Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 raw_spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 raw_spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_CGROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 struct cgroup_subsys_state css;
247
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq;
253 unsigned long shares;
254 #endif
255
256 #ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq;
259
260 struct rt_bandwidth rt_bandwidth;
261 #endif
262
263 struct rcu_head rcu;
264 struct list_head list;
265
266 struct task_group *parent;
267 struct list_head siblings;
268 struct list_head children;
269 };
270
271 #define root_task_group init_task_group
272
273 /* task_group_lock serializes add/remove of task groups and also changes to
274 * a task group's cpu shares.
275 */
276 static DEFINE_SPINLOCK(task_group_lock);
277
278 #ifdef CONFIG_FAIR_GROUP_SCHED
279
280 #ifdef CONFIG_SMP
281 static int root_task_group_empty(void)
282 {
283 return list_empty(&root_task_group.children);
284 }
285 #endif
286
287 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
288
289 /*
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
296 */
297 #define MIN_SHARES 2
298 #define MAX_SHARES (1UL << 18)
299
300 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
301 #endif
302
303 /* Default task group.
304 * Every task in system belong to this group at bootup.
305 */
306 struct task_group init_task_group;
307
308 /* return group to which a task belongs */
309 static inline struct task_group *task_group(struct task_struct *p)
310 {
311 struct task_group *tg;
312
313 #ifdef CONFIG_CGROUP_SCHED
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css);
316 #else
317 tg = &init_task_group;
318 #endif
319 return tg;
320 }
321
322 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
323 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
324 {
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu];
328 #endif
329
330 #ifdef CONFIG_RT_GROUP_SCHED
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu];
333 #endif
334 }
335
336 #else
337
338 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 static inline struct task_group *task_group(struct task_struct *p)
340 {
341 return NULL;
342 }
343
344 #endif /* CONFIG_CGROUP_SCHED */
345
346 /* CFS-related fields in a runqueue */
347 struct cfs_rq {
348 struct load_weight load;
349 unsigned long nr_running;
350
351 u64 exec_clock;
352 u64 min_vruntime;
353
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
356
357 struct list_head tasks;
358 struct list_head *balance_iterator;
359
360 /*
361 * 'curr' points to currently running entity on this cfs_rq.
362 * It is set to NULL otherwise (i.e when none are currently running).
363 */
364 struct sched_entity *curr, *next, *last;
365
366 unsigned int nr_spread_over;
367
368 #ifdef CONFIG_FAIR_GROUP_SCHED
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
370
371 /*
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
375 *
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
378 */
379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */
381
382 #ifdef CONFIG_SMP
383 /*
384 * the part of load.weight contributed by tasks
385 */
386 unsigned long task_weight;
387
388 /*
389 * h_load = weight * f(tg)
390 *
391 * Where f(tg) is the recursive weight fraction assigned to
392 * this group.
393 */
394 unsigned long h_load;
395
396 /*
397 * this cpu's part of tg->shares
398 */
399 unsigned long shares;
400
401 /*
402 * load.weight at the time we set shares
403 */
404 unsigned long rq_weight;
405 #endif
406 #endif
407 };
408
409 /* Real-Time classes' related field in a runqueue: */
410 struct rt_rq {
411 struct rt_prio_array active;
412 unsigned long rt_nr_running;
413 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 struct {
415 int curr; /* highest queued rt task prio */
416 #ifdef CONFIG_SMP
417 int next; /* next highest */
418 #endif
419 } highest_prio;
420 #endif
421 #ifdef CONFIG_SMP
422 unsigned long rt_nr_migratory;
423 unsigned long rt_nr_total;
424 int overloaded;
425 struct plist_head pushable_tasks;
426 #endif
427 int rt_throttled;
428 u64 rt_time;
429 u64 rt_runtime;
430 /* Nests inside the rq lock: */
431 raw_spinlock_t rt_runtime_lock;
432
433 #ifdef CONFIG_RT_GROUP_SCHED
434 unsigned long rt_nr_boosted;
435
436 struct rq *rq;
437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg;
439 #endif
440 };
441
442 #ifdef CONFIG_SMP
443
444 /*
445 * We add the notion of a root-domain which will be used to define per-domain
446 * variables. Each exclusive cpuset essentially defines an island domain by
447 * fully partitioning the member cpus from any other cpuset. Whenever a new
448 * exclusive cpuset is created, we also create and attach a new root-domain
449 * object.
450 *
451 */
452 struct root_domain {
453 atomic_t refcount;
454 cpumask_var_t span;
455 cpumask_var_t online;
456
457 /*
458 * The "RT overload" flag: it gets set if a CPU has more than
459 * one runnable RT task.
460 */
461 cpumask_var_t rto_mask;
462 atomic_t rto_count;
463 #ifdef CONFIG_SMP
464 struct cpupri cpupri;
465 #endif
466 };
467
468 /*
469 * By default the system creates a single root-domain with all cpus as
470 * members (mimicking the global state we have today).
471 */
472 static struct root_domain def_root_domain;
473
474 #endif
475
476 /*
477 * This is the main, per-CPU runqueue data structure.
478 *
479 * Locking rule: those places that want to lock multiple runqueues
480 * (such as the load balancing or the thread migration code), lock
481 * acquire operations must be ordered by ascending &runqueue.
482 */
483 struct rq {
484 /* runqueue lock: */
485 raw_spinlock_t lock;
486
487 /*
488 * nr_running and cpu_load should be in the same cacheline because
489 * remote CPUs use both these fields when doing load calculation.
490 */
491 unsigned long nr_running;
492 #define CPU_LOAD_IDX_MAX 5
493 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
494 #ifdef CONFIG_NO_HZ
495 unsigned char in_nohz_recently;
496 #endif
497 /* capture load from *all* tasks on this cpu: */
498 struct load_weight load;
499 unsigned long nr_load_updates;
500 u64 nr_switches;
501
502 struct cfs_rq cfs;
503 struct rt_rq rt;
504
505 #ifdef CONFIG_FAIR_GROUP_SCHED
506 /* list of leaf cfs_rq on this cpu: */
507 struct list_head leaf_cfs_rq_list;
508 #endif
509 #ifdef CONFIG_RT_GROUP_SCHED
510 struct list_head leaf_rt_rq_list;
511 #endif
512
513 /*
514 * This is part of a global counter where only the total sum
515 * over all CPUs matters. A task can increase this counter on
516 * one CPU and if it got migrated afterwards it may decrease
517 * it on another CPU. Always updated under the runqueue lock:
518 */
519 unsigned long nr_uninterruptible;
520
521 struct task_struct *curr, *idle;
522 unsigned long next_balance;
523 struct mm_struct *prev_mm;
524
525 u64 clock;
526
527 atomic_t nr_iowait;
528
529 #ifdef CONFIG_SMP
530 struct root_domain *rd;
531 struct sched_domain *sd;
532
533 unsigned char idle_at_tick;
534 /* For active balancing */
535 int post_schedule;
536 int active_balance;
537 int push_cpu;
538 /* cpu of this runqueue: */
539 int cpu;
540 int online;
541
542 unsigned long avg_load_per_task;
543
544 struct task_struct *migration_thread;
545 struct list_head migration_queue;
546
547 u64 rt_avg;
548 u64 age_stamp;
549 u64 idle_stamp;
550 u64 avg_idle;
551 #endif
552
553 /* calc_load related fields */
554 unsigned long calc_load_update;
555 long calc_load_active;
556
557 #ifdef CONFIG_SCHED_HRTICK
558 #ifdef CONFIG_SMP
559 int hrtick_csd_pending;
560 struct call_single_data hrtick_csd;
561 #endif
562 struct hrtimer hrtick_timer;
563 #endif
564
565 #ifdef CONFIG_SCHEDSTATS
566 /* latency stats */
567 struct sched_info rq_sched_info;
568 unsigned long long rq_cpu_time;
569 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
570
571 /* sys_sched_yield() stats */
572 unsigned int yld_count;
573
574 /* schedule() stats */
575 unsigned int sched_switch;
576 unsigned int sched_count;
577 unsigned int sched_goidle;
578
579 /* try_to_wake_up() stats */
580 unsigned int ttwu_count;
581 unsigned int ttwu_local;
582
583 /* BKL stats */
584 unsigned int bkl_count;
585 #endif
586 };
587
588 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
589
590 static inline
591 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
592 {
593 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
594 }
595
596 static inline int cpu_of(struct rq *rq)
597 {
598 #ifdef CONFIG_SMP
599 return rq->cpu;
600 #else
601 return 0;
602 #endif
603 }
604
605 #define rcu_dereference_check_sched_domain(p) \
606 rcu_dereference_check((p), \
607 rcu_read_lock_sched_held() || \
608 lockdep_is_held(&sched_domains_mutex))
609
610 /*
611 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
612 * See detach_destroy_domains: synchronize_sched for details.
613 *
614 * The domain tree of any CPU may only be accessed from within
615 * preempt-disabled sections.
616 */
617 #define for_each_domain(cpu, __sd) \
618 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
619
620 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
621 #define this_rq() (&__get_cpu_var(runqueues))
622 #define task_rq(p) cpu_rq(task_cpu(p))
623 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
624 #define raw_rq() (&__raw_get_cpu_var(runqueues))
625
626 inline void update_rq_clock(struct rq *rq)
627 {
628 rq->clock = sched_clock_cpu(cpu_of(rq));
629 }
630
631 /*
632 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
633 */
634 #ifdef CONFIG_SCHED_DEBUG
635 # define const_debug __read_mostly
636 #else
637 # define const_debug static const
638 #endif
639
640 /**
641 * runqueue_is_locked
642 * @cpu: the processor in question.
643 *
644 * Returns true if the current cpu runqueue is locked.
645 * This interface allows printk to be called with the runqueue lock
646 * held and know whether or not it is OK to wake up the klogd.
647 */
648 int runqueue_is_locked(int cpu)
649 {
650 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
651 }
652
653 /*
654 * Debugging: various feature bits
655 */
656
657 #define SCHED_FEAT(name, enabled) \
658 __SCHED_FEAT_##name ,
659
660 enum {
661 #include "sched_features.h"
662 };
663
664 #undef SCHED_FEAT
665
666 #define SCHED_FEAT(name, enabled) \
667 (1UL << __SCHED_FEAT_##name) * enabled |
668
669 const_debug unsigned int sysctl_sched_features =
670 #include "sched_features.h"
671 0;
672
673 #undef SCHED_FEAT
674
675 #ifdef CONFIG_SCHED_DEBUG
676 #define SCHED_FEAT(name, enabled) \
677 #name ,
678
679 static __read_mostly char *sched_feat_names[] = {
680 #include "sched_features.h"
681 NULL
682 };
683
684 #undef SCHED_FEAT
685
686 static int sched_feat_show(struct seq_file *m, void *v)
687 {
688 int i;
689
690 for (i = 0; sched_feat_names[i]; i++) {
691 if (!(sysctl_sched_features & (1UL << i)))
692 seq_puts(m, "NO_");
693 seq_printf(m, "%s ", sched_feat_names[i]);
694 }
695 seq_puts(m, "\n");
696
697 return 0;
698 }
699
700 static ssize_t
701 sched_feat_write(struct file *filp, const char __user *ubuf,
702 size_t cnt, loff_t *ppos)
703 {
704 char buf[64];
705 char *cmp = buf;
706 int neg = 0;
707 int i;
708
709 if (cnt > 63)
710 cnt = 63;
711
712 if (copy_from_user(&buf, ubuf, cnt))
713 return -EFAULT;
714
715 buf[cnt] = 0;
716
717 if (strncmp(buf, "NO_", 3) == 0) {
718 neg = 1;
719 cmp += 3;
720 }
721
722 for (i = 0; sched_feat_names[i]; i++) {
723 int len = strlen(sched_feat_names[i]);
724
725 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
726 if (neg)
727 sysctl_sched_features &= ~(1UL << i);
728 else
729 sysctl_sched_features |= (1UL << i);
730 break;
731 }
732 }
733
734 if (!sched_feat_names[i])
735 return -EINVAL;
736
737 *ppos += cnt;
738
739 return cnt;
740 }
741
742 static int sched_feat_open(struct inode *inode, struct file *filp)
743 {
744 return single_open(filp, sched_feat_show, NULL);
745 }
746
747 static const struct file_operations sched_feat_fops = {
748 .open = sched_feat_open,
749 .write = sched_feat_write,
750 .read = seq_read,
751 .llseek = seq_lseek,
752 .release = single_release,
753 };
754
755 static __init int sched_init_debug(void)
756 {
757 debugfs_create_file("sched_features", 0644, NULL, NULL,
758 &sched_feat_fops);
759
760 return 0;
761 }
762 late_initcall(sched_init_debug);
763
764 #endif
765
766 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
767
768 /*
769 * Number of tasks to iterate in a single balance run.
770 * Limited because this is done with IRQs disabled.
771 */
772 const_debug unsigned int sysctl_sched_nr_migrate = 32;
773
774 /*
775 * ratelimit for updating the group shares.
776 * default: 0.25ms
777 */
778 unsigned int sysctl_sched_shares_ratelimit = 250000;
779 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
780
781 /*
782 * Inject some fuzzyness into changing the per-cpu group shares
783 * this avoids remote rq-locks at the expense of fairness.
784 * default: 4
785 */
786 unsigned int sysctl_sched_shares_thresh = 4;
787
788 /*
789 * period over which we average the RT time consumption, measured
790 * in ms.
791 *
792 * default: 1s
793 */
794 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
795
796 /*
797 * period over which we measure -rt task cpu usage in us.
798 * default: 1s
799 */
800 unsigned int sysctl_sched_rt_period = 1000000;
801
802 static __read_mostly int scheduler_running;
803
804 /*
805 * part of the period that we allow rt tasks to run in us.
