Merge branch 'for-2.6.33' of git://git.kernel.dk/linux-2.6-block
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 raw_spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 raw_spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_GROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
249
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
253
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275 };
276
277 #ifdef CONFIG_USER_SCHED
278
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
281 {
282 user->tg->uid = user->uid;
283 }
284
285 /*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290 struct task_group root_task_group;
291
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
298
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
306
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
309 */
310 static DEFINE_SPINLOCK(task_group_lock);
311
312 #ifdef CONFIG_FAIR_GROUP_SCHED
313
314 #ifdef CONFIG_SMP
315 static int root_task_group_empty(void)
316 {
317 return list_empty(&root_task_group.children);
318 }
319 #endif
320
321 #ifdef CONFIG_USER_SCHED
322 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323 #else /* !CONFIG_USER_SCHED */
324 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325 #endif /* CONFIG_USER_SCHED */
326
327 /*
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
335 #define MIN_SHARES 2
336 #define MAX_SHARES (1UL << 18)
337
338 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339 #endif
340
341 /* Default task group.
342 * Every task in system belong to this group at bootup.
343 */
344 struct task_group init_task_group;
345
346 /* return group to which a task belongs */
347 static inline struct task_group *task_group(struct task_struct *p)
348 {
349 struct task_group *tg;
350
351 #ifdef CONFIG_USER_SCHED
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
355 #elif defined(CONFIG_CGROUP_SCHED)
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
358 #else
359 tg = &init_task_group;
360 #endif
361 return tg;
362 }
363
364 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
366 {
367 #ifdef CONFIG_FAIR_GROUP_SCHED
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
370 #endif
371
372 #ifdef CONFIG_RT_GROUP_SCHED
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
375 #endif
376 }
377
378 #else
379
380 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 static inline struct task_group *task_group(struct task_struct *p)
382 {
383 return NULL;
384 }
385
386 #endif /* CONFIG_GROUP_SCHED */
387
388 /* CFS-related fields in a runqueue */
389 struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
393 u64 exec_clock;
394 u64 min_vruntime;
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
406 struct sched_entity *curr, *next, *last;
407
408 unsigned int nr_spread_over;
409
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
423
424 #ifdef CONFIG_SMP
425 /*
426 * the part of load.weight contributed by tasks
427 */
428 unsigned long task_weight;
429
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
437
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
447 #endif
448 #endif
449 };
450
451 /* Real-Time classes' related field in a runqueue: */
452 struct rt_rq {
453 struct rt_prio_array active;
454 unsigned long rt_nr_running;
455 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 struct {
457 int curr; /* highest queued rt task prio */
458 #ifdef CONFIG_SMP
459 int next; /* next highest */
460 #endif
461 } highest_prio;
462 #endif
463 #ifdef CONFIG_SMP
464 unsigned long rt_nr_migratory;
465 unsigned long rt_nr_total;
466 int overloaded;
467 struct plist_head pushable_tasks;
468 #endif
469 int rt_throttled;
470 u64 rt_time;
471 u64 rt_runtime;
472 /* Nests inside the rq lock: */
473 raw_spinlock_t rt_runtime_lock;
474
475 #ifdef CONFIG_RT_GROUP_SCHED
476 unsigned long rt_nr_boosted;
477
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482 #endif
483 };
484
485 #ifdef CONFIG_SMP
486
487 /*
488 * We add the notion of a root-domain which will be used to define per-domain
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
494 */
495 struct root_domain {
496 atomic_t refcount;
497 cpumask_var_t span;
498 cpumask_var_t online;
499
500 /*
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
504 cpumask_var_t rto_mask;
505 atomic_t rto_count;
506 #ifdef CONFIG_SMP
507 struct cpupri cpupri;
508 #endif
509 };
510
511 /*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
515 static struct root_domain def_root_domain;
516
517 #endif
518
519 /*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
526 struct rq {
527 /* runqueue lock: */
528 raw_spinlock_t lock;
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 #ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539 #endif
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
546 struct rt_rq rt;
547
548 #ifdef CONFIG_FAIR_GROUP_SCHED
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
551 #endif
552 #ifdef CONFIG_RT_GROUP_SCHED
553 struct list_head leaf_rt_rq_list;
554 #endif
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
564 struct task_struct *curr, *idle;
565 unsigned long next_balance;
566 struct mm_struct *prev_mm;
567
568 u64 clock;
569
570 atomic_t nr_iowait;
571
572 #ifdef CONFIG_SMP
573 struct root_domain *rd;
574 struct sched_domain *sd;
575
576 unsigned char idle_at_tick;
577 /* For active balancing */
578 int post_schedule;
579 int active_balance;
580 int push_cpu;
581 /* cpu of this runqueue: */
582 int cpu;
583 int online;
584
585 unsigned long avg_load_per_task;
586
587 struct task_struct *migration_thread;
588 struct list_head migration_queue;
589
590 u64 rt_avg;
591 u64 age_stamp;
592 u64 idle_stamp;
593 u64 avg_idle;
594 #endif
595
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
600 #ifdef CONFIG_SCHED_HRTICK
601 #ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604 #endif
605 struct hrtimer hrtick_timer;
606 #endif
607
608 #ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
613
614 /* sys_sched_yield() stats */
615 unsigned int yld_count;
616
617 /* schedule() stats */
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
621
622 /* try_to_wake_up() stats */
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
625
626 /* BKL stats */
627 unsigned int bkl_count;
628 #endif
629 };
630
631 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
632
633 static inline
634 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
635 {
636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
637 }
638
639 static inline int cpu_of(struct rq *rq)
640 {
641 #ifdef CONFIG_SMP
642 return rq->cpu;
643 #else
644 return 0;
645 #endif
646 }
647
648 /*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650 * See detach_destroy_domains: synchronize_sched for details.
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
655 #define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
657
658 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659 #define this_rq() (&__get_cpu_var(runqueues))
660 #define task_rq(p) cpu_rq(task_cpu(p))
661 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
662 #define raw_rq() (&__raw_get_cpu_var(runqueues))
663
664 inline void update_rq_clock(struct rq *rq)
665 {
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667 }
668
669 /*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672 #ifdef CONFIG_SCHED_DEBUG
673 # define const_debug __read_mostly
674 #else
675 # define const_debug static const
676 #endif
677
678 /**
679 * runqueue_is_locked
680 * @cpu: the processor in question.
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
686 int runqueue_is_locked(int cpu)
687 {
688 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
689 }
690
691 /*
692 * Debugging: various feature bits
693 */
694
695 #define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
698 enum {
699 #include "sched_features.h"
700 };
701
702 #undef SCHED_FEAT
703
704 #define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
707 const_debug unsigned int sysctl_sched_features =
708 #include "sched_features.h"
709 0;
710
711 #undef SCHED_FEAT
712
713 #ifdef CONFIG_SCHED_DEBUG
714 #define SCHED_FEAT(name, enabled) \
715 #name ,
716
717 static __read_mostly char *sched_feat_names[] = {
718 #include "sched_features.h"
719 NULL
720 };
721
722 #undef SCHED_FEAT
723
724 static int sched_feat_show(struct seq_file *m, void *v)
725 {
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
732 }
733 seq_puts(m, "\n");
734
735 return 0;
736 }
737
738 static ssize_t
739 sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741 {
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
755 if (strncmp(buf, "NO_", 3) == 0) {
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
775 *ppos += cnt;
776
777 return cnt;
778 }
779
780 static int sched_feat_open(struct inode *inode, struct file *filp)
781 {
782 return single_open(filp, sched_feat_show, NULL);
783 }
784
785 static const struct file_operations sched_feat_fops = {
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
791 };
792
793 static __init int sched_init_debug(void)
794 {
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799 }
800 late_initcall(sched_init_debug);
801
802 #endif
803
804 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
805
806 /*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810 const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
812 /*
813 * ratelimit for updating the group shares.
814 * default: 0.25ms
815 */
816 unsigned int sysctl_sched_shares_ratelimit = 250000;
817 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
818
819 /*
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
822 * default: 4
823 */
824 unsigned int sysctl_sched_shares_thresh = 4;
825
826 /*
827 * period over which we average the RT time consumption, measured
828 * in ms.
829 *
830 * default: 1s
831 */
832 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
833
834 /*
835 * period over which we measure -rt task cpu usage in us.
836 * default: 1s
837 */
838 unsigned int sysctl_sched_rt_period = 1000000;
839
840 static __read_mostly int scheduler_running;
841
842 /*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846 int sysctl_sched_rt_runtime = 950000;
847
848 static inline u64 global_rt_period(void)
849 {
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851 }
852
853 static inline u64 global_rt_runtime(void)
854 {
855 if (sysctl_sched_rt_runtime < 0)
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859 }
860
861 #ifndef prepare_arch_switch
862 # define prepare_arch_switch(next) do { } while (0)
863 #endif
864 #ifndef finish_arch_switch
865 # define finish_arch_switch(prev) do { } while (0)
866 #endif
867
868 static inline int task_current(struct rq *rq, struct task_struct *p)
869 {
870 return rq->curr == p;
871 }
872
873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
874 static inline int task_running(struct rq *rq, struct task_struct *p)
875 {
876 return task_current(rq, p);
877 }
878
879 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 {
881 }
882
883 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884 {
885 #ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888 #endif
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
896 raw_spin_unlock_irq(&rq->lock);
897 }
898
899 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
900 static inline int task_running(struct rq *rq, struct task_struct *p)
901 {
902 #ifdef CONFIG_SMP
903 return p->oncpu;
904 #else
905 return task_current(rq, p);
906 #endif
907 }
908
909 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 {
911 #ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918 #endif
919 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 raw_spin_unlock_irq(&rq->lock);
921 #else
922 raw_spin_unlock(&rq->lock);
923 #endif
924 }
925
926 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 {
928 #ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936 #endif
937 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
939 #endif
940 }
941 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
942
943 /*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
947 static inline struct rq *__task_rq_lock(struct task_struct *p)
948 __acquires(rq->lock)
949 {
950 for (;;) {
951 struct rq *rq = task_rq(p);
952 raw_spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
955 raw_spin_unlock(&rq->lock);
956 }
957 }
958
959 /*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
961 * interrupts. Note the ordering: we can safely lookup the task_rq without
962 * explicitly disabling preemption.
963 */
964 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
965 __acquires(rq->lock)
966 {
967 struct rq *rq;
968
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
972 raw_spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
975 raw_spin_unlock_irqrestore(&rq->lock, *flags);
976 }
977 }
978
979 void task_rq_unlock_wait(struct task_struct *p)
980 {
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 raw_spin_unlock_wait(&rq->lock);
985 }
986
987 static void __task_rq_unlock(struct rq *rq)
988 __releases(rq->lock)
989 {
990 raw_spin_unlock(&rq->lock);
991 }
992
993 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
994 __releases(rq->lock)
995 {
996 raw_spin_unlock_irqrestore(&rq->lock, *flags);
997 }
998
999 /*
1000 * this_rq_lock - lock this runqueue and disable interrupts.
1001 */
1002 static struct rq *this_rq_lock(void)
1003 __acquires(rq->lock)
1004 {
1005 struct rq *rq;
1006
1007 local_irq_disable();
1008 rq = this_rq();
1009 raw_spin_lock(&rq->lock);
1010
1011 return rq;
1012 }
1013
1014 #ifdef CONFIG_SCHED_HRTICK
1015 /*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
1025
1026 /*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031 static inline int hrtick_enabled(struct rq *rq)
1032 {
1033 if (!sched_feat(HRTICK))
1034 return 0;
1035 if (!cpu_active(cpu_of(rq)))
1036 return 0;
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038 }
1039
1040 static void hrtick_clear(struct rq *rq)
1041 {
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044 }
1045
1046 /*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051 {
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
1056 raw_spin_lock(&rq->lock);
1057 update_rq_clock(rq);
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 raw_spin_unlock(&rq->lock);
1060
1061 return HRTIMER_NORESTART;
1062 }
1063
1064 #ifdef CONFIG_SMP
1065 /*
1066 * called from hardirq (IPI) context
1067 */
1068 static void __hrtick_start(void *arg)
1069 {
1070 struct rq *rq = arg;
1071
1072 raw_spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 raw_spin_unlock(&rq->lock);
1076 }
1077
1078 /*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083 static void hrtick_start(struct rq *rq, u64 delay)
1084 {
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1087
1088 hrtimer_set_expires(timer, time);
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1094 rq->hrtick_csd_pending = 1;
1095 }
1096 }
1097
1098 static int
1099 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100 {
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
1110 hrtick_clear(cpu_rq(cpu));
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115 }
1116
1117 static __init void init_hrtick(void)
1118 {
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120 }
1121 #else
1122 /*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127 static void hrtick_start(struct rq *rq, u64 delay)
1128 {
1129 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1130 HRTIMER_MODE_REL_PINNED, 0);
1131 }
1132
1133 static inline void init_hrtick(void)
1134 {
1135 }
1136 #endif /* CONFIG_SMP */
1137
1138 static void init_rq_hrtick(struct rq *rq)
1139 {
1140 #ifdef CONFIG_SMP
1141 rq->hrtick_csd_pending = 0;
1142
1143 rq->hrtick_csd.flags = 0;
1144 rq->hrtick_csd.func = __hrtick_start;
1145 rq->hrtick_csd.info = rq;
1146 #endif
1147
1148 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1149 rq->hrtick_timer.function = hrtick;
1150 }
1151 #else /* CONFIG_SCHED_HRTICK */
1152 static inline void hrtick_clear(struct rq *rq)
1153 {
1154 }
1155
1156 static inline void init_rq_hrtick(struct rq *rq)
1157 {
1158 }
1159
1160 static inline void init_hrtick(void)
1161 {
1162 }
1163 #endif /* CONFIG_SCHED_HRTICK */
1164
1165 /*
1166 * resched_task - mark a task 'to be rescheduled now'.
1167 *
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1171 */
1172 #ifdef CONFIG_SMP
1173
1174 #ifndef tsk_is_polling
1175 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176 #endif
1177
1178 static void resched_task(struct task_struct *p)
1179 {
1180 int cpu;
1181
1182 assert_raw_spin_locked(&task_rq(p)->lock);
1183
1184 if (test_tsk_need_resched(p))
1185 return;
1186
1187 set_tsk_need_resched(p);
1188
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1197 }
1198
1199 static void resched_cpu(int cpu)
1200 {
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1203
1204 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1205 return;
1206 resched_task(cpu_curr(cpu));
1207 raw_spin_unlock_irqrestore(&rq->lock, flags);
1208 }
1209
1210 #ifdef CONFIG_NO_HZ
1211 /*
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1220 */
1221 void wake_up_idle_cpu(int cpu)
1222 {
1223 struct rq *rq = cpu_rq(cpu);
1224
1225 if (cpu == smp_processor_id())
1226 return;
1227
1228 /*
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1234 */
1235 if (rq->curr != rq->idle)
1236 return;
1237
1238 /*
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1242 */
1243 set_tsk_need_resched(rq->idle);
1244
1245 /* NEED_RESCHED must be visible before we test polling */
1246 smp_mb();
1247 if (!tsk_is_polling(rq->idle))
1248 smp_send_reschedule(cpu);
1249 }
1250 #endif /* CONFIG_NO_HZ */
1251
1252 static u64 sched_avg_period(void)
1253 {
1254 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1255 }
1256
1257 static void sched_avg_update(struct rq *rq)
1258 {
1259 s64 period = sched_avg_period();
1260
1261 while ((s64)(rq->clock - rq->age_stamp) > period) {
1262 rq->age_stamp += period;
1263 rq->rt_avg /= 2;
1264 }
1265 }
1266
1267 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1268 {
1269 rq->rt_avg += rt_delta;
1270 sched_avg_update(rq);
1271 }
1272
1273 #else /* !CONFIG_SMP */
1274 static void resched_task(struct task_struct *p)
1275 {
1276 assert_raw_spin_locked(&task_rq(p)->lock);
1277 set_tsk_need_resched(p);
1278 }
1279
1280 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281 {
1282 }
1283 #endif /* CONFIG_SMP */
1284
1285 #if BITS_PER_LONG == 32
1286 # define WMULT_CONST (~0UL)
1287 #else
1288 # define WMULT_CONST (1UL << 32)
1289 #endif
1290
1291 #define WMULT_SHIFT 32
1292
1293 /*
1294 * Shift right and round:
1295 */
1296 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1297
1298 /*
1299 * delta *= weight / lw
1300 */
1301 static unsigned long
1302 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1303 struct load_weight *lw)
1304 {
1305 u64 tmp;
1306
1307 if (!lw->inv_weight) {
1308 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1309 lw->inv_weight = 1;
1310 else
1311 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1312 / (lw->weight+1);
1313 }
1314
1315 tmp = (u64)delta_exec * weight;
1316 /*
1317 * Check whether we'd overflow the 64-bit multiplication:
1318 */
1319 if (unlikely(tmp > WMULT_CONST))
1320 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1321 WMULT_SHIFT/2);
1322 else
1323 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1324
1325 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1326 }
1327
1328 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1329 {
1330 lw->weight += inc;
1331 lw->inv_weight = 0;
1332 }
1333
1334 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1335 {
1336 lw->weight -= dec;
1337 lw->inv_weight = 0;
1338 }
1339
1340 /*
1341 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1342 * of tasks with abnormal "nice" values across CPUs the contribution that
1343 * each task makes to its run queue's load is weighted according to its
1344 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1345 * scaled version of the new time slice allocation that they receive on time
1346 * slice expiry etc.
1347 */
1348
1349 #define WEIGHT_IDLEPRIO 3
1350 #define WMULT_IDLEPRIO 1431655765
1351
1352 /*
1353 * Nice levels are multiplicative, with a gentle 10% change for every
1354 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1355 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1356 * that remained on nice 0.
1357 *
1358 * The "10% effect" is relative and cumulative: from _any_ nice level,
1359 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1360 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1361 * If a task goes up by ~10% and another task goes down by ~10% then
1362 * the relative distance between them is ~25%.)
1363 */
1364 static const int prio_to_weight[40] = {
1365 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1366 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1367 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1368 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1369 /* 0 */ 1024, 820, 655, 526, 423,
1370 /* 5 */ 335, 272, 215, 172, 137,
1371 /* 10 */ 110, 87, 70, 56, 45,
1372 /* 15 */ 36, 29, 23, 18, 15,
1373 };
1374
1375 /*
1376 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1377 *
1378 * In cases where the weight does not change often, we can use the
1379 * precalculated inverse to speed up arithmetics by turning divisions
1380 * into multiplications:
1381 */
1382 static const u32 prio_to_wmult[40] = {
1383 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1384 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1385 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1386 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1387 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1388 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1389 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1390 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1391 };
1392
1393 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1394
1395 /*
1396 * runqueue iterator, to support SMP load-balancing between different
1397 * scheduling classes, without having to expose their internal data
1398 * structures to the load-balancing proper:
1399 */
1400 struct rq_iterator {
1401 void *arg;
1402 struct task_struct *(*start)(void *);
1403 struct task_struct *(*next)(void *);
1404 };
1405
1406 #ifdef CONFIG_SMP
1407 static unsigned long
1408 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 unsigned long max_load_move, struct sched_domain *sd,
1410 enum cpu_idle_type idle, int *all_pinned,
1411 int *this_best_prio, struct rq_iterator *iterator);
1412
1413 static int
1414 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 struct sched_domain *sd, enum cpu_idle_type idle,
1416 struct rq_iterator *iterator);
1417 #endif
1418
1419 /* Time spent by the tasks of the cpu accounting group executing in ... */
1420 enum cpuacct_stat_index {
1421 CPUACCT_STAT_USER, /* ... user mode */
1422 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1423
1424 CPUACCT_STAT_NSTATS,
1425 };
1426
1427 #ifdef CONFIG_CGROUP_CPUACCT
1428 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1429 static void cpuacct_update_stats(struct task_struct *tsk,
1430 enum cpuacct_stat_index idx, cputime_t val);
1431 #else
1432 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1433 static inline void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val) {}
1435 #endif
1436
1437 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1438 {
1439 update_load_add(&rq->load, load);
1440 }
1441
1442 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1443 {
1444 update_load_sub(&rq->load, load);
1445 }
1446
1447 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1448 typedef int (*tg_visitor)(struct task_group *, void *);
1449
1450 /*
1451 * Iterate the full tree, calling @down when first entering a node and @up when
1452 * leaving it for the final time.
1453 */
1454 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1455 {
1456 struct task_group *parent, *child;
1457 int ret;
1458
1459 rcu_read_lock();
1460 parent = &root_task_group;
1461 down:
1462 ret = (*down)(parent, data);
1463 if (ret)
1464 goto out_unlock;
1465 list_for_each_entry_rcu(child, &parent->children, siblings) {
1466 parent = child;
1467 goto down;
1468
1469 up:
1470 continue;
1471 }
1472 ret = (*up)(parent, data);
1473 if (ret)
1474 goto out_unlock;
1475
1476 child = parent;
1477 parent = parent->parent;
1478 if (parent)
1479 goto up;
1480 out_unlock:
1481 rcu_read_unlock();
1482
1483 return ret;
1484 }
1485
1486 static int tg_nop(struct task_group *tg, void *data)
1487 {
1488 return 0;
1489 }
1490 #endif
1491
1492 #ifdef CONFIG_SMP
1493 /* Used instead of source_load when we know the type == 0 */
1494 static unsigned long weighted_cpuload(const int cpu)
1495 {
1496 return cpu_rq(cpu)->load.weight;
1497 }
1498
1499 /*
1500 * Return a low guess at the load of a migration-source cpu weighted
1501 * according to the scheduling class and "nice" value.
1502 *
1503 * We want to under-estimate the load of migration sources, to
1504 * balance conservatively.
1505 */
1506 static unsigned long source_load(int cpu, int type)
1507 {
1508 struct rq *rq = cpu_rq(cpu);
1509 unsigned long total = weighted_cpuload(cpu);
1510
1511 if (type == 0 || !sched_feat(LB_BIAS))
1512 return total;
1513
1514 return min(rq->cpu_load[type-1], total);
1515 }
1516
1517 /*
1518 * Return a high guess at the load of a migration-target cpu weighted
1519 * according to the scheduling class and "nice" value.
1520 */
1521 static unsigned long target_load(int cpu, int type)
1522 {
1523 struct rq *rq = cpu_rq(cpu);
1524 unsigned long total = weighted_cpuload(cpu);
1525
1526 if (type == 0 || !sched_feat(LB_BIAS))
1527 return total;
1528
1529 return max(rq->cpu_load[type-1], total);
1530 }
1531
1532 static struct sched_group *group_of(int cpu)
1533 {
1534 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1535
1536 if (!sd)
1537 return NULL;
1538
1539 return sd->groups;
1540 }
1541
1542 static unsigned long power_of(int cpu)
1543 {
1544 struct sched_group *group = group_of(cpu);
1545
1546 if (!group)
1547 return SCHED_LOAD_SCALE;
1548
1549 return group->cpu_power;
1550 }
1551
1552 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1553
1554 static unsigned long cpu_avg_load_per_task(int cpu)
1555 {
1556 struct rq *rq = cpu_rq(cpu);
1557 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1558
1559 if (nr_running)
1560 rq->avg_load_per_task = rq->load.weight / nr_running;
1561 else
1562 rq->avg_load_per_task = 0;
1563
1564 return rq->avg_load_per_task;
1565 }
1566
1567 #ifdef CONFIG_FAIR_GROUP_SCHED
1568
1569 static __read_mostly unsigned long *update_shares_data;
1570
1571 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1572
1573 /*
1574 * Calculate and set the cpu's group shares.
1575 */
1576 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1577 unsigned long sd_shares,
1578 unsigned long sd_rq_weight,
1579 unsigned long *usd_rq_weight)
1580 {
1581 unsigned long shares, rq_weight;
1582 int boost = 0;
1583
1584 rq_weight = usd_rq_weight[cpu];
1585 if (!rq_weight) {
1586 boost = 1;
1587 rq_weight = NICE_0_LOAD;
1588 }
1589
1590 /*
1591 * \Sum_j shares_j * rq_weight_i
1592 * shares_i = -----------------------------
1593 * \Sum_j rq_weight_j
1594 */
1595 shares = (sd_shares * rq_weight) / sd_rq_weight;
1596 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1597
1598 if (abs(shares - tg->se[cpu]->load.weight) >
1599 sysctl_sched_shares_thresh) {
1600 struct rq *rq = cpu_rq(cpu);
1601 unsigned long flags;
1602
1603 raw_spin_lock_irqsave(&rq->lock, flags);
1604 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1605 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1606 __set_se_shares(tg->se[cpu], shares);
1607 raw_spin_unlock_irqrestore(&rq->lock, flags);
1608 }
1609 }
1610
1611 /*
1612 * Re-compute the task group their per cpu shares over the given domain.
1613 * This needs to be done in a bottom-up fashion because the rq weight of a
1614 * parent group depends on the shares of its child groups.
1615 */
1616 static int tg_shares_up(struct task_group *tg, void *data)
1617 {
1618 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1619 unsigned long *usd_rq_weight;
1620 struct sched_domain *sd = data;
1621 unsigned long flags;
1622 int i;
1623
1624 if (!tg->se[0])
1625 return 0;
1626
1627 local_irq_save(flags);
1628 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1629
1630 for_each_cpu(i, sched_domain_span(sd)) {
1631 weight = tg->cfs_rq[i]->load.weight;
1632 usd_rq_weight[i] = weight;
1633
1634 rq_weight += weight;
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
1643 sum_weight += weight;
1644 shares += tg->cfs_rq[i]->shares;
1645 }
1646
1647 if (!rq_weight)
1648 rq_weight = sum_weight;
1649
1650 if ((!shares && rq_weight) || shares > tg->shares)
1651 shares = tg->shares;
1652
1653 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1654 shares = tg->shares;
1655
1656 for_each_cpu(i, sched_domain_span(sd))
1657 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1658
1659 local_irq_restore(flags);
1660
1661 return 0;
1662 }
1663
1664 /*
1665 * Compute the cpu's hierarchical load factor for each task group.
1666 * This needs to be done in a top-down fashion because the load of a child
1667 * group is a fraction of its parents load.
1668 */
1669 static int tg_load_down(struct task_group *tg, void *data)
1670 {
1671 unsigned long load;
1672 long cpu = (long)data;
1673
1674 if (!tg->parent) {
1675 load = cpu_rq(cpu)->load.weight;
1676 } else {
1677 load = tg->parent->cfs_rq[cpu]->h_load;
1678 load *= tg->cfs_rq[cpu]->shares;
1679 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1680 }
1681
1682 tg->cfs_rq[cpu]->h_load = load;
1683
1684 return 0;
1685 }
1686
1687 static void update_shares(struct sched_domain *sd)
1688 {
1689 s64 elapsed;
1690 u64 now;
1691
1692 if (root_task_group_empty())
1693 return;
1694
1695 now = cpu_clock(raw_smp_processor_id());
1696 elapsed = now - sd->last_update;
1697
1698 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1699 sd->last_update = now;
1700 walk_tg_tree(tg_nop, tg_shares_up, sd);
1701 }
1702 }
1703
1704 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1705 {
1706 if (root_task_group_empty())
1707 return;
1708
1709 raw_spin_unlock(&rq->lock);
1710 update_shares(sd);
1711 raw_spin_lock(&rq->lock);
1712 }
1713
1714 static void update_h_load(long cpu)
1715 {
1716 if (root_task_group_empty())
1717 return;
1718
1719 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1720 }
1721
1722 #else
1723
1724 static inline void update_shares(struct sched_domain *sd)
1725 {
1726 }
1727
1728 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1729 {
1730 }
1731
1732 #endif
1733
1734 #ifdef CONFIG_PREEMPT
1735
1736 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1737
1738 /*
1739 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1740 * way at the expense of forcing extra atomic operations in all
1741 * invocations. This assures that the double_lock is acquired using the
1742 * same underlying policy as the spinlock_t on this architecture, which
1743 * reduces latency compared to the unfair variant below. However, it
1744 * also adds more overhead and therefore may reduce throughput.
1745 */
1746 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1747 __releases(this_rq->lock)
1748 __acquires(busiest->lock)
1749 __acquires(this_rq->lock)
1750 {
1751 raw_spin_unlock(&this_rq->lock);
1752 double_rq_lock(this_rq, busiest);
1753
1754 return 1;
1755 }
1756
1757 #else
1758 /*
1759 * Unfair double_lock_balance: Optimizes throughput at the expense of
1760 * latency by eliminating extra atomic operations when the locks are
1761 * already in proper order on entry. This favors lower cpu-ids and will
1762 * grant the double lock to lower cpus over higher ids under contention,
1763 * regardless of entry order into the function.
1764 */
1765 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1766 __releases(this_rq->lock)
1767 __acquires(busiest->lock)
1768 __acquires(this_rq->lock)
1769 {
1770 int ret = 0;
1771
1772 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1773 if (busiest < this_rq) {
1774 raw_spin_unlock(&this_rq->lock);
1775 raw_spin_lock(&busiest->lock);
1776 raw_spin_lock_nested(&this_rq->lock,
1777 SINGLE_DEPTH_NESTING);
1778 ret = 1;
1779 } else
1780 raw_spin_lock_nested(&busiest->lock,
1781 SINGLE_DEPTH_NESTING);
1782 }
1783 return ret;
1784 }
1785
1786 #endif /* CONFIG_PREEMPT */
1787
1788 /*
1789 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1790 */
1791 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1792 {
1793 if (unlikely(!irqs_disabled())) {
1794 /* printk() doesn't work good under rq->lock */
1795 raw_spin_unlock(&this_rq->lock);
1796 BUG_ON(1);
1797 }
1798
1799 return _double_lock_balance(this_rq, busiest);
1800 }
1801
1802 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1803 __releases(busiest->lock)
1804 {
1805 raw_spin_unlock(&busiest->lock);
1806 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1807 }
1808 #endif
1809
1810 #ifdef CONFIG_FAIR_GROUP_SCHED
1811 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1812 {
1813 #ifdef CONFIG_SMP
1814 cfs_rq->shares = shares;
1815 #endif
1816 }
1817 #endif
1818
1819 static void calc_load_account_active(struct rq *this_rq);
1820 static void update_sysctl(void);
1821 static int get_update_sysctl_factor(void);
1822
1823 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1824 {
1825 set_task_rq(p, cpu);
1826 #ifdef CONFIG_SMP
1827 /*
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1831 */
1832 smp_wmb();
1833 task_thread_info(p)->cpu = cpu;
1834 #endif
1835 }
1836
1837 #include "sched_stats.h"
1838 #include "sched_idletask.c"
1839 #include "sched_fair.c"
1840 #include "sched_rt.c"
1841 #ifdef CONFIG_SCHED_DEBUG
1842 # include "sched_debug.c"
1843 #endif
1844
1845 #define sched_class_highest (&rt_sched_class)
1846 #define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next)
1848
1849 static void inc_nr_running(struct rq *rq)
1850 {
1851 rq->nr_running++;
1852 }
1853
1854 static void dec_nr_running(struct rq *rq)
1855 {
1856 rq->nr_running--;
1857 }
1858
1859 static void set_load_weight(struct task_struct *p)
1860 {
1861 if (task_has_rt_policy(p)) {
1862 p->se.load.weight = prio_to_weight[0] * 2;
1863 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1864 return;
1865 }
1866
1867 /*
1868 * SCHED_IDLE tasks get minimal weight:
1869 */
1870 if (p->policy == SCHED_IDLE) {
1871 p->se.load.weight = WEIGHT_IDLEPRIO;
1872 p->se.load.inv_weight = WMULT_IDLEPRIO;
1873 return;
1874 }
1875
1876 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1877 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1878 }
1879
1880 static void update_avg(u64 *avg, u64 sample)
1881 {
1882 s64 diff = sample - *avg;
1883 *avg += diff >> 3;
1884 }
1885
1886 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1887 {
1888 if (wakeup)
1889 p->se.start_runtime = p->se.sum_exec_runtime;
1890
1891 sched_info_queued(p);
1892 p->sched_class->enqueue_task(rq, p, wakeup);
1893 p->se.on_rq = 1;
1894 }
1895
1896 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1897 {
1898 if (sleep) {
1899 if (p->se.last_wakeup) {
1900 update_avg(&p->se.avg_overlap,
1901 p->se.sum_exec_runtime - p->se.last_wakeup);
1902 p->se.last_wakeup = 0;
1903 } else {
1904 update_avg(&p->se.avg_wakeup,
1905 sysctl_sched_wakeup_granularity);
1906 }
1907 }
1908
1909 sched_info_dequeued(p);
1910 p->sched_class->dequeue_task(rq, p, sleep);
1911 p->se.on_rq = 0;
1912 }
1913
1914 /*
1915 * __normal_prio - return the priority that is based on the static prio
1916 */
1917 static inline int __normal_prio(struct task_struct *p)
1918 {
1919 return p->static_prio;
1920 }
1921
1922 /*
1923 * Calculate the expected normal priority: i.e. priority
1924 * without taking RT-inheritance into account. Might be
1925 * boosted by interactivity modifiers. Changes upon fork,
1926 * setprio syscalls, and whenever the interactivity
1927 * estimator recalculates.
1928 */
1929 static inline int normal_prio(struct task_struct *p)
1930 {
1931 int prio;
1932
1933 if (task_has_rt_policy(p))
1934 prio = MAX_RT_PRIO-1 - p->rt_priority;
1935 else
1936 prio = __normal_prio(p);
1937 return prio;
1938 }
1939
1940 /*
1941 * Calculate the current priority, i.e. the priority
1942 * taken into account by the scheduler. This value might
1943 * be boosted by RT tasks, or might be boosted by
1944 * interactivity modifiers. Will be RT if the task got
1945 * RT-boosted. If not then it returns p->normal_prio.
1946 */
1947 static int effective_prio(struct task_struct *p)
1948 {
1949 p->normal_prio = normal_prio(p);
1950 /*
1951 * If we are RT tasks or we were boosted to RT priority,
1952 * keep the priority unchanged. Otherwise, update priority
1953 * to the normal priority:
1954 */
1955 if (!rt_prio(p->prio))
1956 return p->normal_prio;
1957 return p->prio;
1958 }
1959
1960 /*
1961 * activate_task - move a task to the runqueue.
1962 */
1963 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1964 {
1965 if (task_contributes_to_load(p))
1966 rq->nr_uninterruptible--;
1967
1968 enqueue_task(rq, p, wakeup);
1969 inc_nr_running(rq);
1970 }
1971
1972 /*
1973 * deactivate_task - remove a task from the runqueue.
1974 */
1975 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1976 {
1977 if (task_contributes_to_load(p))
1978 rq->nr_uninterruptible++;
1979
1980 dequeue_task(rq, p, sleep);
1981 dec_nr_running(rq);
1982 }
1983
1984 /**
1985 * task_curr - is this task currently executing on a CPU?
1986 * @p: the task in question.
1987 */
1988 inline int task_curr(const struct task_struct *p)
1989 {
1990 return cpu_curr(task_cpu(p)) == p;
1991 }
1992
1993 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1994 const struct sched_class *prev_class,
1995 int oldprio, int running)
1996 {
1997 if (prev_class != p->sched_class) {
1998 if (prev_class->switched_from)
1999 prev_class->switched_from(rq, p, running);
2000 p->sched_class->switched_to(rq, p, running);
2001 } else
2002 p->sched_class->prio_changed(rq, p, oldprio, running);
2003 }
2004
2005 /**
2006 * kthread_bind - bind a just-created kthread to a cpu.
2007 * @p: thread created by kthread_create().
2008 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2009 *
2010 * Description: This function is equivalent to set_cpus_allowed(),
2011 * except that @cpu doesn't need to be online, and the thread must be
2012 * stopped (i.e., just returned from kthread_create()).
2013 *
2014 * Function lives here instead of kthread.c because it messes with
2015 * scheduler internals which require locking.
2016 */
2017 void kthread_bind(struct task_struct *p, unsigned int cpu)
2018 {
2019 struct rq *rq = cpu_rq(cpu);
2020 unsigned long flags;
2021
2022 /* Must have done schedule() in kthread() before we set_task_cpu */
2023 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2024 WARN_ON(1);
2025 return;
2026 }
2027
2028 raw_spin_lock_irqsave(&rq->lock, flags);
2029 update_rq_clock(rq);
2030 set_task_cpu(p, cpu);
2031 p->cpus_allowed = cpumask_of_cpu(cpu);
2032 p->rt.nr_cpus_allowed = 1;
2033 p->flags |= PF_THREAD_BOUND;
2034 raw_spin_unlock_irqrestore(&rq->lock, flags);
2035 }
2036 EXPORT_SYMBOL(kthread_bind);
2037
2038 #ifdef CONFIG_SMP
2039 /*
2040 * Is this task likely cache-hot:
2041 */
2042 static int
2043 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2044 {
2045 s64 delta;
2046
2047 /*
2048 * Buddy candidates are cache hot:
2049 */
2050 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2051 (&p->se == cfs_rq_of(&p->se)->next ||
2052 &p->se == cfs_rq_of(&p->se)->last))
2053 return 1;
2054
2055 if (p->sched_class != &fair_sched_class)
2056 return 0;
2057
2058 if (sysctl_sched_migration_cost == -1)
2059 return 1;
2060 if (sysctl_sched_migration_cost == 0)
2061 return 0;
2062
2063 delta = now - p->se.exec_start;
2064
2065 return delta < (s64)sysctl_sched_migration_cost;
2066 }
2067
2068
2069 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2070 {
2071 int old_cpu = task_cpu(p);
2072 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2073 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2074
2075 trace_sched_migrate_task(p, new_cpu);
2076
2077 if (old_cpu != new_cpu) {
2078 p->se.nr_migrations++;
2079 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2080 1, 1, NULL, 0);
2081 }
2082 p->se.vruntime -= old_cfsrq->min_vruntime -
2083 new_cfsrq->min_vruntime;
2084
2085 __set_task_cpu(p, new_cpu);
2086 }
2087
2088 struct migration_req {
2089 struct list_head list;
2090
2091 struct task_struct *task;
2092 int dest_cpu;
2093
2094 struct completion done;
2095 };
2096
2097 /*
2098 * The task's runqueue lock must be held.
