structures to the load-balancing proper:
1363 */
1364 struct rq_iterator {
1365 void *arg;
1366 struct task_struct *(*start)(void *);
1367 struct task_struct *(*next)(void *);
1368 };
1369
1370 #ifdef CONFIG_SMP
1371 static unsigned long
1372 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1373 unsigned long max_load_move, struct sched_domain *sd,
1374 enum cpu_idle_type idle, int *all_pinned,
1375 int *this_best_prio, struct rq_iterator *iterator);
1376
1377 static int
1378 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1379 struct sched_domain *sd, enum cpu_idle_type idle,
1380 struct rq_iterator *iterator);
1381 #endif
1382
1383 #ifdef CONFIG_CGROUP_CPUACCT
1384 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1385 #else
1386 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1387 #endif
1388
1389 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1390 {
1391 update_load_add(&rq->load, load);
1392 }
1393
1394 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1395 {
1396 update_load_sub(&rq->load, load);
1397 }
1398
1399 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1400 typedef int (*tg_visitor)(struct task_group *, void *);
1401
1402 /*
1403 * Iterate the full tree, calling @down when first entering a node and @up when
1404 * leaving it for the final time.
1405 */
1406 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1407 {
1408 struct task_group *parent, *child;
1409 int ret;
1410
1411 rcu_read_lock();
1412 parent = &root_task_group;
1413 down:
1414 ret = (*down)(parent, data);
1415 if (ret)
1416 goto out_unlock;
1417 list_for_each_entry_rcu(child, &parent->children, siblings) {
1418 parent = child;
1419 goto down;
1420
1421 up:
1422 continue;
1423 }
1424 ret = (*up)(parent, data);
1425 if (ret)
1426 goto out_unlock;
1427
1428 child = parent;
1429 parent = parent->parent;
1430 if (parent)
1431 goto up;
1432 out_unlock:
1433 rcu_read_unlock();
1434
1435 return ret;
1436 }
1437
1438 static int tg_nop(struct task_group *tg, void *data)
1439 {
1440 return 0;
1441 }
1442 #endif
1443
1444 #ifdef CONFIG_SMP
1445 static unsigned long source_load(int cpu, int type);
1446 static unsigned long target_load(int cpu, int type);
1447 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1448
1449 static unsigned long cpu_avg_load_per_task(int cpu)
1450 {
1451 struct rq *rq = cpu_rq(cpu);
1452 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1453
1454 if (nr_running)
1455 rq->avg_load_per_task = rq->load.weight / nr_running;
1456 else
1457 rq->avg_load_per_task = 0;
1458
1459 return rq->avg_load_per_task;
1460 }
1461
1462 #ifdef CONFIG_FAIR_GROUP_SCHED
1463
1464 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1465
1466 /*
1467 * Calculate and set the cpu's group shares.
1468 */
1469 static void
1470 update_group_shares_cpu(struct task_group *tg, int cpu,
1471 unsigned long sd_shares, unsigned long sd_rq_weight)
1472 {
1473 unsigned long shares;
1474 unsigned long rq_weight;
1475
1476 if (!tg->se[cpu])
1477 return;
1478
1479 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1480
1481 /*
1482 * \Sum shares * rq_weight
1483 * shares = -----------------------
1484 * \Sum rq_weight
1485 *
1486 */
1487 shares = (sd_shares * rq_weight) / sd_rq_weight;
1488 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1489
1490 if (abs(shares - tg->se[cpu]->load.weight) >
1491 sysctl_sched_shares_thresh) {
1492 struct rq *rq = cpu_rq(cpu);
1493 unsigned long flags;
1494
1495 spin_lock_irqsave(&rq->lock, flags);
1496 tg->cfs_rq[cpu]->shares = shares;
1497
1498 __set_se_shares(tg->se[cpu], shares);
1499 spin_unlock_irqrestore(&rq->lock, flags);
1500 }
1501 }
1502
1503 /*
1504 * Re-compute the task group their per cpu shares over the given domain.
1505 * This needs to be done in a bottom-up fashion because the rq weight of a
1506 * parent group depends on the shares of its child groups.
1507 */
1508 static int tg_shares_up(struct task_group *tg, void *data)
1509 {
1510 unsigned long weight, rq_weight = 0;
1511 unsigned long shares = 0;
1512 struct sched_domain *sd = data;
1513 int i;
1514
1515 for_each_cpu(i, sched_domain_span(sd)) {
1516 /*
1517 * If there are currently no tasks on the cpu pretend there
1518 * is one of average load so that when a new task gets to
1519 * run here it will not get delayed by group starvation.
1520 */
1521 weight = tg->cfs_rq[i]->load.weight;
1522 if (!weight)
1523 weight = NICE_0_LOAD;
1524
1525 tg->cfs_rq[i]->rq_weight = weight;
1526 rq_weight += weight;
1527 shares += tg->cfs_rq[i]->shares;
1528 }
1529
1530 if ((!shares && rq_weight) || shares > tg->shares)
1531 shares = tg->shares;
1532
1533 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1534 shares = tg->shares;
1535
1536 for_each_cpu(i, sched_domain_span(sd))
1537 update_group_shares_cpu(tg, i, shares, rq_weight);
1538
1539 return 0;
1540 }
1541
1542 /*
1543 * Compute the cpu's hierarchical load factor for each task group.
1544 * This needs to be done in a top-down fashion because the load of a child
1545 * group is a fraction of its parents load.
1546 */
1547 static int tg_load_down(struct task_group *tg, void *data)
1548 {
1549 unsigned long load;
1550 long cpu = (long)data;
1551
1552 if (!tg->parent) {
1553 load = cpu_rq(cpu)->load.weight;
1554 } else {
1555 load = tg->parent->cfs_rq[cpu]->h_load;
1556 load *= tg->cfs_rq[cpu]->shares;
1557 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1558 }
1559
1560 tg->cfs_rq[cpu]->h_load = load;
1561
1562 return 0;
1563 }
1564
1565 static void update_shares(struct sched_domain *sd)
1566 {
1567 u64 now = cpu_clock(raw_smp_processor_id());
1568 s64 elapsed = now - sd->last_update;
1569
1570 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1571 sd->last_update = now;
1572 walk_tg_tree(tg_nop, tg_shares_up, sd);
1573 }
1574 }
1575
1576 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1577 {
1578 spin_unlock(&rq->lock);
1579 update_shares(sd);
1580 spin_lock(&rq->lock);
1581 }
1582
1583 static void update_h_load(long cpu)
1584 {
1585 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1586 }
1587
1588 #else
1589
1590 static inline void update_shares(struct sched_domain *sd)
1591 {
1592 }
1593
1594 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1595 {
1596 }
1597
1598 #endif
1599
1600 /*
1601 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1602 */
1603 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1604 __releases(this_rq->lock)
1605 __acquires(busiest->lock)
1606 __acquires(this_rq->lock)
1607 {
1608 int ret = 0;
1609
1610 if (unlikely(!irqs_disabled())) {
1611 /* printk() doesn't work good under rq->lock */
1612 spin_unlock(&this_rq->lock);
1613 BUG_ON(1);
1614 }
1615 if (unlikely(!spin_trylock(&busiest->lock))) {
1616 if (busiest < this_rq) {
1617 spin_unlock(&this_rq->lock);
1618 spin_lock(&busiest->lock);
1619 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1620 ret = 1;
1621 } else
1622 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1623 }
1624 return ret;
1625 }
1626
1627 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1628 __releases(busiest->lock)
1629 {
1630 spin_unlock(&busiest->lock);
1631 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1632 }
1633 #endif
1634
1635 #ifdef CONFIG_FAIR_GROUP_SCHED
1636 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1637 {
1638 #ifdef CONFIG_SMP
1639 cfs_rq->shares = shares;
1640 #endif
1641 }
1642 #endif
1643
1644 #include "sched_stats.h"
1645 #include "sched_idletask.c"
1646 #include "sched_fair.c"
1647 #include "sched_rt.c"
1648 #ifdef CONFIG_SCHED_DEBUG
1649 # include "sched_debug.c"
1650 #endif
1651
1652 #define sched_class_highest (&rt_sched_class)
1653 #define for_each_class(class) \
1654 for (class = sched_class_highest; class; class = class->next)
1655
1656 static void inc_nr_running(struct rq *rq)
1657 {
1658 rq->nr_running++;
1659 }
1660
1661 static void dec_nr_running(struct rq *rq)
1662 {
1663 rq->nr_running--;
1664 }
1665
1666 static void set_load_weight(struct task_struct *p)
1667 {
1668 if (task_has_rt_policy(p)) {
1669 p->se.load.weight = prio_to_weight[0] * 2;
1670 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1671 return;
1672 }
1673
1674 /*
1675 * SCHED_IDLE tasks get minimal weight:
1676 */
1677 if (p->policy == SCHED_IDLE) {
1678 p->se.load.weight = WEIGHT_IDLEPRIO;
1679 p->se.load.inv_weight = WMULT_IDLEPRIO;
1680 return;
1681 }
1682
1683 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1684 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1685 }
1686
1687 static void update_avg(u64 *avg, u64 sample)
1688 {
1689 s64 diff = sample - *avg;
1690 *avg += diff >> 3;
1691 }
1692
1693 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1694 {
1695 sched_info_queued(p);
1696 p->sched_class->enqueue_task(rq, p, wakeup);
1697 p->se.on_rq = 1;
1698 }
1699
1700 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1701 {
1702 if (sleep && p->se.last_wakeup) {
1703 update_avg(&p->se.avg_overlap,
1704 p->se.sum_exec_runtime - p->se.last_wakeup);
1705 p->se.last_wakeup = 0;
1706 }
1707
1708 sched_info_dequeued(p);
1709 p->sched_class->dequeue_task(rq, p, sleep);
1710 p->se.on_rq = 0;
1711 }
1712
1713 /*
1714 * __normal_prio - return the priority that is based on the static prio
1715 */
1716 static inline int __normal_prio(struct task_struct *p)
1717 {
1718 return p->static_prio;
1719 }
1720
1721 /*
1722 * Calculate the expected normal priority: i.e. priority
1723 * without taking RT-inheritance into account. Might be
1724 * boosted by interactivity modifiers. Changes upon fork,
1725 * setprio syscalls, and whenever the interactivity
1726 * estimator recalculates.
1727 */
1728 static inline int normal_prio(struct task_struct *p)
1729 {
1730 int prio;
1731
1732 if (task_has_rt_policy(p))
1733 prio = MAX_RT_PRIO-1 - p->rt_priority;
1734 else
1735 prio = __normal_prio(p);
1736 return prio;
1737 }
1738
1739 /*
1740 * Calculate the current priority, i.e. the priority
1741 * taken into account by the scheduler. This value might
1742 * be boosted by RT tasks, or might be boosted by
1743 * interactivity modifiers. Will be RT if the task got
1744 * RT-boosted. If not then it returns p->normal_prio.
1745 */
1746 static int effective_prio(struct task_struct *p)
1747 {
1748 p->normal_prio = normal_prio(p);
1749 /*
1750 * If we are RT tasks or we were boosted to RT priority,
1751 * keep the priority unchanged. Otherwise, update priority
1752 * to the normal priority:
1753 */
1754 if (!rt_prio(p->prio))
1755 return p->normal_prio;
1756 return p->prio;
1757 }
1758
1759 /*
1760 * activate_task - move a task to the runqueue.
1761 */
1762 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1763 {
1764 if (task_contributes_to_load(p))
1765 rq->nr_uninterruptible--;
1766
1767 enqueue_task(rq, p, wakeup);
1768 inc_nr_running(rq);
1769 }
1770
1771 /*
1772 * deactivate_task - remove a task from the runqueue.
1773 */
1774 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1775 {
1776 if (task_contributes_to_load(p))
1777 rq->nr_uninterruptible++;
1778
1779 dequeue_task(rq, p, sleep);
1780 dec_nr_running(rq);
1781 }
1782
1783 /**
1784 * task_curr - is this task currently executing on a CPU?
1785 * @p: the task in question.
1786 */
1787 inline int task_curr(const struct task_struct *p)
1788 {
1789 return cpu_curr(task_cpu(p)) == p;
1790 }
1791
1792 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1793 {
1794 set_task_rq(p, cpu);
1795 #ifdef CONFIG_SMP
1796 /*
1797 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1798 * successfuly executed on another CPU. We must ensure that updates of
1799 * per-task data have been completed by this moment.
1800 */
1801 smp_wmb();
1802 task_thread_info(p)->cpu = cpu;
1803 #endif
1804 }
1805
1806 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1807 const struct sched_class *prev_class,
1808 int oldprio, int running)
1809 {
1810 if (prev_class != p->sched_class) {
1811 if (prev_class->switched_from)
1812 prev_class->switched_from(rq, p, running);
1813 p->sched_class->switched_to(rq, p, running);
1814 } else
1815 p->sched_class->prio_changed(rq, p, oldprio, running);
1816 }
1817
1818 #ifdef CONFIG_SMP
1819
1820 /* Used instead of source_load when we know the type == 0 */
1821 static unsigned long weighted_cpuload(const int cpu)
1822 {
1823 return cpu_rq(cpu)->load.weight;
1824 }
1825
1826 /*
1827 * Is this task likely cache-hot:
1828 */
1829 static int
1830 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1831 {
1832 s64 delta;
1833
1834 /*
1835 * Buddy candidates are cache hot:
1836 */
1837 if (sched_feat(CACHE_HOT_BUDDY) &&
1838 (&p->se == cfs_rq_of(&p->se)->next ||
1839 &p->se == cfs_rq_of(&p->se)->last))
1840 return 1;
1841
1842 if (p->sched_class != &fair_sched_class)
1843 return 0;
1844
1845 if (sysctl_sched_migration_cost == -1)
1846 return 1;
1847 if (sysctl_sched_migration_cost == 0)
1848 return 0;
1849
1850 delta = now - p->se.exec_start;
1851
1852 return delta < (s64)sysctl_sched_migration_cost;
1853 }
1854
1855
1856 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1857 {
1858 int old_cpu = task_cpu(p);
1859 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1860 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1861 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1862 u64 clock_offset;
1863
1864 clock_offset = old_rq->clock - new_rq->clock;
1865
1866 #ifdef CONFIG_SCHEDSTATS
1867 if (p->se.wait_start)
1868 p->se.wait_start -= clock_offset;
1869 if (p->se.sleep_start)
1870 p->se.sleep_start -= clock_offset;
1871 if (p->se.block_start)
1872 p->se.block_start -= clock_offset;
1873 if (old_cpu != new_cpu) {
1874 schedstat_inc(p, se.nr_migrations);
1875 if (task_hot(p, old_rq->clock, NULL))
1876 schedstat_inc(p, se.nr_forced2_migrations);
1877 }
1878 #endif
1879 p->se.vruntime -= old_cfsrq->min_vruntime -
1880 new_cfsrq->min_vruntime;
1881
1882 __set_task_cpu(p, new_cpu);
1883 }
1884
1885 struct migration_req {
1886 struct list_head list;
1887
1888 struct task_struct *task;
1889 int dest_cpu;
1890
1891 struct completion done;
1892 };
1893
1894 /*
1895 * The task's runqueue lock must be held.
1896 * Returns true if you have to wait for migration thread.
1897 */
1898 static int
1899 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1900 {
1901 struct rq *rq = task_rq(p);
1902
1903 /*
1904 * If the task is not on a runqueue (and not running), then
1905 * it is sufficient to simply update the task's cpu field.
1906 */
1907 if (!p->se.on_rq && !task_running(rq, p)) {
1908 set_task_cpu(p, dest_cpu);
1909 return 0;
1910 }
1911
1912 init_completion(&req->done);
1913 req->task = p;
1914 req->dest_cpu = dest_cpu;
1915 list_add(&req->list, &rq->migration_queue);
1916
1917 return 1;
1918 }
1919
1920 /*
1921 * wait_task_inactive - wait for a thread to unschedule.
1922 *
1923 * If @match_state is nonzero, it's the @p->state value just checked and
1924 * not expected to change. If it changes, i.e. @p might have woken up,
1925 * then return zero. When we succeed in waiting for @p to be off its CPU,
1926 * we return a positive number (its total switch count). If a second call
1927 * a short while later returns the same number, the caller can be sure that
1928 * @p has remained unscheduled the whole time.
1929 *
1930 * The caller must ensure that the task *will* unschedule sometime soon,
1931 * else this function might spin for a *long* time. This function can't
1932 * be called with interrupts off, or it may introduce deadlock with
1933 * smp_call_function() if an IPI is sent by the same process we are
1934 * waiting to become inactive.
1935 */
1936 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1937 {
1938 unsigned long flags;
1939 int running, on_rq;
1940 unsigned long ncsw;
1941 struct rq *rq;
1942
1943 for (;;) {
1944 /*
1945 * We do the initial early heuristics without holding
1946 * any task-queue locks at all. We'll only try to get
1947 * the runqueue lock when things look like they will
1948 * work out!
1949 */
1950 rq = task_rq(p);
1951
1952 /*
1953 * If the task is actively running on another CPU
1954 * still, just relax and busy-wait without holding
1955 * any locks.
1956 *
1957 * NOTE! Since we don't hold any locks, it's not
1958 * even sure that "rq" stays as the right runqueue!
1959 * But we don't care, since "task_running()" will
1960 * return false if the runqueue has changed and p
1961 * is actually now running somewhere else!
1962 */
1963 while (task_running(rq, p)) {
1964 if (match_state && unlikely(p->state != match_state))
1965 return 0;
1966 cpu_relax();
1967 }
1968
1969 /*
1970 * Ok, time to look more closely! We need the rq
1971 * lock now, to be *sure*. If we're wrong, we'll
1972 * just go back and repeat.
1973 */
1974 rq = task_rq_lock(p, &flags);
1975 trace_sched_wait_task(rq, p);
1976 running = task_running(rq, p);
1977 on_rq = p->se.on_rq;
1978 ncsw = 0;
1979 if (!match_state || p->state == match_state)
1980 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1981 task_rq_unlock(rq, &flags);
1982
1983 /*
1984 * If it changed from the expected state, bail out now.
1985 */
1986 if (unlikely(!ncsw))
1987 break;
1988
1989 /*
1990 * Was it really running after all now that we
1991 * checked with the proper locks actually held?
1992 *
1993 * Oops. Go back and try again..
1994 */
1995 if (unlikely(running)) {
1996 cpu_relax();
1997 continue;
1998 }
1999
2000 /*
2001 * It's not enough that it's not actively running,
2002 * it must be off the runqueue _entirely_, and not
2003 * preempted!
2004 *
2005 * So if it wa still runnable (but just not actively
2006 * running right now), it's preempted, and we should
2007 * yield - it could be a while.
2008 */
2009 if (unlikely(on_rq)) {
2010 schedule_timeout_uninterruptible(1);
2011 continue;
2012 }
2013
2014 /*
2015 * Ahh, all good. It wasn't running, and it wasn't
2016 * runnable, which means that it will never become
2017 * running in the future either. We're all done!
2018 */
2019 break;
2020 }
2021
2022 return ncsw;
2023 }
2024
2025 /***
2026 * kick_process - kick a running thread to enter/exit the kernel
2027 * @p: the to-be-kicked thread
2028 *
2029 * Cause a process which is running on another CPU to enter
2030 * kernel-mode, without any delay. (to get signals handled.)
2031 *
2032 * NOTE: this function doesnt have to take the runqueue lock,
2033 * because all it wants to ensure is that the remote task enters
2034 * the kernel. If the IPI races and the task has been migrated
2035 * to another CPU then no harm is done and the purpose has been
2036 * achieved as well.
2037 */
2038 void kick_process(struct task_struct *p)
2039 {
2040 int cpu;
2041
2042 preempt_disable();
2043 cpu = task_cpu(p);
2044 if ((cpu != smp_processor_id()) && task_curr(p))
2045 smp_send_reschedule(cpu);
2046 preempt_enable();
2047 }
2048
2049 /*
2050 * Return a low guess at the load of a migration-source cpu weighted
2051 * according to the scheduling class and "nice" value.
2052 *
2053 * We want to under-estimate the load of migration sources, to
2054 * balance conservatively.
2055 */
2056 static unsigned long source_load(int cpu, int type)
2057 {
2058 struct rq *rq = cpu_rq(cpu);
2059 unsigned long total = weighted_cpuload(cpu);
2060
2061 if (type == 0 || !sched_feat(LB_BIAS))
2062 return total;
2063
2064 return min(rq->cpu_load[type-1], total);
2065 }
2066
2067 /*
2068 * Return a high guess at the load of a migration-target cpu weighted
2069 * according to the scheduling class and "nice" value.
2070 */
2071 static unsigned long target_load(int cpu, int type)
2072 {
2073 struct rq *rq = cpu_rq(cpu);
2074 unsigned long total = weighted_cpuload(cpu);
2075
2076 if (type == 0 || !sched_feat(LB_BIAS))
2077 return total;
2078
2079 return max(rq->cpu_load[type-1], total);
2080 }
2081
2082 /*
2083 * find_idlest_group finds and returns the least busy CPU group within the
2084 * domain.
2085 */
2086 static struct sched_group *
2087 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2088 {
2089 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2090 unsigned long min_load = ULONG_MAX, this_load = 0;
2091 int load_idx = sd->forkexec_idx;
2092 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2093
2094 do {
2095 unsigned long load, avg_load;
2096 int local_group;
2097 int i;
2098
2099 /* Skip over this group if it has no CPUs allowed */
2100 if (!cpumask_intersects(sched_group_cpus(group),
2101 &p->cpus_allowed))
2102 continue;
2103
2104 local_group = cpumask_test_cpu(this_cpu,
2105 sched_group_cpus(group));
2106
2107 /* Tally up the load of all CPUs in the group */
2108 avg_load = 0;
2109
2110 for_each_cpu(i, sched_group_cpus(group)) {
2111 /* Bias balancing toward cpus of our domain */
2112 if (local_group)
2113 load = source_load(i, load_idx);
2114 else
2115 load = target_load(i, load_idx);
2116
2117 avg_load += load;
2118 }
2119
2120 /* Adjust by relative CPU power of the group */
2121 avg_load = sg_div_cpu_power(group,
2122 avg_load * SCHED_LOAD_SCALE);
2123
2124 if (local_group) {
2125 this_load = avg_load;
2126 this = group;
2127 } else if (avg_load < min_load) {
2128 min_load = avg_load;
2129 idlest = group;
2130 }
2131 } while (group = group->next, group != sd->groups);
2132
2133 if (!idlest || 100*this_load < imbalance*min_load)
2134 return NULL;
2135 return idlest;
2136 }
2137
2138 /*
2139 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2140 */
2141 static int
2142 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2143 {
2144 unsigned long load, min_load = ULONG_MAX;
2145 int idlest = -1;
2146 int i;
2147
2148 /* Traverse only the allowed CPUs */
2149 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2150 load = weighted_cpuload(i);
2151
2152 if (load < min_load || (load == min_load && i == this_cpu)) {
2153 min_load = load;
2154 idlest = i;
2155 }
2156 }
2157
2158 return idlest;
2159 }
2160
2161 /*
2162 * sched_balance_self: balance the current task (running on cpu) in domains
2163 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2164 * SD_BALANCE_EXEC.
2165 *
2166 * Balance, ie. select the least loaded group.
2167 *
2168 * Returns the target CPU number, or the same CPU if no balancing is needed.
2169 *
2170 * preempt must be disabled.
2171 */
2172 static int sched_balance_self(int cpu, int flag)
2173 {
2174 struct task_struct *t = current;
2175 struct sched_domain *tmp, *sd = NULL;
2176
2177 for_each_domain(cpu, tmp) {
2178 /*
2179 * If power savings logic is enabled for a domain, stop there.
2180 */
2181 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2182 break;
2183 if (tmp->flags & flag)
2184 sd = tmp;
2185 }
2186
2187 if (sd)
2188 update_shares(sd);
2189
2190 while (sd) {
2191 struct sched_group *group;
2192 int new_cpu, weight;
2193
2194 if (!(sd->flags & flag)) {
2195 sd = sd->child;
2196 continue;
2197 }
2198
2199 group = find_idlest_group(sd, t, cpu);
2200 if (!group) {
2201 sd = sd->child;
2202 continue;
2203 }
2204
2205 new_cpu = find_idlest_cpu(group, t, cpu);
2206 if (new_cpu == -1 || new_cpu == cpu) {
2207 /* Now try balancing at a lower domain level of cpu */
2208 sd = sd->child;
2209 continue;
2210 }
2211
2212 /* Now try balancing at a lower domain level of new_cpu */
2213 cpu = new_cpu;
2214 weight = cpumask_weight(sched_domain_span(sd));
2215 sd = NULL;
2216 for_each_domain(cpu, tmp) {
2217 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2218 break;
2219 if (tmp->flags & flag)
2220 sd = tmp;
2221 }
2222 /* while loop will break here if sd == NULL */
2223 }
2224
2225 return cpu;
2226 }
2227
2228 #endif /* CONFIG_SMP */
2229
2230 /***
2231 * try_to_wake_up - wake up a thread
2232 * @p: the to-be-woken-up thread
2233 * @state: the mask of task states that can be woken
2234 * @sync: do a synchronous wakeup?
2235 *
2236 * Put it on the run-queue if it's not already there. The "current"
2237 * thread is always on the run-queue (except when the actual
2238 * re-schedule is in progress), and as such you're allowed to do
2239 * the simpler "current->state = TASK_RUNNING" to mark yourself
2240 * runnable without the overhead of this.
2241 *
2242 * returns failure only if the task is already active.
2243 */
2244 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2245 {
2246 int cpu, orig_cpu, this_cpu, success = 0;
2247 unsigned long flags;
2248 long old_state;
2249 struct rq *rq;
2250
2251 if (!sched_feat(SYNC_WAKEUPS))
2252 sync = 0;
2253
2254 #ifdef CONFIG_SMP
2255 if (sched_feat(LB_WAKEUP_UPDATE)) {
2256 struct sched_domain *sd;
2257
2258 this_cpu = raw_smp_processor_id();
2259 cpu = task_cpu(p);
2260
2261 for_each_domain(this_cpu, sd) {
2262 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2263 update_shares(sd);
2264 break;
2265 }
2266 }
2267 }
2268 #endif
2269
2270 smp_wmb();
2271 rq = task_rq_lock(p, &flags);
2272 old_state = p->state;
2273 if (!(old_state & state))
2274 goto out;
2275
2276 if (p->se.on_rq)
2277 goto out_running;
2278
2279 cpu = task_cpu(p);
2280 orig_cpu = cpu;
2281 this_cpu = smp_processor_id();
2282
2283 #ifdef CONFIG_SMP
2284 if (unlikely(task_running(rq, p)))
2285 goto out_activate;
2286
2287 cpu = p->sched_class->select_task_rq(p, sync);
2288 if (cpu != orig_cpu) {
2289 set_task_cpu(p, cpu);
2290 task_rq_unlock(rq, &flags);
2291 /* might preempt at this point */
2292 rq = task_rq_lock(p, &flags);
2293 old_state = p->state;
2294 if (!(old_state & state))
2295 goto out;
2296 if (p->se.on_rq)
2297 goto out_running;
2298
2299 this_cpu = smp_processor_id();
2300 cpu = task_cpu(p);
2301 }
2302
2303 #ifdef CONFIG_SCHEDSTATS
2304 schedstat_inc(rq, ttwu_count);
2305 if (cpu == this_cpu)
2306 schedstat_inc(rq, ttwu_local);
2307 else {
2308 struct sched_domain *sd;
2309 for_each_domain(this_cpu, sd) {
2310 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2311 schedstat_inc(sd, ttwu_wake_remote);
2312 break;
2313 }
2314 }
2315 }
2316 #endif /* CONFIG_SCHEDSTATS */
2317
2318 out_activate:
2319 #endif /* CONFIG_SMP */
2320 schedstat_inc(p, se.nr_wakeups);
2321 if (sync)
2322 schedstat_inc(p, se.nr_wakeups_sync);
2323 if (orig_cpu != cpu)
2324 schedstat_inc(p, se.nr_wakeups_migrate);
2325 if (cpu == this_cpu)
2326 schedstat_inc(p, se.nr_wakeups_local);
2327 else
2328 schedstat_inc(p, se.nr_wakeups_remote);
2329 update_rq_clock(rq);
2330 activate_task(rq, p, 1);
2331 success = 1;
2332
2333 out_running:
2334 trace_sched_wakeup(rq, p);
2335 check_preempt_curr(rq, p, sync);
2336
2337 p->state = TASK_RUNNING;
2338 #ifdef CONFIG_SMP
2339 if (p->sched_class->task_wake_up)
2340 p->sched_class->task_wake_up(rq, p);
2341 #endif
2342 out:
2343 current->se.last_wakeup = current->se.sum_exec_runtime;
2344
2345 task_rq_unlock(rq, &flags);
2346
2347 return success;
2348 }
2349
2350 int wake_up_process(struct task_struct *p)
2351 {
2352 return try_to_wake_up(p, TASK_ALL, 0);
2353 }
2354 EXPORT_SYMBOL(wake_up_process);
2355
2356 int wake_up_state(struct task_struct *p, unsigned int state)
2357 {
2358 return try_to_wake_up(p, state, 0);
2359 }
2360
2361 /*
2362 * Perform scheduler related setup for a newly forked process p.
2363 * p is forked by current.
2364 *
2365 * __sched_fork() is basic setup used by init_idle() too:
2366 */
2367 static void __sched_fork(struct task_struct *p)
2368 {
2369 p->se.exec_start = 0;
2370 p->se.sum_exec_runtime = 0;
2371 p->se.prev_sum_exec_runtime = 0;
2372 p->se.last_wakeup = 0;
2373 p->se.avg_overlap = 0;
2374
2375 #ifdef CONFIG_SCHEDSTATS
2376 p->se.wait_start = 0;
2377 p->se.sum_sleep_runtime = 0;
2378 p->se.sleep_start = 0;
2379 p->se.block_start = 0;
2380 p->se.sleep_max = 0;
2381 p->se.block_max = 0;
2382 p->se.exec_max = 0;
2383 p->se.slice_max = 0;
2384 p->se.wait_max = 0;
2385 #endif
2386
2387 INIT_LIST_HEAD(&p->rt.run_list);
2388 p->se.on_rq = 0;
2389 INIT_LIST_HEAD(&p->se.group_node);
2390
2391 #ifdef CONFIG_PREEMPT_NOTIFIERS
2392 INIT_HLIST_HEAD(&p->preempt_notifiers);
2393 #endif
2394
2395 /*
2396 * We mark the process as running here, but have not actually
2397 * inserted it onto the runqueue yet. This guarantees that
2398 * nobody will actually run it, and a signal or other external
2399 * event cannot wake it up and insert it on the runqueue either.