806 * default: 0.95s
807 */
808 int sysctl_sched_rt_runtime = 950000;
809
810 static inline u64 global_rt_period(void)
811 {
812 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
813 }
814
815 static inline u64 global_rt_runtime(void)
816 {
817 if (sysctl_sched_rt_runtime < 0)
818 return RUNTIME_INF;
819
820 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
821 }
822
823 #ifndef prepare_arch_switch
824 # define prepare_arch_switch(next) do { } while (0)
825 #endif
826 #ifndef finish_arch_switch
827 # define finish_arch_switch(prev) do { } while (0)
828 #endif
829
830 static inline int task_current(struct rq *rq, struct task_struct *p)
831 {
832 return rq->curr == p;
833 }
834
835 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
836 static inline int task_running(struct rq *rq, struct task_struct *p)
837 {
838 return task_current(rq, p);
839 }
840
841 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
842 {
843 }
844
845 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
846 {
847 #ifdef CONFIG_DEBUG_SPINLOCK
848 /* this is a valid case when another task releases the spinlock */
849 rq->lock.owner = current;
850 #endif
851 /*
852 * If we are tracking spinlock dependencies then we have to
853 * fix up the runqueue lock - which gets 'carried over' from
854 * prev into current:
855 */
856 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
857
858 raw_spin_unlock_irq(&rq->lock);
859 }
860
861 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
862 static inline int task_running(struct rq *rq, struct task_struct *p)
863 {
864 #ifdef CONFIG_SMP
865 return p->oncpu;
866 #else
867 return task_current(rq, p);
868 #endif
869 }
870
871 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
872 {
873 #ifdef CONFIG_SMP
874 /*
875 * We can optimise this out completely for !SMP, because the
876 * SMP rebalancing from interrupt is the only thing that cares
877 * here.
878 */
879 next->oncpu = 1;
880 #endif
881 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
882 raw_spin_unlock_irq(&rq->lock);
883 #else
884 raw_spin_unlock(&rq->lock);
885 #endif
886 }
887
888 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
889 {
890 #ifdef CONFIG_SMP
891 /*
892 * After ->oncpu is cleared, the task can be moved to a different CPU.
893 * We must ensure this doesn't happen until the switch is completely
894 * finished.
895 */
896 smp_wmb();
897 prev->oncpu = 0;
898 #endif
899 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
900 local_irq_enable();
901 #endif
902 }
903 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
904
905 /*
906 * Check whether the task is waking, we use this to synchronize against
907 * ttwu() so that task_cpu() reports a stable number.
908 *
909 * We need to make an exception for PF_STARTING tasks because the fork
910 * path might require task_rq_lock() to work, eg. it can call
911 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
912 */
913 static inline int task_is_waking(struct task_struct *p)
914 {
915 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
916 }
917
918 /*
919 * __task_rq_lock - lock the runqueue a given task resides on.
920 * Must be called interrupts disabled.
921 */
922 static inline struct rq *__task_rq_lock(struct task_struct *p)
923 __acquires(rq->lock)
924 {
925 struct rq *rq;
926
927 for (;;) {
928 while (task_is_waking(p))
929 cpu_relax();
930 rq = task_rq(p);
931 raw_spin_lock(&rq->lock);
932 if (likely(rq == task_rq(p) && !task_is_waking(p)))
933 return rq;
934 raw_spin_unlock(&rq->lock);
935 }
936 }
937
938 /*
939 * task_rq_lock - lock the runqueue a given task resides on and disable
940 * interrupts. Note the ordering: we can safely lookup the task_rq without
941 * explicitly disabling preemption.
942 */
943 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
944 __acquires(rq->lock)
945 {
946 struct rq *rq;
947
948 for (;;) {
949 while (task_is_waking(p))
950 cpu_relax();
951 local_irq_save(*flags);
952 rq = task_rq(p);
953 raw_spin_lock(&rq->lock);
954 if (likely(rq == task_rq(p) && !task_is_waking(p)))
955 return rq;
956 raw_spin_unlock_irqrestore(&rq->lock, *flags);
957 }
958 }
959
960 void task_rq_unlock_wait(struct task_struct *p)
961 {
962 struct rq *rq = task_rq(p);
963
964 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
965 raw_spin_unlock_wait(&rq->lock);
966 }
967
968 static void __task_rq_unlock(struct rq *rq)
969 __releases(rq->lock)
970 {
971 raw_spin_unlock(&rq->lock);
972 }
973
974 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
975 __releases(rq->lock)
976 {
977 raw_spin_unlock_irqrestore(&rq->lock, *flags);
978 }
979
980 /*
981 * this_rq_lock - lock this runqueue and disable interrupts.
982 */
983 static struct rq *this_rq_lock(void)
984 __acquires(rq->lock)
985 {
986 struct rq *rq;
987
988 local_irq_disable();
989 rq = this_rq();
990 raw_spin_lock(&rq->lock);
991
992 return rq;
993 }
994
995 #ifdef CONFIG_SCHED_HRTICK
996 /*
997 * Use HR-timers to deliver accurate preemption points.
998 *
999 * Its all a bit involved since we cannot program an hrt while holding the
1000 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1001 * reschedule event.
1002 *
1003 * When we get rescheduled we reprogram the hrtick_timer outside of the
1004 * rq->lock.
1005 */
1006
1007 /*
1008 * Use hrtick when:
1009 * - enabled by features
1010 * - hrtimer is actually high res
1011 */
1012 static inline int hrtick_enabled(struct rq *rq)
1013 {
1014 if (!sched_feat(HRTICK))
1015 return 0;
1016 if (!cpu_active(cpu_of(rq)))
1017 return 0;
1018 return hrtimer_is_hres_active(&rq->hrtick_timer);
1019 }
1020
1021 static void hrtick_clear(struct rq *rq)
1022 {
1023 if (hrtimer_active(&rq->hrtick_timer))
1024 hrtimer_cancel(&rq->hrtick_timer);
1025 }
1026
1027 /*
1028 * High-resolution timer tick.
1029 * Runs from hardirq context with interrupts disabled.
1030 */
1031 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1032 {
1033 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1034
1035 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1036
1037 raw_spin_lock(&rq->lock);
1038 update_rq_clock(rq);
1039 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1040 raw_spin_unlock(&rq->lock);
1041
1042 return HRTIMER_NORESTART;
1043 }
1044
1045 #ifdef CONFIG_SMP
1046 /*
1047 * called from hardirq (IPI) context
1048 */
1049 static void __hrtick_start(void *arg)
1050 {
1051 struct rq *rq = arg;
1052
1053 raw_spin_lock(&rq->lock);
1054 hrtimer_restart(&rq->hrtick_timer);
1055 rq->hrtick_csd_pending = 0;
1056 raw_spin_unlock(&rq->lock);
1057 }
1058
1059 /*
1060 * Called to set the hrtick timer state.
1061 *
1062 * called with rq->lock held and irqs disabled
1063 */
1064 static void hrtick_start(struct rq *rq, u64 delay)
1065 {
1066 struct hrtimer *timer = &rq->hrtick_timer;
1067 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1068
1069 hrtimer_set_expires(timer, time);
1070
1071 if (rq == this_rq()) {
1072 hrtimer_restart(timer);
1073 } else if (!rq->hrtick_csd_pending) {
1074 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1075 rq->hrtick_csd_pending = 1;
1076 }
1077 }
1078
1079 static int
1080 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1081 {
1082 int cpu = (int)(long)hcpu;
1083
1084 switch (action) {
1085 case CPU_UP_CANCELED:
1086 case CPU_UP_CANCELED_FROZEN:
1087 case CPU_DOWN_PREPARE:
1088 case CPU_DOWN_PREPARE_FROZEN:
1089 case CPU_DEAD:
1090 case CPU_DEAD_FROZEN:
1091 hrtick_clear(cpu_rq(cpu));
1092 return NOTIFY_OK;
1093 }
1094
1095 return NOTIFY_DONE;
1096 }
1097
1098 static __init void init_hrtick(void)
1099 {
1100 hotcpu_notifier(hotplug_hrtick, 0);
1101 }
1102 #else
1103 /*
1104 * Called to set the hrtick timer state.
1105 *
1106 * called with rq->lock held and irqs disabled
1107 */
1108 static void hrtick_start(struct rq *rq, u64 delay)
1109 {
1110 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1111 HRTIMER_MODE_REL_PINNED, 0);
1112 }
1113
1114 static inline void init_hrtick(void)
1115 {
1116 }
1117 #endif /* CONFIG_SMP */
1118
1119 static void init_rq_hrtick(struct rq *rq)
1120 {
1121 #ifdef CONFIG_SMP
1122 rq->hrtick_csd_pending = 0;
1123
1124 rq->hrtick_csd.flags = 0;
1125 rq->hrtick_csd.func = __hrtick_start;
1126 rq->hrtick_csd.info = rq;
1127 #endif
1128
1129 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1130 rq->hrtick_timer.function = hrtick;
1131 }
1132 #else /* CONFIG_SCHED_HRTICK */
1133 static inline void hrtick_clear(struct rq *rq)
1134 {
1135 }
1136
1137 static inline void init_rq_hrtick(struct rq *rq)
1138 {
1139 }
1140
1141 static inline void init_hrtick(void)
1142 {
1143 }
1144 #endif /* CONFIG_SCHED_HRTICK */
1145
1146 /*
1147 * resched_task - mark a task 'to be rescheduled now'.
1148 *
1149 * On UP this means the setting of the need_resched flag, on SMP it
1150 * might also involve a cross-CPU call to trigger the scheduler on
1151 * the target CPU.
1152 */
1153 #ifdef CONFIG_SMP
1154
1155 #ifndef tsk_is_polling
1156 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1157 #endif
1158
1159 static void resched_task(struct task_struct *p)
1160 {
1161 int cpu;
1162
1163 assert_raw_spin_locked(&task_rq(p)->lock);
1164
1165 if (test_tsk_need_resched(p))
1166 return;
1167
1168 set_tsk_need_resched(p);
1169
1170 cpu = task_cpu(p);
1171 if (cpu == smp_processor_id())
1172 return;
1173
1174 /* NEED_RESCHED must be visible before we test polling */
1175 smp_mb();
1176 if (!tsk_is_polling(p))
1177 smp_send_reschedule(cpu);
1178 }
1179
1180 static void resched_cpu(int cpu)
1181 {
1182 struct rq *rq = cpu_rq(cpu);
1183 unsigned long flags;
1184
1185 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1186 return;
1187 resched_task(cpu_curr(cpu));
1188 raw_spin_unlock_irqrestore(&rq->lock, flags);
1189 }
1190
1191 #ifdef CONFIG_NO_HZ
1192 /*
1193 * When add_timer_on() enqueues a timer into the timer wheel of an
1194 * idle CPU then this timer might expire before the next timer event
1195 * which is scheduled to wake up that CPU. In case of a completely
1196 * idle system the next event might even be infinite time into the
1197 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1198 * leaves the inner idle loop so the newly added timer is taken into
1199 * account when the CPU goes back to idle and evaluates the timer
1200 * wheel for the next timer event.
1201 */
1202 void wake_up_idle_cpu(int cpu)
1203 {
1204 struct rq *rq = cpu_rq(cpu);
1205
1206 if (cpu == smp_processor_id())
1207 return;
1208
1209 /*
1210 * This is safe, as this function is called with the timer
1211 * wheel base lock of (cpu) held. When the CPU is on the way
1212 * to idle and has not yet set rq->curr to idle then it will
1213 * be serialized on the timer wheel base lock and take the new
1214 * timer into account automatically.
1215 */
1216 if (rq->curr != rq->idle)
1217 return;
1218
1219 /*
1220 * We can set TIF_RESCHED on the idle task of the other CPU
1221 * lockless. The worst case is that the other CPU runs the
1222 * idle task through an additional NOOP schedule()
1223 */
1224 set_tsk_need_resched(rq->idle);
1225
1226 /* NEED_RESCHED must be visible before we test polling */
1227 smp_mb();
1228 if (!tsk_is_polling(rq->idle))
1229 smp_send_reschedule(cpu);
1230 }
1231 #endif /* CONFIG_NO_HZ */
1232
1233 static u64 sched_avg_period(void)
1234 {
1235 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1236 }
1237
1238 static void sched_avg_update(struct rq *rq)
1239 {
1240 s64 period = sched_avg_period();
1241
1242 while ((s64)(rq->clock - rq->age_stamp) > period) {
1243 rq->age_stamp += period;
1244 rq->rt_avg /= 2;
1245 }
1246 }
1247
1248 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1249 {
1250 rq->rt_avg += rt_delta;
1251 sched_avg_update(rq);
1252 }
1253
1254 #else /* !CONFIG_SMP */
1255 static void resched_task(struct task_struct *p)
1256 {
1257 assert_raw_spin_locked(&task_rq(p)->lock);
1258 set_tsk_need_resched(p);
1259 }
1260
1261 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1262 {
1263 }
1264 #endif /* CONFIG_SMP */
1265
1266 #if BITS_PER_LONG == 32
1267 # define WMULT_CONST (~0UL)
1268 #else
1269 # define WMULT_CONST (1UL << 32)
1270 #endif
1271
1272 #define WMULT_SHIFT 32
1273
1274 /*
1275 * Shift right and round:
1276 */
1277 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1278
1279 /*
1280 * delta *= weight / lw
1281 */
1282 static unsigned long
1283 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1284 struct load_weight *lw)
1285 {
1286 u64 tmp;
1287
1288 if (!lw->inv_weight) {
1289 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1290 lw->inv_weight = 1;
1291 else
1292 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1293 / (lw->weight+1);
1294 }
1295
1296 tmp = (u64)delta_exec * weight;
1297 /*
1298 * Check whether we'd overflow the 64-bit multiplication:
1299 */
1300 if (unlikely(tmp > WMULT_CONST))
1301 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1302 WMULT_SHIFT/2);
1303 else
1304 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1305
1306 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1307 }
1308
1309 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1310 {
1311 lw->weight += inc;
1312 lw->inv_weight = 0;
1313 }
1314
1315 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1316 {
1317 lw->weight -= dec;
1318 lw->inv_weight = 0;
1319 }
1320
1321 /*
1322 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1323 * of tasks with abnormal "nice" values across CPUs the contribution that
1324 * each task makes to its run queue's load is weighted according to its
1325 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1326 * scaled version of the new time slice allocation that they receive on time
1327 * slice expiry etc.
