sched: group scheduler, set uid share fix
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/kthread.h>
56 #include <linux/seq_file.h>
57 #include <linux/sysctl.h>
58 #include <linux/syscalls.h>
59 #include <linux/times.h>
60 #include <linux/tsacct_kern.h>
61 #include <linux/kprobes.h>
62 #include <linux/delayacct.h>
63 #include <linux/reciprocal_div.h>
64 #include <linux/unistd.h>
65 #include <linux/pagemap.h>
66
67 #include <asm/tlb.h>
68 #include <asm/irq_regs.h>
69
70 /*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75 unsigned long long __attribute__((weak)) sched_clock(void)
76 {
77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78 }
79
80 /*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89 /*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98 /*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
103
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
107 /*
108 * These are the 'tuning knobs' of the scheduler:
109 *
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
112 */
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 #ifdef CONFIG_SMP
116 /*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 {
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123 }
124
125 /*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 {
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 }
134 #endif
135
136 static inline int rt_policy(int policy)
137 {
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141 }
142
143 static inline int task_has_rt_policy(struct task_struct *p)
144 {
145 return rt_policy(p->policy);
146 }
147
148 /*
149 * This is the priority-queue data structure of the RT scheduling class:
150 */
151 struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154 };
155
156 #ifdef CONFIG_FAIR_GROUP_SCHED
157
158 #include <linux/cgroup.h>
159
160 struct cfs_rq;
161
162 /* task group related information */
163 struct task_group {
164 #ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166 #endif
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
171 unsigned long shares;
172 /* spinlock to serialize modification to shares */
173 spinlock_t lock;
174 struct rcu_head rcu;
175 };
176
177 /* Default task group's sched entity on each cpu */
178 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
179 /* Default task group's cfs_rq on each cpu */
180 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
181
182 static struct sched_entity *init_sched_entity_p[NR_CPUS];
183 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
184
185 /* Default task group.
186 * Every task in system belong to this group at bootup.
187 */
188 struct task_group init_task_group = {
189 .se = init_sched_entity_p,
190 .cfs_rq = init_cfs_rq_p,
191 };
192
193 #ifdef CONFIG_FAIR_USER_SCHED
194 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
195 #else
196 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
197 #endif
198
199 static int init_task_group_load = INIT_TASK_GRP_LOAD;
200
201 /* return group to which a task belongs */
202 static inline struct task_group *task_group(struct task_struct *p)
203 {
204 struct task_group *tg;
205
206 #ifdef CONFIG_FAIR_USER_SCHED
207 tg = p->user->tg;
208 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
209 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
210 struct task_group, css);
211 #else
212 tg = &init_task_group;
213 #endif
214 return tg;
215 }
216
217 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
218 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
219 {
220 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
221 p->se.parent = task_group(p)->se[cpu];
222 }
223
224 #else
225
226 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
227
228 #endif /* CONFIG_FAIR_GROUP_SCHED */
229
230 /* CFS-related fields in a runqueue */
231 struct cfs_rq {
232 struct load_weight load;
233 unsigned long nr_running;
234
235 u64 exec_clock;
236 u64 min_vruntime;
237
238 struct rb_root tasks_timeline;
239 struct rb_node *rb_leftmost;
240 struct rb_node *rb_load_balance_curr;
241 /* 'curr' points to currently running entity on this cfs_rq.
242 * It is set to NULL otherwise (i.e when none are currently running).
243 */
244 struct sched_entity *curr;
245
246 unsigned long nr_spread_over;
247
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
250
251 /*
252 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
253 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
254 * (like users, containers etc.)
255 *
256 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
257 * list is used during load balance.
258 */
259 struct list_head leaf_cfs_rq_list;
260 struct task_group *tg; /* group that "owns" this runqueue */
261 #endif
262 };
263
264 /* Real-Time classes' related field in a runqueue: */
265 struct rt_rq {
266 struct rt_prio_array active;
267 int rt_load_balance_idx;
268 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
269 };
270
271 /*
272 * This is the main, per-CPU runqueue data structure.
273 *
274 * Locking rule: those places that want to lock multiple runqueues
275 * (such as the load balancing or the thread migration code), lock
276 * acquire operations must be ordered by ascending &runqueue.
277 */
278 struct rq {
279 /* runqueue lock: */
280 spinlock_t lock;
281
282 /*
283 * nr_running and cpu_load should be in the same cacheline because
284 * remote CPUs use both these fields when doing load calculation.
285 */
286 unsigned long nr_running;
287 #define CPU_LOAD_IDX_MAX 5
288 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
289 unsigned char idle_at_tick;
290 #ifdef CONFIG_NO_HZ
291 unsigned char in_nohz_recently;
292 #endif
293 /* capture load from *all* tasks on this cpu: */
294 struct load_weight load;
295 unsigned long nr_load_updates;
296 u64 nr_switches;
297
298 struct cfs_rq cfs;
299 #ifdef CONFIG_FAIR_GROUP_SCHED
300 /* list of leaf cfs_rq on this cpu: */
301 struct list_head leaf_cfs_rq_list;
302 #endif
303 struct rt_rq rt;
304
305 /*
306 * This is part of a global counter where only the total sum
307 * over all CPUs matters. A task can increase this counter on
308 * one CPU and if it got migrated afterwards it may decrease
309 * it on another CPU. Always updated under the runqueue lock:
310 */
311 unsigned long nr_uninterruptible;
312
313 struct task_struct *curr, *idle;
314 unsigned long next_balance;
315 struct mm_struct *prev_mm;
316
317 u64 clock, prev_clock_raw;
318 s64 clock_max_delta;
319
320 unsigned int clock_warps, clock_overflows;
321 u64 idle_clock;
322 unsigned int clock_deep_idle_events;
323 u64 tick_timestamp;
324
325 atomic_t nr_iowait;
326
327 #ifdef CONFIG_SMP
328 struct sched_domain *sd;
329
330 /* For active balancing */
331 int active_balance;
332 int push_cpu;
333 /* cpu of this runqueue: */
334 int cpu;
335
336 struct task_struct *migration_thread;
337 struct list_head migration_queue;
338 #endif
339
340 #ifdef CONFIG_SCHEDSTATS
341 /* latency stats */
342 struct sched_info rq_sched_info;
343
344 /* sys_sched_yield() stats */
345 unsigned int yld_exp_empty;
346 unsigned int yld_act_empty;
347 unsigned int yld_both_empty;
348 unsigned int yld_count;
349
350 /* schedule() stats */
351 unsigned int sched_switch;
352 unsigned int sched_count;
353 unsigned int sched_goidle;
354
355 /* try_to_wake_up() stats */
356 unsigned int ttwu_count;
357 unsigned int ttwu_local;
358
359 /* BKL stats */
360 unsigned int bkl_count;
361 #endif
362 struct lock_class_key rq_lock_key;
363 };
364
365 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
366 static DEFINE_MUTEX(sched_hotcpu_mutex);
367
368 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
369 {
370 rq->curr->sched_class->check_preempt_curr(rq, p);
371 }
372
373 static inline int cpu_of(struct rq *rq)
374 {
375 #ifdef CONFIG_SMP
376 return rq->cpu;
377 #else
378 return 0;
379 #endif
380 }
381
382 /*
383 * Update the per-runqueue clock, as finegrained as the platform can give
384 * us, but without assuming monotonicity, etc.:
385 */
386 static void __update_rq_clock(struct rq *rq)
387 {
388 u64 prev_raw = rq->prev_clock_raw;
389 u64 now = sched_clock();
390 s64 delta = now - prev_raw;
391 u64 clock = rq->clock;
392
393 #ifdef CONFIG_SCHED_DEBUG
394 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
395 #endif
396 /*
397 * Protect against sched_clock() occasionally going backwards:
398 */
399 if (unlikely(delta < 0)) {
400 clock++;
401 rq->clock_warps++;
402 } else {
403 /*
404 * Catch too large forward jumps too:
405 */
406 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
407 if (clock < rq->tick_timestamp + TICK_NSEC)
408 clock = rq->tick_timestamp + TICK_NSEC;
409 else
410 clock++;
411 rq->clock_overflows++;
412 } else {
413 if (unlikely(delta > rq->clock_max_delta))
414 rq->clock_max_delta = delta;
415 clock += delta;
416 }
417 }
418
419 rq->prev_clock_raw = now;
420 rq->clock = clock;
421 }
422
423 static void update_rq_clock(struct rq *rq)
424 {
425 if (likely(smp_processor_id() == cpu_of(rq)))
426 __update_rq_clock(rq);
427 }
428
429 /*
430 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431 * See detach_destroy_domains: synchronize_sched for details.
432 *
433 * The domain tree of any CPU may only be accessed from within
434 * preempt-disabled sections.
435 */
436 #define for_each_domain(cpu, __sd) \
437 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
438
439 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
440 #define this_rq() (&__get_cpu_var(runqueues))
441 #define task_rq(p) cpu_rq(task_cpu(p))
442 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
443
444 /*
445 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
446 */
447 #ifdef CONFIG_SCHED_DEBUG
448 # define const_debug __read_mostly
449 #else
450 # define const_debug static const
451 #endif
452
453 /*
454 * Debugging: various feature bits
455 */
456 enum {
457 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
458 SCHED_FEAT_WAKEUP_PREEMPT = 2,
459 SCHED_FEAT_START_DEBIT = 4,
460 SCHED_FEAT_TREE_AVG = 8,
461 SCHED_FEAT_APPROX_AVG = 16,
462 };
463
464 const_debug unsigned int sysctl_sched_features =
465 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
466 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
467 SCHED_FEAT_START_DEBIT * 1 |
468 SCHED_FEAT_TREE_AVG * 0 |
469 SCHED_FEAT_APPROX_AVG * 0;
470
471 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
472
473 /*
474 * Number of tasks to iterate in a single balance run.
475 * Limited because this is done with IRQs disabled.
476 */
477 const_debug unsigned int sysctl_sched_nr_migrate = 32;
478
479 /*
480 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
481 * clock constructed from sched_clock():
482 */
483 unsigned long long cpu_clock(int cpu)
484 {
485 unsigned long long now;
486 unsigned long flags;
487 struct rq *rq;
488
489 local_irq_save(flags);
490 rq = cpu_rq(cpu);
491 /*
492 * Only call sched_clock() if the scheduler has already been
493 * initialized (some code might call cpu_clock() very early):
494 */
495 if (rq->idle)
496 update_rq_clock(rq);
497 now = rq->clock;
498 local_irq_restore(flags);
499
500 return now;
501 }
502 EXPORT_SYMBOL_GPL(cpu_clock);
503
504 #ifndef prepare_arch_switch
505 # define prepare_arch_switch(next) do { } while (0)
506 #endif
507 #ifndef finish_arch_switch
508 # define finish_arch_switch(prev) do { } while (0)
509 #endif
510
511 static inline int task_current(struct rq *rq, struct task_struct *p)
512 {
513 return rq->curr == p;
514 }
515
516 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
517 static inline int task_running(struct rq *rq, struct task_struct *p)
518 {
519 return task_current(rq, p);
520 }
521
522 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
523 {
524 }
525
526 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
527 {
528 #ifdef CONFIG_DEBUG_SPINLOCK
529 /* this is a valid case when another task releases the spinlock */
530 rq->lock.owner = current;
531 #endif
532 /*
533 * If we are tracking spinlock dependencies then we have to
534 * fix up the runqueue lock - which gets 'carried over' from
535 * prev into current:
536 */
537 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
538
539 spin_unlock_irq(&rq->lock);
540 }
541
542 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
543 static inline int task_running(struct rq *rq, struct task_struct *p)
544 {
545 #ifdef CONFIG_SMP
546 return p->oncpu;
547 #else
548 return task_current(rq, p);
549 #endif
550 }
551
552 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
553 {
554 #ifdef CONFIG_SMP
555 /*
556 * We can optimise this out completely for !SMP, because the
557 * SMP rebalancing from interrupt is the only thing that cares
558 * here.
559 */
560 next->oncpu = 1;
561 #endif
562 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
563 spin_unlock_irq(&rq->lock);
564 #else
565 spin_unlock(&rq->lock);
566 #endif
567 }
568
569 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
570 {
571 #ifdef CONFIG_SMP
572 /*
573 * After ->oncpu is cleared, the task can be moved to a different CPU.
574 * We must ensure this doesn't happen until the switch is completely
575 * finished.
576 */
577 smp_wmb();
578 prev->oncpu = 0;
579 #endif
580 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
581 local_irq_enable();
582 #endif
583 }
584 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
585
586 /*
587 * __task_rq_lock - lock the runqueue a given task resides on.
588 * Must be called interrupts disabled.
589 */
590 static inline struct rq *__task_rq_lock(struct task_struct *p)
591 __acquires(rq->lock)
592 {
593 for (;;) {
594 struct rq *rq = task_rq(p);
595 spin_lock(&rq->lock);
596 if (likely(rq == task_rq(p)))
597 return rq;
598 spin_unlock(&rq->lock);
599 }
600 }
601
602 /*
603 * task_rq_lock - lock the runqueue a given task resides on and disable
604 * interrupts. Note the ordering: we can safely lookup the task_rq without
605 * explicitly disabling preemption.
606 */
607 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
608 __acquires(rq->lock)
609 {
610 struct rq *rq;
611
612 for (;;) {
613 local_irq_save(*flags);
614 rq = task_rq(p);
615 spin_lock(&rq->lock);
616 if (likely(rq == task_rq(p)))
617 return rq;
618 spin_unlock_irqrestore(&rq->lock, *flags);
619 }
620 }
621
622 static void __task_rq_unlock(struct rq *rq)
623 __releases(rq->lock)
624 {
625 spin_unlock(&rq->lock);
626 }
627
628 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
629 __releases(rq->lock)
630 {
631 spin_unlock_irqrestore(&rq->lock, *flags);
632 }
633
634 /*
635 * this_rq_lock - lock this runqueue and disable interrupts.
636 */
637 static struct rq *this_rq_lock(void)
638 __acquires(rq->lock)
639 {
640 struct rq *rq;
641
642 local_irq_disable();
643 rq = this_rq();
644 spin_lock(&rq->lock);
645
646 return rq;
647 }
648
649 /*
650 * We are going deep-idle (irqs are disabled):
651 */
652 void sched_clock_idle_sleep_event(void)
653 {
654 struct rq *rq = cpu_rq(smp_processor_id());
655
656 spin_lock(&rq->lock);
657 __update_rq_clock(rq);
658 spin_unlock(&rq->lock);
659 rq->clock_deep_idle_events++;
660 }
661 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
662
663 /*
664 * We just idled delta nanoseconds (called with irqs disabled):
665 */
666 void sched_clock_idle_wakeup_event(u64 delta_ns)
667 {
668 struct rq *rq = cpu_rq(smp_processor_id());
669 u64 now = sched_clock();
670
671 touch_softlockup_watchdog();
672 rq->idle_clock += delta_ns;
673 /*
674 * Override the previous timestamp and ignore all
675 * sched_clock() deltas that occured while we idled,
676 * and use the PM-provided delta_ns to advance the
677 * rq clock:
678 */
679 spin_lock(&rq->lock);
680 rq->prev_clock_raw = now;
681 rq->clock += delta_ns;
682 spin_unlock(&rq->lock);
683 }
684 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
685
686 /*
687 * resched_task - mark a task 'to be rescheduled now'.
688 *
689 * On UP this means the setting of the need_resched flag, on SMP it
690 * might also involve a cross-CPU call to trigger the scheduler on
691 * the target CPU.
692 */
693 #ifdef CONFIG_SMP
694
695 #ifndef tsk_is_polling
696 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
697 #endif
698
699 static void resched_task(struct task_struct *p)
700 {
701 int cpu;
702
703 assert_spin_locked(&task_rq(p)->lock);
704
705 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
706 return;
707
708 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
709
710 cpu = task_cpu(p);
711 if (cpu == smp_processor_id())
712 return;
713
714 /* NEED_RESCHED must be visible before we test polling */
715 smp_mb();
716 if (!tsk_is_polling(p))
717 smp_send_reschedule(cpu);
718 }
719
720 static void resched_cpu(int cpu)
721 {
722 struct rq *rq = cpu_rq(cpu);
723 unsigned long flags;
724
725 if (!spin_trylock_irqsave(&rq->lock, flags))
726 return;
727 resched_task(cpu_curr(cpu));
728 spin_unlock_irqrestore(&rq->lock, flags);
729 }
730 #else
731 static inline void resched_task(struct task_struct *p)
732 {
733 assert_spin_locked(&task_rq(p)->lock);
734 set_tsk_need_resched(p);
735 }
736 #endif
737
738 #if BITS_PER_LONG == 32
739 # define WMULT_CONST (~0UL)
740 #else
741 # define WMULT_CONST (1UL << 32)
742 #endif
743
744 #define WMULT_SHIFT 32
745
746 /*
747 * Shift right and round:
748 */
749 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
750
751 static unsigned long
752 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
753 struct load_weight *lw)
754 {
755 u64 tmp;
756
757 if (unlikely(!lw->inv_weight))
758 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
759
760 tmp = (u64)delta_exec * weight;
761 /*
762 * Check whether we'd overflow the 64-bit multiplication:
763 */
764 if (unlikely(tmp > WMULT_CONST))
765 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
766 WMULT_SHIFT/2);
767 else
768 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
769
770 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
771 }
772
773 static inline unsigned long
774 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
775 {
776 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
777 }
778
779 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
780 {
781 lw->weight += inc;
782 }
783
784 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
785 {
786 lw->weight -= dec;
787 }
788
789 /*
790 * To aid in avoiding the subversion of "niceness" due to uneven distribution
791 * of tasks with abnormal "nice" values across CPUs the contribution that
792 * each task makes to its run queue's load is weighted according to its
793 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
794 * scaled version of the new time slice allocation that they receive on time
795 * slice expiry etc.
796 */
797
798 #define WEIGHT_IDLEPRIO 2
799 #define WMULT_IDLEPRIO (1 << 31)
800
801 /*
802 * Nice levels are multiplicative, with a gentle 10% change for every
803 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
804 * nice 1, it will get ~10% less CPU time than another CPU-bound task
805 * that remained on nice 0.
806 *
807 * The "10% effect" is relative and cumulative: from _any_ nice level,
808 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
809 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
810 * If a task goes up by ~10% and another task goes down by ~10% then
811 * the relative distance between them is ~25%.)
812 */
813 static const int prio_to_weight[40] = {
814 /* -20 */ 88761, 71755, 56483, 46273, 36291,
815 /* -15 */ 29154, 23254, 18705, 14949, 11916,
816 /* -10 */ 9548, 7620, 6100, 4904, 3906,
817 /* -5 */ 3121, 2501, 1991, 1586, 1277,
818 /* 0 */ 1024, 820, 655, 526, 423,
819 /* 5 */ 335, 272, 215, 172, 137,
820 /* 10 */ 110, 87, 70, 56, 45,
821 /* 15 */ 36, 29, 23, 18, 15,
822 };
823
824 /*
825 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
826 *
827 * In cases where the weight does not change often, we can use the
828 * precalculated inverse to speed up arithmetics by turning divisions
829 * into multiplications:
830 */
831 static const u32 prio_to_wmult[40] = {
832 /* -20 */ 48388, 59856, 76040, 92818, 118348,
833 /* -15 */ 147320, 184698, 229616, 287308, 360437,
834 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
835 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
836 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
837 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
838 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
839 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
840 };
841
842 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
843
844 /*
845 * runqueue iterator, to support SMP load-balancing between different
846 * scheduling classes, without having to expose their internal data
847 * structures to the load-balancing proper:
848 */
849 struct rq_iterator {
850 void *arg;
851 struct task_struct *(*start)(void *);
852 struct task_struct *(*next)(void *);
853 };
854
855 #ifdef CONFIG_SMP
856 static unsigned long
857 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
858 unsigned long max_load_move, struct sched_domain *sd,
859 enum cpu_idle_type idle, int *all_pinned,
860 int *this_best_prio, struct rq_iterator *iterator);
861
862 static int
863 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
864 struct sched_domain *sd, enum cpu_idle_type idle,
865 struct rq_iterator *iterator);
866 #endif
867
868 #ifdef CONFIG_CGROUP_CPUACCT
869 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
870 #else
871 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
872 #endif
873
874 #include "sched_stats.h"
875 #include "sched_idletask.c"
876 #include "sched_fair.c"
877 #include "sched_rt.c"
878 #ifdef CONFIG_SCHED_DEBUG
879 # include "sched_debug.c"
880 #endif
881
882 #define sched_class_highest (&rt_sched_class)
883
884 /*
885 * Update delta_exec, delta_fair fields for rq.
886 *
887 * delta_fair clock advances at a rate inversely proportional to
888 * total load (rq->load.weight) on the runqueue, while
889 * delta_exec advances at the same rate as wall-clock (provided
890 * cpu is not idle).
891 *
892 * delta_exec / delta_fair is a measure of the (smoothened) load on this
893 * runqueue over any given interval. This (smoothened) load is used
894 * during load balance.
895 *
896 * This function is called /before/ updating rq->load
897 * and when switching tasks.
898 */
899 static inline void inc_load(struct rq *rq, const struct task_struct *p)
900 {
901 update_load_add(&rq->load, p->se.load.weight);
902 }
903
904 static inline void dec_load(struct rq *rq, const struct task_struct *p)
905 {
906 update_load_sub(&rq->load, p->se.load.weight);
907 }
908
909 static void inc_nr_running(struct task_struct *p, struct rq *rq)
910 {
911 rq->nr_running++;
912 inc_load(rq, p);
913 }
914
915 static void dec_nr_running(struct task_struct *p, struct rq *rq)
916 {
917 rq->nr_running--;
918 dec_load(rq, p);
919 }
920
921 static void set_load_weight(struct task_struct *p)
922 {
923 if (task_has_rt_policy(p)) {
924 p->se.load.weight = prio_to_weight[0] * 2;
925 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
926 return;
927 }
928
929 /*
930 * SCHED_IDLE tasks get minimal weight:
931 */
932 if (p->policy == SCHED_IDLE) {
933 p->se.load.weight = WEIGHT_IDLEPRIO;
934 p->se.load.inv_weight = WMULT_IDLEPRIO;
935 return;
936 }
937
938 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
939 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
940 }
941
942 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
943 {
944 sched_info_queued(p);
945 p->sched_class->enqueue_task(rq, p, wakeup);
946 p->se.on_rq = 1;
947 }
948
949 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
950 {
951 p->sched_class->dequeue_task(rq, p, sleep);
952 p->se.on_rq = 0;
953 }
954
955 /*
956 * __normal_prio - return the priority that is based on the static prio
957 */
958 static inline int __normal_prio(struct task_struct *p)
959 {
960 return p->static_prio;
961 }
962
963 /*
964 * Calculate the expected normal priority: i.e. priority
965 * without taking RT-inheritance into account. Might be
966 * boosted by interactivity modifiers. Changes upon fork,
967 * setprio syscalls, and whenever the interactivity
968 * estimator recalculates.
969 */
970 static inline int normal_prio(struct task_struct *p)
971 {
972 int prio;
973
974 if (task_has_rt_policy(p))
975 prio = MAX_RT_PRIO-1 - p->rt_priority;
976 else
977 prio = __normal_prio(p);
978 return prio;
979 }
980
981 /*
982 * Calculate the current priority, i.e. the priority
983 * taken into account by the scheduler. This value might
984 * be boosted by RT tasks, or might be boosted by
985 * interactivity modifiers. Will be RT if the task got
986 * RT-boosted. If not then it returns p->normal_prio.
987 */
988 static int effective_prio(struct task_struct *p)
989 {
990 p->normal_prio = normal_prio(p);
991 /*
992 * If we are RT tasks or we were boosted to RT priority,
993 * keep the priority unchanged. Otherwise, update priority
994 * to the normal priority:
995 */
996 if (!rt_prio(p->prio))
997 return p->normal_prio;
998 return p->prio;
999 }
1000
1001 /*
1002 * activate_task - move a task to the runqueue.
1003 */
1004 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1005 {
1006 if (p->state == TASK_UNINTERRUPTIBLE)
1007 rq->nr_uninterruptible--;
1008
1009 enqueue_task(rq, p, wakeup);
1010 inc_nr_running(p, rq);
1011 }
1012
1013 /*
1014 * deactivate_task - remove a task from the runqueue.
1015 */
1016 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1017 {
1018 if (p->state == TASK_UNINTERRUPTIBLE)
1019 rq->nr_uninterruptible++;
1020
1021 dequeue_task(rq, p, sleep);
1022 dec_nr_running(p, rq);
1023 }
1024
1025 /**
1026 * task_curr - is this task currently executing on a CPU?
1027 * @p: the task in question.
1028 */
1029 inline int task_curr(const struct task_struct *p)
1030 {
1031 return cpu_curr(task_cpu(p)) == p;
1032 }
1033
1034 /* Used instead of source_load when we know the type == 0 */
1035 unsigned long weighted_cpuload(const int cpu)
1036 {
1037 return cpu_rq(cpu)->load.weight;
1038 }
1039
1040 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1041 {
1042 set_task_cfs_rq(p, cpu);
1043 #ifdef CONFIG_SMP
1044 /*
1045 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1046 * successfuly executed on another CPU. We must ensure that updates of
1047 * per-task data have been completed by this moment.
1048 */
1049 smp_wmb();
1050 task_thread_info(p)->cpu = cpu;
1051 #endif
1052 }
1053
1054 #ifdef CONFIG_SMP
1055
1056 /*
1057 * Is this task likely cache-hot:
1058 */
1059 static inline int
1060 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1061 {
1062 s64 delta;
1063
1064 if (p->sched_class != &fair_sched_class)
1065 return 0;
1066
1067 if (sysctl_sched_migration_cost == -1)
1068 return 1;
1069 if (sysctl_sched_migration_cost == 0)
1070 return 0;
1071
1072 delta = now - p->se.exec_start;
1073
1074 return delta < (s64)sysctl_sched_migration_cost;
1075 }
1076
1077
1078 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1079 {
1080 int old_cpu = task_cpu(p);
1081 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1082 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1083 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1084 u64 clock_offset;
1085
1086 clock_offset = old_rq->clock - new_rq->clock;
1087
1088 #ifdef CONFIG_SCHEDSTATS
1089 if (p->se.wait_start)
1090 p->se.wait_start -= clock_offset;
1091 if (p->se.sleep_start)
1092 p->se.sleep_start -= clock_offset;
1093 if (p->se.block_start)
1094 p->se.block_start -= clock_offset;
1095 if (old_cpu != new_cpu) {
1096 schedstat_inc(p, se.nr_migrations);
1097 if (task_hot(p, old_rq->clock, NULL))
1098 schedstat_inc(p, se.nr_forced2_migrations);
1099 }
1100 #endif
1101 p->se.vruntime -= old_cfsrq->min_vruntime -
1102 new_cfsrq->min_vruntime;
1103
1104 __set_task_cpu(p, new_cpu);
1105 }
1106
1107 struct migration_req {
1108 struct list_head list;
1109
1110 struct task_struct *task;
1111 int dest_cpu;
1112
1113 struct completion done;
1114 };
1115
1116 /*
1117 * The task's runqueue lock must be held.
1118 * Returns true if you have to wait for migration thread.
