sched: Use for_each_class macro in move_one_task()
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/reciprocal_div.h>
68 #include <linux/unistd.h>
69 #include <linux/pagemap.h>
70 #include <linux/hrtimer.h>
71 #include <linux/tick.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
83
84 /*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93 /*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102 /*
103 * Helpers for converting nanosecond timing to jiffy resolution
104 */
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
110 /*
111 * These are the 'tuning knobs' of the scheduler:
112 *
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
115 */
116 #define DEF_TIMESLICE (100 * HZ / 1000)
117
118 /*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121 #define RUNTIME_INF ((u64)~0ULL)
122
123 #ifdef CONFIG_SMP
124
125 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
127 /*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132 {
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134 }
135
136 /*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141 {
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144 }
145 #endif
146
147 static inline int rt_policy(int policy)
148 {
149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 return 1;
151 return 0;
152 }
153
154 static inline int task_has_rt_policy(struct task_struct *p)
155 {
156 return rt_policy(p->policy);
157 }
158
159 /*
160 * This is the priority-queue data structure of the RT scheduling class:
161 */
162 struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165 };
166
167 struct rt_bandwidth {
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
173 };
174
175 static struct rt_bandwidth def_rt_bandwidth;
176
177 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180 {
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198 }
199
200 static
201 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202 {
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
211 }
212
213 static inline int rt_bandwidth_enabled(void)
214 {
215 return sysctl_sched_rt_runtime >= 0;
216 }
217
218 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219 {
220 ktime_t now;
221
222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
230 unsigned long delta;
231 ktime_t soft, hard;
232
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243 HRTIMER_MODE_ABS_PINNED, 0);
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246 }
247
248 #ifdef CONFIG_RT_GROUP_SCHED
249 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250 {
251 hrtimer_cancel(&rt_b->rt_period_timer);
252 }
253 #endif
254
255 /*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259 static DEFINE_MUTEX(sched_domains_mutex);
260
261 #ifdef CONFIG_GROUP_SCHED
262
263 #include <linux/cgroup.h>
264
265 struct cfs_rq;
266
267 static LIST_HEAD(task_groups);
268
269 /* task group related information */
270 struct task_group {
271 #ifdef CONFIG_CGROUP_SCHED
272 struct cgroup_subsys_state css;
273 #endif
274
275 #ifdef CONFIG_USER_SCHED
276 uid_t uid;
277 #endif
278
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
285 #endif
286
287 #ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
291 struct rt_bandwidth rt_bandwidth;
292 #endif
293
294 struct rcu_head rcu;
295 struct list_head list;
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
300 };
301
302 #ifdef CONFIG_USER_SCHED
303
304 /* Helper function to pass uid information to create_sched_user() */
305 void set_tg_uid(struct user_struct *user)
306 {
307 user->tg->uid = user->uid;
308 }
309
310 /*
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
314 */
315 struct task_group root_task_group;
316
317 #ifdef CONFIG_FAIR_GROUP_SCHED
318 /* Default task group's sched entity on each cpu */
319 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320 /* Default task group's cfs_rq on each cpu */
321 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322 #endif /* CONFIG_FAIR_GROUP_SCHED */
323
324 #ifdef CONFIG_RT_GROUP_SCHED
325 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327 #endif /* CONFIG_RT_GROUP_SCHED */
328 #else /* !CONFIG_USER_SCHED */
329 #define root_task_group init_task_group
330 #endif /* CONFIG_USER_SCHED */
331
332 /* task_group_lock serializes add/remove of task groups and also changes to
333 * a task group's cpu shares.
334 */
335 static DEFINE_SPINLOCK(task_group_lock);
336
337 #ifdef CONFIG_SMP
338 static int root_task_group_empty(void)
339 {
340 return list_empty(&root_task_group.children);
341 }
342 #endif
343
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 #ifdef CONFIG_USER_SCHED
346 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
347 #else /* !CONFIG_USER_SCHED */
348 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
349 #endif /* CONFIG_USER_SCHED */
350
351 /*
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
359 #define MIN_SHARES 2
360 #define MAX_SHARES (1UL << 18)
361
362 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363 #endif
364
365 /* Default task group.
366 * Every task in system belong to this group at bootup.
367 */
368 struct task_group init_task_group;
369
370 /* return group to which a task belongs */
371 static inline struct task_group *task_group(struct task_struct *p)
372 {
373 struct task_group *tg;
374
375 #ifdef CONFIG_USER_SCHED
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
379 #elif defined(CONFIG_CGROUP_SCHED)
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
382 #else
383 tg = &init_task_group;
384 #endif
385 return tg;
386 }
387
388 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
389 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
390 {
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
394 #endif
395
396 #ifdef CONFIG_RT_GROUP_SCHED
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
399 #endif
400 }
401
402 #else
403
404 #ifdef CONFIG_SMP
405 static int root_task_group_empty(void)
406 {
407 return 1;
408 }
409 #endif
410
411 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 static inline struct task_group *task_group(struct task_struct *p)
413 {
414 return NULL;
415 }
416
417 #endif /* CONFIG_GROUP_SCHED */
418
419 /* CFS-related fields in a runqueue */
420 struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
424 u64 exec_clock;
425 u64 min_vruntime;
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
437 struct sched_entity *curr, *next, *last;
438
439 unsigned int nr_spread_over;
440
441 #ifdef CONFIG_FAIR_GROUP_SCHED
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
454
455 #ifdef CONFIG_SMP
456 /*
457 * the part of load.weight contributed by tasks
458 */
459 unsigned long task_weight;
460
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
468
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
478 #endif
479 #endif
480 };
481
482 /* Real-Time classes' related field in a runqueue: */
483 struct rt_rq {
484 struct rt_prio_array active;
485 unsigned long rt_nr_running;
486 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 struct {
488 int curr; /* highest queued rt task prio */
489 #ifdef CONFIG_SMP
490 int next; /* next highest */
491 #endif
492 } highest_prio;
493 #endif
494 #ifdef CONFIG_SMP
495 unsigned long rt_nr_migratory;
496 unsigned long rt_nr_total;
497 int overloaded;
498 struct plist_head pushable_tasks;
499 #endif
500 int rt_throttled;
501 u64 rt_time;
502 u64 rt_runtime;
503 /* Nests inside the rq lock: */
504 spinlock_t rt_runtime_lock;
505
506 #ifdef CONFIG_RT_GROUP_SCHED
507 unsigned long rt_nr_boosted;
508
509 struct rq *rq;
510 struct list_head leaf_rt_rq_list;
511 struct task_group *tg;
512 struct sched_rt_entity *rt_se;
513 #endif
514 };
515
516 #ifdef CONFIG_SMP
517
518 /*
519 * We add the notion of a root-domain which will be used to define per-domain
520 * variables. Each exclusive cpuset essentially defines an island domain by
521 * fully partitioning the member cpus from any other cpuset. Whenever a new
522 * exclusive cpuset is created, we also create and attach a new root-domain
523 * object.
524 *
525 */
526 struct root_domain {
527 atomic_t refcount;
528 cpumask_var_t span;
529 cpumask_var_t online;
530
531 /*
532 * The "RT overload" flag: it gets set if a CPU has more than
533 * one runnable RT task.
534 */
535 cpumask_var_t rto_mask;
536 atomic_t rto_count;
537 #ifdef CONFIG_SMP
538 struct cpupri cpupri;
539 #endif
540 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
541 /*
542 * Preferred wake up cpu nominated by sched_mc balance that will be
543 * used when most cpus are idle in the system indicating overall very
544 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
545 */
546 unsigned int sched_mc_preferred_wakeup_cpu;
547 #endif
548 };
549
550 /*
551 * By default the system creates a single root-domain with all cpus as
552 * members (mimicking the global state we have today).
553 */
554 static struct root_domain def_root_domain;
555
556 #endif
557
558 /*
559 * This is the main, per-CPU runqueue data structure.
560 *
561 * Locking rule: those places that want to lock multiple runqueues
562 * (such as the load balancing or the thread migration code), lock
563 * acquire operations must be ordered by ascending &runqueue.
564 */
565 struct rq {
566 /* runqueue lock: */
567 spinlock_t lock;
568
569 /*
570 * nr_running and cpu_load should be in the same cacheline because
571 * remote CPUs use both these fields when doing load calculation.
572 */
573 unsigned long nr_running;
574 #define CPU_LOAD_IDX_MAX 5
575 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
576 #ifdef CONFIG_NO_HZ
577 unsigned long last_tick_seen;
578 unsigned char in_nohz_recently;
579 #endif
580 /* capture load from *all* tasks on this cpu: */
581 struct load_weight load;
582 unsigned long nr_load_updates;
583 u64 nr_switches;
584 u64 nr_migrations_in;
585
586 struct cfs_rq cfs;
587 struct rt_rq rt;
588
589 #ifdef CONFIG_FAIR_GROUP_SCHED
590 /* list of leaf cfs_rq on this cpu: */
591 struct list_head leaf_cfs_rq_list;
592 #endif
593 #ifdef CONFIG_RT_GROUP_SCHED
594 struct list_head leaf_rt_rq_list;
595 #endif
596
597 /*
598 * This is part of a global counter where only the total sum
599 * over all CPUs matters. A task can increase this counter on
600 * one CPU and if it got migrated afterwards it may decrease
601 * it on another CPU. Always updated under the runqueue lock:
602 */
603 unsigned long nr_uninterruptible;
604
605 struct task_struct *curr, *idle;
606 unsigned long next_balance;
607 struct mm_struct *prev_mm;
608
609 u64 clock;
610
611 atomic_t nr_iowait;
612
613 #ifdef CONFIG_SMP
614 struct root_domain *rd;
615 struct sched_domain *sd;
616
617 unsigned char idle_at_tick;
618 /* For active balancing */
619 int post_schedule;
620 int active_balance;
621 int push_cpu;
622 /* cpu of this runqueue: */
623 int cpu;
624 int online;
625
626 unsigned long avg_load_per_task;
627
628 struct task_struct *migration_thread;
629 struct list_head migration_queue;
630 #endif
631
632 /* calc_load related fields */
633 unsigned long calc_load_update;
634 long calc_load_active;
635
636 #ifdef CONFIG_SCHED_HRTICK
637 #ifdef CONFIG_SMP
638 int hrtick_csd_pending;
639 struct call_single_data hrtick_csd;
640 #endif
641 struct hrtimer hrtick_timer;
642 #endif
643
644 #ifdef CONFIG_SCHEDSTATS
645 /* latency stats */
646 struct sched_info rq_sched_info;
647 unsigned long long rq_cpu_time;
648 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
649
650 /* sys_sched_yield() stats */
651 unsigned int yld_count;
652
653 /* schedule() stats */
654 unsigned int sched_switch;
655 unsigned int sched_count;
656 unsigned int sched_goidle;
657
658 /* try_to_wake_up() stats */
659 unsigned int ttwu_count;
660 unsigned int ttwu_local;
661
662 /* BKL stats */
663 unsigned int bkl_count;
664 #endif
665 };
666
667 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
668
669 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
670 {
671 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
672 }
673
674 static inline int cpu_of(struct rq *rq)
675 {
676 #ifdef CONFIG_SMP
677 return rq->cpu;
678 #else
679 return 0;
680 #endif
681 }
682
683 /*
684 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
685 * See detach_destroy_domains: synchronize_sched for details.
686 *
687 * The domain tree of any CPU may only be accessed from within
688 * preempt-disabled sections.
689 */
690 #define for_each_domain(cpu, __sd) \
691 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
692
693 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
694 #define this_rq() (&__get_cpu_var(runqueues))
695 #define task_rq(p) cpu_rq(task_cpu(p))
696 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
697 #define raw_rq() (&__raw_get_cpu_var(runqueues))
698
699 inline void update_rq_clock(struct rq *rq)
700 {
701 rq->clock = sched_clock_cpu(cpu_of(rq));
702 }
703
704 /*
705 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
706 */
707 #ifdef CONFIG_SCHED_DEBUG
708 # define const_debug __read_mostly
709 #else
710 # define const_debug static const
711 #endif
712
713 /**
714 * runqueue_is_locked
715 *
716 * Returns true if the current cpu runqueue is locked.
717 * This interface allows printk to be called with the runqueue lock
718 * held and know whether or not it is OK to wake up the klogd.
719 */
720 int runqueue_is_locked(void)
721 {
722 int cpu = get_cpu();
723 struct rq *rq = cpu_rq(cpu);
724 int ret;
725
726 ret = spin_is_locked(&rq->lock);
727 put_cpu();
728 return ret;
729 }
730
731 /*
732 * Debugging: various feature bits
733 */
734
735 #define SCHED_FEAT(name, enabled) \
736 __SCHED_FEAT_##name ,
737
738 enum {
739 #include "sched_features.h"
740 };
741
742 #undef SCHED_FEAT
743
744 #define SCHED_FEAT(name, enabled) \
745 (1UL << __SCHED_FEAT_##name) * enabled |
746
747 const_debug unsigned int sysctl_sched_features =
748 #include "sched_features.h"
749 0;
750
751 #undef SCHED_FEAT
752
753 #ifdef CONFIG_SCHED_DEBUG
754 #define SCHED_FEAT(name, enabled) \
755 #name ,
756
757 static __read_mostly char *sched_feat_names[] = {
758 #include "sched_features.h"
759 NULL
760 };
761
762 #undef SCHED_FEAT
763
764 static int sched_feat_show(struct seq_file *m, void *v)
765 {
766 int i;
767
768 for (i = 0; sched_feat_names[i]; i++) {
769 if (!(sysctl_sched_features & (1UL << i)))
770 seq_puts(m, "NO_");
771 seq_printf(m, "%s ", sched_feat_names[i]);
772 }
773 seq_puts(m, "\n");
774
775 return 0;
776 }
777
778 static ssize_t
779 sched_feat_write(struct file *filp, const char __user *ubuf,
780 size_t cnt, loff_t *ppos)
781 {
782 char buf[64];
783 char *cmp = buf;
784 int neg = 0;
785 int i;
786
787 if (cnt > 63)
788 cnt = 63;
789
790 if (copy_from_user(&buf, ubuf, cnt))
791 return -EFAULT;
792
793 buf[cnt] = 0;
794
795 if (strncmp(buf, "NO_", 3) == 0) {
796 neg = 1;
797 cmp += 3;
798 }
799
800 for (i = 0; sched_feat_names[i]; i++) {
801 int len = strlen(sched_feat_names[i]);
802
803 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
804 if (neg)
805 sysctl_sched_features &= ~(1UL << i);
806 else
807 sysctl_sched_features |= (1UL << i);
808 break;
809 }
810 }
811
812 if (!sched_feat_names[i])
813 return -EINVAL;
814
815 filp->f_pos += cnt;
816
817 return cnt;
818 }
819
820 static int sched_feat_open(struct inode *inode, struct file *filp)
821 {
822 return single_open(filp, sched_feat_show, NULL);
823 }
824
825 static struct file_operations sched_feat_fops = {
826 .open = sched_feat_open,
827 .write = sched_feat_write,
828 .read = seq_read,
829 .llseek = seq_lseek,
830 .release = single_release,
831 };
832
833 static __init int sched_init_debug(void)
834 {
835 debugfs_create_file("sched_features", 0644, NULL, NULL,
836 &sched_feat_fops);
837
838 return 0;
839 }
840 late_initcall(sched_init_debug);
841
842 #endif
843
844 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
845
846 /*
847 * Number of tasks to iterate in a single balance run.
848 * Limited because this is done with IRQs disabled.
849 */
850 const_debug unsigned int sysctl_sched_nr_migrate = 32;
851
852 /*
853 * ratelimit for updating the group shares.
854 * default: 0.25ms
855 */
856 unsigned int sysctl_sched_shares_ratelimit = 250000;
857
858 /*
859 * Inject some fuzzyness into changing the per-cpu group shares
860 * this avoids remote rq-locks at the expense of fairness.
861 * default: 4
862 */
863 unsigned int sysctl_sched_shares_thresh = 4;
864
865 /*
866 * period over which we measure -rt task cpu usage in us.
867 * default: 1s
868 */
869 unsigned int sysctl_sched_rt_period = 1000000;
870
871 static __read_mostly int scheduler_running;
872
873 /*
874 * part of the period that we allow rt tasks to run in us.
875 * default: 0.95s
876 */
877 int sysctl_sched_rt_runtime = 950000;
878
879 static inline u64 global_rt_period(void)
880 {
881 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
882 }
883
884 static inline u64 global_rt_runtime(void)
885 {
886 if (sysctl_sched_rt_runtime < 0)
887 return RUNTIME_INF;
888
889 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
890 }
891
892 #ifndef prepare_arch_switch
893 # define prepare_arch_switch(next) do { } while (0)
894 #endif
895 #ifndef finish_arch_switch
896 # define finish_arch_switch(prev) do { } while (0)
897 #endif
898
899 static inline int task_current(struct rq *rq, struct task_struct *p)
900 {
901 return rq->curr == p;
902 }
903
904 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
905 static inline int task_running(struct rq *rq, struct task_struct *p)
906 {
907 return task_current(rq, p);
908 }
909
910 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
911 {
912 }
913
914 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
915 {
916 #ifdef CONFIG_DEBUG_SPINLOCK
917 /* this is a valid case when another task releases the spinlock */
918 rq->lock.owner = current;
919 #endif
920 /*
921 * If we are tracking spinlock dependencies then we have to
922 * fix up the runqueue lock - which gets 'carried over' from
923 * prev into current:
924 */
925 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
926
927 spin_unlock_irq(&rq->lock);
928 }
929
930 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
931 static inline int task_running(struct rq *rq, struct task_struct *p)
932 {
933 #ifdef CONFIG_SMP
934 return p->oncpu;
935 #else
936 return task_current(rq, p);
937 #endif
938 }
939
940 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
941 {
942 #ifdef CONFIG_SMP
943 /*
944 * We can optimise this out completely for !SMP, because the
945 * SMP rebalancing from interrupt is the only thing that cares
946 * here.
947 */
948 next->oncpu = 1;
949 #endif
950 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
951 spin_unlock_irq(&rq->lock);
952 #else
953 spin_unlock(&rq->lock);
954 #endif
955 }
956
957 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
958 {
959 #ifdef CONFIG_SMP
960 /*
961 * After ->oncpu is cleared, the task can be moved to a different CPU.
962 * We must ensure this doesn't happen until the switch is completely
963 * finished.
964 */
965 smp_wmb();
966 prev->oncpu = 0;
967 #endif
968 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
969 local_irq_enable();
970 #endif
971 }
972 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
973
974 /*
975 * __task_rq_lock - lock the runqueue a given task resides on.
976 * Must be called interrupts disabled.
977 */
978 static inline struct rq *__task_rq_lock(struct task_struct *p)
979 __acquires(rq->lock)
980 {
981 for (;;) {
982 struct rq *rq = task_rq(p);
983 spin_lock(&rq->lock);
984 if (likely(rq == task_rq(p)))
985 return rq;
986 spin_unlock(&rq->lock);
987 }
988 }
989
990 /*
991 * task_rq_lock - lock the runqueue a given task resides on and disable
992 * interrupts. Note the ordering: we can safely lookup the task_rq without
993 * explicitly disabling preemption.
994 */
995 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
996 __acquires(rq->lock)
997 {
998 struct rq *rq;
999
1000 for (;;) {
1001 local_irq_save(*flags);
1002 rq = task_rq(p);
1003 spin_lock(&rq->lock);
1004 if (likely(rq == task_rq(p)))
1005 return rq;
1006 spin_unlock_irqrestore(&rq->lock, *flags);
1007 }
1008 }
1009
1010 void task_rq_unlock_wait(struct task_struct *p)
1011 {
1012 struct rq *rq = task_rq(p);
1013
1014 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1015 spin_unlock_wait(&rq->lock);
1016 }
1017
1018 static void __task_rq_unlock(struct rq *rq)
1019 __releases(rq->lock)
1020 {
1021 spin_unlock(&rq->lock);
1022 }
1023
1024 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1025 __releases(rq->lock)
1026 {
1027 spin_unlock_irqrestore(&rq->lock, *flags);
1028 }
1029
1030 /*
1031 * this_rq_lock - lock this runqueue and disable interrupts.
1032 */
1033 static struct rq *this_rq_lock(void)
1034 __acquires(rq->lock)
1035 {
1036 struct rq *rq;
1037
1038 local_irq_disable();
1039 rq = this_rq();
1040 spin_lock(&rq->lock);
1041
1042 return rq;
1043 }
1044
1045 #ifdef CONFIG_SCHED_HRTICK
1046 /*
1047 * Use HR-timers to deliver accurate preemption points.
1048 *
1049 * Its all a bit involved since we cannot program an hrt while holding the
1050 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1051 * reschedule event.
1052 *
1053 * When we get rescheduled we reprogram the hrtick_timer outside of the
1054 * rq->lock.
1055 */
1056
1057 /*
1058 * Use hrtick when:
1059 * - enabled by features
1060 * - hrtimer is actually high res
1061 */
1062 static inline int hrtick_enabled(struct rq *rq)
1063 {
1064 if (!sched_feat(HRTICK))
1065 return 0;
1066 if (!cpu_active(cpu_of(rq)))
1067 return 0;
1068 return hrtimer_is_hres_active(&rq->hrtick_timer);
1069 }
1070
1071 static void hrtick_clear(struct rq *rq)
1072 {
1073 if (hrtimer_active(&rq->hrtick_timer))
1074 hrtimer_cancel(&rq->hrtick_timer);
1075 }
1076
1077 /*
1078 * High-resolution timer tick.
1079 * Runs from hardirq context with interrupts disabled.
1080 */
1081 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1082 {
1083 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1084
1085 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1086
1087 spin_lock(&rq->lock);
1088 update_rq_clock(rq);
1089 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1090 spin_unlock(&rq->lock);
1091
1092 return HRTIMER_NORESTART;
1093 }
1094
1095 #ifdef CONFIG_SMP
1096 /*
1097 * called from hardirq (IPI) context
1098 */
1099 static void __hrtick_start(void *arg)
1100 {
1101 struct rq *rq = arg;
1102
1103 spin_lock(&rq->lock);
1104 hrtimer_restart(&rq->hrtick_timer);
1105 rq->hrtick_csd_pending = 0;
1106 spin_unlock(&rq->lock);
1107 }
1108
1109 /*
1110 * Called to set the hrtick timer state.
1111 *
1112 * called with rq->lock held and irqs disabled
1113 */
1114 static void hrtick_start(struct rq *rq, u64 delay)
1115 {
1116 struct hrtimer *timer = &rq->hrtick_timer;
1117 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1118
1119 hrtimer_set_expires(timer, time);
1120
1121 if (rq == this_rq()) {
1122 hrtimer_restart(timer);
1123 } else if (!rq->hrtick_csd_pending) {
1124 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1125 rq->hrtick_csd_pending = 1;
1126 }
1127 }
1128
1129 static int
1130 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1131 {
1132 int cpu = (int)(long)hcpu;
1133
1134 switch (action) {
1135 case CPU_UP_CANCELED:
1136 case CPU_UP_CANCELED_FROZEN:
1137 case CPU_DOWN_PREPARE:
1138 case CPU_DOWN_PREPARE_FROZEN:
1139 case CPU_DEAD:
1140 case CPU_DEAD_FROZEN:
1141 hrtick_clear(cpu_rq(cpu));
1142 return NOTIFY_OK;
1143 }
1144
1145 return NOTIFY_DONE;
1146 }
1147
1148 static __init void init_hrtick(void)
1149 {
1150 hotcpu_notifier(hotplug_hrtick, 0);
1151 }
1152 #else
1153 /*
1154 * Called to set the hrtick timer state.
1155 *
1156 * called with rq->lock held and irqs disabled
1157 */
1158 static void hrtick_start(struct rq *rq, u64 delay)
1159 {
1160 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1161 HRTIMER_MODE_REL_PINNED, 0);
1162 }
1163
1164 static inline void init_hrtick(void)
1165 {
1166 }
1167 #endif /* CONFIG_SMP */
1168
1169 static void init_rq_hrtick(struct rq *rq)
1170 {
1171 #ifdef CONFIG_SMP
1172 rq->hrtick_csd_pending = 0;
1173
1174 rq->hrtick_csd.flags = 0;
1175 rq->hrtick_csd.func = __hrtick_start;
1176 rq->hrtick_csd.info = rq;
1177 #endif
1178
1179 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1180 rq->hrtick_timer.function = hrtick;
1181 }
1182 #else /* CONFIG_SCHED_HRTICK */
1183 static inline void hrtick_clear(struct rq *rq)
1184 {
1185 }
1186
1187 static inline void init_rq_hrtick(struct rq *rq)
1188 {
1189 }
1190
1191 static inline void init_hrtick(void)
1192 {
1193 }
1194 #endif /* CONFIG_SCHED_HRTICK */
1195
1196 /*
1197 * resched_task - mark a task 'to be rescheduled now'.
1198 *
1199 * On UP this means the setting of the need_resched flag, on SMP it
1200 * might also involve a cross-CPU call to trigger the scheduler on
1201 * the target CPU.
1202 */
1203 #ifdef CONFIG_SMP
1204
1205 #ifndef tsk_is_polling
1206 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1207 #endif
1208
1209 static void resched_task(struct task_struct *p)
1210 {
1211 int cpu;
1212
1213 assert_spin_locked(&task_rq(p)->lock);
1214
1215 if (test_tsk_need_resched(p))
1216 return;
1217
1218 set_tsk_need_resched(p);
1219
1220 cpu = task_cpu(p);
1221 if (cpu == smp_processor_id())
1222 return;
1223
1224 /* NEED_RESCHED must be visible before we test polling */
1225 smp_mb();
1226 if (!tsk_is_polling(p))
1227 smp_send_reschedule(cpu);
1228 }
1229
1230 static void resched_cpu(int cpu)
1231 {
1232 struct rq *rq = cpu_rq(cpu);
1233 unsigned long flags;
1234
1235 if (!spin_trylock_irqsave(&rq->lock, flags))
1236 return;
1237 resched_task(cpu_curr(cpu));
1238 spin_unlock_irqrestore(&rq->lock, flags);
1239 }
1240
1241 #ifdef CONFIG_NO_HZ
1242 /*
1243 * When add_timer_on() enqueues a timer into the timer wheel of an
1244 * idle CPU then this timer might expire before the next timer event
1245 * which is scheduled to wake up that CPU. In case of a completely
1246 * idle system the next event might even be infinite time into the
1247 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1248 * leaves the inner idle loop so the newly added timer is taken into
1249 * account when the CPU goes back to idle and evaluates the timer
1250 * wheel for the next timer event.
1251 */
1252 void wake_up_idle_cpu(int cpu)
1253 {
1254 struct rq *rq = cpu_rq(cpu);
1255
1256 if (cpu == smp_processor_id())
1257 return;
1258
1259 /*
1260 * This is safe, as this function is called with the timer
1261 * wheel base lock of (cpu) held. When the CPU is on the way
1262 * to idle and has not yet set rq->curr to idle then it will
1263 * be serialized on the timer wheel base lock and take the new
1264 * timer into account automatically.
1265 */
1266 if (rq->curr != rq->idle)
1267 return;
1268
1269 /*
1270 * We can set TIF_RESCHED on the idle task of the other CPU
1271 * lockless. The worst case is that the other CPU runs the
1272 * idle task through an additional NOOP schedule()
1273 */
1274 set_tsk_need_resched(rq->idle);
1275
1276 /* NEED_RESCHED must be visible before we test polling */
1277 smp_mb();
1278 if (!tsk_is_polling(rq->idle))
1279 smp_send_reschedule(cpu);
1280 }
1281 #endif /* CONFIG_NO_HZ */
1282
1283 #else /* !CONFIG_SMP */
1284 static void resched_task(struct task_struct *p)
1285 {
1286 assert_spin_locked(&task_rq(p)->lock);
1287 set_tsk_need_resched(p);
1288 }
1289 #endif /* CONFIG_SMP */
1290
1291 #if BITS_PER_LONG == 32
1292 # define WMULT_CONST (~0UL)
1293 #else
1294 # define WMULT_CONST (1UL << 32)
1295 #endif
1296
1297 #define WMULT_SHIFT 32
1298
1299 /*
1300 * Shift right and round:
1301 */
1302 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1303
1304 /*
1305 * delta *= weight / lw
1306 */
1307 static unsigned long
1308 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1309 struct load_weight *lw)
1310 {
1311 u64 tmp;
1312
1313 if (!lw->inv_weight) {
1314 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1315 lw->inv_weight = 1;
1316 else
1317 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1318 / (lw->weight+1);
1319 }
1320
1321 tmp = (u64)delta_exec * weight;
1322 /*
1323 * Check whether we'd overflow the 64-bit multiplication:
1324 */
1325 if (unlikely(tmp > WMULT_CONST))
1326 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1327 WMULT_SHIFT/2);
1328 else
1329 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1330
1331 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1332 }
1333
1334 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1335 {
1336 lw->weight += inc;
1337 lw->inv_weight = 0;
1338 }
1339
1340 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1341 {
1342 lw->weight -= dec;
1343 lw->inv_weight = 0;
1344 }
1345
1346 /*
1347 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1348 * of tasks with abnormal "nice" values across CPUs the contribution that
1349 * each task makes to its run queue's load is weighted according to its
1350 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1351 * scaled version of the new time slice allocation that they receive on time
1352 * slice expiry etc.
1353 */
1354
1355 #define WEIGHT_IDLEPRIO 3
1356 #define WMULT_IDLEPRIO 1431655765
1357
1358 /*
1359 * Nice levels are multiplicative, with a gentle 10% change for every
1360 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1361 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1362 * that remained on nice 0.
1363 *
1364 * The "10% effect" is relative and cumulative: from _any_ nice level,
1365 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1366 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1367 * If a task goes up by ~10% and another task goes down by ~10% then
1368 * the relative distance between them is ~25%.)
1369 */
1370 static const int prio_to_weight[40] = {
1371 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1372 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1373 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1374 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1375 /* 0 */ 1024, 820, 655, 526, 423,
1376 /* 5 */ 335, 272, 215, 172, 137,
1377 /* 10 */ 110, 87, 70, 56, 45,
1378 /* 15 */ 36, 29, 23, 18, 15,
1379 };
1380
1381 /*
1382 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1383 *
1384 * In cases where the weight does not change often, we can use the
1385 * precalculated inverse to speed up arithmetics by turning divisions
1386 * into multiplications:
1387 */
1388 static const u32 prio_to_wmult[40] = {
1389 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1390 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1391 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1392 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1393 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1394 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1395 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1396 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1397 };
1398
1399 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1400
1401 /*
1402 * runqueue iterator, to support SMP load-balancing between different
1403 * scheduling classes, without having to expose their internal data
1404 * structures to the load-balancing proper:
1405 */
1406 struct rq_iterator {
1407 void *arg;
1408 struct task_struct *(*start)(void *);
1409 struct task_struct *(*next)(void *);
1410 };
1411
1412 #ifdef CONFIG_SMP
1413 static unsigned long
1414 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 unsigned long max_load_move, struct sched_domain *sd,
1416 enum cpu_idle_type idle, int *all_pinned,
1417 int *this_best_prio, struct rq_iterator *iterator);
1418
1419 static int
1420 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1421 struct sched_domain *sd, enum cpu_idle_type idle,
1422 struct rq_iterator *iterator);
1423 #endif
1424
1425 /* Time spent by the tasks of the cpu accounting group executing in ... */
1426 enum cpuacct_stat_index {
1427 CPUACCT_STAT_USER, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1429
1430 CPUACCT_STAT_NSTATS,
1431 };
1432
1433 #ifdef CONFIG_CGROUP_CPUACCT
1434 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1435 static void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val);
1437 #else
1438 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1439 static inline void cpuacct_update_stats(struct task_struct *tsk,
1440 enum cpuacct_stat_index idx, cputime_t val) {}
1441 #endif
1442
1443 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1444 {
1445 update_load_add(&rq->load, load);
1446 }
1447
1448 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1449 {
1450 update_load_sub(&rq->load, load);
1451 }
1452
1453 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1454 typedef int (*tg_visitor)(struct task_group *, void *);
1455
1456 /*
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1459 */
1460 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1461 {
1462 struct task_group *parent, *child;
1463 int ret;
1464
1465 rcu_read_lock();
1466 parent = &root_task_group;
1467 down:
1468 ret = (*down)(parent, data);
1469 if (ret)
1470 goto out_unlock;
1471 list_for_each_entry_rcu(child, &parent->children, siblings) {
1472 parent = child;
1473 goto down;
1474
1475 up:
1476 continue;
1477 }
1478 ret = (*up)(parent, data);
1479 if (ret)
1480 goto out_unlock;
1481
1482 child = parent;
1483 parent = parent->parent;
1484 if (parent)
1485 goto up;
1486 out_unlock:
1487 rcu_read_unlock();
1488
1489 return ret;
1490 }
1491
1492 static int tg_nop(struct task_group *tg, void *data)
1493 {
1494 return 0;
1495 }
1496 #endif
1497
1498 #ifdef CONFIG_SMP
1499 static unsigned long source_load(int cpu, int type);
1500 static unsigned long target_load(int cpu, int type);
1501 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1502
1503 static unsigned long cpu_avg_load_per_task(int cpu)
1504 {
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1507
1508 if (nr_running)
1509 rq->avg_load_per_task = rq->load.weight / nr_running;
1510 else
1511 rq->avg_load_per_task = 0;
1512
1513 return rq->avg_load_per_task;
1514 }
1515
1516 #ifdef CONFIG_FAIR_GROUP_SCHED
1517
1518 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1519
1520 /*
1521 * Calculate and set the cpu's group shares.
1522 */
1523 static void
1524 update_group_shares_cpu(struct task_group *tg, int cpu,
1525 unsigned long sd_shares, unsigned long sd_rq_weight)
1526 {
1527 unsigned long rq_weight;
1528 unsigned long shares;
1529 int boost = 0;
1530
1531 if (!tg->se[cpu])
1532 return;
1533
1534 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1535 if (!rq_weight) {
1536 boost = 1;
1537 rq_weight = NICE_0_LOAD;
1538 }
1539
1540 /*
1541 * \Sum shares * rq_weight
1542 * shares = -----------------------
1543 * \Sum rq_weight
1544 *
1545 */
1546 shares = (sd_shares * rq_weight) / sd_rq_weight;
1547 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1548
1549 if (abs(shares - tg->se[cpu]->load.weight) >
1550 sysctl_sched_shares_thresh) {
1551 struct rq *rq = cpu_rq(cpu);
1552 unsigned long flags;
1553
1554 spin_lock_irqsave(&rq->lock, flags);
1555 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1556 __set_se_shares(tg->se[cpu], shares);
1557 spin_unlock_irqrestore(&rq->lock, flags);
1558 }
1559 }
1560
1561 /*
1562 * Re-compute the task group their per cpu shares over the given domain.
1563 * This needs to be done in a bottom-up fashion because the rq weight of a
1564 * parent group depends on the shares of its child groups.
1565 */
1566 static int tg_shares_up(struct task_group *tg, void *data)
1567 {
1568 unsigned long weight, rq_weight = 0, eff_weight = 0;
1569 unsigned long shares = 0;
1570 struct sched_domain *sd = data;
1571 int i;
1572
1573 for_each_cpu(i, sched_domain_span(sd)) {
1574 /*
1575 * If there are currently no tasks on the cpu pretend there
1576 * is one of average load so that when a new task gets to
1577 * run here it will not get delayed by group starvation.
1578 */
1579 weight = tg->cfs_rq[i]->load.weight;
1580 tg->cfs_rq[i]->rq_weight = weight;
1581 rq_weight += weight;
1582
1583 if (!weight)
1584 weight = NICE_0_LOAD;
1585
1586 eff_weight += weight;
1587 shares += tg->cfs_rq[i]->shares;
1588 }
1589
1590 if ((!shares && rq_weight) || shares > tg->shares)
1591 shares = tg->shares;
1592
1593 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1594 shares = tg->shares;
1595
1596 for_each_cpu(i, sched_domain_span(sd)) {
1597 unsigned long sd_rq_weight = rq_weight;
1598
1599 if (!tg->cfs_rq[i]->rq_weight)
1600 sd_rq_weight = eff_weight;
1601
1602 update_group_shares_cpu(tg, i, shares, sd_rq_weight);
1603 }
1604
1605 return 0;
1606 }
1607
1608 /*
1609 * Compute the cpu's hierarchical load factor for each task group.
1610 * This needs to be done in a top-down fashion because the load of a child
1611 * group is a fraction of its parents load.
1612 */
1613 static int tg_load_down(struct task_group *tg, void *data)
1614 {
1615 unsigned long load;
1616 long cpu = (long)data;
1617
1618 if (!tg->parent) {
1619 load = cpu_rq(cpu)->load.weight;
1620 } else {
1621 load = tg->parent->cfs_rq[cpu]->h_load;
1622 load *= tg->cfs_rq[cpu]->shares;
1623 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1624 }
1625
1626 tg->cfs_rq[cpu]->h_load = load;
1627
1628 return 0;
1629 }
1630
1631 static void update_shares(struct sched_domain *sd)
1632 {
1633 s64 elapsed;
1634 u64 now;
1635
1636 if (root_task_group_empty())
1637 return;
1638
1639 now = cpu_clock(raw_smp_processor_id());
1640 elapsed = now - sd->last_update;
1641
1642 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1643 sd->last_update = now;
1644 walk_tg_tree(tg_nop, tg_shares_up, sd);
1645 }
1646 }
1647
1648 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1649 {
1650 if (root_task_group_empty())
1651 return;
1652
1653 spin_unlock(&rq->lock);
1654 update_shares(sd);
1655 spin_lock(&rq->lock);
1656 }
1657
1658 static void update_h_load(long cpu)
1659 {
1660 if (root_task_group_empty())
1661 return;
1662
1663 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1664 }
1665
1666 #else
1667
1668 static inline void update_shares(struct sched_domain *sd)
1669 {
1670 }
1671
1672 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1673 {
1674 }
1675
1676 #endif
1677
1678 #ifdef CONFIG_PREEMPT
1679
1680 /*
1681 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1682 * way at the expense of forcing extra atomic operations in all
1683 * invocations. This assures that the double_lock is acquired using the
1684 * same underlying policy as the spinlock_t on this architecture, which
1685 * reduces latency compared to the unfair variant below. However, it
1686 * also adds more overhead and therefore may reduce throughput.
