Merge branch 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
83
84 /*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93 /*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102 /*
103 * Helpers for converting nanosecond timing to jiffy resolution
104 */
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
110 /*
111 * These are the 'tuning knobs' of the scheduler:
112 *
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
115 */
116 #define DEF_TIMESLICE (100 * HZ / 1000)
117
118 /*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121 #define RUNTIME_INF ((u64)~0ULL)
122
123 static inline int rt_policy(int policy)
124 {
125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 return 1;
127 return 0;
128 }
129
130 static inline int task_has_rt_policy(struct task_struct *p)
131 {
132 return rt_policy(p->policy);
133 }
134
135 /*
136 * This is the priority-queue data structure of the RT scheduling class:
137 */
138 struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
141 };
142
143 struct rt_bandwidth {
144 /* nests inside the rq lock: */
145 raw_spinlock_t rt_runtime_lock;
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
149 };
150
151 static struct rt_bandwidth def_rt_bandwidth;
152
153 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154
155 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 {
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
162
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166
167 if (!overrun)
168 break;
169
170 idle = do_sched_rt_period_timer(rt_b, overrun);
171 }
172
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
174 }
175
176 static
177 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 {
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
181
182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
183
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
187 }
188
189 static inline int rt_bandwidth_enabled(void)
190 {
191 return sysctl_sched_rt_runtime >= 0;
192 }
193
194 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 {
196 ktime_t now;
197
198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 return;
200
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
203
204 raw_spin_lock(&rt_b->rt_runtime_lock);
205 for (;;) {
206 unsigned long delta;
207 ktime_t soft, hard;
208
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
211
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219 HRTIMER_MODE_ABS_PINNED, 0);
220 }
221 raw_spin_unlock(&rt_b->rt_runtime_lock);
222 }
223
224 #ifdef CONFIG_RT_GROUP_SCHED
225 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 {
227 hrtimer_cancel(&rt_b->rt_period_timer);
228 }
229 #endif
230
231 /*
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
234 */
235 static DEFINE_MUTEX(sched_domains_mutex);
236
237 #ifdef CONFIG_CGROUP_SCHED
238
239 #include <linux/cgroup.h>
240
241 struct cfs_rq;
242
243 static LIST_HEAD(task_groups);
244
245 /* task group related information */
246 struct task_group {
247 struct cgroup_subsys_state css;
248
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
255 #endif
256
257 #ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
260
261 struct rt_bandwidth rt_bandwidth;
262 #endif
263
264 struct rcu_head rcu;
265 struct list_head list;
266
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
270 };
271
272 #define root_task_group init_task_group
273
274 /* task_group_lock serializes add/remove of task groups and also changes to
275 * a task group's cpu shares.
276 */
277 static DEFINE_SPINLOCK(task_group_lock);
278
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280
281 #ifdef CONFIG_SMP
282 static int root_task_group_empty(void)
283 {
284 return list_empty(&root_task_group.children);
285 }
286 #endif
287
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
289
290 /*
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
298 #define MIN_SHARES 2
299 #define MAX_SHARES (1UL << 18)
300
301 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302 #endif
303
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
306 */
307 struct task_group init_task_group;
308
309 /* return group to which a task belongs */
310 static inline struct task_group *task_group(struct task_struct *p)
311 {
312 struct task_group *tg;
313
314 #ifdef CONFIG_CGROUP_SCHED
315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
316 struct task_group, css);
317 #else
318 tg = &init_task_group;
319 #endif
320 return tg;
321 }
322
323 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
324 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
325 {
326 /*
327 * Strictly speaking this rcu_read_lock() is not needed since the
328 * task_group is tied to the cgroup, which in turn can never go away
329 * as long as there are tasks attached to it.
330 *
331 * However since task_group() uses task_subsys_state() which is an
332 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
333 */
334 rcu_read_lock();
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
337 p->se.parent = task_group(p)->se[cpu];
338 #endif
339
340 #ifdef CONFIG_RT_GROUP_SCHED
341 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
342 p->rt.parent = task_group(p)->rt_se[cpu];
343 #endif
344 rcu_read_unlock();
345 }
346
347 #else
348
349 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
350 static inline struct task_group *task_group(struct task_struct *p)
351 {
352 return NULL;
353 }
354
355 #endif /* CONFIG_CGROUP_SCHED */
356
357 /* CFS-related fields in a runqueue */
358 struct cfs_rq {
359 struct load_weight load;
360 unsigned long nr_running;
361
362 u64 exec_clock;
363 u64 min_vruntime;
364
365 struct rb_root tasks_timeline;
366 struct rb_node *rb_leftmost;
367
368 struct list_head tasks;
369 struct list_head *balance_iterator;
370
371 /*
372 * 'curr' points to currently running entity on this cfs_rq.
373 * It is set to NULL otherwise (i.e when none are currently running).
374 */
375 struct sched_entity *curr, *next, *last;
376
377 unsigned int nr_spread_over;
378
379 #ifdef CONFIG_FAIR_GROUP_SCHED
380 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
381
382 /*
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
386 *
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
389 */
390 struct list_head leaf_cfs_rq_list;
391 struct task_group *tg; /* group that "owns" this runqueue */
392
393 #ifdef CONFIG_SMP
394 /*
395 * the part of load.weight contributed by tasks
396 */
397 unsigned long task_weight;
398
399 /*
400 * h_load = weight * f(tg)
401 *
402 * Where f(tg) is the recursive weight fraction assigned to
403 * this group.
404 */
405 unsigned long h_load;
406
407 /*
408 * this cpu's part of tg->shares
409 */
410 unsigned long shares;
411
412 /*
413 * load.weight at the time we set shares
414 */
415 unsigned long rq_weight;
416 #endif
417 #endif
418 };
419
420 /* Real-Time classes' related field in a runqueue: */
421 struct rt_rq {
422 struct rt_prio_array active;
423 unsigned long rt_nr_running;
424 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
425 struct {
426 int curr; /* highest queued rt task prio */
427 #ifdef CONFIG_SMP
428 int next; /* next highest */
429 #endif
430 } highest_prio;
431 #endif
432 #ifdef CONFIG_SMP
433 unsigned long rt_nr_migratory;
434 unsigned long rt_nr_total;
435 int overloaded;
436 struct plist_head pushable_tasks;
437 #endif
438 int rt_throttled;
439 u64 rt_time;
440 u64 rt_runtime;
441 /* Nests inside the rq lock: */
442 raw_spinlock_t rt_runtime_lock;
443
444 #ifdef CONFIG_RT_GROUP_SCHED
445 unsigned long rt_nr_boosted;
446
447 struct rq *rq;
448 struct list_head leaf_rt_rq_list;
449 struct task_group *tg;
450 #endif
451 };
452
453 #ifdef CONFIG_SMP
454
455 /*
456 * We add the notion of a root-domain which will be used to define per-domain
457 * variables. Each exclusive cpuset essentially defines an island domain by
458 * fully partitioning the member cpus from any other cpuset. Whenever a new
459 * exclusive cpuset is created, we also create and attach a new root-domain
460 * object.
461 *
462 */
463 struct root_domain {
464 atomic_t refcount;
465 cpumask_var_t span;
466 cpumask_var_t online;
467
468 /*
469 * The "RT overload" flag: it gets set if a CPU has more than
470 * one runnable RT task.
471 */
472 cpumask_var_t rto_mask;
473 atomic_t rto_count;
474 #ifdef CONFIG_SMP
475 struct cpupri cpupri;
476 #endif
477 };
478
479 /*
480 * By default the system creates a single root-domain with all cpus as
481 * members (mimicking the global state we have today).
482 */
483 static struct root_domain def_root_domain;
484
485 #endif
486
487 /*
488 * This is the main, per-CPU runqueue data structure.
489 *
490 * Locking rule: those places that want to lock multiple runqueues
491 * (such as the load balancing or the thread migration code), lock
492 * acquire operations must be ordered by ascending &runqueue.
493 */
494 struct rq {
495 /* runqueue lock: */
496 raw_spinlock_t lock;
497
498 /*
499 * nr_running and cpu_load should be in the same cacheline because
500 * remote CPUs use both these fields when doing load calculation.
501 */
502 unsigned long nr_running;
503 #define CPU_LOAD_IDX_MAX 5
504 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
505 #ifdef CONFIG_NO_HZ
506 u64 nohz_stamp;
507 unsigned char in_nohz_recently;
508 #endif
509 unsigned int skip_clock_update;
510
511 /* capture load from *all* tasks on this cpu: */
512 struct load_weight load;
513 unsigned long nr_load_updates;
514 u64 nr_switches;
515
516 struct cfs_rq cfs;
517 struct rt_rq rt;
518
519 #ifdef CONFIG_FAIR_GROUP_SCHED
520 /* list of leaf cfs_rq on this cpu: */
521 struct list_head leaf_cfs_rq_list;
522 #endif
523 #ifdef CONFIG_RT_GROUP_SCHED
524 struct list_head leaf_rt_rq_list;
525 #endif
526
527 /*
528 * This is part of a global counter where only the total sum
529 * over all CPUs matters. A task can increase this counter on
530 * one CPU and if it got migrated afterwards it may decrease
531 * it on another CPU. Always updated under the runqueue lock:
532 */
533 unsigned long nr_uninterruptible;
534
535 struct task_struct *curr, *idle;
536 unsigned long next_balance;
537 struct mm_struct *prev_mm;
538
539 u64 clock;
540
541 atomic_t nr_iowait;
542
543 #ifdef CONFIG_SMP
544 struct root_domain *rd;
545 struct sched_domain *sd;
546
547 unsigned char idle_at_tick;
548 /* For active balancing */
549 int post_schedule;
550 int active_balance;
551 int push_cpu;
552 struct cpu_stop_work active_balance_work;
553 /* cpu of this runqueue: */
554 int cpu;
555 int online;
556
557 unsigned long avg_load_per_task;
558
559 u64 rt_avg;
560 u64 age_stamp;
561 u64 idle_stamp;
562 u64 avg_idle;
563 #endif
564
565 /* calc_load related fields */
566 unsigned long calc_load_update;
567 long calc_load_active;
568
569 #ifdef CONFIG_SCHED_HRTICK
570 #ifdef CONFIG_SMP
571 int hrtick_csd_pending;
572 struct call_single_data hrtick_csd;
573 #endif
574 struct hrtimer hrtick_timer;
575 #endif
576
577 #ifdef CONFIG_SCHEDSTATS
578 /* latency stats */
579 struct sched_info rq_sched_info;
580 unsigned long long rq_cpu_time;
581 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
582
583 /* sys_sched_yield() stats */
584 unsigned int yld_count;
585
586 /* schedule() stats */
587 unsigned int sched_switch;
588 unsigned int sched_count;
589 unsigned int sched_goidle;
590
591 /* try_to_wake_up() stats */
592 unsigned int ttwu_count;
593 unsigned int ttwu_local;
594
595 /* BKL stats */
596 unsigned int bkl_count;
597 #endif
598 };
599
600 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
601
602 static inline
603 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
604 {
605 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
606
607 /*
608 * A queue event has occurred, and we're going to schedule. In
609 * this case, we can save a useless back to back clock update.
610 */
611 if (test_tsk_need_resched(p))
612 rq->skip_clock_update = 1;
613 }
614
615 static inline int cpu_of(struct rq *rq)
616 {
617 #ifdef CONFIG_SMP
618 return rq->cpu;
619 #else
620 return 0;
621 #endif
622 }
623
624 #define rcu_dereference_check_sched_domain(p) \
625 rcu_dereference_check((p), \
626 rcu_read_lock_sched_held() || \
627 lockdep_is_held(&sched_domains_mutex))
628
629 /*
630 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
631 * See detach_destroy_domains: synchronize_sched for details.
632 *
633 * The domain tree of any CPU may only be accessed from within
634 * preempt-disabled sections.
635 */
636 #define for_each_domain(cpu, __sd) \
637 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
638
639 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
640 #define this_rq() (&__get_cpu_var(runqueues))
641 #define task_rq(p) cpu_rq(task_cpu(p))
642 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
643 #define raw_rq() (&__raw_get_cpu_var(runqueues))
644
645 inline void update_rq_clock(struct rq *rq)
646 {
647 if (!rq->skip_clock_update)
648 rq->clock = sched_clock_cpu(cpu_of(rq));
649 }
650
651 /*
652 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
653 */
654 #ifdef CONFIG_SCHED_DEBUG
655 # define const_debug __read_mostly
656 #else
657 # define const_debug static const
658 #endif
659
660 /**
661 * runqueue_is_locked
662 * @cpu: the processor in question.
663 *
664 * Returns true if the current cpu runqueue is locked.
665 * This interface allows printk to be called with the runqueue lock
666 * held and know whether or not it is OK to wake up the klogd.
667 */
668 int runqueue_is_locked(int cpu)
669 {
670 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
671 }
672
673 /*
674 * Debugging: various feature bits
675 */
676
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
679
680 enum {
681 #include "sched_features.h"
682 };
683
684 #undef SCHED_FEAT
685
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
688
689 const_debug unsigned int sysctl_sched_features =
690 #include "sched_features.h"
691 0;
692
693 #undef SCHED_FEAT
694
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
697 #name ,
698
699 static __read_mostly char *sched_feat_names[] = {
700 #include "sched_features.h"
701 NULL
702 };
703
704 #undef SCHED_FEAT
705
706 static int sched_feat_show(struct seq_file *m, void *v)
707 {
708 int i;
709
710 for (i = 0; sched_feat_names[i]; i++) {
711 if (!(sysctl_sched_features & (1UL << i)))
712 seq_puts(m, "NO_");
713 seq_printf(m, "%s ", sched_feat_names[i]);
714 }
715 seq_puts(m, "\n");
716
717 return 0;
718 }
719
720 static ssize_t
721 sched_feat_write(struct file *filp, const char __user *ubuf,
722 size_t cnt, loff_t *ppos)
723 {
724 char buf[64];
725 char *cmp = buf;
726 int neg = 0;
727 int i;
728
729 if (cnt > 63)
730 cnt = 63;
731
732 if (copy_from_user(&buf, ubuf, cnt))
733 return -EFAULT;
734
735 buf[cnt] = 0;
736
737 if (strncmp(buf, "NO_", 3) == 0) {
738 neg = 1;
739 cmp += 3;
740 }
741
742 for (i = 0; sched_feat_names[i]; i++) {
743 int len = strlen(sched_feat_names[i]);
744
745 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
751 }
752 }
753
754 if (!sched_feat_names[i])
755 return -EINVAL;
756
757 *ppos += cnt;
758
759 return cnt;
760 }
761
762 static int sched_feat_open(struct inode *inode, struct file *filp)
763 {
764 return single_open(filp, sched_feat_show, NULL);
765 }
766
767 static const struct file_operations sched_feat_fops = {
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
773 };
774
775 static __init int sched_init_debug(void)
776 {
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
779
780 return 0;
781 }
782 late_initcall(sched_init_debug);
783
784 #endif
785
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
787
788 /*
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
791 */
792 const_debug unsigned int sysctl_sched_nr_migrate = 32;
793
794 /*
795 * ratelimit for updating the group shares.
796 * default: 0.25ms
797 */
798 unsigned int sysctl_sched_shares_ratelimit = 250000;
799 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
800
801 /*
802 * Inject some fuzzyness into changing the per-cpu group shares
803 * this avoids remote rq-locks at the expense of fairness.
804 * default: 4
805 */
806 unsigned int sysctl_sched_shares_thresh = 4;
807
808 /*
809 * period over which we average the RT time consumption, measured
810 * in ms.
811 *
812 * default: 1s
813 */
814 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
815
816 /*
817 * period over which we measure -rt task cpu usage in us.
818 * default: 1s
819 */
820 unsigned int sysctl_sched_rt_period = 1000000;
821
822 static __read_mostly int scheduler_running;
823
824 /*
825 * part of the period that we allow rt tasks to run in us.
826 * default: 0.95s
827 */
828 int sysctl_sched_rt_runtime = 950000;
829
830 static inline u64 global_rt_period(void)
831 {
832 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
833 }
834
835 static inline u64 global_rt_runtime(void)
836 {
837 if (sysctl_sched_rt_runtime < 0)
838 return RUNTIME_INF;
839
840 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
841 }
842
843 #ifndef prepare_arch_switch
844 # define prepare_arch_switch(next) do { } while (0)
845 #endif
846 #ifndef finish_arch_switch
847 # define finish_arch_switch(prev) do { } while (0)
848 #endif
849
850 static inline int task_current(struct rq *rq, struct task_struct *p)
851 {
852 return rq->curr == p;
853 }
854
855 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
856 static inline int task_running(struct rq *rq, struct task_struct *p)
857 {
858 return task_current(rq, p);
859 }
860
861 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
862 {
863 }
864
865 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
866 {
867 #ifdef CONFIG_DEBUG_SPINLOCK
868 /* this is a valid case when another task releases the spinlock */
869 rq->lock.owner = current;
870 #endif
871 /*
872 * If we are tracking spinlock dependencies then we have to
873 * fix up the runqueue lock - which gets 'carried over' from
874 * prev into current:
875 */
876 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
877
878 raw_spin_unlock_irq(&rq->lock);
879 }
880
881 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
882 static inline int task_running(struct rq *rq, struct task_struct *p)
883 {
884 #ifdef CONFIG_SMP
885 return p->oncpu;
886 #else
887 return task_current(rq, p);
888 #endif
889 }
890
891 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
892 {
893 #ifdef CONFIG_SMP
894 /*
895 * We can optimise this out completely for !SMP, because the
896 * SMP rebalancing from interrupt is the only thing that cares
897 * here.
898 */
899 next->oncpu = 1;
900 #endif
901 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
902 raw_spin_unlock_irq(&rq->lock);
903 #else
904 raw_spin_unlock(&rq->lock);
905 #endif
906 }
907
908 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
909 {
910 #ifdef CONFIG_SMP
911 /*
912 * After ->oncpu is cleared, the task can be moved to a different CPU.
913 * We must ensure this doesn't happen until the switch is completely
914 * finished.
915 */
916 smp_wmb();
917 prev->oncpu = 0;
918 #endif
919 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 local_irq_enable();
921 #endif
922 }
923 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
924
925 /*
926 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
927 * against ttwu().
928 */
929 static inline int task_is_waking(struct task_struct *p)
930 {
931 return unlikely(p->state == TASK_WAKING);
932 }
933
934 /*
935 * __task_rq_lock - lock the runqueue a given task resides on.
936 * Must be called interrupts disabled.
937 */
938 static inline struct rq *__task_rq_lock(struct task_struct *p)
939 __acquires(rq->lock)
940 {
941 struct rq *rq;
942
943 for (;;) {
944 rq = task_rq(p);
945 raw_spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
948 raw_spin_unlock(&rq->lock);
949 }
950 }
951
952 /*
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
956 */
957 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
958 __acquires(rq->lock)
959 {
960 struct rq *rq;
961
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 raw_spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
968 raw_spin_unlock_irqrestore(&rq->lock, *flags);
969 }
970 }
971
972 static void __task_rq_unlock(struct rq *rq)
973 __releases(rq->lock)
974 {
975 raw_spin_unlock(&rq->lock);
976 }
977
978 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
979 __releases(rq->lock)
980 {
981 raw_spin_unlock_irqrestore(&rq->lock, *flags);
982 }
983
984 /*
985 * this_rq_lock - lock this runqueue and disable interrupts.
986 */
987 static struct rq *this_rq_lock(void)
988 __acquires(rq->lock)
989 {
990 struct rq *rq;
991
992 local_irq_disable();
993 rq = this_rq();
994 raw_spin_lock(&rq->lock);
995
996 return rq;
997 }
998
999 #ifdef CONFIG_SCHED_HRTICK
1000 /*
1001 * Use HR-timers to deliver accurate preemption points.
1002 *
1003 * Its all a bit involved since we cannot program an hrt while holding the
1004 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1005 * reschedule event.
1006 *
1007 * When we get rescheduled we reprogram the hrtick_timer outside of the
1008 * rq->lock.
1009 */
1010
1011 /*
1012 * Use hrtick when:
1013 * - enabled by features
1014 * - hrtimer is actually high res
1015 */
1016 static inline int hrtick_enabled(struct rq *rq)
1017 {
1018 if (!sched_feat(HRTICK))
1019 return 0;
1020 if (!cpu_active(cpu_of(rq)))
1021 return 0;
1022 return hrtimer_is_hres_active(&rq->hrtick_timer);
1023 }
1024
1025 static void hrtick_clear(struct rq *rq)
1026 {
1027 if (hrtimer_active(&rq->hrtick_timer))
1028 hrtimer_cancel(&rq->hrtick_timer);
1029 }
1030
1031 /*
1032 * High-resolution timer tick.
1033 * Runs from hardirq context with interrupts disabled.
1034 */
1035 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1036 {
1037 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1038
1039 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1040
1041 raw_spin_lock(&rq->lock);
1042 update_rq_clock(rq);
1043 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1044 raw_spin_unlock(&rq->lock);
1045
1046 return HRTIMER_NORESTART;
1047 }
1048
1049 #ifdef CONFIG_SMP
1050 /*
1051 * called from hardirq (IPI) context
1052 */
1053 static void __hrtick_start(void *arg)
1054 {
1055 struct rq *rq = arg;
1056
1057 raw_spin_lock(&rq->lock);
1058 hrtimer_restart(&rq->hrtick_timer);
1059 rq->hrtick_csd_pending = 0;
1060 raw_spin_unlock(&rq->lock);
1061 }
1062
1063 /*
1064 * Called to set the hrtick timer state.
1065 *
1066 * called with rq->lock held and irqs disabled
1067 */
1068 static void hrtick_start(struct rq *rq, u64 delay)
1069 {
1070 struct hrtimer *timer = &rq->hrtick_timer;
1071 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1072
1073 hrtimer_set_expires(timer, time);
1074
1075 if (rq == this_rq()) {
1076 hrtimer_restart(timer);
1077 } else if (!rq->hrtick_csd_pending) {
1078 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1079 rq->hrtick_csd_pending = 1;
1080 }
1081 }
1082
1083 static int
1084 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1085 {
1086 int cpu = (int)(long)hcpu;
1087
1088 switch (action) {
1089 case CPU_UP_CANCELED:
1090 case CPU_UP_CANCELED_FROZEN:
1091 case CPU_DOWN_PREPARE:
1092 case CPU_DOWN_PREPARE_FROZEN:
1093 case CPU_DEAD:
1094 case CPU_DEAD_FROZEN:
1095 hrtick_clear(cpu_rq(cpu));
1096 return NOTIFY_OK;
1097 }
1098
1099 return NOTIFY_DONE;
1100 }
1101
1102 static __init void init_hrtick(void)
1103 {
1104 hotcpu_notifier(hotplug_hrtick, 0);
1105 }
1106 #else
1107 /*
1108 * Called to set the hrtick timer state.
1109 *
1110 * called with rq->lock held and irqs disabled
1111 */
1112 static void hrtick_start(struct rq *rq, u64 delay)
1113 {
1114 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1115 HRTIMER_MODE_REL_PINNED, 0);
1116 }
1117
1118 static inline void init_hrtick(void)
1119 {
1120 }
1121 #endif /* CONFIG_SMP */
1122
1123 static void init_rq_hrtick(struct rq *rq)
1124 {
1125 #ifdef CONFIG_SMP
1126 rq->hrtick_csd_pending = 0;
1127
1128 rq->hrtick_csd.flags = 0;
1129 rq->hrtick_csd.func = __hrtick_start;
1130 rq->hrtick_csd.info = rq;
1131 #endif
1132
1133 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1134 rq->hrtick_timer.function = hrtick;
1135 }
1136 #else /* CONFIG_SCHED_HRTICK */
1137 static inline void hrtick_clear(struct rq *rq)
1138 {
1139 }
1140
1141 static inline void init_rq_hrtick(struct rq *rq)
1142 {
1143 }
1144
1145 static inline void init_hrtick(void)
1146 {
1147 }
1148 #endif /* CONFIG_SCHED_HRTICK */
1149
1150 /*
1151 * resched_task - mark a task 'to be rescheduled now'.
1152 *
1153 * On UP this means the setting of the need_resched flag, on SMP it
1154 * might also involve a cross-CPU call to trigger the scheduler on
1155 * the target CPU.
1156 */
1157 #ifdef CONFIG_SMP
1158
1159 #ifndef tsk_is_polling
1160 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1161 #endif
1162
1163 static void resched_task(struct task_struct *p)
1164 {
1165 int cpu;
1166
1167 assert_raw_spin_locked(&task_rq(p)->lock);
1168
1169 if (test_tsk_need_resched(p))
1170 return;
1171
1172 set_tsk_need_resched(p);
1173
1174 cpu = task_cpu(p);
1175 if (cpu == smp_processor_id())
1176 return;
1177
1178 /* NEED_RESCHED must be visible before we test polling */
1179 smp_mb();
1180 if (!tsk_is_polling(p))
1181 smp_send_reschedule(cpu);
1182 }
1183
1184 static void resched_cpu(int cpu)
1185 {
1186 struct rq *rq = cpu_rq(cpu);
1187 unsigned long flags;
1188
1189 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1190 return;
1191 resched_task(cpu_curr(cpu));
1192 raw_spin_unlock_irqrestore(&rq->lock, flags);
1193 }
1194
1195 #ifdef CONFIG_NO_HZ
1196 /*
1197 * When add_timer_on() enqueues a timer into the timer wheel of an
1198 * idle CPU then this timer might expire before the next timer event
1199 * which is scheduled to wake up that CPU. In case of a completely
1200 * idle system the next event might even be infinite time into the
1201 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1202 * leaves the inner idle loop so the newly added timer is taken into
1203 * account when the CPU goes back to idle and evaluates the timer
1204 * wheel for the next timer event.
1205 */
1206 void wake_up_idle_cpu(int cpu)
1207 {
1208 struct rq *rq = cpu_rq(cpu);
1209
1210 if (cpu == smp_processor_id())
1211 return;
1212
1213 /*
1214 * This is safe, as this function is called with the timer
1215 * wheel base lock of (cpu) held. When the CPU is on the way
1216 * to idle and has not yet set rq->curr to idle then it will
1217 * be serialized on the timer wheel base lock and take the new
1218 * timer into account automatically.
1219 */
1220 if (rq->curr != rq->idle)
1221 return;
1222
1223 /*
1224 * We can set TIF_RESCHED on the idle task of the other CPU
1225 * lockless. The worst case is that the other CPU runs the
1226 * idle task through an additional NOOP schedule()
1227 */
1228 set_tsk_need_resched(rq->idle);
1229
1230 /* NEED_RESCHED must be visible before we test polling */
1231 smp_mb();
1232 if (!tsk_is_polling(rq->idle))
1233 smp_send_reschedule(cpu);
1234 }
1235
1236 int nohz_ratelimit(int cpu)
1237 {
1238 struct rq *rq = cpu_rq(cpu);
1239 u64 diff = rq->clock - rq->nohz_stamp;
1240
1241 rq->nohz_stamp = rq->clock;
1242
1243 return diff < (NSEC_PER_SEC / HZ) >> 1;
1244 }
1245
1246 #endif /* CONFIG_NO_HZ */
1247
1248 static u64 sched_avg_period(void)
1249 {
1250 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1251 }
1252
1253 static void sched_avg_update(struct rq *rq)
1254 {
1255 s64 period = sched_avg_period();
1256
1257 while ((s64)(rq->clock - rq->age_stamp) > period) {
1258 rq->age_stamp += period;
1259 rq->rt_avg /= 2;
1260 }
1261 }
1262
1263 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1264 {
1265 rq->rt_avg += rt_delta;
1266 sched_avg_update(rq);
1267 }
1268
1269 #else /* !CONFIG_SMP */
1270 static void resched_task(struct task_struct *p)
1271 {
1272 assert_raw_spin_locked(&task_rq(p)->lock);
1273 set_tsk_need_resched(p);
1274 }
1275
1276 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1277 {
1278 }
1279 #endif /* CONFIG_SMP */
1280
1281 #if BITS_PER_LONG == 32
1282 # define WMULT_CONST (~0UL)
1283 #else
1284 # define WMULT_CONST (1UL << 32)
1285 #endif
1286
1287 #define WMULT_SHIFT 32
1288
1289 /*
1290 * Shift right and round:
1291 */
1292 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1293
1294 /*
1295 * delta *= weight / lw
1296 */
1297 static unsigned long
1298 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1299 struct load_weight *lw)
1300 {
1301 u64 tmp;
1302
1303 if (!lw->inv_weight) {
1304 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1305 lw->inv_weight = 1;
1306 else
1307 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1308 / (lw->weight+1);
1309 }
1310
1311 tmp = (u64)delta_exec * weight;
1312 /*
1313 * Check whether we'd overflow the 64-bit multiplication:
1314 */
1315 if (unlikely(tmp > WMULT_CONST))
1316 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1317 WMULT_SHIFT/2);
1318 else
1319 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1320
1321 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1322 }
1323
1324 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1325 {
1326 lw->weight += inc;
1327 lw->inv_weight = 0;
1328 }
1329
1330 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1331 {
1332 lw->weight -= dec;
1333 lw->inv_weight = 0;
1334 }
1335
1336 /*
1337 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1338 * of tasks with abnormal "nice" values across CPUs the contribution that
1339 * each task makes to its run queue's load is weighted according to its
1340 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1341 * scaled version of the new time slice allocation that they receive on time
1342 * slice expiry etc.
1343 */
1344
1345 #define WEIGHT_IDLEPRIO 3
1346 #define WMULT_IDLEPRIO 1431655765
1347
1348 /*
1349 * Nice levels are multiplicative, with a gentle 10% change for every
1350 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1351 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1352 * that remained on nice 0.
1353 *
1354 * The "10% effect" is relative and cumulative: from _any_ nice level,
1355 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1356 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1357 * If a task goes up by ~10% and another task goes down by ~10% then
1358 * the relative distance between them is ~25%.)
1359 */
1360 static const int prio_to_weight[40] = {
1361 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1362 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1363 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1364 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1365 /* 0 */ 1024, 820, 655, 526, 423,
1366 /* 5 */ 335, 272, 215, 172, 137,
1367 /* 10 */ 110, 87, 70, 56, 45,
1368 /* 15 */ 36, 29, 23, 18, 15,
1369 };
1370
1371 /*
1372 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1373 *
1374 * In cases where the weight does not change often, we can use the
1375 * precalculated inverse to speed up arithmetics by turning divisions
1376 * into multiplications:
1377 */
1378 static const u32 prio_to_wmult[40] = {
1379 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1380 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1381 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1382 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1383 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1384 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1385 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1386 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1387 };
1388
1389 /* Time spent by the tasks of the cpu accounting group executing in ... */
1390 enum cpuacct_stat_index {
1391 CPUACCT_STAT_USER, /* ... user mode */
1392 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1393
1394 CPUACCT_STAT_NSTATS,
1395 };
1396
1397 #ifdef CONFIG_CGROUP_CPUACCT
1398 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1399 static void cpuacct_update_stats(struct task_struct *tsk,
1400 enum cpuacct_stat_index idx, cputime_t val);
1401 #else
1402 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1403 static inline void cpuacct_update_stats(struct task_struct *tsk,
1404 enum cpuacct_stat_index idx, cputime_t val) {}
1405 #endif
1406
1407 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1408 {
1409 update_load_add(&rq->load, load);
1410 }
1411
1412 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1413 {
1414 update_load_sub(&rq->load, load);
1415 }
1416
1417 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1418 typedef int (*tg_visitor)(struct task_group *, void *);
1419
1420 /*
1421 * Iterate the full tree, calling @down when first entering a node and @up when
1422 * leaving it for the final time.