2099 * Returns true if you have to wait for migration thread.
2100 */
2101 static int
2102 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2103 {
2104 struct rq *rq = task_rq(p);
2105
2106 /*
2107 * If the task is not on a runqueue (and not running), then
2108 * it is sufficient to simply update the task's cpu field.
2109 */
2110 if (!p->se.on_rq && !task_running(rq, p)) {
2111 update_rq_clock(rq);
2112 set_task_cpu(p, dest_cpu);
2113 return 0;
2114 }
2115
2116 init_completion(&req->done);
2117 req->task = p;
2118 req->dest_cpu = dest_cpu;
2119 list_add(&req->list, &rq->migration_queue);
2120
2121 return 1;
2122 }
2123
2124 /*
2125 * wait_task_context_switch - wait for a thread to complete at least one
2126 * context switch.
2127 *
2128 * @p must not be current.
2129 */
2130 void wait_task_context_switch(struct task_struct *p)
2131 {
2132 unsigned long nvcsw, nivcsw, flags;
2133 int running;
2134 struct rq *rq;
2135
2136 nvcsw = p->nvcsw;
2137 nivcsw = p->nivcsw;
2138 for (;;) {
2139 /*
2140 * The runqueue is assigned before the actual context
2141 * switch. We need to take the runqueue lock.
2142 *
2143 * We could check initially without the lock but it is
2144 * very likely that we need to take the lock in every
2145 * iteration.
2146 */
2147 rq = task_rq_lock(p, &flags);
2148 running = task_running(rq, p);
2149 task_rq_unlock(rq, &flags);
2150
2151 if (likely(!running))
2152 break;
2153 /*
2154 * The switch count is incremented before the actual
2155 * context switch. We thus wait for two switches to be
2156 * sure at least one completed.
2157 */
2158 if ((p->nvcsw - nvcsw) > 1)
2159 break;
2160 if ((p->nivcsw - nivcsw) > 1)
2161 break;
2162
2163 cpu_relax();
2164 }
2165 }
2166
2167 /*
2168 * wait_task_inactive - wait for a thread to unschedule.
2169 *
2170 * If @match_state is nonzero, it's the @p->state value just checked and
2171 * not expected to change. If it changes, i.e. @p might have woken up,
2172 * then return zero. When we succeed in waiting for @p to be off its CPU,
2173 * we return a positive number (its total switch count). If a second call
2174 * a short while later returns the same number, the caller can be sure that
2175 * @p has remained unscheduled the whole time.
2176 *
2177 * The caller must ensure that the task *will* unschedule sometime soon,
2178 * else this function might spin for a *long* time. This function can't
2179 * be called with interrupts off, or it may introduce deadlock with
2180 * smp_call_function() if an IPI is sent by the same process we are
2181 * waiting to become inactive.
2182 */
2183 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2184 {
2185 unsigned long flags;
2186 int running, on_rq;
2187 unsigned long ncsw;
2188 struct rq *rq;
2189
2190 for (;;) {
2191 /*
2192 * We do the initial early heuristics without holding
2193 * any task-queue locks at all. We'll only try to get
2194 * the runqueue lock when things look like they will
2195 * work out!
2196 */
2197 rq = task_rq(p);
2198
2199 /*
2200 * If the task is actively running on another CPU
2201 * still, just relax and busy-wait without holding
2202 * any locks.
2203 *
2204 * NOTE! Since we don't hold any locks, it's not
2205 * even sure that "rq" stays as the right runqueue!
2206 * But we don't care, since "task_running()" will
2207 * return false if the runqueue has changed and p
2208 * is actually now running somewhere else!
2209 */
2210 while (task_running(rq, p)) {
2211 if (match_state && unlikely(p->state != match_state))
2212 return 0;
2213 cpu_relax();
2214 }
2215
2216 /*
2217 * Ok, time to look more closely! We need the rq
2218 * lock now, to be *sure*. If we're wrong, we'll
2219 * just go back and repeat.
2220 */
2221 rq = task_rq_lock(p, &flags);
2222 trace_sched_wait_task(rq, p);
2223 running = task_running(rq, p);
2224 on_rq = p->se.on_rq;
2225 ncsw = 0;
2226 if (!match_state || p->state == match_state)
2227 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2228 task_rq_unlock(rq, &flags);
2229
2230 /*
2231 * If it changed from the expected state, bail out now.
2232 */
2233 if (unlikely(!ncsw))
2234 break;
2235
2236 /*
2237 * Was it really running after all now that we
2238 * checked with the proper locks actually held?
2239 *
2240 * Oops. Go back and try again..
2241 */
2242 if (unlikely(running)) {
2243 cpu_relax();
2244 continue;
2245 }
2246
2247 /*
2248 * It's not enough that it's not actively running,
2249 * it must be off the runqueue _entirely_, and not
2250 * preempted!
2251 *
2252 * So if it was still runnable (but just not actively
2253 * running right now), it's preempted, and we should
2254 * yield - it could be a while.
2255 */
2256 if (unlikely(on_rq)) {
2257 schedule_timeout_uninterruptible(1);
2258 continue;
2259 }
2260
2261 /*
2262 * Ahh, all good. It wasn't running, and it wasn't
2263 * runnable, which means that it will never become
2264 * running in the future either. We're all done!
2265 */
2266 break;
2267 }
2268
2269 return ncsw;
2270 }
2271
2272 /***
2273 * kick_process - kick a running thread to enter/exit the kernel
2274 * @p: the to-be-kicked thread
2275 *
2276 * Cause a process which is running on another CPU to enter
2277 * kernel-mode, without any delay. (to get signals handled.)
2278 *
2279 * NOTE: this function doesnt have to take the runqueue lock,
2280 * because all it wants to ensure is that the remote task enters
2281 * the kernel. If the IPI races and the task has been migrated
2282 * to another CPU then no harm is done and the purpose has been
2283 * achieved as well.
2284 */
2285 void kick_process(struct task_struct *p)
2286 {
2287 int cpu;
2288
2289 preempt_disable();
2290 cpu = task_cpu(p);
2291 if ((cpu != smp_processor_id()) && task_curr(p))
2292 smp_send_reschedule(cpu);
2293 preempt_enable();
2294 }
2295 EXPORT_SYMBOL_GPL(kick_process);
2296 #endif /* CONFIG_SMP */
2297
2298 /**
2299 * task_oncpu_function_call - call a function on the cpu on which a task runs
2300 * @p: the task to evaluate
2301 * @func: the function to be called
2302 * @info: the function call argument
2303 *
2304 * Calls the function @func when the task is currently running. This might
2305 * be on the current CPU, which just calls the function directly
2306 */
2307 void task_oncpu_function_call(struct task_struct *p,
2308 void (*func) (void *info), void *info)
2309 {
2310 int cpu;
2311
2312 preempt_disable();
2313 cpu = task_cpu(p);
2314 if (task_curr(p))
2315 smp_call_function_single(cpu, func, info, 1);
2316 preempt_enable();
2317 }
2318
2319 #ifdef CONFIG_SMP
2320 static inline
2321 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2322 {
2323 return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2324 }
2325 #endif
2326
2327 /***
2328 * try_to_wake_up - wake up a thread
2329 * @p: the to-be-woken-up thread
2330 * @state: the mask of task states that can be woken
2331 * @sync: do a synchronous wakeup?
2332 *
2333 * Put it on the run-queue if it's not already there. The "current"
2334 * thread is always on the run-queue (except when the actual
2335 * re-schedule is in progress), and as such you're allowed to do
2336 * the simpler "current->state = TASK_RUNNING" to mark yourself
2337 * runnable without the overhead of this.
2338 *
2339 * returns failure only if the task is already active.
2340 */
2341 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2342 int wake_flags)
2343 {
2344 int cpu, orig_cpu, this_cpu, success = 0;
2345 unsigned long flags;
2346 struct rq *rq, *orig_rq;
2347
2348 if (!sched_feat(SYNC_WAKEUPS))
2349 wake_flags &= ~WF_SYNC;
2350
2351 this_cpu = get_cpu();
2352
2353 smp_wmb();
2354 rq = orig_rq = task_rq_lock(p, &flags);
2355 update_rq_clock(rq);
2356 if (!(p->state & state))
2357 goto out;
2358
2359 if (p->se.on_rq)
2360 goto out_running;
2361
2362 cpu = task_cpu(p);
2363 orig_cpu = cpu;
2364
2365 #ifdef CONFIG_SMP
2366 if (unlikely(task_running(rq, p)))
2367 goto out_activate;
2368
2369 /*
2370 * In order to handle concurrent wakeups and release the rq->lock
2371 * we put the task in TASK_WAKING state.
2372 *
2373 * First fix up the nr_uninterruptible count:
2374 */
2375 if (task_contributes_to_load(p))
2376 rq->nr_uninterruptible--;
2377 p->state = TASK_WAKING;
2378 __task_rq_unlock(rq);
2379
2380 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2381 if (cpu != orig_cpu)
2382 set_task_cpu(p, cpu);
2383
2384 rq = __task_rq_lock(p);
2385 update_rq_clock(rq);
2386
2387 WARN_ON(p->state != TASK_WAKING);
2388 cpu = task_cpu(p);
2389
2390 #ifdef CONFIG_SCHEDSTATS
2391 schedstat_inc(rq, ttwu_count);
2392 if (cpu == this_cpu)
2393 schedstat_inc(rq, ttwu_local);
2394 else {
2395 struct sched_domain *sd;
2396 for_each_domain(this_cpu, sd) {
2397 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398 schedstat_inc(sd, ttwu_wake_remote);
2399 break;
2400 }
2401 }
2402 }
2403 #endif /* CONFIG_SCHEDSTATS */
2404
2405 out_activate:
2406 #endif /* CONFIG_SMP */
2407 schedstat_inc(p, se.nr_wakeups);
2408 if (wake_flags & WF_SYNC)
2409 schedstat_inc(p, se.nr_wakeups_sync);
2410 if (orig_cpu != cpu)
2411 schedstat_inc(p, se.nr_wakeups_migrate);
2412 if (cpu == this_cpu)
2413 schedstat_inc(p, se.nr_wakeups_local);
2414 else
2415 schedstat_inc(p, se.nr_wakeups_remote);
2416 activate_task(rq, p, 1);
2417 success = 1;
2418
2419 /*
2420 * Only attribute actual wakeups done by this task.
2421 */
2422 if (!in_interrupt()) {
2423 struct sched_entity *se = &current->se;
2424 u64 sample = se->sum_exec_runtime;
2425
2426 if (se->last_wakeup)
2427 sample -= se->last_wakeup;
2428 else
2429 sample -= se->start_runtime;
2430 update_avg(&se->avg_wakeup, sample);
2431
2432 se->last_wakeup = se->sum_exec_runtime;
2433 }
2434
2435 out_running:
2436 trace_sched_wakeup(rq, p, success);
2437 check_preempt_curr(rq, p, wake_flags);
2438
2439 p->state = TASK_RUNNING;
2440 #ifdef CONFIG_SMP
2441 if (p->sched_class->task_wake_up)
2442 p->sched_class->task_wake_up(rq, p);
2443
2444 if (unlikely(rq->idle_stamp)) {
2445 u64 delta = rq->clock - rq->idle_stamp;
2446 u64 max = 2*sysctl_sched_migration_cost;
2447
2448 if (delta > max)
2449 rq->avg_idle = max;
2450 else
2451 update_avg(&rq->avg_idle, delta);
2452 rq->idle_stamp = 0;
2453 }
2454 #endif
2455 out:
2456 task_rq_unlock(rq, &flags);
2457 put_cpu();
2458
2459 return success;
2460 }
2461
2462 /**
2463 * wake_up_process - Wake up a specific process
2464 * @p: The process to be woken up.
2465 *
2466 * Attempt to wake up the nominated process and move it to the set of runnable
2467 * processes. Returns 1 if the process was woken up, 0 if it was already
2468 * running.
2469 *
2470 * It may be assumed that this function implies a write memory barrier before
2471 * changing the task state if and only if any tasks are woken up.
2472 */
2473 int wake_up_process(struct task_struct *p)
2474 {
2475 return try_to_wake_up(p, TASK_ALL, 0);
2476 }
2477 EXPORT_SYMBOL(wake_up_process);
2478
2479 int wake_up_state(struct task_struct *p, unsigned int state)
2480 {
2481 return try_to_wake_up(p, state, 0);
2482 }
2483
2484 /*
2485 * Perform scheduler related setup for a newly forked process p.
2486 * p is forked by current.
2487 *
2488 * __sched_fork() is basic setup used by init_idle() too:
2489 */
2490 static void __sched_fork(struct task_struct *p)
2491 {
2492 p->se.exec_start = 0;
2493 p->se.sum_exec_runtime = 0;
2494 p->se.prev_sum_exec_runtime = 0;
2495 p->se.nr_migrations = 0;
2496 p->se.last_wakeup = 0;
2497 p->se.avg_overlap = 0;
2498 p->se.start_runtime = 0;
2499 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2500
2501 #ifdef CONFIG_SCHEDSTATS
2502 p->se.wait_start = 0;
2503 p->se.wait_max = 0;
2504 p->se.wait_count = 0;
2505 p->se.wait_sum = 0;
2506
2507 p->se.sleep_start = 0;
2508 p->se.sleep_max = 0;
2509 p->se.sum_sleep_runtime = 0;
2510
2511 p->se.block_start = 0;
2512 p->se.block_max = 0;
2513 p->se.exec_max = 0;
2514 p->se.slice_max = 0;
2515
2516 p->se.nr_migrations_cold = 0;
2517 p->se.nr_failed_migrations_affine = 0;
2518 p->se.nr_failed_migrations_running = 0;
2519 p->se.nr_failed_migrations_hot = 0;
2520 p->se.nr_forced_migrations = 0;
2521
2522 p->se.nr_wakeups = 0;
2523 p->se.nr_wakeups_sync = 0;
2524 p->se.nr_wakeups_migrate = 0;
2525 p->se.nr_wakeups_local = 0;
2526 p->se.nr_wakeups_remote = 0;
2527 p->se.nr_wakeups_affine = 0;
2528 p->se.nr_wakeups_affine_attempts = 0;
2529 p->se.nr_wakeups_passive = 0;
2530 p->se.nr_wakeups_idle = 0;
2531
2532 #endif
2533
2534 INIT_LIST_HEAD(&p->rt.run_list);
2535 p->se.on_rq = 0;
2536 INIT_LIST_HEAD(&p->se.group_node);
2537
2538 #ifdef CONFIG_PREEMPT_NOTIFIERS
2539 INIT_HLIST_HEAD(&p->preempt_notifiers);
2540 #endif
2541
2542 /*
2543 * We mark the process as running here, but have not actually
2544 * inserted it onto the runqueue yet. This guarantees that
2545 * nobody will actually run it, and a signal or other external
2546 * event cannot wake it up and insert it on the runqueue either.
2547 */
2548 p->state = TASK_RUNNING;
2549 }
2550
2551 /*
2552 * fork()/clone()-time setup:
2553 */
2554 void sched_fork(struct task_struct *p, int clone_flags)
2555 {
2556 int cpu = get_cpu();
2557
2558 __sched_fork(p);
2559
2560 /*
2561 * Revert to default priority/policy on fork if requested.
2562 */
2563 if (unlikely(p->sched_reset_on_fork)) {
2564 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2565 p->policy = SCHED_NORMAL;
2566 p->normal_prio = p->static_prio;
2567 }
2568
2569 if (PRIO_TO_NICE(p->static_prio) < 0) {
2570 p->static_prio = NICE_TO_PRIO(0);
2571 p->normal_prio = p->static_prio;
2572 set_load_weight(p);
2573 }
2574
2575 /*
2576 * We don't need the reset flag anymore after the fork. It has
2577 * fulfilled its duty:
2578 */
2579 p->sched_reset_on_fork = 0;
2580 }
2581
2582 /*
2583 * Make sure we do not leak PI boosting priority to the child.
2584 */
2585 p->prio = current->normal_prio;
2586
2587 if (!rt_prio(p->prio))
2588 p->sched_class = &fair_sched_class;
2589
2590 if (p->sched_class->task_fork)
2591 p->sched_class->task_fork(p);
2592
2593 #ifdef CONFIG_SMP
2594 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2595 #endif
2596 set_task_cpu(p, cpu);
2597
2598 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2599 if (likely(sched_info_on()))
2600 memset(&p->sched_info, 0, sizeof(p->sched_info));
2601 #endif
2602 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2603 p->oncpu = 0;
2604 #endif
2605 #ifdef CONFIG_PREEMPT
2606 /* Want to start with kernel preemption disabled. */
2607 task_thread_info(p)->preempt_count = 1;
2608 #endif
2609 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2610
2611 put_cpu();
2612 }
2613
2614 /*
2615 * wake_up_new_task - wake up a newly created task for the first time.
2616 *
2617 * This function will do some initial scheduler statistics housekeeping
2618 * that must be done for every newly created context, then puts the task
2619 * on the runqueue and wakes it.
2620 */
2621 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2622 {
2623 unsigned long flags;
2624 struct rq *rq;
2625
2626 rq = task_rq_lock(p, &flags);
2627 BUG_ON(p->state != TASK_RUNNING);
2628 update_rq_clock(rq);
2629 activate_task(rq, p, 0);
2630 trace_sched_wakeup_new(rq, p, 1);
2631 check_preempt_curr(rq, p, WF_FORK);
2632 #ifdef CONFIG_SMP
2633 if (p->sched_class->task_wake_up)
2634 p->sched_class->task_wake_up(rq, p);
2635 #endif
2636 task_rq_unlock(rq, &flags);
2637 }
2638
2639 #ifdef CONFIG_PREEMPT_NOTIFIERS
2640
2641 /**
2642 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2643 * @notifier: notifier struct to register
2644 */
2645 void preempt_notifier_register(struct preempt_notifier *notifier)
2646 {
2647 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2648 }
2649 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2650
2651 /**
2652 * preempt_notifier_unregister - no longer interested in preemption notifications
2653 * @notifier: notifier struct to unregister
2654 *
2655 * This is safe to call from within a preemption notifier.
2656 */
2657 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2658 {
2659 hlist_del(&notifier->link);
2660 }
2661 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2662
2663 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2664 {
2665 struct preempt_notifier *notifier;
2666 struct hlist_node *node;
2667
2668 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2669 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2670 }
2671
2672 static void
2673 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2674 struct task_struct *next)
2675 {
2676 struct preempt_notifier *notifier;
2677 struct hlist_node *node;
2678
2679 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2680 notifier->ops->sched_out(notifier, next);
2681 }
2682
2683 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2684
2685 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2686 {
2687 }
2688
2689 static void
2690 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2691 struct task_struct *next)
2692 {
2693 }
2694
2695 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2696
2697 /**
2698 * prepare_task_switch - prepare to switch tasks
2699 * @rq: the runqueue preparing to switch
2700 * @prev: the current task that is being switched out
2701 * @next: the task we are going to switch to.
2702 *
2703 * This is called with the rq lock held and interrupts off. It must
2704 * be paired with a subsequent finish_task_switch after the context
2705 * switch.
2706 *
2707 * prepare_task_switch sets up locking and calls architecture specific
2708 * hooks.
2709 */
2710 static inline void
2711 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2712 struct task_struct *next)
2713 {
2714 fire_sched_out_preempt_notifiers(prev, next);
2715 prepare_lock_switch(rq, next);
2716 prepare_arch_switch(next);
2717 }
2718
2719 /**
2720 * finish_task_switch - clean up after a task-switch
2721 * @rq: runqueue associated with task-switch
2722 * @prev: the thread we just switched away from.
2723 *
2724 * finish_task_switch must be called after the context switch, paired
2725 * with a prepare_task_switch call before the context switch.
2726 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2727 * and do any other architecture-specific cleanup actions.
2728 *
2729 * Note that we may have delayed dropping an mm in context_switch(). If
2730 * so, we finish that here outside of the runqueue lock. (Doing it
2731 * with the lock held can cause deadlocks; see schedule() for
2732 * details.)
2733 */
2734 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2735 __releases(rq->lock)
2736 {
2737 struct mm_struct *mm = rq->prev_mm;
2738 long prev_state;
2739
2740 rq->prev_mm = NULL;
2741
2742 /*
2743 * A task struct has one reference for the use as "current".
2744 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2745 * schedule one last time. The schedule call will never return, and
2746 * the scheduled task must drop that reference.
2747 * The test for TASK_DEAD must occur while the runqueue locks are
2748 * still held, otherwise prev could be scheduled on another cpu, die
2749 * there before we look at prev->state, and then the reference would
2750 * be dropped twice.
2751 * Manfred Spraul <manfred@colorfullife.com>
2752 */
2753 prev_state = prev->state;
2754 finish_arch_switch(prev);
2755 perf_event_task_sched_in(current, cpu_of(rq));
2756 finish_lock_switch(rq, prev);
2757
2758 fire_sched_in_preempt_notifiers(current);
2759 if (mm)
2760 mmdrop(mm);
2761 if (unlikely(prev_state == TASK_DEAD)) {
2762 /*
2763 * Remove function-return probe instances associated with this
2764 * task and put them back on the free list.
2765 */
2766 kprobe_flush_task(prev);
2767 put_task_struct(prev);
2768 }
2769 }
2770
2771 #ifdef CONFIG_SMP
2772
2773 /* assumes rq->lock is held */
2774 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2775 {
2776 if (prev->sched_class->pre_schedule)
2777 prev->sched_class->pre_schedule(rq, prev);
2778 }
2779
2780 /* rq->lock is NOT held, but preemption is disabled */
2781 static inline void post_schedule(struct rq *rq)
2782 {
2783 if (rq->post_schedule) {
2784 unsigned long flags;
2785
2786 raw_spin_lock_irqsave(&rq->lock, flags);
2787 if (rq->curr->sched_class->post_schedule)
2788 rq->curr->sched_class->post_schedule(rq);
2789 raw_spin_unlock_irqrestore(&rq->lock, flags);
2790
2791 rq->post_schedule = 0;
2792 }
2793 }
2794
2795 #else
2796
2797 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2798 {
2799 }
2800
2801 static inline void post_schedule(struct rq *rq)
2802 {
2803 }
2804
2805 #endif
2806
2807 /**
2808 * schedule_tail - first thing a freshly forked thread must call.
2809 * @prev: the thread we just switched away from.
2810 */
2811 asmlinkage void schedule_tail(struct task_struct *prev)
2812 __releases(rq->lock)
2813 {
2814 struct rq *rq = this_rq();
2815
2816 finish_task_switch(rq, prev);
2817
2818 /*
2819 * FIXME: do we need to worry about rq being invalidated by the
2820 * task_switch?
2821 */
2822 post_schedule(rq);
2823
2824 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2825 /* In this case, finish_task_switch does not reenable preemption */
2826 preempt_enable();
2827 #endif
2828 if (current->set_child_tid)
2829 put_user(task_pid_vnr(current), current->set_child_tid);
2830 }
2831
2832 /*
2833 * context_switch - switch to the new MM and the new
2834 * thread's register state.
2835 */
2836 static inline void
2837 context_switch(struct rq *rq, struct task_struct *prev,
2838 struct task_struct *next)
2839 {
2840 struct mm_struct *mm, *oldmm;
2841
2842 prepare_task_switch(rq, prev, next);
2843 trace_sched_switch(rq, prev, next);
2844 mm = next->mm;
2845 oldmm = prev->active_mm;
2846 /*
2847 * For paravirt, this is coupled with an exit in switch_to to
2848 * combine the page table reload and the switch backend into
2849 * one hypercall.
2850 */
2851 arch_start_context_switch(prev);
2852
2853 if (likely(!mm)) {
2854 next->active_mm = oldmm;
2855 atomic_inc(&oldmm->mm_count);
2856 enter_lazy_tlb(oldmm, next);
2857 } else
2858 switch_mm(oldmm, mm, next);
2859
2860 if (likely(!prev->mm)) {
2861 prev->active_mm = NULL;
2862 rq->prev_mm = oldmm;
2863 }
2864 /*
2865 * Since the runqueue lock will be released by the next
2866 * task (which is an invalid locking op but in the case
2867 * of the scheduler it's an obvious special-case), so we
2868 * do an early lockdep release here:
2869 */
2870 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2871 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2872 #endif
2873
2874 /* Here we just switch the register state and the stack. */
2875 switch_to(prev, next, prev);
2876
2877 barrier();
2878 /*
2879 * this_rq must be evaluated again because prev may have moved
2880 * CPUs since it called schedule(), thus the 'rq' on its stack
2881 * frame will be invalid.
2882 */
2883 finish_task_switch(this_rq(), prev);
2884 }
2885
2886 /*
2887 * nr_running, nr_uninterruptible and nr_context_switches:
2888 *
2889 * externally visible scheduler statistics: current number of runnable
2890 * threads, current number of uninterruptible-sleeping threads, total
2891 * number of context switches performed since bootup.
2892 */
2893 unsigned long nr_running(void)
2894 {
2895 unsigned long i, sum = 0;
2896
2897 for_each_online_cpu(i)
2898 sum += cpu_rq(i)->nr_running;
2899
2900 return sum;
2901 }
2902
2903 unsigned long nr_uninterruptible(void)
2904 {
2905 unsigned long i, sum = 0;
2906
2907 for_each_possible_cpu(i)
2908 sum += cpu_rq(i)->nr_uninterruptible;
2909
2910 /*
2911 * Since we read the counters lockless, it might be slightly
2912 * inaccurate. Do not allow it to go below zero though:
2913 */
2914 if (unlikely((long)sum < 0))
2915 sum = 0;
2916
2917 return sum;
2918 }
2919
2920 unsigned long long nr_context_switches(void)
2921 {
2922 int i;
2923 unsigned long long sum = 0;
2924
2925 for_each_possible_cpu(i)
2926 sum += cpu_rq(i)->nr_switches;
2927
2928 return sum;
2929 }
2930
2931 unsigned long nr_iowait(void)
2932 {
2933 unsigned long i, sum = 0;
2934
2935 for_each_possible_cpu(i)
2936 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2937
2938 return sum;
2939 }
2940
2941 unsigned long nr_iowait_cpu(void)
2942 {
2943 struct rq *this = this_rq();
2944 return atomic_read(&this->nr_iowait);
2945 }
2946
2947 unsigned long this_cpu_load(void)
2948 {
2949 struct rq *this = this_rq();
2950 return this->cpu_load[0];
2951 }
2952
2953
2954 /* Variables and functions for calc_load */
2955 static atomic_long_t calc_load_tasks;
2956 static unsigned long calc_load_update;
2957 unsigned long avenrun[3];
2958 EXPORT_SYMBOL(avenrun);
2959
2960 /**
2961 * get_avenrun - get the load average array
2962 * @loads: pointer to dest load array
2963 * @offset: offset to add
2964 * @shift: shift count to shift the result left
2965 *
2966 * These values are estimates at best, so no need for locking.
2967 */
2968 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2969 {
2970 loads[0] = (avenrun[0] + offset) << shift;
2971 loads[1] = (avenrun[1] + offset) << shift;
2972 loads[2] = (avenrun[2] + offset) << shift;
2973 }
2974
2975 static unsigned long
2976 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2977 {
2978 load *= exp;
2979 load += active * (FIXED_1 - exp);
2980 return load >> FSHIFT;
2981 }
2982
2983 /*
2984 * calc_load - update the avenrun load estimates 10 ticks after the
2985 * CPUs have updated calc_load_tasks.
2986 */
2987 void calc_global_load(void)
2988 {
2989 unsigned long upd = calc_load_update + 10;
2990 long active;
2991
2992 if (time_before(jiffies, upd))
2993 return;
2994
2995 active = atomic_long_read(&calc_load_tasks);
2996 active = active > 0 ? active * FIXED_1 : 0;
2997
2998 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2999 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3000 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3001
3002 calc_load_update += LOAD_FREQ;
3003 }
3004
3005 /*
3006 * Either called from update_cpu_load() or from a cpu going idle
3007 */
3008 static void calc_load_account_active(struct rq *this_rq)
3009 {
3010 long nr_active, delta;
3011
3012 nr_active = this_rq->nr_running;
3013 nr_active += (long) this_rq->nr_uninterruptible;
3014
3015 if (nr_active != this_rq->calc_load_active) {
3016 delta = nr_active - this_rq->calc_load_active;
3017 this_rq->calc_load_active = nr_active;
3018 atomic_long_add(delta, &calc_load_tasks);
3019 }
3020 }
3021
3022 /*
3023 * Update rq->cpu_load[] statistics. This function is usually called every
3024 * scheduler tick (TICK_NSEC).
3025 */
3026 static void update_cpu_load(struct rq *this_rq)
3027 {
3028 unsigned long this_load = this_rq->load.weight;
3029 int i, scale;
3030
3031 this_rq->nr_load_updates++;
3032
3033 /* Update our load: */
3034 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3035 unsigned long old_load, new_load;
3036
3037 /* scale is effectively 1 << i now, and >> i divides by scale */
3038
3039 old_load = this_rq->cpu_load[i];
3040 new_load = this_load;
3041 /*
3042 * Round up the averaging division if load is increasing. This
3043 * prevents us from getting stuck on 9 if the load is 10, for
3044 * example.
3045 */
3046 if (new_load > old_load)
3047 new_load += scale-1;
3048 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3049 }
3050
3051 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3052 this_rq->calc_load_update += LOAD_FREQ;
3053 calc_load_account_active(this_rq);
3054 }
3055 }
3056
3057 #ifdef CONFIG_SMP
3058
3059 /*
3060 * double_rq_lock - safely lock two runqueues
3061 *
3062 * Note this does not disable interrupts like task_rq_lock,
3063 * you need to do so manually before calling.
3064 */
3065 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3066 __acquires(rq1->lock)
3067 __acquires(rq2->lock)
3068 {
3069 BUG_ON(!irqs_disabled());
3070 if (rq1 == rq2) {
3071 raw_spin_lock(&rq1->lock);
3072 __acquire(rq2->lock); /* Fake it out ;) */
3073 } else {
3074 if (rq1 < rq2) {
3075 raw_spin_lock(&rq1->lock);
3076 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3077 } else {
3078 raw_spin_lock(&rq2->lock);
3079 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3080 }
3081 }
3082 update_rq_clock(rq1);
3083 update_rq_clock(rq2);
3084 }
3085
3086 /*
3087 * double_rq_unlock - safely unlock two runqueues
3088 *
3089 * Note this does not restore interrupts like task_rq_unlock,
3090 * you need to do so manually after calling.
3091 */
3092 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3093 __releases(rq1->lock)
3094 __releases(rq2->lock)
3095 {
3096 raw_spin_unlock(&rq1->lock);
3097 if (rq1 != rq2)
3098 raw_spin_unlock(&rq2->lock);
3099 else
3100 __release(rq2->lock);
3101 }
3102
3103 /*
3104 * If dest_cpu is allowed for this process, migrate the task to it.
3105 * This is accomplished by forcing the cpu_allowed mask to only
3106 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3107 * the cpu_allowed mask is restored.
3108 */
3109 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3110 {
3111 struct migration_req req;
3112 unsigned long flags;
3113 struct rq *rq;
3114
3115 rq = task_rq_lock(p, &flags);
3116 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3117 || unlikely(!cpu_active(dest_cpu)))
3118 goto out;
3119
3120 /* force the process onto the specified CPU */
3121 if (migrate_task(p, dest_cpu, &req)) {
3122 /* Need to wait for migration thread (might exit: take ref). */
3123 struct task_struct *mt = rq->migration_thread;
3124
3125 get_task_struct(mt);
3126 task_rq_unlock(rq, &flags);
3127 wake_up_process(mt);
3128 put_task_struct(mt);
3129 wait_for_completion(&req.done);
3130
3131 return;
3132 }
3133 out:
3134 task_rq_unlock(rq, &flags);
3135 }
3136
3137 /*
3138 * sched_exec - execve() is a valuable balancing opportunity, because at
3139 * this point the task has the smallest effective memory and cache footprint.
3140 */
3141 void sched_exec(void)
3142 {
3143 int new_cpu, this_cpu = get_cpu();
3144 new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
3145 put_cpu();
3146 if (new_cpu != this_cpu)
3147 sched_migrate_task(current, new_cpu);
3148 }
3149
3150 /*
3151 * pull_task - move a task from a remote runqueue to the local runqueue.
3152 * Both runqueues must be locked.
3153 */
3154 static void pull_task(struct rq *src_rq, struct task_struct *p,
3155 struct rq *this_rq, int this_cpu)
3156 {
3157 deactivate_task(src_rq, p, 0);
3158 set_task_cpu(p, this_cpu);
3159 activate_task(this_rq, p, 0);
3160 check_preempt_curr(this_rq, p, 0);
3161 }
3162
3163 /*
3164 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3165 */
3166 static
3167 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3168 struct sched_domain *sd, enum cpu_idle_type idle,
3169 int *all_pinned)
3170 {
3171 int tsk_cache_hot = 0;
3172 /*
3173 * We do not migrate tasks that are:
3174 * 1) running (obviously), or
3175 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3176 * 3) are cache-hot on their current CPU.
3177 */
3178 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3179 schedstat_inc(p, se.nr_failed_migrations_affine);
3180 return 0;
3181 }
3182 *all_pinned = 0;
3183
3184 if (task_running(rq, p)) {
3185 schedstat_inc(p, se.nr_failed_migrations_running);
3186 return 0;
3187 }
3188
3189 /*
3190 * Aggressive migration if:
3191 * 1) task is cache cold, or
3192 * 2) too many balance attempts have failed.
3193 */
3194
3195 tsk_cache_hot = task_hot(p, rq->clock, sd);
3196 if (!tsk_cache_hot ||
3197 sd->nr_balance_failed > sd->cache_nice_tries) {
3198 #ifdef CONFIG_SCHEDSTATS
3199 if (tsk_cache_hot) {
3200 schedstat_inc(sd, lb_hot_gained[idle]);
3201 schedstat_inc(p, se.nr_forced_migrations);
3202 }
3203 #endif
3204 return 1;
3205 }
3206
3207 if (tsk_cache_hot) {
3208 schedstat_inc(p, se.nr_failed_migrations_hot);
3209 return 0;
3210 }
3211 return 1;
3212 }
3213
3214 static unsigned long
3215 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3216 unsigned long max_load_move, struct sched_domain *sd,
3217 enum cpu_idle_type idle, int *all_pinned,
3218 int *this_best_prio, struct rq_iterator *iterator)
3219 {
3220 int loops = 0, pulled = 0, pinned = 0;
3221 struct task_struct *p;
3222 long rem_load_move = max_load_move;
3223
3224 if (max_load_move == 0)
3225 goto out;
3226
3227 pinned = 1;
3228
3229 /*
3230 * Start the load-balancing iterator:
3231 */
3232 p = iterator->start(iterator->arg);
3233 next:
3234 if (!p || loops++ > sysctl_sched_nr_migrate)
3235 goto out;
3236
3237 if ((p->se.load.weight >> 1) > rem_load_move ||
3238 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3239 p = iterator->next(iterator->arg);
3240 goto next;
3241 }
3242
3243 pull_task(busiest, p, this_rq, this_cpu);
3244 pulled++;
3245 rem_load_move -= p->se.load.weight;
3246
3247 #ifdef CONFIG_PREEMPT
3248 /*
3249 * NEWIDLE balancing is a source of latency, so preemptible kernels
3250 * will stop after the first task is pulled to minimize the critical
3251 * section.
3252 */
3253 if (idle == CPU_NEWLY_IDLE)
3254 goto out;
3255 #endif
3256
3257 /*
3258 * We only want to steal up to the prescribed amount of weighted load.
3259 */
3260 if (rem_load_move > 0) {
3261 if (p->prio < *this_best_prio)
3262 *this_best_prio = p->prio;
3263 p = iterator->next(iterator->arg);
3264 goto next;
3265 }
3266 out:
3267 /*
3268 * Right now, this is one of only two places pull_task() is called,
3269 * so we can safely collect pull_task() stats here rather than
3270 * inside pull_task().
3271 */
3272 schedstat_add(sd, lb_gained[idle], pulled);
3273
3274 if (all_pinned)
3275 *all_pinned = pinned;
3276
3277 return max_load_move - rem_load_move;
3278 }
3279
3280 /*
3281 * move_tasks tries to move up to max_load_move weighted load from busiest to
3282 * this_rq, as part of a balancing operation within domain "sd".
3283 * Returns 1 if successful and 0 otherwise.
3284 *
3285 * Called with both runqueues locked.
3286 */
3287 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3288 unsigned long max_load_move,
3289 struct sched_domain *sd, enum cpu_idle_type idle,
3290 int *all_pinned)
3291 {
3292 const struct sched_class *class = sched_class_highest;
3293 unsigned long total_load_moved = 0;
3294 int this_best_prio = this_rq->curr->prio;
3295
3296 do {
3297 total_load_moved +=
3298 class->load_balance(this_rq, this_cpu, busiest,
3299 max_load_move - total_load_moved,
3300 sd, idle, all_pinned, &this_best_prio);
3301 class = class->next;
3302
3303 #ifdef CONFIG_PREEMPT
3304 /*
3305 * NEWIDLE balancing is a source of latency, so preemptible
3306 * kernels will stop after the first task is pulled to minimize
3307 * the critical section.