2400 */
2401 p->state = TASK_RUNNING;
2402 }
2403
2404 /*
2405 * fork()/clone()-time setup:
2406 */
2407 void sched_fork(struct task_struct *p, int clone_flags)
2408 {
2409 int cpu = get_cpu();
2410
2411 __sched_fork(p);
2412
2413 #ifdef CONFIG_SMP
2414 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2415 #endif
2416 set_task_cpu(p, cpu);
2417
2418 /*
2419 * Make sure we do not leak PI boosting priority to the child:
2420 */
2421 p->prio = current->normal_prio;
2422 if (!rt_prio(p->prio))
2423 p->sched_class = &fair_sched_class;
2424
2425 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2426 if (likely(sched_info_on()))
2427 memset(&p->sched_info, 0, sizeof(p->sched_info));
2428 #endif
2429 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2430 p->oncpu = 0;
2431 #endif
2432 #ifdef CONFIG_PREEMPT
2433 /* Want to start with kernel preemption disabled. */
2434 task_thread_info(p)->preempt_count = 1;
2435 #endif
2436 put_cpu();
2437 }
2438
2439 /*
2440 * wake_up_new_task - wake up a newly created task for the first time.
2441 *
2442 * This function will do some initial scheduler statistics housekeeping
2443 * that must be done for every newly created context, then puts the task
2444 * on the runqueue and wakes it.
2445 */
2446 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2447 {
2448 unsigned long flags;
2449 struct rq *rq;
2450
2451 rq = task_rq_lock(p, &flags);
2452 BUG_ON(p->state != TASK_RUNNING);
2453 update_rq_clock(rq);
2454
2455 p->prio = effective_prio(p);
2456
2457 if (!p->sched_class->task_new || !current->se.on_rq) {
2458 activate_task(rq, p, 0);
2459 } else {
2460 /*
2461 * Let the scheduling class do new task startup
2462 * management (if any):
2463 */
2464 p->sched_class->task_new(rq, p);
2465 inc_nr_running(rq);
2466 }
2467 trace_sched_wakeup_new(rq, p);
2468 check_preempt_curr(rq, p, 0);
2469 #ifdef CONFIG_SMP
2470 if (p->sched_class->task_wake_up)
2471 p->sched_class->task_wake_up(rq, p);
2472 #endif
2473 task_rq_unlock(rq, &flags);
2474 }
2475
2476 #ifdef CONFIG_PREEMPT_NOTIFIERS
2477
2478 /**
2479 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2480 * @notifier: notifier struct to register
2481 */
2482 void preempt_notifier_register(struct preempt_notifier *notifier)
2483 {
2484 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2485 }
2486 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2487
2488 /**
2489 * preempt_notifier_unregister - no longer interested in preemption notifications
2490 * @notifier: notifier struct to unregister
2491 *
2492 * This is safe to call from within a preemption notifier.
2493 */
2494 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2495 {
2496 hlist_del(&notifier->link);
2497 }
2498 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2499
2500 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2501 {
2502 struct preempt_notifier *notifier;
2503 struct hlist_node *node;
2504
2505 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2506 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2507 }
2508
2509 static void
2510 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2511 struct task_struct *next)
2512 {
2513 struct preempt_notifier *notifier;
2514 struct hlist_node *node;
2515
2516 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2517 notifier->ops->sched_out(notifier, next);
2518 }
2519
2520 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2521
2522 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2523 {
2524 }
2525
2526 static void
2527 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2528 struct task_struct *next)
2529 {
2530 }
2531
2532 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2533
2534 /**
2535 * prepare_task_switch - prepare to switch tasks
2536 * @rq: the runqueue preparing to switch
2537 * @prev: the current task that is being switched out
2538 * @next: the task we are going to switch to.
2539 *
2540 * This is called with the rq lock held and interrupts off. It must
2541 * be paired with a subsequent finish_task_switch after the context
2542 * switch.
2543 *
2544 * prepare_task_switch sets up locking and calls architecture specific
2545 * hooks.
2546 */
2547 static inline void
2548 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2549 struct task_struct *next)
2550 {
2551 fire_sched_out_preempt_notifiers(prev, next);
2552 prepare_lock_switch(rq, next);
2553 prepare_arch_switch(next);
2554 }
2555
2556 /**
2557 * finish_task_switch - clean up after a task-switch
2558 * @rq: runqueue associated with task-switch
2559 * @prev: the thread we just switched away from.
2560 *
2561 * finish_task_switch must be called after the context switch, paired
2562 * with a prepare_task_switch call before the context switch.
2563 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2564 * and do any other architecture-specific cleanup actions.
2565 *
2566 * Note that we may have delayed dropping an mm in context_switch(). If
2567 * so, we finish that here outside of the runqueue lock. (Doing it
2568 * with the lock held can cause deadlocks; see schedule() for
2569 * details.)
2570 */
2571 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2572 __releases(rq->lock)
2573 {
2574 struct mm_struct *mm = rq->prev_mm;
2575 long prev_state;
2576
2577 rq->prev_mm = NULL;
2578
2579 /*
2580 * A task struct has one reference for the use as "current".
2581 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2582 * schedule one last time. The schedule call will never return, and
2583 * the scheduled task must drop that reference.
2584 * The test for TASK_DEAD must occur while the runqueue locks are
2585 * still held, otherwise prev could be scheduled on another cpu, die
2586 * there before we look at prev->state, and then the reference would
2587 * be dropped twice.
2588 * Manfred Spraul <manfred@colorfullife.com>
2589 */
2590 prev_state = prev->state;
2591 finish_arch_switch(prev);
2592 finish_lock_switch(rq, prev);
2593 #ifdef CONFIG_SMP
2594 if (current->sched_class->post_schedule)
2595 current->sched_class->post_schedule(rq);
2596 #endif
2597
2598 fire_sched_in_preempt_notifiers(current);
2599 if (mm)
2600 mmdrop(mm);
2601 if (unlikely(prev_state == TASK_DEAD)) {
2602 /*
2603 * Remove function-return probe instances associated with this
2604 * task and put them back on the free list.
2605 */
2606 kprobe_flush_task(prev);
2607 put_task_struct(prev);
2608 }
2609 }
2610
2611 /**
2612 * schedule_tail - first thing a freshly forked thread must call.
2613 * @prev: the thread we just switched away from.
2614 */
2615 asmlinkage void schedule_tail(struct task_struct *prev)
2616 __releases(rq->lock)
2617 {
2618 struct rq *rq = this_rq();
2619
2620 finish_task_switch(rq, prev);
2621 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2622 /* In this case, finish_task_switch does not reenable preemption */
2623 preempt_enable();
2624 #endif
2625 if (current->set_child_tid)
2626 put_user(task_pid_vnr(current), current->set_child_tid);
2627 }
2628
2629 /*
2630 * context_switch - switch to the new MM and the new
2631 * thread's register state.
2632 */
2633 static inline void
2634 context_switch(struct rq *rq, struct task_struct *prev,
2635 struct task_struct *next)
2636 {
2637 struct mm_struct *mm, *oldmm;
2638
2639 prepare_task_switch(rq, prev, next);
2640 trace_sched_switch(rq, prev, next);
2641 mm = next->mm;
2642 oldmm = prev->active_mm;
2643 /*
2644 * For paravirt, this is coupled with an exit in switch_to to
2645 * combine the page table reload and the switch backend into
2646 * one hypercall.
2647 */
2648 arch_enter_lazy_cpu_mode();
2649
2650 if (unlikely(!mm)) {
2651 next->active_mm = oldmm;
2652 atomic_inc(&oldmm->mm_count);
2653 enter_lazy_tlb(oldmm, next);
2654 } else
2655 switch_mm(oldmm, mm, next);
2656
2657 if (unlikely(!prev->mm)) {
2658 prev->active_mm = NULL;
2659 rq->prev_mm = oldmm;
2660 }
2661 /*
2662 * Since the runqueue lock will be released by the next
2663 * task (which is an invalid locking op but in the case
2664 * of the scheduler it's an obvious special-case), so we
2665 * do an early lockdep release here:
2666 */
2667 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2668 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2669 #endif
2670
2671 /* Here we just switch the register state and the stack. */
2672 switch_to(prev, next, prev);
2673
2674 barrier();
2675 /*
2676 * this_rq must be evaluated again because prev may have moved
2677 * CPUs since it called schedule(), thus the 'rq' on its stack
2678 * frame will be invalid.
2679 */
2680 finish_task_switch(this_rq(), prev);
2681 }
2682
2683 /*
2684 * nr_running, nr_uninterruptible and nr_context_switches:
2685 *
2686 * externally visible scheduler statistics: current number of runnable
2687 * threads, current number of uninterruptible-sleeping threads, total
2688 * number of context switches performed since bootup.
2689 */
2690 unsigned long nr_running(void)
2691 {
2692 unsigned long i, sum = 0;
2693
2694 for_each_online_cpu(i)
2695 sum += cpu_rq(i)->nr_running;
2696
2697 return sum;
2698 }
2699
2700 unsigned long nr_uninterruptible(void)
2701 {
2702 unsigned long i, sum = 0;
2703
2704 for_each_possible_cpu(i)
2705 sum += cpu_rq(i)->nr_uninterruptible;
2706
2707 /*
2708 * Since we read the counters lockless, it might be slightly
2709 * inaccurate. Do not allow it to go below zero though:
2710 */
2711 if (unlikely((long)sum < 0))
2712 sum = 0;
2713
2714 return sum;
2715 }
2716
2717 unsigned long long nr_context_switches(void)
2718 {
2719 int i;
2720 unsigned long long sum = 0;
2721
2722 for_each_possible_cpu(i)
2723 sum += cpu_rq(i)->nr_switches;
2724
2725 return sum;
2726 }
2727
2728 unsigned long nr_iowait(void)
2729 {
2730 unsigned long i, sum = 0;
2731
2732 for_each_possible_cpu(i)
2733 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2734
2735 return sum;
2736 }
2737
2738 unsigned long nr_active(void)
2739 {
2740 unsigned long i, running = 0, uninterruptible = 0;
2741
2742 for_each_online_cpu(i) {
2743 running += cpu_rq(i)->nr_running;
2744 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2745 }
2746
2747 if (unlikely((long)uninterruptible < 0))
2748 uninterruptible = 0;
2749
2750 return running + uninterruptible;
2751 }
2752
2753 /*
2754 * Update rq->cpu_load[] statistics. This function is usually called every
2755 * scheduler tick (TICK_NSEC).
2756 */
2757 static void update_cpu_load(struct rq *this_rq)
2758 {
2759 unsigned long this_load = this_rq->load.weight;
2760 int i, scale;
2761
2762 this_rq->nr_load_updates++;
2763
2764 /* Update our load: */
2765 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2766 unsigned long old_load, new_load;
2767
2768 /* scale is effectively 1 << i now, and >> i divides by scale */
2769
2770 old_load = this_rq->cpu_load[i];
2771 new_load = this_load;
2772 /*
2773 * Round up the averaging division if load is increasing. This
2774 * prevents us from getting stuck on 9 if the load is 10, for
2775 * example.
2776 */
2777 if (new_load > old_load)
2778 new_load += scale-1;
2779 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2780 }
2781 }
2782
2783 #ifdef CONFIG_SMP
2784
2785 /*
2786 * double_rq_lock - safely lock two runqueues
2787 *
2788 * Note this does not disable interrupts like task_rq_lock,
2789 * you need to do so manually before calling.
2790 */
2791 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2792 __acquires(rq1->lock)
2793 __acquires(rq2->lock)
2794 {
2795 BUG_ON(!irqs_disabled());
2796 if (rq1 == rq2) {
2797 spin_lock(&rq1->lock);
2798 __acquire(rq2->lock); /* Fake it out ;) */
2799 } else {
2800 if (rq1 < rq2) {
2801 spin_lock(&rq1->lock);
2802 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2803 } else {
2804 spin_lock(&rq2->lock);
2805 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2806 }
2807 }
2808 update_rq_clock(rq1);
2809 update_rq_clock(rq2);
2810 }
2811
2812 /*
2813 * double_rq_unlock - safely unlock two runqueues
2814 *
2815 * Note this does not restore interrupts like task_rq_unlock,
2816 * you need to do so manually after calling.
2817 */
2818 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2819 __releases(rq1->lock)
2820 __releases(rq2->lock)
2821 {
2822 spin_unlock(&rq1->lock);
2823 if (rq1 != rq2)
2824 spin_unlock(&rq2->lock);
2825 else
2826 __release(rq2->lock);
2827 }
2828
2829 /*
2830 * If dest_cpu is allowed for this process, migrate the task to it.
2831 * This is accomplished by forcing the cpu_allowed mask to only
2832 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2833 * the cpu_allowed mask is restored.
2834 */
2835 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2836 {
2837 struct migration_req req;
2838 unsigned long flags;
2839 struct rq *rq;
2840
2841 rq = task_rq_lock(p, &flags);
2842 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2843 || unlikely(!cpu_active(dest_cpu)))
2844 goto out;
2845
2846 trace_sched_migrate_task(rq, p, dest_cpu);
2847 /* force the process onto the specified CPU */
2848 if (migrate_task(p, dest_cpu, &req)) {
2849 /* Need to wait for migration thread (might exit: take ref). */
2850 struct task_struct *mt = rq->migration_thread;
2851
2852 get_task_struct(mt);
2853 task_rq_unlock(rq, &flags);
2854 wake_up_process(mt);
2855 put_task_struct(mt);
2856 wait_for_completion(&req.done);
2857
2858 return;
2859 }
2860 out:
2861 task_rq_unlock(rq, &flags);
2862 }
2863
2864 /*
2865 * sched_exec - execve() is a valuable balancing opportunity, because at
2866 * this point the task has the smallest effective memory and cache footprint.
2867 */
2868 void sched_exec(void)
2869 {
2870 int new_cpu, this_cpu = get_cpu();
2871 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2872 put_cpu();
2873 if (new_cpu != this_cpu)
2874 sched_migrate_task(current, new_cpu);
2875 }
2876
2877 /*
2878 * pull_task - move a task from a remote runqueue to the local runqueue.
2879 * Both runqueues must be locked.
2880 */
2881 static void pull_task(struct rq *src_rq, struct task_struct *p,
2882 struct rq *this_rq, int this_cpu)
2883 {
2884 deactivate_task(src_rq, p, 0);
2885 set_task_cpu(p, this_cpu);
2886 activate_task(this_rq, p, 0);
2887 /*
2888 * Note that idle threads have a prio of MAX_PRIO, for this test
2889 * to be always true for them.
2890 */
2891 check_preempt_curr(this_rq, p, 0);
2892 }
2893
2894 /*
2895 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2896 */
2897 static
2898 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2899 struct sched_domain *sd, enum cpu_idle_type idle,
2900 int *all_pinned)
2901 {
2902 /*
2903 * We do not migrate tasks that are:
2904 * 1) running (obviously), or
2905 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2906 * 3) are cache-hot on their current CPU.
2907 */
2908 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2909 schedstat_inc(p, se.nr_failed_migrations_affine);
2910 return 0;
2911 }
2912 *all_pinned = 0;
2913
2914 if (task_running(rq, p)) {
2915 schedstat_inc(p, se.nr_failed_migrations_running);
2916 return 0;
2917 }
2918
2919 /*
2920 * Aggressive migration if:
2921 * 1) task is cache cold, or
2922 * 2) too many balance attempts have failed.
2923 */
2924
2925 if (!task_hot(p, rq->clock, sd) ||
2926 sd->nr_balance_failed > sd->cache_nice_tries) {
2927 #ifdef CONFIG_SCHEDSTATS
2928 if (task_hot(p, rq->clock, sd)) {
2929 schedstat_inc(sd, lb_hot_gained[idle]);
2930 schedstat_inc(p, se.nr_forced_migrations);
2931 }
2932 #endif
2933 return 1;
2934 }
2935
2936 if (task_hot(p, rq->clock, sd)) {
2937 schedstat_inc(p, se.nr_failed_migrations_hot);
2938 return 0;
2939 }
2940 return 1;
2941 }
2942
2943 static unsigned long
2944 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2945 unsigned long max_load_move, struct sched_domain *sd,
2946 enum cpu_idle_type idle, int *all_pinned,
2947 int *this_best_prio, struct rq_iterator *iterator)
2948 {
2949 int loops = 0, pulled = 0, pinned = 0;
2950 struct task_struct *p;
2951 long rem_load_move = max_load_move;
2952
2953 if (max_load_move == 0)
2954 goto out;
2955
2956 pinned = 1;
2957
2958 /*
2959 * Start the load-balancing iterator:
2960 */
2961 p = iterator->start(iterator->arg);
2962 next:
2963 if (!p || loops++ > sysctl_sched_nr_migrate)
2964 goto out;
2965
2966 if ((p->se.load.weight >> 1) > rem_load_move ||
2967 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2968 p = iterator->next(iterator->arg);
2969 goto next;
2970 }
2971
2972 pull_task(busiest, p, this_rq, this_cpu);
2973 pulled++;
2974 rem_load_move -= p->se.load.weight;
2975
2976 /*
2977 * We only want to steal up to the prescribed amount of weighted load.
2978 */
2979 if (rem_load_move > 0) {
2980 if (p->prio < *this_best_prio)
2981 *this_best_prio = p->prio;
2982 p = iterator->next(iterator->arg);
2983 goto next;
2984 }
2985 out:
2986 /*
2987 * Right now, this is one of only two places pull_task() is called,
2988 * so we can safely collect pull_task() stats here rather than
2989 * inside pull_task().
2990 */
2991 schedstat_add(sd, lb_gained[idle], pulled);
2992
2993 if (all_pinned)
2994 *all_pinned = pinned;
2995
2996 return max_load_move - rem_load_move;
2997 }
2998
2999 /*
3000 * move_tasks tries to move up to max_load_move weighted load from busiest to
3001 * this_rq, as part of a balancing operation within domain "sd".
3002 * Returns 1 if successful and 0 otherwise.
3003 *
3004 * Called with both runqueues locked.
3005 */
3006 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3007 unsigned long max_load_move,
3008 struct sched_domain *sd, enum cpu_idle_type idle,
3009 int *all_pinned)
3010 {
3011 const struct sched_class *class = sched_class_highest;
3012 unsigned long total_load_moved = 0;
3013 int this_best_prio = this_rq->curr->prio;
3014
3015 do {
3016 total_load_moved +=
3017 class->load_balance(this_rq, this_cpu, busiest,
3018 max_load_move - total_load_moved,
3019 sd, idle, all_pinned, &this_best_prio);
3020 class = class->next;
3021
3022 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3023 break;
3024
3025 } while (class && max_load_move > total_load_moved);
3026
3027 return total_load_moved > 0;
3028 }
3029
3030 static int
3031 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3032 struct sched_domain *sd, enum cpu_idle_type idle,
3033 struct rq_iterator *iterator)
3034 {
3035 struct task_struct *p = iterator->start(iterator->arg);
3036 int pinned = 0;
3037
3038 while (p) {
3039 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3040 pull_task(busiest, p, this_rq, this_cpu);
3041 /*
3042 * Right now, this is only the second place pull_task()
3043 * is called, so we can safely collect pull_task()
3044 * stats here rather than inside pull_task().
3045 */
3046 schedstat_inc(sd, lb_gained[idle]);
3047
3048 return 1;
3049 }
3050 p = iterator->next(iterator->arg);
3051 }
3052
3053 return 0;
3054 }
3055
3056 /*
3057 * move_one_task tries to move exactly one task from busiest to this_rq, as
3058 * part of active balancing operations within "domain".
3059 * Returns 1 if successful and 0 otherwise.
3060 *
3061 * Called with both runqueues locked.
3062 */
3063 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3064 struct sched_domain *sd, enum cpu_idle_type idle)
3065 {
3066 const struct sched_class *class;
3067
3068 for (class = sched_class_highest; class; class = class->next)
3069 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3070 return 1;
3071
3072 return 0;
3073 }
3074
3075 /*
3076 * find_busiest_group finds and returns the busiest CPU group within the
3077 * domain. It calculates and returns the amount of weighted load which
3078 * should be moved to restore balance via the imbalance parameter.
3079 */
3080 static struct sched_group *
3081 find_busiest_group(struct sched_domain *sd, int this_cpu,
3082 unsigned long *imbalance, enum cpu_idle_type idle,
3083 int *sd_idle, const struct cpumask *cpus, int *balance)
3084 {
3085 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3086 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3087 unsigned long max_pull;
3088 unsigned long busiest_load_per_task, busiest_nr_running;
3089 unsigned long this_load_per_task, this_nr_running;
3090 int load_idx, group_imb = 0;
3091 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3092 int power_savings_balance = 1;
3093 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3094 unsigned long min_nr_running = ULONG_MAX;
3095 struct sched_group *group_min = NULL, *group_leader = NULL;
3096 #endif
3097
3098 max_load = this_load = total_load = total_pwr = 0;
3099 busiest_load_per_task = busiest_nr_running = 0;
3100 this_load_per_task = this_nr_running = 0;
3101
3102 if (idle == CPU_NOT_IDLE)
3103 load_idx = sd->busy_idx;
3104 else if (idle == CPU_NEWLY_IDLE)
3105 load_idx = sd->newidle_idx;
3106 else
3107 load_idx = sd->idle_idx;
3108
3109 do {
3110 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3111 int local_group;
3112 int i;
3113 int __group_imb = 0;
3114 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3115 unsigned long sum_nr_running, sum_weighted_load;
3116 unsigned long sum_avg_load_per_task;
3117 unsigned long avg_load_per_task;
3118
3119 local_group = cpumask_test_cpu(this_cpu,
3120 sched_group_cpus(group));
3121
3122 if (local_group)
3123 balance_cpu = cpumask_first(sched_group_cpus(group));
3124
3125 /* Tally up the load of all CPUs in the group */
3126 sum_weighted_load = sum_nr_running = avg_load = 0;
3127 sum_avg_load_per_task = avg_load_per_task = 0;
3128
3129 max_cpu_load = 0;
3130 min_cpu_load = ~0UL;
3131
3132 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3133 struct rq *rq = cpu_rq(i);
3134
3135 if (*sd_idle && rq->nr_running)
3136 *sd_idle = 0;
3137
3138 /* Bias balancing toward cpus of our domain */
3139 if (local_group) {
3140 if (idle_cpu(i) && !first_idle_cpu) {
3141 first_idle_cpu = 1;
3142 balance_cpu = i;
3143 }
3144
3145 load = target_load(i, load_idx);
3146 } else {
3147 load = source_load(i, load_idx);
3148 if (load > max_cpu_load)
3149 max_cpu_load = load;
3150 if (min_cpu_load > load)
3151 min_cpu_load = load;
3152 }
3153
3154 avg_load += load;
3155 sum_nr_running += rq->nr_running;
3156 sum_weighted_load += weighted_cpuload(i);
3157
3158 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3159 }
3160
3161 /*
3162 * First idle cpu or the first cpu(busiest) in this sched group
3163 * is eligible for doing load balancing at this and above
3164 * domains. In the newly idle case, we will allow all the cpu's
3165 * to do the newly idle load balance.
3166 */
3167 if (idle != CPU_NEWLY_IDLE && local_group &&
3168 balance_cpu != this_cpu && balance) {
3169 *balance = 0;
3170 goto ret;
3171 }
3172
3173 total_load += avg_load;
3174 total_pwr += group->__cpu_power;
3175
3176 /* Adjust by relative CPU power of the group */
3177 avg_load = sg_div_cpu_power(group,
3178 avg_load * SCHED_LOAD_SCALE);
3179
3180
3181 /*
3182 * Consider the group unbalanced when the imbalance is larger
3183 * than the average weight of two tasks.
3184 *
3185 * APZ: with cgroup the avg task weight can vary wildly and
3186 * might not be a suitable number - should we keep a
3187 * normalized nr_running number somewhere that negates
3188 * the hierarchy?
3189 */
3190 avg_load_per_task = sg_div_cpu_power(group,
3191 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3192
3193 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3194 __group_imb = 1;
3195
3196 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3197
3198 if (local_group) {
3199 this_load = avg_load;
3200 this = group;
3201 this_nr_running = sum_nr_running;
3202 this_load_per_task = sum_weighted_load;
3203 } else if (avg_load > max_load &&
3204 (sum_nr_running > group_capacity || __group_imb)) {
3205 max_load = avg_load;
3206 busiest = group;
3207 busiest_nr_running = sum_nr_running;
3208 busiest_load_per_task = sum_weighted_load;
3209 group_imb = __group_imb;
3210 }
3211
3212 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3213 /*
3214 * Busy processors will not participate in power savings
3215 * balance.
3216 */
3217 if (idle == CPU_NOT_IDLE ||
3218 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3219 goto group_next;
3220
3221 /*
3222 * If the local group is idle or completely loaded
3223 * no need to do power savings balance at this domain
3224 */
3225 if (local_group && (this_nr_running >= group_capacity ||
3226 !this_nr_running))
3227 power_savings_balance = 0;
3228
3229 /*
3230 * If a group is already running at full capacity or idle,
3231 * don't include that group in power savings calculations
3232 */
3233 if (!power_savings_balance || sum_nr_running >= group_capacity
3234 || !sum_nr_running)
3235 goto group_next;
3236
3237 /*
3238 * Calculate the group which has the least non-idle load.
3239 * This is the group from where we need to pick up the load
3240 * for saving power
3241 */
3242 if ((sum_nr_running < min_nr_running) ||
3243 (sum_nr_running == min_nr_running &&
3244 cpumask_first(sched_group_cpus(group)) <
3245 cpumask_first(sched_group_cpus(group_min)))) {
3246 group_min = group;
3247 min_nr_running = sum_nr_running;
3248 min_load_per_task = sum_weighted_load /
3249 sum_nr_running;
3250 }
3251
3252 /*
3253 * Calculate the group which is almost near its
3254 * capacity but still has some space to pick up some load
3255 * from other group and save more power
3256 */
3257 if (sum_nr_running <= group_capacity - 1) {
3258 if (sum_nr_running > leader_nr_running ||
3259 (sum_nr_running == leader_nr_running &&
3260 cpumask_first(sched_group_cpus(group)) >
3261 cpumask_first(sched_group_cpus(group_leader)))) {
3262 group_leader = group;
3263 leader_nr_running = sum_nr_running;
3264 }
3265 }
3266 group_next:
3267 #endif
3268 group = group->next;
3269 } while (group != sd->groups);
3270
3271 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3272 goto out_balanced;
3273
3274 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3275
3276 if (this_load >= avg_load ||
3277 100*max_load <= sd->imbalance_pct*this_load)
3278 goto out_balanced;
3279
3280 busiest_load_per_task /= busiest_nr_running;
3281 if (group_imb)
3282 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3283
3284 /*
3285 * We're trying to get all the cpus to the average_load, so we don't
3286 * want to push ourselves above the average load, nor do we wish to
3287 * reduce the max loaded cpu below the average load, as either of these
3288 * actions would just result in more rebalancing later, and ping-pong
3289 * tasks around. Thus we look for the minimum possible imbalance.
3290 * Negative imbalances (*we* are more loaded than anyone else) will
3291 * be counted as no imbalance for these purposes -- we can't fix that
3292 * by pulling tasks to us. Be careful of negative numbers as they'll
3293 * appear as very large values with unsigned longs.
3294 */
3295 if (max_load <= busiest_load_per_task)
3296 goto out_balanced;
3297
3298 /*
3299 * In the presence of smp nice balancing, certain scenarios can have
3300 * max load less than avg load(as we skip the groups at or below
3301 * its cpu_power, while calculating max_load..)
3302 */
3303 if (max_load < avg_load) {
3304 *imbalance = 0;
3305 goto small_imbalance;
3306 }
3307
3308 /* Don't want to pull so many tasks that a group would go idle */
3309 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3310
3311 /* How much load to actually move to equalise the imbalance */
3312 *imbalance = min(max_pull * busiest->__cpu_power,
3313 (avg_load - this_load) * this->__cpu_power)
3314 / SCHED_LOAD_SCALE;
3315
3316 /*
3317 * if *imbalance is less than the average load per runnable task
3318 * there is no gaurantee that any tasks will be moved so we'll have
3319 * a think about bumping its value to force at least one task to be
3320 * moved
3321 */
3322 if (*imbalance < busiest_load_per_task) {
3323 unsigned long tmp, pwr_now, pwr_move;
3324 unsigned int imbn;
3325
3326 small_imbalance:
3327 pwr_move = pwr_now = 0;
3328 imbn = 2;
3329 if (this_nr_running) {
3330 this_load_per_task /= this_nr_running;
3331 if (busiest_load_per_task > this_load_per_task)
3332 imbn = 1;
3333 } else
3334 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3335
3336 if (max_load - this_load + busiest_load_per_task >=
3337 busiest_load_per_task * imbn) {
3338 *imbalance = busiest_load_per_task;
3339 return busiest;
3340 }
3341
3342 /*
3343 * OK, we don't have enough imbalance to justify moving tasks,
3344 * however we may be able to increase total CPU power used by
3345 * moving them.