1328 */
1329
1330 #define WEIGHT_IDLEPRIO 3
1331 #define WMULT_IDLEPRIO 1431655765
1332
1333 /*
1334 * Nice levels are multiplicative, with a gentle 10% change for every
1335 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1336 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1337 * that remained on nice 0.
1338 *
1339 * The "10% effect" is relative and cumulative: from _any_ nice level,
1340 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1341 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1342 * If a task goes up by ~10% and another task goes down by ~10% then
1343 * the relative distance between them is ~25%.)
1344 */
1345 static const int prio_to_weight[40] = {
1346 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1347 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1348 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1349 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1350 /* 0 */ 1024, 820, 655, 526, 423,
1351 /* 5 */ 335, 272, 215, 172, 137,
1352 /* 10 */ 110, 87, 70, 56, 45,
1353 /* 15 */ 36, 29, 23, 18, 15,
1354 };
1355
1356 /*
1357 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1358 *
1359 * In cases where the weight does not change often, we can use the
1360 * precalculated inverse to speed up arithmetics by turning divisions
1361 * into multiplications:
1362 */
1363 static const u32 prio_to_wmult[40] = {
1364 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1365 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1366 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1367 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1368 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1369 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1370 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1371 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1372 };
1373
1374 /* Time spent by the tasks of the cpu accounting group executing in ... */
1375 enum cpuacct_stat_index {
1376 CPUACCT_STAT_USER, /* ... user mode */
1377 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1378
1379 CPUACCT_STAT_NSTATS,
1380 };
1381
1382 #ifdef CONFIG_CGROUP_CPUACCT
1383 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1384 static void cpuacct_update_stats(struct task_struct *tsk,
1385 enum cpuacct_stat_index idx, cputime_t val);
1386 #else
1387 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1388 static inline void cpuacct_update_stats(struct task_struct *tsk,
1389 enum cpuacct_stat_index idx, cputime_t val) {}
1390 #endif
1391
1392 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1393 {
1394 update_load_add(&rq->load, load);
1395 }
1396
1397 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1398 {
1399 update_load_sub(&rq->load, load);
1400 }
1401
1402 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1403 typedef int (*tg_visitor)(struct task_group *, void *);
1404
1405 /*
1406 * Iterate the full tree, calling @down when first entering a node and @up when
1407 * leaving it for the final time.
1408 */
1409 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1410 {
1411 struct task_group *parent, *child;
1412 int ret;
1413
1414 rcu_read_lock();
1415 parent = &root_task_group;
1416 down:
1417 ret = (*down)(parent, data);
1418 if (ret)
1419 goto out_unlock;
1420 list_for_each_entry_rcu(child, &parent->children, siblings) {
1421 parent = child;
1422 goto down;
1423
1424 up:
1425 continue;
1426 }
1427 ret = (*up)(parent, data);
1428 if (ret)
1429 goto out_unlock;
1430
1431 child = parent;
1432 parent = parent->parent;
1433 if (parent)
1434 goto up;
1435 out_unlock:
1436 rcu_read_unlock();
1437
1438 return ret;
1439 }
1440
1441 static int tg_nop(struct task_group *tg, void *data)
1442 {
1443 return 0;
1444 }
1445 #endif
1446
1447 #ifdef CONFIG_SMP
1448 /* Used instead of source_load when we know the type == 0 */
1449 static unsigned long weighted_cpuload(const int cpu)
1450 {
1451 return cpu_rq(cpu)->load.weight;
1452 }
1453
1454 /*
1455 * Return a low guess at the load of a migration-source cpu weighted
1456 * according to the scheduling class and "nice" value.
1457 *
1458 * We want to under-estimate the load of migration sources, to
1459 * balance conservatively.
1460 */
1461 static unsigned long source_load(int cpu, int type)
1462 {
1463 struct rq *rq = cpu_rq(cpu);
1464 unsigned long total = weighted_cpuload(cpu);
1465
1466 if (type == 0 || !sched_feat(LB_BIAS))
1467 return total;
1468
1469 return min(rq->cpu_load[type-1], total);
1470 }
1471
1472 /*
1473 * Return a high guess at the load of a migration-target cpu weighted
1474 * according to the scheduling class and "nice" value.
1475 */
1476 static unsigned long target_load(int cpu, int type)
1477 {
1478 struct rq *rq = cpu_rq(cpu);
1479 unsigned long total = weighted_cpuload(cpu);
1480
1481 if (type == 0 || !sched_feat(LB_BIAS))
1482 return total;
1483
1484 return max(rq->cpu_load[type-1], total);
1485 }
1486
1487 static struct sched_group *group_of(int cpu)
1488 {
1489 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1490
1491 if (!sd)
1492 return NULL;
1493
1494 return sd->groups;
1495 }
1496
1497 static unsigned long power_of(int cpu)
1498 {
1499 struct sched_group *group = group_of(cpu);
1500
1501 if (!group)
1502 return SCHED_LOAD_SCALE;
1503
1504 return group->cpu_power;
1505 }
1506
1507 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1508
1509 static unsigned long cpu_avg_load_per_task(int cpu)
1510 {
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1513
1514 if (nr_running)
1515 rq->avg_load_per_task = rq->load.weight / nr_running;
1516 else
1517 rq->avg_load_per_task = 0;
1518
1519 return rq->avg_load_per_task;
1520 }
1521
1522 #ifdef CONFIG_FAIR_GROUP_SCHED
1523
1524 static __read_mostly unsigned long __percpu *update_shares_data;
1525
1526 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1527
1528 /*
1529 * Calculate and set the cpu's group shares.
1530 */
1531 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1532 unsigned long sd_shares,
1533 unsigned long sd_rq_weight,
1534 unsigned long *usd_rq_weight)
1535 {
1536 unsigned long shares, rq_weight;
1537 int boost = 0;
1538
1539 rq_weight = usd_rq_weight[cpu];
1540 if (!rq_weight) {
1541 boost = 1;
1542 rq_weight = NICE_0_LOAD;
1543 }
1544
1545 /*
1546 * \Sum_j shares_j * rq_weight_i
1547 * shares_i = -----------------------------
1548 * \Sum_j rq_weight_j
1549 */
1550 shares = (sd_shares * rq_weight) / sd_rq_weight;
1551 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1552
1553 if (abs(shares - tg->se[cpu]->load.weight) >
1554 sysctl_sched_shares_thresh) {
1555 struct rq *rq = cpu_rq(cpu);
1556 unsigned long flags;
1557
1558 raw_spin_lock_irqsave(&rq->lock, flags);
1559 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1560 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1561 __set_se_shares(tg->se[cpu], shares);
1562 raw_spin_unlock_irqrestore(&rq->lock, flags);
1563 }
1564 }
1565
1566 /*
1567 * Re-compute the task group their per cpu shares over the given domain.
1568 * This needs to be done in a bottom-up fashion because the rq weight of a
1569 * parent group depends on the shares of its child groups.
1570 */
1571 static int tg_shares_up(struct task_group *tg, void *data)
1572 {
1573 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1574 unsigned long *usd_rq_weight;
1575 struct sched_domain *sd = data;
1576 unsigned long flags;
1577 int i;
1578
1579 if (!tg->se[0])
1580 return 0;
1581
1582 local_irq_save(flags);
1583 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1584
1585 for_each_cpu(i, sched_domain_span(sd)) {
1586 weight = tg->cfs_rq[i]->load.weight;
1587 usd_rq_weight[i] = weight;
1588
1589 rq_weight += weight;
1590 /*
1591 * If there are currently no tasks on the cpu pretend there
1592 * is one of average load so that when a new task gets to
1593 * run here it will not get delayed by group starvation.
1594 */
1595 if (!weight)
1596 weight = NICE_0_LOAD;
1597
1598 sum_weight += weight;
1599 shares += tg->cfs_rq[i]->shares;
1600 }
1601
1602 if (!rq_weight)
1603 rq_weight = sum_weight;
1604
1605 if ((!shares && rq_weight) || shares > tg->shares)
1606 shares = tg->shares;
1607
1608 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1609 shares = tg->shares;
1610
1611 for_each_cpu(i, sched_domain_span(sd))
1612 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1613
1614 local_irq_restore(flags);
1615
1616 return 0;
1617 }
1618
1619 /*
1620 * Compute the cpu's hierarchical load factor for each task group.
1621 * This needs to be done in a top-down fashion because the load of a child
1622 * group is a fraction of its parents load.
1623 */
1624 static int tg_load_down(struct task_group *tg, void *data)
1625 {
1626 unsigned long load;
1627 long cpu = (long)data;
1628
1629 if (!tg->parent) {
1630 load = cpu_rq(cpu)->load.weight;
1631 } else {
1632 load = tg->parent->cfs_rq[cpu]->h_load;
1633 load *= tg->cfs_rq[cpu]->shares;
1634 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1635 }
1636
1637 tg->cfs_rq[cpu]->h_load = load;
1638
1639 return 0;
1640 }
1641
1642 static void update_shares(struct sched_domain *sd)
1643 {
1644 s64 elapsed;
1645 u64 now;
1646
1647 if (root_task_group_empty())
1648 return;
1649
1650 now = cpu_clock(raw_smp_processor_id());
1651 elapsed = now - sd->last_update;
1652
1653 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1654 sd->last_update = now;
1655 walk_tg_tree(tg_nop, tg_shares_up, sd);
1656 }
1657 }
1658
1659 static void update_h_load(long cpu)
1660 {
1661 if (root_task_group_empty())
1662 return;
1663
1664 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1665 }
1666
1667 #else
1668
1669 static inline void update_shares(struct sched_domain *sd)
1670 {
1671 }
1672
1673 #endif
1674
1675 #ifdef CONFIG_PREEMPT
1676
1677 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1678
1679 /*
1680 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1681 * way at the expense of forcing extra atomic operations in all
1682 * invocations. This assures that the double_lock is acquired using the
1683 * same underlying policy as the spinlock_t on this architecture, which
1684 * reduces latency compared to the unfair variant below. However, it
1685 * also adds more overhead and therefore may reduce throughput.
1686 */
1687 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1688 __releases(this_rq->lock)
1689 __acquires(busiest->lock)
1690 __acquires(this_rq->lock)
1691 {
1692 raw_spin_unlock(&this_rq->lock);
1693 double_rq_lock(this_rq, busiest);
1694
1695 return 1;
1696 }
1697
1698 #else
1699 /*
1700 * Unfair double_lock_balance: Optimizes throughput at the expense of
1701 * latency by eliminating extra atomic operations when the locks are
1702 * already in proper order on entry. This favors lower cpu-ids and will
1703 * grant the double lock to lower cpus over higher ids under contention,
1704 * regardless of entry order into the function.
1705 */
1706 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1707 __releases(this_rq->lock)
1708 __acquires(busiest->lock)
1709 __acquires(this_rq->lock)
1710 {
1711 int ret = 0;
1712
1713 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1714 if (busiest < this_rq) {
1715 raw_spin_unlock(&this_rq->lock);
1716 raw_spin_lock(&busiest->lock);
1717 raw_spin_lock_nested(&this_rq->lock,
1718 SINGLE_DEPTH_NESTING);
1719 ret = 1;
1720 } else
1721 raw_spin_lock_nested(&busiest->lock,
1722 SINGLE_DEPTH_NESTING);
1723 }
1724 return ret;
1725 }
1726
1727 #endif /* CONFIG_PREEMPT */
1728
1729 /*
1730 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1731 */
1732 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1733 {
1734 if (unlikely(!irqs_disabled())) {
1735 /* printk() doesn't work good under rq->lock */
1736 raw_spin_unlock(&this_rq->lock);
1737 BUG_ON(1);
1738 }
1739
1740 return _double_lock_balance(this_rq, busiest);
1741 }
1742
1743 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1744 __releases(busiest->lock)
1745 {
1746 raw_spin_unlock(&busiest->lock);
1747 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1748 }
1749
1750 /*
1751 * double_rq_lock - safely lock two runqueues
1752 *
1753 * Note this does not disable interrupts like task_rq_lock,
1754 * you need to do so manually before calling.
1755 */
1756 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1757 __acquires(rq1->lock)
1758 __acquires(rq2->lock)
1759 {
1760 BUG_ON(!irqs_disabled());
1761 if (rq1 == rq2) {
1762 raw_spin_lock(&rq1->lock);
1763 __acquire(rq2->lock); /* Fake it out ;) */
1764 } else {
1765 if (rq1 < rq2) {
1766 raw_spin_lock(&rq1->lock);
1767 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1768 } else {
1769 raw_spin_lock(&rq2->lock);
1770 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1771 }
1772 }
1773 update_rq_clock(rq1);
1774 update_rq_clock(rq2);
1775 }
1776
1777 /*
1778 * double_rq_unlock - safely unlock two runqueues
1779 *
1780 * Note this does not restore interrupts like task_rq_unlock,
1781 * you need to do so manually after calling.