1423 */
1424 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1425 {
1426 struct task_group *parent, *child;
1427 int ret;
1428
1429 rcu_read_lock();
1430 parent = &root_task_group;
1431 down:
1432 ret = (*down)(parent, data);
1433 if (ret)
1434 goto out_unlock;
1435 list_for_each_entry_rcu(child, &parent->children, siblings) {
1436 parent = child;
1437 goto down;
1438
1439 up:
1440 continue;
1441 }
1442 ret = (*up)(parent, data);
1443 if (ret)
1444 goto out_unlock;
1445
1446 child = parent;
1447 parent = parent->parent;
1448 if (parent)
1449 goto up;
1450 out_unlock:
1451 rcu_read_unlock();
1452
1453 return ret;
1454 }
1455
1456 static int tg_nop(struct task_group *tg, void *data)
1457 {
1458 return 0;
1459 }
1460 #endif
1461
1462 #ifdef CONFIG_SMP
1463 /* Used instead of source_load when we know the type == 0 */
1464 static unsigned long weighted_cpuload(const int cpu)
1465 {
1466 return cpu_rq(cpu)->load.weight;
1467 }
1468
1469 /*
1470 * Return a low guess at the load of a migration-source cpu weighted
1471 * according to the scheduling class and "nice" value.
1472 *
1473 * We want to under-estimate the load of migration sources, to
1474 * balance conservatively.
1475 */
1476 static unsigned long source_load(int cpu, int type)
1477 {
1478 struct rq *rq = cpu_rq(cpu);
1479 unsigned long total = weighted_cpuload(cpu);
1480
1481 if (type == 0 || !sched_feat(LB_BIAS))
1482 return total;
1483
1484 return min(rq->cpu_load[type-1], total);
1485 }
1486
1487 /*
1488 * Return a high guess at the load of a migration-target cpu weighted
1489 * according to the scheduling class and "nice" value.
1490 */
1491 static unsigned long target_load(int cpu, int type)
1492 {
1493 struct rq *rq = cpu_rq(cpu);
1494 unsigned long total = weighted_cpuload(cpu);
1495
1496 if (type == 0 || !sched_feat(LB_BIAS))
1497 return total;
1498
1499 return max(rq->cpu_load[type-1], total);
1500 }
1501
1502 static struct sched_group *group_of(int cpu)
1503 {
1504 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1505
1506 if (!sd)
1507 return NULL;
1508
1509 return sd->groups;
1510 }
1511
1512 static unsigned long power_of(int cpu)
1513 {
1514 struct sched_group *group = group_of(cpu);
1515
1516 if (!group)
1517 return SCHED_LOAD_SCALE;
1518
1519 return group->cpu_power;
1520 }
1521
1522 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1523
1524 static unsigned long cpu_avg_load_per_task(int cpu)
1525 {
1526 struct rq *rq = cpu_rq(cpu);
1527 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1528
1529 if (nr_running)
1530 rq->avg_load_per_task = rq->load.weight / nr_running;
1531 else
1532 rq->avg_load_per_task = 0;
1533
1534 return rq->avg_load_per_task;
1535 }
1536
1537 #ifdef CONFIG_FAIR_GROUP_SCHED
1538
1539 static __read_mostly unsigned long __percpu *update_shares_data;
1540
1541 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1542
1543 /*
1544 * Calculate and set the cpu's group shares.
1545 */
1546 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1547 unsigned long sd_shares,
1548 unsigned long sd_rq_weight,
1549 unsigned long *usd_rq_weight)
1550 {
1551 unsigned long shares, rq_weight;
1552 int boost = 0;
1553
1554 rq_weight = usd_rq_weight[cpu];
1555 if (!rq_weight) {
1556 boost = 1;
1557 rq_weight = NICE_0_LOAD;
1558 }
1559
1560 /*
1561 * \Sum_j shares_j * rq_weight_i
1562 * shares_i = -----------------------------
1563 * \Sum_j rq_weight_j
1564 */
1565 shares = (sd_shares * rq_weight) / sd_rq_weight;
1566 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1567
1568 if (abs(shares - tg->se[cpu]->load.weight) >
1569 sysctl_sched_shares_thresh) {
1570 struct rq *rq = cpu_rq(cpu);
1571 unsigned long flags;
1572
1573 raw_spin_lock_irqsave(&rq->lock, flags);
1574 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1575 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1576 __set_se_shares(tg->se[cpu], shares);
1577 raw_spin_unlock_irqrestore(&rq->lock, flags);
1578 }
1579 }
1580
1581 /*
1582 * Re-compute the task group their per cpu shares over the given domain.
1583 * This needs to be done in a bottom-up fashion because the rq weight of a
1584 * parent group depends on the shares of its child groups.
1585 */
1586 static int tg_shares_up(struct task_group *tg, void *data)
1587 {
1588 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1589 unsigned long *usd_rq_weight;
1590 struct sched_domain *sd = data;
1591 unsigned long flags;
1592 int i;
1593
1594 if (!tg->se[0])
1595 return 0;
1596
1597 local_irq_save(flags);
1598 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1599
1600 for_each_cpu(i, sched_domain_span(sd)) {
1601 weight = tg->cfs_rq[i]->load.weight;
1602 usd_rq_weight[i] = weight;
1603
1604 rq_weight += weight;
1605 /*
1606 * If there are currently no tasks on the cpu pretend there
1607 * is one of average load so that when a new task gets to
1608 * run here it will not get delayed by group starvation.
1609 */
1610 if (!weight)
1611 weight = NICE_0_LOAD;
1612
1613 sum_weight += weight;
1614 shares += tg->cfs_rq[i]->shares;
1615 }
1616
1617 if (!rq_weight)
1618 rq_weight = sum_weight;
1619
1620 if ((!shares && rq_weight) || shares > tg->shares)
1621 shares = tg->shares;
1622
1623 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1624 shares = tg->shares;
1625
1626 for_each_cpu(i, sched_domain_span(sd))
1627 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1628
1629 local_irq_restore(flags);
1630
1631 return 0;
1632 }
1633
1634 /*
1635 * Compute the cpu's hierarchical load factor for each task group.
1636 * This needs to be done in a top-down fashion because the load of a child
1637 * group is a fraction of its parents load.
1638 */
1639 static int tg_load_down(struct task_group *tg, void *data)
1640 {
1641 unsigned long load;
1642 long cpu = (long)data;
1643
1644 if (!tg->parent) {
1645 load = cpu_rq(cpu)->load.weight;
1646 } else {
1647 load = tg->parent->cfs_rq[cpu]->h_load;
1648 load *= tg->cfs_rq[cpu]->shares;
1649 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1650 }
1651
1652 tg->cfs_rq[cpu]->h_load = load;
1653
1654 return 0;
1655 }
1656
1657 static void update_shares(struct sched_domain *sd)
1658 {
1659 s64 elapsed;
1660 u64 now;
1661
1662 if (root_task_group_empty())
1663 return;
1664
1665 now = cpu_clock(raw_smp_processor_id());
1666 elapsed = now - sd->last_update;
1667
1668 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1669 sd->last_update = now;
1670 walk_tg_tree(tg_nop, tg_shares_up, sd);
1671 }
1672 }
1673
1674 static void update_h_load(long cpu)
1675 {
1676 if (root_task_group_empty())
1677 return;
1678
1679 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1680 }
1681
1682 #else
1683
1684 static inline void update_shares(struct sched_domain *sd)
1685 {
1686 }
1687
1688 #endif
1689
1690 #ifdef CONFIG_PREEMPT
1691
1692 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1693
1694 /*
1695 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1696 * way at the expense of forcing extra atomic operations in all
1697 * invocations. This assures that the double_lock is acquired using the
1698 * same underlying policy as the spinlock_t on this architecture, which
1699 * reduces latency compared to the unfair variant below. However, it
1700 * also adds more overhead and therefore may reduce throughput.
1701 */
1702 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1703 __releases(this_rq->lock)
1704 __acquires(busiest->lock)
1705 __acquires(this_rq->lock)
1706 {
1707 raw_spin_unlock(&this_rq->lock);
1708 double_rq_lock(this_rq, busiest);
1709
1710 return 1;
1711 }
1712
1713 #else
1714 /*
1715 * Unfair double_lock_balance: Optimizes throughput at the expense of
1716 * latency by eliminating extra atomic operations when the locks are
1717 * already in proper order on entry. This favors lower cpu-ids and will
1718 * grant the double lock to lower cpus over higher ids under contention,
1719 * regardless of entry order into the function.
1720 */
1721 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1722 __releases(this_rq->lock)
1723 __acquires(busiest->lock)
1724 __acquires(this_rq->lock)
1725 {
1726 int ret = 0;
1727
1728 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1729 if (busiest < this_rq) {
1730 raw_spin_unlock(&this_rq->lock);
1731 raw_spin_lock(&busiest->lock);
1732 raw_spin_lock_nested(&this_rq->lock,
1733 SINGLE_DEPTH_NESTING);
1734 ret = 1;
1735 } else
1736 raw_spin_lock_nested(&busiest->lock,
1737 SINGLE_DEPTH_NESTING);
1738 }
1739 return ret;
1740 }
1741
1742 #endif /* CONFIG_PREEMPT */
1743
1744 /*
1745 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1746 */
1747 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1748 {
1749 if (unlikely(!irqs_disabled())) {
1750 /* printk() doesn't work good under rq->lock */
1751 raw_spin_unlock(&this_rq->lock);
1752 BUG_ON(1);
1753 }
1754
1755 return _double_lock_balance(this_rq, busiest);
1756 }
1757
1758 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1759 __releases(busiest->lock)
1760 {
1761 raw_spin_unlock(&busiest->lock);
1762 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1763 }
1764
1765 /*
1766 * double_rq_lock - safely lock two runqueues
1767 *
1768 * Note this does not disable interrupts like task_rq_lock,
1769 * you need to do so manually before calling.
1770 */
1771 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1772 __acquires(rq1->lock)
1773 __acquires(rq2->lock)
1774 {
1775 BUG_ON(!irqs_disabled());
1776 if (rq1 == rq2) {
1777 raw_spin_lock(&rq1->lock);
1778 __acquire(rq2->lock); /* Fake it out ;) */
1779 } else {
1780 if (rq1 < rq2) {
1781 raw_spin_lock(&rq1->lock);
1782 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1783 } else {
1784 raw_spin_lock(&rq2->lock);
1785 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1786 }
1787 }
1788 }
1789
1790 /*
1791 * double_rq_unlock - safely unlock two runqueues
1792 *
1793 * Note this does not restore interrupts like task_rq_unlock,
1794 * you need to do so manually after calling.
1795 */
1796 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1797 __releases(rq1->lock)
1798 __releases(rq2->lock)
1799 {
1800 raw_spin_unlock(&rq1->lock);
1801 if (rq1 != rq2)
1802 raw_spin_unlock(&rq2->lock);
1803 else
1804 __release(rq2->lock);
1805 }
1806
1807 #endif
1808
1809 #ifdef CONFIG_FAIR_GROUP_SCHED
1810 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1811 {
1812 #ifdef CONFIG_SMP
1813 cfs_rq->shares = shares;
1814 #endif
1815 }
1816 #endif
1817
1818 static void calc_load_account_idle(struct rq *this_rq);
1819 static void update_sysctl(void);
1820 static int get_update_sysctl_factor(void);
1821
1822 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1823 {
1824 set_task_rq(p, cpu);
1825 #ifdef CONFIG_SMP
1826 /*
1827 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1828 * successfuly executed on another CPU. We must ensure that updates of
1829 * per-task data have been completed by this moment.
1830 */
1831 smp_wmb();
1832 task_thread_info(p)->cpu = cpu;
1833 #endif
1834 }
1835
1836 static const struct sched_class rt_sched_class;
1837
1838 #define sched_class_highest (&rt_sched_class)
1839 #define for_each_class(class) \
1840 for (class = sched_class_highest; class; class = class->next)
1841
1842 #include "sched_stats.h"
1843
1844 static void inc_nr_running(struct rq *rq)
1845 {
1846 rq->nr_running++;
1847 }
1848
1849 static void dec_nr_running(struct rq *rq)
1850 {
1851 rq->nr_running--;
1852 }
1853
1854 static void set_load_weight(struct task_struct *p)
1855 {
1856 if (task_has_rt_policy(p)) {
1857 p->se.load.weight = prio_to_weight[0] * 2;
1858 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1859 return;
1860 }
1861
1862 /*
1863 * SCHED_IDLE tasks get minimal weight:
1864 */
1865 if (p->policy == SCHED_IDLE) {
1866 p->se.load.weight = WEIGHT_IDLEPRIO;
1867 p->se.load.inv_weight = WMULT_IDLEPRIO;
1868 return;
1869 }
1870
1871 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1872 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1873 }
1874
1875 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1876 {
1877 update_rq_clock(rq);
1878 sched_info_queued(p);
1879 p->sched_class->enqueue_task(rq, p, flags);
1880 p->se.on_rq = 1;
1881 }
1882
1883 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1884 {
1885 update_rq_clock(rq);
1886 sched_info_dequeued(p);
1887 p->sched_class->dequeue_task(rq, p, flags);
1888 p->se.on_rq = 0;
1889 }
1890
1891 /*
1892 * activate_task - move a task to the runqueue.
1893 */
1894 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1895 {
1896 if (task_contributes_to_load(p))
1897 rq->nr_uninterruptible--;
1898
1899 enqueue_task(rq, p, flags);
1900 inc_nr_running(rq);
1901 }
1902
1903 /*
1904 * deactivate_task - remove a task from the runqueue.
1905 */
1906 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1907 {
1908 if (task_contributes_to_load(p))
1909 rq->nr_uninterruptible++;
1910
1911 dequeue_task(rq, p, flags);
1912 dec_nr_running(rq);
1913 }
1914
1915 #include "sched_idletask.c"
1916 #include "sched_fair.c"
1917 #include "sched_rt.c"
1918 #ifdef CONFIG_SCHED_DEBUG
1919 # include "sched_debug.c"
1920 #endif
1921
1922 /*
1923 * __normal_prio - return the priority that is based on the static prio
1924 */
1925 static inline int __normal_prio(struct task_struct *p)
1926 {
1927 return p->static_prio;
1928 }
1929
1930 /*
1931 * Calculate the expected normal priority: i.e. priority
1932 * without taking RT-inheritance into account. Might be
1933 * boosted by interactivity modifiers. Changes upon fork,
1934 * setprio syscalls, and whenever the interactivity
1935 * estimator recalculates.
1936 */
1937 static inline int normal_prio(struct task_struct *p)
1938 {
1939 int prio;
1940
1941 if (task_has_rt_policy(p))
1942 prio = MAX_RT_PRIO-1 - p->rt_priority;
1943 else
1944 prio = __normal_prio(p);
1945 return prio;
1946 }
1947
1948 /*
1949 * Calculate the current priority, i.e. the priority
1950 * taken into account by the scheduler. This value might
1951 * be boosted by RT tasks, or might be boosted by
1952 * interactivity modifiers. Will be RT if the task got
1953 * RT-boosted. If not then it returns p->normal_prio.
1954 */
1955 static int effective_prio(struct task_struct *p)
1956 {
1957 p->normal_prio = normal_prio(p);
1958 /*
1959 * If we are RT tasks or we were boosted to RT priority,
1960 * keep the priority unchanged. Otherwise, update priority
1961 * to the normal priority:
1962 */
1963 if (!rt_prio(p->prio))
1964 return p->normal_prio;
1965 return p->prio;
1966 }
1967
1968 /**
1969 * task_curr - is this task currently executing on a CPU?
1970 * @p: the task in question.
1971 */
1972 inline int task_curr(const struct task_struct *p)
1973 {
1974 return cpu_curr(task_cpu(p)) == p;
1975 }
1976
1977 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1978 const struct sched_class *prev_class,
1979 int oldprio, int running)
1980 {
1981 if (prev_class != p->sched_class) {
1982 if (prev_class->switched_from)
1983 prev_class->switched_from(rq, p, running);
1984 p->sched_class->switched_to(rq, p, running);
1985 } else
1986 p->sched_class->prio_changed(rq, p, oldprio, running);
1987 }
1988
1989 #ifdef CONFIG_SMP
1990 /*
1991 * Is this task likely cache-hot:
1992 */
1993 static int
1994 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1995 {
1996 s64 delta;
1997
1998 if (p->sched_class != &fair_sched_class)
1999 return 0;
2000
2001 /*
2002 * Buddy candidates are cache hot:
2003 */
2004 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2005 (&p->se == cfs_rq_of(&p->se)->next ||
2006 &p->se == cfs_rq_of(&p->se)->last))
2007 return 1;
2008
2009 if (sysctl_sched_migration_cost == -1)
2010 return 1;
2011 if (sysctl_sched_migration_cost == 0)
2012 return 0;
2013
2014 delta = now - p->se.exec_start;
2015
2016 return delta < (s64)sysctl_sched_migration_cost;
2017 }
2018
2019 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2020 {
2021 #ifdef CONFIG_SCHED_DEBUG
2022 /*
2023 * We should never call set_task_cpu() on a blocked task,
2024 * ttwu() will sort out the placement.
2025 */
2026 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2027 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2028 #endif
2029
2030 trace_sched_migrate_task(p, new_cpu);
2031
2032 if (task_cpu(p) != new_cpu) {
2033 p->se.nr_migrations++;
2034 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2035 }
2036
2037 __set_task_cpu(p, new_cpu);
2038 }
2039
2040 struct migration_arg {
2041 struct task_struct *task;
2042 int dest_cpu;
2043 };
2044
2045 static int migration_cpu_stop(void *data);
2046
2047 /*
2048 * The task's runqueue lock must be held.
2049 * Returns true if you have to wait for migration thread.
2050 */
2051 static bool migrate_task(struct task_struct *p, int dest_cpu)
2052 {
2053 struct rq *rq = task_rq(p);
2054
2055 /*
2056 * If the task is not on a runqueue (and not running), then
2057 * the next wake-up will properly place the task.
2058 */
2059 return p->se.on_rq || task_running(rq, p);
2060 }
2061
2062 /*
2063 * wait_task_inactive - wait for a thread to unschedule.
2064 *
2065 * If @match_state is nonzero, it's the @p->state value just checked and
2066 * not expected to change. If it changes, i.e. @p might have woken up,
2067 * then return zero. When we succeed in waiting for @p to be off its CPU,
2068 * we return a positive number (its total switch count). If a second call
2069 * a short while later returns the same number, the caller can be sure that
2070 * @p has remained unscheduled the whole time.
2071 *
2072 * The caller must ensure that the task *will* unschedule sometime soon,
2073 * else this function might spin for a *long* time. This function can't
2074 * be called with interrupts off, or it may introduce deadlock with
2075 * smp_call_function() if an IPI is sent by the same process we are
2076 * waiting to become inactive.
2077 */
2078 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2079 {
2080 unsigned long flags;
2081 int running, on_rq;
2082 unsigned long ncsw;
2083 struct rq *rq;
2084
2085 for (;;) {
2086 /*
2087 * We do the initial early heuristics without holding
2088 * any task-queue locks at all. We'll only try to get
2089 * the runqueue lock when things look like they will
2090 * work out!
2091 */
2092 rq = task_rq(p);
2093
2094 /*
2095 * If the task is actively running on another CPU
2096 * still, just relax and busy-wait without holding
2097 * any locks.
2098 *
2099 * NOTE! Since we don't hold any locks, it's not
2100 * even sure that "rq" stays as the right runqueue!
2101 * But we don't care, since "task_running()" will
2102 * return false if the runqueue has changed and p
2103 * is actually now running somewhere else!
2104 */
2105 while (task_running(rq, p)) {
2106 if (match_state && unlikely(p->state != match_state))
2107 return 0;
2108 cpu_relax();
2109 }
2110
2111 /*
2112 * Ok, time to look more closely! We need the rq
2113 * lock now, to be *sure*. If we're wrong, we'll
2114 * just go back and repeat.
2115 */
2116 rq = task_rq_lock(p, &flags);
2117 trace_sched_wait_task(p);
2118 running = task_running(rq, p);
2119 on_rq = p->se.on_rq;
2120 ncsw = 0;
2121 if (!match_state || p->state == match_state)
2122 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2123 task_rq_unlock(rq, &flags);
2124
2125 /*
2126 * If it changed from the expected state, bail out now.
2127 */
2128 if (unlikely(!ncsw))
2129 break;
2130
2131 /*
2132 * Was it really running after all now that we
2133 * checked with the proper locks actually held?
2134 *
2135 * Oops. Go back and try again..
2136 */
2137 if (unlikely(running)) {
2138 cpu_relax();
2139 continue;
2140 }
2141
2142 /*
2143 * It's not enough that it's not actively running,
2144 * it must be off the runqueue _entirely_, and not
2145 * preempted!
2146 *
2147 * So if it was still runnable (but just not actively
2148 * running right now), it's preempted, and we should
2149 * yield - it could be a while.
2150 */
2151 if (unlikely(on_rq)) {
2152 schedule_timeout_uninterruptible(1);
2153 continue;
2154 }
2155
2156 /*
2157 * Ahh, all good. It wasn't running, and it wasn't
2158 * runnable, which means that it will never become
2159 * running in the future either. We're all done!
2160 */
2161 break;
2162 }
2163
2164 return ncsw;
2165 }
2166
2167 /***
2168 * kick_process - kick a running thread to enter/exit the kernel
2169 * @p: the to-be-kicked thread
2170 *
2171 * Cause a process which is running on another CPU to enter
2172 * kernel-mode, without any delay. (to get signals handled.)
2173 *
2174 * NOTE: this function doesnt have to take the runqueue lock,
2175 * because all it wants to ensure is that the remote task enters
2176 * the kernel. If the IPI races and the task has been migrated
2177 * to another CPU then no harm is done and the purpose has been
2178 * achieved as well.
2179 */
2180 void kick_process(struct task_struct *p)
2181 {
2182 int cpu;
2183
2184 preempt_disable();
2185 cpu = task_cpu(p);
2186 if ((cpu != smp_processor_id()) && task_curr(p))
2187 smp_send_reschedule(cpu);
2188 preempt_enable();
2189 }
2190 EXPORT_SYMBOL_GPL(kick_process);
2191 #endif /* CONFIG_SMP */
2192
2193 /**
2194 * task_oncpu_function_call - call a function on the cpu on which a task runs
2195 * @p: the task to evaluate
2196 * @func: the function to be called
2197 * @info: the function call argument
2198 *
2199 * Calls the function @func when the task is currently running. This might
2200 * be on the current CPU, which just calls the function directly
2201 */
2202 void task_oncpu_function_call(struct task_struct *p,
2203 void (*func) (void *info), void *info)
2204 {
2205 int cpu;
2206
2207 preempt_disable();
2208 cpu = task_cpu(p);
2209 if (task_curr(p))
2210 smp_call_function_single(cpu, func, info, 1);
2211 preempt_enable();
2212 }
2213
2214 #ifdef CONFIG_SMP
2215 /*
2216 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2217 */
2218 static int select_fallback_rq(int cpu, struct task_struct *p)
2219 {
2220 int dest_cpu;
2221 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2222
2223 /* Look for allowed, online CPU in same node. */
2224 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2225 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2226 return dest_cpu;
2227
2228 /* Any allowed, online CPU? */
2229 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2230 if (dest_cpu < nr_cpu_ids)
2231 return dest_cpu;
2232
2233 /* No more Mr. Nice Guy. */
2234 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2235 dest_cpu = cpuset_cpus_allowed_fallback(p);
2236 /*
2237 * Don't tell them about moving exiting tasks or
2238 * kernel threads (both mm NULL), since they never
2239 * leave kernel.
2240 */
2241 if (p->mm && printk_ratelimit()) {
2242 printk(KERN_INFO "process %d (%s) no "
2243 "longer affine to cpu%d\n",
2244 task_pid_nr(p), p->comm, cpu);
2245 }
2246 }
2247
2248 return dest_cpu;
2249 }
2250
2251 /*
2252 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2253 */
2254 static inline
2255 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2256 {
2257 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2258
2259 /*
2260 * In order not to call set_task_cpu() on a blocking task we need
2261 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2262 * cpu.
2263 *
2264 * Since this is common to all placement strategies, this lives here.
2265 *
2266 * [ this allows ->select_task() to simply return task_cpu(p) and
2267 * not worry about this generic constraint ]
2268 */
2269 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2270 !cpu_online(cpu)))
2271 cpu = select_fallback_rq(task_cpu(p), p);
2272
2273 return cpu;
2274 }
2275
2276 static void update_avg(u64 *avg, u64 sample)
2277 {
2278 s64 diff = sample - *avg;
2279 *avg += diff >> 3;
2280 }
2281 #endif
2282
2283 /***
2284 * try_to_wake_up - wake up a thread
2285 * @p: the to-be-woken-up thread
2286 * @state: the mask of task states that can be woken
2287 * @sync: do a synchronous wakeup?
2288 *
2289 * Put it on the run-queue if it's not already there. The "current"
2290 * thread is always on the run-queue (except when the actual
2291 * re-schedule is in progress), and as such you're allowed to do
2292 * the simpler "current->state = TASK_RUNNING" to mark yourself
2293 * runnable without the overhead of this.
2294 *
2295 * returns failure only if the task is already active.
2296 */
2297 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2298 int wake_flags)
2299 {
2300 int cpu, orig_cpu, this_cpu, success = 0;
2301 unsigned long flags;
2302 unsigned long en_flags = ENQUEUE_WAKEUP;
2303 struct rq *rq;
2304
2305 this_cpu = get_cpu();
2306
2307 smp_wmb();
2308 rq = task_rq_lock(p, &flags);
2309 if (!(p->state & state))
2310 goto out;
2311
2312 if (p->se.on_rq)
2313 goto out_running;
2314
2315 cpu = task_cpu(p);
2316 orig_cpu = cpu;
2317
2318 #ifdef CONFIG_SMP
2319 if (unlikely(task_running(rq, p)))
2320 goto out_activate;
2321
2322 /*
2323 * In order to handle concurrent wakeups and release the rq->lock
2324 * we put the task in TASK_WAKING state.
2325 *
2326 * First fix up the nr_uninterruptible count:
2327 */
2328 if (task_contributes_to_load(p)) {
2329 if (likely(cpu_online(orig_cpu)))
2330 rq->nr_uninterruptible--;
2331 else
2332 this_rq()->nr_uninterruptible--;
2333 }
2334 p->state = TASK_WAKING;
2335
2336 if (p->sched_class->task_waking) {
2337 p->sched_class->task_waking(rq, p);
2338 en_flags |= ENQUEUE_WAKING;
2339 }
2340
2341 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2342 if (cpu != orig_cpu)
2343 set_task_cpu(p, cpu);
2344 __task_rq_unlock(rq);
2345
2346 rq = cpu_rq(cpu);
2347 raw_spin_lock(&rq->lock);
2348
2349 /*
2350 * We migrated the task without holding either rq->lock, however
2351 * since the task is not on the task list itself, nobody else
2352 * will try and migrate the task, hence the rq should match the
2353 * cpu we just moved it to.
2354 */
2355 WARN_ON(task_cpu(p) != cpu);
2356 WARN_ON(p->state != TASK_WAKING);
2357
2358 #ifdef CONFIG_SCHEDSTATS
2359 schedstat_inc(rq, ttwu_count);
2360 if (cpu == this_cpu)
2361 schedstat_inc(rq, ttwu_local);
2362 else {
2363 struct sched_domain *sd;
2364 for_each_domain(this_cpu, sd) {
2365 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2366 schedstat_inc(sd, ttwu_wake_remote);
2367 break;
2368 }
2369 }
2370 }
2371 #endif /* CONFIG_SCHEDSTATS */
2372
2373 out_activate:
2374 #endif /* CONFIG_SMP */
2375 schedstat_inc(p, se.statistics.nr_wakeups);
2376 if (wake_flags & WF_SYNC)
2377 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2378 if (orig_cpu != cpu)
2379 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2380 if (cpu == this_cpu)
2381 schedstat_inc(p, se.statistics.nr_wakeups_local);
2382 else
2383 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2384 activate_task(rq, p, en_flags);
2385 success = 1;
2386
2387 out_running:
2388 trace_sched_wakeup(p, success);
2389 check_preempt_curr(rq, p, wake_flags);
2390
2391 p->state = TASK_RUNNING;
2392 #ifdef CONFIG_SMP
2393 if (p->sched_class->task_woken)
2394 p->sched_class->task_woken(rq, p);
2395
2396 if (unlikely(rq->idle_stamp)) {
2397 u64 delta = rq->clock - rq->idle_stamp;
2398 u64 max = 2*sysctl_sched_migration_cost;
2399
2400 if (delta > max)
2401 rq->avg_idle = max;
2402 else
2403 update_avg(&rq->avg_idle, delta);
2404 rq->idle_stamp = 0;
2405 }
2406 #endif
2407 out:
2408 task_rq_unlock(rq, &flags);
2409 put_cpu();
2410
2411 return success;
2412 }
2413
2414 /**
2415 * wake_up_process - Wake up a specific process
2416 * @p: The process to be woken up.
2417 *
2418 * Attempt to wake up the nominated process and move it to the set of runnable
2419 * processes. Returns 1 if the process was woken up, 0 if it was already
2420 * running.
2421 *
2422 * It may be assumed that this function implies a write memory barrier before
2423 * changing the task state if and only if any tasks are woken up.
2424 */
2425 int wake_up_process(struct task_struct *p)
2426 {
2427 return try_to_wake_up(p, TASK_ALL, 0);
2428 }
2429 EXPORT_SYMBOL(wake_up_process);
2430
2431 int wake_up_state(struct task_struct *p, unsigned int state)
2432 {
2433 return try_to_wake_up(p, state, 0);
2434 }
2435
2436 /*
2437 * Perform scheduler related setup for a newly forked process p.
2438 * p is forked by current.
2439 *
2440 * __sched_fork() is basic setup used by init_idle() too:
2441 */
2442 static void __sched_fork(struct task_struct *p)
2443 {
2444 p->se.exec_start = 0;
2445 p->se.sum_exec_runtime = 0;
2446 p->se.prev_sum_exec_runtime = 0;
2447 p->se.nr_migrations = 0;
2448
2449 #ifdef CONFIG_SCHEDSTATS
2450 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2451 #endif
2452
2453 INIT_LIST_HEAD(&p->rt.run_list);
2454 p->se.on_rq = 0;
2455 INIT_LIST_HEAD(&p->se.group_node);
2456
2457 #ifdef CONFIG_PREEMPT_NOTIFIERS
2458 INIT_HLIST_HEAD(&p->preempt_notifiers);
2459 #endif
2460 }
2461
2462 /*
2463 * fork()/clone()-time setup:
2464 */
2465 void sched_fork(struct task_struct *p, int clone_flags)
2466 {
2467 int cpu = get_cpu();
2468
2469 __sched_fork(p);
2470 /*
2471 * We mark the process as running here. This guarantees that
2472 * nobody will actually run it, and a signal or other external
2473 * event cannot wake it up and insert it on the runqueue either.
