Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzi...
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
83
84 /*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93 /*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102 /*
103 * Helpers for converting nanosecond timing to jiffy resolution
104 */
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
110 /*
111 * These are the 'tuning knobs' of the scheduler:
112 *
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
115 */
116 #define DEF_TIMESLICE (100 * HZ / 1000)
117
118 /*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121 #define RUNTIME_INF ((u64)~0ULL)
122
123 static inline int rt_policy(int policy)
124 {
125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 return 1;
127 return 0;
128 }
129
130 static inline int task_has_rt_policy(struct task_struct *p)
131 {
132 return rt_policy(p->policy);
133 }
134
135 /*
136 * This is the priority-queue data structure of the RT scheduling class:
137 */
138 struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
141 };
142
143 struct rt_bandwidth {
144 /* nests inside the rq lock: */
145 raw_spinlock_t rt_runtime_lock;
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
149 };
150
151 static struct rt_bandwidth def_rt_bandwidth;
152
153 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154
155 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 {
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
162
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166
167 if (!overrun)
168 break;
169
170 idle = do_sched_rt_period_timer(rt_b, overrun);
171 }
172
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
174 }
175
176 static
177 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 {
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
181
182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
183
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
187 }
188
189 static inline int rt_bandwidth_enabled(void)
190 {
191 return sysctl_sched_rt_runtime >= 0;
192 }
193
194 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 {
196 ktime_t now;
197
198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 return;
200
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
203
204 raw_spin_lock(&rt_b->rt_runtime_lock);
205 for (;;) {
206 unsigned long delta;
207 ktime_t soft, hard;
208
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
211
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219 HRTIMER_MODE_ABS_PINNED, 0);
220 }
221 raw_spin_unlock(&rt_b->rt_runtime_lock);
222 }
223
224 #ifdef CONFIG_RT_GROUP_SCHED
225 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 {
227 hrtimer_cancel(&rt_b->rt_period_timer);
228 }
229 #endif
230
231 /*
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
234 */
235 static DEFINE_MUTEX(sched_domains_mutex);
236
237 #ifdef CONFIG_CGROUP_SCHED
238
239 #include <linux/cgroup.h>
240
241 struct cfs_rq;
242
243 static LIST_HEAD(task_groups);
244
245 /* task group related information */
246 struct task_group {
247 struct cgroup_subsys_state css;
248
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
255 #endif
256
257 #ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
260
261 struct rt_bandwidth rt_bandwidth;
262 #endif
263
264 struct rcu_head rcu;
265 struct list_head list;
266
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
270 };
271
272 #define root_task_group init_task_group
273
274 /* task_group_lock serializes add/remove of task groups and also changes to
275 * a task group's cpu shares.
276 */
277 static DEFINE_SPINLOCK(task_group_lock);
278
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280
281 #ifdef CONFIG_SMP
282 static int root_task_group_empty(void)
283 {
284 return list_empty(&root_task_group.children);
285 }
286 #endif
287
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
289
290 /*
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
298 #define MIN_SHARES 2
299 #define MAX_SHARES (1UL << 18)
300
301 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302 #endif
303
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
306 */
307 struct task_group init_task_group;
308
309 /* return group to which a task belongs */
310 static inline struct task_group *task_group(struct task_struct *p)
311 {
312 struct task_group *tg;
313
314 #ifdef CONFIG_CGROUP_SCHED
315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
316 struct task_group, css);
317 #else
318 tg = &init_task_group;
319 #endif
320 return tg;
321 }
322
323 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
324 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
325 {
326 /*
327 * Strictly speaking this rcu_read_lock() is not needed since the
328 * task_group is tied to the cgroup, which in turn can never go away
329 * as long as there are tasks attached to it.
330 *
331 * However since task_group() uses task_subsys_state() which is an
332 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
333 */
334 rcu_read_lock();
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
337 p->se.parent = task_group(p)->se[cpu];
338 #endif
339
340 #ifdef CONFIG_RT_GROUP_SCHED
341 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
342 p->rt.parent = task_group(p)->rt_se[cpu];
343 #endif
344 rcu_read_unlock();
345 }
346
347 #else
348
349 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
350 static inline struct task_group *task_group(struct task_struct *p)
351 {
352 return NULL;
353 }
354
355 #endif /* CONFIG_CGROUP_SCHED */
356
357 /* CFS-related fields in a runqueue */
358 struct cfs_rq {
359 struct load_weight load;
360 unsigned long nr_running;
361
362 u64 exec_clock;
363 u64 min_vruntime;
364
365 struct rb_root tasks_timeline;
366 struct rb_node *rb_leftmost;
367
368 struct list_head tasks;
369 struct list_head *balance_iterator;
370
371 /*
372 * 'curr' points to currently running entity on this cfs_rq.
373 * It is set to NULL otherwise (i.e when none are currently running).
374 */
375 struct sched_entity *curr, *next, *last;
376
377 unsigned int nr_spread_over;
378
379 #ifdef CONFIG_FAIR_GROUP_SCHED
380 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
381
382 /*
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
386 *
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
389 */
390 struct list_head leaf_cfs_rq_list;
391 struct task_group *tg; /* group that "owns" this runqueue */
392
393 #ifdef CONFIG_SMP
394 /*
395 * the part of load.weight contributed by tasks
396 */
397 unsigned long task_weight;
398
399 /*
400 * h_load = weight * f(tg)
401 *
402 * Where f(tg) is the recursive weight fraction assigned to
403 * this group.
404 */
405 unsigned long h_load;
406
407 /*
408 * this cpu's part of tg->shares
409 */
410 unsigned long shares;
411
412 /*
413 * load.weight at the time we set shares
414 */
415 unsigned long rq_weight;
416 #endif
417 #endif
418 };
419
420 /* Real-Time classes' related field in a runqueue: */
421 struct rt_rq {
422 struct rt_prio_array active;
423 unsigned long rt_nr_running;
424 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
425 struct {
426 int curr; /* highest queued rt task prio */
427 #ifdef CONFIG_SMP
428 int next; /* next highest */
429 #endif
430 } highest_prio;
431 #endif
432 #ifdef CONFIG_SMP
433 unsigned long rt_nr_migratory;
434 unsigned long rt_nr_total;
435 int overloaded;
436 struct plist_head pushable_tasks;
437 #endif
438 int rt_throttled;
439 u64 rt_time;
440 u64 rt_runtime;
441 /* Nests inside the rq lock: */
442 raw_spinlock_t rt_runtime_lock;
443
444 #ifdef CONFIG_RT_GROUP_SCHED
445 unsigned long rt_nr_boosted;
446
447 struct rq *rq;
448 struct list_head leaf_rt_rq_list;
449 struct task_group *tg;
450 #endif
451 };
452
453 #ifdef CONFIG_SMP
454
455 /*
456 * We add the notion of a root-domain which will be used to define per-domain
457 * variables. Each exclusive cpuset essentially defines an island domain by
458 * fully partitioning the member cpus from any other cpuset. Whenever a new
459 * exclusive cpuset is created, we also create and attach a new root-domain
460 * object.
461 *
462 */
463 struct root_domain {
464 atomic_t refcount;
465 cpumask_var_t span;
466 cpumask_var_t online;
467
468 /*
469 * The "RT overload" flag: it gets set if a CPU has more than
470 * one runnable RT task.
471 */
472 cpumask_var_t rto_mask;
473 atomic_t rto_count;
474 #ifdef CONFIG_SMP
475 struct cpupri cpupri;
476 #endif
477 };
478
479 /*
480 * By default the system creates a single root-domain with all cpus as
481 * members (mimicking the global state we have today).
482 */
483 static struct root_domain def_root_domain;
484
485 #endif
486
487 /*
488 * This is the main, per-CPU runqueue data structure.
489 *
490 * Locking rule: those places that want to lock multiple runqueues
491 * (such as the load balancing or the thread migration code), lock
492 * acquire operations must be ordered by ascending &runqueue.
493 */
494 struct rq {
495 /* runqueue lock: */
496 raw_spinlock_t lock;
497
498 /*
499 * nr_running and cpu_load should be in the same cacheline because
500 * remote CPUs use both these fields when doing load calculation.
501 */
502 unsigned long nr_running;
503 #define CPU_LOAD_IDX_MAX 5
504 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
505 #ifdef CONFIG_NO_HZ
506 u64 nohz_stamp;
507 unsigned char in_nohz_recently;
508 #endif
509 unsigned int skip_clock_update;
510
511 /* capture load from *all* tasks on this cpu: */
512 struct load_weight load;
513 unsigned long nr_load_updates;
514 u64 nr_switches;
515
516 struct cfs_rq cfs;
517 struct rt_rq rt;
518
519 #ifdef CONFIG_FAIR_GROUP_SCHED
520 /* list of leaf cfs_rq on this cpu: */
521 struct list_head leaf_cfs_rq_list;
522 #endif
523 #ifdef CONFIG_RT_GROUP_SCHED
524 struct list_head leaf_rt_rq_list;
525 #endif
526
527 /*
528 * This is part of a global counter where only the total sum
529 * over all CPUs matters. A task can increase this counter on
530 * one CPU and if it got migrated afterwards it may decrease
531 * it on another CPU. Always updated under the runqueue lock:
532 */
533 unsigned long nr_uninterruptible;
534
535 struct task_struct *curr, *idle;
536 unsigned long next_balance;
537 struct mm_struct *prev_mm;
538
539 u64 clock;
540
541 atomic_t nr_iowait;
542
543 #ifdef CONFIG_SMP
544 struct root_domain *rd;
545 struct sched_domain *sd;
546
547 unsigned long cpu_power;
548
549 unsigned char idle_at_tick;
550 /* For active balancing */
551 int post_schedule;
552 int active_balance;
553 int push_cpu;
554 struct cpu_stop_work active_balance_work;
555 /* cpu of this runqueue: */
556 int cpu;
557 int online;
558
559 unsigned long avg_load_per_task;
560
561 u64 rt_avg;
562 u64 age_stamp;
563 u64 idle_stamp;
564 u64 avg_idle;
565 #endif
566
567 /* calc_load related fields */
568 unsigned long calc_load_update;
569 long calc_load_active;
570
571 #ifdef CONFIG_SCHED_HRTICK
572 #ifdef CONFIG_SMP
573 int hrtick_csd_pending;
574 struct call_single_data hrtick_csd;
575 #endif
576 struct hrtimer hrtick_timer;
577 #endif
578
579 #ifdef CONFIG_SCHEDSTATS
580 /* latency stats */
581 struct sched_info rq_sched_info;
582 unsigned long long rq_cpu_time;
583 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
584
585 /* sys_sched_yield() stats */
586 unsigned int yld_count;
587
588 /* schedule() stats */
589 unsigned int sched_switch;
590 unsigned int sched_count;
591 unsigned int sched_goidle;
592
593 /* try_to_wake_up() stats */
594 unsigned int ttwu_count;
595 unsigned int ttwu_local;
596
597 /* BKL stats */
598 unsigned int bkl_count;
599 #endif
600 };
601
602 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
603
604 static inline
605 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
606 {
607 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
608
609 /*
610 * A queue event has occurred, and we're going to schedule. In
611 * this case, we can save a useless back to back clock update.
612 */
613 if (test_tsk_need_resched(p))
614 rq->skip_clock_update = 1;
615 }
616
617 static inline int cpu_of(struct rq *rq)
618 {
619 #ifdef CONFIG_SMP
620 return rq->cpu;
621 #else
622 return 0;
623 #endif
624 }
625
626 #define rcu_dereference_check_sched_domain(p) \
627 rcu_dereference_check((p), \
628 rcu_read_lock_sched_held() || \
629 lockdep_is_held(&sched_domains_mutex))
630
631 /*
632 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
633 * See detach_destroy_domains: synchronize_sched for details.
634 *
635 * The domain tree of any CPU may only be accessed from within
636 * preempt-disabled sections.
637 */
638 #define for_each_domain(cpu, __sd) \
639 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
640
641 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
642 #define this_rq() (&__get_cpu_var(runqueues))
643 #define task_rq(p) cpu_rq(task_cpu(p))
644 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
645 #define raw_rq() (&__raw_get_cpu_var(runqueues))
646
647 inline void update_rq_clock(struct rq *rq)
648 {
649 if (!rq->skip_clock_update)
650 rq->clock = sched_clock_cpu(cpu_of(rq));
651 }
652
653 /*
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
655 */
656 #ifdef CONFIG_SCHED_DEBUG
657 # define const_debug __read_mostly
658 #else
659 # define const_debug static const
660 #endif
661
662 /**
663 * runqueue_is_locked
664 * @cpu: the processor in question.
665 *
666 * Returns true if the current cpu runqueue is locked.
667 * This interface allows printk to be called with the runqueue lock
668 * held and know whether or not it is OK to wake up the klogd.
669 */
670 int runqueue_is_locked(int cpu)
671 {
672 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
673 }
674
675 /*
676 * Debugging: various feature bits
677 */
678
679 #define SCHED_FEAT(name, enabled) \
680 __SCHED_FEAT_##name ,
681
682 enum {
683 #include "sched_features.h"
684 };
685
686 #undef SCHED_FEAT
687
688 #define SCHED_FEAT(name, enabled) \
689 (1UL << __SCHED_FEAT_##name) * enabled |
690
691 const_debug unsigned int sysctl_sched_features =
692 #include "sched_features.h"
693 0;
694
695 #undef SCHED_FEAT
696
697 #ifdef CONFIG_SCHED_DEBUG
698 #define SCHED_FEAT(name, enabled) \
699 #name ,
700
701 static __read_mostly char *sched_feat_names[] = {
702 #include "sched_features.h"
703 NULL
704 };
705
706 #undef SCHED_FEAT
707
708 static int sched_feat_show(struct seq_file *m, void *v)
709 {
710 int i;
711
712 for (i = 0; sched_feat_names[i]; i++) {
713 if (!(sysctl_sched_features & (1UL << i)))
714 seq_puts(m, "NO_");
715 seq_printf(m, "%s ", sched_feat_names[i]);
716 }
717 seq_puts(m, "\n");
718
719 return 0;
720 }
721
722 static ssize_t
723 sched_feat_write(struct file *filp, const char __user *ubuf,
724 size_t cnt, loff_t *ppos)
725 {
726 char buf[64];
727 char *cmp = buf;
728 int neg = 0;
729 int i;
730
731 if (cnt > 63)
732 cnt = 63;
733
734 if (copy_from_user(&buf, ubuf, cnt))
735 return -EFAULT;
736
737 buf[cnt] = 0;
738
739 if (strncmp(buf, "NO_", 3) == 0) {
740 neg = 1;
741 cmp += 3;
742 }
743
744 for (i = 0; sched_feat_names[i]; i++) {
745 int len = strlen(sched_feat_names[i]);
746
747 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
748 if (neg)
749 sysctl_sched_features &= ~(1UL << i);
750 else
751 sysctl_sched_features |= (1UL << i);
752 break;
753 }
754 }
755
756 if (!sched_feat_names[i])
757 return -EINVAL;
758
759 *ppos += cnt;
760
761 return cnt;
762 }
763
764 static int sched_feat_open(struct inode *inode, struct file *filp)
765 {
766 return single_open(filp, sched_feat_show, NULL);
767 }
768
769 static const struct file_operations sched_feat_fops = {
770 .open = sched_feat_open,
771 .write = sched_feat_write,
772 .read = seq_read,
773 .llseek = seq_lseek,
774 .release = single_release,
775 };
776
777 static __init int sched_init_debug(void)
778 {
779 debugfs_create_file("sched_features", 0644, NULL, NULL,
780 &sched_feat_fops);
781
782 return 0;
783 }
784 late_initcall(sched_init_debug);
785
786 #endif
787
788 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
789
790 /*
791 * Number of tasks to iterate in a single balance run.
792 * Limited because this is done with IRQs disabled.
793 */
794 const_debug unsigned int sysctl_sched_nr_migrate = 32;
795
796 /*
797 * ratelimit for updating the group shares.
798 * default: 0.25ms
799 */
800 unsigned int sysctl_sched_shares_ratelimit = 250000;
801 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
802
803 /*
804 * Inject some fuzzyness into changing the per-cpu group shares
805 * this avoids remote rq-locks at the expense of fairness.
806 * default: 4
807 */
808 unsigned int sysctl_sched_shares_thresh = 4;
809
810 /*
811 * period over which we average the RT time consumption, measured
812 * in ms.
813 *
814 * default: 1s
815 */
816 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
817
818 /*
819 * period over which we measure -rt task cpu usage in us.
820 * default: 1s
821 */
822 unsigned int sysctl_sched_rt_period = 1000000;
823
824 static __read_mostly int scheduler_running;
825
826 /*
827 * part of the period that we allow rt tasks to run in us.
828 * default: 0.95s
829 */
830 int sysctl_sched_rt_runtime = 950000;
831
832 static inline u64 global_rt_period(void)
833 {
834 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
835 }
836
837 static inline u64 global_rt_runtime(void)
838 {
839 if (sysctl_sched_rt_runtime < 0)
840 return RUNTIME_INF;
841
842 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
843 }
844
845 #ifndef prepare_arch_switch
846 # define prepare_arch_switch(next) do { } while (0)
847 #endif
848 #ifndef finish_arch_switch
849 # define finish_arch_switch(prev) do { } while (0)
850 #endif
851
852 static inline int task_current(struct rq *rq, struct task_struct *p)
853 {
854 return rq->curr == p;
855 }
856
857 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
858 static inline int task_running(struct rq *rq, struct task_struct *p)
859 {
860 return task_current(rq, p);
861 }
862
863 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
864 {
865 }
866
867 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
868 {
869 #ifdef CONFIG_DEBUG_SPINLOCK
870 /* this is a valid case when another task releases the spinlock */
871 rq->lock.owner = current;
872 #endif
873 /*
874 * If we are tracking spinlock dependencies then we have to
875 * fix up the runqueue lock - which gets 'carried over' from
876 * prev into current:
877 */
878 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
879
880 raw_spin_unlock_irq(&rq->lock);
881 }
882
883 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
884 static inline int task_running(struct rq *rq, struct task_struct *p)
885 {
886 #ifdef CONFIG_SMP
887 return p->oncpu;
888 #else
889 return task_current(rq, p);
890 #endif
891 }
892
893 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
894 {
895 #ifdef CONFIG_SMP
896 /*
897 * We can optimise this out completely for !SMP, because the
898 * SMP rebalancing from interrupt is the only thing that cares
899 * here.
900 */
901 next->oncpu = 1;
902 #endif
903 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
904 raw_spin_unlock_irq(&rq->lock);
905 #else
906 raw_spin_unlock(&rq->lock);
907 #endif
908 }
909
910 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
911 {
912 #ifdef CONFIG_SMP
913 /*
914 * After ->oncpu is cleared, the task can be moved to a different CPU.
915 * We must ensure this doesn't happen until the switch is completely
916 * finished.
917 */
918 smp_wmb();
919 prev->oncpu = 0;
920 #endif
921 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
922 local_irq_enable();
923 #endif
924 }
925 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
926
927 /*
928 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
929 * against ttwu().
930 */
931 static inline int task_is_waking(struct task_struct *p)
932 {
933 return unlikely(p->state == TASK_WAKING);
934 }
935
936 /*
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
939 */
940 static inline struct rq *__task_rq_lock(struct task_struct *p)
941 __acquires(rq->lock)
942 {
943 struct rq *rq;
944
945 for (;;) {
946 rq = task_rq(p);
947 raw_spin_lock(&rq->lock);
948 if (likely(rq == task_rq(p)))
949 return rq;
950 raw_spin_unlock(&rq->lock);
951 }
952 }
953
954 /*
955 * task_rq_lock - lock the runqueue a given task resides on and disable
956 * interrupts. Note the ordering: we can safely lookup the task_rq without
957 * explicitly disabling preemption.
958 */
959 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
960 __acquires(rq->lock)
961 {
962 struct rq *rq;
963
964 for (;;) {
965 local_irq_save(*flags);
966 rq = task_rq(p);
967 raw_spin_lock(&rq->lock);
968 if (likely(rq == task_rq(p)))
969 return rq;
970 raw_spin_unlock_irqrestore(&rq->lock, *flags);
971 }
972 }
973
974 static void __task_rq_unlock(struct rq *rq)
975 __releases(rq->lock)
976 {
977 raw_spin_unlock(&rq->lock);
978 }
979
980 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
981 __releases(rq->lock)
982 {
983 raw_spin_unlock_irqrestore(&rq->lock, *flags);
984 }
985
986 /*
987 * this_rq_lock - lock this runqueue and disable interrupts.
988 */
989 static struct rq *this_rq_lock(void)
990 __acquires(rq->lock)
991 {
992 struct rq *rq;
993
994 local_irq_disable();
995 rq = this_rq();
996 raw_spin_lock(&rq->lock);
997
998 return rq;
999 }
1000
1001 #ifdef CONFIG_SCHED_HRTICK
1002 /*
1003 * Use HR-timers to deliver accurate preemption points.
1004 *
1005 * Its all a bit involved since we cannot program an hrt while holding the
1006 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1007 * reschedule event.
1008 *
1009 * When we get rescheduled we reprogram the hrtick_timer outside of the
1010 * rq->lock.
1011 */
1012
1013 /*
1014 * Use hrtick when:
1015 * - enabled by features
1016 * - hrtimer is actually high res
1017 */
1018 static inline int hrtick_enabled(struct rq *rq)
1019 {
1020 if (!sched_feat(HRTICK))
1021 return 0;
1022 if (!cpu_active(cpu_of(rq)))
1023 return 0;
1024 return hrtimer_is_hres_active(&rq->hrtick_timer);
1025 }
1026
1027 static void hrtick_clear(struct rq *rq)
1028 {
1029 if (hrtimer_active(&rq->hrtick_timer))
1030 hrtimer_cancel(&rq->hrtick_timer);
1031 }
1032
1033 /*
1034 * High-resolution timer tick.
1035 * Runs from hardirq context with interrupts disabled.
1036 */
1037 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1038 {
1039 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1040
1041 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1042
1043 raw_spin_lock(&rq->lock);
1044 update_rq_clock(rq);
1045 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1046 raw_spin_unlock(&rq->lock);
1047
1048 return HRTIMER_NORESTART;
1049 }
1050
1051 #ifdef CONFIG_SMP
1052 /*
1053 * called from hardirq (IPI) context
1054 */
1055 static void __hrtick_start(void *arg)
1056 {
1057 struct rq *rq = arg;
1058
1059 raw_spin_lock(&rq->lock);
1060 hrtimer_restart(&rq->hrtick_timer);
1061 rq->hrtick_csd_pending = 0;
1062 raw_spin_unlock(&rq->lock);
1063 }
1064
1065 /*
1066 * Called to set the hrtick timer state.
1067 *
1068 * called with rq->lock held and irqs disabled
1069 */
1070 static void hrtick_start(struct rq *rq, u64 delay)
1071 {
1072 struct hrtimer *timer = &rq->hrtick_timer;
1073 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1074
1075 hrtimer_set_expires(timer, time);
1076
1077 if (rq == this_rq()) {
1078 hrtimer_restart(timer);
1079 } else if (!rq->hrtick_csd_pending) {
1080 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1081 rq->hrtick_csd_pending = 1;
1082 }
1083 }
1084
1085 static int
1086 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1087 {
1088 int cpu = (int)(long)hcpu;
1089
1090 switch (action) {
1091 case CPU_UP_CANCELED:
1092 case CPU_UP_CANCELED_FROZEN:
1093 case CPU_DOWN_PREPARE:
1094 case CPU_DOWN_PREPARE_FROZEN:
1095 case CPU_DEAD:
1096 case CPU_DEAD_FROZEN:
1097 hrtick_clear(cpu_rq(cpu));
1098 return NOTIFY_OK;
1099 }
1100
1101 return NOTIFY_DONE;
1102 }
1103
1104 static __init void init_hrtick(void)
1105 {
1106 hotcpu_notifier(hotplug_hrtick, 0);
1107 }
1108 #else
1109 /*
1110 * Called to set the hrtick timer state.
1111 *
1112 * called with rq->lock held and irqs disabled
1113 */
1114 static void hrtick_start(struct rq *rq, u64 delay)
1115 {
1116 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1117 HRTIMER_MODE_REL_PINNED, 0);
1118 }
1119
1120 static inline void init_hrtick(void)
1121 {
1122 }
1123 #endif /* CONFIG_SMP */
1124
1125 static void init_rq_hrtick(struct rq *rq)
1126 {
1127 #ifdef CONFIG_SMP
1128 rq->hrtick_csd_pending = 0;
1129
1130 rq->hrtick_csd.flags = 0;
1131 rq->hrtick_csd.func = __hrtick_start;
1132 rq->hrtick_csd.info = rq;
1133 #endif
1134
1135 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1136 rq->hrtick_timer.function = hrtick;
1137 }
1138 #else /* CONFIG_SCHED_HRTICK */
1139 static inline void hrtick_clear(struct rq *rq)
1140 {
1141 }
1142
1143 static inline void init_rq_hrtick(struct rq *rq)
1144 {
1145 }
1146
1147 static inline void init_hrtick(void)
1148 {
1149 }
1150 #endif /* CONFIG_SCHED_HRTICK */
1151
1152 /*
1153 * resched_task - mark a task 'to be rescheduled now'.
1154 *
1155 * On UP this means the setting of the need_resched flag, on SMP it
1156 * might also involve a cross-CPU call to trigger the scheduler on
1157 * the target CPU.
1158 */
1159 #ifdef CONFIG_SMP
1160
1161 #ifndef tsk_is_polling
1162 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1163 #endif
1164
1165 static void resched_task(struct task_struct *p)
1166 {
1167 int cpu;
1168
1169 assert_raw_spin_locked(&task_rq(p)->lock);
1170
1171 if (test_tsk_need_resched(p))
1172 return;
1173
1174 set_tsk_need_resched(p);
1175
1176 cpu = task_cpu(p);
1177 if (cpu == smp_processor_id())
1178 return;
1179
1180 /* NEED_RESCHED must be visible before we test polling */
1181 smp_mb();
1182 if (!tsk_is_polling(p))
1183 smp_send_reschedule(cpu);
1184 }
1185
1186 static void resched_cpu(int cpu)
1187 {
1188 struct rq *rq = cpu_rq(cpu);
1189 unsigned long flags;
1190
1191 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1192 return;
1193 resched_task(cpu_curr(cpu));
1194 raw_spin_unlock_irqrestore(&rq->lock, flags);
1195 }
1196
1197 #ifdef CONFIG_NO_HZ
1198 /*
1199 * When add_timer_on() enqueues a timer into the timer wheel of an
1200 * idle CPU then this timer might expire before the next timer event
1201 * which is scheduled to wake up that CPU. In case of a completely
1202 * idle system the next event might even be infinite time into the
1203 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1204 * leaves the inner idle loop so the newly added timer is taken into
1205 * account when the CPU goes back to idle and evaluates the timer
1206 * wheel for the next timer event.
1207 */
1208 void wake_up_idle_cpu(int cpu)
1209 {
1210 struct rq *rq = cpu_rq(cpu);
1211
1212 if (cpu == smp_processor_id())
1213 return;
1214
1215 /*
1216 * This is safe, as this function is called with the timer
1217 * wheel base lock of (cpu) held. When the CPU is on the way
1218 * to idle and has not yet set rq->curr to idle then it will
1219 * be serialized on the timer wheel base lock and take the new
1220 * timer into account automatically.
1221 */
1222 if (rq->curr != rq->idle)
1223 return;
1224
1225 /*
1226 * We can set TIF_RESCHED on the idle task of the other CPU
1227 * lockless. The worst case is that the other CPU runs the
1228 * idle task through an additional NOOP schedule()
1229 */
1230 set_tsk_need_resched(rq->idle);
1231
1232 /* NEED_RESCHED must be visible before we test polling */
1233 smp_mb();
1234 if (!tsk_is_polling(rq->idle))
1235 smp_send_reschedule(cpu);
1236 }
1237
1238 int nohz_ratelimit(int cpu)
1239 {
1240 struct rq *rq = cpu_rq(cpu);
1241 u64 diff = rq->clock - rq->nohz_stamp;
1242
1243 rq->nohz_stamp = rq->clock;
1244
1245 return diff < (NSEC_PER_SEC / HZ) >> 1;
1246 }
1247
1248 #endif /* CONFIG_NO_HZ */
1249
1250 static u64 sched_avg_period(void)
1251 {
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253 }
1254
1255 static void sched_avg_update(struct rq *rq)
1256 {
1257 s64 period = sched_avg_period();
1258
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
1260 rq->age_stamp += period;
1261 rq->rt_avg /= 2;
1262 }
1263 }
1264
1265 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1266 {
1267 rq->rt_avg += rt_delta;
1268 sched_avg_update(rq);
1269 }
1270
1271 #else /* !CONFIG_SMP */
1272 static void resched_task(struct task_struct *p)
1273 {
1274 assert_raw_spin_locked(&task_rq(p)->lock);
1275 set_tsk_need_resched(p);
1276 }
1277
1278 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279 {
1280 }
1281 #endif /* CONFIG_SMP */
1282
1283 #if BITS_PER_LONG == 32
1284 # define WMULT_CONST (~0UL)
1285 #else
1286 # define WMULT_CONST (1UL << 32)
1287 #endif
1288
1289 #define WMULT_SHIFT 32
1290
1291 /*
1292 * Shift right and round:
1293 */
1294 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1295
1296 /*
1297 * delta *= weight / lw
1298 */
1299 static unsigned long
1300 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1301 struct load_weight *lw)
1302 {
1303 u64 tmp;
1304
1305 if (!lw->inv_weight) {
1306 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1307 lw->inv_weight = 1;
1308 else
1309 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1310 / (lw->weight+1);
1311 }
1312
1313 tmp = (u64)delta_exec * weight;
1314 /*
1315 * Check whether we'd overflow the 64-bit multiplication:
1316 */
1317 if (unlikely(tmp > WMULT_CONST))
1318 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1319 WMULT_SHIFT/2);
1320 else
1321 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1322
1323 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1324 }
1325
1326 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1327 {
1328 lw->weight += inc;
1329 lw->inv_weight = 0;
1330 }
1331
1332 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1333 {
1334 lw->weight -= dec;
1335 lw->inv_weight = 0;
1336 }
1337
1338 /*
1339 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1340 * of tasks with abnormal "nice" values across CPUs the contribution that
1341 * each task makes to its run queue's load is weighted according to its
1342 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1343 * scaled version of the new time slice allocation that they receive on time
1344 * slice expiry etc.
1345 */
1346
1347 #define WEIGHT_IDLEPRIO 3
1348 #define WMULT_IDLEPRIO 1431655765
1349
1350 /*
1351 * Nice levels are multiplicative, with a gentle 10% change for every
1352 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1353 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1354 * that remained on nice 0.
1355 *
1356 * The "10% effect" is relative and cumulative: from _any_ nice level,
1357 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1358 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1359 * If a task goes up by ~10% and another task goes down by ~10% then
1360 * the relative distance between them is ~25%.)