1782 */
1783 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1784 __releases(rq1->lock)
1785 __releases(rq2->lock)
1786 {
1787 raw_spin_unlock(&rq1->lock);
1788 if (rq1 != rq2)
1789 raw_spin_unlock(&rq2->lock);
1790 else
1791 __release(rq2->lock);
1792 }
1793
1794 #endif
1795
1796 #ifdef CONFIG_FAIR_GROUP_SCHED
1797 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1798 {
1799 #ifdef CONFIG_SMP
1800 cfs_rq->shares = shares;
1801 #endif
1802 }
1803 #endif
1804
1805 static void calc_load_account_active(struct rq *this_rq);
1806 static void update_sysctl(void);
1807 static int get_update_sysctl_factor(void);
1808
1809 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1810 {
1811 set_task_rq(p, cpu);
1812 #ifdef CONFIG_SMP
1813 /*
1814 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1815 * successfuly executed on another CPU. We must ensure that updates of
1816 * per-task data have been completed by this moment.
1817 */
1818 smp_wmb();
1819 task_thread_info(p)->cpu = cpu;
1820 #endif
1821 }
1822
1823 static const struct sched_class rt_sched_class;
1824
1825 #define sched_class_highest (&rt_sched_class)
1826 #define for_each_class(class) \
1827 for (class = sched_class_highest; class; class = class->next)
1828
1829 #include "sched_stats.h"
1830
1831 static void inc_nr_running(struct rq *rq)
1832 {
1833 rq->nr_running++;
1834 }
1835
1836 static void dec_nr_running(struct rq *rq)
1837 {
1838 rq->nr_running--;
1839 }
1840
1841 static void set_load_weight(struct task_struct *p)
1842 {
1843 if (task_has_rt_policy(p)) {
1844 p->se.load.weight = prio_to_weight[0] * 2;
1845 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1846 return;
1847 }
1848
1849 /*
1850 * SCHED_IDLE tasks get minimal weight:
1851 */
1852 if (p->policy == SCHED_IDLE) {
1853 p->se.load.weight = WEIGHT_IDLEPRIO;
1854 p->se.load.inv_weight = WMULT_IDLEPRIO;
1855 return;
1856 }
1857
1858 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1859 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1860 }
1861
1862 static void update_avg(u64 *avg, u64 sample)
1863 {
1864 s64 diff = sample - *avg;
1865 *avg += diff >> 3;
1866 }
1867
1868 static void
1869 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1870 {
1871 if (wakeup)
1872 p->se.start_runtime = p->se.sum_exec_runtime;
1873
1874 sched_info_queued(p);
1875 p->sched_class->enqueue_task(rq, p, wakeup, head);
1876 p->se.on_rq = 1;
1877 }
1878
1879 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1880 {
1881 if (sleep) {
1882 if (p->se.last_wakeup) {
1883 update_avg(&p->se.avg_overlap,
1884 p->se.sum_exec_runtime - p->se.last_wakeup);
1885 p->se.last_wakeup = 0;
1886 } else {
1887 update_avg(&p->se.avg_wakeup,
1888 sysctl_sched_wakeup_granularity);
1889 }
1890 }
1891
1892 sched_info_dequeued(p);
1893 p->sched_class->dequeue_task(rq, p, sleep);
1894 p->se.on_rq = 0;
1895 }
1896
1897 /*
1898 * activate_task - move a task to the runqueue.
1899 */
1900 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1901 {
1902 if (task_contributes_to_load(p))
1903 rq->nr_uninterruptible--;
1904
1905 enqueue_task(rq, p, wakeup, false);
1906 inc_nr_running(rq);
1907 }
1908
1909 /*
1910 * deactivate_task - remove a task from the runqueue.
1911 */
1912 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1913 {
1914 if (task_contributes_to_load(p))
1915 rq->nr_uninterruptible++;
1916
1917 dequeue_task(rq, p, sleep);
1918 dec_nr_running(rq);
1919 }
1920
1921 #include "sched_idletask.c"
1922 #include "sched_fair.c"
1923 #include "sched_rt.c"
1924 #ifdef CONFIG_SCHED_DEBUG
1925 # include "sched_debug.c"
1926 #endif
1927
1928 /*
1929 * __normal_prio - return the priority that is based on the static prio
1930 */
1931 static inline int __normal_prio(struct task_struct *p)
1932 {
1933 return p->static_prio;
1934 }
1935
1936 /*
1937 * Calculate the expected normal priority: i.e. priority
1938 * without taking RT-inheritance into account. Might be
1939 * boosted by interactivity modifiers. Changes upon fork,
1940 * setprio syscalls, and whenever the interactivity
1941 * estimator recalculates.
1942 */
1943 static inline int normal_prio(struct task_struct *p)
1944 {
1945 int prio;
1946
1947 if (task_has_rt_policy(p))
1948 prio = MAX_RT_PRIO-1 - p->rt_priority;
1949 else
1950 prio = __normal_prio(p);
1951 return prio;
1952 }
1953
1954 /*
1955 * Calculate the current priority, i.e. the priority
1956 * taken into account by the scheduler. This value might
1957 * be boosted by RT tasks, or might be boosted by
1958 * interactivity modifiers. Will be RT if the task got
1959 * RT-boosted. If not then it returns p->normal_prio.
1960 */
1961 static int effective_prio(struct task_struct *p)
1962 {
1963 p->normal_prio = normal_prio(p);
1964 /*
1965 * If we are RT tasks or we were boosted to RT priority,
1966 * keep the priority unchanged. Otherwise, update priority
1967 * to the normal priority:
1968 */
1969 if (!rt_prio(p->prio))
1970 return p->normal_prio;
1971 return p->prio;
1972 }
1973
1974 /**
1975 * task_curr - is this task currently executing on a CPU?
1976 * @p: the task in question.
1977 */
1978 inline int task_curr(const struct task_struct *p)
1979 {
1980 return cpu_curr(task_cpu(p)) == p;
1981 }
1982
1983 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1984 const struct sched_class *prev_class,
1985 int oldprio, int running)
1986 {
1987 if (prev_class != p->sched_class) {
1988 if (prev_class->switched_from)
1989 prev_class->switched_from(rq, p, running);
1990 p->sched_class->switched_to(rq, p, running);
1991 } else
1992 p->sched_class->prio_changed(rq, p, oldprio, running);
1993 }
1994
1995 #ifdef CONFIG_SMP
1996 /*
1997 * Is this task likely cache-hot:
1998 */
1999 static int
2000 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2001 {
2002 s64 delta;
2003
2004 if (p->sched_class != &fair_sched_class)
2005 return 0;
2006
2007 /*
2008 * Buddy candidates are cache hot:
2009 */
2010 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2011 (&p->se == cfs_rq_of(&p->se)->next ||
2012 &p->se == cfs_rq_of(&p->se)->last))
2013 return 1;
2014
2015 if (sysctl_sched_migration_cost == -1)
2016 return 1;
2017 if (sysctl_sched_migration_cost == 0)
2018 return 0;
2019
2020 delta = now - p->se.exec_start;
2021
2022 return delta < (s64)sysctl_sched_migration_cost;
2023 }
2024
2025 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2026 {
2027 #ifdef CONFIG_SCHED_DEBUG
2028 /*
2029 * We should never call set_task_cpu() on a blocked task,
2030 * ttwu() will sort out the placement.
2031 */
2032 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2033 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2034 #endif
2035
2036 trace_sched_migrate_task(p, new_cpu);
2037
2038 if (task_cpu(p) != new_cpu) {
2039 p->se.nr_migrations++;
2040 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2041 }
2042
2043 __set_task_cpu(p, new_cpu);
2044 }
2045
2046 struct migration_req {
2047 struct list_head list;
2048
2049 struct task_struct *task;
2050 int dest_cpu;
2051
2052 struct completion done;
2053 };
2054
2055 /*
2056 * The task's runqueue lock must be held.
2057 * Returns true if you have to wait for migration thread.
2058 */
2059 static int
2060 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2061 {
2062 struct rq *rq = task_rq(p);
2063
2064 /*
2065 * If the task is not on a runqueue (and not running), then
2066 * the next wake-up will properly place the task.
2067 */
2068 if (!p->se.on_rq && !task_running(rq, p))
2069 return 0;
2070
2071 init_completion(&req->done);
2072 req->task = p;
2073 req->dest_cpu = dest_cpu;
2074 list_add(&req->list, &rq->migration_queue);
2075
2076 return 1;
2077 }
2078
2079 /*
2080 * wait_task_context_switch - wait for a thread to complete at least one
2081 * context switch.
2082 *
2083 * @p must not be current.
2084 */
2085 void wait_task_context_switch(struct task_struct *p)
2086 {
2087 unsigned long nvcsw, nivcsw, flags;
2088 int running;
2089 struct rq *rq;
2090
2091 nvcsw = p->nvcsw;
2092 nivcsw = p->nivcsw;
2093 for (;;) {
2094 /*
2095 * The runqueue is assigned before the actual context
2096 * switch. We need to take the runqueue lock.
2097 *
2098 * We could check initially without the lock but it is
2099 * very likely that we need to take the lock in every
2100 * iteration.
2101 */
2102 rq = task_rq_lock(p, &flags);
2103 running = task_running(rq, p);
2104 task_rq_unlock(rq, &flags);
2105
2106 if (likely(!running))
2107 break;
2108 /*
2109 * The switch count is incremented before the actual
2110 * context switch. We thus wait for two switches to be
2111 * sure at least one completed.
2112 */
2113 if ((p->nvcsw - nvcsw) > 1)
2114 break;
2115 if ((p->nivcsw - nivcsw) > 1)
2116 break;
2117
2118 cpu_relax();
2119 }
2120 }
2121
2122 /*
2123 * wait_task_inactive - wait for a thread to unschedule.
2124 *
2125 * If @match_state is nonzero, it's the @p->state value just checked and
2126 * not expected to change. If it changes, i.e. @p might have woken up,
2127 * then return zero. When we succeed in waiting for @p to be off its CPU,
2128 * we return a positive number (its total switch count). If a second call
2129 * a short while later returns the same number, the caller can be sure that
2130 * @p has remained unscheduled the whole time.
2131 *
2132 * The caller must ensure that the task *will* unschedule sometime soon,
2133 * else this function might spin for a *long* time. This function can't
2134 * be called with interrupts off, or it may introduce deadlock with
2135 * smp_call_function() if an IPI is sent by the same process we are
2136 * waiting to become inactive.
2137 */
2138 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2139 {
2140 unsigned long flags;
2141 int running, on_rq;
2142 unsigned long ncsw;
2143 struct rq *rq;
2144
2145 for (;;) {
2146 /*
2147 * We do the initial early heuristics without holding
2148 * any task-queue locks at all. We'll only try to get
2149 * the runqueue lock when things look like they will
2150 * work out!
2151 */
2152 rq = task_rq(p);
2153
2154 /*
2155 * If the task is actively running on another CPU
2156 * still, just relax and busy-wait without holding
2157 * any locks.
2158 *
2159 * NOTE! Since we don't hold any locks, it's not
2160 * even sure that "rq" stays as the right runqueue!
2161 * But we don't care, since "task_running()" will
2162 * return false if the runqueue has changed and p
2163 * is actually now running somewhere else!
2164 */
2165 while (task_running(rq, p)) {
2166 if (match_state && unlikely(p->state != match_state))
2167 return 0;
2168 cpu_relax();
2169 }
2170
2171 /*
2172 * Ok, time to look more closely! We need the rq
2173 * lock now, to be *sure*. If we're wrong, we'll
2174 * just go back and repeat.
2175 */
2176 rq = task_rq_lock(p, &flags);
2177 trace_sched_wait_task(rq, p);
2178 running = task_running(rq, p);
2179 on_rq = p->se.on_rq;
2180 ncsw = 0;
2181 if (!match_state || p->state == match_state)
2182 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2183 task_rq_unlock(rq, &flags);
2184
2185 /*
2186 * If it changed from the expected state, bail out now.
2187 */
2188 if (unlikely(!ncsw))
2189 break;
2190
2191 /*
2192 * Was it really running after all now that we
2193 * checked with the proper locks actually held?
2194 *
2195 * Oops. Go back and try again..
2196 */
2197 if (unlikely(running)) {
2198 cpu_relax();
2199 continue;
2200 }
2201
2202 /*
2203 * It's not enough that it's not actively running,
2204 * it must be off the runqueue _entirely_, and not
2205 * preempted!
2206 *
2207 * So if it was still runnable (but just not actively
2208 * running right now), it's preempted, and we should
2209 * yield - it could be a while.
2210 */
2211 if (unlikely(on_rq)) {
2212 schedule_timeout_uninterruptible(1);
2213 continue;
2214 }
2215
2216 /*
2217 * Ahh, all good. It wasn't running, and it wasn't
2218 * runnable, which means that it will never become
2219 * running in the future either. We're all done!
2220 */
2221 break;
2222 }
2223
2224 return ncsw;
2225 }
2226
2227 /***
2228 * kick_process - kick a running thread to enter/exit the kernel
2229 * @p: the to-be-kicked thread
2230 *
2231 * Cause a process which is running on another CPU to enter
2232 * kernel-mode, without any delay. (to get signals handled.)
2233 *
2234 * NOTE: this function doesnt have to take the runqueue lock,
2235 * because all it wants to ensure is that the remote task enters
2236 * the kernel. If the IPI races and the task has been migrated
2237 * to another CPU then no harm is done and the purpose has been
2238 * achieved as well.