3346 */
3347
3348 pwr_now += busiest->__cpu_power *
3349 min(busiest_load_per_task, max_load);
3350 pwr_now += this->__cpu_power *
3351 min(this_load_per_task, this_load);
3352 pwr_now /= SCHED_LOAD_SCALE;
3353
3354 /* Amount of load we'd subtract */
3355 tmp = sg_div_cpu_power(busiest,
3356 busiest_load_per_task * SCHED_LOAD_SCALE);
3357 if (max_load > tmp)
3358 pwr_move += busiest->__cpu_power *
3359 min(busiest_load_per_task, max_load - tmp);
3360
3361 /* Amount of load we'd add */
3362 if (max_load * busiest->__cpu_power <
3363 busiest_load_per_task * SCHED_LOAD_SCALE)
3364 tmp = sg_div_cpu_power(this,
3365 max_load * busiest->__cpu_power);
3366 else
3367 tmp = sg_div_cpu_power(this,
3368 busiest_load_per_task * SCHED_LOAD_SCALE);
3369 pwr_move += this->__cpu_power *
3370 min(this_load_per_task, this_load + tmp);
3371 pwr_move /= SCHED_LOAD_SCALE;
3372
3373 /* Move if we gain throughput */
3374 if (pwr_move > pwr_now)
3375 *imbalance = busiest_load_per_task;
3376 }
3377
3378 return busiest;
3379
3380 out_balanced:
3381 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3382 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3383 goto ret;
3384
3385 if (this == group_leader && group_leader != group_min) {
3386 *imbalance = min_load_per_task;
3387 return group_min;
3388 }
3389 #endif
3390 ret:
3391 *imbalance = 0;
3392 return NULL;
3393 }
3394
3395 /*
3396 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3397 */
3398 static struct rq *
3399 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3400 unsigned long imbalance, const struct cpumask *cpus)
3401 {
3402 struct rq *busiest = NULL, *rq;
3403 unsigned long max_load = 0;
3404 int i;
3405
3406 for_each_cpu(i, sched_group_cpus(group)) {
3407 unsigned long wl;
3408
3409 if (!cpumask_test_cpu(i, cpus))
3410 continue;
3411
3412 rq = cpu_rq(i);
3413 wl = weighted_cpuload(i);
3414
3415 if (rq->nr_running == 1 && wl > imbalance)
3416 continue;
3417
3418 if (wl > max_load) {
3419 max_load = wl;
3420 busiest = rq;
3421 }
3422 }
3423
3424 return busiest;
3425 }
3426
3427 /*
3428 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3429 * so long as it is large enough.
3430 */
3431 #define MAX_PINNED_INTERVAL 512
3432
3433 /*
3434 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3435 * tasks if there is an imbalance.
3436 */
3437 static int load_balance(int this_cpu, struct rq *this_rq,
3438 struct sched_domain *sd, enum cpu_idle_type idle,
3439 int *balance, struct cpumask *cpus)
3440 {
3441 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3442 struct sched_group *group;
3443 unsigned long imbalance;
3444 struct rq *busiest;
3445 unsigned long flags;
3446
3447 cpumask_setall(cpus);
3448
3449 /*
3450 * When power savings policy is enabled for the parent domain, idle
3451 * sibling can pick up load irrespective of busy siblings. In this case,
3452 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3453 * portraying it as CPU_NOT_IDLE.
3454 */
3455 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3456 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3457 sd_idle = 1;
3458
3459 schedstat_inc(sd, lb_count[idle]);
3460
3461 redo:
3462 update_shares(sd);
3463 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3464 cpus, balance);
3465
3466 if (*balance == 0)
3467 goto out_balanced;
3468
3469 if (!group) {
3470 schedstat_inc(sd, lb_nobusyg[idle]);
3471 goto out_balanced;
3472 }
3473
3474 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3475 if (!busiest) {
3476 schedstat_inc(sd, lb_nobusyq[idle]);
3477 goto out_balanced;
3478 }
3479
3480 BUG_ON(busiest == this_rq);
3481
3482 schedstat_add(sd, lb_imbalance[idle], imbalance);
3483
3484 ld_moved = 0;
3485 if (busiest->nr_running > 1) {
3486 /*
3487 * Attempt to move tasks. If find_busiest_group has found
3488 * an imbalance but busiest->nr_running <= 1, the group is
3489 * still unbalanced. ld_moved simply stays zero, so it is
3490 * correctly treated as an imbalance.
3491 */
3492 local_irq_save(flags);
3493 double_rq_lock(this_rq, busiest);
3494 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3495 imbalance, sd, idle, &all_pinned);
3496 double_rq_unlock(this_rq, busiest);
3497 local_irq_restore(flags);
3498
3499 /*
3500 * some other cpu did the load balance for us.
3501 */
3502 if (ld_moved && this_cpu != smp_processor_id())
3503 resched_cpu(this_cpu);
3504
3505 /* All tasks on this runqueue were pinned by CPU affinity */
3506 if (unlikely(all_pinned)) {
3507 cpumask_clear_cpu(cpu_of(busiest), cpus);
3508 if (!cpumask_empty(cpus))
3509 goto redo;
3510 goto out_balanced;
3511 }
3512 }
3513
3514 if (!ld_moved) {
3515 schedstat_inc(sd, lb_failed[idle]);
3516 sd->nr_balance_failed++;
3517
3518 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3519
3520 spin_lock_irqsave(&busiest->lock, flags);
3521
3522 /* don't kick the migration_thread, if the curr
3523 * task on busiest cpu can't be moved to this_cpu
3524 */
3525 if (!cpumask_test_cpu(this_cpu,
3526 &busiest->curr->cpus_allowed)) {
3527 spin_unlock_irqrestore(&busiest->lock, flags);
3528 all_pinned = 1;
3529 goto out_one_pinned;
3530 }
3531
3532 if (!busiest->active_balance) {
3533 busiest->active_balance = 1;
3534 busiest->push_cpu = this_cpu;
3535 active_balance = 1;
3536 }
3537 spin_unlock_irqrestore(&busiest->lock, flags);
3538 if (active_balance)
3539 wake_up_process(busiest->migration_thread);
3540
3541 /*
3542 * We've kicked active balancing, reset the failure
3543 * counter.
3544 */
3545 sd->nr_balance_failed = sd->cache_nice_tries+1;
3546 }
3547 } else
3548 sd->nr_balance_failed = 0;
3549
3550 if (likely(!active_balance)) {
3551 /* We were unbalanced, so reset the balancing interval */
3552 sd->balance_interval = sd->min_interval;
3553 } else {
3554 /*
3555 * If we've begun active balancing, start to back off. This
3556 * case may not be covered by the all_pinned logic if there
3557 * is only 1 task on the busy runqueue (because we don't call
3558 * move_tasks).
3559 */
3560 if (sd->balance_interval < sd->max_interval)
3561 sd->balance_interval *= 2;
3562 }
3563
3564 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3565 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3566 ld_moved = -1;
3567
3568 goto out;
3569
3570 out_balanced:
3571 schedstat_inc(sd, lb_balanced[idle]);
3572
3573 sd->nr_balance_failed = 0;
3574
3575 out_one_pinned:
3576 /* tune up the balancing interval */
3577 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3578 (sd->balance_interval < sd->max_interval))
3579 sd->balance_interval *= 2;
3580
3581 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3582 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3583 ld_moved = -1;
3584 else
3585 ld_moved = 0;
3586 out:
3587 if (ld_moved)
3588 update_shares(sd);
3589 return ld_moved;
3590 }
3591
3592 /*
3593 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3594 * tasks if there is an imbalance.
3595 *
3596 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3597 * this_rq is locked.
3598 */
3599 static int
3600 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3601 struct cpumask *cpus)
3602 {
3603 struct sched_group *group;
3604 struct rq *busiest = NULL;
3605 unsigned long imbalance;
3606 int ld_moved = 0;
3607 int sd_idle = 0;
3608 int all_pinned = 0;
3609
3610 cpumask_setall(cpus);
3611
3612 /*
3613 * When power savings policy is enabled for the parent domain, idle
3614 * sibling can pick up load irrespective of busy siblings. In this case,
3615 * let the state of idle sibling percolate up as IDLE, instead of
3616 * portraying it as CPU_NOT_IDLE.
3617 */
3618 if (sd->flags & SD_SHARE_CPUPOWER &&
3619 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3620 sd_idle = 1;
3621
3622 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3623 redo:
3624 update_shares_locked(this_rq, sd);
3625 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3626 &sd_idle, cpus, NULL);
3627 if (!group) {
3628 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3629 goto out_balanced;
3630 }
3631
3632 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3633 if (!busiest) {
3634 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3635 goto out_balanced;
3636 }
3637
3638 BUG_ON(busiest == this_rq);
3639
3640 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3641
3642 ld_moved = 0;
3643 if (busiest->nr_running > 1) {
3644 /* Attempt to move tasks */
3645 double_lock_balance(this_rq, busiest);
3646 /* this_rq->clock is already updated */
3647 update_rq_clock(busiest);
3648 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3649 imbalance, sd, CPU_NEWLY_IDLE,
3650 &all_pinned);
3651 double_unlock_balance(this_rq, busiest);
3652
3653 if (unlikely(all_pinned)) {
3654 cpumask_clear_cpu(cpu_of(busiest), cpus);
3655 if (!cpumask_empty(cpus))
3656 goto redo;
3657 }
3658 }
3659
3660 if (!ld_moved) {
3661 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3662 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3663 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3664 return -1;
3665 } else
3666 sd->nr_balance_failed = 0;
3667
3668 update_shares_locked(this_rq, sd);
3669 return ld_moved;
3670
3671 out_balanced:
3672 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3673 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3674 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3675 return -1;
3676 sd->nr_balance_failed = 0;
3677
3678 return 0;
3679 }
3680
3681 /*
3682 * idle_balance is called by schedule() if this_cpu is about to become
3683 * idle. Attempts to pull tasks from other CPUs.
3684 */
3685 static void idle_balance(int this_cpu, struct rq *this_rq)
3686 {
3687 struct sched_domain *sd;
3688 int pulled_task = 0;
3689 unsigned long next_balance = jiffies + HZ;
3690 cpumask_var_t tmpmask;
3691
3692 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3693 return;
3694
3695 for_each_domain(this_cpu, sd) {
3696 unsigned long interval;
3697
3698 if (!(sd->flags & SD_LOAD_BALANCE))
3699 continue;
3700
3701 if (sd->flags & SD_BALANCE_NEWIDLE)
3702 /* If we've pulled tasks over stop searching: */
3703 pulled_task = load_balance_newidle(this_cpu, this_rq,
3704 sd, tmpmask);
3705
3706 interval = msecs_to_jiffies(sd->balance_interval);
3707 if (time_after(next_balance, sd->last_balance + interval))
3708 next_balance = sd->last_balance + interval;
3709 if (pulled_task)
3710 break;
3711 }
3712 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3713 /*
3714 * We are going idle. next_balance may be set based on
3715 * a busy processor. So reset next_balance.
3716 */
3717 this_rq->next_balance = next_balance;
3718 }
3719 free_cpumask_var(tmpmask);
3720 }
3721
3722 /*
3723 * active_load_balance is run by migration threads. It pushes running tasks
3724 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3725 * running on each physical CPU where possible, and avoids physical /
3726 * logical imbalances.
3727 *
3728 * Called with busiest_rq locked.
3729 */
3730 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3731 {
3732 int target_cpu = busiest_rq->push_cpu;
3733 struct sched_domain *sd;
3734 struct rq *target_rq;
3735
3736 /* Is there any task to move? */
3737 if (busiest_rq->nr_running <= 1)
3738 return;
3739
3740 target_rq = cpu_rq(target_cpu);
3741
3742 /*
3743 * This condition is "impossible", if it occurs
3744 * we need to fix it. Originally reported by
3745 * Bjorn Helgaas on a 128-cpu setup.
3746 */
3747 BUG_ON(busiest_rq == target_rq);
3748
3749 /* move a task from busiest_rq to target_rq */
3750 double_lock_balance(busiest_rq, target_rq);
3751 update_rq_clock(busiest_rq);
3752 update_rq_clock(target_rq);
3753
3754 /* Search for an sd spanning us and the target CPU. */
3755 for_each_domain(target_cpu, sd) {
3756 if ((sd->flags & SD_LOAD_BALANCE) &&
3757 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3758 break;
3759 }
3760
3761 if (likely(sd)) {
3762 schedstat_inc(sd, alb_count);
3763
3764 if (move_one_task(target_rq, target_cpu, busiest_rq,
3765 sd, CPU_IDLE))
3766 schedstat_inc(sd, alb_pushed);
3767 else
3768 schedstat_inc(sd, alb_failed);
3769 }
3770 double_unlock_balance(busiest_rq, target_rq);
3771 }
3772
3773 #ifdef CONFIG_NO_HZ
3774 static struct {
3775 atomic_t load_balancer;
3776 cpumask_var_t cpu_mask;
3777 } nohz ____cacheline_aligned = {
3778 .load_balancer = ATOMIC_INIT(-1),
3779 };
3780
3781 /*
3782 * This routine will try to nominate the ilb (idle load balancing)
3783 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3784 * load balancing on behalf of all those cpus. If all the cpus in the system
3785 * go into this tickless mode, then there will be no ilb owner (as there is
3786 * no need for one) and all the cpus will sleep till the next wakeup event
3787 * arrives...
3788 *
3789 * For the ilb owner, tick is not stopped. And this tick will be used
3790 * for idle load balancing. ilb owner will still be part of
3791 * nohz.cpu_mask..
3792 *
3793 * While stopping the tick, this cpu will become the ilb owner if there
3794 * is no other owner. And will be the owner till that cpu becomes busy
3795 * or if all cpus in the system stop their ticks at which point
3796 * there is no need for ilb owner.
3797 *
3798 * When the ilb owner becomes busy, it nominates another owner, during the
3799 * next busy scheduler_tick()
3800 */
3801 int select_nohz_load_balancer(int stop_tick)
3802 {
3803 int cpu = smp_processor_id();
3804
3805 if (stop_tick) {
3806 cpumask_set_cpu(cpu, nohz.cpu_mask);
3807 cpu_rq(cpu)->in_nohz_recently = 1;
3808
3809 /*
3810 * If we are going offline and still the leader, give up!
3811 */
3812 if (!cpu_active(cpu) &&
3813 atomic_read(&nohz.load_balancer) == cpu) {
3814 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3815 BUG();
3816 return 0;
3817 }
3818
3819 /* time for ilb owner also to sleep */
3820 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3821 if (atomic_read(&nohz.load_balancer) == cpu)
3822 atomic_set(&nohz.load_balancer, -1);
3823 return 0;
3824 }
3825
3826 if (atomic_read(&nohz.load_balancer) == -1) {
3827 /* make me the ilb owner */
3828 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3829 return 1;
3830 } else if (atomic_read(&nohz.load_balancer) == cpu)
3831 return 1;
3832 } else {
3833 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3834 return 0;
3835
3836 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3837
3838 if (atomic_read(&nohz.load_balancer) == cpu)
3839 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3840 BUG();
3841 }
3842 return 0;
3843 }
3844 #endif
3845
3846 static DEFINE_SPINLOCK(balancing);
3847
3848 /*
3849 * It checks each scheduling domain to see if it is due to be balanced,
3850 * and initiates a balancing operation if so.
3851 *
3852 * Balancing parameters are set up in arch_init_sched_domains.
3853 */
3854 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3855 {
3856 int balance = 1;
3857 struct rq *rq = cpu_rq(cpu);
3858 unsigned long interval;
3859 struct sched_domain *sd;
3860 /* Earliest time when we have to do rebalance again */
3861 unsigned long next_balance = jiffies + 60*HZ;
3862 int update_next_balance = 0;
3863 int need_serialize;
3864 cpumask_var_t tmp;
3865
3866 /* Fails alloc? Rebalancing probably not a priority right now. */
3867 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3868 return;
3869
3870 for_each_domain(cpu, sd) {
3871 if (!(sd->flags & SD_LOAD_BALANCE))
3872 continue;
3873
3874 interval = sd->balance_interval;
3875 if (idle != CPU_IDLE)
3876 interval *= sd->busy_factor;
3877
3878 /* scale ms to jiffies */
3879 interval = msecs_to_jiffies(interval);
3880 if (unlikely(!interval))
3881 interval = 1;
3882 if (interval > HZ*NR_CPUS/10)
3883 interval = HZ*NR_CPUS/10;
3884
3885 need_serialize = sd->flags & SD_SERIALIZE;
3886
3887 if (need_serialize) {
3888 if (!spin_trylock(&balancing))
3889 goto out;
3890 }
3891
3892 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3893 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3894 /*
3895 * We've pulled tasks over so either we're no
3896 * longer idle, or one of our SMT siblings is
3897 * not idle.
3898 */
3899 idle = CPU_NOT_IDLE;
3900 }
3901 sd->last_balance = jiffies;
3902 }
3903 if (need_serialize)
3904 spin_unlock(&balancing);
3905 out:
3906 if (time_after(next_balance, sd->last_balance + interval)) {
3907 next_balance = sd->last_balance + interval;
3908 update_next_balance = 1;
3909 }
3910
3911 /*
3912 * Stop the load balance at this level. There is another
3913 * CPU in our sched group which is doing load balancing more
3914 * actively.
3915 */
3916 if (!balance)
3917 break;
3918 }
3919
3920 /*
3921 * next_balance will be updated only when there is a need.
3922 * When the cpu is attached to null domain for ex, it will not be
3923 * updated.
3924 */
3925 if (likely(update_next_balance))
3926 rq->next_balance = next_balance;
3927
3928 free_cpumask_var(tmp);
3929 }
3930
3931 /*
3932 * run_rebalance_domains is triggered when needed from the scheduler tick.
3933 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3934 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3935 */
3936 static void run_rebalance_domains(struct softirq_action *h)
3937 {
3938 int this_cpu = smp_processor_id();
3939 struct rq *this_rq = cpu_rq(this_cpu);
3940 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3941 CPU_IDLE : CPU_NOT_IDLE;
3942
3943 rebalance_domains(this_cpu, idle);
3944
3945 #ifdef CONFIG_NO_HZ
3946 /*
3947 * If this cpu is the owner for idle load balancing, then do the
3948 * balancing on behalf of the other idle cpus whose ticks are
3949 * stopped.
3950 */
3951 if (this_rq->idle_at_tick &&
3952 atomic_read(&nohz.load_balancer) == this_cpu) {
3953 struct rq *rq;
3954 int balance_cpu;
3955
3956 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3957 if (balance_cpu == this_cpu)
3958 continue;
3959
3960 /*
3961 * If this cpu gets work to do, stop the load balancing
3962 * work being done for other cpus. Next load
3963 * balancing owner will pick it up.
3964 */
3965 if (need_resched())
3966 break;
3967
3968 rebalance_domains(balance_cpu, CPU_IDLE);
3969
3970 rq = cpu_rq(balance_cpu);
3971 if (time_after(this_rq->next_balance, rq->next_balance))
3972 this_rq->next_balance = rq->next_balance;
3973 }
3974 }
3975 #endif
3976 }
3977
3978 /*
3979 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3980 *
3981 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3982 * idle load balancing owner or decide to stop the periodic load balancing,
3983 * if the whole system is idle.
3984 */
3985 static inline void trigger_load_balance(struct rq *rq, int cpu)
3986 {
3987 #ifdef CONFIG_NO_HZ
3988 /*
3989 * If we were in the nohz mode recently and busy at the current
3990 * scheduler tick, then check if we need to nominate new idle
3991 * load balancer.
3992 */
3993 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3994 rq->in_nohz_recently = 0;
3995
3996 if (atomic_read(&nohz.load_balancer) == cpu) {
3997 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3998 atomic_set(&nohz.load_balancer, -1);
3999 }
4000
4001 if (atomic_read(&nohz.load_balancer) == -1) {
4002 /*
4003 * simple selection for now: Nominate the
4004 * first cpu in the nohz list to be the next
4005 * ilb owner.
4006 *
4007 * TBD: Traverse the sched domains and nominate
4008 * the nearest cpu in the nohz.cpu_mask.
4009 */
4010 int ilb = cpumask_first(nohz.cpu_mask);
4011
4012 if (ilb < nr_cpu_ids)
4013 resched_cpu(ilb);
4014 }
4015 }
4016
4017 /*
4018 * If this cpu is idle and doing idle load balancing for all the
4019 * cpus with ticks stopped, is it time for that to stop?
4020 */
4021 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4022 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4023 resched_cpu(cpu);
4024 return;
4025 }
4026
4027 /*
4028 * If this cpu is idle and the idle load balancing is done by
4029 * someone else, then no need raise the SCHED_SOFTIRQ
4030 */
4031 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4032 cpumask_test_cpu(cpu, nohz.cpu_mask))
4033 return;
4034 #endif
4035 if (time_after_eq(jiffies, rq->next_balance))
4036 raise_softirq(SCHED_SOFTIRQ);
4037 }
4038
4039 #else /* CONFIG_SMP */
4040
4041 /*
4042 * on UP we do not need to balance between CPUs:
4043 */
4044 static inline void idle_balance(int cpu, struct rq *rq)
4045 {
4046 }
4047
4048 #endif
4049
4050 DEFINE_PER_CPU(struct kernel_stat, kstat);
4051
4052 EXPORT_PER_CPU_SYMBOL(kstat);
4053
4054 /*
4055 * Return any ns on the sched_clock that have not yet been banked in
4056 * @p in case that task is currently running.
4057 */
4058 unsigned long long task_delta_exec(struct task_struct *p)
4059 {
4060 unsigned long flags;
4061 struct rq *rq;
4062 u64 ns = 0;
4063
4064 rq = task_rq_lock(p, &flags);
4065
4066 if (task_current(rq, p)) {
4067 u64 delta_exec;
4068
4069 update_rq_clock(rq);
4070 delta_exec = rq->clock - p->se.exec_start;
4071 if ((s64)delta_exec > 0)
4072 ns = delta_exec;
4073 }
4074
4075 task_rq_unlock(rq, &flags);
4076
4077 return ns;
4078 }
4079
4080 /*
4081 * Account user cpu time to a process.
4082 * @p: the process that the cpu time gets accounted to
4083 * @cputime: the cpu time spent in user space since the last update
4084 */
4085 void account_user_time(struct task_struct *p, cputime_t cputime)
4086 {
4087 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4088 cputime64_t tmp;
4089
4090 p->utime = cputime_add(p->utime, cputime);
4091 account_group_user_time(p, cputime);
4092
4093 /* Add user time to cpustat. */
4094 tmp = cputime_to_cputime64(cputime);
4095 if (TASK_NICE(p) > 0)
4096 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4097 else
4098 cpustat->user = cputime64_add(cpustat->user, tmp);
4099 /* Account for user time used */
4100 acct_update_integrals(p);
4101 }
4102
4103 /*
4104 * Account guest cpu time to a process.
4105 * @p: the process that the cpu time gets accounted to
4106 * @cputime: the cpu time spent in virtual machine since the last update
4107 */
4108 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4109 {
4110 cputime64_t tmp;
4111 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4112
4113 tmp = cputime_to_cputime64(cputime);
4114
4115 p->utime = cputime_add(p->utime, cputime);
4116 account_group_user_time(p, cputime);
4117 p->gtime = cputime_add(p->gtime, cputime);
4118
4119 cpustat->user = cputime64_add(cpustat->user, tmp);
4120 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4121 }
4122
4123 /*
4124 * Account scaled user cpu time to a process.
4125 * @p: the process that the cpu time gets accounted to
4126 * @cputime: the cpu time spent in user space since the last update
4127 */
4128 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4129 {
4130 p->utimescaled = cputime_add(p->utimescaled, cputime);
4131 }
4132
4133 /*
4134 * Account system cpu time to a process.
4135 * @p: the process that the cpu time gets accounted to
4136 * @hardirq_offset: the offset to subtract from hardirq_count()
4137 * @cputime: the cpu time spent in kernel space since the last update
4138 */
4139 void account_system_time(struct task_struct *p, int hardirq_offset,
4140 cputime_t cputime)
4141 {
4142 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4143 struct rq *rq = this_rq();
4144 cputime64_t tmp;
4145
4146 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4147 account_guest_time(p, cputime);
4148 return;
4149 }
4150
4151 p->stime = cputime_add(p->stime, cputime);
4152 account_group_system_time(p, cputime);
4153
4154 /* Add system time to cpustat. */
4155 tmp = cputime_to_cputime64(cputime);
4156 if (hardirq_count() - hardirq_offset)
4157 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4158 else if (softirq_count())
4159 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4160 else if (p != rq->idle)
4161 cpustat->system = cputime64_add(cpustat->system, tmp);
4162 else if (atomic_read(&rq->nr_iowait) > 0)
4163 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4164 else
4165 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4166 /* Account for system time used */
4167 acct_update_integrals(p);
4168 }
4169
4170 /*
4171 * Account scaled system cpu time to a process.
4172 * @p: the process that the cpu time gets accounted to
4173 * @hardirq_offset: the offset to subtract from hardirq_count()
4174 * @cputime: the cpu time spent in kernel space since the last update
4175 */
4176 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4177 {
4178 p->stimescaled = cputime_add(p->stimescaled, cputime);
4179 }
4180
4181 /*
4182 * Account for involuntary wait time.
4183 * @p: the process from which the cpu time has been stolen
4184 * @steal: the cpu time spent in involuntary wait
4185 */
4186 void account_steal_time(struct task_struct *p, cputime_t steal)
4187 {
4188 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4189 cputime64_t tmp = cputime_to_cputime64(steal);
4190 struct rq *rq = this_rq();
4191
4192 if (p == rq->idle) {
4193 p->stime = cputime_add(p->stime, steal);
4194 if (atomic_read(&rq->nr_iowait) > 0)
4195 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4196 else
4197 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4198 } else
4199 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4200 }
4201
4202 /*
4203 * Use precise platform statistics if available:
4204 */
4205 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4206 cputime_t task_utime(struct task_struct *p)
4207 {
4208 return p->utime;
4209 }
4210
4211 cputime_t task_stime(struct task_struct *p)
4212 {
4213 return p->stime;
4214 }
4215 #else
4216 cputime_t task_utime(struct task_struct *p)
4217 {
4218 clock_t utime = cputime_to_clock_t(p->utime),
4219 total = utime + cputime_to_clock_t(p->stime);
4220 u64 temp;
4221
4222 /*
4223 * Use CFS's precise accounting:
4224 */
4225 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4226
4227 if (total) {
4228 temp *= utime;
4229 do_div(temp, total);
4230 }
4231 utime = (clock_t)temp;
4232
4233 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4234 return p->prev_utime;
4235 }
4236
4237 cputime_t task_stime(struct task_struct *p)
4238 {
4239 clock_t stime;
4240
4241 /*
4242 * Use CFS's precise accounting. (we subtract utime from
4243 * the total, to make sure the total observed by userspace
4244 * grows monotonically - apps rely on that):
4245 */
4246 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4247 cputime_to_clock_t(task_utime(p));
4248
4249 if (stime >= 0)
4250 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4251
4252 return p->prev_stime;
4253 }
4254 #endif
4255
4256 inline cputime_t task_gtime(struct task_struct *p)
4257 {
4258 return p->gtime;
4259 }
4260
4261 /*
4262 * This function gets called by the timer code, with HZ frequency.
4263 * We call it with interrupts disabled.
4264 *
4265 * It also gets called by the fork code, when changing the parent's
4266 * timeslices.
4267 */
4268 void scheduler_tick(void)
4269 {
4270 int cpu = smp_processor_id();
4271 struct rq *rq = cpu_rq(cpu);
4272 struct task_struct *curr = rq->curr;
4273
4274 sched_clock_tick();
4275
4276 spin_lock(&rq->lock);
4277 update_rq_clock(rq);
4278 update_cpu_load(rq);
4279 curr->sched_class->task_tick(rq, curr, 0);
4280 spin_unlock(&rq->lock);
4281
4282 #ifdef CONFIG_SMP
4283 rq->idle_at_tick = idle_cpu(cpu);
4284 trigger_load_balance(rq, cpu);
4285 #endif
4286 }
4287
4288 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4289 defined(CONFIG_PREEMPT_TRACER))
4290
4291 static inline unsigned long get_parent_ip(unsigned long addr)
4292 {
4293 if (in_lock_functions(addr)) {
4294 addr = CALLER_ADDR2;
4295 if (in_lock_functions(addr))
4296 addr = CALLER_ADDR3;
4297 }
4298 return addr;
4299 }
4300
4301 void __kprobes add_preempt_count(int val)
4302 {
4303 #ifdef CONFIG_DEBUG_PREEMPT
4304 /*
4305 * Underflow?
4306 */
4307 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4308 return;
4309 #endif
4310 preempt_count() += val;
4311 #ifdef CONFIG_DEBUG_PREEMPT
4312 /*
4313 * Spinlock count overflowing soon?
4314 */
4315 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4316 PREEMPT_MASK - 10);
4317 #endif
4318 if (preempt_count() == val)
4319 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4320 }
4321 EXPORT_SYMBOL(add_preempt_count);
4322
4323 void __kprobes sub_preempt_count(int val)
4324 {
4325 #ifdef CONFIG_DEBUG_PREEMPT
4326 /*
4327 * Underflow?
4328 */
4329 if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
4330 return;
4331 /*
4332 * Is the spinlock portion underflowing?
4333 */
4334 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4335 !(preempt_count() & PREEMPT_MASK)))
4336 return;
4337 #endif
4338
4339 if (preempt_count() == val)
4340 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4341 preempt_count() -= val;
4342 }
4343 EXPORT_SYMBOL(sub_preempt_count);
4344
4345 #endif
4346
4347 /*
4348 * Print scheduling while atomic bug:
4349 */
4350 static noinline void __schedule_bug(struct task_struct *prev)
4351 {
4352 struct pt_regs *regs = get_irq_regs();
4353
4354 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4355 prev->comm, prev->pid, preempt_count());
4356
4357 debug_show_held_locks(prev);
4358 print_modules();
4359 if (irqs_disabled())
4360 print_irqtrace_events(prev);
4361
4362 if (regs)
4363 show_regs(regs);
4364 else
4365 dump_stack();
4366 }
4367
4368 /*
4369 * Various schedule()-time debugging checks and statistics:
4370 */
4371 static inline void schedule_debug(struct task_struct *prev)
4372 {
4373 /*
4374 * Test if we are atomic. Since do_exit() needs to call into
4375 * schedule() atomically, we ignore that path for now.
4376 * Otherwise, whine if we are scheduling when we should not be.