1119 */
1120 static int
1121 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1122 {
1123 struct rq *rq = task_rq(p);
1124
1125 /*
1126 * If the task is not on a runqueue (and not running), then
1127 * it is sufficient to simply update the task's cpu field.
1128 */
1129 if (!p->se.on_rq && !task_running(rq, p)) {
1130 set_task_cpu(p, dest_cpu);
1131 return 0;
1132 }
1133
1134 init_completion(&req->done);
1135 req->task = p;
1136 req->dest_cpu = dest_cpu;
1137 list_add(&req->list, &rq->migration_queue);
1138
1139 return 1;
1140 }
1141
1142 /*
1143 * wait_task_inactive - wait for a thread to unschedule.
1144 *
1145 * The caller must ensure that the task *will* unschedule sometime soon,
1146 * else this function might spin for a *long* time. This function can't
1147 * be called with interrupts off, or it may introduce deadlock with
1148 * smp_call_function() if an IPI is sent by the same process we are
1149 * waiting to become inactive.
1150 */
1151 void wait_task_inactive(struct task_struct *p)
1152 {
1153 unsigned long flags;
1154 int running, on_rq;
1155 struct rq *rq;
1156
1157 for (;;) {
1158 /*
1159 * We do the initial early heuristics without holding
1160 * any task-queue locks at all. We'll only try to get
1161 * the runqueue lock when things look like they will
1162 * work out!
1163 */
1164 rq = task_rq(p);
1165
1166 /*
1167 * If the task is actively running on another CPU
1168 * still, just relax and busy-wait without holding
1169 * any locks.
1170 *
1171 * NOTE! Since we don't hold any locks, it's not
1172 * even sure that "rq" stays as the right runqueue!
1173 * But we don't care, since "task_running()" will
1174 * return false if the runqueue has changed and p
1175 * is actually now running somewhere else!
1176 */
1177 while (task_running(rq, p))
1178 cpu_relax();
1179
1180 /*
1181 * Ok, time to look more closely! We need the rq
1182 * lock now, to be *sure*. If we're wrong, we'll
1183 * just go back and repeat.
1184 */
1185 rq = task_rq_lock(p, &flags);
1186 running = task_running(rq, p);
1187 on_rq = p->se.on_rq;
1188 task_rq_unlock(rq, &flags);
1189
1190 /*
1191 * Was it really running after all now that we
1192 * checked with the proper locks actually held?
1193 *
1194 * Oops. Go back and try again..
1195 */
1196 if (unlikely(running)) {
1197 cpu_relax();
1198 continue;
1199 }
1200
1201 /*
1202 * It's not enough that it's not actively running,
1203 * it must be off the runqueue _entirely_, and not
1204 * preempted!
1205 *
1206 * So if it wa still runnable (but just not actively
1207 * running right now), it's preempted, and we should
1208 * yield - it could be a while.
1209 */
1210 if (unlikely(on_rq)) {
1211 schedule_timeout_uninterruptible(1);
1212 continue;
1213 }
1214
1215 /*
1216 * Ahh, all good. It wasn't running, and it wasn't
1217 * runnable, which means that it will never become
1218 * running in the future either. We're all done!
1219 */
1220 break;
1221 }
1222 }
1223
1224 /***
1225 * kick_process - kick a running thread to enter/exit the kernel
1226 * @p: the to-be-kicked thread
1227 *
1228 * Cause a process which is running on another CPU to enter
1229 * kernel-mode, without any delay. (to get signals handled.)
1230 *
1231 * NOTE: this function doesnt have to take the runqueue lock,
1232 * because all it wants to ensure is that the remote task enters
1233 * the kernel. If the IPI races and the task has been migrated
1234 * to another CPU then no harm is done and the purpose has been
1235 * achieved as well.
1236 */
1237 void kick_process(struct task_struct *p)
1238 {
1239 int cpu;
1240
1241 preempt_disable();
1242 cpu = task_cpu(p);
1243 if ((cpu != smp_processor_id()) && task_curr(p))
1244 smp_send_reschedule(cpu);
1245 preempt_enable();
1246 }
1247
1248 /*
1249 * Return a low guess at the load of a migration-source cpu weighted
1250 * according to the scheduling class and "nice" value.
1251 *
1252 * We want to under-estimate the load of migration sources, to
1253 * balance conservatively.
1254 */
1255 static unsigned long source_load(int cpu, int type)
1256 {
1257 struct rq *rq = cpu_rq(cpu);
1258 unsigned long total = weighted_cpuload(cpu);
1259
1260 if (type == 0)
1261 return total;
1262
1263 return min(rq->cpu_load[type-1], total);
1264 }
1265
1266 /*
1267 * Return a high guess at the load of a migration-target cpu weighted
1268 * according to the scheduling class and "nice" value.
1269 */
1270 static unsigned long target_load(int cpu, int type)
1271 {
1272 struct rq *rq = cpu_rq(cpu);
1273 unsigned long total = weighted_cpuload(cpu);
1274
1275 if (type == 0)
1276 return total;
1277
1278 return max(rq->cpu_load[type-1], total);
1279 }
1280
1281 /*
1282 * Return the average load per task on the cpu's run queue
1283 */
1284 static inline unsigned long cpu_avg_load_per_task(int cpu)
1285 {
1286 struct rq *rq = cpu_rq(cpu);
1287 unsigned long total = weighted_cpuload(cpu);
1288 unsigned long n = rq->nr_running;
1289
1290 return n ? total / n : SCHED_LOAD_SCALE;
1291 }
1292
1293 /*
1294 * find_idlest_group finds and returns the least busy CPU group within the
1295 * domain.
1296 */
1297 static struct sched_group *
1298 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1299 {
1300 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1301 unsigned long min_load = ULONG_MAX, this_load = 0;
1302 int load_idx = sd->forkexec_idx;
1303 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1304
1305 do {
1306 unsigned long load, avg_load;
1307 int local_group;
1308 int i;
1309
1310 /* Skip over this group if it has no CPUs allowed */
1311 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1312 continue;
1313
1314 local_group = cpu_isset(this_cpu, group->cpumask);
1315
1316 /* Tally up the load of all CPUs in the group */
1317 avg_load = 0;
1318
1319 for_each_cpu_mask(i, group->cpumask) {
1320 /* Bias balancing toward cpus of our domain */
1321 if (local_group)
1322 load = source_load(i, load_idx);
1323 else
1324 load = target_load(i, load_idx);
1325
1326 avg_load += load;
1327 }
1328
1329 /* Adjust by relative CPU power of the group */
1330 avg_load = sg_div_cpu_power(group,
1331 avg_load * SCHED_LOAD_SCALE);
1332
1333 if (local_group) {
1334 this_load = avg_load;
1335 this = group;
1336 } else if (avg_load < min_load) {
1337 min_load = avg_load;
1338 idlest = group;
1339 }
1340 } while (group = group->next, group != sd->groups);
1341
1342 if (!idlest || 100*this_load < imbalance*min_load)
1343 return NULL;
1344 return idlest;
1345 }
1346
1347 /*
1348 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1349 */
1350 static int
1351 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1352 {
1353 cpumask_t tmp;
1354 unsigned long load, min_load = ULONG_MAX;
1355 int idlest = -1;
1356 int i;
1357
1358 /* Traverse only the allowed CPUs */
1359 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1360
1361 for_each_cpu_mask(i, tmp) {
1362 load = weighted_cpuload(i);
1363
1364 if (load < min_load || (load == min_load && i == this_cpu)) {
1365 min_load = load;
1366 idlest = i;
1367 }
1368 }
1369
1370 return idlest;
1371 }
1372
1373 /*
1374 * sched_balance_self: balance the current task (running on cpu) in domains
1375 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1376 * SD_BALANCE_EXEC.
1377 *
1378 * Balance, ie. select the least loaded group.
1379 *
1380 * Returns the target CPU number, or the same CPU if no balancing is needed.
1381 *
1382 * preempt must be disabled.
1383 */
1384 static int sched_balance_self(int cpu, int flag)
1385 {
1386 struct task_struct *t = current;
1387 struct sched_domain *tmp, *sd = NULL;
1388
1389 for_each_domain(cpu, tmp) {
1390 /*
1391 * If power savings logic is enabled for a domain, stop there.
1392 */
1393 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1394 break;
1395 if (tmp->flags & flag)
1396 sd = tmp;
1397 }
1398
1399 while (sd) {
1400 cpumask_t span;
1401 struct sched_group *group;
1402 int new_cpu, weight;
1403
1404 if (!(sd->flags & flag)) {
1405 sd = sd->child;
1406 continue;
1407 }
1408
1409 span = sd->span;
1410 group = find_idlest_group(sd, t, cpu);
1411 if (!group) {
1412 sd = sd->child;
1413 continue;
1414 }
1415
1416 new_cpu = find_idlest_cpu(group, t, cpu);
1417 if (new_cpu == -1 || new_cpu == cpu) {
1418 /* Now try balancing at a lower domain level of cpu */
1419 sd = sd->child;
1420 continue;
1421 }
1422
1423 /* Now try balancing at a lower domain level of new_cpu */
1424 cpu = new_cpu;
1425 sd = NULL;
1426 weight = cpus_weight(span);
1427 for_each_domain(cpu, tmp) {
1428 if (weight <= cpus_weight(tmp->span))
1429 break;
1430 if (tmp->flags & flag)
1431 sd = tmp;
1432 }
1433 /* while loop will break here if sd == NULL */
1434 }
1435
1436 return cpu;
1437 }
1438
1439 #endif /* CONFIG_SMP */
1440
1441 /*
1442 * wake_idle() will wake a task on an idle cpu if task->cpu is
1443 * not idle and an idle cpu is available. The span of cpus to
1444 * search starts with cpus closest then further out as needed,
1445 * so we always favor a closer, idle cpu.
1446 *
1447 * Returns the CPU we should wake onto.
1448 */
1449 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1450 static int wake_idle(int cpu, struct task_struct *p)
1451 {
1452 cpumask_t tmp;
1453 struct sched_domain *sd;
1454 int i;
1455
1456 /*
1457 * If it is idle, then it is the best cpu to run this task.
1458 *
1459 * This cpu is also the best, if it has more than one task already.
1460 * Siblings must be also busy(in most cases) as they didn't already
1461 * pickup the extra load from this cpu and hence we need not check
1462 * sibling runqueue info. This will avoid the checks and cache miss
1463 * penalities associated with that.
1464 */
1465 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1466 return cpu;
1467
1468 for_each_domain(cpu, sd) {
1469 if (sd->flags & SD_WAKE_IDLE) {
1470 cpus_and(tmp, sd->span, p->cpus_allowed);
1471 for_each_cpu_mask(i, tmp) {
1472 if (idle_cpu(i)) {
1473 if (i != task_cpu(p)) {
1474 schedstat_inc(p,
1475 se.nr_wakeups_idle);
1476 }
1477 return i;
1478 }
1479 }
1480 } else {
1481 break;
1482 }
1483 }
1484 return cpu;
1485 }
1486 #else
1487 static inline int wake_idle(int cpu, struct task_struct *p)
1488 {
1489 return cpu;
1490 }
1491 #endif
1492
1493 /***
1494 * try_to_wake_up - wake up a thread
1495 * @p: the to-be-woken-up thread
1496 * @state: the mask of task states that can be woken
1497 * @sync: do a synchronous wakeup?
1498 *
1499 * Put it on the run-queue if it's not already there. The "current"
1500 * thread is always on the run-queue (except when the actual
1501 * re-schedule is in progress), and as such you're allowed to do
1502 * the simpler "current->state = TASK_RUNNING" to mark yourself
1503 * runnable without the overhead of this.
1504 *
1505 * returns failure only if the task is already active.
1506 */
1507 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1508 {
1509 int cpu, orig_cpu, this_cpu, success = 0;
1510 unsigned long flags;
1511 long old_state;
1512 struct rq *rq;
1513 #ifdef CONFIG_SMP
1514 struct sched_domain *sd, *this_sd = NULL;
1515 unsigned long load, this_load;
1516 int new_cpu;
1517 #endif
1518
1519 rq = task_rq_lock(p, &flags);
1520 old_state = p->state;
1521 if (!(old_state & state))
1522 goto out;
1523
1524 if (p->se.on_rq)
1525 goto out_running;
1526
1527 cpu = task_cpu(p);
1528 orig_cpu = cpu;
1529 this_cpu = smp_processor_id();
1530
1531 #ifdef CONFIG_SMP
1532 if (unlikely(task_running(rq, p)))
1533 goto out_activate;
1534
1535 new_cpu = cpu;
1536
1537 schedstat_inc(rq, ttwu_count);
1538 if (cpu == this_cpu) {
1539 schedstat_inc(rq, ttwu_local);
1540 goto out_set_cpu;
1541 }
1542
1543 for_each_domain(this_cpu, sd) {
1544 if (cpu_isset(cpu, sd->span)) {
1545 schedstat_inc(sd, ttwu_wake_remote);
1546 this_sd = sd;
1547 break;
1548 }
1549 }
1550
1551 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1552 goto out_set_cpu;
1553
1554 /*
1555 * Check for affine wakeup and passive balancing possibilities.
1556 */
1557 if (this_sd) {
1558 int idx = this_sd->wake_idx;
1559 unsigned int imbalance;
1560
1561 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1562
1563 load = source_load(cpu, idx);
1564 this_load = target_load(this_cpu, idx);
1565
1566 new_cpu = this_cpu; /* Wake to this CPU if we can */
1567
1568 if (this_sd->flags & SD_WAKE_AFFINE) {
1569 unsigned long tl = this_load;
1570 unsigned long tl_per_task;
1571
1572 /*
1573 * Attract cache-cold tasks on sync wakeups:
1574 */
1575 if (sync && !task_hot(p, rq->clock, this_sd))
1576 goto out_set_cpu;
1577
1578 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1579 tl_per_task = cpu_avg_load_per_task(this_cpu);
1580
1581 /*
1582 * If sync wakeup then subtract the (maximum possible)
1583 * effect of the currently running task from the load
1584 * of the current CPU:
1585 */
1586 if (sync)
1587 tl -= current->se.load.weight;
1588
1589 if ((tl <= load &&
1590 tl + target_load(cpu, idx) <= tl_per_task) ||
1591 100*(tl + p->se.load.weight) <= imbalance*load) {
1592 /*
1593 * This domain has SD_WAKE_AFFINE and
1594 * p is cache cold in this domain, and
1595 * there is no bad imbalance.
1596 */
1597 schedstat_inc(this_sd, ttwu_move_affine);
1598 schedstat_inc(p, se.nr_wakeups_affine);
1599 goto out_set_cpu;
1600 }
1601 }
1602
1603 /*
1604 * Start passive balancing when half the imbalance_pct
1605 * limit is reached.
1606 */
1607 if (this_sd->flags & SD_WAKE_BALANCE) {
1608 if (imbalance*this_load <= 100*load) {
1609 schedstat_inc(this_sd, ttwu_move_balance);
1610 schedstat_inc(p, se.nr_wakeups_passive);
1611 goto out_set_cpu;
1612 }
1613 }
1614 }
1615
1616 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1617 out_set_cpu:
1618 new_cpu = wake_idle(new_cpu, p);
1619 if (new_cpu != cpu) {
1620 set_task_cpu(p, new_cpu);
1621 task_rq_unlock(rq, &flags);
1622 /* might preempt at this point */
1623 rq = task_rq_lock(p, &flags);
1624 old_state = p->state;
1625 if (!(old_state & state))
1626 goto out;
1627 if (p->se.on_rq)
1628 goto out_running;
1629
1630 this_cpu = smp_processor_id();
1631 cpu = task_cpu(p);
1632 }
1633
1634 out_activate:
1635 #endif /* CONFIG_SMP */
1636 schedstat_inc(p, se.nr_wakeups);
1637 if (sync)
1638 schedstat_inc(p, se.nr_wakeups_sync);
1639 if (orig_cpu != cpu)
1640 schedstat_inc(p, se.nr_wakeups_migrate);
1641 if (cpu == this_cpu)
1642 schedstat_inc(p, se.nr_wakeups_local);
1643 else
1644 schedstat_inc(p, se.nr_wakeups_remote);
1645 update_rq_clock(rq);
1646 activate_task(rq, p, 1);
1647 check_preempt_curr(rq, p);
1648 success = 1;
1649
1650 out_running:
1651 p->state = TASK_RUNNING;
1652 out:
1653 task_rq_unlock(rq, &flags);
1654
1655 return success;
1656 }
1657
1658 int fastcall wake_up_process(struct task_struct *p)
1659 {
1660 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1661 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1662 }
1663 EXPORT_SYMBOL(wake_up_process);
1664
1665 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1666 {
1667 return try_to_wake_up(p, state, 0);
1668 }
1669
1670 /*
1671 * Perform scheduler related setup for a newly forked process p.
1672 * p is forked by current.
1673 *
1674 * __sched_fork() is basic setup used by init_idle() too:
1675 */
1676 static void __sched_fork(struct task_struct *p)
1677 {
1678 p->se.exec_start = 0;
1679 p->se.sum_exec_runtime = 0;
1680 p->se.prev_sum_exec_runtime = 0;
1681
1682 #ifdef CONFIG_SCHEDSTATS
1683 p->se.wait_start = 0;
1684 p->se.sum_sleep_runtime = 0;
1685 p->se.sleep_start = 0;
1686 p->se.block_start = 0;
1687 p->se.sleep_max = 0;
1688 p->se.block_max = 0;
1689 p->se.exec_max = 0;
1690 p->se.slice_max = 0;
1691 p->se.wait_max = 0;
1692 #endif
1693
1694 INIT_LIST_HEAD(&p->run_list);
1695 p->se.on_rq = 0;
1696
1697 #ifdef CONFIG_PREEMPT_NOTIFIERS
1698 INIT_HLIST_HEAD(&p->preempt_notifiers);
1699 #endif
1700
1701 /*
1702 * We mark the process as running here, but have not actually
1703 * inserted it onto the runqueue yet. This guarantees that
1704 * nobody will actually run it, and a signal or other external
1705 * event cannot wake it up and insert it on the runqueue either.
1706 */
1707 p->state = TASK_RUNNING;
1708 }
1709
1710 /*
1711 * fork()/clone()-time setup:
1712 */
1713 void sched_fork(struct task_struct *p, int clone_flags)
1714 {
1715 int cpu = get_cpu();
1716
1717 __sched_fork(p);
1718
1719 #ifdef CONFIG_SMP
1720 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1721 #endif
1722 set_task_cpu(p, cpu);
1723
1724 /*
1725 * Make sure we do not leak PI boosting priority to the child:
1726 */
1727 p->prio = current->normal_prio;
1728 if (!rt_prio(p->prio))
1729 p->sched_class = &fair_sched_class;
1730
1731 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1732 if (likely(sched_info_on()))
1733 memset(&p->sched_info, 0, sizeof(p->sched_info));
1734 #endif
1735 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1736 p->oncpu = 0;
1737 #endif
1738 #ifdef CONFIG_PREEMPT
1739 /* Want to start with kernel preemption disabled. */
1740 task_thread_info(p)->preempt_count = 1;
1741 #endif
1742 put_cpu();
1743 }
1744
1745 /*
1746 * wake_up_new_task - wake up a newly created task for the first time.
1747 *
1748 * This function will do some initial scheduler statistics housekeeping
1749 * that must be done for every newly created context, then puts the task
1750 * on the runqueue and wakes it.
1751 */
1752 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1753 {
1754 unsigned long flags;
1755 struct rq *rq;
1756
1757 rq = task_rq_lock(p, &flags);
1758 BUG_ON(p->state != TASK_RUNNING);
1759 update_rq_clock(rq);
1760
1761 p->prio = effective_prio(p);
1762
1763 if (!p->sched_class->task_new || !current->se.on_rq) {
1764 activate_task(rq, p, 0);
1765 } else {
1766 /*
1767 * Let the scheduling class do new task startup
1768 * management (if any):
1769 */
1770 p->sched_class->task_new(rq, p);
1771 inc_nr_running(p, rq);
1772 }
1773 check_preempt_curr(rq, p);
1774 task_rq_unlock(rq, &flags);
1775 }
1776
1777 #ifdef CONFIG_PREEMPT_NOTIFIERS
1778
1779 /**
1780 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1781 * @notifier: notifier struct to register
1782 */
1783 void preempt_notifier_register(struct preempt_notifier *notifier)
1784 {
1785 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1786 }
1787 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1788
1789 /**
1790 * preempt_notifier_unregister - no longer interested in preemption notifications
1791 * @notifier: notifier struct to unregister
1792 *
1793 * This is safe to call from within a preemption notifier.
1794 */
1795 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1796 {
1797 hlist_del(&notifier->link);
1798 }
1799 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1800
1801 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1802 {
1803 struct preempt_notifier *notifier;
1804 struct hlist_node *node;
1805
1806 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1807 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1808 }
1809
1810 static void
1811 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1812 struct task_struct *next)
1813 {
1814 struct preempt_notifier *notifier;
1815 struct hlist_node *node;
1816
1817 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1818 notifier->ops->sched_out(notifier, next);
1819 }
1820
1821 #else
1822
1823 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1824 {
1825 }
1826
1827 static void
1828 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1829 struct task_struct *next)
1830 {
1831 }
1832
1833 #endif
1834
1835 /**
1836 * prepare_task_switch - prepare to switch tasks
1837 * @rq: the runqueue preparing to switch
1838 * @prev: the current task that is being switched out
1839 * @next: the task we are going to switch to.
1840 *
1841 * This is called with the rq lock held and interrupts off. It must
1842 * be paired with a subsequent finish_task_switch after the context
1843 * switch.
1844 *
1845 * prepare_task_switch sets up locking and calls architecture specific
1846 * hooks.
1847 */
1848 static inline void
1849 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1850 struct task_struct *next)
1851 {
1852 fire_sched_out_preempt_notifiers(prev, next);
1853 prepare_lock_switch(rq, next);
1854 prepare_arch_switch(next);
1855 }
1856
1857 /**
1858 * finish_task_switch - clean up after a task-switch
1859 * @rq: runqueue associated with task-switch
1860 * @prev: the thread we just switched away from.
1861 *
1862 * finish_task_switch must be called after the context switch, paired
1863 * with a prepare_task_switch call before the context switch.
1864 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1865 * and do any other architecture-specific cleanup actions.
1866 *
1867 * Note that we may have delayed dropping an mm in context_switch(). If
1868 * so, we finish that here outside of the runqueue lock. (Doing it
1869 * with the lock held can cause deadlocks; see schedule() for
1870 * details.)
1871 */
1872 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1873 __releases(rq->lock)
1874 {
1875 struct mm_struct *mm = rq->prev_mm;
1876 long prev_state;
1877
1878 rq->prev_mm = NULL;
1879
1880 /*
1881 * A task struct has one reference for the use as "current".
1882 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1883 * schedule one last time. The schedule call will never return, and
1884 * the scheduled task must drop that reference.
1885 * The test for TASK_DEAD must occur while the runqueue locks are
1886 * still held, otherwise prev could be scheduled on another cpu, die
1887 * there before we look at prev->state, and then the reference would
1888 * be dropped twice.
1889 * Manfred Spraul <manfred@colorfullife.com>
1890 */
1891 prev_state = prev->state;
1892 finish_arch_switch(prev);
1893 finish_lock_switch(rq, prev);
1894 fire_sched_in_preempt_notifiers(current);
1895 if (mm)
1896 mmdrop(mm);
1897 if (unlikely(prev_state == TASK_DEAD)) {
1898 /*
1899 * Remove function-return probe instances associated with this
1900 * task and put them back on the free list.
1901 */
1902 kprobe_flush_task(prev);
1903 put_task_struct(prev);
1904 }
1905 }
1906
1907 /**
1908 * schedule_tail - first thing a freshly forked thread must call.
1909 * @prev: the thread we just switched away from.
1910 */
1911 asmlinkage void schedule_tail(struct task_struct *prev)
1912 __releases(rq->lock)
1913 {
1914 struct rq *rq = this_rq();
1915
1916 finish_task_switch(rq, prev);
1917 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1918 /* In this case, finish_task_switch does not reenable preemption */
1919 preempt_enable();
1920 #endif
1921 if (current->set_child_tid)
1922 put_user(task_pid_vnr(current), current->set_child_tid);
1923 }
1924
1925 /*
1926 * context_switch - switch to the new MM and the new
1927 * thread's register state.
1928 */
1929 static inline void
1930 context_switch(struct rq *rq, struct task_struct *prev,
1931 struct task_struct *next)
1932 {
1933 struct mm_struct *mm, *oldmm;
1934
1935 prepare_task_switch(rq, prev, next);
1936 mm = next->mm;
1937 oldmm = prev->active_mm;
1938 /*
1939 * For paravirt, this is coupled with an exit in switch_to to
1940 * combine the page table reload and the switch backend into
1941 * one hypercall.
1942 */
1943 arch_enter_lazy_cpu_mode();
1944
1945 if (unlikely(!mm)) {
1946 next->active_mm = oldmm;
1947 atomic_inc(&oldmm->mm_count);
1948 enter_lazy_tlb(oldmm, next);
1949 } else
1950 switch_mm(oldmm, mm, next);
1951
1952 if (unlikely(!prev->mm)) {
1953 prev->active_mm = NULL;
1954 rq->prev_mm = oldmm;
1955 }
1956 /*
1957 * Since the runqueue lock will be released by the next
1958 * task (which is an invalid locking op but in the case
1959 * of the scheduler it's an obvious special-case), so we
1960 * do an early lockdep release here:
1961 */
1962 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1963 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1964 #endif
1965
1966 /* Here we just switch the register state and the stack. */
1967 switch_to(prev, next, prev);
1968
1969 barrier();
1970 /*
1971 * this_rq must be evaluated again because prev may have moved
1972 * CPUs since it called schedule(), thus the 'rq' on its stack
1973 * frame will be invalid.
1974 */
1975 finish_task_switch(this_rq(), prev);
1976 }
1977
1978 /*
1979 * nr_running, nr_uninterruptible and nr_context_switches:
1980 *
1981 * externally visible scheduler statistics: current number of runnable
1982 * threads, current number of uninterruptible-sleeping threads, total
1983 * number of context switches performed since bootup.
1984 */
1985 unsigned long nr_running(void)
1986 {
1987 unsigned long i, sum = 0;
1988
1989 for_each_online_cpu(i)
1990 sum += cpu_rq(i)->nr_running;
1991
1992 return sum;
1993 }
1994
1995 unsigned long nr_uninterruptible(void)
1996 {
1997 unsigned long i, sum = 0;
1998
1999 for_each_possible_cpu(i)
2000 sum += cpu_rq(i)->nr_uninterruptible;
2001
2002 /*
2003 * Since we read the counters lockless, it might be slightly
2004 * inaccurate. Do not allow it to go below zero though:
2005 */
2006 if (unlikely((long)sum < 0))
2007 sum = 0;
2008
2009 return sum;
2010 }
2011
2012 unsigned long long nr_context_switches(void)
2013 {
2014 int i;
2015 unsigned long long sum = 0;
2016
2017 for_each_possible_cpu(i)
2018 sum += cpu_rq(i)->nr_switches;
2019
2020 return sum;
2021 }
2022
2023 unsigned long nr_iowait(void)
2024 {
2025 unsigned long i, sum = 0;
2026
2027 for_each_possible_cpu(i)
2028 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2029
2030 return sum;
2031 }
2032
2033 unsigned long nr_active(void)
2034 {
2035 unsigned long i, running = 0, uninterruptible = 0;
2036
2037 for_each_online_cpu(i) {
2038 running += cpu_rq(i)->nr_running;
2039 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2040 }
2041
2042 if (unlikely((long)uninterruptible < 0))
2043 uninterruptible = 0;
2044
2045 return running + uninterruptible;
2046 }
2047
2048 /*
2049 * Update rq->cpu_load[] statistics. This function is usually called every
2050 * scheduler tick (TICK_NSEC).