3308 */
3309 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3310 break;
3311 #endif
3312 } while (class && max_load_move > total_load_moved);
3313
3314 return total_load_moved > 0;
3315 }
3316
3317 static int
3318 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3319 struct sched_domain *sd, enum cpu_idle_type idle,
3320 struct rq_iterator *iterator)
3321 {
3322 struct task_struct *p = iterator->start(iterator->arg);
3323 int pinned = 0;
3324
3325 while (p) {
3326 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3327 pull_task(busiest, p, this_rq, this_cpu);
3328 /*
3329 * Right now, this is only the second place pull_task()
3330 * is called, so we can safely collect pull_task()
3331 * stats here rather than inside pull_task().
3332 */
3333 schedstat_inc(sd, lb_gained[idle]);
3334
3335 return 1;
3336 }
3337 p = iterator->next(iterator->arg);
3338 }
3339
3340 return 0;
3341 }
3342
3343 /*
3344 * move_one_task tries to move exactly one task from busiest to this_rq, as
3345 * part of active balancing operations within "domain".
3346 * Returns 1 if successful and 0 otherwise.
3347 *
3348 * Called with both runqueues locked.
3349 */
3350 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3351 struct sched_domain *sd, enum cpu_idle_type idle)
3352 {
3353 const struct sched_class *class;
3354
3355 for_each_class(class) {
3356 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3357 return 1;
3358 }
3359
3360 return 0;
3361 }
3362 /********** Helpers for find_busiest_group ************************/
3363 /*
3364 * sd_lb_stats - Structure to store the statistics of a sched_domain
3365 * during load balancing.
3366 */
3367 struct sd_lb_stats {
3368 struct sched_group *busiest; /* Busiest group in this sd */
3369 struct sched_group *this; /* Local group in this sd */
3370 unsigned long total_load; /* Total load of all groups in sd */
3371 unsigned long total_pwr; /* Total power of all groups in sd */
3372 unsigned long avg_load; /* Average load across all groups in sd */
3373
3374 /** Statistics of this group */
3375 unsigned long this_load;
3376 unsigned long this_load_per_task;
3377 unsigned long this_nr_running;
3378
3379 /* Statistics of the busiest group */
3380 unsigned long max_load;
3381 unsigned long busiest_load_per_task;
3382 unsigned long busiest_nr_running;
3383
3384 int group_imb; /* Is there imbalance in this sd */
3385 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3386 int power_savings_balance; /* Is powersave balance needed for this sd */
3387 struct sched_group *group_min; /* Least loaded group in sd */
3388 struct sched_group *group_leader; /* Group which relieves group_min */
3389 unsigned long min_load_per_task; /* load_per_task in group_min */
3390 unsigned long leader_nr_running; /* Nr running of group_leader */
3391 unsigned long min_nr_running; /* Nr running of group_min */
3392 #endif
3393 };
3394
3395 /*
3396 * sg_lb_stats - stats of a sched_group required for load_balancing
3397 */
3398 struct sg_lb_stats {
3399 unsigned long avg_load; /*Avg load across the CPUs of the group */
3400 unsigned long group_load; /* Total load over the CPUs of the group */
3401 unsigned long sum_nr_running; /* Nr tasks running in the group */
3402 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3403 unsigned long group_capacity;
3404 int group_imb; /* Is there an imbalance in the group ? */
3405 };
3406
3407 /**
3408 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3409 * @group: The group whose first cpu is to be returned.
3410 */
3411 static inline unsigned int group_first_cpu(struct sched_group *group)
3412 {
3413 return cpumask_first(sched_group_cpus(group));
3414 }
3415
3416 /**
3417 * get_sd_load_idx - Obtain the load index for a given sched domain.
3418 * @sd: The sched_domain whose load_idx is to be obtained.
3419 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3420 */
3421 static inline int get_sd_load_idx(struct sched_domain *sd,
3422 enum cpu_idle_type idle)
3423 {
3424 int load_idx;
3425
3426 switch (idle) {
3427 case CPU_NOT_IDLE:
3428 load_idx = sd->busy_idx;
3429 break;
3430
3431 case CPU_NEWLY_IDLE:
3432 load_idx = sd->newidle_idx;
3433 break;
3434 default:
3435 load_idx = sd->idle_idx;
3436 break;
3437 }
3438
3439 return load_idx;
3440 }
3441
3442
3443 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3444 /**
3445 * init_sd_power_savings_stats - Initialize power savings statistics for
3446 * the given sched_domain, during load balancing.
3447 *
3448 * @sd: Sched domain whose power-savings statistics are to be initialized.
3449 * @sds: Variable containing the statistics for sd.
3450 * @idle: Idle status of the CPU at which we're performing load-balancing.
3451 */
3452 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3453 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3454 {
3455 /*
3456 * Busy processors will not participate in power savings
3457 * balance.
3458 */
3459 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3460 sds->power_savings_balance = 0;
3461 else {
3462 sds->power_savings_balance = 1;
3463 sds->min_nr_running = ULONG_MAX;
3464 sds->leader_nr_running = 0;
3465 }
3466 }
3467
3468 /**
3469 * update_sd_power_savings_stats - Update the power saving stats for a
3470 * sched_domain while performing load balancing.
3471 *
3472 * @group: sched_group belonging to the sched_domain under consideration.
3473 * @sds: Variable containing the statistics of the sched_domain
3474 * @local_group: Does group contain the CPU for which we're performing
3475 * load balancing ?
3476 * @sgs: Variable containing the statistics of the group.
3477 */
3478 static inline void update_sd_power_savings_stats(struct sched_group *group,
3479 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3480 {
3481
3482 if (!sds->power_savings_balance)
3483 return;
3484
3485 /*
3486 * If the local group is idle or completely loaded
3487 * no need to do power savings balance at this domain
3488 */
3489 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3490 !sds->this_nr_running))
3491 sds->power_savings_balance = 0;
3492
3493 /*
3494 * If a group is already running at full capacity or idle,
3495 * don't include that group in power savings calculations
3496 */
3497 if (!sds->power_savings_balance ||
3498 sgs->sum_nr_running >= sgs->group_capacity ||
3499 !sgs->sum_nr_running)
3500 return;
3501
3502 /*
3503 * Calculate the group which has the least non-idle load.
3504 * This is the group from where we need to pick up the load
3505 * for saving power
3506 */
3507 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3508 (sgs->sum_nr_running == sds->min_nr_running &&
3509 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3510 sds->group_min = group;
3511 sds->min_nr_running = sgs->sum_nr_running;
3512 sds->min_load_per_task = sgs->sum_weighted_load /
3513 sgs->sum_nr_running;
3514 }
3515
3516 /*
3517 * Calculate the group which is almost near its
3518 * capacity but still has some space to pick up some load
3519 * from other group and save more power
3520 */
3521 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3522 return;
3523
3524 if (sgs->sum_nr_running > sds->leader_nr_running ||
3525 (sgs->sum_nr_running == sds->leader_nr_running &&
3526 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3527 sds->group_leader = group;
3528 sds->leader_nr_running = sgs->sum_nr_running;
3529 }
3530 }
3531
3532 /**
3533 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3534 * @sds: Variable containing the statistics of the sched_domain
3535 * under consideration.
3536 * @this_cpu: Cpu at which we're currently performing load-balancing.
3537 * @imbalance: Variable to store the imbalance.
3538 *
3539 * Description:
3540 * Check if we have potential to perform some power-savings balance.
3541 * If yes, set the busiest group to be the least loaded group in the
3542 * sched_domain, so that it's CPUs can be put to idle.
3543 *
3544 * Returns 1 if there is potential to perform power-savings balance.
3545 * Else returns 0.
3546 */
3547 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3548 int this_cpu, unsigned long *imbalance)
3549 {
3550 if (!sds->power_savings_balance)
3551 return 0;
3552
3553 if (sds->this != sds->group_leader ||
3554 sds->group_leader == sds->group_min)
3555 return 0;
3556
3557 *imbalance = sds->min_load_per_task;
3558 sds->busiest = sds->group_min;
3559
3560 return 1;
3561
3562 }
3563 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3564 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3565 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3566 {
3567 return;
3568 }
3569
3570 static inline void update_sd_power_savings_stats(struct sched_group *group,
3571 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3572 {
3573 return;
3574 }
3575
3576 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3577 int this_cpu, unsigned long *imbalance)
3578 {
3579 return 0;
3580 }
3581 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3582
3583
3584 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3585 {
3586 return SCHED_LOAD_SCALE;
3587 }
3588
3589 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3590 {
3591 return default_scale_freq_power(sd, cpu);
3592 }
3593
3594 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3595 {
3596 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3597 unsigned long smt_gain = sd->smt_gain;
3598
3599 smt_gain /= weight;
3600
3601 return smt_gain;
3602 }
3603
3604 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3605 {
3606 return default_scale_smt_power(sd, cpu);
3607 }
3608
3609 unsigned long scale_rt_power(int cpu)
3610 {
3611 struct rq *rq = cpu_rq(cpu);
3612 u64 total, available;
3613
3614 sched_avg_update(rq);
3615
3616 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3617 available = total - rq->rt_avg;
3618
3619 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3620 total = SCHED_LOAD_SCALE;
3621
3622 total >>= SCHED_LOAD_SHIFT;
3623
3624 return div_u64(available, total);
3625 }
3626
3627 static void update_cpu_power(struct sched_domain *sd, int cpu)
3628 {
3629 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3630 unsigned long power = SCHED_LOAD_SCALE;
3631 struct sched_group *sdg = sd->groups;
3632
3633 if (sched_feat(ARCH_POWER))
3634 power *= arch_scale_freq_power(sd, cpu);
3635 else
3636 power *= default_scale_freq_power(sd, cpu);
3637
3638 power >>= SCHED_LOAD_SHIFT;
3639
3640 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3641 if (sched_feat(ARCH_POWER))
3642 power *= arch_scale_smt_power(sd, cpu);
3643 else
3644 power *= default_scale_smt_power(sd, cpu);
3645
3646 power >>= SCHED_LOAD_SHIFT;
3647 }
3648
3649 power *= scale_rt_power(cpu);
3650 power >>= SCHED_LOAD_SHIFT;
3651
3652 if (!power)
3653 power = 1;
3654
3655 sdg->cpu_power = power;
3656 }
3657
3658 static void update_group_power(struct sched_domain *sd, int cpu)
3659 {
3660 struct sched_domain *child = sd->child;
3661 struct sched_group *group, *sdg = sd->groups;
3662 unsigned long power;
3663
3664 if (!child) {
3665 update_cpu_power(sd, cpu);
3666 return;
3667 }
3668
3669 power = 0;
3670
3671 group = child->groups;
3672 do {
3673 power += group->cpu_power;
3674 group = group->next;
3675 } while (group != child->groups);
3676
3677 sdg->cpu_power = power;
3678 }
3679
3680 /**
3681 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3682 * @sd: The sched_domain whose statistics are to be updated.
3683 * @group: sched_group whose statistics are to be updated.
3684 * @this_cpu: Cpu for which load balance is currently performed.
3685 * @idle: Idle status of this_cpu
3686 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3687 * @sd_idle: Idle status of the sched_domain containing group.
3688 * @local_group: Does group contain this_cpu.
3689 * @cpus: Set of cpus considered for load balancing.
3690 * @balance: Should we balance.
3691 * @sgs: variable to hold the statistics for this group.
3692 */
3693 static inline void update_sg_lb_stats(struct sched_domain *sd,
3694 struct sched_group *group, int this_cpu,
3695 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3696 int local_group, const struct cpumask *cpus,
3697 int *balance, struct sg_lb_stats *sgs)
3698 {
3699 unsigned long load, max_cpu_load, min_cpu_load;
3700 int i;
3701 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3702 unsigned long sum_avg_load_per_task;
3703 unsigned long avg_load_per_task;
3704
3705 if (local_group) {
3706 balance_cpu = group_first_cpu(group);
3707 if (balance_cpu == this_cpu)
3708 update_group_power(sd, this_cpu);
3709 }
3710
3711 /* Tally up the load of all CPUs in the group */
3712 sum_avg_load_per_task = avg_load_per_task = 0;
3713 max_cpu_load = 0;
3714 min_cpu_load = ~0UL;
3715
3716 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3717 struct rq *rq = cpu_rq(i);
3718
3719 if (*sd_idle && rq->nr_running)
3720 *sd_idle = 0;
3721
3722 /* Bias balancing toward cpus of our domain */
3723 if (local_group) {
3724 if (idle_cpu(i) && !first_idle_cpu) {
3725 first_idle_cpu = 1;
3726 balance_cpu = i;
3727 }
3728
3729 load = target_load(i, load_idx);
3730 } else {
3731 load = source_load(i, load_idx);
3732 if (load > max_cpu_load)
3733 max_cpu_load = load;
3734 if (min_cpu_load > load)
3735 min_cpu_load = load;
3736 }
3737
3738 sgs->group_load += load;
3739 sgs->sum_nr_running += rq->nr_running;
3740 sgs->sum_weighted_load += weighted_cpuload(i);
3741
3742 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3743 }
3744
3745 /*
3746 * First idle cpu or the first cpu(busiest) in this sched group
3747 * is eligible for doing load balancing at this and above
3748 * domains. In the newly idle case, we will allow all the cpu's
3749 * to do the newly idle load balance.
3750 */
3751 if (idle != CPU_NEWLY_IDLE && local_group &&
3752 balance_cpu != this_cpu && balance) {
3753 *balance = 0;
3754 return;
3755 }
3756
3757 /* Adjust by relative CPU power of the group */
3758 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3759
3760
3761 /*
3762 * Consider the group unbalanced when the imbalance is larger
3763 * than the average weight of two tasks.
3764 *
3765 * APZ: with cgroup the avg task weight can vary wildly and
3766 * might not be a suitable number - should we keep a
3767 * normalized nr_running number somewhere that negates
3768 * the hierarchy?
3769 */
3770 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3771 group->cpu_power;
3772
3773 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3774 sgs->group_imb = 1;
3775
3776 sgs->group_capacity =
3777 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3778 }
3779
3780 /**
3781 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3782 * @sd: sched_domain whose statistics are to be updated.
3783 * @this_cpu: Cpu for which load balance is currently performed.
3784 * @idle: Idle status of this_cpu
3785 * @sd_idle: Idle status of the sched_domain containing group.
3786 * @cpus: Set of cpus considered for load balancing.
3787 * @balance: Should we balance.
3788 * @sds: variable to hold the statistics for this sched_domain.
3789 */
3790 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3791 enum cpu_idle_type idle, int *sd_idle,
3792 const struct cpumask *cpus, int *balance,
3793 struct sd_lb_stats *sds)
3794 {
3795 struct sched_domain *child = sd->child;
3796 struct sched_group *group = sd->groups;
3797 struct sg_lb_stats sgs;
3798 int load_idx, prefer_sibling = 0;
3799
3800 if (child && child->flags & SD_PREFER_SIBLING)
3801 prefer_sibling = 1;
3802
3803 init_sd_power_savings_stats(sd, sds, idle);
3804 load_idx = get_sd_load_idx(sd, idle);
3805
3806 do {
3807 int local_group;
3808
3809 local_group = cpumask_test_cpu(this_cpu,
3810 sched_group_cpus(group));
3811 memset(&sgs, 0, sizeof(sgs));
3812 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3813 local_group, cpus, balance, &sgs);
3814
3815 if (local_group && balance && !(*balance))
3816 return;
3817
3818 sds->total_load += sgs.group_load;
3819 sds->total_pwr += group->cpu_power;
3820
3821 /*
3822 * In case the child domain prefers tasks go to siblings
3823 * first, lower the group capacity to one so that we'll try
3824 * and move all the excess tasks away.
3825 */
3826 if (prefer_sibling)
3827 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3828
3829 if (local_group) {
3830 sds->this_load = sgs.avg_load;
3831 sds->this = group;
3832 sds->this_nr_running = sgs.sum_nr_running;
3833 sds->this_load_per_task = sgs.sum_weighted_load;
3834 } else if (sgs.avg_load > sds->max_load &&
3835 (sgs.sum_nr_running > sgs.group_capacity ||
3836 sgs.group_imb)) {
3837 sds->max_load = sgs.avg_load;
3838 sds->busiest = group;
3839 sds->busiest_nr_running = sgs.sum_nr_running;
3840 sds->busiest_load_per_task = sgs.sum_weighted_load;
3841 sds->group_imb = sgs.group_imb;
3842 }
3843
3844 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3845 group = group->next;
3846 } while (group != sd->groups);
3847 }
3848
3849 /**
3850 * fix_small_imbalance - Calculate the minor imbalance that exists
3851 * amongst the groups of a sched_domain, during
3852 * load balancing.
3853 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3854 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3855 * @imbalance: Variable to store the imbalance.
3856 */
3857 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3858 int this_cpu, unsigned long *imbalance)
3859 {
3860 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3861 unsigned int imbn = 2;
3862
3863 if (sds->this_nr_running) {
3864 sds->this_load_per_task /= sds->this_nr_running;
3865 if (sds->busiest_load_per_task >
3866 sds->this_load_per_task)
3867 imbn = 1;
3868 } else
3869 sds->this_load_per_task =
3870 cpu_avg_load_per_task(this_cpu);
3871
3872 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3873 sds->busiest_load_per_task * imbn) {
3874 *imbalance = sds->busiest_load_per_task;
3875 return;
3876 }
3877
3878 /*
3879 * OK, we don't have enough imbalance to justify moving tasks,
3880 * however we may be able to increase total CPU power used by
3881 * moving them.
3882 */
3883
3884 pwr_now += sds->busiest->cpu_power *
3885 min(sds->busiest_load_per_task, sds->max_load);
3886 pwr_now += sds->this->cpu_power *
3887 min(sds->this_load_per_task, sds->this_load);
3888 pwr_now /= SCHED_LOAD_SCALE;
3889
3890 /* Amount of load we'd subtract */
3891 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3892 sds->busiest->cpu_power;
3893 if (sds->max_load > tmp)
3894 pwr_move += sds->busiest->cpu_power *
3895 min(sds->busiest_load_per_task, sds->max_load - tmp);
3896
3897 /* Amount of load we'd add */
3898 if (sds->max_load * sds->busiest->cpu_power <
3899 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3900 tmp = (sds->max_load * sds->busiest->cpu_power) /
3901 sds->this->cpu_power;
3902 else
3903 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3904 sds->this->cpu_power;
3905 pwr_move += sds->this->cpu_power *
3906 min(sds->this_load_per_task, sds->this_load + tmp);
3907 pwr_move /= SCHED_LOAD_SCALE;
3908
3909 /* Move if we gain throughput */
3910 if (pwr_move > pwr_now)
3911 *imbalance = sds->busiest_load_per_task;
3912 }
3913
3914 /**
3915 * calculate_imbalance - Calculate the amount of imbalance present within the
3916 * groups of a given sched_domain during load balance.
3917 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3918 * @this_cpu: Cpu for which currently load balance is being performed.
3919 * @imbalance: The variable to store the imbalance.
3920 */
3921 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3922 unsigned long *imbalance)
3923 {
3924 unsigned long max_pull;
3925 /*
3926 * In the presence of smp nice balancing, certain scenarios can have
3927 * max load less than avg load(as we skip the groups at or below
3928 * its cpu_power, while calculating max_load..)
3929 */
3930 if (sds->max_load < sds->avg_load) {
3931 *imbalance = 0;
3932 return fix_small_imbalance(sds, this_cpu, imbalance);
3933 }
3934
3935 /* Don't want to pull so many tasks that a group would go idle */
3936 max_pull = min(sds->max_load - sds->avg_load,
3937 sds->max_load - sds->busiest_load_per_task);
3938
3939 /* How much load to actually move to equalise the imbalance */
3940 *imbalance = min(max_pull * sds->busiest->cpu_power,
3941 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3942 / SCHED_LOAD_SCALE;
3943
3944 /*
3945 * if *imbalance is less than the average load per runnable task
3946 * there is no gaurantee that any tasks will be moved so we'll have
3947 * a think about bumping its value to force at least one task to be
3948 * moved
3949 */
3950 if (*imbalance < sds->busiest_load_per_task)
3951 return fix_small_imbalance(sds, this_cpu, imbalance);
3952
3953 }
3954 /******* find_busiest_group() helpers end here *********************/
3955
3956 /**
3957 * find_busiest_group - Returns the busiest group within the sched_domain
3958 * if there is an imbalance. If there isn't an imbalance, and
3959 * the user has opted for power-savings, it returns a group whose
3960 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3961 * such a group exists.
3962 *
3963 * Also calculates the amount of weighted load which should be moved
3964 * to restore balance.
3965 *
3966 * @sd: The sched_domain whose busiest group is to be returned.
3967 * @this_cpu: The cpu for which load balancing is currently being performed.
3968 * @imbalance: Variable which stores amount of weighted load which should
3969 * be moved to restore balance/put a group to idle.
3970 * @idle: The idle status of this_cpu.
3971 * @sd_idle: The idleness of sd
3972 * @cpus: The set of CPUs under consideration for load-balancing.
3973 * @balance: Pointer to a variable indicating if this_cpu
3974 * is the appropriate cpu to perform load balancing at this_level.
3975 *
3976 * Returns: - the busiest group if imbalance exists.
3977 * - If no imbalance and user has opted for power-savings balance,
3978 * return the least loaded group whose CPUs can be
3979 * put to idle by rebalancing its tasks onto our group.
3980 */
3981 static struct sched_group *
3982 find_busiest_group(struct sched_domain *sd, int this_cpu,
3983 unsigned long *imbalance, enum cpu_idle_type idle,
3984 int *sd_idle, const struct cpumask *cpus, int *balance)
3985 {
3986 struct sd_lb_stats sds;
3987
3988 memset(&sds, 0, sizeof(sds));
3989
3990 /*
3991 * Compute the various statistics relavent for load balancing at
3992 * this level.
3993 */
3994 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3995 balance, &sds);
3996
3997 /* Cases where imbalance does not exist from POV of this_cpu */
3998 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3999 * at this level.
4000 * 2) There is no busy sibling group to pull from.
4001 * 3) This group is the busiest group.
4002 * 4) This group is more busy than the avg busieness at this
4003 * sched_domain.
4004 * 5) The imbalance is within the specified limit.
4005 * 6) Any rebalance would lead to ping-pong
4006 */
4007 if (balance && !(*balance))
4008 goto ret;
4009
4010 if (!sds.busiest || sds.busiest_nr_running == 0)
4011 goto out_balanced;
4012
4013 if (sds.this_load >= sds.max_load)
4014 goto out_balanced;
4015
4016 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4017
4018 if (sds.this_load >= sds.avg_load)
4019 goto out_balanced;
4020
4021 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4022 goto out_balanced;
4023
4024 sds.busiest_load_per_task /= sds.busiest_nr_running;
4025 if (sds.group_imb)
4026 sds.busiest_load_per_task =
4027 min(sds.busiest_load_per_task, sds.avg_load);
4028
4029 /*
4030 * We're trying to get all the cpus to the average_load, so we don't
4031 * want to push ourselves above the average load, nor do we wish to
4032 * reduce the max loaded cpu below the average load, as either of these
4033 * actions would just result in more rebalancing later, and ping-pong
4034 * tasks around. Thus we look for the minimum possible imbalance.
4035 * Negative imbalances (*we* are more loaded than anyone else) will
4036 * be counted as no imbalance for these purposes -- we can't fix that
4037 * by pulling tasks to us. Be careful of negative numbers as they'll
4038 * appear as very large values with unsigned longs.
4039 */
4040 if (sds.max_load <= sds.busiest_load_per_task)
4041 goto out_balanced;
4042
4043 /* Looks like there is an imbalance. Compute it */
4044 calculate_imbalance(&sds, this_cpu, imbalance);
4045 return sds.busiest;
4046
4047 out_balanced:
4048 /*
4049 * There is no obvious imbalance. But check if we can do some balancing
4050 * to save power.
4051 */
4052 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4053 return sds.busiest;
4054 ret:
4055 *imbalance = 0;
4056 return NULL;
4057 }
4058
4059 /*
4060 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4061 */
4062 static struct rq *
4063 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4064 unsigned long imbalance, const struct cpumask *cpus)
4065 {
4066 struct rq *busiest = NULL, *rq;
4067 unsigned long max_load = 0;
4068 int i;
4069
4070 for_each_cpu(i, sched_group_cpus(group)) {
4071 unsigned long power = power_of(i);
4072 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4073 unsigned long wl;
4074
4075 if (!cpumask_test_cpu(i, cpus))
4076 continue;
4077
4078 rq = cpu_rq(i);
4079 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4080 wl /= power;
4081
4082 if (capacity && rq->nr_running == 1 && wl > imbalance)
4083 continue;
4084
4085 if (wl > max_load) {
4086 max_load = wl;
4087 busiest = rq;
4088 }
4089 }
4090
4091 return busiest;
4092 }
4093
4094 /*
4095 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4096 * so long as it is large enough.
4097 */
4098 #define MAX_PINNED_INTERVAL 512
4099
4100 /* Working cpumask for load_balance and load_balance_newidle. */
4101 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4102
4103 /*
4104 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4105 * tasks if there is an imbalance.
4106 */
4107 static int load_balance(int this_cpu, struct rq *this_rq,
4108 struct sched_domain *sd, enum cpu_idle_type idle,
4109 int *balance)
4110 {
4111 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4112 struct sched_group *group;
4113 unsigned long imbalance;
4114 struct rq *busiest;
4115 unsigned long flags;
4116 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4117
4118 cpumask_copy(cpus, cpu_active_mask);
4119
4120 /*
4121 * When power savings policy is enabled for the parent domain, idle
4122 * sibling can pick up load irrespective of busy siblings. In this case,
4123 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4124 * portraying it as CPU_NOT_IDLE.
4125 */
4126 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4127 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4128 sd_idle = 1;
4129
4130 schedstat_inc(sd, lb_count[idle]);
4131
4132 redo:
4133 update_shares(sd);
4134 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4135 cpus, balance);
4136
4137 if (*balance == 0)
4138 goto out_balanced;
4139
4140 if (!group) {
4141 schedstat_inc(sd, lb_nobusyg[idle]);
4142 goto out_balanced;
4143 }
4144
4145 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4146 if (!busiest) {
4147 schedstat_inc(sd, lb_nobusyq[idle]);
4148 goto out_balanced;
4149 }
4150
4151 BUG_ON(busiest == this_rq);
4152
4153 schedstat_add(sd, lb_imbalance[idle], imbalance);
4154
4155 ld_moved = 0;
4156 if (busiest->nr_running > 1) {
4157 /*
4158 * Attempt to move tasks. If find_busiest_group has found
4159 * an imbalance but busiest->nr_running <= 1, the group is
4160 * still unbalanced. ld_moved simply stays zero, so it is
4161 * correctly treated as an imbalance.
4162 */
4163 local_irq_save(flags);
4164 double_rq_lock(this_rq, busiest);
4165 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4166 imbalance, sd, idle, &all_pinned);
4167 double_rq_unlock(this_rq, busiest);
4168 local_irq_restore(flags);
4169
4170 /*
4171 * some other cpu did the load balance for us.
4172 */
4173 if (ld_moved && this_cpu != smp_processor_id())
4174 resched_cpu(this_cpu);
4175
4176 /* All tasks on this runqueue were pinned by CPU affinity */
4177 if (unlikely(all_pinned)) {
4178 cpumask_clear_cpu(cpu_of(busiest), cpus);
4179 if (!cpumask_empty(cpus))
4180 goto redo;
4181 goto out_balanced;
4182 }
4183 }
4184
4185 if (!ld_moved) {
4186 schedstat_inc(sd, lb_failed[idle]);
4187 sd->nr_balance_failed++;
4188
4189 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4190
4191 raw_spin_lock_irqsave(&busiest->lock, flags);
4192
4193 /* don't kick the migration_thread, if the curr
4194 * task on busiest cpu can't be moved to this_cpu
4195 */
4196 if (!cpumask_test_cpu(this_cpu,
4197 &busiest->curr->cpus_allowed)) {
4198 raw_spin_unlock_irqrestore(&busiest->lock,
4199 flags);
4200 all_pinned = 1;
4201 goto out_one_pinned;
4202 }
4203
4204 if (!busiest->active_balance) {
4205 busiest->active_balance = 1;
4206 busiest->push_cpu = this_cpu;
4207 active_balance = 1;
4208 }
4209 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4210 if (active_balance)
4211 wake_up_process(busiest->migration_thread);
4212
4213 /*
4214 * We've kicked active balancing, reset the failure
4215 * counter.
4216 */
4217 sd->nr_balance_failed = sd->cache_nice_tries+1;
4218 }
4219 } else
4220 sd->nr_balance_failed = 0;
4221
4222 if (likely(!active_balance)) {
4223 /* We were unbalanced, so reset the balancing interval */
4224 sd->balance_interval = sd->min_interval;
4225 } else {
4226 /*
4227 * If we've begun active balancing, start to back off. This
4228 * case may not be covered by the all_pinned logic if there
4229 * is only 1 task on the busy runqueue (because we don't call
4230 * move_tasks).
4231 */
4232 if (sd->balance_interval < sd->max_interval)
4233 sd->balance_interval *= 2;
4234 }
4235
4236 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4237 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4238 ld_moved = -1;
4239
4240 goto out;
4241
4242 out_balanced:
4243 schedstat_inc(sd, lb_balanced[idle]);
4244
4245 sd->nr_balance_failed = 0;
4246
4247 out_one_pinned:
4248 /* tune up the balancing interval */
4249 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4250 (sd->balance_interval < sd->max_interval))
4251 sd->balance_interval *= 2;
4252
4253 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4254 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4255 ld_moved = -1;
4256 else
4257 ld_moved = 0;
4258 out:
4259 if (ld_moved)
4260 update_shares(sd);
4261 return ld_moved;
4262 }
4263
4264 /*
4265 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4266 * tasks if there is an imbalance.
4267 *
4268 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4269 * this_rq is locked.
4270 */
4271 static int
4272 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4273 {
4274 struct sched_group *group;
4275 struct rq *busiest = NULL;
4276 unsigned long imbalance;
4277 int ld_moved = 0;
4278 int sd_idle = 0;
4279 int all_pinned = 0;
4280 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4281
4282 cpumask_copy(cpus, cpu_active_mask);
4283
4284 /*
4285 * When power savings policy is enabled for the parent domain, idle
4286 * sibling can pick up load irrespective of busy siblings. In this case,
4287 * let the state of idle sibling percolate up as IDLE, instead of
4288 * portraying it as CPU_NOT_IDLE.
4289 */
4290 if (sd->flags & SD_SHARE_CPUPOWER &&
4291 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4292 sd_idle = 1;
4293
4294 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4295 redo:
4296 update_shares_locked(this_rq, sd);
4297 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4298 &sd_idle, cpus, NULL);
4299 if (!group) {
4300 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4301 goto out_balanced;
4302 }
4303
4304 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4305 if (!busiest) {
4306 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4307 goto out_balanced;
4308 }
4309
4310 BUG_ON(busiest == this_rq);
4311
4312 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4313
4314 ld_moved = 0;
4315 if (busiest->nr_running > 1) {
4316 /* Attempt to move tasks */
4317 double_lock_balance(this_rq, busiest);
4318 /* this_rq->clock is already updated */
4319 update_rq_clock(busiest);
4320 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4321 imbalance, sd, CPU_NEWLY_IDLE,
4322 &all_pinned);
4323 double_unlock_balance(this_rq, busiest);
4324
4325 if (unlikely(all_pinned)) {
4326 cpumask_clear_cpu(cpu_of(busiest), cpus);
4327 if (!cpumask_empty(cpus))
4328 goto redo;
4329 }
4330 }
4331
4332 if (!ld_moved) {
4333 int active_balance = 0;
4334
4335 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4336 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4337 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4338 return -1;
4339
4340 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4341 return -1;
4342
4343 if (sd->nr_balance_failed++ < 2)
4344 return -1;
4345
4346 /*
4347 * The only task running in a non-idle cpu can be moved to this
4348 * cpu in an attempt to completely freeup the other CPU
4349 * package. The same method used to move task in load_balance()
4350 * have been extended for load_balance_newidle() to speedup
4351 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4352 *
4353 * The package power saving logic comes from
4354 * find_busiest_group(). If there are no imbalance, then
4355 * f_b_g() will return NULL. However when sched_mc={1,2} then
4356 * f_b_g() will select a group from which a running task may be
4357 * pulled to this cpu in order to make the other package idle.
4358 * If there is no opportunity to make a package idle and if
4359 * there are no imbalance, then f_b_g() will return NULL and no
4360 * action will be taken in load_balance_newidle().
4361 *
4362 * Under normal task pull operation due to imbalance, there
4363 * will be more than one task in the source run queue and
4364 * move_tasks() will succeed. ld_moved will be true and this
4365 * active balance code will not be triggered.
4366 */
4367
4368 /* Lock busiest in correct order while this_rq is held */
4369 double_lock_balance(this_rq, busiest);
4370
4371 /*
4372 * don't kick the migration_thread, if the curr
4373 * task on busiest cpu can't be moved to this_cpu
4374 */
4375 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4376 double_unlock_balance(this_rq, busiest);
4377 all_pinned = 1;
4378 return ld_moved;
4379 }
4380
4381 if (!busiest->active_balance) {
4382 busiest->active_balance = 1;
4383 busiest->push_cpu = this_cpu;
4384 active_balance = 1;
4385 }
4386
4387 double_unlock_balance(this_rq, busiest);
4388 /*
4389 * Should not call ttwu while holding a rq->lock
4390 */
4391 raw_spin_unlock(&this_rq->lock);
4392 if (active_balance)
4393 wake_up_process(busiest->migration_thread);
4394 raw_spin_lock(&this_rq->lock);
4395
4396 } else
4397 sd->nr_balance_failed = 0;
4398
4399 update_shares_locked(this_rq, sd);
4400 return ld_moved;
4401
4402 out_balanced:
4403 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4404 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4405 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4406 return -1;
4407 sd->nr_balance_failed = 0;
4408
4409 return 0;
4410 }
4411
4412 /*
4413 * idle_balance is called by schedule() if this_cpu is about to become
4414 * idle. Attempts to pull tasks from other CPUs.
4415 */
4416 static void idle_balance(int this_cpu, struct rq *this_rq)
4417 {
4418 struct sched_domain *sd;
4419 int pulled_task = 0;
4420 unsigned long next_balance = jiffies + HZ;
4421
4422 this_rq->idle_stamp = this_rq->clock;
4423
4424 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4425 return;
4426
4427 for_each_domain(this_cpu, sd) {
4428 unsigned long interval;
4429
4430 if (!(sd->flags & SD_LOAD_BALANCE))
4431 continue;
4432
4433 if (sd->flags & SD_BALANCE_NEWIDLE)
4434 /* If we've pulled tasks over stop searching: */
4435 pulled_task = load_balance_newidle(this_cpu, this_rq,
4436 sd);
4437
4438 interval = msecs_to_jiffies(sd->balance_interval);
4439 if (time_after(next_balance, sd->last_balance + interval))
4440 next_balance = sd->last_balance + interval;
4441 if (pulled_task) {
4442 this_rq->idle_stamp = 0;
4443 break;
4444 }
4445 }
4446 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4447 /*
4448 * We are going idle. next_balance may be set based on
4449 * a busy processor. So reset next_balance.
4450 */
4451 this_rq->next_balance = next_balance;
4452 }
4453 }
4454
4455 /*
4456 * active_load_balance is run by migration threads. It pushes running tasks
4457 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4458 * running on each physical CPU where possible, and avoids physical /
4459 * logical imbalances.
4460 *
4461 * Called with busiest_rq locked.
4462 */
4463 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4464 {
4465 int target_cpu = busiest_rq->push_cpu;
4466 struct sched_domain *sd;
4467 struct rq *target_rq;
4468
4469 /* Is there any task to move? */
4470 if (busiest_rq->nr_running <= 1)
4471 return;
4472
4473 target_rq = cpu_rq(target_cpu);
4474
4475 /*
4476 * This condition is "impossible", if it occurs
4477 * we need to fix it. Originally reported by
4478 * Bjorn Helgaas on a 128-cpu setup.
4479 */
4480 BUG_ON(busiest_rq == target_rq);
4481
4482 /* move a task from busiest_rq to target_rq */
4483 double_lock_balance(busiest_rq, target_rq);
4484 update_rq_clock(busiest_rq);
4485 update_rq_clock(target_rq);
4486
4487 /* Search for an sd spanning us and the target CPU. */
4488 for_each_domain(target_cpu, sd) {
4489 if ((sd->flags & SD_LOAD_BALANCE) &&
4490 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4491 break;
4492 }
4493
4494 if (likely(sd)) {
4495 schedstat_inc(sd, alb_count);
4496
4497 if (move_one_task(target_rq, target_cpu, busiest_rq,
4498 sd, CPU_IDLE))
4499 schedstat_inc(sd, alb_pushed);
4500 else
4501 schedstat_inc(sd, alb_failed);
4502 }
4503 double_unlock_balance(busiest_rq, target_rq);
4504 }
4505
4506 #ifdef CONFIG_NO_HZ
4507 static struct {
4508 atomic_t load_balancer;
4509 cpumask_var_t cpu_mask;
4510 cpumask_var_t ilb_grp_nohz_mask;
4511 } nohz ____cacheline_aligned = {
4512 .load_balancer = ATOMIC_INIT(-1),
4513 };
4514
4515 int get_nohz_load_balancer(void)
4516 {
4517 return atomic_read(&nohz.load_balancer);
4518 }
4519
4520 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4521 /**
4522 * lowest_flag_domain - Return lowest sched_domain containing flag.
4523 * @cpu: The cpu whose lowest level of sched domain is to
4524 * be returned.
4525 * @flag: The flag to check for the lowest sched_domain
4526 * for the given cpu.
4527 *
4528 * Returns the lowest sched_domain of a cpu which contains the given flag.