1361 */
1362 static const int prio_to_weight[40] = {
1363 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1364 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1365 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1366 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1367 /* 0 */ 1024, 820, 655, 526, 423,
1368 /* 5 */ 335, 272, 215, 172, 137,
1369 /* 10 */ 110, 87, 70, 56, 45,
1370 /* 15 */ 36, 29, 23, 18, 15,
1371 };
1372
1373 /*
1374 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1375 *
1376 * In cases where the weight does not change often, we can use the
1377 * precalculated inverse to speed up arithmetics by turning divisions
1378 * into multiplications:
1379 */
1380 static const u32 prio_to_wmult[40] = {
1381 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1382 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1383 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1384 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1385 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1386 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1387 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1388 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1389 };
1390
1391 /* Time spent by the tasks of the cpu accounting group executing in ... */
1392 enum cpuacct_stat_index {
1393 CPUACCT_STAT_USER, /* ... user mode */
1394 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1395
1396 CPUACCT_STAT_NSTATS,
1397 };
1398
1399 #ifdef CONFIG_CGROUP_CPUACCT
1400 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1401 static void cpuacct_update_stats(struct task_struct *tsk,
1402 enum cpuacct_stat_index idx, cputime_t val);
1403 #else
1404 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1405 static inline void cpuacct_update_stats(struct task_struct *tsk,
1406 enum cpuacct_stat_index idx, cputime_t val) {}
1407 #endif
1408
1409 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1410 {
1411 update_load_add(&rq->load, load);
1412 }
1413
1414 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1415 {
1416 update_load_sub(&rq->load, load);
1417 }
1418
1419 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1420 typedef int (*tg_visitor)(struct task_group *, void *);
1421
1422 /*
1423 * Iterate the full tree, calling @down when first entering a node and @up when
1424 * leaving it for the final time.
1425 */
1426 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1427 {
1428 struct task_group *parent, *child;
1429 int ret;
1430
1431 rcu_read_lock();
1432 parent = &root_task_group;
1433 down:
1434 ret = (*down)(parent, data);
1435 if (ret)
1436 goto out_unlock;
1437 list_for_each_entry_rcu(child, &parent->children, siblings) {
1438 parent = child;
1439 goto down;
1440
1441 up:
1442 continue;
1443 }
1444 ret = (*up)(parent, data);
1445 if (ret)
1446 goto out_unlock;
1447
1448 child = parent;
1449 parent = parent->parent;
1450 if (parent)
1451 goto up;
1452 out_unlock:
1453 rcu_read_unlock();
1454
1455 return ret;
1456 }
1457
1458 static int tg_nop(struct task_group *tg, void *data)
1459 {
1460 return 0;
1461 }
1462 #endif
1463
1464 #ifdef CONFIG_SMP
1465 /* Used instead of source_load when we know the type == 0 */
1466 static unsigned long weighted_cpuload(const int cpu)
1467 {
1468 return cpu_rq(cpu)->load.weight;
1469 }
1470
1471 /*
1472 * Return a low guess at the load of a migration-source cpu weighted
1473 * according to the scheduling class and "nice" value.
1474 *
1475 * We want to under-estimate the load of migration sources, to
1476 * balance conservatively.
1477 */
1478 static unsigned long source_load(int cpu, int type)
1479 {
1480 struct rq *rq = cpu_rq(cpu);
1481 unsigned long total = weighted_cpuload(cpu);
1482
1483 if (type == 0 || !sched_feat(LB_BIAS))
1484 return total;
1485
1486 return min(rq->cpu_load[type-1], total);
1487 }
1488
1489 /*
1490 * Return a high guess at the load of a migration-target cpu weighted
1491 * according to the scheduling class and "nice" value.
1492 */
1493 static unsigned long target_load(int cpu, int type)
1494 {
1495 struct rq *rq = cpu_rq(cpu);
1496 unsigned long total = weighted_cpuload(cpu);
1497
1498 if (type == 0 || !sched_feat(LB_BIAS))
1499 return total;
1500
1501 return max(rq->cpu_load[type-1], total);
1502 }
1503
1504 static unsigned long power_of(int cpu)
1505 {
1506 return cpu_rq(cpu)->cpu_power;
1507 }
1508
1509 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1510
1511 static unsigned long cpu_avg_load_per_task(int cpu)
1512 {
1513 struct rq *rq = cpu_rq(cpu);
1514 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1515
1516 if (nr_running)
1517 rq->avg_load_per_task = rq->load.weight / nr_running;
1518 else
1519 rq->avg_load_per_task = 0;
1520
1521 return rq->avg_load_per_task;
1522 }
1523
1524 #ifdef CONFIG_FAIR_GROUP_SCHED
1525
1526 static __read_mostly unsigned long __percpu *update_shares_data;
1527
1528 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1529
1530 /*
1531 * Calculate and set the cpu's group shares.
1532 */
1533 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1534 unsigned long sd_shares,
1535 unsigned long sd_rq_weight,
1536 unsigned long *usd_rq_weight)
1537 {
1538 unsigned long shares, rq_weight;
1539 int boost = 0;
1540
1541 rq_weight = usd_rq_weight[cpu];
1542 if (!rq_weight) {
1543 boost = 1;
1544 rq_weight = NICE_0_LOAD;
1545 }
1546
1547 /*
1548 * \Sum_j shares_j * rq_weight_i
1549 * shares_i = -----------------------------
1550 * \Sum_j rq_weight_j
1551 */
1552 shares = (sd_shares * rq_weight) / sd_rq_weight;
1553 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1554
1555 if (abs(shares - tg->se[cpu]->load.weight) >
1556 sysctl_sched_shares_thresh) {
1557 struct rq *rq = cpu_rq(cpu);
1558 unsigned long flags;
1559
1560 raw_spin_lock_irqsave(&rq->lock, flags);
1561 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1562 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1563 __set_se_shares(tg->se[cpu], shares);
1564 raw_spin_unlock_irqrestore(&rq->lock, flags);
1565 }
1566 }
1567
1568 /*
1569 * Re-compute the task group their per cpu shares over the given domain.
1570 * This needs to be done in a bottom-up fashion because the rq weight of a
1571 * parent group depends on the shares of its child groups.
1572 */
1573 static int tg_shares_up(struct task_group *tg, void *data)
1574 {
1575 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1576 unsigned long *usd_rq_weight;
1577 struct sched_domain *sd = data;
1578 unsigned long flags;
1579 int i;
1580
1581 if (!tg->se[0])
1582 return 0;
1583
1584 local_irq_save(flags);
1585 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1586
1587 for_each_cpu(i, sched_domain_span(sd)) {
1588 weight = tg->cfs_rq[i]->load.weight;
1589 usd_rq_weight[i] = weight;
1590
1591 rq_weight += weight;
1592 /*
1593 * If there are currently no tasks on the cpu pretend there
1594 * is one of average load so that when a new task gets to
1595 * run here it will not get delayed by group starvation.
1596 */
1597 if (!weight)
1598 weight = NICE_0_LOAD;
1599
1600 sum_weight += weight;
1601 shares += tg->cfs_rq[i]->shares;
1602 }
1603
1604 if (!rq_weight)
1605 rq_weight = sum_weight;
1606
1607 if ((!shares && rq_weight) || shares > tg->shares)
1608 shares = tg->shares;
1609
1610 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1611 shares = tg->shares;
1612
1613 for_each_cpu(i, sched_domain_span(sd))
1614 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1615
1616 local_irq_restore(flags);
1617
1618 return 0;
1619 }
1620
1621 /*
1622 * Compute the cpu's hierarchical load factor for each task group.
1623 * This needs to be done in a top-down fashion because the load of a child
1624 * group is a fraction of its parents load.
1625 */
1626 static int tg_load_down(struct task_group *tg, void *data)
1627 {
1628 unsigned long load;
1629 long cpu = (long)data;
1630
1631 if (!tg->parent) {
1632 load = cpu_rq(cpu)->load.weight;
1633 } else {
1634 load = tg->parent->cfs_rq[cpu]->h_load;
1635 load *= tg->cfs_rq[cpu]->shares;
1636 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1637 }
1638
1639 tg->cfs_rq[cpu]->h_load = load;
1640
1641 return 0;
1642 }
1643
1644 static void update_shares(struct sched_domain *sd)
1645 {
1646 s64 elapsed;
1647 u64 now;
1648
1649 if (root_task_group_empty())
1650 return;
1651
1652 now = cpu_clock(raw_smp_processor_id());
1653 elapsed = now - sd->last_update;
1654
1655 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1656 sd->last_update = now;
1657 walk_tg_tree(tg_nop, tg_shares_up, sd);
1658 }
1659 }
1660
1661 static void update_h_load(long cpu)
1662 {
1663 if (root_task_group_empty())
1664 return;
1665
1666 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1667 }
1668
1669 #else
1670
1671 static inline void update_shares(struct sched_domain *sd)
1672 {
1673 }
1674
1675 #endif
1676
1677 #ifdef CONFIG_PREEMPT
1678
1679 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1680
1681 /*
1682 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1683 * way at the expense of forcing extra atomic operations in all
1684 * invocations. This assures that the double_lock is acquired using the
1685 * same underlying policy as the spinlock_t on this architecture, which
1686 * reduces latency compared to the unfair variant below. However, it
1687 * also adds more overhead and therefore may reduce throughput.
1688 */
1689 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1690 __releases(this_rq->lock)
1691 __acquires(busiest->lock)
1692 __acquires(this_rq->lock)
1693 {
1694 raw_spin_unlock(&this_rq->lock);
1695 double_rq_lock(this_rq, busiest);
1696
1697 return 1;
1698 }
1699
1700 #else
1701 /*
1702 * Unfair double_lock_balance: Optimizes throughput at the expense of
1703 * latency by eliminating extra atomic operations when the locks are
1704 * already in proper order on entry. This favors lower cpu-ids and will
1705 * grant the double lock to lower cpus over higher ids under contention,
1706 * regardless of entry order into the function.
1707 */
1708 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1709 __releases(this_rq->lock)
1710 __acquires(busiest->lock)
1711 __acquires(this_rq->lock)
1712 {
1713 int ret = 0;
1714
1715 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1716 if (busiest < this_rq) {
1717 raw_spin_unlock(&this_rq->lock);
1718 raw_spin_lock(&busiest->lock);
1719 raw_spin_lock_nested(&this_rq->lock,
1720 SINGLE_DEPTH_NESTING);
1721 ret = 1;
1722 } else
1723 raw_spin_lock_nested(&busiest->lock,
1724 SINGLE_DEPTH_NESTING);
1725 }
1726 return ret;
1727 }
1728
1729 #endif /* CONFIG_PREEMPT */
1730
1731 /*
1732 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1733 */
1734 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1735 {
1736 if (unlikely(!irqs_disabled())) {
1737 /* printk() doesn't work good under rq->lock */
1738 raw_spin_unlock(&this_rq->lock);
1739 BUG_ON(1);
1740 }
1741
1742 return _double_lock_balance(this_rq, busiest);
1743 }
1744
1745 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1746 __releases(busiest->lock)
1747 {
1748 raw_spin_unlock(&busiest->lock);
1749 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1750 }
1751
1752 /*
1753 * double_rq_lock - safely lock two runqueues
1754 *
1755 * Note this does not disable interrupts like task_rq_lock,
1756 * you need to do so manually before calling.
1757 */
1758 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1759 __acquires(rq1->lock)
1760 __acquires(rq2->lock)
1761 {
1762 BUG_ON(!irqs_disabled());
1763 if (rq1 == rq2) {
1764 raw_spin_lock(&rq1->lock);
1765 __acquire(rq2->lock); /* Fake it out ;) */
1766 } else {
1767 if (rq1 < rq2) {
1768 raw_spin_lock(&rq1->lock);
1769 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1770 } else {
1771 raw_spin_lock(&rq2->lock);
1772 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1773 }
1774 }
1775 }
1776
1777 /*
1778 * double_rq_unlock - safely unlock two runqueues
1779 *
1780 * Note this does not restore interrupts like task_rq_unlock,
1781 * you need to do so manually after calling.
1782 */
1783 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1784 __releases(rq1->lock)
1785 __releases(rq2->lock)
1786 {
1787 raw_spin_unlock(&rq1->lock);
1788 if (rq1 != rq2)
1789 raw_spin_unlock(&rq2->lock);
1790 else
1791 __release(rq2->lock);
1792 }
1793
1794 #endif
1795
1796 #ifdef CONFIG_FAIR_GROUP_SCHED
1797 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1798 {
1799 #ifdef CONFIG_SMP
1800 cfs_rq->shares = shares;
1801 #endif
1802 }
1803 #endif
1804
1805 static void calc_load_account_idle(struct rq *this_rq);
1806 static void update_sysctl(void);
1807 static int get_update_sysctl_factor(void);
1808
1809 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1810 {
1811 set_task_rq(p, cpu);
1812 #ifdef CONFIG_SMP
1813 /*
1814 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1815 * successfuly executed on another CPU. We must ensure that updates of
1816 * per-task data have been completed by this moment.
1817 */
1818 smp_wmb();
1819 task_thread_info(p)->cpu = cpu;
1820 #endif
1821 }
1822
1823 static const struct sched_class rt_sched_class;
1824
1825 #define sched_class_highest (&rt_sched_class)
1826 #define for_each_class(class) \
1827 for (class = sched_class_highest; class; class = class->next)
1828
1829 #include "sched_stats.h"
1830
1831 static void inc_nr_running(struct rq *rq)
1832 {
1833 rq->nr_running++;
1834 }
1835
1836 static void dec_nr_running(struct rq *rq)
1837 {
1838 rq->nr_running--;
1839 }
1840
1841 static void set_load_weight(struct task_struct *p)
1842 {
1843 if (task_has_rt_policy(p)) {
1844 p->se.load.weight = 0;
1845 p->se.load.inv_weight = WMULT_CONST;
1846 return;
1847 }
1848
1849 /*
1850 * SCHED_IDLE tasks get minimal weight:
1851 */
1852 if (p->policy == SCHED_IDLE) {
1853 p->se.load.weight = WEIGHT_IDLEPRIO;
1854 p->se.load.inv_weight = WMULT_IDLEPRIO;
1855 return;
1856 }
1857
1858 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1859 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1860 }
1861
1862 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1863 {
1864 update_rq_clock(rq);
1865 sched_info_queued(p);
1866 p->sched_class->enqueue_task(rq, p, flags);
1867 p->se.on_rq = 1;
1868 }
1869
1870 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1871 {
1872 update_rq_clock(rq);
1873 sched_info_dequeued(p);
1874 p->sched_class->dequeue_task(rq, p, flags);
1875 p->se.on_rq = 0;
1876 }
1877
1878 /*
1879 * activate_task - move a task to the runqueue.
1880 */
1881 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1882 {
1883 if (task_contributes_to_load(p))
1884 rq->nr_uninterruptible--;
1885
1886 enqueue_task(rq, p, flags);
1887 inc_nr_running(rq);
1888 }
1889
1890 /*
1891 * deactivate_task - remove a task from the runqueue.
1892 */
1893 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1894 {
1895 if (task_contributes_to_load(p))
1896 rq->nr_uninterruptible++;
1897
1898 dequeue_task(rq, p, flags);
1899 dec_nr_running(rq);
1900 }
1901
1902 #include "sched_idletask.c"
1903 #include "sched_fair.c"
1904 #include "sched_rt.c"
1905 #ifdef CONFIG_SCHED_DEBUG
1906 # include "sched_debug.c"
1907 #endif
1908
1909 /*
1910 * __normal_prio - return the priority that is based on the static prio
1911 */
1912 static inline int __normal_prio(struct task_struct *p)
1913 {
1914 return p->static_prio;
1915 }
1916
1917 /*
1918 * Calculate the expected normal priority: i.e. priority
1919 * without taking RT-inheritance into account. Might be
1920 * boosted by interactivity modifiers. Changes upon fork,
1921 * setprio syscalls, and whenever the interactivity
1922 * estimator recalculates.
1923 */
1924 static inline int normal_prio(struct task_struct *p)
1925 {
1926 int prio;
1927
1928 if (task_has_rt_policy(p))
1929 prio = MAX_RT_PRIO-1 - p->rt_priority;
1930 else
1931 prio = __normal_prio(p);
1932 return prio;
1933 }
1934
1935 /*
1936 * Calculate the current priority, i.e. the priority
1937 * taken into account by the scheduler. This value might
1938 * be boosted by RT tasks, or might be boosted by
1939 * interactivity modifiers. Will be RT if the task got
1940 * RT-boosted. If not then it returns p->normal_prio.
1941 */
1942 static int effective_prio(struct task_struct *p)
1943 {
1944 p->normal_prio = normal_prio(p);
1945 /*
1946 * If we are RT tasks or we were boosted to RT priority,
1947 * keep the priority unchanged. Otherwise, update priority
1948 * to the normal priority:
1949 */
1950 if (!rt_prio(p->prio))
1951 return p->normal_prio;
1952 return p->prio;
1953 }
1954
1955 /**
1956 * task_curr - is this task currently executing on a CPU?
1957 * @p: the task in question.
1958 */
1959 inline int task_curr(const struct task_struct *p)
1960 {
1961 return cpu_curr(task_cpu(p)) == p;
1962 }
1963
1964 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1965 const struct sched_class *prev_class,
1966 int oldprio, int running)
1967 {
1968 if (prev_class != p->sched_class) {
1969 if (prev_class->switched_from)
1970 prev_class->switched_from(rq, p, running);
1971 p->sched_class->switched_to(rq, p, running);
1972 } else
1973 p->sched_class->prio_changed(rq, p, oldprio, running);
1974 }
1975
1976 #ifdef CONFIG_SMP
1977 /*
1978 * Is this task likely cache-hot:
1979 */
1980 static int
1981 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1982 {
1983 s64 delta;
1984
1985 if (p->sched_class != &fair_sched_class)
1986 return 0;
1987
1988 /*
1989 * Buddy candidates are cache hot:
1990 */
1991 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
1992 (&p->se == cfs_rq_of(&p->se)->next ||
1993 &p->se == cfs_rq_of(&p->se)->last))
1994 return 1;
1995
1996 if (sysctl_sched_migration_cost == -1)
1997 return 1;
1998 if (sysctl_sched_migration_cost == 0)
1999 return 0;
2000
2001 delta = now - p->se.exec_start;
2002
2003 return delta < (s64)sysctl_sched_migration_cost;
2004 }
2005
2006 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2007 {
2008 #ifdef CONFIG_SCHED_DEBUG
2009 /*
2010 * We should never call set_task_cpu() on a blocked task,
2011 * ttwu() will sort out the placement.
2012 */
2013 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2014 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2015 #endif
2016
2017 trace_sched_migrate_task(p, new_cpu);
2018
2019 if (task_cpu(p) != new_cpu) {
2020 p->se.nr_migrations++;
2021 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2022 }
2023
2024 __set_task_cpu(p, new_cpu);
2025 }
2026
2027 struct migration_arg {
2028 struct task_struct *task;
2029 int dest_cpu;
2030 };
2031
2032 static int migration_cpu_stop(void *data);
2033
2034 /*
2035 * The task's runqueue lock must be held.
2036 * Returns true if you have to wait for migration thread.
2037 */
2038 static bool migrate_task(struct task_struct *p, int dest_cpu)
2039 {
2040 struct rq *rq = task_rq(p);
2041
2042 /*
2043 * If the task is not on a runqueue (and not running), then
2044 * the next wake-up will properly place the task.
2045 */
2046 return p->se.on_rq || task_running(rq, p);
2047 }
2048
2049 /*
2050 * wait_task_inactive - wait for a thread to unschedule.
2051 *
2052 * If @match_state is nonzero, it's the @p->state value just checked and
2053 * not expected to change. If it changes, i.e. @p might have woken up,
2054 * then return zero. When we succeed in waiting for @p to be off its CPU,
2055 * we return a positive number (its total switch count). If a second call
2056 * a short while later returns the same number, the caller can be sure that
2057 * @p has remained unscheduled the whole time.
2058 *
2059 * The caller must ensure that the task *will* unschedule sometime soon,
2060 * else this function might spin for a *long* time. This function can't
2061 * be called with interrupts off, or it may introduce deadlock with
2062 * smp_call_function() if an IPI is sent by the same process we are
2063 * waiting to become inactive.
2064 */
2065 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2066 {
2067 unsigned long flags;
2068 int running, on_rq;
2069 unsigned long ncsw;
2070 struct rq *rq;
2071
2072 for (;;) {
2073 /*
2074 * We do the initial early heuristics without holding
2075 * any task-queue locks at all. We'll only try to get
2076 * the runqueue lock when things look like they will
2077 * work out!
2078 */
2079 rq = task_rq(p);
2080
2081 /*
2082 * If the task is actively running on another CPU
2083 * still, just relax and busy-wait without holding
2084 * any locks.
2085 *
2086 * NOTE! Since we don't hold any locks, it's not
2087 * even sure that "rq" stays as the right runqueue!
2088 * But we don't care, since "task_running()" will
2089 * return false if the runqueue has changed and p
2090 * is actually now running somewhere else!
2091 */
2092 while (task_running(rq, p)) {
2093 if (match_state && unlikely(p->state != match_state))
2094 return 0;
2095 cpu_relax();
2096 }
2097
2098 /*
2099 * Ok, time to look more closely! We need the rq
2100 * lock now, to be *sure*. If we're wrong, we'll
2101 * just go back and repeat.
2102 */
2103 rq = task_rq_lock(p, &flags);
2104 trace_sched_wait_task(p);
2105 running = task_running(rq, p);
2106 on_rq = p->se.on_rq;
2107 ncsw = 0;
2108 if (!match_state || p->state == match_state)
2109 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2110 task_rq_unlock(rq, &flags);
2111
2112 /*
2113 * If it changed from the expected state, bail out now.
2114 */
2115 if (unlikely(!ncsw))
2116 break;
2117
2118 /*
2119 * Was it really running after all now that we
2120 * checked with the proper locks actually held?
2121 *
2122 * Oops. Go back and try again..
2123 */
2124 if (unlikely(running)) {
2125 cpu_relax();
2126 continue;
2127 }
2128
2129 /*
2130 * It's not enough that it's not actively running,
2131 * it must be off the runqueue _entirely_, and not
2132 * preempted!
2133 *
2134 * So if it was still runnable (but just not actively
2135 * running right now), it's preempted, and we should
2136 * yield - it could be a while.
2137 */
2138 if (unlikely(on_rq)) {
2139 schedule_timeout_uninterruptible(1);
2140 continue;
2141 }
2142
2143 /*
2144 * Ahh, all good. It wasn't running, and it wasn't
2145 * runnable, which means that it will never become
2146 * running in the future either. We're all done!
2147 */
2148 break;
2149 }
2150
2151 return ncsw;
2152 }
2153
2154 /***
2155 * kick_process - kick a running thread to enter/exit the kernel
2156 * @p: the to-be-kicked thread
2157 *
2158 * Cause a process which is running on another CPU to enter
2159 * kernel-mode, without any delay. (to get signals handled.)
2160 *
2161 * NOTE: this function doesnt have to take the runqueue lock,
2162 * because all it wants to ensure is that the remote task enters
2163 * the kernel. If the IPI races and the task has been migrated
2164 * to another CPU then no harm is done and the purpose has been
2165 * achieved as well.
2166 */
2167 void kick_process(struct task_struct *p)
2168 {
2169 int cpu;
2170
2171 preempt_disable();
2172 cpu = task_cpu(p);
2173 if ((cpu != smp_processor_id()) && task_curr(p))
2174 smp_send_reschedule(cpu);
2175 preempt_enable();
2176 }
2177 EXPORT_SYMBOL_GPL(kick_process);
2178 #endif /* CONFIG_SMP */
2179
2180 /**
2181 * task_oncpu_function_call - call a function on the cpu on which a task runs
2182 * @p: the task to evaluate
2183 * @func: the function to be called
2184 * @info: the function call argument
2185 *
2186 * Calls the function @func when the task is currently running. This might
2187 * be on the current CPU, which just calls the function directly
2188 */
2189 void task_oncpu_function_call(struct task_struct *p,
2190 void (*func) (void *info), void *info)
2191 {
2192 int cpu;
2193
2194 preempt_disable();
2195 cpu = task_cpu(p);
2196 if (task_curr(p))
2197 smp_call_function_single(cpu, func, info, 1);
2198 preempt_enable();
2199 }
2200
2201 #ifdef CONFIG_SMP
2202 /*
2203 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2204 */
2205 static int select_fallback_rq(int cpu, struct task_struct *p)
2206 {
2207 int dest_cpu;
2208 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2209
2210 /* Look for allowed, online CPU in same node. */
2211 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2212 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2213 return dest_cpu;
2214
2215 /* Any allowed, online CPU? */
2216 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2217 if (dest_cpu < nr_cpu_ids)
2218 return dest_cpu;
2219
2220 /* No more Mr. Nice Guy. */
2221 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2222 dest_cpu = cpuset_cpus_allowed_fallback(p);
2223 /*
2224 * Don't tell them about moving exiting tasks or
2225 * kernel threads (both mm NULL), since they never
2226 * leave kernel.
2227 */
2228 if (p->mm && printk_ratelimit()) {
2229 printk(KERN_INFO "process %d (%s) no "
2230 "longer affine to cpu%d\n",
2231 task_pid_nr(p), p->comm, cpu);
2232 }
2233 }
2234
2235 return dest_cpu;
2236 }
2237
2238 /*
2239 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2240 */
2241 static inline
2242 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2243 {
2244 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2245
2246 /*
2247 * In order not to call set_task_cpu() on a blocking task we need
2248 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2249 * cpu.
2250 *
2251 * Since this is common to all placement strategies, this lives here.
2252 *
2253 * [ this allows ->select_task() to simply return task_cpu(p) and
2254 * not worry about this generic constraint ]
2255 */
2256 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2257 !cpu_online(cpu)))
2258 cpu = select_fallback_rq(task_cpu(p), p);
2259
2260 return cpu;
2261 }
2262
2263 static void update_avg(u64 *avg, u64 sample)
2264 {
2265 s64 diff = sample - *avg;
2266 *avg += diff >> 3;
2267 }
2268 #endif
2269
2270 /***
2271 * try_to_wake_up - wake up a thread
2272 * @p: the to-be-woken-up thread
2273 * @state: the mask of task states that can be woken
2274 * @sync: do a synchronous wakeup?
2275 *
2276 * Put it on the run-queue if it's not already there. The "current"
2277 * thread is always on the run-queue (except when the actual
2278 * re-schedule is in progress), and as such you're allowed to do
2279 * the simpler "current->state = TASK_RUNNING" to mark yourself
2280 * runnable without the overhead of this.
2281 *
2282 * returns failure only if the task is already active.
2283 */
2284 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2285 int wake_flags)
2286 {
2287 int cpu, orig_cpu, this_cpu, success = 0;
2288 unsigned long flags;
2289 unsigned long en_flags = ENQUEUE_WAKEUP;
2290 struct rq *rq;
2291
2292 this_cpu = get_cpu();
2293
2294 smp_wmb();
2295 rq = task_rq_lock(p, &flags);
2296 if (!(p->state & state))
2297 goto out;
2298
2299 if (p->se.on_rq)
2300 goto out_running;
2301
2302 cpu = task_cpu(p);
2303 orig_cpu = cpu;
2304
2305 #ifdef CONFIG_SMP
2306 if (unlikely(task_running(rq, p)))
2307 goto out_activate;
2308
2309 /*
2310 * In order to handle concurrent wakeups and release the rq->lock
2311 * we put the task in TASK_WAKING state.
2312 *
2313 * First fix up the nr_uninterruptible count:
2314 */
2315 if (task_contributes_to_load(p)) {
2316 if (likely(cpu_online(orig_cpu)))
2317 rq->nr_uninterruptible--;
2318 else
2319 this_rq()->nr_uninterruptible--;
2320 }
2321 p->state = TASK_WAKING;
2322
2323 if (p->sched_class->task_waking) {
2324 p->sched_class->task_waking(rq, p);
2325 en_flags |= ENQUEUE_WAKING;
2326 }
2327
2328 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2329 if (cpu != orig_cpu)
2330 set_task_cpu(p, cpu);
2331 __task_rq_unlock(rq);
2332
2333 rq = cpu_rq(cpu);
2334 raw_spin_lock(&rq->lock);
2335
2336 /*
2337 * We migrated the task without holding either rq->lock, however
2338 * since the task is not on the task list itself, nobody else
2339 * will try and migrate the task, hence the rq should match the
2340 * cpu we just moved it to.
2341 */
2342 WARN_ON(task_cpu(p) != cpu);
2343 WARN_ON(p->state != TASK_WAKING);
2344
2345 #ifdef CONFIG_SCHEDSTATS
2346 schedstat_inc(rq, ttwu_count);
2347 if (cpu == this_cpu)
2348 schedstat_inc(rq, ttwu_local);
2349 else {
2350 struct sched_domain *sd;
2351 for_each_domain(this_cpu, sd) {
2352 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2353 schedstat_inc(sd, ttwu_wake_remote);
2354 break;
2355 }
2356 }
2357 }
2358 #endif /* CONFIG_SCHEDSTATS */
2359
2360 out_activate:
2361 #endif /* CONFIG_SMP */
2362 schedstat_inc(p, se.statistics.nr_wakeups);
2363 if (wake_flags & WF_SYNC)
2364 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2365 if (orig_cpu != cpu)
2366 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2367 if (cpu == this_cpu)
2368 schedstat_inc(p, se.statistics.nr_wakeups_local);
2369 else
2370 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2371 activate_task(rq, p, en_flags);
2372 success = 1;
2373
2374 out_running:
2375 trace_sched_wakeup(p, success);
2376 check_preempt_curr(rq, p, wake_flags);
2377
2378 p->state = TASK_RUNNING;
2379 #ifdef CONFIG_SMP
2380 if (p->sched_class->task_woken)
2381 p->sched_class->task_woken(rq, p);
2382
2383 if (unlikely(rq->idle_stamp)) {
2384 u64 delta = rq->clock - rq->idle_stamp;
2385 u64 max = 2*sysctl_sched_migration_cost;
2386
2387 if (delta > max)
2388 rq->avg_idle = max;
2389 else
2390 update_avg(&rq->avg_idle, delta);
2391 rq->idle_stamp = 0;
2392 }
2393 #endif
2394 out:
2395 task_rq_unlock(rq, &flags);
2396 put_cpu();
2397
2398 return success;
2399 }
2400
2401 /**
2402 * wake_up_process - Wake up a specific process
2403 * @p: The process to be woken up.
2404 *
2405 * Attempt to wake up the nominated process and move it to the set of runnable
2406 * processes. Returns 1 if the process was woken up, 0 if it was already
2407 * running.
2408 *
2409 * It may be assumed that this function implies a write memory barrier before
2410 * changing the task state if and only if any tasks are woken up.
2411 */
2412 int wake_up_process(struct task_struct *p)
2413 {
2414 return try_to_wake_up(p, TASK_ALL, 0);
2415 }
2416 EXPORT_SYMBOL(wake_up_process);
2417
2418 int wake_up_state(struct task_struct *p, unsigned int state)
2419 {
2420 return try_to_wake_up(p, state, 0);
2421 }
2422
2423 /*
2424 * Perform scheduler related setup for a newly forked process p.
2425 * p is forked by current.