2051 */
2052 static void update_cpu_load(struct rq *this_rq)
2053 {
2054 unsigned long this_load = this_rq->load.weight;
2055 int i, scale;
2056
2057 this_rq->nr_load_updates++;
2058
2059 /* Update our load: */
2060 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2061 unsigned long old_load, new_load;
2062
2063 /* scale is effectively 1 << i now, and >> i divides by scale */
2064
2065 old_load = this_rq->cpu_load[i];
2066 new_load = this_load;
2067 /*
2068 * Round up the averaging division if load is increasing. This
2069 * prevents us from getting stuck on 9 if the load is 10, for
2070 * example.
2071 */
2072 if (new_load > old_load)
2073 new_load += scale-1;
2074 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2075 }
2076 }
2077
2078 #ifdef CONFIG_SMP
2079
2080 /*
2081 * double_rq_lock - safely lock two runqueues
2082 *
2083 * Note this does not disable interrupts like task_rq_lock,
2084 * you need to do so manually before calling.
2085 */
2086 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2087 __acquires(rq1->lock)
2088 __acquires(rq2->lock)
2089 {
2090 BUG_ON(!irqs_disabled());
2091 if (rq1 == rq2) {
2092 spin_lock(&rq1->lock);
2093 __acquire(rq2->lock); /* Fake it out ;) */
2094 } else {
2095 if (rq1 < rq2) {
2096 spin_lock(&rq1->lock);
2097 spin_lock(&rq2->lock);
2098 } else {
2099 spin_lock(&rq2->lock);
2100 spin_lock(&rq1->lock);
2101 }
2102 }
2103 update_rq_clock(rq1);
2104 update_rq_clock(rq2);
2105 }
2106
2107 /*
2108 * double_rq_unlock - safely unlock two runqueues
2109 *
2110 * Note this does not restore interrupts like task_rq_unlock,
2111 * you need to do so manually after calling.
2112 */
2113 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2114 __releases(rq1->lock)
2115 __releases(rq2->lock)
2116 {
2117 spin_unlock(&rq1->lock);
2118 if (rq1 != rq2)
2119 spin_unlock(&rq2->lock);
2120 else
2121 __release(rq2->lock);
2122 }
2123
2124 /*
2125 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2126 */
2127 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2128 __releases(this_rq->lock)
2129 __acquires(busiest->lock)
2130 __acquires(this_rq->lock)
2131 {
2132 if (unlikely(!irqs_disabled())) {
2133 /* printk() doesn't work good under rq->lock */
2134 spin_unlock(&this_rq->lock);
2135 BUG_ON(1);
2136 }
2137 if (unlikely(!spin_trylock(&busiest->lock))) {
2138 if (busiest < this_rq) {
2139 spin_unlock(&this_rq->lock);
2140 spin_lock(&busiest->lock);
2141 spin_lock(&this_rq->lock);
2142 } else
2143 spin_lock(&busiest->lock);
2144 }
2145 }
2146
2147 /*
2148 * If dest_cpu is allowed for this process, migrate the task to it.
2149 * This is accomplished by forcing the cpu_allowed mask to only
2150 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2151 * the cpu_allowed mask is restored.
2152 */
2153 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2154 {
2155 struct migration_req req;
2156 unsigned long flags;
2157 struct rq *rq;
2158
2159 rq = task_rq_lock(p, &flags);
2160 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2161 || unlikely(cpu_is_offline(dest_cpu)))
2162 goto out;
2163
2164 /* force the process onto the specified CPU */
2165 if (migrate_task(p, dest_cpu, &req)) {
2166 /* Need to wait for migration thread (might exit: take ref). */
2167 struct task_struct *mt = rq->migration_thread;
2168
2169 get_task_struct(mt);
2170 task_rq_unlock(rq, &flags);
2171 wake_up_process(mt);
2172 put_task_struct(mt);
2173 wait_for_completion(&req.done);
2174
2175 return;
2176 }
2177 out:
2178 task_rq_unlock(rq, &flags);
2179 }
2180
2181 /*
2182 * sched_exec - execve() is a valuable balancing opportunity, because at
2183 * this point the task has the smallest effective memory and cache footprint.
2184 */
2185 void sched_exec(void)
2186 {
2187 int new_cpu, this_cpu = get_cpu();
2188 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2189 put_cpu();
2190 if (new_cpu != this_cpu)
2191 sched_migrate_task(current, new_cpu);
2192 }
2193
2194 /*
2195 * pull_task - move a task from a remote runqueue to the local runqueue.
2196 * Both runqueues must be locked.
2197 */
2198 static void pull_task(struct rq *src_rq, struct task_struct *p,
2199 struct rq *this_rq, int this_cpu)
2200 {
2201 deactivate_task(src_rq, p, 0);
2202 set_task_cpu(p, this_cpu);
2203 activate_task(this_rq, p, 0);
2204 /*
2205 * Note that idle threads have a prio of MAX_PRIO, for this test
2206 * to be always true for them.
2207 */
2208 check_preempt_curr(this_rq, p);
2209 }
2210
2211 /*
2212 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2213 */
2214 static
2215 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2216 struct sched_domain *sd, enum cpu_idle_type idle,
2217 int *all_pinned)
2218 {
2219 /*
2220 * We do not migrate tasks that are:
2221 * 1) running (obviously), or
2222 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2223 * 3) are cache-hot on their current CPU.
2224 */
2225 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2226 schedstat_inc(p, se.nr_failed_migrations_affine);
2227 return 0;
2228 }
2229 *all_pinned = 0;
2230
2231 if (task_running(rq, p)) {
2232 schedstat_inc(p, se.nr_failed_migrations_running);
2233 return 0;
2234 }
2235
2236 /*
2237 * Aggressive migration if:
2238 * 1) task is cache cold, or
2239 * 2) too many balance attempts have failed.
2240 */
2241
2242 if (!task_hot(p, rq->clock, sd) ||
2243 sd->nr_balance_failed > sd->cache_nice_tries) {
2244 #ifdef CONFIG_SCHEDSTATS
2245 if (task_hot(p, rq->clock, sd)) {
2246 schedstat_inc(sd, lb_hot_gained[idle]);
2247 schedstat_inc(p, se.nr_forced_migrations);
2248 }
2249 #endif
2250 return 1;
2251 }
2252
2253 if (task_hot(p, rq->clock, sd)) {
2254 schedstat_inc(p, se.nr_failed_migrations_hot);
2255 return 0;
2256 }
2257 return 1;
2258 }
2259
2260 static unsigned long
2261 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2262 unsigned long max_load_move, struct sched_domain *sd,
2263 enum cpu_idle_type idle, int *all_pinned,
2264 int *this_best_prio, struct rq_iterator *iterator)
2265 {
2266 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2267 struct task_struct *p;
2268 long rem_load_move = max_load_move;
2269
2270 if (max_load_move == 0)
2271 goto out;
2272
2273 pinned = 1;
2274
2275 /*
2276 * Start the load-balancing iterator:
2277 */
2278 p = iterator->start(iterator->arg);
2279 next:
2280 if (!p || loops++ > sysctl_sched_nr_migrate)
2281 goto out;
2282 /*
2283 * To help distribute high priority tasks across CPUs we don't
2284 * skip a task if it will be the highest priority task (i.e. smallest
2285 * prio value) on its new queue regardless of its load weight
2286 */
2287 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2288 SCHED_LOAD_SCALE_FUZZ;
2289 if ((skip_for_load && p->prio >= *this_best_prio) ||
2290 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2291 p = iterator->next(iterator->arg);
2292 goto next;
2293 }
2294
2295 pull_task(busiest, p, this_rq, this_cpu);
2296 pulled++;
2297 rem_load_move -= p->se.load.weight;
2298
2299 /*
2300 * We only want to steal up to the prescribed amount of weighted load.
2301 */
2302 if (rem_load_move > 0) {
2303 if (p->prio < *this_best_prio)
2304 *this_best_prio = p->prio;
2305 p = iterator->next(iterator->arg);
2306 goto next;
2307 }
2308 out:
2309 /*
2310 * Right now, this is one of only two places pull_task() is called,
2311 * so we can safely collect pull_task() stats here rather than
2312 * inside pull_task().
2313 */
2314 schedstat_add(sd, lb_gained[idle], pulled);
2315
2316 if (all_pinned)
2317 *all_pinned = pinned;
2318
2319 return max_load_move - rem_load_move;
2320 }
2321
2322 /*
2323 * move_tasks tries to move up to max_load_move weighted load from busiest to
2324 * this_rq, as part of a balancing operation within domain "sd".
2325 * Returns 1 if successful and 0 otherwise.
2326 *
2327 * Called with both runqueues locked.
2328 */
2329 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2330 unsigned long max_load_move,
2331 struct sched_domain *sd, enum cpu_idle_type idle,
2332 int *all_pinned)
2333 {
2334 const struct sched_class *class = sched_class_highest;
2335 unsigned long total_load_moved = 0;
2336 int this_best_prio = this_rq->curr->prio;
2337
2338 do {
2339 total_load_moved +=
2340 class->load_balance(this_rq, this_cpu, busiest,
2341 max_load_move - total_load_moved,
2342 sd, idle, all_pinned, &this_best_prio);
2343 class = class->next;
2344 } while (class && max_load_move > total_load_moved);
2345
2346 return total_load_moved > 0;
2347 }
2348
2349 static int
2350 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2351 struct sched_domain *sd, enum cpu_idle_type idle,
2352 struct rq_iterator *iterator)
2353 {
2354 struct task_struct *p = iterator->start(iterator->arg);
2355 int pinned = 0;
2356
2357 while (p) {
2358 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2359 pull_task(busiest, p, this_rq, this_cpu);
2360 /*
2361 * Right now, this is only the second place pull_task()
2362 * is called, so we can safely collect pull_task()
2363 * stats here rather than inside pull_task().
2364 */
2365 schedstat_inc(sd, lb_gained[idle]);
2366
2367 return 1;
2368 }
2369 p = iterator->next(iterator->arg);
2370 }
2371
2372 return 0;
2373 }
2374
2375 /*
2376 * move_one_task tries to move exactly one task from busiest to this_rq, as
2377 * part of active balancing operations within "domain".
2378 * Returns 1 if successful and 0 otherwise.
2379 *
2380 * Called with both runqueues locked.
2381 */
2382 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2383 struct sched_domain *sd, enum cpu_idle_type idle)
2384 {
2385 const struct sched_class *class;
2386
2387 for (class = sched_class_highest; class; class = class->next)
2388 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2389 return 1;
2390
2391 return 0;
2392 }
2393
2394 /*
2395 * find_busiest_group finds and returns the busiest CPU group within the
2396 * domain. It calculates and returns the amount of weighted load which
2397 * should be moved to restore balance via the imbalance parameter.
2398 */
2399 static struct sched_group *
2400 find_busiest_group(struct sched_domain *sd, int this_cpu,
2401 unsigned long *imbalance, enum cpu_idle_type idle,
2402 int *sd_idle, cpumask_t *cpus, int *balance)
2403 {
2404 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2405 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2406 unsigned long max_pull;
2407 unsigned long busiest_load_per_task, busiest_nr_running;
2408 unsigned long this_load_per_task, this_nr_running;
2409 int load_idx, group_imb = 0;
2410 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2411 int power_savings_balance = 1;
2412 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2413 unsigned long min_nr_running = ULONG_MAX;
2414 struct sched_group *group_min = NULL, *group_leader = NULL;
2415 #endif
2416
2417 max_load = this_load = total_load = total_pwr = 0;
2418 busiest_load_per_task = busiest_nr_running = 0;
2419 this_load_per_task = this_nr_running = 0;
2420 if (idle == CPU_NOT_IDLE)
2421 load_idx = sd->busy_idx;
2422 else if (idle == CPU_NEWLY_IDLE)
2423 load_idx = sd->newidle_idx;
2424 else
2425 load_idx = sd->idle_idx;
2426
2427 do {
2428 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2429 int local_group;
2430 int i;
2431 int __group_imb = 0;
2432 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2433 unsigned long sum_nr_running, sum_weighted_load;
2434
2435 local_group = cpu_isset(this_cpu, group->cpumask);
2436
2437 if (local_group)
2438 balance_cpu = first_cpu(group->cpumask);
2439
2440 /* Tally up the load of all CPUs in the group */
2441 sum_weighted_load = sum_nr_running = avg_load = 0;
2442 max_cpu_load = 0;
2443 min_cpu_load = ~0UL;
2444
2445 for_each_cpu_mask(i, group->cpumask) {
2446 struct rq *rq;
2447
2448 if (!cpu_isset(i, *cpus))
2449 continue;
2450
2451 rq = cpu_rq(i);
2452
2453 if (*sd_idle && rq->nr_running)
2454 *sd_idle = 0;
2455
2456 /* Bias balancing toward cpus of our domain */
2457 if (local_group) {
2458 if (idle_cpu(i) && !first_idle_cpu) {
2459 first_idle_cpu = 1;
2460 balance_cpu = i;
2461 }
2462
2463 load = target_load(i, load_idx);
2464 } else {
2465 load = source_load(i, load_idx);
2466 if (load > max_cpu_load)
2467 max_cpu_load = load;
2468 if (min_cpu_load > load)
2469 min_cpu_load = load;
2470 }
2471
2472 avg_load += load;
2473 sum_nr_running += rq->nr_running;
2474 sum_weighted_load += weighted_cpuload(i);
2475 }
2476
2477 /*
2478 * First idle cpu or the first cpu(busiest) in this sched group
2479 * is eligible for doing load balancing at this and above
2480 * domains. In the newly idle case, we will allow all the cpu's
2481 * to do the newly idle load balance.
2482 */
2483 if (idle != CPU_NEWLY_IDLE && local_group &&
2484 balance_cpu != this_cpu && balance) {
2485 *balance = 0;
2486 goto ret;
2487 }
2488
2489 total_load += avg_load;
2490 total_pwr += group->__cpu_power;
2491
2492 /* Adjust by relative CPU power of the group */
2493 avg_load = sg_div_cpu_power(group,
2494 avg_load * SCHED_LOAD_SCALE);
2495
2496 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2497 __group_imb = 1;
2498
2499 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2500
2501 if (local_group) {
2502 this_load = avg_load;
2503 this = group;
2504 this_nr_running = sum_nr_running;
2505 this_load_per_task = sum_weighted_load;
2506 } else if (avg_load > max_load &&
2507 (sum_nr_running > group_capacity || __group_imb)) {
2508 max_load = avg_load;
2509 busiest = group;
2510 busiest_nr_running = sum_nr_running;
2511 busiest_load_per_task = sum_weighted_load;
2512 group_imb = __group_imb;
2513 }
2514
2515 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2516 /*
2517 * Busy processors will not participate in power savings
2518 * balance.
2519 */
2520 if (idle == CPU_NOT_IDLE ||
2521 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2522 goto group_next;
2523
2524 /*
2525 * If the local group is idle or completely loaded
2526 * no need to do power savings balance at this domain
2527 */
2528 if (local_group && (this_nr_running >= group_capacity ||
2529 !this_nr_running))
2530 power_savings_balance = 0;
2531
2532 /*
2533 * If a group is already running at full capacity or idle,
2534 * don't include that group in power savings calculations
2535 */
2536 if (!power_savings_balance || sum_nr_running >= group_capacity
2537 || !sum_nr_running)
2538 goto group_next;
2539
2540 /*
2541 * Calculate the group which has the least non-idle load.
2542 * This is the group from where we need to pick up the load
2543 * for saving power
2544 */
2545 if ((sum_nr_running < min_nr_running) ||
2546 (sum_nr_running == min_nr_running &&
2547 first_cpu(group->cpumask) <
2548 first_cpu(group_min->cpumask))) {
2549 group_min = group;
2550 min_nr_running = sum_nr_running;
2551 min_load_per_task = sum_weighted_load /
2552 sum_nr_running;
2553 }
2554
2555 /*
2556 * Calculate the group which is almost near its
2557 * capacity but still has some space to pick up some load
2558 * from other group and save more power
2559 */
2560 if (sum_nr_running <= group_capacity - 1) {
2561 if (sum_nr_running > leader_nr_running ||
2562 (sum_nr_running == leader_nr_running &&
2563 first_cpu(group->cpumask) >
2564 first_cpu(group_leader->cpumask))) {
2565 group_leader = group;
2566 leader_nr_running = sum_nr_running;
2567 }
2568 }
2569 group_next:
2570 #endif
2571 group = group->next;
2572 } while (group != sd->groups);
2573
2574 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2575 goto out_balanced;
2576
2577 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2578
2579 if (this_load >= avg_load ||
2580 100*max_load <= sd->imbalance_pct*this_load)
2581 goto out_balanced;
2582
2583 busiest_load_per_task /= busiest_nr_running;
2584 if (group_imb)
2585 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2586
2587 /*
2588 * We're trying to get all the cpus to the average_load, so we don't
2589 * want to push ourselves above the average load, nor do we wish to
2590 * reduce the max loaded cpu below the average load, as either of these
2591 * actions would just result in more rebalancing later, and ping-pong
2592 * tasks around. Thus we look for the minimum possible imbalance.
2593 * Negative imbalances (*we* are more loaded than anyone else) will
2594 * be counted as no imbalance for these purposes -- we can't fix that
2595 * by pulling tasks to us. Be careful of negative numbers as they'll
2596 * appear as very large values with unsigned longs.
2597 */
2598 if (max_load <= busiest_load_per_task)
2599 goto out_balanced;
2600
2601 /*
2602 * In the presence of smp nice balancing, certain scenarios can have
2603 * max load less than avg load(as we skip the groups at or below
2604 * its cpu_power, while calculating max_load..)
2605 */
2606 if (max_load < avg_load) {
2607 *imbalance = 0;
2608 goto small_imbalance;
2609 }
2610
2611 /* Don't want to pull so many tasks that a group would go idle */
2612 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2613
2614 /* How much load to actually move to equalise the imbalance */
2615 *imbalance = min(max_pull * busiest->__cpu_power,
2616 (avg_load - this_load) * this->__cpu_power)
2617 / SCHED_LOAD_SCALE;
2618
2619 /*
2620 * if *imbalance is less than the average load per runnable task
2621 * there is no gaurantee that any tasks will be moved so we'll have
2622 * a think about bumping its value to force at least one task to be
2623 * moved
2624 */
2625 if (*imbalance < busiest_load_per_task) {
2626 unsigned long tmp, pwr_now, pwr_move;
2627 unsigned int imbn;
2628
2629 small_imbalance:
2630 pwr_move = pwr_now = 0;
2631 imbn = 2;
2632 if (this_nr_running) {
2633 this_load_per_task /= this_nr_running;
2634 if (busiest_load_per_task > this_load_per_task)
2635 imbn = 1;
2636 } else
2637 this_load_per_task = SCHED_LOAD_SCALE;
2638
2639 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2640 busiest_load_per_task * imbn) {
2641 *imbalance = busiest_load_per_task;
2642 return busiest;
2643 }
2644
2645 /*
2646 * OK, we don't have enough imbalance to justify moving tasks,
2647 * however we may be able to increase total CPU power used by
2648 * moving them.
2649 */
2650
2651 pwr_now += busiest->__cpu_power *
2652 min(busiest_load_per_task, max_load);
2653 pwr_now += this->__cpu_power *
2654 min(this_load_per_task, this_load);
2655 pwr_now /= SCHED_LOAD_SCALE;
2656
2657 /* Amount of load we'd subtract */
2658 tmp = sg_div_cpu_power(busiest,
2659 busiest_load_per_task * SCHED_LOAD_SCALE);
2660 if (max_load > tmp)
2661 pwr_move += busiest->__cpu_power *
2662 min(busiest_load_per_task, max_load - tmp);
2663
2664 /* Amount of load we'd add */
2665 if (max_load * busiest->__cpu_power <
2666 busiest_load_per_task * SCHED_LOAD_SCALE)
2667 tmp = sg_div_cpu_power(this,
2668 max_load * busiest->__cpu_power);
2669 else
2670 tmp = sg_div_cpu_power(this,
2671 busiest_load_per_task * SCHED_LOAD_SCALE);
2672 pwr_move += this->__cpu_power *
2673 min(this_load_per_task, this_load + tmp);
2674 pwr_move /= SCHED_LOAD_SCALE;
2675
2676 /* Move if we gain throughput */
2677 if (pwr_move > pwr_now)
2678 *imbalance = busiest_load_per_task;
2679 }
2680
2681 return busiest;
2682
2683 out_balanced:
2684 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2685 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2686 goto ret;
2687
2688 if (this == group_leader && group_leader != group_min) {
2689 *imbalance = min_load_per_task;
2690 return group_min;
2691 }
2692 #endif
2693 ret:
2694 *imbalance = 0;
2695 return NULL;
2696 }
2697
2698 /*
2699 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2700 */
2701 static struct rq *
2702 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2703 unsigned long imbalance, cpumask_t *cpus)
2704 {
2705 struct rq *busiest = NULL, *rq;
2706 unsigned long max_load = 0;
2707 int i;
2708
2709 for_each_cpu_mask(i, group->cpumask) {
2710 unsigned long wl;
2711
2712 if (!cpu_isset(i, *cpus))
2713 continue;
2714
2715 rq = cpu_rq(i);
2716 wl = weighted_cpuload(i);
2717
2718 if (rq->nr_running == 1 && wl > imbalance)
2719 continue;
2720
2721 if (wl > max_load) {
2722 max_load = wl;
2723 busiest = rq;
2724 }
2725 }
2726
2727 return busiest;
2728 }
2729
2730 /*
2731 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2732 * so long as it is large enough.
2733 */
2734 #define MAX_PINNED_INTERVAL 512
2735
2736 /*
2737 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2738 * tasks if there is an imbalance.
2739 */
2740 static int load_balance(int this_cpu, struct rq *this_rq,
2741 struct sched_domain *sd, enum cpu_idle_type idle,
2742 int *balance)
2743 {
2744 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2745 struct sched_group *group;
2746 unsigned long imbalance;
2747 struct rq *busiest;
2748 cpumask_t cpus = CPU_MASK_ALL;
2749 unsigned long flags;
2750
2751 /*
2752 * When power savings policy is enabled for the parent domain, idle
2753 * sibling can pick up load irrespective of busy siblings. In this case,
2754 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2755 * portraying it as CPU_NOT_IDLE.
2756 */
2757 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2758 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2759 sd_idle = 1;
2760
2761 schedstat_inc(sd, lb_count[idle]);
2762
2763 redo:
2764 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2765 &cpus, balance);
2766
2767 if (*balance == 0)
2768 goto out_balanced;
2769
2770 if (!group) {
2771 schedstat_inc(sd, lb_nobusyg[idle]);
2772 goto out_balanced;
2773 }
2774
2775 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2776 if (!busiest) {
2777 schedstat_inc(sd, lb_nobusyq[idle]);
2778 goto out_balanced;
2779 }
2780
2781 BUG_ON(busiest == this_rq);
2782
2783 schedstat_add(sd, lb_imbalance[idle], imbalance);
2784
2785 ld_moved = 0;
2786 if (busiest->nr_running > 1) {
2787 /*
2788 * Attempt to move tasks. If find_busiest_group has found
2789 * an imbalance but busiest->nr_running <= 1, the group is
2790 * still unbalanced. ld_moved simply stays zero, so it is
2791 * correctly treated as an imbalance.
2792 */
2793 local_irq_save(flags);
2794 double_rq_lock(this_rq, busiest);
2795 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2796 imbalance, sd, idle, &all_pinned);
2797 double_rq_unlock(this_rq, busiest);
2798 local_irq_restore(flags);
2799
2800 /*
2801 * some other cpu did the load balance for us.
2802 */
2803 if (ld_moved && this_cpu != smp_processor_id())
2804 resched_cpu(this_cpu);
2805
2806 /* All tasks on this runqueue were pinned by CPU affinity */
2807 if (unlikely(all_pinned)) {
2808 cpu_clear(cpu_of(busiest), cpus);
2809 if (!cpus_empty(cpus))
2810 goto redo;
2811 goto out_balanced;
2812 }
2813 }
2814
2815 if (!ld_moved) {
2816 schedstat_inc(sd, lb_failed[idle]);
2817 sd->nr_balance_failed++;
2818
2819 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2820
2821 spin_lock_irqsave(&busiest->lock, flags);
2822
2823 /* don't kick the migration_thread, if the curr
2824 * task on busiest cpu can't be moved to this_cpu
2825 */
2826 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2827 spin_unlock_irqrestore(&busiest->lock, flags);
2828 all_pinned = 1;
2829 goto out_one_pinned;
2830 }
2831
2832 if (!busiest->active_balance) {
2833 busiest->active_balance = 1;
2834 busiest->push_cpu = this_cpu;
2835 active_balance = 1;
2836 }
2837 spin_unlock_irqrestore(&busiest->lock, flags);
2838 if (active_balance)
2839 wake_up_process(busiest->migration_thread);
2840
2841 /*
2842 * We've kicked active balancing, reset the failure
2843 * counter.
2844 */
2845 sd->nr_balance_failed = sd->cache_nice_tries+1;
2846 }
2847 } else
2848 sd->nr_balance_failed = 0;
2849
2850 if (likely(!active_balance)) {
2851 /* We were unbalanced, so reset the balancing interval */
2852 sd->balance_interval = sd->min_interval;
2853 } else {
2854 /*
2855 * If we've begun active balancing, start to back off. This
2856 * case may not be covered by the all_pinned logic if there
2857 * is only 1 task on the busy runqueue (because we don't call
2858 * move_tasks).
2859 */
2860 if (sd->balance_interval < sd->max_interval)
2861 sd->balance_interval *= 2;
2862 }
2863
2864 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2865 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2866 return -1;
2867 return ld_moved;
2868
2869 out_balanced:
2870 schedstat_inc(sd, lb_balanced[idle]);
2871
2872 sd->nr_balance_failed = 0;
2873
2874 out_one_pinned:
2875 /* tune up the balancing interval */
2876 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2877 (sd->balance_interval < sd->max_interval))
2878 sd->balance_interval *= 2;
2879
2880 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2881 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2882 return -1;
2883 return 0;
2884 }
2885
2886 /*
2887 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2888 * tasks if there is an imbalance.
2889 *
2890 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2891 * this_rq is locked.
2892 */
2893 static int
2894 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2895 {
2896 struct sched_group *group;
2897 struct rq *busiest = NULL;
2898 unsigned long imbalance;
2899 int ld_moved = 0;
2900 int sd_idle = 0;
2901 int all_pinned = 0;
2902 cpumask_t cpus = CPU_MASK_ALL;
2903
2904 /*
2905 * When power savings policy is enabled for the parent domain, idle
2906 * sibling can pick up load irrespective of busy siblings. In this case,
2907 * let the state of idle sibling percolate up as IDLE, instead of
2908 * portraying it as CPU_NOT_IDLE.