4529 */
4530 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4531 {
4532 struct sched_domain *sd;
4533
4534 for_each_domain(cpu, sd)
4535 if (sd && (sd->flags & flag))
4536 break;
4537
4538 return sd;
4539 }
4540
4541 /**
4542 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4543 * @cpu: The cpu whose domains we're iterating over.
4544 * @sd: variable holding the value of the power_savings_sd
4545 * for cpu.
4546 * @flag: The flag to filter the sched_domains to be iterated.
4547 *
4548 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4549 * set, starting from the lowest sched_domain to the highest.
4550 */
4551 #define for_each_flag_domain(cpu, sd, flag) \
4552 for (sd = lowest_flag_domain(cpu, flag); \
4553 (sd && (sd->flags & flag)); sd = sd->parent)
4554
4555 /**
4556 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4557 * @ilb_group: group to be checked for semi-idleness
4558 *
4559 * Returns: 1 if the group is semi-idle. 0 otherwise.
4560 *
4561 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4562 * and atleast one non-idle CPU. This helper function checks if the given
4563 * sched_group is semi-idle or not.
4564 */
4565 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4566 {
4567 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4568 sched_group_cpus(ilb_group));
4569
4570 /*
4571 * A sched_group is semi-idle when it has atleast one busy cpu
4572 * and atleast one idle cpu.
4573 */
4574 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4575 return 0;
4576
4577 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4578 return 0;
4579
4580 return 1;
4581 }
4582 /**
4583 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4584 * @cpu: The cpu which is nominating a new idle_load_balancer.
4585 *
4586 * Returns: Returns the id of the idle load balancer if it exists,
4587 * Else, returns >= nr_cpu_ids.
4588 *
4589 * This algorithm picks the idle load balancer such that it belongs to a
4590 * semi-idle powersavings sched_domain. The idea is to try and avoid
4591 * completely idle packages/cores just for the purpose of idle load balancing
4592 * when there are other idle cpu's which are better suited for that job.
4593 */
4594 static int find_new_ilb(int cpu)
4595 {
4596 struct sched_domain *sd;
4597 struct sched_group *ilb_group;
4598
4599 /*
4600 * Have idle load balancer selection from semi-idle packages only
4601 * when power-aware load balancing is enabled
4602 */
4603 if (!(sched_smt_power_savings || sched_mc_power_savings))
4604 goto out_done;
4605
4606 /*
4607 * Optimize for the case when we have no idle CPUs or only one
4608 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4609 */
4610 if (cpumask_weight(nohz.cpu_mask) < 2)
4611 goto out_done;
4612
4613 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4614 ilb_group = sd->groups;
4615
4616 do {
4617 if (is_semi_idle_group(ilb_group))
4618 return cpumask_first(nohz.ilb_grp_nohz_mask);
4619
4620 ilb_group = ilb_group->next;
4621
4622 } while (ilb_group != sd->groups);
4623 }
4624
4625 out_done:
4626 return cpumask_first(nohz.cpu_mask);
4627 }
4628 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4629 static inline int find_new_ilb(int call_cpu)
4630 {
4631 return cpumask_first(nohz.cpu_mask);
4632 }
4633 #endif
4634
4635 /*
4636 * This routine will try to nominate the ilb (idle load balancing)
4637 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4638 * load balancing on behalf of all those cpus. If all the cpus in the system
4639 * go into this tickless mode, then there will be no ilb owner (as there is
4640 * no need for one) and all the cpus will sleep till the next wakeup event
4641 * arrives...
4642 *
4643 * For the ilb owner, tick is not stopped. And this tick will be used
4644 * for idle load balancing. ilb owner will still be part of
4645 * nohz.cpu_mask..
4646 *
4647 * While stopping the tick, this cpu will become the ilb owner if there
4648 * is no other owner. And will be the owner till that cpu becomes busy
4649 * or if all cpus in the system stop their ticks at which point
4650 * there is no need for ilb owner.
4651 *
4652 * When the ilb owner becomes busy, it nominates another owner, during the
4653 * next busy scheduler_tick()
4654 */
4655 int select_nohz_load_balancer(int stop_tick)
4656 {
4657 int cpu = smp_processor_id();
4658
4659 if (stop_tick) {
4660 cpu_rq(cpu)->in_nohz_recently = 1;
4661
4662 if (!cpu_active(cpu)) {
4663 if (atomic_read(&nohz.load_balancer) != cpu)
4664 return 0;
4665
4666 /*
4667 * If we are going offline and still the leader,
4668 * give up!
4669 */
4670 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4671 BUG();
4672
4673 return 0;
4674 }
4675
4676 cpumask_set_cpu(cpu, nohz.cpu_mask);
4677
4678 /* time for ilb owner also to sleep */
4679 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4680 if (atomic_read(&nohz.load_balancer) == cpu)
4681 atomic_set(&nohz.load_balancer, -1);
4682 return 0;
4683 }
4684
4685 if (atomic_read(&nohz.load_balancer) == -1) {
4686 /* make me the ilb owner */
4687 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4688 return 1;
4689 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4690 int new_ilb;
4691
4692 if (!(sched_smt_power_savings ||
4693 sched_mc_power_savings))
4694 return 1;
4695 /*
4696 * Check to see if there is a more power-efficient
4697 * ilb.
4698 */
4699 new_ilb = find_new_ilb(cpu);
4700 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4701 atomic_set(&nohz.load_balancer, -1);
4702 resched_cpu(new_ilb);
4703 return 0;
4704 }
4705 return 1;
4706 }
4707 } else {
4708 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4709 return 0;
4710
4711 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4712
4713 if (atomic_read(&nohz.load_balancer) == cpu)
4714 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4715 BUG();
4716 }
4717 return 0;
4718 }
4719 #endif
4720
4721 static DEFINE_SPINLOCK(balancing);
4722
4723 /*
4724 * It checks each scheduling domain to see if it is due to be balanced,
4725 * and initiates a balancing operation if so.
4726 *
4727 * Balancing parameters are set up in arch_init_sched_domains.
4728 */
4729 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4730 {
4731 int balance = 1;
4732 struct rq *rq = cpu_rq(cpu);
4733 unsigned long interval;
4734 struct sched_domain *sd;
4735 /* Earliest time when we have to do rebalance again */
4736 unsigned long next_balance = jiffies + 60*HZ;
4737 int update_next_balance = 0;
4738 int need_serialize;
4739
4740 for_each_domain(cpu, sd) {
4741 if (!(sd->flags & SD_LOAD_BALANCE))
4742 continue;
4743
4744 interval = sd->balance_interval;
4745 if (idle != CPU_IDLE)
4746 interval *= sd->busy_factor;
4747
4748 /* scale ms to jiffies */
4749 interval = msecs_to_jiffies(interval);
4750 if (unlikely(!interval))
4751 interval = 1;
4752 if (interval > HZ*NR_CPUS/10)
4753 interval = HZ*NR_CPUS/10;
4754
4755 need_serialize = sd->flags & SD_SERIALIZE;
4756
4757 if (need_serialize) {
4758 if (!spin_trylock(&balancing))
4759 goto out;
4760 }
4761
4762 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4763 if (load_balance(cpu, rq, sd, idle, &balance)) {
4764 /*
4765 * We've pulled tasks over so either we're no
4766 * longer idle, or one of our SMT siblings is
4767 * not idle.
4768 */
4769 idle = CPU_NOT_IDLE;
4770 }
4771 sd->last_balance = jiffies;
4772 }
4773 if (need_serialize)
4774 spin_unlock(&balancing);
4775 out:
4776 if (time_after(next_balance, sd->last_balance + interval)) {
4777 next_balance = sd->last_balance + interval;
4778 update_next_balance = 1;
4779 }
4780
4781 /*
4782 * Stop the load balance at this level. There is another
4783 * CPU in our sched group which is doing load balancing more
4784 * actively.
4785 */
4786 if (!balance)
4787 break;
4788 }
4789
4790 /*
4791 * next_balance will be updated only when there is a need.
4792 * When the cpu is attached to null domain for ex, it will not be
4793 * updated.
4794 */
4795 if (likely(update_next_balance))
4796 rq->next_balance = next_balance;
4797 }
4798
4799 /*
4800 * run_rebalance_domains is triggered when needed from the scheduler tick.
4801 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4802 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4803 */
4804 static void run_rebalance_domains(struct softirq_action *h)
4805 {
4806 int this_cpu = smp_processor_id();
4807 struct rq *this_rq = cpu_rq(this_cpu);
4808 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4809 CPU_IDLE : CPU_NOT_IDLE;
4810
4811 rebalance_domains(this_cpu, idle);
4812
4813 #ifdef CONFIG_NO_HZ
4814 /*
4815 * If this cpu is the owner for idle load balancing, then do the
4816 * balancing on behalf of the other idle cpus whose ticks are
4817 * stopped.
4818 */
4819 if (this_rq->idle_at_tick &&
4820 atomic_read(&nohz.load_balancer) == this_cpu) {
4821 struct rq *rq;
4822 int balance_cpu;
4823
4824 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4825 if (balance_cpu == this_cpu)
4826 continue;
4827
4828 /*
4829 * If this cpu gets work to do, stop the load balancing
4830 * work being done for other cpus. Next load
4831 * balancing owner will pick it up.
4832 */
4833 if (need_resched())
4834 break;
4835
4836 rebalance_domains(balance_cpu, CPU_IDLE);
4837
4838 rq = cpu_rq(balance_cpu);
4839 if (time_after(this_rq->next_balance, rq->next_balance))
4840 this_rq->next_balance = rq->next_balance;
4841 }
4842 }
4843 #endif
4844 }
4845
4846 static inline int on_null_domain(int cpu)
4847 {
4848 return !rcu_dereference(cpu_rq(cpu)->sd);
4849 }
4850
4851 /*
4852 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4853 *
4854 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4855 * idle load balancing owner or decide to stop the periodic load balancing,
4856 * if the whole system is idle.
4857 */
4858 static inline void trigger_load_balance(struct rq *rq, int cpu)
4859 {
4860 #ifdef CONFIG_NO_HZ
4861 /*
4862 * If we were in the nohz mode recently and busy at the current
4863 * scheduler tick, then check if we need to nominate new idle
4864 * load balancer.
4865 */
4866 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4867 rq->in_nohz_recently = 0;
4868
4869 if (atomic_read(&nohz.load_balancer) == cpu) {
4870 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4871 atomic_set(&nohz.load_balancer, -1);
4872 }
4873
4874 if (atomic_read(&nohz.load_balancer) == -1) {
4875 int ilb = find_new_ilb(cpu);
4876
4877 if (ilb < nr_cpu_ids)
4878 resched_cpu(ilb);
4879 }
4880 }
4881
4882 /*
4883 * If this cpu is idle and doing idle load balancing for all the
4884 * cpus with ticks stopped, is it time for that to stop?
4885 */
4886 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4887 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4888 resched_cpu(cpu);
4889 return;
4890 }
4891
4892 /*
4893 * If this cpu is idle and the idle load balancing is done by
4894 * someone else, then no need raise the SCHED_SOFTIRQ
4895 */
4896 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4897 cpumask_test_cpu(cpu, nohz.cpu_mask))
4898 return;
4899 #endif
4900 /* Don't need to rebalance while attached to NULL domain */
4901 if (time_after_eq(jiffies, rq->next_balance) &&
4902 likely(!on_null_domain(cpu)))
4903 raise_softirq(SCHED_SOFTIRQ);
4904 }
4905
4906 #else /* CONFIG_SMP */
4907
4908 /*
4909 * on UP we do not need to balance between CPUs:
4910 */
4911 static inline void idle_balance(int cpu, struct rq *rq)
4912 {
4913 }
4914
4915 #endif
4916
4917 DEFINE_PER_CPU(struct kernel_stat, kstat);
4918
4919 EXPORT_PER_CPU_SYMBOL(kstat);
4920
4921 /*
4922 * Return any ns on the sched_clock that have not yet been accounted in
4923 * @p in case that task is currently running.
4924 *
4925 * Called with task_rq_lock() held on @rq.
4926 */
4927 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4928 {
4929 u64 ns = 0;
4930
4931 if (task_current(rq, p)) {
4932 update_rq_clock(rq);
4933 ns = rq->clock - p->se.exec_start;
4934 if ((s64)ns < 0)
4935 ns = 0;
4936 }
4937
4938 return ns;
4939 }
4940
4941 unsigned long long task_delta_exec(struct task_struct *p)
4942 {
4943 unsigned long flags;
4944 struct rq *rq;
4945 u64 ns = 0;
4946
4947 rq = task_rq_lock(p, &flags);
4948 ns = do_task_delta_exec(p, rq);
4949 task_rq_unlock(rq, &flags);
4950
4951 return ns;
4952 }
4953
4954 /*
4955 * Return accounted runtime for the task.
4956 * In case the task is currently running, return the runtime plus current's
4957 * pending runtime that have not been accounted yet.
4958 */
4959 unsigned long long task_sched_runtime(struct task_struct *p)
4960 {
4961 unsigned long flags;
4962 struct rq *rq;
4963 u64 ns = 0;
4964
4965 rq = task_rq_lock(p, &flags);
4966 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4967 task_rq_unlock(rq, &flags);
4968
4969 return ns;
4970 }
4971
4972 /*
4973 * Return sum_exec_runtime for the thread group.
4974 * In case the task is currently running, return the sum plus current's
4975 * pending runtime that have not been accounted yet.
4976 *
4977 * Note that the thread group might have other running tasks as well,
4978 * so the return value not includes other pending runtime that other
4979 * running tasks might have.
4980 */
4981 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4982 {
4983 struct task_cputime totals;
4984 unsigned long flags;
4985 struct rq *rq;
4986 u64 ns;
4987
4988 rq = task_rq_lock(p, &flags);
4989 thread_group_cputime(p, &totals);
4990 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4991 task_rq_unlock(rq, &flags);
4992
4993 return ns;
4994 }
4995
4996 /*
4997 * Account user cpu time to a process.
4998 * @p: the process that the cpu time gets accounted to
4999 * @cputime: the cpu time spent in user space since the last update
5000 * @cputime_scaled: cputime scaled by cpu frequency
5001 */
5002 void account_user_time(struct task_struct *p, cputime_t cputime,
5003 cputime_t cputime_scaled)
5004 {
5005 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5006 cputime64_t tmp;
5007
5008 /* Add user time to process. */
5009 p->utime = cputime_add(p->utime, cputime);
5010 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5011 account_group_user_time(p, cputime);
5012
5013 /* Add user time to cpustat. */
5014 tmp = cputime_to_cputime64(cputime);
5015 if (TASK_NICE(p) > 0)
5016 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5017 else
5018 cpustat->user = cputime64_add(cpustat->user, tmp);
5019
5020 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5021 /* Account for user time used */
5022 acct_update_integrals(p);
5023 }
5024
5025 /*
5026 * Account guest cpu time to a process.
5027 * @p: the process that the cpu time gets accounted to
5028 * @cputime: the cpu time spent in virtual machine since the last update
5029 * @cputime_scaled: cputime scaled by cpu frequency
5030 */
5031 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5032 cputime_t cputime_scaled)
5033 {
5034 cputime64_t tmp;
5035 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5036
5037 tmp = cputime_to_cputime64(cputime);
5038
5039 /* Add guest time to process. */
5040 p->utime = cputime_add(p->utime, cputime);
5041 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5042 account_group_user_time(p, cputime);
5043 p->gtime = cputime_add(p->gtime, cputime);
5044
5045 /* Add guest time to cpustat. */
5046 if (TASK_NICE(p) > 0) {
5047 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5048 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5049 } else {
5050 cpustat->user = cputime64_add(cpustat->user, tmp);
5051 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5052 }
5053 }
5054
5055 /*
5056 * Account system cpu time to a process.
5057 * @p: the process that the cpu time gets accounted to
5058 * @hardirq_offset: the offset to subtract from hardirq_count()
5059 * @cputime: the cpu time spent in kernel space since the last update
5060 * @cputime_scaled: cputime scaled by cpu frequency
5061 */
5062 void account_system_time(struct task_struct *p, int hardirq_offset,
5063 cputime_t cputime, cputime_t cputime_scaled)
5064 {
5065 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5066 cputime64_t tmp;
5067
5068 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5069 account_guest_time(p, cputime, cputime_scaled);
5070 return;
5071 }
5072
5073 /* Add system time to process. */
5074 p->stime = cputime_add(p->stime, cputime);
5075 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5076 account_group_system_time(p, cputime);
5077
5078 /* Add system time to cpustat. */
5079 tmp = cputime_to_cputime64(cputime);
5080 if (hardirq_count() - hardirq_offset)
5081 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5082 else if (softirq_count())
5083 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5084 else
5085 cpustat->system = cputime64_add(cpustat->system, tmp);
5086
5087 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5088
5089 /* Account for system time used */
5090 acct_update_integrals(p);
5091 }
5092
5093 /*
5094 * Account for involuntary wait time.
5095 * @steal: the cpu time spent in involuntary wait
5096 */
5097 void account_steal_time(cputime_t cputime)
5098 {
5099 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5100 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5101
5102 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5103 }
5104
5105 /*
5106 * Account for idle time.
5107 * @cputime: the cpu time spent in idle wait
5108 */
5109 void account_idle_time(cputime_t cputime)
5110 {
5111 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5112 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5113 struct rq *rq = this_rq();
5114
5115 if (atomic_read(&rq->nr_iowait) > 0)
5116 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5117 else
5118 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5119 }
5120
5121 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5122
5123 /*
5124 * Account a single tick of cpu time.
5125 * @p: the process that the cpu time gets accounted to
5126 * @user_tick: indicates if the tick is a user or a system tick
5127 */
5128 void account_process_tick(struct task_struct *p, int user_tick)
5129 {
5130 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5131 struct rq *rq = this_rq();
5132
5133 if (user_tick)
5134 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5135 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5136 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5137 one_jiffy_scaled);
5138 else
5139 account_idle_time(cputime_one_jiffy);
5140 }
5141
5142 /*
5143 * Account multiple ticks of steal time.
5144 * @p: the process from which the cpu time has been stolen
5145 * @ticks: number of stolen ticks
5146 */
5147 void account_steal_ticks(unsigned long ticks)
5148 {
5149 account_steal_time(jiffies_to_cputime(ticks));
5150 }
5151
5152 /*
5153 * Account multiple ticks of idle time.
5154 * @ticks: number of stolen ticks
5155 */
5156 void account_idle_ticks(unsigned long ticks)
5157 {
5158 account_idle_time(jiffies_to_cputime(ticks));
5159 }
5160
5161 #endif
5162
5163 /*
5164 * Use precise platform statistics if available:
5165 */
5166 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5167 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5168 {
5169 *ut = p->utime;
5170 *st = p->stime;
5171 }
5172
5173 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5174 {
5175 struct task_cputime cputime;
5176
5177 thread_group_cputime(p, &cputime);
5178
5179 *ut = cputime.utime;
5180 *st = cputime.stime;
5181 }
5182 #else
5183
5184 #ifndef nsecs_to_cputime
5185 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5186 #endif
5187
5188 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5189 {
5190 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5191
5192 /*
5193 * Use CFS's precise accounting:
5194 */
5195 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5196
5197 if (total) {
5198 u64 temp;
5199
5200 temp = (u64)(rtime * utime);
5201 do_div(temp, total);
5202 utime = (cputime_t)temp;
5203 } else
5204 utime = rtime;
5205
5206 /*
5207 * Compare with previous values, to keep monotonicity:
5208 */
5209 p->prev_utime = max(p->prev_utime, utime);
5210 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5211
5212 *ut = p->prev_utime;
5213 *st = p->prev_stime;
5214 }
5215
5216 /*
5217 * Must be called with siglock held.
5218 */
5219 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5220 {
5221 struct signal_struct *sig = p->signal;
5222 struct task_cputime cputime;
5223 cputime_t rtime, utime, total;
5224
5225 thread_group_cputime(p, &cputime);
5226
5227 total = cputime_add(cputime.utime, cputime.stime);
5228 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5229
5230 if (total) {
5231 u64 temp;
5232
5233 temp = (u64)(rtime * cputime.utime);
5234 do_div(temp, total);
5235 utime = (cputime_t)temp;
5236 } else
5237 utime = rtime;
5238
5239 sig->prev_utime = max(sig->prev_utime, utime);
5240 sig->prev_stime = max(sig->prev_stime,
5241 cputime_sub(rtime, sig->prev_utime));
5242
5243 *ut = sig->prev_utime;
5244 *st = sig->prev_stime;
5245 }
5246 #endif
5247
5248 /*
5249 * This function gets called by the timer code, with HZ frequency.
5250 * We call it with interrupts disabled.
5251 *
5252 * It also gets called by the fork code, when changing the parent's
5253 * timeslices.
5254 */
5255 void scheduler_tick(void)
5256 {
5257 int cpu = smp_processor_id();
5258 struct rq *rq = cpu_rq(cpu);
5259 struct task_struct *curr = rq->curr;
5260
5261 sched_clock_tick();
5262
5263 raw_spin_lock(&rq->lock);
5264 update_rq_clock(rq);
5265 update_cpu_load(rq);
5266 curr->sched_class->task_tick(rq, curr, 0);
5267 raw_spin_unlock(&rq->lock);
5268
5269 perf_event_task_tick(curr, cpu);
5270
5271 #ifdef CONFIG_SMP
5272 rq->idle_at_tick = idle_cpu(cpu);
5273 trigger_load_balance(rq, cpu);
5274 #endif
5275 }
5276
5277 notrace unsigned long get_parent_ip(unsigned long addr)
5278 {
5279 if (in_lock_functions(addr)) {
5280 addr = CALLER_ADDR2;
5281 if (in_lock_functions(addr))
5282 addr = CALLER_ADDR3;
5283 }
5284 return addr;
5285 }
5286
5287 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5288 defined(CONFIG_PREEMPT_TRACER))
5289
5290 void __kprobes add_preempt_count(int val)
5291 {
5292 #ifdef CONFIG_DEBUG_PREEMPT
5293 /*
5294 * Underflow?
5295 */
5296 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5297 return;
5298 #endif
5299 preempt_count() += val;
5300 #ifdef CONFIG_DEBUG_PREEMPT
5301 /*
5302 * Spinlock count overflowing soon?
5303 */
5304 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5305 PREEMPT_MASK - 10);
5306 #endif
5307 if (preempt_count() == val)
5308 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5309 }
5310 EXPORT_SYMBOL(add_preempt_count);
5311
5312 void __kprobes sub_preempt_count(int val)
5313 {
5314 #ifdef CONFIG_DEBUG_PREEMPT
5315 /*
5316 * Underflow?
5317 */
5318 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5319 return;
5320 /*
5321 * Is the spinlock portion underflowing?
5322 */
5323 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5324 !(preempt_count() & PREEMPT_MASK)))
5325 return;
5326 #endif
5327
5328 if (preempt_count() == val)
5329 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5330 preempt_count() -= val;
5331 }
5332 EXPORT_SYMBOL(sub_preempt_count);
5333
5334 #endif
5335
5336 /*
5337 * Print scheduling while atomic bug:
5338 */
5339 static noinline void __schedule_bug(struct task_struct *prev)
5340 {
5341 struct pt_regs *regs = get_irq_regs();
5342
5343 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5344 prev->comm, prev->pid, preempt_count());
5345
5346 debug_show_held_locks(prev);
5347 print_modules();
5348 if (irqs_disabled())
5349 print_irqtrace_events(prev);
5350
5351 if (regs)
5352 show_regs(regs);
5353 else
5354 dump_stack();
5355 }
5356
5357 /*
5358 * Various schedule()-time debugging checks and statistics:
5359 */
5360 static inline void schedule_debug(struct task_struct *prev)
5361 {
5362 /*
5363 * Test if we are atomic. Since do_exit() needs to call into
5364 * schedule() atomically, we ignore that path for now.
5365 * Otherwise, whine if we are scheduling when we should not be.
5366 */
5367 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5368 __schedule_bug(prev);
5369
5370 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5371
5372 schedstat_inc(this_rq(), sched_count);
5373 #ifdef CONFIG_SCHEDSTATS
5374 if (unlikely(prev->lock_depth >= 0)) {
5375 schedstat_inc(this_rq(), bkl_count);
5376 schedstat_inc(prev, sched_info.bkl_count);
5377 }
5378 #endif
5379 }
5380
5381 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5382 {
5383 if (prev->state == TASK_RUNNING) {
5384 u64 runtime = prev->se.sum_exec_runtime;
5385
5386 runtime -= prev->se.prev_sum_exec_runtime;
5387 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5388
5389 /*
5390 * In order to avoid avg_overlap growing stale when we are
5391 * indeed overlapping and hence not getting put to sleep, grow
5392 * the avg_overlap on preemption.
5393 *
5394 * We use the average preemption runtime because that
5395 * correlates to the amount of cache footprint a task can
5396 * build up.
5397 */
5398 update_avg(&prev->se.avg_overlap, runtime);
5399 }
5400 prev->sched_class->put_prev_task(rq, prev);
5401 }
5402
5403 /*
5404 * Pick up the highest-prio task:
5405 */
5406 static inline struct task_struct *
5407 pick_next_task(struct rq *rq)
5408 {
5409 const struct sched_class *class;
5410 struct task_struct *p;
5411
5412 /*
5413 * Optimization: we know that if all tasks are in
5414 * the fair class we can call that function directly:
5415 */
5416 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5417 p = fair_sched_class.pick_next_task(rq);
5418 if (likely(p))
5419 return p;
5420 }
5421
5422 class = sched_class_highest;
5423 for ( ; ; ) {
5424 p = class->pick_next_task(rq);
5425 if (p)
5426 return p;
5427 /*
5428 * Will never be NULL as the idle class always
5429 * returns a non-NULL p:
5430 */
5431 class = class->next;
5432 }
5433 }
5434
5435 /*
5436 * schedule() is the main scheduler function.
5437 */
5438 asmlinkage void __sched schedule(void)
5439 {
5440 struct task_struct *prev, *next;
5441 unsigned long *switch_count;
5442 struct rq *rq;
5443 int cpu;
5444
5445 need_resched:
5446 preempt_disable();
5447 cpu = smp_processor_id();
5448 rq = cpu_rq(cpu);
5449 rcu_sched_qs(cpu);
5450 prev = rq->curr;
5451 switch_count = &prev->nivcsw;
5452
5453 release_kernel_lock(prev);
5454 need_resched_nonpreemptible:
5455
5456 schedule_debug(prev);
5457
5458 if (sched_feat(HRTICK))
5459 hrtick_clear(rq);
5460
5461 raw_spin_lock_irq(&rq->lock);
5462 update_rq_clock(rq);
5463 clear_tsk_need_resched(prev);
5464
5465 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5466 if (unlikely(signal_pending_state(prev->state, prev)))
5467 prev->state = TASK_RUNNING;
5468 else
5469 deactivate_task(rq, prev, 1);
5470 switch_count = &prev->nvcsw;
5471 }
5472
5473 pre_schedule(rq, prev);
5474
5475 if (unlikely(!rq->nr_running))
5476 idle_balance(cpu, rq);
5477
5478 put_prev_task(rq, prev);
5479 next = pick_next_task(rq);
5480
5481 if (likely(prev != next)) {
5482 sched_info_switch(prev, next);
5483 perf_event_task_sched_out(prev, next, cpu);
5484
5485 rq->nr_switches++;
5486 rq->curr = next;
5487 ++*switch_count;
5488
5489 context_switch(rq, prev, next); /* unlocks the rq */
5490 /*
5491 * the context switch might have flipped the stack from under
5492 * us, hence refresh the local variables.
5493 */
5494 cpu = smp_processor_id();
5495 rq = cpu_rq(cpu);
5496 } else
5497 raw_spin_unlock_irq(&rq->lock);
5498
5499 post_schedule(rq);
5500
5501 if (unlikely(reacquire_kernel_lock(current) < 0))
5502 goto need_resched_nonpreemptible;
5503
5504 preempt_enable_no_resched();
5505 if (need_resched())
5506 goto need_resched;
5507 }
5508 EXPORT_SYMBOL(schedule);
5509
5510 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5511 /*
5512 * Look out! "owner" is an entirely speculative pointer
5513 * access and not reliable.
5514 */
5515 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5516 {
5517 unsigned int cpu;
5518 struct rq *rq;
5519
5520 if (!sched_feat(OWNER_SPIN))
5521 return 0;
5522
5523 #ifdef CONFIG_DEBUG_PAGEALLOC
5524 /*
5525 * Need to access the cpu field knowing that
5526 * DEBUG_PAGEALLOC could have unmapped it if
5527 * the mutex owner just released it and exited.
5528 */
5529 if (probe_kernel_address(&owner->cpu, cpu))
5530 goto out;
5531 #else
5532 cpu = owner->cpu;
5533 #endif
5534
5535 /*
5536 * Even if the access succeeded (likely case),
5537 * the cpu field may no longer be valid.
5538 */
5539 if (cpu >= nr_cpumask_bits)
5540 goto out;
5541
5542 /*
5543 * We need to validate that we can do a
5544 * get_cpu() and that we have the percpu area.
5545 */
5546 if (!cpu_online(cpu))
5547 goto out;
5548
5549 rq = cpu_rq(cpu);
5550
5551 for (;;) {
5552 /*
5553 * Owner changed, break to re-assess state.
5554 */
5555 if (lock->owner != owner)
5556 break;
5557
5558 /*
5559 * Is that owner really running on that cpu?
5560 */
5561 if (task_thread_info(rq->curr) != owner || need_resched())
5562 return 0;
5563
5564 cpu_relax();
5565 }
5566 out:
5567 return 1;
5568 }
5569 #endif
5570
5571 #ifdef CONFIG_PREEMPT
5572 /*
5573 * this is the entry point to schedule() from in-kernel preemption
5574 * off of preempt_enable. Kernel preemptions off return from interrupt
5575 * occur there and call schedule directly.
5576 */
5577 asmlinkage void __sched preempt_schedule(void)
5578 {
5579 struct thread_info *ti = current_thread_info();
5580
5581 /*
5582 * If there is a non-zero preempt_count or interrupts are disabled,
5583 * we do not want to preempt the current task. Just return..
5584 */
5585 if (likely(ti->preempt_count || irqs_disabled()))
5586 return;
5587
5588 do {
5589 add_preempt_count(PREEMPT_ACTIVE);
5590 schedule();
5591 sub_preempt_count(PREEMPT_ACTIVE);
5592
5593 /*
5594 * Check again in case we missed a preemption opportunity
5595 * between schedule and now.
5596 */
5597 barrier();
5598 } while (need_resched());
5599 }
5600 EXPORT_SYMBOL(preempt_schedule);
5601
5602 /*
5603 * this is the entry point to schedule() from kernel preemption
5604 * off of irq context.
5605 * Note, that this is called and return with irqs disabled. This will
5606 * protect us against recursive calling from irq.
5607 */
5608 asmlinkage void __sched preempt_schedule_irq(void)
5609 {
5610 struct thread_info *ti = current_thread_info();
5611
5612 /* Catch callers which need to be fixed */
5613 BUG_ON(ti->preempt_count || !irqs_disabled());
5614
5615 do {
5616 add_preempt_count(PREEMPT_ACTIVE);
5617 local_irq_enable();
5618 schedule();
5619 local_irq_disable();
5620 sub_preempt_count(PREEMPT_ACTIVE);
5621
5622 /*
5623 * Check again in case we missed a preemption opportunity
5624 * between schedule and now.
5625 */
5626 barrier();
5627 } while (need_resched());
5628 }
5629
5630 #endif /* CONFIG_PREEMPT */
5631
5632 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5633 void *key)
5634 {
5635 return try_to_wake_up(curr->private, mode, wake_flags);
5636 }
5637 EXPORT_SYMBOL(default_wake_function);
5638
5639 /*
5640 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5641 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5642 * number) then we wake all the non-exclusive tasks and one exclusive task.
5643 *
5644 * There are circumstances in which we can try to wake a task which has already
5645 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5646 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5647 */
5648 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5649 int nr_exclusive, int wake_flags, void *key)
5650 {
5651 wait_queue_t *curr, *next;
5652
5653 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5654 unsigned flags = curr->flags;
5655
5656 if (curr->func(curr, mode, wake_flags, key) &&
5657 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5658 break;
5659 }
5660 }
5661
5662 /**
5663 * __wake_up - wake up threads blocked on a waitqueue.
5664 * @q: the waitqueue
5665 * @mode: which threads
5666 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5667 * @key: is directly passed to the wakeup function
5668 *
5669 * It may be assumed that this function implies a write memory barrier before
5670 * changing the task state if and only if any tasks are woken up.
5671 */
5672 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5673 int nr_exclusive, void *key)
5674 {
5675 unsigned long flags;
5676
5677 spin_lock_irqsave(&q->lock, flags);
5678 __wake_up_common(q, mode, nr_exclusive, 0, key);
5679 spin_unlock_irqrestore(&q->lock, flags);
5680 }
5681 EXPORT_SYMBOL(__wake_up);
5682
5683 /*
5684 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5685 */
5686 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5687 {
5688 __wake_up_common(q, mode, 1, 0, NULL);
5689 }
5690
5691 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5692 {
5693 __wake_up_common(q, mode, 1, 0, key);
5694 }
5695
5696 /**
5697 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5698 * @q: the waitqueue
5699 * @mode: which threads
5700 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5701 * @key: opaque value to be passed to wakeup targets
5702 *
5703 * The sync wakeup differs that the waker knows that it will schedule
5704 * away soon, so while the target thread will be woken up, it will not
5705 * be migrated to another CPU - ie. the two threads are 'synchronized'
5706 * with each other. This can prevent needless bouncing between CPUs.
5707 *
5708 * On UP it can prevent extra preemption.
5709 *
5710 * It may be assumed that this function implies a write memory barrier before
5711 * changing the task state if and only if any tasks are woken up.
5712 */
5713 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5714 int nr_exclusive, void *key)
5715 {
5716 unsigned long flags;
5717 int wake_flags = WF_SYNC;
5718
5719 if (unlikely(!q))
5720 return;
5721
5722 if (unlikely(!nr_exclusive))
5723 wake_flags = 0;
5724
5725 spin_lock_irqsave(&q->lock, flags);
5726 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5727 spin_unlock_irqrestore(&q->lock, flags);
5728 }
5729 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5730
5731 /*
5732 * __wake_up_sync - see __wake_up_sync_key()
5733 */
5734 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5735 {
5736 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5737 }
5738 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5739
5740 /**
5741 * complete: - signals a single thread waiting on this completion
5742 * @x: holds the state of this particular completion
5743 *
5744 * This will wake up a single thread waiting on this completion. Threads will be
5745 * awakened in the same order in which they were queued.
5746 *
5747 * See also complete_all(), wait_for_completion() and related routines.
5748 *
5749 * It may be assumed that this function implies a write memory barrier before
5750 * changing the task state if and only if any tasks are woken up.
5751 */
5752 void complete(struct completion *x)
5753 {
5754 unsigned long flags;
5755
5756 spin_lock_irqsave(&x->wait.lock, flags);
5757 x->done++;
5758 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5759 spin_unlock_irqrestore(&x->wait.lock, flags);
5760 }
5761 EXPORT_SYMBOL(complete);
5762
5763 /**
5764 * complete_all: - signals all threads waiting on this completion
5765 * @x: holds the state of this particular completion
5766 *
5767 * This will wake up all threads waiting on this particular completion event.
5768 *
5769 * It may be assumed that this function implies a write memory barrier before
5770 * changing the task state if and only if any tasks are woken up.
5771 */
5772 void complete_all(struct completion *x)
5773 {
5774 unsigned long flags;
5775
5776 spin_lock_irqsave(&x->wait.lock, flags);
5777 x->done += UINT_MAX/2;
5778 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5779 spin_unlock_irqrestore(&x->wait.lock, flags);
5780 }
5781 EXPORT_SYMBOL(complete_all);
5782
5783 static inline long __sched
5784 do_wait_for_common(struct completion *x, long timeout, int state)
5785 {
5786 if (!x->done) {
5787 DECLARE_WAITQUEUE(wait, current);
5788
5789 wait.flags |= WQ_FLAG_EXCLUSIVE;
5790 __add_wait_queue_tail(&x->wait, &wait);
5791 do {
5792 if (signal_pending_state(state, current)) {
5793 timeout = -ERESTARTSYS;
5794 break;
5795 }
5796 __set_current_state(state);
5797 spin_unlock_irq(&x->wait.lock);
5798 timeout = schedule_timeout(timeout);
5799 spin_lock_irq(&x->wait.lock);
5800 } while (!x->done && timeout);
5801 __remove_wait_queue(&x->wait, &wait);
5802 if (!x->done)
5803 return timeout;
5804 }
5805 x->done--;
5806 return timeout ?: 1;
5807 }
5808
5809 static long __sched
5810 wait_for_common(struct completion *x, long timeout, int state)
5811 {
5812 might_sleep();
5813
5814 spin_lock_irq(&x->wait.lock);
5815 timeout = do_wait_for_common(x, timeout, state);
5816 spin_unlock_irq(&x->wait.lock);
5817 return timeout;
5818 }
5819
5820 /**
5821 * wait_for_completion: - waits for completion of a task
5822 * @x: holds the state of this particular completion
5823 *
5824 * This waits to be signaled for completion of a specific task. It is NOT
5825 * interruptible and there is no timeout.
5826 *
5827 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5828 * and interrupt capability. Also see complete().
5829 */
5830 void __sched wait_for_completion(struct completion *x)
5831 {
5832 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5833 }
5834 EXPORT_SYMBOL(wait_for_completion);
5835
5836 /**
5837 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5838 * @x: holds the state of this particular completion
5839 * @timeout: timeout value in jiffies
5840 *
5841 * This waits for either a completion of a specific task to be signaled or for a
5842 * specified timeout to expire. The timeout is in jiffies. It is not
5843 * interruptible.