2426 *
2427 * __sched_fork() is basic setup used by init_idle() too:
2428 */
2429 static void __sched_fork(struct task_struct *p)
2430 {
2431 p->se.exec_start = 0;
2432 p->se.sum_exec_runtime = 0;
2433 p->se.prev_sum_exec_runtime = 0;
2434 p->se.nr_migrations = 0;
2435
2436 #ifdef CONFIG_SCHEDSTATS
2437 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2438 #endif
2439
2440 INIT_LIST_HEAD(&p->rt.run_list);
2441 p->se.on_rq = 0;
2442 INIT_LIST_HEAD(&p->se.group_node);
2443
2444 #ifdef CONFIG_PREEMPT_NOTIFIERS
2445 INIT_HLIST_HEAD(&p->preempt_notifiers);
2446 #endif
2447 }
2448
2449 /*
2450 * fork()/clone()-time setup:
2451 */
2452 void sched_fork(struct task_struct *p, int clone_flags)
2453 {
2454 int cpu = get_cpu();
2455
2456 __sched_fork(p);
2457 /*
2458 * We mark the process as running here. This guarantees that
2459 * nobody will actually run it, and a signal or other external
2460 * event cannot wake it up and insert it on the runqueue either.
2461 */
2462 p->state = TASK_RUNNING;
2463
2464 /*
2465 * Revert to default priority/policy on fork if requested.
2466 */
2467 if (unlikely(p->sched_reset_on_fork)) {
2468 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2469 p->policy = SCHED_NORMAL;
2470 p->normal_prio = p->static_prio;
2471 }
2472
2473 if (PRIO_TO_NICE(p->static_prio) < 0) {
2474 p->static_prio = NICE_TO_PRIO(0);
2475 p->normal_prio = p->static_prio;
2476 set_load_weight(p);
2477 }
2478
2479 /*
2480 * We don't need the reset flag anymore after the fork. It has
2481 * fulfilled its duty:
2482 */
2483 p->sched_reset_on_fork = 0;
2484 }
2485
2486 /*
2487 * Make sure we do not leak PI boosting priority to the child.
2488 */
2489 p->prio = current->normal_prio;
2490
2491 if (!rt_prio(p->prio))
2492 p->sched_class = &fair_sched_class;
2493
2494 if (p->sched_class->task_fork)
2495 p->sched_class->task_fork(p);
2496
2497 set_task_cpu(p, cpu);
2498
2499 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2500 if (likely(sched_info_on()))
2501 memset(&p->sched_info, 0, sizeof(p->sched_info));
2502 #endif
2503 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2504 p->oncpu = 0;
2505 #endif
2506 #ifdef CONFIG_PREEMPT
2507 /* Want to start with kernel preemption disabled. */
2508 task_thread_info(p)->preempt_count = 1;
2509 #endif
2510 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2511
2512 put_cpu();
2513 }
2514
2515 /*
2516 * wake_up_new_task - wake up a newly created task for the first time.
2517 *
2518 * This function will do some initial scheduler statistics housekeeping
2519 * that must be done for every newly created context, then puts the task
2520 * on the runqueue and wakes it.
2521 */
2522 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2523 {
2524 unsigned long flags;
2525 struct rq *rq;
2526 int cpu __maybe_unused = get_cpu();
2527
2528 #ifdef CONFIG_SMP
2529 rq = task_rq_lock(p, &flags);
2530 p->state = TASK_WAKING;
2531
2532 /*
2533 * Fork balancing, do it here and not earlier because:
2534 * - cpus_allowed can change in the fork path
2535 * - any previously selected cpu might disappear through hotplug
2536 *
2537 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2538 * without people poking at ->cpus_allowed.
2539 */
2540 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2541 set_task_cpu(p, cpu);
2542
2543 p->state = TASK_RUNNING;
2544 task_rq_unlock(rq, &flags);
2545 #endif
2546
2547 rq = task_rq_lock(p, &flags);
2548 activate_task(rq, p, 0);
2549 trace_sched_wakeup_new(p, 1);
2550 check_preempt_curr(rq, p, WF_FORK);
2551 #ifdef CONFIG_SMP
2552 if (p->sched_class->task_woken)
2553 p->sched_class->task_woken(rq, p);
2554 #endif
2555 task_rq_unlock(rq, &flags);
2556 put_cpu();
2557 }
2558
2559 #ifdef CONFIG_PREEMPT_NOTIFIERS
2560
2561 /**
2562 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2563 * @notifier: notifier struct to register
2564 */
2565 void preempt_notifier_register(struct preempt_notifier *notifier)
2566 {
2567 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2568 }
2569 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2570
2571 /**
2572 * preempt_notifier_unregister - no longer interested in preemption notifications
2573 * @notifier: notifier struct to unregister
2574 *
2575 * This is safe to call from within a preemption notifier.
2576 */
2577 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2578 {
2579 hlist_del(&notifier->link);
2580 }
2581 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2582
2583 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2584 {
2585 struct preempt_notifier *notifier;
2586 struct hlist_node *node;
2587
2588 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2589 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2590 }
2591
2592 static void
2593 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2594 struct task_struct *next)
2595 {
2596 struct preempt_notifier *notifier;
2597 struct hlist_node *node;
2598
2599 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2600 notifier->ops->sched_out(notifier, next);
2601 }
2602
2603 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2604
2605 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2606 {
2607 }
2608
2609 static void
2610 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2611 struct task_struct *next)
2612 {
2613 }
2614
2615 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2616
2617 /**
2618 * prepare_task_switch - prepare to switch tasks
2619 * @rq: the runqueue preparing to switch
2620 * @prev: the current task that is being switched out
2621 * @next: the task we are going to switch to.
2622 *
2623 * This is called with the rq lock held and interrupts off. It must
2624 * be paired with a subsequent finish_task_switch after the context
2625 * switch.
2626 *
2627 * prepare_task_switch sets up locking and calls architecture specific
2628 * hooks.
2629 */
2630 static inline void
2631 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2632 struct task_struct *next)
2633 {
2634 fire_sched_out_preempt_notifiers(prev, next);
2635 prepare_lock_switch(rq, next);
2636 prepare_arch_switch(next);
2637 }
2638
2639 /**
2640 * finish_task_switch - clean up after a task-switch
2641 * @rq: runqueue associated with task-switch
2642 * @prev: the thread we just switched away from.
2643 *
2644 * finish_task_switch must be called after the context switch, paired
2645 * with a prepare_task_switch call before the context switch.
2646 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2647 * and do any other architecture-specific cleanup actions.
2648 *
2649 * Note that we may have delayed dropping an mm in context_switch(). If
2650 * so, we finish that here outside of the runqueue lock. (Doing it
2651 * with the lock held can cause deadlocks; see schedule() for
2652 * details.)
2653 */
2654 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2655 __releases(rq->lock)
2656 {
2657 struct mm_struct *mm = rq->prev_mm;
2658 long prev_state;
2659
2660 rq->prev_mm = NULL;
2661
2662 /*
2663 * A task struct has one reference for the use as "current".
2664 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2665 * schedule one last time. The schedule call will never return, and
2666 * the scheduled task must drop that reference.
2667 * The test for TASK_DEAD must occur while the runqueue locks are
2668 * still held, otherwise prev could be scheduled on another cpu, die
2669 * there before we look at prev->state, and then the reference would
2670 * be dropped twice.
2671 * Manfred Spraul <manfred@colorfullife.com>
2672 */
2673 prev_state = prev->state;
2674 finish_arch_switch(prev);
2675 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2676 local_irq_disable();
2677 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2678 perf_event_task_sched_in(current);
2679 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2680 local_irq_enable();
2681 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2682 finish_lock_switch(rq, prev);
2683
2684 fire_sched_in_preempt_notifiers(current);
2685 if (mm)
2686 mmdrop(mm);
2687 if (unlikely(prev_state == TASK_DEAD)) {
2688 /*
2689 * Remove function-return probe instances associated with this
2690 * task and put them back on the free list.
2691 */
2692 kprobe_flush_task(prev);
2693 put_task_struct(prev);
2694 }
2695 }
2696
2697 #ifdef CONFIG_SMP
2698
2699 /* assumes rq->lock is held */
2700 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2701 {
2702 if (prev->sched_class->pre_schedule)
2703 prev->sched_class->pre_schedule(rq, prev);
2704 }
2705
2706 /* rq->lock is NOT held, but preemption is disabled */
2707 static inline void post_schedule(struct rq *rq)
2708 {
2709 if (rq->post_schedule) {
2710 unsigned long flags;
2711
2712 raw_spin_lock_irqsave(&rq->lock, flags);
2713 if (rq->curr->sched_class->post_schedule)
2714 rq->curr->sched_class->post_schedule(rq);
2715 raw_spin_unlock_irqrestore(&rq->lock, flags);
2716
2717 rq->post_schedule = 0;
2718 }
2719 }
2720
2721 #else
2722
2723 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2724 {
2725 }
2726
2727 static inline void post_schedule(struct rq *rq)
2728 {
2729 }
2730
2731 #endif
2732
2733 /**
2734 * schedule_tail - first thing a freshly forked thread must call.
2735 * @prev: the thread we just switched away from.
2736 */
2737 asmlinkage void schedule_tail(struct task_struct *prev)
2738 __releases(rq->lock)
2739 {
2740 struct rq *rq = this_rq();
2741
2742 finish_task_switch(rq, prev);
2743
2744 /*
2745 * FIXME: do we need to worry about rq being invalidated by the
2746 * task_switch?
2747 */
2748 post_schedule(rq);
2749
2750 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2751 /* In this case, finish_task_switch does not reenable preemption */
2752 preempt_enable();
2753 #endif
2754 if (current->set_child_tid)
2755 put_user(task_pid_vnr(current), current->set_child_tid);
2756 }
2757
2758 /*
2759 * context_switch - switch to the new MM and the new
2760 * thread's register state.
2761 */
2762 static inline void
2763 context_switch(struct rq *rq, struct task_struct *prev,
2764 struct task_struct *next)
2765 {
2766 struct mm_struct *mm, *oldmm;
2767
2768 prepare_task_switch(rq, prev, next);
2769 trace_sched_switch(prev, next);
2770 mm = next->mm;
2771 oldmm = prev->active_mm;
2772 /*
2773 * For paravirt, this is coupled with an exit in switch_to to
2774 * combine the page table reload and the switch backend into
2775 * one hypercall.
2776 */
2777 arch_start_context_switch(prev);
2778
2779 if (likely(!mm)) {
2780 next->active_mm = oldmm;
2781 atomic_inc(&oldmm->mm_count);
2782 enter_lazy_tlb(oldmm, next);
2783 } else
2784 switch_mm(oldmm, mm, next);
2785
2786 if (likely(!prev->mm)) {
2787 prev->active_mm = NULL;
2788 rq->prev_mm = oldmm;
2789 }
2790 /*
2791 * Since the runqueue lock will be released by the next
2792 * task (which is an invalid locking op but in the case
2793 * of the scheduler it's an obvious special-case), so we
2794 * do an early lockdep release here:
2795 */
2796 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2797 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2798 #endif
2799
2800 /* Here we just switch the register state and the stack. */
2801 switch_to(prev, next, prev);
2802
2803 barrier();
2804 /*
2805 * this_rq must be evaluated again because prev may have moved
2806 * CPUs since it called schedule(), thus the 'rq' on its stack
2807 * frame will be invalid.
2808 */
2809 finish_task_switch(this_rq(), prev);
2810 }
2811
2812 /*
2813 * nr_running, nr_uninterruptible and nr_context_switches:
2814 *
2815 * externally visible scheduler statistics: current number of runnable
2816 * threads, current number of uninterruptible-sleeping threads, total
2817 * number of context switches performed since bootup.
2818 */
2819 unsigned long nr_running(void)
2820 {
2821 unsigned long i, sum = 0;
2822
2823 for_each_online_cpu(i)
2824 sum += cpu_rq(i)->nr_running;
2825
2826 return sum;
2827 }
2828
2829 unsigned long nr_uninterruptible(void)
2830 {
2831 unsigned long i, sum = 0;
2832
2833 for_each_possible_cpu(i)
2834 sum += cpu_rq(i)->nr_uninterruptible;
2835
2836 /*
2837 * Since we read the counters lockless, it might be slightly
2838 * inaccurate. Do not allow it to go below zero though:
2839 */
2840 if (unlikely((long)sum < 0))
2841 sum = 0;
2842
2843 return sum;
2844 }
2845
2846 unsigned long long nr_context_switches(void)
2847 {
2848 int i;
2849 unsigned long long sum = 0;
2850
2851 for_each_possible_cpu(i)
2852 sum += cpu_rq(i)->nr_switches;
2853
2854 return sum;
2855 }
2856
2857 unsigned long nr_iowait(void)
2858 {
2859 unsigned long i, sum = 0;
2860
2861 for_each_possible_cpu(i)
2862 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2863
2864 return sum;
2865 }
2866
2867 unsigned long nr_iowait_cpu(void)
2868 {
2869 struct rq *this = this_rq();
2870 return atomic_read(&this->nr_iowait);
2871 }
2872
2873 unsigned long this_cpu_load(void)
2874 {
2875 struct rq *this = this_rq();
2876 return this->cpu_load[0];
2877 }
2878
2879
2880 /* Variables and functions for calc_load */
2881 static atomic_long_t calc_load_tasks;
2882 static unsigned long calc_load_update;
2883 unsigned long avenrun[3];
2884 EXPORT_SYMBOL(avenrun);
2885
2886 static long calc_load_fold_active(struct rq *this_rq)
2887 {
2888 long nr_active, delta = 0;
2889
2890 nr_active = this_rq->nr_running;
2891 nr_active += (long) this_rq->nr_uninterruptible;
2892
2893 if (nr_active != this_rq->calc_load_active) {
2894 delta = nr_active - this_rq->calc_load_active;
2895 this_rq->calc_load_active = nr_active;
2896 }
2897
2898 return delta;
2899 }
2900
2901 #ifdef CONFIG_NO_HZ
2902 /*
2903 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2904 *
2905 * When making the ILB scale, we should try to pull this in as well.
2906 */
2907 static atomic_long_t calc_load_tasks_idle;
2908
2909 static void calc_load_account_idle(struct rq *this_rq)
2910 {
2911 long delta;
2912
2913 delta = calc_load_fold_active(this_rq);
2914 if (delta)
2915 atomic_long_add(delta, &calc_load_tasks_idle);
2916 }
2917
2918 static long calc_load_fold_idle(void)
2919 {
2920 long delta = 0;
2921
2922 /*
2923 * Its got a race, we don't care...
2924 */
2925 if (atomic_long_read(&calc_load_tasks_idle))
2926 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2927
2928 return delta;
2929 }
2930 #else
2931 static void calc_load_account_idle(struct rq *this_rq)
2932 {
2933 }
2934
2935 static inline long calc_load_fold_idle(void)
2936 {
2937 return 0;
2938 }
2939 #endif
2940
2941 /**
2942 * get_avenrun - get the load average array
2943 * @loads: pointer to dest load array
2944 * @offset: offset to add
2945 * @shift: shift count to shift the result left
2946 *
2947 * These values are estimates at best, so no need for locking.
2948 */
2949 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2950 {
2951 loads[0] = (avenrun[0] + offset) << shift;
2952 loads[1] = (avenrun[1] + offset) << shift;
2953 loads[2] = (avenrun[2] + offset) << shift;
2954 }
2955
2956 static unsigned long
2957 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2958 {
2959 load *= exp;
2960 load += active * (FIXED_1 - exp);
2961 return load >> FSHIFT;
2962 }
2963
2964 /*
2965 * calc_load - update the avenrun load estimates 10 ticks after the
2966 * CPUs have updated calc_load_tasks.
2967 */
2968 void calc_global_load(void)
2969 {
2970 unsigned long upd = calc_load_update + 10;
2971 long active;
2972
2973 if (time_before(jiffies, upd))
2974 return;
2975
2976 active = atomic_long_read(&calc_load_tasks);
2977 active = active > 0 ? active * FIXED_1 : 0;
2978
2979 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2980 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2981 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2982
2983 calc_load_update += LOAD_FREQ;
2984 }
2985
2986 /*
2987 * Called from update_cpu_load() to periodically update this CPU's
2988 * active count.
2989 */
2990 static void calc_load_account_active(struct rq *this_rq)
2991 {
2992 long delta;
2993
2994 if (time_before(jiffies, this_rq->calc_load_update))
2995 return;
2996
2997 delta = calc_load_fold_active(this_rq);
2998 delta += calc_load_fold_idle();
2999 if (delta)
3000 atomic_long_add(delta, &calc_load_tasks);
3001
3002 this_rq->calc_load_update += LOAD_FREQ;
3003 }
3004
3005 /*
3006 * Update rq->cpu_load[] statistics. This function is usually called every
3007 * scheduler tick (TICK_NSEC).
3008 */
3009 static void update_cpu_load(struct rq *this_rq)
3010 {
3011 unsigned long this_load = this_rq->load.weight;
3012 int i, scale;
3013
3014 this_rq->nr_load_updates++;
3015
3016 /* Update our load: */
3017 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3018 unsigned long old_load, new_load;
3019
3020 /* scale is effectively 1 << i now, and >> i divides by scale */
3021
3022 old_load = this_rq->cpu_load[i];
3023 new_load = this_load;
3024 /*
3025 * Round up the averaging division if load is increasing. This
3026 * prevents us from getting stuck on 9 if the load is 10, for
3027 * example.
3028 */
3029 if (new_load > old_load)
3030 new_load += scale-1;
3031 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3032 }
3033
3034 calc_load_account_active(this_rq);
3035 }
3036
3037 #ifdef CONFIG_SMP
3038
3039 /*
3040 * sched_exec - execve() is a valuable balancing opportunity, because at
3041 * this point the task has the smallest effective memory and cache footprint.
3042 */
3043 void sched_exec(void)
3044 {
3045 struct task_struct *p = current;
3046 unsigned long flags;
3047 struct rq *rq;
3048 int dest_cpu;
3049
3050 rq = task_rq_lock(p, &flags);
3051 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3052 if (dest_cpu == smp_processor_id())
3053 goto unlock;
3054
3055 /*
3056 * select_task_rq() can race against ->cpus_allowed
3057 */
3058 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3059 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3060 struct migration_arg arg = { p, dest_cpu };
3061
3062 task_rq_unlock(rq, &flags);
3063 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3064 return;
3065 }
3066 unlock:
3067 task_rq_unlock(rq, &flags);
3068 }
3069
3070 #endif
3071
3072 DEFINE_PER_CPU(struct kernel_stat, kstat);
3073
3074 EXPORT_PER_CPU_SYMBOL(kstat);
3075
3076 /*
3077 * Return any ns on the sched_clock that have not yet been accounted in
3078 * @p in case that task is currently running.
3079 *
3080 * Called with task_rq_lock() held on @rq.
3081 */
3082 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3083 {
3084 u64 ns = 0;
3085
3086 if (task_current(rq, p)) {
3087 update_rq_clock(rq);
3088 ns = rq->clock - p->se.exec_start;
3089 if ((s64)ns < 0)
3090 ns = 0;
3091 }
3092
3093 return ns;
3094 }
3095
3096 unsigned long long task_delta_exec(struct task_struct *p)
3097 {
3098 unsigned long flags;
3099 struct rq *rq;
3100 u64 ns = 0;
3101
3102 rq = task_rq_lock(p, &flags);
3103 ns = do_task_delta_exec(p, rq);
3104 task_rq_unlock(rq, &flags);
3105
3106 return ns;
3107 }
3108
3109 /*
3110 * Return accounted runtime for the task.
3111 * In case the task is currently running, return the runtime plus current's
3112 * pending runtime that have not been accounted yet.
3113 */
3114 unsigned long long task_sched_runtime(struct task_struct *p)
3115 {
3116 unsigned long flags;
3117 struct rq *rq;
3118 u64 ns = 0;
3119
3120 rq = task_rq_lock(p, &flags);
3121 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3122 task_rq_unlock(rq, &flags);
3123
3124 return ns;
3125 }
3126
3127 /*
3128 * Return sum_exec_runtime for the thread group.
3129 * In case the task is currently running, return the sum plus current's
3130 * pending runtime that have not been accounted yet.
3131 *
3132 * Note that the thread group might have other running tasks as well,
3133 * so the return value not includes other pending runtime that other
3134 * running tasks might have.
3135 */
3136 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3137 {
3138 struct task_cputime totals;
3139 unsigned long flags;
3140 struct rq *rq;
3141 u64 ns;
3142
3143 rq = task_rq_lock(p, &flags);
3144 thread_group_cputime(p, &totals);
3145 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3146 task_rq_unlock(rq, &flags);
3147
3148 return ns;
3149 }
3150
3151 /*
3152 * Account user cpu time to a process.
3153 * @p: the process that the cpu time gets accounted to
3154 * @cputime: the cpu time spent in user space since the last update
3155 * @cputime_scaled: cputime scaled by cpu frequency
3156 */
3157 void account_user_time(struct task_struct *p, cputime_t cputime,
3158 cputime_t cputime_scaled)
3159 {
3160 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3161 cputime64_t tmp;
3162
3163 /* Add user time to process. */
3164 p->utime = cputime_add(p->utime, cputime);
3165 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3166 account_group_user_time(p, cputime);
3167
3168 /* Add user time to cpustat. */
3169 tmp = cputime_to_cputime64(cputime);
3170 if (TASK_NICE(p) > 0)
3171 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3172 else
3173 cpustat->user = cputime64_add(cpustat->user, tmp);
3174
3175 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3176 /* Account for user time used */
3177 acct_update_integrals(p);
3178 }
3179
3180 /*
3181 * Account guest cpu time to a process.
3182 * @p: the process that the cpu time gets accounted to
3183 * @cputime: the cpu time spent in virtual machine since the last update
3184 * @cputime_scaled: cputime scaled by cpu frequency
3185 */
3186 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3187 cputime_t cputime_scaled)
3188 {
3189 cputime64_t tmp;
3190 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3191
3192 tmp = cputime_to_cputime64(cputime);
3193
3194 /* Add guest time to process. */
3195 p->utime = cputime_add(p->utime, cputime);
3196 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3197 account_group_user_time(p, cputime);
3198 p->gtime = cputime_add(p->gtime, cputime);
3199
3200 /* Add guest time to cpustat. */
3201 if (TASK_NICE(p) > 0) {
3202 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3203 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3204 } else {
3205 cpustat->user = cputime64_add(cpustat->user, tmp);
3206 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3207 }
3208 }
3209
3210 /*
3211 * Account system cpu time to a process.
3212 * @p: the process that the cpu time gets accounted to
3213 * @hardirq_offset: the offset to subtract from hardirq_count()
3214 * @cputime: the cpu time spent in kernel space since the last update
3215 * @cputime_scaled: cputime scaled by cpu frequency
3216 */
3217 void account_system_time(struct task_struct *p, int hardirq_offset,
3218 cputime_t cputime, cputime_t cputime_scaled)
3219 {
3220 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3221 cputime64_t tmp;
3222
3223 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3224 account_guest_time(p, cputime, cputime_scaled);
3225 return;
3226 }
3227
3228 /* Add system time to process. */
3229 p->stime = cputime_add(p->stime, cputime);
3230 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3231 account_group_system_time(p, cputime);
3232
3233 /* Add system time to cpustat. */
3234 tmp = cputime_to_cputime64(cputime);
3235 if (hardirq_count() - hardirq_offset)
3236 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3237 else if (softirq_count())
3238 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3239 else
3240 cpustat->system = cputime64_add(cpustat->system, tmp);
3241
3242 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3243
3244 /* Account for system time used */
3245 acct_update_integrals(p);
3246 }
3247
3248 /*
3249 * Account for involuntary wait time.
3250 * @steal: the cpu time spent in involuntary wait
3251 */
3252 void account_steal_time(cputime_t cputime)
3253 {
3254 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3255 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3256
3257 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3258 }
3259
3260 /*
3261 * Account for idle time.
3262 * @cputime: the cpu time spent in idle wait
3263 */
3264 void account_idle_time(cputime_t cputime)
3265 {
3266 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3267 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3268 struct rq *rq = this_rq();
3269
3270 if (atomic_read(&rq->nr_iowait) > 0)
3271 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3272 else
3273 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3274 }
3275
3276 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3277
3278 /*
3279 * Account a single tick of cpu time.
3280 * @p: the process that the cpu time gets accounted to
3281 * @user_tick: indicates if the tick is a user or a system tick
3282 */
3283 void account_process_tick(struct task_struct *p, int user_tick)
3284 {
3285 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3286 struct rq *rq = this_rq();
3287
3288 if (user_tick)
3289 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3290 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3291 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3292 one_jiffy_scaled);
3293 else
3294 account_idle_time(cputime_one_jiffy);
3295 }
3296
3297 /*
3298 * Account multiple ticks of steal time.
3299 * @p: the process from which the cpu time has been stolen
3300 * @ticks: number of stolen ticks
3301 */
3302 void account_steal_ticks(unsigned long ticks)
3303 {
3304 account_steal_time(jiffies_to_cputime(ticks));
3305 }
3306
3307 /*
3308 * Account multiple ticks of idle time.
3309 * @ticks: number of stolen ticks
3310 */
3311 void account_idle_ticks(unsigned long ticks)
3312 {
3313 account_idle_time(jiffies_to_cputime(ticks));
3314 }
3315
3316 #endif
3317
3318 /*
3319 * Use precise platform statistics if available:
3320 */
3321 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3322 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3323 {
3324 *ut = p->utime;
3325 *st = p->stime;
3326 }
3327
3328 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3329 {
3330 struct task_cputime cputime;
3331
3332 thread_group_cputime(p, &cputime);
3333
3334 *ut = cputime.utime;
3335 *st = cputime.stime;
3336 }
3337 #else
3338
3339 #ifndef nsecs_to_cputime
3340 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3341 #endif
3342
3343 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3344 {
3345 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3346
3347 /*
3348 * Use CFS's precise accounting:
3349 */
3350 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3351
3352 if (total) {
3353 u64 temp;
3354
3355 temp = (u64)(rtime * utime);
3356 do_div(temp, total);
3357 utime = (cputime_t)temp;
3358 } else
3359 utime = rtime;
3360
3361 /*
3362 * Compare with previous values, to keep monotonicity:
3363 */
3364 p->prev_utime = max(p->prev_utime, utime);
3365 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3366
3367 *ut = p->prev_utime;
3368 *st = p->prev_stime;
3369 }
3370
3371 /*
3372 * Must be called with siglock held.
3373 */
3374 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3375 {
3376 struct signal_struct *sig = p->signal;
3377 struct task_cputime cputime;
3378 cputime_t rtime, utime, total;
3379
3380 thread_group_cputime(p, &cputime);
3381
3382 total = cputime_add(cputime.utime, cputime.stime);
3383 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3384
3385 if (total) {
3386 u64 temp;
3387
3388 temp = (u64)(rtime * cputime.utime);
3389 do_div(temp, total);
3390 utime = (cputime_t)temp;
3391 } else
3392 utime = rtime;
3393
3394 sig->prev_utime = max(sig->prev_utime, utime);
3395 sig->prev_stime = max(sig->prev_stime,
3396 cputime_sub(rtime, sig->prev_utime));
3397
3398 *ut = sig->prev_utime;
3399 *st = sig->prev_stime;
3400 }
3401 #endif
3402
3403 /*
3404 * This function gets called by the timer code, with HZ frequency.
3405 * We call it with interrupts disabled.
3406 *
3407 * It also gets called by the fork code, when changing the parent's
3408 * timeslices.
3409 */
3410 void scheduler_tick(void)
3411 {
3412 int cpu = smp_processor_id();
3413 struct rq *rq = cpu_rq(cpu);
3414 struct task_struct *curr = rq->curr;
3415
3416 sched_clock_tick();
3417
3418 raw_spin_lock(&rq->lock);
3419 update_rq_clock(rq);
3420 update_cpu_load(rq);
3421 curr->sched_class->task_tick(rq, curr, 0);
3422 raw_spin_unlock(&rq->lock);
3423
3424 perf_event_task_tick(curr);
3425
3426 #ifdef CONFIG_SMP
3427 rq->idle_at_tick = idle_cpu(cpu);
3428 trigger_load_balance(rq, cpu);
3429 #endif
3430 }
3431
3432 notrace unsigned long get_parent_ip(unsigned long addr)
3433 {
3434 if (in_lock_functions(addr)) {
3435 addr = CALLER_ADDR2;
3436 if (in_lock_functions(addr))
3437 addr = CALLER_ADDR3;
3438 }
3439 return addr;
3440 }
3441
3442 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3443 defined(CONFIG_PREEMPT_TRACER))
3444
3445 void __kprobes add_preempt_count(int val)
3446 {
3447 #ifdef CONFIG_DEBUG_PREEMPT
3448 /*
3449 * Underflow?
3450 */
3451 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3452 return;
3453 #endif
3454 preempt_count() += val;
3455 #ifdef CONFIG_DEBUG_PREEMPT
3456 /*
3457 * Spinlock count overflowing soon?
3458 */
3459 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3460 PREEMPT_MASK - 10);
3461 #endif
3462 if (preempt_count() == val)
3463 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3464 }
3465 EXPORT_SYMBOL(add_preempt_count);
3466
3467 void __kprobes sub_preempt_count(int val)
3468 {
3469 #ifdef CONFIG_DEBUG_PREEMPT
3470 /*
3471 * Underflow?
3472 */
3473 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3474 return;
3475 /*
3476 * Is the spinlock portion underflowing?
3477 */
3478 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3479 !(preempt_count() & PREEMPT_MASK)))
3480 return;
3481 #endif
3482
3483 if (preempt_count() == val)
3484 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3485 preempt_count() -= val;
3486 }
3487 EXPORT_SYMBOL(sub_preempt_count);
3488
3489 #endif
3490
3491 /*
3492 * Print scheduling while atomic bug:
3493 */
3494 static noinline void __schedule_bug(struct task_struct *prev)
3495 {
3496 struct pt_regs *regs = get_irq_regs();
3497
3498 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3499 prev->comm, prev->pid, preempt_count());
3500
3501 debug_show_held_locks(prev);
3502 print_modules();
3503 if (irqs_disabled())
3504 print_irqtrace_events(prev);
3505
3506 if (regs)
3507 show_regs(regs);
3508 else
3509 dump_stack();
3510 }
3511
3512 /*
3513 * Various schedule()-time debugging checks and statistics:
3514 */
3515 static inline void schedule_debug(struct task_struct *prev)
3516 {
3517 /*
3518 * Test if we are atomic. Since do_exit() needs to call into
3519 * schedule() atomically, we ignore that path for now.
3520 * Otherwise, whine if we are scheduling when we should not be.
3521 */
3522 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3523 __schedule_bug(prev);
3524
3525 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3526
3527 schedstat_inc(this_rq(), sched_count);
3528 #ifdef CONFIG_SCHEDSTATS
3529 if (unlikely(prev->lock_depth >= 0)) {
3530 schedstat_inc(this_rq(), bkl_count);
3531 schedstat_inc(prev, sched_info.bkl_count);
3532 }
3533 #endif
3534 }
3535
3536 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3537 {
3538 if (prev->se.on_rq)
3539 update_rq_clock(rq);
3540 rq->skip_clock_update = 0;
3541 prev->sched_class->put_prev_task(rq, prev);
3542 }
3543
3544 /*
3545 * Pick up the highest-prio task:
3546 */
3547 static inline struct task_struct *
3548 pick_next_task(struct rq *rq)
3549 {
3550 const struct sched_class *class;
3551 struct task_struct *p;
3552
3553 /*
3554 * Optimization: we know that if all tasks are in
3555 * the fair class we can call that function directly:
3556 */
3557 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3558 p = fair_sched_class.pick_next_task(rq);
3559 if (likely(p))
3560 return p;
3561 }
3562
3563 class = sched_class_highest;
3564 for ( ; ; ) {
3565 p = class->pick_next_task(rq);
3566 if (p)
3567 return p;
3568 /*
3569 * Will never be NULL as the idle class always
3570 * returns a non-NULL p:
3571 */
3572 class = class->next;
3573 }
3574 }
3575
3576 /*
3577 * schedule() is the main scheduler function.