2474 */
2475 p->state = TASK_RUNNING;
2476
2477 /*
2478 * Revert to default priority/policy on fork if requested.
2479 */
2480 if (unlikely(p->sched_reset_on_fork)) {
2481 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2482 p->policy = SCHED_NORMAL;
2483 p->normal_prio = p->static_prio;
2484 }
2485
2486 if (PRIO_TO_NICE(p->static_prio) < 0) {
2487 p->static_prio = NICE_TO_PRIO(0);
2488 p->normal_prio = p->static_prio;
2489 set_load_weight(p);
2490 }
2491
2492 /*
2493 * We don't need the reset flag anymore after the fork. It has
2494 * fulfilled its duty:
2495 */
2496 p->sched_reset_on_fork = 0;
2497 }
2498
2499 /*
2500 * Make sure we do not leak PI boosting priority to the child.
2501 */
2502 p->prio = current->normal_prio;
2503
2504 if (!rt_prio(p->prio))
2505 p->sched_class = &fair_sched_class;
2506
2507 if (p->sched_class->task_fork)
2508 p->sched_class->task_fork(p);
2509
2510 set_task_cpu(p, cpu);
2511
2512 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2513 if (likely(sched_info_on()))
2514 memset(&p->sched_info, 0, sizeof(p->sched_info));
2515 #endif
2516 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2517 p->oncpu = 0;
2518 #endif
2519 #ifdef CONFIG_PREEMPT
2520 /* Want to start with kernel preemption disabled. */
2521 task_thread_info(p)->preempt_count = 1;
2522 #endif
2523 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2524
2525 put_cpu();
2526 }
2527
2528 /*
2529 * wake_up_new_task - wake up a newly created task for the first time.
2530 *
2531 * This function will do some initial scheduler statistics housekeeping
2532 * that must be done for every newly created context, then puts the task
2533 * on the runqueue and wakes it.
2534 */
2535 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2536 {
2537 unsigned long flags;
2538 struct rq *rq;
2539 int cpu __maybe_unused = get_cpu();
2540
2541 #ifdef CONFIG_SMP
2542 rq = task_rq_lock(p, &flags);
2543 p->state = TASK_WAKING;
2544
2545 /*
2546 * Fork balancing, do it here and not earlier because:
2547 * - cpus_allowed can change in the fork path
2548 * - any previously selected cpu might disappear through hotplug
2549 *
2550 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2551 * without people poking at ->cpus_allowed.
2552 */
2553 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2554 set_task_cpu(p, cpu);
2555
2556 p->state = TASK_RUNNING;
2557 task_rq_unlock(rq, &flags);
2558 #endif
2559
2560 rq = task_rq_lock(p, &flags);
2561 activate_task(rq, p, 0);
2562 trace_sched_wakeup_new(p, 1);
2563 check_preempt_curr(rq, p, WF_FORK);
2564 #ifdef CONFIG_SMP
2565 if (p->sched_class->task_woken)
2566 p->sched_class->task_woken(rq, p);
2567 #endif
2568 task_rq_unlock(rq, &flags);
2569 put_cpu();
2570 }
2571
2572 #ifdef CONFIG_PREEMPT_NOTIFIERS
2573
2574 /**
2575 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2576 * @notifier: notifier struct to register
2577 */
2578 void preempt_notifier_register(struct preempt_notifier *notifier)
2579 {
2580 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2581 }
2582 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2583
2584 /**
2585 * preempt_notifier_unregister - no longer interested in preemption notifications
2586 * @notifier: notifier struct to unregister
2587 *
2588 * This is safe to call from within a preemption notifier.
2589 */
2590 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2591 {
2592 hlist_del(&notifier->link);
2593 }
2594 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2595
2596 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2597 {
2598 struct preempt_notifier *notifier;
2599 struct hlist_node *node;
2600
2601 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2602 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2603 }
2604
2605 static void
2606 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2607 struct task_struct *next)
2608 {
2609 struct preempt_notifier *notifier;
2610 struct hlist_node *node;
2611
2612 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2613 notifier->ops->sched_out(notifier, next);
2614 }
2615
2616 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2617
2618 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2619 {
2620 }
2621
2622 static void
2623 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2624 struct task_struct *next)
2625 {
2626 }
2627
2628 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2629
2630 /**
2631 * prepare_task_switch - prepare to switch tasks
2632 * @rq: the runqueue preparing to switch
2633 * @prev: the current task that is being switched out
2634 * @next: the task we are going to switch to.
2635 *
2636 * This is called with the rq lock held and interrupts off. It must
2637 * be paired with a subsequent finish_task_switch after the context
2638 * switch.
2639 *
2640 * prepare_task_switch sets up locking and calls architecture specific
2641 * hooks.
2642 */
2643 static inline void
2644 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2645 struct task_struct *next)
2646 {
2647 fire_sched_out_preempt_notifiers(prev, next);
2648 prepare_lock_switch(rq, next);
2649 prepare_arch_switch(next);
2650 }
2651
2652 /**
2653 * finish_task_switch - clean up after a task-switch
2654 * @rq: runqueue associated with task-switch
2655 * @prev: the thread we just switched away from.
2656 *
2657 * finish_task_switch must be called after the context switch, paired
2658 * with a prepare_task_switch call before the context switch.
2659 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2660 * and do any other architecture-specific cleanup actions.
2661 *
2662 * Note that we may have delayed dropping an mm in context_switch(). If
2663 * so, we finish that here outside of the runqueue lock. (Doing it
2664 * with the lock held can cause deadlocks; see schedule() for
2665 * details.)
2666 */
2667 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2668 __releases(rq->lock)
2669 {
2670 struct mm_struct *mm = rq->prev_mm;
2671 long prev_state;
2672
2673 rq->prev_mm = NULL;
2674
2675 /*
2676 * A task struct has one reference for the use as "current".
2677 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2678 * schedule one last time. The schedule call will never return, and
2679 * the scheduled task must drop that reference.
2680 * The test for TASK_DEAD must occur while the runqueue locks are
2681 * still held, otherwise prev could be scheduled on another cpu, die
2682 * there before we look at prev->state, and then the reference would
2683 * be dropped twice.
2684 * Manfred Spraul <manfred@colorfullife.com>
2685 */
2686 prev_state = prev->state;
2687 finish_arch_switch(prev);
2688 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2689 local_irq_disable();
2690 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2691 perf_event_task_sched_in(current);
2692 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2693 local_irq_enable();
2694 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2695 finish_lock_switch(rq, prev);
2696
2697 fire_sched_in_preempt_notifiers(current);
2698 if (mm)
2699 mmdrop(mm);
2700 if (unlikely(prev_state == TASK_DEAD)) {
2701 /*
2702 * Remove function-return probe instances associated with this
2703 * task and put them back on the free list.
2704 */
2705 kprobe_flush_task(prev);
2706 put_task_struct(prev);
2707 }
2708 }
2709
2710 #ifdef CONFIG_SMP
2711
2712 /* assumes rq->lock is held */
2713 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2714 {
2715 if (prev->sched_class->pre_schedule)
2716 prev->sched_class->pre_schedule(rq, prev);
2717 }
2718
2719 /* rq->lock is NOT held, but preemption is disabled */
2720 static inline void post_schedule(struct rq *rq)
2721 {
2722 if (rq->post_schedule) {
2723 unsigned long flags;
2724
2725 raw_spin_lock_irqsave(&rq->lock, flags);
2726 if (rq->curr->sched_class->post_schedule)
2727 rq->curr->sched_class->post_schedule(rq);
2728 raw_spin_unlock_irqrestore(&rq->lock, flags);
2729
2730 rq->post_schedule = 0;
2731 }
2732 }
2733
2734 #else
2735
2736 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2737 {
2738 }
2739
2740 static inline void post_schedule(struct rq *rq)
2741 {
2742 }
2743
2744 #endif
2745
2746 /**
2747 * schedule_tail - first thing a freshly forked thread must call.
2748 * @prev: the thread we just switched away from.
2749 */
2750 asmlinkage void schedule_tail(struct task_struct *prev)
2751 __releases(rq->lock)
2752 {
2753 struct rq *rq = this_rq();
2754
2755 finish_task_switch(rq, prev);
2756
2757 /*
2758 * FIXME: do we need to worry about rq being invalidated by the
2759 * task_switch?
2760 */
2761 post_schedule(rq);
2762
2763 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2764 /* In this case, finish_task_switch does not reenable preemption */
2765 preempt_enable();
2766 #endif
2767 if (current->set_child_tid)
2768 put_user(task_pid_vnr(current), current->set_child_tid);
2769 }
2770
2771 /*
2772 * context_switch - switch to the new MM and the new
2773 * thread's register state.
2774 */
2775 static inline void
2776 context_switch(struct rq *rq, struct task_struct *prev,
2777 struct task_struct *next)
2778 {
2779 struct mm_struct *mm, *oldmm;
2780
2781 prepare_task_switch(rq, prev, next);
2782 trace_sched_switch(prev, next);
2783 mm = next->mm;
2784 oldmm = prev->active_mm;
2785 /*
2786 * For paravirt, this is coupled with an exit in switch_to to
2787 * combine the page table reload and the switch backend into
2788 * one hypercall.
2789 */
2790 arch_start_context_switch(prev);
2791
2792 if (likely(!mm)) {
2793 next->active_mm = oldmm;
2794 atomic_inc(&oldmm->mm_count);
2795 enter_lazy_tlb(oldmm, next);
2796 } else
2797 switch_mm(oldmm, mm, next);
2798
2799 if (likely(!prev->mm)) {
2800 prev->active_mm = NULL;
2801 rq->prev_mm = oldmm;
2802 }
2803 /*
2804 * Since the runqueue lock will be released by the next
2805 * task (which is an invalid locking op but in the case
2806 * of the scheduler it's an obvious special-case), so we
2807 * do an early lockdep release here:
2808 */
2809 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2810 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2811 #endif
2812
2813 /* Here we just switch the register state and the stack. */
2814 switch_to(prev, next, prev);
2815
2816 barrier();
2817 /*
2818 * this_rq must be evaluated again because prev may have moved
2819 * CPUs since it called schedule(), thus the 'rq' on its stack
2820 * frame will be invalid.
2821 */
2822 finish_task_switch(this_rq(), prev);
2823 }
2824
2825 /*
2826 * nr_running, nr_uninterruptible and nr_context_switches:
2827 *
2828 * externally visible scheduler statistics: current number of runnable
2829 * threads, current number of uninterruptible-sleeping threads, total
2830 * number of context switches performed since bootup.
2831 */
2832 unsigned long nr_running(void)
2833 {
2834 unsigned long i, sum = 0;
2835
2836 for_each_online_cpu(i)
2837 sum += cpu_rq(i)->nr_running;
2838
2839 return sum;
2840 }
2841
2842 unsigned long nr_uninterruptible(void)
2843 {
2844 unsigned long i, sum = 0;
2845
2846 for_each_possible_cpu(i)
2847 sum += cpu_rq(i)->nr_uninterruptible;
2848
2849 /*
2850 * Since we read the counters lockless, it might be slightly
2851 * inaccurate. Do not allow it to go below zero though:
2852 */
2853 if (unlikely((long)sum < 0))
2854 sum = 0;
2855
2856 return sum;
2857 }
2858
2859 unsigned long long nr_context_switches(void)
2860 {
2861 int i;
2862 unsigned long long sum = 0;
2863
2864 for_each_possible_cpu(i)
2865 sum += cpu_rq(i)->nr_switches;
2866
2867 return sum;
2868 }
2869
2870 unsigned long nr_iowait(void)
2871 {
2872 unsigned long i, sum = 0;
2873
2874 for_each_possible_cpu(i)
2875 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2876
2877 return sum;
2878 }
2879
2880 unsigned long nr_iowait_cpu(void)
2881 {
2882 struct rq *this = this_rq();
2883 return atomic_read(&this->nr_iowait);
2884 }
2885
2886 unsigned long this_cpu_load(void)
2887 {
2888 struct rq *this = this_rq();
2889 return this->cpu_load[0];
2890 }
2891
2892
2893 /* Variables and functions for calc_load */
2894 static atomic_long_t calc_load_tasks;
2895 static unsigned long calc_load_update;
2896 unsigned long avenrun[3];
2897 EXPORT_SYMBOL(avenrun);
2898
2899 static long calc_load_fold_active(struct rq *this_rq)
2900 {
2901 long nr_active, delta = 0;
2902
2903 nr_active = this_rq->nr_running;
2904 nr_active += (long) this_rq->nr_uninterruptible;
2905
2906 if (nr_active != this_rq->calc_load_active) {
2907 delta = nr_active - this_rq->calc_load_active;
2908 this_rq->calc_load_active = nr_active;
2909 }
2910
2911 return delta;
2912 }
2913
2914 #ifdef CONFIG_NO_HZ
2915 /*
2916 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2917 *
2918 * When making the ILB scale, we should try to pull this in as well.
2919 */
2920 static atomic_long_t calc_load_tasks_idle;
2921
2922 static void calc_load_account_idle(struct rq *this_rq)
2923 {
2924 long delta;
2925
2926 delta = calc_load_fold_active(this_rq);
2927 if (delta)
2928 atomic_long_add(delta, &calc_load_tasks_idle);
2929 }
2930
2931 static long calc_load_fold_idle(void)
2932 {
2933 long delta = 0;
2934
2935 /*
2936 * Its got a race, we don't care...
2937 */
2938 if (atomic_long_read(&calc_load_tasks_idle))
2939 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2940
2941 return delta;
2942 }
2943 #else
2944 static void calc_load_account_idle(struct rq *this_rq)
2945 {
2946 }
2947
2948 static inline long calc_load_fold_idle(void)
2949 {
2950 return 0;
2951 }
2952 #endif
2953
2954 /**
2955 * get_avenrun - get the load average array
2956 * @loads: pointer to dest load array
2957 * @offset: offset to add
2958 * @shift: shift count to shift the result left
2959 *
2960 * These values are estimates at best, so no need for locking.
2961 */
2962 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2963 {
2964 loads[0] = (avenrun[0] + offset) << shift;
2965 loads[1] = (avenrun[1] + offset) << shift;
2966 loads[2] = (avenrun[2] + offset) << shift;
2967 }
2968
2969 static unsigned long
2970 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2971 {
2972 load *= exp;
2973 load += active * (FIXED_1 - exp);
2974 return load >> FSHIFT;
2975 }
2976
2977 /*
2978 * calc_load - update the avenrun load estimates 10 ticks after the
2979 * CPUs have updated calc_load_tasks.
2980 */
2981 void calc_global_load(void)
2982 {
2983 unsigned long upd = calc_load_update + 10;
2984 long active;
2985
2986 if (time_before(jiffies, upd))
2987 return;
2988
2989 active = atomic_long_read(&calc_load_tasks);
2990 active = active > 0 ? active * FIXED_1 : 0;
2991
2992 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2993 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2994 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2995
2996 calc_load_update += LOAD_FREQ;
2997 }
2998
2999 /*
3000 * Called from update_cpu_load() to periodically update this CPU's
3001 * active count.
3002 */
3003 static void calc_load_account_active(struct rq *this_rq)
3004 {
3005 long delta;
3006
3007 if (time_before(jiffies, this_rq->calc_load_update))
3008 return;
3009
3010 delta = calc_load_fold_active(this_rq);
3011 delta += calc_load_fold_idle();
3012 if (delta)
3013 atomic_long_add(delta, &calc_load_tasks);
3014
3015 this_rq->calc_load_update += LOAD_FREQ;
3016 }
3017
3018 /*
3019 * Update rq->cpu_load[] statistics. This function is usually called every
3020 * scheduler tick (TICK_NSEC).
3021 */
3022 static void update_cpu_load(struct rq *this_rq)
3023 {
3024 unsigned long this_load = this_rq->load.weight;
3025 int i, scale;
3026
3027 this_rq->nr_load_updates++;
3028
3029 /* Update our load: */
3030 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3031 unsigned long old_load, new_load;
3032
3033 /* scale is effectively 1 << i now, and >> i divides by scale */
3034
3035 old_load = this_rq->cpu_load[i];
3036 new_load = this_load;
3037 /*
3038 * Round up the averaging division if load is increasing. This
3039 * prevents us from getting stuck on 9 if the load is 10, for
3040 * example.
3041 */
3042 if (new_load > old_load)
3043 new_load += scale-1;
3044 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3045 }
3046
3047 calc_load_account_active(this_rq);
3048 }
3049
3050 #ifdef CONFIG_SMP
3051
3052 /*
3053 * sched_exec - execve() is a valuable balancing opportunity, because at
3054 * this point the task has the smallest effective memory and cache footprint.
3055 */
3056 void sched_exec(void)
3057 {
3058 struct task_struct *p = current;
3059 unsigned long flags;
3060 struct rq *rq;
3061 int dest_cpu;
3062
3063 rq = task_rq_lock(p, &flags);
3064 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3065 if (dest_cpu == smp_processor_id())
3066 goto unlock;
3067
3068 /*
3069 * select_task_rq() can race against ->cpus_allowed
3070 */
3071 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3072 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3073 struct migration_arg arg = { p, dest_cpu };
3074
3075 task_rq_unlock(rq, &flags);
3076 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3077 return;
3078 }
3079 unlock:
3080 task_rq_unlock(rq, &flags);
3081 }
3082
3083 #endif
3084
3085 DEFINE_PER_CPU(struct kernel_stat, kstat);
3086
3087 EXPORT_PER_CPU_SYMBOL(kstat);
3088
3089 /*
3090 * Return any ns on the sched_clock that have not yet been accounted in
3091 * @p in case that task is currently running.
3092 *
3093 * Called with task_rq_lock() held on @rq.
3094 */
3095 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3096 {
3097 u64 ns = 0;
3098
3099 if (task_current(rq, p)) {
3100 update_rq_clock(rq);
3101 ns = rq->clock - p->se.exec_start;
3102 if ((s64)ns < 0)
3103 ns = 0;
3104 }
3105
3106 return ns;
3107 }
3108
3109 unsigned long long task_delta_exec(struct task_struct *p)
3110 {
3111 unsigned long flags;
3112 struct rq *rq;
3113 u64 ns = 0;
3114
3115 rq = task_rq_lock(p, &flags);
3116 ns = do_task_delta_exec(p, rq);
3117 task_rq_unlock(rq, &flags);
3118
3119 return ns;
3120 }
3121
3122 /*
3123 * Return accounted runtime for the task.
3124 * In case the task is currently running, return the runtime plus current's
3125 * pending runtime that have not been accounted yet.
3126 */
3127 unsigned long long task_sched_runtime(struct task_struct *p)
3128 {
3129 unsigned long flags;
3130 struct rq *rq;
3131 u64 ns = 0;
3132
3133 rq = task_rq_lock(p, &flags);
3134 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3135 task_rq_unlock(rq, &flags);
3136
3137 return ns;
3138 }
3139
3140 /*
3141 * Return sum_exec_runtime for the thread group.
3142 * In case the task is currently running, return the sum plus current's
3143 * pending runtime that have not been accounted yet.
3144 *
3145 * Note that the thread group might have other running tasks as well,
3146 * so the return value not includes other pending runtime that other
3147 * running tasks might have.
3148 */
3149 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3150 {
3151 struct task_cputime totals;
3152 unsigned long flags;
3153 struct rq *rq;
3154 u64 ns;
3155
3156 rq = task_rq_lock(p, &flags);
3157 thread_group_cputime(p, &totals);
3158 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3159 task_rq_unlock(rq, &flags);
3160
3161 return ns;
3162 }
3163
3164 /*
3165 * Account user cpu time to a process.
3166 * @p: the process that the cpu time gets accounted to
3167 * @cputime: the cpu time spent in user space since the last update
3168 * @cputime_scaled: cputime scaled by cpu frequency
3169 */
3170 void account_user_time(struct task_struct *p, cputime_t cputime,
3171 cputime_t cputime_scaled)
3172 {
3173 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3174 cputime64_t tmp;
3175
3176 /* Add user time to process. */
3177 p->utime = cputime_add(p->utime, cputime);
3178 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3179 account_group_user_time(p, cputime);
3180
3181 /* Add user time to cpustat. */
3182 tmp = cputime_to_cputime64(cputime);
3183 if (TASK_NICE(p) > 0)
3184 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3185 else
3186 cpustat->user = cputime64_add(cpustat->user, tmp);
3187
3188 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3189 /* Account for user time used */
3190 acct_update_integrals(p);
3191 }
3192
3193 /*
3194 * Account guest cpu time to a process.
3195 * @p: the process that the cpu time gets accounted to
3196 * @cputime: the cpu time spent in virtual machine since the last update
3197 * @cputime_scaled: cputime scaled by cpu frequency
3198 */
3199 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3200 cputime_t cputime_scaled)
3201 {
3202 cputime64_t tmp;
3203 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3204
3205 tmp = cputime_to_cputime64(cputime);
3206
3207 /* Add guest time to process. */
3208 p->utime = cputime_add(p->utime, cputime);
3209 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3210 account_group_user_time(p, cputime);
3211 p->gtime = cputime_add(p->gtime, cputime);
3212
3213 /* Add guest time to cpustat. */
3214 if (TASK_NICE(p) > 0) {
3215 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3216 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3217 } else {
3218 cpustat->user = cputime64_add(cpustat->user, tmp);
3219 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3220 }
3221 }
3222
3223 /*
3224 * Account system cpu time to a process.
3225 * @p: the process that the cpu time gets accounted to
3226 * @hardirq_offset: the offset to subtract from hardirq_count()
3227 * @cputime: the cpu time spent in kernel space since the last update
3228 * @cputime_scaled: cputime scaled by cpu frequency
3229 */
3230 void account_system_time(struct task_struct *p, int hardirq_offset,
3231 cputime_t cputime, cputime_t cputime_scaled)
3232 {
3233 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3234 cputime64_t tmp;
3235
3236 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3237 account_guest_time(p, cputime, cputime_scaled);
3238 return;
3239 }
3240
3241 /* Add system time to process. */
3242 p->stime = cputime_add(p->stime, cputime);
3243 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3244 account_group_system_time(p, cputime);
3245
3246 /* Add system time to cpustat. */
3247 tmp = cputime_to_cputime64(cputime);
3248 if (hardirq_count() - hardirq_offset)
3249 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3250 else if (softirq_count())
3251 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3252 else
3253 cpustat->system = cputime64_add(cpustat->system, tmp);
3254
3255 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3256
3257 /* Account for system time used */
3258 acct_update_integrals(p);
3259 }
3260
3261 /*
3262 * Account for involuntary wait time.
3263 * @steal: the cpu time spent in involuntary wait
3264 */
3265 void account_steal_time(cputime_t cputime)
3266 {
3267 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3268 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3269
3270 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3271 }
3272
3273 /*
3274 * Account for idle time.
3275 * @cputime: the cpu time spent in idle wait
3276 */
3277 void account_idle_time(cputime_t cputime)
3278 {
3279 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3280 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3281 struct rq *rq = this_rq();
3282
3283 if (atomic_read(&rq->nr_iowait) > 0)
3284 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3285 else
3286 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3287 }
3288
3289 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3290
3291 /*
3292 * Account a single tick of cpu time.
3293 * @p: the process that the cpu time gets accounted to
3294 * @user_tick: indicates if the tick is a user or a system tick
3295 */
3296 void account_process_tick(struct task_struct *p, int user_tick)
3297 {
3298 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3299 struct rq *rq = this_rq();
3300
3301 if (user_tick)
3302 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3303 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3304 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3305 one_jiffy_scaled);
3306 else
3307 account_idle_time(cputime_one_jiffy);
3308 }
3309
3310 /*
3311 * Account multiple ticks of steal time.
3312 * @p: the process from which the cpu time has been stolen
3313 * @ticks: number of stolen ticks
3314 */
3315 void account_steal_ticks(unsigned long ticks)
3316 {
3317 account_steal_time(jiffies_to_cputime(ticks));
3318 }
3319
3320 /*
3321 * Account multiple ticks of idle time.
3322 * @ticks: number of stolen ticks
3323 */
3324 void account_idle_ticks(unsigned long ticks)
3325 {
3326 account_idle_time(jiffies_to_cputime(ticks));
3327 }
3328
3329 #endif
3330
3331 /*
3332 * Use precise platform statistics if available:
3333 */
3334 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3335 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3336 {
3337 *ut = p->utime;
3338 *st = p->stime;
3339 }
3340
3341 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3342 {
3343 struct task_cputime cputime;
3344
3345 thread_group_cputime(p, &cputime);
3346
3347 *ut = cputime.utime;
3348 *st = cputime.stime;
3349 }
3350 #else
3351
3352 #ifndef nsecs_to_cputime
3353 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3354 #endif
3355
3356 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3357 {
3358 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3359
3360 /*
3361 * Use CFS's precise accounting:
3362 */
3363 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3364
3365 if (total) {
3366 u64 temp;
3367
3368 temp = (u64)(rtime * utime);
3369 do_div(temp, total);
3370 utime = (cputime_t)temp;
3371 } else
3372 utime = rtime;
3373
3374 /*
3375 * Compare with previous values, to keep monotonicity:
3376 */
3377 p->prev_utime = max(p->prev_utime, utime);
3378 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3379
3380 *ut = p->prev_utime;
3381 *st = p->prev_stime;
3382 }
3383
3384 /*
3385 * Must be called with siglock held.
3386 */
3387 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3388 {
3389 struct signal_struct *sig = p->signal;
3390 struct task_cputime cputime;
3391 cputime_t rtime, utime, total;
3392
3393 thread_group_cputime(p, &cputime);
3394
3395 total = cputime_add(cputime.utime, cputime.stime);
3396 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3397
3398 if (total) {
3399 u64 temp;
3400
3401 temp = (u64)(rtime * cputime.utime);
3402 do_div(temp, total);
3403 utime = (cputime_t)temp;
3404 } else
3405 utime = rtime;
3406
3407 sig->prev_utime = max(sig->prev_utime, utime);
3408 sig->prev_stime = max(sig->prev_stime,
3409 cputime_sub(rtime, sig->prev_utime));
3410
3411 *ut = sig->prev_utime;
3412 *st = sig->prev_stime;
3413 }
3414 #endif
3415
3416 /*
3417 * This function gets called by the timer code, with HZ frequency.
3418 * We call it with interrupts disabled.
3419 *
3420 * It also gets called by the fork code, when changing the parent's
3421 * timeslices.
3422 */
3423 void scheduler_tick(void)
3424 {
3425 int cpu = smp_processor_id();
3426 struct rq *rq = cpu_rq(cpu);
3427 struct task_struct *curr = rq->curr;
3428
3429 sched_clock_tick();
3430
3431 raw_spin_lock(&rq->lock);
3432 update_rq_clock(rq);
3433 update_cpu_load(rq);
3434 curr->sched_class->task_tick(rq, curr, 0);
3435 raw_spin_unlock(&rq->lock);
3436
3437 perf_event_task_tick(curr);
3438
3439 #ifdef CONFIG_SMP
3440 rq->idle_at_tick = idle_cpu(cpu);
3441 trigger_load_balance(rq, cpu);
3442 #endif
3443 }
3444
3445 notrace unsigned long get_parent_ip(unsigned long addr)
3446 {
3447 if (in_lock_functions(addr)) {
3448 addr = CALLER_ADDR2;
3449 if (in_lock_functions(addr))
3450 addr = CALLER_ADDR3;
3451 }
3452 return addr;
3453 }
3454
3455 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3456 defined(CONFIG_PREEMPT_TRACER))
3457
3458 void __kprobes add_preempt_count(int val)
3459 {
3460 #ifdef CONFIG_DEBUG_PREEMPT
3461 /*
3462 * Underflow?
3463 */
3464 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3465 return;
3466 #endif
3467 preempt_count() += val;
3468 #ifdef CONFIG_DEBUG_PREEMPT
3469 /*
3470 * Spinlock count overflowing soon?
3471 */
3472 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3473 PREEMPT_MASK - 10);
3474 #endif
3475 if (preempt_count() == val)
3476 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3477 }
3478 EXPORT_SYMBOL(add_preempt_count);
3479
3480 void __kprobes sub_preempt_count(int val)
3481 {
3482 #ifdef CONFIG_DEBUG_PREEMPT
3483 /*
3484 * Underflow?
3485 */
3486 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3487 return;
3488 /*
3489 * Is the spinlock portion underflowing?
3490 */
3491 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3492 !(preempt_count() & PREEMPT_MASK)))
3493 return;
3494 #endif
3495
3496 if (preempt_count() == val)
3497 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3498 preempt_count() -= val;
3499 }
3500 EXPORT_SYMBOL(sub_preempt_count);
3501
3502 #endif
3503
3504 /*
3505 * Print scheduling while atomic bug:
3506 */
3507 static noinline void __schedule_bug(struct task_struct *prev)
3508 {
3509 struct pt_regs *regs = get_irq_regs();
3510
3511 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3512 prev->comm, prev->pid, preempt_count());
3513
3514 debug_show_held_locks(prev);
3515 print_modules();
3516 if (irqs_disabled())
3517 print_irqtrace_events(prev);
3518
3519 if (regs)
3520 show_regs(regs);
3521 else
3522 dump_stack();
3523 }
3524
3525 /*
3526 * Various schedule()-time debugging checks and statistics:
3527 */
3528 static inline void schedule_debug(struct task_struct *prev)
3529 {
3530 /*
3531 * Test if we are atomic. Since do_exit() needs to call into
3532 * schedule() atomically, we ignore that path for now.
3533 * Otherwise, whine if we are scheduling when we should not be.
3534 */
3535 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3536 __schedule_bug(prev);
3537
3538 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3539
3540 schedstat_inc(this_rq(), sched_count);
3541 #ifdef CONFIG_SCHEDSTATS
3542 if (unlikely(prev->lock_depth >= 0)) {
3543 schedstat_inc(this_rq(), bkl_count);
3544 schedstat_inc(prev, sched_info.bkl_count);
3545 }
3546 #endif
3547 }
3548
3549 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3550 {
3551 if (prev->se.on_rq)
3552 update_rq_clock(rq);
3553 rq->skip_clock_update = 0;
3554 prev->sched_class->put_prev_task(rq, prev);
3555 }
3556
3557 /*
3558 * Pick up the highest-prio task:
3559 */
3560 static inline struct task_struct *
3561 pick_next_task(struct rq *rq)
3562 {
3563 const struct sched_class *class;
3564 struct task_struct *p;
3565
3566 /*
3567 * Optimization: we know that if all tasks are in
3568 * the fair class we can call that function directly:
3569 */
3570 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3571 p = fair_sched_class.pick_next_task(rq);
3572 if (likely(p))
3573 return p;
3574 }
3575
3576 class = sched_class_highest;
3577 for ( ; ; ) {
3578 p = class->pick_next_task(rq);
3579 if (p)
3580 return p;
3581 /*
3582 * Will never be NULL as the idle class always
3583 * returns a non-NULL p:
3584 */
3585 class = class->next;
3586 }
3587 }
3588
3589 /*
3590 * schedule() is the main scheduler function.