2909 */
2910 if (sd->flags & SD_SHARE_CPUPOWER &&
2911 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2912 sd_idle = 1;
2913
2914 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2915 redo:
2916 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2917 &sd_idle, &cpus, NULL);
2918 if (!group) {
2919 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2920 goto out_balanced;
2921 }
2922
2923 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2924 &cpus);
2925 if (!busiest) {
2926 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2927 goto out_balanced;
2928 }
2929
2930 BUG_ON(busiest == this_rq);
2931
2932 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2933
2934 ld_moved = 0;
2935 if (busiest->nr_running > 1) {
2936 /* Attempt to move tasks */
2937 double_lock_balance(this_rq, busiest);
2938 /* this_rq->clock is already updated */
2939 update_rq_clock(busiest);
2940 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2941 imbalance, sd, CPU_NEWLY_IDLE,
2942 &all_pinned);
2943 spin_unlock(&busiest->lock);
2944
2945 if (unlikely(all_pinned)) {
2946 cpu_clear(cpu_of(busiest), cpus);
2947 if (!cpus_empty(cpus))
2948 goto redo;
2949 }
2950 }
2951
2952 if (!ld_moved) {
2953 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2954 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2955 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2956 return -1;
2957 } else
2958 sd->nr_balance_failed = 0;
2959
2960 return ld_moved;
2961
2962 out_balanced:
2963 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2964 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2965 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2966 return -1;
2967 sd->nr_balance_failed = 0;
2968
2969 return 0;
2970 }
2971
2972 /*
2973 * idle_balance is called by schedule() if this_cpu is about to become
2974 * idle. Attempts to pull tasks from other CPUs.
2975 */
2976 static void idle_balance(int this_cpu, struct rq *this_rq)
2977 {
2978 struct sched_domain *sd;
2979 int pulled_task = -1;
2980 unsigned long next_balance = jiffies + HZ;
2981
2982 for_each_domain(this_cpu, sd) {
2983 unsigned long interval;
2984
2985 if (!(sd->flags & SD_LOAD_BALANCE))
2986 continue;
2987
2988 if (sd->flags & SD_BALANCE_NEWIDLE)
2989 /* If we've pulled tasks over stop searching: */
2990 pulled_task = load_balance_newidle(this_cpu,
2991 this_rq, sd);
2992
2993 interval = msecs_to_jiffies(sd->balance_interval);
2994 if (time_after(next_balance, sd->last_balance + interval))
2995 next_balance = sd->last_balance + interval;
2996 if (pulled_task)
2997 break;
2998 }
2999 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3000 /*
3001 * We are going idle. next_balance may be set based on
3002 * a busy processor. So reset next_balance.
3003 */
3004 this_rq->next_balance = next_balance;
3005 }
3006 }
3007
3008 /*
3009 * active_load_balance is run by migration threads. It pushes running tasks
3010 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3011 * running on each physical CPU where possible, and avoids physical /
3012 * logical imbalances.
3013 *
3014 * Called with busiest_rq locked.
3015 */
3016 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3017 {
3018 int target_cpu = busiest_rq->push_cpu;
3019 struct sched_domain *sd;
3020 struct rq *target_rq;
3021
3022 /* Is there any task to move? */
3023 if (busiest_rq->nr_running <= 1)
3024 return;
3025
3026 target_rq = cpu_rq(target_cpu);
3027
3028 /*
3029 * This condition is "impossible", if it occurs
3030 * we need to fix it. Originally reported by
3031 * Bjorn Helgaas on a 128-cpu setup.
3032 */
3033 BUG_ON(busiest_rq == target_rq);
3034
3035 /* move a task from busiest_rq to target_rq */
3036 double_lock_balance(busiest_rq, target_rq);
3037 update_rq_clock(busiest_rq);
3038 update_rq_clock(target_rq);
3039
3040 /* Search for an sd spanning us and the target CPU. */
3041 for_each_domain(target_cpu, sd) {
3042 if ((sd->flags & SD_LOAD_BALANCE) &&
3043 cpu_isset(busiest_cpu, sd->span))
3044 break;
3045 }
3046
3047 if (likely(sd)) {
3048 schedstat_inc(sd, alb_count);
3049
3050 if (move_one_task(target_rq, target_cpu, busiest_rq,
3051 sd, CPU_IDLE))
3052 schedstat_inc(sd, alb_pushed);
3053 else
3054 schedstat_inc(sd, alb_failed);
3055 }
3056 spin_unlock(&target_rq->lock);
3057 }
3058
3059 #ifdef CONFIG_NO_HZ
3060 static struct {
3061 atomic_t load_balancer;
3062 cpumask_t cpu_mask;
3063 } nohz ____cacheline_aligned = {
3064 .load_balancer = ATOMIC_INIT(-1),
3065 .cpu_mask = CPU_MASK_NONE,
3066 };
3067
3068 /*
3069 * This routine will try to nominate the ilb (idle load balancing)
3070 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3071 * load balancing on behalf of all those cpus. If all the cpus in the system
3072 * go into this tickless mode, then there will be no ilb owner (as there is
3073 * no need for one) and all the cpus will sleep till the next wakeup event
3074 * arrives...
3075 *
3076 * For the ilb owner, tick is not stopped. And this tick will be used
3077 * for idle load balancing. ilb owner will still be part of
3078 * nohz.cpu_mask..
3079 *
3080 * While stopping the tick, this cpu will become the ilb owner if there
3081 * is no other owner. And will be the owner till that cpu becomes busy
3082 * or if all cpus in the system stop their ticks at which point
3083 * there is no need for ilb owner.
3084 *
3085 * When the ilb owner becomes busy, it nominates another owner, during the
3086 * next busy scheduler_tick()
3087 */
3088 int select_nohz_load_balancer(int stop_tick)
3089 {
3090 int cpu = smp_processor_id();
3091
3092 if (stop_tick) {
3093 cpu_set(cpu, nohz.cpu_mask);
3094 cpu_rq(cpu)->in_nohz_recently = 1;
3095
3096 /*
3097 * If we are going offline and still the leader, give up!
3098 */
3099 if (cpu_is_offline(cpu) &&
3100 atomic_read(&nohz.load_balancer) == cpu) {
3101 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3102 BUG();
3103 return 0;
3104 }
3105
3106 /* time for ilb owner also to sleep */
3107 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3108 if (atomic_read(&nohz.load_balancer) == cpu)
3109 atomic_set(&nohz.load_balancer, -1);
3110 return 0;
3111 }
3112
3113 if (atomic_read(&nohz.load_balancer) == -1) {
3114 /* make me the ilb owner */
3115 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3116 return 1;
3117 } else if (atomic_read(&nohz.load_balancer) == cpu)
3118 return 1;
3119 } else {
3120 if (!cpu_isset(cpu, nohz.cpu_mask))
3121 return 0;
3122
3123 cpu_clear(cpu, nohz.cpu_mask);
3124
3125 if (atomic_read(&nohz.load_balancer) == cpu)
3126 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3127 BUG();
3128 }
3129 return 0;
3130 }
3131 #endif
3132
3133 static DEFINE_SPINLOCK(balancing);
3134
3135 /*
3136 * It checks each scheduling domain to see if it is due to be balanced,
3137 * and initiates a balancing operation if so.
3138 *
3139 * Balancing parameters are set up in arch_init_sched_domains.
3140 */
3141 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3142 {
3143 int balance = 1;
3144 struct rq *rq = cpu_rq(cpu);
3145 unsigned long interval;
3146 struct sched_domain *sd;
3147 /* Earliest time when we have to do rebalance again */
3148 unsigned long next_balance = jiffies + 60*HZ;
3149 int update_next_balance = 0;
3150
3151 for_each_domain(cpu, sd) {
3152 if (!(sd->flags & SD_LOAD_BALANCE))
3153 continue;
3154
3155 interval = sd->balance_interval;
3156 if (idle != CPU_IDLE)
3157 interval *= sd->busy_factor;
3158
3159 /* scale ms to jiffies */
3160 interval = msecs_to_jiffies(interval);
3161 if (unlikely(!interval))
3162 interval = 1;
3163 if (interval > HZ*NR_CPUS/10)
3164 interval = HZ*NR_CPUS/10;
3165
3166
3167 if (sd->flags & SD_SERIALIZE) {
3168 if (!spin_trylock(&balancing))
3169 goto out;
3170 }
3171
3172 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3173 if (load_balance(cpu, rq, sd, idle, &balance)) {
3174 /*
3175 * We've pulled tasks over so either we're no
3176 * longer idle, or one of our SMT siblings is
3177 * not idle.
3178 */
3179 idle = CPU_NOT_IDLE;
3180 }
3181 sd->last_balance = jiffies;
3182 }
3183 if (sd->flags & SD_SERIALIZE)
3184 spin_unlock(&balancing);
3185 out:
3186 if (time_after(next_balance, sd->last_balance + interval)) {
3187 next_balance = sd->last_balance + interval;
3188 update_next_balance = 1;
3189 }
3190
3191 /*
3192 * Stop the load balance at this level. There is another
3193 * CPU in our sched group which is doing load balancing more
3194 * actively.
3195 */
3196 if (!balance)
3197 break;
3198 }
3199
3200 /*
3201 * next_balance will be updated only when there is a need.
3202 * When the cpu is attached to null domain for ex, it will not be
3203 * updated.
3204 */
3205 if (likely(update_next_balance))
3206 rq->next_balance = next_balance;
3207 }
3208
3209 /*
3210 * run_rebalance_domains is triggered when needed from the scheduler tick.
3211 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3212 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3213 */
3214 static void run_rebalance_domains(struct softirq_action *h)
3215 {
3216 int this_cpu = smp_processor_id();
3217 struct rq *this_rq = cpu_rq(this_cpu);
3218 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3219 CPU_IDLE : CPU_NOT_IDLE;
3220
3221 rebalance_domains(this_cpu, idle);
3222
3223 #ifdef CONFIG_NO_HZ
3224 /*
3225 * If this cpu is the owner for idle load balancing, then do the
3226 * balancing on behalf of the other idle cpus whose ticks are
3227 * stopped.
3228 */
3229 if (this_rq->idle_at_tick &&
3230 atomic_read(&nohz.load_balancer) == this_cpu) {
3231 cpumask_t cpus = nohz.cpu_mask;
3232 struct rq *rq;
3233 int balance_cpu;
3234
3235 cpu_clear(this_cpu, cpus);
3236 for_each_cpu_mask(balance_cpu, cpus) {
3237 /*
3238 * If this cpu gets work to do, stop the load balancing
3239 * work being done for other cpus. Next load
3240 * balancing owner will pick it up.
3241 */
3242 if (need_resched())
3243 break;
3244
3245 rebalance_domains(balance_cpu, CPU_IDLE);
3246
3247 rq = cpu_rq(balance_cpu);
3248 if (time_after(this_rq->next_balance, rq->next_balance))
3249 this_rq->next_balance = rq->next_balance;
3250 }
3251 }
3252 #endif
3253 }
3254
3255 /*
3256 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3257 *
3258 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3259 * idle load balancing owner or decide to stop the periodic load balancing,
3260 * if the whole system is idle.
3261 */
3262 static inline void trigger_load_balance(struct rq *rq, int cpu)
3263 {
3264 #ifdef CONFIG_NO_HZ
3265 /*
3266 * If we were in the nohz mode recently and busy at the current
3267 * scheduler tick, then check if we need to nominate new idle
3268 * load balancer.
3269 */
3270 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3271 rq->in_nohz_recently = 0;
3272
3273 if (atomic_read(&nohz.load_balancer) == cpu) {
3274 cpu_clear(cpu, nohz.cpu_mask);
3275 atomic_set(&nohz.load_balancer, -1);
3276 }
3277
3278 if (atomic_read(&nohz.load_balancer) == -1) {
3279 /*
3280 * simple selection for now: Nominate the
3281 * first cpu in the nohz list to be the next
3282 * ilb owner.
3283 *
3284 * TBD: Traverse the sched domains and nominate
3285 * the nearest cpu in the nohz.cpu_mask.
3286 */
3287 int ilb = first_cpu(nohz.cpu_mask);
3288
3289 if (ilb != NR_CPUS)
3290 resched_cpu(ilb);
3291 }
3292 }
3293
3294 /*
3295 * If this cpu is idle and doing idle load balancing for all the
3296 * cpus with ticks stopped, is it time for that to stop?
3297 */
3298 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3299 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3300 resched_cpu(cpu);
3301 return;
3302 }
3303
3304 /*
3305 * If this cpu is idle and the idle load balancing is done by
3306 * someone else, then no need raise the SCHED_SOFTIRQ
3307 */
3308 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3309 cpu_isset(cpu, nohz.cpu_mask))
3310 return;
3311 #endif
3312 if (time_after_eq(jiffies, rq->next_balance))
3313 raise_softirq(SCHED_SOFTIRQ);
3314 }
3315
3316 #else /* CONFIG_SMP */
3317
3318 /*
3319 * on UP we do not need to balance between CPUs:
3320 */
3321 static inline void idle_balance(int cpu, struct rq *rq)
3322 {
3323 }
3324
3325 #endif
3326
3327 DEFINE_PER_CPU(struct kernel_stat, kstat);
3328
3329 EXPORT_PER_CPU_SYMBOL(kstat);
3330
3331 /*
3332 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3333 * that have not yet been banked in case the task is currently running.
3334 */
3335 unsigned long long task_sched_runtime(struct task_struct *p)
3336 {
3337 unsigned long flags;
3338 u64 ns, delta_exec;
3339 struct rq *rq;
3340
3341 rq = task_rq_lock(p, &flags);
3342 ns = p->se.sum_exec_runtime;
3343 if (task_current(rq, p)) {
3344 update_rq_clock(rq);
3345 delta_exec = rq->clock - p->se.exec_start;
3346 if ((s64)delta_exec > 0)
3347 ns += delta_exec;
3348 }
3349 task_rq_unlock(rq, &flags);
3350
3351 return ns;
3352 }
3353
3354 /*
3355 * Account user cpu time to a process.
3356 * @p: the process that the cpu time gets accounted to
3357 * @cputime: the cpu time spent in user space since the last update
3358 */
3359 void account_user_time(struct task_struct *p, cputime_t cputime)
3360 {
3361 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3362 cputime64_t tmp;
3363
3364 p->utime = cputime_add(p->utime, cputime);
3365
3366 /* Add user time to cpustat. */
3367 tmp = cputime_to_cputime64(cputime);
3368 if (TASK_NICE(p) > 0)
3369 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3370 else
3371 cpustat->user = cputime64_add(cpustat->user, tmp);
3372 }
3373
3374 /*
3375 * Account guest cpu time to a process.
3376 * @p: the process that the cpu time gets accounted to
3377 * @cputime: the cpu time spent in virtual machine since the last update
3378 */
3379 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3380 {
3381 cputime64_t tmp;
3382 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3383
3384 tmp = cputime_to_cputime64(cputime);
3385
3386 p->utime = cputime_add(p->utime, cputime);
3387 p->gtime = cputime_add(p->gtime, cputime);
3388
3389 cpustat->user = cputime64_add(cpustat->user, tmp);
3390 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3391 }
3392
3393 /*
3394 * Account scaled user cpu time to a process.
3395 * @p: the process that the cpu time gets accounted to
3396 * @cputime: the cpu time spent in user space since the last update
3397 */
3398 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3399 {
3400 p->utimescaled = cputime_add(p->utimescaled, cputime);
3401 }
3402
3403 /*
3404 * Account system cpu time to a process.
3405 * @p: the process that the cpu time gets accounted to
3406 * @hardirq_offset: the offset to subtract from hardirq_count()
3407 * @cputime: the cpu time spent in kernel space since the last update
3408 */
3409 void account_system_time(struct task_struct *p, int hardirq_offset,
3410 cputime_t cputime)
3411 {
3412 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3413 struct rq *rq = this_rq();
3414 cputime64_t tmp;
3415
3416 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3417 return account_guest_time(p, cputime);
3418
3419 p->stime = cputime_add(p->stime, cputime);
3420
3421 /* Add system time to cpustat. */
3422 tmp = cputime_to_cputime64(cputime);
3423 if (hardirq_count() - hardirq_offset)
3424 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3425 else if (softirq_count())
3426 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3427 else if (p != rq->idle)
3428 cpustat->system = cputime64_add(cpustat->system, tmp);
3429 else if (atomic_read(&rq->nr_iowait) > 0)
3430 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3431 else
3432 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3433 /* Account for system time used */
3434 acct_update_integrals(p);
3435 }
3436
3437 /*
3438 * Account scaled system cpu time to a process.
3439 * @p: the process that the cpu time gets accounted to
3440 * @hardirq_offset: the offset to subtract from hardirq_count()
3441 * @cputime: the cpu time spent in kernel space since the last update
3442 */
3443 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3444 {
3445 p->stimescaled = cputime_add(p->stimescaled, cputime);
3446 }
3447
3448 /*
3449 * Account for involuntary wait time.
3450 * @p: the process from which the cpu time has been stolen
3451 * @steal: the cpu time spent in involuntary wait
3452 */
3453 void account_steal_time(struct task_struct *p, cputime_t steal)
3454 {
3455 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3456 cputime64_t tmp = cputime_to_cputime64(steal);
3457 struct rq *rq = this_rq();
3458
3459 if (p == rq->idle) {
3460 p->stime = cputime_add(p->stime, steal);
3461 if (atomic_read(&rq->nr_iowait) > 0)
3462 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3463 else
3464 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3465 } else
3466 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3467 }
3468
3469 /*
3470 * This function gets called by the timer code, with HZ frequency.
3471 * We call it with interrupts disabled.
3472 *
3473 * It also gets called by the fork code, when changing the parent's
3474 * timeslices.
3475 */
3476 void scheduler_tick(void)
3477 {
3478 int cpu = smp_processor_id();
3479 struct rq *rq = cpu_rq(cpu);
3480 struct task_struct *curr = rq->curr;
3481 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3482
3483 spin_lock(&rq->lock);
3484 __update_rq_clock(rq);
3485 /*
3486 * Let rq->clock advance by at least TICK_NSEC:
3487 */
3488 if (unlikely(rq->clock < next_tick))
3489 rq->clock = next_tick;
3490 rq->tick_timestamp = rq->clock;
3491 update_cpu_load(rq);
3492 if (curr != rq->idle) /* FIXME: needed? */
3493 curr->sched_class->task_tick(rq, curr);
3494 spin_unlock(&rq->lock);
3495
3496 #ifdef CONFIG_SMP
3497 rq->idle_at_tick = idle_cpu(cpu);
3498 trigger_load_balance(rq, cpu);
3499 #endif
3500 }
3501
3502 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3503
3504 void fastcall add_preempt_count(int val)
3505 {
3506 /*
3507 * Underflow?
3508 */
3509 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3510 return;
3511 preempt_count() += val;
3512 /*
3513 * Spinlock count overflowing soon?
3514 */
3515 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3516 PREEMPT_MASK - 10);
3517 }
3518 EXPORT_SYMBOL(add_preempt_count);
3519
3520 void fastcall sub_preempt_count(int val)
3521 {
3522 /*
3523 * Underflow?
3524 */
3525 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3526 return;
3527 /*
3528 * Is the spinlock portion underflowing?
3529 */
3530 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3531 !(preempt_count() & PREEMPT_MASK)))
3532 return;
3533
3534 preempt_count() -= val;
3535 }
3536 EXPORT_SYMBOL(sub_preempt_count);
3537
3538 #endif
3539
3540 /*
3541 * Print scheduling while atomic bug:
3542 */
3543 static noinline void __schedule_bug(struct task_struct *prev)
3544 {
3545 struct pt_regs *regs = get_irq_regs();
3546
3547 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3548 prev->comm, prev->pid, preempt_count());
3549
3550 debug_show_held_locks(prev);
3551 if (irqs_disabled())
3552 print_irqtrace_events(prev);
3553
3554 if (regs)
3555 show_regs(regs);
3556 else
3557 dump_stack();
3558 }
3559
3560 /*
3561 * Various schedule()-time debugging checks and statistics:
3562 */
3563 static inline void schedule_debug(struct task_struct *prev)
3564 {
3565 /*
3566 * Test if we are atomic. Since do_exit() needs to call into
3567 * schedule() atomically, we ignore that path for now.
3568 * Otherwise, whine if we are scheduling when we should not be.
3569 */
3570 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3571 __schedule_bug(prev);
3572
3573 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3574
3575 schedstat_inc(this_rq(), sched_count);
3576 #ifdef CONFIG_SCHEDSTATS
3577 if (unlikely(prev->lock_depth >= 0)) {
3578 schedstat_inc(this_rq(), bkl_count);
3579 schedstat_inc(prev, sched_info.bkl_count);
3580 }
3581 #endif
3582 }
3583
3584 /*
3585 * Pick up the highest-prio task:
3586 */
3587 static inline struct task_struct *
3588 pick_next_task(struct rq *rq, struct task_struct *prev)
3589 {
3590 const struct sched_class *class;
3591 struct task_struct *p;
3592
3593 /*
3594 * Optimization: we know that if all tasks are in
3595 * the fair class we can call that function directly:
3596 */
3597 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3598 p = fair_sched_class.pick_next_task(rq);
3599 if (likely(p))
3600 return p;
3601 }
3602
3603 class = sched_class_highest;
3604 for ( ; ; ) {
3605 p = class->pick_next_task(rq);
3606 if (p)
3607 return p;
3608 /*
3609 * Will never be NULL as the idle class always
3610 * returns a non-NULL p:
3611 */
3612 class = class->next;
3613 }
3614 }
3615
3616 /*
3617 * schedule() is the main scheduler function.
3618 */
3619 asmlinkage void __sched schedule(void)
3620 {
3621 struct task_struct *prev, *next;
3622 long *switch_count;
3623 struct rq *rq;
3624 int cpu;
3625
3626 need_resched:
3627 preempt_disable();
3628 cpu = smp_processor_id();
3629 rq = cpu_rq(cpu);
3630 rcu_qsctr_inc(cpu);
3631 prev = rq->curr;
3632 switch_count = &prev->nivcsw;
3633
3634 release_kernel_lock(prev);
3635 need_resched_nonpreemptible:
3636
3637 schedule_debug(prev);
3638
3639 /*
3640 * Do the rq-clock update outside the rq lock:
3641 */
3642 local_irq_disable();
3643 __update_rq_clock(rq);
3644 spin_lock(&rq->lock);
3645 clear_tsk_need_resched(prev);
3646
3647 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3648 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3649 unlikely(signal_pending(prev)))) {
3650 prev->state = TASK_RUNNING;
3651 } else {
3652 deactivate_task(rq, prev, 1);
3653 }
3654 switch_count = &prev->nvcsw;
3655 }
3656
3657 if (unlikely(!rq->nr_running))
3658 idle_balance(cpu, rq);
3659
3660 prev->sched_class->put_prev_task(rq, prev);
3661 next = pick_next_task(rq, prev);
3662
3663 sched_info_switch(prev, next);
3664
3665 if (likely(prev != next)) {
3666 rq->nr_switches++;
3667 rq->curr = next;
3668 ++*switch_count;
3669
3670 context_switch(rq, prev, next); /* unlocks the rq */
3671 } else
3672 spin_unlock_irq(&rq->lock);
3673
3674 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3675 cpu = smp_processor_id();
3676 rq = cpu_rq(cpu);
3677 goto need_resched_nonpreemptible;
3678 }
3679 preempt_enable_no_resched();
3680 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3681 goto need_resched;
3682 }
3683 EXPORT_SYMBOL(schedule);
3684
3685 #ifdef CONFIG_PREEMPT
3686 /*
3687 * this is the entry point to schedule() from in-kernel preemption
3688 * off of preempt_enable. Kernel preemptions off return from interrupt
3689 * occur there and call schedule directly.
3690 */
3691 asmlinkage void __sched preempt_schedule(void)
3692 {
3693 struct thread_info *ti = current_thread_info();
3694 #ifdef CONFIG_PREEMPT_BKL
3695 struct task_struct *task = current;
3696 int saved_lock_depth;
3697 #endif
3698 /*
3699 * If there is a non-zero preempt_count or interrupts are disabled,
3700 * we do not want to preempt the current task. Just return..
3701 */
3702 if (likely(ti->preempt_count || irqs_disabled()))
3703 return;
3704
3705 do {
3706 add_preempt_count(PREEMPT_ACTIVE);
3707
3708 /*
3709 * We keep the big kernel semaphore locked, but we
3710 * clear ->lock_depth so that schedule() doesnt
3711 * auto-release the semaphore:
3712 */
3713 #ifdef CONFIG_PREEMPT_BKL
3714 saved_lock_depth = task->lock_depth;
3715 task->lock_depth = -1;
3716 #endif
3717 schedule();
3718 #ifdef CONFIG_PREEMPT_BKL
3719 task->lock_depth = saved_lock_depth;
3720 #endif
3721 sub_preempt_count(PREEMPT_ACTIVE);
3722
3723 /*
3724 * Check again in case we missed a preemption opportunity
3725 * between schedule and now.
3726 */
3727 barrier();
3728 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3729 }
3730 EXPORT_SYMBOL(preempt_schedule);
3731
3732 /*
3733 * this is the entry point to schedule() from kernel preemption
3734 * off of irq context.
3735 * Note, that this is called and return with irqs disabled. This will
3736 * protect us against recursive calling from irq.
3737 */
3738 asmlinkage void __sched preempt_schedule_irq(void)
3739 {
3740 struct thread_info *ti = current_thread_info();
3741 #ifdef CONFIG_PREEMPT_BKL
3742 struct task_struct *task = current;
3743 int saved_lock_depth;
3744 #endif
3745 /* Catch callers which need to be fixed */
3746 BUG_ON(ti->preempt_count || !irqs_disabled());
3747
3748 do {
3749 add_preempt_count(PREEMPT_ACTIVE);
3750
3751 /*
3752 * We keep the big kernel semaphore locked, but we
3753 * clear ->lock_depth so that schedule() doesnt
3754 * auto-release the semaphore:
3755 */
3756 #ifdef CONFIG_PREEMPT_BKL
3757 saved_lock_depth = task->lock_depth;
3758 task->lock_depth = -1;
3759 #endif
3760 local_irq_enable();
3761 schedule();
3762 local_irq_disable();
3763 #ifdef CONFIG_PREEMPT_BKL
3764 task->lock_depth = saved_lock_depth;
3765 #endif
3766 sub_preempt_count(PREEMPT_ACTIVE);
3767
3768 /*
3769 * Check again in case we missed a preemption opportunity
3770 * between schedule and now.
3771 */
3772 barrier();
3773 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3774 }
3775
3776 #endif /* CONFIG_PREEMPT */
3777
3778 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3779 void *key)
3780 {
3781 return try_to_wake_up(curr->private, mode, sync);
3782 }
3783 EXPORT_SYMBOL(default_wake_function);
3784
3785 /*
3786 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3787 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3788 * number) then we wake all the non-exclusive tasks and one exclusive task.