3578 */
3579 asmlinkage void __sched schedule(void)
3580 {
3581 struct task_struct *prev, *next;
3582 unsigned long *switch_count;
3583 struct rq *rq;
3584 int cpu;
3585
3586 need_resched:
3587 preempt_disable();
3588 cpu = smp_processor_id();
3589 rq = cpu_rq(cpu);
3590 rcu_note_context_switch(cpu);
3591 prev = rq->curr;
3592 switch_count = &prev->nivcsw;
3593
3594 release_kernel_lock(prev);
3595 need_resched_nonpreemptible:
3596
3597 schedule_debug(prev);
3598
3599 if (sched_feat(HRTICK))
3600 hrtick_clear(rq);
3601
3602 raw_spin_lock_irq(&rq->lock);
3603 clear_tsk_need_resched(prev);
3604
3605 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3606 if (unlikely(signal_pending_state(prev->state, prev)))
3607 prev->state = TASK_RUNNING;
3608 else
3609 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3610 switch_count = &prev->nvcsw;
3611 }
3612
3613 pre_schedule(rq, prev);
3614
3615 if (unlikely(!rq->nr_running))
3616 idle_balance(cpu, rq);
3617
3618 put_prev_task(rq, prev);
3619 next = pick_next_task(rq);
3620
3621 if (likely(prev != next)) {
3622 sched_info_switch(prev, next);
3623 perf_event_task_sched_out(prev, next);
3624
3625 rq->nr_switches++;
3626 rq->curr = next;
3627 ++*switch_count;
3628
3629 context_switch(rq, prev, next); /* unlocks the rq */
3630 /*
3631 * the context switch might have flipped the stack from under
3632 * us, hence refresh the local variables.
3633 */
3634 cpu = smp_processor_id();
3635 rq = cpu_rq(cpu);
3636 } else
3637 raw_spin_unlock_irq(&rq->lock);
3638
3639 post_schedule(rq);
3640
3641 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3642 prev = rq->curr;
3643 switch_count = &prev->nivcsw;
3644 goto need_resched_nonpreemptible;
3645 }
3646
3647 preempt_enable_no_resched();
3648 if (need_resched())
3649 goto need_resched;
3650 }
3651 EXPORT_SYMBOL(schedule);
3652
3653 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3654 /*
3655 * Look out! "owner" is an entirely speculative pointer
3656 * access and not reliable.
3657 */
3658 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3659 {
3660 unsigned int cpu;
3661 struct rq *rq;
3662
3663 if (!sched_feat(OWNER_SPIN))
3664 return 0;
3665
3666 #ifdef CONFIG_DEBUG_PAGEALLOC
3667 /*
3668 * Need to access the cpu field knowing that
3669 * DEBUG_PAGEALLOC could have unmapped it if
3670 * the mutex owner just released it and exited.
3671 */
3672 if (probe_kernel_address(&owner->cpu, cpu))
3673 return 0;
3674 #else
3675 cpu = owner->cpu;
3676 #endif
3677
3678 /*
3679 * Even if the access succeeded (likely case),
3680 * the cpu field may no longer be valid.
3681 */
3682 if (cpu >= nr_cpumask_bits)
3683 return 0;
3684
3685 /*
3686 * We need to validate that we can do a
3687 * get_cpu() and that we have the percpu area.
3688 */
3689 if (!cpu_online(cpu))
3690 return 0;
3691
3692 rq = cpu_rq(cpu);
3693
3694 for (;;) {
3695 /*
3696 * Owner changed, break to re-assess state.
3697 */
3698 if (lock->owner != owner)
3699 break;
3700
3701 /*
3702 * Is that owner really running on that cpu?
3703 */
3704 if (task_thread_info(rq->curr) != owner || need_resched())
3705 return 0;
3706
3707 cpu_relax();
3708 }
3709
3710 return 1;
3711 }
3712 #endif
3713
3714 #ifdef CONFIG_PREEMPT
3715 /*
3716 * this is the entry point to schedule() from in-kernel preemption
3717 * off of preempt_enable. Kernel preemptions off return from interrupt
3718 * occur there and call schedule directly.
3719 */
3720 asmlinkage void __sched preempt_schedule(void)
3721 {
3722 struct thread_info *ti = current_thread_info();
3723
3724 /*
3725 * If there is a non-zero preempt_count or interrupts are disabled,
3726 * we do not want to preempt the current task. Just return..
3727 */
3728 if (likely(ti->preempt_count || irqs_disabled()))
3729 return;
3730
3731 do {
3732 add_preempt_count(PREEMPT_ACTIVE);
3733 schedule();
3734 sub_preempt_count(PREEMPT_ACTIVE);
3735
3736 /*
3737 * Check again in case we missed a preemption opportunity
3738 * between schedule and now.
3739 */
3740 barrier();
3741 } while (need_resched());
3742 }
3743 EXPORT_SYMBOL(preempt_schedule);
3744
3745 /*
3746 * this is the entry point to schedule() from kernel preemption
3747 * off of irq context.
3748 * Note, that this is called and return with irqs disabled. This will
3749 * protect us against recursive calling from irq.
3750 */
3751 asmlinkage void __sched preempt_schedule_irq(void)
3752 {
3753 struct thread_info *ti = current_thread_info();
3754
3755 /* Catch callers which need to be fixed */
3756 BUG_ON(ti->preempt_count || !irqs_disabled());
3757
3758 do {
3759 add_preempt_count(PREEMPT_ACTIVE);
3760 local_irq_enable();
3761 schedule();
3762 local_irq_disable();
3763 sub_preempt_count(PREEMPT_ACTIVE);
3764
3765 /*
3766 * Check again in case we missed a preemption opportunity
3767 * between schedule and now.
3768 */
3769 barrier();
3770 } while (need_resched());
3771 }
3772
3773 #endif /* CONFIG_PREEMPT */
3774
3775 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3776 void *key)
3777 {
3778 return try_to_wake_up(curr->private, mode, wake_flags);
3779 }
3780 EXPORT_SYMBOL(default_wake_function);
3781
3782 /*
3783 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3784 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3785 * number) then we wake all the non-exclusive tasks and one exclusive task.
3786 *
3787 * There are circumstances in which we can try to wake a task which has already
3788 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3789 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3790 */
3791 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3792 int nr_exclusive, int wake_flags, void *key)
3793 {
3794 wait_queue_t *curr, *next;
3795
3796 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3797 unsigned flags = curr->flags;
3798
3799 if (curr->func(curr, mode, wake_flags, key) &&
3800 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3801 break;
3802 }
3803 }
3804
3805 /**
3806 * __wake_up - wake up threads blocked on a waitqueue.
3807 * @q: the waitqueue
3808 * @mode: which threads
3809 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3810 * @key: is directly passed to the wakeup function
3811 *
3812 * It may be assumed that this function implies a write memory barrier before
3813 * changing the task state if and only if any tasks are woken up.
3814 */
3815 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3816 int nr_exclusive, void *key)
3817 {
3818 unsigned long flags;
3819
3820 spin_lock_irqsave(&q->lock, flags);
3821 __wake_up_common(q, mode, nr_exclusive, 0, key);
3822 spin_unlock_irqrestore(&q->lock, flags);
3823 }
3824 EXPORT_SYMBOL(__wake_up);
3825
3826 /*
3827 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3828 */
3829 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3830 {
3831 __wake_up_common(q, mode, 1, 0, NULL);
3832 }
3833 EXPORT_SYMBOL_GPL(__wake_up_locked);
3834
3835 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3836 {
3837 __wake_up_common(q, mode, 1, 0, key);
3838 }
3839
3840 /**
3841 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3842 * @q: the waitqueue
3843 * @mode: which threads
3844 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3845 * @key: opaque value to be passed to wakeup targets
3846 *
3847 * The sync wakeup differs that the waker knows that it will schedule
3848 * away soon, so while the target thread will be woken up, it will not
3849 * be migrated to another CPU - ie. the two threads are 'synchronized'
3850 * with each other. This can prevent needless bouncing between CPUs.
3851 *
3852 * On UP it can prevent extra preemption.
3853 *
3854 * It may be assumed that this function implies a write memory barrier before
3855 * changing the task state if and only if any tasks are woken up.
3856 */
3857 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3858 int nr_exclusive, void *key)
3859 {
3860 unsigned long flags;
3861 int wake_flags = WF_SYNC;
3862
3863 if (unlikely(!q))
3864 return;
3865
3866 if (unlikely(!nr_exclusive))
3867 wake_flags = 0;
3868
3869 spin_lock_irqsave(&q->lock, flags);
3870 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3871 spin_unlock_irqrestore(&q->lock, flags);
3872 }
3873 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3874
3875 /*
3876 * __wake_up_sync - see __wake_up_sync_key()
3877 */
3878 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3879 {
3880 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3881 }
3882 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3883
3884 /**
3885 * complete: - signals a single thread waiting on this completion
3886 * @x: holds the state of this particular completion
3887 *
3888 * This will wake up a single thread waiting on this completion. Threads will be
3889 * awakened in the same order in which they were queued.
3890 *
3891 * See also complete_all(), wait_for_completion() and related routines.
3892 *
3893 * It may be assumed that this function implies a write memory barrier before
3894 * changing the task state if and only if any tasks are woken up.
3895 */
3896 void complete(struct completion *x)
3897 {
3898 unsigned long flags;
3899
3900 spin_lock_irqsave(&x->wait.lock, flags);
3901 x->done++;
3902 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3903 spin_unlock_irqrestore(&x->wait.lock, flags);
3904 }
3905 EXPORT_SYMBOL(complete);
3906
3907 /**
3908 * complete_all: - signals all threads waiting on this completion
3909 * @x: holds the state of this particular completion
3910 *
3911 * This will wake up all threads waiting on this particular completion event.
3912 *
3913 * It may be assumed that this function implies a write memory barrier before
3914 * changing the task state if and only if any tasks are woken up.
3915 */
3916 void complete_all(struct completion *x)
3917 {
3918 unsigned long flags;
3919
3920 spin_lock_irqsave(&x->wait.lock, flags);
3921 x->done += UINT_MAX/2;
3922 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3923 spin_unlock_irqrestore(&x->wait.lock, flags);
3924 }
3925 EXPORT_SYMBOL(complete_all);
3926
3927 static inline long __sched
3928 do_wait_for_common(struct completion *x, long timeout, int state)
3929 {
3930 if (!x->done) {
3931 DECLARE_WAITQUEUE(wait, current);
3932
3933 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3934 do {
3935 if (signal_pending_state(state, current)) {
3936 timeout = -ERESTARTSYS;
3937 break;
3938 }
3939 __set_current_state(state);
3940 spin_unlock_irq(&x->wait.lock);
3941 timeout = schedule_timeout(timeout);
3942 spin_lock_irq(&x->wait.lock);
3943 } while (!x->done && timeout);
3944 __remove_wait_queue(&x->wait, &wait);
3945 if (!x->done)
3946 return timeout;
3947 }
3948 x->done--;
3949 return timeout ?: 1;
3950 }
3951
3952 static long __sched
3953 wait_for_common(struct completion *x, long timeout, int state)
3954 {
3955 might_sleep();
3956
3957 spin_lock_irq(&x->wait.lock);
3958 timeout = do_wait_for_common(x, timeout, state);
3959 spin_unlock_irq(&x->wait.lock);
3960 return timeout;
3961 }
3962
3963 /**
3964 * wait_for_completion: - waits for completion of a task
3965 * @x: holds the state of this particular completion
3966 *
3967 * This waits to be signaled for completion of a specific task. It is NOT
3968 * interruptible and there is no timeout.
3969 *
3970 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3971 * and interrupt capability. Also see complete().
3972 */
3973 void __sched wait_for_completion(struct completion *x)
3974 {
3975 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3976 }
3977 EXPORT_SYMBOL(wait_for_completion);
3978
3979 /**
3980 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3981 * @x: holds the state of this particular completion
3982 * @timeout: timeout value in jiffies
3983 *
3984 * This waits for either a completion of a specific task to be signaled or for a
3985 * specified timeout to expire. The timeout is in jiffies. It is not
3986 * interruptible.
3987 */
3988 unsigned long __sched
3989 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3990 {
3991 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3992 }
3993 EXPORT_SYMBOL(wait_for_completion_timeout);
3994
3995 /**
3996 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3997 * @x: holds the state of this particular completion
3998 *
3999 * This waits for completion of a specific task to be signaled. It is
4000 * interruptible.
4001 */
4002 int __sched wait_for_completion_interruptible(struct completion *x)
4003 {
4004 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4005 if (t == -ERESTARTSYS)
4006 return t;
4007 return 0;
4008 }
4009 EXPORT_SYMBOL(wait_for_completion_interruptible);
4010
4011 /**
4012 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4013 * @x: holds the state of this particular completion
4014 * @timeout: timeout value in jiffies
4015 *
4016 * This waits for either a completion of a specific task to be signaled or for a
4017 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4018 */
4019 unsigned long __sched
4020 wait_for_completion_interruptible_timeout(struct completion *x,
4021 unsigned long timeout)
4022 {
4023 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4024 }
4025 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4026
4027 /**
4028 * wait_for_completion_killable: - waits for completion of a task (killable)
4029 * @x: holds the state of this particular completion
4030 *
4031 * This waits to be signaled for completion of a specific task. It can be
4032 * interrupted by a kill signal.
4033 */
4034 int __sched wait_for_completion_killable(struct completion *x)
4035 {
4036 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4037 if (t == -ERESTARTSYS)
4038 return t;
4039 return 0;
4040 }
4041 EXPORT_SYMBOL(wait_for_completion_killable);
4042
4043 /**
4044 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4045 * @x: holds the state of this particular completion
4046 * @timeout: timeout value in jiffies
4047 *
4048 * This waits for either a completion of a specific task to be
4049 * signaled or for a specified timeout to expire. It can be
4050 * interrupted by a kill signal. The timeout is in jiffies.
4051 */
4052 unsigned long __sched
4053 wait_for_completion_killable_timeout(struct completion *x,
4054 unsigned long timeout)
4055 {
4056 return wait_for_common(x, timeout, TASK_KILLABLE);
4057 }
4058 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4059
4060 /**
4061 * try_wait_for_completion - try to decrement a completion without blocking
4062 * @x: completion structure
4063 *
4064 * Returns: 0 if a decrement cannot be done without blocking
4065 * 1 if a decrement succeeded.
4066 *
4067 * If a completion is being used as a counting completion,
4068 * attempt to decrement the counter without blocking. This
4069 * enables us to avoid waiting if the resource the completion
4070 * is protecting is not available.
4071 */
4072 bool try_wait_for_completion(struct completion *x)
4073 {
4074 unsigned long flags;
4075 int ret = 1;
4076
4077 spin_lock_irqsave(&x->wait.lock, flags);
4078 if (!x->done)
4079 ret = 0;
4080 else
4081 x->done--;
4082 spin_unlock_irqrestore(&x->wait.lock, flags);
4083 return ret;
4084 }
4085 EXPORT_SYMBOL(try_wait_for_completion);
4086
4087 /**
4088 * completion_done - Test to see if a completion has any waiters
4089 * @x: completion structure
4090 *
4091 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4092 * 1 if there are no waiters.
4093 *
4094 */
4095 bool completion_done(struct completion *x)
4096 {
4097 unsigned long flags;
4098 int ret = 1;
4099
4100 spin_lock_irqsave(&x->wait.lock, flags);
4101 if (!x->done)
4102 ret = 0;
4103 spin_unlock_irqrestore(&x->wait.lock, flags);
4104 return ret;
4105 }
4106 EXPORT_SYMBOL(completion_done);
4107
4108 static long __sched
4109 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4110 {
4111 unsigned long flags;
4112 wait_queue_t wait;
4113
4114 init_waitqueue_entry(&wait, current);
4115
4116 __set_current_state(state);
4117
4118 spin_lock_irqsave(&q->lock, flags);
4119 __add_wait_queue(q, &wait);
4120 spin_unlock(&q->lock);
4121 timeout = schedule_timeout(timeout);
4122 spin_lock_irq(&q->lock);
4123 __remove_wait_queue(q, &wait);
4124 spin_unlock_irqrestore(&q->lock, flags);
4125
4126 return timeout;
4127 }
4128
4129 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4130 {
4131 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4132 }
4133 EXPORT_SYMBOL(interruptible_sleep_on);
4134
4135 long __sched
4136 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4137 {
4138 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4139 }
4140 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4141
4142 void __sched sleep_on(wait_queue_head_t *q)
4143 {
4144 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4145 }
4146 EXPORT_SYMBOL(sleep_on);
4147
4148 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4149 {
4150 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4151 }
4152 EXPORT_SYMBOL(sleep_on_timeout);
4153
4154 #ifdef CONFIG_RT_MUTEXES
4155
4156 /*
4157 * rt_mutex_setprio - set the current priority of a task
4158 * @p: task
4159 * @prio: prio value (kernel-internal form)
4160 *
4161 * This function changes the 'effective' priority of a task. It does
4162 * not touch ->normal_prio like __setscheduler().
4163 *
4164 * Used by the rt_mutex code to implement priority inheritance logic.
4165 */
4166 void rt_mutex_setprio(struct task_struct *p, int prio)
4167 {
4168 unsigned long flags;
4169 int oldprio, on_rq, running;
4170 struct rq *rq;
4171 const struct sched_class *prev_class;
4172
4173 BUG_ON(prio < 0 || prio > MAX_PRIO);
4174
4175 rq = task_rq_lock(p, &flags);
4176
4177 oldprio = p->prio;
4178 prev_class = p->sched_class;
4179 on_rq = p->se.on_rq;
4180 running = task_current(rq, p);
4181 if (on_rq)
4182 dequeue_task(rq, p, 0);
4183 if (running)
4184 p->sched_class->put_prev_task(rq, p);
4185
4186 if (rt_prio(prio))
4187 p->sched_class = &rt_sched_class;
4188 else
4189 p->sched_class = &fair_sched_class;
4190
4191 p->prio = prio;
4192
4193 if (running)
4194 p->sched_class->set_curr_task(rq);
4195 if (on_rq) {
4196 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4197
4198 check_class_changed(rq, p, prev_class, oldprio, running);
4199 }
4200 task_rq_unlock(rq, &flags);
4201 }
4202
4203 #endif
4204
4205 void set_user_nice(struct task_struct *p, long nice)
4206 {
4207 int old_prio, delta, on_rq;
4208 unsigned long flags;
4209 struct rq *rq;
4210
4211 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4212 return;
4213 /*
4214 * We have to be careful, if called from sys_setpriority(),
4215 * the task might be in the middle of scheduling on another CPU.
4216 */
4217 rq = task_rq_lock(p, &flags);
4218 /*
4219 * The RT priorities are set via sched_setscheduler(), but we still
4220 * allow the 'normal' nice value to be set - but as expected
4221 * it wont have any effect on scheduling until the task is
4222 * SCHED_FIFO/SCHED_RR:
4223 */
4224 if (task_has_rt_policy(p)) {
4225 p->static_prio = NICE_TO_PRIO(nice);
4226 goto out_unlock;
4227 }
4228 on_rq = p->se.on_rq;
4229 if (on_rq)
4230 dequeue_task(rq, p, 0);
4231
4232 p->static_prio = NICE_TO_PRIO(nice);
4233 set_load_weight(p);
4234 old_prio = p->prio;
4235 p->prio = effective_prio(p);
4236 delta = p->prio - old_prio;
4237
4238 if (on_rq) {
4239 enqueue_task(rq, p, 0);
4240 /*
4241 * If the task increased its priority or is running and
4242 * lowered its priority, then reschedule its CPU:
4243 */
4244 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4245 resched_task(rq->curr);
4246 }
4247 out_unlock:
4248 task_rq_unlock(rq, &flags);
4249 }
4250 EXPORT_SYMBOL(set_user_nice);
4251
4252 /*
4253 * can_nice - check if a task can reduce its nice value
4254 * @p: task
4255 * @nice: nice value
4256 */
4257 int can_nice(const struct task_struct *p, const int nice)
4258 {
4259 /* convert nice value [19,-20] to rlimit style value [1,40] */
4260 int nice_rlim = 20 - nice;
4261
4262 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4263 capable(CAP_SYS_NICE));
4264 }
4265
4266 #ifdef __ARCH_WANT_SYS_NICE
4267
4268 /*
4269 * sys_nice - change the priority of the current process.
4270 * @increment: priority increment
4271 *
4272 * sys_setpriority is a more generic, but much slower function that
4273 * does similar things.
4274 */
4275 SYSCALL_DEFINE1(nice, int, increment)
4276 {
4277 long nice, retval;
4278
4279 /*
4280 * Setpriority might change our priority at the same moment.
4281 * We don't have to worry. Conceptually one call occurs first
4282 * and we have a single winner.
4283 */
4284 if (increment < -40)
4285 increment = -40;
4286 if (increment > 40)
4287 increment = 40;
4288
4289 nice = TASK_NICE(current) + increment;
4290 if (nice < -20)
4291 nice = -20;
4292 if (nice > 19)
4293 nice = 19;
4294
4295 if (increment < 0 && !can_nice(current, nice))
4296 return -EPERM;
4297
4298 retval = security_task_setnice(current, nice);
4299 if (retval)
4300 return retval;
4301
4302 set_user_nice(current, nice);
4303 return 0;
4304 }
4305
4306 #endif
4307
4308 /**
4309 * task_prio - return the priority value of a given task.
4310 * @p: the task in question.
4311 *
4312 * This is the priority value as seen by users in /proc.
4313 * RT tasks are offset by -200. Normal tasks are centered
4314 * around 0, value goes from -16 to +15.
4315 */
4316 int task_prio(const struct task_struct *p)
4317 {
4318 return p->prio - MAX_RT_PRIO;
4319 }
4320
4321 /**
4322 * task_nice - return the nice value of a given task.
4323 * @p: the task in question.
4324 */
4325 int task_nice(const struct task_struct *p)
4326 {
4327 return TASK_NICE(p);
4328 }
4329 EXPORT_SYMBOL(task_nice);
4330
4331 /**
4332 * idle_cpu - is a given cpu idle currently?
4333 * @cpu: the processor in question.
4334 */
4335 int idle_cpu(int cpu)
4336 {
4337 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4338 }
4339
4340 /**
4341 * idle_task - return the idle task for a given cpu.
4342 * @cpu: the processor in question.
4343 */
4344 struct task_struct *idle_task(int cpu)
4345 {
4346 return cpu_rq(cpu)->idle;
4347 }
4348
4349 /**
4350 * find_process_by_pid - find a process with a matching PID value.
4351 * @pid: the pid in question.
4352 */
4353 static struct task_struct *find_process_by_pid(pid_t pid)
4354 {
4355 return pid ? find_task_by_vpid(pid) : current;
4356 }
4357
4358 /* Actually do priority change: must hold rq lock. */
4359 static void
4360 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4361 {
4362 BUG_ON(p->se.on_rq);
4363
4364 p->policy = policy;
4365 p->rt_priority = prio;
4366 p->normal_prio = normal_prio(p);
4367 /* we are holding p->pi_lock already */
4368 p->prio = rt_mutex_getprio(p);
4369 if (rt_prio(p->prio))
4370 p->sched_class = &rt_sched_class;
4371 else
4372 p->sched_class = &fair_sched_class;
4373 set_load_weight(p);
4374 }
4375
4376 /*
4377 * check the target process has a UID that matches the current process's
4378 */
4379 static bool check_same_owner(struct task_struct *p)
4380 {
4381 const struct cred *cred = current_cred(), *pcred;
4382 bool match;
4383
4384 rcu_read_lock();
4385 pcred = __task_cred(p);
4386 match = (cred->euid == pcred->euid ||
4387 cred->euid == pcred->uid);
4388 rcu_read_unlock();
4389 return match;
4390 }
4391
4392 static int __sched_setscheduler(struct task_struct *p, int policy,
4393 struct sched_param *param, bool user)
4394 {
4395 int retval, oldprio, oldpolicy = -1, on_rq, running;
4396 unsigned long flags;
4397 const struct sched_class *prev_class;
4398 struct rq *rq;
4399 int reset_on_fork;
4400
4401 /* may grab non-irq protected spin_locks */
4402 BUG_ON(in_interrupt());
4403 recheck:
4404 /* double check policy once rq lock held */
4405 if (policy < 0) {
4406 reset_on_fork = p->sched_reset_on_fork;
4407 policy = oldpolicy = p->policy;
4408 } else {
4409 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4410 policy &= ~SCHED_RESET_ON_FORK;
4411
4412 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4413 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4414 policy != SCHED_IDLE)
4415 return -EINVAL;
4416 }
4417
4418 /*
4419 * Valid priorities for SCHED_FIFO and SCHED_RR are
4420 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4421 * SCHED_BATCH and SCHED_IDLE is 0.
4422 */
4423 if (param->sched_priority < 0 ||
4424 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4425 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4426 return -EINVAL;
4427 if (rt_policy(policy) != (param->sched_priority != 0))
4428 return -EINVAL;
4429
4430 /*
4431 * Allow unprivileged RT tasks to decrease priority:
4432 */
4433 if (user && !capable(CAP_SYS_NICE)) {
4434 if (rt_policy(policy)) {
4435 unsigned long rlim_rtprio;
4436
4437 if (!lock_task_sighand(p, &flags))
4438 return -ESRCH;
4439 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4440 unlock_task_sighand(p, &flags);
4441
4442 /* can't set/change the rt policy */
4443 if (policy != p->policy && !rlim_rtprio)
4444 return -EPERM;
4445
4446 /* can't increase priority */
4447 if (param->sched_priority > p->rt_priority &&
4448 param->sched_priority > rlim_rtprio)
4449 return -EPERM;
4450 }
4451 /*
4452 * Like positive nice levels, dont allow tasks to
4453 * move out of SCHED_IDLE either:
4454 */
4455 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4456 return -EPERM;
4457
4458 /* can't change other user's priorities */
4459 if (!check_same_owner(p))
4460 return -EPERM;
4461
4462 /* Normal users shall not reset the sched_reset_on_fork flag */
4463 if (p->sched_reset_on_fork && !reset_on_fork)
4464 return -EPERM;
4465 }
4466
4467 if (user) {
4468 #ifdef CONFIG_RT_GROUP_SCHED
4469 /*
4470 * Do not allow realtime tasks into groups that have no runtime
4471 * assigned.
4472 */
4473 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4474 task_group(p)->rt_bandwidth.rt_runtime == 0)
4475 return -EPERM;
4476 #endif
4477
4478 retval = security_task_setscheduler(p, policy, param);
4479 if (retval)
4480 return retval;
4481 }
4482
4483 /*
4484 * make sure no PI-waiters arrive (or leave) while we are
4485 * changing the priority of the task:
4486 */
4487 raw_spin_lock_irqsave(&p->pi_lock, flags);
4488 /*
4489 * To be able to change p->policy safely, the apropriate
4490 * runqueue lock must be held.
4491 */
4492 rq = __task_rq_lock(p);
4493 /* recheck policy now with rq lock held */
4494 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4495 policy = oldpolicy = -1;
4496 __task_rq_unlock(rq);
4497 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4498 goto recheck;
4499 }
4500 on_rq = p->se.on_rq;
4501 running = task_current(rq, p);
4502 if (on_rq)
4503 deactivate_task(rq, p, 0);
4504 if (running)
4505 p->sched_class->put_prev_task(rq, p);
4506
4507 p->sched_reset_on_fork = reset_on_fork;
4508
4509 oldprio = p->prio;
4510 prev_class = p->sched_class;
4511 __setscheduler(rq, p, policy, param->sched_priority);
4512
4513 if (running)
4514 p->sched_class->set_curr_task(rq);
4515 if (on_rq) {
4516 activate_task(rq, p, 0);
4517
4518 check_class_changed(rq, p, prev_class, oldprio, running);
4519 }
4520 __task_rq_unlock(rq);
4521 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4522
4523 rt_mutex_adjust_pi(p);
4524
4525 return 0;
4526 }
4527
4528 /**
4529 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4530 * @p: the task in question.
4531 * @policy: new policy.
4532 * @param: structure containing the new RT priority.
4533 *
4534 * NOTE that the task may be already dead.
4535 */
4536 int sched_setscheduler(struct task_struct *p, int policy,
4537 struct sched_param *param)
4538 {
4539 return __sched_setscheduler(p, policy, param, true);
4540 }
4541 EXPORT_SYMBOL_GPL(sched_setscheduler);
4542
4543 /**
4544 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4545 * @p: the task in question.
4546 * @policy: new policy.
4547 * @param: structure containing the new RT priority.
4548 *
4549 * Just like sched_setscheduler, only don't bother checking if the
4550 * current context has permission. For example, this is needed in
4551 * stop_machine(): we create temporary high priority worker threads,
4552 * but our caller might not have that capability.
4553 */
4554 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4555 struct sched_param *param)
4556 {
4557 return __sched_setscheduler(p, policy, param, false);
4558 }
4559
4560 static int
4561 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4562 {
4563 struct sched_param lparam;
4564 struct task_struct *p;
4565 int retval;
4566
4567 if (!param || pid < 0)
4568 return -EINVAL;
4569 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4570 return -EFAULT;
4571
4572 rcu_read_lock();
4573 retval = -ESRCH;
4574 p = find_process_by_pid(pid);
4575 if (p != NULL)
4576 retval = sched_setscheduler(p, policy, &lparam);
4577 rcu_read_unlock();
4578
4579 return retval;
4580 }
4581
4582 /**
4583 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4584 * @pid: the pid in question.
4585 * @policy: new policy.
4586 * @param: structure containing the new RT priority.
4587 */
4588 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4589 struct sched_param __user *, param)
4590 {
4591 /* negative values for policy are not valid */
4592 if (policy < 0)
4593 return -EINVAL;
4594
4595 return do_sched_setscheduler(pid, policy, param);
4596 }
4597
4598 /**
4599 * sys_sched_setparam - set/change the RT priority of a thread
4600 * @pid: the pid in question.
4601 * @param: structure containing the new RT priority.
4602 */
4603 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4604 {
4605 return do_sched_setscheduler(pid, -1, param);
4606 }
4607
4608 /**
4609 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4610 * @pid: the pid in question.
4611 */
4612 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4613 {
4614 struct task_struct *p;
4615 int retval;
4616
4617 if (pid < 0)
4618 return -EINVAL;
4619
4620 retval = -ESRCH;
4621 rcu_read_lock();
4622 p = find_process_by_pid(pid);
4623 if (p) {
4624 retval = security_task_getscheduler(p);
4625 if (!retval)
4626 retval = p->policy
4627 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4628 }
4629 rcu_read_unlock();
4630 return retval;
4631 }
4632
4633 /**
4634 * sys_sched_getparam - get the RT priority of a thread
4635 * @pid: the pid in question.
4636 * @param: structure containing the RT priority.
4637 */
4638 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4639 {
4640 struct sched_param lp;
4641 struct task_struct *p;
4642 int retval;
4643
4644 if (!param || pid < 0)
4645 return -EINVAL;
4646
4647 rcu_read_lock();
4648 p = find_process_by_pid(pid);
4649 retval = -ESRCH;
4650 if (!p)
4651 goto out_unlock;
4652
4653 retval = security_task_getscheduler(p);
4654 if (retval)
4655 goto out_unlock;
4656
4657 lp.sched_priority = p->rt_priority;
4658 rcu_read_unlock();
4659
4660 /*
4661 * This one might sleep, we cannot do it with a spinlock held ...