4377 */
4378 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4379 __schedule_bug(prev);
4380
4381 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4382
4383 schedstat_inc(this_rq(), sched_count);
4384 #ifdef CONFIG_SCHEDSTATS
4385 if (unlikely(prev->lock_depth >= 0)) {
4386 schedstat_inc(this_rq(), bkl_count);
4387 schedstat_inc(prev, sched_info.bkl_count);
4388 }
4389 #endif
4390 }
4391
4392 /*
4393 * Pick up the highest-prio task:
4394 */
4395 static inline struct task_struct *
4396 pick_next_task(struct rq *rq, struct task_struct *prev)
4397 {
4398 const struct sched_class *class;
4399 struct task_struct *p;
4400
4401 /*
4402 * Optimization: we know that if all tasks are in
4403 * the fair class we can call that function directly:
4404 */
4405 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4406 p = fair_sched_class.pick_next_task(rq);
4407 if (likely(p))
4408 return p;
4409 }
4410
4411 class = sched_class_highest;
4412 for ( ; ; ) {
4413 p = class->pick_next_task(rq);
4414 if (p)
4415 return p;
4416 /*
4417 * Will never be NULL as the idle class always
4418 * returns a non-NULL p:
4419 */
4420 class = class->next;
4421 }
4422 }
4423
4424 /*
4425 * schedule() is the main scheduler function.
4426 */
4427 asmlinkage void __sched schedule(void)
4428 {
4429 struct task_struct *prev, *next;
4430 unsigned long *switch_count;
4431 struct rq *rq;
4432 int cpu;
4433
4434 need_resched:
4435 preempt_disable();
4436 cpu = smp_processor_id();
4437 rq = cpu_rq(cpu);
4438 rcu_qsctr_inc(cpu);
4439 prev = rq->curr;
4440 switch_count = &prev->nivcsw;
4441
4442 release_kernel_lock(prev);
4443 need_resched_nonpreemptible:
4444
4445 schedule_debug(prev);
4446
4447 if (sched_feat(HRTICK))
4448 hrtick_clear(rq);
4449
4450 spin_lock_irq(&rq->lock);
4451 update_rq_clock(rq);
4452 clear_tsk_need_resched(prev);
4453
4454 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4455 if (unlikely(signal_pending_state(prev->state, prev)))
4456 prev->state = TASK_RUNNING;
4457 else
4458 deactivate_task(rq, prev, 1);
4459 switch_count = &prev->nvcsw;
4460 }
4461
4462 #ifdef CONFIG_SMP
4463 if (prev->sched_class->pre_schedule)
4464 prev->sched_class->pre_schedule(rq, prev);
4465 #endif
4466
4467 if (unlikely(!rq->nr_running))
4468 idle_balance(cpu, rq);
4469
4470 prev->sched_class->put_prev_task(rq, prev);
4471 next = pick_next_task(rq, prev);
4472
4473 if (likely(prev != next)) {
4474 sched_info_switch(prev, next);
4475
4476 rq->nr_switches++;
4477 rq->curr = next;
4478 ++*switch_count;
4479
4480 context_switch(rq, prev, next); /* unlocks the rq */
4481 /*
4482 * the context switch might have flipped the stack from under
4483 * us, hence refresh the local variables.
4484 */
4485 cpu = smp_processor_id();
4486 rq = cpu_rq(cpu);
4487 } else
4488 spin_unlock_irq(&rq->lock);
4489
4490 if (unlikely(reacquire_kernel_lock(current) < 0))
4491 goto need_resched_nonpreemptible;
4492
4493 preempt_enable_no_resched();
4494 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4495 goto need_resched;
4496 }
4497 EXPORT_SYMBOL(schedule);
4498
4499 #ifdef CONFIG_PREEMPT
4500 /*
4501 * this is the entry point to schedule() from in-kernel preemption
4502 * off of preempt_enable. Kernel preemptions off return from interrupt
4503 * occur there and call schedule directly.
4504 */
4505 asmlinkage void __sched preempt_schedule(void)
4506 {
4507 struct thread_info *ti = current_thread_info();
4508
4509 /*
4510 * If there is a non-zero preempt_count or interrupts are disabled,
4511 * we do not want to preempt the current task. Just return..
4512 */
4513 if (likely(ti->preempt_count || irqs_disabled()))
4514 return;
4515
4516 do {
4517 add_preempt_count(PREEMPT_ACTIVE);
4518 schedule();
4519 sub_preempt_count(PREEMPT_ACTIVE);
4520
4521 /*
4522 * Check again in case we missed a preemption opportunity
4523 * between schedule and now.
4524 */
4525 barrier();
4526 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4527 }
4528 EXPORT_SYMBOL(preempt_schedule);
4529
4530 /*
4531 * this is the entry point to schedule() from kernel preemption
4532 * off of irq context.
4533 * Note, that this is called and return with irqs disabled. This will
4534 * protect us against recursive calling from irq.
4535 */
4536 asmlinkage void __sched preempt_schedule_irq(void)
4537 {
4538 struct thread_info *ti = current_thread_info();
4539
4540 /* Catch callers which need to be fixed */
4541 BUG_ON(ti->preempt_count || !irqs_disabled());
4542
4543 do {
4544 add_preempt_count(PREEMPT_ACTIVE);
4545 local_irq_enable();
4546 schedule();
4547 local_irq_disable();
4548 sub_preempt_count(PREEMPT_ACTIVE);
4549
4550 /*
4551 * Check again in case we missed a preemption opportunity
4552 * between schedule and now.
4553 */
4554 barrier();
4555 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4556 }
4557
4558 #endif /* CONFIG_PREEMPT */
4559
4560 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4561 void *key)
4562 {
4563 return try_to_wake_up(curr->private, mode, sync);
4564 }
4565 EXPORT_SYMBOL(default_wake_function);
4566
4567 /*
4568 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4569 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4570 * number) then we wake all the non-exclusive tasks and one exclusive task.
4571 *
4572 * There are circumstances in which we can try to wake a task which has already
4573 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4574 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4575 */
4576 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4577 int nr_exclusive, int sync, void *key)
4578 {
4579 wait_queue_t *curr, *next;
4580
4581 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4582 unsigned flags = curr->flags;
4583
4584 if (curr->func(curr, mode, sync, key) &&
4585 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4586 break;
4587 }
4588 }
4589
4590 /**
4591 * __wake_up - wake up threads blocked on a waitqueue.
4592 * @q: the waitqueue
4593 * @mode: which threads
4594 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4595 * @key: is directly passed to the wakeup function
4596 */
4597 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4598 int nr_exclusive, void *key)
4599 {
4600 unsigned long flags;
4601
4602 spin_lock_irqsave(&q->lock, flags);
4603 __wake_up_common(q, mode, nr_exclusive, 0, key);
4604 spin_unlock_irqrestore(&q->lock, flags);
4605 }
4606 EXPORT_SYMBOL(__wake_up);
4607
4608 /*
4609 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4610 */
4611 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4612 {
4613 __wake_up_common(q, mode, 1, 0, NULL);
4614 }
4615
4616 /**
4617 * __wake_up_sync - wake up threads blocked on a waitqueue.
4618 * @q: the waitqueue
4619 * @mode: which threads
4620 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4621 *
4622 * The sync wakeup differs that the waker knows that it will schedule
4623 * away soon, so while the target thread will be woken up, it will not
4624 * be migrated to another CPU - ie. the two threads are 'synchronized'
4625 * with each other. This can prevent needless bouncing between CPUs.
4626 *
4627 * On UP it can prevent extra preemption.
4628 */
4629 void
4630 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4631 {
4632 unsigned long flags;
4633 int sync = 1;
4634
4635 if (unlikely(!q))
4636 return;
4637
4638 if (unlikely(!nr_exclusive))
4639 sync = 0;
4640
4641 spin_lock_irqsave(&q->lock, flags);
4642 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4643 spin_unlock_irqrestore(&q->lock, flags);
4644 }
4645 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4646
4647 /**
4648 * complete: - signals a single thread waiting on this completion
4649 * @x: holds the state of this particular completion
4650 *
4651 * This will wake up a single thread waiting on this completion. Threads will be
4652 * awakened in the same order in which they were queued.
4653 *
4654 * See also complete_all(), wait_for_completion() and related routines.
4655 */
4656 void complete(struct completion *x)
4657 {
4658 unsigned long flags;
4659
4660 spin_lock_irqsave(&x->wait.lock, flags);
4661 x->done++;
4662 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4663 spin_unlock_irqrestore(&x->wait.lock, flags);
4664 }
4665 EXPORT_SYMBOL(complete);
4666
4667 /**
4668 * complete_all: - signals all threads waiting on this completion
4669 * @x: holds the state of this particular completion
4670 *
4671 * This will wake up all threads waiting on this particular completion event.
4672 */
4673 void complete_all(struct completion *x)
4674 {
4675 unsigned long flags;
4676
4677 spin_lock_irqsave(&x->wait.lock, flags);
4678 x->done += UINT_MAX/2;
4679 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4680 spin_unlock_irqrestore(&x->wait.lock, flags);
4681 }
4682 EXPORT_SYMBOL(complete_all);
4683
4684 static inline long __sched
4685 do_wait_for_common(struct completion *x, long timeout, int state)
4686 {
4687 if (!x->done) {
4688 DECLARE_WAITQUEUE(wait, current);
4689
4690 wait.flags |= WQ_FLAG_EXCLUSIVE;
4691 __add_wait_queue_tail(&x->wait, &wait);
4692 do {
4693 if (signal_pending_state(state, current)) {
4694 timeout = -ERESTARTSYS;
4695 break;
4696 }
4697 __set_current_state(state);
4698 spin_unlock_irq(&x->wait.lock);
4699 timeout = schedule_timeout(timeout);
4700 spin_lock_irq(&x->wait.lock);
4701 } while (!x->done && timeout);
4702 __remove_wait_queue(&x->wait, &wait);
4703 if (!x->done)
4704 return timeout;
4705 }
4706 x->done--;
4707 return timeout ?: 1;
4708 }
4709
4710 static long __sched
4711 wait_for_common(struct completion *x, long timeout, int state)
4712 {
4713 might_sleep();
4714
4715 spin_lock_irq(&x->wait.lock);
4716 timeout = do_wait_for_common(x, timeout, state);
4717 spin_unlock_irq(&x->wait.lock);
4718 return timeout;
4719 }
4720
4721 /**
4722 * wait_for_completion: - waits for completion of a task
4723 * @x: holds the state of this particular completion
4724 *
4725 * This waits to be signaled for completion of a specific task. It is NOT
4726 * interruptible and there is no timeout.
4727 *
4728 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4729 * and interrupt capability. Also see complete().
4730 */
4731 void __sched wait_for_completion(struct completion *x)
4732 {
4733 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4734 }
4735 EXPORT_SYMBOL(wait_for_completion);
4736
4737 /**
4738 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4739 * @x: holds the state of this particular completion
4740 * @timeout: timeout value in jiffies
4741 *
4742 * This waits for either a completion of a specific task to be signaled or for a
4743 * specified timeout to expire. The timeout is in jiffies. It is not
4744 * interruptible.
4745 */
4746 unsigned long __sched
4747 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4748 {
4749 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4750 }
4751 EXPORT_SYMBOL(wait_for_completion_timeout);
4752
4753 /**
4754 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4755 * @x: holds the state of this particular completion
4756 *
4757 * This waits for completion of a specific task to be signaled. It is
4758 * interruptible.
4759 */
4760 int __sched wait_for_completion_interruptible(struct completion *x)
4761 {
4762 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4763 if (t == -ERESTARTSYS)
4764 return t;
4765 return 0;
4766 }
4767 EXPORT_SYMBOL(wait_for_completion_interruptible);
4768
4769 /**
4770 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4771 * @x: holds the state of this particular completion
4772 * @timeout: timeout value in jiffies
4773 *
4774 * This waits for either a completion of a specific task to be signaled or for a
4775 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4776 */
4777 unsigned long __sched
4778 wait_for_completion_interruptible_timeout(struct completion *x,
4779 unsigned long timeout)
4780 {
4781 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4782 }
4783 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4784
4785 /**
4786 * wait_for_completion_killable: - waits for completion of a task (killable)
4787 * @x: holds the state of this particular completion
4788 *
4789 * This waits to be signaled for completion of a specific task. It can be
4790 * interrupted by a kill signal.
4791 */
4792 int __sched wait_for_completion_killable(struct completion *x)
4793 {
4794 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4795 if (t == -ERESTARTSYS)
4796 return t;
4797 return 0;
4798 }
4799 EXPORT_SYMBOL(wait_for_completion_killable);
4800
4801 /**
4802 * try_wait_for_completion - try to decrement a completion without blocking
4803 * @x: completion structure
4804 *
4805 * Returns: 0 if a decrement cannot be done without blocking
4806 * 1 if a decrement succeeded.
4807 *
4808 * If a completion is being used as a counting completion,
4809 * attempt to decrement the counter without blocking. This
4810 * enables us to avoid waiting if the resource the completion
4811 * is protecting is not available.
4812 */
4813 bool try_wait_for_completion(struct completion *x)
4814 {
4815 int ret = 1;
4816
4817 spin_lock_irq(&x->wait.lock);
4818 if (!x->done)
4819 ret = 0;
4820 else
4821 x->done--;
4822 spin_unlock_irq(&x->wait.lock);
4823 return ret;
4824 }
4825 EXPORT_SYMBOL(try_wait_for_completion);
4826
4827 /**
4828 * completion_done - Test to see if a completion has any waiters
4829 * @x: completion structure
4830 *
4831 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4832 * 1 if there are no waiters.
4833 *
4834 */
4835 bool completion_done(struct completion *x)
4836 {
4837 int ret = 1;
4838
4839 spin_lock_irq(&x->wait.lock);
4840 if (!x->done)
4841 ret = 0;
4842 spin_unlock_irq(&x->wait.lock);
4843 return ret;
4844 }
4845 EXPORT_SYMBOL(completion_done);
4846
4847 static long __sched
4848 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4849 {
4850 unsigned long flags;
4851 wait_queue_t wait;
4852
4853 init_waitqueue_entry(&wait, current);
4854
4855 __set_current_state(state);
4856
4857 spin_lock_irqsave(&q->lock, flags);
4858 __add_wait_queue(q, &wait);
4859 spin_unlock(&q->lock);
4860 timeout = schedule_timeout(timeout);
4861 spin_lock_irq(&q->lock);
4862 __remove_wait_queue(q, &wait);
4863 spin_unlock_irqrestore(&q->lock, flags);
4864
4865 return timeout;
4866 }
4867
4868 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4869 {
4870 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4871 }
4872 EXPORT_SYMBOL(interruptible_sleep_on);
4873
4874 long __sched
4875 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4876 {
4877 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4878 }
4879 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4880
4881 void __sched sleep_on(wait_queue_head_t *q)
4882 {
4883 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4884 }
4885 EXPORT_SYMBOL(sleep_on);
4886
4887 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4888 {
4889 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4890 }
4891 EXPORT_SYMBOL(sleep_on_timeout);
4892
4893 #ifdef CONFIG_RT_MUTEXES
4894
4895 /*
4896 * rt_mutex_setprio - set the current priority of a task
4897 * @p: task
4898 * @prio: prio value (kernel-internal form)
4899 *
4900 * This function changes the 'effective' priority of a task. It does
4901 * not touch ->normal_prio like __setscheduler().
4902 *
4903 * Used by the rt_mutex code to implement priority inheritance logic.
4904 */
4905 void rt_mutex_setprio(struct task_struct *p, int prio)
4906 {
4907 unsigned long flags;
4908 int oldprio, on_rq, running;
4909 struct rq *rq;
4910 const struct sched_class *prev_class = p->sched_class;
4911
4912 BUG_ON(prio < 0 || prio > MAX_PRIO);
4913
4914 rq = task_rq_lock(p, &flags);
4915 update_rq_clock(rq);
4916
4917 oldprio = p->prio;
4918 on_rq = p->se.on_rq;
4919 running = task_current(rq, p);
4920 if (on_rq)
4921 dequeue_task(rq, p, 0);
4922 if (running)
4923 p->sched_class->put_prev_task(rq, p);
4924
4925 if (rt_prio(prio))
4926 p->sched_class = &rt_sched_class;
4927 else
4928 p->sched_class = &fair_sched_class;
4929
4930 p->prio = prio;
4931
4932 if (running)
4933 p->sched_class->set_curr_task(rq);
4934 if (on_rq) {
4935 enqueue_task(rq, p, 0);
4936
4937 check_class_changed(rq, p, prev_class, oldprio, running);
4938 }
4939 task_rq_unlock(rq, &flags);
4940 }
4941
4942 #endif
4943
4944 void set_user_nice(struct task_struct *p, long nice)
4945 {
4946 int old_prio, delta, on_rq;
4947 unsigned long flags;
4948 struct rq *rq;
4949
4950 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4951 return;
4952 /*
4953 * We have to be careful, if called from sys_setpriority(),
4954 * the task might be in the middle of scheduling on another CPU.
4955 */
4956 rq = task_rq_lock(p, &flags);
4957 update_rq_clock(rq);
4958 /*
4959 * The RT priorities are set via sched_setscheduler(), but we still
4960 * allow the 'normal' nice value to be set - but as expected
4961 * it wont have any effect on scheduling until the task is
4962 * SCHED_FIFO/SCHED_RR:
4963 */
4964 if (task_has_rt_policy(p)) {
4965 p->static_prio = NICE_TO_PRIO(nice);
4966 goto out_unlock;
4967 }
4968 on_rq = p->se.on_rq;
4969 if (on_rq)
4970 dequeue_task(rq, p, 0);
4971
4972 p->static_prio = NICE_TO_PRIO(nice);
4973 set_load_weight(p);
4974 old_prio = p->prio;
4975 p->prio = effective_prio(p);
4976 delta = p->prio - old_prio;
4977
4978 if (on_rq) {
4979 enqueue_task(rq, p, 0);
4980 /*
4981 * If the task increased its priority or is running and
4982 * lowered its priority, then reschedule its CPU:
4983 */
4984 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4985 resched_task(rq->curr);
4986 }
4987 out_unlock:
4988 task_rq_unlock(rq, &flags);
4989 }
4990 EXPORT_SYMBOL(set_user_nice);
4991
4992 /*
4993 * can_nice - check if a task can reduce its nice value
4994 * @p: task
4995 * @nice: nice value
4996 */
4997 int can_nice(const struct task_struct *p, const int nice)
4998 {
4999 /* convert nice value [19,-20] to rlimit style value [1,40] */
5000 int nice_rlim = 20 - nice;
5001
5002 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5003 capable(CAP_SYS_NICE));
5004 }
5005
5006 #ifdef __ARCH_WANT_SYS_NICE
5007
5008 /*
5009 * sys_nice - change the priority of the current process.
5010 * @increment: priority increment
5011 *
5012 * sys_setpriority is a more generic, but much slower function that
5013 * does similar things.
5014 */
5015 asmlinkage long sys_nice(int increment)
5016 {
5017 long nice, retval;
5018
5019 /*
5020 * Setpriority might change our priority at the same moment.
5021 * We don't have to worry. Conceptually one call occurs first
5022 * and we have a single winner.
5023 */
5024 if (increment < -40)
5025 increment = -40;
5026 if (increment > 40)
5027 increment = 40;
5028
5029 nice = PRIO_TO_NICE(current->static_prio) + increment;
5030 if (nice < -20)
5031 nice = -20;
5032 if (nice > 19)
5033 nice = 19;
5034
5035 if (increment < 0 && !can_nice(current, nice))
5036 return -EPERM;
5037
5038 retval = security_task_setnice(current, nice);
5039 if (retval)
5040 return retval;
5041
5042 set_user_nice(current, nice);
5043 return 0;
5044 }
5045
5046 #endif
5047
5048 /**
5049 * task_prio - return the priority value of a given task.
5050 * @p: the task in question.
5051 *
5052 * This is the priority value as seen by users in /proc.
5053 * RT tasks are offset by -200. Normal tasks are centered
5054 * around 0, value goes from -16 to +15.
5055 */
5056 int task_prio(const struct task_struct *p)
5057 {
5058 return p->prio - MAX_RT_PRIO;
5059 }
5060
5061 /**
5062 * task_nice - return the nice value of a given task.
5063 * @p: the task in question.
5064 */
5065 int task_nice(const struct task_struct *p)
5066 {
5067 return TASK_NICE(p);
5068 }
5069 EXPORT_SYMBOL(task_nice);
5070
5071 /**
5072 * idle_cpu - is a given cpu idle currently?
5073 * @cpu: the processor in question.
5074 */
5075 int idle_cpu(int cpu)
5076 {
5077 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5078 }
5079
5080 /**
5081 * idle_task - return the idle task for a given cpu.
5082 * @cpu: the processor in question.
5083 */
5084 struct task_struct *idle_task(int cpu)
5085 {
5086 return cpu_rq(cpu)->idle;
5087 }
5088
5089 /**
5090 * find_process_by_pid - find a process with a matching PID value.
5091 * @pid: the pid in question.
5092 */
5093 static struct task_struct *find_process_by_pid(pid_t pid)
5094 {
5095 return pid ? find_task_by_vpid(pid) : current;
5096 }
5097
5098 /* Actually do priority change: must hold rq lock. */
5099 static void
5100 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5101 {
5102 BUG_ON(p->se.on_rq);
5103
5104 p->policy = policy;
5105 switch (p->policy) {
5106 case SCHED_NORMAL:
5107 case SCHED_BATCH:
5108 case SCHED_IDLE:
5109 p->sched_class = &fair_sched_class;
5110 break;
5111 case SCHED_FIFO:
5112 case SCHED_RR:
5113 p->sched_class = &rt_sched_class;
5114 break;
5115 }
5116
5117 p->rt_priority = prio;
5118 p->normal_prio = normal_prio(p);
5119 /* we are holding p->pi_lock already */
5120 p->prio = rt_mutex_getprio(p);
5121 set_load_weight(p);
5122 }
5123
5124 static int __sched_setscheduler(struct task_struct *p, int policy,
5125 struct sched_param *param, bool user)
5126 {
5127 int retval, oldprio, oldpolicy = -1, on_rq, running;
5128 unsigned long flags;
5129 const struct sched_class *prev_class = p->sched_class;
5130 struct rq *rq;
5131
5132 /* may grab non-irq protected spin_locks */
5133 BUG_ON(in_interrupt());
5134 recheck:
5135 /* double check policy once rq lock held */
5136 if (policy < 0)
5137 policy = oldpolicy = p->policy;
5138 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5139 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5140 policy != SCHED_IDLE)
5141 return -EINVAL;
5142 /*
5143 * Valid priorities for SCHED_FIFO and SCHED_RR are
5144 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5145 * SCHED_BATCH and SCHED_IDLE is 0.
5146 */
5147 if (param->sched_priority < 0 ||
5148 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5149 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5150 return -EINVAL;
5151 if (rt_policy(policy) != (param->sched_priority != 0))
5152 return -EINVAL;
5153
5154 /*
5155 * Allow unprivileged RT tasks to decrease priority:
5156 */
5157 if (user && !capable(CAP_SYS_NICE)) {
5158 if (rt_policy(policy)) {
5159 unsigned long rlim_rtprio;
5160
5161 if (!lock_task_sighand(p, &flags))
5162 return -ESRCH;
5163 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5164 unlock_task_sighand(p, &flags);
5165
5166 /* can't set/change the rt policy */
5167 if (policy != p->policy && !rlim_rtprio)
5168 return -EPERM;
5169
5170 /* can't increase priority */
5171 if (param->sched_priority > p->rt_priority &&
5172 param->sched_priority > rlim_rtprio)
5173 return -EPERM;
5174 }
5175 /*
5176 * Like positive nice levels, dont allow tasks to
5177 * move out of SCHED_IDLE either:
5178 */
5179 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5180 return -EPERM;
5181
5182 /* can't change other user's priorities */
5183 if ((current->euid != p->euid) &&
5184 (current->euid != p->uid))
5185 return -EPERM;
5186 }
5187
5188 if (user) {
5189 #ifdef CONFIG_RT_GROUP_SCHED
5190 /*
5191 * Do not allow realtime tasks into groups that have no runtime
5192 * assigned.
5193 */
5194 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5195 task_group(p)->rt_bandwidth.rt_runtime == 0)
5196 return -EPERM;
5197 #endif
5198
5199 retval = security_task_setscheduler(p, policy, param);
5200 if (retval)
5201 return retval;
5202 }
5203
5204 /*
5205 * make sure no PI-waiters arrive (or leave) while we are
5206 * changing the priority of the task:
5207 */
5208 spin_lock_irqsave(&p->pi_lock, flags);
5209 /*
5210 * To be able to change p->policy safely, the apropriate
5211 * runqueue lock must be held.
5212 */
5213 rq = __task_rq_lock(p);
5214 /* recheck policy now with rq lock held */
5215 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5216 policy = oldpolicy = -1;
5217 __task_rq_unlock(rq);
5218 spin_unlock_irqrestore(&p->pi_lock, flags);
5219 goto recheck;
5220 }
5221 update_rq_clock(rq);
5222 on_rq = p->se.on_rq;
5223 running = task_current(rq, p);
5224 if (on_rq)
5225 deactivate_task(rq, p, 0);
5226 if (running)
5227 p->sched_class->put_prev_task(rq, p);
5228
5229 oldprio = p->prio;
5230 __setscheduler(rq, p, policy, param->sched_priority);
5231
5232 if (running)
5233 p->sched_class->set_curr_task(rq);
5234 if (on_rq) {
5235 activate_task(rq, p, 0);
5236
5237 check_class_changed(rq, p, prev_class, oldprio, running);
5238 }
5239 __task_rq_unlock(rq);
5240 spin_unlock_irqrestore(&p->pi_lock, flags);
5241
5242 rt_mutex_adjust_pi(p);
5243
5244 return 0;
5245 }
5246
5247 /**
5248 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5249 * @p: the task in question.
5250 * @policy: new policy.
5251 * @param: structure containing the new RT priority.
5252 *
5253 * NOTE that the task may be already dead.
5254 */
5255 int sched_setscheduler(struct task_struct *p, int policy,
5256 struct sched_param *param)
5257 {
5258 return __sched_setscheduler(p, policy, param, true);
5259 }
5260 EXPORT_SYMBOL_GPL(sched_setscheduler);
5261
5262 /**
5263 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5264 * @p: the task in question.
5265 * @policy: new policy.
5266 * @param: structure containing the new RT priority.
5267 *
5268 * Just like sched_setscheduler, only don't bother checking if the
5269 * current context has permission. For example, this is needed in
5270 * stop_machine(): we create temporary high priority worker threads,
5271 * but our caller might not have that capability.
5272 */
5273 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5274 struct sched_param *param)
5275 {
5276 return __sched_setscheduler(p, policy, param, false);
5277 }
5278
5279 static int
5280 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5281 {
5282 struct sched_param lparam;
5283 struct task_struct *p;
5284 int retval;
5285
5286 if (!param || pid < 0)
5287 return -EINVAL;
5288 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5289 return -EFAULT;
5290
5291 rcu_read_lock();
5292 retval = -ESRCH;
5293 p = find_process_by_pid(pid);
5294 if (p != NULL)
5295 retval = sched_setscheduler(p, policy, &lparam);
5296 rcu_read_unlock();
5297
5298 return retval;
5299 }
5300
5301 /**
5302 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5303 * @pid: the pid in question.
5304 * @policy: new policy.
5305 * @param: structure containing the new RT priority.
5306 */
5307 asmlinkage long
5308 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5309 {
5310 /* negative values for policy are not valid */
5311 if (policy < 0)
5312 return -EINVAL;
5313
5314 return do_sched_setscheduler(pid, policy, param);
5315 }
5316
5317 /**
5318 * sys_sched_setparam - set/change the RT priority of a thread
5319 * @pid: the pid in question.
5320 * @param: structure containing the new RT priority.
5321 */
5322 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5323 {
5324 return do_sched_setscheduler(pid, -1, param);
5325 }
5326
5327 /**
5328 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5329 * @pid: the pid in question.
5330 */
5331 asmlinkage long sys_sched_getscheduler(pid_t pid)
5332 {
5333 struct task_struct *p;
5334 int retval;
5335
5336 if (pid < 0)
5337 return -EINVAL;
5338
5339 retval = -ESRCH;
5340 read_lock(&tasklist_lock);
5341 p = find_process_by_pid(pid);
5342 if (p) {
5343 retval = security_task_getscheduler(p);
5344 if (!retval)
5345 retval = p->policy;
5346 }
5347 read_unlock(&tasklist_lock);
5348 return retval;
5349 }
5350
5351 /**
5352 * sys_sched_getscheduler - get the RT priority of a thread
5353 * @pid: the pid in question.
5354 * @param: structure containing the RT priority.
5355 */
5356 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5357 {
5358 struct sched_param lp;
5359 struct task_struct *p;
5360 int retval;
5361
5362 if (!param || pid < 0)
5363 return -EINVAL;
5364
5365 read_lock(&tasklist_lock);
5366 p = find_process_by_pid(pid);
5367 retval = -ESRCH;
5368 if (!p)
5369 goto out_unlock;
5370
5371 retval = security_task_getscheduler(p);
5372 if (retval)
5373 goto out_unlock;
5374
5375 lp.sched_priority = p->rt_priority;
5376 read_unlock(&tasklist_lock);
5377
5378 /*
5379 * This one might sleep, we cannot do it with a spinlock held ...
5380 */
5381 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5382
5383 return retval;
5384
5385 out_unlock:
5386 read_unlock(&tasklist_lock);
5387 return retval;
5388 }
5389
5390 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5391 {
5392 cpumask_var_t cpus_allowed, new_mask;
5393 struct task_struct *p;
5394 int retval;
5395
5396 get_online_cpus();
5397 read_lock(&tasklist_lock);
5398
5399 p = find_process_by_pid(pid);
5400 if (!p) {
5401 read_unlock(&tasklist_lock);
5402 put_online_cpus();
5403 return -ESRCH;
5404 }
5405
5406 /*
5407 * It is not safe to call set_cpus_allowed with the
5408 * tasklist_lock held. We will bump the task_struct's
5409 * usage count and then drop tasklist_lock.