3789 *
3790 * There are circumstances in which we can try to wake a task which has already
3791 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3792 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3793 */
3794 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3795 int nr_exclusive, int sync, void *key)
3796 {
3797 wait_queue_t *curr, *next;
3798
3799 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3800 unsigned flags = curr->flags;
3801
3802 if (curr->func(curr, mode, sync, key) &&
3803 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3804 break;
3805 }
3806 }
3807
3808 /**
3809 * __wake_up - wake up threads blocked on a waitqueue.
3810 * @q: the waitqueue
3811 * @mode: which threads
3812 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3813 * @key: is directly passed to the wakeup function
3814 */
3815 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3816 int nr_exclusive, void *key)
3817 {
3818 unsigned long flags;
3819
3820 spin_lock_irqsave(&q->lock, flags);
3821 __wake_up_common(q, mode, nr_exclusive, 0, key);
3822 spin_unlock_irqrestore(&q->lock, flags);
3823 }
3824 EXPORT_SYMBOL(__wake_up);
3825
3826 /*
3827 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3828 */
3829 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3830 {
3831 __wake_up_common(q, mode, 1, 0, NULL);
3832 }
3833
3834 /**
3835 * __wake_up_sync - wake up threads blocked on a waitqueue.
3836 * @q: the waitqueue
3837 * @mode: which threads
3838 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3839 *
3840 * The sync wakeup differs that the waker knows that it will schedule
3841 * away soon, so while the target thread will be woken up, it will not
3842 * be migrated to another CPU - ie. the two threads are 'synchronized'
3843 * with each other. This can prevent needless bouncing between CPUs.
3844 *
3845 * On UP it can prevent extra preemption.
3846 */
3847 void fastcall
3848 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3849 {
3850 unsigned long flags;
3851 int sync = 1;
3852
3853 if (unlikely(!q))
3854 return;
3855
3856 if (unlikely(!nr_exclusive))
3857 sync = 0;
3858
3859 spin_lock_irqsave(&q->lock, flags);
3860 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3861 spin_unlock_irqrestore(&q->lock, flags);
3862 }
3863 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3864
3865 void complete(struct completion *x)
3866 {
3867 unsigned long flags;
3868
3869 spin_lock_irqsave(&x->wait.lock, flags);
3870 x->done++;
3871 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3872 1, 0, NULL);
3873 spin_unlock_irqrestore(&x->wait.lock, flags);
3874 }
3875 EXPORT_SYMBOL(complete);
3876
3877 void complete_all(struct completion *x)
3878 {
3879 unsigned long flags;
3880
3881 spin_lock_irqsave(&x->wait.lock, flags);
3882 x->done += UINT_MAX/2;
3883 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3884 0, 0, NULL);
3885 spin_unlock_irqrestore(&x->wait.lock, flags);
3886 }
3887 EXPORT_SYMBOL(complete_all);
3888
3889 static inline long __sched
3890 do_wait_for_common(struct completion *x, long timeout, int state)
3891 {
3892 if (!x->done) {
3893 DECLARE_WAITQUEUE(wait, current);
3894
3895 wait.flags |= WQ_FLAG_EXCLUSIVE;
3896 __add_wait_queue_tail(&x->wait, &wait);
3897 do {
3898 if (state == TASK_INTERRUPTIBLE &&
3899 signal_pending(current)) {
3900 __remove_wait_queue(&x->wait, &wait);
3901 return -ERESTARTSYS;
3902 }
3903 __set_current_state(state);
3904 spin_unlock_irq(&x->wait.lock);
3905 timeout = schedule_timeout(timeout);
3906 spin_lock_irq(&x->wait.lock);
3907 if (!timeout) {
3908 __remove_wait_queue(&x->wait, &wait);
3909 return timeout;
3910 }
3911 } while (!x->done);
3912 __remove_wait_queue(&x->wait, &wait);
3913 }
3914 x->done--;
3915 return timeout;
3916 }
3917
3918 static long __sched
3919 wait_for_common(struct completion *x, long timeout, int state)
3920 {
3921 might_sleep();
3922
3923 spin_lock_irq(&x->wait.lock);
3924 timeout = do_wait_for_common(x, timeout, state);
3925 spin_unlock_irq(&x->wait.lock);
3926 return timeout;
3927 }
3928
3929 void __sched wait_for_completion(struct completion *x)
3930 {
3931 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3932 }
3933 EXPORT_SYMBOL(wait_for_completion);
3934
3935 unsigned long __sched
3936 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3937 {
3938 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3939 }
3940 EXPORT_SYMBOL(wait_for_completion_timeout);
3941
3942 int __sched wait_for_completion_interruptible(struct completion *x)
3943 {
3944 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3945 if (t == -ERESTARTSYS)
3946 return t;
3947 return 0;
3948 }
3949 EXPORT_SYMBOL(wait_for_completion_interruptible);
3950
3951 unsigned long __sched
3952 wait_for_completion_interruptible_timeout(struct completion *x,
3953 unsigned long timeout)
3954 {
3955 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3956 }
3957 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3958
3959 static long __sched
3960 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3961 {
3962 unsigned long flags;
3963 wait_queue_t wait;
3964
3965 init_waitqueue_entry(&wait, current);
3966
3967 __set_current_state(state);
3968
3969 spin_lock_irqsave(&q->lock, flags);
3970 __add_wait_queue(q, &wait);
3971 spin_unlock(&q->lock);
3972 timeout = schedule_timeout(timeout);
3973 spin_lock_irq(&q->lock);
3974 __remove_wait_queue(q, &wait);
3975 spin_unlock_irqrestore(&q->lock, flags);
3976
3977 return timeout;
3978 }
3979
3980 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3981 {
3982 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3983 }
3984 EXPORT_SYMBOL(interruptible_sleep_on);
3985
3986 long __sched
3987 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3988 {
3989 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3990 }
3991 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3992
3993 void __sched sleep_on(wait_queue_head_t *q)
3994 {
3995 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3996 }
3997 EXPORT_SYMBOL(sleep_on);
3998
3999 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4000 {
4001 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4002 }
4003 EXPORT_SYMBOL(sleep_on_timeout);
4004
4005 #ifdef CONFIG_RT_MUTEXES
4006
4007 /*
4008 * rt_mutex_setprio - set the current priority of a task
4009 * @p: task
4010 * @prio: prio value (kernel-internal form)
4011 *
4012 * This function changes the 'effective' priority of a task. It does
4013 * not touch ->normal_prio like __setscheduler().
4014 *
4015 * Used by the rt_mutex code to implement priority inheritance logic.
4016 */
4017 void rt_mutex_setprio(struct task_struct *p, int prio)
4018 {
4019 unsigned long flags;
4020 int oldprio, on_rq, running;
4021 struct rq *rq;
4022
4023 BUG_ON(prio < 0 || prio > MAX_PRIO);
4024
4025 rq = task_rq_lock(p, &flags);
4026 update_rq_clock(rq);
4027
4028 oldprio = p->prio;
4029 on_rq = p->se.on_rq;
4030 running = task_current(rq, p);
4031 if (on_rq) {
4032 dequeue_task(rq, p, 0);
4033 if (running)
4034 p->sched_class->put_prev_task(rq, p);
4035 }
4036
4037 if (rt_prio(prio))
4038 p->sched_class = &rt_sched_class;
4039 else
4040 p->sched_class = &fair_sched_class;
4041
4042 p->prio = prio;
4043
4044 if (on_rq) {
4045 if (running)
4046 p->sched_class->set_curr_task(rq);
4047 enqueue_task(rq, p, 0);
4048 /*
4049 * Reschedule if we are currently running on this runqueue and
4050 * our priority decreased, or if we are not currently running on
4051 * this runqueue and our priority is higher than the current's
4052 */
4053 if (running) {
4054 if (p->prio > oldprio)
4055 resched_task(rq->curr);
4056 } else {
4057 check_preempt_curr(rq, p);
4058 }
4059 }
4060 task_rq_unlock(rq, &flags);
4061 }
4062
4063 #endif
4064
4065 void set_user_nice(struct task_struct *p, long nice)
4066 {
4067 int old_prio, delta, on_rq;
4068 unsigned long flags;
4069 struct rq *rq;
4070
4071 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4072 return;
4073 /*
4074 * We have to be careful, if called from sys_setpriority(),
4075 * the task might be in the middle of scheduling on another CPU.
4076 */
4077 rq = task_rq_lock(p, &flags);
4078 update_rq_clock(rq);
4079 /*
4080 * The RT priorities are set via sched_setscheduler(), but we still
4081 * allow the 'normal' nice value to be set - but as expected
4082 * it wont have any effect on scheduling until the task is
4083 * SCHED_FIFO/SCHED_RR:
4084 */
4085 if (task_has_rt_policy(p)) {
4086 p->static_prio = NICE_TO_PRIO(nice);
4087 goto out_unlock;
4088 }
4089 on_rq = p->se.on_rq;
4090 if (on_rq) {
4091 dequeue_task(rq, p, 0);
4092 dec_load(rq, p);
4093 }
4094
4095 p->static_prio = NICE_TO_PRIO(nice);
4096 set_load_weight(p);
4097 old_prio = p->prio;
4098 p->prio = effective_prio(p);
4099 delta = p->prio - old_prio;
4100
4101 if (on_rq) {
4102 enqueue_task(rq, p, 0);
4103 inc_load(rq, p);
4104 /*
4105 * If the task increased its priority or is running and
4106 * lowered its priority, then reschedule its CPU:
4107 */
4108 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4109 resched_task(rq->curr);
4110 }
4111 out_unlock:
4112 task_rq_unlock(rq, &flags);
4113 }
4114 EXPORT_SYMBOL(set_user_nice);
4115
4116 /*
4117 * can_nice - check if a task can reduce its nice value
4118 * @p: task
4119 * @nice: nice value
4120 */
4121 int can_nice(const struct task_struct *p, const int nice)
4122 {
4123 /* convert nice value [19,-20] to rlimit style value [1,40] */
4124 int nice_rlim = 20 - nice;
4125
4126 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4127 capable(CAP_SYS_NICE));
4128 }
4129
4130 #ifdef __ARCH_WANT_SYS_NICE
4131
4132 /*
4133 * sys_nice - change the priority of the current process.
4134 * @increment: priority increment
4135 *
4136 * sys_setpriority is a more generic, but much slower function that
4137 * does similar things.
4138 */
4139 asmlinkage long sys_nice(int increment)
4140 {
4141 long nice, retval;
4142
4143 /*
4144 * Setpriority might change our priority at the same moment.
4145 * We don't have to worry. Conceptually one call occurs first
4146 * and we have a single winner.
4147 */
4148 if (increment < -40)
4149 increment = -40;
4150 if (increment > 40)
4151 increment = 40;
4152
4153 nice = PRIO_TO_NICE(current->static_prio) + increment;
4154 if (nice < -20)
4155 nice = -20;
4156 if (nice > 19)
4157 nice = 19;
4158
4159 if (increment < 0 && !can_nice(current, nice))
4160 return -EPERM;
4161
4162 retval = security_task_setnice(current, nice);
4163 if (retval)
4164 return retval;
4165
4166 set_user_nice(current, nice);
4167 return 0;
4168 }
4169
4170 #endif
4171
4172 /**
4173 * task_prio - return the priority value of a given task.
4174 * @p: the task in question.
4175 *
4176 * This is the priority value as seen by users in /proc.
4177 * RT tasks are offset by -200. Normal tasks are centered
4178 * around 0, value goes from -16 to +15.
4179 */
4180 int task_prio(const struct task_struct *p)
4181 {
4182 return p->prio - MAX_RT_PRIO;
4183 }
4184
4185 /**
4186 * task_nice - return the nice value of a given task.
4187 * @p: the task in question.
4188 */
4189 int task_nice(const struct task_struct *p)
4190 {
4191 return TASK_NICE(p);
4192 }
4193 EXPORT_SYMBOL_GPL(task_nice);
4194
4195 /**
4196 * idle_cpu - is a given cpu idle currently?
4197 * @cpu: the processor in question.
4198 */
4199 int idle_cpu(int cpu)
4200 {
4201 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4202 }
4203
4204 /**
4205 * idle_task - return the idle task for a given cpu.
4206 * @cpu: the processor in question.
4207 */
4208 struct task_struct *idle_task(int cpu)
4209 {
4210 return cpu_rq(cpu)->idle;
4211 }
4212
4213 /**
4214 * find_process_by_pid - find a process with a matching PID value.
4215 * @pid: the pid in question.
4216 */
4217 static struct task_struct *find_process_by_pid(pid_t pid)
4218 {
4219 return pid ? find_task_by_vpid(pid) : current;
4220 }
4221
4222 /* Actually do priority change: must hold rq lock. */
4223 static void
4224 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4225 {
4226 BUG_ON(p->se.on_rq);
4227
4228 p->policy = policy;
4229 switch (p->policy) {
4230 case SCHED_NORMAL:
4231 case SCHED_BATCH:
4232 case SCHED_IDLE:
4233 p->sched_class = &fair_sched_class;
4234 break;
4235 case SCHED_FIFO:
4236 case SCHED_RR:
4237 p->sched_class = &rt_sched_class;
4238 break;
4239 }
4240
4241 p->rt_priority = prio;
4242 p->normal_prio = normal_prio(p);
4243 /* we are holding p->pi_lock already */
4244 p->prio = rt_mutex_getprio(p);
4245 set_load_weight(p);
4246 }
4247
4248 /**
4249 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4250 * @p: the task in question.
4251 * @policy: new policy.
4252 * @param: structure containing the new RT priority.
4253 *
4254 * NOTE that the task may be already dead.
4255 */
4256 int sched_setscheduler(struct task_struct *p, int policy,
4257 struct sched_param *param)
4258 {
4259 int retval, oldprio, oldpolicy = -1, on_rq, running;
4260 unsigned long flags;
4261 struct rq *rq;
4262
4263 /* may grab non-irq protected spin_locks */
4264 BUG_ON(in_interrupt());
4265 recheck:
4266 /* double check policy once rq lock held */
4267 if (policy < 0)
4268 policy = oldpolicy = p->policy;
4269 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4270 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4271 policy != SCHED_IDLE)
4272 return -EINVAL;
4273 /*
4274 * Valid priorities for SCHED_FIFO and SCHED_RR are
4275 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4276 * SCHED_BATCH and SCHED_IDLE is 0.
4277 */
4278 if (param->sched_priority < 0 ||
4279 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4280 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4281 return -EINVAL;
4282 if (rt_policy(policy) != (param->sched_priority != 0))
4283 return -EINVAL;
4284
4285 /*
4286 * Allow unprivileged RT tasks to decrease priority:
4287 */
4288 if (!capable(CAP_SYS_NICE)) {
4289 if (rt_policy(policy)) {
4290 unsigned long rlim_rtprio;
4291
4292 if (!lock_task_sighand(p, &flags))
4293 return -ESRCH;
4294 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4295 unlock_task_sighand(p, &flags);
4296
4297 /* can't set/change the rt policy */
4298 if (policy != p->policy && !rlim_rtprio)
4299 return -EPERM;
4300
4301 /* can't increase priority */
4302 if (param->sched_priority > p->rt_priority &&
4303 param->sched_priority > rlim_rtprio)
4304 return -EPERM;
4305 }
4306 /*
4307 * Like positive nice levels, dont allow tasks to
4308 * move out of SCHED_IDLE either:
4309 */
4310 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4311 return -EPERM;
4312
4313 /* can't change other user's priorities */
4314 if ((current->euid != p->euid) &&
4315 (current->euid != p->uid))
4316 return -EPERM;
4317 }
4318
4319 retval = security_task_setscheduler(p, policy, param);
4320 if (retval)
4321 return retval;
4322 /*
4323 * make sure no PI-waiters arrive (or leave) while we are
4324 * changing the priority of the task:
4325 */
4326 spin_lock_irqsave(&p->pi_lock, flags);
4327 /*
4328 * To be able to change p->policy safely, the apropriate
4329 * runqueue lock must be held.
4330 */
4331 rq = __task_rq_lock(p);
4332 /* recheck policy now with rq lock held */
4333 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4334 policy = oldpolicy = -1;
4335 __task_rq_unlock(rq);
4336 spin_unlock_irqrestore(&p->pi_lock, flags);
4337 goto recheck;
4338 }
4339 update_rq_clock(rq);
4340 on_rq = p->se.on_rq;
4341 running = task_current(rq, p);
4342 if (on_rq) {
4343 deactivate_task(rq, p, 0);
4344 if (running)
4345 p->sched_class->put_prev_task(rq, p);
4346 }
4347
4348 oldprio = p->prio;
4349 __setscheduler(rq, p, policy, param->sched_priority);
4350
4351 if (on_rq) {
4352 if (running)
4353 p->sched_class->set_curr_task(rq);
4354 activate_task(rq, p, 0);
4355 /*
4356 * Reschedule if we are currently running on this runqueue and
4357 * our priority decreased, or if we are not currently running on
4358 * this runqueue and our priority is higher than the current's
4359 */
4360 if (running) {
4361 if (p->prio > oldprio)
4362 resched_task(rq->curr);
4363 } else {
4364 check_preempt_curr(rq, p);
4365 }
4366 }
4367 __task_rq_unlock(rq);
4368 spin_unlock_irqrestore(&p->pi_lock, flags);
4369
4370 rt_mutex_adjust_pi(p);
4371
4372 return 0;
4373 }
4374 EXPORT_SYMBOL_GPL(sched_setscheduler);
4375
4376 static int
4377 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4378 {
4379 struct sched_param lparam;
4380 struct task_struct *p;
4381 int retval;
4382
4383 if (!param || pid < 0)
4384 return -EINVAL;
4385 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4386 return -EFAULT;
4387
4388 rcu_read_lock();
4389 retval = -ESRCH;
4390 p = find_process_by_pid(pid);
4391 if (p != NULL)
4392 retval = sched_setscheduler(p, policy, &lparam);
4393 rcu_read_unlock();
4394
4395 return retval;
4396 }
4397
4398 /**
4399 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4400 * @pid: the pid in question.
4401 * @policy: new policy.
4402 * @param: structure containing the new RT priority.
4403 */
4404 asmlinkage long
4405 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4406 {
4407 /* negative values for policy are not valid */
4408 if (policy < 0)
4409 return -EINVAL;
4410
4411 return do_sched_setscheduler(pid, policy, param);
4412 }
4413
4414 /**
4415 * sys_sched_setparam - set/change the RT priority of a thread
4416 * @pid: the pid in question.
4417 * @param: structure containing the new RT priority.
4418 */
4419 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4420 {
4421 return do_sched_setscheduler(pid, -1, param);
4422 }
4423
4424 /**
4425 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4426 * @pid: the pid in question.
4427 */
4428 asmlinkage long sys_sched_getscheduler(pid_t pid)
4429 {
4430 struct task_struct *p;
4431 int retval;
4432
4433 if (pid < 0)
4434 return -EINVAL;
4435
4436 retval = -ESRCH;
4437 read_lock(&tasklist_lock);
4438 p = find_process_by_pid(pid);
4439 if (p) {
4440 retval = security_task_getscheduler(p);
4441 if (!retval)
4442 retval = p->policy;
4443 }
4444 read_unlock(&tasklist_lock);
4445 return retval;
4446 }
4447
4448 /**
4449 * sys_sched_getscheduler - get the RT priority of a thread
4450 * @pid: the pid in question.
4451 * @param: structure containing the RT priority.
4452 */
4453 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4454 {
4455 struct sched_param lp;
4456 struct task_struct *p;
4457 int retval;
4458
4459 if (!param || pid < 0)
4460 return -EINVAL;
4461
4462 read_lock(&tasklist_lock);
4463 p = find_process_by_pid(pid);
4464 retval = -ESRCH;
4465 if (!p)
4466 goto out_unlock;
4467
4468 retval = security_task_getscheduler(p);
4469 if (retval)
4470 goto out_unlock;
4471
4472 lp.sched_priority = p->rt_priority;
4473 read_unlock(&tasklist_lock);
4474
4475 /*
4476 * This one might sleep, we cannot do it with a spinlock held ...
4477 */
4478 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4479
4480 return retval;
4481
4482 out_unlock:
4483 read_unlock(&tasklist_lock);
4484 return retval;
4485 }
4486
4487 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4488 {
4489 cpumask_t cpus_allowed;
4490 struct task_struct *p;
4491 int retval;
4492
4493 mutex_lock(&sched_hotcpu_mutex);
4494 read_lock(&tasklist_lock);
4495
4496 p = find_process_by_pid(pid);
4497 if (!p) {
4498 read_unlock(&tasklist_lock);
4499 mutex_unlock(&sched_hotcpu_mutex);
4500 return -ESRCH;
4501 }
4502
4503 /*
4504 * It is not safe to call set_cpus_allowed with the
4505 * tasklist_lock held. We will bump the task_struct's
4506 * usage count and then drop tasklist_lock.
4507 */
4508 get_task_struct(p);
4509 read_unlock(&tasklist_lock);
4510
4511 retval = -EPERM;
4512 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4513 !capable(CAP_SYS_NICE))
4514 goto out_unlock;
4515
4516 retval = security_task_setscheduler(p, 0, NULL);
4517 if (retval)
4518 goto out_unlock;
4519
4520 cpus_allowed = cpuset_cpus_allowed(p);
4521 cpus_and(new_mask, new_mask, cpus_allowed);
4522 again:
4523 retval = set_cpus_allowed(p, new_mask);
4524
4525 if (!retval) {
4526 cpus_allowed = cpuset_cpus_allowed(p);
4527 if (!cpus_subset(new_mask, cpus_allowed)) {
4528 /*
4529 * We must have raced with a concurrent cpuset
4530 * update. Just reset the cpus_allowed to the
4531 * cpuset's cpus_allowed
4532 */
4533 new_mask = cpus_allowed;
4534 goto again;
4535 }
4536 }
4537 out_unlock:
4538 put_task_struct(p);
4539 mutex_unlock(&sched_hotcpu_mutex);
4540 return retval;
4541 }
4542
4543 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4544 cpumask_t *new_mask)
4545 {
4546 if (len < sizeof(cpumask_t)) {
4547 memset(new_mask, 0, sizeof(cpumask_t));
4548 } else if (len > sizeof(cpumask_t)) {
4549 len = sizeof(cpumask_t);
4550 }
4551 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4552 }
4553
4554 /**
4555 * sys_sched_setaffinity - set the cpu affinity of a process
4556 * @pid: pid of the process
4557 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4558 * @user_mask_ptr: user-space pointer to the new cpu mask
4559 */
4560 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4561 unsigned long __user *user_mask_ptr)
4562 {
4563 cpumask_t new_mask;
4564 int retval;
4565
4566 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4567 if (retval)
4568 return retval;
4569
4570 return sched_setaffinity(pid, new_mask);
4571 }
4572
4573 /*
4574 * Represents all cpu's present in the system
4575 * In systems capable of hotplug, this map could dynamically grow
4576 * as new cpu's are detected in the system via any platform specific
4577 * method, such as ACPI for e.g.
4578 */
4579
4580 cpumask_t cpu_present_map __read_mostly;
4581 EXPORT_SYMBOL(cpu_present_map);
4582
4583 #ifndef CONFIG_SMP
4584 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4585 EXPORT_SYMBOL(cpu_online_map);
4586
4587 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4588 EXPORT_SYMBOL(cpu_possible_map);
4589 #endif
4590
4591 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4592 {
4593 struct task_struct *p;
4594 int retval;
4595
4596 mutex_lock(&sched_hotcpu_mutex);
4597 read_lock(&tasklist_lock);
4598
4599 retval = -ESRCH;
4600 p = find_process_by_pid(pid);
4601 if (!p)
4602 goto out_unlock;
4603
4604 retval = security_task_getscheduler(p);
4605 if (retval)
4606 goto out_unlock;
4607
4608 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4609
4610 out_unlock:
4611 read_unlock(&tasklist_lock);
4612 mutex_unlock(&sched_hotcpu_mutex);
4613
4614 return retval;
4615 }
4616
4617 /**
4618 * sys_sched_getaffinity - get the cpu affinity of a process
4619 * @pid: pid of the process
4620 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4621 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4622 */
4623 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4624 unsigned long __user *user_mask_ptr)
4625 {
4626 int ret;
4627 cpumask_t mask;
4628
4629 if (len < sizeof(cpumask_t))
4630 return -EINVAL;
4631
4632 ret = sched_getaffinity(pid, &mask);
4633 if (ret < 0)
4634 return ret;
4635
4636 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4637 return -EFAULT;
4638
4639 return sizeof(cpumask_t);
4640 }
4641
4642 /**
4643 * sys_sched_yield - yield the current processor to other threads.
4644 *
4645 * This function yields the current CPU to other tasks. If there are no
4646 * other threads running on this CPU then this function will return.
4647 */
4648 asmlinkage long sys_sched_yield(void)
4649 {
4650 struct rq *rq = this_rq_lock();
4651
4652 schedstat_inc(rq, yld_count);
4653 current->sched_class->yield_task(rq);
4654
4655 /*
4656 * Since we are going to call schedule() anyway, there's
4657 * no need to preempt or enable interrupts:
4658 */
4659 __release(rq->lock);
4660 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4661 _raw_spin_unlock(&rq->lock);
4662 preempt_enable_no_resched();
4663
4664 schedule();
4665
4666 return 0;
4667 }
4668
4669 static void __cond_resched(void)
4670 {
4671 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4672 __might_sleep(__FILE__, __LINE__);
4673 #endif
4674 /*
4675 * The BKS might be reacquired before we have dropped
4676 * PREEMPT_ACTIVE, which could trigger a second
4677 * cond_resched() call.
4678 */
4679 do {
4680 add_preempt_count(PREEMPT_ACTIVE);
4681 schedule();
4682 sub_preempt_count(PREEMPT_ACTIVE);
4683 } while (need_resched());
4684 }
4685
4686 int __sched cond_resched(void)
4687 {
4688 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4689 system_state == SYSTEM_RUNNING) {
4690 __cond_resched();
4691 return 1;
4692 }
4693 return 0;
4694 }
4695 EXPORT_SYMBOL(cond_resched);
4696
4697 /*
4698 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4699 * call schedule, and on return reacquire the lock.
4700 *
4701 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4702 * operations here to prevent schedule() from being called twice (once via
4703 * spin_unlock(), once by hand).
4704 */
4705 int cond_resched_lock(spinlock_t *lock)
4706 {
4707 int ret = 0;
4708
4709 if (need_lockbreak(lock)) {
4710 spin_unlock(lock);
4711 cpu_relax();
4712 ret = 1;
4713 spin_lock(lock);
4714 }
4715 if (need_resched() && system_state == SYSTEM_RUNNING) {
4716 spin_release(&lock->dep_map, 1, _THIS_IP_);
4717 _raw_spin_unlock(lock);
4718 preempt_enable_no_resched();
4719 __cond_resched();
4720 ret = 1;
4721 spin_lock(lock);
4722 }
4723 return ret;
4724 }
4725 EXPORT_SYMBOL(cond_resched_lock);
4726
4727 int __sched cond_resched_softirq(void)
4728 {
4729 BUG_ON(!in_softirq());
4730
4731 if (need_resched() && system_state == SYSTEM_RUNNING) {
4732 local_bh_enable();
4733 __cond_resched();
4734 local_bh_disable();
4735 return 1;
4736 }
4737 return 0;
4738 }
4739 EXPORT_SYMBOL(cond_resched_softirq);
4740
4741 /**
4742 * yield - yield the current processor to other threads.