1687 */
1688 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1689 __releases(this_rq->lock)
1690 __acquires(busiest->lock)
1691 __acquires(this_rq->lock)
1692 {
1693 spin_unlock(&this_rq->lock);
1694 double_rq_lock(this_rq, busiest);
1695
1696 return 1;
1697 }
1698
1699 #else
1700 /*
1701 * Unfair double_lock_balance: Optimizes throughput at the expense of
1702 * latency by eliminating extra atomic operations when the locks are
1703 * already in proper order on entry. This favors lower cpu-ids and will
1704 * grant the double lock to lower cpus over higher ids under contention,
1705 * regardless of entry order into the function.
1706 */
1707 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1708 __releases(this_rq->lock)
1709 __acquires(busiest->lock)
1710 __acquires(this_rq->lock)
1711 {
1712 int ret = 0;
1713
1714 if (unlikely(!spin_trylock(&busiest->lock))) {
1715 if (busiest < this_rq) {
1716 spin_unlock(&this_rq->lock);
1717 spin_lock(&busiest->lock);
1718 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1719 ret = 1;
1720 } else
1721 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1722 }
1723 return ret;
1724 }
1725
1726 #endif /* CONFIG_PREEMPT */
1727
1728 /*
1729 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1730 */
1731 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1732 {
1733 if (unlikely(!irqs_disabled())) {
1734 /* printk() doesn't work good under rq->lock */
1735 spin_unlock(&this_rq->lock);
1736 BUG_ON(1);
1737 }
1738
1739 return _double_lock_balance(this_rq, busiest);
1740 }
1741
1742 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1743 __releases(busiest->lock)
1744 {
1745 spin_unlock(&busiest->lock);
1746 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1747 }
1748 #endif
1749
1750 #ifdef CONFIG_FAIR_GROUP_SCHED
1751 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1752 {
1753 #ifdef CONFIG_SMP
1754 cfs_rq->shares = shares;
1755 #endif
1756 }
1757 #endif
1758
1759 static void calc_load_account_active(struct rq *this_rq);
1760
1761 #include "sched_stats.h"
1762 #include "sched_idletask.c"
1763 #include "sched_fair.c"
1764 #include "sched_rt.c"
1765 #ifdef CONFIG_SCHED_DEBUG
1766 # include "sched_debug.c"
1767 #endif
1768
1769 #define sched_class_highest (&rt_sched_class)
1770 #define for_each_class(class) \
1771 for (class = sched_class_highest; class; class = class->next)
1772
1773 static void inc_nr_running(struct rq *rq)
1774 {
1775 rq->nr_running++;
1776 }
1777
1778 static void dec_nr_running(struct rq *rq)
1779 {
1780 rq->nr_running--;
1781 }
1782
1783 static void set_load_weight(struct task_struct *p)
1784 {
1785 if (task_has_rt_policy(p)) {
1786 p->se.load.weight = prio_to_weight[0] * 2;
1787 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1788 return;
1789 }
1790
1791 /*
1792 * SCHED_IDLE tasks get minimal weight:
1793 */
1794 if (p->policy == SCHED_IDLE) {
1795 p->se.load.weight = WEIGHT_IDLEPRIO;
1796 p->se.load.inv_weight = WMULT_IDLEPRIO;
1797 return;
1798 }
1799
1800 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1801 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1802 }
1803
1804 static void update_avg(u64 *avg, u64 sample)
1805 {
1806 s64 diff = sample - *avg;
1807 *avg += diff >> 3;
1808 }
1809
1810 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1811 {
1812 if (wakeup)
1813 p->se.start_runtime = p->se.sum_exec_runtime;
1814
1815 sched_info_queued(p);
1816 p->sched_class->enqueue_task(rq, p, wakeup);
1817 p->se.on_rq = 1;
1818 }
1819
1820 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1821 {
1822 if (sleep) {
1823 if (p->se.last_wakeup) {
1824 update_avg(&p->se.avg_overlap,
1825 p->se.sum_exec_runtime - p->se.last_wakeup);
1826 p->se.last_wakeup = 0;
1827 } else {
1828 update_avg(&p->se.avg_wakeup,
1829 sysctl_sched_wakeup_granularity);
1830 }
1831 }
1832
1833 sched_info_dequeued(p);
1834 p->sched_class->dequeue_task(rq, p, sleep);
1835 p->se.on_rq = 0;
1836 }
1837
1838 /*
1839 * __normal_prio - return the priority that is based on the static prio
1840 */
1841 static inline int __normal_prio(struct task_struct *p)
1842 {
1843 return p->static_prio;
1844 }
1845
1846 /*
1847 * Calculate the expected normal priority: i.e. priority
1848 * without taking RT-inheritance into account. Might be
1849 * boosted by interactivity modifiers. Changes upon fork,
1850 * setprio syscalls, and whenever the interactivity
1851 * estimator recalculates.
1852 */
1853 static inline int normal_prio(struct task_struct *p)
1854 {
1855 int prio;
1856
1857 if (task_has_rt_policy(p))
1858 prio = MAX_RT_PRIO-1 - p->rt_priority;
1859 else
1860 prio = __normal_prio(p);
1861 return prio;
1862 }
1863
1864 /*
1865 * Calculate the current priority, i.e. the priority
1866 * taken into account by the scheduler. This value might
1867 * be boosted by RT tasks, or might be boosted by
1868 * interactivity modifiers. Will be RT if the task got
1869 * RT-boosted. If not then it returns p->normal_prio.
1870 */
1871 static int effective_prio(struct task_struct *p)
1872 {
1873 p->normal_prio = normal_prio(p);
1874 /*
1875 * If we are RT tasks or we were boosted to RT priority,
1876 * keep the priority unchanged. Otherwise, update priority
1877 * to the normal priority:
1878 */
1879 if (!rt_prio(p->prio))
1880 return p->normal_prio;
1881 return p->prio;
1882 }
1883
1884 /*
1885 * activate_task - move a task to the runqueue.
1886 */
1887 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1888 {
1889 if (task_contributes_to_load(p))
1890 rq->nr_uninterruptible--;
1891
1892 enqueue_task(rq, p, wakeup);
1893 inc_nr_running(rq);
1894 }
1895
1896 /*
1897 * deactivate_task - remove a task from the runqueue.
1898 */
1899 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1900 {
1901 if (task_contributes_to_load(p))
1902 rq->nr_uninterruptible++;
1903
1904 dequeue_task(rq, p, sleep);
1905 dec_nr_running(rq);
1906 }
1907
1908 /**
1909 * task_curr - is this task currently executing on a CPU?
1910 * @p: the task in question.
1911 */
1912 inline int task_curr(const struct task_struct *p)
1913 {
1914 return cpu_curr(task_cpu(p)) == p;
1915 }
1916
1917 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1918 {
1919 set_task_rq(p, cpu);
1920 #ifdef CONFIG_SMP
1921 /*
1922 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1923 * successfuly executed on another CPU. We must ensure that updates of
1924 * per-task data have been completed by this moment.
1925 */
1926 smp_wmb();
1927 task_thread_info(p)->cpu = cpu;
1928 #endif
1929 }
1930
1931 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1932 const struct sched_class *prev_class,
1933 int oldprio, int running)
1934 {
1935 if (prev_class != p->sched_class) {
1936 if (prev_class->switched_from)
1937 prev_class->switched_from(rq, p, running);
1938 p->sched_class->switched_to(rq, p, running);
1939 } else
1940 p->sched_class->prio_changed(rq, p, oldprio, running);
1941 }
1942
1943 #ifdef CONFIG_SMP
1944
1945 /* Used instead of source_load when we know the type == 0 */
1946 static unsigned long weighted_cpuload(const int cpu)
1947 {
1948 return cpu_rq(cpu)->load.weight;
1949 }
1950
1951 /*
1952 * Is this task likely cache-hot:
1953 */
1954 static int
1955 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1956 {
1957 s64 delta;
1958
1959 /*
1960 * Buddy candidates are cache hot:
1961 */
1962 if (sched_feat(CACHE_HOT_BUDDY) &&
1963 (&p->se == cfs_rq_of(&p->se)->next ||
1964 &p->se == cfs_rq_of(&p->se)->last))
1965 return 1;
1966
1967 if (p->sched_class != &fair_sched_class)
1968 return 0;
1969
1970 if (sysctl_sched_migration_cost == -1)
1971 return 1;
1972 if (sysctl_sched_migration_cost == 0)
1973 return 0;
1974
1975 delta = now - p->se.exec_start;
1976
1977 return delta < (s64)sysctl_sched_migration_cost;
1978 }
1979
1980
1981 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1982 {
1983 int old_cpu = task_cpu(p);
1984 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1985 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1986 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1987 u64 clock_offset;
1988
1989 clock_offset = old_rq->clock - new_rq->clock;
1990
1991 trace_sched_migrate_task(p, new_cpu);
1992
1993 #ifdef CONFIG_SCHEDSTATS
1994 if (p->se.wait_start)
1995 p->se.wait_start -= clock_offset;
1996 if (p->se.sleep_start)
1997 p->se.sleep_start -= clock_offset;
1998 if (p->se.block_start)
1999 p->se.block_start -= clock_offset;
2000 #endif
2001 if (old_cpu != new_cpu) {
2002 p->se.nr_migrations++;
2003 new_rq->nr_migrations_in++;
2004 #ifdef CONFIG_SCHEDSTATS
2005 if (task_hot(p, old_rq->clock, NULL))
2006 schedstat_inc(p, se.nr_forced2_migrations);
2007 #endif
2008 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2009 1, 1, NULL, 0);
2010 }
2011 p->se.vruntime -= old_cfsrq->min_vruntime -
2012 new_cfsrq->min_vruntime;
2013
2014 __set_task_cpu(p, new_cpu);
2015 }
2016
2017 struct migration_req {
2018 struct list_head list;
2019
2020 struct task_struct *task;
2021 int dest_cpu;
2022
2023 struct completion done;
2024 };
2025
2026 /*
2027 * The task's runqueue lock must be held.
2028 * Returns true if you have to wait for migration thread.
2029 */
2030 static int
2031 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2032 {
2033 struct rq *rq = task_rq(p);
2034
2035 /*
2036 * If the task is not on a runqueue (and not running), then
2037 * it is sufficient to simply update the task's cpu field.
2038 */
2039 if (!p->se.on_rq && !task_running(rq, p)) {
2040 set_task_cpu(p, dest_cpu);
2041 return 0;
2042 }
2043
2044 init_completion(&req->done);
2045 req->task = p;
2046 req->dest_cpu = dest_cpu;
2047 list_add(&req->list, &rq->migration_queue);
2048
2049 return 1;
2050 }
2051
2052 /*
2053 * wait_task_context_switch - wait for a thread to complete at least one
2054 * context switch.
2055 *
2056 * @p must not be current.
2057 */
2058 void wait_task_context_switch(struct task_struct *p)
2059 {
2060 unsigned long nvcsw, nivcsw, flags;
2061 int running;
2062 struct rq *rq;
2063
2064 nvcsw = p->nvcsw;
2065 nivcsw = p->nivcsw;
2066 for (;;) {
2067 /*
2068 * The runqueue is assigned before the actual context
2069 * switch. We need to take the runqueue lock.
2070 *
2071 * We could check initially without the lock but it is
2072 * very likely that we need to take the lock in every
2073 * iteration.
2074 */
2075 rq = task_rq_lock(p, &flags);
2076 running = task_running(rq, p);
2077 task_rq_unlock(rq, &flags);
2078
2079 if (likely(!running))
2080 break;
2081 /*
2082 * The switch count is incremented before the actual
2083 * context switch. We thus wait for two switches to be
2084 * sure at least one completed.
2085 */
2086 if ((p->nvcsw - nvcsw) > 1)
2087 break;
2088 if ((p->nivcsw - nivcsw) > 1)
2089 break;
2090
2091 cpu_relax();
2092 }
2093 }
2094
2095 /*
2096 * wait_task_inactive - wait for a thread to unschedule.
2097 *
2098 * If @match_state is nonzero, it's the @p->state value just checked and
2099 * not expected to change. If it changes, i.e. @p might have woken up,
2100 * then return zero. When we succeed in waiting for @p to be off its CPU,
2101 * we return a positive number (its total switch count). If a second call
2102 * a short while later returns the same number, the caller can be sure that
2103 * @p has remained unscheduled the whole time.
2104 *
2105 * The caller must ensure that the task *will* unschedule sometime soon,
2106 * else this function might spin for a *long* time. This function can't
2107 * be called with interrupts off, or it may introduce deadlock with
2108 * smp_call_function() if an IPI is sent by the same process we are
2109 * waiting to become inactive.
2110 */
2111 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2112 {
2113 unsigned long flags;
2114 int running, on_rq;
2115 unsigned long ncsw;
2116 struct rq *rq;
2117
2118 for (;;) {
2119 /*
2120 * We do the initial early heuristics without holding
2121 * any task-queue locks at all. We'll only try to get
2122 * the runqueue lock when things look like they will
2123 * work out!
2124 */
2125 rq = task_rq(p);
2126
2127 /*
2128 * If the task is actively running on another CPU
2129 * still, just relax and busy-wait without holding
2130 * any locks.
2131 *
2132 * NOTE! Since we don't hold any locks, it's not
2133 * even sure that "rq" stays as the right runqueue!
2134 * But we don't care, since "task_running()" will
2135 * return false if the runqueue has changed and p
2136 * is actually now running somewhere else!
2137 */
2138 while (task_running(rq, p)) {
2139 if (match_state && unlikely(p->state != match_state))
2140 return 0;
2141 cpu_relax();
2142 }
2143
2144 /*
2145 * Ok, time to look more closely! We need the rq
2146 * lock now, to be *sure*. If we're wrong, we'll
2147 * just go back and repeat.
2148 */
2149 rq = task_rq_lock(p, &flags);
2150 trace_sched_wait_task(rq, p);
2151 running = task_running(rq, p);
2152 on_rq = p->se.on_rq;
2153 ncsw = 0;
2154 if (!match_state || p->state == match_state)
2155 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2156 task_rq_unlock(rq, &flags);
2157
2158 /*
2159 * If it changed from the expected state, bail out now.
2160 */
2161 if (unlikely(!ncsw))
2162 break;
2163
2164 /*
2165 * Was it really running after all now that we
2166 * checked with the proper locks actually held?
2167 *
2168 * Oops. Go back and try again..
2169 */
2170 if (unlikely(running)) {
2171 cpu_relax();
2172 continue;
2173 }
2174
2175 /*
2176 * It's not enough that it's not actively running,
2177 * it must be off the runqueue _entirely_, and not
2178 * preempted!
2179 *
2180 * So if it was still runnable (but just not actively
2181 * running right now), it's preempted, and we should
2182 * yield - it could be a while.
2183 */
2184 if (unlikely(on_rq)) {
2185 schedule_timeout_uninterruptible(1);
2186 continue;
2187 }
2188
2189 /*
2190 * Ahh, all good. It wasn't running, and it wasn't
2191 * runnable, which means that it will never become
2192 * running in the future either. We're all done!
2193 */
2194 break;
2195 }
2196
2197 return ncsw;
2198 }
2199
2200 /***
2201 * kick_process - kick a running thread to enter/exit the kernel
2202 * @p: the to-be-kicked thread
2203 *
2204 * Cause a process which is running on another CPU to enter
2205 * kernel-mode, without any delay. (to get signals handled.)
2206 *
2207 * NOTE: this function doesnt have to take the runqueue lock,
2208 * because all it wants to ensure is that the remote task enters
2209 * the kernel. If the IPI races and the task has been migrated
2210 * to another CPU then no harm is done and the purpose has been
2211 * achieved as well.
2212 */
2213 void kick_process(struct task_struct *p)
2214 {
2215 int cpu;
2216
2217 preempt_disable();
2218 cpu = task_cpu(p);
2219 if ((cpu != smp_processor_id()) && task_curr(p))
2220 smp_send_reschedule(cpu);
2221 preempt_enable();
2222 }
2223 EXPORT_SYMBOL_GPL(kick_process);
2224
2225 /*
2226 * Return a low guess at the load of a migration-source cpu weighted
2227 * according to the scheduling class and "nice" value.
2228 *
2229 * We want to under-estimate the load of migration sources, to
2230 * balance conservatively.
2231 */
2232 static unsigned long source_load(int cpu, int type)
2233 {
2234 struct rq *rq = cpu_rq(cpu);
2235 unsigned long total = weighted_cpuload(cpu);
2236
2237 if (type == 0 || !sched_feat(LB_BIAS))
2238 return total;
2239
2240 return min(rq->cpu_load[type-1], total);
2241 }
2242
2243 /*
2244 * Return a high guess at the load of a migration-target cpu weighted
2245 * according to the scheduling class and "nice" value.
2246 */
2247 static unsigned long target_load(int cpu, int type)
2248 {
2249 struct rq *rq = cpu_rq(cpu);
2250 unsigned long total = weighted_cpuload(cpu);
2251
2252 if (type == 0 || !sched_feat(LB_BIAS))
2253 return total;
2254
2255 return max(rq->cpu_load[type-1], total);
2256 }
2257
2258 /*
2259 * find_idlest_group finds and returns the least busy CPU group within the
2260 * domain.
2261 */
2262 static struct sched_group *
2263 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2264 {
2265 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2266 unsigned long min_load = ULONG_MAX, this_load = 0;
2267 int load_idx = sd->forkexec_idx;
2268 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2269
2270 do {
2271 unsigned long load, avg_load;
2272 int local_group;
2273 int i;
2274
2275 /* Skip over this group if it has no CPUs allowed */
2276 if (!cpumask_intersects(sched_group_cpus(group),
2277 &p->cpus_allowed))
2278 continue;
2279
2280 local_group = cpumask_test_cpu(this_cpu,
2281 sched_group_cpus(group));
2282
2283 /* Tally up the load of all CPUs in the group */
2284 avg_load = 0;
2285
2286 for_each_cpu(i, sched_group_cpus(group)) {
2287 /* Bias balancing toward cpus of our domain */
2288 if (local_group)
2289 load = source_load(i, load_idx);
2290 else
2291 load = target_load(i, load_idx);
2292
2293 avg_load += load;
2294 }
2295
2296 /* Adjust by relative CPU power of the group */
2297 avg_load = sg_div_cpu_power(group,
2298 avg_load * SCHED_LOAD_SCALE);
2299
2300 if (local_group) {
2301 this_load = avg_load;
2302 this = group;
2303 } else if (avg_load < min_load) {
2304 min_load = avg_load;
2305 idlest = group;
2306 }
2307 } while (group = group->next, group != sd->groups);
2308
2309 if (!idlest || 100*this_load < imbalance*min_load)
2310 return NULL;
2311 return idlest;
2312 }
2313
2314 /*
2315 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2316 */
2317 static int
2318 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2319 {
2320 unsigned long load, min_load = ULONG_MAX;
2321 int idlest = -1;
2322 int i;
2323
2324 /* Traverse only the allowed CPUs */
2325 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2326 load = weighted_cpuload(i);
2327
2328 if (load < min_load || (load == min_load && i == this_cpu)) {
2329 min_load = load;
2330 idlest = i;
2331 }
2332 }
2333
2334 return idlest;
2335 }
2336
2337 /*
2338 * sched_balance_self: balance the current task (running on cpu) in domains
2339 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2340 * SD_BALANCE_EXEC.
2341 *
2342 * Balance, ie. select the least loaded group.
2343 *
2344 * Returns the target CPU number, or the same CPU if no balancing is needed.
2345 *
2346 * preempt must be disabled.
2347 */
2348 static int sched_balance_self(int cpu, int flag)
2349 {
2350 struct task_struct *t = current;
2351 struct sched_domain *tmp, *sd = NULL;
2352
2353 for_each_domain(cpu, tmp) {
2354 /*
2355 * If power savings logic is enabled for a domain, stop there.
2356 */
2357 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2358 break;
2359 if (tmp->flags & flag)
2360 sd = tmp;
2361 }
2362
2363 if (sd)
2364 update_shares(sd);
2365
2366 while (sd) {
2367 struct sched_group *group;
2368 int new_cpu, weight;
2369
2370 if (!(sd->flags & flag)) {
2371 sd = sd->child;
2372 continue;
2373 }
2374
2375 group = find_idlest_group(sd, t, cpu);
2376 if (!group) {
2377 sd = sd->child;
2378 continue;
2379 }
2380
2381 new_cpu = find_idlest_cpu(group, t, cpu);
2382 if (new_cpu == -1 || new_cpu == cpu) {
2383 /* Now try balancing at a lower domain level of cpu */
2384 sd = sd->child;
2385 continue;
2386 }
2387
2388 /* Now try balancing at a lower domain level of new_cpu */
2389 cpu = new_cpu;
2390 weight = cpumask_weight(sched_domain_span(sd));
2391 sd = NULL;
2392 for_each_domain(cpu, tmp) {
2393 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2394 break;
2395 if (tmp->flags & flag)
2396 sd = tmp;
2397 }
2398 /* while loop will break here if sd == NULL */
2399 }
2400
2401 return cpu;
2402 }
2403
2404 #endif /* CONFIG_SMP */
2405
2406 /**
2407 * task_oncpu_function_call - call a function on the cpu on which a task runs
2408 * @p: the task to evaluate
2409 * @func: the function to be called
2410 * @info: the function call argument
2411 *
2412 * Calls the function @func when the task is currently running. This might
2413 * be on the current CPU, which just calls the function directly
2414 */
2415 void task_oncpu_function_call(struct task_struct *p,
2416 void (*func) (void *info), void *info)
2417 {
2418 int cpu;
2419
2420 preempt_disable();
2421 cpu = task_cpu(p);
2422 if (task_curr(p))
2423 smp_call_function_single(cpu, func, info, 1);
2424 preempt_enable();
2425 }
2426
2427 /***
2428 * try_to_wake_up - wake up a thread
2429 * @p: the to-be-woken-up thread
2430 * @state: the mask of task states that can be woken
2431 * @sync: do a synchronous wakeup?
2432 *
2433 * Put it on the run-queue if it's not already there. The "current"
2434 * thread is always on the run-queue (except when the actual
2435 * re-schedule is in progress), and as such you're allowed to do
2436 * the simpler "current->state = TASK_RUNNING" to mark yourself
2437 * runnable without the overhead of this.
2438 *
2439 * returns failure only if the task is already active.
2440 */
2441 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2442 {
2443 int cpu, orig_cpu, this_cpu, success = 0;
2444 unsigned long flags;
2445 long old_state;
2446 struct rq *rq;
2447
2448 if (!sched_feat(SYNC_WAKEUPS))
2449 sync = 0;
2450
2451 #ifdef CONFIG_SMP
2452 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2453 struct sched_domain *sd;
2454
2455 this_cpu = raw_smp_processor_id();
2456 cpu = task_cpu(p);
2457
2458 for_each_domain(this_cpu, sd) {
2459 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2460 update_shares(sd);
2461 break;
2462 }
2463 }
2464 }
2465 #endif
2466
2467 smp_wmb();
2468 rq = task_rq_lock(p, &flags);
2469 update_rq_clock(rq);
2470 old_state = p->state;
2471 if (!(old_state & state))
2472 goto out;
2473
2474 if (p->se.on_rq)
2475 goto out_running;
2476
2477 cpu = task_cpu(p);
2478 orig_cpu = cpu;
2479 this_cpu = smp_processor_id();
2480
2481 #ifdef CONFIG_SMP
2482 if (unlikely(task_running(rq, p)))
2483 goto out_activate;
2484
2485 cpu = p->sched_class->select_task_rq(p, sync);
2486 if (cpu != orig_cpu) {
2487 set_task_cpu(p, cpu);
2488 task_rq_unlock(rq, &flags);
2489 /* might preempt at this point */
2490 rq = task_rq_lock(p, &flags);
2491 old_state = p->state;
2492 if (!(old_state & state))
2493 goto out;
2494 if (p->se.on_rq)
2495 goto out_running;
2496
2497 this_cpu = smp_processor_id();
2498 cpu = task_cpu(p);
2499 }
2500
2501 #ifdef CONFIG_SCHEDSTATS
2502 schedstat_inc(rq, ttwu_count);
2503 if (cpu == this_cpu)
2504 schedstat_inc(rq, ttwu_local);
2505 else {
2506 struct sched_domain *sd;
2507 for_each_domain(this_cpu, sd) {
2508 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2509 schedstat_inc(sd, ttwu_wake_remote);
2510 break;
2511 }
2512 }
2513 }
2514 #endif /* CONFIG_SCHEDSTATS */
2515
2516 out_activate:
2517 #endif /* CONFIG_SMP */
2518 schedstat_inc(p, se.nr_wakeups);
2519 if (sync)
2520 schedstat_inc(p, se.nr_wakeups_sync);
2521 if (orig_cpu != cpu)
2522 schedstat_inc(p, se.nr_wakeups_migrate);
2523 if (cpu == this_cpu)
2524 schedstat_inc(p, se.nr_wakeups_local);
2525 else
2526 schedstat_inc(p, se.nr_wakeups_remote);
2527 activate_task(rq, p, 1);
2528 success = 1;
2529
2530 /*
2531 * Only attribute actual wakeups done by this task.
2532 */
2533 if (!in_interrupt()) {
2534 struct sched_entity *se = &current->se;
2535 u64 sample = se->sum_exec_runtime;
2536
2537 if (se->last_wakeup)
2538 sample -= se->last_wakeup;
2539 else
2540 sample -= se->start_runtime;
2541 update_avg(&se->avg_wakeup, sample);
2542
2543 se->last_wakeup = se->sum_exec_runtime;
2544 }
2545
2546 out_running:
2547 trace_sched_wakeup(rq, p, success);
2548 check_preempt_curr(rq, p, sync);
2549
2550 p->state = TASK_RUNNING;
2551 #ifdef CONFIG_SMP
2552 if (p->sched_class->task_wake_up)
2553 p->sched_class->task_wake_up(rq, p);
2554 #endif
2555 out:
2556 task_rq_unlock(rq, &flags);
2557
2558 return success;
2559 }
2560
2561 /**
2562 * wake_up_process - Wake up a specific process
2563 * @p: The process to be woken up.
2564 *
2565 * Attempt to wake up the nominated process and move it to the set of runnable
2566 * processes. Returns 1 if the process was woken up, 0 if it was already
2567 * running.
2568 *
2569 * It may be assumed that this function implies a write memory barrier before
2570 * changing the task state if and only if any tasks are woken up.
2571 */
2572 int wake_up_process(struct task_struct *p)
2573 {
2574 return try_to_wake_up(p, TASK_ALL, 0);
2575 }
2576 EXPORT_SYMBOL(wake_up_process);
2577
2578 int wake_up_state(struct task_struct *p, unsigned int state)
2579 {
2580 return try_to_wake_up(p, state, 0);
2581 }
2582
2583 /*
2584 * Perform scheduler related setup for a newly forked process p.
2585 * p is forked by current.
2586 *
2587 * __sched_fork() is basic setup used by init_idle() too:
2588 */
2589 static void __sched_fork(struct task_struct *p)
2590 {
2591 p->se.exec_start = 0;
2592 p->se.sum_exec_runtime = 0;
2593 p->se.prev_sum_exec_runtime = 0;
2594 p->se.nr_migrations = 0;
2595 p->se.last_wakeup = 0;
2596 p->se.avg_overlap = 0;
2597 p->se.start_runtime = 0;
2598 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2599
2600 #ifdef CONFIG_SCHEDSTATS
2601 p->se.wait_start = 0;
2602 p->se.wait_max = 0;
2603 p->se.wait_count = 0;
2604 p->se.wait_sum = 0;
2605
2606 p->se.sleep_start = 0;
2607 p->se.sleep_max = 0;
2608 p->se.sum_sleep_runtime = 0;
2609
2610 p->se.block_start = 0;
2611 p->se.block_max = 0;
2612 p->se.exec_max = 0;
2613 p->se.slice_max = 0;
2614
2615 p->se.nr_migrations_cold = 0;
2616 p->se.nr_failed_migrations_affine = 0;
2617 p->se.nr_failed_migrations_running = 0;
2618 p->se.nr_failed_migrations_hot = 0;
2619 p->se.nr_forced_migrations = 0;
2620 p->se.nr_forced2_migrations = 0;
2621
2622 p->se.nr_wakeups = 0;
2623 p->se.nr_wakeups_sync = 0;
2624 p->se.nr_wakeups_migrate = 0;
2625 p->se.nr_wakeups_local = 0;
2626 p->se.nr_wakeups_remote = 0;
2627 p->se.nr_wakeups_affine = 0;
2628 p->se.nr_wakeups_affine_attempts = 0;
2629 p->se.nr_wakeups_passive = 0;
2630 p->se.nr_wakeups_idle = 0;
2631
2632 #endif
2633
2634 INIT_LIST_HEAD(&p->rt.run_list);
2635 p->se.on_rq = 0;
2636 INIT_LIST_HEAD(&p->se.group_node);
2637
2638 #ifdef CONFIG_PREEMPT_NOTIFIERS
2639 INIT_HLIST_HEAD(&p->preempt_notifiers);
2640 #endif
2641
2642 /*
2643 * We mark the process as running here, but have not actually
2644 * inserted it onto the runqueue yet. This guarantees that
2645 * nobody will actually run it, and a signal or other external
2646 * event cannot wake it up and insert it on the runqueue either.
2647 */
2648 p->state = TASK_RUNNING;
2649 }
2650
2651 /*
2652 * fork()/clone()-time setup:
2653 */
2654 void sched_fork(struct task_struct *p, int clone_flags)
2655 {
2656 int cpu = get_cpu();
2657
2658 __sched_fork(p);
2659
2660 #ifdef CONFIG_SMP
2661 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2662 #endif
2663 set_task_cpu(p, cpu);
2664
2665 /*
2666 * Make sure we do not leak PI boosting priority to the child.
2667 */
2668 p->prio = current->normal_prio;
2669
2670 /*
2671 * Revert to default priority/policy on fork if requested.
2672 */
2673 if (unlikely(p->sched_reset_on_fork)) {
2674 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2675 p->policy = SCHED_NORMAL;
2676
2677 if (p->normal_prio < DEFAULT_PRIO)
2678 p->prio = DEFAULT_PRIO;
2679
2680 if (PRIO_TO_NICE(p->static_prio) < 0) {
2681 p->static_prio = NICE_TO_PRIO(0);
2682 set_load_weight(p);
2683 }
2684
2685 /*
2686 * We don't need the reset flag anymore after the fork. It has
2687 * fulfilled its duty:
2688 */
2689 p->sched_reset_on_fork = 0;
2690 }
2691
2692 if (!rt_prio(p->prio))
2693 p->sched_class = &fair_sched_class;
2694
2695 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2696 if (likely(sched_info_on()))
2697 memset(&p->sched_info, 0, sizeof(p->sched_info));
2698 #endif
2699 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2700 p->oncpu = 0;
2701 #endif
2702 #ifdef CONFIG_PREEMPT
2703 /* Want to start with kernel preemption disabled. */
2704 task_thread_info(p)->preempt_count = 1;
2705 #endif
2706 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2707
2708 put_cpu();
2709 }
2710
2711 /*
2712 * wake_up_new_task - wake up a newly created task for the first time.
2713 *
2714 * This function will do some initial scheduler statistics housekeeping
2715 * that must be done for every newly created context, then puts the task
2716 * on the runqueue and wakes it.
2717 */
2718 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2719 {
2720 unsigned long flags;
2721 struct rq *rq;
2722
2723 rq = task_rq_lock(p, &flags);
2724 BUG_ON(p->state != TASK_RUNNING);
2725 update_rq_clock(rq);
2726
2727 p->prio = effective_prio(p);
2728
2729 if (!p->sched_class->task_new || !current->se.on_rq) {
2730 activate_task(rq, p, 0);
2731 } else {
2732 /*
2733 * Let the scheduling class do new task startup
2734 * management (if any):
2735 */
2736 p->sched_class->task_new(rq, p);
2737 inc_nr_running(rq);
2738 }
2739 trace_sched_wakeup_new(rq, p, 1);
2740 check_preempt_curr(rq, p, 0);
2741 #ifdef CONFIG_SMP
2742 if (p->sched_class->task_wake_up)
2743 p->sched_class->task_wake_up(rq, p);
2744 #endif
2745 task_rq_unlock(rq, &flags);
2746 }
2747
2748 #ifdef CONFIG_PREEMPT_NOTIFIERS
2749
2750 /**
2751 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2752 * @notifier: notifier struct to register
2753 */
2754 void preempt_notifier_register(struct preempt_notifier *notifier)
2755 {
2756 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2757 }
2758 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2759
2760 /**
2761 * preempt_notifier_unregister - no longer interested in preemption notifications
2762 * @notifier: notifier struct to unregister
2763 *
2764 * This is safe to call from within a preemption notifier.
2765 */
2766 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2767 {
2768 hlist_del(&notifier->link);
2769 }
2770 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2771
2772 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2773 {
2774 struct preempt_notifier *notifier;
2775 struct hlist_node *node;
2776
2777 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2778 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2779 }
2780
2781 static void
2782 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2783 struct task_struct *next)
2784 {
2785 struct preempt_notifier *notifier;
2786 struct hlist_node *node;
2787
2788 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2789 notifier->ops->sched_out(notifier, next);
2790 }
2791
2792 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2793
2794 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2795 {
2796 }
2797
2798 static void
2799 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2800 struct task_struct *next)
2801 {
2802 }
2803
2804 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2805
2806 /**
2807 * prepare_task_switch - prepare to switch tasks
2808 * @rq: the runqueue preparing to switch
2809 * @prev: the current task that is being switched out
2810 * @next: the task we are going to switch to.
2811 *
2812 * This is called with the rq lock held and interrupts off. It must
2813 * be paired with a subsequent finish_task_switch after the context
2814 * switch.
2815 *
2816 * prepare_task_switch sets up locking and calls architecture specific
2817 * hooks.
2818 */
2819 static inline void
2820 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2821 struct task_struct *next)
2822 {
2823 fire_sched_out_preempt_notifiers(prev, next);
2824 prepare_lock_switch(rq, next);
2825 prepare_arch_switch(next);
2826 }
2827
2828 /**
2829 * finish_task_switch - clean up after a task-switch
2830 * @rq: runqueue associated with task-switch
2831 * @prev: the thread we just switched away from.
2832 *
2833 * finish_task_switch must be called after the context switch, paired
2834 * with a prepare_task_switch call before the context switch.
2835 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2836 * and do any other architecture-specific cleanup actions.
2837 *
2838 * Note that we may have delayed dropping an mm in context_switch(). If
2839 * so, we finish that here outside of the runqueue lock. (Doing it
2840 * with the lock held can cause deadlocks; see schedule() for
2841 * details.)
2842 */
2843 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2844 __releases(rq->lock)
2845 {
2846 struct mm_struct *mm = rq->prev_mm;
2847 long prev_state;
2848
2849 rq->prev_mm = NULL;
2850
2851 /*
2852 * A task struct has one reference for the use as "current".
2853 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2854 * schedule one last time. The schedule call will never return, and
2855 * the scheduled task must drop that reference.
2856 * The test for TASK_DEAD must occur while the runqueue locks are
2857 * still held, otherwise prev could be scheduled on another cpu, die
2858 * there before we look at prev->state, and then the reference would
2859 * be dropped twice.
2860 * Manfred Spraul <manfred@colorfullife.com>
2861 */
2862 prev_state = prev->state;
2863 finish_arch_switch(prev);
2864 perf_counter_task_sched_in(current, cpu_of(rq));
2865 finish_lock_switch(rq, prev);
2866
2867 fire_sched_in_preempt_notifiers(current);
2868 if (mm)
2869 mmdrop(mm);
2870 if (unlikely(prev_state == TASK_DEAD)) {
2871 /*
2872 * Remove function-return probe instances associated with this
2873 * task and put them back on the free list.
2874 */
2875 kprobe_flush_task(prev);
2876 put_task_struct(prev);
2877 }
2878 }
2879
2880 #ifdef CONFIG_SMP
2881
2882 /* assumes rq->lock is held */
2883 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2884 {
2885 if (prev->sched_class->pre_schedule)
2886 prev->sched_class->pre_schedule(rq, prev);
2887 }
2888
2889 /* rq->lock is NOT held, but preemption is disabled */
2890 static inline void post_schedule(struct rq *rq)
2891 {
2892 if (rq->post_schedule) {
2893 unsigned long flags;
2894
2895 spin_lock_irqsave(&rq->lock, flags);
2896 if (rq->curr->sched_class->post_schedule)
2897 rq->curr->sched_class->post_schedule(rq);
2898 spin_unlock_irqrestore(&rq->lock, flags);
2899
2900 rq->post_schedule = 0;
2901 }
2902 }
2903
2904 #else
2905
2906 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2907 {
2908 }
2909
2910 static inline void post_schedule(struct rq *rq)
2911 {
2912 }
2913
2914 #endif
2915
2916 /**
2917 * schedule_tail - first thing a freshly forked thread must call.
2918 * @prev: the thread we just switched away from.
2919 */
2920 asmlinkage void schedule_tail(struct task_struct *prev)
2921 __releases(rq->lock)
2922 {
2923 struct rq *rq = this_rq();
2924
2925 finish_task_switch(rq, prev);
2926
2927 /*
2928 * FIXME: do we need to worry about rq being invalidated by the
2929 * task_switch?
2930 */
2931 post_schedule(rq);
2932
2933 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2934 /* In this case, finish_task_switch does not reenable preemption */
2935 preempt_enable();
2936 #endif
2937 if (current->set_child_tid)
2938 put_user(task_pid_vnr(current), current->set_child_tid);
2939 }
2940
2941 /*
2942 * context_switch - switch to the new MM and the new
2943 * thread's register state.
2944 */
2945 static inline void
2946 context_switch(struct rq *rq, struct task_struct *prev,
2947 struct task_struct *next)
2948 {
2949 struct mm_struct *mm, *oldmm;
2950
2951 prepare_task_switch(rq, prev, next);
2952 trace_sched_switch(rq, prev, next);
2953 mm = next->mm;
2954 oldmm = prev->active_mm;
2955 /*
2956 * For paravirt, this is coupled with an exit in switch_to to
2957 * combine the page table reload and the switch backend into
2958 * one hypercall.