5844 */
5845 unsigned long __sched
5846 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5847 {
5848 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5849 }
5850 EXPORT_SYMBOL(wait_for_completion_timeout);
5851
5852 /**
5853 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5854 * @x: holds the state of this particular completion
5855 *
5856 * This waits for completion of a specific task to be signaled. It is
5857 * interruptible.
5858 */
5859 int __sched wait_for_completion_interruptible(struct completion *x)
5860 {
5861 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5862 if (t == -ERESTARTSYS)
5863 return t;
5864 return 0;
5865 }
5866 EXPORT_SYMBOL(wait_for_completion_interruptible);
5867
5868 /**
5869 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5870 * @x: holds the state of this particular completion
5871 * @timeout: timeout value in jiffies
5872 *
5873 * This waits for either a completion of a specific task to be signaled or for a
5874 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5875 */
5876 unsigned long __sched
5877 wait_for_completion_interruptible_timeout(struct completion *x,
5878 unsigned long timeout)
5879 {
5880 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5881 }
5882 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5883
5884 /**
5885 * wait_for_completion_killable: - waits for completion of a task (killable)
5886 * @x: holds the state of this particular completion
5887 *
5888 * This waits to be signaled for completion of a specific task. It can be
5889 * interrupted by a kill signal.
5890 */
5891 int __sched wait_for_completion_killable(struct completion *x)
5892 {
5893 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5894 if (t == -ERESTARTSYS)
5895 return t;
5896 return 0;
5897 }
5898 EXPORT_SYMBOL(wait_for_completion_killable);
5899
5900 /**
5901 * try_wait_for_completion - try to decrement a completion without blocking
5902 * @x: completion structure
5903 *
5904 * Returns: 0 if a decrement cannot be done without blocking
5905 * 1 if a decrement succeeded.
5906 *
5907 * If a completion is being used as a counting completion,
5908 * attempt to decrement the counter without blocking. This
5909 * enables us to avoid waiting if the resource the completion
5910 * is protecting is not available.
5911 */
5912 bool try_wait_for_completion(struct completion *x)
5913 {
5914 int ret = 1;
5915
5916 spin_lock_irq(&x->wait.lock);
5917 if (!x->done)
5918 ret = 0;
5919 else
5920 x->done--;
5921 spin_unlock_irq(&x->wait.lock);
5922 return ret;
5923 }
5924 EXPORT_SYMBOL(try_wait_for_completion);
5925
5926 /**
5927 * completion_done - Test to see if a completion has any waiters
5928 * @x: completion structure
5929 *
5930 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5931 * 1 if there are no waiters.
5932 *
5933 */
5934 bool completion_done(struct completion *x)
5935 {
5936 int ret = 1;
5937
5938 spin_lock_irq(&x->wait.lock);
5939 if (!x->done)
5940 ret = 0;
5941 spin_unlock_irq(&x->wait.lock);
5942 return ret;
5943 }
5944 EXPORT_SYMBOL(completion_done);
5945
5946 static long __sched
5947 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5948 {
5949 unsigned long flags;
5950 wait_queue_t wait;
5951
5952 init_waitqueue_entry(&wait, current);
5953
5954 __set_current_state(state);
5955
5956 spin_lock_irqsave(&q->lock, flags);
5957 __add_wait_queue(q, &wait);
5958 spin_unlock(&q->lock);
5959 timeout = schedule_timeout(timeout);
5960 spin_lock_irq(&q->lock);
5961 __remove_wait_queue(q, &wait);
5962 spin_unlock_irqrestore(&q->lock, flags);
5963
5964 return timeout;
5965 }
5966
5967 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5968 {
5969 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5970 }
5971 EXPORT_SYMBOL(interruptible_sleep_on);
5972
5973 long __sched
5974 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5975 {
5976 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5977 }
5978 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5979
5980 void __sched sleep_on(wait_queue_head_t *q)
5981 {
5982 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5983 }
5984 EXPORT_SYMBOL(sleep_on);
5985
5986 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5987 {
5988 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5989 }
5990 EXPORT_SYMBOL(sleep_on_timeout);
5991
5992 #ifdef CONFIG_RT_MUTEXES
5993
5994 /*
5995 * rt_mutex_setprio - set the current priority of a task
5996 * @p: task
5997 * @prio: prio value (kernel-internal form)
5998 *
5999 * This function changes the 'effective' priority of a task. It does
6000 * not touch ->normal_prio like __setscheduler().
6001 *
6002 * Used by the rt_mutex code to implement priority inheritance logic.
6003 */
6004 void rt_mutex_setprio(struct task_struct *p, int prio)
6005 {
6006 unsigned long flags;
6007 int oldprio, on_rq, running;
6008 struct rq *rq;
6009 const struct sched_class *prev_class = p->sched_class;
6010
6011 BUG_ON(prio < 0 || prio > MAX_PRIO);
6012
6013 rq = task_rq_lock(p, &flags);
6014 update_rq_clock(rq);
6015
6016 oldprio = p->prio;
6017 on_rq = p->se.on_rq;
6018 running = task_current(rq, p);
6019 if (on_rq)
6020 dequeue_task(rq, p, 0);
6021 if (running)
6022 p->sched_class->put_prev_task(rq, p);
6023
6024 if (rt_prio(prio))
6025 p->sched_class = &rt_sched_class;
6026 else
6027 p->sched_class = &fair_sched_class;
6028
6029 p->prio = prio;
6030
6031 if (running)
6032 p->sched_class->set_curr_task(rq);
6033 if (on_rq) {
6034 enqueue_task(rq, p, 0);
6035
6036 check_class_changed(rq, p, prev_class, oldprio, running);
6037 }
6038 task_rq_unlock(rq, &flags);
6039 }
6040
6041 #endif
6042
6043 void set_user_nice(struct task_struct *p, long nice)
6044 {
6045 int old_prio, delta, on_rq;
6046 unsigned long flags;
6047 struct rq *rq;
6048
6049 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6050 return;
6051 /*
6052 * We have to be careful, if called from sys_setpriority(),
6053 * the task might be in the middle of scheduling on another CPU.
6054 */
6055 rq = task_rq_lock(p, &flags);
6056 update_rq_clock(rq);
6057 /*
6058 * The RT priorities are set via sched_setscheduler(), but we still
6059 * allow the 'normal' nice value to be set - but as expected
6060 * it wont have any effect on scheduling until the task is
6061 * SCHED_FIFO/SCHED_RR:
6062 */
6063 if (task_has_rt_policy(p)) {
6064 p->static_prio = NICE_TO_PRIO(nice);
6065 goto out_unlock;
6066 }
6067 on_rq = p->se.on_rq;
6068 if (on_rq)
6069 dequeue_task(rq, p, 0);
6070
6071 p->static_prio = NICE_TO_PRIO(nice);
6072 set_load_weight(p);
6073 old_prio = p->prio;
6074 p->prio = effective_prio(p);
6075 delta = p->prio - old_prio;
6076
6077 if (on_rq) {
6078 enqueue_task(rq, p, 0);
6079 /*
6080 * If the task increased its priority or is running and
6081 * lowered its priority, then reschedule its CPU:
6082 */
6083 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6084 resched_task(rq->curr);
6085 }
6086 out_unlock:
6087 task_rq_unlock(rq, &flags);
6088 }
6089 EXPORT_SYMBOL(set_user_nice);
6090
6091 /*
6092 * can_nice - check if a task can reduce its nice value
6093 * @p: task
6094 * @nice: nice value
6095 */
6096 int can_nice(const struct task_struct *p, const int nice)
6097 {
6098 /* convert nice value [19,-20] to rlimit style value [1,40] */
6099 int nice_rlim = 20 - nice;
6100
6101 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6102 capable(CAP_SYS_NICE));
6103 }
6104
6105 #ifdef __ARCH_WANT_SYS_NICE
6106
6107 /*
6108 * sys_nice - change the priority of the current process.
6109 * @increment: priority increment
6110 *
6111 * sys_setpriority is a more generic, but much slower function that
6112 * does similar things.
6113 */
6114 SYSCALL_DEFINE1(nice, int, increment)
6115 {
6116 long nice, retval;
6117
6118 /*
6119 * Setpriority might change our priority at the same moment.
6120 * We don't have to worry. Conceptually one call occurs first
6121 * and we have a single winner.
6122 */
6123 if (increment < -40)
6124 increment = -40;
6125 if (increment > 40)
6126 increment = 40;
6127
6128 nice = TASK_NICE(current) + increment;
6129 if (nice < -20)
6130 nice = -20;
6131 if (nice > 19)
6132 nice = 19;
6133
6134 if (increment < 0 && !can_nice(current, nice))
6135 return -EPERM;
6136
6137 retval = security_task_setnice(current, nice);
6138 if (retval)
6139 return retval;
6140
6141 set_user_nice(current, nice);
6142 return 0;
6143 }
6144
6145 #endif
6146
6147 /**
6148 * task_prio - return the priority value of a given task.
6149 * @p: the task in question.
6150 *
6151 * This is the priority value as seen by users in /proc.
6152 * RT tasks are offset by -200. Normal tasks are centered
6153 * around 0, value goes from -16 to +15.
6154 */
6155 int task_prio(const struct task_struct *p)
6156 {
6157 return p->prio - MAX_RT_PRIO;
6158 }
6159
6160 /**
6161 * task_nice - return the nice value of a given task.
6162 * @p: the task in question.
6163 */
6164 int task_nice(const struct task_struct *p)
6165 {
6166 return TASK_NICE(p);
6167 }
6168 EXPORT_SYMBOL(task_nice);
6169
6170 /**
6171 * idle_cpu - is a given cpu idle currently?
6172 * @cpu: the processor in question.
6173 */
6174 int idle_cpu(int cpu)
6175 {
6176 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6177 }
6178
6179 /**
6180 * idle_task - return the idle task for a given cpu.
6181 * @cpu: the processor in question.
6182 */
6183 struct task_struct *idle_task(int cpu)
6184 {
6185 return cpu_rq(cpu)->idle;
6186 }
6187
6188 /**
6189 * find_process_by_pid - find a process with a matching PID value.
6190 * @pid: the pid in question.
6191 */
6192 static struct task_struct *find_process_by_pid(pid_t pid)
6193 {
6194 return pid ? find_task_by_vpid(pid) : current;
6195 }
6196
6197 /* Actually do priority change: must hold rq lock. */
6198 static void
6199 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6200 {
6201 BUG_ON(p->se.on_rq);
6202
6203 p->policy = policy;
6204 p->rt_priority = prio;
6205 p->normal_prio = normal_prio(p);
6206 /* we are holding p->pi_lock already */
6207 p->prio = rt_mutex_getprio(p);
6208 if (rt_prio(p->prio))
6209 p->sched_class = &rt_sched_class;
6210 else
6211 p->sched_class = &fair_sched_class;
6212 set_load_weight(p);
6213 }
6214
6215 /*
6216 * check the target process has a UID that matches the current process's
6217 */
6218 static bool check_same_owner(struct task_struct *p)
6219 {
6220 const struct cred *cred = current_cred(), *pcred;
6221 bool match;
6222
6223 rcu_read_lock();
6224 pcred = __task_cred(p);
6225 match = (cred->euid == pcred->euid ||
6226 cred->euid == pcred->uid);
6227 rcu_read_unlock();
6228 return match;
6229 }
6230
6231 static int __sched_setscheduler(struct task_struct *p, int policy,
6232 struct sched_param *param, bool user)
6233 {
6234 int retval, oldprio, oldpolicy = -1, on_rq, running;
6235 unsigned long flags;
6236 const struct sched_class *prev_class = p->sched_class;
6237 struct rq *rq;
6238 int reset_on_fork;
6239
6240 /* may grab non-irq protected spin_locks */
6241 BUG_ON(in_interrupt());
6242 recheck:
6243 /* double check policy once rq lock held */
6244 if (policy < 0) {
6245 reset_on_fork = p->sched_reset_on_fork;
6246 policy = oldpolicy = p->policy;
6247 } else {
6248 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6249 policy &= ~SCHED_RESET_ON_FORK;
6250
6251 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6252 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6253 policy != SCHED_IDLE)
6254 return -EINVAL;
6255 }
6256
6257 /*
6258 * Valid priorities for SCHED_FIFO and SCHED_RR are
6259 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6260 * SCHED_BATCH and SCHED_IDLE is 0.
6261 */
6262 if (param->sched_priority < 0 ||
6263 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6264 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6265 return -EINVAL;
6266 if (rt_policy(policy) != (param->sched_priority != 0))
6267 return -EINVAL;
6268
6269 /*
6270 * Allow unprivileged RT tasks to decrease priority:
6271 */
6272 if (user && !capable(CAP_SYS_NICE)) {
6273 if (rt_policy(policy)) {
6274 unsigned long rlim_rtprio;
6275
6276 if (!lock_task_sighand(p, &flags))
6277 return -ESRCH;
6278 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6279 unlock_task_sighand(p, &flags);
6280
6281 /* can't set/change the rt policy */
6282 if (policy != p->policy && !rlim_rtprio)
6283 return -EPERM;
6284
6285 /* can't increase priority */
6286 if (param->sched_priority > p->rt_priority &&
6287 param->sched_priority > rlim_rtprio)
6288 return -EPERM;
6289 }
6290 /*
6291 * Like positive nice levels, dont allow tasks to
6292 * move out of SCHED_IDLE either:
6293 */
6294 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6295 return -EPERM;
6296
6297 /* can't change other user's priorities */
6298 if (!check_same_owner(p))
6299 return -EPERM;
6300
6301 /* Normal users shall not reset the sched_reset_on_fork flag */
6302 if (p->sched_reset_on_fork && !reset_on_fork)
6303 return -EPERM;
6304 }
6305
6306 if (user) {
6307 #ifdef CONFIG_RT_GROUP_SCHED
6308 /*
6309 * Do not allow realtime tasks into groups that have no runtime
6310 * assigned.
6311 */
6312 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6313 task_group(p)->rt_bandwidth.rt_runtime == 0)
6314 return -EPERM;
6315 #endif
6316
6317 retval = security_task_setscheduler(p, policy, param);
6318 if (retval)
6319 return retval;
6320 }
6321
6322 /*
6323 * make sure no PI-waiters arrive (or leave) while we are
6324 * changing the priority of the task:
6325 */
6326 raw_spin_lock_irqsave(&p->pi_lock, flags);
6327 /*
6328 * To be able to change p->policy safely, the apropriate
6329 * runqueue lock must be held.
6330 */
6331 rq = __task_rq_lock(p);
6332 /* recheck policy now with rq lock held */
6333 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6334 policy = oldpolicy = -1;
6335 __task_rq_unlock(rq);
6336 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6337 goto recheck;
6338 }
6339 update_rq_clock(rq);
6340 on_rq = p->se.on_rq;
6341 running = task_current(rq, p);
6342 if (on_rq)
6343 deactivate_task(rq, p, 0);
6344 if (running)
6345 p->sched_class->put_prev_task(rq, p);
6346
6347 p->sched_reset_on_fork = reset_on_fork;
6348
6349 oldprio = p->prio;
6350 __setscheduler(rq, p, policy, param->sched_priority);
6351
6352 if (running)
6353 p->sched_class->set_curr_task(rq);
6354 if (on_rq) {
6355 activate_task(rq, p, 0);
6356
6357 check_class_changed(rq, p, prev_class, oldprio, running);
6358 }
6359 __task_rq_unlock(rq);
6360 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6361
6362 rt_mutex_adjust_pi(p);
6363
6364 return 0;
6365 }
6366
6367 /**
6368 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6369 * @p: the task in question.
6370 * @policy: new policy.
6371 * @param: structure containing the new RT priority.
6372 *
6373 * NOTE that the task may be already dead.
6374 */
6375 int sched_setscheduler(struct task_struct *p, int policy,
6376 struct sched_param *param)
6377 {
6378 return __sched_setscheduler(p, policy, param, true);
6379 }
6380 EXPORT_SYMBOL_GPL(sched_setscheduler);
6381
6382 /**
6383 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6384 * @p: the task in question.
6385 * @policy: new policy.
6386 * @param: structure containing the new RT priority.
6387 *
6388 * Just like sched_setscheduler, only don't bother checking if the
6389 * current context has permission. For example, this is needed in
6390 * stop_machine(): we create temporary high priority worker threads,
6391 * but our caller might not have that capability.
6392 */
6393 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6394 struct sched_param *param)
6395 {
6396 return __sched_setscheduler(p, policy, param, false);
6397 }
6398
6399 static int
6400 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6401 {
6402 struct sched_param lparam;
6403 struct task_struct *p;
6404 int retval;
6405
6406 if (!param || pid < 0)
6407 return -EINVAL;
6408 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6409 return -EFAULT;
6410
6411 rcu_read_lock();
6412 retval = -ESRCH;
6413 p = find_process_by_pid(pid);
6414 if (p != NULL)
6415 retval = sched_setscheduler(p, policy, &lparam);
6416 rcu_read_unlock();
6417
6418 return retval;
6419 }
6420
6421 /**
6422 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6423 * @pid: the pid in question.
6424 * @policy: new policy.
6425 * @param: structure containing the new RT priority.
6426 */
6427 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6428 struct sched_param __user *, param)
6429 {
6430 /* negative values for policy are not valid */
6431 if (policy < 0)
6432 return -EINVAL;
6433
6434 return do_sched_setscheduler(pid, policy, param);
6435 }
6436
6437 /**
6438 * sys_sched_setparam - set/change the RT priority of a thread
6439 * @pid: the pid in question.
6440 * @param: structure containing the new RT priority.
6441 */
6442 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6443 {
6444 return do_sched_setscheduler(pid, -1, param);
6445 }
6446
6447 /**
6448 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6449 * @pid: the pid in question.
6450 */
6451 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6452 {
6453 struct task_struct *p;
6454 int retval;
6455
6456 if (pid < 0)
6457 return -EINVAL;
6458
6459 retval = -ESRCH;
6460 read_lock(&tasklist_lock);
6461 p = find_process_by_pid(pid);
6462 if (p) {
6463 retval = security_task_getscheduler(p);
6464 if (!retval)
6465 retval = p->policy
6466 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6467 }
6468 read_unlock(&tasklist_lock);
6469 return retval;
6470 }
6471
6472 /**
6473 * sys_sched_getparam - get the RT priority of a thread
6474 * @pid: the pid in question.
6475 * @param: structure containing the RT priority.
6476 */
6477 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6478 {
6479 struct sched_param lp;
6480 struct task_struct *p;
6481 int retval;
6482
6483 if (!param || pid < 0)
6484 return -EINVAL;
6485
6486 read_lock(&tasklist_lock);
6487 p = find_process_by_pid(pid);
6488 retval = -ESRCH;
6489 if (!p)
6490 goto out_unlock;
6491
6492 retval = security_task_getscheduler(p);
6493 if (retval)
6494 goto out_unlock;
6495
6496 lp.sched_priority = p->rt_priority;
6497 read_unlock(&tasklist_lock);
6498
6499 /*
6500 * This one might sleep, we cannot do it with a spinlock held ...
6501 */
6502 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6503
6504 return retval;
6505
6506 out_unlock:
6507 read_unlock(&tasklist_lock);
6508 return retval;
6509 }
6510
6511 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6512 {
6513 cpumask_var_t cpus_allowed, new_mask;
6514 struct task_struct *p;
6515 int retval;
6516
6517 get_online_cpus();
6518 read_lock(&tasklist_lock);
6519
6520 p = find_process_by_pid(pid);
6521 if (!p) {
6522 read_unlock(&tasklist_lock);
6523 put_online_cpus();
6524 return -ESRCH;
6525 }
6526
6527 /*
6528 * It is not safe to call set_cpus_allowed with the
6529 * tasklist_lock held. We will bump the task_struct's
6530 * usage count and then drop tasklist_lock.
6531 */
6532 get_task_struct(p);
6533 read_unlock(&tasklist_lock);
6534
6535 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6536 retval = -ENOMEM;
6537 goto out_put_task;
6538 }
6539 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6540 retval = -ENOMEM;
6541 goto out_free_cpus_allowed;
6542 }
6543 retval = -EPERM;
6544 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6545 goto out_unlock;
6546
6547 retval = security_task_setscheduler(p, 0, NULL);
6548 if (retval)
6549 goto out_unlock;
6550
6551 cpuset_cpus_allowed(p, cpus_allowed);
6552 cpumask_and(new_mask, in_mask, cpus_allowed);
6553 again:
6554 retval = set_cpus_allowed_ptr(p, new_mask);
6555
6556 if (!retval) {
6557 cpuset_cpus_allowed(p, cpus_allowed);
6558 if (!cpumask_subset(new_mask, cpus_allowed)) {
6559 /*
6560 * We must have raced with a concurrent cpuset
6561 * update. Just reset the cpus_allowed to the
6562 * cpuset's cpus_allowed
6563 */
6564 cpumask_copy(new_mask, cpus_allowed);
6565 goto again;
6566 }
6567 }
6568 out_unlock:
6569 free_cpumask_var(new_mask);
6570 out_free_cpus_allowed:
6571 free_cpumask_var(cpus_allowed);
6572 out_put_task:
6573 put_task_struct(p);
6574 put_online_cpus();
6575 return retval;
6576 }
6577
6578 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6579 struct cpumask *new_mask)
6580 {
6581 if (len < cpumask_size())
6582 cpumask_clear(new_mask);
6583 else if (len > cpumask_size())
6584 len = cpumask_size();
6585
6586 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6587 }
6588
6589 /**
6590 * sys_sched_setaffinity - set the cpu affinity of a process
6591 * @pid: pid of the process
6592 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6593 * @user_mask_ptr: user-space pointer to the new cpu mask
6594 */
6595 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6596 unsigned long __user *, user_mask_ptr)
6597 {
6598 cpumask_var_t new_mask;
6599 int retval;
6600
6601 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6602 return -ENOMEM;
6603
6604 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6605 if (retval == 0)
6606 retval = sched_setaffinity(pid, new_mask);
6607 free_cpumask_var(new_mask);
6608 return retval;
6609 }
6610
6611 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6612 {
6613 struct task_struct *p;
6614 unsigned long flags;
6615 struct rq *rq;
6616 int retval;
6617
6618 get_online_cpus();
6619 read_lock(&tasklist_lock);
6620
6621 retval = -ESRCH;
6622 p = find_process_by_pid(pid);
6623 if (!p)
6624 goto out_unlock;
6625
6626 retval = security_task_getscheduler(p);
6627 if (retval)
6628 goto out_unlock;
6629
6630 rq = task_rq_lock(p, &flags);
6631 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6632 task_rq_unlock(rq, &flags);
6633
6634 out_unlock:
6635 read_unlock(&tasklist_lock);
6636 put_online_cpus();
6637
6638 return retval;
6639 }
6640
6641 /**
6642 * sys_sched_getaffinity - get the cpu affinity of a process
6643 * @pid: pid of the process
6644 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6645 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6646 */
6647 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6648 unsigned long __user *, user_mask_ptr)
6649 {
6650 int ret;
6651 cpumask_var_t mask;
6652
6653 if (len < cpumask_size())
6654 return -EINVAL;
6655
6656 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6657 return -ENOMEM;
6658
6659 ret = sched_getaffinity(pid, mask);
6660 if (ret == 0) {
6661 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6662 ret = -EFAULT;
6663 else
6664 ret = cpumask_size();
6665 }
6666 free_cpumask_var(mask);
6667
6668 return ret;
6669 }
6670
6671 /**
6672 * sys_sched_yield - yield the current processor to other threads.
6673 *
6674 * This function yields the current CPU to other tasks. If there are no
6675 * other threads running on this CPU then this function will return.
6676 */
6677 SYSCALL_DEFINE0(sched_yield)
6678 {
6679 struct rq *rq = this_rq_lock();
6680
6681 schedstat_inc(rq, yld_count);
6682 current->sched_class->yield_task(rq);
6683
6684 /*
6685 * Since we are going to call schedule() anyway, there's
6686 * no need to preempt or enable interrupts:
6687 */
6688 __release(rq->lock);
6689 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6690 do_raw_spin_unlock(&rq->lock);
6691 preempt_enable_no_resched();
6692
6693 schedule();
6694
6695 return 0;
6696 }
6697
6698 static inline int should_resched(void)
6699 {
6700 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6701 }
6702
6703 static void __cond_resched(void)
6704 {
6705 add_preempt_count(PREEMPT_ACTIVE);
6706 schedule();
6707 sub_preempt_count(PREEMPT_ACTIVE);
6708 }
6709
6710 int __sched _cond_resched(void)
6711 {
6712 if (should_resched()) {
6713 __cond_resched();
6714 return 1;
6715 }
6716 return 0;
6717 }
6718 EXPORT_SYMBOL(_cond_resched);
6719
6720 /*
6721 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6722 * call schedule, and on return reacquire the lock.
6723 *
6724 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6725 * operations here to prevent schedule() from being called twice (once via
6726 * spin_unlock(), once by hand).
6727 */
6728 int __cond_resched_lock(spinlock_t *lock)
6729 {
6730 int resched = should_resched();
6731 int ret = 0;
6732
6733 lockdep_assert_held(lock);
6734
6735 if (spin_needbreak(lock) || resched) {
6736 spin_unlock(lock);
6737 if (resched)
6738 __cond_resched();
6739 else
6740 cpu_relax();
6741 ret = 1;
6742 spin_lock(lock);
6743 }
6744 return ret;
6745 }
6746 EXPORT_SYMBOL(__cond_resched_lock);
6747
6748 int __sched __cond_resched_softirq(void)
6749 {
6750 BUG_ON(!in_softirq());
6751
6752 if (should_resched()) {
6753 local_bh_enable();
6754 __cond_resched();
6755 local_bh_disable();
6756 return 1;
6757 }
6758 return 0;
6759 }
6760 EXPORT_SYMBOL(__cond_resched_softirq);
6761
6762 /**
6763 * yield - yield the current processor to other threads.
6764 *
6765 * This is a shortcut for kernel-space yielding - it marks the
6766 * thread runnable and calls sys_sched_yield().
6767 */
6768 void __sched yield(void)
6769 {
6770 set_current_state(TASK_RUNNING);
6771 sys_sched_yield();
6772 }
6773 EXPORT_SYMBOL(yield);
6774
6775 /*
6776 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6777 * that process accounting knows that this is a task in IO wait state.
6778 */
6779 void __sched io_schedule(void)
6780 {
6781 struct rq *rq = raw_rq();
6782
6783 delayacct_blkio_start();
6784 atomic_inc(&rq->nr_iowait);
6785 current->in_iowait = 1;
6786 schedule();
6787 current->in_iowait = 0;
6788 atomic_dec(&rq->nr_iowait);
6789 delayacct_blkio_end();
6790 }
6791 EXPORT_SYMBOL(io_schedule);
6792
6793 long __sched io_schedule_timeout(long timeout)
6794 {
6795 struct rq *rq = raw_rq();
6796 long ret;
6797
6798 delayacct_blkio_start();
6799 atomic_inc(&rq->nr_iowait);
6800 current->in_iowait = 1;
6801 ret = schedule_timeout(timeout);
6802 current->in_iowait = 0;
6803 atomic_dec(&rq->nr_iowait);
6804 delayacct_blkio_end();
6805 return ret;
6806 }
6807
6808 /**
6809 * sys_sched_get_priority_max - return maximum RT priority.
6810 * @policy: scheduling class.
6811 *
6812 * this syscall returns the maximum rt_priority that can be used
6813 * by a given scheduling class.
6814 */
6815 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6816 {
6817 int ret = -EINVAL;
6818
6819 switch (policy) {
6820 case SCHED_FIFO:
6821 case SCHED_RR:
6822 ret = MAX_USER_RT_PRIO-1;
6823 break;
6824 case SCHED_NORMAL:
6825 case SCHED_BATCH:
6826 case SCHED_IDLE:
6827 ret = 0;
6828 break;
6829 }
6830 return ret;
6831 }
6832
6833 /**
6834 * sys_sched_get_priority_min - return minimum RT priority.
6835 * @policy: scheduling class.
6836 *
6837 * this syscall returns the minimum rt_priority that can be used
6838 * by a given scheduling class.
6839 */
6840 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6841 {
6842 int ret = -EINVAL;
6843
6844 switch (policy) {
6845 case SCHED_FIFO:
6846 case SCHED_RR:
6847 ret = 1;
6848 break;
6849 case SCHED_NORMAL:
6850 case SCHED_BATCH:
6851 case SCHED_IDLE:
6852 ret = 0;
6853 }
6854 return ret;
6855 }
6856
6857 /**
6858 * sys_sched_rr_get_interval - return the default timeslice of a process.
6859 * @pid: pid of the process.
6860 * @interval: userspace pointer to the timeslice value.
6861 *
6862 * this syscall writes the default timeslice value of a given process
6863 * into the user-space timespec buffer. A value of '0' means infinity.
6864 */
6865 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6866 struct timespec __user *, interval)
6867 {
6868 struct task_struct *p;
6869 unsigned int time_slice;
6870 unsigned long flags;
6871 struct rq *rq;
6872 int retval;
6873 struct timespec t;
6874
6875 if (pid < 0)
6876 return -EINVAL;
6877
6878 retval = -ESRCH;
6879 read_lock(&tasklist_lock);
6880 p = find_process_by_pid(pid);
6881 if (!p)
6882 goto out_unlock;
6883
6884 retval = security_task_getscheduler(p);
6885 if (retval)
6886 goto out_unlock;
6887
6888 rq = task_rq_lock(p, &flags);
6889 time_slice = p->sched_class->get_rr_interval(rq, p);
6890 task_rq_unlock(rq, &flags);
6891
6892 read_unlock(&tasklist_lock);
6893 jiffies_to_timespec(time_slice, &t);
6894 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6895 return retval;
6896
6897 out_unlock:
6898 read_unlock(&tasklist_lock);
6899 return retval;
6900 }
6901
6902 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6903
6904 void sched_show_task(struct task_struct *p)
6905 {
6906 unsigned long free = 0;
6907 unsigned state;
6908
6909 state = p->state ? __ffs(p->state) + 1 : 0;
6910 printk(KERN_INFO "%-13.13s %c", p->comm,
6911 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6912 #if BITS_PER_LONG == 32
6913 if (state == TASK_RUNNING)
6914 printk(KERN_CONT " running ");
6915 else
6916 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6917 #else
6918 if (state == TASK_RUNNING)
6919 printk(KERN_CONT " running task ");
6920 else
6921 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6922 #endif
6923 #ifdef CONFIG_DEBUG_STACK_USAGE
6924 free = stack_not_used(p);
6925 #endif
6926 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6927 task_pid_nr(p), task_pid_nr(p->real_parent),
6928 (unsigned long)task_thread_info(p)->flags);
6929
6930 show_stack(p, NULL);
6931 }
6932
6933 void show_state_filter(unsigned long state_filter)
6934 {
6935 struct task_struct *g, *p;
6936
6937 #if BITS_PER_LONG == 32
6938 printk(KERN_INFO
6939 " task PC stack pid father\n");
6940 #else
6941 printk(KERN_INFO
6942 " task PC stack pid father\n");
6943 #endif
6944 read_lock(&tasklist_lock);
6945 do_each_thread(g, p) {
6946 /*
6947 * reset the NMI-timeout, listing all files on a slow
6948 * console might take alot of time:
6949 */
6950 touch_nmi_watchdog();
6951 if (!state_filter || (p->state & state_filter))
6952 sched_show_task(p);
6953 } while_each_thread(g, p);
6954
6955 touch_all_softlockup_watchdogs();
6956
6957 #ifdef CONFIG_SCHED_DEBUG
6958 sysrq_sched_debug_show();
6959 #endif
6960 read_unlock(&tasklist_lock);
6961 /*
6962 * Only show locks if all tasks are dumped:
6963 */
6964 if (!state_filter)
6965 debug_show_all_locks();
6966 }
6967
6968 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6969 {
6970 idle->sched_class = &idle_sched_class;
6971 }
6972
6973 /**
6974 * init_idle - set up an idle thread for a given CPU
6975 * @idle: task in question
6976 * @cpu: cpu the idle task belongs to
6977 *
6978 * NOTE: this function does not set the idle thread's NEED_RESCHED
6979 * flag, to make booting more robust.
6980 */
6981 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6982 {
6983 struct rq *rq = cpu_rq(cpu);
6984 unsigned long flags;
6985
6986 raw_spin_lock_irqsave(&rq->lock, flags);
6987
6988 __sched_fork(idle);
6989 idle->se.exec_start = sched_clock();
6990
6991 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6992 __set_task_cpu(idle, cpu);
6993
6994 rq->curr = rq->idle = idle;
6995 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6996 idle->oncpu = 1;
6997 #endif
6998 raw_spin_unlock_irqrestore(&rq->lock, flags);
6999
7000 /* Set the preempt count _outside_ the spinlocks! */
7001 #if defined(CONFIG_PREEMPT)
7002 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7003 #else
7004 task_thread_info(idle)->preempt_count = 0;
7005 #endif
7006 /*
7007 * The idle tasks have their own, simple scheduling class:
7008 */
7009 idle->sched_class = &idle_sched_class;
7010 ftrace_graph_init_task(idle);
7011 }
7012
7013 /*
7014 * In a system that switches off the HZ timer nohz_cpu_mask
7015 * indicates which cpus entered this state. This is used
7016 * in the rcu update to wait only for active cpus. For system
7017 * which do not switch off the HZ timer nohz_cpu_mask should
7018 * always be CPU_BITS_NONE.
7019 */
7020 cpumask_var_t nohz_cpu_mask;
7021
7022 /*
7023 * Increase the granularity value when there are more CPUs,
7024 * because with more CPUs the 'effective latency' as visible
7025 * to users decreases. But the relationship is not linear,
7026 * so pick a second-best guess by going with the log2 of the
7027 * number of CPUs.
7028 *
7029 * This idea comes from the SD scheduler of Con Kolivas:
7030 */
7031 static int get_update_sysctl_factor(void)
7032 {
7033 unsigned int cpus = min_t(int, num_online_cpus(), 8);
7034 unsigned int factor;
7035
7036 switch (sysctl_sched_tunable_scaling) {
7037 case SCHED_TUNABLESCALING_NONE:
7038 factor = 1;
7039 break;
7040 case SCHED_TUNABLESCALING_LINEAR:
7041 factor = cpus;
7042 break;
7043 case SCHED_TUNABLESCALING_LOG:
7044 default:
7045 factor = 1 + ilog2(cpus);
7046 break;
7047 }
7048
7049 return factor;
7050 }
7051
7052 static void update_sysctl(void)
7053 {
7054 unsigned int factor = get_update_sysctl_factor();
7055
7056 #define SET_SYSCTL(name) \
7057 (sysctl_##name = (factor) * normalized_sysctl_##name)
7058 SET_SYSCTL(sched_min_granularity);
7059 SET_SYSCTL(sched_latency);
7060 SET_SYSCTL(sched_wakeup_granularity);
7061 SET_SYSCTL(sched_shares_ratelimit);
7062 #undef SET_SYSCTL
7063 }
7064
7065 static inline void sched_init_granularity(void)
7066 {
7067 update_sysctl();
7068 }
7069
7070 #ifdef CONFIG_SMP
7071 /*
7072 * This is how migration works:
7073 *
7074 * 1) we queue a struct migration_req structure in the source CPU's
7075 * runqueue and wake up that CPU's migration thread.
7076 * 2) we down() the locked semaphore => thread blocks.
7077 * 3) migration thread wakes up (implicitly it forces the migrated
7078 * thread off the CPU)
7079 * 4) it gets the migration request and checks whether the migrated
7080 * task is still in the wrong runqueue.
7081 * 5) if it's in the wrong runqueue then the migration thread removes
7082 * it and puts it into the right queue.
7083 * 6) migration thread up()s the semaphore.
7084 * 7) we wake up and the migration is done.
7085 */
7086
7087 /*
7088 * Change a given task's CPU affinity. Migrate the thread to a
7089 * proper CPU and schedule it away if the CPU it's executing on
7090 * is removed from the allowed bitmask.
7091 *
7092 * NOTE: the caller must have a valid reference to the task, the
7093 * task must not exit() & deallocate itself prematurely. The
7094 * call is not atomic; no spinlocks may be held.
7095 */
7096 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7097 {
7098 struct migration_req req;
7099 unsigned long flags;
7100 struct rq *rq;
7101 int ret = 0;
7102
7103 rq = task_rq_lock(p, &flags);
7104 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7105 ret = -EINVAL;
7106 goto out;
7107 }
7108
7109 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7110 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7111 ret = -EINVAL;
7112 goto out;
7113 }
7114
7115 if (p->sched_class->set_cpus_allowed)
7116 p->sched_class->set_cpus_allowed(p, new_mask);
7117 else {
7118 cpumask_copy(&p->cpus_allowed, new_mask);
7119 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7120 }
7121
7122 /* Can the task run on the task's current CPU? If so, we're done */
7123 if (cpumask_test_cpu(task_cpu(p), new_mask))
7124 goto out;
7125
7126 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7127 /* Need help from migration thread: drop lock and wait. */
7128 struct task_struct *mt = rq->migration_thread;
7129
7130 get_task_struct(mt);
7131 task_rq_unlock(rq, &flags);
7132 wake_up_process(rq->migration_thread);
7133 put_task_struct(mt);
7134 wait_for_completion(&req.done);
7135 tlb_migrate_finish(p->mm);
7136 return 0;
7137 }
7138 out:
7139 task_rq_unlock(rq, &flags);
7140
7141 return ret;
7142 }
7143 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7144
7145 /*
7146 * Move (not current) task off this cpu, onto dest cpu. We're doing
7147 * this because either it can't run here any more (set_cpus_allowed()
7148 * away from this CPU, or CPU going down), or because we're
7149 * attempting to rebalance this task on exec (sched_exec).