4743 *
4744 * This is a shortcut for kernel-space yielding - it marks the
4745 * thread runnable and calls sys_sched_yield().
4746 */
4747 void __sched yield(void)
4748 {
4749 set_current_state(TASK_RUNNING);
4750 sys_sched_yield();
4751 }
4752 EXPORT_SYMBOL(yield);
4753
4754 /*
4755 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4756 * that process accounting knows that this is a task in IO wait state.
4757 *
4758 * But don't do that if it is a deliberate, throttling IO wait (this task
4759 * has set its backing_dev_info: the queue against which it should throttle)
4760 */
4761 void __sched io_schedule(void)
4762 {
4763 struct rq *rq = &__raw_get_cpu_var(runqueues);
4764
4765 delayacct_blkio_start();
4766 atomic_inc(&rq->nr_iowait);
4767 schedule();
4768 atomic_dec(&rq->nr_iowait);
4769 delayacct_blkio_end();
4770 }
4771 EXPORT_SYMBOL(io_schedule);
4772
4773 long __sched io_schedule_timeout(long timeout)
4774 {
4775 struct rq *rq = &__raw_get_cpu_var(runqueues);
4776 long ret;
4777
4778 delayacct_blkio_start();
4779 atomic_inc(&rq->nr_iowait);
4780 ret = schedule_timeout(timeout);
4781 atomic_dec(&rq->nr_iowait);
4782 delayacct_blkio_end();
4783 return ret;
4784 }
4785
4786 /**
4787 * sys_sched_get_priority_max - return maximum RT priority.
4788 * @policy: scheduling class.
4789 *
4790 * this syscall returns the maximum rt_priority that can be used
4791 * by a given scheduling class.
4792 */
4793 asmlinkage long sys_sched_get_priority_max(int policy)
4794 {
4795 int ret = -EINVAL;
4796
4797 switch (policy) {
4798 case SCHED_FIFO:
4799 case SCHED_RR:
4800 ret = MAX_USER_RT_PRIO-1;
4801 break;
4802 case SCHED_NORMAL:
4803 case SCHED_BATCH:
4804 case SCHED_IDLE:
4805 ret = 0;
4806 break;
4807 }
4808 return ret;
4809 }
4810
4811 /**
4812 * sys_sched_get_priority_min - return minimum RT priority.
4813 * @policy: scheduling class.
4814 *
4815 * this syscall returns the minimum rt_priority that can be used
4816 * by a given scheduling class.
4817 */
4818 asmlinkage long sys_sched_get_priority_min(int policy)
4819 {
4820 int ret = -EINVAL;
4821
4822 switch (policy) {
4823 case SCHED_FIFO:
4824 case SCHED_RR:
4825 ret = 1;
4826 break;
4827 case SCHED_NORMAL:
4828 case SCHED_BATCH:
4829 case SCHED_IDLE:
4830 ret = 0;
4831 }
4832 return ret;
4833 }
4834
4835 /**
4836 * sys_sched_rr_get_interval - return the default timeslice of a process.
4837 * @pid: pid of the process.
4838 * @interval: userspace pointer to the timeslice value.
4839 *
4840 * this syscall writes the default timeslice value of a given process
4841 * into the user-space timespec buffer. A value of '0' means infinity.
4842 */
4843 asmlinkage
4844 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4845 {
4846 struct task_struct *p;
4847 unsigned int time_slice;
4848 int retval;
4849 struct timespec t;
4850
4851 if (pid < 0)
4852 return -EINVAL;
4853
4854 retval = -ESRCH;
4855 read_lock(&tasklist_lock);
4856 p = find_process_by_pid(pid);
4857 if (!p)
4858 goto out_unlock;
4859
4860 retval = security_task_getscheduler(p);
4861 if (retval)
4862 goto out_unlock;
4863
4864 /*
4865 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4866 * tasks that are on an otherwise idle runqueue:
4867 */
4868 time_slice = 0;
4869 if (p->policy == SCHED_RR) {
4870 time_slice = DEF_TIMESLICE;
4871 } else {
4872 struct sched_entity *se = &p->se;
4873 unsigned long flags;
4874 struct rq *rq;
4875
4876 rq = task_rq_lock(p, &flags);
4877 if (rq->cfs.load.weight)
4878 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4879 task_rq_unlock(rq, &flags);
4880 }
4881 read_unlock(&tasklist_lock);
4882 jiffies_to_timespec(time_slice, &t);
4883 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4884 return retval;
4885
4886 out_unlock:
4887 read_unlock(&tasklist_lock);
4888 return retval;
4889 }
4890
4891 static const char stat_nam[] = "RSDTtZX";
4892
4893 static void show_task(struct task_struct *p)
4894 {
4895 unsigned long free = 0;
4896 unsigned state;
4897
4898 state = p->state ? __ffs(p->state) + 1 : 0;
4899 printk(KERN_INFO "%-13.13s %c", p->comm,
4900 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4901 #if BITS_PER_LONG == 32
4902 if (state == TASK_RUNNING)
4903 printk(KERN_CONT " running ");
4904 else
4905 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4906 #else
4907 if (state == TASK_RUNNING)
4908 printk(KERN_CONT " running task ");
4909 else
4910 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4911 #endif
4912 #ifdef CONFIG_DEBUG_STACK_USAGE
4913 {
4914 unsigned long *n = end_of_stack(p);
4915 while (!*n)
4916 n++;
4917 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4918 }
4919 #endif
4920 printk(KERN_CONT "%5lu %5d %6d\n", free,
4921 task_pid_nr(p), task_pid_nr(p->real_parent));
4922
4923 if (state != TASK_RUNNING)
4924 show_stack(p, NULL);
4925 }
4926
4927 void show_state_filter(unsigned long state_filter)
4928 {
4929 struct task_struct *g, *p;
4930
4931 #if BITS_PER_LONG == 32
4932 printk(KERN_INFO
4933 " task PC stack pid father\n");
4934 #else
4935 printk(KERN_INFO
4936 " task PC stack pid father\n");
4937 #endif
4938 read_lock(&tasklist_lock);
4939 do_each_thread(g, p) {
4940 /*
4941 * reset the NMI-timeout, listing all files on a slow
4942 * console might take alot of time:
4943 */
4944 touch_nmi_watchdog();
4945 if (!state_filter || (p->state & state_filter))
4946 show_task(p);
4947 } while_each_thread(g, p);
4948
4949 touch_all_softlockup_watchdogs();
4950
4951 #ifdef CONFIG_SCHED_DEBUG
4952 sysrq_sched_debug_show();
4953 #endif
4954 read_unlock(&tasklist_lock);
4955 /*
4956 * Only show locks if all tasks are dumped:
4957 */
4958 if (state_filter == -1)
4959 debug_show_all_locks();
4960 }
4961
4962 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4963 {
4964 idle->sched_class = &idle_sched_class;
4965 }
4966
4967 /**
4968 * init_idle - set up an idle thread for a given CPU
4969 * @idle: task in question
4970 * @cpu: cpu the idle task belongs to
4971 *
4972 * NOTE: this function does not set the idle thread's NEED_RESCHED
4973 * flag, to make booting more robust.
4974 */
4975 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4976 {
4977 struct rq *rq = cpu_rq(cpu);
4978 unsigned long flags;
4979
4980 __sched_fork(idle);
4981 idle->se.exec_start = sched_clock();
4982
4983 idle->prio = idle->normal_prio = MAX_PRIO;
4984 idle->cpus_allowed = cpumask_of_cpu(cpu);
4985 __set_task_cpu(idle, cpu);
4986
4987 spin_lock_irqsave(&rq->lock, flags);
4988 rq->curr = rq->idle = idle;
4989 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4990 idle->oncpu = 1;
4991 #endif
4992 spin_unlock_irqrestore(&rq->lock, flags);
4993
4994 /* Set the preempt count _outside_ the spinlocks! */
4995 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4996 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4997 #else
4998 task_thread_info(idle)->preempt_count = 0;
4999 #endif
5000 /*
5001 * The idle tasks have their own, simple scheduling class:
5002 */
5003 idle->sched_class = &idle_sched_class;
5004 }
5005
5006 /*
5007 * In a system that switches off the HZ timer nohz_cpu_mask
5008 * indicates which cpus entered this state. This is used
5009 * in the rcu update to wait only for active cpus. For system
5010 * which do not switch off the HZ timer nohz_cpu_mask should
5011 * always be CPU_MASK_NONE.
5012 */
5013 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5014
5015 /*
5016 * Increase the granularity value when there are more CPUs,
5017 * because with more CPUs the 'effective latency' as visible
5018 * to users decreases. But the relationship is not linear,
5019 * so pick a second-best guess by going with the log2 of the
5020 * number of CPUs.
5021 *
5022 * This idea comes from the SD scheduler of Con Kolivas:
5023 */
5024 static inline void sched_init_granularity(void)
5025 {
5026 unsigned int factor = 1 + ilog2(num_online_cpus());
5027 const unsigned long limit = 200000000;
5028
5029 sysctl_sched_min_granularity *= factor;
5030 if (sysctl_sched_min_granularity > limit)
5031 sysctl_sched_min_granularity = limit;
5032
5033 sysctl_sched_latency *= factor;
5034 if (sysctl_sched_latency > limit)
5035 sysctl_sched_latency = limit;
5036
5037 sysctl_sched_wakeup_granularity *= factor;
5038 sysctl_sched_batch_wakeup_granularity *= factor;
5039 }
5040
5041 #ifdef CONFIG_SMP
5042 /*
5043 * This is how migration works:
5044 *
5045 * 1) we queue a struct migration_req structure in the source CPU's
5046 * runqueue and wake up that CPU's migration thread.
5047 * 2) we down() the locked semaphore => thread blocks.
5048 * 3) migration thread wakes up (implicitly it forces the migrated
5049 * thread off the CPU)
5050 * 4) it gets the migration request and checks whether the migrated
5051 * task is still in the wrong runqueue.
5052 * 5) if it's in the wrong runqueue then the migration thread removes
5053 * it and puts it into the right queue.
5054 * 6) migration thread up()s the semaphore.
5055 * 7) we wake up and the migration is done.
5056 */
5057
5058 /*
5059 * Change a given task's CPU affinity. Migrate the thread to a
5060 * proper CPU and schedule it away if the CPU it's executing on
5061 * is removed from the allowed bitmask.
5062 *
5063 * NOTE: the caller must have a valid reference to the task, the
5064 * task must not exit() & deallocate itself prematurely. The
5065 * call is not atomic; no spinlocks may be held.
5066 */
5067 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5068 {
5069 struct migration_req req;
5070 unsigned long flags;
5071 struct rq *rq;
5072 int ret = 0;
5073
5074 rq = task_rq_lock(p, &flags);
5075 if (!cpus_intersects(new_mask, cpu_online_map)) {
5076 ret = -EINVAL;
5077 goto out;
5078 }
5079
5080 p->cpus_allowed = new_mask;
5081 /* Can the task run on the task's current CPU? If so, we're done */
5082 if (cpu_isset(task_cpu(p), new_mask))
5083 goto out;
5084
5085 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5086 /* Need help from migration thread: drop lock and wait. */
5087 task_rq_unlock(rq, &flags);
5088 wake_up_process(rq->migration_thread);
5089 wait_for_completion(&req.done);
5090 tlb_migrate_finish(p->mm);
5091 return 0;
5092 }
5093 out:
5094 task_rq_unlock(rq, &flags);
5095
5096 return ret;
5097 }
5098 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5099
5100 /*
5101 * Move (not current) task off this cpu, onto dest cpu. We're doing
5102 * this because either it can't run here any more (set_cpus_allowed()
5103 * away from this CPU, or CPU going down), or because we're
5104 * attempting to rebalance this task on exec (sched_exec).
5105 *
5106 * So we race with normal scheduler movements, but that's OK, as long
5107 * as the task is no longer on this CPU.
5108 *
5109 * Returns non-zero if task was successfully migrated.
5110 */
5111 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5112 {
5113 struct rq *rq_dest, *rq_src;
5114 int ret = 0, on_rq;
5115
5116 if (unlikely(cpu_is_offline(dest_cpu)))
5117 return ret;
5118
5119 rq_src = cpu_rq(src_cpu);
5120 rq_dest = cpu_rq(dest_cpu);
5121
5122 double_rq_lock(rq_src, rq_dest);
5123 /* Already moved. */
5124 if (task_cpu(p) != src_cpu)
5125 goto out;
5126 /* Affinity changed (again). */
5127 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5128 goto out;
5129
5130 on_rq = p->se.on_rq;
5131 if (on_rq)
5132 deactivate_task(rq_src, p, 0);
5133
5134 set_task_cpu(p, dest_cpu);
5135 if (on_rq) {
5136 activate_task(rq_dest, p, 0);
5137 check_preempt_curr(rq_dest, p);
5138 }
5139 ret = 1;
5140 out:
5141 double_rq_unlock(rq_src, rq_dest);
5142 return ret;
5143 }
5144
5145 /*
5146 * migration_thread - this is a highprio system thread that performs
5147 * thread migration by bumping thread off CPU then 'pushing' onto
5148 * another runqueue.
5149 */
5150 static int migration_thread(void *data)
5151 {
5152 int cpu = (long)data;
5153 struct rq *rq;
5154
5155 rq = cpu_rq(cpu);
5156 BUG_ON(rq->migration_thread != current);
5157
5158 set_current_state(TASK_INTERRUPTIBLE);
5159 while (!kthread_should_stop()) {
5160 struct migration_req *req;
5161 struct list_head *head;
5162
5163 spin_lock_irq(&rq->lock);
5164
5165 if (cpu_is_offline(cpu)) {
5166 spin_unlock_irq(&rq->lock);
5167 goto wait_to_die;
5168 }
5169
5170 if (rq->active_balance) {
5171 active_load_balance(rq, cpu);
5172 rq->active_balance = 0;
5173 }
5174
5175 head = &rq->migration_queue;
5176
5177 if (list_empty(head)) {
5178 spin_unlock_irq(&rq->lock);
5179 schedule();
5180 set_current_state(TASK_INTERRUPTIBLE);
5181 continue;
5182 }
5183 req = list_entry(head->next, struct migration_req, list);
5184 list_del_init(head->next);
5185
5186 spin_unlock(&rq->lock);
5187 __migrate_task(req->task, cpu, req->dest_cpu);
5188 local_irq_enable();
5189
5190 complete(&req->done);
5191 }
5192 __set_current_state(TASK_RUNNING);
5193 return 0;
5194
5195 wait_to_die:
5196 /* Wait for kthread_stop */
5197 set_current_state(TASK_INTERRUPTIBLE);
5198 while (!kthread_should_stop()) {
5199 schedule();
5200 set_current_state(TASK_INTERRUPTIBLE);
5201 }
5202 __set_current_state(TASK_RUNNING);
5203 return 0;
5204 }
5205
5206 #ifdef CONFIG_HOTPLUG_CPU
5207
5208 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5209 {
5210 int ret;
5211
5212 local_irq_disable();
5213 ret = __migrate_task(p, src_cpu, dest_cpu);
5214 local_irq_enable();
5215 return ret;
5216 }
5217
5218 /*
5219 * Figure out where task on dead CPU should go, use force if necessary.
5220 * NOTE: interrupts should be disabled by the caller
5221 */
5222 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5223 {
5224 unsigned long flags;
5225 cpumask_t mask;
5226 struct rq *rq;
5227 int dest_cpu;
5228
5229 do {
5230 /* On same node? */
5231 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5232 cpus_and(mask, mask, p->cpus_allowed);
5233 dest_cpu = any_online_cpu(mask);
5234
5235 /* On any allowed CPU? */
5236 if (dest_cpu == NR_CPUS)
5237 dest_cpu = any_online_cpu(p->cpus_allowed);
5238
5239 /* No more Mr. Nice Guy. */
5240 if (dest_cpu == NR_CPUS) {
5241 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5242 /*
5243 * Try to stay on the same cpuset, where the
5244 * current cpuset may be a subset of all cpus.
5245 * The cpuset_cpus_allowed_locked() variant of
5246 * cpuset_cpus_allowed() will not block. It must be
5247 * called within calls to cpuset_lock/cpuset_unlock.
5248 */
5249 rq = task_rq_lock(p, &flags);
5250 p->cpus_allowed = cpus_allowed;
5251 dest_cpu = any_online_cpu(p->cpus_allowed);
5252 task_rq_unlock(rq, &flags);
5253
5254 /*
5255 * Don't tell them about moving exiting tasks or
5256 * kernel threads (both mm NULL), since they never
5257 * leave kernel.
5258 */
5259 if (p->mm && printk_ratelimit()) {
5260 printk(KERN_INFO "process %d (%s) no "
5261 "longer affine to cpu%d\n",
5262 task_pid_nr(p), p->comm, dead_cpu);
5263 }
5264 }
5265 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5266 }
5267
5268 /*
5269 * While a dead CPU has no uninterruptible tasks queued at this point,
5270 * it might still have a nonzero ->nr_uninterruptible counter, because
5271 * for performance reasons the counter is not stricly tracking tasks to
5272 * their home CPUs. So we just add the counter to another CPU's counter,
5273 * to keep the global sum constant after CPU-down:
5274 */
5275 static void migrate_nr_uninterruptible(struct rq *rq_src)
5276 {
5277 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5278 unsigned long flags;
5279
5280 local_irq_save(flags);
5281 double_rq_lock(rq_src, rq_dest);
5282 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5283 rq_src->nr_uninterruptible = 0;
5284 double_rq_unlock(rq_src, rq_dest);
5285 local_irq_restore(flags);
5286 }
5287
5288 /* Run through task list and migrate tasks from the dead cpu. */
5289 static void migrate_live_tasks(int src_cpu)
5290 {
5291 struct task_struct *p, *t;
5292
5293 read_lock(&tasklist_lock);
5294
5295 do_each_thread(t, p) {
5296 if (p == current)
5297 continue;
5298
5299 if (task_cpu(p) == src_cpu)
5300 move_task_off_dead_cpu(src_cpu, p);
5301 } while_each_thread(t, p);
5302
5303 read_unlock(&tasklist_lock);
5304 }
5305
5306 /*
5307 * Schedules idle task to be the next runnable task on current CPU.
5308 * It does so by boosting its priority to highest possible.
5309 * Used by CPU offline code.
5310 */
5311 void sched_idle_next(void)
5312 {
5313 int this_cpu = smp_processor_id();
5314 struct rq *rq = cpu_rq(this_cpu);
5315 struct task_struct *p = rq->idle;
5316 unsigned long flags;
5317
5318 /* cpu has to be offline */
5319 BUG_ON(cpu_online(this_cpu));
5320
5321 /*
5322 * Strictly not necessary since rest of the CPUs are stopped by now
5323 * and interrupts disabled on the current cpu.
5324 */
5325 spin_lock_irqsave(&rq->lock, flags);
5326
5327 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5328
5329 update_rq_clock(rq);
5330 activate_task(rq, p, 0);
5331
5332 spin_unlock_irqrestore(&rq->lock, flags);
5333 }
5334
5335 /*
5336 * Ensures that the idle task is using init_mm right before its cpu goes
5337 * offline.
5338 */
5339 void idle_task_exit(void)
5340 {
5341 struct mm_struct *mm = current->active_mm;
5342
5343 BUG_ON(cpu_online(smp_processor_id()));
5344
5345 if (mm != &init_mm)
5346 switch_mm(mm, &init_mm, current);
5347 mmdrop(mm);
5348 }
5349
5350 /* called under rq->lock with disabled interrupts */
5351 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5352 {
5353 struct rq *rq = cpu_rq(dead_cpu);
5354
5355 /* Must be exiting, otherwise would be on tasklist. */
5356 BUG_ON(!p->exit_state);
5357
5358 /* Cannot have done final schedule yet: would have vanished. */
5359 BUG_ON(p->state == TASK_DEAD);
5360
5361 get_task_struct(p);
5362
5363 /*
5364 * Drop lock around migration; if someone else moves it,
5365 * that's OK. No task can be added to this CPU, so iteration is
5366 * fine.
5367 */
5368 spin_unlock_irq(&rq->lock);
5369 move_task_off_dead_cpu(dead_cpu, p);
5370 spin_lock_irq(&rq->lock);
5371
5372 put_task_struct(p);
5373 }
5374
5375 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5376 static void migrate_dead_tasks(unsigned int dead_cpu)
5377 {
5378 struct rq *rq = cpu_rq(dead_cpu);
5379 struct task_struct *next;
5380
5381 for ( ; ; ) {
5382 if (!rq->nr_running)
5383 break;
5384 update_rq_clock(rq);
5385 next = pick_next_task(rq, rq->curr);
5386 if (!next)
5387 break;
5388 migrate_dead(dead_cpu, next);
5389
5390 }
5391 }
5392 #endif /* CONFIG_HOTPLUG_CPU */
5393
5394 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5395
5396 static struct ctl_table sd_ctl_dir[] = {
5397 {
5398 .procname = "sched_domain",
5399 .mode = 0555,
5400 },
5401 {0, },
5402 };
5403
5404 static struct ctl_table sd_ctl_root[] = {
5405 {
5406 .ctl_name = CTL_KERN,
5407 .procname = "kernel",
5408 .mode = 0555,
5409 .child = sd_ctl_dir,
5410 },
5411 {0, },
5412 };
5413
5414 static struct ctl_table *sd_alloc_ctl_entry(int n)
5415 {
5416 struct ctl_table *entry =
5417 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5418
5419 return entry;
5420 }
5421
5422 static void sd_free_ctl_entry(struct ctl_table **tablep)
5423 {
5424 struct ctl_table *entry;
5425
5426 /*
5427 * In the intermediate directories, both the child directory and
5428 * procname are dynamically allocated and could fail but the mode
5429 * will always be set. In the lowest directory the names are
5430 * static strings and all have proc handlers.
5431 */
5432 for (entry = *tablep; entry->mode; entry++) {
5433 if (entry->child)
5434 sd_free_ctl_entry(&entry->child);
5435 if (entry->proc_handler == NULL)
5436 kfree(entry->procname);
5437 }
5438
5439 kfree(*tablep);
5440 *tablep = NULL;
5441 }
5442
5443 static void
5444 set_table_entry(struct ctl_table *entry,
5445 const char *procname, void *data, int maxlen,
5446 mode_t mode, proc_handler *proc_handler)
5447 {
5448 entry->procname = procname;
5449 entry->data = data;
5450 entry->maxlen = maxlen;
5451 entry->mode = mode;
5452 entry->proc_handler = proc_handler;
5453 }
5454
5455 static struct ctl_table *
5456 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5457 {
5458 struct ctl_table *table = sd_alloc_ctl_entry(12);
5459
5460 if (table == NULL)
5461 return NULL;
5462
5463 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5464 sizeof(long), 0644, proc_doulongvec_minmax);
5465 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5466 sizeof(long), 0644, proc_doulongvec_minmax);
5467 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5468 sizeof(int), 0644, proc_dointvec_minmax);
5469 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5470 sizeof(int), 0644, proc_dointvec_minmax);
5471 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5472 sizeof(int), 0644, proc_dointvec_minmax);
5473 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5474 sizeof(int), 0644, proc_dointvec_minmax);
5475 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5476 sizeof(int), 0644, proc_dointvec_minmax);
5477 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5478 sizeof(int), 0644, proc_dointvec_minmax);
5479 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5480 sizeof(int), 0644, proc_dointvec_minmax);
5481 set_table_entry(&table[9], "cache_nice_tries",
5482 &sd->cache_nice_tries,
5483 sizeof(int), 0644, proc_dointvec_minmax);
5484 set_table_entry(&table[10], "flags", &sd->flags,
5485 sizeof(int), 0644, proc_dointvec_minmax);
5486 /* &table[11] is terminator */
5487
5488 return table;
5489 }
5490
5491 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5492 {
5493 struct ctl_table *entry, *table;
5494 struct sched_domain *sd;
5495 int domain_num = 0, i;
5496 char buf[32];
5497
5498 for_each_domain(cpu, sd)
5499 domain_num++;
5500 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5501 if (table == NULL)
5502 return NULL;
5503
5504 i = 0;
5505 for_each_domain(cpu, sd) {
5506 snprintf(buf, 32, "domain%d", i);
5507 entry->procname = kstrdup(buf, GFP_KERNEL);
5508 entry->mode = 0555;
5509 entry->child = sd_alloc_ctl_domain_table(sd);
5510 entry++;
5511 i++;
5512 }
5513 return table;
5514 }
5515
5516 static struct ctl_table_header *sd_sysctl_header;
5517 static void register_sched_domain_sysctl(void)
5518 {
5519 int i, cpu_num = num_online_cpus();
5520 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5521 char buf[32];
5522
5523 WARN_ON(sd_ctl_dir[0].child);
5524 sd_ctl_dir[0].child = entry;
5525
5526 if (entry == NULL)
5527 return;
5528
5529 for_each_online_cpu(i) {
5530 snprintf(buf, 32, "cpu%d", i);
5531 entry->procname = kstrdup(buf, GFP_KERNEL);
5532 entry->mode = 0555;
5533 entry->child = sd_alloc_ctl_cpu_table(i);
5534 entry++;
5535 }
5536
5537 WARN_ON(sd_sysctl_header);
5538 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5539 }
5540
5541 /* may be called multiple times per register */
5542 static void unregister_sched_domain_sysctl(void)
5543 {
5544 if (sd_sysctl_header)
5545 unregister_sysctl_table(sd_sysctl_header);
5546 sd_sysctl_header = NULL;
5547 if (sd_ctl_dir[0].child)
5548 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5549 }
5550 #else
5551 static void register_sched_domain_sysctl(void)
5552 {
5553 }
5554 static void unregister_sched_domain_sysctl(void)
5555 {
5556 }
5557 #endif
5558
5559 /*
5560 * migration_call - callback that gets triggered when a CPU is added.
5561 * Here we can start up the necessary migration thread for the new CPU.