5410 */
5411 get_task_struct(p);
5412 read_unlock(&tasklist_lock);
5413
5414 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5415 retval = -ENOMEM;
5416 goto out_put_task;
5417 }
5418 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5419 retval = -ENOMEM;
5420 goto out_free_cpus_allowed;
5421 }
5422 retval = -EPERM;
5423 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5424 !capable(CAP_SYS_NICE))
5425 goto out_unlock;
5426
5427 retval = security_task_setscheduler(p, 0, NULL);
5428 if (retval)
5429 goto out_unlock;
5430
5431 cpuset_cpus_allowed(p, cpus_allowed);
5432 cpumask_and(new_mask, in_mask, cpus_allowed);
5433 again:
5434 retval = set_cpus_allowed_ptr(p, new_mask);
5435
5436 if (!retval) {
5437 cpuset_cpus_allowed(p, cpus_allowed);
5438 if (!cpumask_subset(new_mask, cpus_allowed)) {
5439 /*
5440 * We must have raced with a concurrent cpuset
5441 * update. Just reset the cpus_allowed to the
5442 * cpuset's cpus_allowed
5443 */
5444 cpumask_copy(new_mask, cpus_allowed);
5445 goto again;
5446 }
5447 }
5448 out_unlock:
5449 free_cpumask_var(new_mask);
5450 out_free_cpus_allowed:
5451 free_cpumask_var(cpus_allowed);
5452 out_put_task:
5453 put_task_struct(p);
5454 put_online_cpus();
5455 return retval;
5456 }
5457
5458 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5459 struct cpumask *new_mask)
5460 {
5461 if (len < cpumask_size())
5462 cpumask_clear(new_mask);
5463 else if (len > cpumask_size())
5464 len = cpumask_size();
5465
5466 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5467 }
5468
5469 /**
5470 * sys_sched_setaffinity - set the cpu affinity of a process
5471 * @pid: pid of the process
5472 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5473 * @user_mask_ptr: user-space pointer to the new cpu mask
5474 */
5475 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5476 unsigned long __user *user_mask_ptr)
5477 {
5478 cpumask_var_t new_mask;
5479 int retval;
5480
5481 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5482 return -ENOMEM;
5483
5484 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5485 if (retval == 0)
5486 retval = sched_setaffinity(pid, new_mask);
5487 free_cpumask_var(new_mask);
5488 return retval;
5489 }
5490
5491 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5492 {
5493 struct task_struct *p;
5494 int retval;
5495
5496 get_online_cpus();
5497 read_lock(&tasklist_lock);
5498
5499 retval = -ESRCH;
5500 p = find_process_by_pid(pid);
5501 if (!p)
5502 goto out_unlock;
5503
5504 retval = security_task_getscheduler(p);
5505 if (retval)
5506 goto out_unlock;
5507
5508 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5509
5510 out_unlock:
5511 read_unlock(&tasklist_lock);
5512 put_online_cpus();
5513
5514 return retval;
5515 }
5516
5517 /**
5518 * sys_sched_getaffinity - get the cpu affinity of a process
5519 * @pid: pid of the process
5520 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5521 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5522 */
5523 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5524 unsigned long __user *user_mask_ptr)
5525 {
5526 int ret;
5527 cpumask_var_t mask;
5528
5529 if (len < cpumask_size())
5530 return -EINVAL;
5531
5532 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5533 return -ENOMEM;
5534
5535 ret = sched_getaffinity(pid, mask);
5536 if (ret == 0) {
5537 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5538 ret = -EFAULT;
5539 else
5540 ret = cpumask_size();
5541 }
5542 free_cpumask_var(mask);
5543
5544 return ret;
5545 }
5546
5547 /**
5548 * sys_sched_yield - yield the current processor to other threads.
5549 *
5550 * This function yields the current CPU to other tasks. If there are no
5551 * other threads running on this CPU then this function will return.
5552 */
5553 asmlinkage long sys_sched_yield(void)
5554 {
5555 struct rq *rq = this_rq_lock();
5556
5557 schedstat_inc(rq, yld_count);
5558 current->sched_class->yield_task(rq);
5559
5560 /*
5561 * Since we are going to call schedule() anyway, there's
5562 * no need to preempt or enable interrupts:
5563 */
5564 __release(rq->lock);
5565 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5566 _raw_spin_unlock(&rq->lock);
5567 preempt_enable_no_resched();
5568
5569 schedule();
5570
5571 return 0;
5572 }
5573
5574 static void __cond_resched(void)
5575 {
5576 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5577 __might_sleep(__FILE__, __LINE__);
5578 #endif
5579 /*
5580 * The BKS might be reacquired before we have dropped
5581 * PREEMPT_ACTIVE, which could trigger a second
5582 * cond_resched() call.
5583 */
5584 do {
5585 add_preempt_count(PREEMPT_ACTIVE);
5586 schedule();
5587 sub_preempt_count(PREEMPT_ACTIVE);
5588 } while (need_resched());
5589 }
5590
5591 int __sched _cond_resched(void)
5592 {
5593 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5594 system_state == SYSTEM_RUNNING) {
5595 __cond_resched();
5596 return 1;
5597 }
5598 return 0;
5599 }
5600 EXPORT_SYMBOL(_cond_resched);
5601
5602 /*
5603 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5604 * call schedule, and on return reacquire the lock.
5605 *
5606 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5607 * operations here to prevent schedule() from being called twice (once via
5608 * spin_unlock(), once by hand).
5609 */
5610 int cond_resched_lock(spinlock_t *lock)
5611 {
5612 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5613 int ret = 0;
5614
5615 if (spin_needbreak(lock) || resched) {
5616 spin_unlock(lock);
5617 if (resched && need_resched())
5618 __cond_resched();
5619 else
5620 cpu_relax();
5621 ret = 1;
5622 spin_lock(lock);
5623 }
5624 return ret;
5625 }
5626 EXPORT_SYMBOL(cond_resched_lock);
5627
5628 int __sched cond_resched_softirq(void)
5629 {
5630 BUG_ON(!in_softirq());
5631
5632 if (need_resched() && system_state == SYSTEM_RUNNING) {
5633 local_bh_enable();
5634 __cond_resched();
5635 local_bh_disable();
5636 return 1;
5637 }
5638 return 0;
5639 }
5640 EXPORT_SYMBOL(cond_resched_softirq);
5641
5642 /**
5643 * yield - yield the current processor to other threads.
5644 *
5645 * This is a shortcut for kernel-space yielding - it marks the
5646 * thread runnable and calls sys_sched_yield().
5647 */
5648 void __sched yield(void)
5649 {
5650 set_current_state(TASK_RUNNING);
5651 sys_sched_yield();
5652 }
5653 EXPORT_SYMBOL(yield);
5654
5655 /*
5656 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5657 * that process accounting knows that this is a task in IO wait state.
5658 *
5659 * But don't do that if it is a deliberate, throttling IO wait (this task
5660 * has set its backing_dev_info: the queue against which it should throttle)
5661 */
5662 void __sched io_schedule(void)
5663 {
5664 struct rq *rq = &__raw_get_cpu_var(runqueues);
5665
5666 delayacct_blkio_start();
5667 atomic_inc(&rq->nr_iowait);
5668 schedule();
5669 atomic_dec(&rq->nr_iowait);
5670 delayacct_blkio_end();
5671 }
5672 EXPORT_SYMBOL(io_schedule);
5673
5674 long __sched io_schedule_timeout(long timeout)
5675 {
5676 struct rq *rq = &__raw_get_cpu_var(runqueues);
5677 long ret;
5678
5679 delayacct_blkio_start();
5680 atomic_inc(&rq->nr_iowait);
5681 ret = schedule_timeout(timeout);
5682 atomic_dec(&rq->nr_iowait);
5683 delayacct_blkio_end();
5684 return ret;
5685 }
5686
5687 /**
5688 * sys_sched_get_priority_max - return maximum RT priority.
5689 * @policy: scheduling class.
5690 *
5691 * this syscall returns the maximum rt_priority that can be used
5692 * by a given scheduling class.
5693 */
5694 asmlinkage long sys_sched_get_priority_max(int policy)
5695 {
5696 int ret = -EINVAL;
5697
5698 switch (policy) {
5699 case SCHED_FIFO:
5700 case SCHED_RR:
5701 ret = MAX_USER_RT_PRIO-1;
5702 break;
5703 case SCHED_NORMAL:
5704 case SCHED_BATCH:
5705 case SCHED_IDLE:
5706 ret = 0;
5707 break;
5708 }
5709 return ret;
5710 }
5711
5712 /**
5713 * sys_sched_get_priority_min - return minimum RT priority.
5714 * @policy: scheduling class.
5715 *
5716 * this syscall returns the minimum rt_priority that can be used
5717 * by a given scheduling class.
5718 */
5719 asmlinkage long sys_sched_get_priority_min(int policy)
5720 {
5721 int ret = -EINVAL;
5722
5723 switch (policy) {
5724 case SCHED_FIFO:
5725 case SCHED_RR:
5726 ret = 1;
5727 break;
5728 case SCHED_NORMAL:
5729 case SCHED_BATCH:
5730 case SCHED_IDLE:
5731 ret = 0;
5732 }
5733 return ret;
5734 }
5735
5736 /**
5737 * sys_sched_rr_get_interval - return the default timeslice of a process.
5738 * @pid: pid of the process.
5739 * @interval: userspace pointer to the timeslice value.
5740 *
5741 * this syscall writes the default timeslice value of a given process
5742 * into the user-space timespec buffer. A value of '0' means infinity.
5743 */
5744 asmlinkage
5745 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5746 {
5747 struct task_struct *p;
5748 unsigned int time_slice;
5749 int retval;
5750 struct timespec t;
5751
5752 if (pid < 0)
5753 return -EINVAL;
5754
5755 retval = -ESRCH;
5756 read_lock(&tasklist_lock);
5757 p = find_process_by_pid(pid);
5758 if (!p)
5759 goto out_unlock;
5760
5761 retval = security_task_getscheduler(p);
5762 if (retval)
5763 goto out_unlock;
5764
5765 /*
5766 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5767 * tasks that are on an otherwise idle runqueue:
5768 */
5769 time_slice = 0;
5770 if (p->policy == SCHED_RR) {
5771 time_slice = DEF_TIMESLICE;
5772 } else if (p->policy != SCHED_FIFO) {
5773 struct sched_entity *se = &p->se;
5774 unsigned long flags;
5775 struct rq *rq;
5776
5777 rq = task_rq_lock(p, &flags);
5778 if (rq->cfs.load.weight)
5779 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5780 task_rq_unlock(rq, &flags);
5781 }
5782 read_unlock(&tasklist_lock);
5783 jiffies_to_timespec(time_slice, &t);
5784 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5785 return retval;
5786
5787 out_unlock:
5788 read_unlock(&tasklist_lock);
5789 return retval;
5790 }
5791
5792 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5793
5794 void sched_show_task(struct task_struct *p)
5795 {
5796 unsigned long free = 0;
5797 unsigned state;
5798
5799 state = p->state ? __ffs(p->state) + 1 : 0;
5800 printk(KERN_INFO "%-13.13s %c", p->comm,
5801 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5802 #if BITS_PER_LONG == 32
5803 if (state == TASK_RUNNING)
5804 printk(KERN_CONT " running ");
5805 else
5806 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5807 #else
5808 if (state == TASK_RUNNING)
5809 printk(KERN_CONT " running task ");
5810 else
5811 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5812 #endif
5813 #ifdef CONFIG_DEBUG_STACK_USAGE
5814 {
5815 unsigned long *n = end_of_stack(p);
5816 while (!*n)
5817 n++;
5818 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5819 }
5820 #endif
5821 printk(KERN_CONT "%5lu %5d %6d\n", free,
5822 task_pid_nr(p), task_pid_nr(p->real_parent));
5823
5824 show_stack(p, NULL);
5825 }
5826
5827 void show_state_filter(unsigned long state_filter)
5828 {
5829 struct task_struct *g, *p;
5830
5831 #if BITS_PER_LONG == 32
5832 printk(KERN_INFO
5833 " task PC stack pid father\n");
5834 #else
5835 printk(KERN_INFO
5836 " task PC stack pid father\n");
5837 #endif
5838 read_lock(&tasklist_lock);
5839 do_each_thread(g, p) {
5840 /*
5841 * reset the NMI-timeout, listing all files on a slow
5842 * console might take alot of time:
5843 */
5844 touch_nmi_watchdog();
5845 if (!state_filter || (p->state & state_filter))
5846 sched_show_task(p);
5847 } while_each_thread(g, p);
5848
5849 touch_all_softlockup_watchdogs();
5850
5851 #ifdef CONFIG_SCHED_DEBUG
5852 sysrq_sched_debug_show();
5853 #endif
5854 read_unlock(&tasklist_lock);
5855 /*
5856 * Only show locks if all tasks are dumped:
5857 */
5858 if (state_filter == -1)
5859 debug_show_all_locks();
5860 }
5861
5862 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5863 {
5864 idle->sched_class = &idle_sched_class;
5865 }
5866
5867 /**
5868 * init_idle - set up an idle thread for a given CPU
5869 * @idle: task in question
5870 * @cpu: cpu the idle task belongs to
5871 *
5872 * NOTE: this function does not set the idle thread's NEED_RESCHED
5873 * flag, to make booting more robust.
5874 */
5875 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5876 {
5877 struct rq *rq = cpu_rq(cpu);
5878 unsigned long flags;
5879
5880 spin_lock_irqsave(&rq->lock, flags);
5881
5882 __sched_fork(idle);
5883 idle->se.exec_start = sched_clock();
5884
5885 idle->prio = idle->normal_prio = MAX_PRIO;
5886 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5887 __set_task_cpu(idle, cpu);
5888
5889 rq->curr = rq->idle = idle;
5890 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5891 idle->oncpu = 1;
5892 #endif
5893 spin_unlock_irqrestore(&rq->lock, flags);
5894
5895 /* Set the preempt count _outside_ the spinlocks! */
5896 #if defined(CONFIG_PREEMPT)
5897 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5898 #else
5899 task_thread_info(idle)->preempt_count = 0;
5900 #endif
5901 /*
5902 * The idle tasks have their own, simple scheduling class:
5903 */
5904 idle->sched_class = &idle_sched_class;
5905 ftrace_graph_init_task(idle);
5906 }
5907
5908 /*
5909 * In a system that switches off the HZ timer nohz_cpu_mask
5910 * indicates which cpus entered this state. This is used
5911 * in the rcu update to wait only for active cpus. For system
5912 * which do not switch off the HZ timer nohz_cpu_mask should
5913 * always be CPU_BITS_NONE.
5914 */
5915 cpumask_var_t nohz_cpu_mask;
5916
5917 /*
5918 * Increase the granularity value when there are more CPUs,
5919 * because with more CPUs the 'effective latency' as visible
5920 * to users decreases. But the relationship is not linear,
5921 * so pick a second-best guess by going with the log2 of the
5922 * number of CPUs.
5923 *
5924 * This idea comes from the SD scheduler of Con Kolivas:
5925 */
5926 static inline void sched_init_granularity(void)
5927 {
5928 unsigned int factor = 1 + ilog2(num_online_cpus());
5929 const unsigned long limit = 200000000;
5930
5931 sysctl_sched_min_granularity *= factor;
5932 if (sysctl_sched_min_granularity > limit)
5933 sysctl_sched_min_granularity = limit;
5934
5935 sysctl_sched_latency *= factor;
5936 if (sysctl_sched_latency > limit)
5937 sysctl_sched_latency = limit;
5938
5939 sysctl_sched_wakeup_granularity *= factor;
5940
5941 sysctl_sched_shares_ratelimit *= factor;
5942 }
5943
5944 #ifdef CONFIG_SMP
5945 /*
5946 * This is how migration works:
5947 *
5948 * 1) we queue a struct migration_req structure in the source CPU's
5949 * runqueue and wake up that CPU's migration thread.
5950 * 2) we down() the locked semaphore => thread blocks.
5951 * 3) migration thread wakes up (implicitly it forces the migrated
5952 * thread off the CPU)
5953 * 4) it gets the migration request and checks whether the migrated
5954 * task is still in the wrong runqueue.
5955 * 5) if it's in the wrong runqueue then the migration thread removes
5956 * it and puts it into the right queue.
5957 * 6) migration thread up()s the semaphore.
5958 * 7) we wake up and the migration is done.
5959 */
5960
5961 /*
5962 * Change a given task's CPU affinity. Migrate the thread to a
5963 * proper CPU and schedule it away if the CPU it's executing on
5964 * is removed from the allowed bitmask.
5965 *
5966 * NOTE: the caller must have a valid reference to the task, the
5967 * task must not exit() & deallocate itself prematurely. The
5968 * call is not atomic; no spinlocks may be held.
5969 */
5970 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5971 {
5972 struct migration_req req;
5973 unsigned long flags;
5974 struct rq *rq;
5975 int ret = 0;
5976
5977 rq = task_rq_lock(p, &flags);
5978 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
5979 ret = -EINVAL;
5980 goto out;
5981 }
5982
5983 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5984 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5985 ret = -EINVAL;
5986 goto out;
5987 }
5988
5989 if (p->sched_class->set_cpus_allowed)
5990 p->sched_class->set_cpus_allowed(p, new_mask);
5991 else {
5992 cpumask_copy(&p->cpus_allowed, new_mask);
5993 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5994 }
5995
5996 /* Can the task run on the task's current CPU? If so, we're done */
5997 if (cpumask_test_cpu(task_cpu(p), new_mask))
5998 goto out;
5999
6000 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6001 /* Need help from migration thread: drop lock and wait. */
6002 task_rq_unlock(rq, &flags);
6003 wake_up_process(rq->migration_thread);
6004 wait_for_completion(&req.done);
6005 tlb_migrate_finish(p->mm);
6006 return 0;
6007 }
6008 out:
6009 task_rq_unlock(rq, &flags);
6010
6011 return ret;
6012 }
6013 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6014
6015 /*
6016 * Move (not current) task off this cpu, onto dest cpu. We're doing
6017 * this because either it can't run here any more (set_cpus_allowed()
6018 * away from this CPU, or CPU going down), or because we're
6019 * attempting to rebalance this task on exec (sched_exec).
6020 *
6021 * So we race with normal scheduler movements, but that's OK, as long
6022 * as the task is no longer on this CPU.
6023 *
6024 * Returns non-zero if task was successfully migrated.
6025 */
6026 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6027 {
6028 struct rq *rq_dest, *rq_src;
6029 int ret = 0, on_rq;
6030
6031 if (unlikely(!cpu_active(dest_cpu)))
6032 return ret;
6033
6034 rq_src = cpu_rq(src_cpu);
6035 rq_dest = cpu_rq(dest_cpu);
6036
6037 double_rq_lock(rq_src, rq_dest);
6038 /* Already moved. */
6039 if (task_cpu(p) != src_cpu)
6040 goto done;
6041 /* Affinity changed (again). */
6042 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6043 goto fail;
6044
6045 on_rq = p->se.on_rq;
6046 if (on_rq)
6047 deactivate_task(rq_src, p, 0);
6048
6049 set_task_cpu(p, dest_cpu);
6050 if (on_rq) {
6051 activate_task(rq_dest, p, 0);
6052 check_preempt_curr(rq_dest, p, 0);
6053 }
6054 done:
6055 ret = 1;
6056 fail:
6057 double_rq_unlock(rq_src, rq_dest);
6058 return ret;
6059 }
6060
6061 /*
6062 * migration_thread - this is a highprio system thread that performs
6063 * thread migration by bumping thread off CPU then 'pushing' onto
6064 * another runqueue.
6065 */
6066 static int migration_thread(void *data)
6067 {
6068 int cpu = (long)data;
6069 struct rq *rq;
6070
6071 rq = cpu_rq(cpu);
6072 BUG_ON(rq->migration_thread != current);
6073
6074 set_current_state(TASK_INTERRUPTIBLE);
6075 while (!kthread_should_stop()) {
6076 struct migration_req *req;
6077 struct list_head *head;
6078
6079 spin_lock_irq(&rq->lock);
6080
6081 if (cpu_is_offline(cpu)) {
6082 spin_unlock_irq(&rq->lock);
6083 goto wait_to_die;
6084 }
6085
6086 if (rq->active_balance) {
6087 active_load_balance(rq, cpu);
6088 rq->active_balance = 0;
6089 }
6090
6091 head = &rq->migration_queue;
6092
6093 if (list_empty(head)) {
6094 spin_unlock_irq(&rq->lock);
6095 schedule();
6096 set_current_state(TASK_INTERRUPTIBLE);
6097 continue;
6098 }
6099 req = list_entry(head->next, struct migration_req, list);
6100 list_del_init(head->next);
6101
6102 spin_unlock(&rq->lock);
6103 __migrate_task(req->task, cpu, req->dest_cpu);
6104 local_irq_enable();
6105
6106 complete(&req->done);
6107 }
6108 __set_current_state(TASK_RUNNING);
6109 return 0;
6110
6111 wait_to_die:
6112 /* Wait for kthread_stop */
6113 set_current_state(TASK_INTERRUPTIBLE);
6114 while (!kthread_should_stop()) {
6115 schedule();
6116 set_current_state(TASK_INTERRUPTIBLE);
6117 }
6118 __set_current_state(TASK_RUNNING);
6119 return 0;
6120 }
6121
6122 #ifdef CONFIG_HOTPLUG_CPU
6123
6124 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6125 {
6126 int ret;
6127
6128 local_irq_disable();
6129 ret = __migrate_task(p, src_cpu, dest_cpu);
6130 local_irq_enable();
6131 return ret;
6132 }
6133
6134 /*
6135 * Figure out where task on dead CPU should go, use force if necessary.
6136 */
6137 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6138 {
6139 int dest_cpu;
6140 /* FIXME: Use cpumask_of_node here. */
6141 cpumask_t _nodemask = node_to_cpumask(cpu_to_node(dead_cpu));
6142 const struct cpumask *nodemask = &_nodemask;
6143
6144 again:
6145 /* Look for allowed, online CPU in same node. */
6146 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6147 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6148 goto move;
6149
6150 /* Any allowed, online CPU? */
6151 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6152 if (dest_cpu < nr_cpu_ids)
6153 goto move;
6154
6155 /* No more Mr. Nice Guy. */
6156 if (dest_cpu >= nr_cpu_ids) {
6157 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6158 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6159
6160 /*
6161 * Don't tell them about moving exiting tasks or
6162 * kernel threads (both mm NULL), since they never
6163 * leave kernel.
6164 */
6165 if (p->mm && printk_ratelimit()) {
6166 printk(KERN_INFO "process %d (%s) no "
6167 "longer affine to cpu%d\n",
6168 task_pid_nr(p), p->comm, dead_cpu);
6169 }
6170 }
6171
6172 move:
6173 /* It can have affinity changed while we were choosing. */
6174 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6175 goto again;
6176 }
6177
6178 /*
6179 * While a dead CPU has no uninterruptible tasks queued at this point,
6180 * it might still have a nonzero ->nr_uninterruptible counter, because
6181 * for performance reasons the counter is not stricly tracking tasks to
6182 * their home CPUs. So we just add the counter to another CPU's counter,
6183 * to keep the global sum constant after CPU-down:
6184 */
6185 static void migrate_nr_uninterruptible(struct rq *rq_src)
6186 {
6187 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6188 unsigned long flags;
6189
6190 local_irq_save(flags);
6191 double_rq_lock(rq_src, rq_dest);
6192 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6193 rq_src->nr_uninterruptible = 0;
6194 double_rq_unlock(rq_src, rq_dest);
6195 local_irq_restore(flags);
6196 }
6197
6198 /* Run through task list and migrate tasks from the dead cpu. */
6199 static void migrate_live_tasks(int src_cpu)
6200 {
6201 struct task_struct *p, *t;
6202
6203 read_lock(&tasklist_lock);
6204
6205 do_each_thread(t, p) {
6206 if (p == current)
6207 continue;
6208
6209 if (task_cpu(p) == src_cpu)
6210 move_task_off_dead_cpu(src_cpu, p);
6211 } while_each_thread(t, p);
6212
6213 read_unlock(&tasklist_lock);
6214 }
6215
6216 /*
6217 * Schedules idle task to be the next runnable task on current CPU.
6218 * It does so by boosting its priority to highest possible.
6219 * Used by CPU offline code.
6220 */
6221 void sched_idle_next(void)
6222 {
6223 int this_cpu = smp_processor_id();
6224 struct rq *rq = cpu_rq(this_cpu);
6225 struct task_struct *p = rq->idle;
6226 unsigned long flags;
6227
6228 /* cpu has to be offline */
6229 BUG_ON(cpu_online(this_cpu));
6230
6231 /*
6232 * Strictly not necessary since rest of the CPUs are stopped by now
6233 * and interrupts disabled on the current cpu.
6234 */
6235 spin_lock_irqsave(&rq->lock, flags);
6236
6237 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6238
6239 update_rq_clock(rq);
6240 activate_task(rq, p, 0);
6241
6242 spin_unlock_irqrestore(&rq->lock, flags);
6243 }
6244
6245 /*
6246 * Ensures that the idle task is using init_mm right before its cpu goes
6247 * offline.
6248 */
6249 void idle_task_exit(void)
6250 {
6251 struct mm_struct *mm = current->active_mm;
6252
6253 BUG_ON(cpu_online(smp_processor_id()));
6254
6255 if (mm != &init_mm)
6256 switch_mm(mm, &init_mm, current);
6257 mmdrop(mm);
6258 }
6259
6260 /* called under rq->lock with disabled interrupts */
6261 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6262 {
6263 struct rq *rq = cpu_rq(dead_cpu);
6264
6265 /* Must be exiting, otherwise would be on tasklist. */
6266 BUG_ON(!p->exit_state);
6267
6268 /* Cannot have done final schedule yet: would have vanished. */
6269 BUG_ON(p->state == TASK_DEAD);
6270
6271 get_task_struct(p);
6272
6273 /*
6274 * Drop lock around migration; if someone else moves it,
6275 * that's OK. No task can be added to this CPU, so iteration is
6276 * fine.
6277 */
6278 spin_unlock_irq(&rq->lock);
6279 move_task_off_dead_cpu(dead_cpu, p);
6280 spin_lock_irq(&rq->lock);
6281
6282 put_task_struct(p);
6283 }
6284
6285 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6286 static void migrate_dead_tasks(unsigned int dead_cpu)
6287 {
6288 struct rq *rq = cpu_rq(dead_cpu);
6289 struct task_struct *next;
6290
6291 for ( ; ; ) {
6292 if (!rq->nr_running)
6293 break;
6294 update_rq_clock(rq);
6295 next = pick_next_task(rq, rq->curr);
6296 if (!next)
6297 break;
6298 next->sched_class->put_prev_task(rq, next);
6299 migrate_dead(dead_cpu, next);
6300
6301 }
6302 }
6303 #endif /* CONFIG_HOTPLUG_CPU */
6304
6305 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6306
6307 static struct ctl_table sd_ctl_dir[] = {
6308 {
6309 .procname = "sched_domain",
6310 .mode = 0555,
6311 },
6312 {0, },
6313 };
6314
6315 static struct ctl_table sd_ctl_root[] = {
6316 {
6317 .ctl_name = CTL_KERN,
6318 .procname = "kernel",
6319 .mode = 0555,
6320 .child = sd_ctl_dir,
6321 },
6322 {0, },
6323 };
6324
6325 static struct ctl_table *sd_alloc_ctl_entry(int n)
6326 {
6327 struct ctl_table *entry =
6328 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6329
6330 return entry;
6331 }
6332
6333 static void sd_free_ctl_entry(struct ctl_table **tablep)
6334 {
6335 struct ctl_table *entry;
6336
6337 /*
6338 * In the intermediate directories, both the child directory and
6339 * procname are dynamically allocated and could fail but the mode
6340 * will always be set. In the lowest directory the names are
6341 * static strings and all have proc handlers.
6342 */
6343 for (entry = *tablep; entry->mode; entry++) {
6344 if (entry->child)
6345 sd_free_ctl_entry(&entry->child);
6346 if (entry->proc_handler == NULL)
6347 kfree(entry->procname);
6348 }
6349
6350 kfree(*tablep);
6351 *tablep = NULL;
6352 }
6353
6354 static void
6355 set_table_entry(struct ctl_table *entry,
6356 const char *procname, void *data, int maxlen,
6357 mode_t mode, proc_handler *proc_handler)
6358 {
6359 entry->procname = procname;
6360 entry->data = data;
6361 entry->maxlen = maxlen;
6362 entry->mode = mode;
6363 entry->proc_handler = proc_handler;
6364 }
6365
6366 static struct ctl_table *
6367 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6368 {
6369 struct ctl_table *table = sd_alloc_ctl_entry(13);
6370
6371 if (table == NULL)
6372 return NULL;
6373
6374 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6375 sizeof(long), 0644, proc_doulongvec_minmax);
6376 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6377 sizeof(long), 0644, proc_doulongvec_minmax);
6378 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6379 sizeof(int), 0644, proc_dointvec_minmax);
6380 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6381 sizeof(int), 0644, proc_dointvec_minmax);
6382 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6383 sizeof(int), 0644, proc_dointvec_minmax);
6384 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6385 sizeof(int), 0644, proc_dointvec_minmax);
6386 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6387 sizeof(int), 0644, proc_dointvec_minmax);
6388 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6389 sizeof(int), 0644, proc_dointvec_minmax);
6390 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6391 sizeof(int), 0644, proc_dointvec_minmax);
6392 set_table_entry(&table[9], "cache_nice_tries",
6393 &sd->cache_nice_tries,
6394 sizeof(int), 0644, proc_dointvec_minmax);
6395 set_table_entry(&table[10], "flags", &sd->flags,
6396 sizeof(int), 0644, proc_dointvec_minmax);
6397 set_table_entry(&table[11], "name", sd->name,
6398 CORENAME_MAX_SIZE, 0444, proc_dostring);
6399 /* &table[12] is terminator */
6400
6401 return table;
6402 }
6403
6404 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6405 {
6406 struct ctl_table *entry, *table;
6407 struct sched_domain *sd;
6408 int domain_num = 0, i;
6409 char buf[32];
6410
6411 for_each_domain(cpu, sd)
6412 domain_num++;
6413 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6414 if (table == NULL)
6415 return NULL;
6416
6417 i = 0;
6418 for_each_domain(cpu, sd) {
6419 snprintf(buf, 32, "domain%d", i);
6420 entry->procname = kstrdup(buf, GFP_KERNEL);
6421 entry->mode = 0555;
6422 entry->child = sd_alloc_ctl_domain_table(sd);
6423 entry++;
6424 i++;
6425 }
6426 return table;
6427 }
6428
6429 static struct ctl_table_header *sd_sysctl_header;
6430 static void register_sched_domain_sysctl(void)
6431 {
6432 int i, cpu_num = num_online_cpus();
6433 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6434 char buf[32];
6435
6436 WARN_ON(sd_ctl_dir[0].child);
6437 sd_ctl_dir[0].child = entry;
6438
6439 if (entry == NULL)
6440 return;
6441
6442 for_each_online_cpu(i) {
6443 snprintf(buf, 32, "cpu%d", i);
6444 entry->procname = kstrdup(buf, GFP_KERNEL);
6445 entry->mode = 0555;
6446 entry->child = sd_alloc_ctl_cpu_table(i);
6447 entry++;
6448 }
6449
6450 WARN_ON(sd_sysctl_header);
6451 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6452 }
6453
6454 /* may be called multiple times per register */
6455 static void unregister_sched_domain_sysctl(void)
6456 {
6457 if (sd_sysctl_header)
6458 unregister_sysctl_table(sd_sysctl_header);
6459 sd_sysctl_header = NULL;
6460 if (sd_ctl_dir[0].child)
6461 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6462 }
6463 #else
6464 static void register_sched_domain_sysctl(void)
6465 {
6466 }
6467 static void unregister_sched_domain_sysctl(void)
6468 {
6469 }
6470 #endif
6471
6472 static void set_rq_online(struct rq *rq)
6473 {
6474 if (!rq->online) {
6475 const struct sched_class *class;
6476
6477 cpumask_set_cpu(rq->cpu, rq->rd->online);
6478 rq->online = 1;
6479
6480 for_each_class(class) {
6481 if (class->rq_online)
6482 class->rq_online(rq);
6483 }
6484 }
6485 }
6486
6487 static void set_rq_offline(struct rq *rq)
6488 {
6489 if (rq->online) {
6490 const struct sched_class *class;
6491
6492 for_each_class(class) {
6493 if (class->rq_offline)
6494 class->rq_offline(rq);
6495 }
6496
6497 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6498 rq->online = 0;
6499 }
6500 }
6501
6502 /*
6503 * migration_call - callback that gets triggered when a CPU is added.