7150 *
7151 * So we race with normal scheduler movements, but that's OK, as long
7152 * as the task is no longer on this CPU.
7153 *
7154 * Returns non-zero if task was successfully migrated.
7155 */
7156 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7157 {
7158 struct rq *rq_dest, *rq_src;
7159 int ret = 0, on_rq;
7160
7161 if (unlikely(!cpu_active(dest_cpu)))
7162 return ret;
7163
7164 rq_src = cpu_rq(src_cpu);
7165 rq_dest = cpu_rq(dest_cpu);
7166
7167 double_rq_lock(rq_src, rq_dest);
7168 /* Already moved. */
7169 if (task_cpu(p) != src_cpu)
7170 goto done;
7171 /* Affinity changed (again). */
7172 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7173 goto fail;
7174
7175 on_rq = p->se.on_rq;
7176 if (on_rq)
7177 deactivate_task(rq_src, p, 0);
7178
7179 set_task_cpu(p, dest_cpu);
7180 if (on_rq) {
7181 activate_task(rq_dest, p, 0);
7182 check_preempt_curr(rq_dest, p, 0);
7183 }
7184 done:
7185 ret = 1;
7186 fail:
7187 double_rq_unlock(rq_src, rq_dest);
7188 return ret;
7189 }
7190
7191 #define RCU_MIGRATION_IDLE 0
7192 #define RCU_MIGRATION_NEED_QS 1
7193 #define RCU_MIGRATION_GOT_QS 2
7194 #define RCU_MIGRATION_MUST_SYNC 3
7195
7196 /*
7197 * migration_thread - this is a highprio system thread that performs
7198 * thread migration by bumping thread off CPU then 'pushing' onto
7199 * another runqueue.
7200 */
7201 static int migration_thread(void *data)
7202 {
7203 int badcpu;
7204 int cpu = (long)data;
7205 struct rq *rq;
7206
7207 rq = cpu_rq(cpu);
7208 BUG_ON(rq->migration_thread != current);
7209
7210 set_current_state(TASK_INTERRUPTIBLE);
7211 while (!kthread_should_stop()) {
7212 struct migration_req *req;
7213 struct list_head *head;
7214
7215 raw_spin_lock_irq(&rq->lock);
7216
7217 if (cpu_is_offline(cpu)) {
7218 raw_spin_unlock_irq(&rq->lock);
7219 break;
7220 }
7221
7222 if (rq->active_balance) {
7223 active_load_balance(rq, cpu);
7224 rq->active_balance = 0;
7225 }
7226
7227 head = &rq->migration_queue;
7228
7229 if (list_empty(head)) {
7230 raw_spin_unlock_irq(&rq->lock);
7231 schedule();
7232 set_current_state(TASK_INTERRUPTIBLE);
7233 continue;
7234 }
7235 req = list_entry(head->next, struct migration_req, list);
7236 list_del_init(head->next);
7237
7238 if (req->task != NULL) {
7239 raw_spin_unlock(&rq->lock);
7240 __migrate_task(req->task, cpu, req->dest_cpu);
7241 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7242 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7243 raw_spin_unlock(&rq->lock);
7244 } else {
7245 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7246 raw_spin_unlock(&rq->lock);
7247 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7248 }
7249 local_irq_enable();
7250
7251 complete(&req->done);
7252 }
7253 __set_current_state(TASK_RUNNING);
7254
7255 return 0;
7256 }
7257
7258 #ifdef CONFIG_HOTPLUG_CPU
7259
7260 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7261 {
7262 int ret;
7263
7264 local_irq_disable();
7265 ret = __migrate_task(p, src_cpu, dest_cpu);
7266 local_irq_enable();
7267 return ret;
7268 }
7269
7270 /*
7271 * Figure out where task on dead CPU should go, use force if necessary.
7272 */
7273 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7274 {
7275 int dest_cpu;
7276 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7277
7278 again:
7279 /* Look for allowed, online CPU in same node. */
7280 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7281 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7282 goto move;
7283
7284 /* Any allowed, online CPU? */
7285 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7286 if (dest_cpu < nr_cpu_ids)
7287 goto move;
7288
7289 /* No more Mr. Nice Guy. */
7290 if (dest_cpu >= nr_cpu_ids) {
7291 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7292 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
7293
7294 /*
7295 * Don't tell them about moving exiting tasks or
7296 * kernel threads (both mm NULL), since they never
7297 * leave kernel.
7298 */
7299 if (p->mm && printk_ratelimit()) {
7300 printk(KERN_INFO "process %d (%s) no "
7301 "longer affine to cpu%d\n",
7302 task_pid_nr(p), p->comm, dead_cpu);
7303 }
7304 }
7305
7306 move:
7307 /* It can have affinity changed while we were choosing. */
7308 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7309 goto again;
7310 }
7311
7312 /*
7313 * While a dead CPU has no uninterruptible tasks queued at this point,
7314 * it might still have a nonzero ->nr_uninterruptible counter, because
7315 * for performance reasons the counter is not stricly tracking tasks to
7316 * their home CPUs. So we just add the counter to another CPU's counter,
7317 * to keep the global sum constant after CPU-down:
7318 */
7319 static void migrate_nr_uninterruptible(struct rq *rq_src)
7320 {
7321 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7322 unsigned long flags;
7323
7324 local_irq_save(flags);
7325 double_rq_lock(rq_src, rq_dest);
7326 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7327 rq_src->nr_uninterruptible = 0;
7328 double_rq_unlock(rq_src, rq_dest);
7329 local_irq_restore(flags);
7330 }
7331
7332 /* Run through task list and migrate tasks from the dead cpu. */
7333 static void migrate_live_tasks(int src_cpu)
7334 {
7335 struct task_struct *p, *t;
7336
7337 read_lock(&tasklist_lock);
7338
7339 do_each_thread(t, p) {
7340 if (p == current)
7341 continue;
7342
7343 if (task_cpu(p) == src_cpu)
7344 move_task_off_dead_cpu(src_cpu, p);
7345 } while_each_thread(t, p);
7346
7347 read_unlock(&tasklist_lock);
7348 }
7349
7350 /*
7351 * Schedules idle task to be the next runnable task on current CPU.
7352 * It does so by boosting its priority to highest possible.
7353 * Used by CPU offline code.
7354 */
7355 void sched_idle_next(void)
7356 {
7357 int this_cpu = smp_processor_id();
7358 struct rq *rq = cpu_rq(this_cpu);
7359 struct task_struct *p = rq->idle;
7360 unsigned long flags;
7361
7362 /* cpu has to be offline */
7363 BUG_ON(cpu_online(this_cpu));
7364
7365 /*
7366 * Strictly not necessary since rest of the CPUs are stopped by now
7367 * and interrupts disabled on the current cpu.
7368 */
7369 raw_spin_lock_irqsave(&rq->lock, flags);
7370
7371 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7372
7373 update_rq_clock(rq);
7374 activate_task(rq, p, 0);
7375
7376 raw_spin_unlock_irqrestore(&rq->lock, flags);
7377 }
7378
7379 /*
7380 * Ensures that the idle task is using init_mm right before its cpu goes
7381 * offline.
7382 */
7383 void idle_task_exit(void)
7384 {
7385 struct mm_struct *mm = current->active_mm;
7386
7387 BUG_ON(cpu_online(smp_processor_id()));
7388
7389 if (mm != &init_mm)
7390 switch_mm(mm, &init_mm, current);
7391 mmdrop(mm);
7392 }
7393
7394 /* called under rq->lock with disabled interrupts */
7395 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7396 {
7397 struct rq *rq = cpu_rq(dead_cpu);
7398
7399 /* Must be exiting, otherwise would be on tasklist. */
7400 BUG_ON(!p->exit_state);
7401
7402 /* Cannot have done final schedule yet: would have vanished. */
7403 BUG_ON(p->state == TASK_DEAD);
7404
7405 get_task_struct(p);
7406
7407 /*
7408 * Drop lock around migration; if someone else moves it,
7409 * that's OK. No task can be added to this CPU, so iteration is
7410 * fine.
7411 */
7412 raw_spin_unlock_irq(&rq->lock);
7413 move_task_off_dead_cpu(dead_cpu, p);
7414 raw_spin_lock_irq(&rq->lock);
7415
7416 put_task_struct(p);
7417 }
7418
7419 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7420 static void migrate_dead_tasks(unsigned int dead_cpu)
7421 {
7422 struct rq *rq = cpu_rq(dead_cpu);
7423 struct task_struct *next;
7424
7425 for ( ; ; ) {
7426 if (!rq->nr_running)
7427 break;
7428 update_rq_clock(rq);
7429 next = pick_next_task(rq);
7430 if (!next)
7431 break;
7432 next->sched_class->put_prev_task(rq, next);
7433 migrate_dead(dead_cpu, next);
7434
7435 }
7436 }
7437
7438 /*
7439 * remove the tasks which were accounted by rq from calc_load_tasks.
7440 */
7441 static void calc_global_load_remove(struct rq *rq)
7442 {
7443 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7444 rq->calc_load_active = 0;
7445 }
7446 #endif /* CONFIG_HOTPLUG_CPU */
7447
7448 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7449
7450 static struct ctl_table sd_ctl_dir[] = {
7451 {
7452 .procname = "sched_domain",
7453 .mode = 0555,
7454 },
7455 {}
7456 };
7457
7458 static struct ctl_table sd_ctl_root[] = {
7459 {
7460 .procname = "kernel",
7461 .mode = 0555,
7462 .child = sd_ctl_dir,
7463 },
7464 {}
7465 };
7466
7467 static struct ctl_table *sd_alloc_ctl_entry(int n)
7468 {
7469 struct ctl_table *entry =
7470 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7471
7472 return entry;
7473 }
7474
7475 static void sd_free_ctl_entry(struct ctl_table **tablep)
7476 {
7477 struct ctl_table *entry;
7478
7479 /*
7480 * In the intermediate directories, both the child directory and
7481 * procname are dynamically allocated and could fail but the mode
7482 * will always be set. In the lowest directory the names are
7483 * static strings and all have proc handlers.
7484 */
7485 for (entry = *tablep; entry->mode; entry++) {
7486 if (entry->child)
7487 sd_free_ctl_entry(&entry->child);
7488 if (entry->proc_handler == NULL)
7489 kfree(entry->procname);
7490 }
7491
7492 kfree(*tablep);
7493 *tablep = NULL;
7494 }
7495
7496 static void
7497 set_table_entry(struct ctl_table *entry,
7498 const char *procname, void *data, int maxlen,
7499 mode_t mode, proc_handler *proc_handler)
7500 {
7501 entry->procname = procname;
7502 entry->data = data;
7503 entry->maxlen = maxlen;
7504 entry->mode = mode;
7505 entry->proc_handler = proc_handler;
7506 }
7507
7508 static struct ctl_table *
7509 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7510 {
7511 struct ctl_table *table = sd_alloc_ctl_entry(13);
7512
7513 if (table == NULL)
7514 return NULL;
7515
7516 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7517 sizeof(long), 0644, proc_doulongvec_minmax);
7518 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7519 sizeof(long), 0644, proc_doulongvec_minmax);
7520 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7521 sizeof(int), 0644, proc_dointvec_minmax);
7522 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7523 sizeof(int), 0644, proc_dointvec_minmax);
7524 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7525 sizeof(int), 0644, proc_dointvec_minmax);
7526 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7527 sizeof(int), 0644, proc_dointvec_minmax);
7528 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7529 sizeof(int), 0644, proc_dointvec_minmax);
7530 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7531 sizeof(int), 0644, proc_dointvec_minmax);
7532 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7533 sizeof(int), 0644, proc_dointvec_minmax);
7534 set_table_entry(&table[9], "cache_nice_tries",
7535 &sd->cache_nice_tries,
7536 sizeof(int), 0644, proc_dointvec_minmax);
7537 set_table_entry(&table[10], "flags", &sd->flags,
7538 sizeof(int), 0644, proc_dointvec_minmax);
7539 set_table_entry(&table[11], "name", sd->name,
7540 CORENAME_MAX_SIZE, 0444, proc_dostring);
7541 /* &table[12] is terminator */
7542
7543 return table;
7544 }
7545
7546 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7547 {
7548 struct ctl_table *entry, *table;
7549 struct sched_domain *sd;
7550 int domain_num = 0, i;
7551 char buf[32];
7552
7553 for_each_domain(cpu, sd)
7554 domain_num++;
7555 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7556 if (table == NULL)
7557 return NULL;
7558
7559 i = 0;
7560 for_each_domain(cpu, sd) {
7561 snprintf(buf, 32, "domain%d", i);
7562 entry->procname = kstrdup(buf, GFP_KERNEL);
7563 entry->mode = 0555;
7564 entry->child = sd_alloc_ctl_domain_table(sd);
7565 entry++;
7566 i++;
7567 }
7568 return table;
7569 }
7570
7571 static struct ctl_table_header *sd_sysctl_header;
7572 static void register_sched_domain_sysctl(void)
7573 {
7574 int i, cpu_num = num_possible_cpus();
7575 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7576 char buf[32];
7577
7578 WARN_ON(sd_ctl_dir[0].child);
7579 sd_ctl_dir[0].child = entry;
7580
7581 if (entry == NULL)
7582 return;
7583
7584 for_each_possible_cpu(i) {
7585 snprintf(buf, 32, "cpu%d", i);
7586 entry->procname = kstrdup(buf, GFP_KERNEL);
7587 entry->mode = 0555;
7588 entry->child = sd_alloc_ctl_cpu_table(i);
7589 entry++;
7590 }
7591
7592 WARN_ON(sd_sysctl_header);
7593 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7594 }
7595
7596 /* may be called multiple times per register */
7597 static void unregister_sched_domain_sysctl(void)
7598 {
7599 if (sd_sysctl_header)
7600 unregister_sysctl_table(sd_sysctl_header);
7601 sd_sysctl_header = NULL;
7602 if (sd_ctl_dir[0].child)
7603 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7604 }
7605 #else
7606 static void register_sched_domain_sysctl(void)
7607 {
7608 }
7609 static void unregister_sched_domain_sysctl(void)
7610 {
7611 }
7612 #endif
7613
7614 static void set_rq_online(struct rq *rq)
7615 {
7616 if (!rq->online) {
7617 const struct sched_class *class;
7618
7619 cpumask_set_cpu(rq->cpu, rq->rd->online);
7620 rq->online = 1;
7621
7622 for_each_class(class) {
7623 if (class->rq_online)
7624 class->rq_online(rq);
7625 }
7626 }
7627 }
7628
7629 static void set_rq_offline(struct rq *rq)
7630 {
7631 if (rq->online) {
7632 const struct sched_class *class;
7633
7634 for_each_class(class) {
7635 if (class->rq_offline)
7636 class->rq_offline(rq);
7637 }
7638
7639 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7640 rq->online = 0;
7641 }
7642 }
7643
7644 /*
7645 * migration_call - callback that gets triggered when a CPU is added.
7646 * Here we can start up the necessary migration thread for the new CPU.
7647 */
7648 static int __cpuinit
7649 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7650 {
7651 struct task_struct *p;
7652 int cpu = (long)hcpu;
7653 unsigned long flags;
7654 struct rq *rq;
7655
7656 switch (action) {
7657
7658 case CPU_UP_PREPARE:
7659 case CPU_UP_PREPARE_FROZEN:
7660 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7661 if (IS_ERR(p))
7662 return NOTIFY_BAD;
7663 kthread_bind(p, cpu);
7664 /* Must be high prio: stop_machine expects to yield to it. */
7665 rq = task_rq_lock(p, &flags);
7666 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7667 task_rq_unlock(rq, &flags);
7668 get_task_struct(p);
7669 cpu_rq(cpu)->migration_thread = p;
7670 rq->calc_load_update = calc_load_update;
7671 break;
7672
7673 case CPU_ONLINE:
7674 case CPU_ONLINE_FROZEN:
7675 /* Strictly unnecessary, as first user will wake it. */
7676 wake_up_process(cpu_rq(cpu)->migration_thread);
7677
7678 /* Update our root-domain */
7679 rq = cpu_rq(cpu);
7680 raw_spin_lock_irqsave(&rq->lock, flags);
7681 if (rq->rd) {
7682 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7683
7684 set_rq_online(rq);
7685 }
7686 raw_spin_unlock_irqrestore(&rq->lock, flags);
7687 break;
7688
7689 #ifdef CONFIG_HOTPLUG_CPU
7690 case CPU_UP_CANCELED:
7691 case CPU_UP_CANCELED_FROZEN:
7692 if (!cpu_rq(cpu)->migration_thread)
7693 break;
7694 /* Unbind it from offline cpu so it can run. Fall thru. */
7695 kthread_bind(cpu_rq(cpu)->migration_thread,
7696 cpumask_any(cpu_online_mask));
7697 kthread_stop(cpu_rq(cpu)->migration_thread);
7698 put_task_struct(cpu_rq(cpu)->migration_thread);
7699 cpu_rq(cpu)->migration_thread = NULL;
7700 break;
7701
7702 case CPU_DEAD:
7703 case CPU_DEAD_FROZEN:
7704 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7705 migrate_live_tasks(cpu);
7706 rq = cpu_rq(cpu);
7707 kthread_stop(rq->migration_thread);
7708 put_task_struct(rq->migration_thread);
7709 rq->migration_thread = NULL;
7710 /* Idle task back to normal (off runqueue, low prio) */
7711 raw_spin_lock_irq(&rq->lock);
7712 update_rq_clock(rq);
7713 deactivate_task(rq, rq->idle, 0);
7714 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7715 rq->idle->sched_class = &idle_sched_class;
7716 migrate_dead_tasks(cpu);
7717 raw_spin_unlock_irq(&rq->lock);
7718 cpuset_unlock();
7719 migrate_nr_uninterruptible(rq);
7720 BUG_ON(rq->nr_running != 0);
7721 calc_global_load_remove(rq);
7722 /*
7723 * No need to migrate the tasks: it was best-effort if
7724 * they didn't take sched_hotcpu_mutex. Just wake up
7725 * the requestors.
7726 */
7727 raw_spin_lock_irq(&rq->lock);
7728 while (!list_empty(&rq->migration_queue)) {
7729 struct migration_req *req;
7730
7731 req = list_entry(rq->migration_queue.next,
7732 struct migration_req, list);
7733 list_del_init(&req->list);
7734 raw_spin_unlock_irq(&rq->lock);
7735 complete(&req->done);
7736 raw_spin_lock_irq(&rq->lock);
7737 }
7738 raw_spin_unlock_irq(&rq->lock);
7739 break;
7740
7741 case CPU_DYING:
7742 case CPU_DYING_FROZEN:
7743 /* Update our root-domain */
7744 rq = cpu_rq(cpu);
7745 raw_spin_lock_irqsave(&rq->lock, flags);
7746 if (rq->rd) {
7747 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7748 set_rq_offline(rq);
7749 }
7750 raw_spin_unlock_irqrestore(&rq->lock, flags);
7751 break;
7752 #endif
7753 }
7754 return NOTIFY_OK;
7755 }
7756
7757 /*
7758 * Register at high priority so that task migration (migrate_all_tasks)
7759 * happens before everything else. This has to be lower priority than
7760 * the notifier in the perf_event subsystem, though.
7761 */
7762 static struct notifier_block __cpuinitdata migration_notifier = {
7763 .notifier_call = migration_call,
7764 .priority = 10
7765 };
7766
7767 static int __init migration_init(void)
7768 {
7769 void *cpu = (void *)(long)smp_processor_id();
7770 int err;
7771
7772 /* Start one for the boot CPU: */
7773 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7774 BUG_ON(err == NOTIFY_BAD);
7775 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7776 register_cpu_notifier(&migration_notifier);
7777
7778 return 0;
7779 }
7780 early_initcall(migration_init);
7781 #endif
7782
7783 #ifdef CONFIG_SMP
7784
7785 #ifdef CONFIG_SCHED_DEBUG
7786
7787 static __read_mostly int sched_domain_debug_enabled;
7788
7789 static int __init sched_domain_debug_setup(char *str)
7790 {
7791 sched_domain_debug_enabled = 1;
7792
7793 return 0;
7794 }
7795 early_param("sched_debug", sched_domain_debug_setup);
7796
7797 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7798 struct cpumask *groupmask)
7799 {
7800 struct sched_group *group = sd->groups;
7801 char str[256];
7802
7803 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7804 cpumask_clear(groupmask);
7805
7806 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7807
7808 if (!(sd->flags & SD_LOAD_BALANCE)) {
7809 printk("does not load-balance\n");
7810 if (sd->parent)
7811 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7812 " has parent");
7813 return -1;
7814 }
7815
7816 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7817
7818 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7819 printk(KERN_ERR "ERROR: domain->span does not contain "
7820 "CPU%d\n", cpu);
7821 }
7822 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7823 printk(KERN_ERR "ERROR: domain->groups does not contain"
7824 " CPU%d\n", cpu);
7825 }
7826
7827 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7828 do {
7829 if (!group) {
7830 printk("\n");
7831 printk(KERN_ERR "ERROR: group is NULL\n");
7832 break;
7833 }
7834
7835 if (!group->cpu_power) {
7836 printk(KERN_CONT "\n");
7837 printk(KERN_ERR "ERROR: domain->cpu_power not "
7838 "set\n");
7839 break;
7840 }
7841
7842 if (!cpumask_weight(sched_group_cpus(group))) {
7843 printk(KERN_CONT "\n");
7844 printk(KERN_ERR "ERROR: empty group\n");
7845 break;
7846 }
7847
7848 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7849 printk(KERN_CONT "\n");
7850 printk(KERN_ERR "ERROR: repeated CPUs\n");
7851 break;
7852 }
7853
7854 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7855
7856 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7857
7858 printk(KERN_CONT " %s", str);
7859 if (group->cpu_power != SCHED_LOAD_SCALE) {
7860 printk(KERN_CONT " (cpu_power = %d)",
7861 group->cpu_power);
7862 }
7863
7864 group = group->next;
7865 } while (group != sd->groups);
7866 printk(KERN_CONT "\n");
7867
7868 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7869 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7870
7871 if (sd->parent &&
7872 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7873 printk(KERN_ERR "ERROR: parent span is not a superset "
7874 "of domain->span\n");
7875 return 0;
7876 }
7877
7878 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7879 {
7880 cpumask_var_t groupmask;
7881 int level = 0;
7882
7883 if (!sched_domain_debug_enabled)
7884 return;
7885
7886 if (!sd) {
7887 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7888 return;
7889 }
7890
7891 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7892
7893 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7894 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7895 return;
7896 }
7897
7898 for (;;) {
7899 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7900 break;
7901 level++;
7902 sd = sd->parent;
7903 if (!sd)
7904 break;
7905 }
7906 free_cpumask_var(groupmask);
7907 }
7908 #else /* !CONFIG_SCHED_DEBUG */
7909 # define sched_domain_debug(sd, cpu) do { } while (0)
7910 #endif /* CONFIG_SCHED_DEBUG */
7911
7912 static int sd_degenerate(struct sched_domain *sd)
7913 {
7914 if (cpumask_weight(sched_domain_span(sd)) == 1)
7915 return 1;
7916
7917 /* Following flags need at least 2 groups */
7918 if (sd->flags & (SD_LOAD_BALANCE |
7919 SD_BALANCE_NEWIDLE |
7920 SD_BALANCE_FORK |
7921 SD_BALANCE_EXEC |
7922 SD_SHARE_CPUPOWER |
7923 SD_SHARE_PKG_RESOURCES)) {
7924 if (sd->groups != sd->groups->next)
7925 return 0;
7926 }
7927
7928 /* Following flags don't use groups */
7929 if (sd->flags & (SD_WAKE_AFFINE))
7930 return 0;
7931
7932 return 1;
7933 }
7934
7935 static int
7936 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7937 {
7938 unsigned long cflags = sd->flags, pflags = parent->flags;
7939
7940 if (sd_degenerate(parent))
7941 return 1;
7942
7943 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7944 return 0;
7945
7946 /* Flags needing groups don't count if only 1 group in parent */
7947 if (parent->groups == parent->groups->next) {
7948 pflags &= ~(SD_LOAD_BALANCE |
7949 SD_BALANCE_NEWIDLE |
7950 SD_BALANCE_FORK |
7951 SD_BALANCE_EXEC |
7952 SD_SHARE_CPUPOWER |
7953 SD_SHARE_PKG_RESOURCES);
7954 if (nr_node_ids == 1)
7955 pflags &= ~SD_SERIALIZE;
7956 }
7957 if (~cflags & pflags)
7958 return 0;
7959
7960 return 1;
7961 }
7962
7963 static void free_rootdomain(struct root_domain *rd)
7964 {
7965 synchronize_sched();
7966
7967 cpupri_cleanup(&rd->cpupri);
7968
7969 free_cpumask_var(rd->rto_mask);
7970 free_cpumask_var(rd->online);
7971 free_cpumask_var(rd->span);
7972 kfree(rd);
7973 }
7974
7975 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7976 {
7977 struct root_domain *old_rd = NULL;
7978 unsigned long flags;
7979
7980 raw_spin_lock_irqsave(&rq->lock, flags);
7981
7982 if (rq->rd) {
7983 old_rd = rq->rd;
7984
7985 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7986 set_rq_offline(rq);
7987
7988 cpumask_clear_cpu(rq->cpu, old_rd->span);
7989
7990 /*
7991 * If we dont want to free the old_rt yet then
7992 * set old_rd to NULL to skip the freeing later
7993 * in this function:
7994 */
7995 if (!atomic_dec_and_test(&old_rd->refcount))
7996 old_rd = NULL;
7997 }
7998
7999 atomic_inc(&rd->refcount);
8000 rq->rd = rd;
8001
8002 cpumask_set_cpu(rq->cpu, rd->span);
8003 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8004 set_rq_online(rq);
8005
8006 raw_spin_unlock_irqrestore(&rq->lock, flags);
8007
8008 if (old_rd)
8009 free_rootdomain(old_rd);
8010 }
8011
8012 static int init_rootdomain(struct root_domain *rd, bool bootmem)
8013 {
8014 gfp_t gfp = GFP_KERNEL;
8015
8016 memset(rd, 0, sizeof(*rd));
8017
8018 if (bootmem)
8019 gfp = GFP_NOWAIT;
8020
8021 if (!alloc_cpumask_var(&rd->span, gfp))
8022 goto out;
8023 if (!alloc_cpumask_var(&rd->online, gfp))
8024 goto free_span;
8025 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8026 goto free_online;
8027
8028 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8029 goto free_rto_mask;
8030 return 0;
8031
8032 free_rto_mask:
8033 free_cpumask_var(rd->rto_mask);
8034 free_online:
8035 free_cpumask_var(rd->online);
8036 free_span:
8037 free_cpumask_var(rd->span);
8038 out:
8039 return -ENOMEM;
8040 }
8041
8042 static void init_defrootdomain(void)
8043 {
8044 init_rootdomain(&def_root_domain, true);
8045
8046 atomic_set(&def_root_domain.refcount, 1);
8047 }
8048
8049 static struct root_domain *alloc_rootdomain(void)
8050 {
8051 struct root_domain *rd;
8052
8053 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8054 if (!rd)
8055 return NULL;
8056
8057 if (init_rootdomain(rd, false) != 0) {
8058 kfree(rd);
8059 return NULL;
8060 }
8061
8062 return rd;
8063 }
8064
8065 /*
8066 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8067 * hold the hotplug lock.
8068 */
8069 static void
8070 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8071 {
8072 struct rq *rq = cpu_rq(cpu);
8073 struct sched_domain *tmp;
8074
8075 /* Remove the sched domains which do not contribute to scheduling. */
8076 for (tmp = sd; tmp; ) {
8077 struct sched_domain *parent = tmp->parent;
8078 if (!parent)
8079 break;
8080
8081 if (sd_parent_degenerate(tmp, parent)) {
8082 tmp->parent = parent->parent;
8083 if (parent->parent)
8084 parent->parent->child = tmp;
8085 } else
8086 tmp = tmp->parent;
8087 }
8088
8089 if (sd && sd_degenerate(sd)) {
8090 sd = sd->parent;
8091 if (sd)
8092 sd->child = NULL;
8093 }
8094
8095 sched_domain_debug(sd, cpu);
8096
8097 rq_attach_root(rq, rd);
8098 rcu_assign_pointer(rq->sd, sd);
8099 }
8100
8101 /* cpus with isolated domains */
8102 static cpumask_var_t cpu_isolated_map;
8103
8104 /* Setup the mask of cpus configured for isolated domains */
8105 static int __init isolated_cpu_setup(char *str)
8106 {
8107 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8108 cpulist_parse(str, cpu_isolated_map);
8109 return 1;
8110 }
8111
8112 __setup("isolcpus=", isolated_cpu_setup);
8113
8114 /*
8115 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8116 * to a function which identifies what group(along with sched group) a CPU
8117 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8118 * (due to the fact that we keep track of groups covered with a struct cpumask).
8119 *
8120 * init_sched_build_groups will build a circular linked list of the groups
8121 * covered by the given span, and will set each group's ->cpumask correctly,
8122 * and ->cpu_power to 0.
8123 */
8124 static void
8125 init_sched_build_groups(const struct cpumask *span,
8126 const struct cpumask *cpu_map,
8127 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8128 struct sched_group **sg,
8129 struct cpumask *tmpmask),
8130 struct cpumask *covered, struct cpumask *tmpmask)
8131 {
8132 struct sched_group *first = NULL, *last = NULL;
8133 int i;
8134
8135 cpumask_clear(covered);
8136
8137 for_each_cpu(i, span) {
8138 struct sched_group *sg;
8139 int group = group_fn(i, cpu_map, &sg, tmpmask);
8140 int j;
8141
8142 if (cpumask_test_cpu(i, covered))
8143 continue;
8144
8145 cpumask_clear(sched_group_cpus(sg));
8146 sg->cpu_power = 0;
8147
8148 for_each_cpu(j, span) {
8149 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8150 continue;
8151
8152 cpumask_set_cpu(j, covered);
8153 cpumask_set_cpu(j, sched_group_cpus(sg));
8154 }
8155 if (!first)
8156 first = sg;
8157 if (last)
8158 last->next = sg;
8159 last = sg;
8160 }
8161 last->next = first;
8162 }
8163
8164 #define SD_NODES_PER_DOMAIN 16
8165
8166 #ifdef CONFIG_NUMA
8167
8168 /**
8169 * find_next_best_node - find the next node to include in a sched_domain
8170 * @node: node whose sched_domain we're building
8171 * @used_nodes: nodes already in the sched_domain
8172 *
8173 * Find the next node to include in a given scheduling domain. Simply
8174 * finds the closest node not already in the @used_nodes map.
8175 *
8176 * Should use nodemask_t.
8177 */
8178 static int find_next_best_node(int node, nodemask_t *used_nodes)
8179 {
8180 int i, n, val, min_val, best_node = 0;
8181
8182 min_val = INT_MAX;
8183
8184 for (i = 0; i < nr_node_ids; i++) {
8185 /* Start at @node */
8186 n = (node + i) % nr_node_ids;
8187
8188 if (!nr_cpus_node(n))
8189 continue;
8190
8191 /* Skip already used nodes */
8192 if (node_isset(n, *used_nodes))
8193 continue;
8194
8195 /* Simple min distance search */
8196 val = node_distance(node, n);
8197
8198 if (val < min_val) {
8199 min_val = val;
8200 best_node = n;
8201 }
8202 }
8203
8204 node_set(best_node, *used_nodes);
8205 return best_node;
8206 }
8207
8208 /**
8209 * sched_domain_node_span - get a cpumask for a node's sched_domain
8210 * @node: node whose cpumask we're constructing
8211 * @span: resulting cpumask
8212 *
8213 * Given a node, construct a good cpumask for its sched_domain to span. It
8214 * should be one that prevents unnecessary balancing, but also spreads tasks
8215 * out optimally.
8216 */
8217 static void sched_domain_node_span(int node, struct cpumask *span)
8218 {
8219 nodemask_t used_nodes;
8220 int i;
8221
8222 cpumask_clear(span);
8223 nodes_clear(used_nodes);
8224
8225 cpumask_or(span, span, cpumask_of_node(node));
8226 node_set(node, used_nodes);
8227
8228 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8229 int next_node = find_next_best_node(node, &used_nodes);
8230
8231 cpumask_or(span, span, cpumask_of_node(next_node));
8232 }
8233 }
8234 #endif /* CONFIG_NUMA */
8235
8236 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8237
8238 /*
8239 * The cpus mask in sched_group and sched_domain hangs off the end.
8240 *
8241 * ( See the the comments in include/linux/sched.h:struct sched_group
8242 * and struct sched_domain. )
8243 */
8244 struct static_sched_group {
8245 struct sched_group sg;
8246 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8247 };
8248
8249 struct static_sched_domain {
8250 struct sched_domain sd;
8251 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8252 };
8253
8254 struct s_data {
8255 #ifdef CONFIG_NUMA
8256 int sd_allnodes;
8257 cpumask_var_t domainspan;
8258 cpumask_var_t covered;
8259 cpumask_var_t notcovered;
8260 #endif
8261 cpumask_var_t nodemask;
8262 cpumask_var_t this_sibling_map;
8263 cpumask_var_t this_core_map;
8264 cpumask_var_t send_covered;
8265 cpumask_var_t tmpmask;
8266 struct sched_group **sched_group_nodes;
8267 struct root_domain *rd;
8268 };
8269
8270 enum s_alloc {
8271 sa_sched_groups = 0,
8272 sa_rootdomain,
8273 sa_tmpmask,
8274 sa_send_covered,
8275 sa_this_core_map,
8276 sa_this_sibling_map,
8277 sa_nodemask,
8278 sa_sched_group_nodes,
8279 #ifdef CONFIG_NUMA
8280 sa_notcovered,
8281 sa_covered,
8282 sa_domainspan,
8283 #endif
8284 sa_none,
8285 };
8286
8287 /*
8288 * SMT sched-domains:
8289 */
8290 #ifdef CONFIG_SCHED_SMT
8291 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8292 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
8293
8294 static int
8295 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8296 struct sched_group **sg, struct cpumask *unused)
8297 {
8298 if (sg)
8299 *sg = &per_cpu(sched_groups, cpu).sg;
8300 return cpu;
8301 }
8302 #endif /* CONFIG_SCHED_SMT */
8303
8304 /*
8305 * multi-core sched-domains:
8306 */
8307 #ifdef CONFIG_SCHED_MC
8308 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8309 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8310 #endif /* CONFIG_SCHED_MC */
8311
8312 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8313 static int
8314 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8315 struct sched_group **sg, struct cpumask *mask)
8316 {
8317 int group;
8318
8319 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8320 group = cpumask_first(mask);
8321 if (sg)
8322 *sg = &per_cpu(sched_group_core, group).sg;
8323 return group;
8324 }
8325 #elif defined(CONFIG_SCHED_MC)
8326 static int
8327 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8328 struct sched_group **sg, struct cpumask *unused)
8329 {
8330 if (sg)
8331 *sg = &per_cpu(sched_group_core, cpu).sg;
8332 return cpu;
8333 }
8334 #endif
8335
8336 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8337 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8338
8339 static int
8340 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8341 struct sched_group **sg, struct cpumask *mask)
8342 {
8343 int group;
8344 #ifdef CONFIG_SCHED_MC
8345 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8346 group = cpumask_first(mask);
8347 #elif defined(CONFIG_SCHED_SMT)
8348 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8349 group = cpumask_first(mask);
8350 #else
8351 group = cpu;
8352 #endif
8353 if (sg)
8354 *sg = &per_cpu(sched_group_phys, group).sg;
8355 return group;
8356 }
8357
8358 #ifdef CONFIG_NUMA
8359 /*
8360 * The init_sched_build_groups can't handle what we want to do with node
8361 * groups, so roll our own. Now each node has its own list of groups which
8362 * gets dynamically allocated.
8363 */
8364 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8365 static struct sched_group ***sched_group_nodes_bycpu;
8366
8367 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8368 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8369
8370 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8371 struct sched_group **sg,
8372 struct cpumask *nodemask)
8373 {
8374 int group;
8375
8376 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8377 group = cpumask_first(nodemask);
8378
8379 if (sg)
8380 *sg = &per_cpu(sched_group_allnodes, group).sg;
8381 return group;
8382 }
8383
8384 static void init_numa_sched_groups_power(struct sched_group *group_head)
8385 {
8386 struct sched_group *sg = group_head;
8387 int j;
8388
8389 if (!sg)
8390 return;
8391 do {
8392 for_each_cpu(j, sched_group_cpus(sg)) {
8393 struct sched_domain *sd;
8394
8395 sd = &per_cpu(phys_domains, j).sd;
8396 if (j != group_first_cpu(sd->groups)) {
8397 /*
8398 * Only add "power" once for each
8399 * physical package.