2239 */
2240 void kick_process(struct task_struct *p)
2241 {
2242 int cpu;
2243
2244 preempt_disable();
2245 cpu = task_cpu(p);
2246 if ((cpu != smp_processor_id()) && task_curr(p))
2247 smp_send_reschedule(cpu);
2248 preempt_enable();
2249 }
2250 EXPORT_SYMBOL_GPL(kick_process);
2251 #endif /* CONFIG_SMP */
2252
2253 /**
2254 * task_oncpu_function_call - call a function on the cpu on which a task runs
2255 * @p: the task to evaluate
2256 * @func: the function to be called
2257 * @info: the function call argument
2258 *
2259 * Calls the function @func when the task is currently running. This might
2260 * be on the current CPU, which just calls the function directly
2261 */
2262 void task_oncpu_function_call(struct task_struct *p,
2263 void (*func) (void *info), void *info)
2264 {
2265 int cpu;
2266
2267 preempt_disable();
2268 cpu = task_cpu(p);
2269 if (task_curr(p))
2270 smp_call_function_single(cpu, func, info, 1);
2271 preempt_enable();
2272 }
2273
2274 #ifdef CONFIG_SMP
2275 static int select_fallback_rq(int cpu, struct task_struct *p)
2276 {
2277 int dest_cpu;
2278 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2279
2280 /* Look for allowed, online CPU in same node. */
2281 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2282 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2283 return dest_cpu;
2284
2285 /* Any allowed, online CPU? */
2286 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2287 if (dest_cpu < nr_cpu_ids)
2288 return dest_cpu;
2289
2290 /* No more Mr. Nice Guy. */
2291 if (dest_cpu >= nr_cpu_ids) {
2292 rcu_read_lock();
2293 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2294 rcu_read_unlock();
2295 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2296
2297 /*
2298 * Don't tell them about moving exiting tasks or
2299 * kernel threads (both mm NULL), since they never
2300 * leave kernel.
2301 */
2302 if (p->mm && printk_ratelimit()) {
2303 printk(KERN_INFO "process %d (%s) no "
2304 "longer affine to cpu%d\n",
2305 task_pid_nr(p), p->comm, cpu);
2306 }
2307 }
2308
2309 return dest_cpu;
2310 }
2311
2312 /*
2313 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2314 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2315 * by:
2316 *
2317 * exec: is unstable, retry loop
2318 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2319 */
2320 static inline
2321 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2322 {
2323 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2324
2325 /*
2326 * In order not to call set_task_cpu() on a blocking task we need
2327 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2328 * cpu.
2329 *
2330 * Since this is common to all placement strategies, this lives here.
2331 *
2332 * [ this allows ->select_task() to simply return task_cpu(p) and
2333 * not worry about this generic constraint ]
2334 */
2335 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2336 !cpu_online(cpu)))
2337 cpu = select_fallback_rq(task_cpu(p), p);
2338
2339 return cpu;
2340 }
2341 #endif
2342
2343 /***
2344 * try_to_wake_up - wake up a thread
2345 * @p: the to-be-woken-up thread
2346 * @state: the mask of task states that can be woken
2347 * @sync: do a synchronous wakeup?
2348 *
2349 * Put it on the run-queue if it's not already there. The "current"
2350 * thread is always on the run-queue (except when the actual
2351 * re-schedule is in progress), and as such you're allowed to do
2352 * the simpler "current->state = TASK_RUNNING" to mark yourself
2353 * runnable without the overhead of this.
2354 *
2355 * returns failure only if the task is already active.
2356 */
2357 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2358 int wake_flags)
2359 {
2360 int cpu, orig_cpu, this_cpu, success = 0;
2361 unsigned long flags;
2362 struct rq *rq;
2363
2364 if (!sched_feat(SYNC_WAKEUPS))
2365 wake_flags &= ~WF_SYNC;
2366
2367 this_cpu = get_cpu();
2368
2369 smp_wmb();
2370 rq = task_rq_lock(p, &flags);
2371 update_rq_clock(rq);
2372 if (!(p->state & state))
2373 goto out;
2374
2375 if (p->se.on_rq)
2376 goto out_running;
2377
2378 cpu = task_cpu(p);
2379 orig_cpu = cpu;
2380
2381 #ifdef CONFIG_SMP
2382 if (unlikely(task_running(rq, p)))
2383 goto out_activate;
2384
2385 /*
2386 * In order to handle concurrent wakeups and release the rq->lock
2387 * we put the task in TASK_WAKING state.
2388 *
2389 * First fix up the nr_uninterruptible count:
2390 */
2391 if (task_contributes_to_load(p))
2392 rq->nr_uninterruptible--;
2393 p->state = TASK_WAKING;
2394
2395 if (p->sched_class->task_waking)
2396 p->sched_class->task_waking(rq, p);
2397
2398 __task_rq_unlock(rq);
2399
2400 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2401 if (cpu != orig_cpu) {
2402 /*
2403 * Since we migrate the task without holding any rq->lock,
2404 * we need to be careful with task_rq_lock(), since that
2405 * might end up locking an invalid rq.
2406 */
2407 set_task_cpu(p, cpu);
2408 }
2409
2410 rq = cpu_rq(cpu);
2411 raw_spin_lock(&rq->lock);
2412 update_rq_clock(rq);
2413
2414 /*
2415 * We migrated the task without holding either rq->lock, however
2416 * since the task is not on the task list itself, nobody else
2417 * will try and migrate the task, hence the rq should match the
2418 * cpu we just moved it to.
2419 */
2420 WARN_ON(task_cpu(p) != cpu);
2421 WARN_ON(p->state != TASK_WAKING);
2422
2423 #ifdef CONFIG_SCHEDSTATS
2424 schedstat_inc(rq, ttwu_count);
2425 if (cpu == this_cpu)
2426 schedstat_inc(rq, ttwu_local);
2427 else {
2428 struct sched_domain *sd;
2429 for_each_domain(this_cpu, sd) {
2430 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2431 schedstat_inc(sd, ttwu_wake_remote);
2432 break;
2433 }
2434 }
2435 }
2436 #endif /* CONFIG_SCHEDSTATS */
2437
2438 out_activate:
2439 #endif /* CONFIG_SMP */
2440 schedstat_inc(p, se.nr_wakeups);
2441 if (wake_flags & WF_SYNC)
2442 schedstat_inc(p, se.nr_wakeups_sync);
2443 if (orig_cpu != cpu)
2444 schedstat_inc(p, se.nr_wakeups_migrate);
2445 if (cpu == this_cpu)
2446 schedstat_inc(p, se.nr_wakeups_local);
2447 else
2448 schedstat_inc(p, se.nr_wakeups_remote);
2449 activate_task(rq, p, 1);
2450 success = 1;
2451
2452 /*
2453 * Only attribute actual wakeups done by this task.
2454 */
2455 if (!in_interrupt()) {
2456 struct sched_entity *se = &current->se;
2457 u64 sample = se->sum_exec_runtime;
2458
2459 if (se->last_wakeup)
2460 sample -= se->last_wakeup;
2461 else
2462 sample -= se->start_runtime;
2463 update_avg(&se->avg_wakeup, sample);
2464
2465 se->last_wakeup = se->sum_exec_runtime;
2466 }
2467
2468 out_running:
2469 trace_sched_wakeup(rq, p, success);
2470 check_preempt_curr(rq, p, wake_flags);
2471
2472 p->state = TASK_RUNNING;
2473 #ifdef CONFIG_SMP
2474 if (p->sched_class->task_woken)
2475 p->sched_class->task_woken(rq, p);
2476
2477 if (unlikely(rq->idle_stamp)) {
2478 u64 delta = rq->clock - rq->idle_stamp;
2479 u64 max = 2*sysctl_sched_migration_cost;
2480
2481 if (delta > max)
2482 rq->avg_idle = max;
2483 else
2484 update_avg(&rq->avg_idle, delta);
2485 rq->idle_stamp = 0;
2486 }
2487 #endif
2488 out:
2489 task_rq_unlock(rq, &flags);
2490 put_cpu();
2491
2492 return success;
2493 }
2494
2495 /**
2496 * wake_up_process - Wake up a specific process
2497 * @p: The process to be woken up.
2498 *
2499 * Attempt to wake up the nominated process and move it to the set of runnable
2500 * processes. Returns 1 if the process was woken up, 0 if it was already
2501 * running.
2502 *
2503 * It may be assumed that this function implies a write memory barrier before
2504 * changing the task state if and only if any tasks are woken up.
2505 */
2506 int wake_up_process(struct task_struct *p)
2507 {
2508 return try_to_wake_up(p, TASK_ALL, 0);
2509 }
2510 EXPORT_SYMBOL(wake_up_process);
2511
2512 int wake_up_state(struct task_struct *p, unsigned int state)
2513 {
2514 return try_to_wake_up(p, state, 0);
2515 }
2516
2517 /*
2518 * Perform scheduler related setup for a newly forked process p.
2519 * p is forked by current.
2520 *
2521 * __sched_fork() is basic setup used by init_idle() too:
2522 */
2523 static void __sched_fork(struct task_struct *p)
2524 {
2525 p->se.exec_start = 0;
2526 p->se.sum_exec_runtime = 0;
2527 p->se.prev_sum_exec_runtime = 0;
2528 p->se.nr_migrations = 0;
2529 p->se.last_wakeup = 0;
2530 p->se.avg_overlap = 0;
2531 p->se.start_runtime = 0;
2532 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2533
2534 #ifdef CONFIG_SCHEDSTATS
2535 p->se.wait_start = 0;
2536 p->se.wait_max = 0;
2537 p->se.wait_count = 0;
2538 p->se.wait_sum = 0;
2539
2540 p->se.sleep_start = 0;
2541 p->se.sleep_max = 0;
2542 p->se.sum_sleep_runtime = 0;
2543
2544 p->se.block_start = 0;
2545 p->se.block_max = 0;
2546 p->se.exec_max = 0;
2547 p->se.slice_max = 0;
2548
2549 p->se.nr_migrations_cold = 0;
2550 p->se.nr_failed_migrations_affine = 0;
2551 p->se.nr_failed_migrations_running = 0;
2552 p->se.nr_failed_migrations_hot = 0;
2553 p->se.nr_forced_migrations = 0;
2554
2555 p->se.nr_wakeups = 0;
2556 p->se.nr_wakeups_sync = 0;
2557 p->se.nr_wakeups_migrate = 0;
2558 p->se.nr_wakeups_local = 0;
2559 p->se.nr_wakeups_remote = 0;
2560 p->se.nr_wakeups_affine = 0;
2561 p->se.nr_wakeups_affine_attempts = 0;
2562 p->se.nr_wakeups_passive = 0;
2563 p->se.nr_wakeups_idle = 0;
2564
2565 #endif
2566
2567 INIT_LIST_HEAD(&p->rt.run_list);
2568 p->se.on_rq = 0;
2569 INIT_LIST_HEAD(&p->se.group_node);
2570
2571 #ifdef CONFIG_PREEMPT_NOTIFIERS
2572 INIT_HLIST_HEAD(&p->preempt_notifiers);
2573 #endif
2574 }
2575
2576 /*
2577 * fork()/clone()-time setup:
2578 */
2579 void sched_fork(struct task_struct *p, int clone_flags)
2580 {
2581 int cpu = get_cpu();
2582
2583 __sched_fork(p);
2584 /*
2585 * We mark the process as waking here. This guarantees that
2586 * nobody will actually run it, and a signal or other external
2587 * event cannot wake it up and insert it on the runqueue either.
2588 */
2589 p->state = TASK_WAKING;
2590
2591 /*
2592 * Revert to default priority/policy on fork if requested.
2593 */
2594 if (unlikely(p->sched_reset_on_fork)) {
2595 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2596 p->policy = SCHED_NORMAL;
2597 p->normal_prio = p->static_prio;
2598 }
2599
2600 if (PRIO_TO_NICE(p->static_prio) < 0) {
2601 p->static_prio = NICE_TO_PRIO(0);
2602 p->normal_prio = p->static_prio;
2603 set_load_weight(p);
2604 }
2605
2606 /*
2607 * We don't need the reset flag anymore after the fork. It has
2608 * fulfilled its duty:
2609 */
2610 p->sched_reset_on_fork = 0;
2611 }
2612
2613 /*
2614 * Make sure we do not leak PI boosting priority to the child.
2615 */
2616 p->prio = current->normal_prio;
2617
2618 if (!rt_prio(p->prio))
2619 p->sched_class = &fair_sched_class;
2620
2621 if (p->sched_class->task_fork)
2622 p->sched_class->task_fork(p);
2623
2624 set_task_cpu(p, cpu);
2625
2626 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2627 if (likely(sched_info_on()))
2628 memset(&p->sched_info, 0, sizeof(p->sched_info));
2629 #endif
2630 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2631 p->oncpu = 0;
2632 #endif
2633 #ifdef CONFIG_PREEMPT
2634 /* Want to start with kernel preemption disabled. */
2635 task_thread_info(p)->preempt_count = 1;
2636 #endif
2637 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2638
2639 put_cpu();
2640 }
2641
2642 /*
2643 * wake_up_new_task - wake up a newly created task for the first time.
2644 *
2645 * This function will do some initial scheduler statistics housekeeping
2646 * that must be done for every newly created context, then puts the task
2647 * on the runqueue and wakes it.
2648 */
2649 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2650 {
2651 unsigned long flags;
2652 struct rq *rq;
2653 int cpu __maybe_unused = get_cpu();
2654
2655 #ifdef CONFIG_SMP
2656 /*
2657 * Fork balancing, do it here and not earlier because:
2658 * - cpus_allowed can change in the fork path
2659 * - any previously selected cpu might disappear through hotplug
2660 *
2661 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2662 * ->cpus_allowed is stable, we have preemption disabled, meaning
2663 * cpu_online_mask is stable.
2664 */
2665 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2666 set_task_cpu(p, cpu);
2667 #endif
2668
2669 /*
2670 * Since the task is not on the rq and we still have TASK_WAKING set
2671 * nobody else will migrate this task.