2959 */
2960 arch_start_context_switch(prev);
2961
2962 if (unlikely(!mm)) {
2963 next->active_mm = oldmm;
2964 atomic_inc(&oldmm->mm_count);
2965 enter_lazy_tlb(oldmm, next);
2966 } else
2967 switch_mm(oldmm, mm, next);
2968
2969 if (unlikely(!prev->mm)) {
2970 prev->active_mm = NULL;
2971 rq->prev_mm = oldmm;
2972 }
2973 /*
2974 * Since the runqueue lock will be released by the next
2975 * task (which is an invalid locking op but in the case
2976 * of the scheduler it's an obvious special-case), so we
2977 * do an early lockdep release here:
2978 */
2979 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2980 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2981 #endif
2982
2983 /* Here we just switch the register state and the stack. */
2984 switch_to(prev, next, prev);
2985
2986 barrier();
2987 /*
2988 * this_rq must be evaluated again because prev may have moved
2989 * CPUs since it called schedule(), thus the 'rq' on its stack
2990 * frame will be invalid.
2991 */
2992 finish_task_switch(this_rq(), prev);
2993 }
2994
2995 /*
2996 * nr_running, nr_uninterruptible and nr_context_switches:
2997 *
2998 * externally visible scheduler statistics: current number of runnable
2999 * threads, current number of uninterruptible-sleeping threads, total
3000 * number of context switches performed since bootup.
3001 */
3002 unsigned long nr_running(void)
3003 {
3004 unsigned long i, sum = 0;
3005
3006 for_each_online_cpu(i)
3007 sum += cpu_rq(i)->nr_running;
3008
3009 return sum;
3010 }
3011
3012 unsigned long nr_uninterruptible(void)
3013 {
3014 unsigned long i, sum = 0;
3015
3016 for_each_possible_cpu(i)
3017 sum += cpu_rq(i)->nr_uninterruptible;
3018
3019 /*
3020 * Since we read the counters lockless, it might be slightly
3021 * inaccurate. Do not allow it to go below zero though:
3022 */
3023 if (unlikely((long)sum < 0))
3024 sum = 0;
3025
3026 return sum;
3027 }
3028
3029 unsigned long long nr_context_switches(void)
3030 {
3031 int i;
3032 unsigned long long sum = 0;
3033
3034 for_each_possible_cpu(i)
3035 sum += cpu_rq(i)->nr_switches;
3036
3037 return sum;
3038 }
3039
3040 unsigned long nr_iowait(void)
3041 {
3042 unsigned long i, sum = 0;
3043
3044 for_each_possible_cpu(i)
3045 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3046
3047 return sum;
3048 }
3049
3050 /* Variables and functions for calc_load */
3051 static atomic_long_t calc_load_tasks;
3052 static unsigned long calc_load_update;
3053 unsigned long avenrun[3];
3054 EXPORT_SYMBOL(avenrun);
3055
3056 /**
3057 * get_avenrun - get the load average array
3058 * @loads: pointer to dest load array
3059 * @offset: offset to add
3060 * @shift: shift count to shift the result left
3061 *
3062 * These values are estimates at best, so no need for locking.
3063 */
3064 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3065 {
3066 loads[0] = (avenrun[0] + offset) << shift;
3067 loads[1] = (avenrun[1] + offset) << shift;
3068 loads[2] = (avenrun[2] + offset) << shift;
3069 }
3070
3071 static unsigned long
3072 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3073 {
3074 load *= exp;
3075 load += active * (FIXED_1 - exp);
3076 return load >> FSHIFT;
3077 }
3078
3079 /*
3080 * calc_load - update the avenrun load estimates 10 ticks after the
3081 * CPUs have updated calc_load_tasks.
3082 */
3083 void calc_global_load(void)
3084 {
3085 unsigned long upd = calc_load_update + 10;
3086 long active;
3087
3088 if (time_before(jiffies, upd))
3089 return;
3090
3091 active = atomic_long_read(&calc_load_tasks);
3092 active = active > 0 ? active * FIXED_1 : 0;
3093
3094 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3095 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3096 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3097
3098 calc_load_update += LOAD_FREQ;
3099 }
3100
3101 /*
3102 * Either called from update_cpu_load() or from a cpu going idle
3103 */
3104 static void calc_load_account_active(struct rq *this_rq)
3105 {
3106 long nr_active, delta;
3107
3108 nr_active = this_rq->nr_running;
3109 nr_active += (long) this_rq->nr_uninterruptible;
3110
3111 if (nr_active != this_rq->calc_load_active) {
3112 delta = nr_active - this_rq->calc_load_active;
3113 this_rq->calc_load_active = nr_active;
3114 atomic_long_add(delta, &calc_load_tasks);
3115 }
3116 }
3117
3118 /*
3119 * Externally visible per-cpu scheduler statistics:
3120 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3121 */
3122 u64 cpu_nr_migrations(int cpu)
3123 {
3124 return cpu_rq(cpu)->nr_migrations_in;
3125 }
3126
3127 /*
3128 * Update rq->cpu_load[] statistics. This function is usually called every
3129 * scheduler tick (TICK_NSEC).
3130 */
3131 static void update_cpu_load(struct rq *this_rq)
3132 {
3133 unsigned long this_load = this_rq->load.weight;
3134 int i, scale;
3135
3136 this_rq->nr_load_updates++;
3137
3138 /* Update our load: */
3139 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3140 unsigned long old_load, new_load;
3141
3142 /* scale is effectively 1 << i now, and >> i divides by scale */
3143
3144 old_load = this_rq->cpu_load[i];
3145 new_load = this_load;
3146 /*
3147 * Round up the averaging division if load is increasing. This
3148 * prevents us from getting stuck on 9 if the load is 10, for
3149 * example.
3150 */
3151 if (new_load > old_load)
3152 new_load += scale-1;
3153 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3154 }
3155
3156 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3157 this_rq->calc_load_update += LOAD_FREQ;
3158 calc_load_account_active(this_rq);
3159 }
3160 }
3161
3162 #ifdef CONFIG_SMP
3163
3164 /*
3165 * double_rq_lock - safely lock two runqueues
3166 *
3167 * Note this does not disable interrupts like task_rq_lock,
3168 * you need to do so manually before calling.
3169 */
3170 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3171 __acquires(rq1->lock)
3172 __acquires(rq2->lock)
3173 {
3174 BUG_ON(!irqs_disabled());
3175 if (rq1 == rq2) {
3176 spin_lock(&rq1->lock);
3177 __acquire(rq2->lock); /* Fake it out ;) */
3178 } else {
3179 if (rq1 < rq2) {
3180 spin_lock(&rq1->lock);
3181 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3182 } else {
3183 spin_lock(&rq2->lock);
3184 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3185 }
3186 }
3187 update_rq_clock(rq1);
3188 update_rq_clock(rq2);
3189 }
3190
3191 /*
3192 * double_rq_unlock - safely unlock two runqueues
3193 *
3194 * Note this does not restore interrupts like task_rq_unlock,
3195 * you need to do so manually after calling.
3196 */
3197 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3198 __releases(rq1->lock)
3199 __releases(rq2->lock)
3200 {
3201 spin_unlock(&rq1->lock);
3202 if (rq1 != rq2)
3203 spin_unlock(&rq2->lock);
3204 else
3205 __release(rq2->lock);
3206 }
3207
3208 /*
3209 * If dest_cpu is allowed for this process, migrate the task to it.
3210 * This is accomplished by forcing the cpu_allowed mask to only
3211 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3212 * the cpu_allowed mask is restored.
3213 */
3214 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3215 {
3216 struct migration_req req;
3217 unsigned long flags;
3218 struct rq *rq;
3219
3220 rq = task_rq_lock(p, &flags);
3221 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3222 || unlikely(!cpu_active(dest_cpu)))
3223 goto out;
3224
3225 /* force the process onto the specified CPU */
3226 if (migrate_task(p, dest_cpu, &req)) {
3227 /* Need to wait for migration thread (might exit: take ref). */
3228 struct task_struct *mt = rq->migration_thread;
3229
3230 get_task_struct(mt);
3231 task_rq_unlock(rq, &flags);
3232 wake_up_process(mt);
3233 put_task_struct(mt);
3234 wait_for_completion(&req.done);
3235
3236 return;
3237 }
3238 out:
3239 task_rq_unlock(rq, &flags);
3240 }
3241
3242 /*
3243 * sched_exec - execve() is a valuable balancing opportunity, because at
3244 * this point the task has the smallest effective memory and cache footprint.
3245 */
3246 void sched_exec(void)
3247 {
3248 int new_cpu, this_cpu = get_cpu();
3249 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3250 put_cpu();
3251 if (new_cpu != this_cpu)
3252 sched_migrate_task(current, new_cpu);
3253 }
3254
3255 /*
3256 * pull_task - move a task from a remote runqueue to the local runqueue.
3257 * Both runqueues must be locked.
3258 */
3259 static void pull_task(struct rq *src_rq, struct task_struct *p,
3260 struct rq *this_rq, int this_cpu)
3261 {
3262 deactivate_task(src_rq, p, 0);
3263 set_task_cpu(p, this_cpu);
3264 activate_task(this_rq, p, 0);
3265 /*
3266 * Note that idle threads have a prio of MAX_PRIO, for this test
3267 * to be always true for them.
3268 */
3269 check_preempt_curr(this_rq, p, 0);
3270 }
3271
3272 /*
3273 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3274 */
3275 static
3276 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3277 struct sched_domain *sd, enum cpu_idle_type idle,
3278 int *all_pinned)
3279 {
3280 int tsk_cache_hot = 0;
3281 /*
3282 * We do not migrate tasks that are:
3283 * 1) running (obviously), or
3284 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3285 * 3) are cache-hot on their current CPU.
3286 */
3287 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3288 schedstat_inc(p, se.nr_failed_migrations_affine);
3289 return 0;
3290 }
3291 *all_pinned = 0;
3292
3293 if (task_running(rq, p)) {
3294 schedstat_inc(p, se.nr_failed_migrations_running);
3295 return 0;
3296 }
3297
3298 /*
3299 * Aggressive migration if:
3300 * 1) task is cache cold, or
3301 * 2) too many balance attempts have failed.
3302 */
3303
3304 tsk_cache_hot = task_hot(p, rq->clock, sd);
3305 if (!tsk_cache_hot ||
3306 sd->nr_balance_failed > sd->cache_nice_tries) {
3307 #ifdef CONFIG_SCHEDSTATS
3308 if (tsk_cache_hot) {
3309 schedstat_inc(sd, lb_hot_gained[idle]);
3310 schedstat_inc(p, se.nr_forced_migrations);
3311 }
3312 #endif
3313 return 1;
3314 }
3315
3316 if (tsk_cache_hot) {
3317 schedstat_inc(p, se.nr_failed_migrations_hot);
3318 return 0;
3319 }
3320 return 1;
3321 }
3322
3323 static unsigned long
3324 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3325 unsigned long max_load_move, struct sched_domain *sd,
3326 enum cpu_idle_type idle, int *all_pinned,
3327 int *this_best_prio, struct rq_iterator *iterator)
3328 {
3329 int loops = 0, pulled = 0, pinned = 0;
3330 struct task_struct *p;
3331 long rem_load_move = max_load_move;
3332
3333 if (max_load_move == 0)
3334 goto out;
3335
3336 pinned = 1;
3337
3338 /*
3339 * Start the load-balancing iterator:
3340 */
3341 p = iterator->start(iterator->arg);
3342 next:
3343 if (!p || loops++ > sysctl_sched_nr_migrate)
3344 goto out;
3345
3346 if ((p->se.load.weight >> 1) > rem_load_move ||
3347 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3348 p = iterator->next(iterator->arg);
3349 goto next;
3350 }
3351
3352 pull_task(busiest, p, this_rq, this_cpu);
3353 pulled++;
3354 rem_load_move -= p->se.load.weight;
3355
3356 #ifdef CONFIG_PREEMPT
3357 /*
3358 * NEWIDLE balancing is a source of latency, so preemptible kernels
3359 * will stop after the first task is pulled to minimize the critical
3360 * section.
3361 */
3362 if (idle == CPU_NEWLY_IDLE)
3363 goto out;
3364 #endif
3365
3366 /*
3367 * We only want to steal up to the prescribed amount of weighted load.
3368 */
3369 if (rem_load_move > 0) {
3370 if (p->prio < *this_best_prio)
3371 *this_best_prio = p->prio;
3372 p = iterator->next(iterator->arg);
3373 goto next;
3374 }
3375 out:
3376 /*
3377 * Right now, this is one of only two places pull_task() is called,
3378 * so we can safely collect pull_task() stats here rather than
3379 * inside pull_task().
3380 */
3381 schedstat_add(sd, lb_gained[idle], pulled);
3382
3383 if (all_pinned)
3384 *all_pinned = pinned;
3385
3386 return max_load_move - rem_load_move;
3387 }
3388
3389 /*
3390 * move_tasks tries to move up to max_load_move weighted load from busiest to
3391 * this_rq, as part of a balancing operation within domain "sd".
3392 * Returns 1 if successful and 0 otherwise.
3393 *
3394 * Called with both runqueues locked.
3395 */
3396 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3397 unsigned long max_load_move,
3398 struct sched_domain *sd, enum cpu_idle_type idle,
3399 int *all_pinned)
3400 {
3401 const struct sched_class *class = sched_class_highest;
3402 unsigned long total_load_moved = 0;
3403 int this_best_prio = this_rq->curr->prio;
3404
3405 do {
3406 total_load_moved +=
3407 class->load_balance(this_rq, this_cpu, busiest,
3408 max_load_move - total_load_moved,
3409 sd, idle, all_pinned, &this_best_prio);
3410 class = class->next;
3411
3412 #ifdef CONFIG_PREEMPT
3413 /*
3414 * NEWIDLE balancing is a source of latency, so preemptible
3415 * kernels will stop after the first task is pulled to minimize
3416 * the critical section.
3417 */
3418 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3419 break;
3420 #endif
3421 } while (class && max_load_move > total_load_moved);
3422
3423 return total_load_moved > 0;
3424 }
3425
3426 static int
3427 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3428 struct sched_domain *sd, enum cpu_idle_type idle,
3429 struct rq_iterator *iterator)
3430 {
3431 struct task_struct *p = iterator->start(iterator->arg);
3432 int pinned = 0;
3433
3434 while (p) {
3435 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3436 pull_task(busiest, p, this_rq, this_cpu);
3437 /*
3438 * Right now, this is only the second place pull_task()
3439 * is called, so we can safely collect pull_task()
3440 * stats here rather than inside pull_task().
3441 */
3442 schedstat_inc(sd, lb_gained[idle]);
3443
3444 return 1;
3445 }
3446 p = iterator->next(iterator->arg);
3447 }
3448
3449 return 0;
3450 }
3451
3452 /*
3453 * move_one_task tries to move exactly one task from busiest to this_rq, as
3454 * part of active balancing operations within "domain".
3455 * Returns 1 if successful and 0 otherwise.
3456 *
3457 * Called with both runqueues locked.
3458 */
3459 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3460 struct sched_domain *sd, enum cpu_idle_type idle)
3461 {
3462 const struct sched_class *class;
3463
3464 for_each_class(class) {
3465 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3466 return 1;
3467 }
3468
3469 return 0;
3470 }
3471 /********** Helpers for find_busiest_group ************************/
3472 /*
3473 * sd_lb_stats - Structure to store the statistics of a sched_domain
3474 * during load balancing.
3475 */
3476 struct sd_lb_stats {
3477 struct sched_group *busiest; /* Busiest group in this sd */
3478 struct sched_group *this; /* Local group in this sd */
3479 unsigned long total_load; /* Total load of all groups in sd */
3480 unsigned long total_pwr; /* Total power of all groups in sd */
3481 unsigned long avg_load; /* Average load across all groups in sd */
3482
3483 /** Statistics of this group */
3484 unsigned long this_load;
3485 unsigned long this_load_per_task;
3486 unsigned long this_nr_running;
3487
3488 /* Statistics of the busiest group */
3489 unsigned long max_load;
3490 unsigned long busiest_load_per_task;
3491 unsigned long busiest_nr_running;
3492
3493 int group_imb; /* Is there imbalance in this sd */
3494 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3495 int power_savings_balance; /* Is powersave balance needed for this sd */
3496 struct sched_group *group_min; /* Least loaded group in sd */
3497 struct sched_group *group_leader; /* Group which relieves group_min */
3498 unsigned long min_load_per_task; /* load_per_task in group_min */
3499 unsigned long leader_nr_running; /* Nr running of group_leader */
3500 unsigned long min_nr_running; /* Nr running of group_min */
3501 #endif
3502 };
3503
3504 /*
3505 * sg_lb_stats - stats of a sched_group required for load_balancing
3506 */
3507 struct sg_lb_stats {
3508 unsigned long avg_load; /*Avg load across the CPUs of the group */
3509 unsigned long group_load; /* Total load over the CPUs of the group */
3510 unsigned long sum_nr_running; /* Nr tasks running in the group */
3511 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3512 unsigned long group_capacity;
3513 int group_imb; /* Is there an imbalance in the group ? */
3514 };
3515
3516 /**
3517 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3518 * @group: The group whose first cpu is to be returned.
3519 */
3520 static inline unsigned int group_first_cpu(struct sched_group *group)
3521 {
3522 return cpumask_first(sched_group_cpus(group));
3523 }
3524
3525 /**
3526 * get_sd_load_idx - Obtain the load index for a given sched domain.
3527 * @sd: The sched_domain whose load_idx is to be obtained.
3528 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3529 */
3530 static inline int get_sd_load_idx(struct sched_domain *sd,
3531 enum cpu_idle_type idle)
3532 {
3533 int load_idx;
3534
3535 switch (idle) {
3536 case CPU_NOT_IDLE:
3537 load_idx = sd->busy_idx;
3538 break;
3539
3540 case CPU_NEWLY_IDLE:
3541 load_idx = sd->newidle_idx;
3542 break;
3543 default:
3544 load_idx = sd->idle_idx;
3545 break;
3546 }
3547
3548 return load_idx;
3549 }
3550
3551
3552 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3553 /**
3554 * init_sd_power_savings_stats - Initialize power savings statistics for
3555 * the given sched_domain, during load balancing.
3556 *
3557 * @sd: Sched domain whose power-savings statistics are to be initialized.
3558 * @sds: Variable containing the statistics for sd.
3559 * @idle: Idle status of the CPU at which we're performing load-balancing.
3560 */
3561 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3562 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3563 {
3564 /*
3565 * Busy processors will not participate in power savings
3566 * balance.
3567 */
3568 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3569 sds->power_savings_balance = 0;
3570 else {
3571 sds->power_savings_balance = 1;
3572 sds->min_nr_running = ULONG_MAX;
3573 sds->leader_nr_running = 0;
3574 }
3575 }
3576
3577 /**
3578 * update_sd_power_savings_stats - Update the power saving stats for a
3579 * sched_domain while performing load balancing.
3580 *
3581 * @group: sched_group belonging to the sched_domain under consideration.
3582 * @sds: Variable containing the statistics of the sched_domain
3583 * @local_group: Does group contain the CPU for which we're performing
3584 * load balancing ?
3585 * @sgs: Variable containing the statistics of the group.
3586 */
3587 static inline void update_sd_power_savings_stats(struct sched_group *group,
3588 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3589 {
3590
3591 if (!sds->power_savings_balance)
3592 return;
3593
3594 /*
3595 * If the local group is idle or completely loaded
3596 * no need to do power savings balance at this domain
3597 */
3598 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3599 !sds->this_nr_running))
3600 sds->power_savings_balance = 0;
3601
3602 /*
3603 * If a group is already running at full capacity or idle,
3604 * don't include that group in power savings calculations
3605 */
3606 if (!sds->power_savings_balance ||
3607 sgs->sum_nr_running >= sgs->group_capacity ||
3608 !sgs->sum_nr_running)
3609 return;
3610
3611 /*
3612 * Calculate the group which has the least non-idle load.
3613 * This is the group from where we need to pick up the load
3614 * for saving power
3615 */
3616 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3617 (sgs->sum_nr_running == sds->min_nr_running &&
3618 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3619 sds->group_min = group;
3620 sds->min_nr_running = sgs->sum_nr_running;
3621 sds->min_load_per_task = sgs->sum_weighted_load /
3622 sgs->sum_nr_running;
3623 }
3624
3625 /*
3626 * Calculate the group which is almost near its
3627 * capacity but still has some space to pick up some load
3628 * from other group and save more power
3629 */
3630 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3631 return;
3632
3633 if (sgs->sum_nr_running > sds->leader_nr_running ||
3634 (sgs->sum_nr_running == sds->leader_nr_running &&
3635 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3636 sds->group_leader = group;
3637 sds->leader_nr_running = sgs->sum_nr_running;
3638 }
3639 }
3640
3641 /**
3642 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3643 * @sds: Variable containing the statistics of the sched_domain
3644 * under consideration.
3645 * @this_cpu: Cpu at which we're currently performing load-balancing.
3646 * @imbalance: Variable to store the imbalance.
3647 *
3648 * Description:
3649 * Check if we have potential to perform some power-savings balance.
3650 * If yes, set the busiest group to be the least loaded group in the
3651 * sched_domain, so that it's CPUs can be put to idle.
3652 *
3653 * Returns 1 if there is potential to perform power-savings balance.
3654 * Else returns 0.
3655 */
3656 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3657 int this_cpu, unsigned long *imbalance)
3658 {
3659 if (!sds->power_savings_balance)
3660 return 0;
3661
3662 if (sds->this != sds->group_leader ||
3663 sds->group_leader == sds->group_min)
3664 return 0;
3665
3666 *imbalance = sds->min_load_per_task;
3667 sds->busiest = sds->group_min;
3668
3669 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3670 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3671 group_first_cpu(sds->group_leader);
3672 }
3673
3674 return 1;
3675
3676 }
3677 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3678 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3679 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3680 {
3681 return;
3682 }
3683
3684 static inline void update_sd_power_savings_stats(struct sched_group *group,
3685 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3686 {
3687 return;
3688 }
3689
3690 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3691 int this_cpu, unsigned long *imbalance)
3692 {
3693 return 0;
3694 }
3695 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3696
3697
3698 /**
3699 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3700 * @group: sched_group whose statistics are to be updated.
3701 * @this_cpu: Cpu for which load balance is currently performed.
3702 * @idle: Idle status of this_cpu
3703 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3704 * @sd_idle: Idle status of the sched_domain containing group.
3705 * @local_group: Does group contain this_cpu.
3706 * @cpus: Set of cpus considered for load balancing.
3707 * @balance: Should we balance.
3708 * @sgs: variable to hold the statistics for this group.
3709 */
3710 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3711 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3712 int local_group, const struct cpumask *cpus,
3713 int *balance, struct sg_lb_stats *sgs)
3714 {
3715 unsigned long load, max_cpu_load, min_cpu_load;
3716 int i;
3717 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3718 unsigned long sum_avg_load_per_task;
3719 unsigned long avg_load_per_task;
3720
3721 if (local_group)
3722 balance_cpu = group_first_cpu(group);
3723
3724 /* Tally up the load of all CPUs in the group */
3725 sum_avg_load_per_task = avg_load_per_task = 0;
3726 max_cpu_load = 0;
3727 min_cpu_load = ~0UL;
3728
3729 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3730 struct rq *rq = cpu_rq(i);
3731
3732 if (*sd_idle && rq->nr_running)
3733 *sd_idle = 0;
3734
3735 /* Bias balancing toward cpus of our domain */
3736 if (local_group) {
3737 if (idle_cpu(i) && !first_idle_cpu) {
3738 first_idle_cpu = 1;
3739 balance_cpu = i;
3740 }
3741
3742 load = target_load(i, load_idx);
3743 } else {
3744 load = source_load(i, load_idx);
3745 if (load > max_cpu_load)
3746 max_cpu_load = load;
3747 if (min_cpu_load > load)
3748 min_cpu_load = load;
3749 }
3750
3751 sgs->group_load += load;
3752 sgs->sum_nr_running += rq->nr_running;
3753 sgs->sum_weighted_load += weighted_cpuload(i);
3754
3755 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3756 }
3757
3758 /*
3759 * First idle cpu or the first cpu(busiest) in this sched group
3760 * is eligible for doing load balancing at this and above
3761 * domains. In the newly idle case, we will allow all the cpu's
3762 * to do the newly idle load balance.
3763 */
3764 if (idle != CPU_NEWLY_IDLE && local_group &&
3765 balance_cpu != this_cpu && balance) {
3766 *balance = 0;
3767 return;
3768 }
3769
3770 /* Adjust by relative CPU power of the group */
3771 sgs->avg_load = sg_div_cpu_power(group,
3772 sgs->group_load * SCHED_LOAD_SCALE);
3773
3774
3775 /*
3776 * Consider the group unbalanced when the imbalance is larger
3777 * than the average weight of two tasks.
3778 *
3779 * APZ: with cgroup the avg task weight can vary wildly and
3780 * might not be a suitable number - should we keep a
3781 * normalized nr_running number somewhere that negates
3782 * the hierarchy?
3783 */
3784 avg_load_per_task = sg_div_cpu_power(group,
3785 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3786
3787 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3788 sgs->group_imb = 1;
3789
3790 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3791
3792 }
3793
3794 /**
3795 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3796 * @sd: sched_domain whose statistics are to be updated.
3797 * @this_cpu: Cpu for which load balance is currently performed.
3798 * @idle: Idle status of this_cpu
3799 * @sd_idle: Idle status of the sched_domain containing group.
3800 * @cpus: Set of cpus considered for load balancing.
3801 * @balance: Should we balance.
3802 * @sds: variable to hold the statistics for this sched_domain.
3803 */
3804 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3805 enum cpu_idle_type idle, int *sd_idle,
3806 const struct cpumask *cpus, int *balance,
3807 struct sd_lb_stats *sds)
3808 {
3809 struct sched_group *group = sd->groups;
3810 struct sg_lb_stats sgs;
3811 int load_idx;
3812
3813 init_sd_power_savings_stats(sd, sds, idle);
3814 load_idx = get_sd_load_idx(sd, idle);
3815
3816 do {
3817 int local_group;
3818
3819 local_group = cpumask_test_cpu(this_cpu,
3820 sched_group_cpus(group));
3821 memset(&sgs, 0, sizeof(sgs));
3822 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3823 local_group, cpus, balance, &sgs);
3824
3825 if (local_group && balance && !(*balance))
3826 return;
3827
3828 sds->total_load += sgs.group_load;
3829 sds->total_pwr += group->__cpu_power;
3830
3831 if (local_group) {
3832 sds->this_load = sgs.avg_load;
3833 sds->this = group;
3834 sds->this_nr_running = sgs.sum_nr_running;
3835 sds->this_load_per_task = sgs.sum_weighted_load;
3836 } else if (sgs.avg_load > sds->max_load &&
3837 (sgs.sum_nr_running > sgs.group_capacity ||
3838 sgs.group_imb)) {
3839 sds->max_load = sgs.avg_load;
3840 sds->busiest = group;
3841 sds->busiest_nr_running = sgs.sum_nr_running;
3842 sds->busiest_load_per_task = sgs.sum_weighted_load;
3843 sds->group_imb = sgs.group_imb;
3844 }
3845
3846 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3847 group = group->next;
3848 } while (group != sd->groups);
3849
3850 }
3851
3852 /**
3853 * fix_small_imbalance - Calculate the minor imbalance that exists
3854 * amongst the groups of a sched_domain, during
3855 * load balancing.
3856 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3857 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3858 * @imbalance: Variable to store the imbalance.
3859 */
3860 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3861 int this_cpu, unsigned long *imbalance)
3862 {
3863 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3864 unsigned int imbn = 2;
3865
3866 if (sds->this_nr_running) {
3867 sds->this_load_per_task /= sds->this_nr_running;
3868 if (sds->busiest_load_per_task >
3869 sds->this_load_per_task)
3870 imbn = 1;
3871 } else
3872 sds->this_load_per_task =
3873 cpu_avg_load_per_task(this_cpu);
3874
3875 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3876 sds->busiest_load_per_task * imbn) {
3877 *imbalance = sds->busiest_load_per_task;
3878 return;
3879 }
3880
3881 /*
3882 * OK, we don't have enough imbalance to justify moving tasks,
3883 * however we may be able to increase total CPU power used by
3884 * moving them.
3885 */
3886
3887 pwr_now += sds->busiest->__cpu_power *
3888 min(sds->busiest_load_per_task, sds->max_load);
3889 pwr_now += sds->this->__cpu_power *
3890 min(sds->this_load_per_task, sds->this_load);
3891 pwr_now /= SCHED_LOAD_SCALE;
3892
3893 /* Amount of load we'd subtract */
3894 tmp = sg_div_cpu_power(sds->busiest,
3895 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3896 if (sds->max_load > tmp)
3897 pwr_move += sds->busiest->__cpu_power *
3898 min(sds->busiest_load_per_task, sds->max_load - tmp);
3899
3900 /* Amount of load we'd add */
3901 if (sds->max_load * sds->busiest->__cpu_power <
3902 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3903 tmp = sg_div_cpu_power(sds->this,
3904 sds->max_load * sds->busiest->__cpu_power);
3905 else
3906 tmp = sg_div_cpu_power(sds->this,
3907 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3908 pwr_move += sds->this->__cpu_power *
3909 min(sds->this_load_per_task, sds->this_load + tmp);
3910 pwr_move /= SCHED_LOAD_SCALE;
3911
3912 /* Move if we gain throughput */
3913 if (pwr_move > pwr_now)
3914 *imbalance = sds->busiest_load_per_task;
3915 }
3916
3917 /**
3918 * calculate_imbalance - Calculate the amount of imbalance present within the
3919 * groups of a given sched_domain during load balance.
3920 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3921 * @this_cpu: Cpu for which currently load balance is being performed.
3922 * @imbalance: The variable to store the imbalance.
3923 */
3924 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3925 unsigned long *imbalance)
3926 {
3927 unsigned long max_pull;
3928 /*
3929 * In the presence of smp nice balancing, certain scenarios can have
3930 * max load less than avg load(as we skip the groups at or below
3931 * its cpu_power, while calculating max_load..)
3932 */
3933 if (sds->max_load < sds->avg_load) {
3934 *imbalance = 0;
3935 return fix_small_imbalance(sds, this_cpu, imbalance);
3936 }
3937
3938 /* Don't want to pull so many tasks that a group would go idle */
3939 max_pull = min(sds->max_load - sds->avg_load,
3940 sds->max_load - sds->busiest_load_per_task);
3941
3942 /* How much load to actually move to equalise the imbalance */
3943 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3944 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3945 / SCHED_LOAD_SCALE;
3946
3947 /*
3948 * if *imbalance is less than the average load per runnable task
3949 * there is no gaurantee that any tasks will be moved so we'll have
3950 * a think about bumping its value to force at least one task to be
3951 * moved
3952 */
3953 if (*imbalance < sds->busiest_load_per_task)
3954 return fix_small_imbalance(sds, this_cpu, imbalance);
3955
3956 }
3957 /******* find_busiest_group() helpers end here *********************/
3958
3959 /**
3960 * find_busiest_group - Returns the busiest group within the sched_domain
3961 * if there is an imbalance. If there isn't an imbalance, and
3962 * the user has opted for power-savings, it returns a group whose
3963 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3964 * such a group exists.
3965 *
3966 * Also calculates the amount of weighted load which should be moved
3967 * to restore balance.
3968 *
3969 * @sd: The sched_domain whose busiest group is to be returned.
3970 * @this_cpu: The cpu for which load balancing is currently being performed.
3971 * @imbalance: Variable which stores amount of weighted load which should
3972 * be moved to restore balance/put a group to idle.
3973 * @idle: The idle status of this_cpu.
3974 * @sd_idle: The idleness of sd
3975 * @cpus: The set of CPUs under consideration for load-balancing.
3976 * @balance: Pointer to a variable indicating if this_cpu
3977 * is the appropriate cpu to perform load balancing at this_level.
3978 *
3979 * Returns: - the busiest group if imbalance exists.
3980 * - If no imbalance and user has opted for power-savings balance,
3981 * return the least loaded group whose CPUs can be
3982 * put to idle by rebalancing its tasks onto our group.
3983 */
3984 static struct sched_group *
3985 find_busiest_group(struct sched_domain *sd, int this_cpu,
3986 unsigned long *imbalance, enum cpu_idle_type idle,
3987 int *sd_idle, const struct cpumask *cpus, int *balance)
3988 {
3989 struct sd_lb_stats sds;
3990
3991 memset(&sds, 0, sizeof(sds));
3992
3993 /*
3994 * Compute the various statistics relavent for load balancing at
3995 * this level.
3996 */
3997 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3998 balance, &sds);
3999
4000 /* Cases where imbalance does not exist from POV of this_cpu */
4001 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4002 * at this level.
4003 * 2) There is no busy sibling group to pull from.
4004 * 3) This group is the busiest group.
4005 * 4) This group is more busy than the avg busieness at this
4006 * sched_domain.
4007 * 5) The imbalance is within the specified limit.
4008 * 6) Any rebalance would lead to ping-pong
4009 */
4010 if (balance && !(*balance))
4011 goto ret;
4012
4013 if (!sds.busiest || sds.busiest_nr_running == 0)
4014 goto out_balanced;
4015
4016 if (sds.this_load >= sds.max_load)
4017 goto out_balanced;
4018
4019 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4020
4021 if (sds.this_load >= sds.avg_load)
4022 goto out_balanced;
4023
4024 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4025 goto out_balanced;
4026
4027 sds.busiest_load_per_task /= sds.busiest_nr_running;
4028 if (sds.group_imb)
4029 sds.busiest_load_per_task =
4030 min(sds.busiest_load_per_task, sds.avg_load);
4031
4032 /*
4033 * We're trying to get all the cpus to the average_load, so we don't
4034 * want to push ourselves above the average load, nor do we wish to
4035 * reduce the max loaded cpu below the average load, as either of these
4036 * actions would just result in more rebalancing later, and ping-pong
4037 * tasks around. Thus we look for the minimum possible imbalance.
4038 * Negative imbalances (*we* are more loaded than anyone else) will
4039 * be counted as no imbalance for these purposes -- we can't fix that
4040 * by pulling tasks to us. Be careful of negative numbers as they'll
4041 * appear as very large values with unsigned longs.
4042 */
4043 if (sds.max_load <= sds.busiest_load_per_task)
4044 goto out_balanced;
4045
4046 /* Looks like there is an imbalance. Compute it */
4047 calculate_imbalance(&sds, this_cpu, imbalance);
4048 return sds.busiest;
4049
4050 out_balanced:
4051 /*
4052 * There is no obvious imbalance. But check if we can do some balancing
4053 * to save power.
4054 */
4055 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4056 return sds.busiest;
4057 ret:
4058 *imbalance = 0;
4059 return NULL;
4060 }
4061
4062 /*
4063 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4064 */
4065 static struct rq *
4066 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4067 unsigned long imbalance, const struct cpumask *cpus)
4068 {
4069 struct rq *busiest = NULL, *rq;
4070 unsigned long max_load = 0;
4071 int i;
4072
4073 for_each_cpu(i, sched_group_cpus(group)) {
4074 unsigned long wl;
4075
4076 if (!cpumask_test_cpu(i, cpus))
4077 continue;
4078
4079 rq = cpu_rq(i);
4080 wl = weighted_cpuload(i);
4081
4082 if (rq->nr_running == 1 && wl > imbalance)
4083 continue;
4084
4085 if (wl > max_load) {
4086 max_load = wl;
4087 busiest = rq;
4088 }
4089 }
4090
4091 return busiest;
4092 }
4093
4094 /*
4095 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4096 * so long as it is large enough.
4097 */
4098 #define MAX_PINNED_INTERVAL 512
4099
4100 /* Working cpumask for load_balance and load_balance_newidle. */
4101 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4102
4103 /*
4104 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4105 * tasks if there is an imbalance.
4106 */
4107 static int load_balance(int this_cpu, struct rq *this_rq,
4108 struct sched_domain *sd, enum cpu_idle_type idle,
4109 int *balance)
4110 {
4111 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4112 struct sched_group *group;
4113 unsigned long imbalance;
4114 struct rq *busiest;
4115 unsigned long flags;
4116 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4117
4118 cpumask_setall(cpus);
4119
4120 /*
4121 * When power savings policy is enabled for the parent domain, idle
4122 * sibling can pick up load irrespective of busy siblings. In this case,
4123 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4124 * portraying it as CPU_NOT_IDLE.
4125 */
4126 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4127 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4128 sd_idle = 1;
4129
4130 schedstat_inc(sd, lb_count[idle]);
4131
4132 redo:
4133 update_shares(sd);
4134 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4135 cpus, balance);
4136
4137 if (*balance == 0)
4138 goto out_balanced;
4139
4140 if (!group) {
4141 schedstat_inc(sd, lb_nobusyg[idle]);
4142 goto out_balanced;
4143 }
4144
4145 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4146 if (!busiest) {
4147 schedstat_inc(sd, lb_nobusyq[idle]);
4148 goto out_balanced;
4149 }
4150
4151 BUG_ON(busiest == this_rq);
4152
4153 schedstat_add(sd, lb_imbalance[idle], imbalance);
4154
4155 ld_moved = 0;
4156 if (busiest->nr_running > 1) {
4157 /*
4158 * Attempt to move tasks. If find_busiest_group has found
4159 * an imbalance but busiest->nr_running <= 1, the group is
4160 * still unbalanced. ld_moved simply stays zero, so it is
4161 * correctly treated as an imbalance.
4162 */
4163 local_irq_save(flags);
4164 double_rq_lock(this_rq, busiest);
4165 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4166 imbalance, sd, idle, &all_pinned);
4167 double_rq_unlock(this_rq, busiest);
4168 local_irq_restore(flags);
4169
4170 /*
4171 * some other cpu did the load balance for us.