3591 */
3592 asmlinkage void __sched schedule(void)
3593 {
3594 struct task_struct *prev, *next;
3595 unsigned long *switch_count;
3596 struct rq *rq;
3597 int cpu;
3598
3599 need_resched:
3600 preempt_disable();
3601 cpu = smp_processor_id();
3602 rq = cpu_rq(cpu);
3603 rcu_note_context_switch(cpu);
3604 prev = rq->curr;
3605 switch_count = &prev->nivcsw;
3606
3607 release_kernel_lock(prev);
3608 need_resched_nonpreemptible:
3609
3610 schedule_debug(prev);
3611
3612 if (sched_feat(HRTICK))
3613 hrtick_clear(rq);
3614
3615 raw_spin_lock_irq(&rq->lock);
3616 clear_tsk_need_resched(prev);
3617
3618 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3619 if (unlikely(signal_pending_state(prev->state, prev)))
3620 prev->state = TASK_RUNNING;
3621 else
3622 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3623 switch_count = &prev->nvcsw;
3624 }
3625
3626 pre_schedule(rq, prev);
3627
3628 if (unlikely(!rq->nr_running))
3629 idle_balance(cpu, rq);
3630
3631 put_prev_task(rq, prev);
3632 next = pick_next_task(rq);
3633
3634 if (likely(prev != next)) {
3635 sched_info_switch(prev, next);
3636 perf_event_task_sched_out(prev, next);
3637
3638 rq->nr_switches++;
3639 rq->curr = next;
3640 ++*switch_count;
3641
3642 context_switch(rq, prev, next); /* unlocks the rq */
3643 /*
3644 * the context switch might have flipped the stack from under
3645 * us, hence refresh the local variables.
3646 */
3647 cpu = smp_processor_id();
3648 rq = cpu_rq(cpu);
3649 } else
3650 raw_spin_unlock_irq(&rq->lock);
3651
3652 post_schedule(rq);
3653
3654 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3655 prev = rq->curr;
3656 switch_count = &prev->nivcsw;
3657 goto need_resched_nonpreemptible;
3658 }
3659
3660 preempt_enable_no_resched();
3661 if (need_resched())
3662 goto need_resched;
3663 }
3664 EXPORT_SYMBOL(schedule);
3665
3666 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3667 /*
3668 * Look out! "owner" is an entirely speculative pointer
3669 * access and not reliable.
3670 */
3671 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3672 {
3673 unsigned int cpu;
3674 struct rq *rq;
3675
3676 if (!sched_feat(OWNER_SPIN))
3677 return 0;
3678
3679 #ifdef CONFIG_DEBUG_PAGEALLOC
3680 /*
3681 * Need to access the cpu field knowing that
3682 * DEBUG_PAGEALLOC could have unmapped it if
3683 * the mutex owner just released it and exited.
3684 */
3685 if (probe_kernel_address(&owner->cpu, cpu))
3686 return 0;
3687 #else
3688 cpu = owner->cpu;
3689 #endif
3690
3691 /*
3692 * Even if the access succeeded (likely case),
3693 * the cpu field may no longer be valid.
3694 */
3695 if (cpu >= nr_cpumask_bits)
3696 return 0;
3697
3698 /*
3699 * We need to validate that we can do a
3700 * get_cpu() and that we have the percpu area.
3701 */
3702 if (!cpu_online(cpu))
3703 return 0;
3704
3705 rq = cpu_rq(cpu);
3706
3707 for (;;) {
3708 /*
3709 * Owner changed, break to re-assess state.
3710 */
3711 if (lock->owner != owner)
3712 break;
3713
3714 /*
3715 * Is that owner really running on that cpu?
3716 */
3717 if (task_thread_info(rq->curr) != owner || need_resched())
3718 return 0;
3719
3720 cpu_relax();
3721 }
3722
3723 return 1;
3724 }
3725 #endif
3726
3727 #ifdef CONFIG_PREEMPT
3728 /*
3729 * this is the entry point to schedule() from in-kernel preemption
3730 * off of preempt_enable. Kernel preemptions off return from interrupt
3731 * occur there and call schedule directly.
3732 */
3733 asmlinkage void __sched preempt_schedule(void)
3734 {
3735 struct thread_info *ti = current_thread_info();
3736
3737 /*
3738 * If there is a non-zero preempt_count or interrupts are disabled,
3739 * we do not want to preempt the current task. Just return..
3740 */
3741 if (likely(ti->preempt_count || irqs_disabled()))
3742 return;
3743
3744 do {
3745 add_preempt_count(PREEMPT_ACTIVE);
3746 schedule();
3747 sub_preempt_count(PREEMPT_ACTIVE);
3748
3749 /*
3750 * Check again in case we missed a preemption opportunity
3751 * between schedule and now.
3752 */
3753 barrier();
3754 } while (need_resched());
3755 }
3756 EXPORT_SYMBOL(preempt_schedule);
3757
3758 /*
3759 * this is the entry point to schedule() from kernel preemption
3760 * off of irq context.
3761 * Note, that this is called and return with irqs disabled. This will
3762 * protect us against recursive calling from irq.
3763 */
3764 asmlinkage void __sched preempt_schedule_irq(void)
3765 {
3766 struct thread_info *ti = current_thread_info();
3767
3768 /* Catch callers which need to be fixed */
3769 BUG_ON(ti->preempt_count || !irqs_disabled());
3770
3771 do {
3772 add_preempt_count(PREEMPT_ACTIVE);
3773 local_irq_enable();
3774 schedule();
3775 local_irq_disable();
3776 sub_preempt_count(PREEMPT_ACTIVE);
3777
3778 /*
3779 * Check again in case we missed a preemption opportunity
3780 * between schedule and now.
3781 */
3782 barrier();
3783 } while (need_resched());
3784 }
3785
3786 #endif /* CONFIG_PREEMPT */
3787
3788 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3789 void *key)
3790 {
3791 return try_to_wake_up(curr->private, mode, wake_flags);
3792 }
3793 EXPORT_SYMBOL(default_wake_function);
3794
3795 /*
3796 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3797 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3798 * number) then we wake all the non-exclusive tasks and one exclusive task.
3799 *
3800 * There are circumstances in which we can try to wake a task which has already
3801 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3802 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3803 */
3804 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3805 int nr_exclusive, int wake_flags, void *key)
3806 {
3807 wait_queue_t *curr, *next;
3808
3809 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3810 unsigned flags = curr->flags;
3811
3812 if (curr->func(curr, mode, wake_flags, key) &&
3813 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3814 break;
3815 }
3816 }
3817
3818 /**
3819 * __wake_up - wake up threads blocked on a waitqueue.
3820 * @q: the waitqueue
3821 * @mode: which threads
3822 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3823 * @key: is directly passed to the wakeup function
3824 *
3825 * It may be assumed that this function implies a write memory barrier before
3826 * changing the task state if and only if any tasks are woken up.
3827 */
3828 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3829 int nr_exclusive, void *key)
3830 {
3831 unsigned long flags;
3832
3833 spin_lock_irqsave(&q->lock, flags);
3834 __wake_up_common(q, mode, nr_exclusive, 0, key);
3835 spin_unlock_irqrestore(&q->lock, flags);
3836 }
3837 EXPORT_SYMBOL(__wake_up);
3838
3839 /*
3840 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3841 */
3842 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3843 {
3844 __wake_up_common(q, mode, 1, 0, NULL);
3845 }
3846 EXPORT_SYMBOL_GPL(__wake_up_locked);
3847
3848 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3849 {
3850 __wake_up_common(q, mode, 1, 0, key);
3851 }
3852
3853 /**
3854 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3855 * @q: the waitqueue
3856 * @mode: which threads
3857 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3858 * @key: opaque value to be passed to wakeup targets
3859 *
3860 * The sync wakeup differs that the waker knows that it will schedule
3861 * away soon, so while the target thread will be woken up, it will not
3862 * be migrated to another CPU - ie. the two threads are 'synchronized'
3863 * with each other. This can prevent needless bouncing between CPUs.
3864 *
3865 * On UP it can prevent extra preemption.
3866 *
3867 * It may be assumed that this function implies a write memory barrier before
3868 * changing the task state if and only if any tasks are woken up.
3869 */
3870 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3871 int nr_exclusive, void *key)
3872 {
3873 unsigned long flags;
3874 int wake_flags = WF_SYNC;
3875
3876 if (unlikely(!q))
3877 return;
3878
3879 if (unlikely(!nr_exclusive))
3880 wake_flags = 0;
3881
3882 spin_lock_irqsave(&q->lock, flags);
3883 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3884 spin_unlock_irqrestore(&q->lock, flags);
3885 }
3886 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3887
3888 /*
3889 * __wake_up_sync - see __wake_up_sync_key()
3890 */
3891 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3892 {
3893 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3894 }
3895 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3896
3897 /**
3898 * complete: - signals a single thread waiting on this completion
3899 * @x: holds the state of this particular completion
3900 *
3901 * This will wake up a single thread waiting on this completion. Threads will be
3902 * awakened in the same order in which they were queued.
3903 *
3904 * See also complete_all(), wait_for_completion() and related routines.
3905 *
3906 * It may be assumed that this function implies a write memory barrier before
3907 * changing the task state if and only if any tasks are woken up.
3908 */
3909 void complete(struct completion *x)
3910 {
3911 unsigned long flags;
3912
3913 spin_lock_irqsave(&x->wait.lock, flags);
3914 x->done++;
3915 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3916 spin_unlock_irqrestore(&x->wait.lock, flags);
3917 }
3918 EXPORT_SYMBOL(complete);
3919
3920 /**
3921 * complete_all: - signals all threads waiting on this completion
3922 * @x: holds the state of this particular completion
3923 *
3924 * This will wake up all threads waiting on this particular completion event.
3925 *
3926 * It may be assumed that this function implies a write memory barrier before
3927 * changing the task state if and only if any tasks are woken up.
3928 */
3929 void complete_all(struct completion *x)
3930 {
3931 unsigned long flags;
3932
3933 spin_lock_irqsave(&x->wait.lock, flags);
3934 x->done += UINT_MAX/2;
3935 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3936 spin_unlock_irqrestore(&x->wait.lock, flags);
3937 }
3938 EXPORT_SYMBOL(complete_all);
3939
3940 static inline long __sched
3941 do_wait_for_common(struct completion *x, long timeout, int state)
3942 {
3943 if (!x->done) {
3944 DECLARE_WAITQUEUE(wait, current);
3945
3946 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3947 do {
3948 if (signal_pending_state(state, current)) {
3949 timeout = -ERESTARTSYS;
3950 break;
3951 }
3952 __set_current_state(state);
3953 spin_unlock_irq(&x->wait.lock);
3954 timeout = schedule_timeout(timeout);
3955 spin_lock_irq(&x->wait.lock);
3956 } while (!x->done && timeout);
3957 __remove_wait_queue(&x->wait, &wait);
3958 if (!x->done)
3959 return timeout;
3960 }
3961 x->done--;
3962 return timeout ?: 1;
3963 }
3964
3965 static long __sched
3966 wait_for_common(struct completion *x, long timeout, int state)
3967 {
3968 might_sleep();
3969
3970 spin_lock_irq(&x->wait.lock);
3971 timeout = do_wait_for_common(x, timeout, state);
3972 spin_unlock_irq(&x->wait.lock);
3973 return timeout;
3974 }
3975
3976 /**
3977 * wait_for_completion: - waits for completion of a task
3978 * @x: holds the state of this particular completion
3979 *
3980 * This waits to be signaled for completion of a specific task. It is NOT
3981 * interruptible and there is no timeout.
3982 *
3983 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3984 * and interrupt capability. Also see complete().
3985 */
3986 void __sched wait_for_completion(struct completion *x)
3987 {
3988 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3989 }
3990 EXPORT_SYMBOL(wait_for_completion);
3991
3992 /**
3993 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3994 * @x: holds the state of this particular completion
3995 * @timeout: timeout value in jiffies
3996 *
3997 * This waits for either a completion of a specific task to be signaled or for a
3998 * specified timeout to expire. The timeout is in jiffies. It is not
3999 * interruptible.
4000 */
4001 unsigned long __sched
4002 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4003 {
4004 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4005 }
4006 EXPORT_SYMBOL(wait_for_completion_timeout);
4007
4008 /**
4009 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4010 * @x: holds the state of this particular completion
4011 *
4012 * This waits for completion of a specific task to be signaled. It is
4013 * interruptible.
4014 */
4015 int __sched wait_for_completion_interruptible(struct completion *x)
4016 {
4017 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4018 if (t == -ERESTARTSYS)
4019 return t;
4020 return 0;
4021 }
4022 EXPORT_SYMBOL(wait_for_completion_interruptible);
4023
4024 /**
4025 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4026 * @x: holds the state of this particular completion
4027 * @timeout: timeout value in jiffies
4028 *
4029 * This waits for either a completion of a specific task to be signaled or for a
4030 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4031 */
4032 unsigned long __sched
4033 wait_for_completion_interruptible_timeout(struct completion *x,
4034 unsigned long timeout)
4035 {
4036 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4037 }
4038 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4039
4040 /**
4041 * wait_for_completion_killable: - waits for completion of a task (killable)
4042 * @x: holds the state of this particular completion
4043 *
4044 * This waits to be signaled for completion of a specific task. It can be
4045 * interrupted by a kill signal.
4046 */
4047 int __sched wait_for_completion_killable(struct completion *x)
4048 {
4049 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4050 if (t == -ERESTARTSYS)
4051 return t;
4052 return 0;
4053 }
4054 EXPORT_SYMBOL(wait_for_completion_killable);
4055
4056 /**
4057 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4058 * @x: holds the state of this particular completion
4059 * @timeout: timeout value in jiffies
4060 *
4061 * This waits for either a completion of a specific task to be
4062 * signaled or for a specified timeout to expire. It can be
4063 * interrupted by a kill signal. The timeout is in jiffies.
4064 */
4065 unsigned long __sched
4066 wait_for_completion_killable_timeout(struct completion *x,
4067 unsigned long timeout)
4068 {
4069 return wait_for_common(x, timeout, TASK_KILLABLE);
4070 }
4071 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4072
4073 /**
4074 * try_wait_for_completion - try to decrement a completion without blocking
4075 * @x: completion structure
4076 *
4077 * Returns: 0 if a decrement cannot be done without blocking
4078 * 1 if a decrement succeeded.
4079 *
4080 * If a completion is being used as a counting completion,
4081 * attempt to decrement the counter without blocking. This
4082 * enables us to avoid waiting if the resource the completion
4083 * is protecting is not available.
4084 */
4085 bool try_wait_for_completion(struct completion *x)
4086 {
4087 unsigned long flags;
4088 int ret = 1;
4089
4090 spin_lock_irqsave(&x->wait.lock, flags);
4091 if (!x->done)
4092 ret = 0;
4093 else
4094 x->done--;
4095 spin_unlock_irqrestore(&x->wait.lock, flags);
4096 return ret;
4097 }
4098 EXPORT_SYMBOL(try_wait_for_completion);
4099
4100 /**
4101 * completion_done - Test to see if a completion has any waiters
4102 * @x: completion structure
4103 *
4104 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4105 * 1 if there are no waiters.
4106 *
4107 */
4108 bool completion_done(struct completion *x)
4109 {
4110 unsigned long flags;
4111 int ret = 1;
4112
4113 spin_lock_irqsave(&x->wait.lock, flags);
4114 if (!x->done)
4115 ret = 0;
4116 spin_unlock_irqrestore(&x->wait.lock, flags);
4117 return ret;
4118 }
4119 EXPORT_SYMBOL(completion_done);
4120
4121 static long __sched
4122 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4123 {
4124 unsigned long flags;
4125 wait_queue_t wait;
4126
4127 init_waitqueue_entry(&wait, current);
4128
4129 __set_current_state(state);
4130
4131 spin_lock_irqsave(&q->lock, flags);
4132 __add_wait_queue(q, &wait);
4133 spin_unlock(&q->lock);
4134 timeout = schedule_timeout(timeout);
4135 spin_lock_irq(&q->lock);
4136 __remove_wait_queue(q, &wait);
4137 spin_unlock_irqrestore(&q->lock, flags);
4138
4139 return timeout;
4140 }
4141
4142 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4143 {
4144 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4145 }
4146 EXPORT_SYMBOL(interruptible_sleep_on);
4147
4148 long __sched
4149 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4150 {
4151 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4152 }
4153 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4154
4155 void __sched sleep_on(wait_queue_head_t *q)
4156 {
4157 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4158 }
4159 EXPORT_SYMBOL(sleep_on);
4160
4161 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4162 {
4163 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4164 }
4165 EXPORT_SYMBOL(sleep_on_timeout);
4166
4167 #ifdef CONFIG_RT_MUTEXES
4168
4169 /*
4170 * rt_mutex_setprio - set the current priority of a task
4171 * @p: task
4172 * @prio: prio value (kernel-internal form)
4173 *
4174 * This function changes the 'effective' priority of a task. It does
4175 * not touch ->normal_prio like __setscheduler().
4176 *
4177 * Used by the rt_mutex code to implement priority inheritance logic.
4178 */
4179 void rt_mutex_setprio(struct task_struct *p, int prio)
4180 {
4181 unsigned long flags;
4182 int oldprio, on_rq, running;
4183 struct rq *rq;
4184 const struct sched_class *prev_class;
4185
4186 BUG_ON(prio < 0 || prio > MAX_PRIO);
4187
4188 rq = task_rq_lock(p, &flags);
4189
4190 oldprio = p->prio;
4191 prev_class = p->sched_class;
4192 on_rq = p->se.on_rq;
4193 running = task_current(rq, p);
4194 if (on_rq)
4195 dequeue_task(rq, p, 0);
4196 if (running)
4197 p->sched_class->put_prev_task(rq, p);
4198
4199 if (rt_prio(prio))
4200 p->sched_class = &rt_sched_class;
4201 else
4202 p->sched_class = &fair_sched_class;
4203
4204 p->prio = prio;
4205
4206 if (running)
4207 p->sched_class->set_curr_task(rq);
4208 if (on_rq) {
4209 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4210
4211 check_class_changed(rq, p, prev_class, oldprio, running);
4212 }
4213 task_rq_unlock(rq, &flags);
4214 }
4215
4216 #endif
4217
4218 void set_user_nice(struct task_struct *p, long nice)
4219 {
4220 int old_prio, delta, on_rq;
4221 unsigned long flags;
4222 struct rq *rq;
4223
4224 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4225 return;
4226 /*
4227 * We have to be careful, if called from sys_setpriority(),
4228 * the task might be in the middle of scheduling on another CPU.
4229 */
4230 rq = task_rq_lock(p, &flags);
4231 /*
4232 * The RT priorities are set via sched_setscheduler(), but we still
4233 * allow the 'normal' nice value to be set - but as expected
4234 * it wont have any effect on scheduling until the task is
4235 * SCHED_FIFO/SCHED_RR:
4236 */
4237 if (task_has_rt_policy(p)) {
4238 p->static_prio = NICE_TO_PRIO(nice);
4239 goto out_unlock;
4240 }
4241 on_rq = p->se.on_rq;
4242 if (on_rq)
4243 dequeue_task(rq, p, 0);
4244
4245 p->static_prio = NICE_TO_PRIO(nice);
4246 set_load_weight(p);
4247 old_prio = p->prio;
4248 p->prio = effective_prio(p);
4249 delta = p->prio - old_prio;
4250
4251 if (on_rq) {
4252 enqueue_task(rq, p, 0);
4253 /*
4254 * If the task increased its priority or is running and
4255 * lowered its priority, then reschedule its CPU:
4256 */
4257 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4258 resched_task(rq->curr);
4259 }
4260 out_unlock:
4261 task_rq_unlock(rq, &flags);
4262 }
4263 EXPORT_SYMBOL(set_user_nice);
4264
4265 /*
4266 * can_nice - check if a task can reduce its nice value
4267 * @p: task
4268 * @nice: nice value
4269 */
4270 int can_nice(const struct task_struct *p, const int nice)
4271 {
4272 /* convert nice value [19,-20] to rlimit style value [1,40] */
4273 int nice_rlim = 20 - nice;
4274
4275 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4276 capable(CAP_SYS_NICE));
4277 }
4278
4279 #ifdef __ARCH_WANT_SYS_NICE
4280
4281 /*
4282 * sys_nice - change the priority of the current process.
4283 * @increment: priority increment
4284 *
4285 * sys_setpriority is a more generic, but much slower function that
4286 * does similar things.
4287 */
4288 SYSCALL_DEFINE1(nice, int, increment)
4289 {
4290 long nice, retval;
4291
4292 /*
4293 * Setpriority might change our priority at the same moment.
4294 * We don't have to worry. Conceptually one call occurs first
4295 * and we have a single winner.
4296 */
4297 if (increment < -40)
4298 increment = -40;
4299 if (increment > 40)
4300 increment = 40;
4301
4302 nice = TASK_NICE(current) + increment;
4303 if (nice < -20)
4304 nice = -20;
4305 if (nice > 19)
4306 nice = 19;
4307
4308 if (increment < 0 && !can_nice(current, nice))
4309 return -EPERM;
4310
4311 retval = security_task_setnice(current, nice);
4312 if (retval)
4313 return retval;
4314
4315 set_user_nice(current, nice);
4316 return 0;
4317 }
4318
4319 #endif
4320
4321 /**
4322 * task_prio - return the priority value of a given task.
4323 * @p: the task in question.
4324 *
4325 * This is the priority value as seen by users in /proc.
4326 * RT tasks are offset by -200. Normal tasks are centered
4327 * around 0, value goes from -16 to +15.
4328 */
4329 int task_prio(const struct task_struct *p)
4330 {
4331 return p->prio - MAX_RT_PRIO;
4332 }
4333
4334 /**
4335 * task_nice - return the nice value of a given task.
4336 * @p: the task in question.
4337 */
4338 int task_nice(const struct task_struct *p)
4339 {
4340 return TASK_NICE(p);
4341 }
4342 EXPORT_SYMBOL(task_nice);
4343
4344 /**
4345 * idle_cpu - is a given cpu idle currently?
4346 * @cpu: the processor in question.
4347 */
4348 int idle_cpu(int cpu)
4349 {
4350 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4351 }
4352
4353 /**
4354 * idle_task - return the idle task for a given cpu.
4355 * @cpu: the processor in question.
4356 */
4357 struct task_struct *idle_task(int cpu)
4358 {
4359 return cpu_rq(cpu)->idle;
4360 }
4361
4362 /**
4363 * find_process_by_pid - find a process with a matching PID value.
4364 * @pid: the pid in question.
4365 */
4366 static struct task_struct *find_process_by_pid(pid_t pid)
4367 {
4368 return pid ? find_task_by_vpid(pid) : current;
4369 }
4370
4371 /* Actually do priority change: must hold rq lock. */
4372 static void
4373 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4374 {
4375 BUG_ON(p->se.on_rq);
4376
4377 p->policy = policy;
4378 p->rt_priority = prio;
4379 p->normal_prio = normal_prio(p);
4380 /* we are holding p->pi_lock already */
4381 p->prio = rt_mutex_getprio(p);
4382 if (rt_prio(p->prio))
4383 p->sched_class = &rt_sched_class;
4384 else
4385 p->sched_class = &fair_sched_class;
4386 set_load_weight(p);
4387 }
4388
4389 /*
4390 * check the target process has a UID that matches the current process's
4391 */
4392 static bool check_same_owner(struct task_struct *p)
4393 {
4394 const struct cred *cred = current_cred(), *pcred;
4395 bool match;
4396
4397 rcu_read_lock();
4398 pcred = __task_cred(p);
4399 match = (cred->euid == pcred->euid ||
4400 cred->euid == pcred->uid);
4401 rcu_read_unlock();
4402 return match;
4403 }
4404
4405 static int __sched_setscheduler(struct task_struct *p, int policy,
4406 struct sched_param *param, bool user)
4407 {
4408 int retval, oldprio, oldpolicy = -1, on_rq, running;
4409 unsigned long flags;
4410 const struct sched_class *prev_class;
4411 struct rq *rq;
4412 int reset_on_fork;
4413
4414 /* may grab non-irq protected spin_locks */
4415 BUG_ON(in_interrupt());
4416 recheck:
4417 /* double check policy once rq lock held */
4418 if (policy < 0) {
4419 reset_on_fork = p->sched_reset_on_fork;
4420 policy = oldpolicy = p->policy;
4421 } else {
4422 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4423 policy &= ~SCHED_RESET_ON_FORK;
4424
4425 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4426 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4427 policy != SCHED_IDLE)
4428 return -EINVAL;
4429 }
4430
4431 /*
4432 * Valid priorities for SCHED_FIFO and SCHED_RR are
4433 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4434 * SCHED_BATCH and SCHED_IDLE is 0.
4435 */
4436 if (param->sched_priority < 0 ||
4437 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4438 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4439 return -EINVAL;
4440 if (rt_policy(policy) != (param->sched_priority != 0))
4441 return -EINVAL;
4442
4443 /*
4444 * Allow unprivileged RT tasks to decrease priority:
4445 */
4446 if (user && !capable(CAP_SYS_NICE)) {
4447 if (rt_policy(policy)) {
4448 unsigned long rlim_rtprio;
4449
4450 if (!lock_task_sighand(p, &flags))
4451 return -ESRCH;
4452 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4453 unlock_task_sighand(p, &flags);
4454
4455 /* can't set/change the rt policy */
4456 if (policy != p->policy && !rlim_rtprio)
4457 return -EPERM;
4458
4459 /* can't increase priority */
4460 if (param->sched_priority > p->rt_priority &&
4461 param->sched_priority > rlim_rtprio)
4462 return -EPERM;
4463 }
4464 /*
4465 * Like positive nice levels, dont allow tasks to
4466 * move out of SCHED_IDLE either:
4467 */
4468 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4469 return -EPERM;
4470
4471 /* can't change other user's priorities */
4472 if (!check_same_owner(p))
4473 return -EPERM;
4474
4475 /* Normal users shall not reset the sched_reset_on_fork flag */
4476 if (p->sched_reset_on_fork && !reset_on_fork)
4477 return -EPERM;
4478 }
4479
4480 if (user) {
4481 #ifdef CONFIG_RT_GROUP_SCHED
4482 /*
4483 * Do not allow realtime tasks into groups that have no runtime
4484 * assigned.
4485 */
4486 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4487 task_group(p)->rt_bandwidth.rt_runtime == 0)
4488 return -EPERM;
4489 #endif
4490
4491 retval = security_task_setscheduler(p, policy, param);
4492 if (retval)
4493 return retval;
4494 }
4495
4496 /*
4497 * make sure no PI-waiters arrive (or leave) while we are
4498 * changing the priority of the task:
4499 */
4500 raw_spin_lock_irqsave(&p->pi_lock, flags);
4501 /*
4502 * To be able to change p->policy safely, the apropriate
4503 * runqueue lock must be held.
4504 */
4505 rq = __task_rq_lock(p);
4506 /* recheck policy now with rq lock held */
4507 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4508 policy = oldpolicy = -1;
4509 __task_rq_unlock(rq);
4510 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4511 goto recheck;
4512 }
4513 on_rq = p->se.on_rq;
4514 running = task_current(rq, p);
4515 if (on_rq)
4516 deactivate_task(rq, p, 0);
4517 if (running)
4518 p->sched_class->put_prev_task(rq, p);
4519
4520 p->sched_reset_on_fork = reset_on_fork;
4521
4522 oldprio = p->prio;
4523 prev_class = p->sched_class;
4524 __setscheduler(rq, p, policy, param->sched_priority);
4525
4526 if (running)
4527 p->sched_class->set_curr_task(rq);
4528 if (on_rq) {
4529 activate_task(rq, p, 0);
4530
4531 check_class_changed(rq, p, prev_class, oldprio, running);
4532 }
4533 __task_rq_unlock(rq);
4534 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4535
4536 rt_mutex_adjust_pi(p);
4537
4538 return 0;
4539 }
4540
4541 /**
4542 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4543 * @p: the task in question.
4544 * @policy: new policy.
4545 * @param: structure containing the new RT priority.
4546 *
4547 * NOTE that the task may be already dead.
4548 */
4549 int sched_setscheduler(struct task_struct *p, int policy,
4550 struct sched_param *param)
4551 {
4552 return __sched_setscheduler(p, policy, param, true);
4553 }
4554 EXPORT_SYMBOL_GPL(sched_setscheduler);
4555
4556 /**
4557 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4558 * @p: the task in question.
4559 * @policy: new policy.
4560 * @param: structure containing the new RT priority.
4561 *
4562 * Just like sched_setscheduler, only don't bother checking if the
4563 * current context has permission. For example, this is needed in
4564 * stop_machine(): we create temporary high priority worker threads,
4565 * but our caller might not have that capability.
4566 */
4567 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4568 struct sched_param *param)
4569 {
4570 return __sched_setscheduler(p, policy, param, false);
4571 }
4572
4573 static int
4574 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4575 {
4576 struct sched_param lparam;
4577 struct task_struct *p;
4578 int retval;
4579
4580 if (!param || pid < 0)
4581 return -EINVAL;
4582 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4583 return -EFAULT;
4584
4585 rcu_read_lock();
4586 retval = -ESRCH;
4587 p = find_process_by_pid(pid);
4588 if (p != NULL)
4589 retval = sched_setscheduler(p, policy, &lparam);
4590 rcu_read_unlock();
4591
4592 return retval;
4593 }
4594
4595 /**
4596 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4597 * @pid: the pid in question.
4598 * @policy: new policy.
4599 * @param: structure containing the new RT priority.
4600 */
4601 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4602 struct sched_param __user *, param)
4603 {
4604 /* negative values for policy are not valid */
4605 if (policy < 0)
4606 return -EINVAL;
4607
4608 return do_sched_setscheduler(pid, policy, param);
4609 }
4610
4611 /**
4612 * sys_sched_setparam - set/change the RT priority of a thread
4613 * @pid: the pid in question.
4614 * @param: structure containing the new RT priority.
4615 */
4616 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4617 {
4618 return do_sched_setscheduler(pid, -1, param);
4619 }
4620
4621 /**
4622 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4623 * @pid: the pid in question.
4624 */
4625 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4626 {
4627 struct task_struct *p;
4628 int retval;
4629
4630 if (pid < 0)
4631 return -EINVAL;
4632
4633 retval = -ESRCH;
4634 rcu_read_lock();
4635 p = find_process_by_pid(pid);
4636 if (p) {
4637 retval = security_task_getscheduler(p);
4638 if (!retval)
4639 retval = p->policy
4640 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4641 }
4642 rcu_read_unlock();
4643 return retval;
4644 }
4645
4646 /**
4647 * sys_sched_getparam - get the RT priority of a thread
4648 * @pid: the pid in question.
4649 * @param: structure containing the RT priority.
4650 */
4651 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4652 {
4653 struct sched_param lp;
4654 struct task_struct *p;
4655 int retval;
4656
4657 if (!param || pid < 0)
4658 return -EINVAL;
4659
4660 rcu_read_lock();
4661 p = find_process_by_pid(pid);
4662 retval = -ESRCH;
4663 if (!p)
4664 goto out_unlock;
4665
4666 retval = security_task_getscheduler(p);
4667 if (retval)
4668 goto out_unlock;
4669
4670 lp.sched_priority = p->rt_priority;
4671 rcu_read_unlock();
4672
4673 /*
4674 * This one might sleep, we cannot do it with a spinlock held ...