5562 */
5563 static int __cpuinit
5564 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5565 {
5566 struct task_struct *p;
5567 int cpu = (long)hcpu;
5568 unsigned long flags;
5569 struct rq *rq;
5570
5571 switch (action) {
5572 case CPU_LOCK_ACQUIRE:
5573 mutex_lock(&sched_hotcpu_mutex);
5574 break;
5575
5576 case CPU_UP_PREPARE:
5577 case CPU_UP_PREPARE_FROZEN:
5578 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5579 if (IS_ERR(p))
5580 return NOTIFY_BAD;
5581 kthread_bind(p, cpu);
5582 /* Must be high prio: stop_machine expects to yield to it. */
5583 rq = task_rq_lock(p, &flags);
5584 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5585 task_rq_unlock(rq, &flags);
5586 cpu_rq(cpu)->migration_thread = p;
5587 break;
5588
5589 case CPU_ONLINE:
5590 case CPU_ONLINE_FROZEN:
5591 /* Strictly unnecessary, as first user will wake it. */
5592 wake_up_process(cpu_rq(cpu)->migration_thread);
5593 break;
5594
5595 #ifdef CONFIG_HOTPLUG_CPU
5596 case CPU_UP_CANCELED:
5597 case CPU_UP_CANCELED_FROZEN:
5598 if (!cpu_rq(cpu)->migration_thread)
5599 break;
5600 /* Unbind it from offline cpu so it can run. Fall thru. */
5601 kthread_bind(cpu_rq(cpu)->migration_thread,
5602 any_online_cpu(cpu_online_map));
5603 kthread_stop(cpu_rq(cpu)->migration_thread);
5604 cpu_rq(cpu)->migration_thread = NULL;
5605 break;
5606
5607 case CPU_DEAD:
5608 case CPU_DEAD_FROZEN:
5609 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5610 migrate_live_tasks(cpu);
5611 rq = cpu_rq(cpu);
5612 kthread_stop(rq->migration_thread);
5613 rq->migration_thread = NULL;
5614 /* Idle task back to normal (off runqueue, low prio) */
5615 spin_lock_irq(&rq->lock);
5616 update_rq_clock(rq);
5617 deactivate_task(rq, rq->idle, 0);
5618 rq->idle->static_prio = MAX_PRIO;
5619 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5620 rq->idle->sched_class = &idle_sched_class;
5621 migrate_dead_tasks(cpu);
5622 spin_unlock_irq(&rq->lock);
5623 cpuset_unlock();
5624 migrate_nr_uninterruptible(rq);
5625 BUG_ON(rq->nr_running != 0);
5626
5627 /*
5628 * No need to migrate the tasks: it was best-effort if
5629 * they didn't take sched_hotcpu_mutex. Just wake up
5630 * the requestors.
5631 */
5632 spin_lock_irq(&rq->lock);
5633 while (!list_empty(&rq->migration_queue)) {
5634 struct migration_req *req;
5635
5636 req = list_entry(rq->migration_queue.next,
5637 struct migration_req, list);
5638 list_del_init(&req->list);
5639 complete(&req->done);
5640 }
5641 spin_unlock_irq(&rq->lock);
5642 break;
5643 #endif
5644 case CPU_LOCK_RELEASE:
5645 mutex_unlock(&sched_hotcpu_mutex);
5646 break;
5647 }
5648 return NOTIFY_OK;
5649 }
5650
5651 /* Register at highest priority so that task migration (migrate_all_tasks)
5652 * happens before everything else.
5653 */
5654 static struct notifier_block __cpuinitdata migration_notifier = {
5655 .notifier_call = migration_call,
5656 .priority = 10
5657 };
5658
5659 void __init migration_init(void)
5660 {
5661 void *cpu = (void *)(long)smp_processor_id();
5662 int err;
5663
5664 /* Start one for the boot CPU: */
5665 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5666 BUG_ON(err == NOTIFY_BAD);
5667 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5668 register_cpu_notifier(&migration_notifier);
5669 }
5670 #endif
5671
5672 #ifdef CONFIG_SMP
5673
5674 /* Number of possible processor ids */
5675 int nr_cpu_ids __read_mostly = NR_CPUS;
5676 EXPORT_SYMBOL(nr_cpu_ids);
5677
5678 #ifdef CONFIG_SCHED_DEBUG
5679
5680 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5681 {
5682 struct sched_group *group = sd->groups;
5683 cpumask_t groupmask;
5684 char str[NR_CPUS];
5685
5686 cpumask_scnprintf(str, NR_CPUS, sd->span);
5687 cpus_clear(groupmask);
5688
5689 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5690
5691 if (!(sd->flags & SD_LOAD_BALANCE)) {
5692 printk("does not load-balance\n");
5693 if (sd->parent)
5694 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5695 " has parent");
5696 return -1;
5697 }
5698
5699 printk(KERN_CONT "span %s\n", str);
5700
5701 if (!cpu_isset(cpu, sd->span)) {
5702 printk(KERN_ERR "ERROR: domain->span does not contain "
5703 "CPU%d\n", cpu);
5704 }
5705 if (!cpu_isset(cpu, group->cpumask)) {
5706 printk(KERN_ERR "ERROR: domain->groups does not contain"
5707 " CPU%d\n", cpu);
5708 }
5709
5710 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5711 do {
5712 if (!group) {
5713 printk("\n");
5714 printk(KERN_ERR "ERROR: group is NULL\n");
5715 break;
5716 }
5717
5718 if (!group->__cpu_power) {
5719 printk(KERN_CONT "\n");
5720 printk(KERN_ERR "ERROR: domain->cpu_power not "
5721 "set\n");
5722 break;
5723 }
5724
5725 if (!cpus_weight(group->cpumask)) {
5726 printk(KERN_CONT "\n");
5727 printk(KERN_ERR "ERROR: empty group\n");
5728 break;
5729 }
5730
5731 if (cpus_intersects(groupmask, group->cpumask)) {
5732 printk(KERN_CONT "\n");
5733 printk(KERN_ERR "ERROR: repeated CPUs\n");
5734 break;
5735 }
5736
5737 cpus_or(groupmask, groupmask, group->cpumask);
5738
5739 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5740 printk(KERN_CONT " %s", str);
5741
5742 group = group->next;
5743 } while (group != sd->groups);
5744 printk(KERN_CONT "\n");
5745
5746 if (!cpus_equal(sd->span, groupmask))
5747 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5748
5749 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5750 printk(KERN_ERR "ERROR: parent span is not a superset "
5751 "of domain->span\n");
5752 return 0;
5753 }
5754
5755 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5756 {
5757 int level = 0;
5758
5759 if (!sd) {
5760 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5761 return;
5762 }
5763
5764 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5765
5766 for (;;) {
5767 if (sched_domain_debug_one(sd, cpu, level))
5768 break;
5769 level++;
5770 sd = sd->parent;
5771 if (!sd)
5772 break;
5773 }
5774 }
5775 #else
5776 # define sched_domain_debug(sd, cpu) do { } while (0)
5777 #endif
5778
5779 static int sd_degenerate(struct sched_domain *sd)
5780 {
5781 if (cpus_weight(sd->span) == 1)
5782 return 1;
5783
5784 /* Following flags need at least 2 groups */
5785 if (sd->flags & (SD_LOAD_BALANCE |
5786 SD_BALANCE_NEWIDLE |
5787 SD_BALANCE_FORK |
5788 SD_BALANCE_EXEC |
5789 SD_SHARE_CPUPOWER |
5790 SD_SHARE_PKG_RESOURCES)) {
5791 if (sd->groups != sd->groups->next)
5792 return 0;
5793 }
5794
5795 /* Following flags don't use groups */
5796 if (sd->flags & (SD_WAKE_IDLE |
5797 SD_WAKE_AFFINE |
5798 SD_WAKE_BALANCE))
5799 return 0;
5800
5801 return 1;
5802 }
5803
5804 static int
5805 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5806 {
5807 unsigned long cflags = sd->flags, pflags = parent->flags;
5808
5809 if (sd_degenerate(parent))
5810 return 1;
5811
5812 if (!cpus_equal(sd->span, parent->span))
5813 return 0;
5814
5815 /* Does parent contain flags not in child? */
5816 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5817 if (cflags & SD_WAKE_AFFINE)
5818 pflags &= ~SD_WAKE_BALANCE;
5819 /* Flags needing groups don't count if only 1 group in parent */
5820 if (parent->groups == parent->groups->next) {
5821 pflags &= ~(SD_LOAD_BALANCE |
5822 SD_BALANCE_NEWIDLE |
5823 SD_BALANCE_FORK |
5824 SD_BALANCE_EXEC |
5825 SD_SHARE_CPUPOWER |
5826 SD_SHARE_PKG_RESOURCES);
5827 }
5828 if (~cflags & pflags)
5829 return 0;
5830
5831 return 1;
5832 }
5833
5834 /*
5835 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5836 * hold the hotplug lock.
5837 */
5838 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5839 {
5840 struct rq *rq = cpu_rq(cpu);
5841 struct sched_domain *tmp;
5842
5843 /* Remove the sched domains which do not contribute to scheduling. */
5844 for (tmp = sd; tmp; tmp = tmp->parent) {
5845 struct sched_domain *parent = tmp->parent;
5846 if (!parent)
5847 break;
5848 if (sd_parent_degenerate(tmp, parent)) {
5849 tmp->parent = parent->parent;
5850 if (parent->parent)
5851 parent->parent->child = tmp;
5852 }
5853 }
5854
5855 if (sd && sd_degenerate(sd)) {
5856 sd = sd->parent;
5857 if (sd)
5858 sd->child = NULL;
5859 }
5860
5861 sched_domain_debug(sd, cpu);
5862
5863 rcu_assign_pointer(rq->sd, sd);
5864 }
5865
5866 /* cpus with isolated domains */
5867 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5868
5869 /* Setup the mask of cpus configured for isolated domains */
5870 static int __init isolated_cpu_setup(char *str)
5871 {
5872 int ints[NR_CPUS], i;
5873
5874 str = get_options(str, ARRAY_SIZE(ints), ints);
5875 cpus_clear(cpu_isolated_map);
5876 for (i = 1; i <= ints[0]; i++)
5877 if (ints[i] < NR_CPUS)
5878 cpu_set(ints[i], cpu_isolated_map);
5879 return 1;
5880 }
5881
5882 __setup("isolcpus=", isolated_cpu_setup);
5883
5884 /*
5885 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5886 * to a function which identifies what group(along with sched group) a CPU
5887 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5888 * (due to the fact that we keep track of groups covered with a cpumask_t).
5889 *
5890 * init_sched_build_groups will build a circular linked list of the groups
5891 * covered by the given span, and will set each group's ->cpumask correctly,
5892 * and ->cpu_power to 0.
5893 */
5894 static void
5895 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5896 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5897 struct sched_group **sg))
5898 {
5899 struct sched_group *first = NULL, *last = NULL;
5900 cpumask_t covered = CPU_MASK_NONE;
5901 int i;
5902
5903 for_each_cpu_mask(i, span) {
5904 struct sched_group *sg;
5905 int group = group_fn(i, cpu_map, &sg);
5906 int j;
5907
5908 if (cpu_isset(i, covered))
5909 continue;
5910
5911 sg->cpumask = CPU_MASK_NONE;
5912 sg->__cpu_power = 0;
5913
5914 for_each_cpu_mask(j, span) {
5915 if (group_fn(j, cpu_map, NULL) != group)
5916 continue;
5917
5918 cpu_set(j, covered);
5919 cpu_set(j, sg->cpumask);
5920 }
5921 if (!first)
5922 first = sg;
5923 if (last)
5924 last->next = sg;
5925 last = sg;
5926 }
5927 last->next = first;
5928 }
5929
5930 #define SD_NODES_PER_DOMAIN 16
5931
5932 #ifdef CONFIG_NUMA
5933
5934 /**
5935 * find_next_best_node - find the next node to include in a sched_domain
5936 * @node: node whose sched_domain we're building
5937 * @used_nodes: nodes already in the sched_domain
5938 *
5939 * Find the next node to include in a given scheduling domain. Simply
5940 * finds the closest node not already in the @used_nodes map.
5941 *
5942 * Should use nodemask_t.
5943 */
5944 static int find_next_best_node(int node, unsigned long *used_nodes)
5945 {
5946 int i, n, val, min_val, best_node = 0;
5947
5948 min_val = INT_MAX;
5949
5950 for (i = 0; i < MAX_NUMNODES; i++) {
5951 /* Start at @node */
5952 n = (node + i) % MAX_NUMNODES;
5953
5954 if (!nr_cpus_node(n))
5955 continue;
5956
5957 /* Skip already used nodes */
5958 if (test_bit(n, used_nodes))
5959 continue;
5960
5961 /* Simple min distance search */
5962 val = node_distance(node, n);
5963
5964 if (val < min_val) {
5965 min_val = val;
5966 best_node = n;
5967 }
5968 }
5969
5970 set_bit(best_node, used_nodes);
5971 return best_node;
5972 }
5973
5974 /**
5975 * sched_domain_node_span - get a cpumask for a node's sched_domain
5976 * @node: node whose cpumask we're constructing
5977 * @size: number of nodes to include in this span
5978 *
5979 * Given a node, construct a good cpumask for its sched_domain to span. It
5980 * should be one that prevents unnecessary balancing, but also spreads tasks
5981 * out optimally.
5982 */
5983 static cpumask_t sched_domain_node_span(int node)
5984 {
5985 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5986 cpumask_t span, nodemask;
5987 int i;
5988
5989 cpus_clear(span);
5990 bitmap_zero(used_nodes, MAX_NUMNODES);
5991
5992 nodemask = node_to_cpumask(node);
5993 cpus_or(span, span, nodemask);
5994 set_bit(node, used_nodes);
5995
5996 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5997 int next_node = find_next_best_node(node, used_nodes);
5998
5999 nodemask = node_to_cpumask(next_node);
6000 cpus_or(span, span, nodemask);
6001 }
6002
6003 return span;
6004 }
6005 #endif
6006
6007 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6008
6009 /*
6010 * SMT sched-domains:
6011 */
6012 #ifdef CONFIG_SCHED_SMT
6013 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6014 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6015
6016 static int
6017 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6018 {
6019 if (sg)
6020 *sg = &per_cpu(sched_group_cpus, cpu);
6021 return cpu;
6022 }
6023 #endif
6024
6025 /*
6026 * multi-core sched-domains:
6027 */
6028 #ifdef CONFIG_SCHED_MC
6029 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6030 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6031 #endif
6032
6033 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6034 static int
6035 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6036 {
6037 int group;
6038 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6039 cpus_and(mask, mask, *cpu_map);
6040 group = first_cpu(mask);
6041 if (sg)
6042 *sg = &per_cpu(sched_group_core, group);
6043 return group;
6044 }
6045 #elif defined(CONFIG_SCHED_MC)
6046 static int
6047 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6048 {
6049 if (sg)
6050 *sg = &per_cpu(sched_group_core, cpu);
6051 return cpu;
6052 }
6053 #endif
6054
6055 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6056 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6057
6058 static int
6059 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6060 {
6061 int group;
6062 #ifdef CONFIG_SCHED_MC
6063 cpumask_t mask = cpu_coregroup_map(cpu);
6064 cpus_and(mask, mask, *cpu_map);
6065 group = first_cpu(mask);
6066 #elif defined(CONFIG_SCHED_SMT)
6067 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6068 cpus_and(mask, mask, *cpu_map);
6069 group = first_cpu(mask);
6070 #else
6071 group = cpu;
6072 #endif
6073 if (sg)
6074 *sg = &per_cpu(sched_group_phys, group);
6075 return group;
6076 }
6077
6078 #ifdef CONFIG_NUMA
6079 /*
6080 * The init_sched_build_groups can't handle what we want to do with node
6081 * groups, so roll our own. Now each node has its own list of groups which
6082 * gets dynamically allocated.
6083 */
6084 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6085 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6086
6087 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6088 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6089
6090 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6091 struct sched_group **sg)
6092 {
6093 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6094 int group;
6095
6096 cpus_and(nodemask, nodemask, *cpu_map);
6097 group = first_cpu(nodemask);
6098
6099 if (sg)
6100 *sg = &per_cpu(sched_group_allnodes, group);
6101 return group;
6102 }
6103
6104 static void init_numa_sched_groups_power(struct sched_group *group_head)
6105 {
6106 struct sched_group *sg = group_head;
6107 int j;
6108
6109 if (!sg)
6110 return;
6111 do {
6112 for_each_cpu_mask(j, sg->cpumask) {
6113 struct sched_domain *sd;
6114
6115 sd = &per_cpu(phys_domains, j);
6116 if (j != first_cpu(sd->groups->cpumask)) {
6117 /*
6118 * Only add "power" once for each
6119 * physical package.
6120 */
6121 continue;
6122 }
6123
6124 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6125 }
6126 sg = sg->next;
6127 } while (sg != group_head);
6128 }
6129 #endif
6130
6131 #ifdef CONFIG_NUMA
6132 /* Free memory allocated for various sched_group structures */
6133 static void free_sched_groups(const cpumask_t *cpu_map)
6134 {
6135 int cpu, i;
6136
6137 for_each_cpu_mask(cpu, *cpu_map) {
6138 struct sched_group **sched_group_nodes
6139 = sched_group_nodes_bycpu[cpu];
6140
6141 if (!sched_group_nodes)
6142 continue;
6143
6144 for (i = 0; i < MAX_NUMNODES; i++) {
6145 cpumask_t nodemask = node_to_cpumask(i);
6146 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6147
6148 cpus_and(nodemask, nodemask, *cpu_map);
6149 if (cpus_empty(nodemask))
6150 continue;
6151
6152 if (sg == NULL)
6153 continue;
6154 sg = sg->next;
6155 next_sg:
6156 oldsg = sg;
6157 sg = sg->next;
6158 kfree(oldsg);
6159 if (oldsg != sched_group_nodes[i])
6160 goto next_sg;
6161 }
6162 kfree(sched_group_nodes);
6163 sched_group_nodes_bycpu[cpu] = NULL;
6164 }
6165 }
6166 #else
6167 static void free_sched_groups(const cpumask_t *cpu_map)
6168 {
6169 }
6170 #endif
6171
6172 /*
6173 * Initialize sched groups cpu_power.
6174 *
6175 * cpu_power indicates the capacity of sched group, which is used while
6176 * distributing the load between different sched groups in a sched domain.
6177 * Typically cpu_power for all the groups in a sched domain will be same unless
6178 * there are asymmetries in the topology. If there are asymmetries, group
6179 * having more cpu_power will pickup more load compared to the group having
6180 * less cpu_power.
6181 *
6182 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6183 * the maximum number of tasks a group can handle in the presence of other idle
6184 * or lightly loaded groups in the same sched domain.
6185 */
6186 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6187 {
6188 struct sched_domain *child;
6189 struct sched_group *group;
6190
6191 WARN_ON(!sd || !sd->groups);
6192
6193 if (cpu != first_cpu(sd->groups->cpumask))
6194 return;
6195
6196 child = sd->child;
6197
6198 sd->groups->__cpu_power = 0;
6199
6200 /*
6201 * For perf policy, if the groups in child domain share resources
6202 * (for example cores sharing some portions of the cache hierarchy
6203 * or SMT), then set this domain groups cpu_power such that each group
6204 * can handle only one task, when there are other idle groups in the
6205 * same sched domain.
6206 */
6207 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6208 (child->flags &
6209 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6210 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6211 return;
6212 }
6213
6214 /*
6215 * add cpu_power of each child group to this groups cpu_power
6216 */
6217 group = child->groups;
6218 do {
6219 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6220 group = group->next;
6221 } while (group != child->groups);
6222 }
6223
6224 /*
6225 * Build sched domains for a given set of cpus and attach the sched domains
6226 * to the individual cpus
6227 */
6228 static int build_sched_domains(const cpumask_t *cpu_map)
6229 {
6230 int i;
6231 #ifdef CONFIG_NUMA
6232 struct sched_group **sched_group_nodes = NULL;
6233 int sd_allnodes = 0;
6234
6235 /*
6236 * Allocate the per-node list of sched groups
6237 */
6238 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6239 GFP_KERNEL);
6240 if (!sched_group_nodes) {
6241 printk(KERN_WARNING "Can not alloc sched group node list\n");
6242 return -ENOMEM;
6243 }
6244 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6245 #endif
6246
6247 /*
6248 * Set up domains for cpus specified by the cpu_map.
6249 */
6250 for_each_cpu_mask(i, *cpu_map) {
6251 struct sched_domain *sd = NULL, *p;
6252 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6253
6254 cpus_and(nodemask, nodemask, *cpu_map);
6255
6256 #ifdef CONFIG_NUMA
6257 if (cpus_weight(*cpu_map) >
6258 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6259 sd = &per_cpu(allnodes_domains, i);
6260 *sd = SD_ALLNODES_INIT;
6261 sd->span = *cpu_map;
6262 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6263 p = sd;
6264 sd_allnodes = 1;
6265 } else
6266 p = NULL;
6267
6268 sd = &per_cpu(node_domains, i);
6269 *sd = SD_NODE_INIT;
6270 sd->span = sched_domain_node_span(cpu_to_node(i));
6271 sd->parent = p;
6272 if (p)
6273 p->child = sd;
6274 cpus_and(sd->span, sd->span, *cpu_map);
6275 #endif
6276
6277 p = sd;
6278 sd = &per_cpu(phys_domains, i);
6279 *sd = SD_CPU_INIT;
6280 sd->span = nodemask;
6281 sd->parent = p;
6282 if (p)
6283 p->child = sd;
6284 cpu_to_phys_group(i, cpu_map, &sd->groups);
6285
6286 #ifdef CONFIG_SCHED_MC
6287 p = sd;
6288 sd = &per_cpu(core_domains, i);
6289 *sd = SD_MC_INIT;
6290 sd->span = cpu_coregroup_map(i);
6291 cpus_and(sd->span, sd->span, *cpu_map);
6292 sd->parent = p;
6293 p->child = sd;
6294 cpu_to_core_group(i, cpu_map, &sd->groups);
6295 #endif
6296
6297 #ifdef CONFIG_SCHED_SMT
6298 p = sd;
6299 sd = &per_cpu(cpu_domains, i);
6300 *sd = SD_SIBLING_INIT;
6301 sd->span = per_cpu(cpu_sibling_map, i);
6302 cpus_and(sd->span, sd->span, *cpu_map);
6303 sd->parent = p;
6304 p->child = sd;
6305 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6306 #endif
6307 }
6308
6309 #ifdef CONFIG_SCHED_SMT
6310 /* Set up CPU (sibling) groups */
6311 for_each_cpu_mask(i, *cpu_map) {
6312 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6313 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6314 if (i != first_cpu(this_sibling_map))
6315 continue;
6316
6317 init_sched_build_groups(this_sibling_map, cpu_map,
6318 &cpu_to_cpu_group);
6319 }
6320 #endif
6321
6322 #ifdef CONFIG_SCHED_MC
6323 /* Set up multi-core groups */
6324 for_each_cpu_mask(i, *cpu_map) {
6325 cpumask_t this_core_map = cpu_coregroup_map(i);
6326 cpus_and(this_core_map, this_core_map, *cpu_map);
6327 if (i != first_cpu(this_core_map))
6328 continue;
6329 init_sched_build_groups(this_core_map, cpu_map,
6330 &cpu_to_core_group);
6331 }
6332 #endif
6333
6334 /* Set up physical groups */
6335 for (i = 0; i < MAX_NUMNODES; i++) {
6336 cpumask_t nodemask = node_to_cpumask(i);
6337
6338 cpus_and(nodemask, nodemask, *cpu_map);
6339 if (cpus_empty(nodemask))
6340 continue;
6341
6342 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6343 }
6344
6345 #ifdef CONFIG_NUMA
6346 /* Set up node groups */
6347 if (sd_allnodes)
6348 init_sched_build_groups(*cpu_map, cpu_map,
6349 &cpu_to_allnodes_group);
6350
6351 for (i = 0; i < MAX_NUMNODES; i++) {
6352 /* Set up node groups */
6353 struct sched_group *sg, *prev;
6354 cpumask_t nodemask = node_to_cpumask(i);
6355 cpumask_t domainspan;
6356 cpumask_t covered = CPU_MASK_NONE;
6357 int j;
6358
6359 cpus_and(nodemask, nodemask, *cpu_map);
6360 if (cpus_empty(nodemask)) {
6361 sched_group_nodes[i] = NULL;
6362 continue;
6363 }
6364
6365 domainspan = sched_domain_node_span(i);
6366 cpus_and(domainspan, domainspan, *cpu_map);
6367
6368 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6369 if (!sg) {
6370 printk(KERN_WARNING "Can not alloc domain group for "
6371 "node %d\n", i);
6372 goto error;
6373 }
6374 sched_group_nodes[i] = sg;
6375 for_each_cpu_mask(j, nodemask) {
6376 struct sched_domain *sd;
6377
6378 sd = &per_cpu(node_domains, j);
6379 sd->groups = sg;
6380 }
6381 sg->__cpu_power = 0;
6382 sg->cpumask = nodemask;
6383 sg->next = sg;
6384 cpus_or(covered, covered, nodemask);
6385 prev = sg;
6386
6387 for (j = 0; j < MAX_NUMNODES; j++) {
6388 cpumask_t tmp, notcovered;
6389 int n = (i + j) % MAX_NUMNODES;
6390
6391 cpus_complement(notcovered, covered);
6392 cpus_and(tmp, notcovered, *cpu_map);
6393 cpus_and(tmp, tmp, domainspan);
6394 if (cpus_empty(tmp))
6395 break;
6396
6397 nodemask = node_to_cpumask(n);
6398 cpus_and(tmp, tmp, nodemask);
6399 if (cpus_empty(tmp))
6400 continue;
6401
6402 sg = kmalloc_node(sizeof(struct sched_group),
6403 GFP_KERNEL, i);
6404 if (!sg) {
6405 printk(KERN_WARNING
6406 "Can not alloc domain group for node %d\n", j);
6407 goto error;
6408 }
6409 sg->__cpu_power = 0;
6410 sg->cpumask = tmp;
6411 sg->next = prev->next;
6412 cpus_or(covered, covered, tmp);
6413 prev->next = sg;
6414 prev = sg;
6415 }
6416 }
6417 #endif
6418
6419 /* Calculate CPU power for physical packages and nodes */
6420 #ifdef CONFIG_SCHED_SMT
6421 for_each_cpu_mask(i, *cpu_map) {
6422 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6423
6424 init_sched_groups_power(i, sd);
6425 }
6426 #endif
6427 #ifdef CONFIG_SCHED_MC
6428 for_each_cpu_mask(i, *cpu_map) {
6429 struct sched_domain *sd = &per_cpu(core_domains, i);
6430
6431 init_sched_groups_power(i, sd);
6432 }
6433 #endif
6434
6435 for_each_cpu_mask(i, *cpu_map) {
6436 struct sched_domain *sd = &per_cpu(phys_domains, i);
6437
6438 init_sched_groups_power(i, sd);
6439 }
6440
6441 #ifdef CONFIG_NUMA
6442 for (i = 0; i < MAX_NUMNODES; i++)
6443 init_numa_sched_groups_power(sched_group_nodes[i]);
6444
6445 if (sd_allnodes) {
6446 struct sched_group *sg;
6447
6448 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6449 init_numa_sched_groups_power(sg);
6450 }
6451 #endif
6452
6453 /* Attach the domains */
6454 for_each_cpu_mask(i, *cpu_map) {
6455 struct sched_domain *sd;
6456 #ifdef CONFIG_SCHED_SMT
6457 sd = &per_cpu(cpu_domains, i);
6458 #elif defined(CONFIG_SCHED_MC)
6459 sd = &per_cpu(core_domains, i);
6460 #else
6461 sd = &per_cpu(phys_domains, i);
6462 #endif
6463 cpu_attach_domain(sd, i);
6464 }
6465
6466 return 0;
6467
6468 #ifdef CONFIG_NUMA
6469 error:
6470 free_sched_groups(cpu_map);
6471 return -ENOMEM;
6472 #endif
6473 }
6474
6475 static cpumask_t *doms_cur; /* current sched domains */
6476 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6477
6478 /*
6479 * Special case: If a kmalloc of a doms_cur partition (array of
6480 * cpumask_t) fails, then fallback to a single sched domain,
6481 * as determined by the single cpumask_t fallback_doms.
6482 */
6483 static cpumask_t fallback_doms;
6484
6485 /*
6486 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6487 * For now this just excludes isolated cpus, but could be used to
6488 * exclude other special cases in the future.