4172 */
4173 if (ld_moved && this_cpu != smp_processor_id())
4174 resched_cpu(this_cpu);
4175
4176 /* All tasks on this runqueue were pinned by CPU affinity */
4177 if (unlikely(all_pinned)) {
4178 cpumask_clear_cpu(cpu_of(busiest), cpus);
4179 if (!cpumask_empty(cpus))
4180 goto redo;
4181 goto out_balanced;
4182 }
4183 }
4184
4185 if (!ld_moved) {
4186 schedstat_inc(sd, lb_failed[idle]);
4187 sd->nr_balance_failed++;
4188
4189 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4190
4191 spin_lock_irqsave(&busiest->lock, flags);
4192
4193 /* don't kick the migration_thread, if the curr
4194 * task on busiest cpu can't be moved to this_cpu
4195 */
4196 if (!cpumask_test_cpu(this_cpu,
4197 &busiest->curr->cpus_allowed)) {
4198 spin_unlock_irqrestore(&busiest->lock, flags);
4199 all_pinned = 1;
4200 goto out_one_pinned;
4201 }
4202
4203 if (!busiest->active_balance) {
4204 busiest->active_balance = 1;
4205 busiest->push_cpu = this_cpu;
4206 active_balance = 1;
4207 }
4208 spin_unlock_irqrestore(&busiest->lock, flags);
4209 if (active_balance)
4210 wake_up_process(busiest->migration_thread);
4211
4212 /*
4213 * We've kicked active balancing, reset the failure
4214 * counter.
4215 */
4216 sd->nr_balance_failed = sd->cache_nice_tries+1;
4217 }
4218 } else
4219 sd->nr_balance_failed = 0;
4220
4221 if (likely(!active_balance)) {
4222 /* We were unbalanced, so reset the balancing interval */
4223 sd->balance_interval = sd->min_interval;
4224 } else {
4225 /*
4226 * If we've begun active balancing, start to back off. This
4227 * case may not be covered by the all_pinned logic if there
4228 * is only 1 task on the busy runqueue (because we don't call
4229 * move_tasks).
4230 */
4231 if (sd->balance_interval < sd->max_interval)
4232 sd->balance_interval *= 2;
4233 }
4234
4235 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4236 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4237 ld_moved = -1;
4238
4239 goto out;
4240
4241 out_balanced:
4242 schedstat_inc(sd, lb_balanced[idle]);
4243
4244 sd->nr_balance_failed = 0;
4245
4246 out_one_pinned:
4247 /* tune up the balancing interval */
4248 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4249 (sd->balance_interval < sd->max_interval))
4250 sd->balance_interval *= 2;
4251
4252 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4253 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4254 ld_moved = -1;
4255 else
4256 ld_moved = 0;
4257 out:
4258 if (ld_moved)
4259 update_shares(sd);
4260 return ld_moved;
4261 }
4262
4263 /*
4264 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4265 * tasks if there is an imbalance.
4266 *
4267 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4268 * this_rq is locked.
4269 */
4270 static int
4271 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4272 {
4273 struct sched_group *group;
4274 struct rq *busiest = NULL;
4275 unsigned long imbalance;
4276 int ld_moved = 0;
4277 int sd_idle = 0;
4278 int all_pinned = 0;
4279 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4280
4281 cpumask_setall(cpus);
4282
4283 /*
4284 * When power savings policy is enabled for the parent domain, idle
4285 * sibling can pick up load irrespective of busy siblings. In this case,
4286 * let the state of idle sibling percolate up as IDLE, instead of
4287 * portraying it as CPU_NOT_IDLE.
4288 */
4289 if (sd->flags & SD_SHARE_CPUPOWER &&
4290 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4291 sd_idle = 1;
4292
4293 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4294 redo:
4295 update_shares_locked(this_rq, sd);
4296 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4297 &sd_idle, cpus, NULL);
4298 if (!group) {
4299 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4300 goto out_balanced;
4301 }
4302
4303 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4304 if (!busiest) {
4305 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4306 goto out_balanced;
4307 }
4308
4309 BUG_ON(busiest == this_rq);
4310
4311 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4312
4313 ld_moved = 0;
4314 if (busiest->nr_running > 1) {
4315 /* Attempt to move tasks */
4316 double_lock_balance(this_rq, busiest);
4317 /* this_rq->clock is already updated */
4318 update_rq_clock(busiest);
4319 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4320 imbalance, sd, CPU_NEWLY_IDLE,
4321 &all_pinned);
4322 double_unlock_balance(this_rq, busiest);
4323
4324 if (unlikely(all_pinned)) {
4325 cpumask_clear_cpu(cpu_of(busiest), cpus);
4326 if (!cpumask_empty(cpus))
4327 goto redo;
4328 }
4329 }
4330
4331 if (!ld_moved) {
4332 int active_balance = 0;
4333
4334 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4335 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4336 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4337 return -1;
4338
4339 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4340 return -1;
4341
4342 if (sd->nr_balance_failed++ < 2)
4343 return -1;
4344
4345 /*
4346 * The only task running in a non-idle cpu can be moved to this
4347 * cpu in an attempt to completely freeup the other CPU
4348 * package. The same method used to move task in load_balance()
4349 * have been extended for load_balance_newidle() to speedup
4350 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4351 *
4352 * The package power saving logic comes from
4353 * find_busiest_group(). If there are no imbalance, then
4354 * f_b_g() will return NULL. However when sched_mc={1,2} then
4355 * f_b_g() will select a group from which a running task may be
4356 * pulled to this cpu in order to make the other package idle.
4357 * If there is no opportunity to make a package idle and if
4358 * there are no imbalance, then f_b_g() will return NULL and no
4359 * action will be taken in load_balance_newidle().
4360 *
4361 * Under normal task pull operation due to imbalance, there
4362 * will be more than one task in the source run queue and
4363 * move_tasks() will succeed. ld_moved will be true and this
4364 * active balance code will not be triggered.
4365 */
4366
4367 /* Lock busiest in correct order while this_rq is held */
4368 double_lock_balance(this_rq, busiest);
4369
4370 /*
4371 * don't kick the migration_thread, if the curr
4372 * task on busiest cpu can't be moved to this_cpu
4373 */
4374 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4375 double_unlock_balance(this_rq, busiest);
4376 all_pinned = 1;
4377 return ld_moved;
4378 }
4379
4380 if (!busiest->active_balance) {
4381 busiest->active_balance = 1;
4382 busiest->push_cpu = this_cpu;
4383 active_balance = 1;
4384 }
4385
4386 double_unlock_balance(this_rq, busiest);
4387 /*
4388 * Should not call ttwu while holding a rq->lock
4389 */
4390 spin_unlock(&this_rq->lock);
4391 if (active_balance)
4392 wake_up_process(busiest->migration_thread);
4393 spin_lock(&this_rq->lock);
4394
4395 } else
4396 sd->nr_balance_failed = 0;
4397
4398 update_shares_locked(this_rq, sd);
4399 return ld_moved;
4400
4401 out_balanced:
4402 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4403 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4404 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4405 return -1;
4406 sd->nr_balance_failed = 0;
4407
4408 return 0;
4409 }
4410
4411 /*
4412 * idle_balance is called by schedule() if this_cpu is about to become
4413 * idle. Attempts to pull tasks from other CPUs.
4414 */
4415 static void idle_balance(int this_cpu, struct rq *this_rq)
4416 {
4417 struct sched_domain *sd;
4418 int pulled_task = 0;
4419 unsigned long next_balance = jiffies + HZ;
4420
4421 for_each_domain(this_cpu, sd) {
4422 unsigned long interval;
4423
4424 if (!(sd->flags & SD_LOAD_BALANCE))
4425 continue;
4426
4427 if (sd->flags & SD_BALANCE_NEWIDLE)
4428 /* If we've pulled tasks over stop searching: */
4429 pulled_task = load_balance_newidle(this_cpu, this_rq,
4430 sd);
4431
4432 interval = msecs_to_jiffies(sd->balance_interval);
4433 if (time_after(next_balance, sd->last_balance + interval))
4434 next_balance = sd->last_balance + interval;
4435 if (pulled_task)
4436 break;
4437 }
4438 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4439 /*
4440 * We are going idle. next_balance may be set based on
4441 * a busy processor. So reset next_balance.
4442 */
4443 this_rq->next_balance = next_balance;
4444 }
4445 }
4446
4447 /*
4448 * active_load_balance is run by migration threads. It pushes running tasks
4449 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4450 * running on each physical CPU where possible, and avoids physical /
4451 * logical imbalances.
4452 *
4453 * Called with busiest_rq locked.
4454 */
4455 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4456 {
4457 int target_cpu = busiest_rq->push_cpu;
4458 struct sched_domain *sd;
4459 struct rq *target_rq;
4460
4461 /* Is there any task to move? */
4462 if (busiest_rq->nr_running <= 1)
4463 return;
4464
4465 target_rq = cpu_rq(target_cpu);
4466
4467 /*
4468 * This condition is "impossible", if it occurs
4469 * we need to fix it. Originally reported by
4470 * Bjorn Helgaas on a 128-cpu setup.
4471 */
4472 BUG_ON(busiest_rq == target_rq);
4473
4474 /* move a task from busiest_rq to target_rq */
4475 double_lock_balance(busiest_rq, target_rq);
4476 update_rq_clock(busiest_rq);
4477 update_rq_clock(target_rq);
4478
4479 /* Search for an sd spanning us and the target CPU. */
4480 for_each_domain(target_cpu, sd) {
4481 if ((sd->flags & SD_LOAD_BALANCE) &&
4482 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4483 break;
4484 }
4485
4486 if (likely(sd)) {
4487 schedstat_inc(sd, alb_count);
4488
4489 if (move_one_task(target_rq, target_cpu, busiest_rq,
4490 sd, CPU_IDLE))
4491 schedstat_inc(sd, alb_pushed);
4492 else
4493 schedstat_inc(sd, alb_failed);
4494 }
4495 double_unlock_balance(busiest_rq, target_rq);
4496 }
4497
4498 #ifdef CONFIG_NO_HZ
4499 static struct {
4500 atomic_t load_balancer;
4501 cpumask_var_t cpu_mask;
4502 cpumask_var_t ilb_grp_nohz_mask;
4503 } nohz ____cacheline_aligned = {
4504 .load_balancer = ATOMIC_INIT(-1),
4505 };
4506
4507 int get_nohz_load_balancer(void)
4508 {
4509 return atomic_read(&nohz.load_balancer);
4510 }
4511
4512 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4513 /**
4514 * lowest_flag_domain - Return lowest sched_domain containing flag.
4515 * @cpu: The cpu whose lowest level of sched domain is to
4516 * be returned.
4517 * @flag: The flag to check for the lowest sched_domain
4518 * for the given cpu.
4519 *
4520 * Returns the lowest sched_domain of a cpu which contains the given flag.
4521 */
4522 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4523 {
4524 struct sched_domain *sd;
4525
4526 for_each_domain(cpu, sd)
4527 if (sd && (sd->flags & flag))
4528 break;
4529
4530 return sd;
4531 }
4532
4533 /**
4534 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4535 * @cpu: The cpu whose domains we're iterating over.
4536 * @sd: variable holding the value of the power_savings_sd
4537 * for cpu.
4538 * @flag: The flag to filter the sched_domains to be iterated.
4539 *
4540 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4541 * set, starting from the lowest sched_domain to the highest.
4542 */
4543 #define for_each_flag_domain(cpu, sd, flag) \
4544 for (sd = lowest_flag_domain(cpu, flag); \
4545 (sd && (sd->flags & flag)); sd = sd->parent)
4546
4547 /**
4548 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4549 * @ilb_group: group to be checked for semi-idleness
4550 *
4551 * Returns: 1 if the group is semi-idle. 0 otherwise.
4552 *
4553 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4554 * and atleast one non-idle CPU. This helper function checks if the given
4555 * sched_group is semi-idle or not.
4556 */
4557 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4558 {
4559 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4560 sched_group_cpus(ilb_group));
4561
4562 /*
4563 * A sched_group is semi-idle when it has atleast one busy cpu
4564 * and atleast one idle cpu.
4565 */
4566 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4567 return 0;
4568
4569 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4570 return 0;
4571
4572 return 1;
4573 }
4574 /**
4575 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4576 * @cpu: The cpu which is nominating a new idle_load_balancer.
4577 *
4578 * Returns: Returns the id of the idle load balancer if it exists,
4579 * Else, returns >= nr_cpu_ids.
4580 *
4581 * This algorithm picks the idle load balancer such that it belongs to a
4582 * semi-idle powersavings sched_domain. The idea is to try and avoid
4583 * completely idle packages/cores just for the purpose of idle load balancing
4584 * when there are other idle cpu's which are better suited for that job.
4585 */
4586 static int find_new_ilb(int cpu)
4587 {
4588 struct sched_domain *sd;
4589 struct sched_group *ilb_group;
4590
4591 /*
4592 * Have idle load balancer selection from semi-idle packages only
4593 * when power-aware load balancing is enabled
4594 */
4595 if (!(sched_smt_power_savings || sched_mc_power_savings))
4596 goto out_done;
4597
4598 /*
4599 * Optimize for the case when we have no idle CPUs or only one
4600 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4601 */
4602 if (cpumask_weight(nohz.cpu_mask) < 2)
4603 goto out_done;
4604
4605 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4606 ilb_group = sd->groups;
4607
4608 do {
4609 if (is_semi_idle_group(ilb_group))
4610 return cpumask_first(nohz.ilb_grp_nohz_mask);
4611
4612 ilb_group = ilb_group->next;
4613
4614 } while (ilb_group != sd->groups);
4615 }
4616
4617 out_done:
4618 return cpumask_first(nohz.cpu_mask);
4619 }
4620 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4621 static inline int find_new_ilb(int call_cpu)
4622 {
4623 return cpumask_first(nohz.cpu_mask);
4624 }
4625 #endif
4626
4627 /*
4628 * This routine will try to nominate the ilb (idle load balancing)
4629 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4630 * load balancing on behalf of all those cpus. If all the cpus in the system
4631 * go into this tickless mode, then there will be no ilb owner (as there is
4632 * no need for one) and all the cpus will sleep till the next wakeup event
4633 * arrives...
4634 *
4635 * For the ilb owner, tick is not stopped. And this tick will be used
4636 * for idle load balancing. ilb owner will still be part of
4637 * nohz.cpu_mask..
4638 *
4639 * While stopping the tick, this cpu will become the ilb owner if there
4640 * is no other owner. And will be the owner till that cpu becomes busy
4641 * or if all cpus in the system stop their ticks at which point
4642 * there is no need for ilb owner.
4643 *
4644 * When the ilb owner becomes busy, it nominates another owner, during the
4645 * next busy scheduler_tick()
4646 */
4647 int select_nohz_load_balancer(int stop_tick)
4648 {
4649 int cpu = smp_processor_id();
4650
4651 if (stop_tick) {
4652 cpu_rq(cpu)->in_nohz_recently = 1;
4653
4654 if (!cpu_active(cpu)) {
4655 if (atomic_read(&nohz.load_balancer) != cpu)
4656 return 0;
4657
4658 /*
4659 * If we are going offline and still the leader,
4660 * give up!
4661 */
4662 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4663 BUG();
4664
4665 return 0;
4666 }
4667
4668 cpumask_set_cpu(cpu, nohz.cpu_mask);
4669
4670 /* time for ilb owner also to sleep */
4671 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4672 if (atomic_read(&nohz.load_balancer) == cpu)
4673 atomic_set(&nohz.load_balancer, -1);
4674 return 0;
4675 }
4676
4677 if (atomic_read(&nohz.load_balancer) == -1) {
4678 /* make me the ilb owner */
4679 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4680 return 1;
4681 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4682 int new_ilb;
4683
4684 if (!(sched_smt_power_savings ||
4685 sched_mc_power_savings))
4686 return 1;
4687 /*
4688 * Check to see if there is a more power-efficient
4689 * ilb.
4690 */
4691 new_ilb = find_new_ilb(cpu);
4692 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4693 atomic_set(&nohz.load_balancer, -1);
4694 resched_cpu(new_ilb);
4695 return 0;
4696 }
4697 return 1;
4698 }
4699 } else {
4700 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4701 return 0;
4702
4703 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4704
4705 if (atomic_read(&nohz.load_balancer) == cpu)
4706 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4707 BUG();
4708 }
4709 return 0;
4710 }
4711 #endif
4712
4713 static DEFINE_SPINLOCK(balancing);
4714
4715 /*
4716 * It checks each scheduling domain to see if it is due to be balanced,
4717 * and initiates a balancing operation if so.
4718 *
4719 * Balancing parameters are set up in arch_init_sched_domains.
4720 */
4721 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4722 {
4723 int balance = 1;
4724 struct rq *rq = cpu_rq(cpu);
4725 unsigned long interval;
4726 struct sched_domain *sd;
4727 /* Earliest time when we have to do rebalance again */
4728 unsigned long next_balance = jiffies + 60*HZ;
4729 int update_next_balance = 0;
4730 int need_serialize;
4731
4732 for_each_domain(cpu, sd) {
4733 if (!(sd->flags & SD_LOAD_BALANCE))
4734 continue;
4735
4736 interval = sd->balance_interval;
4737 if (idle != CPU_IDLE)
4738 interval *= sd->busy_factor;
4739
4740 /* scale ms to jiffies */
4741 interval = msecs_to_jiffies(interval);
4742 if (unlikely(!interval))
4743 interval = 1;
4744 if (interval > HZ*NR_CPUS/10)
4745 interval = HZ*NR_CPUS/10;
4746
4747 need_serialize = sd->flags & SD_SERIALIZE;
4748
4749 if (need_serialize) {
4750 if (!spin_trylock(&balancing))
4751 goto out;
4752 }
4753
4754 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4755 if (load_balance(cpu, rq, sd, idle, &balance)) {
4756 /*
4757 * We've pulled tasks over so either we're no
4758 * longer idle, or one of our SMT siblings is
4759 * not idle.
4760 */
4761 idle = CPU_NOT_IDLE;
4762 }
4763 sd->last_balance = jiffies;
4764 }
4765 if (need_serialize)
4766 spin_unlock(&balancing);
4767 out:
4768 if (time_after(next_balance, sd->last_balance + interval)) {
4769 next_balance = sd->last_balance + interval;
4770 update_next_balance = 1;
4771 }
4772
4773 /*
4774 * Stop the load balance at this level. There is another
4775 * CPU in our sched group which is doing load balancing more
4776 * actively.
4777 */
4778 if (!balance)
4779 break;
4780 }
4781
4782 /*
4783 * next_balance will be updated only when there is a need.
4784 * When the cpu is attached to null domain for ex, it will not be
4785 * updated.
4786 */
4787 if (likely(update_next_balance))
4788 rq->next_balance = next_balance;
4789 }
4790
4791 /*
4792 * run_rebalance_domains is triggered when needed from the scheduler tick.
4793 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4794 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4795 */
4796 static void run_rebalance_domains(struct softirq_action *h)
4797 {
4798 int this_cpu = smp_processor_id();
4799 struct rq *this_rq = cpu_rq(this_cpu);
4800 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4801 CPU_IDLE : CPU_NOT_IDLE;
4802
4803 rebalance_domains(this_cpu, idle);
4804
4805 #ifdef CONFIG_NO_HZ
4806 /*
4807 * If this cpu is the owner for idle load balancing, then do the
4808 * balancing on behalf of the other idle cpus whose ticks are
4809 * stopped.
4810 */
4811 if (this_rq->idle_at_tick &&
4812 atomic_read(&nohz.load_balancer) == this_cpu) {
4813 struct rq *rq;
4814 int balance_cpu;
4815
4816 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4817 if (balance_cpu == this_cpu)
4818 continue;
4819
4820 /*
4821 * If this cpu gets work to do, stop the load balancing
4822 * work being done for other cpus. Next load
4823 * balancing owner will pick it up.
4824 */
4825 if (need_resched())
4826 break;
4827
4828 rebalance_domains(balance_cpu, CPU_IDLE);
4829
4830 rq = cpu_rq(balance_cpu);
4831 if (time_after(this_rq->next_balance, rq->next_balance))
4832 this_rq->next_balance = rq->next_balance;
4833 }
4834 }
4835 #endif
4836 }
4837
4838 static inline int on_null_domain(int cpu)
4839 {
4840 return !rcu_dereference(cpu_rq(cpu)->sd);
4841 }
4842
4843 /*
4844 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4845 *
4846 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4847 * idle load balancing owner or decide to stop the periodic load balancing,
4848 * if the whole system is idle.
4849 */
4850 static inline void trigger_load_balance(struct rq *rq, int cpu)
4851 {
4852 #ifdef CONFIG_NO_HZ
4853 /*
4854 * If we were in the nohz mode recently and busy at the current
4855 * scheduler tick, then check if we need to nominate new idle
4856 * load balancer.
4857 */
4858 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4859 rq->in_nohz_recently = 0;
4860
4861 if (atomic_read(&nohz.load_balancer) == cpu) {
4862 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4863 atomic_set(&nohz.load_balancer, -1);
4864 }
4865
4866 if (atomic_read(&nohz.load_balancer) == -1) {
4867 int ilb = find_new_ilb(cpu);
4868
4869 if (ilb < nr_cpu_ids)
4870 resched_cpu(ilb);
4871 }
4872 }
4873
4874 /*
4875 * If this cpu is idle and doing idle load balancing for all the
4876 * cpus with ticks stopped, is it time for that to stop?
4877 */
4878 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4879 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4880 resched_cpu(cpu);
4881 return;
4882 }
4883
4884 /*
4885 * If this cpu is idle and the idle load balancing is done by
4886 * someone else, then no need raise the SCHED_SOFTIRQ
4887 */
4888 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4889 cpumask_test_cpu(cpu, nohz.cpu_mask))
4890 return;
4891 #endif
4892 /* Don't need to rebalance while attached to NULL domain */
4893 if (time_after_eq(jiffies, rq->next_balance) &&
4894 likely(!on_null_domain(cpu)))
4895 raise_softirq(SCHED_SOFTIRQ);
4896 }
4897
4898 #else /* CONFIG_SMP */
4899
4900 /*
4901 * on UP we do not need to balance between CPUs:
4902 */
4903 static inline void idle_balance(int cpu, struct rq *rq)
4904 {
4905 }
4906
4907 #endif
4908
4909 DEFINE_PER_CPU(struct kernel_stat, kstat);
4910
4911 EXPORT_PER_CPU_SYMBOL(kstat);
4912
4913 /*
4914 * Return any ns on the sched_clock that have not yet been accounted in
4915 * @p in case that task is currently running.
4916 *
4917 * Called with task_rq_lock() held on @rq.
4918 */
4919 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4920 {
4921 u64 ns = 0;
4922
4923 if (task_current(rq, p)) {
4924 update_rq_clock(rq);
4925 ns = rq->clock - p->se.exec_start;
4926 if ((s64)ns < 0)
4927 ns = 0;
4928 }
4929
4930 return ns;
4931 }
4932
4933 unsigned long long task_delta_exec(struct task_struct *p)
4934 {
4935 unsigned long flags;
4936 struct rq *rq;
4937 u64 ns = 0;
4938
4939 rq = task_rq_lock(p, &flags);
4940 ns = do_task_delta_exec(p, rq);
4941 task_rq_unlock(rq, &flags);
4942
4943 return ns;
4944 }
4945
4946 /*
4947 * Return accounted runtime for the task.
4948 * In case the task is currently running, return the runtime plus current's
4949 * pending runtime that have not been accounted yet.
4950 */
4951 unsigned long long task_sched_runtime(struct task_struct *p)
4952 {
4953 unsigned long flags;
4954 struct rq *rq;
4955 u64 ns = 0;
4956
4957 rq = task_rq_lock(p, &flags);
4958 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4959 task_rq_unlock(rq, &flags);
4960
4961 return ns;
4962 }
4963
4964 /*
4965 * Return sum_exec_runtime for the thread group.
4966 * In case the task is currently running, return the sum plus current's
4967 * pending runtime that have not been accounted yet.
4968 *
4969 * Note that the thread group might have other running tasks as well,
4970 * so the return value not includes other pending runtime that other
4971 * running tasks might have.
4972 */
4973 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4974 {
4975 struct task_cputime totals;
4976 unsigned long flags;
4977 struct rq *rq;
4978 u64 ns;
4979
4980 rq = task_rq_lock(p, &flags);
4981 thread_group_cputime(p, &totals);
4982 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4983 task_rq_unlock(rq, &flags);
4984
4985 return ns;
4986 }
4987
4988 /*
4989 * Account user cpu time to a process.
4990 * @p: the process that the cpu time gets accounted to
4991 * @cputime: the cpu time spent in user space since the last update
4992 * @cputime_scaled: cputime scaled by cpu frequency
4993 */
4994 void account_user_time(struct task_struct *p, cputime_t cputime,
4995 cputime_t cputime_scaled)
4996 {
4997 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4998 cputime64_t tmp;
4999
5000 /* Add user time to process. */
5001 p->utime = cputime_add(p->utime, cputime);
5002 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5003 account_group_user_time(p, cputime);
5004
5005 /* Add user time to cpustat. */
5006 tmp = cputime_to_cputime64(cputime);
5007 if (TASK_NICE(p) > 0)
5008 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5009 else
5010 cpustat->user = cputime64_add(cpustat->user, tmp);
5011
5012 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5013 /* Account for user time used */
5014 acct_update_integrals(p);
5015 }
5016
5017 /*
5018 * Account guest cpu time to a process.
5019 * @p: the process that the cpu time gets accounted to
5020 * @cputime: the cpu time spent in virtual machine since the last update
5021 * @cputime_scaled: cputime scaled by cpu frequency
5022 */
5023 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5024 cputime_t cputime_scaled)
5025 {
5026 cputime64_t tmp;
5027 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5028
5029 tmp = cputime_to_cputime64(cputime);
5030
5031 /* Add guest time to process. */
5032 p->utime = cputime_add(p->utime, cputime);
5033 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5034 account_group_user_time(p, cputime);
5035 p->gtime = cputime_add(p->gtime, cputime);
5036
5037 /* Add guest time to cpustat. */
5038 cpustat->user = cputime64_add(cpustat->user, tmp);
5039 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5040 }
5041
5042 /*
5043 * Account system cpu time to a process.
5044 * @p: the process that the cpu time gets accounted to
5045 * @hardirq_offset: the offset to subtract from hardirq_count()
5046 * @cputime: the cpu time spent in kernel space since the last update
5047 * @cputime_scaled: cputime scaled by cpu frequency
5048 */
5049 void account_system_time(struct task_struct *p, int hardirq_offset,
5050 cputime_t cputime, cputime_t cputime_scaled)
5051 {
5052 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5053 cputime64_t tmp;
5054
5055 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5056 account_guest_time(p, cputime, cputime_scaled);
5057 return;
5058 }
5059
5060 /* Add system time to process. */
5061 p->stime = cputime_add(p->stime, cputime);
5062 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5063 account_group_system_time(p, cputime);
5064
5065 /* Add system time to cpustat. */
5066 tmp = cputime_to_cputime64(cputime);
5067 if (hardirq_count() - hardirq_offset)
5068 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5069 else if (softirq_count())
5070 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5071 else
5072 cpustat->system = cputime64_add(cpustat->system, tmp);
5073
5074 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5075
5076 /* Account for system time used */
5077 acct_update_integrals(p);
5078 }
5079
5080 /*
5081 * Account for involuntary wait time.
5082 * @steal: the cpu time spent in involuntary wait
5083 */
5084 void account_steal_time(cputime_t cputime)
5085 {
5086 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5087 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5088
5089 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5090 }
5091
5092 /*
5093 * Account for idle time.
5094 * @cputime: the cpu time spent in idle wait
5095 */
5096 void account_idle_time(cputime_t cputime)
5097 {
5098 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5099 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5100 struct rq *rq = this_rq();
5101
5102 if (atomic_read(&rq->nr_iowait) > 0)
5103 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5104 else
5105 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5106 }
5107
5108 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5109
5110 /*
5111 * Account a single tick of cpu time.
5112 * @p: the process that the cpu time gets accounted to
5113 * @user_tick: indicates if the tick is a user or a system tick
5114 */
5115 void account_process_tick(struct task_struct *p, int user_tick)
5116 {
5117 cputime_t one_jiffy = jiffies_to_cputime(1);
5118 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5119 struct rq *rq = this_rq();
5120
5121 if (user_tick)
5122 account_user_time(p, one_jiffy, one_jiffy_scaled);
5123 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5124 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5125 one_jiffy_scaled);
5126 else
5127 account_idle_time(one_jiffy);
5128 }
5129
5130 /*
5131 * Account multiple ticks of steal time.
5132 * @p: the process from which the cpu time has been stolen
5133 * @ticks: number of stolen ticks
5134 */
5135 void account_steal_ticks(unsigned long ticks)
5136 {
5137 account_steal_time(jiffies_to_cputime(ticks));
5138 }
5139
5140 /*
5141 * Account multiple ticks of idle time.
5142 * @ticks: number of stolen ticks
5143 */
5144 void account_idle_ticks(unsigned long ticks)
5145 {
5146 account_idle_time(jiffies_to_cputime(ticks));
5147 }
5148
5149 #endif
5150
5151 /*
5152 * Use precise platform statistics if available:
5153 */
5154 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5155 cputime_t task_utime(struct task_struct *p)
5156 {
5157 return p->utime;
5158 }
5159
5160 cputime_t task_stime(struct task_struct *p)
5161 {
5162 return p->stime;
5163 }
5164 #else
5165 cputime_t task_utime(struct task_struct *p)
5166 {
5167 clock_t utime = cputime_to_clock_t(p->utime),
5168 total = utime + cputime_to_clock_t(p->stime);
5169 u64 temp;
5170
5171 /*
5172 * Use CFS's precise accounting:
5173 */
5174 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5175
5176 if (total) {
5177 temp *= utime;
5178 do_div(temp, total);
5179 }
5180 utime = (clock_t)temp;
5181
5182 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5183 return p->prev_utime;
5184 }
5185
5186 cputime_t task_stime(struct task_struct *p)
5187 {
5188 clock_t stime;
5189
5190 /*
5191 * Use CFS's precise accounting. (we subtract utime from
5192 * the total, to make sure the total observed by userspace
5193 * grows monotonically - apps rely on that):
5194 */
5195 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5196 cputime_to_clock_t(task_utime(p));
5197
5198 if (stime >= 0)
5199 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5200
5201 return p->prev_stime;
5202 }
5203 #endif
5204
5205 inline cputime_t task_gtime(struct task_struct *p)
5206 {
5207 return p->gtime;
5208 }
5209
5210 /*
5211 * This function gets called by the timer code, with HZ frequency.
5212 * We call it with interrupts disabled.
5213 *
5214 * It also gets called by the fork code, when changing the parent's
5215 * timeslices.
5216 */
5217 void scheduler_tick(void)
5218 {
5219 int cpu = smp_processor_id();
5220 struct rq *rq = cpu_rq(cpu);
5221 struct task_struct *curr = rq->curr;
5222
5223 sched_clock_tick();
5224
5225 spin_lock(&rq->lock);
5226 update_rq_clock(rq);
5227 update_cpu_load(rq);
5228 curr->sched_class->task_tick(rq, curr, 0);
5229 spin_unlock(&rq->lock);
5230
5231 perf_counter_task_tick(curr, cpu);
5232
5233 #ifdef CONFIG_SMP
5234 rq->idle_at_tick = idle_cpu(cpu);
5235 trigger_load_balance(rq, cpu);
5236 #endif
5237 }
5238
5239 notrace unsigned long get_parent_ip(unsigned long addr)
5240 {
5241 if (in_lock_functions(addr)) {
5242 addr = CALLER_ADDR2;
5243 if (in_lock_functions(addr))
5244 addr = CALLER_ADDR3;
5245 }
5246 return addr;
5247 }
5248
5249 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5250 defined(CONFIG_PREEMPT_TRACER))
5251
5252 void __kprobes add_preempt_count(int val)
5253 {
5254 #ifdef CONFIG_DEBUG_PREEMPT
5255 /*
5256 * Underflow?
5257 */
5258 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5259 return;
5260 #endif
5261 preempt_count() += val;
5262 #ifdef CONFIG_DEBUG_PREEMPT
5263 /*
5264 * Spinlock count overflowing soon?
5265 */
5266 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5267 PREEMPT_MASK - 10);
5268 #endif
5269 if (preempt_count() == val)
5270 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5271 }
5272 EXPORT_SYMBOL(add_preempt_count);
5273
5274 void __kprobes sub_preempt_count(int val)
5275 {
5276 #ifdef CONFIG_DEBUG_PREEMPT
5277 /*
5278 * Underflow?
5279 */
5280 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5281 return;
5282 /*
5283 * Is the spinlock portion underflowing?
5284 */
5285 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5286 !(preempt_count() & PREEMPT_MASK)))
5287 return;
5288 #endif
5289
5290 if (preempt_count() == val)
5291 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5292 preempt_count() -= val;
5293 }
5294 EXPORT_SYMBOL(sub_preempt_count);
5295
5296 #endif
5297
5298 /*
5299 * Print scheduling while atomic bug:
5300 */
5301 static noinline void __schedule_bug(struct task_struct *prev)
5302 {
5303 struct pt_regs *regs = get_irq_regs();
5304
5305 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5306 prev->comm, prev->pid, preempt_count());
5307
5308 debug_show_held_locks(prev);
5309 print_modules();
5310 if (irqs_disabled())
5311 print_irqtrace_events(prev);
5312
5313 if (regs)
5314 show_regs(regs);
5315 else
5316 dump_stack();
5317 }
5318
5319 /*
5320 * Various schedule()-time debugging checks and statistics:
5321 */
5322 static inline void schedule_debug(struct task_struct *prev)
5323 {
5324 /*
5325 * Test if we are atomic. Since do_exit() needs to call into
5326 * schedule() atomically, we ignore that path for now.
5327 * Otherwise, whine if we are scheduling when we should not be.
5328 */
5329 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5330 __schedule_bug(prev);
5331
5332 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5333
5334 schedstat_inc(this_rq(), sched_count);
5335 #ifdef CONFIG_SCHEDSTATS
5336 if (unlikely(prev->lock_depth >= 0)) {
5337 schedstat_inc(this_rq(), bkl_count);
5338 schedstat_inc(prev, sched_info.bkl_count);
5339 }
5340 #endif
5341 }
5342
5343 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5344 {
5345 if (prev->state == TASK_RUNNING) {
5346 u64 runtime = prev->se.sum_exec_runtime;
5347
5348 runtime -= prev->se.prev_sum_exec_runtime;
5349 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5350
5351 /*
5352 * In order to avoid avg_overlap growing stale when we are
5353 * indeed overlapping and hence not getting put to sleep, grow
5354 * the avg_overlap on preemption.
5355 *
5356 * We use the average preemption runtime because that
5357 * correlates to the amount of cache footprint a task can
5358 * build up.
5359 */
5360 update_avg(&prev->se.avg_overlap, runtime);
5361 }
5362 prev->sched_class->put_prev_task(rq, prev);
5363 }
5364
5365 /*
5366 * Pick up the highest-prio task:
5367 */
5368 static inline struct task_struct *
5369 pick_next_task(struct rq *rq)
5370 {
5371 const struct sched_class *class;
5372 struct task_struct *p;
5373
5374 /*
5375 * Optimization: we know that if all tasks are in
5376 * the fair class we can call that function directly:
5377 */
5378 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5379 p = fair_sched_class.pick_next_task(rq);
5380 if (likely(p))
5381 return p;
5382 }
5383
5384 class = sched_class_highest;
5385 for ( ; ; ) {
5386 p = class->pick_next_task(rq);
5387 if (p)
5388 return p;
5389 /*
5390 * Will never be NULL as the idle class always
5391 * returns a non-NULL p:
5392 */
5393 class = class->next;
5394 }
5395 }
5396
5397 /*
5398 * schedule() is the main scheduler function.
5399 */
5400 asmlinkage void __sched schedule(void)
5401 {
5402 struct task_struct *prev, *next;
5403 unsigned long *switch_count;
5404 struct rq *rq;
5405 int cpu;
5406
5407 need_resched:
5408 preempt_disable();
5409 cpu = smp_processor_id();
5410 rq = cpu_rq(cpu);
5411 rcu_qsctr_inc(cpu);
5412 prev = rq->curr;
5413 switch_count = &prev->nivcsw;
5414
5415 release_kernel_lock(prev);
5416 need_resched_nonpreemptible:
5417
5418 schedule_debug(prev);
5419
5420 if (sched_feat(HRTICK))
5421 hrtick_clear(rq);
5422
5423 spin_lock_irq(&rq->lock);
5424 update_rq_clock(rq);
5425 clear_tsk_need_resched(prev);
5426
5427 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5428 if (unlikely(signal_pending_state(prev->state, prev)))
5429 prev->state = TASK_RUNNING;
5430 else
5431 deactivate_task(rq, prev, 1);
5432 switch_count = &prev->nvcsw;
5433 }
5434
5435 pre_schedule(rq, prev);
5436
5437 if (unlikely(!rq->nr_running))
5438 idle_balance(cpu, rq);
5439
5440 put_prev_task(rq, prev);
5441 next = pick_next_task(rq);
5442
5443 if (likely(prev != next)) {
5444 sched_info_switch(prev, next);
5445 perf_counter_task_sched_out(prev, next, cpu);
5446
5447 rq->nr_switches++;
5448 rq->curr = next;
5449 ++*switch_count;
5450
5451 context_switch(rq, prev, next); /* unlocks the rq */
5452 /*
5453 * the context switch might have flipped the stack from under
5454 * us, hence refresh the local variables.
5455 */
5456 cpu = smp_processor_id();
5457 rq = cpu_rq(cpu);
5458 } else
5459 spin_unlock_irq(&rq->lock);
5460
5461 post_schedule(rq);
5462
5463 if (unlikely(reacquire_kernel_lock(current) < 0))
5464 goto need_resched_nonpreemptible;
5465
5466 preempt_enable_no_resched();
5467 if (need_resched())
5468 goto need_resched;
5469 }
5470 EXPORT_SYMBOL(schedule);
5471
5472 #ifdef CONFIG_SMP
5473 /*
5474 * Look out! "owner" is an entirely speculative pointer
5475 * access and not reliable.