4675 */
4676 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4677
4678 return retval;
4679
4680 out_unlock:
4681 rcu_read_unlock();
4682 return retval;
4683 }
4684
4685 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4686 {
4687 cpumask_var_t cpus_allowed, new_mask;
4688 struct task_struct *p;
4689 int retval;
4690
4691 get_online_cpus();
4692 rcu_read_lock();
4693
4694 p = find_process_by_pid(pid);
4695 if (!p) {
4696 rcu_read_unlock();
4697 put_online_cpus();
4698 return -ESRCH;
4699 }
4700
4701 /* Prevent p going away */
4702 get_task_struct(p);
4703 rcu_read_unlock();
4704
4705 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4706 retval = -ENOMEM;
4707 goto out_put_task;
4708 }
4709 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4710 retval = -ENOMEM;
4711 goto out_free_cpus_allowed;
4712 }
4713 retval = -EPERM;
4714 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4715 goto out_unlock;
4716
4717 retval = security_task_setscheduler(p, 0, NULL);
4718 if (retval)
4719 goto out_unlock;
4720
4721 cpuset_cpus_allowed(p, cpus_allowed);
4722 cpumask_and(new_mask, in_mask, cpus_allowed);
4723 again:
4724 retval = set_cpus_allowed_ptr(p, new_mask);
4725
4726 if (!retval) {
4727 cpuset_cpus_allowed(p, cpus_allowed);
4728 if (!cpumask_subset(new_mask, cpus_allowed)) {
4729 /*
4730 * We must have raced with a concurrent cpuset
4731 * update. Just reset the cpus_allowed to the
4732 * cpuset's cpus_allowed
4733 */
4734 cpumask_copy(new_mask, cpus_allowed);
4735 goto again;
4736 }
4737 }
4738 out_unlock:
4739 free_cpumask_var(new_mask);
4740 out_free_cpus_allowed:
4741 free_cpumask_var(cpus_allowed);
4742 out_put_task:
4743 put_task_struct(p);
4744 put_online_cpus();
4745 return retval;
4746 }
4747
4748 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4749 struct cpumask *new_mask)
4750 {
4751 if (len < cpumask_size())
4752 cpumask_clear(new_mask);
4753 else if (len > cpumask_size())
4754 len = cpumask_size();
4755
4756 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4757 }
4758
4759 /**
4760 * sys_sched_setaffinity - set the cpu affinity of a process
4761 * @pid: pid of the process
4762 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4763 * @user_mask_ptr: user-space pointer to the new cpu mask
4764 */
4765 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4766 unsigned long __user *, user_mask_ptr)
4767 {
4768 cpumask_var_t new_mask;
4769 int retval;
4770
4771 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4772 return -ENOMEM;
4773
4774 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4775 if (retval == 0)
4776 retval = sched_setaffinity(pid, new_mask);
4777 free_cpumask_var(new_mask);
4778 return retval;
4779 }
4780
4781 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4782 {
4783 struct task_struct *p;
4784 unsigned long flags;
4785 struct rq *rq;
4786 int retval;
4787
4788 get_online_cpus();
4789 rcu_read_lock();
4790
4791 retval = -ESRCH;
4792 p = find_process_by_pid(pid);
4793 if (!p)
4794 goto out_unlock;
4795
4796 retval = security_task_getscheduler(p);
4797 if (retval)
4798 goto out_unlock;
4799
4800 rq = task_rq_lock(p, &flags);
4801 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4802 task_rq_unlock(rq, &flags);
4803
4804 out_unlock:
4805 rcu_read_unlock();
4806 put_online_cpus();
4807
4808 return retval;
4809 }
4810
4811 /**
4812 * sys_sched_getaffinity - get the cpu affinity of a process
4813 * @pid: pid of the process
4814 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4815 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4816 */
4817 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4818 unsigned long __user *, user_mask_ptr)
4819 {
4820 int ret;
4821 cpumask_var_t mask;
4822
4823 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4824 return -EINVAL;
4825 if (len & (sizeof(unsigned long)-1))
4826 return -EINVAL;
4827
4828 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4829 return -ENOMEM;
4830
4831 ret = sched_getaffinity(pid, mask);
4832 if (ret == 0) {
4833 size_t retlen = min_t(size_t, len, cpumask_size());
4834
4835 if (copy_to_user(user_mask_ptr, mask, retlen))
4836 ret = -EFAULT;
4837 else
4838 ret = retlen;
4839 }
4840 free_cpumask_var(mask);
4841
4842 return ret;
4843 }
4844
4845 /**
4846 * sys_sched_yield - yield the current processor to other threads.
4847 *
4848 * This function yields the current CPU to other tasks. If there are no
4849 * other threads running on this CPU then this function will return.
4850 */
4851 SYSCALL_DEFINE0(sched_yield)
4852 {
4853 struct rq *rq = this_rq_lock();
4854
4855 schedstat_inc(rq, yld_count);
4856 current->sched_class->yield_task(rq);
4857
4858 /*
4859 * Since we are going to call schedule() anyway, there's
4860 * no need to preempt or enable interrupts:
4861 */
4862 __release(rq->lock);
4863 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4864 do_raw_spin_unlock(&rq->lock);
4865 preempt_enable_no_resched();
4866
4867 schedule();
4868
4869 return 0;
4870 }
4871
4872 static inline int should_resched(void)
4873 {
4874 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4875 }
4876
4877 static void __cond_resched(void)
4878 {
4879 add_preempt_count(PREEMPT_ACTIVE);
4880 schedule();
4881 sub_preempt_count(PREEMPT_ACTIVE);
4882 }
4883
4884 int __sched _cond_resched(void)
4885 {
4886 if (should_resched()) {
4887 __cond_resched();
4888 return 1;
4889 }
4890 return 0;
4891 }
4892 EXPORT_SYMBOL(_cond_resched);
4893
4894 /*
4895 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4896 * call schedule, and on return reacquire the lock.
4897 *
4898 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4899 * operations here to prevent schedule() from being called twice (once via
4900 * spin_unlock(), once by hand).
4901 */
4902 int __cond_resched_lock(spinlock_t *lock)
4903 {
4904 int resched = should_resched();
4905 int ret = 0;
4906
4907 lockdep_assert_held(lock);
4908
4909 if (spin_needbreak(lock) || resched) {
4910 spin_unlock(lock);
4911 if (resched)
4912 __cond_resched();
4913 else
4914 cpu_relax();
4915 ret = 1;
4916 spin_lock(lock);
4917 }
4918 return ret;
4919 }
4920 EXPORT_SYMBOL(__cond_resched_lock);
4921
4922 int __sched __cond_resched_softirq(void)
4923 {
4924 BUG_ON(!in_softirq());
4925
4926 if (should_resched()) {
4927 local_bh_enable();
4928 __cond_resched();
4929 local_bh_disable();
4930 return 1;
4931 }
4932 return 0;
4933 }
4934 EXPORT_SYMBOL(__cond_resched_softirq);
4935
4936 /**
4937 * yield - yield the current processor to other threads.
4938 *
4939 * This is a shortcut for kernel-space yielding - it marks the
4940 * thread runnable and calls sys_sched_yield().
4941 */
4942 void __sched yield(void)
4943 {
4944 set_current_state(TASK_RUNNING);
4945 sys_sched_yield();
4946 }
4947 EXPORT_SYMBOL(yield);
4948
4949 /*
4950 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4951 * that process accounting knows that this is a task in IO wait state.
4952 */
4953 void __sched io_schedule(void)
4954 {
4955 struct rq *rq = raw_rq();
4956
4957 delayacct_blkio_start();
4958 atomic_inc(&rq->nr_iowait);
4959 current->in_iowait = 1;
4960 schedule();
4961 current->in_iowait = 0;
4962 atomic_dec(&rq->nr_iowait);
4963 delayacct_blkio_end();
4964 }
4965 EXPORT_SYMBOL(io_schedule);
4966
4967 long __sched io_schedule_timeout(long timeout)
4968 {
4969 struct rq *rq = raw_rq();
4970 long ret;
4971
4972 delayacct_blkio_start();
4973 atomic_inc(&rq->nr_iowait);
4974 current->in_iowait = 1;
4975 ret = schedule_timeout(timeout);
4976 current->in_iowait = 0;
4977 atomic_dec(&rq->nr_iowait);
4978 delayacct_blkio_end();
4979 return ret;
4980 }
4981
4982 /**
4983 * sys_sched_get_priority_max - return maximum RT priority.
4984 * @policy: scheduling class.
4985 *
4986 * this syscall returns the maximum rt_priority that can be used
4987 * by a given scheduling class.
4988 */
4989 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4990 {
4991 int ret = -EINVAL;
4992
4993 switch (policy) {
4994 case SCHED_FIFO:
4995 case SCHED_RR:
4996 ret = MAX_USER_RT_PRIO-1;
4997 break;
4998 case SCHED_NORMAL:
4999 case SCHED_BATCH:
5000 case SCHED_IDLE:
5001 ret = 0;
5002 break;
5003 }
5004 return ret;
5005 }
5006
5007 /**
5008 * sys_sched_get_priority_min - return minimum RT priority.
5009 * @policy: scheduling class.
5010 *
5011 * this syscall returns the minimum rt_priority that can be used
5012 * by a given scheduling class.
5013 */
5014 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5015 {
5016 int ret = -EINVAL;
5017
5018 switch (policy) {
5019 case SCHED_FIFO:
5020 case SCHED_RR:
5021 ret = 1;
5022 break;
5023 case SCHED_NORMAL:
5024 case SCHED_BATCH:
5025 case SCHED_IDLE:
5026 ret = 0;
5027 }
5028 return ret;
5029 }
5030
5031 /**
5032 * sys_sched_rr_get_interval - return the default timeslice of a process.
5033 * @pid: pid of the process.
5034 * @interval: userspace pointer to the timeslice value.
5035 *
5036 * this syscall writes the default timeslice value of a given process
5037 * into the user-space timespec buffer. A value of '0' means infinity.
5038 */
5039 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5040 struct timespec __user *, interval)
5041 {
5042 struct task_struct *p;
5043 unsigned int time_slice;
5044 unsigned long flags;
5045 struct rq *rq;
5046 int retval;
5047 struct timespec t;
5048
5049 if (pid < 0)
5050 return -EINVAL;
5051
5052 retval = -ESRCH;
5053 rcu_read_lock();
5054 p = find_process_by_pid(pid);
5055 if (!p)
5056 goto out_unlock;
5057
5058 retval = security_task_getscheduler(p);
5059 if (retval)
5060 goto out_unlock;
5061
5062 rq = task_rq_lock(p, &flags);
5063 time_slice = p->sched_class->get_rr_interval(rq, p);
5064 task_rq_unlock(rq, &flags);
5065
5066 rcu_read_unlock();
5067 jiffies_to_timespec(time_slice, &t);
5068 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5069 return retval;
5070
5071 out_unlock:
5072 rcu_read_unlock();
5073 return retval;
5074 }
5075
5076 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5077
5078 void sched_show_task(struct task_struct *p)
5079 {
5080 unsigned long free = 0;
5081 unsigned state;
5082
5083 state = p->state ? __ffs(p->state) + 1 : 0;
5084 printk(KERN_INFO "%-13.13s %c", p->comm,
5085 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5086 #if BITS_PER_LONG == 32
5087 if (state == TASK_RUNNING)
5088 printk(KERN_CONT " running ");
5089 else
5090 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5091 #else
5092 if (state == TASK_RUNNING)
5093 printk(KERN_CONT " running task ");
5094 else
5095 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5096 #endif
5097 #ifdef CONFIG_DEBUG_STACK_USAGE
5098 free = stack_not_used(p);
5099 #endif
5100 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5101 task_pid_nr(p), task_pid_nr(p->real_parent),
5102 (unsigned long)task_thread_info(p)->flags);
5103
5104 show_stack(p, NULL);
5105 }
5106
5107 void show_state_filter(unsigned long state_filter)
5108 {
5109 struct task_struct *g, *p;
5110
5111 #if BITS_PER_LONG == 32
5112 printk(KERN_INFO
5113 " task PC stack pid father\n");
5114 #else
5115 printk(KERN_INFO
5116 " task PC stack pid father\n");
5117 #endif
5118 read_lock(&tasklist_lock);
5119 do_each_thread(g, p) {
5120 /*
5121 * reset the NMI-timeout, listing all files on a slow
5122 * console might take alot of time:
5123 */
5124 touch_nmi_watchdog();
5125 if (!state_filter || (p->state & state_filter))
5126 sched_show_task(p);
5127 } while_each_thread(g, p);
5128
5129 touch_all_softlockup_watchdogs();
5130
5131 #ifdef CONFIG_SCHED_DEBUG
5132 sysrq_sched_debug_show();
5133 #endif
5134 read_unlock(&tasklist_lock);
5135 /*
5136 * Only show locks if all tasks are dumped:
5137 */
5138 if (!state_filter)
5139 debug_show_all_locks();
5140 }
5141
5142 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5143 {
5144 idle->sched_class = &idle_sched_class;
5145 }
5146
5147 /**
5148 * init_idle - set up an idle thread for a given CPU
5149 * @idle: task in question
5150 * @cpu: cpu the idle task belongs to
5151 *
5152 * NOTE: this function does not set the idle thread's NEED_RESCHED
5153 * flag, to make booting more robust.
5154 */
5155 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5156 {
5157 struct rq *rq = cpu_rq(cpu);
5158 unsigned long flags;
5159
5160 raw_spin_lock_irqsave(&rq->lock, flags);
5161
5162 __sched_fork(idle);
5163 idle->state = TASK_RUNNING;
5164 idle->se.exec_start = sched_clock();
5165
5166 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5167 __set_task_cpu(idle, cpu);
5168
5169 rq->curr = rq->idle = idle;
5170 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5171 idle->oncpu = 1;
5172 #endif
5173 raw_spin_unlock_irqrestore(&rq->lock, flags);
5174
5175 /* Set the preempt count _outside_ the spinlocks! */
5176 #if defined(CONFIG_PREEMPT)
5177 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5178 #else
5179 task_thread_info(idle)->preempt_count = 0;
5180 #endif
5181 /*
5182 * The idle tasks have their own, simple scheduling class:
5183 */
5184 idle->sched_class = &idle_sched_class;
5185 ftrace_graph_init_task(idle);
5186 }
5187
5188 /*
5189 * In a system that switches off the HZ timer nohz_cpu_mask
5190 * indicates which cpus entered this state. This is used
5191 * in the rcu update to wait only for active cpus. For system
5192 * which do not switch off the HZ timer nohz_cpu_mask should
5193 * always be CPU_BITS_NONE.
5194 */
5195 cpumask_var_t nohz_cpu_mask;
5196
5197 /*
5198 * Increase the granularity value when there are more CPUs,
5199 * because with more CPUs the 'effective latency' as visible
5200 * to users decreases. But the relationship is not linear,
5201 * so pick a second-best guess by going with the log2 of the
5202 * number of CPUs.
5203 *
5204 * This idea comes from the SD scheduler of Con Kolivas:
5205 */
5206 static int get_update_sysctl_factor(void)
5207 {
5208 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5209 unsigned int factor;
5210
5211 switch (sysctl_sched_tunable_scaling) {
5212 case SCHED_TUNABLESCALING_NONE:
5213 factor = 1;
5214 break;
5215 case SCHED_TUNABLESCALING_LINEAR:
5216 factor = cpus;
5217 break;
5218 case SCHED_TUNABLESCALING_LOG:
5219 default:
5220 factor = 1 + ilog2(cpus);
5221 break;
5222 }
5223
5224 return factor;
5225 }
5226
5227 static void update_sysctl(void)
5228 {
5229 unsigned int factor = get_update_sysctl_factor();
5230
5231 #define SET_SYSCTL(name) \
5232 (sysctl_##name = (factor) * normalized_sysctl_##name)
5233 SET_SYSCTL(sched_min_granularity);
5234 SET_SYSCTL(sched_latency);
5235 SET_SYSCTL(sched_wakeup_granularity);
5236 SET_SYSCTL(sched_shares_ratelimit);
5237 #undef SET_SYSCTL
5238 }
5239
5240 static inline void sched_init_granularity(void)
5241 {
5242 update_sysctl();
5243 }
5244
5245 #ifdef CONFIG_SMP
5246 /*
5247 * This is how migration works:
5248 *
5249 * 1) we invoke migration_cpu_stop() on the target CPU using
5250 * stop_one_cpu().
5251 * 2) stopper starts to run (implicitly forcing the migrated thread
5252 * off the CPU)
5253 * 3) it checks whether the migrated task is still in the wrong runqueue.
5254 * 4) if it's in the wrong runqueue then the migration thread removes
5255 * it and puts it into the right queue.
5256 * 5) stopper completes and stop_one_cpu() returns and the migration
5257 * is done.
5258 */
5259
5260 /*
5261 * Change a given task's CPU affinity. Migrate the thread to a
5262 * proper CPU and schedule it away if the CPU it's executing on
5263 * is removed from the allowed bitmask.
5264 *
5265 * NOTE: the caller must have a valid reference to the task, the
5266 * task must not exit() & deallocate itself prematurely. The
5267 * call is not atomic; no spinlocks may be held.
5268 */
5269 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5270 {
5271 unsigned long flags;
5272 struct rq *rq;
5273 unsigned int dest_cpu;
5274 int ret = 0;
5275
5276 /*
5277 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5278 * drop the rq->lock and still rely on ->cpus_allowed.
5279 */
5280 again:
5281 while (task_is_waking(p))
5282 cpu_relax();
5283 rq = task_rq_lock(p, &flags);
5284 if (task_is_waking(p)) {
5285 task_rq_unlock(rq, &flags);
5286 goto again;
5287 }
5288
5289 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5290 ret = -EINVAL;
5291 goto out;
5292 }
5293
5294 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5295 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5296 ret = -EINVAL;
5297 goto out;
5298 }
5299
5300 if (p->sched_class->set_cpus_allowed)
5301 p->sched_class->set_cpus_allowed(p, new_mask);
5302 else {
5303 cpumask_copy(&p->cpus_allowed, new_mask);
5304 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5305 }
5306
5307 /* Can the task run on the task's current CPU? If so, we're done */
5308 if (cpumask_test_cpu(task_cpu(p), new_mask))
5309 goto out;
5310
5311 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5312 if (migrate_task(p, dest_cpu)) {
5313 struct migration_arg arg = { p, dest_cpu };
5314 /* Need help from migration thread: drop lock and wait. */
5315 task_rq_unlock(rq, &flags);
5316 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5317 tlb_migrate_finish(p->mm);
5318 return 0;
5319 }
5320 out:
5321 task_rq_unlock(rq, &flags);
5322
5323 return ret;
5324 }
5325 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5326
5327 /*
5328 * Move (not current) task off this cpu, onto dest cpu. We're doing
5329 * this because either it can't run here any more (set_cpus_allowed()
5330 * away from this CPU, or CPU going down), or because we're
5331 * attempting to rebalance this task on exec (sched_exec).
5332 *
5333 * So we race with normal scheduler movements, but that's OK, as long
5334 * as the task is no longer on this CPU.
5335 *
5336 * Returns non-zero if task was successfully migrated.
5337 */
5338 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5339 {
5340 struct rq *rq_dest, *rq_src;
5341 int ret = 0;
5342
5343 if (unlikely(!cpu_active(dest_cpu)))
5344 return ret;
5345
5346 rq_src = cpu_rq(src_cpu);
5347 rq_dest = cpu_rq(dest_cpu);
5348
5349 double_rq_lock(rq_src, rq_dest);
5350 /* Already moved. */
5351 if (task_cpu(p) != src_cpu)
5352 goto done;
5353 /* Affinity changed (again). */
5354 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5355 goto fail;
5356
5357 /*
5358 * If we're not on a rq, the next wake-up will ensure we're
5359 * placed properly.
5360 */
5361 if (p->se.on_rq) {
5362 deactivate_task(rq_src, p, 0);
5363 set_task_cpu(p, dest_cpu);
5364 activate_task(rq_dest, p, 0);
5365 check_preempt_curr(rq_dest, p, 0);
5366 }
5367 done:
5368 ret = 1;
5369 fail:
5370 double_rq_unlock(rq_src, rq_dest);
5371 return ret;
5372 }
5373
5374 /*
5375 * migration_cpu_stop - this will be executed by a highprio stopper thread
5376 * and performs thread migration by bumping thread off CPU then
5377 * 'pushing' onto another runqueue.
5378 */
5379 static int migration_cpu_stop(void *data)
5380 {
5381 struct migration_arg *arg = data;
5382
5383 /*
5384 * The original target cpu might have gone down and we might
5385 * be on another cpu but it doesn't matter.
5386 */
5387 local_irq_disable();
5388 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5389 local_irq_enable();
5390 return 0;
5391 }
5392
5393 #ifdef CONFIG_HOTPLUG_CPU
5394 /*
5395 * Figure out where task on dead CPU should go, use force if necessary.
5396 */
5397 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5398 {
5399 struct rq *rq = cpu_rq(dead_cpu);
5400 int needs_cpu, uninitialized_var(dest_cpu);
5401 unsigned long flags;
5402
5403 local_irq_save(flags);
5404
5405 raw_spin_lock(&rq->lock);
5406 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5407 if (needs_cpu)
5408 dest_cpu = select_fallback_rq(dead_cpu, p);
5409 raw_spin_unlock(&rq->lock);
5410 /*
5411 * It can only fail if we race with set_cpus_allowed(),
5412 * in the racer should migrate the task anyway.
5413 */
5414 if (needs_cpu)
5415 __migrate_task(p, dead_cpu, dest_cpu);
5416 local_irq_restore(flags);
5417 }
5418
5419 /*
5420 * While a dead CPU has no uninterruptible tasks queued at this point,
5421 * it might still have a nonzero ->nr_uninterruptible counter, because
5422 * for performance reasons the counter is not stricly tracking tasks to
5423 * their home CPUs. So we just add the counter to another CPU's counter,
5424 * to keep the global sum constant after CPU-down:
5425 */
5426 static void migrate_nr_uninterruptible(struct rq *rq_src)
5427 {
5428 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5429 unsigned long flags;
5430
5431 local_irq_save(flags);
5432 double_rq_lock(rq_src, rq_dest);
5433 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5434 rq_src->nr_uninterruptible = 0;
5435 double_rq_unlock(rq_src, rq_dest);
5436 local_irq_restore(flags);
5437 }
5438
5439 /* Run through task list and migrate tasks from the dead cpu. */
5440 static void migrate_live_tasks(int src_cpu)
5441 {
5442 struct task_struct *p, *t;
5443
5444 read_lock(&tasklist_lock);
5445
5446 do_each_thread(t, p) {
5447 if (p == current)
5448 continue;
5449
5450 if (task_cpu(p) == src_cpu)
5451 move_task_off_dead_cpu(src_cpu, p);
5452 } while_each_thread(t, p);
5453
5454 read_unlock(&tasklist_lock);
5455 }
5456
5457 /*
5458 * Schedules idle task to be the next runnable task on current CPU.
5459 * It does so by boosting its priority to highest possible.
5460 * Used by CPU offline code.
5461 */
5462 void sched_idle_next(void)
5463 {
5464 int this_cpu = smp_processor_id();
5465 struct rq *rq = cpu_rq(this_cpu);
5466 struct task_struct *p = rq->idle;
5467 unsigned long flags;
5468
5469 /* cpu has to be offline */
5470 BUG_ON(cpu_online(this_cpu));
5471
5472 /*
5473 * Strictly not necessary since rest of the CPUs are stopped by now
5474 * and interrupts disabled on the current cpu.
5475 */
5476 raw_spin_lock_irqsave(&rq->lock, flags);
5477
5478 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5479
5480 activate_task(rq, p, 0);
5481
5482 raw_spin_unlock_irqrestore(&rq->lock, flags);
5483 }
5484
5485 /*
5486 * Ensures that the idle task is using init_mm right before its cpu goes
5487 * offline.
5488 */
5489 void idle_task_exit(void)
5490 {
5491 struct mm_struct *mm = current->active_mm;
5492
5493 BUG_ON(cpu_online(smp_processor_id()));
5494
5495 if (mm != &init_mm)
5496 switch_mm(mm, &init_mm, current);
5497 mmdrop(mm);
5498 }
5499
5500 /* called under rq->lock with disabled interrupts */
5501 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5502 {
5503 struct rq *rq = cpu_rq(dead_cpu);
5504
5505 /* Must be exiting, otherwise would be on tasklist. */
5506 BUG_ON(!p->exit_state);
5507
5508 /* Cannot have done final schedule yet: would have vanished. */
5509 BUG_ON(p->state == TASK_DEAD);
5510
5511 get_task_struct(p);
5512
5513 /*
5514 * Drop lock around migration; if someone else moves it,
5515 * that's OK. No task can be added to this CPU, so iteration is
5516 * fine.
5517 */
5518 raw_spin_unlock_irq(&rq->lock);
5519 move_task_off_dead_cpu(dead_cpu, p);
5520 raw_spin_lock_irq(&rq->lock);
5521
5522 put_task_struct(p);
5523 }
5524
5525 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5526 static void migrate_dead_tasks(unsigned int dead_cpu)
5527 {
5528 struct rq *rq = cpu_rq(dead_cpu);
5529 struct task_struct *next;
5530
5531 for ( ; ; ) {
5532 if (!rq->nr_running)
5533 break;
5534 next = pick_next_task(rq);
5535 if (!next)
5536 break;
5537 next->sched_class->put_prev_task(rq, next);
5538 migrate_dead(dead_cpu, next);
5539
5540 }
5541 }
5542
5543 /*
5544 * remove the tasks which were accounted by rq from calc_load_tasks.
5545 */
5546 static void calc_global_load_remove(struct rq *rq)
5547 {
5548 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5549 rq->calc_load_active = 0;
5550 }
5551 #endif /* CONFIG_HOTPLUG_CPU */
5552
5553 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5554
5555 static struct ctl_table sd_ctl_dir[] = {
5556 {
5557 .procname = "sched_domain",
5558 .mode = 0555,
5559 },
5560 {}
5561 };
5562
5563 static struct ctl_table sd_ctl_root[] = {
5564 {
5565 .procname = "kernel",
5566 .mode = 0555,
5567 .child = sd_ctl_dir,
5568 },
5569 {}
5570 };
5571
5572 static struct ctl_table *sd_alloc_ctl_entry(int n)
5573 {
5574 struct ctl_table *entry =
5575 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5576
5577 return entry;
5578 }
5579
5580 static void sd_free_ctl_entry(struct ctl_table **tablep)
5581 {
5582 struct ctl_table *entry;
5583
5584 /*
5585 * In the intermediate directories, both the child directory and
5586 * procname are dynamically allocated and could fail but the mode
5587 * will always be set. In the lowest directory the names are
5588 * static strings and all have proc handlers.
5589 */
5590 for (entry = *tablep; entry->mode; entry++) {
5591 if (entry->child)
5592 sd_free_ctl_entry(&entry->child);
5593 if (entry->proc_handler == NULL)
5594 kfree(entry->procname);
5595 }
5596
5597 kfree(*tablep);
5598 *tablep = NULL;
5599 }
5600
5601 static void
5602 set_table_entry(struct ctl_table *entry,
5603 const char *procname, void *data, int maxlen,
5604 mode_t mode, proc_handler *proc_handler)
5605 {
5606 entry->procname = procname;
5607 entry->data = data;
5608 entry->maxlen = maxlen;
5609 entry->mode = mode;
5610 entry->proc_handler = proc_handler;
5611 }
5612
5613 static struct ctl_table *
5614 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5615 {
5616 struct ctl_table *table = sd_alloc_ctl_entry(13);
5617
5618 if (table == NULL)
5619 return NULL;
5620
5621 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5622 sizeof(long), 0644, proc_doulongvec_minmax);
5623 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5624 sizeof(long), 0644, proc_doulongvec_minmax);
5625 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5626 sizeof(int), 0644, proc_dointvec_minmax);
5627 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5628 sizeof(int), 0644, proc_dointvec_minmax);
5629 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5630 sizeof(int), 0644, proc_dointvec_minmax);
5631 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5632 sizeof(int), 0644, proc_dointvec_minmax);
5633 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5634 sizeof(int), 0644, proc_dointvec_minmax);
5635 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5636 sizeof(int), 0644, proc_dointvec_minmax);
5637 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5638 sizeof(int), 0644, proc_dointvec_minmax);
5639 set_table_entry(&table[9], "cache_nice_tries",
5640 &sd->cache_nice_tries,
5641 sizeof(int), 0644, proc_dointvec_minmax);
5642 set_table_entry(&table[10], "flags", &sd->flags,
5643 sizeof(int), 0644, proc_dointvec_minmax);
5644 set_table_entry(&table[11], "name", sd->name,
5645 CORENAME_MAX_SIZE, 0444, proc_dostring);
5646 /* &table[12] is terminator */
5647
5648 return table;
5649 }
5650
5651 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5652 {
5653 struct ctl_table *entry, *table;
5654 struct sched_domain *sd;
5655 int domain_num = 0, i;
5656 char buf[32];
5657
5658 for_each_domain(cpu, sd)
5659 domain_num++;
5660 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5661 if (table == NULL)
5662 return NULL;
5663
5664 i = 0;
5665 for_each_domain(cpu, sd) {
5666 snprintf(buf, 32, "domain%d", i);
5667 entry->procname = kstrdup(buf, GFP_KERNEL);
5668 entry->mode = 0555;
5669 entry->child = sd_alloc_ctl_domain_table(sd);
5670 entry++;
5671 i++;
5672 }
5673 return table;
5674 }
5675
5676 static struct ctl_table_header *sd_sysctl_header;
5677 static void register_sched_domain_sysctl(void)
5678 {
5679 int i, cpu_num = num_possible_cpus();
5680 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5681 char buf[32];
5682
5683 WARN_ON(sd_ctl_dir[0].child);
5684 sd_ctl_dir[0].child = entry;
5685
5686 if (entry == NULL)
5687 return;
5688
5689 for_each_possible_cpu(i) {
5690 snprintf(buf, 32, "cpu%d", i);
5691 entry->procname = kstrdup(buf, GFP_KERNEL);
5692 entry->mode = 0555;
5693 entry->child = sd_alloc_ctl_cpu_table(i);
5694 entry++;
5695 }
5696
5697 WARN_ON(sd_sysctl_header);
5698 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5699 }
5700
5701 /* may be called multiple times per register */
5702 static void unregister_sched_domain_sysctl(void)
5703 {
5704 if (sd_sysctl_header)
5705 unregister_sysctl_table(sd_sysctl_header);
5706 sd_sysctl_header = NULL;
5707 if (sd_ctl_dir[0].child)
5708 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5709 }
5710 #else
5711 static void register_sched_domain_sysctl(void)
5712 {
5713 }
5714 static void unregister_sched_domain_sysctl(void)
5715 {
5716 }
5717 #endif
5718
5719 static void set_rq_online(struct rq *rq)
5720 {
5721 if (!rq->online) {
5722 const struct sched_class *class;
5723
5724 cpumask_set_cpu(rq->cpu, rq->rd->online);
5725 rq->online = 1;
5726
5727 for_each_class(class) {
5728 if (class->rq_online)
5729 class->rq_online(rq);
5730 }
5731 }
5732 }
5733
5734 static void set_rq_offline(struct rq *rq)
5735 {
5736 if (rq->online) {
5737 const struct sched_class *class;
5738
5739 for_each_class(class) {
5740 if (class->rq_offline)
5741 class->rq_offline(rq);
5742 }
5743
5744 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5745 rq->online = 0;
5746 }
5747 }
5748
5749 /*
5750 * migration_call - callback that gets triggered when a CPU is added.