4662 */
4663 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4664
4665 return retval;
4666
4667 out_unlock:
4668 rcu_read_unlock();
4669 return retval;
4670 }
4671
4672 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4673 {
4674 cpumask_var_t cpus_allowed, new_mask;
4675 struct task_struct *p;
4676 int retval;
4677
4678 get_online_cpus();
4679 rcu_read_lock();
4680
4681 p = find_process_by_pid(pid);
4682 if (!p) {
4683 rcu_read_unlock();
4684 put_online_cpus();
4685 return -ESRCH;
4686 }
4687
4688 /* Prevent p going away */
4689 get_task_struct(p);
4690 rcu_read_unlock();
4691
4692 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4693 retval = -ENOMEM;
4694 goto out_put_task;
4695 }
4696 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4697 retval = -ENOMEM;
4698 goto out_free_cpus_allowed;
4699 }
4700 retval = -EPERM;
4701 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4702 goto out_unlock;
4703
4704 retval = security_task_setscheduler(p, 0, NULL);
4705 if (retval)
4706 goto out_unlock;
4707
4708 cpuset_cpus_allowed(p, cpus_allowed);
4709 cpumask_and(new_mask, in_mask, cpus_allowed);
4710 again:
4711 retval = set_cpus_allowed_ptr(p, new_mask);
4712
4713 if (!retval) {
4714 cpuset_cpus_allowed(p, cpus_allowed);
4715 if (!cpumask_subset(new_mask, cpus_allowed)) {
4716 /*
4717 * We must have raced with a concurrent cpuset
4718 * update. Just reset the cpus_allowed to the
4719 * cpuset's cpus_allowed
4720 */
4721 cpumask_copy(new_mask, cpus_allowed);
4722 goto again;
4723 }
4724 }
4725 out_unlock:
4726 free_cpumask_var(new_mask);
4727 out_free_cpus_allowed:
4728 free_cpumask_var(cpus_allowed);
4729 out_put_task:
4730 put_task_struct(p);
4731 put_online_cpus();
4732 return retval;
4733 }
4734
4735 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4736 struct cpumask *new_mask)
4737 {
4738 if (len < cpumask_size())
4739 cpumask_clear(new_mask);
4740 else if (len > cpumask_size())
4741 len = cpumask_size();
4742
4743 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4744 }
4745
4746 /**
4747 * sys_sched_setaffinity - set the cpu affinity of a process
4748 * @pid: pid of the process
4749 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4750 * @user_mask_ptr: user-space pointer to the new cpu mask
4751 */
4752 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4753 unsigned long __user *, user_mask_ptr)
4754 {
4755 cpumask_var_t new_mask;
4756 int retval;
4757
4758 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4759 return -ENOMEM;
4760
4761 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4762 if (retval == 0)
4763 retval = sched_setaffinity(pid, new_mask);
4764 free_cpumask_var(new_mask);
4765 return retval;
4766 }
4767
4768 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4769 {
4770 struct task_struct *p;
4771 unsigned long flags;
4772 struct rq *rq;
4773 int retval;
4774
4775 get_online_cpus();
4776 rcu_read_lock();
4777
4778 retval = -ESRCH;
4779 p = find_process_by_pid(pid);
4780 if (!p)
4781 goto out_unlock;
4782
4783 retval = security_task_getscheduler(p);
4784 if (retval)
4785 goto out_unlock;
4786
4787 rq = task_rq_lock(p, &flags);
4788 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4789 task_rq_unlock(rq, &flags);
4790
4791 out_unlock:
4792 rcu_read_unlock();
4793 put_online_cpus();
4794
4795 return retval;
4796 }
4797
4798 /**
4799 * sys_sched_getaffinity - get the cpu affinity of a process
4800 * @pid: pid of the process
4801 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4802 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4803 */
4804 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4805 unsigned long __user *, user_mask_ptr)
4806 {
4807 int ret;
4808 cpumask_var_t mask;
4809
4810 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4811 return -EINVAL;
4812 if (len & (sizeof(unsigned long)-1))
4813 return -EINVAL;
4814
4815 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4816 return -ENOMEM;
4817
4818 ret = sched_getaffinity(pid, mask);
4819 if (ret == 0) {
4820 size_t retlen = min_t(size_t, len, cpumask_size());
4821
4822 if (copy_to_user(user_mask_ptr, mask, retlen))
4823 ret = -EFAULT;
4824 else
4825 ret = retlen;
4826 }
4827 free_cpumask_var(mask);
4828
4829 return ret;
4830 }
4831
4832 /**
4833 * sys_sched_yield - yield the current processor to other threads.
4834 *
4835 * This function yields the current CPU to other tasks. If there are no
4836 * other threads running on this CPU then this function will return.
4837 */
4838 SYSCALL_DEFINE0(sched_yield)
4839 {
4840 struct rq *rq = this_rq_lock();
4841
4842 schedstat_inc(rq, yld_count);
4843 current->sched_class->yield_task(rq);
4844
4845 /*
4846 * Since we are going to call schedule() anyway, there's
4847 * no need to preempt or enable interrupts:
4848 */
4849 __release(rq->lock);
4850 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4851 do_raw_spin_unlock(&rq->lock);
4852 preempt_enable_no_resched();
4853
4854 schedule();
4855
4856 return 0;
4857 }
4858
4859 static inline int should_resched(void)
4860 {
4861 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4862 }
4863
4864 static void __cond_resched(void)
4865 {
4866 add_preempt_count(PREEMPT_ACTIVE);
4867 schedule();
4868 sub_preempt_count(PREEMPT_ACTIVE);
4869 }
4870
4871 int __sched _cond_resched(void)
4872 {
4873 if (should_resched()) {
4874 __cond_resched();
4875 return 1;
4876 }
4877 return 0;
4878 }
4879 EXPORT_SYMBOL(_cond_resched);
4880
4881 /*
4882 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4883 * call schedule, and on return reacquire the lock.
4884 *
4885 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4886 * operations here to prevent schedule() from being called twice (once via
4887 * spin_unlock(), once by hand).
4888 */
4889 int __cond_resched_lock(spinlock_t *lock)
4890 {
4891 int resched = should_resched();
4892 int ret = 0;
4893
4894 lockdep_assert_held(lock);
4895
4896 if (spin_needbreak(lock) || resched) {
4897 spin_unlock(lock);
4898 if (resched)
4899 __cond_resched();
4900 else
4901 cpu_relax();
4902 ret = 1;
4903 spin_lock(lock);
4904 }
4905 return ret;
4906 }
4907 EXPORT_SYMBOL(__cond_resched_lock);
4908
4909 int __sched __cond_resched_softirq(void)
4910 {
4911 BUG_ON(!in_softirq());
4912
4913 if (should_resched()) {
4914 local_bh_enable();
4915 __cond_resched();
4916 local_bh_disable();
4917 return 1;
4918 }
4919 return 0;
4920 }
4921 EXPORT_SYMBOL(__cond_resched_softirq);
4922
4923 /**
4924 * yield - yield the current processor to other threads.
4925 *
4926 * This is a shortcut for kernel-space yielding - it marks the
4927 * thread runnable and calls sys_sched_yield().
4928 */
4929 void __sched yield(void)
4930 {
4931 set_current_state(TASK_RUNNING);
4932 sys_sched_yield();
4933 }
4934 EXPORT_SYMBOL(yield);
4935
4936 /*
4937 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4938 * that process accounting knows that this is a task in IO wait state.
4939 */
4940 void __sched io_schedule(void)
4941 {
4942 struct rq *rq = raw_rq();
4943
4944 delayacct_blkio_start();
4945 atomic_inc(&rq->nr_iowait);
4946 current->in_iowait = 1;
4947 schedule();
4948 current->in_iowait = 0;
4949 atomic_dec(&rq->nr_iowait);
4950 delayacct_blkio_end();
4951 }
4952 EXPORT_SYMBOL(io_schedule);
4953
4954 long __sched io_schedule_timeout(long timeout)
4955 {
4956 struct rq *rq = raw_rq();
4957 long ret;
4958
4959 delayacct_blkio_start();
4960 atomic_inc(&rq->nr_iowait);
4961 current->in_iowait = 1;
4962 ret = schedule_timeout(timeout);
4963 current->in_iowait = 0;
4964 atomic_dec(&rq->nr_iowait);
4965 delayacct_blkio_end();
4966 return ret;
4967 }
4968
4969 /**
4970 * sys_sched_get_priority_max - return maximum RT priority.
4971 * @policy: scheduling class.
4972 *
4973 * this syscall returns the maximum rt_priority that can be used
4974 * by a given scheduling class.
4975 */
4976 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4977 {
4978 int ret = -EINVAL;
4979
4980 switch (policy) {
4981 case SCHED_FIFO:
4982 case SCHED_RR:
4983 ret = MAX_USER_RT_PRIO-1;
4984 break;
4985 case SCHED_NORMAL:
4986 case SCHED_BATCH:
4987 case SCHED_IDLE:
4988 ret = 0;
4989 break;
4990 }
4991 return ret;
4992 }
4993
4994 /**
4995 * sys_sched_get_priority_min - return minimum RT priority.
4996 * @policy: scheduling class.
4997 *
4998 * this syscall returns the minimum rt_priority that can be used
4999 * by a given scheduling class.
5000 */
5001 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5002 {
5003 int ret = -EINVAL;
5004
5005 switch (policy) {
5006 case SCHED_FIFO:
5007 case SCHED_RR:
5008 ret = 1;
5009 break;
5010 case SCHED_NORMAL:
5011 case SCHED_BATCH:
5012 case SCHED_IDLE:
5013 ret = 0;
5014 }
5015 return ret;
5016 }
5017
5018 /**
5019 * sys_sched_rr_get_interval - return the default timeslice of a process.
5020 * @pid: pid of the process.
5021 * @interval: userspace pointer to the timeslice value.
5022 *
5023 * this syscall writes the default timeslice value of a given process
5024 * into the user-space timespec buffer. A value of '0' means infinity.
5025 */
5026 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5027 struct timespec __user *, interval)
5028 {
5029 struct task_struct *p;
5030 unsigned int time_slice;
5031 unsigned long flags;
5032 struct rq *rq;
5033 int retval;
5034 struct timespec t;
5035
5036 if (pid < 0)
5037 return -EINVAL;
5038
5039 retval = -ESRCH;
5040 rcu_read_lock();
5041 p = find_process_by_pid(pid);
5042 if (!p)
5043 goto out_unlock;
5044
5045 retval = security_task_getscheduler(p);
5046 if (retval)
5047 goto out_unlock;
5048
5049 rq = task_rq_lock(p, &flags);
5050 time_slice = p->sched_class->get_rr_interval(rq, p);
5051 task_rq_unlock(rq, &flags);
5052
5053 rcu_read_unlock();
5054 jiffies_to_timespec(time_slice, &t);
5055 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5056 return retval;
5057
5058 out_unlock:
5059 rcu_read_unlock();
5060 return retval;
5061 }
5062
5063 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5064
5065 void sched_show_task(struct task_struct *p)
5066 {
5067 unsigned long free = 0;
5068 unsigned state;
5069
5070 state = p->state ? __ffs(p->state) + 1 : 0;
5071 printk(KERN_INFO "%-13.13s %c", p->comm,
5072 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5073 #if BITS_PER_LONG == 32
5074 if (state == TASK_RUNNING)
5075 printk(KERN_CONT " running ");
5076 else
5077 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5078 #else
5079 if (state == TASK_RUNNING)
5080 printk(KERN_CONT " running task ");
5081 else
5082 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5083 #endif
5084 #ifdef CONFIG_DEBUG_STACK_USAGE
5085 free = stack_not_used(p);
5086 #endif
5087 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5088 task_pid_nr(p), task_pid_nr(p->real_parent),
5089 (unsigned long)task_thread_info(p)->flags);
5090
5091 show_stack(p, NULL);
5092 }
5093
5094 void show_state_filter(unsigned long state_filter)
5095 {
5096 struct task_struct *g, *p;
5097
5098 #if BITS_PER_LONG == 32
5099 printk(KERN_INFO
5100 " task PC stack pid father\n");
5101 #else
5102 printk(KERN_INFO
5103 " task PC stack pid father\n");
5104 #endif
5105 read_lock(&tasklist_lock);
5106 do_each_thread(g, p) {
5107 /*
5108 * reset the NMI-timeout, listing all files on a slow
5109 * console might take alot of time:
5110 */
5111 touch_nmi_watchdog();
5112 if (!state_filter || (p->state & state_filter))
5113 sched_show_task(p);
5114 } while_each_thread(g, p);
5115
5116 touch_all_softlockup_watchdogs();
5117
5118 #ifdef CONFIG_SCHED_DEBUG
5119 sysrq_sched_debug_show();
5120 #endif
5121 read_unlock(&tasklist_lock);
5122 /*
5123 * Only show locks if all tasks are dumped:
5124 */
5125 if (!state_filter)
5126 debug_show_all_locks();
5127 }
5128
5129 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5130 {
5131 idle->sched_class = &idle_sched_class;
5132 }
5133
5134 /**
5135 * init_idle - set up an idle thread for a given CPU
5136 * @idle: task in question
5137 * @cpu: cpu the idle task belongs to
5138 *
5139 * NOTE: this function does not set the idle thread's NEED_RESCHED
5140 * flag, to make booting more robust.
5141 */
5142 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5143 {
5144 struct rq *rq = cpu_rq(cpu);
5145 unsigned long flags;
5146
5147 raw_spin_lock_irqsave(&rq->lock, flags);
5148
5149 __sched_fork(idle);
5150 idle->state = TASK_RUNNING;
5151 idle->se.exec_start = sched_clock();
5152
5153 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5154 __set_task_cpu(idle, cpu);
5155
5156 rq->curr = rq->idle = idle;
5157 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5158 idle->oncpu = 1;
5159 #endif
5160 raw_spin_unlock_irqrestore(&rq->lock, flags);
5161
5162 /* Set the preempt count _outside_ the spinlocks! */
5163 #if defined(CONFIG_PREEMPT)
5164 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5165 #else
5166 task_thread_info(idle)->preempt_count = 0;
5167 #endif
5168 /*
5169 * The idle tasks have their own, simple scheduling class:
5170 */
5171 idle->sched_class = &idle_sched_class;
5172 ftrace_graph_init_task(idle);
5173 }
5174
5175 /*
5176 * In a system that switches off the HZ timer nohz_cpu_mask
5177 * indicates which cpus entered this state. This is used
5178 * in the rcu update to wait only for active cpus. For system
5179 * which do not switch off the HZ timer nohz_cpu_mask should
5180 * always be CPU_BITS_NONE.
5181 */
5182 cpumask_var_t nohz_cpu_mask;
5183
5184 /*
5185 * Increase the granularity value when there are more CPUs,
5186 * because with more CPUs the 'effective latency' as visible
5187 * to users decreases. But the relationship is not linear,
5188 * so pick a second-best guess by going with the log2 of the
5189 * number of CPUs.
5190 *
5191 * This idea comes from the SD scheduler of Con Kolivas:
5192 */
5193 static int get_update_sysctl_factor(void)
5194 {
5195 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5196 unsigned int factor;
5197
5198 switch (sysctl_sched_tunable_scaling) {
5199 case SCHED_TUNABLESCALING_NONE:
5200 factor = 1;
5201 break;
5202 case SCHED_TUNABLESCALING_LINEAR:
5203 factor = cpus;
5204 break;
5205 case SCHED_TUNABLESCALING_LOG:
5206 default:
5207 factor = 1 + ilog2(cpus);
5208 break;
5209 }
5210
5211 return factor;
5212 }
5213
5214 static void update_sysctl(void)
5215 {
5216 unsigned int factor = get_update_sysctl_factor();
5217
5218 #define SET_SYSCTL(name) \
5219 (sysctl_##name = (factor) * normalized_sysctl_##name)
5220 SET_SYSCTL(sched_min_granularity);
5221 SET_SYSCTL(sched_latency);
5222 SET_SYSCTL(sched_wakeup_granularity);
5223 SET_SYSCTL(sched_shares_ratelimit);
5224 #undef SET_SYSCTL
5225 }
5226
5227 static inline void sched_init_granularity(void)
5228 {
5229 update_sysctl();
5230 }
5231
5232 #ifdef CONFIG_SMP
5233 /*
5234 * This is how migration works:
5235 *
5236 * 1) we invoke migration_cpu_stop() on the target CPU using
5237 * stop_one_cpu().
5238 * 2) stopper starts to run (implicitly forcing the migrated thread
5239 * off the CPU)
5240 * 3) it checks whether the migrated task is still in the wrong runqueue.
5241 * 4) if it's in the wrong runqueue then the migration thread removes
5242 * it and puts it into the right queue.
5243 * 5) stopper completes and stop_one_cpu() returns and the migration
5244 * is done.
5245 */
5246
5247 /*
5248 * Change a given task's CPU affinity. Migrate the thread to a
5249 * proper CPU and schedule it away if the CPU it's executing on
5250 * is removed from the allowed bitmask.
5251 *
5252 * NOTE: the caller must have a valid reference to the task, the
5253 * task must not exit() & deallocate itself prematurely. The
5254 * call is not atomic; no spinlocks may be held.
5255 */
5256 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5257 {
5258 unsigned long flags;
5259 struct rq *rq;
5260 unsigned int dest_cpu;
5261 int ret = 0;
5262
5263 /*
5264 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5265 * drop the rq->lock and still rely on ->cpus_allowed.
5266 */
5267 again:
5268 while (task_is_waking(p))
5269 cpu_relax();
5270 rq = task_rq_lock(p, &flags);
5271 if (task_is_waking(p)) {
5272 task_rq_unlock(rq, &flags);
5273 goto again;
5274 }
5275
5276 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5277 ret = -EINVAL;
5278 goto out;
5279 }
5280
5281 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5282 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5283 ret = -EINVAL;
5284 goto out;
5285 }
5286
5287 if (p->sched_class->set_cpus_allowed)
5288 p->sched_class->set_cpus_allowed(p, new_mask);
5289 else {
5290 cpumask_copy(&p->cpus_allowed, new_mask);
5291 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5292 }
5293
5294 /* Can the task run on the task's current CPU? If so, we're done */
5295 if (cpumask_test_cpu(task_cpu(p), new_mask))
5296 goto out;
5297
5298 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5299 if (migrate_task(p, dest_cpu)) {
5300 struct migration_arg arg = { p, dest_cpu };
5301 /* Need help from migration thread: drop lock and wait. */
5302 task_rq_unlock(rq, &flags);
5303 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5304 tlb_migrate_finish(p->mm);
5305 return 0;
5306 }
5307 out:
5308 task_rq_unlock(rq, &flags);
5309
5310 return ret;
5311 }
5312 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5313
5314 /*
5315 * Move (not current) task off this cpu, onto dest cpu. We're doing
5316 * this because either it can't run here any more (set_cpus_allowed()
5317 * away from this CPU, or CPU going down), or because we're
5318 * attempting to rebalance this task on exec (sched_exec).
5319 *
5320 * So we race with normal scheduler movements, but that's OK, as long
5321 * as the task is no longer on this CPU.
5322 *
5323 * Returns non-zero if task was successfully migrated.
5324 */
5325 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5326 {
5327 struct rq *rq_dest, *rq_src;
5328 int ret = 0;
5329
5330 if (unlikely(!cpu_active(dest_cpu)))
5331 return ret;
5332
5333 rq_src = cpu_rq(src_cpu);
5334 rq_dest = cpu_rq(dest_cpu);
5335
5336 double_rq_lock(rq_src, rq_dest);
5337 /* Already moved. */
5338 if (task_cpu(p) != src_cpu)
5339 goto done;
5340 /* Affinity changed (again). */
5341 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5342 goto fail;
5343
5344 /*
5345 * If we're not on a rq, the next wake-up will ensure we're
5346 * placed properly.
5347 */
5348 if (p->se.on_rq) {
5349 deactivate_task(rq_src, p, 0);
5350 set_task_cpu(p, dest_cpu);
5351 activate_task(rq_dest, p, 0);
5352 check_preempt_curr(rq_dest, p, 0);
5353 }
5354 done:
5355 ret = 1;
5356 fail:
5357 double_rq_unlock(rq_src, rq_dest);
5358 return ret;
5359 }
5360
5361 /*
5362 * migration_cpu_stop - this will be executed by a highprio stopper thread
5363 * and performs thread migration by bumping thread off CPU then
5364 * 'pushing' onto another runqueue.
5365 */
5366 static int migration_cpu_stop(void *data)
5367 {
5368 struct migration_arg *arg = data;
5369
5370 /*
5371 * The original target cpu might have gone down and we might
5372 * be on another cpu but it doesn't matter.
5373 */
5374 local_irq_disable();
5375 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5376 local_irq_enable();
5377 return 0;
5378 }
5379
5380 #ifdef CONFIG_HOTPLUG_CPU
5381 /*
5382 * Figure out where task on dead CPU should go, use force if necessary.
5383 */
5384 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5385 {
5386 struct rq *rq = cpu_rq(dead_cpu);
5387 int needs_cpu, uninitialized_var(dest_cpu);
5388 unsigned long flags;
5389
5390 local_irq_save(flags);
5391
5392 raw_spin_lock(&rq->lock);
5393 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5394 if (needs_cpu)
5395 dest_cpu = select_fallback_rq(dead_cpu, p);
5396 raw_spin_unlock(&rq->lock);
5397 /*
5398 * It can only fail if we race with set_cpus_allowed(),
5399 * in the racer should migrate the task anyway.
5400 */
5401 if (needs_cpu)
5402 __migrate_task(p, dead_cpu, dest_cpu);
5403 local_irq_restore(flags);
5404 }
5405
5406 /*
5407 * While a dead CPU has no uninterruptible tasks queued at this point,
5408 * it might still have a nonzero ->nr_uninterruptible counter, because
5409 * for performance reasons the counter is not stricly tracking tasks to
5410 * their home CPUs. So we just add the counter to another CPU's counter,
5411 * to keep the global sum constant after CPU-down:
5412 */
5413 static void migrate_nr_uninterruptible(struct rq *rq_src)
5414 {
5415 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5416 unsigned long flags;
5417
5418 local_irq_save(flags);
5419 double_rq_lock(rq_src, rq_dest);
5420 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5421 rq_src->nr_uninterruptible = 0;
5422 double_rq_unlock(rq_src, rq_dest);
5423 local_irq_restore(flags);
5424 }
5425
5426 /* Run through task list and migrate tasks from the dead cpu. */
5427 static void migrate_live_tasks(int src_cpu)
5428 {
5429 struct task_struct *p, *t;
5430
5431 read_lock(&tasklist_lock);
5432
5433 do_each_thread(t, p) {
5434 if (p == current)
5435 continue;
5436
5437 if (task_cpu(p) == src_cpu)
5438 move_task_off_dead_cpu(src_cpu, p);
5439 } while_each_thread(t, p);
5440
5441 read_unlock(&tasklist_lock);
5442 }
5443
5444 /*
5445 * Schedules idle task to be the next runnable task on current CPU.
5446 * It does so by boosting its priority to highest possible.
5447 * Used by CPU offline code.
5448 */
5449 void sched_idle_next(void)
5450 {
5451 int this_cpu = smp_processor_id();
5452 struct rq *rq = cpu_rq(this_cpu);
5453 struct task_struct *p = rq->idle;
5454 unsigned long flags;
5455
5456 /* cpu has to be offline */
5457 BUG_ON(cpu_online(this_cpu));
5458
5459 /*
5460 * Strictly not necessary since rest of the CPUs are stopped by now
5461 * and interrupts disabled on the current cpu.
5462 */
5463 raw_spin_lock_irqsave(&rq->lock, flags);
5464
5465 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5466
5467 activate_task(rq, p, 0);
5468
5469 raw_spin_unlock_irqrestore(&rq->lock, flags);
5470 }
5471
5472 /*
5473 * Ensures that the idle task is using init_mm right before its cpu goes
5474 * offline.
5475 */
5476 void idle_task_exit(void)
5477 {
5478 struct mm_struct *mm = current->active_mm;
5479
5480 BUG_ON(cpu_online(smp_processor_id()));
5481
5482 if (mm != &init_mm)
5483 switch_mm(mm, &init_mm, current);
5484 mmdrop(mm);
5485 }
5486
5487 /* called under rq->lock with disabled interrupts */
5488 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5489 {
5490 struct rq *rq = cpu_rq(dead_cpu);
5491
5492 /* Must be exiting, otherwise would be on tasklist. */
5493 BUG_ON(!p->exit_state);
5494
5495 /* Cannot have done final schedule yet: would have vanished. */
5496 BUG_ON(p->state == TASK_DEAD);
5497
5498 get_task_struct(p);
5499
5500 /*
5501 * Drop lock around migration; if someone else moves it,
5502 * that's OK. No task can be added to this CPU, so iteration is
5503 * fine.
5504 */
5505 raw_spin_unlock_irq(&rq->lock);
5506 move_task_off_dead_cpu(dead_cpu, p);
5507 raw_spin_lock_irq(&rq->lock);
5508
5509 put_task_struct(p);
5510 }
5511
5512 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5513 static void migrate_dead_tasks(unsigned int dead_cpu)
5514 {
5515 struct rq *rq = cpu_rq(dead_cpu);
5516 struct task_struct *next;
5517
5518 for ( ; ; ) {
5519 if (!rq->nr_running)
5520 break;
5521 next = pick_next_task(rq);
5522 if (!next)
5523 break;
5524 next->sched_class->put_prev_task(rq, next);
5525 migrate_dead(dead_cpu, next);
5526
5527 }
5528 }
5529
5530 /*
5531 * remove the tasks which were accounted by rq from calc_load_tasks.
5532 */
5533 static void calc_global_load_remove(struct rq *rq)
5534 {
5535 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5536 rq->calc_load_active = 0;
5537 }
5538 #endif /* CONFIG_HOTPLUG_CPU */
5539
5540 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5541
5542 static struct ctl_table sd_ctl_dir[] = {
5543 {
5544 .procname = "sched_domain",
5545 .mode = 0555,
5546 },
5547 {}
5548 };
5549
5550 static struct ctl_table sd_ctl_root[] = {
5551 {
5552 .procname = "kernel",
5553 .mode = 0555,
5554 .child = sd_ctl_dir,
5555 },
5556 {}
5557 };
5558
5559 static struct ctl_table *sd_alloc_ctl_entry(int n)
5560 {
5561 struct ctl_table *entry =
5562 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5563
5564 return entry;
5565 }
5566
5567 static void sd_free_ctl_entry(struct ctl_table **tablep)
5568 {
5569 struct ctl_table *entry;
5570
5571 /*
5572 * In the intermediate directories, both the child directory and
5573 * procname are dynamically allocated and could fail but the mode
5574 * will always be set. In the lowest directory the names are
5575 * static strings and all have proc handlers.
5576 */
5577 for (entry = *tablep; entry->mode; entry++) {
5578 if (entry->child)
5579 sd_free_ctl_entry(&entry->child);
5580 if (entry->proc_handler == NULL)
5581 kfree(entry->procname);
5582 }
5583
5584 kfree(*tablep);
5585 *tablep = NULL;
5586 }
5587
5588 static void
5589 set_table_entry(struct ctl_table *entry,
5590 const char *procname, void *data, int maxlen,
5591 mode_t mode, proc_handler *proc_handler)
5592 {
5593 entry->procname = procname;
5594 entry->data = data;
5595 entry->maxlen = maxlen;
5596 entry->mode = mode;
5597 entry->proc_handler = proc_handler;
5598 }
5599
5600 static struct ctl_table *
5601 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5602 {
5603 struct ctl_table *table = sd_alloc_ctl_entry(13);
5604
5605 if (table == NULL)
5606 return NULL;
5607
5608 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5609 sizeof(long), 0644, proc_doulongvec_minmax);
5610 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5611 sizeof(long), 0644, proc_doulongvec_minmax);
5612 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5613 sizeof(int), 0644, proc_dointvec_minmax);
5614 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5615 sizeof(int), 0644, proc_dointvec_minmax);
5616 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5617 sizeof(int), 0644, proc_dointvec_minmax);
5618 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5619 sizeof(int), 0644, proc_dointvec_minmax);
5620 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5621 sizeof(int), 0644, proc_dointvec_minmax);
5622 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5623 sizeof(int), 0644, proc_dointvec_minmax);
5624 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5625 sizeof(int), 0644, proc_dointvec_minmax);
5626 set_table_entry(&table[9], "cache_nice_tries",
5627 &sd->cache_nice_tries,
5628 sizeof(int), 0644, proc_dointvec_minmax);
5629 set_table_entry(&table[10], "flags", &sd->flags,
5630 sizeof(int), 0644, proc_dointvec_minmax);
5631 set_table_entry(&table[11], "name", sd->name,
5632 CORENAME_MAX_SIZE, 0444, proc_dostring);
5633 /* &table[12] is terminator */
5634
5635 return table;
5636 }
5637
5638 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5639 {
5640 struct ctl_table *entry, *table;
5641 struct sched_domain *sd;
5642 int domain_num = 0, i;
5643 char buf[32];
5644
5645 for_each_domain(cpu, sd)
5646 domain_num++;
5647 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5648 if (table == NULL)
5649 return NULL;
5650
5651 i = 0;
5652 for_each_domain(cpu, sd) {
5653 snprintf(buf, 32, "domain%d", i);
5654 entry->procname = kstrdup(buf, GFP_KERNEL);
5655 entry->mode = 0555;
5656 entry->child = sd_alloc_ctl_domain_table(sd);
5657 entry++;
5658 i++;
5659 }
5660 return table;
5661 }
5662
5663 static struct ctl_table_header *sd_sysctl_header;
5664 static void register_sched_domain_sysctl(void)
5665 {
5666 int i, cpu_num = num_possible_cpus();
5667 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5668 char buf[32];
5669
5670 WARN_ON(sd_ctl_dir[0].child);
5671 sd_ctl_dir[0].child = entry;
5672
5673 if (entry == NULL)
5674 return;
5675
5676 for_each_possible_cpu(i) {
5677 snprintf(buf, 32, "cpu%d", i);
5678 entry->procname = kstrdup(buf, GFP_KERNEL);
5679 entry->mode = 0555;
5680 entry->child = sd_alloc_ctl_cpu_table(i);
5681 entry++;
5682 }
5683
5684 WARN_ON(sd_sysctl_header);
5685 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5686 }
5687
5688 /* may be called multiple times per register */
5689 static void unregister_sched_domain_sysctl(void)
5690 {
5691 if (sd_sysctl_header)
5692 unregister_sysctl_table(sd_sysctl_header);
5693 sd_sysctl_header = NULL;
5694 if (sd_ctl_dir[0].child)
5695 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5696 }
5697 #else
5698 static void register_sched_domain_sysctl(void)
5699 {
5700 }
5701 static void unregister_sched_domain_sysctl(void)
5702 {
5703 }
5704 #endif
5705
5706 static void set_rq_online(struct rq *rq)
5707 {
5708 if (!rq->online) {
5709 const struct sched_class *class;
5710
5711 cpumask_set_cpu(rq->cpu, rq->rd->online);
5712 rq->online = 1;
5713
5714 for_each_class(class) {
5715 if (class->rq_online)
5716 class->rq_online(rq);
5717 }
5718 }
5719 }
5720
5721 static void set_rq_offline(struct rq *rq)
5722 {
5723 if (rq->online) {
5724 const struct sched_class *class;
5725
5726 for_each_class(class) {
5727 if (class->rq_offline)
5728 class->rq_offline(rq);
5729 }
5730
5731 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5732 rq->online = 0;
5733 }
5734 }
5735
5736 /*
5737 * migration_call - callback that gets triggered when a CPU is added.