2672 */
2673 rq = cpu_rq(cpu);
2674 raw_spin_lock_irqsave(&rq->lock, flags);
2675
2676 BUG_ON(p->state != TASK_WAKING);
2677 p->state = TASK_RUNNING;
2678 update_rq_clock(rq);
2679 activate_task(rq, p, 0);
2680 trace_sched_wakeup_new(rq, p, 1);
2681 check_preempt_curr(rq, p, WF_FORK);
2682 #ifdef CONFIG_SMP
2683 if (p->sched_class->task_woken)
2684 p->sched_class->task_woken(rq, p);
2685 #endif
2686 task_rq_unlock(rq, &flags);
2687 put_cpu();
2688 }
2689
2690 #ifdef CONFIG_PREEMPT_NOTIFIERS
2691
2692 /**
2693 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2694 * @notifier: notifier struct to register
2695 */
2696 void preempt_notifier_register(struct preempt_notifier *notifier)
2697 {
2698 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2699 }
2700 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2701
2702 /**
2703 * preempt_notifier_unregister - no longer interested in preemption notifications
2704 * @notifier: notifier struct to unregister
2705 *
2706 * This is safe to call from within a preemption notifier.
2707 */
2708 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2709 {
2710 hlist_del(&notifier->link);
2711 }
2712 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2713
2714 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2715 {
2716 struct preempt_notifier *notifier;
2717 struct hlist_node *node;
2718
2719 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2720 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2721 }
2722
2723 static void
2724 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2725 struct task_struct *next)
2726 {
2727 struct preempt_notifier *notifier;
2728 struct hlist_node *node;
2729
2730 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2731 notifier->ops->sched_out(notifier, next);
2732 }
2733
2734 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2735
2736 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2737 {
2738 }
2739
2740 static void
2741 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2742 struct task_struct *next)
2743 {
2744 }
2745
2746 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2747
2748 /**
2749 * prepare_task_switch - prepare to switch tasks
2750 * @rq: the runqueue preparing to switch
2751 * @prev: the current task that is being switched out
2752 * @next: the task we are going to switch to.
2753 *
2754 * This is called with the rq lock held and interrupts off. It must
2755 * be paired with a subsequent finish_task_switch after the context
2756 * switch.
2757 *
2758 * prepare_task_switch sets up locking and calls architecture specific
2759 * hooks.
2760 */
2761 static inline void
2762 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2763 struct task_struct *next)
2764 {
2765 fire_sched_out_preempt_notifiers(prev, next);
2766 prepare_lock_switch(rq, next);
2767 prepare_arch_switch(next);
2768 }
2769
2770 /**
2771 * finish_task_switch - clean up after a task-switch
2772 * @rq: runqueue associated with task-switch
2773 * @prev: the thread we just switched away from.
2774 *
2775 * finish_task_switch must be called after the context switch, paired
2776 * with a prepare_task_switch call before the context switch.
2777 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2778 * and do any other architecture-specific cleanup actions.
2779 *
2780 * Note that we may have delayed dropping an mm in context_switch(). If
2781 * so, we finish that here outside of the runqueue lock. (Doing it
2782 * with the lock held can cause deadlocks; see schedule() for
2783 * details.)
2784 */
2785 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2786 __releases(rq->lock)
2787 {
2788 struct mm_struct *mm = rq->prev_mm;
2789 long prev_state;
2790
2791 rq->prev_mm = NULL;
2792
2793 /*
2794 * A task struct has one reference for the use as "current".
2795 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2796 * schedule one last time. The schedule call will never return, and
2797 * the scheduled task must drop that reference.
2798 * The test for TASK_DEAD must occur while the runqueue locks are
2799 * still held, otherwise prev could be scheduled on another cpu, die
2800 * there before we look at prev->state, and then the reference would
2801 * be dropped twice.
2802 * Manfred Spraul <manfred@colorfullife.com>
2803 */
2804 prev_state = prev->state;
2805 finish_arch_switch(prev);
2806 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2807 local_irq_disable();
2808 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2809 perf_event_task_sched_in(current);
2810 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2811 local_irq_enable();
2812 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2813 finish_lock_switch(rq, prev);
2814
2815 fire_sched_in_preempt_notifiers(current);
2816 if (mm)
2817 mmdrop(mm);
2818 if (unlikely(prev_state == TASK_DEAD)) {
2819 /*
2820 * Remove function-return probe instances associated with this
2821 * task and put them back on the free list.
2822 */
2823 kprobe_flush_task(prev);
2824 put_task_struct(prev);
2825 }
2826 }
2827
2828 #ifdef CONFIG_SMP
2829
2830 /* assumes rq->lock is held */
2831 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2832 {
2833 if (prev->sched_class->pre_schedule)
2834 prev->sched_class->pre_schedule(rq, prev);
2835 }
2836
2837 /* rq->lock is NOT held, but preemption is disabled */
2838 static inline void post_schedule(struct rq *rq)
2839 {
2840 if (rq->post_schedule) {
2841 unsigned long flags;
2842
2843 raw_spin_lock_irqsave(&rq->lock, flags);
2844 if (rq->curr->sched_class->post_schedule)
2845 rq->curr->sched_class->post_schedule(rq);
2846 raw_spin_unlock_irqrestore(&rq->lock, flags);
2847
2848 rq->post_schedule = 0;
2849 }
2850 }
2851
2852 #else
2853
2854 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2855 {
2856 }
2857
2858 static inline void post_schedule(struct rq *rq)
2859 {
2860 }
2861
2862 #endif
2863
2864 /**
2865 * schedule_tail - first thing a freshly forked thread must call.
2866 * @prev: the thread we just switched away from.
2867 */
2868 asmlinkage void schedule_tail(struct task_struct *prev)
2869 __releases(rq->lock)
2870 {
2871 struct rq *rq = this_rq();
2872
2873 finish_task_switch(rq, prev);
2874
2875 /*
2876 * FIXME: do we need to worry about rq being invalidated by the
2877 * task_switch?
2878 */
2879 post_schedule(rq);
2880
2881 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2882 /* In this case, finish_task_switch does not reenable preemption */
2883 preempt_enable();
2884 #endif
2885 if (current->set_child_tid)
2886 put_user(task_pid_vnr(current), current->set_child_tid);
2887 }
2888
2889 /*
2890 * context_switch - switch to the new MM and the new
2891 * thread's register state.
2892 */
2893 static inline void
2894 context_switch(struct rq *rq, struct task_struct *prev,
2895 struct task_struct *next)
2896 {
2897 struct mm_struct *mm, *oldmm;
2898
2899 prepare_task_switch(rq, prev, next);
2900 trace_sched_switch(rq, prev, next);
2901 mm = next->mm;
2902 oldmm = prev->active_mm;
2903 /*
2904 * For paravirt, this is coupled with an exit in switch_to to
2905 * combine the page table reload and the switch backend into
2906 * one hypercall.
2907 */
2908 arch_start_context_switch(prev);
2909
2910 if (likely(!mm)) {
2911 next->active_mm = oldmm;
2912 atomic_inc(&oldmm->mm_count);
2913 enter_lazy_tlb(oldmm, next);
2914 } else
2915 switch_mm(oldmm, mm, next);
2916
2917 if (likely(!prev->mm)) {
2918 prev->active_mm = NULL;
2919 rq->prev_mm = oldmm;
2920 }
2921 /*
2922 * Since the runqueue lock will be released by the next
2923 * task (which is an invalid locking op but in the case
2924 * of the scheduler it's an obvious special-case), so we
2925 * do an early lockdep release here:
2926 */
2927 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2928 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2929 #endif
2930
2931 /* Here we just switch the register state and the stack. */
2932 switch_to(prev, next, prev);
2933
2934 barrier();
2935 /*
2936 * this_rq must be evaluated again because prev may have moved
2937 * CPUs since it called schedule(), thus the 'rq' on its stack
2938 * frame will be invalid.
2939 */
2940 finish_task_switch(this_rq(), prev);
2941 }
2942
2943 /*
2944 * nr_running, nr_uninterruptible and nr_context_switches:
2945 *
2946 * externally visible scheduler statistics: current number of runnable
2947 * threads, current number of uninterruptible-sleeping threads, total
2948 * number of context switches performed since bootup.
2949 */
2950 unsigned long nr_running(void)
2951 {
2952 unsigned long i, sum = 0;
2953
2954 for_each_online_cpu(i)
2955 sum += cpu_rq(i)->nr_running;
2956
2957 return sum;
2958 }
2959
2960 unsigned long nr_uninterruptible(void)
2961 {
2962 unsigned long i, sum = 0;
2963
2964 for_each_possible_cpu(i)
2965 sum += cpu_rq(i)->nr_uninterruptible;
2966
2967 /*
2968 * Since we read the counters lockless, it might be slightly
2969 * inaccurate. Do not allow it to go below zero though:
2970 */
2971 if (unlikely((long)sum < 0))
2972 sum = 0;
2973
2974 return sum;
2975 }
2976
2977 unsigned long long nr_context_switches(void)
2978 {
2979 int i;
2980 unsigned long long sum = 0;
2981
2982 for_each_possible_cpu(i)
2983 sum += cpu_rq(i)->nr_switches;
2984
2985 return sum;
2986 }
2987
2988 unsigned long nr_iowait(void)
2989 {
2990 unsigned long i, sum = 0;
2991
2992 for_each_possible_cpu(i)
2993 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2994
2995 return sum;
2996 }
2997
2998 unsigned long nr_iowait_cpu(void)
2999 {
3000 struct rq *this = this_rq();
3001 return atomic_read(&this->nr_iowait);
3002 }
3003
3004 unsigned long this_cpu_load(void)
3005 {
3006 struct rq *this = this_rq();
3007 return this->cpu_load[0];
3008 }
3009
3010
3011 /* Variables and functions for calc_load */
3012 static atomic_long_t calc_load_tasks;
3013 static unsigned long calc_load_update;
3014 unsigned long avenrun[3];
3015 EXPORT_SYMBOL(avenrun);
3016
3017 /**
3018 * get_avenrun - get the load average array
3019 * @loads: pointer to dest load array
3020 * @offset: offset to add
3021 * @shift: shift count to shift the result left
3022 *
3023 * These values are estimates at best, so no need for locking.
3024 */
3025 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3026 {
3027 loads[0] = (avenrun[0] + offset) << shift;
3028 loads[1] = (avenrun[1] + offset) << shift;
3029 loads[2] = (avenrun[2] + offset) << shift;
3030 }
3031
3032 static unsigned long
3033 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3034 {
3035 load *= exp;
3036 load += active * (FIXED_1 - exp);
3037 return load >> FSHIFT;
3038 }
3039
3040 /*
3041 * calc_load - update the avenrun load estimates 10 ticks after the
3042 * CPUs have updated calc_load_tasks.
3043 */
3044 void calc_global_load(void)
3045 {
3046 unsigned long upd = calc_load_update + 10;
3047 long active;
3048
3049 if (time_before(jiffies, upd))
3050 return;
3051
3052 active = atomic_long_read(&calc_load_tasks);
3053 active = active > 0 ? active * FIXED_1 : 0;
3054
3055 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3056 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3057 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3058
3059 calc_load_update += LOAD_FREQ;
3060 }
3061
3062 /*
3063 * Either called from update_cpu_load() or from a cpu going idle
3064 */
3065 static void calc_load_account_active(struct rq *this_rq)
3066 {
3067 long nr_active, delta;
3068
3069 nr_active = this_rq->nr_running;
3070 nr_active += (long) this_rq->nr_uninterruptible;
3071
3072 if (nr_active != this_rq->calc_load_active) {
3073 delta = nr_active - this_rq->calc_load_active;
3074 this_rq->calc_load_active = nr_active;
3075 atomic_long_add(delta, &calc_load_tasks);
3076 }
3077 }
3078
3079 /*
3080 * Update rq->cpu_load[] statistics. This function is usually called every
3081 * scheduler tick (TICK_NSEC).
3082 */
3083 static void update_cpu_load(struct rq *this_rq)
3084 {
3085 unsigned long this_load = this_rq->load.weight;
3086 int i, scale;
3087
3088 this_rq->nr_load_updates++;
3089
3090 /* Update our load: */
3091 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3092 unsigned long old_load, new_load;
3093
3094 /* scale is effectively 1 << i now, and >> i divides by scale */
3095
3096 old_load = this_rq->cpu_load[i];
3097 new_load = this_load;
3098 /*
3099 * Round up the averaging division if load is increasing. This
3100 * prevents us from getting stuck on 9 if the load is 10, for
3101 * example.
3102 */
3103 if (new_load > old_load)
3104 new_load += scale-1;
3105 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3106 }
3107
3108 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3109 this_rq->calc_load_update += LOAD_FREQ;
3110 calc_load_account_active(this_rq);
3111 }
3112 }
3113
3114 #ifdef CONFIG_SMP
3115
3116 /*
3117 * sched_exec - execve() is a valuable balancing opportunity, because at
3118 * this point the task has the smallest effective memory and cache footprint.
3119 */
3120 void sched_exec(void)
3121 {
3122 struct task_struct *p = current;
3123 struct migration_req req;
3124 int dest_cpu, this_cpu;
3125 unsigned long flags;
3126 struct rq *rq;
3127
3128 again:
3129 this_cpu = get_cpu();
3130 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3131 if (dest_cpu == this_cpu) {
3132 put_cpu();
3133 return;
3134 }
3135
3136 rq = task_rq_lock(p, &flags);
3137 put_cpu();
3138
3139 /*
3140 * select_task_rq() can race against ->cpus_allowed
3141 */
3142 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3143 || unlikely(!cpu_active(dest_cpu))) {
3144 task_rq_unlock(rq, &flags);
3145 goto again;
3146 }
3147
3148 /* force the process onto the specified CPU */
3149 if (migrate_task(p, dest_cpu, &req)) {
3150 /* Need to wait for migration thread (might exit: take ref). */
3151 struct task_struct *mt = rq->migration_thread;
3152
3153 get_task_struct(mt);
3154 task_rq_unlock(rq, &flags);
3155 wake_up_process(mt);
3156 put_task_struct(mt);
3157 wait_for_completion(&req.done);
3158
3159 return;
3160 }
3161 task_rq_unlock(rq, &flags);
3162 }
3163
3164 #endif
3165
3166 DEFINE_PER_CPU(struct kernel_stat, kstat);
3167
3168 EXPORT_PER_CPU_SYMBOL(kstat);
3169
3170 /*
3171 * Return any ns on the sched_clock that have not yet been accounted in
3172 * @p in case that task is currently running.