5751 * Here we can start up the necessary migration thread for the new CPU.
5752 */
5753 static int __cpuinit
5754 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5755 {
5756 int cpu = (long)hcpu;
5757 unsigned long flags;
5758 struct rq *rq = cpu_rq(cpu);
5759
5760 switch (action) {
5761
5762 case CPU_UP_PREPARE:
5763 case CPU_UP_PREPARE_FROZEN:
5764 rq->calc_load_update = calc_load_update;
5765 break;
5766
5767 case CPU_ONLINE:
5768 case CPU_ONLINE_FROZEN:
5769 /* Update our root-domain */
5770 raw_spin_lock_irqsave(&rq->lock, flags);
5771 if (rq->rd) {
5772 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5773
5774 set_rq_online(rq);
5775 }
5776 raw_spin_unlock_irqrestore(&rq->lock, flags);
5777 break;
5778
5779 #ifdef CONFIG_HOTPLUG_CPU
5780 case CPU_DEAD:
5781 case CPU_DEAD_FROZEN:
5782 migrate_live_tasks(cpu);
5783 /* Idle task back to normal (off runqueue, low prio) */
5784 raw_spin_lock_irq(&rq->lock);
5785 deactivate_task(rq, rq->idle, 0);
5786 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5787 rq->idle->sched_class = &idle_sched_class;
5788 migrate_dead_tasks(cpu);
5789 raw_spin_unlock_irq(&rq->lock);
5790 migrate_nr_uninterruptible(rq);
5791 BUG_ON(rq->nr_running != 0);
5792 calc_global_load_remove(rq);
5793 break;
5794
5795 case CPU_DYING:
5796 case CPU_DYING_FROZEN:
5797 /* Update our root-domain */
5798 raw_spin_lock_irqsave(&rq->lock, flags);
5799 if (rq->rd) {
5800 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5801 set_rq_offline(rq);
5802 }
5803 raw_spin_unlock_irqrestore(&rq->lock, flags);
5804 break;
5805 #endif
5806 }
5807 return NOTIFY_OK;
5808 }
5809
5810 /*
5811 * Register at high priority so that task migration (migrate_all_tasks)
5812 * happens before everything else. This has to be lower priority than
5813 * the notifier in the perf_event subsystem, though.
5814 */
5815 static struct notifier_block __cpuinitdata migration_notifier = {
5816 .notifier_call = migration_call,
5817 .priority = 10
5818 };
5819
5820 static int __init migration_init(void)
5821 {
5822 void *cpu = (void *)(long)smp_processor_id();
5823 int err;
5824
5825 /* Start one for the boot CPU: */
5826 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5827 BUG_ON(err == NOTIFY_BAD);
5828 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5829 register_cpu_notifier(&migration_notifier);
5830
5831 return 0;
5832 }
5833 early_initcall(migration_init);
5834 #endif
5835
5836 #ifdef CONFIG_SMP
5837
5838 #ifdef CONFIG_SCHED_DEBUG
5839
5840 static __read_mostly int sched_domain_debug_enabled;
5841
5842 static int __init sched_domain_debug_setup(char *str)
5843 {
5844 sched_domain_debug_enabled = 1;
5845
5846 return 0;
5847 }
5848 early_param("sched_debug", sched_domain_debug_setup);
5849
5850 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5851 struct cpumask *groupmask)
5852 {
5853 struct sched_group *group = sd->groups;
5854 char str[256];
5855
5856 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5857 cpumask_clear(groupmask);
5858
5859 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5860
5861 if (!(sd->flags & SD_LOAD_BALANCE)) {
5862 printk("does not load-balance\n");
5863 if (sd->parent)
5864 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5865 " has parent");
5866 return -1;
5867 }
5868
5869 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5870
5871 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5872 printk(KERN_ERR "ERROR: domain->span does not contain "
5873 "CPU%d\n", cpu);
5874 }
5875 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5876 printk(KERN_ERR "ERROR: domain->groups does not contain"
5877 " CPU%d\n", cpu);
5878 }
5879
5880 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5881 do {
5882 if (!group) {
5883 printk("\n");
5884 printk(KERN_ERR "ERROR: group is NULL\n");
5885 break;
5886 }
5887
5888 if (!group->cpu_power) {
5889 printk(KERN_CONT "\n");
5890 printk(KERN_ERR "ERROR: domain->cpu_power not "
5891 "set\n");
5892 break;
5893 }
5894
5895 if (!cpumask_weight(sched_group_cpus(group))) {
5896 printk(KERN_CONT "\n");
5897 printk(KERN_ERR "ERROR: empty group\n");
5898 break;
5899 }
5900
5901 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5902 printk(KERN_CONT "\n");
5903 printk(KERN_ERR "ERROR: repeated CPUs\n");
5904 break;
5905 }
5906
5907 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5908
5909 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5910
5911 printk(KERN_CONT " %s", str);
5912 if (group->cpu_power != SCHED_LOAD_SCALE) {
5913 printk(KERN_CONT " (cpu_power = %d)",
5914 group->cpu_power);
5915 }
5916
5917 group = group->next;
5918 } while (group != sd->groups);
5919 printk(KERN_CONT "\n");
5920
5921 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5922 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5923
5924 if (sd->parent &&
5925 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5926 printk(KERN_ERR "ERROR: parent span is not a superset "
5927 "of domain->span\n");
5928 return 0;
5929 }
5930
5931 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5932 {
5933 cpumask_var_t groupmask;
5934 int level = 0;
5935
5936 if (!sched_domain_debug_enabled)
5937 return;
5938
5939 if (!sd) {
5940 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5941 return;
5942 }
5943
5944 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5945
5946 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
5947 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
5948 return;
5949 }
5950
5951 for (;;) {
5952 if (sched_domain_debug_one(sd, cpu, level, groupmask))
5953 break;
5954 level++;
5955 sd = sd->parent;
5956 if (!sd)
5957 break;
5958 }
5959 free_cpumask_var(groupmask);
5960 }
5961 #else /* !CONFIG_SCHED_DEBUG */
5962 # define sched_domain_debug(sd, cpu) do { } while (0)
5963 #endif /* CONFIG_SCHED_DEBUG */
5964
5965 static int sd_degenerate(struct sched_domain *sd)
5966 {
5967 if (cpumask_weight(sched_domain_span(sd)) == 1)
5968 return 1;
5969
5970 /* Following flags need at least 2 groups */
5971 if (sd->flags & (SD_LOAD_BALANCE |
5972 SD_BALANCE_NEWIDLE |
5973 SD_BALANCE_FORK |
5974 SD_BALANCE_EXEC |
5975 SD_SHARE_CPUPOWER |
5976 SD_SHARE_PKG_RESOURCES)) {
5977 if (sd->groups != sd->groups->next)
5978 return 0;
5979 }
5980
5981 /* Following flags don't use groups */
5982 if (sd->flags & (SD_WAKE_AFFINE))
5983 return 0;
5984
5985 return 1;
5986 }
5987
5988 static int
5989 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5990 {
5991 unsigned long cflags = sd->flags, pflags = parent->flags;
5992
5993 if (sd_degenerate(parent))
5994 return 1;
5995
5996 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5997 return 0;
5998
5999 /* Flags needing groups don't count if only 1 group in parent */
6000 if (parent->groups == parent->groups->next) {
6001 pflags &= ~(SD_LOAD_BALANCE |
6002 SD_BALANCE_NEWIDLE |
6003 SD_BALANCE_FORK |
6004 SD_BALANCE_EXEC |
6005 SD_SHARE_CPUPOWER |
6006 SD_SHARE_PKG_RESOURCES);
6007 if (nr_node_ids == 1)
6008 pflags &= ~SD_SERIALIZE;
6009 }
6010 if (~cflags & pflags)
6011 return 0;
6012
6013 return 1;
6014 }
6015
6016 static void free_rootdomain(struct root_domain *rd)
6017 {
6018 synchronize_sched();
6019
6020 cpupri_cleanup(&rd->cpupri);
6021
6022 free_cpumask_var(rd->rto_mask);
6023 free_cpumask_var(rd->online);
6024 free_cpumask_var(rd->span);
6025 kfree(rd);
6026 }
6027
6028 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6029 {
6030 struct root_domain *old_rd = NULL;
6031 unsigned long flags;
6032
6033 raw_spin_lock_irqsave(&rq->lock, flags);
6034
6035 if (rq->rd) {
6036 old_rd = rq->rd;
6037
6038 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6039 set_rq_offline(rq);
6040
6041 cpumask_clear_cpu(rq->cpu, old_rd->span);
6042
6043 /*
6044 * If we dont want to free the old_rt yet then
6045 * set old_rd to NULL to skip the freeing later
6046 * in this function:
6047 */
6048 if (!atomic_dec_and_test(&old_rd->refcount))
6049 old_rd = NULL;
6050 }
6051
6052 atomic_inc(&rd->refcount);
6053 rq->rd = rd;
6054
6055 cpumask_set_cpu(rq->cpu, rd->span);
6056 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6057 set_rq_online(rq);
6058
6059 raw_spin_unlock_irqrestore(&rq->lock, flags);
6060
6061 if (old_rd)
6062 free_rootdomain(old_rd);
6063 }
6064
6065 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6066 {
6067 gfp_t gfp = GFP_KERNEL;
6068
6069 memset(rd, 0, sizeof(*rd));
6070
6071 if (bootmem)
6072 gfp = GFP_NOWAIT;
6073
6074 if (!alloc_cpumask_var(&rd->span, gfp))
6075 goto out;
6076 if (!alloc_cpumask_var(&rd->online, gfp))
6077 goto free_span;
6078 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6079 goto free_online;
6080
6081 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6082 goto free_rto_mask;
6083 return 0;
6084
6085 free_rto_mask:
6086 free_cpumask_var(rd->rto_mask);
6087 free_online:
6088 free_cpumask_var(rd->online);
6089 free_span:
6090 free_cpumask_var(rd->span);
6091 out:
6092 return -ENOMEM;
6093 }
6094
6095 static void init_defrootdomain(void)
6096 {
6097 init_rootdomain(&def_root_domain, true);
6098
6099 atomic_set(&def_root_domain.refcount, 1);
6100 }
6101
6102 static struct root_domain *alloc_rootdomain(void)
6103 {
6104 struct root_domain *rd;
6105
6106 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6107 if (!rd)
6108 return NULL;
6109
6110 if (init_rootdomain(rd, false) != 0) {
6111 kfree(rd);
6112 return NULL;
6113 }
6114
6115 return rd;
6116 }
6117
6118 /*
6119 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6120 * hold the hotplug lock.
6121 */
6122 static void
6123 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6124 {
6125 struct rq *rq = cpu_rq(cpu);
6126 struct sched_domain *tmp;
6127
6128 for (tmp = sd; tmp; tmp = tmp->parent)
6129 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6130
6131 /* Remove the sched domains which do not contribute to scheduling. */
6132 for (tmp = sd; tmp; ) {
6133 struct sched_domain *parent = tmp->parent;
6134 if (!parent)
6135 break;
6136
6137 if (sd_parent_degenerate(tmp, parent)) {
6138 tmp->parent = parent->parent;
6139 if (parent->parent)
6140 parent->parent->child = tmp;
6141 } else
6142 tmp = tmp->parent;
6143 }
6144
6145 if (sd && sd_degenerate(sd)) {
6146 sd = sd->parent;
6147 if (sd)
6148 sd->child = NULL;
6149 }
6150
6151 sched_domain_debug(sd, cpu);
6152
6153 rq_attach_root(rq, rd);
6154 rcu_assign_pointer(rq->sd, sd);
6155 }
6156
6157 /* cpus with isolated domains */
6158 static cpumask_var_t cpu_isolated_map;
6159
6160 /* Setup the mask of cpus configured for isolated domains */
6161 static int __init isolated_cpu_setup(char *str)
6162 {
6163 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6164 cpulist_parse(str, cpu_isolated_map);
6165 return 1;
6166 }
6167
6168 __setup("isolcpus=", isolated_cpu_setup);
6169
6170 /*
6171 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6172 * to a function which identifies what group(along with sched group) a CPU
6173 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6174 * (due to the fact that we keep track of groups covered with a struct cpumask).
6175 *
6176 * init_sched_build_groups will build a circular linked list of the groups
6177 * covered by the given span, and will set each group's ->cpumask correctly,
6178 * and ->cpu_power to 0.
6179 */
6180 static void
6181 init_sched_build_groups(const struct cpumask *span,
6182 const struct cpumask *cpu_map,
6183 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6184 struct sched_group **sg,
6185 struct cpumask *tmpmask),
6186 struct cpumask *covered, struct cpumask *tmpmask)
6187 {
6188 struct sched_group *first = NULL, *last = NULL;
6189 int i;
6190
6191 cpumask_clear(covered);
6192
6193 for_each_cpu(i, span) {
6194 struct sched_group *sg;
6195 int group = group_fn(i, cpu_map, &sg, tmpmask);
6196 int j;
6197
6198 if (cpumask_test_cpu(i, covered))
6199 continue;
6200
6201 cpumask_clear(sched_group_cpus(sg));
6202 sg->cpu_power = 0;
6203
6204 for_each_cpu(j, span) {
6205 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6206 continue;
6207
6208 cpumask_set_cpu(j, covered);
6209 cpumask_set_cpu(j, sched_group_cpus(sg));
6210 }
6211 if (!first)
6212 first = sg;
6213 if (last)
6214 last->next = sg;
6215 last = sg;
6216 }
6217 last->next = first;
6218 }
6219
6220 #define SD_NODES_PER_DOMAIN 16
6221
6222 #ifdef CONFIG_NUMA
6223
6224 /**
6225 * find_next_best_node - find the next node to include in a sched_domain
6226 * @node: node whose sched_domain we're building
6227 * @used_nodes: nodes already in the sched_domain
6228 *
6229 * Find the next node to include in a given scheduling domain. Simply
6230 * finds the closest node not already in the @used_nodes map.
6231 *
6232 * Should use nodemask_t.
6233 */
6234 static int find_next_best_node(int node, nodemask_t *used_nodes)
6235 {
6236 int i, n, val, min_val, best_node = 0;
6237
6238 min_val = INT_MAX;
6239
6240 for (i = 0; i < nr_node_ids; i++) {
6241 /* Start at @node */
6242 n = (node + i) % nr_node_ids;
6243
6244 if (!nr_cpus_node(n))
6245 continue;
6246
6247 /* Skip already used nodes */
6248 if (node_isset(n, *used_nodes))
6249 continue;
6250
6251 /* Simple min distance search */
6252 val = node_distance(node, n);
6253
6254 if (val < min_val) {
6255 min_val = val;
6256 best_node = n;
6257 }
6258 }
6259
6260 node_set(best_node, *used_nodes);
6261 return best_node;
6262 }
6263
6264 /**
6265 * sched_domain_node_span - get a cpumask for a node's sched_domain
6266 * @node: node whose cpumask we're constructing
6267 * @span: resulting cpumask
6268 *
6269 * Given a node, construct a good cpumask for its sched_domain to span. It
6270 * should be one that prevents unnecessary balancing, but also spreads tasks
6271 * out optimally.
6272 */
6273 static void sched_domain_node_span(int node, struct cpumask *span)
6274 {
6275 nodemask_t used_nodes;
6276 int i;
6277
6278 cpumask_clear(span);
6279 nodes_clear(used_nodes);
6280
6281 cpumask_or(span, span, cpumask_of_node(node));
6282 node_set(node, used_nodes);
6283
6284 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6285 int next_node = find_next_best_node(node, &used_nodes);
6286
6287 cpumask_or(span, span, cpumask_of_node(next_node));
6288 }
6289 }
6290 #endif /* CONFIG_NUMA */
6291
6292 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6293
6294 /*
6295 * The cpus mask in sched_group and sched_domain hangs off the end.
6296 *
6297 * ( See the the comments in include/linux/sched.h:struct sched_group
6298 * and struct sched_domain. )
6299 */
6300 struct static_sched_group {
6301 struct sched_group sg;
6302 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6303 };
6304
6305 struct static_sched_domain {
6306 struct sched_domain sd;
6307 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6308 };
6309
6310 struct s_data {
6311 #ifdef CONFIG_NUMA
6312 int sd_allnodes;
6313 cpumask_var_t domainspan;
6314 cpumask_var_t covered;
6315 cpumask_var_t notcovered;
6316 #endif
6317 cpumask_var_t nodemask;
6318 cpumask_var_t this_sibling_map;
6319 cpumask_var_t this_core_map;
6320 cpumask_var_t send_covered;
6321 cpumask_var_t tmpmask;
6322 struct sched_group **sched_group_nodes;
6323 struct root_domain *rd;
6324 };
6325
6326 enum s_alloc {
6327 sa_sched_groups = 0,
6328 sa_rootdomain,
6329 sa_tmpmask,
6330 sa_send_covered,
6331 sa_this_core_map,
6332 sa_this_sibling_map,
6333 sa_nodemask,
6334 sa_sched_group_nodes,
6335 #ifdef CONFIG_NUMA
6336 sa_notcovered,
6337 sa_covered,
6338 sa_domainspan,
6339 #endif
6340 sa_none,
6341 };
6342
6343 /*
6344 * SMT sched-domains:
6345 */
6346 #ifdef CONFIG_SCHED_SMT
6347 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6348 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6349
6350 static int
6351 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6352 struct sched_group **sg, struct cpumask *unused)
6353 {
6354 if (sg)
6355 *sg = &per_cpu(sched_groups, cpu).sg;
6356 return cpu;
6357 }
6358 #endif /* CONFIG_SCHED_SMT */
6359
6360 /*
6361 * multi-core sched-domains:
6362 */
6363 #ifdef CONFIG_SCHED_MC
6364 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6365 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6366 #endif /* CONFIG_SCHED_MC */
6367
6368 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6369 static int
6370 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6371 struct sched_group **sg, struct cpumask *mask)
6372 {
6373 int group;
6374
6375 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6376 group = cpumask_first(mask);
6377 if (sg)
6378 *sg = &per_cpu(sched_group_core, group).sg;
6379 return group;
6380 }
6381 #elif defined(CONFIG_SCHED_MC)
6382 static int
6383 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6384 struct sched_group **sg, struct cpumask *unused)
6385 {
6386 if (sg)
6387 *sg = &per_cpu(sched_group_core, cpu).sg;
6388 return cpu;
6389 }
6390 #endif
6391
6392 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6393 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6394
6395 static int
6396 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6397 struct sched_group **sg, struct cpumask *mask)
6398 {
6399 int group;
6400 #ifdef CONFIG_SCHED_MC
6401 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6402 group = cpumask_first(mask);
6403 #elif defined(CONFIG_SCHED_SMT)
6404 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6405 group = cpumask_first(mask);
6406 #else
6407 group = cpu;
6408 #endif
6409 if (sg)
6410 *sg = &per_cpu(sched_group_phys, group).sg;
6411 return group;
6412 }
6413
6414 #ifdef CONFIG_NUMA
6415 /*
6416 * The init_sched_build_groups can't handle what we want to do with node
6417 * groups, so roll our own. Now each node has its own list of groups which
6418 * gets dynamically allocated.
6419 */
6420 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6421 static struct sched_group ***sched_group_nodes_bycpu;
6422
6423 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6424 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6425
6426 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6427 struct sched_group **sg,
6428 struct cpumask *nodemask)
6429 {
6430 int group;
6431
6432 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6433 group = cpumask_first(nodemask);
6434
6435 if (sg)
6436 *sg = &per_cpu(sched_group_allnodes, group).sg;
6437 return group;
6438 }
6439
6440 static void init_numa_sched_groups_power(struct sched_group *group_head)
6441 {
6442 struct sched_group *sg = group_head;
6443 int j;
6444
6445 if (!sg)
6446 return;
6447 do {
6448 for_each_cpu(j, sched_group_cpus(sg)) {
6449 struct sched_domain *sd;
6450
6451 sd = &per_cpu(phys_domains, j).sd;
6452 if (j != group_first_cpu(sd->groups)) {
6453 /*
6454 * Only add "power" once for each
6455 * physical package.
6456 */
6457 continue;
6458 }
6459
6460 sg->cpu_power += sd->groups->cpu_power;
6461 }
6462 sg = sg->next;
6463 } while (sg != group_head);
6464 }
6465
6466 static int build_numa_sched_groups(struct s_data *d,
6467 const struct cpumask *cpu_map, int num)
6468 {
6469 struct sched_domain *sd;
6470 struct sched_group *sg, *prev;
6471 int n, j;
6472
6473 cpumask_clear(d->covered);
6474 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6475 if (cpumask_empty(d->nodemask)) {
6476 d->sched_group_nodes[num] = NULL;
6477 goto out;
6478 }
6479
6480 sched_domain_node_span(num, d->domainspan);
6481 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6482
6483 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6484 GFP_KERNEL, num);
6485 if (!sg) {
6486 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6487 num);
6488 return -ENOMEM;
6489 }
6490 d->sched_group_nodes[num] = sg;
6491
6492 for_each_cpu(j, d->nodemask) {
6493 sd = &per_cpu(node_domains, j).sd;
6494 sd->groups = sg;
6495 }
6496
6497 sg->cpu_power = 0;
6498 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6499 sg->next = sg;
6500 cpumask_or(d->covered, d->covered, d->nodemask);
6501
6502 prev = sg;
6503 for (j = 0; j < nr_node_ids; j++) {
6504 n = (num + j) % nr_node_ids;
6505 cpumask_complement(d->notcovered, d->covered);
6506 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6507 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6508 if (cpumask_empty(d->tmpmask))
6509 break;
6510 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6511 if (cpumask_empty(d->tmpmask))
6512 continue;
6513 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6514 GFP_KERNEL, num);
6515 if (!sg) {
6516 printk(KERN_WARNING
6517 "Can not alloc domain group for node %d\n", j);
6518 return -ENOMEM;
6519 }
6520 sg->cpu_power = 0;
6521 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6522 sg->next = prev->next;
6523 cpumask_or(d->covered, d->covered, d->tmpmask);
6524 prev->next = sg;
6525 prev = sg;
6526 }
6527 out:
6528 return 0;
6529 }
6530 #endif /* CONFIG_NUMA */
6531
6532 #ifdef CONFIG_NUMA
6533 /* Free memory allocated for various sched_group structures */
6534 static void free_sched_groups(const struct cpumask *cpu_map,
6535 struct cpumask *nodemask)
6536 {
6537 int cpu, i;
6538
6539 for_each_cpu(cpu, cpu_map) {
6540 struct sched_group **sched_group_nodes
6541 = sched_group_nodes_bycpu[cpu];
6542
6543 if (!sched_group_nodes)
6544 continue;
6545
6546 for (i = 0; i < nr_node_ids; i++) {
6547 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6548
6549 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6550 if (cpumask_empty(nodemask))
6551 continue;
6552
6553 if (sg == NULL)
6554 continue;
6555 sg = sg->next;
6556 next_sg:
6557 oldsg = sg;
6558 sg = sg->next;
6559 kfree(oldsg);
6560 if (oldsg != sched_group_nodes[i])
6561 goto next_sg;
6562 }
6563 kfree(sched_group_nodes);
6564 sched_group_nodes_bycpu[cpu] = NULL;
6565 }
6566 }
6567 #else /* !CONFIG_NUMA */
6568 static void free_sched_groups(const struct cpumask *cpu_map,
6569 struct cpumask *nodemask)
6570 {
6571 }
6572 #endif /* CONFIG_NUMA */
6573
6574 /*
6575 * Initialize sched groups cpu_power.
6576 *
6577 * cpu_power indicates the capacity of sched group, which is used while
6578 * distributing the load between different sched groups in a sched domain.
6579 * Typically cpu_power for all the groups in a sched domain will be same unless
6580 * there are asymmetries in the topology. If there are asymmetries, group
6581 * having more cpu_power will pickup more load compared to the group having
6582 * less cpu_power.
6583 */
6584 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6585 {
6586 struct sched_domain *child;
6587 struct sched_group *group;
6588 long power;
6589 int weight;
6590
6591 WARN_ON(!sd || !sd->groups);
6592
6593 if (cpu != group_first_cpu(sd->groups))
6594 return;
6595
6596 child = sd->child;
6597
6598 sd->groups->cpu_power = 0;
6599
6600 if (!child) {
6601 power = SCHED_LOAD_SCALE;
6602 weight = cpumask_weight(sched_domain_span(sd));
6603 /*
6604 * SMT siblings share the power of a single core.
6605 * Usually multiple threads get a better yield out of
6606 * that one core than a single thread would have,
6607 * reflect that in sd->smt_gain.
6608 */
6609 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6610 power *= sd->smt_gain;
6611 power /= weight;
6612 power >>= SCHED_LOAD_SHIFT;
6613 }
6614 sd->groups->cpu_power += power;
6615 return;
6616 }
6617
6618 /*
6619 * Add cpu_power of each child group to this groups cpu_power.
6620 */
6621 group = child->groups;
6622 do {
6623 sd->groups->cpu_power += group->cpu_power;
6624 group = group->next;
6625 } while (group != child->groups);
6626 }
6627
6628 /*
6629 * Initializers for schedule domains
6630 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6631 */
6632
6633 #ifdef CONFIG_SCHED_DEBUG
6634 # define SD_INIT_NAME(sd, type) sd->name = #type
6635 #else
6636 # define SD_INIT_NAME(sd, type) do { } while (0)
6637 #endif
6638
6639 #define SD_INIT(sd, type) sd_init_##type(sd)
6640
6641 #define SD_INIT_FUNC(type) \
6642 static noinline void sd_init_##type(struct sched_domain *sd) \
6643 { \
6644 memset(sd, 0, sizeof(*sd)); \
6645 *sd = SD_##type##_INIT; \
6646 sd->level = SD_LV_##type; \
6647 SD_INIT_NAME(sd, type); \
6648 }
6649
6650 SD_INIT_FUNC(CPU)
6651 #ifdef CONFIG_NUMA
6652 SD_INIT_FUNC(ALLNODES)
6653 SD_INIT_FUNC(NODE)
6654 #endif
6655 #ifdef CONFIG_SCHED_SMT
6656 SD_INIT_FUNC(SIBLING)
6657 #endif
6658 #ifdef CONFIG_SCHED_MC
6659 SD_INIT_FUNC(MC)
6660 #endif
6661
6662 static int default_relax_domain_level = -1;
6663
6664 static int __init setup_relax_domain_level(char *str)
6665 {
6666 unsigned long val;
6667
6668 val = simple_strtoul(str, NULL, 0);
6669 if (val < SD_LV_MAX)
6670 default_relax_domain_level = val;
6671
6672 return 1;
6673 }
6674 __setup("relax_domain_level=", setup_relax_domain_level);
6675
6676 static void set_domain_attribute(struct sched_domain *sd,
6677 struct sched_domain_attr *attr)
6678 {
6679 int request;
6680
6681 if (!attr || attr->relax_domain_level < 0) {
6682 if (default_relax_domain_level < 0)
6683 return;
6684 else
6685 request = default_relax_domain_level;
6686 } else
6687 request = attr->relax_domain_level;
6688 if (request < sd->level) {
6689 /* turn off idle balance on this domain */
6690 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6691 } else {
6692 /* turn on idle balance on this domain */
6693 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6694 }
6695 }
6696
6697 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6698 const struct cpumask *cpu_map)
6699 {
6700 switch (what) {
6701 case sa_sched_groups:
6702 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6703 d->sched_group_nodes = NULL;
6704 case sa_rootdomain:
6705 free_rootdomain(d->rd); /* fall through */
6706 case sa_tmpmask:
6707 free_cpumask_var(d->tmpmask); /* fall through */
6708 case sa_send_covered:
6709 free_cpumask_var(d->send_covered); /* fall through */
6710 case sa_this_core_map:
6711 free_cpumask_var(d->this_core_map); /* fall through */
6712 case sa_this_sibling_map:
6713 free_cpumask_var(d->this_sibling_map); /* fall through */
6714 case sa_nodemask:
6715 free_cpumask_var(d->nodemask); /* fall through */
6716 case sa_sched_group_nodes:
6717 #ifdef CONFIG_NUMA
6718 kfree(d->sched_group_nodes); /* fall through */
6719 case sa_notcovered:
6720 free_cpumask_var(d->notcovered); /* fall through */
6721 case sa_covered:
6722 free_cpumask_var(d->covered); /* fall through */
6723 case sa_domainspan:
6724 free_cpumask_var(d->domainspan); /* fall through */
6725 #endif
6726 case sa_none:
6727 break;
6728 }
6729 }
6730
6731 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6732 const struct cpumask *cpu_map)
6733 {
6734 #ifdef CONFIG_NUMA
6735 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6736 return sa_none;
6737 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6738 return sa_domainspan;
6739 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6740 return sa_covered;
6741 /* Allocate the per-node list of sched groups */
6742 d->sched_group_nodes = kcalloc(nr_node_ids,
6743 sizeof(struct sched_group *), GFP_KERNEL);
6744 if (!d->sched_group_nodes) {
6745 printk(KERN_WARNING "Can not alloc sched group node list\n");
6746 return sa_notcovered;
6747 }
6748 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6749 #endif
6750 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6751 return sa_sched_group_nodes;
6752 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6753 return sa_nodemask;
6754 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6755 return sa_this_sibling_map;
6756 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6757 return sa_this_core_map;
6758 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6759 return sa_send_covered;
6760 d->rd = alloc_rootdomain();
6761 if (!d->rd) {
6762 printk(KERN_WARNING "Cannot alloc root domain\n");
6763 return sa_tmpmask;
6764 }
6765 return sa_rootdomain;
6766 }
6767
6768 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6769 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6770 {
6771 struct sched_domain *sd = NULL;
6772 #ifdef CONFIG_NUMA
6773 struct sched_domain *parent;
6774
6775 d->sd_allnodes = 0;
6776 if (cpumask_weight(cpu_map) >
6777 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6778 sd = &per_cpu(allnodes_domains, i).sd;
6779 SD_INIT(sd, ALLNODES);
6780 set_domain_attribute(sd, attr);
6781 cpumask_copy(sched_domain_span(sd), cpu_map);
6782 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6783 d->sd_allnodes = 1;
6784 }
6785 parent = sd;
6786
6787 sd = &per_cpu(node_domains, i).sd;
6788 SD_INIT(sd, NODE);
6789 set_domain_attribute(sd, attr);
6790 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6791 sd->parent = parent;
6792 if (parent)
6793 parent->child = sd;
6794 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6795 #endif
6796 return sd;
6797 }
6798
6799 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6800 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6801 struct sched_domain *parent, int i)
6802 {
6803 struct sched_domain *sd;
6804 sd = &per_cpu(phys_domains, i).sd;
6805 SD_INIT(sd, CPU);
6806 set_domain_attribute(sd, attr);
6807 cpumask_copy(sched_domain_span(sd), d->nodemask);
6808 sd->parent = parent;
6809 if (parent)
6810 parent->child = sd;
6811 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6812 return sd;
6813 }
6814
6815 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6816 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6817 struct sched_domain *parent, int i)
6818 {
6819 struct sched_domain *sd = parent;
6820 #ifdef CONFIG_SCHED_MC
6821 sd = &per_cpu(core_domains, i).sd;
6822 SD_INIT(sd, MC);
6823 set_domain_attribute(sd, attr);
6824 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6825 sd->parent = parent;
6826 parent->child = sd;
6827 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6828 #endif
6829 return sd;
6830 }
6831
6832 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6833 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6834 struct sched_domain *parent, int i)
6835 {
6836 struct sched_domain *sd = parent;
6837 #ifdef CONFIG_SCHED_SMT
6838 sd = &per_cpu(cpu_domains, i).sd;
6839 SD_INIT(sd, SIBLING);
6840 set_domain_attribute(sd, attr);
6841 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6842 sd->parent = parent;
6843 parent->child = sd;
6844 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
6845 #endif
6846 return sd;
6847 }
6848
6849 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6850 const struct cpumask *cpu_map, int cpu)
6851 {
6852 switch (l) {
6853 #ifdef CONFIG_SCHED_SMT
6854 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6855 cpumask_and(d->this_sibling_map, cpu_map,
6856 topology_thread_cpumask(cpu));
6857 if (cpu == cpumask_first(d->this_sibling_map))
6858 init_sched_build_groups(d->this_sibling_map, cpu_map,
6859 &cpu_to_cpu_group,
6860 d->send_covered, d->tmpmask);
6861 break;
6862 #endif
6863 #ifdef CONFIG_SCHED_MC
6864 case SD_LV_MC: /* set up multi-core groups */
6865 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6866 if (cpu == cpumask_first(d->this_core_map))
6867 init_sched_build_groups(d->this_core_map, cpu_map,
6868 &cpu_to_core_group,
6869 d->send_covered, d->tmpmask);
6870 break;
6871 #endif
6872 case SD_LV_CPU: /* set up physical groups */
6873 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6874 if (!cpumask_empty(d->nodemask))
6875 init_sched_build_groups(d->nodemask, cpu_map,
6876 &cpu_to_phys_group,
6877 d->send_covered, d->tmpmask);
6878 break;
6879 #ifdef CONFIG_NUMA
6880 case SD_LV_ALLNODES:
6881 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6882 d->send_covered, d->tmpmask);
6883 break;
6884 #endif
6885 default:
6886 break;
6887 }
6888 }
6889
6890 /*
6891 * Build sched domains for a given set of cpus and attach the sched domains
6892 * to the individual cpus
6893 */
6894 static int __build_sched_domains(const struct cpumask *cpu_map,
6895 struct sched_domain_attr *attr)
6896 {
6897 enum s_alloc alloc_state = sa_none;
6898 struct s_data d;
6899 struct sched_domain *sd;
6900 int i;
6901 #ifdef CONFIG_NUMA
6902 d.sd_allnodes = 0;
6903 #endif
6904
6905 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6906 if (alloc_state != sa_rootdomain)
6907 goto error;
6908 alloc_state = sa_sched_groups;
6909
6910 /*
6911 * Set up domains for cpus specified by the cpu_map.