5476 */
5477 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5478 {
5479 unsigned int cpu;
5480 struct rq *rq;
5481
5482 if (!sched_feat(OWNER_SPIN))
5483 return 0;
5484
5485 #ifdef CONFIG_DEBUG_PAGEALLOC
5486 /*
5487 * Need to access the cpu field knowing that
5488 * DEBUG_PAGEALLOC could have unmapped it if
5489 * the mutex owner just released it and exited.
5490 */
5491 if (probe_kernel_address(&owner->cpu, cpu))
5492 goto out;
5493 #else
5494 cpu = owner->cpu;
5495 #endif
5496
5497 /*
5498 * Even if the access succeeded (likely case),
5499 * the cpu field may no longer be valid.
5500 */
5501 if (cpu >= nr_cpumask_bits)
5502 goto out;
5503
5504 /*
5505 * We need to validate that we can do a
5506 * get_cpu() and that we have the percpu area.
5507 */
5508 if (!cpu_online(cpu))
5509 goto out;
5510
5511 rq = cpu_rq(cpu);
5512
5513 for (;;) {
5514 /*
5515 * Owner changed, break to re-assess state.
5516 */
5517 if (lock->owner != owner)
5518 break;
5519
5520 /*
5521 * Is that owner really running on that cpu?
5522 */
5523 if (task_thread_info(rq->curr) != owner || need_resched())
5524 return 0;
5525
5526 cpu_relax();
5527 }
5528 out:
5529 return 1;
5530 }
5531 #endif
5532
5533 #ifdef CONFIG_PREEMPT
5534 /*
5535 * this is the entry point to schedule() from in-kernel preemption
5536 * off of preempt_enable. Kernel preemptions off return from interrupt
5537 * occur there and call schedule directly.
5538 */
5539 asmlinkage void __sched preempt_schedule(void)
5540 {
5541 struct thread_info *ti = current_thread_info();
5542
5543 /*
5544 * If there is a non-zero preempt_count or interrupts are disabled,
5545 * we do not want to preempt the current task. Just return..
5546 */
5547 if (likely(ti->preempt_count || irqs_disabled()))
5548 return;
5549
5550 do {
5551 add_preempt_count(PREEMPT_ACTIVE);
5552 schedule();
5553 sub_preempt_count(PREEMPT_ACTIVE);
5554
5555 /*
5556 * Check again in case we missed a preemption opportunity
5557 * between schedule and now.
5558 */
5559 barrier();
5560 } while (need_resched());
5561 }
5562 EXPORT_SYMBOL(preempt_schedule);
5563
5564 /*
5565 * this is the entry point to schedule() from kernel preemption
5566 * off of irq context.
5567 * Note, that this is called and return with irqs disabled. This will
5568 * protect us against recursive calling from irq.
5569 */
5570 asmlinkage void __sched preempt_schedule_irq(void)
5571 {
5572 struct thread_info *ti = current_thread_info();
5573
5574 /* Catch callers which need to be fixed */
5575 BUG_ON(ti->preempt_count || !irqs_disabled());
5576
5577 do {
5578 add_preempt_count(PREEMPT_ACTIVE);
5579 local_irq_enable();
5580 schedule();
5581 local_irq_disable();
5582 sub_preempt_count(PREEMPT_ACTIVE);
5583
5584 /*
5585 * Check again in case we missed a preemption opportunity
5586 * between schedule and now.
5587 */
5588 barrier();
5589 } while (need_resched());
5590 }
5591
5592 #endif /* CONFIG_PREEMPT */
5593
5594 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5595 void *key)
5596 {
5597 return try_to_wake_up(curr->private, mode, sync);
5598 }
5599 EXPORT_SYMBOL(default_wake_function);
5600
5601 /*
5602 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5603 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5604 * number) then we wake all the non-exclusive tasks and one exclusive task.
5605 *
5606 * There are circumstances in which we can try to wake a task which has already
5607 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5608 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5609 */
5610 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5611 int nr_exclusive, int sync, void *key)
5612 {
5613 wait_queue_t *curr, *next;
5614
5615 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5616 unsigned flags = curr->flags;
5617
5618 if (curr->func(curr, mode, sync, key) &&
5619 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5620 break;
5621 }
5622 }
5623
5624 /**
5625 * __wake_up - wake up threads blocked on a waitqueue.
5626 * @q: the waitqueue
5627 * @mode: which threads
5628 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5629 * @key: is directly passed to the wakeup function
5630 *
5631 * It may be assumed that this function implies a write memory barrier before
5632 * changing the task state if and only if any tasks are woken up.
5633 */
5634 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5635 int nr_exclusive, void *key)
5636 {
5637 unsigned long flags;
5638
5639 spin_lock_irqsave(&q->lock, flags);
5640 __wake_up_common(q, mode, nr_exclusive, 0, key);
5641 spin_unlock_irqrestore(&q->lock, flags);
5642 }
5643 EXPORT_SYMBOL(__wake_up);
5644
5645 /*
5646 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5647 */
5648 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5649 {
5650 __wake_up_common(q, mode, 1, 0, NULL);
5651 }
5652
5653 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5654 {
5655 __wake_up_common(q, mode, 1, 0, key);
5656 }
5657
5658 /**
5659 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5660 * @q: the waitqueue
5661 * @mode: which threads
5662 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5663 * @key: opaque value to be passed to wakeup targets
5664 *
5665 * The sync wakeup differs that the waker knows that it will schedule
5666 * away soon, so while the target thread will be woken up, it will not
5667 * be migrated to another CPU - ie. the two threads are 'synchronized'
5668 * with each other. This can prevent needless bouncing between CPUs.
5669 *
5670 * On UP it can prevent extra preemption.
5671 *
5672 * It may be assumed that this function implies a write memory barrier before
5673 * changing the task state if and only if any tasks are woken up.
5674 */
5675 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5676 int nr_exclusive, void *key)
5677 {
5678 unsigned long flags;
5679 int sync = 1;
5680
5681 if (unlikely(!q))
5682 return;
5683
5684 if (unlikely(!nr_exclusive))
5685 sync = 0;
5686
5687 spin_lock_irqsave(&q->lock, flags);
5688 __wake_up_common(q, mode, nr_exclusive, sync, key);
5689 spin_unlock_irqrestore(&q->lock, flags);
5690 }
5691 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5692
5693 /*
5694 * __wake_up_sync - see __wake_up_sync_key()
5695 */
5696 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5697 {
5698 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5699 }
5700 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5701
5702 /**
5703 * complete: - signals a single thread waiting on this completion
5704 * @x: holds the state of this particular completion
5705 *
5706 * This will wake up a single thread waiting on this completion. Threads will be
5707 * awakened in the same order in which they were queued.
5708 *
5709 * See also complete_all(), wait_for_completion() and related routines.
5710 *
5711 * It may be assumed that this function implies a write memory barrier before
5712 * changing the task state if and only if any tasks are woken up.
5713 */
5714 void complete(struct completion *x)
5715 {
5716 unsigned long flags;
5717
5718 spin_lock_irqsave(&x->wait.lock, flags);
5719 x->done++;
5720 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5721 spin_unlock_irqrestore(&x->wait.lock, flags);
5722 }
5723 EXPORT_SYMBOL(complete);
5724
5725 /**
5726 * complete_all: - signals all threads waiting on this completion
5727 * @x: holds the state of this particular completion
5728 *
5729 * This will wake up all threads waiting on this particular completion event.
5730 *
5731 * It may be assumed that this function implies a write memory barrier before
5732 * changing the task state if and only if any tasks are woken up.
5733 */
5734 void complete_all(struct completion *x)
5735 {
5736 unsigned long flags;
5737
5738 spin_lock_irqsave(&x->wait.lock, flags);
5739 x->done += UINT_MAX/2;
5740 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5741 spin_unlock_irqrestore(&x->wait.lock, flags);
5742 }
5743 EXPORT_SYMBOL(complete_all);
5744
5745 static inline long __sched
5746 do_wait_for_common(struct completion *x, long timeout, int state)
5747 {
5748 if (!x->done) {
5749 DECLARE_WAITQUEUE(wait, current);
5750
5751 wait.flags |= WQ_FLAG_EXCLUSIVE;
5752 __add_wait_queue_tail(&x->wait, &wait);
5753 do {
5754 if (signal_pending_state(state, current)) {
5755 timeout = -ERESTARTSYS;
5756 break;
5757 }
5758 __set_current_state(state);
5759 spin_unlock_irq(&x->wait.lock);
5760 timeout = schedule_timeout(timeout);
5761 spin_lock_irq(&x->wait.lock);
5762 } while (!x->done && timeout);
5763 __remove_wait_queue(&x->wait, &wait);
5764 if (!x->done)
5765 return timeout;
5766 }
5767 x->done--;
5768 return timeout ?: 1;
5769 }
5770
5771 static long __sched
5772 wait_for_common(struct completion *x, long timeout, int state)
5773 {
5774 might_sleep();
5775
5776 spin_lock_irq(&x->wait.lock);
5777 timeout = do_wait_for_common(x, timeout, state);
5778 spin_unlock_irq(&x->wait.lock);
5779 return timeout;
5780 }
5781
5782 /**
5783 * wait_for_completion: - waits for completion of a task
5784 * @x: holds the state of this particular completion
5785 *
5786 * This waits to be signaled for completion of a specific task. It is NOT
5787 * interruptible and there is no timeout.
5788 *
5789 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5790 * and interrupt capability. Also see complete().
5791 */
5792 void __sched wait_for_completion(struct completion *x)
5793 {
5794 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5795 }
5796 EXPORT_SYMBOL(wait_for_completion);
5797
5798 /**
5799 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5800 * @x: holds the state of this particular completion
5801 * @timeout: timeout value in jiffies
5802 *
5803 * This waits for either a completion of a specific task to be signaled or for a
5804 * specified timeout to expire. The timeout is in jiffies. It is not
5805 * interruptible.
5806 */
5807 unsigned long __sched
5808 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5809 {
5810 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5811 }
5812 EXPORT_SYMBOL(wait_for_completion_timeout);
5813
5814 /**
5815 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5816 * @x: holds the state of this particular completion
5817 *
5818 * This waits for completion of a specific task to be signaled. It is
5819 * interruptible.
5820 */
5821 int __sched wait_for_completion_interruptible(struct completion *x)
5822 {
5823 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5824 if (t == -ERESTARTSYS)
5825 return t;
5826 return 0;
5827 }
5828 EXPORT_SYMBOL(wait_for_completion_interruptible);
5829
5830 /**
5831 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5832 * @x: holds the state of this particular completion
5833 * @timeout: timeout value in jiffies
5834 *
5835 * This waits for either a completion of a specific task to be signaled or for a
5836 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5837 */
5838 unsigned long __sched
5839 wait_for_completion_interruptible_timeout(struct completion *x,
5840 unsigned long timeout)
5841 {
5842 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5843 }
5844 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5845
5846 /**
5847 * wait_for_completion_killable: - waits for completion of a task (killable)
5848 * @x: holds the state of this particular completion
5849 *
5850 * This waits to be signaled for completion of a specific task. It can be
5851 * interrupted by a kill signal.
5852 */
5853 int __sched wait_for_completion_killable(struct completion *x)
5854 {
5855 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5856 if (t == -ERESTARTSYS)
5857 return t;
5858 return 0;
5859 }
5860 EXPORT_SYMBOL(wait_for_completion_killable);
5861
5862 /**
5863 * try_wait_for_completion - try to decrement a completion without blocking
5864 * @x: completion structure
5865 *
5866 * Returns: 0 if a decrement cannot be done without blocking
5867 * 1 if a decrement succeeded.
5868 *
5869 * If a completion is being used as a counting completion,
5870 * attempt to decrement the counter without blocking. This
5871 * enables us to avoid waiting if the resource the completion
5872 * is protecting is not available.
5873 */
5874 bool try_wait_for_completion(struct completion *x)
5875 {
5876 int ret = 1;
5877
5878 spin_lock_irq(&x->wait.lock);
5879 if (!x->done)
5880 ret = 0;
5881 else
5882 x->done--;
5883 spin_unlock_irq(&x->wait.lock);
5884 return ret;
5885 }
5886 EXPORT_SYMBOL(try_wait_for_completion);
5887
5888 /**
5889 * completion_done - Test to see if a completion has any waiters
5890 * @x: completion structure
5891 *
5892 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5893 * 1 if there are no waiters.
5894 *
5895 */
5896 bool completion_done(struct completion *x)
5897 {
5898 int ret = 1;
5899
5900 spin_lock_irq(&x->wait.lock);
5901 if (!x->done)
5902 ret = 0;
5903 spin_unlock_irq(&x->wait.lock);
5904 return ret;
5905 }
5906 EXPORT_SYMBOL(completion_done);
5907
5908 static long __sched
5909 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5910 {
5911 unsigned long flags;
5912 wait_queue_t wait;
5913
5914 init_waitqueue_entry(&wait, current);
5915
5916 __set_current_state(state);
5917
5918 spin_lock_irqsave(&q->lock, flags);
5919 __add_wait_queue(q, &wait);
5920 spin_unlock(&q->lock);
5921 timeout = schedule_timeout(timeout);
5922 spin_lock_irq(&q->lock);
5923 __remove_wait_queue(q, &wait);
5924 spin_unlock_irqrestore(&q->lock, flags);
5925
5926 return timeout;
5927 }
5928
5929 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5930 {
5931 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5932 }
5933 EXPORT_SYMBOL(interruptible_sleep_on);
5934
5935 long __sched
5936 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5937 {
5938 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5939 }
5940 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5941
5942 void __sched sleep_on(wait_queue_head_t *q)
5943 {
5944 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5945 }
5946 EXPORT_SYMBOL(sleep_on);
5947
5948 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5949 {
5950 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5951 }
5952 EXPORT_SYMBOL(sleep_on_timeout);
5953
5954 #ifdef CONFIG_RT_MUTEXES
5955
5956 /*
5957 * rt_mutex_setprio - set the current priority of a task
5958 * @p: task
5959 * @prio: prio value (kernel-internal form)
5960 *
5961 * This function changes the 'effective' priority of a task. It does
5962 * not touch ->normal_prio like __setscheduler().
5963 *
5964 * Used by the rt_mutex code to implement priority inheritance logic.
5965 */
5966 void rt_mutex_setprio(struct task_struct *p, int prio)
5967 {
5968 unsigned long flags;
5969 int oldprio, on_rq, running;
5970 struct rq *rq;
5971 const struct sched_class *prev_class = p->sched_class;
5972
5973 BUG_ON(prio < 0 || prio > MAX_PRIO);
5974
5975 rq = task_rq_lock(p, &flags);
5976 update_rq_clock(rq);
5977
5978 oldprio = p->prio;
5979 on_rq = p->se.on_rq;
5980 running = task_current(rq, p);
5981 if (on_rq)
5982 dequeue_task(rq, p, 0);
5983 if (running)
5984 p->sched_class->put_prev_task(rq, p);
5985
5986 if (rt_prio(prio))
5987 p->sched_class = &rt_sched_class;
5988 else
5989 p->sched_class = &fair_sched_class;
5990
5991 p->prio = prio;
5992
5993 if (running)
5994 p->sched_class->set_curr_task(rq);
5995 if (on_rq) {
5996 enqueue_task(rq, p, 0);
5997
5998 check_class_changed(rq, p, prev_class, oldprio, running);
5999 }
6000 task_rq_unlock(rq, &flags);
6001 }
6002
6003 #endif
6004
6005 void set_user_nice(struct task_struct *p, long nice)
6006 {
6007 int old_prio, delta, on_rq;
6008 unsigned long flags;
6009 struct rq *rq;
6010
6011 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6012 return;
6013 /*
6014 * We have to be careful, if called from sys_setpriority(),
6015 * the task might be in the middle of scheduling on another CPU.
6016 */
6017 rq = task_rq_lock(p, &flags);
6018 update_rq_clock(rq);
6019 /*
6020 * The RT priorities are set via sched_setscheduler(), but we still
6021 * allow the 'normal' nice value to be set - but as expected
6022 * it wont have any effect on scheduling until the task is
6023 * SCHED_FIFO/SCHED_RR:
6024 */
6025 if (task_has_rt_policy(p)) {
6026 p->static_prio = NICE_TO_PRIO(nice);
6027 goto out_unlock;
6028 }
6029 on_rq = p->se.on_rq;
6030 if (on_rq)
6031 dequeue_task(rq, p, 0);
6032
6033 p->static_prio = NICE_TO_PRIO(nice);
6034 set_load_weight(p);
6035 old_prio = p->prio;
6036 p->prio = effective_prio(p);
6037 delta = p->prio - old_prio;
6038
6039 if (on_rq) {
6040 enqueue_task(rq, p, 0);
6041 /*
6042 * If the task increased its priority or is running and
6043 * lowered its priority, then reschedule its CPU:
6044 */
6045 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6046 resched_task(rq->curr);
6047 }
6048 out_unlock:
6049 task_rq_unlock(rq, &flags);
6050 }
6051 EXPORT_SYMBOL(set_user_nice);
6052
6053 /*
6054 * can_nice - check if a task can reduce its nice value
6055 * @p: task
6056 * @nice: nice value
6057 */
6058 int can_nice(const struct task_struct *p, const int nice)
6059 {
6060 /* convert nice value [19,-20] to rlimit style value [1,40] */
6061 int nice_rlim = 20 - nice;
6062
6063 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6064 capable(CAP_SYS_NICE));
6065 }
6066
6067 #ifdef __ARCH_WANT_SYS_NICE
6068
6069 /*
6070 * sys_nice - change the priority of the current process.
6071 * @increment: priority increment
6072 *
6073 * sys_setpriority is a more generic, but much slower function that
6074 * does similar things.
6075 */
6076 SYSCALL_DEFINE1(nice, int, increment)
6077 {
6078 long nice, retval;
6079
6080 /*
6081 * Setpriority might change our priority at the same moment.
6082 * We don't have to worry. Conceptually one call occurs first
6083 * and we have a single winner.
6084 */
6085 if (increment < -40)
6086 increment = -40;
6087 if (increment > 40)
6088 increment = 40;
6089
6090 nice = TASK_NICE(current) + increment;
6091 if (nice < -20)
6092 nice = -20;
6093 if (nice > 19)
6094 nice = 19;
6095
6096 if (increment < 0 && !can_nice(current, nice))
6097 return -EPERM;
6098
6099 retval = security_task_setnice(current, nice);
6100 if (retval)
6101 return retval;
6102
6103 set_user_nice(current, nice);
6104 return 0;
6105 }
6106
6107 #endif
6108
6109 /**
6110 * task_prio - return the priority value of a given task.
6111 * @p: the task in question.
6112 *
6113 * This is the priority value as seen by users in /proc.
6114 * RT tasks are offset by -200. Normal tasks are centered
6115 * around 0, value goes from -16 to +15.
6116 */
6117 int task_prio(const struct task_struct *p)
6118 {
6119 return p->prio - MAX_RT_PRIO;
6120 }
6121
6122 /**
6123 * task_nice - return the nice value of a given task.
6124 * @p: the task in question.
6125 */
6126 int task_nice(const struct task_struct *p)
6127 {
6128 return TASK_NICE(p);
6129 }
6130 EXPORT_SYMBOL(task_nice);
6131
6132 /**
6133 * idle_cpu - is a given cpu idle currently?
6134 * @cpu: the processor in question.
6135 */
6136 int idle_cpu(int cpu)
6137 {
6138 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6139 }
6140
6141 /**
6142 * idle_task - return the idle task for a given cpu.
6143 * @cpu: the processor in question.
6144 */
6145 struct task_struct *idle_task(int cpu)
6146 {
6147 return cpu_rq(cpu)->idle;
6148 }
6149
6150 /**
6151 * find_process_by_pid - find a process with a matching PID value.
6152 * @pid: the pid in question.
6153 */
6154 static struct task_struct *find_process_by_pid(pid_t pid)
6155 {
6156 return pid ? find_task_by_vpid(pid) : current;
6157 }
6158
6159 /* Actually do priority change: must hold rq lock. */
6160 static void
6161 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6162 {
6163 BUG_ON(p->se.on_rq);
6164
6165 p->policy = policy;
6166 switch (p->policy) {
6167 case SCHED_NORMAL:
6168 case SCHED_BATCH:
6169 case SCHED_IDLE:
6170 p->sched_class = &fair_sched_class;
6171 break;
6172 case SCHED_FIFO:
6173 case SCHED_RR:
6174 p->sched_class = &rt_sched_class;
6175 break;
6176 }
6177
6178 p->rt_priority = prio;
6179 p->normal_prio = normal_prio(p);
6180 /* we are holding p->pi_lock already */
6181 p->prio = rt_mutex_getprio(p);
6182 set_load_weight(p);
6183 }
6184
6185 /*
6186 * check the target process has a UID that matches the current process's
6187 */
6188 static bool check_same_owner(struct task_struct *p)
6189 {
6190 const struct cred *cred = current_cred(), *pcred;
6191 bool match;
6192
6193 rcu_read_lock();
6194 pcred = __task_cred(p);
6195 match = (cred->euid == pcred->euid ||
6196 cred->euid == pcred->uid);
6197 rcu_read_unlock();
6198 return match;
6199 }
6200
6201 static int __sched_setscheduler(struct task_struct *p, int policy,
6202 struct sched_param *param, bool user)
6203 {
6204 int retval, oldprio, oldpolicy = -1, on_rq, running;
6205 unsigned long flags;
6206 const struct sched_class *prev_class = p->sched_class;
6207 struct rq *rq;
6208 int reset_on_fork;
6209
6210 /* may grab non-irq protected spin_locks */
6211 BUG_ON(in_interrupt());
6212 recheck:
6213 /* double check policy once rq lock held */
6214 if (policy < 0) {
6215 reset_on_fork = p->sched_reset_on_fork;
6216 policy = oldpolicy = p->policy;
6217 } else {
6218 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6219 policy &= ~SCHED_RESET_ON_FORK;
6220
6221 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6222 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6223 policy != SCHED_IDLE)
6224 return -EINVAL;
6225 }
6226
6227 /*
6228 * Valid priorities for SCHED_FIFO and SCHED_RR are
6229 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6230 * SCHED_BATCH and SCHED_IDLE is 0.
6231 */
6232 if (param->sched_priority < 0 ||
6233 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6234 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6235 return -EINVAL;
6236 if (rt_policy(policy) != (param->sched_priority != 0))
6237 return -EINVAL;
6238
6239 /*
6240 * Allow unprivileged RT tasks to decrease priority:
6241 */
6242 if (user && !capable(CAP_SYS_NICE)) {
6243 if (rt_policy(policy)) {
6244 unsigned long rlim_rtprio;
6245
6246 if (!lock_task_sighand(p, &flags))
6247 return -ESRCH;
6248 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6249 unlock_task_sighand(p, &flags);
6250
6251 /* can't set/change the rt policy */
6252 if (policy != p->policy && !rlim_rtprio)
6253 return -EPERM;
6254
6255 /* can't increase priority */
6256 if (param->sched_priority > p->rt_priority &&
6257 param->sched_priority > rlim_rtprio)
6258 return -EPERM;
6259 }
6260 /*
6261 * Like positive nice levels, dont allow tasks to
6262 * move out of SCHED_IDLE either:
6263 */
6264 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6265 return -EPERM;
6266
6267 /* can't change other user's priorities */
6268 if (!check_same_owner(p))
6269 return -EPERM;
6270
6271 /* Normal users shall not reset the sched_reset_on_fork flag */
6272 if (p->sched_reset_on_fork && !reset_on_fork)
6273 return -EPERM;
6274 }
6275
6276 if (user) {
6277 #ifdef CONFIG_RT_GROUP_SCHED
6278 /*
6279 * Do not allow realtime tasks into groups that have no runtime
6280 * assigned.
6281 */
6282 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6283 task_group(p)->rt_bandwidth.rt_runtime == 0)
6284 return -EPERM;
6285 #endif
6286
6287 retval = security_task_setscheduler(p, policy, param);
6288 if (retval)
6289 return retval;
6290 }
6291
6292 /*
6293 * make sure no PI-waiters arrive (or leave) while we are
6294 * changing the priority of the task:
6295 */
6296 spin_lock_irqsave(&p->pi_lock, flags);
6297 /*
6298 * To be able to change p->policy safely, the apropriate
6299 * runqueue lock must be held.
6300 */
6301 rq = __task_rq_lock(p);
6302 /* recheck policy now with rq lock held */
6303 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6304 policy = oldpolicy = -1;
6305 __task_rq_unlock(rq);
6306 spin_unlock_irqrestore(&p->pi_lock, flags);
6307 goto recheck;
6308 }
6309 update_rq_clock(rq);
6310 on_rq = p->se.on_rq;
6311 running = task_current(rq, p);
6312 if (on_rq)
6313 deactivate_task(rq, p, 0);
6314 if (running)
6315 p->sched_class->put_prev_task(rq, p);
6316
6317 p->sched_reset_on_fork = reset_on_fork;
6318
6319 oldprio = p->prio;
6320 __setscheduler(rq, p, policy, param->sched_priority);
6321
6322 if (running)
6323 p->sched_class->set_curr_task(rq);
6324 if (on_rq) {
6325 activate_task(rq, p, 0);
6326
6327 check_class_changed(rq, p, prev_class, oldprio, running);
6328 }
6329 __task_rq_unlock(rq);
6330 spin_unlock_irqrestore(&p->pi_lock, flags);
6331
6332 rt_mutex_adjust_pi(p);
6333
6334 return 0;
6335 }
6336
6337 /**
6338 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6339 * @p: the task in question.
6340 * @policy: new policy.
6341 * @param: structure containing the new RT priority.
6342 *
6343 * NOTE that the task may be already dead.
6344 */
6345 int sched_setscheduler(struct task_struct *p, int policy,
6346 struct sched_param *param)
6347 {
6348 return __sched_setscheduler(p, policy, param, true);
6349 }
6350 EXPORT_SYMBOL_GPL(sched_setscheduler);
6351
6352 /**
6353 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6354 * @p: the task in question.
6355 * @policy: new policy.
6356 * @param: structure containing the new RT priority.
6357 *
6358 * Just like sched_setscheduler, only don't bother checking if the
6359 * current context has permission. For example, this is needed in
6360 * stop_machine(): we create temporary high priority worker threads,
6361 * but our caller might not have that capability.
6362 */
6363 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6364 struct sched_param *param)
6365 {
6366 return __sched_setscheduler(p, policy, param, false);
6367 }
6368
6369 static int
6370 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6371 {
6372 struct sched_param lparam;
6373 struct task_struct *p;
6374 int retval;
6375
6376 if (!param || pid < 0)
6377 return -EINVAL;
6378 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6379 return -EFAULT;
6380
6381 rcu_read_lock();
6382 retval = -ESRCH;
6383 p = find_process_by_pid(pid);
6384 if (p != NULL)
6385 retval = sched_setscheduler(p, policy, &lparam);
6386 rcu_read_unlock();
6387
6388 return retval;
6389 }
6390
6391 /**
6392 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6393 * @pid: the pid in question.
6394 * @policy: new policy.
6395 * @param: structure containing the new RT priority.
6396 */
6397 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6398 struct sched_param __user *, param)
6399 {
6400 /* negative values for policy are not valid */
6401 if (policy < 0)
6402 return -EINVAL;
6403
6404 return do_sched_setscheduler(pid, policy, param);
6405 }
6406
6407 /**
6408 * sys_sched_setparam - set/change the RT priority of a thread
6409 * @pid: the pid in question.
6410 * @param: structure containing the new RT priority.
6411 */
6412 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6413 {
6414 return do_sched_setscheduler(pid, -1, param);
6415 }
6416
6417 /**
6418 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6419 * @pid: the pid in question.
6420 */
6421 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6422 {
6423 struct task_struct *p;
6424 int retval;
6425
6426 if (pid < 0)
6427 return -EINVAL;
6428
6429 retval = -ESRCH;
6430 read_lock(&tasklist_lock);
6431 p = find_process_by_pid(pid);
6432 if (p) {
6433 retval = security_task_getscheduler(p);
6434 if (!retval)
6435 retval = p->policy
6436 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6437 }
6438 read_unlock(&tasklist_lock);
6439 return retval;
6440 }
6441
6442 /**
6443 * sys_sched_getparam - get the RT priority of a thread
6444 * @pid: the pid in question.
6445 * @param: structure containing the RT priority.
6446 */
6447 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6448 {
6449 struct sched_param lp;
6450 struct task_struct *p;
6451 int retval;
6452
6453 if (!param || pid < 0)
6454 return -EINVAL;
6455
6456 read_lock(&tasklist_lock);
6457 p = find_process_by_pid(pid);
6458 retval = -ESRCH;
6459 if (!p)
6460 goto out_unlock;
6461
6462 retval = security_task_getscheduler(p);
6463 if (retval)
6464 goto out_unlock;
6465
6466 lp.sched_priority = p->rt_priority;
6467 read_unlock(&tasklist_lock);
6468
6469 /*
6470 * This one might sleep, we cannot do it with a spinlock held ...
6471 */
6472 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6473
6474 return retval;
6475
6476 out_unlock:
6477 read_unlock(&tasklist_lock);
6478 return retval;
6479 }
6480
6481 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6482 {
6483 cpumask_var_t cpus_allowed, new_mask;
6484 struct task_struct *p;
6485 int retval;
6486
6487 get_online_cpus();
6488 read_lock(&tasklist_lock);
6489
6490 p = find_process_by_pid(pid);
6491 if (!p) {
6492 read_unlock(&tasklist_lock);
6493 put_online_cpus();
6494 return -ESRCH;
6495 }
6496
6497 /*
6498 * It is not safe to call set_cpus_allowed with the
6499 * tasklist_lock held. We will bump the task_struct's
6500 * usage count and then drop tasklist_lock.
6501 */
6502 get_task_struct(p);
6503 read_unlock(&tasklist_lock);
6504
6505 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6506 retval = -ENOMEM;
6507 goto out_put_task;
6508 }
6509 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6510 retval = -ENOMEM;
6511 goto out_free_cpus_allowed;
6512 }
6513 retval = -EPERM;
6514 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6515 goto out_unlock;
6516
6517 retval = security_task_setscheduler(p, 0, NULL);
6518 if (retval)
6519 goto out_unlock;
6520
6521 cpuset_cpus_allowed(p, cpus_allowed);
6522 cpumask_and(new_mask, in_mask, cpus_allowed);
6523 again:
6524 retval = set_cpus_allowed_ptr(p, new_mask);
6525
6526 if (!retval) {
6527 cpuset_cpus_allowed(p, cpus_allowed);
6528 if (!cpumask_subset(new_mask, cpus_allowed)) {
6529 /*
6530 * We must have raced with a concurrent cpuset
6531 * update. Just reset the cpus_allowed to the
6532 * cpuset's cpus_allowed
6533 */
6534 cpumask_copy(new_mask, cpus_allowed);
6535 goto again;
6536 }
6537 }
6538 out_unlock:
6539 free_cpumask_var(new_mask);
6540 out_free_cpus_allowed:
6541 free_cpumask_var(cpus_allowed);
6542 out_put_task:
6543 put_task_struct(p);
6544 put_online_cpus();
6545 return retval;
6546 }
6547
6548 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6549 struct cpumask *new_mask)
6550 {
6551 if (len < cpumask_size())
6552 cpumask_clear(new_mask);
6553 else if (len > cpumask_size())
6554 len = cpumask_size();
6555
6556 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6557 }
6558
6559 /**
6560 * sys_sched_setaffinity - set the cpu affinity of a process
6561 * @pid: pid of the process
6562 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6563 * @user_mask_ptr: user-space pointer to the new cpu mask
6564 */
6565 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6566 unsigned long __user *, user_mask_ptr)
6567 {
6568 cpumask_var_t new_mask;
6569 int retval;
6570
6571 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6572 return -ENOMEM;
6573
6574 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6575 if (retval == 0)
6576 retval = sched_setaffinity(pid, new_mask);
6577 free_cpumask_var(new_mask);
6578 return retval;
6579 }
6580
6581 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6582 {
6583 struct task_struct *p;
6584 int retval;
6585
6586 get_online_cpus();
6587 read_lock(&tasklist_lock);
6588
6589 retval = -ESRCH;
6590 p = find_process_by_pid(pid);
6591 if (!p)
6592 goto out_unlock;
6593
6594 retval = security_task_getscheduler(p);
6595 if (retval)
6596 goto out_unlock;
6597
6598 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6599
6600 out_unlock:
6601 read_unlock(&tasklist_lock);
6602 put_online_cpus();
6603
6604 return retval;
6605 }
6606
6607 /**
6608 * sys_sched_getaffinity - get the cpu affinity of a process
6609 * @pid: pid of the process
6610 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6611 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6612 */
6613 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6614 unsigned long __user *, user_mask_ptr)
6615 {
6616 int ret;
6617 cpumask_var_t mask;
6618
6619 if (len < cpumask_size())
6620 return -EINVAL;
6621
6622 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6623 return -ENOMEM;
6624
6625 ret = sched_getaffinity(pid, mask);
6626 if (ret == 0) {
6627 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6628 ret = -EFAULT;
6629 else
6630 ret = cpumask_size();
6631 }
6632 free_cpumask_var(mask);
6633
6634 return ret;
6635 }
6636
6637 /**
6638 * sys_sched_yield - yield the current processor to other threads.
6639 *
6640 * This function yields the current CPU to other tasks. If there are no
6641 * other threads running on this CPU then this function will return.
6642 */
6643 SYSCALL_DEFINE0(sched_yield)
6644 {
6645 struct rq *rq = this_rq_lock();
6646
6647 schedstat_inc(rq, yld_count);
6648 current->sched_class->yield_task(rq);
6649
6650 /*
6651 * Since we are going to call schedule() anyway, there's
6652 * no need to preempt or enable interrupts:
6653 */
6654 __release(rq->lock);
6655 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6656 _raw_spin_unlock(&rq->lock);
6657 preempt_enable_no_resched();
6658
6659 schedule();
6660
6661 return 0;
6662 }
6663
6664 static inline int should_resched(void)
6665 {
6666 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6667 }
6668
6669 static void __cond_resched(void)
6670 {
6671 add_preempt_count(PREEMPT_ACTIVE);
6672 schedule();
6673 sub_preempt_count(PREEMPT_ACTIVE);
6674 }
6675
6676 int __sched _cond_resched(void)
6677 {
6678 if (should_resched()) {
6679 __cond_resched();
6680 return 1;
6681 }
6682 return 0;
6683 }
6684 EXPORT_SYMBOL(_cond_resched);
6685
6686 /*
6687 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6688 * call schedule, and on return reacquire the lock.
6689 *
6690 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6691 * operations here to prevent schedule() from being called twice (once via
6692 * spin_unlock(), once by hand).
6693 */
6694 int __cond_resched_lock(spinlock_t *lock)
6695 {
6696 int resched = should_resched();
6697 int ret = 0;
6698
6699 if (spin_needbreak(lock) || resched) {
6700 spin_unlock(lock);
6701 if (resched)
6702 __cond_resched();
6703 else
6704 cpu_relax();
6705 ret = 1;
6706 spin_lock(lock);
6707 }
6708 return ret;
6709 }
6710 EXPORT_SYMBOL(__cond_resched_lock);
6711
6712 int __sched __cond_resched_softirq(void)
6713 {
6714 BUG_ON(!in_softirq());
6715
6716 if (should_resched()) {
6717 local_bh_enable();
6718 __cond_resched();
6719 local_bh_disable();
6720 return 1;
6721 }
6722 return 0;
6723 }
6724 EXPORT_SYMBOL(__cond_resched_softirq);
6725
6726 /**
6727 * yield - yield the current processor to other threads.
6728 *
6729 * This is a shortcut for kernel-space yielding - it marks the
6730 * thread runnable and calls sys_sched_yield().
6731 */
6732 void __sched yield(void)
6733 {
6734 set_current_state(TASK_RUNNING);
6735 sys_sched_yield();
6736 }
6737 EXPORT_SYMBOL(yield);
6738
6739 /*
6740 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6741 * that process accounting knows that this is a task in IO wait state.
6742 *
6743 * But don't do that if it is a deliberate, throttling IO wait (this task
6744 * has set its backing_dev_info: the queue against which it should throttle)
6745 */
6746 void __sched io_schedule(void)
6747 {
6748 struct rq *rq = raw_rq();
6749
6750 delayacct_blkio_start();
6751 atomic_inc(&rq->nr_iowait);
6752 schedule();
6753 atomic_dec(&rq->nr_iowait);
6754 delayacct_blkio_end();
6755 }
6756 EXPORT_SYMBOL(io_schedule);
6757
6758 long __sched io_schedule_timeout(long timeout)
6759 {
6760 struct rq *rq = raw_rq();
6761 long ret;
6762
6763 delayacct_blkio_start();
6764 atomic_inc(&rq->nr_iowait);
6765 ret = schedule_timeout(timeout);
6766 atomic_dec(&rq->nr_iowait);
6767 delayacct_blkio_end();
6768 return ret;
6769 }
6770
6771 /**
6772 * sys_sched_get_priority_max - return maximum RT priority.
6773 * @policy: scheduling class.
6774 *
6775 * this syscall returns the maximum rt_priority that can be used
6776 * by a given scheduling class.
6777 */
6778 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6779 {
6780 int ret = -EINVAL;
6781
6782 switch (policy) {
6783 case SCHED_FIFO:
6784 case SCHED_RR:
6785 ret = MAX_USER_RT_PRIO-1;
6786 break;
6787 case SCHED_NORMAL:
6788 case SCHED_BATCH:
6789 case SCHED_IDLE:
6790 ret = 0;
6791 break;
6792 }
6793 return ret;
6794 }
6795
6796 /**
6797 * sys_sched_get_priority_min - return minimum RT priority.
6798 * @policy: scheduling class.
6799 *
6800 * this syscall returns the minimum rt_priority that can be used
6801 * by a given scheduling class.
6802 */
6803 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6804 {
6805 int ret = -EINVAL;
6806
6807 switch (policy) {
6808 case SCHED_FIFO:
6809 case SCHED_RR:
6810 ret = 1;
6811 break;
6812 case SCHED_NORMAL:
6813 case SCHED_BATCH:
6814 case SCHED_IDLE:
6815 ret = 0;
6816 }
6817 return ret;
6818 }
6819
6820 /**
6821 * sys_sched_rr_get_interval - return the default timeslice of a process.