8400 */
8401 continue;
8402 }
8403
8404 sg->cpu_power += sd->groups->cpu_power;
8405 }
8406 sg = sg->next;
8407 } while (sg != group_head);
8408 }
8409
8410 static int build_numa_sched_groups(struct s_data *d,
8411 const struct cpumask *cpu_map, int num)
8412 {
8413 struct sched_domain *sd;
8414 struct sched_group *sg, *prev;
8415 int n, j;
8416
8417 cpumask_clear(d->covered);
8418 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8419 if (cpumask_empty(d->nodemask)) {
8420 d->sched_group_nodes[num] = NULL;
8421 goto out;
8422 }
8423
8424 sched_domain_node_span(num, d->domainspan);
8425 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8426
8427 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8428 GFP_KERNEL, num);
8429 if (!sg) {
8430 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8431 num);
8432 return -ENOMEM;
8433 }
8434 d->sched_group_nodes[num] = sg;
8435
8436 for_each_cpu(j, d->nodemask) {
8437 sd = &per_cpu(node_domains, j).sd;
8438 sd->groups = sg;
8439 }
8440
8441 sg->cpu_power = 0;
8442 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8443 sg->next = sg;
8444 cpumask_or(d->covered, d->covered, d->nodemask);
8445
8446 prev = sg;
8447 for (j = 0; j < nr_node_ids; j++) {
8448 n = (num + j) % nr_node_ids;
8449 cpumask_complement(d->notcovered, d->covered);
8450 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8451 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8452 if (cpumask_empty(d->tmpmask))
8453 break;
8454 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8455 if (cpumask_empty(d->tmpmask))
8456 continue;
8457 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8458 GFP_KERNEL, num);
8459 if (!sg) {
8460 printk(KERN_WARNING
8461 "Can not alloc domain group for node %d\n", j);
8462 return -ENOMEM;
8463 }
8464 sg->cpu_power = 0;
8465 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8466 sg->next = prev->next;
8467 cpumask_or(d->covered, d->covered, d->tmpmask);
8468 prev->next = sg;
8469 prev = sg;
8470 }
8471 out:
8472 return 0;
8473 }
8474 #endif /* CONFIG_NUMA */
8475
8476 #ifdef CONFIG_NUMA
8477 /* Free memory allocated for various sched_group structures */
8478 static void free_sched_groups(const struct cpumask *cpu_map,
8479 struct cpumask *nodemask)
8480 {
8481 int cpu, i;
8482
8483 for_each_cpu(cpu, cpu_map) {
8484 struct sched_group **sched_group_nodes
8485 = sched_group_nodes_bycpu[cpu];
8486
8487 if (!sched_group_nodes)
8488 continue;
8489
8490 for (i = 0; i < nr_node_ids; i++) {
8491 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8492
8493 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8494 if (cpumask_empty(nodemask))
8495 continue;
8496
8497 if (sg == NULL)
8498 continue;
8499 sg = sg->next;
8500 next_sg:
8501 oldsg = sg;
8502 sg = sg->next;
8503 kfree(oldsg);
8504 if (oldsg != sched_group_nodes[i])
8505 goto next_sg;
8506 }
8507 kfree(sched_group_nodes);
8508 sched_group_nodes_bycpu[cpu] = NULL;
8509 }
8510 }
8511 #else /* !CONFIG_NUMA */
8512 static void free_sched_groups(const struct cpumask *cpu_map,
8513 struct cpumask *nodemask)
8514 {
8515 }
8516 #endif /* CONFIG_NUMA */
8517
8518 /*
8519 * Initialize sched groups cpu_power.
8520 *
8521 * cpu_power indicates the capacity of sched group, which is used while
8522 * distributing the load between different sched groups in a sched domain.
8523 * Typically cpu_power for all the groups in a sched domain will be same unless
8524 * there are asymmetries in the topology. If there are asymmetries, group
8525 * having more cpu_power will pickup more load compared to the group having
8526 * less cpu_power.
8527 */
8528 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8529 {
8530 struct sched_domain *child;
8531 struct sched_group *group;
8532 long power;
8533 int weight;
8534
8535 WARN_ON(!sd || !sd->groups);
8536
8537 if (cpu != group_first_cpu(sd->groups))
8538 return;
8539
8540 child = sd->child;
8541
8542 sd->groups->cpu_power = 0;
8543
8544 if (!child) {
8545 power = SCHED_LOAD_SCALE;
8546 weight = cpumask_weight(sched_domain_span(sd));
8547 /*
8548 * SMT siblings share the power of a single core.
8549 * Usually multiple threads get a better yield out of
8550 * that one core than a single thread would have,
8551 * reflect that in sd->smt_gain.
8552 */
8553 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8554 power *= sd->smt_gain;
8555 power /= weight;
8556 power >>= SCHED_LOAD_SHIFT;
8557 }
8558 sd->groups->cpu_power += power;
8559 return;
8560 }
8561
8562 /*
8563 * Add cpu_power of each child group to this groups cpu_power.
8564 */
8565 group = child->groups;
8566 do {
8567 sd->groups->cpu_power += group->cpu_power;
8568 group = group->next;
8569 } while (group != child->groups);
8570 }
8571
8572 /*
8573 * Initializers for schedule domains
8574 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8575 */
8576
8577 #ifdef CONFIG_SCHED_DEBUG
8578 # define SD_INIT_NAME(sd, type) sd->name = #type
8579 #else
8580 # define SD_INIT_NAME(sd, type) do { } while (0)
8581 #endif
8582
8583 #define SD_INIT(sd, type) sd_init_##type(sd)
8584
8585 #define SD_INIT_FUNC(type) \
8586 static noinline void sd_init_##type(struct sched_domain *sd) \
8587 { \
8588 memset(sd, 0, sizeof(*sd)); \
8589 *sd = SD_##type##_INIT; \
8590 sd->level = SD_LV_##type; \
8591 SD_INIT_NAME(sd, type); \
8592 }
8593
8594 SD_INIT_FUNC(CPU)
8595 #ifdef CONFIG_NUMA
8596 SD_INIT_FUNC(ALLNODES)
8597 SD_INIT_FUNC(NODE)
8598 #endif
8599 #ifdef CONFIG_SCHED_SMT
8600 SD_INIT_FUNC(SIBLING)
8601 #endif
8602 #ifdef CONFIG_SCHED_MC
8603 SD_INIT_FUNC(MC)
8604 #endif
8605
8606 static int default_relax_domain_level = -1;
8607
8608 static int __init setup_relax_domain_level(char *str)
8609 {
8610 unsigned long val;
8611
8612 val = simple_strtoul(str, NULL, 0);
8613 if (val < SD_LV_MAX)
8614 default_relax_domain_level = val;
8615
8616 return 1;
8617 }
8618 __setup("relax_domain_level=", setup_relax_domain_level);
8619
8620 static void set_domain_attribute(struct sched_domain *sd,
8621 struct sched_domain_attr *attr)
8622 {
8623 int request;
8624
8625 if (!attr || attr->relax_domain_level < 0) {
8626 if (default_relax_domain_level < 0)
8627 return;
8628 else
8629 request = default_relax_domain_level;
8630 } else
8631 request = attr->relax_domain_level;
8632 if (request < sd->level) {
8633 /* turn off idle balance on this domain */
8634 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8635 } else {
8636 /* turn on idle balance on this domain */
8637 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8638 }
8639 }
8640
8641 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8642 const struct cpumask *cpu_map)
8643 {
8644 switch (what) {
8645 case sa_sched_groups:
8646 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8647 d->sched_group_nodes = NULL;
8648 case sa_rootdomain:
8649 free_rootdomain(d->rd); /* fall through */
8650 case sa_tmpmask:
8651 free_cpumask_var(d->tmpmask); /* fall through */
8652 case sa_send_covered:
8653 free_cpumask_var(d->send_covered); /* fall through */
8654 case sa_this_core_map:
8655 free_cpumask_var(d->this_core_map); /* fall through */
8656 case sa_this_sibling_map:
8657 free_cpumask_var(d->this_sibling_map); /* fall through */
8658 case sa_nodemask:
8659 free_cpumask_var(d->nodemask); /* fall through */
8660 case sa_sched_group_nodes:
8661 #ifdef CONFIG_NUMA
8662 kfree(d->sched_group_nodes); /* fall through */
8663 case sa_notcovered:
8664 free_cpumask_var(d->notcovered); /* fall through */
8665 case sa_covered:
8666 free_cpumask_var(d->covered); /* fall through */
8667 case sa_domainspan:
8668 free_cpumask_var(d->domainspan); /* fall through */
8669 #endif
8670 case sa_none:
8671 break;
8672 }
8673 }
8674
8675 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8676 const struct cpumask *cpu_map)
8677 {
8678 #ifdef CONFIG_NUMA
8679 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8680 return sa_none;
8681 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8682 return sa_domainspan;
8683 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8684 return sa_covered;
8685 /* Allocate the per-node list of sched groups */
8686 d->sched_group_nodes = kcalloc(nr_node_ids,
8687 sizeof(struct sched_group *), GFP_KERNEL);
8688 if (!d->sched_group_nodes) {
8689 printk(KERN_WARNING "Can not alloc sched group node list\n");
8690 return sa_notcovered;
8691 }
8692 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8693 #endif
8694 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8695 return sa_sched_group_nodes;
8696 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8697 return sa_nodemask;
8698 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8699 return sa_this_sibling_map;
8700 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8701 return sa_this_core_map;
8702 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8703 return sa_send_covered;
8704 d->rd = alloc_rootdomain();
8705 if (!d->rd) {
8706 printk(KERN_WARNING "Cannot alloc root domain\n");
8707 return sa_tmpmask;
8708 }
8709 return sa_rootdomain;
8710 }
8711
8712 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8713 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8714 {
8715 struct sched_domain *sd = NULL;
8716 #ifdef CONFIG_NUMA
8717 struct sched_domain *parent;
8718
8719 d->sd_allnodes = 0;
8720 if (cpumask_weight(cpu_map) >
8721 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8722 sd = &per_cpu(allnodes_domains, i).sd;
8723 SD_INIT(sd, ALLNODES);
8724 set_domain_attribute(sd, attr);
8725 cpumask_copy(sched_domain_span(sd), cpu_map);
8726 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8727 d->sd_allnodes = 1;
8728 }
8729 parent = sd;
8730
8731 sd = &per_cpu(node_domains, i).sd;
8732 SD_INIT(sd, NODE);
8733 set_domain_attribute(sd, attr);
8734 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8735 sd->parent = parent;
8736 if (parent)
8737 parent->child = sd;
8738 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8739 #endif
8740 return sd;
8741 }
8742
8743 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8744 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8745 struct sched_domain *parent, int i)
8746 {
8747 struct sched_domain *sd;
8748 sd = &per_cpu(phys_domains, i).sd;
8749 SD_INIT(sd, CPU);
8750 set_domain_attribute(sd, attr);
8751 cpumask_copy(sched_domain_span(sd), d->nodemask);
8752 sd->parent = parent;
8753 if (parent)
8754 parent->child = sd;
8755 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8756 return sd;
8757 }
8758
8759 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8760 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8761 struct sched_domain *parent, int i)
8762 {
8763 struct sched_domain *sd = parent;
8764 #ifdef CONFIG_SCHED_MC
8765 sd = &per_cpu(core_domains, i).sd;
8766 SD_INIT(sd, MC);
8767 set_domain_attribute(sd, attr);
8768 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8769 sd->parent = parent;
8770 parent->child = sd;
8771 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8772 #endif
8773 return sd;
8774 }
8775
8776 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8777 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8778 struct sched_domain *parent, int i)
8779 {
8780 struct sched_domain *sd = parent;
8781 #ifdef CONFIG_SCHED_SMT
8782 sd = &per_cpu(cpu_domains, i).sd;
8783 SD_INIT(sd, SIBLING);
8784 set_domain_attribute(sd, attr);
8785 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8786 sd->parent = parent;
8787 parent->child = sd;
8788 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8789 #endif
8790 return sd;
8791 }
8792
8793 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8794 const struct cpumask *cpu_map, int cpu)
8795 {
8796 switch (l) {
8797 #ifdef CONFIG_SCHED_SMT
8798 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8799 cpumask_and(d->this_sibling_map, cpu_map,
8800 topology_thread_cpumask(cpu));
8801 if (cpu == cpumask_first(d->this_sibling_map))
8802 init_sched_build_groups(d->this_sibling_map, cpu_map,
8803 &cpu_to_cpu_group,
8804 d->send_covered, d->tmpmask);
8805 break;
8806 #endif
8807 #ifdef CONFIG_SCHED_MC
8808 case SD_LV_MC: /* set up multi-core groups */
8809 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8810 if (cpu == cpumask_first(d->this_core_map))
8811 init_sched_build_groups(d->this_core_map, cpu_map,
8812 &cpu_to_core_group,
8813 d->send_covered, d->tmpmask);
8814 break;
8815 #endif
8816 case SD_LV_CPU: /* set up physical groups */
8817 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8818 if (!cpumask_empty(d->nodemask))
8819 init_sched_build_groups(d->nodemask, cpu_map,
8820 &cpu_to_phys_group,
8821 d->send_covered, d->tmpmask);
8822 break;
8823 #ifdef CONFIG_NUMA
8824 case SD_LV_ALLNODES:
8825 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8826 d->send_covered, d->tmpmask);
8827 break;
8828 #endif
8829 default:
8830 break;
8831 }
8832 }
8833
8834 /*
8835 * Build sched domains for a given set of cpus and attach the sched domains
8836 * to the individual cpus
8837 */
8838 static int __build_sched_domains(const struct cpumask *cpu_map,
8839 struct sched_domain_attr *attr)
8840 {
8841 enum s_alloc alloc_state = sa_none;
8842 struct s_data d;
8843 struct sched_domain *sd;
8844 int i;
8845 #ifdef CONFIG_NUMA
8846 d.sd_allnodes = 0;
8847 #endif
8848
8849 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8850 if (alloc_state != sa_rootdomain)
8851 goto error;
8852 alloc_state = sa_sched_groups;
8853
8854 /*
8855 * Set up domains for cpus specified by the cpu_map.
8856 */
8857 for_each_cpu(i, cpu_map) {
8858 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8859 cpu_map);
8860
8861 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8862 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8863 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8864 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8865 }
8866
8867 for_each_cpu(i, cpu_map) {
8868 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8869 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8870 }
8871
8872 /* Set up physical groups */
8873 for (i = 0; i < nr_node_ids; i++)
8874 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8875
8876 #ifdef CONFIG_NUMA
8877 /* Set up node groups */
8878 if (d.sd_allnodes)
8879 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8880
8881 for (i = 0; i < nr_node_ids; i++)
8882 if (build_numa_sched_groups(&d, cpu_map, i))
8883 goto error;
8884 #endif
8885
8886 /* Calculate CPU power for physical packages and nodes */
8887 #ifdef CONFIG_SCHED_SMT
8888 for_each_cpu(i, cpu_map) {
8889 sd = &per_cpu(cpu_domains, i).sd;
8890 init_sched_groups_power(i, sd);
8891 }
8892 #endif
8893 #ifdef CONFIG_SCHED_MC
8894 for_each_cpu(i, cpu_map) {
8895 sd = &per_cpu(core_domains, i).sd;
8896 init_sched_groups_power(i, sd);
8897 }
8898 #endif
8899
8900 for_each_cpu(i, cpu_map) {
8901 sd = &per_cpu(phys_domains, i).sd;
8902 init_sched_groups_power(i, sd);
8903 }
8904
8905 #ifdef CONFIG_NUMA
8906 for (i = 0; i < nr_node_ids; i++)
8907 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8908
8909 if (d.sd_allnodes) {
8910 struct sched_group *sg;
8911
8912 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8913 d.tmpmask);
8914 init_numa_sched_groups_power(sg);
8915 }
8916 #endif
8917
8918 /* Attach the domains */
8919 for_each_cpu(i, cpu_map) {
8920 #ifdef CONFIG_SCHED_SMT
8921 sd = &per_cpu(cpu_domains, i).sd;
8922 #elif defined(CONFIG_SCHED_MC)
8923 sd = &per_cpu(core_domains, i).sd;
8924 #else
8925 sd = &per_cpu(phys_domains, i).sd;
8926 #endif
8927 cpu_attach_domain(sd, d.rd, i);
8928 }
8929
8930 d.sched_group_nodes = NULL; /* don't free this we still need it */
8931 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8932 return 0;
8933
8934 error:
8935 __free_domain_allocs(&d, alloc_state, cpu_map);
8936 return -ENOMEM;
8937 }
8938
8939 static int build_sched_domains(const struct cpumask *cpu_map)
8940 {
8941 return __build_sched_domains(cpu_map, NULL);
8942 }
8943
8944 static cpumask_var_t *doms_cur; /* current sched domains */
8945 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8946 static struct sched_domain_attr *dattr_cur;
8947 /* attribues of custom domains in 'doms_cur' */
8948
8949 /*
8950 * Special case: If a kmalloc of a doms_cur partition (array of
8951 * cpumask) fails, then fallback to a single sched domain,
8952 * as determined by the single cpumask fallback_doms.
8953 */
8954 static cpumask_var_t fallback_doms;
8955
8956 /*
8957 * arch_update_cpu_topology lets virtualized architectures update the
8958 * cpu core maps. It is supposed to return 1 if the topology changed
8959 * or 0 if it stayed the same.
8960 */
8961 int __attribute__((weak)) arch_update_cpu_topology(void)
8962 {
8963 return 0;
8964 }
8965
8966 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8967 {
8968 int i;
8969 cpumask_var_t *doms;
8970
8971 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8972 if (!doms)
8973 return NULL;
8974 for (i = 0; i < ndoms; i++) {
8975 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8976 free_sched_domains(doms, i);
8977 return NULL;
8978 }
8979 }
8980 return doms;
8981 }
8982
8983 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8984 {
8985 unsigned int i;
8986 for (i = 0; i < ndoms; i++)
8987 free_cpumask_var(doms[i]);
8988 kfree(doms);
8989 }
8990
8991 /*
8992 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8993 * For now this just excludes isolated cpus, but could be used to
8994 * exclude other special cases in the future.
8995 */
8996 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8997 {
8998 int err;
8999
9000 arch_update_cpu_topology();
9001 ndoms_cur = 1;
9002 doms_cur = alloc_sched_domains(ndoms_cur);
9003 if (!doms_cur)
9004 doms_cur = &fallback_doms;
9005 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
9006 dattr_cur = NULL;
9007 err = build_sched_domains(doms_cur[0]);
9008 register_sched_domain_sysctl();
9009
9010 return err;
9011 }
9012
9013 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9014 struct cpumask *tmpmask)
9015 {
9016 free_sched_groups(cpu_map, tmpmask);
9017 }
9018
9019 /*
9020 * Detach sched domains from a group of cpus specified in cpu_map
9021 * These cpus will now be attached to the NULL domain
9022 */
9023 static void detach_destroy_domains(const struct cpumask *cpu_map)
9024 {
9025 /* Save because hotplug lock held. */
9026 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9027 int i;
9028
9029 for_each_cpu(i, cpu_map)
9030 cpu_attach_domain(NULL, &def_root_domain, i);
9031 synchronize_sched();
9032 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9033 }
9034
9035 /* handle null as "default" */
9036 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9037 struct sched_domain_attr *new, int idx_new)
9038 {
9039 struct sched_domain_attr tmp;
9040
9041 /* fast path */
9042 if (!new && !cur)
9043 return 1;
9044
9045 tmp = SD_ATTR_INIT;
9046 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9047 new ? (new + idx_new) : &tmp,
9048 sizeof(struct sched_domain_attr));
9049 }
9050
9051 /*
9052 * Partition sched domains as specified by the 'ndoms_new'
9053 * cpumasks in the array doms_new[] of cpumasks. This compares
9054 * doms_new[] to the current sched domain partitioning, doms_cur[].
9055 * It destroys each deleted domain and builds each new domain.
9056 *
9057 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
9058 * The masks don't intersect (don't overlap.) We should setup one
9059 * sched domain for each mask. CPUs not in any of the cpumasks will
9060 * not be load balanced. If the same cpumask appears both in the
9061 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9062 * it as it is.
9063 *
9064 * The passed in 'doms_new' should be allocated using
9065 * alloc_sched_domains. This routine takes ownership of it and will
9066 * free_sched_domains it when done with it. If the caller failed the
9067 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9068 * and partition_sched_domains() will fallback to the single partition
9069 * 'fallback_doms', it also forces the domains to be rebuilt.
9070 *
9071 * If doms_new == NULL it will be replaced with cpu_online_mask.
9072 * ndoms_new == 0 is a special case for destroying existing domains,
9073 * and it will not create the default domain.
9074 *
9075 * Call with hotplug lock held
9076 */
9077 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9078 struct sched_domain_attr *dattr_new)
9079 {
9080 int i, j, n;
9081 int new_topology;
9082
9083 mutex_lock(&sched_domains_mutex);
9084
9085 /* always unregister in case we don't destroy any domains */
9086 unregister_sched_domain_sysctl();
9087
9088 /* Let architecture update cpu core mappings. */
9089 new_topology = arch_update_cpu_topology();
9090
9091 n = doms_new ? ndoms_new : 0;
9092
9093 /* Destroy deleted domains */
9094 for (i = 0; i < ndoms_cur; i++) {
9095 for (j = 0; j < n && !new_topology; j++) {
9096 if (cpumask_equal(doms_cur[i], doms_new[j])
9097 && dattrs_equal(dattr_cur, i, dattr_new, j))
9098 goto match1;
9099 }
9100 /* no match - a current sched domain not in new doms_new[] */
9101 detach_destroy_domains(doms_cur[i]);
9102 match1:
9103 ;
9104 }
9105
9106 if (doms_new == NULL) {
9107 ndoms_cur = 0;
9108 doms_new = &fallback_doms;
9109 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9110 WARN_ON_ONCE(dattr_new);
9111 }
9112
9113 /* Build new domains */
9114 for (i = 0; i < ndoms_new; i++) {
9115 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9116 if (cpumask_equal(doms_new[i], doms_cur[j])
9117 && dattrs_equal(dattr_new, i, dattr_cur, j))
9118 goto match2;
9119 }
9120 /* no match - add a new doms_new */
9121 __build_sched_domains(doms_new[i],
9122 dattr_new ? dattr_new + i : NULL);
9123 match2:
9124 ;
9125 }
9126
9127 /* Remember the new sched domains */
9128 if (doms_cur != &fallback_doms)
9129 free_sched_domains(doms_cur, ndoms_cur);
9130 kfree(dattr_cur); /* kfree(NULL) is safe */
9131 doms_cur = doms_new;
9132 dattr_cur = dattr_new;
9133 ndoms_cur = ndoms_new;
9134
9135 register_sched_domain_sysctl();
9136
9137 mutex_unlock(&sched_domains_mutex);
9138 }
9139
9140 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9141 static void arch_reinit_sched_domains(void)
9142 {
9143 get_online_cpus();
9144
9145 /* Destroy domains first to force the rebuild */
9146 partition_sched_domains(0, NULL, NULL);
9147
9148 rebuild_sched_domains();
9149 put_online_cpus();
9150 }
9151
9152 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9153 {
9154 unsigned int level = 0;
9155
9156 if (sscanf(buf, "%u", &level) != 1)
9157 return -EINVAL;
9158
9159 /*
9160 * level is always be positive so don't check for
9161 * level < POWERSAVINGS_BALANCE_NONE which is 0
9162 * What happens on 0 or 1 byte write,
9163 * need to check for count as well?
9164 */
9165
9166 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9167 return -EINVAL;
9168
9169 if (smt)
9170 sched_smt_power_savings = level;
9171 else
9172 sched_mc_power_savings = level;
9173
9174 arch_reinit_sched_domains();
9175
9176 return count;
9177 }
9178
9179 #ifdef CONFIG_SCHED_MC
9180 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9181 char *page)
9182 {
9183 return sprintf(page, "%u\n", sched_mc_power_savings);
9184 }
9185 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9186 const char *buf, size_t count)
9187 {
9188 return sched_power_savings_store(buf, count, 0);
9189 }
9190 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9191 sched_mc_power_savings_show,
9192 sched_mc_power_savings_store);
9193 #endif
9194
9195 #ifdef CONFIG_SCHED_SMT
9196 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9197 char *page)
9198 {
9199 return sprintf(page, "%u\n", sched_smt_power_savings);
9200 }
9201 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9202 const char *buf, size_t count)
9203 {
9204 return sched_power_savings_store(buf, count, 1);
9205 }
9206 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9207 sched_smt_power_savings_show,
9208 sched_smt_power_savings_store);
9209 #endif
9210
9211 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9212 {
9213 int err = 0;
9214
9215 #ifdef CONFIG_SCHED_SMT
9216 if (smt_capable())
9217 err = sysfs_create_file(&cls->kset.kobj,
9218 &attr_sched_smt_power_savings.attr);
9219 #endif
9220 #ifdef CONFIG_SCHED_MC
9221 if (!err && mc_capable())
9222 err = sysfs_create_file(&cls->kset.kobj,
9223 &attr_sched_mc_power_savings.attr);
9224 #endif
9225 return err;
9226 }
9227 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9228
9229 #ifndef CONFIG_CPUSETS
9230 /*
9231 * Add online and remove offline CPUs from the scheduler domains.
9232 * When cpusets are enabled they take over this function.
9233 */
9234 static int update_sched_domains(struct notifier_block *nfb,
9235 unsigned long action, void *hcpu)
9236 {
9237 switch (action) {
9238 case CPU_ONLINE:
9239 case CPU_ONLINE_FROZEN:
9240 case CPU_DOWN_PREPARE:
9241 case CPU_DOWN_PREPARE_FROZEN:
9242 case CPU_DOWN_FAILED:
9243 case CPU_DOWN_FAILED_FROZEN:
9244 partition_sched_domains(1, NULL, NULL);
9245 return NOTIFY_OK;
9246
9247 default:
9248 return NOTIFY_DONE;
9249 }
9250 }
9251 #endif
9252
9253 static int update_runtime(struct notifier_block *nfb,
9254 unsigned long action, void *hcpu)
9255 {
9256 int cpu = (int)(long)hcpu;
9257
9258 switch (action) {
9259 case CPU_DOWN_PREPARE:
9260 case CPU_DOWN_PREPARE_FROZEN:
9261 disable_runtime(cpu_rq(cpu));
9262 return NOTIFY_OK;
9263
9264 case CPU_DOWN_FAILED:
9265 case CPU_DOWN_FAILED_FROZEN:
9266 case CPU_ONLINE:
9267 case CPU_ONLINE_FROZEN:
9268 enable_runtime(cpu_rq(cpu));
9269 return NOTIFY_OK;
9270
9271 default:
9272 return NOTIFY_DONE;
9273 }
9274 }
9275
9276 void __init sched_init_smp(void)
9277 {
9278 cpumask_var_t non_isolated_cpus;
9279
9280 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9281 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9282
9283 #if defined(CONFIG_NUMA)
9284 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9285 GFP_KERNEL);
9286 BUG_ON(sched_group_nodes_bycpu == NULL);
9287 #endif
9288 get_online_cpus();
9289 mutex_lock(&sched_domains_mutex);
9290 arch_init_sched_domains(cpu_active_mask);
9291 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9292 if (cpumask_empty(non_isolated_cpus))
9293 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9294 mutex_unlock(&sched_domains_mutex);
9295 put_online_cpus();
9296
9297 #ifndef CONFIG_CPUSETS
9298 /* XXX: Theoretical race here - CPU may be hotplugged now */
9299 hotcpu_notifier(update_sched_domains, 0);
9300 #endif
9301
9302 /* RT runtime code needs to handle some hotplug events */
9303 hotcpu_notifier(update_runtime, 0);
9304
9305 init_hrtick();
9306
9307 /* Move init over to a non-isolated CPU */
9308 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9309 BUG();
9310 sched_init_granularity();
9311 free_cpumask_var(non_isolated_cpus);
9312
9313 init_sched_rt_class();
9314 }
9315 #else
9316 void __init sched_init_smp(void)
9317 {
9318 sched_init_granularity();
9319 }
9320 #endif /* CONFIG_SMP */
9321
9322 const_debug unsigned int sysctl_timer_migration = 1;
9323
9324 int in_sched_functions(unsigned long addr)
9325 {
9326 return in_lock_functions(addr) ||
9327 (addr >= (unsigned long)__sched_text_start
9328 && addr < (unsigned long)__sched_text_end);
9329 }
9330
9331 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9332 {
9333 cfs_rq->tasks_timeline = RB_ROOT;
9334 INIT_LIST_HEAD(&cfs_rq->tasks);
9335 #ifdef CONFIG_FAIR_GROUP_SCHED
9336 cfs_rq->rq = rq;
9337 #endif
9338 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9339 }
9340
9341 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9342 {
9343 struct rt_prio_array *array;
9344 int i;
9345
9346 array = &rt_rq->active;
9347 for (i = 0; i < MAX_RT_PRIO; i++) {
9348 INIT_LIST_HEAD(array->queue + i);
9349 __clear_bit(i, array->bitmap);
9350 }
9351 /* delimiter for bitsearch: */
9352 __set_bit(MAX_RT_PRIO, array->bitmap);
9353
9354 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9355 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9356 #ifdef CONFIG_SMP
9357 rt_rq->highest_prio.next = MAX_RT_PRIO;
9358 #endif
9359 #endif
9360 #ifdef CONFIG_SMP
9361 rt_rq->rt_nr_migratory = 0;
9362 rt_rq->overloaded = 0;
9363 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
9364 #endif
9365
9366 rt_rq->rt_time = 0;
9367 rt_rq->rt_throttled = 0;
9368 rt_rq->rt_runtime = 0;
9369 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
9370
9371 #ifdef CONFIG_RT_GROUP_SCHED
9372 rt_rq->rt_nr_boosted = 0;
9373 rt_rq->rq = rq;
9374 #endif
9375 }
9376
9377 #ifdef CONFIG_FAIR_GROUP_SCHED
9378 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9379 struct sched_entity *se, int cpu, int add,
9380 struct sched_entity *parent)
9381 {
9382 struct rq *rq = cpu_rq(cpu);
9383 tg->cfs_rq[cpu] = cfs_rq;
9384 init_cfs_rq(cfs_rq, rq);
9385 cfs_rq->tg = tg;
9386 if (add)
9387 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9388
9389 tg->se[cpu] = se;
9390 /* se could be NULL for init_task_group */
9391 if (!se)
9392 return;
9393
9394 if (!parent)
9395 se->cfs_rq = &rq->cfs;
9396 else
9397 se->cfs_rq = parent->my_q;
9398
9399 se->my_q = cfs_rq;
9400 se->load.weight = tg->shares;
9401 se->load.inv_weight = 0;
9402 se->parent = parent;
9403 }
9404 #endif
9405
9406 #ifdef CONFIG_RT_GROUP_SCHED
9407 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9408 struct sched_rt_entity *rt_se, int cpu, int add,
9409 struct sched_rt_entity *parent)
9410 {
9411 struct rq *rq = cpu_rq(cpu);
9412
9413 tg->rt_rq[cpu] = rt_rq;
9414 init_rt_rq(rt_rq, rq);
9415 rt_rq->tg = tg;
9416 rt_rq->rt_se = rt_se;
9417 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9418 if (add)
9419 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9420
9421 tg->rt_se[cpu] = rt_se;
9422 if (!rt_se)
9423 return;
9424
9425 if (!parent)
9426 rt_se->rt_rq = &rq->rt;
9427 else
9428 rt_se->rt_rq = parent->my_q;
9429
9430 rt_se->my_q = rt_rq;
9431 rt_se->parent = parent;
9432 INIT_LIST_HEAD(&rt_se->run_list);
9433 }
9434 #endif
9435
9436 void __init sched_init(void)
9437 {
9438 int i, j;
9439 unsigned long alloc_size = 0, ptr;
9440
9441 #ifdef CONFIG_FAIR_GROUP_SCHED
9442 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9443 #endif
9444 #ifdef CONFIG_RT_GROUP_SCHED
9445 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9446 #endif
9447 #ifdef CONFIG_USER_SCHED
9448 alloc_size *= 2;
9449 #endif
9450 #ifdef CONFIG_CPUMASK_OFFSTACK
9451 alloc_size += num_possible_cpus() * cpumask_size();
9452 #endif
9453 if (alloc_size) {
9454 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9455
9456 #ifdef CONFIG_FAIR_GROUP_SCHED
9457 init_task_group.se = (struct sched_entity **)ptr;
9458 ptr += nr_cpu_ids * sizeof(void **);
9459
9460 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9461 ptr += nr_cpu_ids * sizeof(void **);
9462
9463 #ifdef CONFIG_USER_SCHED
9464 root_task_group.se = (struct sched_entity **)ptr;
9465 ptr += nr_cpu_ids * sizeof(void **);
9466
9467 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9468 ptr += nr_cpu_ids * sizeof(void **);
9469 #endif /* CONFIG_USER_SCHED */
9470 #endif /* CONFIG_FAIR_GROUP_SCHED */
9471 #ifdef CONFIG_RT_GROUP_SCHED
9472 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9473 ptr += nr_cpu_ids * sizeof(void **);
9474
9475 init_task_group.rt_rq = (struct rt_rq **)ptr;
9476 ptr += nr_cpu_ids * sizeof(void **);
9477
9478 #ifdef CONFIG_USER_SCHED
9479 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9480 ptr += nr_cpu_ids * sizeof(void **);
9481
9482 root_task_group.rt_rq = (struct rt_rq **)ptr;
9483 ptr += nr_cpu_ids * sizeof(void **);
9484 #endif /* CONFIG_USER_SCHED */
9485 #endif /* CONFIG_RT_GROUP_SCHED */
9486 #ifdef CONFIG_CPUMASK_OFFSTACK
9487 for_each_possible_cpu(i) {
9488 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9489 ptr += cpumask_size();
9490 }
9491 #endif /* CONFIG_CPUMASK_OFFSTACK */
9492 }
9493
9494 #ifdef CONFIG_SMP
9495 init_defrootdomain();
9496 #endif
9497
9498 init_rt_bandwidth(&def_rt_bandwidth,
9499 global_rt_period(), global_rt_runtime());
9500
9501 #ifdef CONFIG_RT_GROUP_SCHED
9502 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9503 global_rt_period(), global_rt_runtime());
9504 #ifdef CONFIG_USER_SCHED
9505 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9506 global_rt_period(), RUNTIME_INF);
9507 #endif /* CONFIG_USER_SCHED */
9508 #endif /* CONFIG_RT_GROUP_SCHED */
9509
9510 #ifdef CONFIG_GROUP_SCHED
9511 list_add(&init_task_group.list, &task_groups);
9512 INIT_LIST_HEAD(&init_task_group.children);
9513
9514 #ifdef CONFIG_USER_SCHED
9515 INIT_LIST_HEAD(&root_task_group.children);
9516 init_task_group.parent = &root_task_group;
9517 list_add(&init_task_group.siblings, &root_task_group.children);
9518 #endif /* CONFIG_USER_SCHED */
9519 #endif /* CONFIG_GROUP_SCHED */
9520
9521 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9522 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9523 __alignof__(unsigned long));
9524 #endif
9525 for_each_possible_cpu(i) {
9526 struct rq *rq;
9527
9528 rq = cpu_rq(i);
9529 raw_spin_lock_init(&rq->lock);
9530 rq->nr_running = 0;
9531 rq->calc_load_active = 0;
9532 rq->calc_load_update = jiffies + LOAD_FREQ;
9533 init_cfs_rq(&rq->cfs, rq);
9534 init_rt_rq(&rq->rt, rq);
9535 #ifdef CONFIG_FAIR_GROUP_SCHED
9536 init_task_group.shares = init_task_group_load;
9537 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9538 #ifdef CONFIG_CGROUP_SCHED
9539 /*
9540 * How much cpu bandwidth does init_task_group get?
9541 *
9542 * In case of task-groups formed thr' the cgroup filesystem, it
9543 * gets 100% of the cpu resources in the system. This overall
9544 * system cpu resource is divided among the tasks of
9545 * init_task_group and its child task-groups in a fair manner,
9546 * based on each entity's (task or task-group's) weight
9547 * (se->load.weight).
9548 *
9549 * In other words, if init_task_group has 10 tasks of weight
9550 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9551 * then A0's share of the cpu resource is:
9552 *
9553 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9554 *
9555 * We achieve this by letting init_task_group's tasks sit
9556 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9557 */
9558 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9559 #elif defined CONFIG_USER_SCHED
9560 root_task_group.shares = NICE_0_LOAD;
9561 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9562 /*
9563 * In case of task-groups formed thr' the user id of tasks,
9564 * init_task_group represents tasks belonging to root user.
9565 * Hence it forms a sibling of all subsequent groups formed.
9566 * In this case, init_task_group gets only a fraction of overall
9567 * system cpu resource, based on the weight assigned to root
9568 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9569 * by letting tasks of init_task_group sit in a separate cfs_rq
9570 * (init_tg_cfs_rq) and having one entity represent this group of
9571 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9572 */
9573 init_tg_cfs_entry(&init_task_group,
9574 &per_cpu(init_tg_cfs_rq, i),
9575 &per_cpu(init_sched_entity, i), i, 1,
9576 root_task_group.se[i]);
9577
9578 #endif
9579 #endif /* CONFIG_FAIR_GROUP_SCHED */
9580
9581 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9582 #ifdef CONFIG_RT_GROUP_SCHED
9583 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9584 #ifdef CONFIG_CGROUP_SCHED
9585 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9586 #elif defined CONFIG_USER_SCHED
9587 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9588 init_tg_rt_entry(&init_task_group,
9589 &per_cpu(init_rt_rq_var, i),
9590 &per_cpu(init_sched_rt_entity, i), i, 1,
9591 root_task_group.rt_se[i]);
9592 #endif
9593 #endif
9594
9595 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9596 rq->cpu_load[j] = 0;
9597 #ifdef CONFIG_SMP
9598 rq->sd = NULL;
9599 rq->rd = NULL;
9600 rq->post_schedule = 0;
9601 rq->active_balance = 0;
9602 rq->next_balance = jiffies;
9603 rq->push_cpu = 0;
9604 rq->cpu = i;
9605 rq->online = 0;
9606 rq->migration_thread = NULL;
9607 rq->idle_stamp = 0;
9608 rq->avg_idle = 2*sysctl_sched_migration_cost;
9609 INIT_LIST_HEAD(&rq->migration_queue);
9610 rq_attach_root(rq, &def_root_domain);
9611 #endif
9612 init_rq_hrtick(rq);
9613 atomic_set(&rq->nr_iowait, 0);
9614 }
9615
9616 set_load_weight(&init_task);
9617
9618 #ifdef CONFIG_PREEMPT_NOTIFIERS
9619 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9620 #endif
9621
9622 #ifdef CONFIG_SMP
9623 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9624 #endif
9625
9626 #ifdef CONFIG_RT_MUTEXES
9627 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
9628 #endif
9629
9630 /*
9631 * The boot idle thread does lazy MMU switching as well:
9632 */
9633 atomic_inc(&init_mm.mm_count);
9634 enter_lazy_tlb(&init_mm, current);
9635
9636 /*
9637 * Make us the idle thread. Technically, schedule() should not be
9638 * called from this thread, however somewhere below it might be,
9639 * but because we are the idle thread, we just pick up running again
9640 * when this runqueue becomes "idle".