3173 *
3174 * Called with task_rq_lock() held on @rq.
3175 */
3176 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3177 {
3178 u64 ns = 0;
3179
3180 if (task_current(rq, p)) {
3181 update_rq_clock(rq);
3182 ns = rq->clock - p->se.exec_start;
3183 if ((s64)ns < 0)
3184 ns = 0;
3185 }
3186
3187 return ns;
3188 }
3189
3190 unsigned long long task_delta_exec(struct task_struct *p)
3191 {
3192 unsigned long flags;
3193 struct rq *rq;
3194 u64 ns = 0;
3195
3196 rq = task_rq_lock(p, &flags);
3197 ns = do_task_delta_exec(p, rq);
3198 task_rq_unlock(rq, &flags);
3199
3200 return ns;
3201 }
3202
3203 /*
3204 * Return accounted runtime for the task.
3205 * In case the task is currently running, return the runtime plus current's
3206 * pending runtime that have not been accounted yet.
3207 */
3208 unsigned long long task_sched_runtime(struct task_struct *p)
3209 {
3210 unsigned long flags;
3211 struct rq *rq;
3212 u64 ns = 0;
3213
3214 rq = task_rq_lock(p, &flags);
3215 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3216 task_rq_unlock(rq, &flags);
3217
3218 return ns;
3219 }
3220
3221 /*
3222 * Return sum_exec_runtime for the thread group.
3223 * In case the task is currently running, return the sum plus current's
3224 * pending runtime that have not been accounted yet.
3225 *
3226 * Note that the thread group might have other running tasks as well,
3227 * so the return value not includes other pending runtime that other
3228 * running tasks might have.
3229 */
3230 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3231 {
3232 struct task_cputime totals;
3233 unsigned long flags;
3234 struct rq *rq;
3235 u64 ns;
3236
3237 rq = task_rq_lock(p, &flags);
3238 thread_group_cputime(p, &totals);
3239 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3240 task_rq_unlock(rq, &flags);
3241
3242 return ns;
3243 }
3244
3245 /*
3246 * Account user cpu time to a process.
3247 * @p: the process that the cpu time gets accounted to
3248 * @cputime: the cpu time spent in user space since the last update
3249 * @cputime_scaled: cputime scaled by cpu frequency
3250 */
3251 void account_user_time(struct task_struct *p, cputime_t cputime,
3252 cputime_t cputime_scaled)
3253 {
3254 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3255 cputime64_t tmp;
3256
3257 /* Add user time to process. */
3258 p->utime = cputime_add(p->utime, cputime);
3259 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3260 account_group_user_time(p, cputime);
3261
3262 /* Add user time to cpustat. */
3263 tmp = cputime_to_cputime64(cputime);
3264 if (TASK_NICE(p) > 0)
3265 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3266 else
3267 cpustat->user = cputime64_add(cpustat->user, tmp);
3268
3269 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3270 /* Account for user time used */
3271 acct_update_integrals(p);
3272 }
3273
3274 /*
3275 * Account guest cpu time to a process.
3276 * @p: the process that the cpu time gets accounted to
3277 * @cputime: the cpu time spent in virtual machine since the last update
3278 * @cputime_scaled: cputime scaled by cpu frequency
3279 */
3280 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3281 cputime_t cputime_scaled)
3282 {
3283 cputime64_t tmp;
3284 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3285
3286 tmp = cputime_to_cputime64(cputime);
3287
3288 /* Add guest time to process. */
3289 p->utime = cputime_add(p->utime, cputime);
3290 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3291 account_group_user_time(p, cputime);
3292 p->gtime = cputime_add(p->gtime, cputime);
3293
3294 /* Add guest time to cpustat. */
3295 if (TASK_NICE(p) > 0) {
3296 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3297 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3298 } else {
3299 cpustat->user = cputime64_add(cpustat->user, tmp);
3300 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3301 }
3302 }
3303
3304 /*
3305 * Account system cpu time to a process.
3306 * @p: the process that the cpu time gets accounted to
3307 * @hardirq_offset: the offset to subtract from hardirq_count()
3308 * @cputime: the cpu time spent in kernel space since the last update
3309 * @cputime_scaled: cputime scaled by cpu frequency
3310 */
3311 void account_system_time(struct task_struct *p, int hardirq_offset,
3312 cputime_t cputime, cputime_t cputime_scaled)
3313 {
3314 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3315 cputime64_t tmp;
3316
3317 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3318 account_guest_time(p, cputime, cputime_scaled);
3319 return;
3320 }
3321
3322 /* Add system time to process. */
3323 p->stime = cputime_add(p->stime, cputime);
3324 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3325 account_group_system_time(p, cputime);
3326
3327 /* Add system time to cpustat. */
3328 tmp = cputime_to_cputime64(cputime);
3329 if (hardirq_count() - hardirq_offset)
3330 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3331 else if (softirq_count())
3332 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3333 else
3334 cpustat->system = cputime64_add(cpustat->system, tmp);
3335
3336 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3337
3338 /* Account for system time used */
3339 acct_update_integrals(p);
3340 }
3341
3342 /*
3343 * Account for involuntary wait time.
3344 * @steal: the cpu time spent in involuntary wait
3345 */
3346 void account_steal_time(cputime_t cputime)
3347 {
3348 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3349 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3350
3351 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3352 }
3353
3354 /*
3355 * Account for idle time.
3356 * @cputime: the cpu time spent in idle wait
3357 */
3358 void account_idle_time(cputime_t cputime)
3359 {
3360 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3361 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3362 struct rq *rq = this_rq();
3363
3364 if (atomic_read(&rq->nr_iowait) > 0)
3365 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3366 else
3367 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3368 }
3369
3370 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3371
3372 /*
3373 * Account a single tick of cpu time.
3374 * @p: the process that the cpu time gets accounted to
3375 * @user_tick: indicates if the tick is a user or a system tick
3376 */
3377 void account_process_tick(struct task_struct *p, int user_tick)
3378 {
3379 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3380 struct rq *rq = this_rq();
3381
3382 if (user_tick)
3383 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3384 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3385 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3386 one_jiffy_scaled);
3387 else
3388 account_idle_time(cputime_one_jiffy);
3389 }
3390
3391 /*
3392 * Account multiple ticks of steal time.
3393 * @p: the process from which the cpu time has been stolen
3394 * @ticks: number of stolen ticks
3395 */
3396 void account_steal_ticks(unsigned long ticks)
3397 {
3398 account_steal_time(jiffies_to_cputime(ticks));
3399 }
3400
3401 /*
3402 * Account multiple ticks of idle time.
3403 * @ticks: number of stolen ticks
3404 */
3405 void account_idle_ticks(unsigned long ticks)
3406 {
3407 account_idle_time(jiffies_to_cputime(ticks));
3408 }
3409
3410 #endif
3411
3412 /*
3413 * Use precise platform statistics if available:
3414 */
3415 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3416 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3417 {
3418 *ut = p->utime;
3419 *st = p->stime;
3420 }
3421
3422 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3423 {
3424 struct task_cputime cputime;
3425
3426 thread_group_cputime(p, &cputime);
3427
3428 *ut = cputime.utime;
3429 *st = cputime.stime;
3430 }
3431 #else
3432
3433 #ifndef nsecs_to_cputime
3434 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3435 #endif
3436
3437 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3438 {
3439 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3440
3441 /*
3442 * Use CFS's precise accounting:
3443 */
3444 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3445
3446 if (total) {
3447 u64 temp;
3448
3449 temp = (u64)(rtime * utime);
3450 do_div(temp, total);
3451 utime = (cputime_t)temp;
3452 } else
3453 utime = rtime;
3454
3455 /*
3456 * Compare with previous values, to keep monotonicity:
3457 */
3458 p->prev_utime = max(p->prev_utime, utime);
3459 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3460
3461 *ut = p->prev_utime;
3462 *st = p->prev_stime;
3463 }
3464
3465 /*
3466 * Must be called with siglock held.
3467 */
3468 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3469 {
3470 struct signal_struct *sig = p->signal;
3471 struct task_cputime cputime;
3472 cputime_t rtime, utime, total;
3473
3474 thread_group_cputime(p, &cputime);
3475
3476 total = cputime_add(cputime.utime, cputime.stime);
3477 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3478
3479 if (total) {
3480 u64 temp;
3481
3482 temp = (u64)(rtime * cputime.utime);
3483 do_div(temp, total);
3484 utime = (cputime_t)temp;
3485 } else
3486 utime = rtime;
3487
3488 sig->prev_utime = max(sig->prev_utime, utime);
3489 sig->prev_stime = max(sig->prev_stime,
3490 cputime_sub(rtime, sig->prev_utime));
3491
3492 *ut = sig->prev_utime;
3493 *st = sig->prev_stime;
3494 }
3495 #endif
3496
3497 /*
3498 * This function gets called by the timer code, with HZ frequency.
3499 * We call it with interrupts disabled.
3500 *
3501 * It also gets called by the fork code, when changing the parent's
3502 * timeslices.
3503 */
3504 void scheduler_tick(void)
3505 {
3506 int cpu = smp_processor_id();
3507 struct rq *rq = cpu_rq(cpu);
3508 struct task_struct *curr = rq->curr;
3509
3510 sched_clock_tick();
3511
3512 raw_spin_lock(&rq->lock);
3513 update_rq_clock(rq);
3514 update_cpu_load(rq);
3515 curr->sched_class->task_tick(rq, curr, 0);
3516 raw_spin_unlock(&rq->lock);
3517
3518 perf_event_task_tick(curr);
3519
3520 #ifdef CONFIG_SMP
3521 rq->idle_at_tick = idle_cpu(cpu);
3522 trigger_load_balance(rq, cpu);
3523 #endif
3524 }
3525
3526 notrace unsigned long get_parent_ip(unsigned long addr)
3527 {
3528 if (in_lock_functions(addr)) {
3529 addr = CALLER_ADDR2;
3530 if (in_lock_functions(addr))
3531 addr = CALLER_ADDR3;
3532 }
3533 return addr;
3534 }
3535
3536 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3537 defined(CONFIG_PREEMPT_TRACER))
3538
3539 void __kprobes add_preempt_count(int val)
3540 {
3541 #ifdef CONFIG_DEBUG_PREEMPT
3542 /*
3543 * Underflow?
3544 */
3545 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3546 return;
3547 #endif
3548 preempt_count() += val;
3549 #ifdef CONFIG_DEBUG_PREEMPT
3550 /*
3551 * Spinlock count overflowing soon?
3552 */
3553 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3554 PREEMPT_MASK - 10);
3555 #endif
3556 if (preempt_count() == val)
3557 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3558 }
3559 EXPORT_SYMBOL(add_preempt_count);
3560
3561 void __kprobes sub_preempt_count(int val)
3562 {
3563 #ifdef CONFIG_DEBUG_PREEMPT
3564 /*
3565 * Underflow?
3566 */
3567 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3568 return;
3569 /*
3570 * Is the spinlock portion underflowing?
3571 */
3572 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3573 !(preempt_count() & PREEMPT_MASK)))
3574 return;
3575 #endif
3576
3577 if (preempt_count() == val)
3578 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3579 preempt_count() -= val;
3580 }
3581 EXPORT_SYMBOL(sub_preempt_count);
3582
3583 #endif
3584
3585 /*
3586 * Print scheduling while atomic bug:
3587 */
3588 static noinline void __schedule_bug(struct task_struct *prev)
3589 {
3590 struct pt_regs *regs = get_irq_regs();
3591
3592 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3593 prev->comm, prev->pid, preempt_count());
3594
3595 debug_show_held_locks(prev);
3596 print_modules();
3597 if (irqs_disabled())
3598 print_irqtrace_events(prev);
3599
3600 if (regs)
3601 show_regs(regs);
3602 else
3603 dump_stack();
3604 }
3605
3606 /*
3607 * Various schedule()-time debugging checks and statistics:
3608 */
3609 static inline void schedule_debug(struct task_struct *prev)
3610 {
3611 /*
3612 * Test if we are atomic. Since do_exit() needs to call into
3613 * schedule() atomically, we ignore that path for now.
3614 * Otherwise, whine if we are scheduling when we should not be.
3615 */
3616 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3617 __schedule_bug(prev);
3618
3619 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3620
3621 schedstat_inc(this_rq(), sched_count);
3622 #ifdef CONFIG_SCHEDSTATS
3623 if (unlikely(prev->lock_depth >= 0)) {
3624 schedstat_inc(this_rq(), bkl_count);
3625 schedstat_inc(prev, sched_info.bkl_count);
3626 }
3627 #endif
3628 }
3629
3630 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3631 {
3632 if (prev->state == TASK_RUNNING) {
3633 u64 runtime = prev->se.sum_exec_runtime;
3634
3635 runtime -= prev->se.prev_sum_exec_runtime;
3636 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
3637
3638 /*
3639 * In order to avoid avg_overlap growing stale when we are
3640 * indeed overlapping and hence not getting put to sleep, grow
3641 * the avg_overlap on preemption.
3642 *
3643 * We use the average preemption runtime because that
3644 * correlates to the amount of cache footprint a task can
3645 * build up.