6504 * Here we can start up the necessary migration thread for the new CPU.
6505 */
6506 static int __cpuinit
6507 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6508 {
6509 struct task_struct *p;
6510 int cpu = (long)hcpu;
6511 unsigned long flags;
6512 struct rq *rq;
6513
6514 switch (action) {
6515
6516 case CPU_UP_PREPARE:
6517 case CPU_UP_PREPARE_FROZEN:
6518 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6519 if (IS_ERR(p))
6520 return NOTIFY_BAD;
6521 kthread_bind(p, cpu);
6522 /* Must be high prio: stop_machine expects to yield to it. */
6523 rq = task_rq_lock(p, &flags);
6524 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6525 task_rq_unlock(rq, &flags);
6526 cpu_rq(cpu)->migration_thread = p;
6527 break;
6528
6529 case CPU_ONLINE:
6530 case CPU_ONLINE_FROZEN:
6531 /* Strictly unnecessary, as first user will wake it. */
6532 wake_up_process(cpu_rq(cpu)->migration_thread);
6533
6534 /* Update our root-domain */
6535 rq = cpu_rq(cpu);
6536 spin_lock_irqsave(&rq->lock, flags);
6537 if (rq->rd) {
6538 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6539
6540 set_rq_online(rq);
6541 }
6542 spin_unlock_irqrestore(&rq->lock, flags);
6543 break;
6544
6545 #ifdef CONFIG_HOTPLUG_CPU
6546 case CPU_UP_CANCELED:
6547 case CPU_UP_CANCELED_FROZEN:
6548 if (!cpu_rq(cpu)->migration_thread)
6549 break;
6550 /* Unbind it from offline cpu so it can run. Fall thru. */
6551 kthread_bind(cpu_rq(cpu)->migration_thread,
6552 cpumask_any(cpu_online_mask));
6553 kthread_stop(cpu_rq(cpu)->migration_thread);
6554 cpu_rq(cpu)->migration_thread = NULL;
6555 break;
6556
6557 case CPU_DEAD:
6558 case CPU_DEAD_FROZEN:
6559 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6560 migrate_live_tasks(cpu);
6561 rq = cpu_rq(cpu);
6562 kthread_stop(rq->migration_thread);
6563 rq->migration_thread = NULL;
6564 /* Idle task back to normal (off runqueue, low prio) */
6565 spin_lock_irq(&rq->lock);
6566 update_rq_clock(rq);
6567 deactivate_task(rq, rq->idle, 0);
6568 rq->idle->static_prio = MAX_PRIO;
6569 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6570 rq->idle->sched_class = &idle_sched_class;
6571 migrate_dead_tasks(cpu);
6572 spin_unlock_irq(&rq->lock);
6573 cpuset_unlock();
6574 migrate_nr_uninterruptible(rq);
6575 BUG_ON(rq->nr_running != 0);
6576
6577 /*
6578 * No need to migrate the tasks: it was best-effort if
6579 * they didn't take sched_hotcpu_mutex. Just wake up
6580 * the requestors.
6581 */
6582 spin_lock_irq(&rq->lock);
6583 while (!list_empty(&rq->migration_queue)) {
6584 struct migration_req *req;
6585
6586 req = list_entry(rq->migration_queue.next,
6587 struct migration_req, list);
6588 list_del_init(&req->list);
6589 spin_unlock_irq(&rq->lock);
6590 complete(&req->done);
6591 spin_lock_irq(&rq->lock);
6592 }
6593 spin_unlock_irq(&rq->lock);
6594 break;
6595
6596 case CPU_DYING:
6597 case CPU_DYING_FROZEN:
6598 /* Update our root-domain */
6599 rq = cpu_rq(cpu);
6600 spin_lock_irqsave(&rq->lock, flags);
6601 if (rq->rd) {
6602 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6603 set_rq_offline(rq);
6604 }
6605 spin_unlock_irqrestore(&rq->lock, flags);
6606 break;
6607 #endif
6608 }
6609 return NOTIFY_OK;
6610 }
6611
6612 /* Register at highest priority so that task migration (migrate_all_tasks)
6613 * happens before everything else.
6614 */
6615 static struct notifier_block __cpuinitdata migration_notifier = {
6616 .notifier_call = migration_call,
6617 .priority = 10
6618 };
6619
6620 static int __init migration_init(void)
6621 {
6622 void *cpu = (void *)(long)smp_processor_id();
6623 int err;
6624
6625 /* Start one for the boot CPU: */
6626 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6627 BUG_ON(err == NOTIFY_BAD);
6628 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6629 register_cpu_notifier(&migration_notifier);
6630
6631 return err;
6632 }
6633 early_initcall(migration_init);
6634 #endif
6635
6636 #ifdef CONFIG_SMP
6637
6638 #ifdef CONFIG_SCHED_DEBUG
6639
6640 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6641 struct cpumask *groupmask)
6642 {
6643 struct sched_group *group = sd->groups;
6644 char str[256];
6645
6646 cpulist_scnprintf(str, sizeof(str), *sched_domain_span(sd));
6647 cpumask_clear(groupmask);
6648
6649 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6650
6651 if (!(sd->flags & SD_LOAD_BALANCE)) {
6652 printk("does not load-balance\n");
6653 if (sd->parent)
6654 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6655 " has parent");
6656 return -1;
6657 }
6658
6659 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6660
6661 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6662 printk(KERN_ERR "ERROR: domain->span does not contain "
6663 "CPU%d\n", cpu);
6664 }
6665 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6666 printk(KERN_ERR "ERROR: domain->groups does not contain"
6667 " CPU%d\n", cpu);
6668 }
6669
6670 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6671 do {
6672 if (!group) {
6673 printk("\n");
6674 printk(KERN_ERR "ERROR: group is NULL\n");
6675 break;
6676 }
6677
6678 if (!group->__cpu_power) {
6679 printk(KERN_CONT "\n");
6680 printk(KERN_ERR "ERROR: domain->cpu_power not "
6681 "set\n");
6682 break;
6683 }
6684
6685 if (!cpumask_weight(sched_group_cpus(group))) {
6686 printk(KERN_CONT "\n");
6687 printk(KERN_ERR "ERROR: empty group\n");
6688 break;
6689 }
6690
6691 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6692 printk(KERN_CONT "\n");
6693 printk(KERN_ERR "ERROR: repeated CPUs\n");
6694 break;
6695 }
6696
6697 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6698
6699 cpulist_scnprintf(str, sizeof(str), *sched_group_cpus(group));
6700 printk(KERN_CONT " %s", str);
6701
6702 group = group->next;
6703 } while (group != sd->groups);
6704 printk(KERN_CONT "\n");
6705
6706 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6707 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6708
6709 if (sd->parent &&
6710 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6711 printk(KERN_ERR "ERROR: parent span is not a superset "
6712 "of domain->span\n");
6713 return 0;
6714 }
6715
6716 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6717 {
6718 cpumask_var_t groupmask;
6719 int level = 0;
6720
6721 if (!sd) {
6722 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6723 return;
6724 }
6725
6726 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6727
6728 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6729 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6730 return;
6731 }
6732
6733 for (;;) {
6734 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6735 break;
6736 level++;
6737 sd = sd->parent;
6738 if (!sd)
6739 break;
6740 }
6741 free_cpumask_var(groupmask);
6742 }
6743 #else /* !CONFIG_SCHED_DEBUG */
6744 # define sched_domain_debug(sd, cpu) do { } while (0)
6745 #endif /* CONFIG_SCHED_DEBUG */
6746
6747 static int sd_degenerate(struct sched_domain *sd)
6748 {
6749 if (cpumask_weight(sched_domain_span(sd)) == 1)
6750 return 1;
6751
6752 /* Following flags need at least 2 groups */
6753 if (sd->flags & (SD_LOAD_BALANCE |
6754 SD_BALANCE_NEWIDLE |
6755 SD_BALANCE_FORK |
6756 SD_BALANCE_EXEC |
6757 SD_SHARE_CPUPOWER |
6758 SD_SHARE_PKG_RESOURCES)) {
6759 if (sd->groups != sd->groups->next)
6760 return 0;
6761 }
6762
6763 /* Following flags don't use groups */
6764 if (sd->flags & (SD_WAKE_IDLE |
6765 SD_WAKE_AFFINE |
6766 SD_WAKE_BALANCE))
6767 return 0;
6768
6769 return 1;
6770 }
6771
6772 static int
6773 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6774 {
6775 unsigned long cflags = sd->flags, pflags = parent->flags;
6776
6777 if (sd_degenerate(parent))
6778 return 1;
6779
6780 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6781 return 0;
6782
6783 /* Does parent contain flags not in child? */
6784 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6785 if (cflags & SD_WAKE_AFFINE)
6786 pflags &= ~SD_WAKE_BALANCE;
6787 /* Flags needing groups don't count if only 1 group in parent */
6788 if (parent->groups == parent->groups->next) {
6789 pflags &= ~(SD_LOAD_BALANCE |
6790 SD_BALANCE_NEWIDLE |
6791 SD_BALANCE_FORK |
6792 SD_BALANCE_EXEC |
6793 SD_SHARE_CPUPOWER |
6794 SD_SHARE_PKG_RESOURCES);
6795 if (nr_node_ids == 1)
6796 pflags &= ~SD_SERIALIZE;
6797 }
6798 if (~cflags & pflags)
6799 return 0;
6800
6801 return 1;
6802 }
6803
6804 static void free_rootdomain(struct root_domain *rd)
6805 {
6806 cpupri_cleanup(&rd->cpupri);
6807
6808 free_cpumask_var(rd->rto_mask);
6809 free_cpumask_var(rd->online);
6810 free_cpumask_var(rd->span);
6811 kfree(rd);
6812 }
6813
6814 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6815 {
6816 unsigned long flags;
6817
6818 spin_lock_irqsave(&rq->lock, flags);
6819
6820 if (rq->rd) {
6821 struct root_domain *old_rd = rq->rd;
6822
6823 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6824 set_rq_offline(rq);
6825
6826 cpumask_clear_cpu(rq->cpu, old_rd->span);
6827
6828 if (atomic_dec_and_test(&old_rd->refcount))
6829 free_rootdomain(old_rd);
6830 }
6831
6832 atomic_inc(&rd->refcount);
6833 rq->rd = rd;
6834
6835 cpumask_set_cpu(rq->cpu, rd->span);
6836 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6837 set_rq_online(rq);
6838
6839 spin_unlock_irqrestore(&rq->lock, flags);
6840 }
6841
6842 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6843 {
6844 memset(rd, 0, sizeof(*rd));
6845
6846 if (bootmem) {
6847 alloc_bootmem_cpumask_var(&def_root_domain.span);
6848 alloc_bootmem_cpumask_var(&def_root_domain.online);
6849 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
6850 cpupri_init(&rd->cpupri, true);
6851 return 0;
6852 }
6853
6854 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6855 goto free_rd;
6856 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6857 goto free_span;
6858 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6859 goto free_online;
6860
6861 if (cpupri_init(&rd->cpupri, false) != 0)
6862 goto free_rto_mask;
6863 return 0;
6864
6865 free_rto_mask:
6866 free_cpumask_var(rd->rto_mask);
6867 free_online:
6868 free_cpumask_var(rd->online);
6869 free_span:
6870 free_cpumask_var(rd->span);
6871 free_rd:
6872 kfree(rd);
6873 return -ENOMEM;
6874 }
6875
6876 static void init_defrootdomain(void)
6877 {
6878 init_rootdomain(&def_root_domain, true);
6879
6880 atomic_set(&def_root_domain.refcount, 1);
6881 }
6882
6883 static struct root_domain *alloc_rootdomain(void)
6884 {
6885 struct root_domain *rd;
6886
6887 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6888 if (!rd)
6889 return NULL;
6890
6891 if (init_rootdomain(rd, false) != 0) {
6892 kfree(rd);
6893 return NULL;
6894 }
6895
6896 return rd;
6897 }
6898
6899 /*
6900 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6901 * hold the hotplug lock.
6902 */
6903 static void
6904 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6905 {
6906 struct rq *rq = cpu_rq(cpu);
6907 struct sched_domain *tmp;
6908
6909 /* Remove the sched domains which do not contribute to scheduling. */
6910 for (tmp = sd; tmp; ) {
6911 struct sched_domain *parent = tmp->parent;
6912 if (!parent)
6913 break;
6914
6915 if (sd_parent_degenerate(tmp, parent)) {
6916 tmp->parent = parent->parent;
6917 if (parent->parent)
6918 parent->parent->child = tmp;
6919 } else
6920 tmp = tmp->parent;
6921 }
6922
6923 if (sd && sd_degenerate(sd)) {
6924 sd = sd->parent;
6925 if (sd)
6926 sd->child = NULL;
6927 }
6928
6929 sched_domain_debug(sd, cpu);
6930
6931 rq_attach_root(rq, rd);
6932 rcu_assign_pointer(rq->sd, sd);
6933 }
6934
6935 /* cpus with isolated domains */
6936 static cpumask_var_t cpu_isolated_map;
6937
6938 /* Setup the mask of cpus configured for isolated domains */
6939 static int __init isolated_cpu_setup(char *str)
6940 {
6941 cpulist_parse(str, *cpu_isolated_map);
6942 return 1;
6943 }
6944
6945 __setup("isolcpus=", isolated_cpu_setup);
6946
6947 /*
6948 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6949 * to a function which identifies what group(along with sched group) a CPU
6950 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6951 * (due to the fact that we keep track of groups covered with a struct cpumask).
6952 *
6953 * init_sched_build_groups will build a circular linked list of the groups
6954 * covered by the given span, and will set each group's ->cpumask correctly,
6955 * and ->cpu_power to 0.
6956 */
6957 static void
6958 init_sched_build_groups(const struct cpumask *span,
6959 const struct cpumask *cpu_map,
6960 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6961 struct sched_group **sg,
6962 struct cpumask *tmpmask),
6963 struct cpumask *covered, struct cpumask *tmpmask)
6964 {
6965 struct sched_group *first = NULL, *last = NULL;
6966 int i;
6967
6968 cpumask_clear(covered);
6969
6970 for_each_cpu(i, span) {
6971 struct sched_group *sg;
6972 int group = group_fn(i, cpu_map, &sg, tmpmask);
6973 int j;
6974
6975 if (cpumask_test_cpu(i, covered))
6976 continue;
6977
6978 cpumask_clear(sched_group_cpus(sg));
6979 sg->__cpu_power = 0;
6980
6981 for_each_cpu(j, span) {
6982 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6983 continue;
6984
6985 cpumask_set_cpu(j, covered);
6986 cpumask_set_cpu(j, sched_group_cpus(sg));
6987 }
6988 if (!first)
6989 first = sg;
6990 if (last)
6991 last->next = sg;
6992 last = sg;
6993 }
6994 last->next = first;
6995 }
6996
6997 #define SD_NODES_PER_DOMAIN 16
6998
6999 #ifdef CONFIG_NUMA
7000
7001 /**
7002 * find_next_best_node - find the next node to include in a sched_domain
7003 * @node: node whose sched_domain we're building
7004 * @used_nodes: nodes already in the sched_domain
7005 *
7006 * Find the next node to include in a given scheduling domain. Simply
7007 * finds the closest node not already in the @used_nodes map.
7008 *
7009 * Should use nodemask_t.
7010 */
7011 static int find_next_best_node(int node, nodemask_t *used_nodes)
7012 {
7013 int i, n, val, min_val, best_node = 0;
7014
7015 min_val = INT_MAX;
7016
7017 for (i = 0; i < nr_node_ids; i++) {
7018 /* Start at @node */
7019 n = (node + i) % nr_node_ids;
7020
7021 if (!nr_cpus_node(n))
7022 continue;
7023
7024 /* Skip already used nodes */
7025 if (node_isset(n, *used_nodes))
7026 continue;
7027
7028 /* Simple min distance search */
7029 val = node_distance(node, n);
7030
7031 if (val < min_val) {
7032 min_val = val;
7033 best_node = n;
7034 }
7035 }
7036
7037 node_set(best_node, *used_nodes);
7038 return best_node;
7039 }
7040
7041 /**
7042 * sched_domain_node_span - get a cpumask for a node's sched_domain
7043 * @node: node whose cpumask we're constructing
7044 * @span: resulting cpumask
7045 *
7046 * Given a node, construct a good cpumask for its sched_domain to span. It
7047 * should be one that prevents unnecessary balancing, but also spreads tasks
7048 * out optimally.
7049 */
7050 static void sched_domain_node_span(int node, struct cpumask *span)
7051 {
7052 nodemask_t used_nodes;
7053 /* FIXME: use cpumask_of_node() */
7054 node_to_cpumask_ptr(nodemask, node);
7055 int i;
7056
7057 cpus_clear(*span);
7058 nodes_clear(used_nodes);
7059
7060 cpus_or(*span, *span, *nodemask);
7061 node_set(node, used_nodes);
7062
7063 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7064 int next_node = find_next_best_node(node, &used_nodes);
7065
7066 node_to_cpumask_ptr_next(nodemask, next_node);
7067 cpus_or(*span, *span, *nodemask);
7068 }
7069 }
7070 #endif /* CONFIG_NUMA */
7071
7072 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7073
7074 /*
7075 * The cpus mask in sched_group and sched_domain hangs off the end.
7076 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7077 * for nr_cpu_ids < CONFIG_NR_CPUS.
7078 */
7079 struct static_sched_group {
7080 struct sched_group sg;
7081 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7082 };
7083
7084 struct static_sched_domain {
7085 struct sched_domain sd;
7086 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7087 };
7088
7089 /*
7090 * SMT sched-domains:
7091 */
7092 #ifdef CONFIG_SCHED_SMT
7093 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7094 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7095
7096 static int
7097 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7098 struct sched_group **sg, struct cpumask *unused)
7099 {
7100 if (sg)
7101 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7102 return cpu;
7103 }
7104 #endif /* CONFIG_SCHED_SMT */
7105
7106 /*
7107 * multi-core sched-domains:
7108 */
7109 #ifdef CONFIG_SCHED_MC
7110 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7111 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7112 #endif /* CONFIG_SCHED_MC */
7113
7114 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7115 static int
7116 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7117 struct sched_group **sg, struct cpumask *mask)
7118 {
7119 int group;
7120
7121 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7122 group = cpumask_first(mask);
7123 if (sg)
7124 *sg = &per_cpu(sched_group_core, group).sg;
7125 return group;
7126 }
7127 #elif defined(CONFIG_SCHED_MC)
7128 static int
7129 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7130 struct sched_group **sg, struct cpumask *unused)
7131 {
7132 if (sg)
7133 *sg = &per_cpu(sched_group_core, cpu).sg;
7134 return cpu;
7135 }
7136 #endif
7137
7138 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7139 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7140
7141 static int
7142 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7143 struct sched_group **sg, struct cpumask *mask)
7144 {
7145 int group;
7146 #ifdef CONFIG_SCHED_MC
7147 /* FIXME: Use cpu_coregroup_mask. */
7148 *mask = cpu_coregroup_map(cpu);
7149 cpus_and(*mask, *mask, *cpu_map);
7150 group = cpumask_first(mask);
7151 #elif defined(CONFIG_SCHED_SMT)
7152 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7153 group = cpumask_first(mask);
7154 #else
7155 group = cpu;
7156 #endif
7157 if (sg)
7158 *sg = &per_cpu(sched_group_phys, group).sg;
7159 return group;
7160 }
7161
7162 #ifdef CONFIG_NUMA
7163 /*
7164 * The init_sched_build_groups can't handle what we want to do with node
7165 * groups, so roll our own. Now each node has its own list of groups which
7166 * gets dynamically allocated.
7167 */
7168 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7169 static struct sched_group ***sched_group_nodes_bycpu;
7170
7171 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7172 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7173
7174 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7175 struct sched_group **sg,
7176 struct cpumask *nodemask)
7177 {
7178 int group;
7179 /* FIXME: use cpumask_of_node */
7180 node_to_cpumask_ptr(pnodemask, cpu_to_node(cpu));
7181
7182 cpumask_and(nodemask, pnodemask, cpu_map);
7183 group = cpumask_first(nodemask);
7184
7185 if (sg)
7186 *sg = &per_cpu(sched_group_allnodes, group).sg;
7187 return group;
7188 }
7189
7190 static void init_numa_sched_groups_power(struct sched_group *group_head)
7191 {
7192 struct sched_group *sg = group_head;
7193 int j;
7194
7195 if (!sg)
7196 return;
7197 do {
7198 for_each_cpu(j, sched_group_cpus(sg)) {
7199 struct sched_domain *sd;
7200
7201 sd = &per_cpu(phys_domains, j).sd;
7202 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7203 /*
7204 * Only add "power" once for each
7205 * physical package.
7206 */
7207 continue;
7208 }
7209
7210 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7211 }
7212 sg = sg->next;
7213 } while (sg != group_head);
7214 }
7215 #endif /* CONFIG_NUMA */
7216
7217 #ifdef CONFIG_NUMA
7218 /* Free memory allocated for various sched_group structures */
7219 static void free_sched_groups(const struct cpumask *cpu_map,
7220 struct cpumask *nodemask)
7221 {
7222 int cpu, i;
7223
7224 for_each_cpu(cpu, cpu_map) {
7225 struct sched_group **sched_group_nodes
7226 = sched_group_nodes_bycpu[cpu];
7227
7228 if (!sched_group_nodes)
7229 continue;
7230
7231 for (i = 0; i < nr_node_ids; i++) {
7232 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7233 /* FIXME: Use cpumask_of_node */
7234 node_to_cpumask_ptr(pnodemask, i);
7235
7236 cpus_and(*nodemask, *pnodemask, *cpu_map);
7237 if (cpumask_empty(nodemask))
7238 continue;
7239
7240 if (sg == NULL)
7241 continue;
7242 sg = sg->next;
7243 next_sg:
7244 oldsg = sg;
7245 sg = sg->next;
7246 kfree(oldsg);
7247 if (oldsg != sched_group_nodes[i])
7248 goto next_sg;
7249 }
7250 kfree(sched_group_nodes);
7251 sched_group_nodes_bycpu[cpu] = NULL;
7252 }
7253 }
7254 #else /* !CONFIG_NUMA */
7255 static void free_sched_groups(const struct cpumask *cpu_map,
7256 struct cpumask *nodemask)
7257 {
7258 }
7259 #endif /* CONFIG_NUMA */
7260
7261 /*
7262 * Initialize sched groups cpu_power.
7263 *
7264 * cpu_power indicates the capacity of sched group, which is used while
7265 * distributing the load between different sched groups in a sched domain.
7266 * Typically cpu_power for all the groups in a sched domain will be same unless
7267 * there are asymmetries in the topology. If there are asymmetries, group
7268 * having more cpu_power will pickup more load compared to the group having
7269 * less cpu_power.
7270 *
7271 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7272 * the maximum number of tasks a group can handle in the presence of other idle
7273 * or lightly loaded groups in the same sched domain.
7274 */
7275 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7276 {
7277 struct sched_domain *child;
7278 struct sched_group *group;
7279
7280 WARN_ON(!sd || !sd->groups);
7281
7282 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7283 return;
7284
7285 child = sd->child;
7286
7287 sd->groups->__cpu_power = 0;
7288
7289 /*
7290 * For perf policy, if the groups in child domain share resources
7291 * (for example cores sharing some portions of the cache hierarchy
7292 * or SMT), then set this domain groups cpu_power such that each group
7293 * can handle only one task, when there are other idle groups in the
7294 * same sched domain.
7295 */
7296 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7297 (child->flags &
7298 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7299 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7300 return;
7301 }
7302
7303 /*
7304 * add cpu_power of each child group to this groups cpu_power
7305 */
7306 group = child->groups;
7307 do {
7308 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7309 group = group->next;
7310 } while (group != child->groups);
7311 }
7312
7313 /*
7314 * Initializers for schedule domains
7315 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7316 */
7317
7318 #ifdef CONFIG_SCHED_DEBUG
7319 # define SD_INIT_NAME(sd, type) sd->name = #type
7320 #else
7321 # define SD_INIT_NAME(sd, type) do { } while (0)
7322 #endif
7323
7324 #define SD_INIT(sd, type) sd_init_##type(sd)
7325
7326 #define SD_INIT_FUNC(type) \
7327 static noinline void sd_init_##type(struct sched_domain *sd) \
7328 { \
7329 memset(sd, 0, sizeof(*sd)); \
7330 *sd = SD_##type##_INIT; \
7331 sd->level = SD_LV_##type; \
7332 SD_INIT_NAME(sd, type); \
7333 }
7334
7335 SD_INIT_FUNC(CPU)
7336 #ifdef CONFIG_NUMA
7337 SD_INIT_FUNC(ALLNODES)
7338 SD_INIT_FUNC(NODE)
7339 #endif
7340 #ifdef CONFIG_SCHED_SMT
7341 SD_INIT_FUNC(SIBLING)
7342 #endif
7343 #ifdef CONFIG_SCHED_MC
7344 SD_INIT_FUNC(MC)
7345 #endif
7346
7347 static int default_relax_domain_level = -1;
7348
7349 static int __init setup_relax_domain_level(char *str)
7350 {
7351 unsigned long val;
7352
7353 val = simple_strtoul(str, NULL, 0);
7354 if (val < SD_LV_MAX)
7355 default_relax_domain_level = val;
7356
7357 return 1;
7358 }
7359 __setup("relax_domain_level=", setup_relax_domain_level);
7360
7361 static void set_domain_attribute(struct sched_domain *sd,
7362 struct sched_domain_attr *attr)
7363 {
7364 int request;
7365
7366 if (!attr || attr->relax_domain_level < 0) {
7367 if (default_relax_domain_level < 0)
7368 return;
7369 else
7370 request = default_relax_domain_level;
7371 } else
7372 request = attr->relax_domain_level;
7373 if (request < sd->level) {
7374 /* turn off idle balance on this domain */
7375 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7376 } else {
7377 /* turn on idle balance on this domain */
7378 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7379 }
7380 }
7381
7382 /*
7383 * Build sched domains for a given set of cpus and attach the sched domains
7384 * to the individual cpus
7385 */
7386 static int __build_sched_domains(const struct cpumask *cpu_map,
7387 struct sched_domain_attr *attr)
7388 {
7389 int i, err = -ENOMEM;
7390 struct root_domain *rd;
7391 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7392 tmpmask;
7393 #ifdef CONFIG_NUMA
7394 cpumask_var_t domainspan, covered, notcovered;
7395 struct sched_group **sched_group_nodes = NULL;
7396 int sd_allnodes = 0;
7397
7398 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7399 goto out;
7400 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7401 goto free_domainspan;
7402 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7403 goto free_covered;
7404 #endif
7405
7406 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7407 goto free_notcovered;
7408 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7409 goto free_nodemask;
7410 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7411 goto free_this_sibling_map;
7412 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7413 goto free_this_core_map;
7414 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7415 goto free_send_covered;
7416
7417 #ifdef CONFIG_NUMA
7418 /*
7419 * Allocate the per-node list of sched groups
7420 */
7421 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7422 GFP_KERNEL);
7423 if (!sched_group_nodes) {
7424 printk(KERN_WARNING "Can not alloc sched group node list\n");
7425 goto free_tmpmask;
7426 }
7427 #endif
7428
7429 rd = alloc_rootdomain();
7430 if (!rd) {
7431 printk(KERN_WARNING "Cannot alloc root domain\n");
7432 goto free_sched_groups;
7433 }
7434
7435 #ifdef CONFIG_NUMA
7436 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7437 #endif
7438
7439 /*
7440 * Set up domains for cpus specified by the cpu_map.