6822 * @pid: pid of the process.
6823 * @interval: userspace pointer to the timeslice value.
6824 *
6825 * this syscall writes the default timeslice value of a given process
6826 * into the user-space timespec buffer. A value of '0' means infinity.
6827 */
6828 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6829 struct timespec __user *, interval)
6830 {
6831 struct task_struct *p;
6832 unsigned int time_slice;
6833 int retval;
6834 struct timespec t;
6835
6836 if (pid < 0)
6837 return -EINVAL;
6838
6839 retval = -ESRCH;
6840 read_lock(&tasklist_lock);
6841 p = find_process_by_pid(pid);
6842 if (!p)
6843 goto out_unlock;
6844
6845 retval = security_task_getscheduler(p);
6846 if (retval)
6847 goto out_unlock;
6848
6849 /*
6850 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6851 * tasks that are on an otherwise idle runqueue:
6852 */
6853 time_slice = 0;
6854 if (p->policy == SCHED_RR) {
6855 time_slice = DEF_TIMESLICE;
6856 } else if (p->policy != SCHED_FIFO) {
6857 struct sched_entity *se = &p->se;
6858 unsigned long flags;
6859 struct rq *rq;
6860
6861 rq = task_rq_lock(p, &flags);
6862 if (rq->cfs.load.weight)
6863 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6864 task_rq_unlock(rq, &flags);
6865 }
6866 read_unlock(&tasklist_lock);
6867 jiffies_to_timespec(time_slice, &t);
6868 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6869 return retval;
6870
6871 out_unlock:
6872 read_unlock(&tasklist_lock);
6873 return retval;
6874 }
6875
6876 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6877
6878 void sched_show_task(struct task_struct *p)
6879 {
6880 unsigned long free = 0;
6881 unsigned state;
6882
6883 state = p->state ? __ffs(p->state) + 1 : 0;
6884 printk(KERN_INFO "%-13.13s %c", p->comm,
6885 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6886 #if BITS_PER_LONG == 32
6887 if (state == TASK_RUNNING)
6888 printk(KERN_CONT " running ");
6889 else
6890 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6891 #else
6892 if (state == TASK_RUNNING)
6893 printk(KERN_CONT " running task ");
6894 else
6895 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6896 #endif
6897 #ifdef CONFIG_DEBUG_STACK_USAGE
6898 free = stack_not_used(p);
6899 #endif
6900 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6901 task_pid_nr(p), task_pid_nr(p->real_parent),
6902 (unsigned long)task_thread_info(p)->flags);
6903
6904 show_stack(p, NULL);
6905 }
6906
6907 void show_state_filter(unsigned long state_filter)
6908 {
6909 struct task_struct *g, *p;
6910
6911 #if BITS_PER_LONG == 32
6912 printk(KERN_INFO
6913 " task PC stack pid father\n");
6914 #else
6915 printk(KERN_INFO
6916 " task PC stack pid father\n");
6917 #endif
6918 read_lock(&tasklist_lock);
6919 do_each_thread(g, p) {
6920 /*
6921 * reset the NMI-timeout, listing all files on a slow
6922 * console might take alot of time:
6923 */
6924 touch_nmi_watchdog();
6925 if (!state_filter || (p->state & state_filter))
6926 sched_show_task(p);
6927 } while_each_thread(g, p);
6928
6929 touch_all_softlockup_watchdogs();
6930
6931 #ifdef CONFIG_SCHED_DEBUG
6932 sysrq_sched_debug_show();
6933 #endif
6934 read_unlock(&tasklist_lock);
6935 /*
6936 * Only show locks if all tasks are dumped:
6937 */
6938 if (state_filter == -1)
6939 debug_show_all_locks();
6940 }
6941
6942 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6943 {
6944 idle->sched_class = &idle_sched_class;
6945 }
6946
6947 /**
6948 * init_idle - set up an idle thread for a given CPU
6949 * @idle: task in question
6950 * @cpu: cpu the idle task belongs to
6951 *
6952 * NOTE: this function does not set the idle thread's NEED_RESCHED
6953 * flag, to make booting more robust.
6954 */
6955 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6956 {
6957 struct rq *rq = cpu_rq(cpu);
6958 unsigned long flags;
6959
6960 spin_lock_irqsave(&rq->lock, flags);
6961
6962 __sched_fork(idle);
6963 idle->se.exec_start = sched_clock();
6964
6965 idle->prio = idle->normal_prio = MAX_PRIO;
6966 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6967 __set_task_cpu(idle, cpu);
6968
6969 rq->curr = rq->idle = idle;
6970 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6971 idle->oncpu = 1;
6972 #endif
6973 spin_unlock_irqrestore(&rq->lock, flags);
6974
6975 /* Set the preempt count _outside_ the spinlocks! */
6976 #if defined(CONFIG_PREEMPT)
6977 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6978 #else
6979 task_thread_info(idle)->preempt_count = 0;
6980 #endif
6981 /*
6982 * The idle tasks have their own, simple scheduling class:
6983 */
6984 idle->sched_class = &idle_sched_class;
6985 ftrace_graph_init_task(idle);
6986 }
6987
6988 /*
6989 * In a system that switches off the HZ timer nohz_cpu_mask
6990 * indicates which cpus entered this state. This is used
6991 * in the rcu update to wait only for active cpus. For system
6992 * which do not switch off the HZ timer nohz_cpu_mask should
6993 * always be CPU_BITS_NONE.
6994 */
6995 cpumask_var_t nohz_cpu_mask;
6996
6997 /*
6998 * Increase the granularity value when there are more CPUs,
6999 * because with more CPUs the 'effective latency' as visible
7000 * to users decreases. But the relationship is not linear,
7001 * so pick a second-best guess by going with the log2 of the
7002 * number of CPUs.
7003 *
7004 * This idea comes from the SD scheduler of Con Kolivas:
7005 */
7006 static inline void sched_init_granularity(void)
7007 {
7008 unsigned int factor = 1 + ilog2(num_online_cpus());
7009 const unsigned long limit = 200000000;
7010
7011 sysctl_sched_min_granularity *= factor;
7012 if (sysctl_sched_min_granularity > limit)
7013 sysctl_sched_min_granularity = limit;
7014
7015 sysctl_sched_latency *= factor;
7016 if (sysctl_sched_latency > limit)
7017 sysctl_sched_latency = limit;
7018
7019 sysctl_sched_wakeup_granularity *= factor;
7020
7021 sysctl_sched_shares_ratelimit *= factor;
7022 }
7023
7024 #ifdef CONFIG_SMP
7025 /*
7026 * This is how migration works:
7027 *
7028 * 1) we queue a struct migration_req structure in the source CPU's
7029 * runqueue and wake up that CPU's migration thread.
7030 * 2) we down() the locked semaphore => thread blocks.
7031 * 3) migration thread wakes up (implicitly it forces the migrated
7032 * thread off the CPU)
7033 * 4) it gets the migration request and checks whether the migrated
7034 * task is still in the wrong runqueue.
7035 * 5) if it's in the wrong runqueue then the migration thread removes
7036 * it and puts it into the right queue.
7037 * 6) migration thread up()s the semaphore.
7038 * 7) we wake up and the migration is done.
7039 */
7040
7041 /*
7042 * Change a given task's CPU affinity. Migrate the thread to a
7043 * proper CPU and schedule it away if the CPU it's executing on
7044 * is removed from the allowed bitmask.
7045 *
7046 * NOTE: the caller must have a valid reference to the task, the
7047 * task must not exit() & deallocate itself prematurely. The
7048 * call is not atomic; no spinlocks may be held.
7049 */
7050 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7051 {
7052 struct migration_req req;
7053 unsigned long flags;
7054 struct rq *rq;
7055 int ret = 0;
7056
7057 rq = task_rq_lock(p, &flags);
7058 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7059 ret = -EINVAL;
7060 goto out;
7061 }
7062
7063 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7064 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7065 ret = -EINVAL;
7066 goto out;
7067 }
7068
7069 if (p->sched_class->set_cpus_allowed)
7070 p->sched_class->set_cpus_allowed(p, new_mask);
7071 else {
7072 cpumask_copy(&p->cpus_allowed, new_mask);
7073 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7074 }
7075
7076 /* Can the task run on the task's current CPU? If so, we're done */
7077 if (cpumask_test_cpu(task_cpu(p), new_mask))
7078 goto out;
7079
7080 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7081 /* Need help from migration thread: drop lock and wait. */
7082 struct task_struct *mt = rq->migration_thread;
7083
7084 get_task_struct(mt);
7085 task_rq_unlock(rq, &flags);
7086 wake_up_process(rq->migration_thread);
7087 put_task_struct(mt);
7088 wait_for_completion(&req.done);
7089 tlb_migrate_finish(p->mm);
7090 return 0;
7091 }
7092 out:
7093 task_rq_unlock(rq, &flags);
7094
7095 return ret;
7096 }
7097 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7098
7099 /*
7100 * Move (not current) task off this cpu, onto dest cpu. We're doing
7101 * this because either it can't run here any more (set_cpus_allowed()
7102 * away from this CPU, or CPU going down), or because we're
7103 * attempting to rebalance this task on exec (sched_exec).
7104 *
7105 * So we race with normal scheduler movements, but that's OK, as long
7106 * as the task is no longer on this CPU.
7107 *
7108 * Returns non-zero if task was successfully migrated.
7109 */
7110 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7111 {
7112 struct rq *rq_dest, *rq_src;
7113 int ret = 0, on_rq;
7114
7115 if (unlikely(!cpu_active(dest_cpu)))
7116 return ret;
7117
7118 rq_src = cpu_rq(src_cpu);
7119 rq_dest = cpu_rq(dest_cpu);
7120
7121 double_rq_lock(rq_src, rq_dest);
7122 /* Already moved. */
7123 if (task_cpu(p) != src_cpu)
7124 goto done;
7125 /* Affinity changed (again). */
7126 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7127 goto fail;
7128
7129 on_rq = p->se.on_rq;
7130 if (on_rq)
7131 deactivate_task(rq_src, p, 0);
7132
7133 set_task_cpu(p, dest_cpu);
7134 if (on_rq) {
7135 activate_task(rq_dest, p, 0);
7136 check_preempt_curr(rq_dest, p, 0);
7137 }
7138 done:
7139 ret = 1;
7140 fail:
7141 double_rq_unlock(rq_src, rq_dest);
7142 return ret;
7143 }
7144
7145 /*
7146 * migration_thread - this is a highprio system thread that performs
7147 * thread migration by bumping thread off CPU then 'pushing' onto
7148 * another runqueue.
7149 */
7150 static int migration_thread(void *data)
7151 {
7152 int cpu = (long)data;
7153 struct rq *rq;
7154
7155 rq = cpu_rq(cpu);
7156 BUG_ON(rq->migration_thread != current);
7157
7158 set_current_state(TASK_INTERRUPTIBLE);
7159 while (!kthread_should_stop()) {
7160 struct migration_req *req;
7161 struct list_head *head;
7162
7163 spin_lock_irq(&rq->lock);
7164
7165 if (cpu_is_offline(cpu)) {
7166 spin_unlock_irq(&rq->lock);
7167 break;
7168 }
7169
7170 if (rq->active_balance) {
7171 active_load_balance(rq, cpu);
7172 rq->active_balance = 0;
7173 }
7174
7175 head = &rq->migration_queue;
7176
7177 if (list_empty(head)) {
7178 spin_unlock_irq(&rq->lock);
7179 schedule();
7180 set_current_state(TASK_INTERRUPTIBLE);
7181 continue;
7182 }
7183 req = list_entry(head->next, struct migration_req, list);
7184 list_del_init(head->next);
7185
7186 spin_unlock(&rq->lock);
7187 __migrate_task(req->task, cpu, req->dest_cpu);
7188 local_irq_enable();
7189
7190 complete(&req->done);
7191 }
7192 __set_current_state(TASK_RUNNING);
7193
7194 return 0;
7195 }
7196
7197 #ifdef CONFIG_HOTPLUG_CPU
7198
7199 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7200 {
7201 int ret;
7202
7203 local_irq_disable();
7204 ret = __migrate_task(p, src_cpu, dest_cpu);
7205 local_irq_enable();
7206 return ret;
7207 }
7208
7209 /*
7210 * Figure out where task on dead CPU should go, use force if necessary.
7211 */
7212 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7213 {
7214 int dest_cpu;
7215 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7216
7217 again:
7218 /* Look for allowed, online CPU in same node. */
7219 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7220 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7221 goto move;
7222
7223 /* Any allowed, online CPU? */
7224 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7225 if (dest_cpu < nr_cpu_ids)
7226 goto move;
7227
7228 /* No more Mr. Nice Guy. */
7229 if (dest_cpu >= nr_cpu_ids) {
7230 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7231 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7232
7233 /*
7234 * Don't tell them about moving exiting tasks or
7235 * kernel threads (both mm NULL), since they never
7236 * leave kernel.
7237 */
7238 if (p->mm && printk_ratelimit()) {
7239 printk(KERN_INFO "process %d (%s) no "
7240 "longer affine to cpu%d\n",
7241 task_pid_nr(p), p->comm, dead_cpu);
7242 }
7243 }
7244
7245 move:
7246 /* It can have affinity changed while we were choosing. */
7247 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7248 goto again;
7249 }
7250
7251 /*
7252 * While a dead CPU has no uninterruptible tasks queued at this point,
7253 * it might still have a nonzero ->nr_uninterruptible counter, because
7254 * for performance reasons the counter is not stricly tracking tasks to
7255 * their home CPUs. So we just add the counter to another CPU's counter,
7256 * to keep the global sum constant after CPU-down:
7257 */
7258 static void migrate_nr_uninterruptible(struct rq *rq_src)
7259 {
7260 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7261 unsigned long flags;
7262
7263 local_irq_save(flags);
7264 double_rq_lock(rq_src, rq_dest);
7265 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7266 rq_src->nr_uninterruptible = 0;
7267 double_rq_unlock(rq_src, rq_dest);
7268 local_irq_restore(flags);
7269 }
7270
7271 /* Run through task list and migrate tasks from the dead cpu. */
7272 static void migrate_live_tasks(int src_cpu)
7273 {
7274 struct task_struct *p, *t;
7275
7276 read_lock(&tasklist_lock);
7277
7278 do_each_thread(t, p) {
7279 if (p == current)
7280 continue;
7281
7282 if (task_cpu(p) == src_cpu)
7283 move_task_off_dead_cpu(src_cpu, p);
7284 } while_each_thread(t, p);
7285
7286 read_unlock(&tasklist_lock);
7287 }
7288
7289 /*
7290 * Schedules idle task to be the next runnable task on current CPU.
7291 * It does so by boosting its priority to highest possible.
7292 * Used by CPU offline code.
7293 */
7294 void sched_idle_next(void)
7295 {
7296 int this_cpu = smp_processor_id();
7297 struct rq *rq = cpu_rq(this_cpu);
7298 struct task_struct *p = rq->idle;
7299 unsigned long flags;
7300
7301 /* cpu has to be offline */
7302 BUG_ON(cpu_online(this_cpu));
7303
7304 /*
7305 * Strictly not necessary since rest of the CPUs are stopped by now
7306 * and interrupts disabled on the current cpu.
7307 */
7308 spin_lock_irqsave(&rq->lock, flags);
7309
7310 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7311
7312 update_rq_clock(rq);
7313 activate_task(rq, p, 0);
7314
7315 spin_unlock_irqrestore(&rq->lock, flags);
7316 }
7317
7318 /*
7319 * Ensures that the idle task is using init_mm right before its cpu goes
7320 * offline.
7321 */
7322 void idle_task_exit(void)
7323 {
7324 struct mm_struct *mm = current->active_mm;
7325
7326 BUG_ON(cpu_online(smp_processor_id()));
7327
7328 if (mm != &init_mm)
7329 switch_mm(mm, &init_mm, current);
7330 mmdrop(mm);
7331 }
7332
7333 /* called under rq->lock with disabled interrupts */
7334 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7335 {
7336 struct rq *rq = cpu_rq(dead_cpu);
7337
7338 /* Must be exiting, otherwise would be on tasklist. */
7339 BUG_ON(!p->exit_state);
7340
7341 /* Cannot have done final schedule yet: would have vanished. */
7342 BUG_ON(p->state == TASK_DEAD);
7343
7344 get_task_struct(p);
7345
7346 /*
7347 * Drop lock around migration; if someone else moves it,
7348 * that's OK. No task can be added to this CPU, so iteration is
7349 * fine.
7350 */
7351 spin_unlock_irq(&rq->lock);
7352 move_task_off_dead_cpu(dead_cpu, p);
7353 spin_lock_irq(&rq->lock);
7354
7355 put_task_struct(p);
7356 }
7357
7358 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7359 static void migrate_dead_tasks(unsigned int dead_cpu)
7360 {
7361 struct rq *rq = cpu_rq(dead_cpu);
7362 struct task_struct *next;
7363
7364 for ( ; ; ) {
7365 if (!rq->nr_running)
7366 break;
7367 update_rq_clock(rq);
7368 next = pick_next_task(rq);
7369 if (!next)
7370 break;
7371 next->sched_class->put_prev_task(rq, next);
7372 migrate_dead(dead_cpu, next);
7373
7374 }
7375 }
7376
7377 /*
7378 * remove the tasks which were accounted by rq from calc_load_tasks.
7379 */
7380 static void calc_global_load_remove(struct rq *rq)
7381 {
7382 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7383 rq->calc_load_active = 0;
7384 }
7385 #endif /* CONFIG_HOTPLUG_CPU */
7386
7387 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7388
7389 static struct ctl_table sd_ctl_dir[] = {
7390 {
7391 .procname = "sched_domain",
7392 .mode = 0555,
7393 },
7394 {0, },
7395 };
7396
7397 static struct ctl_table sd_ctl_root[] = {
7398 {
7399 .ctl_name = CTL_KERN,
7400 .procname = "kernel",
7401 .mode = 0555,
7402 .child = sd_ctl_dir,
7403 },
7404 {0, },
7405 };
7406
7407 static struct ctl_table *sd_alloc_ctl_entry(int n)
7408 {
7409 struct ctl_table *entry =
7410 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7411
7412 return entry;
7413 }
7414
7415 static void sd_free_ctl_entry(struct ctl_table **tablep)
7416 {
7417 struct ctl_table *entry;
7418
7419 /*
7420 * In the intermediate directories, both the child directory and
7421 * procname are dynamically allocated and could fail but the mode
7422 * will always be set. In the lowest directory the names are
7423 * static strings and all have proc handlers.
7424 */
7425 for (entry = *tablep; entry->mode; entry++) {
7426 if (entry->child)
7427 sd_free_ctl_entry(&entry->child);
7428 if (entry->proc_handler == NULL)
7429 kfree(entry->procname);
7430 }
7431
7432 kfree(*tablep);
7433 *tablep = NULL;
7434 }
7435
7436 static void
7437 set_table_entry(struct ctl_table *entry,
7438 const char *procname, void *data, int maxlen,
7439 mode_t mode, proc_handler *proc_handler)
7440 {
7441 entry->procname = procname;
7442 entry->data = data;
7443 entry->maxlen = maxlen;
7444 entry->mode = mode;
7445 entry->proc_handler = proc_handler;
7446 }
7447
7448 static struct ctl_table *
7449 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7450 {
7451 struct ctl_table *table = sd_alloc_ctl_entry(13);
7452
7453 if (table == NULL)
7454 return NULL;
7455
7456 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7457 sizeof(long), 0644, proc_doulongvec_minmax);
7458 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7459 sizeof(long), 0644, proc_doulongvec_minmax);
7460 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7461 sizeof(int), 0644, proc_dointvec_minmax);
7462 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7463 sizeof(int), 0644, proc_dointvec_minmax);
7464 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7465 sizeof(int), 0644, proc_dointvec_minmax);
7466 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7467 sizeof(int), 0644, proc_dointvec_minmax);
7468 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7469 sizeof(int), 0644, proc_dointvec_minmax);
7470 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7471 sizeof(int), 0644, proc_dointvec_minmax);
7472 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7473 sizeof(int), 0644, proc_dointvec_minmax);
7474 set_table_entry(&table[9], "cache_nice_tries",
7475 &sd->cache_nice_tries,
7476 sizeof(int), 0644, proc_dointvec_minmax);
7477 set_table_entry(&table[10], "flags", &sd->flags,
7478 sizeof(int), 0644, proc_dointvec_minmax);
7479 set_table_entry(&table[11], "name", sd->name,
7480 CORENAME_MAX_SIZE, 0444, proc_dostring);
7481 /* &table[12] is terminator */
7482
7483 return table;
7484 }
7485
7486 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7487 {
7488 struct ctl_table *entry, *table;
7489 struct sched_domain *sd;
7490 int domain_num = 0, i;
7491 char buf[32];
7492
7493 for_each_domain(cpu, sd)
7494 domain_num++;
7495 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7496 if (table == NULL)
7497 return NULL;
7498
7499 i = 0;
7500 for_each_domain(cpu, sd) {
7501 snprintf(buf, 32, "domain%d", i);
7502 entry->procname = kstrdup(buf, GFP_KERNEL);
7503 entry->mode = 0555;
7504 entry->child = sd_alloc_ctl_domain_table(sd);
7505 entry++;
7506 i++;
7507 }
7508 return table;
7509 }
7510
7511 static struct ctl_table_header *sd_sysctl_header;
7512 static void register_sched_domain_sysctl(void)
7513 {
7514 int i, cpu_num = num_online_cpus();
7515 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7516 char buf[32];
7517
7518 WARN_ON(sd_ctl_dir[0].child);
7519 sd_ctl_dir[0].child = entry;
7520
7521 if (entry == NULL)
7522 return;
7523
7524 for_each_online_cpu(i) {
7525 snprintf(buf, 32, "cpu%d", i);
7526 entry->procname = kstrdup(buf, GFP_KERNEL);
7527 entry->mode = 0555;
7528 entry->child = sd_alloc_ctl_cpu_table(i);
7529 entry++;
7530 }
7531
7532 WARN_ON(sd_sysctl_header);
7533 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7534 }
7535
7536 /* may be called multiple times per register */
7537 static void unregister_sched_domain_sysctl(void)
7538 {
7539 if (sd_sysctl_header)
7540 unregister_sysctl_table(sd_sysctl_header);
7541 sd_sysctl_header = NULL;
7542 if (sd_ctl_dir[0].child)
7543 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7544 }
7545 #else
7546 static void register_sched_domain_sysctl(void)
7547 {
7548 }
7549 static void unregister_sched_domain_sysctl(void)
7550 {
7551 }
7552 #endif
7553
7554 static void set_rq_online(struct rq *rq)
7555 {
7556 if (!rq->online) {
7557 const struct sched_class *class;
7558
7559 cpumask_set_cpu(rq->cpu, rq->rd->online);
7560 rq->online = 1;
7561
7562 for_each_class(class) {
7563 if (class->rq_online)
7564 class->rq_online(rq);
7565 }
7566 }
7567 }
7568
7569 static void set_rq_offline(struct rq *rq)
7570 {
7571 if (rq->online) {
7572 const struct sched_class *class;
7573
7574 for_each_class(class) {
7575 if (class->rq_offline)
7576 class->rq_offline(rq);
7577 }
7578
7579 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7580 rq->online = 0;
7581 }
7582 }
7583
7584 /*
7585 * migration_call - callback that gets triggered when a CPU is added.
7586 * Here we can start up the necessary migration thread for the new CPU.
7587 */
7588 static int __cpuinit
7589 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7590 {
7591 struct task_struct *p;
7592 int cpu = (long)hcpu;
7593 unsigned long flags;
7594 struct rq *rq;
7595
7596 switch (action) {
7597
7598 case CPU_UP_PREPARE:
7599 case CPU_UP_PREPARE_FROZEN:
7600 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7601 if (IS_ERR(p))
7602 return NOTIFY_BAD;
7603 kthread_bind(p, cpu);
7604 /* Must be high prio: stop_machine expects to yield to it. */
7605 rq = task_rq_lock(p, &flags);
7606 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7607 task_rq_unlock(rq, &flags);
7608 get_task_struct(p);
7609 cpu_rq(cpu)->migration_thread = p;
7610 rq->calc_load_update = calc_load_update;
7611 break;
7612
7613 case CPU_ONLINE:
7614 case CPU_ONLINE_FROZEN:
7615 /* Strictly unnecessary, as first user will wake it. */
7616 wake_up_process(cpu_rq(cpu)->migration_thread);
7617
7618 /* Update our root-domain */
7619 rq = cpu_rq(cpu);
7620 spin_lock_irqsave(&rq->lock, flags);
7621 if (rq->rd) {
7622 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7623
7624 set_rq_online(rq);
7625 }
7626 spin_unlock_irqrestore(&rq->lock, flags);
7627 break;
7628
7629 #ifdef CONFIG_HOTPLUG_CPU
7630 case CPU_UP_CANCELED:
7631 case CPU_UP_CANCELED_FROZEN:
7632 if (!cpu_rq(cpu)->migration_thread)
7633 break;
7634 /* Unbind it from offline cpu so it can run. Fall thru. */
7635 kthread_bind(cpu_rq(cpu)->migration_thread,
7636 cpumask_any(cpu_online_mask));
7637 kthread_stop(cpu_rq(cpu)->migration_thread);
7638 put_task_struct(cpu_rq(cpu)->migration_thread);
7639 cpu_rq(cpu)->migration_thread = NULL;
7640 break;
7641
7642 case CPU_DEAD:
7643 case CPU_DEAD_FROZEN:
7644 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7645 migrate_live_tasks(cpu);
7646 rq = cpu_rq(cpu);
7647 kthread_stop(rq->migration_thread);
7648 put_task_struct(rq->migration_thread);
7649 rq->migration_thread = NULL;
7650 /* Idle task back to normal (off runqueue, low prio) */
7651 spin_lock_irq(&rq->lock);
7652 update_rq_clock(rq);
7653 deactivate_task(rq, rq->idle, 0);
7654 rq->idle->static_prio = MAX_PRIO;
7655 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7656 rq->idle->sched_class = &idle_sched_class;
7657 migrate_dead_tasks(cpu);
7658 spin_unlock_irq(&rq->lock);
7659 cpuset_unlock();
7660 migrate_nr_uninterruptible(rq);
7661 BUG_ON(rq->nr_running != 0);
7662 calc_global_load_remove(rq);
7663 /*
7664 * No need to migrate the tasks: it was best-effort if
7665 * they didn't take sched_hotcpu_mutex. Just wake up
7666 * the requestors.
7667 */
7668 spin_lock_irq(&rq->lock);
7669 while (!list_empty(&rq->migration_queue)) {
7670 struct migration_req *req;
7671
7672 req = list_entry(rq->migration_queue.next,
7673 struct migration_req, list);
7674 list_del_init(&req->list);
7675 spin_unlock_irq(&rq->lock);
7676 complete(&req->done);
7677 spin_lock_irq(&rq->lock);
7678 }
7679 spin_unlock_irq(&rq->lock);
7680 break;
7681
7682 case CPU_DYING:
7683 case CPU_DYING_FROZEN:
7684 /* Update our root-domain */
7685 rq = cpu_rq(cpu);
7686 spin_lock_irqsave(&rq->lock, flags);
7687 if (rq->rd) {
7688 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7689 set_rq_offline(rq);
7690 }
7691 spin_unlock_irqrestore(&rq->lock, flags);
7692 break;
7693 #endif
7694 }
7695 return NOTIFY_OK;
7696 }
7697
7698 /*
7699 * Register at high priority so that task migration (migrate_all_tasks)
7700 * happens before everything else. This has to be lower priority than
7701 * the notifier in the perf_counter subsystem, though.
7702 */
7703 static struct notifier_block __cpuinitdata migration_notifier = {
7704 .notifier_call = migration_call,
7705 .priority = 10
7706 };
7707
7708 static int __init migration_init(void)
7709 {
7710 void *cpu = (void *)(long)smp_processor_id();
7711 int err;
7712
7713 /* Start one for the boot CPU: */
7714 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7715 BUG_ON(err == NOTIFY_BAD);
7716 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7717 register_cpu_notifier(&migration_notifier);
7718
7719 return 0;
7720 }
7721 early_initcall(migration_init);
7722 #endif
7723
7724 #ifdef CONFIG_SMP
7725
7726 #ifdef CONFIG_SCHED_DEBUG
7727
7728 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7729 struct cpumask *groupmask)
7730 {
7731 struct sched_group *group = sd->groups;
7732 char str[256];
7733
7734 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7735 cpumask_clear(groupmask);
7736
7737 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7738
7739 if (!(sd->flags & SD_LOAD_BALANCE)) {
7740 printk("does not load-balance\n");
7741 if (sd->parent)
7742 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7743 " has parent");
7744 return -1;
7745 }
7746
7747 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7748
7749 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7750 printk(KERN_ERR "ERROR: domain->span does not contain "
7751 "CPU%d\n", cpu);
7752 }
7753 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7754 printk(KERN_ERR "ERROR: domain->groups does not contain"
7755 " CPU%d\n", cpu);
7756 }
7757
7758 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7759 do {
7760 if (!group) {
7761 printk("\n");
7762 printk(KERN_ERR "ERROR: group is NULL\n");
7763 break;
7764 }
7765
7766 if (!group->__cpu_power) {
7767 printk(KERN_CONT "\n");
7768 printk(KERN_ERR "ERROR: domain->cpu_power not "
7769 "set\n");
7770 break;
7771 }
7772
7773 if (!cpumask_weight(sched_group_cpus(group))) {
7774 printk(KERN_CONT "\n");
7775 printk(KERN_ERR "ERROR: empty group\n");
7776 break;
7777 }
7778
7779 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7780 printk(KERN_CONT "\n");
7781 printk(KERN_ERR "ERROR: repeated CPUs\n");
7782 break;
7783 }
7784
7785 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7786
7787 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7788
7789 printk(KERN_CONT " %s", str);
7790 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7791 printk(KERN_CONT " (__cpu_power = %d)",
7792 group->__cpu_power);
7793 }
7794
7795 group = group->next;
7796 } while (group != sd->groups);
7797 printk(KERN_CONT "\n");
7798
7799 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7800 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7801
7802 if (sd->parent &&
7803 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7804 printk(KERN_ERR "ERROR: parent span is not a superset "
7805 "of domain->span\n");
7806 return 0;
7807 }
7808
7809 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7810 {
7811 cpumask_var_t groupmask;
7812 int level = 0;
7813
7814 if (!sd) {
7815 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7816 return;
7817 }
7818
7819 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7820
7821 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7822 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7823 return;
7824 }
7825
7826 for (;;) {
7827 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7828 break;
7829 level++;
7830 sd = sd->parent;
7831 if (!sd)
7832 break;
7833 }
7834 free_cpumask_var(groupmask);
7835 }
7836 #else /* !CONFIG_SCHED_DEBUG */
7837 # define sched_domain_debug(sd, cpu) do { } while (0)
7838 #endif /* CONFIG_SCHED_DEBUG */
7839
7840 static int sd_degenerate(struct sched_domain *sd)
7841 {
7842 if (cpumask_weight(sched_domain_span(sd)) == 1)
7843 return 1;
7844
7845 /* Following flags need at least 2 groups */
7846 if (sd->flags & (SD_LOAD_BALANCE |
7847 SD_BALANCE_NEWIDLE |
7848 SD_BALANCE_FORK |
7849 SD_BALANCE_EXEC |
7850 SD_SHARE_CPUPOWER |
7851 SD_SHARE_PKG_RESOURCES)) {
7852 if (sd->groups != sd->groups->next)
7853 return 0;
7854 }
7855
7856 /* Following flags don't use groups */
7857 if (sd->flags & (SD_WAKE_IDLE |
7858 SD_WAKE_AFFINE |
7859 SD_WAKE_BALANCE))
7860 return 0;
7861
7862 return 1;
7863 }
7864
7865 static int
7866 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7867 {
7868 unsigned long cflags = sd->flags, pflags = parent->flags;
7869
7870 if (sd_degenerate(parent))
7871 return 1;
7872
7873 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7874 return 0;
7875
7876 /* Does parent contain flags not in child? */
7877 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7878 if (cflags & SD_WAKE_AFFINE)
7879 pflags &= ~SD_WAKE_BALANCE;
7880 /* Flags needing groups don't count if only 1 group in parent */
7881 if (parent->groups == parent->groups->next) {
7882 pflags &= ~(SD_LOAD_BALANCE |
7883 SD_BALANCE_NEWIDLE |
7884 SD_BALANCE_FORK |
7885 SD_BALANCE_EXEC |
7886 SD_SHARE_CPUPOWER |
7887 SD_SHARE_PKG_RESOURCES);
7888 if (nr_node_ids == 1)
7889 pflags &= ~SD_SERIALIZE;
7890 }
7891 if (~cflags & pflags)
7892 return 0;
7893
7894 return 1;
7895 }
7896
7897 static void free_rootdomain(struct root_domain *rd)
7898 {
7899 cpupri_cleanup(&rd->cpupri);
7900
7901 free_cpumask_var(rd->rto_mask);
7902 free_cpumask_var(rd->online);
7903 free_cpumask_var(rd->span);
7904 kfree(rd);
7905 }
7906
7907 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7908 {
7909 struct root_domain *old_rd = NULL;
7910 unsigned long flags;
7911
7912 spin_lock_irqsave(&rq->lock, flags);
7913
7914 if (rq->rd) {
7915 old_rd = rq->rd;
7916
7917 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7918 set_rq_offline(rq);
7919
7920 cpumask_clear_cpu(rq->cpu, old_rd->span);
7921
7922 /*
7923 * If we dont want to free the old_rt yet then
7924 * set old_rd to NULL to skip the freeing later
7925 * in this function:
7926 */
7927 if (!atomic_dec_and_test(&old_rd->refcount))
7928 old_rd = NULL;
7929 }
7930
7931 atomic_inc(&rd->refcount);
7932 rq->rd = rd;
7933
7934 cpumask_set_cpu(rq->cpu, rd->span);
7935 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7936 set_rq_online(rq);
7937
7938 spin_unlock_irqrestore(&rq->lock, flags);
7939
7940 if (old_rd)
7941 free_rootdomain(old_rd);
7942 }
7943
7944 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7945 {
7946 gfp_t gfp = GFP_KERNEL;
7947
7948 memset(rd, 0, sizeof(*rd));
7949
7950 if (bootmem)
7951 gfp = GFP_NOWAIT;
7952
7953 if (!alloc_cpumask_var(&rd->span, gfp))
7954 goto out;
7955 if (!alloc_cpumask_var(&rd->online, gfp))
7956 goto free_span;
7957 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7958 goto free_online;
7959
7960 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7961 goto free_rto_mask;
7962 return 0;
7963
7964 free_rto_mask:
7965 free_cpumask_var(rd->rto_mask);
7966 free_online:
7967 free_cpumask_var(rd->online);
7968 free_span:
7969 free_cpumask_var(rd->span);
7970 out:
7971 return -ENOMEM;
7972 }
7973
7974 static void init_defrootdomain(void)
7975 {
7976 init_rootdomain(&def_root_domain, true);
7977
7978 atomic_set(&def_root_domain.refcount, 1);
7979 }
7980
7981 static struct root_domain *alloc_rootdomain(void)
7982 {
7983 struct root_domain *rd;
7984
7985 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7986 if (!rd)
7987 return NULL;
7988
7989 if (init_rootdomain(rd, false) != 0) {
7990 kfree(rd);
7991 return NULL;
7992 }
7993
7994 return rd;
7995 }
7996
7997 /*
7998 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7999 * hold the hotplug lock.
8000 */
8001 static void
8002 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8003 {
8004 struct rq *rq = cpu_rq(cpu);
8005 struct sched_domain *tmp;
8006
8007 /* Remove the sched domains which do not contribute to scheduling. */
8008 for (tmp = sd; tmp; ) {
8009 struct sched_domain *parent = tmp->parent;
8010 if (!parent)
8011 break;
8012
8013 if (sd_parent_degenerate(tmp, parent)) {
8014 tmp->parent = parent->parent;
8015 if (parent->parent)
8016 parent->parent->child = tmp;
8017 } else
8018 tmp = tmp->parent;
8019 }
8020
8021 if (sd && sd_degenerate(sd)) {
8022 sd = sd->parent;
8023 if (sd)
8024 sd->child = NULL;
8025 }
8026
8027 sched_domain_debug(sd, cpu);
8028
8029 rq_attach_root(rq, rd);
8030 rcu_assign_pointer(rq->sd, sd);
8031 }
8032
8033 /* cpus with isolated domains */
8034 static cpumask_var_t cpu_isolated_map;
8035
8036 /* Setup the mask of cpus configured for isolated domains */
8037 static int __init isolated_cpu_setup(char *str)
8038 {
8039 cpulist_parse(str, cpu_isolated_map);
8040 return 1;
8041 }
8042
8043 __setup("isolcpus=", isolated_cpu_setup);
8044
8045 /*
8046 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8047 * to a function which identifies what group(along with sched group) a CPU
8048 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8049 * (due to the fact that we keep track of groups covered with a struct cpumask).
8050 *
8051 * init_sched_build_groups will build a circular linked list of the groups
8052 * covered by the given span, and will set each group's ->cpumask correctly,
8053 * and ->cpu_power to 0.
8054 */
8055 static void
8056 init_sched_build_groups(const struct cpumask *span,
8057 const struct cpumask *cpu_map,
8058 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8059 struct sched_group **sg,
8060 struct cpumask *tmpmask),
8061 struct cpumask *covered, struct cpumask *tmpmask)
8062 {
8063 struct sched_group *first = NULL, *last = NULL;
8064 int i;
8065
8066 cpumask_clear(covered);
8067
8068 for_each_cpu(i, span) {
8069 struct sched_group *sg;
8070 int group = group_fn(i, cpu_map, &sg, tmpmask);
8071 int j;
8072
8073 if (cpumask_test_cpu(i, covered))
8074 continue;
8075
8076 cpumask_clear(sched_group_cpus(sg));
8077 sg->__cpu_power = 0;
8078
8079 for_each_cpu(j, span) {
8080 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8081 continue;
8082
8083 cpumask_set_cpu(j, covered);
8084 cpumask_set_cpu(j, sched_group_cpus(sg));
8085 }
8086 if (!first)
8087 first = sg;
8088 if (last)
8089 last->next = sg;
8090 last = sg;
8091 }
8092 last->next = first;
8093 }
8094
8095 #define SD_NODES_PER_DOMAIN 16
8096
8097 #ifdef CONFIG_NUMA
8098
8099 /**
8100 * find_next_best_node - find the next node to include in a sched_domain
8101 * @node: node whose sched_domain we're building
8102 * @used_nodes: nodes already in the sched_domain
8103 *
8104 * Find the next node to include in a given scheduling domain. Simply
8105 * finds the closest node not already in the @used_nodes map.