5738 * Here we can start up the necessary migration thread for the new CPU.
5739 */
5740 static int __cpuinit
5741 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5742 {
5743 int cpu = (long)hcpu;
5744 unsigned long flags;
5745 struct rq *rq = cpu_rq(cpu);
5746
5747 switch (action) {
5748
5749 case CPU_UP_PREPARE:
5750 case CPU_UP_PREPARE_FROZEN:
5751 rq->calc_load_update = calc_load_update;
5752 break;
5753
5754 case CPU_ONLINE:
5755 case CPU_ONLINE_FROZEN:
5756 /* Update our root-domain */
5757 raw_spin_lock_irqsave(&rq->lock, flags);
5758 if (rq->rd) {
5759 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5760
5761 set_rq_online(rq);
5762 }
5763 raw_spin_unlock_irqrestore(&rq->lock, flags);
5764 break;
5765
5766 #ifdef CONFIG_HOTPLUG_CPU
5767 case CPU_DEAD:
5768 case CPU_DEAD_FROZEN:
5769 migrate_live_tasks(cpu);
5770 /* Idle task back to normal (off runqueue, low prio) */
5771 raw_spin_lock_irq(&rq->lock);
5772 deactivate_task(rq, rq->idle, 0);
5773 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5774 rq->idle->sched_class = &idle_sched_class;
5775 migrate_dead_tasks(cpu);
5776 raw_spin_unlock_irq(&rq->lock);
5777 migrate_nr_uninterruptible(rq);
5778 BUG_ON(rq->nr_running != 0);
5779 calc_global_load_remove(rq);
5780 break;
5781
5782 case CPU_DYING:
5783 case CPU_DYING_FROZEN:
5784 /* Update our root-domain */
5785 raw_spin_lock_irqsave(&rq->lock, flags);
5786 if (rq->rd) {
5787 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5788 set_rq_offline(rq);
5789 }
5790 raw_spin_unlock_irqrestore(&rq->lock, flags);
5791 break;
5792 #endif
5793 }
5794 return NOTIFY_OK;
5795 }
5796
5797 /*
5798 * Register at high priority so that task migration (migrate_all_tasks)
5799 * happens before everything else. This has to be lower priority than
5800 * the notifier in the perf_event subsystem, though.
5801 */
5802 static struct notifier_block __cpuinitdata migration_notifier = {
5803 .notifier_call = migration_call,
5804 .priority = 10
5805 };
5806
5807 static int __init migration_init(void)
5808 {
5809 void *cpu = (void *)(long)smp_processor_id();
5810 int err;
5811
5812 /* Start one for the boot CPU: */
5813 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5814 BUG_ON(err == NOTIFY_BAD);
5815 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5816 register_cpu_notifier(&migration_notifier);
5817
5818 return 0;
5819 }
5820 early_initcall(migration_init);
5821 #endif
5822
5823 #ifdef CONFIG_SMP
5824
5825 #ifdef CONFIG_SCHED_DEBUG
5826
5827 static __read_mostly int sched_domain_debug_enabled;
5828
5829 static int __init sched_domain_debug_setup(char *str)
5830 {
5831 sched_domain_debug_enabled = 1;
5832
5833 return 0;
5834 }
5835 early_param("sched_debug", sched_domain_debug_setup);
5836
5837 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5838 struct cpumask *groupmask)
5839 {
5840 struct sched_group *group = sd->groups;
5841 char str[256];
5842
5843 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5844 cpumask_clear(groupmask);
5845
5846 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5847
5848 if (!(sd->flags & SD_LOAD_BALANCE)) {
5849 printk("does not load-balance\n");
5850 if (sd->parent)
5851 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5852 " has parent");
5853 return -1;
5854 }
5855
5856 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5857
5858 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5859 printk(KERN_ERR "ERROR: domain->span does not contain "
5860 "CPU%d\n", cpu);
5861 }
5862 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5863 printk(KERN_ERR "ERROR: domain->groups does not contain"
5864 " CPU%d\n", cpu);
5865 }
5866
5867 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5868 do {
5869 if (!group) {
5870 printk("\n");
5871 printk(KERN_ERR "ERROR: group is NULL\n");
5872 break;
5873 }
5874
5875 if (!group->cpu_power) {
5876 printk(KERN_CONT "\n");
5877 printk(KERN_ERR "ERROR: domain->cpu_power not "
5878 "set\n");
5879 break;
5880 }
5881
5882 if (!cpumask_weight(sched_group_cpus(group))) {
5883 printk(KERN_CONT "\n");
5884 printk(KERN_ERR "ERROR: empty group\n");
5885 break;
5886 }
5887
5888 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5889 printk(KERN_CONT "\n");
5890 printk(KERN_ERR "ERROR: repeated CPUs\n");
5891 break;
5892 }
5893
5894 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5895
5896 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5897
5898 printk(KERN_CONT " %s", str);
5899 if (group->cpu_power != SCHED_LOAD_SCALE) {
5900 printk(KERN_CONT " (cpu_power = %d)",
5901 group->cpu_power);
5902 }
5903
5904 group = group->next;
5905 } while (group != sd->groups);
5906 printk(KERN_CONT "\n");
5907
5908 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5909 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5910
5911 if (sd->parent &&
5912 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5913 printk(KERN_ERR "ERROR: parent span is not a superset "
5914 "of domain->span\n");
5915 return 0;
5916 }
5917
5918 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5919 {
5920 cpumask_var_t groupmask;
5921 int level = 0;
5922
5923 if (!sched_domain_debug_enabled)
5924 return;
5925
5926 if (!sd) {
5927 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5928 return;
5929 }
5930
5931 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5932
5933 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
5934 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
5935 return;
5936 }
5937
5938 for (;;) {
5939 if (sched_domain_debug_one(sd, cpu, level, groupmask))
5940 break;
5941 level++;
5942 sd = sd->parent;
5943 if (!sd)
5944 break;
5945 }
5946 free_cpumask_var(groupmask);
5947 }
5948 #else /* !CONFIG_SCHED_DEBUG */
5949 # define sched_domain_debug(sd, cpu) do { } while (0)
5950 #endif /* CONFIG_SCHED_DEBUG */
5951
5952 static int sd_degenerate(struct sched_domain *sd)
5953 {
5954 if (cpumask_weight(sched_domain_span(sd)) == 1)
5955 return 1;
5956
5957 /* Following flags need at least 2 groups */
5958 if (sd->flags & (SD_LOAD_BALANCE |
5959 SD_BALANCE_NEWIDLE |
5960 SD_BALANCE_FORK |
5961 SD_BALANCE_EXEC |
5962 SD_SHARE_CPUPOWER |
5963 SD_SHARE_PKG_RESOURCES)) {
5964 if (sd->groups != sd->groups->next)
5965 return 0;
5966 }
5967
5968 /* Following flags don't use groups */
5969 if (sd->flags & (SD_WAKE_AFFINE))
5970 return 0;
5971
5972 return 1;
5973 }
5974
5975 static int
5976 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5977 {
5978 unsigned long cflags = sd->flags, pflags = parent->flags;
5979
5980 if (sd_degenerate(parent))
5981 return 1;
5982
5983 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5984 return 0;
5985
5986 /* Flags needing groups don't count if only 1 group in parent */
5987 if (parent->groups == parent->groups->next) {
5988 pflags &= ~(SD_LOAD_BALANCE |
5989 SD_BALANCE_NEWIDLE |
5990 SD_BALANCE_FORK |
5991 SD_BALANCE_EXEC |
5992 SD_SHARE_CPUPOWER |
5993 SD_SHARE_PKG_RESOURCES);
5994 if (nr_node_ids == 1)
5995 pflags &= ~SD_SERIALIZE;
5996 }
5997 if (~cflags & pflags)
5998 return 0;
5999
6000 return 1;
6001 }
6002
6003 static void free_rootdomain(struct root_domain *rd)
6004 {
6005 synchronize_sched();
6006
6007 cpupri_cleanup(&rd->cpupri);
6008
6009 free_cpumask_var(rd->rto_mask);
6010 free_cpumask_var(rd->online);
6011 free_cpumask_var(rd->span);
6012 kfree(rd);
6013 }
6014
6015 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6016 {
6017 struct root_domain *old_rd = NULL;
6018 unsigned long flags;
6019
6020 raw_spin_lock_irqsave(&rq->lock, flags);
6021
6022 if (rq->rd) {
6023 old_rd = rq->rd;
6024
6025 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6026 set_rq_offline(rq);
6027
6028 cpumask_clear_cpu(rq->cpu, old_rd->span);
6029
6030 /*
6031 * If we dont want to free the old_rt yet then
6032 * set old_rd to NULL to skip the freeing later
6033 * in this function:
6034 */
6035 if (!atomic_dec_and_test(&old_rd->refcount))
6036 old_rd = NULL;
6037 }
6038
6039 atomic_inc(&rd->refcount);
6040 rq->rd = rd;
6041
6042 cpumask_set_cpu(rq->cpu, rd->span);
6043 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6044 set_rq_online(rq);
6045
6046 raw_spin_unlock_irqrestore(&rq->lock, flags);
6047
6048 if (old_rd)
6049 free_rootdomain(old_rd);
6050 }
6051
6052 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6053 {
6054 gfp_t gfp = GFP_KERNEL;
6055
6056 memset(rd, 0, sizeof(*rd));
6057
6058 if (bootmem)
6059 gfp = GFP_NOWAIT;
6060
6061 if (!alloc_cpumask_var(&rd->span, gfp))
6062 goto out;
6063 if (!alloc_cpumask_var(&rd->online, gfp))
6064 goto free_span;
6065 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6066 goto free_online;
6067
6068 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6069 goto free_rto_mask;
6070 return 0;
6071
6072 free_rto_mask:
6073 free_cpumask_var(rd->rto_mask);
6074 free_online:
6075 free_cpumask_var(rd->online);
6076 free_span:
6077 free_cpumask_var(rd->span);
6078 out:
6079 return -ENOMEM;
6080 }
6081
6082 static void init_defrootdomain(void)
6083 {
6084 init_rootdomain(&def_root_domain, true);
6085
6086 atomic_set(&def_root_domain.refcount, 1);
6087 }
6088
6089 static struct root_domain *alloc_rootdomain(void)
6090 {
6091 struct root_domain *rd;
6092
6093 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6094 if (!rd)
6095 return NULL;
6096
6097 if (init_rootdomain(rd, false) != 0) {
6098 kfree(rd);
6099 return NULL;
6100 }
6101
6102 return rd;
6103 }
6104
6105 /*
6106 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6107 * hold the hotplug lock.
6108 */
6109 static void
6110 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6111 {
6112 struct rq *rq = cpu_rq(cpu);
6113 struct sched_domain *tmp;
6114
6115 for (tmp = sd; tmp; tmp = tmp->parent)
6116 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6117
6118 /* Remove the sched domains which do not contribute to scheduling. */
6119 for (tmp = sd; tmp; ) {
6120 struct sched_domain *parent = tmp->parent;
6121 if (!parent)
6122 break;
6123
6124 if (sd_parent_degenerate(tmp, parent)) {
6125 tmp->parent = parent->parent;
6126 if (parent->parent)
6127 parent->parent->child = tmp;
6128 } else
6129 tmp = tmp->parent;
6130 }
6131
6132 if (sd && sd_degenerate(sd)) {
6133 sd = sd->parent;
6134 if (sd)
6135 sd->child = NULL;
6136 }
6137
6138 sched_domain_debug(sd, cpu);
6139
6140 rq_attach_root(rq, rd);
6141 rcu_assign_pointer(rq->sd, sd);
6142 }
6143
6144 /* cpus with isolated domains */
6145 static cpumask_var_t cpu_isolated_map;
6146
6147 /* Setup the mask of cpus configured for isolated domains */
6148 static int __init isolated_cpu_setup(char *str)
6149 {
6150 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6151 cpulist_parse(str, cpu_isolated_map);
6152 return 1;
6153 }
6154
6155 __setup("isolcpus=", isolated_cpu_setup);
6156
6157 /*
6158 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6159 * to a function which identifies what group(along with sched group) a CPU
6160 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6161 * (due to the fact that we keep track of groups covered with a struct cpumask).
6162 *
6163 * init_sched_build_groups will build a circular linked list of the groups
6164 * covered by the given span, and will set each group's ->cpumask correctly,
6165 * and ->cpu_power to 0.
6166 */
6167 static void
6168 init_sched_build_groups(const struct cpumask *span,
6169 const struct cpumask *cpu_map,
6170 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6171 struct sched_group **sg,
6172 struct cpumask *tmpmask),
6173 struct cpumask *covered, struct cpumask *tmpmask)
6174 {
6175 struct sched_group *first = NULL, *last = NULL;
6176 int i;
6177
6178 cpumask_clear(covered);
6179
6180 for_each_cpu(i, span) {
6181 struct sched_group *sg;
6182 int group = group_fn(i, cpu_map, &sg, tmpmask);
6183 int j;
6184
6185 if (cpumask_test_cpu(i, covered))
6186 continue;
6187
6188 cpumask_clear(sched_group_cpus(sg));
6189 sg->cpu_power = 0;
6190
6191 for_each_cpu(j, span) {
6192 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6193 continue;
6194
6195 cpumask_set_cpu(j, covered);
6196 cpumask_set_cpu(j, sched_group_cpus(sg));
6197 }
6198 if (!first)
6199 first = sg;
6200 if (last)
6201 last->next = sg;
6202 last = sg;
6203 }
6204 last->next = first;
6205 }
6206
6207 #define SD_NODES_PER_DOMAIN 16
6208
6209 #ifdef CONFIG_NUMA
6210
6211 /**
6212 * find_next_best_node - find the next node to include in a sched_domain
6213 * @node: node whose sched_domain we're building
6214 * @used_nodes: nodes already in the sched_domain
6215 *
6216 * Find the next node to include in a given scheduling domain. Simply
6217 * finds the closest node not already in the @used_nodes map.
6218 *
6219 * Should use nodemask_t.
6220 */
6221 static int find_next_best_node(int node, nodemask_t *used_nodes)
6222 {
6223 int i, n, val, min_val, best_node = 0;
6224
6225 min_val = INT_MAX;
6226
6227 for (i = 0; i < nr_node_ids; i++) {
6228 /* Start at @node */
6229 n = (node + i) % nr_node_ids;
6230
6231 if (!nr_cpus_node(n))
6232 continue;
6233
6234 /* Skip already used nodes */
6235 if (node_isset(n, *used_nodes))
6236 continue;
6237
6238 /* Simple min distance search */
6239 val = node_distance(node, n);
6240
6241 if (val < min_val) {
6242 min_val = val;
6243 best_node = n;
6244 }
6245 }
6246
6247 node_set(best_node, *used_nodes);
6248 return best_node;
6249 }
6250
6251 /**
6252 * sched_domain_node_span - get a cpumask for a node's sched_domain
6253 * @node: node whose cpumask we're constructing
6254 * @span: resulting cpumask
6255 *
6256 * Given a node, construct a good cpumask for its sched_domain to span. It
6257 * should be one that prevents unnecessary balancing, but also spreads tasks
6258 * out optimally.
6259 */
6260 static void sched_domain_node_span(int node, struct cpumask *span)
6261 {
6262 nodemask_t used_nodes;
6263 int i;
6264
6265 cpumask_clear(span);
6266 nodes_clear(used_nodes);
6267
6268 cpumask_or(span, span, cpumask_of_node(node));
6269 node_set(node, used_nodes);
6270
6271 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6272 int next_node = find_next_best_node(node, &used_nodes);
6273
6274 cpumask_or(span, span, cpumask_of_node(next_node));
6275 }
6276 }
6277 #endif /* CONFIG_NUMA */
6278
6279 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6280
6281 /*
6282 * The cpus mask in sched_group and sched_domain hangs off the end.
6283 *
6284 * ( See the the comments in include/linux/sched.h:struct sched_group
6285 * and struct sched_domain. )
6286 */
6287 struct static_sched_group {
6288 struct sched_group sg;
6289 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6290 };
6291
6292 struct static_sched_domain {
6293 struct sched_domain sd;
6294 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6295 };
6296
6297 struct s_data {
6298 #ifdef CONFIG_NUMA
6299 int sd_allnodes;
6300 cpumask_var_t domainspan;
6301 cpumask_var_t covered;
6302 cpumask_var_t notcovered;
6303 #endif
6304 cpumask_var_t nodemask;
6305 cpumask_var_t this_sibling_map;
6306 cpumask_var_t this_core_map;
6307 cpumask_var_t send_covered;
6308 cpumask_var_t tmpmask;
6309 struct sched_group **sched_group_nodes;
6310 struct root_domain *rd;
6311 };
6312
6313 enum s_alloc {
6314 sa_sched_groups = 0,
6315 sa_rootdomain,
6316 sa_tmpmask,
6317 sa_send_covered,
6318 sa_this_core_map,
6319 sa_this_sibling_map,
6320 sa_nodemask,
6321 sa_sched_group_nodes,
6322 #ifdef CONFIG_NUMA
6323 sa_notcovered,
6324 sa_covered,
6325 sa_domainspan,
6326 #endif
6327 sa_none,
6328 };
6329
6330 /*
6331 * SMT sched-domains:
6332 */
6333 #ifdef CONFIG_SCHED_SMT
6334 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6335 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6336
6337 static int
6338 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6339 struct sched_group **sg, struct cpumask *unused)
6340 {
6341 if (sg)
6342 *sg = &per_cpu(sched_groups, cpu).sg;
6343 return cpu;
6344 }
6345 #endif /* CONFIG_SCHED_SMT */
6346
6347 /*
6348 * multi-core sched-domains:
6349 */
6350 #ifdef CONFIG_SCHED_MC
6351 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6352 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6353 #endif /* CONFIG_SCHED_MC */
6354
6355 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6356 static int
6357 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6358 struct sched_group **sg, struct cpumask *mask)
6359 {
6360 int group;
6361
6362 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6363 group = cpumask_first(mask);
6364 if (sg)
6365 *sg = &per_cpu(sched_group_core, group).sg;
6366 return group;
6367 }
6368 #elif defined(CONFIG_SCHED_MC)
6369 static int
6370 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6371 struct sched_group **sg, struct cpumask *unused)
6372 {
6373 if (sg)
6374 *sg = &per_cpu(sched_group_core, cpu).sg;
6375 return cpu;
6376 }
6377 #endif
6378
6379 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6380 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6381
6382 static int
6383 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6384 struct sched_group **sg, struct cpumask *mask)
6385 {
6386 int group;
6387 #ifdef CONFIG_SCHED_MC
6388 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6389 group = cpumask_first(mask);
6390 #elif defined(CONFIG_SCHED_SMT)
6391 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6392 group = cpumask_first(mask);
6393 #else
6394 group = cpu;
6395 #endif
6396 if (sg)
6397 *sg = &per_cpu(sched_group_phys, group).sg;
6398 return group;
6399 }
6400
6401 #ifdef CONFIG_NUMA
6402 /*
6403 * The init_sched_build_groups can't handle what we want to do with node
6404 * groups, so roll our own. Now each node has its own list of groups which
6405 * gets dynamically allocated.
6406 */
6407 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6408 static struct sched_group ***sched_group_nodes_bycpu;
6409
6410 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6411 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6412
6413 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6414 struct sched_group **sg,
6415 struct cpumask *nodemask)
6416 {
6417 int group;
6418
6419 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6420 group = cpumask_first(nodemask);
6421
6422 if (sg)
6423 *sg = &per_cpu(sched_group_allnodes, group).sg;
6424 return group;
6425 }
6426
6427 static void init_numa_sched_groups_power(struct sched_group *group_head)
6428 {
6429 struct sched_group *sg = group_head;
6430 int j;
6431
6432 if (!sg)
6433 return;
6434 do {
6435 for_each_cpu(j, sched_group_cpus(sg)) {
6436 struct sched_domain *sd;
6437
6438 sd = &per_cpu(phys_domains, j).sd;
6439 if (j != group_first_cpu(sd->groups)) {
6440 /*
6441 * Only add "power" once for each
6442 * physical package.
6443 */
6444 continue;
6445 }
6446
6447 sg->cpu_power += sd->groups->cpu_power;
6448 }
6449 sg = sg->next;
6450 } while (sg != group_head);
6451 }
6452
6453 static int build_numa_sched_groups(struct s_data *d,
6454 const struct cpumask *cpu_map, int num)
6455 {
6456 struct sched_domain *sd;
6457 struct sched_group *sg, *prev;
6458 int n, j;
6459
6460 cpumask_clear(d->covered);
6461 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6462 if (cpumask_empty(d->nodemask)) {
6463 d->sched_group_nodes[num] = NULL;
6464 goto out;
6465 }
6466
6467 sched_domain_node_span(num, d->domainspan);
6468 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6469
6470 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6471 GFP_KERNEL, num);
6472 if (!sg) {
6473 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6474 num);
6475 return -ENOMEM;
6476 }
6477 d->sched_group_nodes[num] = sg;
6478
6479 for_each_cpu(j, d->nodemask) {
6480 sd = &per_cpu(node_domains, j).sd;
6481 sd->groups = sg;
6482 }
6483
6484 sg->cpu_power = 0;
6485 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6486 sg->next = sg;
6487 cpumask_or(d->covered, d->covered, d->nodemask);
6488
6489 prev = sg;
6490 for (j = 0; j < nr_node_ids; j++) {
6491 n = (num + j) % nr_node_ids;
6492 cpumask_complement(d->notcovered, d->covered);
6493 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6494 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6495 if (cpumask_empty(d->tmpmask))
6496 break;
6497 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6498 if (cpumask_empty(d->tmpmask))
6499 continue;
6500 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6501 GFP_KERNEL, num);
6502 if (!sg) {
6503 printk(KERN_WARNING
6504 "Can not alloc domain group for node %d\n", j);
6505 return -ENOMEM;
6506 }
6507 sg->cpu_power = 0;
6508 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6509 sg->next = prev->next;
6510 cpumask_or(d->covered, d->covered, d->tmpmask);
6511 prev->next = sg;
6512 prev = sg;
6513 }
6514 out:
6515 return 0;
6516 }
6517 #endif /* CONFIG_NUMA */
6518
6519 #ifdef CONFIG_NUMA
6520 /* Free memory allocated for various sched_group structures */
6521 static void free_sched_groups(const struct cpumask *cpu_map,
6522 struct cpumask *nodemask)
6523 {
6524 int cpu, i;
6525
6526 for_each_cpu(cpu, cpu_map) {
6527 struct sched_group **sched_group_nodes
6528 = sched_group_nodes_bycpu[cpu];
6529
6530 if (!sched_group_nodes)
6531 continue;
6532
6533 for (i = 0; i < nr_node_ids; i++) {
6534 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6535
6536 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6537 if (cpumask_empty(nodemask))
6538 continue;
6539
6540 if (sg == NULL)
6541 continue;
6542 sg = sg->next;
6543 next_sg:
6544 oldsg = sg;
6545 sg = sg->next;
6546 kfree(oldsg);
6547 if (oldsg != sched_group_nodes[i])
6548 goto next_sg;
6549 }
6550 kfree(sched_group_nodes);
6551 sched_group_nodes_bycpu[cpu] = NULL;
6552 }
6553 }
6554 #else /* !CONFIG_NUMA */
6555 static void free_sched_groups(const struct cpumask *cpu_map,
6556 struct cpumask *nodemask)
6557 {
6558 }
6559 #endif /* CONFIG_NUMA */
6560
6561 /*
6562 * Initialize sched groups cpu_power.
6563 *
6564 * cpu_power indicates the capacity of sched group, which is used while
6565 * distributing the load between different sched groups in a sched domain.
6566 * Typically cpu_power for all the groups in a sched domain will be same unless
6567 * there are asymmetries in the topology. If there are asymmetries, group
6568 * having more cpu_power will pickup more load compared to the group having
6569 * less cpu_power.
6570 */
6571 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6572 {
6573 struct sched_domain *child;
6574 struct sched_group *group;
6575 long power;
6576 int weight;
6577
6578 WARN_ON(!sd || !sd->groups);
6579
6580 if (cpu != group_first_cpu(sd->groups))
6581 return;
6582
6583 child = sd->child;
6584
6585 sd->groups->cpu_power = 0;
6586
6587 if (!child) {
6588 power = SCHED_LOAD_SCALE;
6589 weight = cpumask_weight(sched_domain_span(sd));
6590 /*
6591 * SMT siblings share the power of a single core.
6592 * Usually multiple threads get a better yield out of
6593 * that one core than a single thread would have,
6594 * reflect that in sd->smt_gain.
6595 */
6596 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6597 power *= sd->smt_gain;
6598 power /= weight;
6599 power >>= SCHED_LOAD_SHIFT;
6600 }
6601 sd->groups->cpu_power += power;
6602 return;
6603 }
6604
6605 /*
6606 * Add cpu_power of each child group to this groups cpu_power.
6607 */
6608 group = child->groups;
6609 do {
6610 sd->groups->cpu_power += group->cpu_power;
6611 group = group->next;
6612 } while (group != child->groups);
6613 }
6614
6615 /*
6616 * Initializers for schedule domains
6617 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6618 */
6619
6620 #ifdef CONFIG_SCHED_DEBUG
6621 # define SD_INIT_NAME(sd, type) sd->name = #type
6622 #else
6623 # define SD_INIT_NAME(sd, type) do { } while (0)
6624 #endif
6625
6626 #define SD_INIT(sd, type) sd_init_##type(sd)
6627
6628 #define SD_INIT_FUNC(type) \
6629 static noinline void sd_init_##type(struct sched_domain *sd) \
6630 { \
6631 memset(sd, 0, sizeof(*sd)); \
6632 *sd = SD_##type##_INIT; \
6633 sd->level = SD_LV_##type; \
6634 SD_INIT_NAME(sd, type); \
6635 }
6636
6637 SD_INIT_FUNC(CPU)
6638 #ifdef CONFIG_NUMA
6639 SD_INIT_FUNC(ALLNODES)
6640 SD_INIT_FUNC(NODE)
6641 #endif
6642 #ifdef CONFIG_SCHED_SMT
6643 SD_INIT_FUNC(SIBLING)
6644 #endif
6645 #ifdef CONFIG_SCHED_MC
6646 SD_INIT_FUNC(MC)
6647 #endif
6648
6649 static int default_relax_domain_level = -1;
6650
6651 static int __init setup_relax_domain_level(char *str)
6652 {
6653 unsigned long val;
6654
6655 val = simple_strtoul(str, NULL, 0);
6656 if (val < SD_LV_MAX)
6657 default_relax_domain_level = val;
6658
6659 return 1;
6660 }
6661 __setup("relax_domain_level=", setup_relax_domain_level);
6662
6663 static void set_domain_attribute(struct sched_domain *sd,
6664 struct sched_domain_attr *attr)
6665 {
6666 int request;
6667
6668 if (!attr || attr->relax_domain_level < 0) {
6669 if (default_relax_domain_level < 0)
6670 return;
6671 else
6672 request = default_relax_domain_level;
6673 } else
6674 request = attr->relax_domain_level;
6675 if (request < sd->level) {
6676 /* turn off idle balance on this domain */
6677 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6678 } else {
6679 /* turn on idle balance on this domain */
6680 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6681 }
6682 }
6683
6684 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6685 const struct cpumask *cpu_map)
6686 {
6687 switch (what) {
6688 case sa_sched_groups:
6689 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6690 d->sched_group_nodes = NULL;
6691 case sa_rootdomain:
6692 free_rootdomain(d->rd); /* fall through */
6693 case sa_tmpmask:
6694 free_cpumask_var(d->tmpmask); /* fall through */
6695 case sa_send_covered:
6696 free_cpumask_var(d->send_covered); /* fall through */
6697 case sa_this_core_map:
6698 free_cpumask_var(d->this_core_map); /* fall through */
6699 case sa_this_sibling_map:
6700 free_cpumask_var(d->this_sibling_map); /* fall through */
6701 case sa_nodemask:
6702 free_cpumask_var(d->nodemask); /* fall through */
6703 case sa_sched_group_nodes:
6704 #ifdef CONFIG_NUMA
6705 kfree(d->sched_group_nodes); /* fall through */
6706 case sa_notcovered:
6707 free_cpumask_var(d->notcovered); /* fall through */
6708 case sa_covered:
6709 free_cpumask_var(d->covered); /* fall through */
6710 case sa_domainspan:
6711 free_cpumask_var(d->domainspan); /* fall through */
6712 #endif
6713 case sa_none:
6714 break;
6715 }
6716 }
6717
6718 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6719 const struct cpumask *cpu_map)
6720 {
6721 #ifdef CONFIG_NUMA
6722 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6723 return sa_none;
6724 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6725 return sa_domainspan;
6726 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6727 return sa_covered;
6728 /* Allocate the per-node list of sched groups */
6729 d->sched_group_nodes = kcalloc(nr_node_ids,
6730 sizeof(struct sched_group *), GFP_KERNEL);
6731 if (!d->sched_group_nodes) {
6732 printk(KERN_WARNING "Can not alloc sched group node list\n");
6733 return sa_notcovered;
6734 }
6735 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6736 #endif
6737 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6738 return sa_sched_group_nodes;
6739 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6740 return sa_nodemask;
6741 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6742 return sa_this_sibling_map;
6743 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6744 return sa_this_core_map;
6745 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6746 return sa_send_covered;
6747 d->rd = alloc_rootdomain();
6748 if (!d->rd) {
6749 printk(KERN_WARNING "Cannot alloc root domain\n");
6750 return sa_tmpmask;
6751 }
6752 return sa_rootdomain;
6753 }
6754
6755 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6756 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6757 {
6758 struct sched_domain *sd = NULL;
6759 #ifdef CONFIG_NUMA
6760 struct sched_domain *parent;
6761
6762 d->sd_allnodes = 0;
6763 if (cpumask_weight(cpu_map) >
6764 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6765 sd = &per_cpu(allnodes_domains, i).sd;
6766 SD_INIT(sd, ALLNODES);
6767 set_domain_attribute(sd, attr);
6768 cpumask_copy(sched_domain_span(sd), cpu_map);
6769 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6770 d->sd_allnodes = 1;
6771 }
6772 parent = sd;
6773
6774 sd = &per_cpu(node_domains, i).sd;
6775 SD_INIT(sd, NODE);
6776 set_domain_attribute(sd, attr);
6777 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6778 sd->parent = parent;
6779 if (parent)
6780 parent->child = sd;
6781 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6782 #endif
6783 return sd;
6784 }
6785
6786 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6787 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6788 struct sched_domain *parent, int i)
6789 {
6790 struct sched_domain *sd;
6791 sd = &per_cpu(phys_domains, i).sd;
6792 SD_INIT(sd, CPU);
6793 set_domain_attribute(sd, attr);
6794 cpumask_copy(sched_domain_span(sd), d->nodemask);
6795 sd->parent = parent;
6796 if (parent)
6797 parent->child = sd;
6798 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6799 return sd;
6800 }
6801
6802 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6803 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6804 struct sched_domain *parent, int i)
6805 {
6806 struct sched_domain *sd = parent;
6807 #ifdef CONFIG_SCHED_MC
6808 sd = &per_cpu(core_domains, i).sd;
6809 SD_INIT(sd, MC);
6810 set_domain_attribute(sd, attr);
6811 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6812 sd->parent = parent;
6813 parent->child = sd;
6814 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6815 #endif
6816 return sd;
6817 }
6818
6819 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6820 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6821 struct sched_domain *parent, int i)
6822 {
6823 struct sched_domain *sd = parent;
6824 #ifdef CONFIG_SCHED_SMT
6825 sd = &per_cpu(cpu_domains, i).sd;
6826 SD_INIT(sd, SIBLING);
6827 set_domain_attribute(sd, attr);
6828 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6829 sd->parent = parent;
6830 parent->child = sd;
6831 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
6832 #endif
6833 return sd;
6834 }
6835
6836 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6837 const struct cpumask *cpu_map, int cpu)
6838 {
6839 switch (l) {
6840 #ifdef CONFIG_SCHED_SMT
6841 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6842 cpumask_and(d->this_sibling_map, cpu_map,
6843 topology_thread_cpumask(cpu));
6844 if (cpu == cpumask_first(d->this_sibling_map))
6845 init_sched_build_groups(d->this_sibling_map, cpu_map,
6846 &cpu_to_cpu_group,
6847 d->send_covered, d->tmpmask);
6848 break;
6849 #endif
6850 #ifdef CONFIG_SCHED_MC
6851 case SD_LV_MC: /* set up multi-core groups */
6852 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6853 if (cpu == cpumask_first(d->this_core_map))
6854 init_sched_build_groups(d->this_core_map, cpu_map,
6855 &cpu_to_core_group,
6856 d->send_covered, d->tmpmask);
6857 break;
6858 #endif
6859 case SD_LV_CPU: /* set up physical groups */
6860 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6861 if (!cpumask_empty(d->nodemask))
6862 init_sched_build_groups(d->nodemask, cpu_map,
6863 &cpu_to_phys_group,
6864 d->send_covered, d->tmpmask);
6865 break;
6866 #ifdef CONFIG_NUMA
6867 case SD_LV_ALLNODES:
6868 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6869 d->send_covered, d->tmpmask);
6870 break;
6871 #endif
6872 default:
6873 break;
6874 }
6875 }
6876
6877 /*
6878 * Build sched domains for a given set of cpus and attach the sched domains
6879 * to the individual cpus
6880 */
6881 static int __build_sched_domains(const struct cpumask *cpu_map,
6882 struct sched_domain_attr *attr)
6883 {
6884 enum s_alloc alloc_state = sa_none;
6885 struct s_data d;
6886 struct sched_domain *sd;
6887 int i;
6888 #ifdef CONFIG_NUMA
6889 d.sd_allnodes = 0;
6890 #endif
6891
6892 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6893 if (alloc_state != sa_rootdomain)
6894 goto error;
6895 alloc_state = sa_sched_groups;
6896
6897 /*
6898 * Set up domains for cpus specified by the cpu_map.