7441 */
7442 for_each_cpu(i, cpu_map) {
7443 struct sched_domain *sd = NULL, *p;
7444
7445 /* FIXME: use cpumask_of_node */
7446 *nodemask = node_to_cpumask(cpu_to_node(i));
7447 cpus_and(*nodemask, *nodemask, *cpu_map);
7448
7449 #ifdef CONFIG_NUMA
7450 if (cpumask_weight(cpu_map) >
7451 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7452 sd = &per_cpu(allnodes_domains, i);
7453 SD_INIT(sd, ALLNODES);
7454 set_domain_attribute(sd, attr);
7455 cpumask_copy(sched_domain_span(sd), cpu_map);
7456 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7457 p = sd;
7458 sd_allnodes = 1;
7459 } else
7460 p = NULL;
7461
7462 sd = &per_cpu(node_domains, i);
7463 SD_INIT(sd, NODE);
7464 set_domain_attribute(sd, attr);
7465 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7466 sd->parent = p;
7467 if (p)
7468 p->child = sd;
7469 cpumask_and(sched_domain_span(sd),
7470 sched_domain_span(sd), cpu_map);
7471 #endif
7472
7473 p = sd;
7474 sd = &per_cpu(phys_domains, i).sd;
7475 SD_INIT(sd, CPU);
7476 set_domain_attribute(sd, attr);
7477 cpumask_copy(sched_domain_span(sd), nodemask);
7478 sd->parent = p;
7479 if (p)
7480 p->child = sd;
7481 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7482
7483 #ifdef CONFIG_SCHED_MC
7484 p = sd;
7485 sd = &per_cpu(core_domains, i).sd;
7486 SD_INIT(sd, MC);
7487 set_domain_attribute(sd, attr);
7488 *sched_domain_span(sd) = cpu_coregroup_map(i);
7489 cpumask_and(sched_domain_span(sd),
7490 sched_domain_span(sd), cpu_map);
7491 sd->parent = p;
7492 p->child = sd;
7493 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7494 #endif
7495
7496 #ifdef CONFIG_SCHED_SMT
7497 p = sd;
7498 sd = &per_cpu(cpu_domains, i).sd;
7499 SD_INIT(sd, SIBLING);
7500 set_domain_attribute(sd, attr);
7501 cpumask_and(sched_domain_span(sd),
7502 &per_cpu(cpu_sibling_map, i), cpu_map);
7503 sd->parent = p;
7504 p->child = sd;
7505 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7506 #endif
7507 }
7508
7509 #ifdef CONFIG_SCHED_SMT
7510 /* Set up CPU (sibling) groups */
7511 for_each_cpu(i, cpu_map) {
7512 cpumask_and(this_sibling_map,
7513 &per_cpu(cpu_sibling_map, i), cpu_map);
7514 if (i != cpumask_first(this_sibling_map))
7515 continue;
7516
7517 init_sched_build_groups(this_sibling_map, cpu_map,
7518 &cpu_to_cpu_group,
7519 send_covered, tmpmask);
7520 }
7521 #endif
7522
7523 #ifdef CONFIG_SCHED_MC
7524 /* Set up multi-core groups */
7525 for_each_cpu(i, cpu_map) {
7526 /* FIXME: Use cpu_coregroup_mask */
7527 *this_core_map = cpu_coregroup_map(i);
7528 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7529 if (i != cpumask_first(this_core_map))
7530 continue;
7531
7532 init_sched_build_groups(this_core_map, cpu_map,
7533 &cpu_to_core_group,
7534 send_covered, tmpmask);
7535 }
7536 #endif
7537
7538 /* Set up physical groups */
7539 for (i = 0; i < nr_node_ids; i++) {
7540 /* FIXME: Use cpumask_of_node */
7541 *nodemask = node_to_cpumask(i);
7542 cpus_and(*nodemask, *nodemask, *cpu_map);
7543 if (cpumask_empty(nodemask))
7544 continue;
7545
7546 init_sched_build_groups(nodemask, cpu_map,
7547 &cpu_to_phys_group,
7548 send_covered, tmpmask);
7549 }
7550
7551 #ifdef CONFIG_NUMA
7552 /* Set up node groups */
7553 if (sd_allnodes) {
7554 init_sched_build_groups(cpu_map, cpu_map,
7555 &cpu_to_allnodes_group,
7556 send_covered, tmpmask);
7557 }
7558
7559 for (i = 0; i < nr_node_ids; i++) {
7560 /* Set up node groups */
7561 struct sched_group *sg, *prev;
7562 int j;
7563
7564 /* FIXME: Use cpumask_of_node */
7565 *nodemask = node_to_cpumask(i);
7566 cpumask_clear(covered);
7567
7568 cpus_and(*nodemask, *nodemask, *cpu_map);
7569 if (cpumask_empty(nodemask)) {
7570 sched_group_nodes[i] = NULL;
7571 continue;
7572 }
7573
7574 sched_domain_node_span(i, domainspan);
7575 cpumask_and(domainspan, domainspan, cpu_map);
7576
7577 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7578 GFP_KERNEL, i);
7579 if (!sg) {
7580 printk(KERN_WARNING "Can not alloc domain group for "
7581 "node %d\n", i);
7582 goto error;
7583 }
7584 sched_group_nodes[i] = sg;
7585 for_each_cpu(j, nodemask) {
7586 struct sched_domain *sd;
7587
7588 sd = &per_cpu(node_domains, j);
7589 sd->groups = sg;
7590 }
7591 sg->__cpu_power = 0;
7592 cpumask_copy(sched_group_cpus(sg), nodemask);
7593 sg->next = sg;
7594 cpumask_or(covered, covered, nodemask);
7595 prev = sg;
7596
7597 for (j = 0; j < nr_node_ids; j++) {
7598 int n = (i + j) % nr_node_ids;
7599 /* FIXME: Use cpumask_of_node */
7600 node_to_cpumask_ptr(pnodemask, n);
7601
7602 cpumask_complement(notcovered, covered);
7603 cpumask_and(tmpmask, notcovered, cpu_map);
7604 cpumask_and(tmpmask, tmpmask, domainspan);
7605 if (cpumask_empty(tmpmask))
7606 break;
7607
7608 cpumask_and(tmpmask, tmpmask, pnodemask);
7609 if (cpumask_empty(tmpmask))
7610 continue;
7611
7612 sg = kmalloc_node(sizeof(struct sched_group) +
7613 cpumask_size(),
7614 GFP_KERNEL, i);
7615 if (!sg) {
7616 printk(KERN_WARNING
7617 "Can not alloc domain group for node %d\n", j);
7618 goto error;
7619 }
7620 sg->__cpu_power = 0;
7621 cpumask_copy(sched_group_cpus(sg), tmpmask);
7622 sg->next = prev->next;
7623 cpumask_or(covered, covered, tmpmask);
7624 prev->next = sg;
7625 prev = sg;
7626 }
7627 }
7628 #endif
7629
7630 /* Calculate CPU power for physical packages and nodes */
7631 #ifdef CONFIG_SCHED_SMT
7632 for_each_cpu(i, cpu_map) {
7633 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
7634
7635 init_sched_groups_power(i, sd);
7636 }
7637 #endif
7638 #ifdef CONFIG_SCHED_MC
7639 for_each_cpu(i, cpu_map) {
7640 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
7641
7642 init_sched_groups_power(i, sd);
7643 }
7644 #endif
7645
7646 for_each_cpu(i, cpu_map) {
7647 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
7648
7649 init_sched_groups_power(i, sd);
7650 }
7651
7652 #ifdef CONFIG_NUMA
7653 for (i = 0; i < nr_node_ids; i++)
7654 init_numa_sched_groups_power(sched_group_nodes[i]);
7655
7656 if (sd_allnodes) {
7657 struct sched_group *sg;
7658
7659 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7660 tmpmask);
7661 init_numa_sched_groups_power(sg);
7662 }
7663 #endif
7664
7665 /* Attach the domains */
7666 for_each_cpu(i, cpu_map) {
7667 struct sched_domain *sd;
7668 #ifdef CONFIG_SCHED_SMT
7669 sd = &per_cpu(cpu_domains, i).sd;
7670 #elif defined(CONFIG_SCHED_MC)
7671 sd = &per_cpu(core_domains, i).sd;
7672 #else
7673 sd = &per_cpu(phys_domains, i).sd;
7674 #endif
7675 cpu_attach_domain(sd, rd, i);
7676 }
7677
7678 err = 0;
7679
7680 free_tmpmask:
7681 free_cpumask_var(tmpmask);
7682 free_send_covered:
7683 free_cpumask_var(send_covered);
7684 free_this_core_map:
7685 free_cpumask_var(this_core_map);
7686 free_this_sibling_map:
7687 free_cpumask_var(this_sibling_map);
7688 free_nodemask:
7689 free_cpumask_var(nodemask);
7690 free_notcovered:
7691 #ifdef CONFIG_NUMA
7692 free_cpumask_var(notcovered);
7693 free_covered:
7694 free_cpumask_var(covered);
7695 free_domainspan:
7696 free_cpumask_var(domainspan);
7697 out:
7698 #endif
7699 return err;
7700
7701 free_sched_groups:
7702 #ifdef CONFIG_NUMA
7703 kfree(sched_group_nodes);
7704 #endif
7705 goto free_tmpmask;
7706
7707 #ifdef CONFIG_NUMA
7708 error:
7709 free_sched_groups(cpu_map, tmpmask);
7710 free_rootdomain(rd);
7711 goto free_tmpmask;
7712 #endif
7713 }
7714
7715 static int build_sched_domains(const struct cpumask *cpu_map)
7716 {
7717 return __build_sched_domains(cpu_map, NULL);
7718 }
7719
7720 static struct cpumask *doms_cur; /* current sched domains */
7721 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7722 static struct sched_domain_attr *dattr_cur;
7723 /* attribues of custom domains in 'doms_cur' */
7724
7725 /*
7726 * Special case: If a kmalloc of a doms_cur partition (array of
7727 * cpumask) fails, then fallback to a single sched domain,
7728 * as determined by the single cpumask fallback_doms.
7729 */
7730 static cpumask_var_t fallback_doms;
7731
7732 /*
7733 * arch_update_cpu_topology lets virtualized architectures update the
7734 * cpu core maps. It is supposed to return 1 if the topology changed
7735 * or 0 if it stayed the same.
7736 */
7737 int __attribute__((weak)) arch_update_cpu_topology(void)
7738 {
7739 return 0;
7740 }
7741
7742 /*
7743 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7744 * For now this just excludes isolated cpus, but could be used to
7745 * exclude other special cases in the future.
7746 */
7747 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7748 {
7749 int err;
7750
7751 arch_update_cpu_topology();
7752 ndoms_cur = 1;
7753 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
7754 if (!doms_cur)
7755 doms_cur = fallback_doms;
7756 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7757 dattr_cur = NULL;
7758 err = build_sched_domains(doms_cur);
7759 register_sched_domain_sysctl();
7760
7761 return err;
7762 }
7763
7764 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7765 struct cpumask *tmpmask)
7766 {
7767 free_sched_groups(cpu_map, tmpmask);
7768 }
7769
7770 /*
7771 * Detach sched domains from a group of cpus specified in cpu_map
7772 * These cpus will now be attached to the NULL domain
7773 */
7774 static void detach_destroy_domains(const struct cpumask *cpu_map)
7775 {
7776 /* Save because hotplug lock held. */
7777 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7778 int i;
7779
7780 for_each_cpu(i, cpu_map)
7781 cpu_attach_domain(NULL, &def_root_domain, i);
7782 synchronize_sched();
7783 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7784 }
7785
7786 /* handle null as "default" */
7787 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7788 struct sched_domain_attr *new, int idx_new)
7789 {
7790 struct sched_domain_attr tmp;
7791
7792 /* fast path */
7793 if (!new && !cur)
7794 return 1;
7795
7796 tmp = SD_ATTR_INIT;
7797 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7798 new ? (new + idx_new) : &tmp,
7799 sizeof(struct sched_domain_attr));
7800 }
7801
7802 /*
7803 * Partition sched domains as specified by the 'ndoms_new'
7804 * cpumasks in the array doms_new[] of cpumasks. This compares
7805 * doms_new[] to the current sched domain partitioning, doms_cur[].
7806 * It destroys each deleted domain and builds each new domain.
7807 *
7808 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7809 * The masks don't intersect (don't overlap.) We should setup one
7810 * sched domain for each mask. CPUs not in any of the cpumasks will
7811 * not be load balanced. If the same cpumask appears both in the
7812 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7813 * it as it is.
7814 *
7815 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7816 * ownership of it and will kfree it when done with it. If the caller
7817 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7818 * ndoms_new == 1, and partition_sched_domains() will fallback to
7819 * the single partition 'fallback_doms', it also forces the domains
7820 * to be rebuilt.
7821 *
7822 * If doms_new == NULL it will be replaced with cpu_online_mask.
7823 * ndoms_new == 0 is a special case for destroying existing domains,
7824 * and it will not create the default domain.
7825 *
7826 * Call with hotplug lock held
7827 */
7828 /* FIXME: Change to struct cpumask *doms_new[] */
7829 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
7830 struct sched_domain_attr *dattr_new)
7831 {
7832 int i, j, n;
7833 int new_topology;
7834
7835 mutex_lock(&sched_domains_mutex);
7836
7837 /* always unregister in case we don't destroy any domains */
7838 unregister_sched_domain_sysctl();
7839
7840 /* Let architecture update cpu core mappings. */
7841 new_topology = arch_update_cpu_topology();
7842
7843 n = doms_new ? ndoms_new : 0;
7844
7845 /* Destroy deleted domains */
7846 for (i = 0; i < ndoms_cur; i++) {
7847 for (j = 0; j < n && !new_topology; j++) {
7848 if (cpumask_equal(&doms_cur[i], &doms_new[j])
7849 && dattrs_equal(dattr_cur, i, dattr_new, j))
7850 goto match1;
7851 }
7852 /* no match - a current sched domain not in new doms_new[] */
7853 detach_destroy_domains(doms_cur + i);
7854 match1:
7855 ;
7856 }
7857
7858 if (doms_new == NULL) {
7859 ndoms_cur = 0;
7860 doms_new = fallback_doms;
7861 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
7862 WARN_ON_ONCE(dattr_new);
7863 }
7864
7865 /* Build new domains */
7866 for (i = 0; i < ndoms_new; i++) {
7867 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7868 if (cpumask_equal(&doms_new[i], &doms_cur[j])
7869 && dattrs_equal(dattr_new, i, dattr_cur, j))
7870 goto match2;
7871 }
7872 /* no match - add a new doms_new */
7873 __build_sched_domains(doms_new + i,
7874 dattr_new ? dattr_new + i : NULL);
7875 match2:
7876 ;
7877 }
7878
7879 /* Remember the new sched domains */
7880 if (doms_cur != fallback_doms)
7881 kfree(doms_cur);
7882 kfree(dattr_cur); /* kfree(NULL) is safe */
7883 doms_cur = doms_new;
7884 dattr_cur = dattr_new;
7885 ndoms_cur = ndoms_new;
7886
7887 register_sched_domain_sysctl();
7888
7889 mutex_unlock(&sched_domains_mutex);
7890 }
7891
7892 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7893 int arch_reinit_sched_domains(void)
7894 {
7895 get_online_cpus();
7896
7897 /* Destroy domains first to force the rebuild */
7898 partition_sched_domains(0, NULL, NULL);
7899
7900 rebuild_sched_domains();
7901 put_online_cpus();
7902
7903 return 0;
7904 }
7905
7906 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7907 {
7908 int ret;
7909
7910 if (buf[0] != '0' && buf[0] != '1')
7911 return -EINVAL;
7912
7913 if (smt)
7914 sched_smt_power_savings = (buf[0] == '1');
7915 else
7916 sched_mc_power_savings = (buf[0] == '1');
7917
7918 ret = arch_reinit_sched_domains();
7919
7920 return ret ? ret : count;
7921 }
7922
7923 #ifdef CONFIG_SCHED_MC
7924 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7925 char *page)
7926 {
7927 return sprintf(page, "%u\n", sched_mc_power_savings);
7928 }
7929 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7930 const char *buf, size_t count)
7931 {
7932 return sched_power_savings_store(buf, count, 0);
7933 }
7934 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7935 sched_mc_power_savings_show,
7936 sched_mc_power_savings_store);
7937 #endif
7938
7939 #ifdef CONFIG_SCHED_SMT
7940 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7941 char *page)
7942 {
7943 return sprintf(page, "%u\n", sched_smt_power_savings);
7944 }
7945 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7946 const char *buf, size_t count)
7947 {
7948 return sched_power_savings_store(buf, count, 1);
7949 }
7950 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7951 sched_smt_power_savings_show,
7952 sched_smt_power_savings_store);
7953 #endif
7954
7955 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7956 {
7957 int err = 0;
7958
7959 #ifdef CONFIG_SCHED_SMT
7960 if (smt_capable())
7961 err = sysfs_create_file(&cls->kset.kobj,
7962 &attr_sched_smt_power_savings.attr);
7963 #endif
7964 #ifdef CONFIG_SCHED_MC
7965 if (!err && mc_capable())
7966 err = sysfs_create_file(&cls->kset.kobj,
7967 &attr_sched_mc_power_savings.attr);
7968 #endif
7969 return err;
7970 }
7971 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7972
7973 #ifndef CONFIG_CPUSETS
7974 /*
7975 * Add online and remove offline CPUs from the scheduler domains.
7976 * When cpusets are enabled they take over this function.
7977 */
7978 static int update_sched_domains(struct notifier_block *nfb,
7979 unsigned long action, void *hcpu)
7980 {
7981 switch (action) {
7982 case CPU_ONLINE:
7983 case CPU_ONLINE_FROZEN:
7984 case CPU_DEAD:
7985 case CPU_DEAD_FROZEN:
7986 partition_sched_domains(1, NULL, NULL);
7987 return NOTIFY_OK;
7988
7989 default:
7990 return NOTIFY_DONE;
7991 }
7992 }
7993 #endif
7994
7995 static int update_runtime(struct notifier_block *nfb,
7996 unsigned long action, void *hcpu)
7997 {
7998 int cpu = (int)(long)hcpu;
7999
8000 switch (action) {
8001 case CPU_DOWN_PREPARE:
8002 case CPU_DOWN_PREPARE_FROZEN:
8003 disable_runtime(cpu_rq(cpu));
8004 return NOTIFY_OK;
8005
8006 case CPU_DOWN_FAILED:
8007 case CPU_DOWN_FAILED_FROZEN:
8008 case CPU_ONLINE:
8009 case CPU_ONLINE_FROZEN:
8010 enable_runtime(cpu_rq(cpu));
8011 return NOTIFY_OK;
8012
8013 default:
8014 return NOTIFY_DONE;
8015 }
8016 }
8017
8018 void __init sched_init_smp(void)
8019 {
8020 cpumask_var_t non_isolated_cpus;
8021
8022 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8023
8024 #if defined(CONFIG_NUMA)
8025 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8026 GFP_KERNEL);
8027 BUG_ON(sched_group_nodes_bycpu == NULL);
8028 #endif
8029 get_online_cpus();
8030 mutex_lock(&sched_domains_mutex);
8031 arch_init_sched_domains(cpu_online_mask);
8032 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8033 if (cpumask_empty(non_isolated_cpus))
8034 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8035 mutex_unlock(&sched_domains_mutex);
8036 put_online_cpus();
8037
8038 #ifndef CONFIG_CPUSETS
8039 /* XXX: Theoretical race here - CPU may be hotplugged now */
8040 hotcpu_notifier(update_sched_domains, 0);
8041 #endif
8042
8043 /* RT runtime code needs to handle some hotplug events */
8044 hotcpu_notifier(update_runtime, 0);
8045
8046 init_hrtick();
8047
8048 /* Move init over to a non-isolated CPU */
8049 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8050 BUG();
8051 sched_init_granularity();
8052 free_cpumask_var(non_isolated_cpus);
8053
8054 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8055 init_sched_rt_class();
8056 }
8057 #else
8058 void __init sched_init_smp(void)
8059 {
8060 sched_init_granularity();
8061 }
8062 #endif /* CONFIG_SMP */
8063
8064 int in_sched_functions(unsigned long addr)
8065 {
8066 return in_lock_functions(addr) ||
8067 (addr >= (unsigned long)__sched_text_start
8068 && addr < (unsigned long)__sched_text_end);
8069 }
8070
8071 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8072 {
8073 cfs_rq->tasks_timeline = RB_ROOT;
8074 INIT_LIST_HEAD(&cfs_rq->tasks);
8075 #ifdef CONFIG_FAIR_GROUP_SCHED
8076 cfs_rq->rq = rq;
8077 #endif
8078 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8079 }
8080
8081 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8082 {
8083 struct rt_prio_array *array;
8084 int i;
8085
8086 array = &rt_rq->active;
8087 for (i = 0; i < MAX_RT_PRIO; i++) {
8088 INIT_LIST_HEAD(array->queue + i);
8089 __clear_bit(i, array->bitmap);
8090 }
8091 /* delimiter for bitsearch: */
8092 __set_bit(MAX_RT_PRIO, array->bitmap);
8093
8094 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8095 rt_rq->highest_prio = MAX_RT_PRIO;
8096 #endif
8097 #ifdef CONFIG_SMP
8098 rt_rq->rt_nr_migratory = 0;
8099 rt_rq->overloaded = 0;
8100 #endif
8101
8102 rt_rq->rt_time = 0;
8103 rt_rq->rt_throttled = 0;
8104 rt_rq->rt_runtime = 0;
8105 spin_lock_init(&rt_rq->rt_runtime_lock);
8106
8107 #ifdef CONFIG_RT_GROUP_SCHED
8108 rt_rq->rt_nr_boosted = 0;
8109 rt_rq->rq = rq;
8110 #endif
8111 }
8112
8113 #ifdef CONFIG_FAIR_GROUP_SCHED
8114 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8115 struct sched_entity *se, int cpu, int add,
8116 struct sched_entity *parent)
8117 {
8118 struct rq *rq = cpu_rq(cpu);
8119 tg->cfs_rq[cpu] = cfs_rq;
8120 init_cfs_rq(cfs_rq, rq);
8121 cfs_rq->tg = tg;
8122 if (add)
8123 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8124
8125 tg->se[cpu] = se;
8126 /* se could be NULL for init_task_group */
8127 if (!se)
8128 return;
8129
8130 if (!parent)
8131 se->cfs_rq = &rq->cfs;
8132 else
8133 se->cfs_rq = parent->my_q;
8134
8135 se->my_q = cfs_rq;
8136 se->load.weight = tg->shares;
8137 se->load.inv_weight = 0;
8138 se->parent = parent;
8139 }
8140 #endif
8141
8142 #ifdef CONFIG_RT_GROUP_SCHED
8143 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8144 struct sched_rt_entity *rt_se, int cpu, int add,
8145 struct sched_rt_entity *parent)
8146 {
8147 struct rq *rq = cpu_rq(cpu);
8148
8149 tg->rt_rq[cpu] = rt_rq;
8150 init_rt_rq(rt_rq, rq);
8151 rt_rq->tg = tg;
8152 rt_rq->rt_se = rt_se;
8153 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8154 if (add)
8155 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8156
8157 tg->rt_se[cpu] = rt_se;
8158 if (!rt_se)
8159 return;
8160
8161 if (!parent)
8162 rt_se->rt_rq = &rq->rt;
8163 else
8164 rt_se->rt_rq = parent->my_q;
8165
8166 rt_se->my_q = rt_rq;
8167 rt_se->parent = parent;
8168 INIT_LIST_HEAD(&rt_se->run_list);
8169 }
8170 #endif
8171
8172 void __init sched_init(void)
8173 {
8174 int i, j;
8175 unsigned long alloc_size = 0, ptr;
8176
8177 #ifdef CONFIG_FAIR_GROUP_SCHED
8178 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8179 #endif
8180 #ifdef CONFIG_RT_GROUP_SCHED
8181 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8182 #endif
8183 #ifdef CONFIG_USER_SCHED
8184 alloc_size *= 2;
8185 #endif
8186 /*
8187 * As sched_init() is called before page_alloc is setup,
8188 * we use alloc_bootmem().
8189 */
8190 if (alloc_size) {
8191 ptr = (unsigned long)alloc_bootmem(alloc_size);
8192
8193 #ifdef CONFIG_FAIR_GROUP_SCHED
8194 init_task_group.se = (struct sched_entity **)ptr;
8195 ptr += nr_cpu_ids * sizeof(void **);
8196
8197 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8198 ptr += nr_cpu_ids * sizeof(void **);
8199
8200 #ifdef CONFIG_USER_SCHED
8201 root_task_group.se = (struct sched_entity **)ptr;
8202 ptr += nr_cpu_ids * sizeof(void **);
8203
8204 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8205 ptr += nr_cpu_ids * sizeof(void **);
8206 #endif /* CONFIG_USER_SCHED */
8207 #endif /* CONFIG_FAIR_GROUP_SCHED */
8208 #ifdef CONFIG_RT_GROUP_SCHED
8209 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8210 ptr += nr_cpu_ids * sizeof(void **);
8211
8212 init_task_group.rt_rq = (struct rt_rq **)ptr;
8213 ptr += nr_cpu_ids * sizeof(void **);
8214
8215 #ifdef CONFIG_USER_SCHED
8216 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8217 ptr += nr_cpu_ids * sizeof(void **);
8218
8219 root_task_group.rt_rq = (struct rt_rq **)ptr;
8220 ptr += nr_cpu_ids * sizeof(void **);
8221 #endif /* CONFIG_USER_SCHED */
8222 #endif /* CONFIG_RT_GROUP_SCHED */
8223 }
8224
8225 #ifdef CONFIG_SMP
8226 init_defrootdomain();
8227 #endif
8228
8229 init_rt_bandwidth(&def_rt_bandwidth,
8230 global_rt_period(), global_rt_runtime());
8231
8232 #ifdef CONFIG_RT_GROUP_SCHED
8233 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8234 global_rt_period(), global_rt_runtime());
8235 #ifdef CONFIG_USER_SCHED
8236 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8237 global_rt_period(), RUNTIME_INF);
8238 #endif /* CONFIG_USER_SCHED */
8239 #endif /* CONFIG_RT_GROUP_SCHED */
8240
8241 #ifdef CONFIG_GROUP_SCHED
8242 list_add(&init_task_group.list, &task_groups);
8243 INIT_LIST_HEAD(&init_task_group.children);
8244
8245 #ifdef CONFIG_USER_SCHED
8246 INIT_LIST_HEAD(&root_task_group.children);
8247 init_task_group.parent = &root_task_group;
8248 list_add(&init_task_group.siblings, &root_task_group.children);
8249 #endif /* CONFIG_USER_SCHED */
8250 #endif /* CONFIG_GROUP_SCHED */
8251
8252 for_each_possible_cpu(i) {
8253 struct rq *rq;
8254
8255 rq = cpu_rq(i);
8256 spin_lock_init(&rq->lock);
8257 rq->nr_running = 0;
8258 init_cfs_rq(&rq->cfs, rq);
8259 init_rt_rq(&rq->rt, rq);
8260 #ifdef CONFIG_FAIR_GROUP_SCHED
8261 init_task_group.shares = init_task_group_load;
8262 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8263 #ifdef CONFIG_CGROUP_SCHED
8264 /*
8265 * How much cpu bandwidth does init_task_group get?
8266 *
8267 * In case of task-groups formed thr' the cgroup filesystem, it
8268 * gets 100% of the cpu resources in the system. This overall
8269 * system cpu resource is divided among the tasks of
8270 * init_task_group and its child task-groups in a fair manner,
8271 * based on each entity's (task or task-group's) weight
8272 * (se->load.weight).
8273 *
8274 * In other words, if init_task_group has 10 tasks of weight
8275 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8276 * then A0's share of the cpu resource is:
8277 *
8278 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8279 *
8280 * We achieve this by letting init_task_group's tasks sit
8281 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8282 */
8283 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8284 #elif defined CONFIG_USER_SCHED
8285 root_task_group.shares = NICE_0_LOAD;
8286 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8287 /*
8288 * In case of task-groups formed thr' the user id of tasks,
8289 * init_task_group represents tasks belonging to root user.
8290 * Hence it forms a sibling of all subsequent groups formed.
8291 * In this case, init_task_group gets only a fraction of overall
8292 * system cpu resource, based on the weight assigned to root
8293 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8294 * by letting tasks of init_task_group sit in a separate cfs_rq
8295 * (init_cfs_rq) and having one entity represent this group of
8296 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8297 */
8298 init_tg_cfs_entry(&init_task_group,
8299 &per_cpu(init_cfs_rq, i),
8300 &per_cpu(init_sched_entity, i), i, 1,
8301 root_task_group.se[i]);
8302
8303 #endif
8304 #endif /* CONFIG_FAIR_GROUP_SCHED */
8305
8306 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8307 #ifdef CONFIG_RT_GROUP_SCHED
8308 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8309 #ifdef CONFIG_CGROUP_SCHED
8310 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8311 #elif defined CONFIG_USER_SCHED
8312 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8313 init_tg_rt_entry(&init_task_group,
8314 &per_cpu(init_rt_rq, i),
8315 &per_cpu(init_sched_rt_entity, i), i, 1,
8316 root_task_group.rt_se[i]);
8317 #endif
8318 #endif
8319
8320 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8321 rq->cpu_load[j] = 0;
8322 #ifdef CONFIG_SMP
8323 rq->sd = NULL;
8324 rq->rd = NULL;
8325 rq->active_balance = 0;
8326 rq->next_balance = jiffies;
8327 rq->push_cpu = 0;
8328 rq->cpu = i;
8329 rq->online = 0;
8330 rq->migration_thread = NULL;
8331 INIT_LIST_HEAD(&rq->migration_queue);
8332 rq_attach_root(rq, &def_root_domain);
8333 #endif
8334 init_rq_hrtick(rq);
8335 atomic_set(&rq->nr_iowait, 0);
8336 }
8337
8338 set_load_weight(&init_task);
8339
8340 #ifdef CONFIG_PREEMPT_NOTIFIERS
8341 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8342 #endif
8343
8344 #ifdef CONFIG_SMP
8345 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8346 #endif
8347
8348 #ifdef CONFIG_RT_MUTEXES
8349 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8350 #endif
8351
8352 /*
8353 * The boot idle thread does lazy MMU switching as well:
8354 */
8355 atomic_inc(&init_mm.mm_count);
8356 enter_lazy_tlb(&init_mm, current);
8357
8358 /*
8359 * Make us the idle thread. Technically, schedule() should not be
8360 * called from this thread, however somewhere below it might be,
8361 * but because we are the idle thread, we just pick up running again
8362 * when this runqueue becomes "idle".