8106 *
8107 * Should use nodemask_t.
8108 */
8109 static int find_next_best_node(int node, nodemask_t *used_nodes)
8110 {
8111 int i, n, val, min_val, best_node = 0;
8112
8113 min_val = INT_MAX;
8114
8115 for (i = 0; i < nr_node_ids; i++) {
8116 /* Start at @node */
8117 n = (node + i) % nr_node_ids;
8118
8119 if (!nr_cpus_node(n))
8120 continue;
8121
8122 /* Skip already used nodes */
8123 if (node_isset(n, *used_nodes))
8124 continue;
8125
8126 /* Simple min distance search */
8127 val = node_distance(node, n);
8128
8129 if (val < min_val) {
8130 min_val = val;
8131 best_node = n;
8132 }
8133 }
8134
8135 node_set(best_node, *used_nodes);
8136 return best_node;
8137 }
8138
8139 /**
8140 * sched_domain_node_span - get a cpumask for a node's sched_domain
8141 * @node: node whose cpumask we're constructing
8142 * @span: resulting cpumask
8143 *
8144 * Given a node, construct a good cpumask for its sched_domain to span. It
8145 * should be one that prevents unnecessary balancing, but also spreads tasks
8146 * out optimally.
8147 */
8148 static void sched_domain_node_span(int node, struct cpumask *span)
8149 {
8150 nodemask_t used_nodes;
8151 int i;
8152
8153 cpumask_clear(span);
8154 nodes_clear(used_nodes);
8155
8156 cpumask_or(span, span, cpumask_of_node(node));
8157 node_set(node, used_nodes);
8158
8159 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8160 int next_node = find_next_best_node(node, &used_nodes);
8161
8162 cpumask_or(span, span, cpumask_of_node(next_node));
8163 }
8164 }
8165 #endif /* CONFIG_NUMA */
8166
8167 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8168
8169 /*
8170 * The cpus mask in sched_group and sched_domain hangs off the end.
8171 *
8172 * ( See the the comments in include/linux/sched.h:struct sched_group
8173 * and struct sched_domain. )
8174 */
8175 struct static_sched_group {
8176 struct sched_group sg;
8177 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8178 };
8179
8180 struct static_sched_domain {
8181 struct sched_domain sd;
8182 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8183 };
8184
8185 /*
8186 * SMT sched-domains:
8187 */
8188 #ifdef CONFIG_SCHED_SMT
8189 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8190 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8191
8192 static int
8193 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8194 struct sched_group **sg, struct cpumask *unused)
8195 {
8196 if (sg)
8197 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8198 return cpu;
8199 }
8200 #endif /* CONFIG_SCHED_SMT */
8201
8202 /*
8203 * multi-core sched-domains:
8204 */
8205 #ifdef CONFIG_SCHED_MC
8206 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8207 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8208 #endif /* CONFIG_SCHED_MC */
8209
8210 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8211 static int
8212 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8213 struct sched_group **sg, struct cpumask *mask)
8214 {
8215 int group;
8216
8217 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8218 group = cpumask_first(mask);
8219 if (sg)
8220 *sg = &per_cpu(sched_group_core, group).sg;
8221 return group;
8222 }
8223 #elif defined(CONFIG_SCHED_MC)
8224 static int
8225 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8226 struct sched_group **sg, struct cpumask *unused)
8227 {
8228 if (sg)
8229 *sg = &per_cpu(sched_group_core, cpu).sg;
8230 return cpu;
8231 }
8232 #endif
8233
8234 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8235 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8236
8237 static int
8238 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8239 struct sched_group **sg, struct cpumask *mask)
8240 {
8241 int group;
8242 #ifdef CONFIG_SCHED_MC
8243 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8244 group = cpumask_first(mask);
8245 #elif defined(CONFIG_SCHED_SMT)
8246 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8247 group = cpumask_first(mask);
8248 #else
8249 group = cpu;
8250 #endif
8251 if (sg)
8252 *sg = &per_cpu(sched_group_phys, group).sg;
8253 return group;
8254 }
8255
8256 #ifdef CONFIG_NUMA
8257 /*
8258 * The init_sched_build_groups can't handle what we want to do with node
8259 * groups, so roll our own. Now each node has its own list of groups which
8260 * gets dynamically allocated.
8261 */
8262 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8263 static struct sched_group ***sched_group_nodes_bycpu;
8264
8265 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8266 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8267
8268 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8269 struct sched_group **sg,
8270 struct cpumask *nodemask)
8271 {
8272 int group;
8273
8274 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8275 group = cpumask_first(nodemask);
8276
8277 if (sg)
8278 *sg = &per_cpu(sched_group_allnodes, group).sg;
8279 return group;
8280 }
8281
8282 static void init_numa_sched_groups_power(struct sched_group *group_head)
8283 {
8284 struct sched_group *sg = group_head;
8285 int j;
8286
8287 if (!sg)
8288 return;
8289 do {
8290 for_each_cpu(j, sched_group_cpus(sg)) {
8291 struct sched_domain *sd;
8292
8293 sd = &per_cpu(phys_domains, j).sd;
8294 if (j != group_first_cpu(sd->groups)) {
8295 /*
8296 * Only add "power" once for each
8297 * physical package.
8298 */
8299 continue;
8300 }
8301
8302 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8303 }
8304 sg = sg->next;
8305 } while (sg != group_head);
8306 }
8307 #endif /* CONFIG_NUMA */
8308
8309 #ifdef CONFIG_NUMA
8310 /* Free memory allocated for various sched_group structures */
8311 static void free_sched_groups(const struct cpumask *cpu_map,
8312 struct cpumask *nodemask)
8313 {
8314 int cpu, i;
8315
8316 for_each_cpu(cpu, cpu_map) {
8317 struct sched_group **sched_group_nodes
8318 = sched_group_nodes_bycpu[cpu];
8319
8320 if (!sched_group_nodes)
8321 continue;
8322
8323 for (i = 0; i < nr_node_ids; i++) {
8324 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8325
8326 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8327 if (cpumask_empty(nodemask))
8328 continue;
8329
8330 if (sg == NULL)
8331 continue;
8332 sg = sg->next;
8333 next_sg:
8334 oldsg = sg;
8335 sg = sg->next;
8336 kfree(oldsg);
8337 if (oldsg != sched_group_nodes[i])
8338 goto next_sg;
8339 }
8340 kfree(sched_group_nodes);
8341 sched_group_nodes_bycpu[cpu] = NULL;
8342 }
8343 }
8344 #else /* !CONFIG_NUMA */
8345 static void free_sched_groups(const struct cpumask *cpu_map,
8346 struct cpumask *nodemask)
8347 {
8348 }
8349 #endif /* CONFIG_NUMA */
8350
8351 /*
8352 * Initialize sched groups cpu_power.
8353 *
8354 * cpu_power indicates the capacity of sched group, which is used while
8355 * distributing the load between different sched groups in a sched domain.
8356 * Typically cpu_power for all the groups in a sched domain will be same unless
8357 * there are asymmetries in the topology. If there are asymmetries, group
8358 * having more cpu_power will pickup more load compared to the group having
8359 * less cpu_power.
8360 *
8361 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8362 * the maximum number of tasks a group can handle in the presence of other idle
8363 * or lightly loaded groups in the same sched domain.
8364 */
8365 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8366 {
8367 struct sched_domain *child;
8368 struct sched_group *group;
8369
8370 WARN_ON(!sd || !sd->groups);
8371
8372 if (cpu != group_first_cpu(sd->groups))
8373 return;
8374
8375 child = sd->child;
8376
8377 sd->groups->__cpu_power = 0;
8378
8379 /*
8380 * For perf policy, if the groups in child domain share resources
8381 * (for example cores sharing some portions of the cache hierarchy
8382 * or SMT), then set this domain groups cpu_power such that each group
8383 * can handle only one task, when there are other idle groups in the
8384 * same sched domain.
8385 */
8386 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8387 (child->flags &
8388 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8389 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8390 return;
8391 }
8392
8393 /*
8394 * add cpu_power of each child group to this groups cpu_power
8395 */
8396 group = child->groups;
8397 do {
8398 sg_inc_cpu_power(sd->groups, group->__cpu_power);
8399 group = group->next;
8400 } while (group != child->groups);
8401 }
8402
8403 /*
8404 * Initializers for schedule domains
8405 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8406 */
8407
8408 #ifdef CONFIG_SCHED_DEBUG
8409 # define SD_INIT_NAME(sd, type) sd->name = #type
8410 #else
8411 # define SD_INIT_NAME(sd, type) do { } while (0)
8412 #endif
8413
8414 #define SD_INIT(sd, type) sd_init_##type(sd)
8415
8416 #define SD_INIT_FUNC(type) \
8417 static noinline void sd_init_##type(struct sched_domain *sd) \
8418 { \
8419 memset(sd, 0, sizeof(*sd)); \
8420 *sd = SD_##type##_INIT; \
8421 sd->level = SD_LV_##type; \
8422 SD_INIT_NAME(sd, type); \
8423 }
8424
8425 SD_INIT_FUNC(CPU)
8426 #ifdef CONFIG_NUMA
8427 SD_INIT_FUNC(ALLNODES)
8428 SD_INIT_FUNC(NODE)
8429 #endif
8430 #ifdef CONFIG_SCHED_SMT
8431 SD_INIT_FUNC(SIBLING)
8432 #endif
8433 #ifdef CONFIG_SCHED_MC
8434 SD_INIT_FUNC(MC)
8435 #endif
8436
8437 static int default_relax_domain_level = -1;
8438
8439 static int __init setup_relax_domain_level(char *str)
8440 {
8441 unsigned long val;
8442
8443 val = simple_strtoul(str, NULL, 0);
8444 if (val < SD_LV_MAX)
8445 default_relax_domain_level = val;
8446
8447 return 1;
8448 }
8449 __setup("relax_domain_level=", setup_relax_domain_level);
8450
8451 static void set_domain_attribute(struct sched_domain *sd,
8452 struct sched_domain_attr *attr)
8453 {
8454 int request;
8455
8456 if (!attr || attr->relax_domain_level < 0) {
8457 if (default_relax_domain_level < 0)
8458 return;
8459 else
8460 request = default_relax_domain_level;
8461 } else
8462 request = attr->relax_domain_level;
8463 if (request < sd->level) {
8464 /* turn off idle balance on this domain */
8465 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8466 } else {
8467 /* turn on idle balance on this domain */
8468 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8469 }
8470 }
8471
8472 /*
8473 * Build sched domains for a given set of cpus and attach the sched domains
8474 * to the individual cpus
8475 */
8476 static int __build_sched_domains(const struct cpumask *cpu_map,
8477 struct sched_domain_attr *attr)
8478 {
8479 int i, err = -ENOMEM;
8480 struct root_domain *rd;
8481 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8482 tmpmask;
8483 #ifdef CONFIG_NUMA
8484 cpumask_var_t domainspan, covered, notcovered;
8485 struct sched_group **sched_group_nodes = NULL;
8486 int sd_allnodes = 0;
8487
8488 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8489 goto out;
8490 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8491 goto free_domainspan;
8492 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8493 goto free_covered;
8494 #endif
8495
8496 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8497 goto free_notcovered;
8498 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8499 goto free_nodemask;
8500 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8501 goto free_this_sibling_map;
8502 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8503 goto free_this_core_map;
8504 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8505 goto free_send_covered;
8506
8507 #ifdef CONFIG_NUMA
8508 /*
8509 * Allocate the per-node list of sched groups
8510 */
8511 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8512 GFP_KERNEL);
8513 if (!sched_group_nodes) {
8514 printk(KERN_WARNING "Can not alloc sched group node list\n");
8515 goto free_tmpmask;
8516 }
8517 #endif
8518
8519 rd = alloc_rootdomain();
8520 if (!rd) {
8521 printk(KERN_WARNING "Cannot alloc root domain\n");
8522 goto free_sched_groups;
8523 }
8524
8525 #ifdef CONFIG_NUMA
8526 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8527 #endif
8528
8529 /*
8530 * Set up domains for cpus specified by the cpu_map.
8531 */
8532 for_each_cpu(i, cpu_map) {
8533 struct sched_domain *sd = NULL, *p;
8534
8535 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8536
8537 #ifdef CONFIG_NUMA
8538 if (cpumask_weight(cpu_map) >
8539 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8540 sd = &per_cpu(allnodes_domains, i).sd;
8541 SD_INIT(sd, ALLNODES);
8542 set_domain_attribute(sd, attr);
8543 cpumask_copy(sched_domain_span(sd), cpu_map);
8544 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8545 p = sd;
8546 sd_allnodes = 1;
8547 } else
8548 p = NULL;
8549
8550 sd = &per_cpu(node_domains, i).sd;
8551 SD_INIT(sd, NODE);
8552 set_domain_attribute(sd, attr);
8553 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8554 sd->parent = p;
8555 if (p)
8556 p->child = sd;
8557 cpumask_and(sched_domain_span(sd),
8558 sched_domain_span(sd), cpu_map);
8559 #endif
8560
8561 p = sd;
8562 sd = &per_cpu(phys_domains, i).sd;
8563 SD_INIT(sd, CPU);
8564 set_domain_attribute(sd, attr);
8565 cpumask_copy(sched_domain_span(sd), nodemask);
8566 sd->parent = p;
8567 if (p)
8568 p->child = sd;
8569 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8570
8571 #ifdef CONFIG_SCHED_MC
8572 p = sd;
8573 sd = &per_cpu(core_domains, i).sd;
8574 SD_INIT(sd, MC);
8575 set_domain_attribute(sd, attr);
8576 cpumask_and(sched_domain_span(sd), cpu_map,
8577 cpu_coregroup_mask(i));
8578 sd->parent = p;
8579 p->child = sd;
8580 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8581 #endif
8582
8583 #ifdef CONFIG_SCHED_SMT
8584 p = sd;
8585 sd = &per_cpu(cpu_domains, i).sd;
8586 SD_INIT(sd, SIBLING);
8587 set_domain_attribute(sd, attr);
8588 cpumask_and(sched_domain_span(sd),
8589 topology_thread_cpumask(i), cpu_map);
8590 sd->parent = p;
8591 p->child = sd;
8592 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8593 #endif
8594 }
8595
8596 #ifdef CONFIG_SCHED_SMT
8597 /* Set up CPU (sibling) groups */
8598 for_each_cpu(i, cpu_map) {
8599 cpumask_and(this_sibling_map,
8600 topology_thread_cpumask(i), cpu_map);
8601 if (i != cpumask_first(this_sibling_map))
8602 continue;
8603
8604 init_sched_build_groups(this_sibling_map, cpu_map,
8605 &cpu_to_cpu_group,
8606 send_covered, tmpmask);
8607 }
8608 #endif
8609
8610 #ifdef CONFIG_SCHED_MC
8611 /* Set up multi-core groups */
8612 for_each_cpu(i, cpu_map) {
8613 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8614 if (i != cpumask_first(this_core_map))
8615 continue;
8616
8617 init_sched_build_groups(this_core_map, cpu_map,
8618 &cpu_to_core_group,
8619 send_covered, tmpmask);
8620 }
8621 #endif
8622
8623 /* Set up physical groups */
8624 for (i = 0; i < nr_node_ids; i++) {
8625 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8626 if (cpumask_empty(nodemask))
8627 continue;
8628
8629 init_sched_build_groups(nodemask, cpu_map,
8630 &cpu_to_phys_group,
8631 send_covered, tmpmask);
8632 }
8633
8634 #ifdef CONFIG_NUMA
8635 /* Set up node groups */
8636 if (sd_allnodes) {
8637 init_sched_build_groups(cpu_map, cpu_map,
8638 &cpu_to_allnodes_group,
8639 send_covered, tmpmask);
8640 }
8641
8642 for (i = 0; i < nr_node_ids; i++) {
8643 /* Set up node groups */
8644 struct sched_group *sg, *prev;
8645 int j;
8646
8647 cpumask_clear(covered);
8648 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8649 if (cpumask_empty(nodemask)) {
8650 sched_group_nodes[i] = NULL;
8651 continue;
8652 }
8653
8654 sched_domain_node_span(i, domainspan);
8655 cpumask_and(domainspan, domainspan, cpu_map);
8656
8657 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8658 GFP_KERNEL, i);
8659 if (!sg) {
8660 printk(KERN_WARNING "Can not alloc domain group for "
8661 "node %d\n", i);
8662 goto error;
8663 }
8664 sched_group_nodes[i] = sg;
8665 for_each_cpu(j, nodemask) {
8666 struct sched_domain *sd;
8667
8668 sd = &per_cpu(node_domains, j).sd;
8669 sd->groups = sg;
8670 }
8671 sg->__cpu_power = 0;
8672 cpumask_copy(sched_group_cpus(sg), nodemask);
8673 sg->next = sg;
8674 cpumask_or(covered, covered, nodemask);
8675 prev = sg;
8676
8677 for (j = 0; j < nr_node_ids; j++) {
8678 int n = (i + j) % nr_node_ids;
8679
8680 cpumask_complement(notcovered, covered);
8681 cpumask_and(tmpmask, notcovered, cpu_map);
8682 cpumask_and(tmpmask, tmpmask, domainspan);
8683 if (cpumask_empty(tmpmask))
8684 break;
8685
8686 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8687 if (cpumask_empty(tmpmask))
8688 continue;
8689
8690 sg = kmalloc_node(sizeof(struct sched_group) +
8691 cpumask_size(),
8692 GFP_KERNEL, i);
8693 if (!sg) {
8694 printk(KERN_WARNING
8695 "Can not alloc domain group for node %d\n", j);
8696 goto error;
8697 }
8698 sg->__cpu_power = 0;
8699 cpumask_copy(sched_group_cpus(sg), tmpmask);
8700 sg->next = prev->next;
8701 cpumask_or(covered, covered, tmpmask);
8702 prev->next = sg;
8703 prev = sg;
8704 }
8705 }
8706 #endif
8707
8708 /* Calculate CPU power for physical packages and nodes */
8709 #ifdef CONFIG_SCHED_SMT
8710 for_each_cpu(i, cpu_map) {
8711 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8712
8713 init_sched_groups_power(i, sd);
8714 }
8715 #endif
8716 #ifdef CONFIG_SCHED_MC
8717 for_each_cpu(i, cpu_map) {
8718 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8719
8720 init_sched_groups_power(i, sd);
8721 }
8722 #endif
8723
8724 for_each_cpu(i, cpu_map) {
8725 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8726
8727 init_sched_groups_power(i, sd);
8728 }
8729
8730 #ifdef CONFIG_NUMA
8731 for (i = 0; i < nr_node_ids; i++)
8732 init_numa_sched_groups_power(sched_group_nodes[i]);
8733
8734 if (sd_allnodes) {
8735 struct sched_group *sg;
8736
8737 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8738 tmpmask);
8739 init_numa_sched_groups_power(sg);
8740 }
8741 #endif
8742
8743 /* Attach the domains */
8744 for_each_cpu(i, cpu_map) {
8745 struct sched_domain *sd;
8746 #ifdef CONFIG_SCHED_SMT
8747 sd = &per_cpu(cpu_domains, i).sd;
8748 #elif defined(CONFIG_SCHED_MC)
8749 sd = &per_cpu(core_domains, i).sd;
8750 #else
8751 sd = &per_cpu(phys_domains, i).sd;
8752 #endif
8753 cpu_attach_domain(sd, rd, i);
8754 }
8755
8756 err = 0;
8757
8758 free_tmpmask:
8759 free_cpumask_var(tmpmask);
8760 free_send_covered:
8761 free_cpumask_var(send_covered);
8762 free_this_core_map:
8763 free_cpumask_var(this_core_map);
8764 free_this_sibling_map:
8765 free_cpumask_var(this_sibling_map);
8766 free_nodemask:
8767 free_cpumask_var(nodemask);
8768 free_notcovered:
8769 #ifdef CONFIG_NUMA
8770 free_cpumask_var(notcovered);
8771 free_covered:
8772 free_cpumask_var(covered);
8773 free_domainspan:
8774 free_cpumask_var(domainspan);
8775 out:
8776 #endif
8777 return err;
8778
8779 free_sched_groups:
8780 #ifdef CONFIG_NUMA
8781 kfree(sched_group_nodes);
8782 #endif
8783 goto free_tmpmask;
8784
8785 #ifdef CONFIG_NUMA
8786 error:
8787 free_sched_groups(cpu_map, tmpmask);
8788 free_rootdomain(rd);
8789 goto free_tmpmask;
8790 #endif
8791 }
8792
8793 static int build_sched_domains(const struct cpumask *cpu_map)
8794 {
8795 return __build_sched_domains(cpu_map, NULL);
8796 }
8797
8798 static struct cpumask *doms_cur; /* current sched domains */
8799 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8800 static struct sched_domain_attr *dattr_cur;
8801 /* attribues of custom domains in 'doms_cur' */
8802
8803 /*
8804 * Special case: If a kmalloc of a doms_cur partition (array of
8805 * cpumask) fails, then fallback to a single sched domain,
8806 * as determined by the single cpumask fallback_doms.
8807 */
8808 static cpumask_var_t fallback_doms;
8809
8810 /*
8811 * arch_update_cpu_topology lets virtualized architectures update the
8812 * cpu core maps. It is supposed to return 1 if the topology changed
8813 * or 0 if it stayed the same.
8814 */
8815 int __attribute__((weak)) arch_update_cpu_topology(void)
8816 {
8817 return 0;
8818 }
8819
8820 /*
8821 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8822 * For now this just excludes isolated cpus, but could be used to
8823 * exclude other special cases in the future.
8824 */
8825 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8826 {
8827 int err;
8828
8829 arch_update_cpu_topology();
8830 ndoms_cur = 1;
8831 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8832 if (!doms_cur)
8833 doms_cur = fallback_doms;
8834 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8835 dattr_cur = NULL;
8836 err = build_sched_domains(doms_cur);
8837 register_sched_domain_sysctl();
8838
8839 return err;
8840 }
8841
8842 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8843 struct cpumask *tmpmask)
8844 {
8845 free_sched_groups(cpu_map, tmpmask);
8846 }
8847
8848 /*
8849 * Detach sched domains from a group of cpus specified in cpu_map
8850 * These cpus will now be attached to the NULL domain
8851 */
8852 static void detach_destroy_domains(const struct cpumask *cpu_map)
8853 {
8854 /* Save because hotplug lock held. */
8855 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8856 int i;
8857
8858 for_each_cpu(i, cpu_map)
8859 cpu_attach_domain(NULL, &def_root_domain, i);
8860 synchronize_sched();
8861 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8862 }
8863
8864 /* handle null as "default" */
8865 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8866 struct sched_domain_attr *new, int idx_new)
8867 {
8868 struct sched_domain_attr tmp;
8869
8870 /* fast path */
8871 if (!new && !cur)
8872 return 1;
8873
8874 tmp = SD_ATTR_INIT;
8875 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8876 new ? (new + idx_new) : &tmp,
8877 sizeof(struct sched_domain_attr));
8878 }
8879
8880 /*
8881 * Partition sched domains as specified by the 'ndoms_new'
8882 * cpumasks in the array doms_new[] of cpumasks. This compares
8883 * doms_new[] to the current sched domain partitioning, doms_cur[].
8884 * It destroys each deleted domain and builds each new domain.
8885 *
8886 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8887 * The masks don't intersect (don't overlap.) We should setup one
8888 * sched domain for each mask. CPUs not in any of the cpumasks will
8889 * not be load balanced. If the same cpumask appears both in the
8890 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8891 * it as it is.
8892 *
8893 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8894 * ownership of it and will kfree it when done with it. If the caller
8895 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8896 * ndoms_new == 1, and partition_sched_domains() will fallback to
8897 * the single partition 'fallback_doms', it also forces the domains
8898 * to be rebuilt.
8899 *
8900 * If doms_new == NULL it will be replaced with cpu_online_mask.
8901 * ndoms_new == 0 is a special case for destroying existing domains,
8902 * and it will not create the default domain.
8903 *
8904 * Call with hotplug lock held
8905 */
8906 /* FIXME: Change to struct cpumask *doms_new[] */
8907 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8908 struct sched_domain_attr *dattr_new)
8909 {
8910 int i, j, n;
8911 int new_topology;
8912
8913 mutex_lock(&sched_domains_mutex);
8914
8915 /* always unregister in case we don't destroy any domains */
8916 unregister_sched_domain_sysctl();
8917
8918 /* Let architecture update cpu core mappings. */
8919 new_topology = arch_update_cpu_topology();
8920
8921 n = doms_new ? ndoms_new : 0;
8922
8923 /* Destroy deleted domains */
8924 for (i = 0; i < ndoms_cur; i++) {
8925 for (j = 0; j < n && !new_topology; j++) {
8926 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8927 && dattrs_equal(dattr_cur, i, dattr_new, j))
8928 goto match1;
8929 }
8930 /* no match - a current sched domain not in new doms_new[] */
8931 detach_destroy_domains(doms_cur + i);
8932 match1:
8933 ;
8934 }
8935
8936 if (doms_new == NULL) {
8937 ndoms_cur = 0;
8938 doms_new = fallback_doms;
8939 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8940 WARN_ON_ONCE(dattr_new);
8941 }
8942
8943 /* Build new domains */
8944 for (i = 0; i < ndoms_new; i++) {
8945 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8946 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8947 && dattrs_equal(dattr_new, i, dattr_cur, j))
8948 goto match2;
8949 }
8950 /* no match - add a new doms_new */
8951 __build_sched_domains(doms_new + i,
8952 dattr_new ? dattr_new + i : NULL);
8953 match2:
8954 ;
8955 }
8956
8957 /* Remember the new sched domains */
8958 if (doms_cur != fallback_doms)
8959 kfree(doms_cur);
8960 kfree(dattr_cur); /* kfree(NULL) is safe */
8961 doms_cur = doms_new;
8962 dattr_cur = dattr_new;
8963 ndoms_cur = ndoms_new;
8964
8965 register_sched_domain_sysctl();
8966
8967 mutex_unlock(&sched_domains_mutex);
8968 }
8969
8970 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8971 static void arch_reinit_sched_domains(void)
8972 {
8973 get_online_cpus();
8974
8975 /* Destroy domains first to force the rebuild */
8976 partition_sched_domains(0, NULL, NULL);
8977
8978 rebuild_sched_domains();
8979 put_online_cpus();
8980 }
8981
8982 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8983 {
8984 unsigned int level = 0;
8985
8986 if (sscanf(buf, "%u", &level) != 1)
8987 return -EINVAL;
8988
8989 /*
8990 * level is always be positive so don't check for
8991 * level < POWERSAVINGS_BALANCE_NONE which is 0
8992 * What happens on 0 or 1 byte write,
8993 * need to check for count as well?
8994 */
8995
8996 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8997 return -EINVAL;
8998
8999 if (smt)
9000 sched_smt_power_savings = level;
9001 else
9002 sched_mc_power_savings = level;
9003
9004 arch_reinit_sched_domains();
9005
9006 return count;
9007 }
9008
9009 #ifdef CONFIG_SCHED_MC
9010 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9011 char *page)
9012 {
9013 return sprintf(page, "%u\n", sched_mc_power_savings);
9014 }
9015 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9016 const char *buf, size_t count)
9017 {
9018 return sched_power_savings_store(buf, count, 0);
9019 }
9020 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9021 sched_mc_power_savings_show,
9022 sched_mc_power_savings_store);
9023 #endif
9024
9025 #ifdef CONFIG_SCHED_SMT
9026 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9027 char *page)
9028 {
9029 return sprintf(page, "%u\n", sched_smt_power_savings);
9030 }
9031 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9032 const char *buf, size_t count)
9033 {
9034 return sched_power_savings_store(buf, count, 1);
9035 }
9036 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9037 sched_smt_power_savings_show,
9038 sched_smt_power_savings_store);
9039 #endif
9040
9041 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9042 {
9043 int err = 0;
9044
9045 #ifdef CONFIG_SCHED_SMT
9046 if (smt_capable())
9047 err = sysfs_create_file(&cls->kset.kobj,
9048 &attr_sched_smt_power_savings.attr);
9049 #endif
9050 #ifdef CONFIG_SCHED_MC
9051 if (!err && mc_capable())
9052 err = sysfs_create_file(&cls->kset.kobj,
9053 &attr_sched_mc_power_savings.attr);
9054 #endif
9055 return err;
9056 }
9057 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9058
9059 #ifndef CONFIG_CPUSETS
9060 /*
9061 * Add online and remove offline CPUs from the scheduler domains.
9062 * When cpusets are enabled they take over this function.
9063 */
9064 static int update_sched_domains(struct notifier_block *nfb,
9065 unsigned long action, void *hcpu)
9066 {
9067 switch (action) {
9068 case CPU_ONLINE:
9069 case CPU_ONLINE_FROZEN:
9070 case CPU_DEAD:
9071 case CPU_DEAD_FROZEN:
9072 partition_sched_domains(1, NULL, NULL);
9073 return NOTIFY_OK;
9074
9075 default:
9076 return NOTIFY_DONE;
9077 }
9078 }
9079 #endif
9080
9081 static int update_runtime(struct notifier_block *nfb,
9082 unsigned long action, void *hcpu)
9083 {
9084 int cpu = (int)(long)hcpu;
9085
9086 switch (action) {
9087 case CPU_DOWN_PREPARE:
9088 case CPU_DOWN_PREPARE_FROZEN:
9089 disable_runtime(cpu_rq(cpu));
9090 return NOTIFY_OK;
9091
9092 case CPU_DOWN_FAILED:
9093 case CPU_DOWN_FAILED_FROZEN:
9094 case CPU_ONLINE:
9095 case CPU_ONLINE_FROZEN:
9096 enable_runtime(cpu_rq(cpu));
9097 return NOTIFY_OK;
9098
9099 default:
9100 return NOTIFY_DONE;
9101 }
9102 }
9103
9104 void __init sched_init_smp(void)
9105 {
9106 cpumask_var_t non_isolated_cpus;
9107
9108 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9109
9110 #if defined(CONFIG_NUMA)
9111 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9112 GFP_KERNEL);
9113 BUG_ON(sched_group_nodes_bycpu == NULL);
9114 #endif
9115 get_online_cpus();
9116 mutex_lock(&sched_domains_mutex);
9117 arch_init_sched_domains(cpu_online_mask);
9118 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9119 if (cpumask_empty(non_isolated_cpus))
9120 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9121 mutex_unlock(&sched_domains_mutex);
9122 put_online_cpus();
9123
9124 #ifndef CONFIG_CPUSETS
9125 /* XXX: Theoretical race here - CPU may be hotplugged now */
9126 hotcpu_notifier(update_sched_domains, 0);
9127 #endif
9128
9129 /* RT runtime code needs to handle some hotplug events */
9130 hotcpu_notifier(update_runtime, 0);
9131
9132 init_hrtick();
9133
9134 /* Move init over to a non-isolated CPU */
9135 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9136 BUG();
9137 sched_init_granularity();
9138 free_cpumask_var(non_isolated_cpus);
9139
9140 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9141 init_sched_rt_class();
9142 }
9143 #else
9144 void __init sched_init_smp(void)
9145 {
9146 sched_init_granularity();
9147 }
9148 #endif /* CONFIG_SMP */
9149
9150 const_debug unsigned int sysctl_timer_migration = 1;
9151
9152 int in_sched_functions(unsigned long addr)
9153 {
9154 return in_lock_functions(addr) ||
9155 (addr >= (unsigned long)__sched_text_start
9156 && addr < (unsigned long)__sched_text_end);
9157 }
9158
9159 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9160 {
9161 cfs_rq->tasks_timeline = RB_ROOT;
9162 INIT_LIST_HEAD(&cfs_rq->tasks);
9163 #ifdef CONFIG_FAIR_GROUP_SCHED
9164 cfs_rq->rq = rq;
9165 #endif
9166 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9167 }
9168
9169 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9170 {
9171 struct rt_prio_array *array;
9172 int i;
9173
9174 array = &rt_rq->active;
9175 for (i = 0; i < MAX_RT_PRIO; i++) {
9176 INIT_LIST_HEAD(array->queue + i);
9177 __clear_bit(i, array->bitmap);
9178 }
9179 /* delimiter for bitsearch: */
9180 __set_bit(MAX_RT_PRIO, array->bitmap);
9181
9182 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9183 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9184 #ifdef CONFIG_SMP
9185 rt_rq->highest_prio.next = MAX_RT_PRIO;
9186 #endif
9187 #endif
9188 #ifdef CONFIG_SMP
9189 rt_rq->rt_nr_migratory = 0;
9190 rt_rq->overloaded = 0;
9191 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9192 #endif
9193
9194 rt_rq->rt_time = 0;
9195 rt_rq->rt_throttled = 0;
9196 rt_rq->rt_runtime = 0;
9197 spin_lock_init(&rt_rq->rt_runtime_lock);
9198
9199 #ifdef CONFIG_RT_GROUP_SCHED
9200 rt_rq->rt_nr_boosted = 0;
9201 rt_rq->rq = rq;
9202 #endif
9203 }
9204
9205 #ifdef CONFIG_FAIR_GROUP_SCHED
9206 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9207 struct sched_entity *se, int cpu, int add,
9208 struct sched_entity *parent)
9209 {
9210 struct rq *rq = cpu_rq(cpu);
9211 tg->cfs_rq[cpu] = cfs_rq;
9212 init_cfs_rq(cfs_rq, rq);
9213 cfs_rq->tg = tg;
9214 if (add)
9215 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9216
9217 tg->se[cpu] = se;
9218 /* se could be NULL for init_task_group */
9219 if (!se)
9220 return;
9221
9222 if (!parent)
9223 se->cfs_rq = &rq->cfs;
9224 else
9225 se->cfs_rq = parent->my_q;
9226
9227 se->my_q = cfs_rq;
9228 se->load.weight = tg->shares;
9229 se->load.inv_weight = 0;
9230 se->parent = parent;
9231 }
9232 #endif
9233
9234 #ifdef CONFIG_RT_GROUP_SCHED
9235 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9236 struct sched_rt_entity *rt_se, int cpu, int add,
9237 struct sched_rt_entity *parent)
9238 {
9239 struct rq *rq = cpu_rq(cpu);
9240
9241 tg->rt_rq[cpu] = rt_rq;
9242 init_rt_rq(rt_rq, rq);
9243 rt_rq->tg = tg;
9244 rt_rq->rt_se = rt_se;
9245 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9246 if (add)
9247 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9248
9249 tg->rt_se[cpu] = rt_se;
9250 if (!rt_se)
9251 return;
9252
9253 if (!parent)
9254 rt_se->rt_rq = &rq->rt;
9255 else
9256 rt_se->rt_rq = parent->my_q;
9257
9258 rt_se->my_q = rt_rq;
9259 rt_se->parent = parent;
9260 INIT_LIST_HEAD(&rt_se->run_list);
9261 }
9262 #endif
9263
9264 void __init sched_init(void)
9265 {
9266 int i, j;
9267 unsigned long alloc_size = 0, ptr;
9268
9269 #ifdef CONFIG_FAIR_GROUP_SCHED
9270 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9271 #endif
9272 #ifdef CONFIG_RT_GROUP_SCHED
9273 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9274 #endif
9275 #ifdef CONFIG_USER_SCHED
9276 alloc_size *= 2;
9277 #endif
9278 #ifdef CONFIG_CPUMASK_OFFSTACK
9279 alloc_size += num_possible_cpus() * cpumask_size();
9280 #endif
9281 /*
9282 * As sched_init() is called before page_alloc is setup,
9283 * we use alloc_bootmem().
9284 */
9285 if (alloc_size) {
9286 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9287
9288 #ifdef CONFIG_FAIR_GROUP_SCHED
9289 init_task_group.se = (struct sched_entity **)ptr;
9290 ptr += nr_cpu_ids * sizeof(void **);
9291
9292 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9293 ptr += nr_cpu_ids * sizeof(void **);
9294
9295 #ifdef CONFIG_USER_SCHED
9296 root_task_group.se = (struct sched_entity **)ptr;
9297 ptr += nr_cpu_ids * sizeof(void **);
9298
9299 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9300 ptr += nr_cpu_ids * sizeof(void **);
9301 #endif /* CONFIG_USER_SCHED */
9302 #endif /* CONFIG_FAIR_GROUP_SCHED */
9303 #ifdef CONFIG_RT_GROUP_SCHED
9304 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9305 ptr += nr_cpu_ids * sizeof(void **);
9306
9307 init_task_group.rt_rq = (struct rt_rq **)ptr;
9308 ptr += nr_cpu_ids * sizeof(void **);
9309
9310 #ifdef CONFIG_USER_SCHED
9311 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9312 ptr += nr_cpu_ids * sizeof(void **);
9313
9314 root_task_group.rt_rq = (struct rt_rq **)ptr;
9315 ptr += nr_cpu_ids * sizeof(void **);
9316 #endif /* CONFIG_USER_SCHED */
9317 #endif /* CONFIG_RT_GROUP_SCHED */
9318 #ifdef CONFIG_CPUMASK_OFFSTACK
9319 for_each_possible_cpu(i) {
9320 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9321 ptr += cpumask_size();
9322 }
9323 #endif /* CONFIG_CPUMASK_OFFSTACK */
9324 }
9325
9326 #ifdef CONFIG_SMP
9327 init_defrootdomain();
9328 #endif
9329
9330 init_rt_bandwidth(&def_rt_bandwidth,
9331 global_rt_period(), global_rt_runtime());
9332
9333 #ifdef CONFIG_RT_GROUP_SCHED
9334 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9335 global_rt_period(), global_rt_runtime());
9336 #ifdef CONFIG_USER_SCHED
9337 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9338 global_rt_period(), RUNTIME_INF);
9339 #endif /* CONFIG_USER_SCHED */
9340 #endif /* CONFIG_RT_GROUP_SCHED */
9341
9342 #ifdef CONFIG_GROUP_SCHED
9343 list_add(&init_task_group.list, &task_groups);
9344 INIT_LIST_HEAD(&init_task_group.children);
9345
9346 #ifdef CONFIG_USER_SCHED
9347 INIT_LIST_HEAD(&root_task_group.children);
9348 init_task_group.parent = &root_task_group;
9349 list_add(&init_task_group.siblings, &root_task_group.children);
9350 #endif /* CONFIG_USER_SCHED */
9351 #endif /* CONFIG_GROUP_SCHED */
9352
9353 for_each_possible_cpu(i) {
9354 struct rq *rq;
9355
9356 rq = cpu_rq(i);
9357 spin_lock_init(&rq->lock);
9358 rq->nr_running = 0;
9359 rq->calc_load_active = 0;
9360 rq->calc_load_update = jiffies + LOAD_FREQ;
9361 init_cfs_rq(&rq->cfs, rq);
9362 init_rt_rq(&rq->rt, rq);
9363 #ifdef CONFIG_FAIR_GROUP_SCHED
9364 init_task_group.shares = init_task_group_load;
9365 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9366 #ifdef CONFIG_CGROUP_SCHED
9367 /*
9368 * How much cpu bandwidth does init_task_group get?