6912 */
6913 for_each_cpu(i, cpu_map) {
6914 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6915 cpu_map);
6916
6917 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
6918 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
6919 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
6920 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
6921 }
6922
6923 for_each_cpu(i, cpu_map) {
6924 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
6925 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
6926 }
6927
6928 /* Set up physical groups */
6929 for (i = 0; i < nr_node_ids; i++)
6930 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
6931
6932 #ifdef CONFIG_NUMA
6933 /* Set up node groups */
6934 if (d.sd_allnodes)
6935 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
6936
6937 for (i = 0; i < nr_node_ids; i++)
6938 if (build_numa_sched_groups(&d, cpu_map, i))
6939 goto error;
6940 #endif
6941
6942 /* Calculate CPU power for physical packages and nodes */
6943 #ifdef CONFIG_SCHED_SMT
6944 for_each_cpu(i, cpu_map) {
6945 sd = &per_cpu(cpu_domains, i).sd;
6946 init_sched_groups_power(i, sd);
6947 }
6948 #endif
6949 #ifdef CONFIG_SCHED_MC
6950 for_each_cpu(i, cpu_map) {
6951 sd = &per_cpu(core_domains, i).sd;
6952 init_sched_groups_power(i, sd);
6953 }
6954 #endif
6955
6956 for_each_cpu(i, cpu_map) {
6957 sd = &per_cpu(phys_domains, i).sd;
6958 init_sched_groups_power(i, sd);
6959 }
6960
6961 #ifdef CONFIG_NUMA
6962 for (i = 0; i < nr_node_ids; i++)
6963 init_numa_sched_groups_power(d.sched_group_nodes[i]);
6964
6965 if (d.sd_allnodes) {
6966 struct sched_group *sg;
6967
6968 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
6969 d.tmpmask);
6970 init_numa_sched_groups_power(sg);
6971 }
6972 #endif
6973
6974 /* Attach the domains */
6975 for_each_cpu(i, cpu_map) {
6976 #ifdef CONFIG_SCHED_SMT
6977 sd = &per_cpu(cpu_domains, i).sd;
6978 #elif defined(CONFIG_SCHED_MC)
6979 sd = &per_cpu(core_domains, i).sd;
6980 #else
6981 sd = &per_cpu(phys_domains, i).sd;
6982 #endif
6983 cpu_attach_domain(sd, d.rd, i);
6984 }
6985
6986 d.sched_group_nodes = NULL; /* don't free this we still need it */
6987 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
6988 return 0;
6989
6990 error:
6991 __free_domain_allocs(&d, alloc_state, cpu_map);
6992 return -ENOMEM;
6993 }
6994
6995 static int build_sched_domains(const struct cpumask *cpu_map)
6996 {
6997 return __build_sched_domains(cpu_map, NULL);
6998 }
6999
7000 static cpumask_var_t *doms_cur; /* current sched domains */
7001 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7002 static struct sched_domain_attr *dattr_cur;
7003 /* attribues of custom domains in 'doms_cur' */
7004
7005 /*
7006 * Special case: If a kmalloc of a doms_cur partition (array of
7007 * cpumask) fails, then fallback to a single sched domain,
7008 * as determined by the single cpumask fallback_doms.
7009 */
7010 static cpumask_var_t fallback_doms;
7011
7012 /*
7013 * arch_update_cpu_topology lets virtualized architectures update the
7014 * cpu core maps. It is supposed to return 1 if the topology changed
7015 * or 0 if it stayed the same.
7016 */
7017 int __attribute__((weak)) arch_update_cpu_topology(void)
7018 {
7019 return 0;
7020 }
7021
7022 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7023 {
7024 int i;
7025 cpumask_var_t *doms;
7026
7027 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7028 if (!doms)
7029 return NULL;
7030 for (i = 0; i < ndoms; i++) {
7031 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7032 free_sched_domains(doms, i);
7033 return NULL;
7034 }
7035 }
7036 return doms;
7037 }
7038
7039 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7040 {
7041 unsigned int i;
7042 for (i = 0; i < ndoms; i++)
7043 free_cpumask_var(doms[i]);
7044 kfree(doms);
7045 }
7046
7047 /*
7048 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7049 * For now this just excludes isolated cpus, but could be used to
7050 * exclude other special cases in the future.
7051 */
7052 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7053 {
7054 int err;
7055
7056 arch_update_cpu_topology();
7057 ndoms_cur = 1;
7058 doms_cur = alloc_sched_domains(ndoms_cur);
7059 if (!doms_cur)
7060 doms_cur = &fallback_doms;
7061 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7062 dattr_cur = NULL;
7063 err = build_sched_domains(doms_cur[0]);
7064 register_sched_domain_sysctl();
7065
7066 return err;
7067 }
7068
7069 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7070 struct cpumask *tmpmask)
7071 {
7072 free_sched_groups(cpu_map, tmpmask);
7073 }
7074
7075 /*
7076 * Detach sched domains from a group of cpus specified in cpu_map
7077 * These cpus will now be attached to the NULL domain
7078 */
7079 static void detach_destroy_domains(const struct cpumask *cpu_map)
7080 {
7081 /* Save because hotplug lock held. */
7082 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7083 int i;
7084
7085 for_each_cpu(i, cpu_map)
7086 cpu_attach_domain(NULL, &def_root_domain, i);
7087 synchronize_sched();
7088 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7089 }
7090
7091 /* handle null as "default" */
7092 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7093 struct sched_domain_attr *new, int idx_new)
7094 {
7095 struct sched_domain_attr tmp;
7096
7097 /* fast path */
7098 if (!new && !cur)
7099 return 1;
7100
7101 tmp = SD_ATTR_INIT;
7102 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7103 new ? (new + idx_new) : &tmp,
7104 sizeof(struct sched_domain_attr));
7105 }
7106
7107 /*
7108 * Partition sched domains as specified by the 'ndoms_new'
7109 * cpumasks in the array doms_new[] of cpumasks. This compares
7110 * doms_new[] to the current sched domain partitioning, doms_cur[].
7111 * It destroys each deleted domain and builds each new domain.
7112 *
7113 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7114 * The masks don't intersect (don't overlap.) We should setup one
7115 * sched domain for each mask. CPUs not in any of the cpumasks will
7116 * not be load balanced. If the same cpumask appears both in the
7117 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7118 * it as it is.
7119 *
7120 * The passed in 'doms_new' should be allocated using
7121 * alloc_sched_domains. This routine takes ownership of it and will
7122 * free_sched_domains it when done with it. If the caller failed the
7123 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7124 * and partition_sched_domains() will fallback to the single partition
7125 * 'fallback_doms', it also forces the domains to be rebuilt.
7126 *
7127 * If doms_new == NULL it will be replaced with cpu_online_mask.
7128 * ndoms_new == 0 is a special case for destroying existing domains,
7129 * and it will not create the default domain.
7130 *
7131 * Call with hotplug lock held
7132 */
7133 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7134 struct sched_domain_attr *dattr_new)
7135 {
7136 int i, j, n;
7137 int new_topology;
7138
7139 mutex_lock(&sched_domains_mutex);
7140
7141 /* always unregister in case we don't destroy any domains */
7142 unregister_sched_domain_sysctl();
7143
7144 /* Let architecture update cpu core mappings. */
7145 new_topology = arch_update_cpu_topology();
7146
7147 n = doms_new ? ndoms_new : 0;
7148
7149 /* Destroy deleted domains */
7150 for (i = 0; i < ndoms_cur; i++) {
7151 for (j = 0; j < n && !new_topology; j++) {
7152 if (cpumask_equal(doms_cur[i], doms_new[j])
7153 && dattrs_equal(dattr_cur, i, dattr_new, j))
7154 goto match1;
7155 }
7156 /* no match - a current sched domain not in new doms_new[] */
7157 detach_destroy_domains(doms_cur[i]);
7158 match1:
7159 ;
7160 }
7161
7162 if (doms_new == NULL) {
7163 ndoms_cur = 0;
7164 doms_new = &fallback_doms;
7165 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7166 WARN_ON_ONCE(dattr_new);
7167 }
7168
7169 /* Build new domains */
7170 for (i = 0; i < ndoms_new; i++) {
7171 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7172 if (cpumask_equal(doms_new[i], doms_cur[j])
7173 && dattrs_equal(dattr_new, i, dattr_cur, j))
7174 goto match2;
7175 }
7176 /* no match - add a new doms_new */
7177 __build_sched_domains(doms_new[i],
7178 dattr_new ? dattr_new + i : NULL);
7179 match2:
7180 ;
7181 }
7182
7183 /* Remember the new sched domains */
7184 if (doms_cur != &fallback_doms)
7185 free_sched_domains(doms_cur, ndoms_cur);
7186 kfree(dattr_cur); /* kfree(NULL) is safe */
7187 doms_cur = doms_new;
7188 dattr_cur = dattr_new;
7189 ndoms_cur = ndoms_new;
7190
7191 register_sched_domain_sysctl();
7192
7193 mutex_unlock(&sched_domains_mutex);
7194 }
7195
7196 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7197 static void arch_reinit_sched_domains(void)
7198 {
7199 get_online_cpus();
7200
7201 /* Destroy domains first to force the rebuild */
7202 partition_sched_domains(0, NULL, NULL);
7203
7204 rebuild_sched_domains();
7205 put_online_cpus();
7206 }
7207
7208 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7209 {
7210 unsigned int level = 0;
7211
7212 if (sscanf(buf, "%u", &level) != 1)
7213 return -EINVAL;
7214
7215 /*
7216 * level is always be positive so don't check for
7217 * level < POWERSAVINGS_BALANCE_NONE which is 0
7218 * What happens on 0 or 1 byte write,
7219 * need to check for count as well?
7220 */
7221
7222 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7223 return -EINVAL;
7224
7225 if (smt)
7226 sched_smt_power_savings = level;
7227 else
7228 sched_mc_power_savings = level;
7229
7230 arch_reinit_sched_domains();
7231
7232 return count;
7233 }
7234
7235 #ifdef CONFIG_SCHED_MC
7236 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7237 struct sysdev_class_attribute *attr,
7238 char *page)
7239 {
7240 return sprintf(page, "%u\n", sched_mc_power_savings);
7241 }
7242 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7243 struct sysdev_class_attribute *attr,
7244 const char *buf, size_t count)
7245 {
7246 return sched_power_savings_store(buf, count, 0);
7247 }
7248 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7249 sched_mc_power_savings_show,
7250 sched_mc_power_savings_store);
7251 #endif
7252
7253 #ifdef CONFIG_SCHED_SMT
7254 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7255 struct sysdev_class_attribute *attr,
7256 char *page)
7257 {
7258 return sprintf(page, "%u\n", sched_smt_power_savings);
7259 }
7260 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7261 struct sysdev_class_attribute *attr,
7262 const char *buf, size_t count)
7263 {
7264 return sched_power_savings_store(buf, count, 1);
7265 }
7266 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7267 sched_smt_power_savings_show,
7268 sched_smt_power_savings_store);
7269 #endif
7270
7271 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7272 {
7273 int err = 0;
7274
7275 #ifdef CONFIG_SCHED_SMT
7276 if (smt_capable())
7277 err = sysfs_create_file(&cls->kset.kobj,
7278 &attr_sched_smt_power_savings.attr);
7279 #endif
7280 #ifdef CONFIG_SCHED_MC
7281 if (!err && mc_capable())
7282 err = sysfs_create_file(&cls->kset.kobj,
7283 &attr_sched_mc_power_savings.attr);
7284 #endif
7285 return err;
7286 }
7287 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7288
7289 #ifndef CONFIG_CPUSETS
7290 /*
7291 * Add online and remove offline CPUs from the scheduler domains.
7292 * When cpusets are enabled they take over this function.
7293 */
7294 static int update_sched_domains(struct notifier_block *nfb,
7295 unsigned long action, void *hcpu)
7296 {
7297 switch (action) {
7298 case CPU_ONLINE:
7299 case CPU_ONLINE_FROZEN:
7300 case CPU_DOWN_PREPARE:
7301 case CPU_DOWN_PREPARE_FROZEN:
7302 case CPU_DOWN_FAILED:
7303 case CPU_DOWN_FAILED_FROZEN:
7304 partition_sched_domains(1, NULL, NULL);
7305 return NOTIFY_OK;
7306
7307 default:
7308 return NOTIFY_DONE;
7309 }
7310 }
7311 #endif
7312
7313 static int update_runtime(struct notifier_block *nfb,
7314 unsigned long action, void *hcpu)
7315 {
7316 int cpu = (int)(long)hcpu;
7317
7318 switch (action) {
7319 case CPU_DOWN_PREPARE:
7320 case CPU_DOWN_PREPARE_FROZEN:
7321 disable_runtime(cpu_rq(cpu));
7322 return NOTIFY_OK;
7323
7324 case CPU_DOWN_FAILED:
7325 case CPU_DOWN_FAILED_FROZEN:
7326 case CPU_ONLINE:
7327 case CPU_ONLINE_FROZEN:
7328 enable_runtime(cpu_rq(cpu));
7329 return NOTIFY_OK;
7330
7331 default:
7332 return NOTIFY_DONE;
7333 }
7334 }
7335
7336 void __init sched_init_smp(void)
7337 {
7338 cpumask_var_t non_isolated_cpus;
7339
7340 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7341 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7342
7343 #if defined(CONFIG_NUMA)
7344 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7345 GFP_KERNEL);
7346 BUG_ON(sched_group_nodes_bycpu == NULL);
7347 #endif
7348 get_online_cpus();
7349 mutex_lock(&sched_domains_mutex);
7350 arch_init_sched_domains(cpu_active_mask);
7351 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7352 if (cpumask_empty(non_isolated_cpus))
7353 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7354 mutex_unlock(&sched_domains_mutex);
7355 put_online_cpus();
7356
7357 #ifndef CONFIG_CPUSETS
7358 /* XXX: Theoretical race here - CPU may be hotplugged now */
7359 hotcpu_notifier(update_sched_domains, 0);
7360 #endif
7361
7362 /* RT runtime code needs to handle some hotplug events */
7363 hotcpu_notifier(update_runtime, 0);
7364
7365 init_hrtick();
7366
7367 /* Move init over to a non-isolated CPU */
7368 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7369 BUG();
7370 sched_init_granularity();
7371 free_cpumask_var(non_isolated_cpus);
7372
7373 init_sched_rt_class();
7374 }
7375 #else
7376 void __init sched_init_smp(void)
7377 {
7378 sched_init_granularity();
7379 }
7380 #endif /* CONFIG_SMP */
7381
7382 const_debug unsigned int sysctl_timer_migration = 1;
7383
7384 int in_sched_functions(unsigned long addr)
7385 {
7386 return in_lock_functions(addr) ||
7387 (addr >= (unsigned long)__sched_text_start
7388 && addr < (unsigned long)__sched_text_end);
7389 }
7390
7391 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7392 {
7393 cfs_rq->tasks_timeline = RB_ROOT;
7394 INIT_LIST_HEAD(&cfs_rq->tasks);
7395 #ifdef CONFIG_FAIR_GROUP_SCHED
7396 cfs_rq->rq = rq;
7397 #endif
7398 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7399 }
7400
7401 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7402 {
7403 struct rt_prio_array *array;
7404 int i;
7405
7406 array = &rt_rq->active;
7407 for (i = 0; i < MAX_RT_PRIO; i++) {
7408 INIT_LIST_HEAD(array->queue + i);
7409 __clear_bit(i, array->bitmap);
7410 }
7411 /* delimiter for bitsearch: */
7412 __set_bit(MAX_RT_PRIO, array->bitmap);
7413
7414 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7415 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7416 #ifdef CONFIG_SMP
7417 rt_rq->highest_prio.next = MAX_RT_PRIO;
7418 #endif
7419 #endif
7420 #ifdef CONFIG_SMP
7421 rt_rq->rt_nr_migratory = 0;
7422 rt_rq->overloaded = 0;
7423 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7424 #endif
7425
7426 rt_rq->rt_time = 0;
7427 rt_rq->rt_throttled = 0;
7428 rt_rq->rt_runtime = 0;
7429 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7430
7431 #ifdef CONFIG_RT_GROUP_SCHED
7432 rt_rq->rt_nr_boosted = 0;
7433 rt_rq->rq = rq;
7434 #endif
7435 }
7436
7437 #ifdef CONFIG_FAIR_GROUP_SCHED
7438 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7439 struct sched_entity *se, int cpu, int add,
7440 struct sched_entity *parent)
7441 {
7442 struct rq *rq = cpu_rq(cpu);
7443 tg->cfs_rq[cpu] = cfs_rq;
7444 init_cfs_rq(cfs_rq, rq);
7445 cfs_rq->tg = tg;
7446 if (add)
7447 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7448
7449 tg->se[cpu] = se;
7450 /* se could be NULL for init_task_group */
7451 if (!se)
7452 return;
7453
7454 if (!parent)
7455 se->cfs_rq = &rq->cfs;
7456 else
7457 se->cfs_rq = parent->my_q;
7458
7459 se->my_q = cfs_rq;
7460 se->load.weight = tg->shares;
7461 se->load.inv_weight = 0;
7462 se->parent = parent;
7463 }
7464 #endif
7465
7466 #ifdef CONFIG_RT_GROUP_SCHED
7467 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7468 struct sched_rt_entity *rt_se, int cpu, int add,
7469 struct sched_rt_entity *parent)
7470 {
7471 struct rq *rq = cpu_rq(cpu);
7472
7473 tg->rt_rq[cpu] = rt_rq;
7474 init_rt_rq(rt_rq, rq);
7475 rt_rq->tg = tg;
7476 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7477 if (add)
7478 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7479
7480 tg->rt_se[cpu] = rt_se;
7481 if (!rt_se)
7482 return;
7483
7484 if (!parent)
7485 rt_se->rt_rq = &rq->rt;
7486 else
7487 rt_se->rt_rq = parent->my_q;
7488
7489 rt_se->my_q = rt_rq;
7490 rt_se->parent = parent;
7491 INIT_LIST_HEAD(&rt_se->run_list);
7492 }
7493 #endif
7494
7495 void __init sched_init(void)
7496 {
7497 int i, j;
7498 unsigned long alloc_size = 0, ptr;
7499
7500 #ifdef CONFIG_FAIR_GROUP_SCHED
7501 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7502 #endif
7503 #ifdef CONFIG_RT_GROUP_SCHED
7504 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7505 #endif
7506 #ifdef CONFIG_CPUMASK_OFFSTACK
7507 alloc_size += num_possible_cpus() * cpumask_size();
7508 #endif
7509 if (alloc_size) {
7510 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7511
7512 #ifdef CONFIG_FAIR_GROUP_SCHED
7513 init_task_group.se = (struct sched_entity **)ptr;
7514 ptr += nr_cpu_ids * sizeof(void **);
7515
7516 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7517 ptr += nr_cpu_ids * sizeof(void **);
7518
7519 #endif /* CONFIG_FAIR_GROUP_SCHED */
7520 #ifdef CONFIG_RT_GROUP_SCHED
7521 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7522 ptr += nr_cpu_ids * sizeof(void **);
7523
7524 init_task_group.rt_rq = (struct rt_rq **)ptr;
7525 ptr += nr_cpu_ids * sizeof(void **);
7526
7527 #endif /* CONFIG_RT_GROUP_SCHED */
7528 #ifdef CONFIG_CPUMASK_OFFSTACK
7529 for_each_possible_cpu(i) {
7530 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7531 ptr += cpumask_size();
7532 }
7533 #endif /* CONFIG_CPUMASK_OFFSTACK */
7534 }
7535
7536 #ifdef CONFIG_SMP
7537 init_defrootdomain();
7538 #endif
7539
7540 init_rt_bandwidth(&def_rt_bandwidth,
7541 global_rt_period(), global_rt_runtime());
7542
7543 #ifdef CONFIG_RT_GROUP_SCHED
7544 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7545 global_rt_period(), global_rt_runtime());
7546 #endif /* CONFIG_RT_GROUP_SCHED */
7547
7548 #ifdef CONFIG_CGROUP_SCHED
7549 list_add(&init_task_group.list, &task_groups);
7550 INIT_LIST_HEAD(&init_task_group.children);
7551
7552 #endif /* CONFIG_CGROUP_SCHED */
7553
7554 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7555 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7556 __alignof__(unsigned long));
7557 #endif
7558 for_each_possible_cpu(i) {
7559 struct rq *rq;
7560
7561 rq = cpu_rq(i);
7562 raw_spin_lock_init(&rq->lock);
7563 rq->nr_running = 0;
7564 rq->calc_load_active = 0;
7565 rq->calc_load_update = jiffies + LOAD_FREQ;
7566 init_cfs_rq(&rq->cfs, rq);
7567 init_rt_rq(&rq->rt, rq);
7568 #ifdef CONFIG_FAIR_GROUP_SCHED
7569 init_task_group.shares = init_task_group_load;
7570 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7571 #ifdef CONFIG_CGROUP_SCHED
7572 /*
7573 * How much cpu bandwidth does init_task_group get?
7574 *
7575 * In case of task-groups formed thr' the cgroup filesystem, it
7576 * gets 100% of the cpu resources in the system. This overall
7577 * system cpu resource is divided among the tasks of
7578 * init_task_group and its child task-groups in a fair manner,
7579 * based on each entity's (task or task-group's) weight
7580 * (se->load.weight).
7581 *
7582 * In other words, if init_task_group has 10 tasks of weight
7583 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7584 * then A0's share of the cpu resource is:
7585 *
7586 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7587 *
7588 * We achieve this by letting init_task_group's tasks sit
7589 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7590 */
7591 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7592 #endif
7593 #endif /* CONFIG_FAIR_GROUP_SCHED */
7594
7595 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7596 #ifdef CONFIG_RT_GROUP_SCHED
7597 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7598 #ifdef CONFIG_CGROUP_SCHED
7599 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7600 #endif
7601 #endif
7602
7603 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7604 rq->cpu_load[j] = 0;
7605 #ifdef CONFIG_SMP
7606 rq->sd = NULL;
7607 rq->rd = NULL;
7608 rq->post_schedule = 0;
7609 rq->active_balance = 0;
7610 rq->next_balance = jiffies;
7611 rq->push_cpu = 0;
7612 rq->cpu = i;
7613 rq->online = 0;
7614 rq->idle_stamp = 0;
7615 rq->avg_idle = 2*sysctl_sched_migration_cost;
7616 rq_attach_root(rq, &def_root_domain);
7617 #endif
7618 init_rq_hrtick(rq);
7619 atomic_set(&rq->nr_iowait, 0);
7620 }
7621
7622 set_load_weight(&init_task);
7623
7624 #ifdef CONFIG_PREEMPT_NOTIFIERS
7625 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7626 #endif
7627
7628 #ifdef CONFIG_SMP
7629 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7630 #endif
7631
7632 #ifdef CONFIG_RT_MUTEXES
7633 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7634 #endif
7635
7636 /*
7637 * The boot idle thread does lazy MMU switching as well:
7638 */
7639 atomic_inc(&init_mm.mm_count);
7640 enter_lazy_tlb(&init_mm, current);
7641
7642 /*
7643 * Make us the idle thread. Technically, schedule() should not be
7644 * called from this thread, however somewhere below it might be,
7645 * but because we are the idle thread, we just pick up running again
7646 * when this runqueue becomes "idle".
7647 */
7648 init_idle(current, smp_processor_id());
7649
7650 calc_load_update = jiffies + LOAD_FREQ;
7651
7652 /*
7653 * During early bootup we pretend to be a normal task:
7654 */
7655 current->sched_class = &fair_sched_class;
7656
7657 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7658 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7659 #ifdef CONFIG_SMP
7660 #ifdef CONFIG_NO_HZ
7661 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7662 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7663 #endif
7664 /* May be allocated at isolcpus cmdline parse time */
7665 if (cpu_isolated_map == NULL)
7666 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7667 #endif /* SMP */
7668
7669 perf_event_init();
7670
7671 scheduler_running = 1;
7672 }
7673
7674 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7675 static inline int preempt_count_equals(int preempt_offset)
7676 {
7677 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7678
7679 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7680 }
7681
7682 void __might_sleep(const char *file, int line, int preempt_offset)
7683 {
7684 #ifdef in_atomic
7685 static unsigned long prev_jiffy; /* ratelimiting */
7686
7687 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7688 system_state != SYSTEM_RUNNING || oops_in_progress)
7689 return;
7690 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7691 return;
7692 prev_jiffy = jiffies;
7693
7694 printk(KERN_ERR
7695 "BUG: sleeping function called from invalid context at %s:%d\n",
7696 file, line);
7697 printk(KERN_ERR
7698 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7699 in_atomic(), irqs_disabled(),
7700 current->pid, current->comm);
7701
7702 debug_show_held_locks(current);
7703 if (irqs_disabled())
7704 print_irqtrace_events(current);
7705 dump_stack();
7706 #endif
7707 }
7708 EXPORT_SYMBOL(__might_sleep);
7709 #endif
7710
7711 #ifdef CONFIG_MAGIC_SYSRQ
7712 static void normalize_task(struct rq *rq, struct task_struct *p)
7713 {
7714 int on_rq;
7715
7716 on_rq = p->se.on_rq;
7717 if (on_rq)
7718 deactivate_task(rq, p, 0);
7719 __setscheduler(rq, p, SCHED_NORMAL, 0);
7720 if (on_rq) {
7721 activate_task(rq, p, 0);
7722 resched_task(rq->curr);
7723 }
7724 }
7725
7726 void normalize_rt_tasks(void)
7727 {
7728 struct task_struct *g, *p;
7729 unsigned long flags;
7730 struct rq *rq;
7731
7732 read_lock_irqsave(&tasklist_lock, flags);
7733 do_each_thread(g, p) {
7734 /*
7735 * Only normalize user tasks:
7736 */
7737 if (!p->mm)
7738 continue;
7739
7740 p->se.exec_start = 0;
7741 #ifdef CONFIG_SCHEDSTATS
7742 p->se.statistics.wait_start = 0;
7743 p->se.statistics.sleep_start = 0;
7744 p->se.statistics.block_start = 0;
7745 #endif
7746
7747 if (!rt_task(p)) {
7748 /*
7749 * Renice negative nice level userspace
7750 * tasks back to 0:
7751 */
7752 if (TASK_NICE(p) < 0 && p->mm)
7753 set_user_nice(p, 0);
7754 continue;
7755 }
7756
7757 raw_spin_lock(&p->pi_lock);
7758 rq = __task_rq_lock(p);
7759
7760 normalize_task(rq, p);
7761
7762 __task_rq_unlock(rq);
7763 raw_spin_unlock(&p->pi_lock);
7764 } while_each_thread(g, p);
7765
7766 read_unlock_irqrestore(&tasklist_lock, flags);
7767 }
7768
7769 #endif /* CONFIG_MAGIC_SYSRQ */
7770
7771 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7772 /*
7773 * These functions are only useful for the IA64 MCA handling, or kdb.
7774 *
7775 * They can only be called when the whole system has been
7776 * stopped - every CPU needs to be quiescent, and no scheduling
7777 * activity can take place. Using them for anything else would
7778 * be a serious bug, and as a result, they aren't even visible
7779 * under any other configuration.
7780 */
7781
7782 /**
7783 * curr_task - return the current task for a given cpu.
7784 * @cpu: the processor in question.
7785 *
7786 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7787 */
7788 struct task_struct *curr_task(int cpu)
7789 {
7790 return cpu_curr(cpu);
7791 }
7792
7793 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7794
7795 #ifdef CONFIG_IA64
7796 /**
7797 * set_curr_task - set the current task for a given cpu.
7798 * @cpu: the processor in question.
7799 * @p: the task pointer to set.
7800 *
7801 * Description: This function must only be used when non-maskable interrupts
7802 * are serviced on a separate stack. It allows the architecture to switch the
7803 * notion of the current task on a cpu in a non-blocking manner. This function
7804 * must be called with all CPU's synchronized, and interrupts disabled, the
7805 * and caller must save the original value of the current task (see
7806 * curr_task() above) and restore that value before reenabling interrupts and
7807 * re-starting the system.