8363 */
8364 init_idle(current, smp_processor_id());
8365 /*
8366 * During early bootup we pretend to be a normal task:
8367 */
8368 current->sched_class = &fair_sched_class;
8369
8370 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8371 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8372 #ifdef CONFIG_SMP
8373 #ifdef CONFIG_NO_HZ
8374 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8375 #endif
8376 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8377 #endif /* SMP */
8378
8379 scheduler_running = 1;
8380 }
8381
8382 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8383 void __might_sleep(char *file, int line)
8384 {
8385 #ifdef in_atomic
8386 static unsigned long prev_jiffy; /* ratelimiting */
8387
8388 if ((!in_atomic() && !irqs_disabled()) ||
8389 system_state != SYSTEM_RUNNING || oops_in_progress)
8390 return;
8391 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8392 return;
8393 prev_jiffy = jiffies;
8394
8395 printk(KERN_ERR
8396 "BUG: sleeping function called from invalid context at %s:%d\n",
8397 file, line);
8398 printk(KERN_ERR
8399 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8400 in_atomic(), irqs_disabled(),
8401 current->pid, current->comm);
8402
8403 debug_show_held_locks(current);
8404 if (irqs_disabled())
8405 print_irqtrace_events(current);
8406 dump_stack();
8407 #endif
8408 }
8409 EXPORT_SYMBOL(__might_sleep);
8410 #endif
8411
8412 #ifdef CONFIG_MAGIC_SYSRQ
8413 static void normalize_task(struct rq *rq, struct task_struct *p)
8414 {
8415 int on_rq;
8416
8417 update_rq_clock(rq);
8418 on_rq = p->se.on_rq;
8419 if (on_rq)
8420 deactivate_task(rq, p, 0);
8421 __setscheduler(rq, p, SCHED_NORMAL, 0);
8422 if (on_rq) {
8423 activate_task(rq, p, 0);
8424 resched_task(rq->curr);
8425 }
8426 }
8427
8428 void normalize_rt_tasks(void)
8429 {
8430 struct task_struct *g, *p;
8431 unsigned long flags;
8432 struct rq *rq;
8433
8434 read_lock_irqsave(&tasklist_lock, flags);
8435 do_each_thread(g, p) {
8436 /*
8437 * Only normalize user tasks:
8438 */
8439 if (!p->mm)
8440 continue;
8441
8442 p->se.exec_start = 0;
8443 #ifdef CONFIG_SCHEDSTATS
8444 p->se.wait_start = 0;
8445 p->se.sleep_start = 0;
8446 p->se.block_start = 0;
8447 #endif
8448
8449 if (!rt_task(p)) {
8450 /*
8451 * Renice negative nice level userspace
8452 * tasks back to 0:
8453 */
8454 if (TASK_NICE(p) < 0 && p->mm)
8455 set_user_nice(p, 0);
8456 continue;
8457 }
8458
8459 spin_lock(&p->pi_lock);
8460 rq = __task_rq_lock(p);
8461
8462 normalize_task(rq, p);
8463
8464 __task_rq_unlock(rq);
8465 spin_unlock(&p->pi_lock);
8466 } while_each_thread(g, p);
8467
8468 read_unlock_irqrestore(&tasklist_lock, flags);
8469 }
8470
8471 #endif /* CONFIG_MAGIC_SYSRQ */
8472
8473 #ifdef CONFIG_IA64
8474 /*
8475 * These functions are only useful for the IA64 MCA handling.
8476 *
8477 * They can only be called when the whole system has been
8478 * stopped - every CPU needs to be quiescent, and no scheduling
8479 * activity can take place. Using them for anything else would
8480 * be a serious bug, and as a result, they aren't even visible
8481 * under any other configuration.
8482 */
8483
8484 /**
8485 * curr_task - return the current task for a given cpu.
8486 * @cpu: the processor in question.
8487 *
8488 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8489 */
8490 struct task_struct *curr_task(int cpu)
8491 {
8492 return cpu_curr(cpu);
8493 }
8494
8495 /**
8496 * set_curr_task - set the current task for a given cpu.
8497 * @cpu: the processor in question.
8498 * @p: the task pointer to set.
8499 *
8500 * Description: This function must only be used when non-maskable interrupts
8501 * are serviced on a separate stack. It allows the architecture to switch the
8502 * notion of the current task on a cpu in a non-blocking manner. This function
8503 * must be called with all CPU's synchronized, and interrupts disabled, the
8504 * and caller must save the original value of the current task (see
8505 * curr_task() above) and restore that value before reenabling interrupts and
8506 * re-starting the system.
8507 *
8508 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8509 */
8510 void set_curr_task(int cpu, struct task_struct *p)
8511 {
8512 cpu_curr(cpu) = p;
8513 }
8514
8515 #endif
8516
8517 #ifdef CONFIG_FAIR_GROUP_SCHED
8518 static void free_fair_sched_group(struct task_group *tg)
8519 {
8520 int i;
8521
8522 for_each_possible_cpu(i) {
8523 if (tg->cfs_rq)
8524 kfree(tg->cfs_rq[i]);
8525 if (tg->se)
8526 kfree(tg->se[i]);
8527 }
8528
8529 kfree(tg->cfs_rq);
8530 kfree(tg->se);
8531 }
8532
8533 static
8534 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8535 {
8536 struct cfs_rq *cfs_rq;
8537 struct sched_entity *se;
8538 struct rq *rq;
8539 int i;
8540
8541 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8542 if (!tg->cfs_rq)
8543 goto err;
8544 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8545 if (!tg->se)
8546 goto err;
8547
8548 tg->shares = NICE_0_LOAD;
8549
8550 for_each_possible_cpu(i) {
8551 rq = cpu_rq(i);
8552
8553 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8554 GFP_KERNEL, cpu_to_node(i));
8555 if (!cfs_rq)
8556 goto err;
8557
8558 se = kzalloc_node(sizeof(struct sched_entity),
8559 GFP_KERNEL, cpu_to_node(i));
8560 if (!se)
8561 goto err;
8562
8563 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8564 }
8565
8566 return 1;
8567
8568 err:
8569 return 0;
8570 }
8571
8572 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8573 {
8574 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8575 &cpu_rq(cpu)->leaf_cfs_rq_list);
8576 }
8577
8578 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8579 {
8580 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8581 }
8582 #else /* !CONFG_FAIR_GROUP_SCHED */
8583 static inline void free_fair_sched_group(struct task_group *tg)
8584 {
8585 }
8586
8587 static inline
8588 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8589 {
8590 return 1;
8591 }
8592
8593 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8594 {
8595 }
8596
8597 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8598 {
8599 }
8600 #endif /* CONFIG_FAIR_GROUP_SCHED */
8601
8602 #ifdef CONFIG_RT_GROUP_SCHED
8603 static void free_rt_sched_group(struct task_group *tg)
8604 {
8605 int i;
8606
8607 destroy_rt_bandwidth(&tg->rt_bandwidth);
8608
8609 for_each_possible_cpu(i) {
8610 if (tg->rt_rq)
8611 kfree(tg->rt_rq[i]);
8612 if (tg->rt_se)
8613 kfree(tg->rt_se[i]);
8614 }
8615
8616 kfree(tg->rt_rq);
8617 kfree(tg->rt_se);
8618 }
8619
8620 static
8621 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8622 {
8623 struct rt_rq *rt_rq;
8624 struct sched_rt_entity *rt_se;
8625 struct rq *rq;
8626 int i;
8627
8628 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8629 if (!tg->rt_rq)
8630 goto err;
8631 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8632 if (!tg->rt_se)
8633 goto err;
8634
8635 init_rt_bandwidth(&tg->rt_bandwidth,
8636 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8637
8638 for_each_possible_cpu(i) {
8639 rq = cpu_rq(i);
8640
8641 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8642 GFP_KERNEL, cpu_to_node(i));
8643 if (!rt_rq)
8644 goto err;
8645
8646 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8647 GFP_KERNEL, cpu_to_node(i));
8648 if (!rt_se)
8649 goto err;
8650
8651 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8652 }
8653
8654 return 1;
8655
8656 err:
8657 return 0;
8658 }
8659
8660 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8661 {
8662 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8663 &cpu_rq(cpu)->leaf_rt_rq_list);
8664 }
8665
8666 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8667 {
8668 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8669 }
8670 #else /* !CONFIG_RT_GROUP_SCHED */
8671 static inline void free_rt_sched_group(struct task_group *tg)
8672 {
8673 }
8674
8675 static inline
8676 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8677 {
8678 return 1;
8679 }
8680
8681 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8682 {
8683 }
8684
8685 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8686 {
8687 }
8688 #endif /* CONFIG_RT_GROUP_SCHED */
8689
8690 #ifdef CONFIG_GROUP_SCHED
8691 static void free_sched_group(struct task_group *tg)
8692 {
8693 free_fair_sched_group(tg);
8694 free_rt_sched_group(tg);
8695 kfree(tg);
8696 }
8697
8698 /* allocate runqueue etc for a new task group */
8699 struct task_group *sched_create_group(struct task_group *parent)
8700 {
8701 struct task_group *tg;
8702 unsigned long flags;
8703 int i;
8704
8705 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8706 if (!tg)
8707 return ERR_PTR(-ENOMEM);
8708
8709 if (!alloc_fair_sched_group(tg, parent))
8710 goto err;
8711
8712 if (!alloc_rt_sched_group(tg, parent))
8713 goto err;
8714
8715 spin_lock_irqsave(&task_group_lock, flags);
8716 for_each_possible_cpu(i) {
8717 register_fair_sched_group(tg, i);
8718 register_rt_sched_group(tg, i);
8719 }
8720 list_add_rcu(&tg->list, &task_groups);
8721
8722 WARN_ON(!parent); /* root should already exist */
8723
8724 tg->parent = parent;
8725 INIT_LIST_HEAD(&tg->children);
8726 list_add_rcu(&tg->siblings, &parent->children);
8727 spin_unlock_irqrestore(&task_group_lock, flags);
8728
8729 return tg;
8730
8731 err:
8732 free_sched_group(tg);
8733 return ERR_PTR(-ENOMEM);
8734 }
8735
8736 /* rcu callback to free various structures associated with a task group */
8737 static void free_sched_group_rcu(struct rcu_head *rhp)
8738 {
8739 /* now it should be safe to free those cfs_rqs */
8740 free_sched_group(container_of(rhp, struct task_group, rcu));
8741 }
8742
8743 /* Destroy runqueue etc associated with a task group */
8744 void sched_destroy_group(struct task_group *tg)
8745 {
8746 unsigned long flags;
8747 int i;
8748
8749 spin_lock_irqsave(&task_group_lock, flags);
8750 for_each_possible_cpu(i) {
8751 unregister_fair_sched_group(tg, i);
8752 unregister_rt_sched_group(tg, i);
8753 }
8754 list_del_rcu(&tg->list);
8755 list_del_rcu(&tg->siblings);
8756 spin_unlock_irqrestore(&task_group_lock, flags);
8757
8758 /* wait for possible concurrent references to cfs_rqs complete */
8759 call_rcu(&tg->rcu, free_sched_group_rcu);
8760 }
8761
8762 /* change task's runqueue when it moves between groups.
8763 * The caller of this function should have put the task in its new group
8764 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8765 * reflect its new group.
8766 */
8767 void sched_move_task(struct task_struct *tsk)
8768 {
8769 int on_rq, running;
8770 unsigned long flags;
8771 struct rq *rq;
8772
8773 rq = task_rq_lock(tsk, &flags);
8774
8775 update_rq_clock(rq);
8776
8777 running = task_current(rq, tsk);
8778 on_rq = tsk->se.on_rq;
8779
8780 if (on_rq)
8781 dequeue_task(rq, tsk, 0);
8782 if (unlikely(running))
8783 tsk->sched_class->put_prev_task(rq, tsk);
8784
8785 set_task_rq(tsk, task_cpu(tsk));
8786
8787 #ifdef CONFIG_FAIR_GROUP_SCHED
8788 if (tsk->sched_class->moved_group)
8789 tsk->sched_class->moved_group(tsk);
8790 #endif
8791
8792 if (unlikely(running))
8793 tsk->sched_class->set_curr_task(rq);
8794 if (on_rq)
8795 enqueue_task(rq, tsk, 0);
8796
8797 task_rq_unlock(rq, &flags);
8798 }
8799 #endif /* CONFIG_GROUP_SCHED */
8800
8801 #ifdef CONFIG_FAIR_GROUP_SCHED
8802 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8803 {
8804 struct cfs_rq *cfs_rq = se->cfs_rq;
8805 int on_rq;
8806
8807 on_rq = se->on_rq;
8808 if (on_rq)
8809 dequeue_entity(cfs_rq, se, 0);
8810
8811 se->load.weight = shares;
8812 se->load.inv_weight = 0;
8813
8814 if (on_rq)
8815 enqueue_entity(cfs_rq, se, 0);
8816 }
8817
8818 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8819 {
8820 struct cfs_rq *cfs_rq = se->cfs_rq;
8821 struct rq *rq = cfs_rq->rq;
8822 unsigned long flags;
8823
8824 spin_lock_irqsave(&rq->lock, flags);
8825 __set_se_shares(se, shares);
8826 spin_unlock_irqrestore(&rq->lock, flags);
8827 }
8828
8829 static DEFINE_MUTEX(shares_mutex);
8830
8831 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8832 {
8833 int i;
8834 unsigned long flags;
8835
8836 /*
8837 * We can't change the weight of the root cgroup.
8838 */
8839 if (!tg->se[0])
8840 return -EINVAL;
8841
8842 if (shares < MIN_SHARES)
8843 shares = MIN_SHARES;
8844 else if (shares > MAX_SHARES)
8845 shares = MAX_SHARES;
8846
8847 mutex_lock(&shares_mutex);
8848 if (tg->shares == shares)
8849 goto done;
8850
8851 spin_lock_irqsave(&task_group_lock, flags);
8852 for_each_possible_cpu(i)
8853 unregister_fair_sched_group(tg, i);
8854 list_del_rcu(&tg->siblings);
8855 spin_unlock_irqrestore(&task_group_lock, flags);
8856
8857 /* wait for any ongoing reference to this group to finish */
8858 synchronize_sched();
8859
8860 /*
8861 * Now we are free to modify the group's share on each cpu
8862 * w/o tripping rebalance_share or load_balance_fair.
8863 */
8864 tg->shares = shares;
8865 for_each_possible_cpu(i) {
8866 /*
8867 * force a rebalance
8868 */
8869 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8870 set_se_shares(tg->se[i], shares);
8871 }
8872
8873 /*
8874 * Enable load balance activity on this group, by inserting it back on
8875 * each cpu's rq->leaf_cfs_rq_list.
8876 */
8877 spin_lock_irqsave(&task_group_lock, flags);
8878 for_each_possible_cpu(i)
8879 register_fair_sched_group(tg, i);
8880 list_add_rcu(&tg->siblings, &tg->parent->children);
8881 spin_unlock_irqrestore(&task_group_lock, flags);
8882 done:
8883 mutex_unlock(&shares_mutex);
8884 return 0;
8885 }
8886
8887 unsigned long sched_group_shares(struct task_group *tg)
8888 {
8889 return tg->shares;
8890 }
8891 #endif
8892
8893 #ifdef CONFIG_RT_GROUP_SCHED
8894 /*
8895 * Ensure that the real time constraints are schedulable.
8896 */
8897 static DEFINE_MUTEX(rt_constraints_mutex);
8898
8899 static unsigned long to_ratio(u64 period, u64 runtime)
8900 {
8901 if (runtime == RUNTIME_INF)
8902 return 1ULL << 20;
8903
8904 return div64_u64(runtime << 20, period);
8905 }
8906
8907 /* Must be called with tasklist_lock held */
8908 static inline int tg_has_rt_tasks(struct task_group *tg)
8909 {
8910 struct task_struct *g, *p;
8911
8912 do_each_thread(g, p) {
8913 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8914 return 1;
8915 } while_each_thread(g, p);
8916
8917 return 0;
8918 }
8919
8920 struct rt_schedulable_data {
8921 struct task_group *tg;
8922 u64 rt_period;
8923 u64 rt_runtime;
8924 };
8925
8926 static int tg_schedulable(struct task_group *tg, void *data)
8927 {
8928 struct rt_schedulable_data *d = data;
8929 struct task_group *child;
8930 unsigned long total, sum = 0;
8931 u64 period, runtime;
8932
8933 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8934 runtime = tg->rt_bandwidth.rt_runtime;
8935
8936 if (tg == d->tg) {
8937 period = d->rt_period;
8938 runtime = d->rt_runtime;
8939 }
8940
8941 /*
8942 * Cannot have more runtime than the period.
8943 */
8944 if (runtime > period && runtime != RUNTIME_INF)
8945 return -EINVAL;
8946
8947 /*
8948 * Ensure we don't starve existing RT tasks.
8949 */
8950 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8951 return -EBUSY;
8952
8953 total = to_ratio(period, runtime);
8954
8955 /*
8956 * Nobody can have more than the global setting allows.
8957 */
8958 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8959 return -EINVAL;
8960
8961 /*
8962 * The sum of our children's runtime should not exceed our own.
8963 */
8964 list_for_each_entry_rcu(child, &tg->children, siblings) {
8965 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8966 runtime = child->rt_bandwidth.rt_runtime;
8967
8968 if (child == d->tg) {
8969 period = d->rt_period;
8970 runtime = d->rt_runtime;
8971 }
8972
8973 sum += to_ratio(period, runtime);
8974 }
8975
8976 if (sum > total)
8977 return -EINVAL;
8978
8979 return 0;
8980 }
8981
8982 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8983 {
8984 struct rt_schedulable_data data = {
8985 .tg = tg,
8986 .rt_period = period,
8987 .rt_runtime = runtime,
8988 };
8989
8990 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8991 }
8992
8993 static int tg_set_bandwidth(struct task_group *tg,
8994 u64 rt_period, u64 rt_runtime)
8995 {
8996 int i, err = 0;
8997
8998 mutex_lock(&rt_constraints_mutex);
8999 read_lock(&tasklist_lock);
9000 err = __rt_schedulable(tg, rt_period, rt_runtime);
9001 if (err)
9002 goto unlock;
9003
9004 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9005 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9006 tg->rt_bandwidth.rt_runtime = rt_runtime;
9007
9008 for_each_possible_cpu(i) {
9009 struct rt_rq *rt_rq = tg->rt_rq[i];
9010
9011 spin_lock(&rt_rq->rt_runtime_lock);
9012 rt_rq->rt_runtime = rt_runtime;
9013 spin_unlock(&rt_rq->rt_runtime_lock);
9014 }
9015 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9016 unlock:
9017 read_unlock(&tasklist_lock);
9018 mutex_unlock(&rt_constraints_mutex);
9019
9020 return err;
9021 }
9022
9023 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9024 {
9025 u64 rt_runtime, rt_period;
9026
9027 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9028 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9029 if (rt_runtime_us < 0)
9030 rt_runtime = RUNTIME_INF;
9031
9032 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9033 }
9034
9035 long sched_group_rt_runtime(struct task_group *tg)
9036 {
9037 u64 rt_runtime_us;
9038
9039 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9040 return -1;
9041
9042 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9043 do_div(rt_runtime_us, NSEC_PER_USEC);
9044 return rt_runtime_us;
9045 }
9046
9047 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9048 {
9049 u64 rt_runtime, rt_period;
9050
9051 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9052 rt_runtime = tg->rt_bandwidth.rt_runtime;
9053
9054 if (rt_period == 0)
9055 return -EINVAL;
9056
9057 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9058 }
9059
9060 long sched_group_rt_period(struct task_group *tg)
9061 {
9062 u64 rt_period_us;
9063
9064 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9065 do_div(rt_period_us, NSEC_PER_USEC);
9066 return rt_period_us;
9067 }
9068
9069 static int sched_rt_global_constraints(void)
9070 {
9071 u64 runtime, period;
9072 int ret = 0;
9073
9074 if (sysctl_sched_rt_period <= 0)
9075 return -EINVAL;
9076
9077 runtime = global_rt_runtime();
9078 period = global_rt_period();
9079
9080 /*
9081 * Sanity check on the sysctl variables.
9082 */
9083 if (runtime > period && runtime != RUNTIME_INF)
9084 return -EINVAL;
9085
9086 mutex_lock(&rt_constraints_mutex);
9087 read_lock(&tasklist_lock);
9088 ret = __rt_schedulable(NULL, 0, 0);
9089 read_unlock(&tasklist_lock);
9090 mutex_unlock(&rt_constraints_mutex);
9091
9092 return ret;
9093 }
9094 #else /* !CONFIG_RT_GROUP_SCHED */
9095 static int sched_rt_global_constraints(void)
9096 {
9097 unsigned long flags;
9098 int i;
9099
9100 if (sysctl_sched_rt_period <= 0)
9101 return -EINVAL;
9102
9103 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9104 for_each_possible_cpu(i) {
9105 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9106
9107 spin_lock(&rt_rq->rt_runtime_lock);
9108 rt_rq->rt_runtime = global_rt_runtime();
9109 spin_unlock(&rt_rq->rt_runtime_lock);
9110 }
9111 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9112
9113 return 0;
9114 }
9115 #endif /* CONFIG_RT_GROUP_SCHED */
9116
9117 int sched_rt_handler(struct ctl_table *table, int write,
9118 struct file *filp, void __user *buffer, size_t *lenp,
9119 loff_t *ppos)
9120 {
9121 int ret;
9122 int old_period, old_runtime;
9123 static DEFINE_MUTEX(mutex);
9124
9125 mutex_lock(&mutex);
9126 old_period = sysctl_sched_rt_period;
9127 old_runtime = sysctl_sched_rt_runtime;
9128
9129 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9130
9131 if (!ret && write) {
9132 ret = sched_rt_global_constraints();
9133 if (ret) {
9134 sysctl_sched_rt_period = old_period;
9135 sysctl_sched_rt_runtime = old_runtime;
9136 } else {
9137 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9138 def_rt_bandwidth.rt_period =
9139 ns_to_ktime(global_rt_period());
9140 }
9141 }
9142 mutex_unlock(&mutex);
9143
9144 return ret;
9145 }
9146
9147 #ifdef CONFIG_CGROUP_SCHED
9148
9149 /* return corresponding task_group object of a cgroup */
9150 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9151 {
9152 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9153 struct task_group, css);
9154 }
9155
9156 static struct cgroup_subsys_state *
9157 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9158 {
9159 struct task_group *tg, *parent;
9160
9161 if (!cgrp->parent) {
9162 /* This is early initialization for the top cgroup */
9163 return &init_task_group.css;
9164 }
9165
9166 parent = cgroup_tg(cgrp->parent);
9167 tg = sched_create_group(parent);
9168 if (IS_ERR(tg))
9169 return ERR_PTR(-ENOMEM);
9170
9171 return &tg->css;
9172 }
9173
9174 static void
9175 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9176 {
9177 struct task_group *tg = cgroup_tg(cgrp);
9178
9179 sched_destroy_group(tg);
9180 }
9181
9182 static int
9183 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9184 struct task_struct *tsk)
9185 {
9186 #ifdef CONFIG_RT_GROUP_SCHED
9187 /* Don't accept realtime tasks when there is no way for them to run */
9188 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9189 return -EINVAL;
9190 #else
9191 /* We don't support RT-tasks being in separate groups */
9192 if (tsk->sched_class != &fair_sched_class)
9193 return -EINVAL;
9194 #endif
9195
9196 return 0;
9197 }
9198
9199 static void
9200 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9201 struct cgroup *old_cont, struct task_struct *tsk)
9202 {
9203 sched_move_task(tsk);
9204 }
9205
9206 #ifdef CONFIG_FAIR_GROUP_SCHED
9207 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9208 u64 shareval)
9209 {
9210 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9211 }
9212
9213 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9214 {
9215 struct task_group *tg = cgroup_tg(cgrp);
9216
9217 return (u64) tg->shares;
9218 }
9219 #endif /* CONFIG_FAIR_GROUP_SCHED */
9220
9221 #ifdef CONFIG_RT_GROUP_SCHED
9222 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9223 s64 val)
9224 {
9225 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9226 }
9227
9228 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9229 {
9230 return sched_group_rt_runtime(cgroup_tg(cgrp));
9231 }
9232
9233 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9234 u64 rt_period_us)
9235 {
9236 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9237 }
9238
9239 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9240 {
9241 return sched_group_rt_period(cgroup_tg(cgrp));
9242 }
9243 #endif /* CONFIG_RT_GROUP_SCHED */
9244
9245 static struct cftype cpu_files[] = {
9246 #ifdef CONFIG_FAIR_GROUP_SCHED
9247 {
9248 .name = "shares",
9249 .read_u64 = cpu_shares_read_u64,
9250 .write_u64 = cpu_shares_write_u64,
9251 },
9252 #endif
9253 #ifdef CONFIG_RT_GROUP_SCHED
9254 {
9255 .name = "rt_runtime_us",
9256 .read_s64 = cpu_rt_runtime_read,
9257 .write_s64 = cpu_rt_runtime_write,
9258 },
9259 {
9260 .name = "rt_period_us",
9261 .read_u64 = cpu_rt_period_read_uint,
9262 .write_u64 = cpu_rt_period_write_uint,
9263 },
9264 #endif
9265 };
9266
9267 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9268 {
9269 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9270 }
9271
9272 struct cgroup_subsys cpu_cgroup_subsys = {
9273 .name = "cpu",
9274 .create = cpu_cgroup_create,
9275 .destroy = cpu_cgroup_destroy,
9276 .can_attach = cpu_cgroup_can_attach,
9277 .attach = cpu_cgroup_attach,
9278 .populate = cpu_cgroup_populate,
9279 .subsys_id = cpu_cgroup_subsys_id,
9280 .early_init = 1,
9281 };
9282
9283 #endif /* CONFIG_CGROUP_SCHED */
9284
9285 #ifdef CONFIG_CGROUP_CPUACCT
9286
9287 /*
9288 * CPU accounting code for task groups.
9289 *
9290 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9291 * (balbir@in.ibm.com).
9292 */
9293
9294 /* track cpu usage of a group of tasks and its child groups */
9295 struct cpuacct {
9296 struct cgroup_subsys_state css;
9297 /* cpuusage holds pointer to a u64-type object on every cpu */
9298 u64 *cpuusage;
9299 struct cpuacct *parent;
9300 };
9301
9302 struct cgroup_subsys cpuacct_subsys;
9303
9304 /* return cpu accounting group corresponding to this container */
9305 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9306 {
9307 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9308 struct cpuacct, css);
9309 }
9310
9311 /* return cpu accounting group to which this task belongs */
9312 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9313 {
9314 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9315 struct cpuacct, css);
9316 }
9317
9318 /* create a new cpu accounting group */
9319 static struct cgroup_subsys_state *cpuacct_create(
9320 struct cgroup_subsys *ss, struct cgroup *cgrp)
9321 {
9322 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9323
9324 if (!ca)
9325 return ERR_PTR(-ENOMEM);
9326
9327 ca->cpuusage = alloc_percpu(u64);
9328 if (!ca->cpuusage) {
9329 kfree(ca);
9330 return ERR_PTR(-ENOMEM);
9331 }
9332
9333 if (cgrp->parent)
9334 ca->parent = cgroup_ca(cgrp->parent);
9335
9336 return &ca->css;
9337 }
9338
9339 /* destroy an existing cpu accounting group */
9340 static void
9341 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9342 {
9343 struct cpuacct *ca = cgroup_ca(cgrp);
9344
9345 free_percpu(ca->cpuusage);
9346 kfree(ca);
9347 }
9348
9349 /* return total cpu usage (in nanoseconds) of a group */
9350 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9351 {
9352 struct cpuacct *ca = cgroup_ca(cgrp);
9353 u64 totalcpuusage = 0;
9354 int i;
9355
9356 for_each_possible_cpu(i) {
9357 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9358
9359 /*
9360 * Take rq->lock to make 64-bit addition safe on 32-bit
9361 * platforms.
9362 */
9363 spin_lock_irq(&cpu_rq(i)->lock);
9364 totalcpuusage += *cpuusage;
9365 spin_unlock_irq(&cpu_rq(i)->lock);
9366 }
9367
9368 return totalcpuusage;
9369 }
9370
9371 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9372 u64 reset)
9373 {
9374 struct cpuacct *ca = cgroup_ca(cgrp);
9375 int err = 0;
9376 int i;
9377
9378 if (reset) {
9379 err = -EINVAL;
9380 goto out;
9381 }
9382
9383 for_each_possible_cpu(i) {
9384 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9385
9386 spin_lock_irq(&cpu_rq(i)->lock);
9387 *cpuusage = 0;
9388 spin_unlock_irq(&cpu_rq(i)->lock);
9389 }
9390 out:
9391 return err;
9392 }
9393
9394 static struct cftype files[] = {
9395 {
9396 .name = "usage",
9397 .read_u64 = cpuusage_read,
9398 .write_u64 = cpuusage_write,
9399 },
9400 };
9401
9402 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9403 {
9404 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9405 }
9406
9407 /*
9408 * charge this task's execution time to its accounting group.
9409 *
9410 * called with rq->lock held.
9411 */
9412 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9413 {
9414 struct cpuacct *ca;
9415 int cpu;
9416
9417 if (!cpuacct_subsys.active)
9418 return;
9419
9420 cpu = task_cpu(tsk);
9421 ca = task_ca(tsk);
9422
9423 for (; ca; ca = ca->parent) {
9424 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9425 *cpuusage += cputime;
9426 }
9427 }
9428
9429 struct cgroup_subsys cpuacct_subsys = {
9430 .name = "cpuacct",
9431 .create = cpuacct_create,
9432 .destroy = cpuacct_destroy,
9433 .populate = cpuacct_populate,
9434 .subsys_id = cpuacct_subsys_id,
9435 };
9436 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.231018 seconds and 5 git commands to generate.