9369 *
9370 * In case of task-groups formed thr' the cgroup filesystem, it
9371 * gets 100% of the cpu resources in the system. This overall
9372 * system cpu resource is divided among the tasks of
9373 * init_task_group and its child task-groups in a fair manner,
9374 * based on each entity's (task or task-group's) weight
9375 * (se->load.weight).
9376 *
9377 * In other words, if init_task_group has 10 tasks of weight
9378 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9379 * then A0's share of the cpu resource is:
9380 *
9381 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9382 *
9383 * We achieve this by letting init_task_group's tasks sit
9384 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9385 */
9386 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9387 #elif defined CONFIG_USER_SCHED
9388 root_task_group.shares = NICE_0_LOAD;
9389 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9390 /*
9391 * In case of task-groups formed thr' the user id of tasks,
9392 * init_task_group represents tasks belonging to root user.
9393 * Hence it forms a sibling of all subsequent groups formed.
9394 * In this case, init_task_group gets only a fraction of overall
9395 * system cpu resource, based on the weight assigned to root
9396 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9397 * by letting tasks of init_task_group sit in a separate cfs_rq
9398 * (init_cfs_rq) and having one entity represent this group of
9399 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9400 */
9401 init_tg_cfs_entry(&init_task_group,
9402 &per_cpu(init_cfs_rq, i),
9403 &per_cpu(init_sched_entity, i), i, 1,
9404 root_task_group.se[i]);
9405
9406 #endif
9407 #endif /* CONFIG_FAIR_GROUP_SCHED */
9408
9409 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9410 #ifdef CONFIG_RT_GROUP_SCHED
9411 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9412 #ifdef CONFIG_CGROUP_SCHED
9413 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9414 #elif defined CONFIG_USER_SCHED
9415 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9416 init_tg_rt_entry(&init_task_group,
9417 &per_cpu(init_rt_rq, i),
9418 &per_cpu(init_sched_rt_entity, i), i, 1,
9419 root_task_group.rt_se[i]);
9420 #endif
9421 #endif
9422
9423 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9424 rq->cpu_load[j] = 0;
9425 #ifdef CONFIG_SMP
9426 rq->sd = NULL;
9427 rq->rd = NULL;
9428 rq->post_schedule = 0;
9429 rq->active_balance = 0;
9430 rq->next_balance = jiffies;
9431 rq->push_cpu = 0;
9432 rq->cpu = i;
9433 rq->online = 0;
9434 rq->migration_thread = NULL;
9435 INIT_LIST_HEAD(&rq->migration_queue);
9436 rq_attach_root(rq, &def_root_domain);
9437 #endif
9438 init_rq_hrtick(rq);
9439 atomic_set(&rq->nr_iowait, 0);
9440 }
9441
9442 set_load_weight(&init_task);
9443
9444 #ifdef CONFIG_PREEMPT_NOTIFIERS
9445 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9446 #endif
9447
9448 #ifdef CONFIG_SMP
9449 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9450 #endif
9451
9452 #ifdef CONFIG_RT_MUTEXES
9453 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9454 #endif
9455
9456 /*
9457 * The boot idle thread does lazy MMU switching as well:
9458 */
9459 atomic_inc(&init_mm.mm_count);
9460 enter_lazy_tlb(&init_mm, current);
9461
9462 /*
9463 * Make us the idle thread. Technically, schedule() should not be
9464 * called from this thread, however somewhere below it might be,
9465 * but because we are the idle thread, we just pick up running again
9466 * when this runqueue becomes "idle".
9467 */
9468 init_idle(current, smp_processor_id());
9469
9470 calc_load_update = jiffies + LOAD_FREQ;
9471
9472 /*
9473 * During early bootup we pretend to be a normal task:
9474 */
9475 current->sched_class = &fair_sched_class;
9476
9477 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9478 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9479 #ifdef CONFIG_SMP
9480 #ifdef CONFIG_NO_HZ
9481 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9482 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9483 #endif
9484 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9485 #endif /* SMP */
9486
9487 perf_counter_init();
9488
9489 scheduler_running = 1;
9490 }
9491
9492 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9493 static inline int preempt_count_equals(int preempt_offset)
9494 {
9495 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9496
9497 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9498 }
9499
9500 void __might_sleep(char *file, int line, int preempt_offset)
9501 {
9502 #ifdef in_atomic
9503 static unsigned long prev_jiffy; /* ratelimiting */
9504
9505 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9506 system_state != SYSTEM_RUNNING || oops_in_progress)
9507 return;
9508 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9509 return;
9510 prev_jiffy = jiffies;
9511
9512 printk(KERN_ERR
9513 "BUG: sleeping function called from invalid context at %s:%d\n",
9514 file, line);
9515 printk(KERN_ERR
9516 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9517 in_atomic(), irqs_disabled(),
9518 current->pid, current->comm);
9519
9520 debug_show_held_locks(current);
9521 if (irqs_disabled())
9522 print_irqtrace_events(current);
9523 dump_stack();
9524 #endif
9525 }
9526 EXPORT_SYMBOL(__might_sleep);
9527 #endif
9528
9529 #ifdef CONFIG_MAGIC_SYSRQ
9530 static void normalize_task(struct rq *rq, struct task_struct *p)
9531 {
9532 int on_rq;
9533
9534 update_rq_clock(rq);
9535 on_rq = p->se.on_rq;
9536 if (on_rq)
9537 deactivate_task(rq, p, 0);
9538 __setscheduler(rq, p, SCHED_NORMAL, 0);
9539 if (on_rq) {
9540 activate_task(rq, p, 0);
9541 resched_task(rq->curr);
9542 }
9543 }
9544
9545 void normalize_rt_tasks(void)
9546 {
9547 struct task_struct *g, *p;
9548 unsigned long flags;
9549 struct rq *rq;
9550
9551 read_lock_irqsave(&tasklist_lock, flags);
9552 do_each_thread(g, p) {
9553 /*
9554 * Only normalize user tasks:
9555 */
9556 if (!p->mm)
9557 continue;
9558
9559 p->se.exec_start = 0;
9560 #ifdef CONFIG_SCHEDSTATS
9561 p->se.wait_start = 0;
9562 p->se.sleep_start = 0;
9563 p->se.block_start = 0;
9564 #endif
9565
9566 if (!rt_task(p)) {
9567 /*
9568 * Renice negative nice level userspace
9569 * tasks back to 0:
9570 */
9571 if (TASK_NICE(p) < 0 && p->mm)
9572 set_user_nice(p, 0);
9573 continue;
9574 }
9575
9576 spin_lock(&p->pi_lock);
9577 rq = __task_rq_lock(p);
9578
9579 normalize_task(rq, p);
9580
9581 __task_rq_unlock(rq);
9582 spin_unlock(&p->pi_lock);
9583 } while_each_thread(g, p);
9584
9585 read_unlock_irqrestore(&tasklist_lock, flags);
9586 }
9587
9588 #endif /* CONFIG_MAGIC_SYSRQ */
9589
9590 #ifdef CONFIG_IA64
9591 /*
9592 * These functions are only useful for the IA64 MCA handling.
9593 *
9594 * They can only be called when the whole system has been
9595 * stopped - every CPU needs to be quiescent, and no scheduling
9596 * activity can take place. Using them for anything else would
9597 * be a serious bug, and as a result, they aren't even visible
9598 * under any other configuration.
9599 */
9600
9601 /**
9602 * curr_task - return the current task for a given cpu.
9603 * @cpu: the processor in question.
9604 *
9605 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9606 */
9607 struct task_struct *curr_task(int cpu)
9608 {
9609 return cpu_curr(cpu);
9610 }
9611
9612 /**
9613 * set_curr_task - set the current task for a given cpu.
9614 * @cpu: the processor in question.
9615 * @p: the task pointer to set.
9616 *
9617 * Description: This function must only be used when non-maskable interrupts
9618 * are serviced on a separate stack. It allows the architecture to switch the
9619 * notion of the current task on a cpu in a non-blocking manner. This function
9620 * must be called with all CPU's synchronized, and interrupts disabled, the
9621 * and caller must save the original value of the current task (see
9622 * curr_task() above) and restore that value before reenabling interrupts and
9623 * re-starting the system.
9624 *
9625 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9626 */
9627 void set_curr_task(int cpu, struct task_struct *p)
9628 {
9629 cpu_curr(cpu) = p;
9630 }
9631
9632 #endif
9633
9634 #ifdef CONFIG_FAIR_GROUP_SCHED
9635 static void free_fair_sched_group(struct task_group *tg)
9636 {
9637 int i;
9638
9639 for_each_possible_cpu(i) {
9640 if (tg->cfs_rq)
9641 kfree(tg->cfs_rq[i]);
9642 if (tg->se)
9643 kfree(tg->se[i]);
9644 }
9645
9646 kfree(tg->cfs_rq);
9647 kfree(tg->se);
9648 }
9649
9650 static
9651 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9652 {
9653 struct cfs_rq *cfs_rq;
9654 struct sched_entity *se;
9655 struct rq *rq;
9656 int i;
9657
9658 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9659 if (!tg->cfs_rq)
9660 goto err;
9661 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9662 if (!tg->se)
9663 goto err;
9664
9665 tg->shares = NICE_0_LOAD;
9666
9667 for_each_possible_cpu(i) {
9668 rq = cpu_rq(i);
9669
9670 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9671 GFP_KERNEL, cpu_to_node(i));
9672 if (!cfs_rq)
9673 goto err;
9674
9675 se = kzalloc_node(sizeof(struct sched_entity),
9676 GFP_KERNEL, cpu_to_node(i));
9677 if (!se)
9678 goto err;
9679
9680 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9681 }
9682
9683 return 1;
9684
9685 err:
9686 return 0;
9687 }
9688
9689 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9690 {
9691 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9692 &cpu_rq(cpu)->leaf_cfs_rq_list);
9693 }
9694
9695 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9696 {
9697 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9698 }
9699 #else /* !CONFG_FAIR_GROUP_SCHED */
9700 static inline void free_fair_sched_group(struct task_group *tg)
9701 {
9702 }
9703
9704 static inline
9705 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9706 {
9707 return 1;
9708 }
9709
9710 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9711 {
9712 }
9713
9714 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9715 {
9716 }
9717 #endif /* CONFIG_FAIR_GROUP_SCHED */
9718
9719 #ifdef CONFIG_RT_GROUP_SCHED
9720 static void free_rt_sched_group(struct task_group *tg)
9721 {
9722 int i;
9723
9724 destroy_rt_bandwidth(&tg->rt_bandwidth);
9725
9726 for_each_possible_cpu(i) {
9727 if (tg->rt_rq)
9728 kfree(tg->rt_rq[i]);
9729 if (tg->rt_se)
9730 kfree(tg->rt_se[i]);
9731 }
9732
9733 kfree(tg->rt_rq);
9734 kfree(tg->rt_se);
9735 }
9736
9737 static
9738 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9739 {
9740 struct rt_rq *rt_rq;
9741 struct sched_rt_entity *rt_se;
9742 struct rq *rq;
9743 int i;
9744
9745 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9746 if (!tg->rt_rq)
9747 goto err;
9748 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9749 if (!tg->rt_se)
9750 goto err;
9751
9752 init_rt_bandwidth(&tg->rt_bandwidth,
9753 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9754
9755 for_each_possible_cpu(i) {
9756 rq = cpu_rq(i);
9757
9758 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9759 GFP_KERNEL, cpu_to_node(i));
9760 if (!rt_rq)
9761 goto err;
9762
9763 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9764 GFP_KERNEL, cpu_to_node(i));
9765 if (!rt_se)
9766 goto err;
9767
9768 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9769 }
9770
9771 return 1;
9772
9773 err:
9774 return 0;
9775 }
9776
9777 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9778 {
9779 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9780 &cpu_rq(cpu)->leaf_rt_rq_list);
9781 }
9782
9783 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9784 {
9785 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9786 }
9787 #else /* !CONFIG_RT_GROUP_SCHED */
9788 static inline void free_rt_sched_group(struct task_group *tg)
9789 {
9790 }
9791
9792 static inline
9793 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9794 {
9795 return 1;
9796 }
9797
9798 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9799 {
9800 }
9801
9802 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9803 {
9804 }
9805 #endif /* CONFIG_RT_GROUP_SCHED */
9806
9807 #ifdef CONFIG_GROUP_SCHED
9808 static void free_sched_group(struct task_group *tg)
9809 {
9810 free_fair_sched_group(tg);
9811 free_rt_sched_group(tg);
9812 kfree(tg);
9813 }
9814
9815 /* allocate runqueue etc for a new task group */
9816 struct task_group *sched_create_group(struct task_group *parent)
9817 {
9818 struct task_group *tg;
9819 unsigned long flags;
9820 int i;
9821
9822 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9823 if (!tg)
9824 return ERR_PTR(-ENOMEM);
9825
9826 if (!alloc_fair_sched_group(tg, parent))
9827 goto err;
9828
9829 if (!alloc_rt_sched_group(tg, parent))
9830 goto err;
9831
9832 spin_lock_irqsave(&task_group_lock, flags);
9833 for_each_possible_cpu(i) {
9834 register_fair_sched_group(tg, i);
9835 register_rt_sched_group(tg, i);
9836 }
9837 list_add_rcu(&tg->list, &task_groups);
9838
9839 WARN_ON(!parent); /* root should already exist */
9840
9841 tg->parent = parent;
9842 INIT_LIST_HEAD(&tg->children);
9843 list_add_rcu(&tg->siblings, &parent->children);
9844 spin_unlock_irqrestore(&task_group_lock, flags);
9845
9846 return tg;
9847
9848 err:
9849 free_sched_group(tg);
9850 return ERR_PTR(-ENOMEM);
9851 }
9852
9853 /* rcu callback to free various structures associated with a task group */
9854 static void free_sched_group_rcu(struct rcu_head *rhp)
9855 {
9856 /* now it should be safe to free those cfs_rqs */
9857 free_sched_group(container_of(rhp, struct task_group, rcu));
9858 }
9859
9860 /* Destroy runqueue etc associated with a task group */
9861 void sched_destroy_group(struct task_group *tg)
9862 {
9863 unsigned long flags;
9864 int i;
9865
9866 spin_lock_irqsave(&task_group_lock, flags);
9867 for_each_possible_cpu(i) {
9868 unregister_fair_sched_group(tg, i);
9869 unregister_rt_sched_group(tg, i);
9870 }
9871 list_del_rcu(&tg->list);
9872 list_del_rcu(&tg->siblings);
9873 spin_unlock_irqrestore(&task_group_lock, flags);
9874
9875 /* wait for possible concurrent references to cfs_rqs complete */
9876 call_rcu(&tg->rcu, free_sched_group_rcu);
9877 }
9878
9879 /* change task's runqueue when it moves between groups.
9880 * The caller of this function should have put the task in its new group
9881 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9882 * reflect its new group.
9883 */
9884 void sched_move_task(struct task_struct *tsk)
9885 {
9886 int on_rq, running;
9887 unsigned long flags;
9888 struct rq *rq;
9889
9890 rq = task_rq_lock(tsk, &flags);
9891
9892 update_rq_clock(rq);
9893
9894 running = task_current(rq, tsk);
9895 on_rq = tsk->se.on_rq;
9896
9897 if (on_rq)
9898 dequeue_task(rq, tsk, 0);
9899 if (unlikely(running))
9900 tsk->sched_class->put_prev_task(rq, tsk);
9901
9902 set_task_rq(tsk, task_cpu(tsk));
9903
9904 #ifdef CONFIG_FAIR_GROUP_SCHED
9905 if (tsk->sched_class->moved_group)
9906 tsk->sched_class->moved_group(tsk);
9907 #endif
9908
9909 if (unlikely(running))
9910 tsk->sched_class->set_curr_task(rq);
9911 if (on_rq)
9912 enqueue_task(rq, tsk, 0);
9913
9914 task_rq_unlock(rq, &flags);
9915 }
9916 #endif /* CONFIG_GROUP_SCHED */
9917
9918 #ifdef CONFIG_FAIR_GROUP_SCHED
9919 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9920 {
9921 struct cfs_rq *cfs_rq = se->cfs_rq;
9922 int on_rq;
9923
9924 on_rq = se->on_rq;
9925 if (on_rq)
9926 dequeue_entity(cfs_rq, se, 0);
9927
9928 se->load.weight = shares;
9929 se->load.inv_weight = 0;
9930
9931 if (on_rq)
9932 enqueue_entity(cfs_rq, se, 0);
9933 }
9934
9935 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9936 {
9937 struct cfs_rq *cfs_rq = se->cfs_rq;
9938 struct rq *rq = cfs_rq->rq;
9939 unsigned long flags;
9940
9941 spin_lock_irqsave(&rq->lock, flags);
9942 __set_se_shares(se, shares);
9943 spin_unlock_irqrestore(&rq->lock, flags);
9944 }
9945
9946 static DEFINE_MUTEX(shares_mutex);
9947
9948 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9949 {
9950 int i;
9951 unsigned long flags;
9952
9953 /*
9954 * We can't change the weight of the root cgroup.
9955 */
9956 if (!tg->se[0])
9957 return -EINVAL;
9958
9959 if (shares < MIN_SHARES)
9960 shares = MIN_SHARES;
9961 else if (shares > MAX_SHARES)
9962 shares = MAX_SHARES;
9963
9964 mutex_lock(&shares_mutex);
9965 if (tg->shares == shares)
9966 goto done;
9967
9968 spin_lock_irqsave(&task_group_lock, flags);
9969 for_each_possible_cpu(i)
9970 unregister_fair_sched_group(tg, i);
9971 list_del_rcu(&tg->siblings);
9972 spin_unlock_irqrestore(&task_group_lock, flags);
9973
9974 /* wait for any ongoing reference to this group to finish */
9975 synchronize_sched();
9976
9977 /*
9978 * Now we are free to modify the group's share on each cpu
9979 * w/o tripping rebalance_share or load_balance_fair.
9980 */
9981 tg->shares = shares;
9982 for_each_possible_cpu(i) {
9983 /*
9984 * force a rebalance
9985 */
9986 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9987 set_se_shares(tg->se[i], shares);
9988 }
9989
9990 /*
9991 * Enable load balance activity on this group, by inserting it back on
9992 * each cpu's rq->leaf_cfs_rq_list.
9993 */
9994 spin_lock_irqsave(&task_group_lock, flags);
9995 for_each_possible_cpu(i)
9996 register_fair_sched_group(tg, i);
9997 list_add_rcu(&tg->siblings, &tg->parent->children);
9998 spin_unlock_irqrestore(&task_group_lock, flags);
9999 done:
10000 mutex_unlock(&shares_mutex);
10001 return 0;
10002 }
10003
10004 unsigned long sched_group_shares(struct task_group *tg)
10005 {
10006 return tg->shares;
10007 }
10008 #endif
10009
10010 #ifdef CONFIG_RT_GROUP_SCHED
10011 /*
10012 * Ensure that the real time constraints are schedulable.
10013 */
10014 static DEFINE_MUTEX(rt_constraints_mutex);
10015
10016 static unsigned long to_ratio(u64 period, u64 runtime)
10017 {
10018 if (runtime == RUNTIME_INF)
10019 return 1ULL << 20;
10020
10021 return div64_u64(runtime << 20, period);
10022 }
10023
10024 /* Must be called with tasklist_lock held */
10025 static inline int tg_has_rt_tasks(struct task_group *tg)
10026 {
10027 struct task_struct *g, *p;
10028
10029 do_each_thread(g, p) {
10030 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10031 return 1;
10032 } while_each_thread(g, p);
10033
10034 return 0;
10035 }
10036
10037 struct rt_schedulable_data {
10038 struct task_group *tg;
10039 u64 rt_period;
10040 u64 rt_runtime;
10041 };
10042
10043 static int tg_schedulable(struct task_group *tg, void *data)
10044 {
10045 struct rt_schedulable_data *d = data;
10046 struct task_group *child;
10047 unsigned long total, sum = 0;
10048 u64 period, runtime;
10049
10050 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10051 runtime = tg->rt_bandwidth.rt_runtime;
10052
10053 if (tg == d->tg) {
10054 period = d->rt_period;
10055 runtime = d->rt_runtime;
10056 }
10057
10058 #ifdef CONFIG_USER_SCHED
10059 if (tg == &root_task_group) {
10060 period = global_rt_period();
10061 runtime = global_rt_runtime();
10062 }
10063 #endif
10064
10065 /*
10066 * Cannot have more runtime than the period.
10067 */
10068 if (runtime > period && runtime != RUNTIME_INF)
10069 return -EINVAL;
10070
10071 /*
10072 * Ensure we don't starve existing RT tasks.
10073 */
10074 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10075 return -EBUSY;
10076
10077 total = to_ratio(period, runtime);
10078
10079 /*
10080 * Nobody can have more than the global setting allows.
10081 */
10082 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10083 return -EINVAL;
10084
10085 /*
10086 * The sum of our children's runtime should not exceed our own.
10087 */
10088 list_for_each_entry_rcu(child, &tg->children, siblings) {
10089 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10090 runtime = child->rt_bandwidth.rt_runtime;
10091
10092 if (child == d->tg) {
10093 period = d->rt_period;
10094 runtime = d->rt_runtime;
10095 }
10096
10097 sum += to_ratio(period, runtime);
10098 }
10099
10100 if (sum > total)
10101 return -EINVAL;
10102
10103 return 0;
10104 }
10105
10106 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10107 {
10108 struct rt_schedulable_data data = {
10109 .tg = tg,
10110 .rt_period = period,
10111 .rt_runtime = runtime,
10112 };
10113
10114 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10115 }
10116
10117 static int tg_set_bandwidth(struct task_group *tg,
10118 u64 rt_period, u64 rt_runtime)
10119 {
10120 int i, err = 0;
10121
10122 mutex_lock(&rt_constraints_mutex);
10123 read_lock(&tasklist_lock);
10124 err = __rt_schedulable(tg, rt_period, rt_runtime);
10125 if (err)
10126 goto unlock;
10127
10128 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10129 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10130 tg->rt_bandwidth.rt_runtime = rt_runtime;
10131
10132 for_each_possible_cpu(i) {
10133 struct rt_rq *rt_rq = tg->rt_rq[i];
10134
10135 spin_lock(&rt_rq->rt_runtime_lock);
10136 rt_rq->rt_runtime = rt_runtime;
10137 spin_unlock(&rt_rq->rt_runtime_lock);
10138 }
10139 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10140 unlock:
10141 read_unlock(&tasklist_lock);
10142 mutex_unlock(&rt_constraints_mutex);
10143
10144 return err;
10145 }
10146
10147 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10148 {
10149 u64 rt_runtime, rt_period;
10150
10151 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10152 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10153 if (rt_runtime_us < 0)
10154 rt_runtime = RUNTIME_INF;
10155
10156 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10157 }
10158
10159 long sched_group_rt_runtime(struct task_group *tg)
10160 {
10161 u64 rt_runtime_us;
10162
10163 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10164 return -1;
10165
10166 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10167 do_div(rt_runtime_us, NSEC_PER_USEC);
10168 return rt_runtime_us;
10169 }
10170
10171 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10172 {
10173 u64 rt_runtime, rt_period;
10174
10175 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10176 rt_runtime = tg->rt_bandwidth.rt_runtime;
10177
10178 if (rt_period == 0)
10179 return -EINVAL;
10180
10181 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10182 }
10183
10184 long sched_group_rt_period(struct task_group *tg)
10185 {
10186 u64 rt_period_us;
10187
10188 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10189 do_div(rt_period_us, NSEC_PER_USEC);
10190 return rt_period_us;
10191 }
10192
10193 static int sched_rt_global_constraints(void)
10194 {
10195 u64 runtime, period;
10196 int ret = 0;
10197
10198 if (sysctl_sched_rt_period <= 0)
10199 return -EINVAL;
10200
10201 runtime = global_rt_runtime();
10202 period = global_rt_period();
10203
10204 /*
10205 * Sanity check on the sysctl variables.
10206 */
10207 if (runtime > period && runtime != RUNTIME_INF)
10208 return -EINVAL;
10209
10210 mutex_lock(&rt_constraints_mutex);
10211 read_lock(&tasklist_lock);
10212 ret = __rt_schedulable(NULL, 0, 0);
10213 read_unlock(&tasklist_lock);
10214 mutex_unlock(&rt_constraints_mutex);
10215
10216 return ret;
10217 }
10218
10219 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10220 {
10221 /* Don't accept realtime tasks when there is no way for them to run */
10222 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10223 return 0;
10224
10225 return 1;
10226 }
10227
10228 #else /* !CONFIG_RT_GROUP_SCHED */
10229 static int sched_rt_global_constraints(void)
10230 {
10231 unsigned long flags;
10232 int i;
10233
10234 if (sysctl_sched_rt_period <= 0)
10235 return -EINVAL;
10236
10237 /*
10238 * There's always some RT tasks in the root group
10239 * -- migration, kstopmachine etc..
10240 */
10241 if (sysctl_sched_rt_runtime == 0)
10242 return -EBUSY;
10243
10244 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10245 for_each_possible_cpu(i) {
10246 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10247
10248 spin_lock(&rt_rq->rt_runtime_lock);
10249 rt_rq->rt_runtime = global_rt_runtime();
10250 spin_unlock(&rt_rq->rt_runtime_lock);
10251 }
10252 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10253
10254 return 0;
10255 }
10256 #endif /* CONFIG_RT_GROUP_SCHED */
10257
10258 int sched_rt_handler(struct ctl_table *table, int write,
10259 struct file *filp, void __user *buffer, size_t *lenp,
10260 loff_t *ppos)
10261 {
10262 int ret;
10263 int old_period, old_runtime;
10264 static DEFINE_MUTEX(mutex);
10265
10266 mutex_lock(&mutex);
10267 old_period = sysctl_sched_rt_period;
10268 old_runtime = sysctl_sched_rt_runtime;
10269
10270 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10271
10272 if (!ret && write) {
10273 ret = sched_rt_global_constraints();
10274 if (ret) {
10275 sysctl_sched_rt_period = old_period;
10276 sysctl_sched_rt_runtime = old_runtime;
10277 } else {
10278 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10279 def_rt_bandwidth.rt_period =
10280 ns_to_ktime(global_rt_period());
10281 }
10282 }
10283 mutex_unlock(&mutex);
10284
10285 return ret;
10286 }
10287
10288 #ifdef CONFIG_CGROUP_SCHED
10289
10290 /* return corresponding task_group object of a cgroup */
10291 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10292 {
10293 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10294 struct task_group, css);
10295 }
10296
10297 static struct cgroup_subsys_state *
10298 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10299 {
10300 struct task_group *tg, *parent;
10301
10302 if (!cgrp->parent) {
10303 /* This is early initialization for the top cgroup */
10304 return &init_task_group.css;
10305 }
10306
10307 parent = cgroup_tg(cgrp->parent);
10308 tg = sched_create_group(parent);
10309 if (IS_ERR(tg))
10310 return ERR_PTR(-ENOMEM);
10311
10312 return &tg->css;
10313 }
10314
10315 static void
10316 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10317 {
10318 struct task_group *tg = cgroup_tg(cgrp);
10319
10320 sched_destroy_group(tg);
10321 }
10322
10323 static int
10324 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10325 struct task_struct *tsk)
10326 {
10327 #ifdef CONFIG_RT_GROUP_SCHED
10328 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10329 return -EINVAL;
10330 #else
10331 /* We don't support RT-tasks being in separate groups */
10332 if (tsk->sched_class != &fair_sched_class)
10333 return -EINVAL;
10334 #endif
10335
10336 return 0;
10337 }
10338
10339 static void
10340 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10341 struct cgroup *old_cont, struct task_struct *tsk)
10342 {
10343 sched_move_task(tsk);
10344 }
10345
10346 #ifdef CONFIG_FAIR_GROUP_SCHED
10347 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10348 u64 shareval)
10349 {
10350 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10351 }
10352
10353 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10354 {
10355 struct task_group *tg = cgroup_tg(cgrp);
10356
10357 return (u64) tg->shares;
10358 }
10359 #endif /* CONFIG_FAIR_GROUP_SCHED */
10360
10361 #ifdef CONFIG_RT_GROUP_SCHED
10362 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10363 s64 val)
10364 {
10365 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10366 }
10367
10368 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10369 {
10370 return sched_group_rt_runtime(cgroup_tg(cgrp));
10371 }
10372
10373 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10374 u64 rt_period_us)
10375 {
10376 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10377 }
10378
10379 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10380 {
10381 return sched_group_rt_period(cgroup_tg(cgrp));
10382 }
10383 #endif /* CONFIG_RT_GROUP_SCHED */
10384
10385 static struct cftype cpu_files[] = {
10386 #ifdef CONFIG_FAIR_GROUP_SCHED
10387 {
10388 .name = "shares",
10389 .read_u64 = cpu_shares_read_u64,
10390 .write_u64 = cpu_shares_write_u64,
10391 },
10392 #endif
10393 #ifdef CONFIG_RT_GROUP_SCHED
10394 {
10395 .name = "rt_runtime_us",
10396 .read_s64 = cpu_rt_runtime_read,
10397 .write_s64 = cpu_rt_runtime_write,
10398 },
10399 {
10400 .name = "rt_period_us",
10401 .read_u64 = cpu_rt_period_read_uint,
10402 .write_u64 = cpu_rt_period_write_uint,
10403 },
10404 #endif
10405 };
10406
10407 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10408 {
10409 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10410 }
10411
10412 struct cgroup_subsys cpu_cgroup_subsys = {
10413 .name = "cpu",
10414 .create = cpu_cgroup_create,
10415 .destroy = cpu_cgroup_destroy,
10416 .can_attach = cpu_cgroup_can_attach,
10417 .attach = cpu_cgroup_attach,
10418 .populate = cpu_cgroup_populate,
10419 .subsys_id = cpu_cgroup_subsys_id,
10420 .early_init = 1,
10421 };
10422
10423 #endif /* CONFIG_CGROUP_SCHED */
10424
10425 #ifdef CONFIG_CGROUP_CPUACCT
10426
10427 /*
10428 * CPU accounting code for task groups.
10429 *
10430 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10431 * (balbir@in.ibm.com).
10432 */
10433
10434 /* track cpu usage of a group of tasks and its child groups */
10435 struct cpuacct {
10436 struct cgroup_subsys_state css;
10437 /* cpuusage holds pointer to a u64-type object on every cpu */
10438 u64 *cpuusage;
10439 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10440 struct cpuacct *parent;
10441 };
10442
10443 struct cgroup_subsys cpuacct_subsys;
10444
10445 /* return cpu accounting group corresponding to this container */
10446 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10447 {
10448 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10449 struct cpuacct, css);
10450 }
10451
10452 /* return cpu accounting group to which this task belongs */
10453 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10454 {
10455 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10456 struct cpuacct, css);
10457 }
10458
10459 /* create a new cpu accounting group */
10460 static struct cgroup_subsys_state *cpuacct_create(
10461 struct cgroup_subsys *ss, struct cgroup *cgrp)
10462 {
10463 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10464 int i;
10465
10466 if (!ca)
10467 goto out;
10468
10469 ca->cpuusage = alloc_percpu(u64);
10470 if (!ca->cpuusage)
10471 goto out_free_ca;
10472
10473 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10474 if (percpu_counter_init(&ca->cpustat[i], 0))
10475 goto out_free_counters;
10476
10477 if (cgrp->parent)
10478 ca->parent = cgroup_ca(cgrp->parent);
10479
10480 return &ca->css;
10481
10482 out_free_counters:
10483 while (--i >= 0)
10484 percpu_counter_destroy(&ca->cpustat[i]);
10485 free_percpu(ca->cpuusage);
10486 out_free_ca:
10487 kfree(ca);
10488 out:
10489 return ERR_PTR(-ENOMEM);
10490 }
10491
10492 /* destroy an existing cpu accounting group */
10493 static void
10494 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10495 {
10496 struct cpuacct *ca = cgroup_ca(cgrp);
10497 int i;
10498
10499 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10500 percpu_counter_destroy(&ca->cpustat[i]);
10501 free_percpu(ca->cpuusage);
10502 kfree(ca);
10503 }
10504
10505 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10506 {
10507 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10508 u64 data;
10509
10510 #ifndef CONFIG_64BIT
10511 /*
10512 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10513 */
10514 spin_lock_irq(&cpu_rq(cpu)->lock);
10515 data = *cpuusage;
10516 spin_unlock_irq(&cpu_rq(cpu)->lock);
10517 #else
10518 data = *cpuusage;
10519 #endif
10520
10521 return data;
10522 }
10523
10524 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10525 {
10526 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10527
10528 #ifndef CONFIG_64BIT
10529 /*
10530 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10531 */
10532 spin_lock_irq(&cpu_rq(cpu)->lock);
10533 *cpuusage = val;
10534 spin_unlock_irq(&cpu_rq(cpu)->lock);
10535 #else
10536 *cpuusage = val;
10537 #endif
10538 }
10539
10540 /* return total cpu usage (in nanoseconds) of a group */
10541 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10542 {
10543 struct cpuacct *ca = cgroup_ca(cgrp);
10544 u64 totalcpuusage = 0;
10545 int i;
10546
10547 for_each_present_cpu(i)
10548 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10549
10550 return totalcpuusage;
10551 }
10552
10553 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10554 u64 reset)
10555 {
10556 struct cpuacct *ca = cgroup_ca(cgrp);
10557 int err = 0;
10558 int i;
10559
10560 if (reset) {
10561 err = -EINVAL;
10562 goto out;
10563 }
10564
10565 for_each_present_cpu(i)
10566 cpuacct_cpuusage_write(ca, i, 0);
10567
10568 out:
10569 return err;
10570 }
10571
10572 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10573 struct seq_file *m)
10574 {
10575 struct cpuacct *ca = cgroup_ca(cgroup);
10576 u64 percpu;
10577 int i;
10578
10579 for_each_present_cpu(i) {
10580 percpu = cpuacct_cpuusage_read(ca, i);
10581 seq_printf(m, "%llu ", (unsigned long long) percpu);
10582 }
10583 seq_printf(m, "\n");
10584 return 0;
10585 }
10586
10587 static const char *cpuacct_stat_desc[] = {
10588 [CPUACCT_STAT_USER] = "user",
10589 [CPUACCT_STAT_SYSTEM] = "system",
10590 };
10591
10592 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10593 struct cgroup_map_cb *cb)
10594 {
10595 struct cpuacct *ca = cgroup_ca(cgrp);
10596 int i;
10597
10598 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10599 s64 val = percpu_counter_read(&ca->cpustat[i]);
10600 val = cputime64_to_clock_t(val);
10601 cb->fill(cb, cpuacct_stat_desc[i], val);
10602 }
10603 return 0;
10604 }
10605
10606 static struct cftype files[] = {
10607 {
10608 .name = "usage",
10609 .read_u64 = cpuusage_read,
10610 .write_u64 = cpuusage_write,
10611 },
10612 {
10613 .name = "usage_percpu",
10614 .read_seq_string = cpuacct_percpu_seq_read,
10615 },
10616 {
10617 .name = "stat",
10618 .read_map = cpuacct_stats_show,
10619 },
10620 };
10621
10622 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10623 {
10624 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10625 }
10626
10627 /*
10628 * charge this task's execution time to its accounting group.
10629 *
10630 * called with rq->lock held.
10631 */
10632 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10633 {
10634 struct cpuacct *ca;
10635 int cpu;
10636
10637 if (unlikely(!cpuacct_subsys.active))
10638 return;
10639
10640 cpu = task_cpu(tsk);
10641
10642 rcu_read_lock();
10643
10644 ca = task_ca(tsk);
10645
10646 for (; ca; ca = ca->parent) {
10647 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10648 *cpuusage += cputime;
10649 }
10650
10651 rcu_read_unlock();
10652 }
10653
10654 /*
10655 * Charge the system/user time to the task's accounting group.
10656 */
10657 static void cpuacct_update_stats(struct task_struct *tsk,
10658 enum cpuacct_stat_index idx, cputime_t val)
10659 {
10660 struct cpuacct *ca;
10661
10662 if (unlikely(!cpuacct_subsys.active))
10663 return;
10664
10665 rcu_read_lock();
10666 ca = task_ca(tsk);
10667
10668 do {
10669 percpu_counter_add(&ca->cpustat[idx], val);
10670 ca = ca->parent;
10671 } while (ca);
10672 rcu_read_unlock();
10673 }
10674
10675 struct cgroup_subsys cpuacct_subsys = {
10676 .name = "cpuacct",
10677 .create = cpuacct_create,
10678 .destroy = cpuacct_destroy,
10679 .populate = cpuacct_populate,
10680 .subsys_id = cpuacct_subsys_id,
10681 };
10682 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.229456 seconds and 6 git commands to generate.