9641 */
9642 init_idle(current, smp_processor_id());
9643
9644 calc_load_update = jiffies + LOAD_FREQ;
9645
9646 /*
9647 * During early bootup we pretend to be a normal task:
9648 */
9649 current->sched_class = &fair_sched_class;
9650
9651 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9652 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9653 #ifdef CONFIG_SMP
9654 #ifdef CONFIG_NO_HZ
9655 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9656 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9657 #endif
9658 /* May be allocated at isolcpus cmdline parse time */
9659 if (cpu_isolated_map == NULL)
9660 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9661 #endif /* SMP */
9662
9663 perf_event_init();
9664
9665 scheduler_running = 1;
9666 }
9667
9668 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9669 static inline int preempt_count_equals(int preempt_offset)
9670 {
9671 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9672
9673 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9674 }
9675
9676 void __might_sleep(char *file, int line, int preempt_offset)
9677 {
9678 #ifdef in_atomic
9679 static unsigned long prev_jiffy; /* ratelimiting */
9680
9681 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9682 system_state != SYSTEM_RUNNING || oops_in_progress)
9683 return;
9684 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9685 return;
9686 prev_jiffy = jiffies;
9687
9688 printk(KERN_ERR
9689 "BUG: sleeping function called from invalid context at %s:%d\n",
9690 file, line);
9691 printk(KERN_ERR
9692 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9693 in_atomic(), irqs_disabled(),
9694 current->pid, current->comm);
9695
9696 debug_show_held_locks(current);
9697 if (irqs_disabled())
9698 print_irqtrace_events(current);
9699 dump_stack();
9700 #endif
9701 }
9702 EXPORT_SYMBOL(__might_sleep);
9703 #endif
9704
9705 #ifdef CONFIG_MAGIC_SYSRQ
9706 static void normalize_task(struct rq *rq, struct task_struct *p)
9707 {
9708 int on_rq;
9709
9710 update_rq_clock(rq);
9711 on_rq = p->se.on_rq;
9712 if (on_rq)
9713 deactivate_task(rq, p, 0);
9714 __setscheduler(rq, p, SCHED_NORMAL, 0);
9715 if (on_rq) {
9716 activate_task(rq, p, 0);
9717 resched_task(rq->curr);
9718 }
9719 }
9720
9721 void normalize_rt_tasks(void)
9722 {
9723 struct task_struct *g, *p;
9724 unsigned long flags;
9725 struct rq *rq;
9726
9727 read_lock_irqsave(&tasklist_lock, flags);
9728 do_each_thread(g, p) {
9729 /*
9730 * Only normalize user tasks:
9731 */
9732 if (!p->mm)
9733 continue;
9734
9735 p->se.exec_start = 0;
9736 #ifdef CONFIG_SCHEDSTATS
9737 p->se.wait_start = 0;
9738 p->se.sleep_start = 0;
9739 p->se.block_start = 0;
9740 #endif
9741
9742 if (!rt_task(p)) {
9743 /*
9744 * Renice negative nice level userspace
9745 * tasks back to 0:
9746 */
9747 if (TASK_NICE(p) < 0 && p->mm)
9748 set_user_nice(p, 0);
9749 continue;
9750 }
9751
9752 raw_spin_lock(&p->pi_lock);
9753 rq = __task_rq_lock(p);
9754
9755 normalize_task(rq, p);
9756
9757 __task_rq_unlock(rq);
9758 raw_spin_unlock(&p->pi_lock);
9759 } while_each_thread(g, p);
9760
9761 read_unlock_irqrestore(&tasklist_lock, flags);
9762 }
9763
9764 #endif /* CONFIG_MAGIC_SYSRQ */
9765
9766 #ifdef CONFIG_IA64
9767 /*
9768 * These functions are only useful for the IA64 MCA handling.
9769 *
9770 * They can only be called when the whole system has been
9771 * stopped - every CPU needs to be quiescent, and no scheduling
9772 * activity can take place. Using them for anything else would
9773 * be a serious bug, and as a result, they aren't even visible
9774 * under any other configuration.
9775 */
9776
9777 /**
9778 * curr_task - return the current task for a given cpu.
9779 * @cpu: the processor in question.
9780 *
9781 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9782 */
9783 struct task_struct *curr_task(int cpu)
9784 {
9785 return cpu_curr(cpu);
9786 }
9787
9788 /**
9789 * set_curr_task - set the current task for a given cpu.
9790 * @cpu: the processor in question.
9791 * @p: the task pointer to set.
9792 *
9793 * Description: This function must only be used when non-maskable interrupts
9794 * are serviced on a separate stack. It allows the architecture to switch the
9795 * notion of the current task on a cpu in a non-blocking manner. This function
9796 * must be called with all CPU's synchronized, and interrupts disabled, the
9797 * and caller must save the original value of the current task (see
9798 * curr_task() above) and restore that value before reenabling interrupts and
9799 * re-starting the system.
9800 *
9801 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9802 */
9803 void set_curr_task(int cpu, struct task_struct *p)
9804 {
9805 cpu_curr(cpu) = p;
9806 }
9807
9808 #endif
9809
9810 #ifdef CONFIG_FAIR_GROUP_SCHED
9811 static void free_fair_sched_group(struct task_group *tg)
9812 {
9813 int i;
9814
9815 for_each_possible_cpu(i) {
9816 if (tg->cfs_rq)
9817 kfree(tg->cfs_rq[i]);
9818 if (tg->se)
9819 kfree(tg->se[i]);
9820 }
9821
9822 kfree(tg->cfs_rq);
9823 kfree(tg->se);
9824 }
9825
9826 static
9827 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9828 {
9829 struct cfs_rq *cfs_rq;
9830 struct sched_entity *se;
9831 struct rq *rq;
9832 int i;
9833
9834 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9835 if (!tg->cfs_rq)
9836 goto err;
9837 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9838 if (!tg->se)
9839 goto err;
9840
9841 tg->shares = NICE_0_LOAD;
9842
9843 for_each_possible_cpu(i) {
9844 rq = cpu_rq(i);
9845
9846 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9847 GFP_KERNEL, cpu_to_node(i));
9848 if (!cfs_rq)
9849 goto err;
9850
9851 se = kzalloc_node(sizeof(struct sched_entity),
9852 GFP_KERNEL, cpu_to_node(i));
9853 if (!se)
9854 goto err_free_rq;
9855
9856 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9857 }
9858
9859 return 1;
9860
9861 err_free_rq:
9862 kfree(cfs_rq);
9863 err:
9864 return 0;
9865 }
9866
9867 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9868 {
9869 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9870 &cpu_rq(cpu)->leaf_cfs_rq_list);
9871 }
9872
9873 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9874 {
9875 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9876 }
9877 #else /* !CONFG_FAIR_GROUP_SCHED */
9878 static inline void free_fair_sched_group(struct task_group *tg)
9879 {
9880 }
9881
9882 static inline
9883 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9884 {
9885 return 1;
9886 }
9887
9888 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9889 {
9890 }
9891
9892 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9893 {
9894 }
9895 #endif /* CONFIG_FAIR_GROUP_SCHED */
9896
9897 #ifdef CONFIG_RT_GROUP_SCHED
9898 static void free_rt_sched_group(struct task_group *tg)
9899 {
9900 int i;
9901
9902 destroy_rt_bandwidth(&tg->rt_bandwidth);
9903
9904 for_each_possible_cpu(i) {
9905 if (tg->rt_rq)
9906 kfree(tg->rt_rq[i]);
9907 if (tg->rt_se)
9908 kfree(tg->rt_se[i]);
9909 }
9910
9911 kfree(tg->rt_rq);
9912 kfree(tg->rt_se);
9913 }
9914
9915 static
9916 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9917 {
9918 struct rt_rq *rt_rq;
9919 struct sched_rt_entity *rt_se;
9920 struct rq *rq;
9921 int i;
9922
9923 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9924 if (!tg->rt_rq)
9925 goto err;
9926 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9927 if (!tg->rt_se)
9928 goto err;
9929
9930 init_rt_bandwidth(&tg->rt_bandwidth,
9931 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9932
9933 for_each_possible_cpu(i) {
9934 rq = cpu_rq(i);
9935
9936 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9937 GFP_KERNEL, cpu_to_node(i));
9938 if (!rt_rq)
9939 goto err;
9940
9941 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9942 GFP_KERNEL, cpu_to_node(i));
9943 if (!rt_se)
9944 goto err_free_rq;
9945
9946 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9947 }
9948
9949 return 1;
9950
9951 err_free_rq:
9952 kfree(rt_rq);
9953 err:
9954 return 0;
9955 }
9956
9957 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9958 {
9959 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9960 &cpu_rq(cpu)->leaf_rt_rq_list);
9961 }
9962
9963 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9964 {
9965 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9966 }
9967 #else /* !CONFIG_RT_GROUP_SCHED */
9968 static inline void free_rt_sched_group(struct task_group *tg)
9969 {
9970 }
9971
9972 static inline
9973 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9974 {
9975 return 1;
9976 }
9977
9978 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9979 {
9980 }
9981
9982 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9983 {
9984 }
9985 #endif /* CONFIG_RT_GROUP_SCHED */
9986
9987 #ifdef CONFIG_GROUP_SCHED
9988 static void free_sched_group(struct task_group *tg)
9989 {
9990 free_fair_sched_group(tg);
9991 free_rt_sched_group(tg);
9992 kfree(tg);
9993 }
9994
9995 /* allocate runqueue etc for a new task group */
9996 struct task_group *sched_create_group(struct task_group *parent)
9997 {
9998 struct task_group *tg;
9999 unsigned long flags;
10000 int i;
10001
10002 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10003 if (!tg)
10004 return ERR_PTR(-ENOMEM);
10005
10006 if (!alloc_fair_sched_group(tg, parent))
10007 goto err;
10008
10009 if (!alloc_rt_sched_group(tg, parent))
10010 goto err;
10011
10012 spin_lock_irqsave(&task_group_lock, flags);
10013 for_each_possible_cpu(i) {
10014 register_fair_sched_group(tg, i);
10015 register_rt_sched_group(tg, i);
10016 }
10017 list_add_rcu(&tg->list, &task_groups);
10018
10019 WARN_ON(!parent); /* root should already exist */
10020
10021 tg->parent = parent;
10022 INIT_LIST_HEAD(&tg->children);
10023 list_add_rcu(&tg->siblings, &parent->children);
10024 spin_unlock_irqrestore(&task_group_lock, flags);
10025
10026 return tg;
10027
10028 err:
10029 free_sched_group(tg);
10030 return ERR_PTR(-ENOMEM);
10031 }
10032
10033 /* rcu callback to free various structures associated with a task group */
10034 static void free_sched_group_rcu(struct rcu_head *rhp)
10035 {
10036 /* now it should be safe to free those cfs_rqs */
10037 free_sched_group(container_of(rhp, struct task_group, rcu));
10038 }
10039
10040 /* Destroy runqueue etc associated with a task group */
10041 void sched_destroy_group(struct task_group *tg)
10042 {
10043 unsigned long flags;
10044 int i;
10045
10046 spin_lock_irqsave(&task_group_lock, flags);
10047 for_each_possible_cpu(i) {
10048 unregister_fair_sched_group(tg, i);
10049 unregister_rt_sched_group(tg, i);
10050 }
10051 list_del_rcu(&tg->list);
10052 list_del_rcu(&tg->siblings);
10053 spin_unlock_irqrestore(&task_group_lock, flags);
10054
10055 /* wait for possible concurrent references to cfs_rqs complete */
10056 call_rcu(&tg->rcu, free_sched_group_rcu);
10057 }
10058
10059 /* change task's runqueue when it moves between groups.
10060 * The caller of this function should have put the task in its new group
10061 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10062 * reflect its new group.
10063 */
10064 void sched_move_task(struct task_struct *tsk)
10065 {
10066 int on_rq, running;
10067 unsigned long flags;
10068 struct rq *rq;
10069
10070 rq = task_rq_lock(tsk, &flags);
10071
10072 update_rq_clock(rq);
10073
10074 running = task_current(rq, tsk);
10075 on_rq = tsk->se.on_rq;
10076
10077 if (on_rq)
10078 dequeue_task(rq, tsk, 0);
10079 if (unlikely(running))
10080 tsk->sched_class->put_prev_task(rq, tsk);
10081
10082 set_task_rq(tsk, task_cpu(tsk));
10083
10084 #ifdef CONFIG_FAIR_GROUP_SCHED
10085 if (tsk->sched_class->moved_group)
10086 tsk->sched_class->moved_group(tsk);
10087 #endif
10088
10089 if (unlikely(running))
10090 tsk->sched_class->set_curr_task(rq);
10091 if (on_rq)
10092 enqueue_task(rq, tsk, 0);
10093
10094 task_rq_unlock(rq, &flags);
10095 }
10096 #endif /* CONFIG_GROUP_SCHED */
10097
10098 #ifdef CONFIG_FAIR_GROUP_SCHED
10099 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10100 {
10101 struct cfs_rq *cfs_rq = se->cfs_rq;
10102 int on_rq;
10103
10104 on_rq = se->on_rq;
10105 if (on_rq)
10106 dequeue_entity(cfs_rq, se, 0);
10107
10108 se->load.weight = shares;
10109 se->load.inv_weight = 0;
10110
10111 if (on_rq)
10112 enqueue_entity(cfs_rq, se, 0);
10113 }
10114
10115 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10116 {
10117 struct cfs_rq *cfs_rq = se->cfs_rq;
10118 struct rq *rq = cfs_rq->rq;
10119 unsigned long flags;
10120
10121 raw_spin_lock_irqsave(&rq->lock, flags);
10122 __set_se_shares(se, shares);
10123 raw_spin_unlock_irqrestore(&rq->lock, flags);
10124 }
10125
10126 static DEFINE_MUTEX(shares_mutex);
10127
10128 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10129 {
10130 int i;
10131 unsigned long flags;
10132
10133 /*
10134 * We can't change the weight of the root cgroup.
10135 */
10136 if (!tg->se[0])
10137 return -EINVAL;
10138
10139 if (shares < MIN_SHARES)
10140 shares = MIN_SHARES;
10141 else if (shares > MAX_SHARES)
10142 shares = MAX_SHARES;
10143
10144 mutex_lock(&shares_mutex);
10145 if (tg->shares == shares)
10146 goto done;
10147
10148 spin_lock_irqsave(&task_group_lock, flags);
10149 for_each_possible_cpu(i)
10150 unregister_fair_sched_group(tg, i);
10151 list_del_rcu(&tg->siblings);
10152 spin_unlock_irqrestore(&task_group_lock, flags);
10153
10154 /* wait for any ongoing reference to this group to finish */
10155 synchronize_sched();
10156
10157 /*
10158 * Now we are free to modify the group's share on each cpu
10159 * w/o tripping rebalance_share or load_balance_fair.
10160 */
10161 tg->shares = shares;
10162 for_each_possible_cpu(i) {
10163 /*
10164 * force a rebalance
10165 */
10166 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10167 set_se_shares(tg->se[i], shares);
10168 }
10169
10170 /*
10171 * Enable load balance activity on this group, by inserting it back on
10172 * each cpu's rq->leaf_cfs_rq_list.
10173 */
10174 spin_lock_irqsave(&task_group_lock, flags);
10175 for_each_possible_cpu(i)
10176 register_fair_sched_group(tg, i);
10177 list_add_rcu(&tg->siblings, &tg->parent->children);
10178 spin_unlock_irqrestore(&task_group_lock, flags);
10179 done:
10180 mutex_unlock(&shares_mutex);
10181 return 0;
10182 }
10183
10184 unsigned long sched_group_shares(struct task_group *tg)
10185 {
10186 return tg->shares;
10187 }
10188 #endif
10189
10190 #ifdef CONFIG_RT_GROUP_SCHED
10191 /*
10192 * Ensure that the real time constraints are schedulable.
10193 */
10194 static DEFINE_MUTEX(rt_constraints_mutex);
10195
10196 static unsigned long to_ratio(u64 period, u64 runtime)
10197 {
10198 if (runtime == RUNTIME_INF)
10199 return 1ULL << 20;
10200
10201 return div64_u64(runtime << 20, period);
10202 }
10203
10204 /* Must be called with tasklist_lock held */
10205 static inline int tg_has_rt_tasks(struct task_group *tg)
10206 {
10207 struct task_struct *g, *p;
10208
10209 do_each_thread(g, p) {
10210 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10211 return 1;
10212 } while_each_thread(g, p);
10213
10214 return 0;
10215 }
10216
10217 struct rt_schedulable_data {
10218 struct task_group *tg;
10219 u64 rt_period;
10220 u64 rt_runtime;
10221 };
10222
10223 static int tg_schedulable(struct task_group *tg, void *data)
10224 {
10225 struct rt_schedulable_data *d = data;
10226 struct task_group *child;
10227 unsigned long total, sum = 0;
10228 u64 period, runtime;
10229
10230 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10231 runtime = tg->rt_bandwidth.rt_runtime;
10232
10233 if (tg == d->tg) {
10234 period = d->rt_period;
10235 runtime = d->rt_runtime;
10236 }
10237
10238 #ifdef CONFIG_USER_SCHED
10239 if (tg == &root_task_group) {
10240 period = global_rt_period();
10241 runtime = global_rt_runtime();
10242 }
10243 #endif
10244
10245 /*
10246 * Cannot have more runtime than the period.
10247 */
10248 if (runtime > period && runtime != RUNTIME_INF)
10249 return -EINVAL;
10250
10251 /*
10252 * Ensure we don't starve existing RT tasks.
10253 */
10254 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10255 return -EBUSY;
10256
10257 total = to_ratio(period, runtime);
10258
10259 /*
10260 * Nobody can have more than the global setting allows.
10261 */
10262 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10263 return -EINVAL;
10264
10265 /*
10266 * The sum of our children's runtime should not exceed our own.
10267 */
10268 list_for_each_entry_rcu(child, &tg->children, siblings) {
10269 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10270 runtime = child->rt_bandwidth.rt_runtime;
10271
10272 if (child == d->tg) {
10273 period = d->rt_period;
10274 runtime = d->rt_runtime;
10275 }
10276
10277 sum += to_ratio(period, runtime);
10278 }
10279
10280 if (sum > total)
10281 return -EINVAL;
10282
10283 return 0;
10284 }
10285
10286 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10287 {
10288 struct rt_schedulable_data data = {
10289 .tg = tg,
10290 .rt_period = period,
10291 .rt_runtime = runtime,
10292 };
10293
10294 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10295 }
10296
10297 static int tg_set_bandwidth(struct task_group *tg,
10298 u64 rt_period, u64 rt_runtime)
10299 {
10300 int i, err = 0;
10301
10302 mutex_lock(&rt_constraints_mutex);
10303 read_lock(&tasklist_lock);
10304 err = __rt_schedulable(tg, rt_period, rt_runtime);
10305 if (err)
10306 goto unlock;
10307
10308 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10309 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10310 tg->rt_bandwidth.rt_runtime = rt_runtime;
10311
10312 for_each_possible_cpu(i) {
10313 struct rt_rq *rt_rq = tg->rt_rq[i];
10314
10315 raw_spin_lock(&rt_rq->rt_runtime_lock);
10316 rt_rq->rt_runtime = rt_runtime;
10317 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10318 }
10319 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10320 unlock:
10321 read_unlock(&tasklist_lock);
10322 mutex_unlock(&rt_constraints_mutex);
10323
10324 return err;
10325 }
10326
10327 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10328 {
10329 u64 rt_runtime, rt_period;
10330
10331 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10332 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10333 if (rt_runtime_us < 0)
10334 rt_runtime = RUNTIME_INF;
10335
10336 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10337 }
10338
10339 long sched_group_rt_runtime(struct task_group *tg)
10340 {
10341 u64 rt_runtime_us;
10342
10343 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10344 return -1;
10345
10346 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10347 do_div(rt_runtime_us, NSEC_PER_USEC);
10348 return rt_runtime_us;
10349 }
10350
10351 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10352 {
10353 u64 rt_runtime, rt_period;
10354
10355 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10356 rt_runtime = tg->rt_bandwidth.rt_runtime;
10357
10358 if (rt_period == 0)
10359 return -EINVAL;
10360
10361 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10362 }
10363
10364 long sched_group_rt_period(struct task_group *tg)
10365 {
10366 u64 rt_period_us;
10367
10368 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10369 do_div(rt_period_us, NSEC_PER_USEC);
10370 return rt_period_us;
10371 }
10372
10373 static int sched_rt_global_constraints(void)
10374 {
10375 u64 runtime, period;
10376 int ret = 0;
10377
10378 if (sysctl_sched_rt_period <= 0)
10379 return -EINVAL;
10380
10381 runtime = global_rt_runtime();
10382 period = global_rt_period();
10383
10384 /*
10385 * Sanity check on the sysctl variables.
10386 */
10387 if (runtime > period && runtime != RUNTIME_INF)
10388 return -EINVAL;
10389
10390 mutex_lock(&rt_constraints_mutex);
10391 read_lock(&tasklist_lock);
10392 ret = __rt_schedulable(NULL, 0, 0);
10393 read_unlock(&tasklist_lock);
10394 mutex_unlock(&rt_constraints_mutex);
10395
10396 return ret;
10397 }
10398
10399 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10400 {
10401 /* Don't accept realtime tasks when there is no way for them to run */
10402 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10403 return 0;
10404
10405 return 1;
10406 }
10407
10408 #else /* !CONFIG_RT_GROUP_SCHED */
10409 static int sched_rt_global_constraints(void)
10410 {
10411 unsigned long flags;
10412 int i;
10413
10414 if (sysctl_sched_rt_period <= 0)
10415 return -EINVAL;
10416
10417 /*
10418 * There's always some RT tasks in the root group
10419 * -- migration, kstopmachine etc..
10420 */
10421 if (sysctl_sched_rt_runtime == 0)
10422 return -EBUSY;
10423
10424 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10425 for_each_possible_cpu(i) {
10426 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10427
10428 raw_spin_lock(&rt_rq->rt_runtime_lock);
10429 rt_rq->rt_runtime = global_rt_runtime();
10430 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10431 }
10432 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10433
10434 return 0;
10435 }
10436 #endif /* CONFIG_RT_GROUP_SCHED */
10437
10438 int sched_rt_handler(struct ctl_table *table, int write,
10439 void __user *buffer, size_t *lenp,
10440 loff_t *ppos)
10441 {
10442 int ret;
10443 int old_period, old_runtime;
10444 static DEFINE_MUTEX(mutex);
10445
10446 mutex_lock(&mutex);
10447 old_period = sysctl_sched_rt_period;
10448 old_runtime = sysctl_sched_rt_runtime;
10449
10450 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10451
10452 if (!ret && write) {
10453 ret = sched_rt_global_constraints();
10454 if (ret) {
10455 sysctl_sched_rt_period = old_period;
10456 sysctl_sched_rt_runtime = old_runtime;
10457 } else {
10458 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10459 def_rt_bandwidth.rt_period =
10460 ns_to_ktime(global_rt_period());
10461 }
10462 }
10463 mutex_unlock(&mutex);
10464
10465 return ret;
10466 }
10467
10468 #ifdef CONFIG_CGROUP_SCHED
10469
10470 /* return corresponding task_group object of a cgroup */
10471 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10472 {
10473 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10474 struct task_group, css);
10475 }
10476
10477 static struct cgroup_subsys_state *
10478 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10479 {
10480 struct task_group *tg, *parent;
10481
10482 if (!cgrp->parent) {
10483 /* This is early initialization for the top cgroup */
10484 return &init_task_group.css;
10485 }
10486
10487 parent = cgroup_tg(cgrp->parent);
10488 tg = sched_create_group(parent);
10489 if (IS_ERR(tg))
10490 return ERR_PTR(-ENOMEM);
10491
10492 return &tg->css;
10493 }
10494
10495 static void
10496 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10497 {
10498 struct task_group *tg = cgroup_tg(cgrp);
10499
10500 sched_destroy_group(tg);
10501 }
10502
10503 static int
10504 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10505 {
10506 #ifdef CONFIG_RT_GROUP_SCHED
10507 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10508 return -EINVAL;
10509 #else
10510 /* We don't support RT-tasks being in separate groups */
10511 if (tsk->sched_class != &fair_sched_class)
10512 return -EINVAL;
10513 #endif
10514 return 0;
10515 }
10516
10517 static int
10518 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10519 struct task_struct *tsk, bool threadgroup)
10520 {
10521 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10522 if (retval)
10523 return retval;
10524 if (threadgroup) {
10525 struct task_struct *c;
10526 rcu_read_lock();
10527 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10528 retval = cpu_cgroup_can_attach_task(cgrp, c);
10529 if (retval) {
10530 rcu_read_unlock();
10531 return retval;
10532 }
10533 }
10534 rcu_read_unlock();
10535 }
10536 return 0;
10537 }
10538
10539 static void
10540 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10541 struct cgroup *old_cont, struct task_struct *tsk,
10542 bool threadgroup)
10543 {
10544 sched_move_task(tsk);
10545 if (threadgroup) {
10546 struct task_struct *c;
10547 rcu_read_lock();
10548 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10549 sched_move_task(c);
10550 }
10551 rcu_read_unlock();
10552 }
10553 }
10554
10555 #ifdef CONFIG_FAIR_GROUP_SCHED
10556 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10557 u64 shareval)
10558 {
10559 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10560 }
10561
10562 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10563 {
10564 struct task_group *tg = cgroup_tg(cgrp);
10565
10566 return (u64) tg->shares;
10567 }
10568 #endif /* CONFIG_FAIR_GROUP_SCHED */
10569
10570 #ifdef CONFIG_RT_GROUP_SCHED
10571 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10572 s64 val)
10573 {
10574 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10575 }
10576
10577 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10578 {
10579 return sched_group_rt_runtime(cgroup_tg(cgrp));
10580 }
10581
10582 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10583 u64 rt_period_us)
10584 {
10585 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10586 }
10587
10588 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10589 {
10590 return sched_group_rt_period(cgroup_tg(cgrp));
10591 }
10592 #endif /* CONFIG_RT_GROUP_SCHED */
10593
10594 static struct cftype cpu_files[] = {
10595 #ifdef CONFIG_FAIR_GROUP_SCHED
10596 {
10597 .name = "shares",
10598 .read_u64 = cpu_shares_read_u64,
10599 .write_u64 = cpu_shares_write_u64,
10600 },
10601 #endif
10602 #ifdef CONFIG_RT_GROUP_SCHED
10603 {
10604 .name = "rt_runtime_us",
10605 .read_s64 = cpu_rt_runtime_read,
10606 .write_s64 = cpu_rt_runtime_write,
10607 },
10608 {
10609 .name = "rt_period_us",
10610 .read_u64 = cpu_rt_period_read_uint,
10611 .write_u64 = cpu_rt_period_write_uint,
10612 },
10613 #endif
10614 };
10615
10616 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10617 {
10618 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10619 }
10620
10621 struct cgroup_subsys cpu_cgroup_subsys = {
10622 .name = "cpu",
10623 .create = cpu_cgroup_create,
10624 .destroy = cpu_cgroup_destroy,
10625 .can_attach = cpu_cgroup_can_attach,
10626 .attach = cpu_cgroup_attach,
10627 .populate = cpu_cgroup_populate,
10628 .subsys_id = cpu_cgroup_subsys_id,
10629 .early_init = 1,
10630 };
10631
10632 #endif /* CONFIG_CGROUP_SCHED */
10633
10634 #ifdef CONFIG_CGROUP_CPUACCT
10635
10636 /*
10637 * CPU accounting code for task groups.
10638 *
10639 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10640 * (balbir@in.ibm.com).
10641 */
10642
10643 /* track cpu usage of a group of tasks and its child groups */
10644 struct cpuacct {
10645 struct cgroup_subsys_state css;
10646 /* cpuusage holds pointer to a u64-type object on every cpu */
10647 u64 *cpuusage;
10648 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10649 struct cpuacct *parent;
10650 };
10651
10652 struct cgroup_subsys cpuacct_subsys;
10653
10654 /* return cpu accounting group corresponding to this container */
10655 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10656 {
10657 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10658 struct cpuacct, css);
10659 }
10660
10661 /* return cpu accounting group to which this task belongs */
10662 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10663 {
10664 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10665 struct cpuacct, css);
10666 }
10667
10668 /* create a new cpu accounting group */
10669 static struct cgroup_subsys_state *cpuacct_create(
10670 struct cgroup_subsys *ss, struct cgroup *cgrp)
10671 {
10672 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10673 int i;
10674
10675 if (!ca)
10676 goto out;
10677
10678 ca->cpuusage = alloc_percpu(u64);
10679 if (!ca->cpuusage)
10680 goto out_free_ca;
10681
10682 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10683 if (percpu_counter_init(&ca->cpustat[i], 0))
10684 goto out_free_counters;
10685
10686 if (cgrp->parent)
10687 ca->parent = cgroup_ca(cgrp->parent);
10688
10689 return &ca->css;
10690
10691 out_free_counters:
10692 while (--i >= 0)
10693 percpu_counter_destroy(&ca->cpustat[i]);
10694 free_percpu(ca->cpuusage);
10695 out_free_ca:
10696 kfree(ca);
10697 out:
10698 return ERR_PTR(-ENOMEM);
10699 }
10700
10701 /* destroy an existing cpu accounting group */
10702 static void
10703 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10704 {
10705 struct cpuacct *ca = cgroup_ca(cgrp);
10706 int i;
10707
10708 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10709 percpu_counter_destroy(&ca->cpustat[i]);
10710 free_percpu(ca->cpuusage);
10711 kfree(ca);
10712 }
10713
10714 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10715 {
10716 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10717 u64 data;
10718
10719 #ifndef CONFIG_64BIT
10720 /*
10721 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10722 */
10723 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10724 data = *cpuusage;
10725 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10726 #else
10727 data = *cpuusage;
10728 #endif
10729
10730 return data;
10731 }
10732
10733 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10734 {
10735 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10736
10737 #ifndef CONFIG_64BIT
10738 /*
10739 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10740 */
10741 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10742 *cpuusage = val;
10743 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10744 #else
10745 *cpuusage = val;
10746 #endif
10747 }
10748
10749 /* return total cpu usage (in nanoseconds) of a group */
10750 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10751 {
10752 struct cpuacct *ca = cgroup_ca(cgrp);
10753 u64 totalcpuusage = 0;
10754 int i;
10755
10756 for_each_present_cpu(i)
10757 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10758
10759 return totalcpuusage;
10760 }
10761
10762 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10763 u64 reset)
10764 {
10765 struct cpuacct *ca = cgroup_ca(cgrp);
10766 int err = 0;
10767 int i;
10768
10769 if (reset) {
10770 err = -EINVAL;
10771 goto out;
10772 }
10773
10774 for_each_present_cpu(i)
10775 cpuacct_cpuusage_write(ca, i, 0);
10776
10777 out:
10778 return err;
10779 }
10780
10781 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10782 struct seq_file *m)
10783 {
10784 struct cpuacct *ca = cgroup_ca(cgroup);
10785 u64 percpu;
10786 int i;
10787
10788 for_each_present_cpu(i) {
10789 percpu = cpuacct_cpuusage_read(ca, i);
10790 seq_printf(m, "%llu ", (unsigned long long) percpu);
10791 }
10792 seq_printf(m, "\n");
10793 return 0;
10794 }
10795
10796 static const char *cpuacct_stat_desc[] = {
10797 [CPUACCT_STAT_USER] = "user",
10798 [CPUACCT_STAT_SYSTEM] = "system",
10799 };
10800
10801 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10802 struct cgroup_map_cb *cb)
10803 {
10804 struct cpuacct *ca = cgroup_ca(cgrp);
10805 int i;
10806
10807 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10808 s64 val = percpu_counter_read(&ca->cpustat[i]);
10809 val = cputime64_to_clock_t(val);
10810 cb->fill(cb, cpuacct_stat_desc[i], val);
10811 }
10812 return 0;
10813 }
10814
10815 static struct cftype files[] = {
10816 {
10817 .name = "usage",
10818 .read_u64 = cpuusage_read,
10819 .write_u64 = cpuusage_write,
10820 },
10821 {
10822 .name = "usage_percpu",
10823 .read_seq_string = cpuacct_percpu_seq_read,
10824 },
10825 {
10826 .name = "stat",
10827 .read_map = cpuacct_stats_show,
10828 },
10829 };
10830
10831 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10832 {
10833 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10834 }
10835
10836 /*
10837 * charge this task's execution time to its accounting group.
10838 *
10839 * called with rq->lock held.
10840 */
10841 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10842 {
10843 struct cpuacct *ca;
10844 int cpu;
10845
10846 if (unlikely(!cpuacct_subsys.active))
10847 return;
10848
10849 cpu = task_cpu(tsk);
10850
10851 rcu_read_lock();
10852
10853 ca = task_ca(tsk);
10854
10855 for (; ca; ca = ca->parent) {
10856 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10857 *cpuusage += cputime;
10858 }
10859
10860 rcu_read_unlock();
10861 }
10862
10863 /*
10864 * Charge the system/user time to the task's accounting group.
10865 */
10866 static void cpuacct_update_stats(struct task_struct *tsk,
10867 enum cpuacct_stat_index idx, cputime_t val)
10868 {
10869 struct cpuacct *ca;
10870
10871 if (unlikely(!cpuacct_subsys.active))
10872 return;
10873
10874 rcu_read_lock();
10875 ca = task_ca(tsk);
10876
10877 do {
10878 percpu_counter_add(&ca->cpustat[idx], val);
10879 ca = ca->parent;
10880 } while (ca);
10881 rcu_read_unlock();
10882 }
10883
10884 struct cgroup_subsys cpuacct_subsys = {
10885 .name = "cpuacct",
10886 .create = cpuacct_create,
10887 .destroy = cpuacct_destroy,
10888 .populate = cpuacct_populate,
10889 .subsys_id = cpuacct_subsys_id,
10890 };
10891 #endif /* CONFIG_CGROUP_CPUACCT */
10892
10893 #ifndef CONFIG_SMP
10894
10895 int rcu_expedited_torture_stats(char *page)
10896 {
10897 return 0;
10898 }
10899 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10900
10901 void synchronize_sched_expedited(void)
10902 {
10903 }
10904 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10905
10906 #else /* #ifndef CONFIG_SMP */
10907
10908 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10909 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10910
10911 #define RCU_EXPEDITED_STATE_POST -2
10912 #define RCU_EXPEDITED_STATE_IDLE -1
10913
10914 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10915
10916 int rcu_expedited_torture_stats(char *page)
10917 {
10918 int cnt = 0;
10919 int cpu;
10920
10921 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10922 for_each_online_cpu(cpu) {
10923 cnt += sprintf(&page[cnt], " %d:%d",
10924 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10925 }
10926 cnt += sprintf(&page[cnt], "\n");
10927 return cnt;
10928 }
10929 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10930
10931 static long synchronize_sched_expedited_count;
10932
10933 /*
10934 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10935 * approach to force grace period to end quickly. This consumes
10936 * significant time on all CPUs, and is thus not recommended for
10937 * any sort of common-case code.
10938 *
10939 * Note that it is illegal to call this function while holding any
10940 * lock that is acquired by a CPU-hotplug notifier. Failing to
10941 * observe this restriction will result in deadlock.
10942 */
10943 void synchronize_sched_expedited(void)
10944 {
10945 int cpu;
10946 unsigned long flags;
10947 bool need_full_sync = 0;
10948 struct rq *rq;
10949 struct migration_req *req;
10950 long snap;
10951 int trycount = 0;
10952
10953 smp_mb(); /* ensure prior mod happens before capturing snap. */
10954 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10955 get_online_cpus();
10956 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10957 put_online_cpus();
10958 if (trycount++ < 10)
10959 udelay(trycount * num_online_cpus());
10960 else {
10961 synchronize_sched();
10962 return;
10963 }
10964 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10965 smp_mb(); /* ensure test happens before caller kfree */
10966 return;
10967 }
10968 get_online_cpus();
10969 }
10970 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10971 for_each_online_cpu(cpu) {
10972 rq = cpu_rq(cpu);
10973 req = &per_cpu(rcu_migration_req, cpu);
10974 init_completion(&req->done);
10975 req->task = NULL;
10976 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10977 raw_spin_lock_irqsave(&rq->lock, flags);
10978 list_add(&req->list, &rq->migration_queue);
10979 raw_spin_unlock_irqrestore(&rq->lock, flags);
10980 wake_up_process(rq->migration_thread);
10981 }
10982 for_each_online_cpu(cpu) {
10983 rcu_expedited_state = cpu;
10984 req = &per_cpu(rcu_migration_req, cpu);
10985 rq = cpu_rq(cpu);
10986 wait_for_completion(&req->done);
10987 raw_spin_lock_irqsave(&rq->lock, flags);
10988 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10989 need_full_sync = 1;
10990 req->dest_cpu = RCU_MIGRATION_IDLE;
10991 raw_spin_unlock_irqrestore(&rq->lock, flags);
10992 }
10993 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10994 synchronize_sched_expedited_count++;
10995 mutex_unlock(&rcu_sched_expedited_mutex);
10996 put_online_cpus();
10997 if (need_full_sync)
10998 synchronize_sched();
10999 }
11000 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11001
11002 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.252336 seconds and 6 git commands to generate.