6899 */
6900 for_each_cpu(i, cpu_map) {
6901 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6902 cpu_map);
6903
6904 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
6905 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
6906 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
6907 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
6908 }
6909
6910 for_each_cpu(i, cpu_map) {
6911 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
6912 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
6913 }
6914
6915 /* Set up physical groups */
6916 for (i = 0; i < nr_node_ids; i++)
6917 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
6918
6919 #ifdef CONFIG_NUMA
6920 /* Set up node groups */
6921 if (d.sd_allnodes)
6922 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
6923
6924 for (i = 0; i < nr_node_ids; i++)
6925 if (build_numa_sched_groups(&d, cpu_map, i))
6926 goto error;
6927 #endif
6928
6929 /* Calculate CPU power for physical packages and nodes */
6930 #ifdef CONFIG_SCHED_SMT
6931 for_each_cpu(i, cpu_map) {
6932 sd = &per_cpu(cpu_domains, i).sd;
6933 init_sched_groups_power(i, sd);
6934 }
6935 #endif
6936 #ifdef CONFIG_SCHED_MC
6937 for_each_cpu(i, cpu_map) {
6938 sd = &per_cpu(core_domains, i).sd;
6939 init_sched_groups_power(i, sd);
6940 }
6941 #endif
6942
6943 for_each_cpu(i, cpu_map) {
6944 sd = &per_cpu(phys_domains, i).sd;
6945 init_sched_groups_power(i, sd);
6946 }
6947
6948 #ifdef CONFIG_NUMA
6949 for (i = 0; i < nr_node_ids; i++)
6950 init_numa_sched_groups_power(d.sched_group_nodes[i]);
6951
6952 if (d.sd_allnodes) {
6953 struct sched_group *sg;
6954
6955 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
6956 d.tmpmask);
6957 init_numa_sched_groups_power(sg);
6958 }
6959 #endif
6960
6961 /* Attach the domains */
6962 for_each_cpu(i, cpu_map) {
6963 #ifdef CONFIG_SCHED_SMT
6964 sd = &per_cpu(cpu_domains, i).sd;
6965 #elif defined(CONFIG_SCHED_MC)
6966 sd = &per_cpu(core_domains, i).sd;
6967 #else
6968 sd = &per_cpu(phys_domains, i).sd;
6969 #endif
6970 cpu_attach_domain(sd, d.rd, i);
6971 }
6972
6973 d.sched_group_nodes = NULL; /* don't free this we still need it */
6974 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
6975 return 0;
6976
6977 error:
6978 __free_domain_allocs(&d, alloc_state, cpu_map);
6979 return -ENOMEM;
6980 }
6981
6982 static int build_sched_domains(const struct cpumask *cpu_map)
6983 {
6984 return __build_sched_domains(cpu_map, NULL);
6985 }
6986
6987 static cpumask_var_t *doms_cur; /* current sched domains */
6988 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6989 static struct sched_domain_attr *dattr_cur;
6990 /* attribues of custom domains in 'doms_cur' */
6991
6992 /*
6993 * Special case: If a kmalloc of a doms_cur partition (array of
6994 * cpumask) fails, then fallback to a single sched domain,
6995 * as determined by the single cpumask fallback_doms.
6996 */
6997 static cpumask_var_t fallback_doms;
6998
6999 /*
7000 * arch_update_cpu_topology lets virtualized architectures update the
7001 * cpu core maps. It is supposed to return 1 if the topology changed
7002 * or 0 if it stayed the same.
7003 */
7004 int __attribute__((weak)) arch_update_cpu_topology(void)
7005 {
7006 return 0;
7007 }
7008
7009 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7010 {
7011 int i;
7012 cpumask_var_t *doms;
7013
7014 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7015 if (!doms)
7016 return NULL;
7017 for (i = 0; i < ndoms; i++) {
7018 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7019 free_sched_domains(doms, i);
7020 return NULL;
7021 }
7022 }
7023 return doms;
7024 }
7025
7026 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7027 {
7028 unsigned int i;
7029 for (i = 0; i < ndoms; i++)
7030 free_cpumask_var(doms[i]);
7031 kfree(doms);
7032 }
7033
7034 /*
7035 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7036 * For now this just excludes isolated cpus, but could be used to
7037 * exclude other special cases in the future.
7038 */
7039 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7040 {
7041 int err;
7042
7043 arch_update_cpu_topology();
7044 ndoms_cur = 1;
7045 doms_cur = alloc_sched_domains(ndoms_cur);
7046 if (!doms_cur)
7047 doms_cur = &fallback_doms;
7048 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7049 dattr_cur = NULL;
7050 err = build_sched_domains(doms_cur[0]);
7051 register_sched_domain_sysctl();
7052
7053 return err;
7054 }
7055
7056 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7057 struct cpumask *tmpmask)
7058 {
7059 free_sched_groups(cpu_map, tmpmask);
7060 }
7061
7062 /*
7063 * Detach sched domains from a group of cpus specified in cpu_map
7064 * These cpus will now be attached to the NULL domain
7065 */
7066 static void detach_destroy_domains(const struct cpumask *cpu_map)
7067 {
7068 /* Save because hotplug lock held. */
7069 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7070 int i;
7071
7072 for_each_cpu(i, cpu_map)
7073 cpu_attach_domain(NULL, &def_root_domain, i);
7074 synchronize_sched();
7075 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7076 }
7077
7078 /* handle null as "default" */
7079 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7080 struct sched_domain_attr *new, int idx_new)
7081 {
7082 struct sched_domain_attr tmp;
7083
7084 /* fast path */
7085 if (!new && !cur)
7086 return 1;
7087
7088 tmp = SD_ATTR_INIT;
7089 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7090 new ? (new + idx_new) : &tmp,
7091 sizeof(struct sched_domain_attr));
7092 }
7093
7094 /*
7095 * Partition sched domains as specified by the 'ndoms_new'
7096 * cpumasks in the array doms_new[] of cpumasks. This compares
7097 * doms_new[] to the current sched domain partitioning, doms_cur[].
7098 * It destroys each deleted domain and builds each new domain.
7099 *
7100 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7101 * The masks don't intersect (don't overlap.) We should setup one
7102 * sched domain for each mask. CPUs not in any of the cpumasks will
7103 * not be load balanced. If the same cpumask appears both in the
7104 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7105 * it as it is.
7106 *
7107 * The passed in 'doms_new' should be allocated using
7108 * alloc_sched_domains. This routine takes ownership of it and will
7109 * free_sched_domains it when done with it. If the caller failed the
7110 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7111 * and partition_sched_domains() will fallback to the single partition
7112 * 'fallback_doms', it also forces the domains to be rebuilt.
7113 *
7114 * If doms_new == NULL it will be replaced with cpu_online_mask.
7115 * ndoms_new == 0 is a special case for destroying existing domains,
7116 * and it will not create the default domain.
7117 *
7118 * Call with hotplug lock held
7119 */
7120 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7121 struct sched_domain_attr *dattr_new)
7122 {
7123 int i, j, n;
7124 int new_topology;
7125
7126 mutex_lock(&sched_domains_mutex);
7127
7128 /* always unregister in case we don't destroy any domains */
7129 unregister_sched_domain_sysctl();
7130
7131 /* Let architecture update cpu core mappings. */
7132 new_topology = arch_update_cpu_topology();
7133
7134 n = doms_new ? ndoms_new : 0;
7135
7136 /* Destroy deleted domains */
7137 for (i = 0; i < ndoms_cur; i++) {
7138 for (j = 0; j < n && !new_topology; j++) {
7139 if (cpumask_equal(doms_cur[i], doms_new[j])
7140 && dattrs_equal(dattr_cur, i, dattr_new, j))
7141 goto match1;
7142 }
7143 /* no match - a current sched domain not in new doms_new[] */
7144 detach_destroy_domains(doms_cur[i]);
7145 match1:
7146 ;
7147 }
7148
7149 if (doms_new == NULL) {
7150 ndoms_cur = 0;
7151 doms_new = &fallback_doms;
7152 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7153 WARN_ON_ONCE(dattr_new);
7154 }
7155
7156 /* Build new domains */
7157 for (i = 0; i < ndoms_new; i++) {
7158 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7159 if (cpumask_equal(doms_new[i], doms_cur[j])
7160 && dattrs_equal(dattr_new, i, dattr_cur, j))
7161 goto match2;
7162 }
7163 /* no match - add a new doms_new */
7164 __build_sched_domains(doms_new[i],
7165 dattr_new ? dattr_new + i : NULL);
7166 match2:
7167 ;
7168 }
7169
7170 /* Remember the new sched domains */
7171 if (doms_cur != &fallback_doms)
7172 free_sched_domains(doms_cur, ndoms_cur);
7173 kfree(dattr_cur); /* kfree(NULL) is safe */
7174 doms_cur = doms_new;
7175 dattr_cur = dattr_new;
7176 ndoms_cur = ndoms_new;
7177
7178 register_sched_domain_sysctl();
7179
7180 mutex_unlock(&sched_domains_mutex);
7181 }
7182
7183 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7184 static void arch_reinit_sched_domains(void)
7185 {
7186 get_online_cpus();
7187
7188 /* Destroy domains first to force the rebuild */
7189 partition_sched_domains(0, NULL, NULL);
7190
7191 rebuild_sched_domains();
7192 put_online_cpus();
7193 }
7194
7195 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7196 {
7197 unsigned int level = 0;
7198
7199 if (sscanf(buf, "%u", &level) != 1)
7200 return -EINVAL;
7201
7202 /*
7203 * level is always be positive so don't check for
7204 * level < POWERSAVINGS_BALANCE_NONE which is 0
7205 * What happens on 0 or 1 byte write,
7206 * need to check for count as well?
7207 */
7208
7209 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7210 return -EINVAL;
7211
7212 if (smt)
7213 sched_smt_power_savings = level;
7214 else
7215 sched_mc_power_savings = level;
7216
7217 arch_reinit_sched_domains();
7218
7219 return count;
7220 }
7221
7222 #ifdef CONFIG_SCHED_MC
7223 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7224 struct sysdev_class_attribute *attr,
7225 char *page)
7226 {
7227 return sprintf(page, "%u\n", sched_mc_power_savings);
7228 }
7229 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7230 struct sysdev_class_attribute *attr,
7231 const char *buf, size_t count)
7232 {
7233 return sched_power_savings_store(buf, count, 0);
7234 }
7235 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7236 sched_mc_power_savings_show,
7237 sched_mc_power_savings_store);
7238 #endif
7239
7240 #ifdef CONFIG_SCHED_SMT
7241 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7242 struct sysdev_class_attribute *attr,
7243 char *page)
7244 {
7245 return sprintf(page, "%u\n", sched_smt_power_savings);
7246 }
7247 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7248 struct sysdev_class_attribute *attr,
7249 const char *buf, size_t count)
7250 {
7251 return sched_power_savings_store(buf, count, 1);
7252 }
7253 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7254 sched_smt_power_savings_show,
7255 sched_smt_power_savings_store);
7256 #endif
7257
7258 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7259 {
7260 int err = 0;
7261
7262 #ifdef CONFIG_SCHED_SMT
7263 if (smt_capable())
7264 err = sysfs_create_file(&cls->kset.kobj,
7265 &attr_sched_smt_power_savings.attr);
7266 #endif
7267 #ifdef CONFIG_SCHED_MC
7268 if (!err && mc_capable())
7269 err = sysfs_create_file(&cls->kset.kobj,
7270 &attr_sched_mc_power_savings.attr);
7271 #endif
7272 return err;
7273 }
7274 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7275
7276 #ifndef CONFIG_CPUSETS
7277 /*
7278 * Add online and remove offline CPUs from the scheduler domains.
7279 * When cpusets are enabled they take over this function.
7280 */
7281 static int update_sched_domains(struct notifier_block *nfb,
7282 unsigned long action, void *hcpu)
7283 {
7284 switch (action) {
7285 case CPU_ONLINE:
7286 case CPU_ONLINE_FROZEN:
7287 case CPU_DOWN_PREPARE:
7288 case CPU_DOWN_PREPARE_FROZEN:
7289 case CPU_DOWN_FAILED:
7290 case CPU_DOWN_FAILED_FROZEN:
7291 partition_sched_domains(1, NULL, NULL);
7292 return NOTIFY_OK;
7293
7294 default:
7295 return NOTIFY_DONE;
7296 }
7297 }
7298 #endif
7299
7300 static int update_runtime(struct notifier_block *nfb,
7301 unsigned long action, void *hcpu)
7302 {
7303 int cpu = (int)(long)hcpu;
7304
7305 switch (action) {
7306 case CPU_DOWN_PREPARE:
7307 case CPU_DOWN_PREPARE_FROZEN:
7308 disable_runtime(cpu_rq(cpu));
7309 return NOTIFY_OK;
7310
7311 case CPU_DOWN_FAILED:
7312 case CPU_DOWN_FAILED_FROZEN:
7313 case CPU_ONLINE:
7314 case CPU_ONLINE_FROZEN:
7315 enable_runtime(cpu_rq(cpu));
7316 return NOTIFY_OK;
7317
7318 default:
7319 return NOTIFY_DONE;
7320 }
7321 }
7322
7323 void __init sched_init_smp(void)
7324 {
7325 cpumask_var_t non_isolated_cpus;
7326
7327 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7328 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7329
7330 #if defined(CONFIG_NUMA)
7331 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7332 GFP_KERNEL);
7333 BUG_ON(sched_group_nodes_bycpu == NULL);
7334 #endif
7335 get_online_cpus();
7336 mutex_lock(&sched_domains_mutex);
7337 arch_init_sched_domains(cpu_active_mask);
7338 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7339 if (cpumask_empty(non_isolated_cpus))
7340 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7341 mutex_unlock(&sched_domains_mutex);
7342 put_online_cpus();
7343
7344 #ifndef CONFIG_CPUSETS
7345 /* XXX: Theoretical race here - CPU may be hotplugged now */
7346 hotcpu_notifier(update_sched_domains, 0);
7347 #endif
7348
7349 /* RT runtime code needs to handle some hotplug events */
7350 hotcpu_notifier(update_runtime, 0);
7351
7352 init_hrtick();
7353
7354 /* Move init over to a non-isolated CPU */
7355 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7356 BUG();
7357 sched_init_granularity();
7358 free_cpumask_var(non_isolated_cpus);
7359
7360 init_sched_rt_class();
7361 }
7362 #else
7363 void __init sched_init_smp(void)
7364 {
7365 sched_init_granularity();
7366 }
7367 #endif /* CONFIG_SMP */
7368
7369 const_debug unsigned int sysctl_timer_migration = 1;
7370
7371 int in_sched_functions(unsigned long addr)
7372 {
7373 return in_lock_functions(addr) ||
7374 (addr >= (unsigned long)__sched_text_start
7375 && addr < (unsigned long)__sched_text_end);
7376 }
7377
7378 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7379 {
7380 cfs_rq->tasks_timeline = RB_ROOT;
7381 INIT_LIST_HEAD(&cfs_rq->tasks);
7382 #ifdef CONFIG_FAIR_GROUP_SCHED
7383 cfs_rq->rq = rq;
7384 #endif
7385 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7386 }
7387
7388 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7389 {
7390 struct rt_prio_array *array;
7391 int i;
7392
7393 array = &rt_rq->active;
7394 for (i = 0; i < MAX_RT_PRIO; i++) {
7395 INIT_LIST_HEAD(array->queue + i);
7396 __clear_bit(i, array->bitmap);
7397 }
7398 /* delimiter for bitsearch: */
7399 __set_bit(MAX_RT_PRIO, array->bitmap);
7400
7401 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7402 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7403 #ifdef CONFIG_SMP
7404 rt_rq->highest_prio.next = MAX_RT_PRIO;
7405 #endif
7406 #endif
7407 #ifdef CONFIG_SMP
7408 rt_rq->rt_nr_migratory = 0;
7409 rt_rq->overloaded = 0;
7410 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7411 #endif
7412
7413 rt_rq->rt_time = 0;
7414 rt_rq->rt_throttled = 0;
7415 rt_rq->rt_runtime = 0;
7416 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7417
7418 #ifdef CONFIG_RT_GROUP_SCHED
7419 rt_rq->rt_nr_boosted = 0;
7420 rt_rq->rq = rq;
7421 #endif
7422 }
7423
7424 #ifdef CONFIG_FAIR_GROUP_SCHED
7425 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7426 struct sched_entity *se, int cpu, int add,
7427 struct sched_entity *parent)
7428 {
7429 struct rq *rq = cpu_rq(cpu);
7430 tg->cfs_rq[cpu] = cfs_rq;
7431 init_cfs_rq(cfs_rq, rq);
7432 cfs_rq->tg = tg;
7433 if (add)
7434 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7435
7436 tg->se[cpu] = se;
7437 /* se could be NULL for init_task_group */
7438 if (!se)
7439 return;
7440
7441 if (!parent)
7442 se->cfs_rq = &rq->cfs;
7443 else
7444 se->cfs_rq = parent->my_q;
7445
7446 se->my_q = cfs_rq;
7447 se->load.weight = tg->shares;
7448 se->load.inv_weight = 0;
7449 se->parent = parent;
7450 }
7451 #endif
7452
7453 #ifdef CONFIG_RT_GROUP_SCHED
7454 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7455 struct sched_rt_entity *rt_se, int cpu, int add,
7456 struct sched_rt_entity *parent)
7457 {
7458 struct rq *rq = cpu_rq(cpu);
7459
7460 tg->rt_rq[cpu] = rt_rq;
7461 init_rt_rq(rt_rq, rq);
7462 rt_rq->tg = tg;
7463 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7464 if (add)
7465 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7466
7467 tg->rt_se[cpu] = rt_se;
7468 if (!rt_se)
7469 return;
7470
7471 if (!parent)
7472 rt_se->rt_rq = &rq->rt;
7473 else
7474 rt_se->rt_rq = parent->my_q;
7475
7476 rt_se->my_q = rt_rq;
7477 rt_se->parent = parent;
7478 INIT_LIST_HEAD(&rt_se->run_list);
7479 }
7480 #endif
7481
7482 void __init sched_init(void)
7483 {
7484 int i, j;
7485 unsigned long alloc_size = 0, ptr;
7486
7487 #ifdef CONFIG_FAIR_GROUP_SCHED
7488 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7489 #endif
7490 #ifdef CONFIG_RT_GROUP_SCHED
7491 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7492 #endif
7493 #ifdef CONFIG_CPUMASK_OFFSTACK
7494 alloc_size += num_possible_cpus() * cpumask_size();
7495 #endif
7496 if (alloc_size) {
7497 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7498
7499 #ifdef CONFIG_FAIR_GROUP_SCHED
7500 init_task_group.se = (struct sched_entity **)ptr;
7501 ptr += nr_cpu_ids * sizeof(void **);
7502
7503 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7504 ptr += nr_cpu_ids * sizeof(void **);
7505
7506 #endif /* CONFIG_FAIR_GROUP_SCHED */
7507 #ifdef CONFIG_RT_GROUP_SCHED
7508 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7509 ptr += nr_cpu_ids * sizeof(void **);
7510
7511 init_task_group.rt_rq = (struct rt_rq **)ptr;
7512 ptr += nr_cpu_ids * sizeof(void **);
7513
7514 #endif /* CONFIG_RT_GROUP_SCHED */
7515 #ifdef CONFIG_CPUMASK_OFFSTACK
7516 for_each_possible_cpu(i) {
7517 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7518 ptr += cpumask_size();
7519 }
7520 #endif /* CONFIG_CPUMASK_OFFSTACK */
7521 }
7522
7523 #ifdef CONFIG_SMP
7524 init_defrootdomain();
7525 #endif
7526
7527 init_rt_bandwidth(&def_rt_bandwidth,
7528 global_rt_period(), global_rt_runtime());
7529
7530 #ifdef CONFIG_RT_GROUP_SCHED
7531 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7532 global_rt_period(), global_rt_runtime());
7533 #endif /* CONFIG_RT_GROUP_SCHED */
7534
7535 #ifdef CONFIG_CGROUP_SCHED
7536 list_add(&init_task_group.list, &task_groups);
7537 INIT_LIST_HEAD(&init_task_group.children);
7538
7539 #endif /* CONFIG_CGROUP_SCHED */
7540
7541 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7542 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7543 __alignof__(unsigned long));
7544 #endif
7545 for_each_possible_cpu(i) {
7546 struct rq *rq;
7547
7548 rq = cpu_rq(i);
7549 raw_spin_lock_init(&rq->lock);
7550 rq->nr_running = 0;
7551 rq->calc_load_active = 0;
7552 rq->calc_load_update = jiffies + LOAD_FREQ;
7553 init_cfs_rq(&rq->cfs, rq);
7554 init_rt_rq(&rq->rt, rq);
7555 #ifdef CONFIG_FAIR_GROUP_SCHED
7556 init_task_group.shares = init_task_group_load;
7557 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7558 #ifdef CONFIG_CGROUP_SCHED
7559 /*
7560 * How much cpu bandwidth does init_task_group get?
7561 *
7562 * In case of task-groups formed thr' the cgroup filesystem, it
7563 * gets 100% of the cpu resources in the system. This overall
7564 * system cpu resource is divided among the tasks of
7565 * init_task_group and its child task-groups in a fair manner,
7566 * based on each entity's (task or task-group's) weight
7567 * (se->load.weight).
7568 *
7569 * In other words, if init_task_group has 10 tasks of weight
7570 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7571 * then A0's share of the cpu resource is:
7572 *
7573 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7574 *
7575 * We achieve this by letting init_task_group's tasks sit
7576 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7577 */
7578 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7579 #endif
7580 #endif /* CONFIG_FAIR_GROUP_SCHED */
7581
7582 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7583 #ifdef CONFIG_RT_GROUP_SCHED
7584 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7585 #ifdef CONFIG_CGROUP_SCHED
7586 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7587 #endif
7588 #endif
7589
7590 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7591 rq->cpu_load[j] = 0;
7592 #ifdef CONFIG_SMP
7593 rq->sd = NULL;
7594 rq->rd = NULL;
7595 rq->cpu_power = SCHED_LOAD_SCALE;
7596 rq->post_schedule = 0;
7597 rq->active_balance = 0;
7598 rq->next_balance = jiffies;
7599 rq->push_cpu = 0;
7600 rq->cpu = i;
7601 rq->online = 0;
7602 rq->idle_stamp = 0;
7603 rq->avg_idle = 2*sysctl_sched_migration_cost;
7604 rq_attach_root(rq, &def_root_domain);
7605 #endif
7606 init_rq_hrtick(rq);
7607 atomic_set(&rq->nr_iowait, 0);
7608 }
7609
7610 set_load_weight(&init_task);
7611
7612 #ifdef CONFIG_PREEMPT_NOTIFIERS
7613 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7614 #endif
7615
7616 #ifdef CONFIG_SMP
7617 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7618 #endif
7619
7620 #ifdef CONFIG_RT_MUTEXES
7621 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7622 #endif
7623
7624 /*
7625 * The boot idle thread does lazy MMU switching as well:
7626 */
7627 atomic_inc(&init_mm.mm_count);
7628 enter_lazy_tlb(&init_mm, current);
7629
7630 /*
7631 * Make us the idle thread. Technically, schedule() should not be
7632 * called from this thread, however somewhere below it might be,
7633 * but because we are the idle thread, we just pick up running again
7634 * when this runqueue becomes "idle".
7635 */
7636 init_idle(current, smp_processor_id());
7637
7638 calc_load_update = jiffies + LOAD_FREQ;
7639
7640 /*
7641 * During early bootup we pretend to be a normal task:
7642 */
7643 current->sched_class = &fair_sched_class;
7644
7645 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7646 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7647 #ifdef CONFIG_SMP
7648 #ifdef CONFIG_NO_HZ
7649 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7650 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7651 #endif
7652 /* May be allocated at isolcpus cmdline parse time */
7653 if (cpu_isolated_map == NULL)
7654 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7655 #endif /* SMP */
7656
7657 perf_event_init();
7658
7659 scheduler_running = 1;
7660 }
7661
7662 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7663 static inline int preempt_count_equals(int preempt_offset)
7664 {
7665 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7666
7667 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7668 }
7669
7670 void __might_sleep(const char *file, int line, int preempt_offset)
7671 {
7672 #ifdef in_atomic
7673 static unsigned long prev_jiffy; /* ratelimiting */
7674
7675 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7676 system_state != SYSTEM_RUNNING || oops_in_progress)
7677 return;
7678 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7679 return;
7680 prev_jiffy = jiffies;
7681
7682 printk(KERN_ERR
7683 "BUG: sleeping function called from invalid context at %s:%d\n",
7684 file, line);
7685 printk(KERN_ERR
7686 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7687 in_atomic(), irqs_disabled(),
7688 current->pid, current->comm);
7689
7690 debug_show_held_locks(current);
7691 if (irqs_disabled())
7692 print_irqtrace_events(current);
7693 dump_stack();
7694 #endif
7695 }
7696 EXPORT_SYMBOL(__might_sleep);
7697 #endif
7698
7699 #ifdef CONFIG_MAGIC_SYSRQ
7700 static void normalize_task(struct rq *rq, struct task_struct *p)
7701 {
7702 int on_rq;
7703
7704 on_rq = p->se.on_rq;
7705 if (on_rq)
7706 deactivate_task(rq, p, 0);
7707 __setscheduler(rq, p, SCHED_NORMAL, 0);
7708 if (on_rq) {
7709 activate_task(rq, p, 0);
7710 resched_task(rq->curr);
7711 }
7712 }
7713
7714 void normalize_rt_tasks(void)
7715 {
7716 struct task_struct *g, *p;
7717 unsigned long flags;
7718 struct rq *rq;
7719
7720 read_lock_irqsave(&tasklist_lock, flags);
7721 do_each_thread(g, p) {
7722 /*
7723 * Only normalize user tasks:
7724 */
7725 if (!p->mm)
7726 continue;
7727
7728 p->se.exec_start = 0;
7729 #ifdef CONFIG_SCHEDSTATS
7730 p->se.statistics.wait_start = 0;
7731 p->se.statistics.sleep_start = 0;
7732 p->se.statistics.block_start = 0;
7733 #endif
7734
7735 if (!rt_task(p)) {
7736 /*
7737 * Renice negative nice level userspace
7738 * tasks back to 0:
7739 */
7740 if (TASK_NICE(p) < 0 && p->mm)
7741 set_user_nice(p, 0);
7742 continue;
7743 }
7744
7745 raw_spin_lock(&p->pi_lock);
7746 rq = __task_rq_lock(p);
7747
7748 normalize_task(rq, p);
7749
7750 __task_rq_unlock(rq);
7751 raw_spin_unlock(&p->pi_lock);
7752 } while_each_thread(g, p);
7753
7754 read_unlock_irqrestore(&tasklist_lock, flags);
7755 }
7756
7757 #endif /* CONFIG_MAGIC_SYSRQ */
7758
7759 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7760 /*
7761 * These functions are only useful for the IA64 MCA handling, or kdb.
7762 *
7763 * They can only be called when the whole system has been
7764 * stopped - every CPU needs to be quiescent, and no scheduling
7765 * activity can take place. Using them for anything else would
7766 * be a serious bug, and as a result, they aren't even visible
7767 * under any other configuration.
7768 */
7769
7770 /**
7771 * curr_task - return the current task for a given cpu.
7772 * @cpu: the processor in question.
7773 *
7774 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7775 */
7776 struct task_struct *curr_task(int cpu)
7777 {
7778 return cpu_curr(cpu);
7779 }
7780
7781 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7782
7783 #ifdef CONFIG_IA64
7784 /**
7785 * set_curr_task - set the current task for a given cpu.
7786 * @cpu: the processor in question.
7787 * @p: the task pointer to set.
7788 *
7789 * Description: This function must only be used when non-maskable interrupts
7790 * are serviced on a separate stack. It allows the architecture to switch the
7791 * notion of the current task on a cpu in a non-blocking manner. This function
7792 * must be called with all CPU's synchronized, and interrupts disabled, the
7793 * and caller must save the original value of the current task (see
7794 * curr_task() above) and restore that value before reenabling interrupts and
7795 * re-starting the system.