6489 */
6490 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6491 {
6492 int err;
6493
6494 ndoms_cur = 1;
6495 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6496 if (!doms_cur)
6497 doms_cur = &fallback_doms;
6498 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6499 err = build_sched_domains(doms_cur);
6500 register_sched_domain_sysctl();
6501
6502 return err;
6503 }
6504
6505 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6506 {
6507 free_sched_groups(cpu_map);
6508 }
6509
6510 /*
6511 * Detach sched domains from a group of cpus specified in cpu_map
6512 * These cpus will now be attached to the NULL domain
6513 */
6514 static void detach_destroy_domains(const cpumask_t *cpu_map)
6515 {
6516 int i;
6517
6518 unregister_sched_domain_sysctl();
6519
6520 for_each_cpu_mask(i, *cpu_map)
6521 cpu_attach_domain(NULL, i);
6522 synchronize_sched();
6523 arch_destroy_sched_domains(cpu_map);
6524 }
6525
6526 /*
6527 * Partition sched domains as specified by the 'ndoms_new'
6528 * cpumasks in the array doms_new[] of cpumasks. This compares
6529 * doms_new[] to the current sched domain partitioning, doms_cur[].
6530 * It destroys each deleted domain and builds each new domain.
6531 *
6532 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6533 * The masks don't intersect (don't overlap.) We should setup one
6534 * sched domain for each mask. CPUs not in any of the cpumasks will
6535 * not be load balanced. If the same cpumask appears both in the
6536 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6537 * it as it is.
6538 *
6539 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6540 * ownership of it and will kfree it when done with it. If the caller
6541 * failed the kmalloc call, then it can pass in doms_new == NULL,
6542 * and partition_sched_domains() will fallback to the single partition
6543 * 'fallback_doms'.
6544 *
6545 * Call with hotplug lock held
6546 */
6547 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6548 {
6549 int i, j;
6550
6551 /* always unregister in case we don't destroy any domains */
6552 unregister_sched_domain_sysctl();
6553
6554 if (doms_new == NULL) {
6555 ndoms_new = 1;
6556 doms_new = &fallback_doms;
6557 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6558 }
6559
6560 /* Destroy deleted domains */
6561 for (i = 0; i < ndoms_cur; i++) {
6562 for (j = 0; j < ndoms_new; j++) {
6563 if (cpus_equal(doms_cur[i], doms_new[j]))
6564 goto match1;
6565 }
6566 /* no match - a current sched domain not in new doms_new[] */
6567 detach_destroy_domains(doms_cur + i);
6568 match1:
6569 ;
6570 }
6571
6572 /* Build new domains */
6573 for (i = 0; i < ndoms_new; i++) {
6574 for (j = 0; j < ndoms_cur; j++) {
6575 if (cpus_equal(doms_new[i], doms_cur[j]))
6576 goto match2;
6577 }
6578 /* no match - add a new doms_new */
6579 build_sched_domains(doms_new + i);
6580 match2:
6581 ;
6582 }
6583
6584 /* Remember the new sched domains */
6585 if (doms_cur != &fallback_doms)
6586 kfree(doms_cur);
6587 doms_cur = doms_new;
6588 ndoms_cur = ndoms_new;
6589
6590 register_sched_domain_sysctl();
6591 }
6592
6593 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6594 static int arch_reinit_sched_domains(void)
6595 {
6596 int err;
6597
6598 mutex_lock(&sched_hotcpu_mutex);
6599 detach_destroy_domains(&cpu_online_map);
6600 err = arch_init_sched_domains(&cpu_online_map);
6601 mutex_unlock(&sched_hotcpu_mutex);
6602
6603 return err;
6604 }
6605
6606 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6607 {
6608 int ret;
6609
6610 if (buf[0] != '0' && buf[0] != '1')
6611 return -EINVAL;
6612
6613 if (smt)
6614 sched_smt_power_savings = (buf[0] == '1');
6615 else
6616 sched_mc_power_savings = (buf[0] == '1');
6617
6618 ret = arch_reinit_sched_domains();
6619
6620 return ret ? ret : count;
6621 }
6622
6623 #ifdef CONFIG_SCHED_MC
6624 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6625 {
6626 return sprintf(page, "%u\n", sched_mc_power_savings);
6627 }
6628 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6629 const char *buf, size_t count)
6630 {
6631 return sched_power_savings_store(buf, count, 0);
6632 }
6633 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6634 sched_mc_power_savings_store);
6635 #endif
6636
6637 #ifdef CONFIG_SCHED_SMT
6638 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6639 {
6640 return sprintf(page, "%u\n", sched_smt_power_savings);
6641 }
6642 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6643 const char *buf, size_t count)
6644 {
6645 return sched_power_savings_store(buf, count, 1);
6646 }
6647 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6648 sched_smt_power_savings_store);
6649 #endif
6650
6651 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6652 {
6653 int err = 0;
6654
6655 #ifdef CONFIG_SCHED_SMT
6656 if (smt_capable())
6657 err = sysfs_create_file(&cls->kset.kobj,
6658 &attr_sched_smt_power_savings.attr);
6659 #endif
6660 #ifdef CONFIG_SCHED_MC
6661 if (!err && mc_capable())
6662 err = sysfs_create_file(&cls->kset.kobj,
6663 &attr_sched_mc_power_savings.attr);
6664 #endif
6665 return err;
6666 }
6667 #endif
6668
6669 /*
6670 * Force a reinitialization of the sched domains hierarchy. The domains
6671 * and groups cannot be updated in place without racing with the balancing
6672 * code, so we temporarily attach all running cpus to the NULL domain
6673 * which will prevent rebalancing while the sched domains are recalculated.
6674 */
6675 static int update_sched_domains(struct notifier_block *nfb,
6676 unsigned long action, void *hcpu)
6677 {
6678 switch (action) {
6679 case CPU_UP_PREPARE:
6680 case CPU_UP_PREPARE_FROZEN:
6681 case CPU_DOWN_PREPARE:
6682 case CPU_DOWN_PREPARE_FROZEN:
6683 detach_destroy_domains(&cpu_online_map);
6684 return NOTIFY_OK;
6685
6686 case CPU_UP_CANCELED:
6687 case CPU_UP_CANCELED_FROZEN:
6688 case CPU_DOWN_FAILED:
6689 case CPU_DOWN_FAILED_FROZEN:
6690 case CPU_ONLINE:
6691 case CPU_ONLINE_FROZEN:
6692 case CPU_DEAD:
6693 case CPU_DEAD_FROZEN:
6694 /*
6695 * Fall through and re-initialise the domains.
6696 */
6697 break;
6698 default:
6699 return NOTIFY_DONE;
6700 }
6701
6702 /* The hotplug lock is already held by cpu_up/cpu_down */
6703 arch_init_sched_domains(&cpu_online_map);
6704
6705 return NOTIFY_OK;
6706 }
6707
6708 void __init sched_init_smp(void)
6709 {
6710 cpumask_t non_isolated_cpus;
6711
6712 mutex_lock(&sched_hotcpu_mutex);
6713 arch_init_sched_domains(&cpu_online_map);
6714 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6715 if (cpus_empty(non_isolated_cpus))
6716 cpu_set(smp_processor_id(), non_isolated_cpus);
6717 mutex_unlock(&sched_hotcpu_mutex);
6718 /* XXX: Theoretical race here - CPU may be hotplugged now */
6719 hotcpu_notifier(update_sched_domains, 0);
6720
6721 /* Move init over to a non-isolated CPU */
6722 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6723 BUG();
6724 sched_init_granularity();
6725 }
6726 #else
6727 void __init sched_init_smp(void)
6728 {
6729 sched_init_granularity();
6730 }
6731 #endif /* CONFIG_SMP */
6732
6733 int in_sched_functions(unsigned long addr)
6734 {
6735 return in_lock_functions(addr) ||
6736 (addr >= (unsigned long)__sched_text_start
6737 && addr < (unsigned long)__sched_text_end);
6738 }
6739
6740 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6741 {
6742 cfs_rq->tasks_timeline = RB_ROOT;
6743 #ifdef CONFIG_FAIR_GROUP_SCHED
6744 cfs_rq->rq = rq;
6745 #endif
6746 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6747 }
6748
6749 void __init sched_init(void)
6750 {
6751 int highest_cpu = 0;
6752 int i, j;
6753
6754 for_each_possible_cpu(i) {
6755 struct rt_prio_array *array;
6756 struct rq *rq;
6757
6758 rq = cpu_rq(i);
6759 spin_lock_init(&rq->lock);
6760 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6761 rq->nr_running = 0;
6762 rq->clock = 1;
6763 init_cfs_rq(&rq->cfs, rq);
6764 #ifdef CONFIG_FAIR_GROUP_SCHED
6765 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6766 {
6767 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6768 struct sched_entity *se =
6769 &per_cpu(init_sched_entity, i);
6770
6771 init_cfs_rq_p[i] = cfs_rq;
6772 init_cfs_rq(cfs_rq, rq);
6773 cfs_rq->tg = &init_task_group;
6774 list_add(&cfs_rq->leaf_cfs_rq_list,
6775 &rq->leaf_cfs_rq_list);
6776
6777 init_sched_entity_p[i] = se;
6778 se->cfs_rq = &rq->cfs;
6779 se->my_q = cfs_rq;
6780 se->load.weight = init_task_group_load;
6781 se->load.inv_weight =
6782 div64_64(1ULL<<32, init_task_group_load);
6783 se->parent = NULL;
6784 }
6785 init_task_group.shares = init_task_group_load;
6786 spin_lock_init(&init_task_group.lock);
6787 #endif
6788
6789 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6790 rq->cpu_load[j] = 0;
6791 #ifdef CONFIG_SMP
6792 rq->sd = NULL;
6793 rq->active_balance = 0;
6794 rq->next_balance = jiffies;
6795 rq->push_cpu = 0;
6796 rq->cpu = i;
6797 rq->migration_thread = NULL;
6798 INIT_LIST_HEAD(&rq->migration_queue);
6799 #endif
6800 atomic_set(&rq->nr_iowait, 0);
6801
6802 array = &rq->rt.active;
6803 for (j = 0; j < MAX_RT_PRIO; j++) {
6804 INIT_LIST_HEAD(array->queue + j);
6805 __clear_bit(j, array->bitmap);
6806 }
6807 highest_cpu = i;
6808 /* delimiter for bitsearch: */
6809 __set_bit(MAX_RT_PRIO, array->bitmap);
6810 }
6811
6812 set_load_weight(&init_task);
6813
6814 #ifdef CONFIG_PREEMPT_NOTIFIERS
6815 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6816 #endif
6817
6818 #ifdef CONFIG_SMP
6819 nr_cpu_ids = highest_cpu + 1;
6820 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6821 #endif
6822
6823 #ifdef CONFIG_RT_MUTEXES
6824 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6825 #endif
6826
6827 /*
6828 * The boot idle thread does lazy MMU switching as well:
6829 */
6830 atomic_inc(&init_mm.mm_count);
6831 enter_lazy_tlb(&init_mm, current);
6832
6833 /*
6834 * Make us the idle thread. Technically, schedule() should not be
6835 * called from this thread, however somewhere below it might be,
6836 * but because we are the idle thread, we just pick up running again
6837 * when this runqueue becomes "idle".
6838 */
6839 init_idle(current, smp_processor_id());
6840 /*
6841 * During early bootup we pretend to be a normal task:
6842 */
6843 current->sched_class = &fair_sched_class;
6844 }
6845
6846 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6847 void __might_sleep(char *file, int line)
6848 {
6849 #ifdef in_atomic
6850 static unsigned long prev_jiffy; /* ratelimiting */
6851
6852 if ((in_atomic() || irqs_disabled()) &&
6853 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6854 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6855 return;
6856 prev_jiffy = jiffies;
6857 printk(KERN_ERR "BUG: sleeping function called from invalid"
6858 " context at %s:%d\n", file, line);
6859 printk("in_atomic():%d, irqs_disabled():%d\n",
6860 in_atomic(), irqs_disabled());
6861 debug_show_held_locks(current);
6862 if (irqs_disabled())
6863 print_irqtrace_events(current);
6864 dump_stack();
6865 }
6866 #endif
6867 }
6868 EXPORT_SYMBOL(__might_sleep);
6869 #endif
6870
6871 #ifdef CONFIG_MAGIC_SYSRQ
6872 static void normalize_task(struct rq *rq, struct task_struct *p)
6873 {
6874 int on_rq;
6875 update_rq_clock(rq);
6876 on_rq = p->se.on_rq;
6877 if (on_rq)
6878 deactivate_task(rq, p, 0);
6879 __setscheduler(rq, p, SCHED_NORMAL, 0);
6880 if (on_rq) {
6881 activate_task(rq, p, 0);
6882 resched_task(rq->curr);
6883 }
6884 }
6885
6886 void normalize_rt_tasks(void)
6887 {
6888 struct task_struct *g, *p;
6889 unsigned long flags;
6890 struct rq *rq;
6891
6892 read_lock_irq(&tasklist_lock);
6893 do_each_thread(g, p) {
6894 /*
6895 * Only normalize user tasks:
6896 */
6897 if (!p->mm)
6898 continue;
6899
6900 p->se.exec_start = 0;
6901 #ifdef CONFIG_SCHEDSTATS
6902 p->se.wait_start = 0;
6903 p->se.sleep_start = 0;
6904 p->se.block_start = 0;
6905 #endif
6906 task_rq(p)->clock = 0;
6907
6908 if (!rt_task(p)) {
6909 /*
6910 * Renice negative nice level userspace
6911 * tasks back to 0:
6912 */
6913 if (TASK_NICE(p) < 0 && p->mm)
6914 set_user_nice(p, 0);
6915 continue;
6916 }
6917
6918 spin_lock_irqsave(&p->pi_lock, flags);
6919 rq = __task_rq_lock(p);
6920
6921 normalize_task(rq, p);
6922
6923 __task_rq_unlock(rq);
6924 spin_unlock_irqrestore(&p->pi_lock, flags);
6925 } while_each_thread(g, p);
6926
6927 read_unlock_irq(&tasklist_lock);
6928 }
6929
6930 #endif /* CONFIG_MAGIC_SYSRQ */
6931
6932 #ifdef CONFIG_IA64
6933 /*
6934 * These functions are only useful for the IA64 MCA handling.
6935 *
6936 * They can only be called when the whole system has been
6937 * stopped - every CPU needs to be quiescent, and no scheduling
6938 * activity can take place. Using them for anything else would
6939 * be a serious bug, and as a result, they aren't even visible
6940 * under any other configuration.
6941 */
6942
6943 /**
6944 * curr_task - return the current task for a given cpu.
6945 * @cpu: the processor in question.
6946 *
6947 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6948 */
6949 struct task_struct *curr_task(int cpu)
6950 {
6951 return cpu_curr(cpu);
6952 }
6953
6954 /**
6955 * set_curr_task - set the current task for a given cpu.
6956 * @cpu: the processor in question.
6957 * @p: the task pointer to set.
6958 *
6959 * Description: This function must only be used when non-maskable interrupts
6960 * are serviced on a separate stack. It allows the architecture to switch the
6961 * notion of the current task on a cpu in a non-blocking manner. This function
6962 * must be called with all CPU's synchronized, and interrupts disabled, the
6963 * and caller must save the original value of the current task (see
6964 * curr_task() above) and restore that value before reenabling interrupts and
6965 * re-starting the system.
6966 *
6967 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6968 */
6969 void set_curr_task(int cpu, struct task_struct *p)
6970 {
6971 cpu_curr(cpu) = p;
6972 }
6973
6974 #endif
6975
6976 #ifdef CONFIG_FAIR_GROUP_SCHED
6977
6978 /* allocate runqueue etc for a new task group */
6979 struct task_group *sched_create_group(void)
6980 {
6981 struct task_group *tg;
6982 struct cfs_rq *cfs_rq;
6983 struct sched_entity *se;
6984 struct rq *rq;
6985 int i;
6986
6987 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6988 if (!tg)
6989 return ERR_PTR(-ENOMEM);
6990
6991 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6992 if (!tg->cfs_rq)
6993 goto err;
6994 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6995 if (!tg->se)
6996 goto err;
6997
6998 for_each_possible_cpu(i) {
6999 rq = cpu_rq(i);
7000
7001 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7002 cpu_to_node(i));
7003 if (!cfs_rq)
7004 goto err;
7005
7006 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7007 cpu_to_node(i));
7008 if (!se)
7009 goto err;
7010
7011 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7012 memset(se, 0, sizeof(struct sched_entity));
7013
7014 tg->cfs_rq[i] = cfs_rq;
7015 init_cfs_rq(cfs_rq, rq);
7016 cfs_rq->tg = tg;
7017
7018 tg->se[i] = se;
7019 se->cfs_rq = &rq->cfs;
7020 se->my_q = cfs_rq;
7021 se->load.weight = NICE_0_LOAD;
7022 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7023 se->parent = NULL;
7024 }
7025
7026 for_each_possible_cpu(i) {
7027 rq = cpu_rq(i);
7028 cfs_rq = tg->cfs_rq[i];
7029 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7030 }
7031
7032 tg->shares = NICE_0_LOAD;
7033 spin_lock_init(&tg->lock);
7034
7035 return tg;
7036
7037 err:
7038 for_each_possible_cpu(i) {
7039 if (tg->cfs_rq)
7040 kfree(tg->cfs_rq[i]);
7041 if (tg->se)
7042 kfree(tg->se[i]);
7043 }
7044 kfree(tg->cfs_rq);
7045 kfree(tg->se);
7046 kfree(tg);
7047
7048 return ERR_PTR(-ENOMEM);
7049 }
7050
7051 /* rcu callback to free various structures associated with a task group */
7052 static void free_sched_group(struct rcu_head *rhp)
7053 {
7054 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7055 struct cfs_rq *cfs_rq;
7056 struct sched_entity *se;
7057 int i;
7058
7059 /* now it should be safe to free those cfs_rqs */
7060 for_each_possible_cpu(i) {
7061 cfs_rq = tg->cfs_rq[i];
7062 kfree(cfs_rq);
7063
7064 se = tg->se[i];
7065 kfree(se);
7066 }
7067
7068 kfree(tg->cfs_rq);
7069 kfree(tg->se);
7070 kfree(tg);
7071 }
7072
7073 /* Destroy runqueue etc associated with a task group */
7074 void sched_destroy_group(struct task_group *tg)
7075 {
7076 struct cfs_rq *cfs_rq = NULL;
7077 int i;
7078
7079 for_each_possible_cpu(i) {
7080 cfs_rq = tg->cfs_rq[i];
7081 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7082 }
7083
7084 BUG_ON(!cfs_rq);
7085
7086 /* wait for possible concurrent references to cfs_rqs complete */
7087 call_rcu(&tg->rcu, free_sched_group);
7088 }
7089
7090 /* change task's runqueue when it moves between groups.
7091 * The caller of this function should have put the task in its new group
7092 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7093 * reflect its new group.
7094 */
7095 void sched_move_task(struct task_struct *tsk)
7096 {
7097 int on_rq, running;
7098 unsigned long flags;
7099 struct rq *rq;
7100
7101 rq = task_rq_lock(tsk, &flags);
7102
7103 if (tsk->sched_class != &fair_sched_class) {
7104 set_task_cfs_rq(tsk, task_cpu(tsk));
7105 goto done;
7106 }
7107
7108 update_rq_clock(rq);
7109
7110 running = task_current(rq, tsk);
7111 on_rq = tsk->se.on_rq;
7112
7113 if (on_rq) {
7114 dequeue_task(rq, tsk, 0);
7115 if (unlikely(running))
7116 tsk->sched_class->put_prev_task(rq, tsk);
7117 }
7118
7119 set_task_cfs_rq(tsk, task_cpu(tsk));
7120
7121 if (on_rq) {
7122 if (unlikely(running))
7123 tsk->sched_class->set_curr_task(rq);
7124 enqueue_task(rq, tsk, 0);
7125 }
7126
7127 done:
7128 task_rq_unlock(rq, &flags);
7129 }
7130
7131 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7132 {
7133 struct cfs_rq *cfs_rq = se->cfs_rq;
7134 struct rq *rq = cfs_rq->rq;
7135 int on_rq;
7136
7137 spin_lock_irq(&rq->lock);
7138
7139 on_rq = se->on_rq;
7140 if (on_rq)
7141 dequeue_entity(cfs_rq, se, 0);
7142
7143 se->load.weight = shares;
7144 se->load.inv_weight = div64_64((1ULL<<32), shares);
7145
7146 if (on_rq)
7147 enqueue_entity(cfs_rq, se, 0);
7148
7149 spin_unlock_irq(&rq->lock);
7150 }
7151
7152 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7153 {
7154 int i;
7155
7156 /*
7157 * A weight of 0 or 1 can cause arithmetics problems.
7158 * (The default weight is 1024 - so there's no practical
7159 * limitation from this.)
7160 */
7161 if (shares < 2)
7162 shares = 2;
7163
7164 spin_lock(&tg->lock);
7165 if (tg->shares == shares)
7166 goto done;
7167
7168 tg->shares = shares;
7169 for_each_possible_cpu(i)
7170 set_se_shares(tg->se[i], shares);
7171
7172 done:
7173 spin_unlock(&tg->lock);
7174 return 0;
7175 }
7176
7177 unsigned long sched_group_shares(struct task_group *tg)
7178 {
7179 return tg->shares;
7180 }
7181
7182 #endif /* CONFIG_FAIR_GROUP_SCHED */
7183
7184 #ifdef CONFIG_FAIR_CGROUP_SCHED
7185
7186 /* return corresponding task_group object of a cgroup */
7187 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7188 {
7189 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7190 struct task_group, css);
7191 }
7192
7193 static struct cgroup_subsys_state *
7194 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7195 {
7196 struct task_group *tg;
7197
7198 if (!cgrp->parent) {
7199 /* This is early initialization for the top cgroup */
7200 init_task_group.css.cgroup = cgrp;
7201 return &init_task_group.css;
7202 }
7203
7204 /* we support only 1-level deep hierarchical scheduler atm */
7205 if (cgrp->parent->parent)
7206 return ERR_PTR(-EINVAL);
7207
7208 tg = sched_create_group();
7209 if (IS_ERR(tg))
7210 return ERR_PTR(-ENOMEM);
7211
7212 /* Bind the cgroup to task_group object we just created */
7213 tg->css.cgroup = cgrp;
7214
7215 return &tg->css;
7216 }
7217
7218 static void
7219 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7220 {
7221 struct task_group *tg = cgroup_tg(cgrp);
7222
7223 sched_destroy_group(tg);
7224 }
7225
7226 static int
7227 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7228 struct task_struct *tsk)
7229 {
7230 /* We don't support RT-tasks being in separate groups */
7231 if (tsk->sched_class != &fair_sched_class)
7232 return -EINVAL;
7233
7234 return 0;
7235 }
7236
7237 static void
7238 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7239 struct cgroup *old_cont, struct task_struct *tsk)
7240 {
7241 sched_move_task(tsk);
7242 }
7243
7244 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7245 u64 shareval)
7246 {
7247 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7248 }
7249
7250 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7251 {
7252 struct task_group *tg = cgroup_tg(cgrp);
7253
7254 return (u64) tg->shares;
7255 }
7256
7257 static struct cftype cpu_files[] = {
7258 {
7259 .name = "shares",
7260 .read_uint = cpu_shares_read_uint,
7261 .write_uint = cpu_shares_write_uint,
7262 },
7263 };
7264
7265 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7266 {
7267 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7268 }
7269
7270 struct cgroup_subsys cpu_cgroup_subsys = {
7271 .name = "cpu",
7272 .create = cpu_cgroup_create,
7273 .destroy = cpu_cgroup_destroy,
7274 .can_attach = cpu_cgroup_can_attach,
7275 .attach = cpu_cgroup_attach,
7276 .populate = cpu_cgroup_populate,
7277 .subsys_id = cpu_cgroup_subsys_id,
7278 .early_init = 1,
7279 };
7280
7281 #endif /* CONFIG_FAIR_CGROUP_SCHED */
7282
7283 #ifdef CONFIG_CGROUP_CPUACCT
7284
7285 /*
7286 * CPU accounting code for task groups.
7287 *
7288 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7289 * (balbir@in.ibm.com).
7290 */
7291
7292 /* track cpu usage of a group of tasks */
7293 struct cpuacct {
7294 struct cgroup_subsys_state css;
7295 /* cpuusage holds pointer to a u64-type object on every cpu */
7296 u64 *cpuusage;
7297 };
7298
7299 struct cgroup_subsys cpuacct_subsys;
7300
7301 /* return cpu accounting group corresponding to this container */
7302 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7303 {
7304 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7305 struct cpuacct, css);
7306 }
7307
7308 /* return cpu accounting group to which this task belongs */
7309 static inline struct cpuacct *task_ca(struct task_struct *tsk)
7310 {
7311 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7312 struct cpuacct, css);
7313 }
7314
7315 /* create a new cpu accounting group */
7316 static struct cgroup_subsys_state *cpuacct_create(
7317 struct cgroup_subsys *ss, struct cgroup *cont)
7318 {
7319 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7320
7321 if (!ca)
7322 return ERR_PTR(-ENOMEM);
7323
7324 ca->cpuusage = alloc_percpu(u64);
7325 if (!ca->cpuusage) {
7326 kfree(ca);
7327 return ERR_PTR(-ENOMEM);
7328 }
7329
7330 return &ca->css;
7331 }
7332
7333 /* destroy an existing cpu accounting group */
7334 static void
7335 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7336 {
7337 struct cpuacct *ca = cgroup_ca(cont);
7338
7339 free_percpu(ca->cpuusage);
7340 kfree(ca);
7341 }
7342
7343 /* return total cpu usage (in nanoseconds) of a group */
7344 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7345 {
7346 struct cpuacct *ca = cgroup_ca(cont);
7347 u64 totalcpuusage = 0;
7348 int i;
7349
7350 for_each_possible_cpu(i) {
7351 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7352
7353 /*
7354 * Take rq->lock to make 64-bit addition safe on 32-bit
7355 * platforms.
7356 */
7357 spin_lock_irq(&cpu_rq(i)->lock);
7358 totalcpuusage += *cpuusage;
7359 spin_unlock_irq(&cpu_rq(i)->lock);
7360 }
7361
7362 return totalcpuusage;
7363 }
7364
7365 static struct cftype files[] = {
7366 {
7367 .name = "usage",
7368 .read_uint = cpuusage_read,
7369 },
7370 };
7371
7372 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7373 {
7374 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7375 }
7376
7377 /*
7378 * charge this task's execution time to its accounting group.
7379 *
7380 * called with rq->lock held.
7381 */
7382 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7383 {
7384 struct cpuacct *ca;
7385
7386 if (!cpuacct_subsys.active)
7387 return;
7388
7389 ca = task_ca(tsk);
7390 if (ca) {
7391 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7392
7393 *cpuusage += cputime;
7394 }
7395 }
7396
7397 struct cgroup_subsys cpuacct_subsys = {
7398 .name = "cpuacct",
7399 .create = cpuacct_create,
7400 .destroy = cpuacct_destroy,
7401 .populate = cpuacct_populate,
7402 .subsys_id = cpuacct_subsys_id,
7403 };
7404 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.218751 seconds and 5 git commands to generate.