7808 *
7809 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7810 */
7811 void set_curr_task(int cpu, struct task_struct *p)
7812 {
7813 cpu_curr(cpu) = p;
7814 }
7815
7816 #endif
7817
7818 #ifdef CONFIG_FAIR_GROUP_SCHED
7819 static void free_fair_sched_group(struct task_group *tg)
7820 {
7821 int i;
7822
7823 for_each_possible_cpu(i) {
7824 if (tg->cfs_rq)
7825 kfree(tg->cfs_rq[i]);
7826 if (tg->se)
7827 kfree(tg->se[i]);
7828 }
7829
7830 kfree(tg->cfs_rq);
7831 kfree(tg->se);
7832 }
7833
7834 static
7835 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7836 {
7837 struct cfs_rq *cfs_rq;
7838 struct sched_entity *se;
7839 struct rq *rq;
7840 int i;
7841
7842 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7843 if (!tg->cfs_rq)
7844 goto err;
7845 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7846 if (!tg->se)
7847 goto err;
7848
7849 tg->shares = NICE_0_LOAD;
7850
7851 for_each_possible_cpu(i) {
7852 rq = cpu_rq(i);
7853
7854 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7855 GFP_KERNEL, cpu_to_node(i));
7856 if (!cfs_rq)
7857 goto err;
7858
7859 se = kzalloc_node(sizeof(struct sched_entity),
7860 GFP_KERNEL, cpu_to_node(i));
7861 if (!se)
7862 goto err_free_rq;
7863
7864 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7865 }
7866
7867 return 1;
7868
7869 err_free_rq:
7870 kfree(cfs_rq);
7871 err:
7872 return 0;
7873 }
7874
7875 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7876 {
7877 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7878 &cpu_rq(cpu)->leaf_cfs_rq_list);
7879 }
7880
7881 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7882 {
7883 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7884 }
7885 #else /* !CONFG_FAIR_GROUP_SCHED */
7886 static inline void free_fair_sched_group(struct task_group *tg)
7887 {
7888 }
7889
7890 static inline
7891 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7892 {
7893 return 1;
7894 }
7895
7896 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7897 {
7898 }
7899
7900 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7901 {
7902 }
7903 #endif /* CONFIG_FAIR_GROUP_SCHED */
7904
7905 #ifdef CONFIG_RT_GROUP_SCHED
7906 static void free_rt_sched_group(struct task_group *tg)
7907 {
7908 int i;
7909
7910 destroy_rt_bandwidth(&tg->rt_bandwidth);
7911
7912 for_each_possible_cpu(i) {
7913 if (tg->rt_rq)
7914 kfree(tg->rt_rq[i]);
7915 if (tg->rt_se)
7916 kfree(tg->rt_se[i]);
7917 }
7918
7919 kfree(tg->rt_rq);
7920 kfree(tg->rt_se);
7921 }
7922
7923 static
7924 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7925 {
7926 struct rt_rq *rt_rq;
7927 struct sched_rt_entity *rt_se;
7928 struct rq *rq;
7929 int i;
7930
7931 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
7932 if (!tg->rt_rq)
7933 goto err;
7934 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
7935 if (!tg->rt_se)
7936 goto err;
7937
7938 init_rt_bandwidth(&tg->rt_bandwidth,
7939 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
7940
7941 for_each_possible_cpu(i) {
7942 rq = cpu_rq(i);
7943
7944 rt_rq = kzalloc_node(sizeof(struct rt_rq),
7945 GFP_KERNEL, cpu_to_node(i));
7946 if (!rt_rq)
7947 goto err;
7948
7949 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
7950 GFP_KERNEL, cpu_to_node(i));
7951 if (!rt_se)
7952 goto err_free_rq;
7953
7954 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
7955 }
7956
7957 return 1;
7958
7959 err_free_rq:
7960 kfree(rt_rq);
7961 err:
7962 return 0;
7963 }
7964
7965 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7966 {
7967 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7968 &cpu_rq(cpu)->leaf_rt_rq_list);
7969 }
7970
7971 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7972 {
7973 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7974 }
7975 #else /* !CONFIG_RT_GROUP_SCHED */
7976 static inline void free_rt_sched_group(struct task_group *tg)
7977 {
7978 }
7979
7980 static inline
7981 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7982 {
7983 return 1;
7984 }
7985
7986 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7987 {
7988 }
7989
7990 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7991 {
7992 }
7993 #endif /* CONFIG_RT_GROUP_SCHED */
7994
7995 #ifdef CONFIG_CGROUP_SCHED
7996 static void free_sched_group(struct task_group *tg)
7997 {
7998 free_fair_sched_group(tg);
7999 free_rt_sched_group(tg);
8000 kfree(tg);
8001 }
8002
8003 /* allocate runqueue etc for a new task group */
8004 struct task_group *sched_create_group(struct task_group *parent)
8005 {
8006 struct task_group *tg;
8007 unsigned long flags;
8008 int i;
8009
8010 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8011 if (!tg)
8012 return ERR_PTR(-ENOMEM);
8013
8014 if (!alloc_fair_sched_group(tg, parent))
8015 goto err;
8016
8017 if (!alloc_rt_sched_group(tg, parent))
8018 goto err;
8019
8020 spin_lock_irqsave(&task_group_lock, flags);
8021 for_each_possible_cpu(i) {
8022 register_fair_sched_group(tg, i);
8023 register_rt_sched_group(tg, i);
8024 }
8025 list_add_rcu(&tg->list, &task_groups);
8026
8027 WARN_ON(!parent); /* root should already exist */
8028
8029 tg->parent = parent;
8030 INIT_LIST_HEAD(&tg->children);
8031 list_add_rcu(&tg->siblings, &parent->children);
8032 spin_unlock_irqrestore(&task_group_lock, flags);
8033
8034 return tg;
8035
8036 err:
8037 free_sched_group(tg);
8038 return ERR_PTR(-ENOMEM);
8039 }
8040
8041 /* rcu callback to free various structures associated with a task group */
8042 static void free_sched_group_rcu(struct rcu_head *rhp)
8043 {
8044 /* now it should be safe to free those cfs_rqs */
8045 free_sched_group(container_of(rhp, struct task_group, rcu));
8046 }
8047
8048 /* Destroy runqueue etc associated with a task group */
8049 void sched_destroy_group(struct task_group *tg)
8050 {
8051 unsigned long flags;
8052 int i;
8053
8054 spin_lock_irqsave(&task_group_lock, flags);
8055 for_each_possible_cpu(i) {
8056 unregister_fair_sched_group(tg, i);
8057 unregister_rt_sched_group(tg, i);
8058 }
8059 list_del_rcu(&tg->list);
8060 list_del_rcu(&tg->siblings);
8061 spin_unlock_irqrestore(&task_group_lock, flags);
8062
8063 /* wait for possible concurrent references to cfs_rqs complete */
8064 call_rcu(&tg->rcu, free_sched_group_rcu);
8065 }
8066
8067 /* change task's runqueue when it moves between groups.
8068 * The caller of this function should have put the task in its new group
8069 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8070 * reflect its new group.
8071 */
8072 void sched_move_task(struct task_struct *tsk)
8073 {
8074 int on_rq, running;
8075 unsigned long flags;
8076 struct rq *rq;
8077
8078 rq = task_rq_lock(tsk, &flags);
8079
8080 running = task_current(rq, tsk);
8081 on_rq = tsk->se.on_rq;
8082
8083 if (on_rq)
8084 dequeue_task(rq, tsk, 0);
8085 if (unlikely(running))
8086 tsk->sched_class->put_prev_task(rq, tsk);
8087
8088 set_task_rq(tsk, task_cpu(tsk));
8089
8090 #ifdef CONFIG_FAIR_GROUP_SCHED
8091 if (tsk->sched_class->moved_group)
8092 tsk->sched_class->moved_group(tsk, on_rq);
8093 #endif
8094
8095 if (unlikely(running))
8096 tsk->sched_class->set_curr_task(rq);
8097 if (on_rq)
8098 enqueue_task(rq, tsk, 0);
8099
8100 task_rq_unlock(rq, &flags);
8101 }
8102 #endif /* CONFIG_CGROUP_SCHED */
8103
8104 #ifdef CONFIG_FAIR_GROUP_SCHED
8105 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8106 {
8107 struct cfs_rq *cfs_rq = se->cfs_rq;
8108 int on_rq;
8109
8110 on_rq = se->on_rq;
8111 if (on_rq)
8112 dequeue_entity(cfs_rq, se, 0);
8113
8114 se->load.weight = shares;
8115 se->load.inv_weight = 0;
8116
8117 if (on_rq)
8118 enqueue_entity(cfs_rq, se, 0);
8119 }
8120
8121 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8122 {
8123 struct cfs_rq *cfs_rq = se->cfs_rq;
8124 struct rq *rq = cfs_rq->rq;
8125 unsigned long flags;
8126
8127 raw_spin_lock_irqsave(&rq->lock, flags);
8128 __set_se_shares(se, shares);
8129 raw_spin_unlock_irqrestore(&rq->lock, flags);
8130 }
8131
8132 static DEFINE_MUTEX(shares_mutex);
8133
8134 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8135 {
8136 int i;
8137 unsigned long flags;
8138
8139 /*
8140 * We can't change the weight of the root cgroup.
8141 */
8142 if (!tg->se[0])
8143 return -EINVAL;
8144
8145 if (shares < MIN_SHARES)
8146 shares = MIN_SHARES;
8147 else if (shares > MAX_SHARES)
8148 shares = MAX_SHARES;
8149
8150 mutex_lock(&shares_mutex);
8151 if (tg->shares == shares)
8152 goto done;
8153
8154 spin_lock_irqsave(&task_group_lock, flags);
8155 for_each_possible_cpu(i)
8156 unregister_fair_sched_group(tg, i);
8157 list_del_rcu(&tg->siblings);
8158 spin_unlock_irqrestore(&task_group_lock, flags);
8159
8160 /* wait for any ongoing reference to this group to finish */
8161 synchronize_sched();
8162
8163 /*
8164 * Now we are free to modify the group's share on each cpu
8165 * w/o tripping rebalance_share or load_balance_fair.
8166 */
8167 tg->shares = shares;
8168 for_each_possible_cpu(i) {
8169 /*
8170 * force a rebalance
8171 */
8172 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8173 set_se_shares(tg->se[i], shares);
8174 }
8175
8176 /*
8177 * Enable load balance activity on this group, by inserting it back on
8178 * each cpu's rq->leaf_cfs_rq_list.
8179 */
8180 spin_lock_irqsave(&task_group_lock, flags);
8181 for_each_possible_cpu(i)
8182 register_fair_sched_group(tg, i);
8183 list_add_rcu(&tg->siblings, &tg->parent->children);
8184 spin_unlock_irqrestore(&task_group_lock, flags);
8185 done:
8186 mutex_unlock(&shares_mutex);
8187 return 0;
8188 }
8189
8190 unsigned long sched_group_shares(struct task_group *tg)
8191 {
8192 return tg->shares;
8193 }
8194 #endif
8195
8196 #ifdef CONFIG_RT_GROUP_SCHED
8197 /*
8198 * Ensure that the real time constraints are schedulable.
8199 */
8200 static DEFINE_MUTEX(rt_constraints_mutex);
8201
8202 static unsigned long to_ratio(u64 period, u64 runtime)
8203 {
8204 if (runtime == RUNTIME_INF)
8205 return 1ULL << 20;
8206
8207 return div64_u64(runtime << 20, period);
8208 }
8209
8210 /* Must be called with tasklist_lock held */
8211 static inline int tg_has_rt_tasks(struct task_group *tg)
8212 {
8213 struct task_struct *g, *p;
8214
8215 do_each_thread(g, p) {
8216 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8217 return 1;
8218 } while_each_thread(g, p);
8219
8220 return 0;
8221 }
8222
8223 struct rt_schedulable_data {
8224 struct task_group *tg;
8225 u64 rt_period;
8226 u64 rt_runtime;
8227 };
8228
8229 static int tg_schedulable(struct task_group *tg, void *data)
8230 {
8231 struct rt_schedulable_data *d = data;
8232 struct task_group *child;
8233 unsigned long total, sum = 0;
8234 u64 period, runtime;
8235
8236 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8237 runtime = tg->rt_bandwidth.rt_runtime;
8238
8239 if (tg == d->tg) {
8240 period = d->rt_period;
8241 runtime = d->rt_runtime;
8242 }
8243
8244 /*
8245 * Cannot have more runtime than the period.
8246 */
8247 if (runtime > period && runtime != RUNTIME_INF)
8248 return -EINVAL;
8249
8250 /*
8251 * Ensure we don't starve existing RT tasks.
8252 */
8253 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8254 return -EBUSY;
8255
8256 total = to_ratio(period, runtime);
8257
8258 /*
8259 * Nobody can have more than the global setting allows.
8260 */
8261 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8262 return -EINVAL;
8263
8264 /*
8265 * The sum of our children's runtime should not exceed our own.
8266 */
8267 list_for_each_entry_rcu(child, &tg->children, siblings) {
8268 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8269 runtime = child->rt_bandwidth.rt_runtime;
8270
8271 if (child == d->tg) {
8272 period = d->rt_period;
8273 runtime = d->rt_runtime;
8274 }
8275
8276 sum += to_ratio(period, runtime);
8277 }
8278
8279 if (sum > total)
8280 return -EINVAL;
8281
8282 return 0;
8283 }
8284
8285 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8286 {
8287 struct rt_schedulable_data data = {
8288 .tg = tg,
8289 .rt_period = period,
8290 .rt_runtime = runtime,
8291 };
8292
8293 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8294 }
8295
8296 static int tg_set_bandwidth(struct task_group *tg,
8297 u64 rt_period, u64 rt_runtime)
8298 {
8299 int i, err = 0;
8300
8301 mutex_lock(&rt_constraints_mutex);
8302 read_lock(&tasklist_lock);
8303 err = __rt_schedulable(tg, rt_period, rt_runtime);
8304 if (err)
8305 goto unlock;
8306
8307 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8308 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8309 tg->rt_bandwidth.rt_runtime = rt_runtime;
8310
8311 for_each_possible_cpu(i) {
8312 struct rt_rq *rt_rq = tg->rt_rq[i];
8313
8314 raw_spin_lock(&rt_rq->rt_runtime_lock);
8315 rt_rq->rt_runtime = rt_runtime;
8316 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8317 }
8318 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8319 unlock:
8320 read_unlock(&tasklist_lock);
8321 mutex_unlock(&rt_constraints_mutex);
8322
8323 return err;
8324 }
8325
8326 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8327 {
8328 u64 rt_runtime, rt_period;
8329
8330 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8331 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8332 if (rt_runtime_us < 0)
8333 rt_runtime = RUNTIME_INF;
8334
8335 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8336 }
8337
8338 long sched_group_rt_runtime(struct task_group *tg)
8339 {
8340 u64 rt_runtime_us;
8341
8342 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8343 return -1;
8344
8345 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8346 do_div(rt_runtime_us, NSEC_PER_USEC);
8347 return rt_runtime_us;
8348 }
8349
8350 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8351 {
8352 u64 rt_runtime, rt_period;
8353
8354 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8355 rt_runtime = tg->rt_bandwidth.rt_runtime;
8356
8357 if (rt_period == 0)
8358 return -EINVAL;
8359
8360 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8361 }
8362
8363 long sched_group_rt_period(struct task_group *tg)
8364 {
8365 u64 rt_period_us;
8366
8367 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8368 do_div(rt_period_us, NSEC_PER_USEC);
8369 return rt_period_us;
8370 }
8371
8372 static int sched_rt_global_constraints(void)
8373 {
8374 u64 runtime, period;
8375 int ret = 0;
8376
8377 if (sysctl_sched_rt_period <= 0)
8378 return -EINVAL;
8379
8380 runtime = global_rt_runtime();
8381 period = global_rt_period();
8382
8383 /*
8384 * Sanity check on the sysctl variables.
8385 */
8386 if (runtime > period && runtime != RUNTIME_INF)
8387 return -EINVAL;
8388
8389 mutex_lock(&rt_constraints_mutex);
8390 read_lock(&tasklist_lock);
8391 ret = __rt_schedulable(NULL, 0, 0);
8392 read_unlock(&tasklist_lock);
8393 mutex_unlock(&rt_constraints_mutex);
8394
8395 return ret;
8396 }
8397
8398 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8399 {
8400 /* Don't accept realtime tasks when there is no way for them to run */
8401 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8402 return 0;
8403
8404 return 1;
8405 }
8406
8407 #else /* !CONFIG_RT_GROUP_SCHED */
8408 static int sched_rt_global_constraints(void)
8409 {
8410 unsigned long flags;
8411 int i;
8412
8413 if (sysctl_sched_rt_period <= 0)
8414 return -EINVAL;
8415
8416 /*
8417 * There's always some RT tasks in the root group
8418 * -- migration, kstopmachine etc..
8419 */
8420 if (sysctl_sched_rt_runtime == 0)
8421 return -EBUSY;
8422
8423 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8424 for_each_possible_cpu(i) {
8425 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8426
8427 raw_spin_lock(&rt_rq->rt_runtime_lock);
8428 rt_rq->rt_runtime = global_rt_runtime();
8429 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8430 }
8431 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8432
8433 return 0;
8434 }
8435 #endif /* CONFIG_RT_GROUP_SCHED */
8436
8437 int sched_rt_handler(struct ctl_table *table, int write,
8438 void __user *buffer, size_t *lenp,
8439 loff_t *ppos)
8440 {
8441 int ret;
8442 int old_period, old_runtime;
8443 static DEFINE_MUTEX(mutex);
8444
8445 mutex_lock(&mutex);
8446 old_period = sysctl_sched_rt_period;
8447 old_runtime = sysctl_sched_rt_runtime;
8448
8449 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8450
8451 if (!ret && write) {
8452 ret = sched_rt_global_constraints();
8453 if (ret) {
8454 sysctl_sched_rt_period = old_period;
8455 sysctl_sched_rt_runtime = old_runtime;
8456 } else {
8457 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8458 def_rt_bandwidth.rt_period =
8459 ns_to_ktime(global_rt_period());
8460 }
8461 }
8462 mutex_unlock(&mutex);
8463
8464 return ret;
8465 }
8466
8467 #ifdef CONFIG_CGROUP_SCHED
8468
8469 /* return corresponding task_group object of a cgroup */
8470 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8471 {
8472 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8473 struct task_group, css);
8474 }
8475
8476 static struct cgroup_subsys_state *
8477 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8478 {
8479 struct task_group *tg, *parent;
8480
8481 if (!cgrp->parent) {
8482 /* This is early initialization for the top cgroup */
8483 return &init_task_group.css;
8484 }
8485
8486 parent = cgroup_tg(cgrp->parent);
8487 tg = sched_create_group(parent);
8488 if (IS_ERR(tg))
8489 return ERR_PTR(-ENOMEM);
8490
8491 return &tg->css;
8492 }
8493
8494 static void
8495 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8496 {
8497 struct task_group *tg = cgroup_tg(cgrp);
8498
8499 sched_destroy_group(tg);
8500 }
8501
8502 static int
8503 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8504 {
8505 #ifdef CONFIG_RT_GROUP_SCHED
8506 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8507 return -EINVAL;
8508 #else
8509 /* We don't support RT-tasks being in separate groups */
8510 if (tsk->sched_class != &fair_sched_class)
8511 return -EINVAL;
8512 #endif
8513 return 0;
8514 }
8515
8516 static int
8517 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8518 struct task_struct *tsk, bool threadgroup)
8519 {
8520 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8521 if (retval)
8522 return retval;
8523 if (threadgroup) {
8524 struct task_struct *c;
8525 rcu_read_lock();
8526 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8527 retval = cpu_cgroup_can_attach_task(cgrp, c);
8528 if (retval) {
8529 rcu_read_unlock();
8530 return retval;
8531 }
8532 }
8533 rcu_read_unlock();
8534 }
8535 return 0;
8536 }
8537
8538 static void
8539 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8540 struct cgroup *old_cont, struct task_struct *tsk,
8541 bool threadgroup)
8542 {
8543 sched_move_task(tsk);
8544 if (threadgroup) {
8545 struct task_struct *c;
8546 rcu_read_lock();
8547 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8548 sched_move_task(c);
8549 }
8550 rcu_read_unlock();
8551 }
8552 }
8553
8554 #ifdef CONFIG_FAIR_GROUP_SCHED
8555 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8556 u64 shareval)
8557 {
8558 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8559 }
8560
8561 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8562 {
8563 struct task_group *tg = cgroup_tg(cgrp);
8564
8565 return (u64) tg->shares;
8566 }
8567 #endif /* CONFIG_FAIR_GROUP_SCHED */
8568
8569 #ifdef CONFIG_RT_GROUP_SCHED
8570 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8571 s64 val)
8572 {
8573 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8574 }
8575
8576 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8577 {
8578 return sched_group_rt_runtime(cgroup_tg(cgrp));
8579 }
8580
8581 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8582 u64 rt_period_us)
8583 {
8584 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8585 }
8586
8587 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8588 {
8589 return sched_group_rt_period(cgroup_tg(cgrp));
8590 }
8591 #endif /* CONFIG_RT_GROUP_SCHED */
8592
8593 static struct cftype cpu_files[] = {
8594 #ifdef CONFIG_FAIR_GROUP_SCHED
8595 {
8596 .name = "shares",
8597 .read_u64 = cpu_shares_read_u64,
8598 .write_u64 = cpu_shares_write_u64,
8599 },
8600 #endif
8601 #ifdef CONFIG_RT_GROUP_SCHED
8602 {
8603 .name = "rt_runtime_us",
8604 .read_s64 = cpu_rt_runtime_read,
8605 .write_s64 = cpu_rt_runtime_write,
8606 },
8607 {
8608 .name = "rt_period_us",
8609 .read_u64 = cpu_rt_period_read_uint,
8610 .write_u64 = cpu_rt_period_write_uint,
8611 },
8612 #endif
8613 };
8614
8615 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8616 {
8617 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8618 }
8619
8620 struct cgroup_subsys cpu_cgroup_subsys = {
8621 .name = "cpu",
8622 .create = cpu_cgroup_create,
8623 .destroy = cpu_cgroup_destroy,
8624 .can_attach = cpu_cgroup_can_attach,
8625 .attach = cpu_cgroup_attach,
8626 .populate = cpu_cgroup_populate,
8627 .subsys_id = cpu_cgroup_subsys_id,
8628 .early_init = 1,
8629 };
8630
8631 #endif /* CONFIG_CGROUP_SCHED */
8632
8633 #ifdef CONFIG_CGROUP_CPUACCT
8634
8635 /*
8636 * CPU accounting code for task groups.
8637 *
8638 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8639 * (balbir@in.ibm.com).
8640 */
8641
8642 /* track cpu usage of a group of tasks and its child groups */
8643 struct cpuacct {
8644 struct cgroup_subsys_state css;
8645 /* cpuusage holds pointer to a u64-type object on every cpu */
8646 u64 __percpu *cpuusage;
8647 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8648 struct cpuacct *parent;
8649 };
8650
8651 struct cgroup_subsys cpuacct_subsys;
8652
8653 /* return cpu accounting group corresponding to this container */
8654 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8655 {
8656 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8657 struct cpuacct, css);
8658 }
8659
8660 /* return cpu accounting group to which this task belongs */
8661 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8662 {
8663 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8664 struct cpuacct, css);
8665 }
8666
8667 /* create a new cpu accounting group */
8668 static struct cgroup_subsys_state *cpuacct_create(
8669 struct cgroup_subsys *ss, struct cgroup *cgrp)
8670 {
8671 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8672 int i;
8673
8674 if (!ca)
8675 goto out;
8676
8677 ca->cpuusage = alloc_percpu(u64);
8678 if (!ca->cpuusage)
8679 goto out_free_ca;
8680
8681 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8682 if (percpu_counter_init(&ca->cpustat[i], 0))
8683 goto out_free_counters;
8684
8685 if (cgrp->parent)
8686 ca->parent = cgroup_ca(cgrp->parent);
8687
8688 return &ca->css;
8689
8690 out_free_counters:
8691 while (--i >= 0)
8692 percpu_counter_destroy(&ca->cpustat[i]);
8693 free_percpu(ca->cpuusage);
8694 out_free_ca:
8695 kfree(ca);
8696 out:
8697 return ERR_PTR(-ENOMEM);
8698 }
8699
8700 /* destroy an existing cpu accounting group */
8701 static void
8702 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8703 {
8704 struct cpuacct *ca = cgroup_ca(cgrp);
8705 int i;
8706
8707 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8708 percpu_counter_destroy(&ca->cpustat[i]);
8709 free_percpu(ca->cpuusage);
8710 kfree(ca);
8711 }
8712
8713 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8714 {
8715 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8716 u64 data;
8717
8718 #ifndef CONFIG_64BIT
8719 /*
8720 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8721 */
8722 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8723 data = *cpuusage;
8724 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8725 #else
8726 data = *cpuusage;
8727 #endif
8728
8729 return data;
8730 }
8731
8732 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8733 {
8734 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8735
8736 #ifndef CONFIG_64BIT
8737 /*
8738 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8739 */
8740 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8741 *cpuusage = val;
8742 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8743 #else
8744 *cpuusage = val;
8745 #endif
8746 }
8747
8748 /* return total cpu usage (in nanoseconds) of a group */
8749 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8750 {
8751 struct cpuacct *ca = cgroup_ca(cgrp);
8752 u64 totalcpuusage = 0;
8753 int i;
8754
8755 for_each_present_cpu(i)
8756 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8757
8758 return totalcpuusage;
8759 }
8760
8761 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8762 u64 reset)
8763 {
8764 struct cpuacct *ca = cgroup_ca(cgrp);
8765 int err = 0;
8766 int i;
8767
8768 if (reset) {
8769 err = -EINVAL;
8770 goto out;
8771 }
8772
8773 for_each_present_cpu(i)
8774 cpuacct_cpuusage_write(ca, i, 0);
8775
8776 out:
8777 return err;
8778 }
8779
8780 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8781 struct seq_file *m)
8782 {
8783 struct cpuacct *ca = cgroup_ca(cgroup);
8784 u64 percpu;
8785 int i;
8786
8787 for_each_present_cpu(i) {
8788 percpu = cpuacct_cpuusage_read(ca, i);
8789 seq_printf(m, "%llu ", (unsigned long long) percpu);
8790 }
8791 seq_printf(m, "\n");
8792 return 0;
8793 }
8794
8795 static const char *cpuacct_stat_desc[] = {
8796 [CPUACCT_STAT_USER] = "user",
8797 [CPUACCT_STAT_SYSTEM] = "system",
8798 };
8799
8800 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8801 struct cgroup_map_cb *cb)
8802 {
8803 struct cpuacct *ca = cgroup_ca(cgrp);
8804 int i;
8805
8806 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8807 s64 val = percpu_counter_read(&ca->cpustat[i]);
8808 val = cputime64_to_clock_t(val);
8809 cb->fill(cb, cpuacct_stat_desc[i], val);
8810 }
8811 return 0;
8812 }
8813
8814 static struct cftype files[] = {
8815 {
8816 .name = "usage",
8817 .read_u64 = cpuusage_read,
8818 .write_u64 = cpuusage_write,
8819 },
8820 {
8821 .name = "usage_percpu",
8822 .read_seq_string = cpuacct_percpu_seq_read,
8823 },
8824 {
8825 .name = "stat",
8826 .read_map = cpuacct_stats_show,
8827 },
8828 };
8829
8830 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8831 {
8832 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8833 }
8834
8835 /*
8836 * charge this task's execution time to its accounting group.
8837 *
8838 * called with rq->lock held.
8839 */
8840 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8841 {
8842 struct cpuacct *ca;
8843 int cpu;
8844
8845 if (unlikely(!cpuacct_subsys.active))
8846 return;
8847
8848 cpu = task_cpu(tsk);
8849
8850 rcu_read_lock();
8851
8852 ca = task_ca(tsk);
8853
8854 for (; ca; ca = ca->parent) {
8855 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8856 *cpuusage += cputime;
8857 }
8858
8859 rcu_read_unlock();
8860 }
8861
8862 /*
8863 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8864 * in cputime_t units. As a result, cpuacct_update_stats calls
8865 * percpu_counter_add with values large enough to always overflow the
8866 * per cpu batch limit causing bad SMP scalability.
8867 *
8868 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8869 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8870 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8871 */
8872 #ifdef CONFIG_SMP
8873 #define CPUACCT_BATCH \
8874 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8875 #else
8876 #define CPUACCT_BATCH 0
8877 #endif
8878
8879 /*
8880 * Charge the system/user time to the task's accounting group.
8881 */
8882 static void cpuacct_update_stats(struct task_struct *tsk,
8883 enum cpuacct_stat_index idx, cputime_t val)
8884 {
8885 struct cpuacct *ca;
8886 int batch = CPUACCT_BATCH;
8887
8888 if (unlikely(!cpuacct_subsys.active))
8889 return;
8890
8891 rcu_read_lock();
8892 ca = task_ca(tsk);
8893
8894 do {
8895 __percpu_counter_add(&ca->cpustat[idx], val, batch);
8896 ca = ca->parent;
8897 } while (ca);
8898 rcu_read_unlock();
8899 }
8900
8901 struct cgroup_subsys cpuacct_subsys = {
8902 .name = "cpuacct",
8903 .create = cpuacct_create,
8904 .destroy = cpuacct_destroy,
8905 .populate = cpuacct_populate,
8906 .subsys_id = cpuacct_subsys_id,
8907 };
8908 #endif /* CONFIG_CGROUP_CPUACCT */
8909
8910 #ifndef CONFIG_SMP
8911
8912 void synchronize_sched_expedited(void)
8913 {
8914 barrier();
8915 }
8916 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8917
8918 #else /* #ifndef CONFIG_SMP */
8919
8920 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
8921
8922 static int synchronize_sched_expedited_cpu_stop(void *data)
8923 {
8924 /*
8925 * There must be a full memory barrier on each affected CPU
8926 * between the time that try_stop_cpus() is called and the
8927 * time that it returns.
8928 *
8929 * In the current initial implementation of cpu_stop, the
8930 * above condition is already met when the control reaches
8931 * this point and the following smp_mb() is not strictly
8932 * necessary. Do smp_mb() anyway for documentation and
8933 * robustness against future implementation changes.
8934 */
8935 smp_mb(); /* See above comment block. */
8936 return 0;
8937 }
8938
8939 /*
8940 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
8941 * approach to force grace period to end quickly. This consumes
8942 * significant time on all CPUs, and is thus not recommended for
8943 * any sort of common-case code.
8944 *
8945 * Note that it is illegal to call this function while holding any
8946 * lock that is acquired by a CPU-hotplug notifier. Failing to
8947 * observe this restriction will result in deadlock.
8948 */
8949 void synchronize_sched_expedited(void)
8950 {
8951 int snap, trycount = 0;
8952
8953 smp_mb(); /* ensure prior mod happens before capturing snap. */
8954 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
8955 get_online_cpus();
8956 while (try_stop_cpus(cpu_online_mask,
8957 synchronize_sched_expedited_cpu_stop,
8958 NULL) == -EAGAIN) {
8959 put_online_cpus();
8960 if (trycount++ < 10)
8961 udelay(trycount * num_online_cpus());
8962 else {
8963 synchronize_sched();
8964 return;
8965 }
8966 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
8967 smp_mb(); /* ensure test happens before caller kfree */
8968 return;
8969 }
8970 get_online_cpus();
8971 }
8972 atomic_inc(&synchronize_sched_expedited_count);
8973 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
8974 put_online_cpus();
8975 }
8976 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8977
8978 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.204011 seconds and 6 git commands to generate.