7796 *
7797 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7798 */
7799 void set_curr_task(int cpu, struct task_struct *p)
7800 {
7801 cpu_curr(cpu) = p;
7802 }
7803
7804 #endif
7805
7806 #ifdef CONFIG_FAIR_GROUP_SCHED
7807 static void free_fair_sched_group(struct task_group *tg)
7808 {
7809 int i;
7810
7811 for_each_possible_cpu(i) {
7812 if (tg->cfs_rq)
7813 kfree(tg->cfs_rq[i]);
7814 if (tg->se)
7815 kfree(tg->se[i]);
7816 }
7817
7818 kfree(tg->cfs_rq);
7819 kfree(tg->se);
7820 }
7821
7822 static
7823 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7824 {
7825 struct cfs_rq *cfs_rq;
7826 struct sched_entity *se;
7827 struct rq *rq;
7828 int i;
7829
7830 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7831 if (!tg->cfs_rq)
7832 goto err;
7833 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7834 if (!tg->se)
7835 goto err;
7836
7837 tg->shares = NICE_0_LOAD;
7838
7839 for_each_possible_cpu(i) {
7840 rq = cpu_rq(i);
7841
7842 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7843 GFP_KERNEL, cpu_to_node(i));
7844 if (!cfs_rq)
7845 goto err;
7846
7847 se = kzalloc_node(sizeof(struct sched_entity),
7848 GFP_KERNEL, cpu_to_node(i));
7849 if (!se)
7850 goto err_free_rq;
7851
7852 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7853 }
7854
7855 return 1;
7856
7857 err_free_rq:
7858 kfree(cfs_rq);
7859 err:
7860 return 0;
7861 }
7862
7863 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7864 {
7865 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7866 &cpu_rq(cpu)->leaf_cfs_rq_list);
7867 }
7868
7869 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7870 {
7871 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7872 }
7873 #else /* !CONFG_FAIR_GROUP_SCHED */
7874 static inline void free_fair_sched_group(struct task_group *tg)
7875 {
7876 }
7877
7878 static inline
7879 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7880 {
7881 return 1;
7882 }
7883
7884 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7885 {
7886 }
7887
7888 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7889 {
7890 }
7891 #endif /* CONFIG_FAIR_GROUP_SCHED */
7892
7893 #ifdef CONFIG_RT_GROUP_SCHED
7894 static void free_rt_sched_group(struct task_group *tg)
7895 {
7896 int i;
7897
7898 destroy_rt_bandwidth(&tg->rt_bandwidth);
7899
7900 for_each_possible_cpu(i) {
7901 if (tg->rt_rq)
7902 kfree(tg->rt_rq[i]);
7903 if (tg->rt_se)
7904 kfree(tg->rt_se[i]);
7905 }
7906
7907 kfree(tg->rt_rq);
7908 kfree(tg->rt_se);
7909 }
7910
7911 static
7912 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7913 {
7914 struct rt_rq *rt_rq;
7915 struct sched_rt_entity *rt_se;
7916 struct rq *rq;
7917 int i;
7918
7919 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
7920 if (!tg->rt_rq)
7921 goto err;
7922 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
7923 if (!tg->rt_se)
7924 goto err;
7925
7926 init_rt_bandwidth(&tg->rt_bandwidth,
7927 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
7928
7929 for_each_possible_cpu(i) {
7930 rq = cpu_rq(i);
7931
7932 rt_rq = kzalloc_node(sizeof(struct rt_rq),
7933 GFP_KERNEL, cpu_to_node(i));
7934 if (!rt_rq)
7935 goto err;
7936
7937 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
7938 GFP_KERNEL, cpu_to_node(i));
7939 if (!rt_se)
7940 goto err_free_rq;
7941
7942 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
7943 }
7944
7945 return 1;
7946
7947 err_free_rq:
7948 kfree(rt_rq);
7949 err:
7950 return 0;
7951 }
7952
7953 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7954 {
7955 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7956 &cpu_rq(cpu)->leaf_rt_rq_list);
7957 }
7958
7959 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7960 {
7961 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7962 }
7963 #else /* !CONFIG_RT_GROUP_SCHED */
7964 static inline void free_rt_sched_group(struct task_group *tg)
7965 {
7966 }
7967
7968 static inline
7969 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7970 {
7971 return 1;
7972 }
7973
7974 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7975 {
7976 }
7977
7978 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7979 {
7980 }
7981 #endif /* CONFIG_RT_GROUP_SCHED */
7982
7983 #ifdef CONFIG_CGROUP_SCHED
7984 static void free_sched_group(struct task_group *tg)
7985 {
7986 free_fair_sched_group(tg);
7987 free_rt_sched_group(tg);
7988 kfree(tg);
7989 }
7990
7991 /* allocate runqueue etc for a new task group */
7992 struct task_group *sched_create_group(struct task_group *parent)
7993 {
7994 struct task_group *tg;
7995 unsigned long flags;
7996 int i;
7997
7998 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7999 if (!tg)
8000 return ERR_PTR(-ENOMEM);
8001
8002 if (!alloc_fair_sched_group(tg, parent))
8003 goto err;
8004
8005 if (!alloc_rt_sched_group(tg, parent))
8006 goto err;
8007
8008 spin_lock_irqsave(&task_group_lock, flags);
8009 for_each_possible_cpu(i) {
8010 register_fair_sched_group(tg, i);
8011 register_rt_sched_group(tg, i);
8012 }
8013 list_add_rcu(&tg->list, &task_groups);
8014
8015 WARN_ON(!parent); /* root should already exist */
8016
8017 tg->parent = parent;
8018 INIT_LIST_HEAD(&tg->children);
8019 list_add_rcu(&tg->siblings, &parent->children);
8020 spin_unlock_irqrestore(&task_group_lock, flags);
8021
8022 return tg;
8023
8024 err:
8025 free_sched_group(tg);
8026 return ERR_PTR(-ENOMEM);
8027 }
8028
8029 /* rcu callback to free various structures associated with a task group */
8030 static void free_sched_group_rcu(struct rcu_head *rhp)
8031 {
8032 /* now it should be safe to free those cfs_rqs */
8033 free_sched_group(container_of(rhp, struct task_group, rcu));
8034 }
8035
8036 /* Destroy runqueue etc associated with a task group */
8037 void sched_destroy_group(struct task_group *tg)
8038 {
8039 unsigned long flags;
8040 int i;
8041
8042 spin_lock_irqsave(&task_group_lock, flags);
8043 for_each_possible_cpu(i) {
8044 unregister_fair_sched_group(tg, i);
8045 unregister_rt_sched_group(tg, i);
8046 }
8047 list_del_rcu(&tg->list);
8048 list_del_rcu(&tg->siblings);
8049 spin_unlock_irqrestore(&task_group_lock, flags);
8050
8051 /* wait for possible concurrent references to cfs_rqs complete */
8052 call_rcu(&tg->rcu, free_sched_group_rcu);
8053 }
8054
8055 /* change task's runqueue when it moves between groups.
8056 * The caller of this function should have put the task in its new group
8057 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8058 * reflect its new group.
8059 */
8060 void sched_move_task(struct task_struct *tsk)
8061 {
8062 int on_rq, running;
8063 unsigned long flags;
8064 struct rq *rq;
8065
8066 rq = task_rq_lock(tsk, &flags);
8067
8068 running = task_current(rq, tsk);
8069 on_rq = tsk->se.on_rq;
8070
8071 if (on_rq)
8072 dequeue_task(rq, tsk, 0);
8073 if (unlikely(running))
8074 tsk->sched_class->put_prev_task(rq, tsk);
8075
8076 set_task_rq(tsk, task_cpu(tsk));
8077
8078 #ifdef CONFIG_FAIR_GROUP_SCHED
8079 if (tsk->sched_class->moved_group)
8080 tsk->sched_class->moved_group(tsk, on_rq);
8081 #endif
8082
8083 if (unlikely(running))
8084 tsk->sched_class->set_curr_task(rq);
8085 if (on_rq)
8086 enqueue_task(rq, tsk, 0);
8087
8088 task_rq_unlock(rq, &flags);
8089 }
8090 #endif /* CONFIG_CGROUP_SCHED */
8091
8092 #ifdef CONFIG_FAIR_GROUP_SCHED
8093 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8094 {
8095 struct cfs_rq *cfs_rq = se->cfs_rq;
8096 int on_rq;
8097
8098 on_rq = se->on_rq;
8099 if (on_rq)
8100 dequeue_entity(cfs_rq, se, 0);
8101
8102 se->load.weight = shares;
8103 se->load.inv_weight = 0;
8104
8105 if (on_rq)
8106 enqueue_entity(cfs_rq, se, 0);
8107 }
8108
8109 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8110 {
8111 struct cfs_rq *cfs_rq = se->cfs_rq;
8112 struct rq *rq = cfs_rq->rq;
8113 unsigned long flags;
8114
8115 raw_spin_lock_irqsave(&rq->lock, flags);
8116 __set_se_shares(se, shares);
8117 raw_spin_unlock_irqrestore(&rq->lock, flags);
8118 }
8119
8120 static DEFINE_MUTEX(shares_mutex);
8121
8122 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8123 {
8124 int i;
8125 unsigned long flags;
8126
8127 /*
8128 * We can't change the weight of the root cgroup.
8129 */
8130 if (!tg->se[0])
8131 return -EINVAL;
8132
8133 if (shares < MIN_SHARES)
8134 shares = MIN_SHARES;
8135 else if (shares > MAX_SHARES)
8136 shares = MAX_SHARES;
8137
8138 mutex_lock(&shares_mutex);
8139 if (tg->shares == shares)
8140 goto done;
8141
8142 spin_lock_irqsave(&task_group_lock, flags);
8143 for_each_possible_cpu(i)
8144 unregister_fair_sched_group(tg, i);
8145 list_del_rcu(&tg->siblings);
8146 spin_unlock_irqrestore(&task_group_lock, flags);
8147
8148 /* wait for any ongoing reference to this group to finish */
8149 synchronize_sched();
8150
8151 /*
8152 * Now we are free to modify the group's share on each cpu
8153 * w/o tripping rebalance_share or load_balance_fair.
8154 */
8155 tg->shares = shares;
8156 for_each_possible_cpu(i) {
8157 /*
8158 * force a rebalance
8159 */
8160 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8161 set_se_shares(tg->se[i], shares);
8162 }
8163
8164 /*
8165 * Enable load balance activity on this group, by inserting it back on
8166 * each cpu's rq->leaf_cfs_rq_list.
8167 */
8168 spin_lock_irqsave(&task_group_lock, flags);
8169 for_each_possible_cpu(i)
8170 register_fair_sched_group(tg, i);
8171 list_add_rcu(&tg->siblings, &tg->parent->children);
8172 spin_unlock_irqrestore(&task_group_lock, flags);
8173 done:
8174 mutex_unlock(&shares_mutex);
8175 return 0;
8176 }
8177
8178 unsigned long sched_group_shares(struct task_group *tg)
8179 {
8180 return tg->shares;
8181 }
8182 #endif
8183
8184 #ifdef CONFIG_RT_GROUP_SCHED
8185 /*
8186 * Ensure that the real time constraints are schedulable.
8187 */
8188 static DEFINE_MUTEX(rt_constraints_mutex);
8189
8190 static unsigned long to_ratio(u64 period, u64 runtime)
8191 {
8192 if (runtime == RUNTIME_INF)
8193 return 1ULL << 20;
8194
8195 return div64_u64(runtime << 20, period);
8196 }
8197
8198 /* Must be called with tasklist_lock held */
8199 static inline int tg_has_rt_tasks(struct task_group *tg)
8200 {
8201 struct task_struct *g, *p;
8202
8203 do_each_thread(g, p) {
8204 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8205 return 1;
8206 } while_each_thread(g, p);
8207
8208 return 0;
8209 }
8210
8211 struct rt_schedulable_data {
8212 struct task_group *tg;
8213 u64 rt_period;
8214 u64 rt_runtime;
8215 };
8216
8217 static int tg_schedulable(struct task_group *tg, void *data)
8218 {
8219 struct rt_schedulable_data *d = data;
8220 struct task_group *child;
8221 unsigned long total, sum = 0;
8222 u64 period, runtime;
8223
8224 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8225 runtime = tg->rt_bandwidth.rt_runtime;
8226
8227 if (tg == d->tg) {
8228 period = d->rt_period;
8229 runtime = d->rt_runtime;
8230 }
8231
8232 /*
8233 * Cannot have more runtime than the period.
8234 */
8235 if (runtime > period && runtime != RUNTIME_INF)
8236 return -EINVAL;
8237
8238 /*
8239 * Ensure we don't starve existing RT tasks.
8240 */
8241 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8242 return -EBUSY;
8243
8244 total = to_ratio(period, runtime);
8245
8246 /*
8247 * Nobody can have more than the global setting allows.
8248 */
8249 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8250 return -EINVAL;
8251
8252 /*
8253 * The sum of our children's runtime should not exceed our own.
8254 */
8255 list_for_each_entry_rcu(child, &tg->children, siblings) {
8256 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8257 runtime = child->rt_bandwidth.rt_runtime;
8258
8259 if (child == d->tg) {
8260 period = d->rt_period;
8261 runtime = d->rt_runtime;
8262 }
8263
8264 sum += to_ratio(period, runtime);
8265 }
8266
8267 if (sum > total)
8268 return -EINVAL;
8269
8270 return 0;
8271 }
8272
8273 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8274 {
8275 struct rt_schedulable_data data = {
8276 .tg = tg,
8277 .rt_period = period,
8278 .rt_runtime = runtime,
8279 };
8280
8281 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8282 }
8283
8284 static int tg_set_bandwidth(struct task_group *tg,
8285 u64 rt_period, u64 rt_runtime)
8286 {
8287 int i, err = 0;
8288
8289 mutex_lock(&rt_constraints_mutex);
8290 read_lock(&tasklist_lock);
8291 err = __rt_schedulable(tg, rt_period, rt_runtime);
8292 if (err)
8293 goto unlock;
8294
8295 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8296 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8297 tg->rt_bandwidth.rt_runtime = rt_runtime;
8298
8299 for_each_possible_cpu(i) {
8300 struct rt_rq *rt_rq = tg->rt_rq[i];
8301
8302 raw_spin_lock(&rt_rq->rt_runtime_lock);
8303 rt_rq->rt_runtime = rt_runtime;
8304 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8305 }
8306 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8307 unlock:
8308 read_unlock(&tasklist_lock);
8309 mutex_unlock(&rt_constraints_mutex);
8310
8311 return err;
8312 }
8313
8314 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8315 {
8316 u64 rt_runtime, rt_period;
8317
8318 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8319 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8320 if (rt_runtime_us < 0)
8321 rt_runtime = RUNTIME_INF;
8322
8323 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8324 }
8325
8326 long sched_group_rt_runtime(struct task_group *tg)
8327 {
8328 u64 rt_runtime_us;
8329
8330 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8331 return -1;
8332
8333 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8334 do_div(rt_runtime_us, NSEC_PER_USEC);
8335 return rt_runtime_us;
8336 }
8337
8338 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8339 {
8340 u64 rt_runtime, rt_period;
8341
8342 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8343 rt_runtime = tg->rt_bandwidth.rt_runtime;
8344
8345 if (rt_period == 0)
8346 return -EINVAL;
8347
8348 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8349 }
8350
8351 long sched_group_rt_period(struct task_group *tg)
8352 {
8353 u64 rt_period_us;
8354
8355 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8356 do_div(rt_period_us, NSEC_PER_USEC);
8357 return rt_period_us;
8358 }
8359
8360 static int sched_rt_global_constraints(void)
8361 {
8362 u64 runtime, period;
8363 int ret = 0;
8364
8365 if (sysctl_sched_rt_period <= 0)
8366 return -EINVAL;
8367
8368 runtime = global_rt_runtime();
8369 period = global_rt_period();
8370
8371 /*
8372 * Sanity check on the sysctl variables.
8373 */
8374 if (runtime > period && runtime != RUNTIME_INF)
8375 return -EINVAL;
8376
8377 mutex_lock(&rt_constraints_mutex);
8378 read_lock(&tasklist_lock);
8379 ret = __rt_schedulable(NULL, 0, 0);
8380 read_unlock(&tasklist_lock);
8381 mutex_unlock(&rt_constraints_mutex);
8382
8383 return ret;
8384 }
8385
8386 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8387 {
8388 /* Don't accept realtime tasks when there is no way for them to run */
8389 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8390 return 0;
8391
8392 return 1;
8393 }
8394
8395 #else /* !CONFIG_RT_GROUP_SCHED */
8396 static int sched_rt_global_constraints(void)
8397 {
8398 unsigned long flags;
8399 int i;
8400
8401 if (sysctl_sched_rt_period <= 0)
8402 return -EINVAL;
8403
8404 /*
8405 * There's always some RT tasks in the root group
8406 * -- migration, kstopmachine etc..
8407 */
8408 if (sysctl_sched_rt_runtime == 0)
8409 return -EBUSY;
8410
8411 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8412 for_each_possible_cpu(i) {
8413 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8414
8415 raw_spin_lock(&rt_rq->rt_runtime_lock);
8416 rt_rq->rt_runtime = global_rt_runtime();
8417 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8418 }
8419 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8420
8421 return 0;
8422 }
8423 #endif /* CONFIG_RT_GROUP_SCHED */
8424
8425 int sched_rt_handler(struct ctl_table *table, int write,
8426 void __user *buffer, size_t *lenp,
8427 loff_t *ppos)
8428 {
8429 int ret;
8430 int old_period, old_runtime;
8431 static DEFINE_MUTEX(mutex);
8432
8433 mutex_lock(&mutex);
8434 old_period = sysctl_sched_rt_period;
8435 old_runtime = sysctl_sched_rt_runtime;
8436
8437 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8438
8439 if (!ret && write) {
8440 ret = sched_rt_global_constraints();
8441 if (ret) {
8442 sysctl_sched_rt_period = old_period;
8443 sysctl_sched_rt_runtime = old_runtime;
8444 } else {
8445 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8446 def_rt_bandwidth.rt_period =
8447 ns_to_ktime(global_rt_period());
8448 }
8449 }
8450 mutex_unlock(&mutex);
8451
8452 return ret;
8453 }
8454
8455 #ifdef CONFIG_CGROUP_SCHED
8456
8457 /* return corresponding task_group object of a cgroup */
8458 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8459 {
8460 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8461 struct task_group, css);
8462 }
8463
8464 static struct cgroup_subsys_state *
8465 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8466 {
8467 struct task_group *tg, *parent;
8468
8469 if (!cgrp->parent) {
8470 /* This is early initialization for the top cgroup */
8471 return &init_task_group.css;
8472 }
8473
8474 parent = cgroup_tg(cgrp->parent);
8475 tg = sched_create_group(parent);
8476 if (IS_ERR(tg))
8477 return ERR_PTR(-ENOMEM);
8478
8479 return &tg->css;
8480 }
8481
8482 static void
8483 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8484 {
8485 struct task_group *tg = cgroup_tg(cgrp);
8486
8487 sched_destroy_group(tg);
8488 }
8489
8490 static int
8491 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8492 {
8493 #ifdef CONFIG_RT_GROUP_SCHED
8494 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8495 return -EINVAL;
8496 #else
8497 /* We don't support RT-tasks being in separate groups */
8498 if (tsk->sched_class != &fair_sched_class)
8499 return -EINVAL;
8500 #endif
8501 return 0;
8502 }
8503
8504 static int
8505 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8506 struct task_struct *tsk, bool threadgroup)
8507 {
8508 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8509 if (retval)
8510 return retval;
8511 if (threadgroup) {
8512 struct task_struct *c;
8513 rcu_read_lock();
8514 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8515 retval = cpu_cgroup_can_attach_task(cgrp, c);
8516 if (retval) {
8517 rcu_read_unlock();
8518 return retval;
8519 }
8520 }
8521 rcu_read_unlock();
8522 }
8523 return 0;
8524 }
8525
8526 static void
8527 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8528 struct cgroup *old_cont, struct task_struct *tsk,
8529 bool threadgroup)
8530 {
8531 sched_move_task(tsk);
8532 if (threadgroup) {
8533 struct task_struct *c;
8534 rcu_read_lock();
8535 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8536 sched_move_task(c);
8537 }
8538 rcu_read_unlock();
8539 }
8540 }
8541
8542 #ifdef CONFIG_FAIR_GROUP_SCHED
8543 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8544 u64 shareval)
8545 {
8546 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8547 }
8548
8549 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8550 {
8551 struct task_group *tg = cgroup_tg(cgrp);
8552
8553 return (u64) tg->shares;
8554 }
8555 #endif /* CONFIG_FAIR_GROUP_SCHED */
8556
8557 #ifdef CONFIG_RT_GROUP_SCHED
8558 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8559 s64 val)
8560 {
8561 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8562 }
8563
8564 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8565 {
8566 return sched_group_rt_runtime(cgroup_tg(cgrp));
8567 }
8568
8569 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8570 u64 rt_period_us)
8571 {
8572 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8573 }
8574
8575 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8576 {
8577 return sched_group_rt_period(cgroup_tg(cgrp));
8578 }
8579 #endif /* CONFIG_RT_GROUP_SCHED */
8580
8581 static struct cftype cpu_files[] = {
8582 #ifdef CONFIG_FAIR_GROUP_SCHED
8583 {
8584 .name = "shares",
8585 .read_u64 = cpu_shares_read_u64,
8586 .write_u64 = cpu_shares_write_u64,
8587 },
8588 #endif
8589 #ifdef CONFIG_RT_GROUP_SCHED
8590 {
8591 .name = "rt_runtime_us",
8592 .read_s64 = cpu_rt_runtime_read,
8593 .write_s64 = cpu_rt_runtime_write,
8594 },
8595 {
8596 .name = "rt_period_us",
8597 .read_u64 = cpu_rt_period_read_uint,
8598 .write_u64 = cpu_rt_period_write_uint,
8599 },
8600 #endif
8601 };
8602
8603 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8604 {
8605 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8606 }
8607
8608 struct cgroup_subsys cpu_cgroup_subsys = {
8609 .name = "cpu",
8610 .create = cpu_cgroup_create,
8611 .destroy = cpu_cgroup_destroy,
8612 .can_attach = cpu_cgroup_can_attach,
8613 .attach = cpu_cgroup_attach,
8614 .populate = cpu_cgroup_populate,
8615 .subsys_id = cpu_cgroup_subsys_id,
8616 .early_init = 1,
8617 };
8618
8619 #endif /* CONFIG_CGROUP_SCHED */
8620
8621 #ifdef CONFIG_CGROUP_CPUACCT
8622
8623 /*
8624 * CPU accounting code for task groups.
8625 *
8626 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8627 * (balbir@in.ibm.com).
8628 */
8629
8630 /* track cpu usage of a group of tasks and its child groups */
8631 struct cpuacct {
8632 struct cgroup_subsys_state css;
8633 /* cpuusage holds pointer to a u64-type object on every cpu */
8634 u64 __percpu *cpuusage;
8635 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8636 struct cpuacct *parent;
8637 };
8638
8639 struct cgroup_subsys cpuacct_subsys;
8640
8641 /* return cpu accounting group corresponding to this container */
8642 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8643 {
8644 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8645 struct cpuacct, css);
8646 }
8647
8648 /* return cpu accounting group to which this task belongs */
8649 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8650 {
8651 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8652 struct cpuacct, css);
8653 }
8654
8655 /* create a new cpu accounting group */
8656 static struct cgroup_subsys_state *cpuacct_create(
8657 struct cgroup_subsys *ss, struct cgroup *cgrp)
8658 {
8659 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8660 int i;
8661
8662 if (!ca)
8663 goto out;
8664
8665 ca->cpuusage = alloc_percpu(u64);
8666 if (!ca->cpuusage)
8667 goto out_free_ca;
8668
8669 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8670 if (percpu_counter_init(&ca->cpustat[i], 0))
8671 goto out_free_counters;
8672
8673 if (cgrp->parent)
8674 ca->parent = cgroup_ca(cgrp->parent);
8675
8676 return &ca->css;
8677
8678 out_free_counters:
8679 while (--i >= 0)
8680 percpu_counter_destroy(&ca->cpustat[i]);
8681 free_percpu(ca->cpuusage);
8682 out_free_ca:
8683 kfree(ca);
8684 out:
8685 return ERR_PTR(-ENOMEM);
8686 }
8687
8688 /* destroy an existing cpu accounting group */
8689 static void
8690 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8691 {
8692 struct cpuacct *ca = cgroup_ca(cgrp);
8693 int i;
8694
8695 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8696 percpu_counter_destroy(&ca->cpustat[i]);
8697 free_percpu(ca->cpuusage);
8698 kfree(ca);
8699 }
8700
8701 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8702 {
8703 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8704 u64 data;
8705
8706 #ifndef CONFIG_64BIT
8707 /*
8708 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8709 */
8710 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8711 data = *cpuusage;
8712 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8713 #else
8714 data = *cpuusage;
8715 #endif
8716
8717 return data;
8718 }
8719
8720 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8721 {
8722 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8723
8724 #ifndef CONFIG_64BIT
8725 /*
8726 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8727 */
8728 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8729 *cpuusage = val;
8730 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8731 #else
8732 *cpuusage = val;
8733 #endif
8734 }
8735
8736 /* return total cpu usage (in nanoseconds) of a group */
8737 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8738 {
8739 struct cpuacct *ca = cgroup_ca(cgrp);
8740 u64 totalcpuusage = 0;
8741 int i;
8742
8743 for_each_present_cpu(i)
8744 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8745
8746 return totalcpuusage;
8747 }
8748
8749 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8750 u64 reset)
8751 {
8752 struct cpuacct *ca = cgroup_ca(cgrp);
8753 int err = 0;
8754 int i;
8755
8756 if (reset) {
8757 err = -EINVAL;
8758 goto out;
8759 }
8760
8761 for_each_present_cpu(i)
8762 cpuacct_cpuusage_write(ca, i, 0);
8763
8764 out:
8765 return err;
8766 }
8767
8768 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8769 struct seq_file *m)
8770 {
8771 struct cpuacct *ca = cgroup_ca(cgroup);
8772 u64 percpu;
8773 int i;
8774
8775 for_each_present_cpu(i) {
8776 percpu = cpuacct_cpuusage_read(ca, i);
8777 seq_printf(m, "%llu ", (unsigned long long) percpu);
8778 }
8779 seq_printf(m, "\n");
8780 return 0;
8781 }
8782
8783 static const char *cpuacct_stat_desc[] = {
8784 [CPUACCT_STAT_USER] = "user",
8785 [CPUACCT_STAT_SYSTEM] = "system",
8786 };
8787
8788 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8789 struct cgroup_map_cb *cb)
8790 {
8791 struct cpuacct *ca = cgroup_ca(cgrp);
8792 int i;
8793
8794 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8795 s64 val = percpu_counter_read(&ca->cpustat[i]);
8796 val = cputime64_to_clock_t(val);
8797 cb->fill(cb, cpuacct_stat_desc[i], val);
8798 }
8799 return 0;
8800 }
8801
8802 static struct cftype files[] = {
8803 {
8804 .name = "usage",
8805 .read_u64 = cpuusage_read,
8806 .write_u64 = cpuusage_write,
8807 },
8808 {
8809 .name = "usage_percpu",
8810 .read_seq_string = cpuacct_percpu_seq_read,
8811 },
8812 {
8813 .name = "stat",
8814 .read_map = cpuacct_stats_show,
8815 },
8816 };
8817
8818 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8819 {
8820 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8821 }
8822
8823 /*
8824 * charge this task's execution time to its accounting group.
8825 *
8826 * called with rq->lock held.
8827 */
8828 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8829 {
8830 struct cpuacct *ca;
8831 int cpu;
8832
8833 if (unlikely(!cpuacct_subsys.active))
8834 return;
8835
8836 cpu = task_cpu(tsk);
8837
8838 rcu_read_lock();
8839
8840 ca = task_ca(tsk);
8841
8842 for (; ca; ca = ca->parent) {
8843 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8844 *cpuusage += cputime;
8845 }
8846
8847 rcu_read_unlock();
8848 }
8849
8850 /*
8851 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8852 * in cputime_t units. As a result, cpuacct_update_stats calls
8853 * percpu_counter_add with values large enough to always overflow the
8854 * per cpu batch limit causing bad SMP scalability.
8855 *
8856 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8857 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8858 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8859 */
8860 #ifdef CONFIG_SMP
8861 #define CPUACCT_BATCH \
8862 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8863 #else
8864 #define CPUACCT_BATCH 0
8865 #endif
8866
8867 /*
8868 * Charge the system/user time to the task's accounting group.
8869 */
8870 static void cpuacct_update_stats(struct task_struct *tsk,
8871 enum cpuacct_stat_index idx, cputime_t val)
8872 {
8873 struct cpuacct *ca;
8874 int batch = CPUACCT_BATCH;
8875
8876 if (unlikely(!cpuacct_subsys.active))
8877 return;
8878
8879 rcu_read_lock();
8880 ca = task_ca(tsk);
8881
8882 do {
8883 __percpu_counter_add(&ca->cpustat[idx], val, batch);
8884 ca = ca->parent;
8885 } while (ca);
8886 rcu_read_unlock();
8887 }
8888
8889 struct cgroup_subsys cpuacct_subsys = {
8890 .name = "cpuacct",
8891 .create = cpuacct_create,
8892 .destroy = cpuacct_destroy,
8893 .populate = cpuacct_populate,
8894 .subsys_id = cpuacct_subsys_id,
8895 };
8896 #endif /* CONFIG_CGROUP_CPUACCT */
8897
8898 #ifndef CONFIG_SMP
8899
8900 void synchronize_sched_expedited(void)
8901 {
8902 barrier();
8903 }
8904 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8905
8906 #else /* #ifndef CONFIG_SMP */
8907
8908 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
8909
8910 static int synchronize_sched_expedited_cpu_stop(void *data)
8911 {
8912 /*
8913 * There must be a full memory barrier on each affected CPU
8914 * between the time that try_stop_cpus() is called and the
8915 * time that it returns.
8916 *
8917 * In the current initial implementation of cpu_stop, the
8918 * above condition is already met when the control reaches
8919 * this point and the following smp_mb() is not strictly
8920 * necessary. Do smp_mb() anyway for documentation and
8921 * robustness against future implementation changes.
8922 */
8923 smp_mb(); /* See above comment block. */
8924 return 0;
8925 }
8926
8927 /*
8928 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
8929 * approach to force grace period to end quickly. This consumes
8930 * significant time on all CPUs, and is thus not recommended for
8931 * any sort of common-case code.
8932 *
8933 * Note that it is illegal to call this function while holding any
8934 * lock that is acquired by a CPU-hotplug notifier. Failing to
8935 * observe this restriction will result in deadlock.
8936 */
8937 void synchronize_sched_expedited(void)
8938 {
8939 int snap, trycount = 0;
8940
8941 smp_mb(); /* ensure prior mod happens before capturing snap. */
8942 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
8943 get_online_cpus();
8944 while (try_stop_cpus(cpu_online_mask,
8945 synchronize_sched_expedited_cpu_stop,
8946 NULL) == -EAGAIN) {
8947 put_online_cpus();
8948 if (trycount++ < 10)
8949 udelay(trycount * num_online_cpus());
8950 else {
8951 synchronize_sched();
8952 return;
8953 }
8954 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
8955 smp_mb(); /* ensure test happens before caller kfree */
8956 return;
8957 }
8958 get_online_cpus();
8959 }
8960 atomic_inc(&synchronize_sched_expedited_count);
8961 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
8962 put_online_cpus();
8963 }
8964 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8965
8966 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.209735 seconds and 6 git commands to generate.