3646 */
3647 update_avg(&prev->se.avg_overlap, runtime);
3648 }
3649 prev->sched_class->put_prev_task(rq, prev);
3650 }
3651
3652 /*
3653 * Pick up the highest-prio task:
3654 */
3655 static inline struct task_struct *
3656 pick_next_task(struct rq *rq)
3657 {
3658 const struct sched_class *class;
3659 struct task_struct *p;
3660
3661 /*
3662 * Optimization: we know that if all tasks are in
3663 * the fair class we can call that function directly:
3664 */
3665 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3666 p = fair_sched_class.pick_next_task(rq);
3667 if (likely(p))
3668 return p;
3669 }
3670
3671 class = sched_class_highest;
3672 for ( ; ; ) {
3673 p = class->pick_next_task(rq);
3674 if (p)
3675 return p;
3676 /*
3677 * Will never be NULL as the idle class always
3678 * returns a non-NULL p:
3679 */
3680 class = class->next;
3681 }
3682 }
3683
3684 /*
3685 * schedule() is the main scheduler function.
3686 */
3687 asmlinkage void __sched schedule(void)
3688 {
3689 struct task_struct *prev, *next;
3690 unsigned long *switch_count;
3691 struct rq *rq;
3692 int cpu;
3693
3694 need_resched:
3695 preempt_disable();
3696 cpu = smp_processor_id();
3697 rq = cpu_rq(cpu);
3698 rcu_sched_qs(cpu);
3699 prev = rq->curr;
3700 switch_count = &prev->nivcsw;
3701
3702 release_kernel_lock(prev);
3703 need_resched_nonpreemptible:
3704
3705 schedule_debug(prev);
3706
3707 if (sched_feat(HRTICK))
3708 hrtick_clear(rq);
3709
3710 raw_spin_lock_irq(&rq->lock);
3711 update_rq_clock(rq);
3712 clear_tsk_need_resched(prev);
3713
3714 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3715 if (unlikely(signal_pending_state(prev->state, prev)))
3716 prev->state = TASK_RUNNING;
3717 else
3718 deactivate_task(rq, prev, 1);
3719 switch_count = &prev->nvcsw;
3720 }
3721
3722 pre_schedule(rq, prev);
3723
3724 if (unlikely(!rq->nr_running))
3725 idle_balance(cpu, rq);
3726
3727 put_prev_task(rq, prev);
3728 next = pick_next_task(rq);
3729
3730 if (likely(prev != next)) {
3731 sched_info_switch(prev, next);
3732 perf_event_task_sched_out(prev, next);
3733
3734 rq->nr_switches++;
3735 rq->curr = next;
3736 ++*switch_count;
3737
3738 context_switch(rq, prev, next); /* unlocks the rq */
3739 /*
3740 * the context switch might have flipped the stack from under
3741 * us, hence refresh the local variables.
3742 */
3743 cpu = smp_processor_id();
3744 rq = cpu_rq(cpu);
3745 } else
3746 raw_spin_unlock_irq(&rq->lock);
3747
3748 post_schedule(rq);
3749
3750 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3751 prev = rq->curr;
3752 switch_count = &prev->nivcsw;
3753 goto need_resched_nonpreemptible;
3754 }
3755
3756 preempt_enable_no_resched();
3757 if (need_resched())
3758 goto need_resched;
3759 }
3760 EXPORT_SYMBOL(schedule);
3761
3762 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3763 /*
3764 * Look out! "owner" is an entirely speculative pointer
3765 * access and not reliable.
3766 */
3767 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3768 {
3769 unsigned int cpu;
3770 struct rq *rq;
3771
3772 if (!sched_feat(OWNER_SPIN))
3773 return 0;
3774
3775 #ifdef CONFIG_DEBUG_PAGEALLOC
3776 /*
3777 * Need to access the cpu field knowing that
3778 * DEBUG_PAGEALLOC could have unmapped it if
3779 * the mutex owner just released it and exited.
3780 */
3781 if (probe_kernel_address(&owner->cpu, cpu))
3782 goto out;
3783 #else
3784 cpu = owner->cpu;
3785 #endif
3786
3787 /*
3788 * Even if the access succeeded (likely case),
3789 * the cpu field may no longer be valid.
3790 */
3791 if (cpu >= nr_cpumask_bits)
3792 goto out;
3793
3794 /*
3795 * We need to validate that we can do a
3796 * get_cpu() and that we have the percpu area.
3797 */
3798 if (!cpu_online(cpu))
3799 goto out;
3800
3801 rq = cpu_rq(cpu);
3802
3803 for (;;) {
3804 /*
3805 * Owner changed, break to re-assess state.
3806 */
3807 if (lock->owner != owner)
3808 break;
3809
3810 /*
3811 * Is that owner really running on that cpu?
3812 */
3813 if (task_thread_info(rq->curr) != owner || need_resched())
3814 return 0;
3815
3816 cpu_relax();
3817 }
3818 out:
3819 return 1;
3820 }
3821 #endif
3822
3823 #ifdef CONFIG_PREEMPT
3824 /*
3825 * this is the entry point to schedule() from in-kernel preemption
3826 * off of preempt_enable. Kernel preemptions off return from interrupt
3827 * occur there and call schedule directly.
3828 */
3829 asmlinkage void __sched preempt_schedule(void)
3830 {
3831 struct thread_info *ti = current_thread_info();
3832
3833 /*
3834 * If there is a non-zero preempt_count or interrupts are disabled,
3835 * we do not want to preempt the current task. Just return..
3836 */
3837 if (likely(ti->preempt_count || irqs_disabled()))
3838 return;
3839
3840 do {
3841 add_preempt_count(PREEMPT_ACTIVE);
3842 schedule();
3843 sub_preempt_count(PREEMPT_ACTIVE);
3844
3845 /*
3846 * Check again in case we missed a preemption opportunity
3847 * between schedule and now.
3848 */
3849 barrier();
3850 } while (need_resched());
3851 }
3852 EXPORT_SYMBOL(preempt_schedule);
3853
3854 /*
3855 * this is the entry point to schedule() from kernel preemption
3856 * off of irq context.
3857 * Note, that this is called and return with irqs disabled. This will
3858 * protect us against recursive calling from irq.
3859 */
3860 asmlinkage void __sched preempt_schedule_irq(void)
3861 {
3862 struct thread_info *ti = current_thread_info();
3863
3864 /* Catch callers which need to be fixed */
3865 BUG_ON(ti->preempt_count || !irqs_disabled());
3866
3867 do {
3868 add_preempt_count(PREEMPT_ACTIVE);
3869 local_irq_enable();
3870 schedule();
3871 local_irq_disable();
3872 sub_preempt_count(PREEMPT_ACTIVE);
3873
3874 /*
3875 * Check again in case we missed a preemption opportunity
3876 * between schedule and now.
3877 */
3878 barrier();
3879 } while (need_resched());
3880 }
3881
3882 #endif /* CONFIG_PREEMPT */
3883
3884 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3885 void *key)
3886 {
3887 return try_to_wake_up(curr->private, mode, wake_flags);
3888 }
3889 EXPORT_SYMBOL(default_wake_function);
3890
3891 /*
3892 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3893 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3894 * number) then we wake all the non-exclusive tasks and one exclusive task.
3895 *
3896 * There are circumstances in which we can try to wake a task which has already
3897 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3898 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3899 */
3900 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3901 int nr_exclusive, int wake_flags, void *key)
3902 {
3903 wait_queue_t *curr, *next;
3904
3905 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3906 unsigned flags = curr->flags;
3907
3908 if (curr->func(curr, mode, wake_flags, key) &&
3909 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3910 break;
3911 }
3912 }
3913
3914 /**
3915 * __wake_up - wake up threads blocked on a waitqueue.
3916 * @q: the waitqueue
3917 * @mode: which threads
3918 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3919 * @key: is directly passed to the wakeup function
3920 *
3921 * It may be assumed that this function implies a write memory barrier before
3922 * changing the task state if and only if any tasks are woken up.
3923 */
3924 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3925 int nr_exclusive, void *key)
3926 {
3927 unsigned long flags;
3928
3929 spin_lock_irqsave(&q->lock, flags);
3930 __wake_up_common(q, mode, nr_exclusive, 0, key);
3931 spin_unlock_irqrestore(&q->lock, flags);
3932 }
3933 EXPORT_SYMBOL(__wake_up);
3934
3935 /*
3936 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3937 */
3938 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3939 {
3940 __wake_up_common(q, mode, 1, 0, NULL);
3941 }
3942
3943 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3944 {
3945 __wake_up_common(q, mode, 1, 0, key);
3946 }
3947
3948 /**
3949 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3950 * @q: the waitqueue
3951 * @mode: which threads
3952 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3953 * @key: opaque value to be passed to wakeup targets
3954 *
3955 * The sync wakeup differs that the waker knows that it will schedule
3956 * away soon, so while the target thread will be woken up, it will not
3957 * be migrated to another CPU - ie. the two threads are 'synchronized'
3958 * with each other. This can prevent needless bouncing between CPUs.
3959 *
3960 * On UP it can prevent extra preemption.
3961 *
3962 * It may be assumed that this function implies a write memory barrier before
3963 * changing the task state if and only if any tasks are woken up.
3964 */
3965 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3966 int nr_exclusive, void *key)
3967 {
3968 unsigned long flags;
3969 int wake_flags = WF_SYNC;
3970
3971 if (unlikely(!q))
3972 return;
3973
3974 if (unlikely(!nr_exclusive))
3975 wake_flags = 0;
3976
3977 spin_lock_irqsave(&q->lock, flags);
3978 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3979 spin_unlock_irqrestore(&q->lock, flags);
3980 }
3981 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3982
3983 /*
3984 * __wake_up_sync - see __wake_up_sync_key()
3985 */
3986 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3987 {
3988 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3989 }
3990 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3991
3992 /**
3993 * complete: - signals a single thread waiting on this completion
3994 * @x: holds the state of this particular completion
3995 *
3996 * This will wake up a single thread waiting on this completion. Threads will be
3997 * awakened in the same order in which they were queued.
3998 *
3999 * See also complete_all(), wait_for_completion() and related routines.
4000 *
4001 * It may be assumed that this function implies a write memory barrier before
4002 * changing the task state if and only if any tasks are woken up.
4003 */
4004 void complete(struct completion *x)
4005 {
4006 unsigned long flags;
4007
4008 spin_lock_irqsave(&x->wait.lock, flags);
4009 x->done++;
4010 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4011 spin_unlock_irqrestore(&x->wait.lock, flags);
4012 }
4013 EXPORT_SYMBOL(complete);
4014
4015 /**
4016 * complete_all: - signals all threads waiting on this completion
4017 * @x: holds the state of this particular completion
4018 *
4019 * This will wake up all threads waiting on this particular completion event.
4020 *
4021 * It may be assumed that this function implies a write memory barrier before
4022 * changing the task state if and only if any tasks are woken up.
4023 */
4024 void complete_all(struct completion *x)
4025 {
4026 unsigned long flags;
4027
4028 spin_lock_irqsave(&x->wait.lock, flags);
4029 x->done += UINT_MAX/2;
4030 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4031 spin_unlock_irqrestore(&x->wait.lock, flags);
4032 }
4033 EXPORT_SYMBOL(complete_all);
4034
4035 static inline long __sched
4036 do_wait_for_common(struct completion *x, long timeout, int state)
4037 {
4038 if (!x->done) {
4039 DECLARE_WAITQUEUE(wait, current);
4040
4041 wait.flags |= WQ_FLAG_EXCLUSIVE;
4042 __add_wait_queue_tail(&x->wait, &wait);
4043 do {
4044 if (signal_pending_state(state, current)) {
4045 timeout = -ERESTARTSYS;
4046 break;
4047 }
4048 __set_current_state(state);
4049 spin_unlock_irq(&x->wait.lock);
4050 timeout = schedule_timeout(timeout);
4051 spin_lock_irq(&x->wait.lock);
4052 } while (!x->done && timeout);
4053 __remove_wait_queue(&x->wait, &wait);
4054 if (!x->done)
4055 return timeout;
4056 }
4057 x->done--;
4058 return timeout ?: 1;
4059 }
4060
4061 static long __sched
4062 wait_for_common(struct completion *x, long timeout, int state)
4063 {
4064 might_sleep();
4065
4066 spin_lock_irq(&x->wait.lock);
4067 timeout = do_wait_for_common(x, timeout, state);
4068 spin_unlock_irq(&x->wait.lock);
4069 return timeout;
4070 }
4071
4072 /**
4073 * wait_for_completion: - waits for completion of a task
4074 * @x: holds the state of this particular completion
4075 *
4076 * This waits to be signaled for completion of a specific task. It is NOT
4077 * interruptible and there is no timeout.
4078 *
4079 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4080 * and interrupt capability. Also see complete().
4081 */
4082 void __sched wait_for_completion(struct completion *x)
4083 {
4084 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4085 }
4086 EXPORT_SYMBOL(wait_for_completion);
4087
4088 /**
4089 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4090 * @x: holds the state of this particular completion
4091 * @timeout: timeout value in jiffies
4092 *
4093 * This waits for either a completion of a specific task to be signaled or for a
4094 * specified timeout to expire. The timeout is in jiffies. It is not
4095 * interruptible.
4096 */
4097 unsigned long __sched
4098 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4099 {
4100 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4101 }
4102 EXPORT_SYMBOL(wait_for_completion_timeout);
4103
4104 /**
4105 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4106 * @x: holds the state of this particular completion
4107 *
4108 * This waits for completion of a specific task to be signaled. It is
4109 * interruptible.
4110 */
4111 int __sched wait_for_completion_interruptible(struct completion *x)
4112 {
4113 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4114 if (t == -ERESTARTSYS)
4115 return t;
4116 return 0;
4117 }
4118 EXPORT_SYMBOL(wait_for_completion_interruptible);
4119
4120 /**
4121 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4122 * @x: holds the state of this particular completion
4123 * @timeout: timeout value in jiffies
4124 *
4125 * This waits for either a completion of a specific task to be signaled or for a
4126 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4127 */
4128 unsigned long __sched
4129 wait_for_completion_interruptible_timeout(struct completion *x,
4130 unsigned long timeout)
4131 {
4132 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4133 }
4134 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4135
4136 /**
4137 * wait_for_completion_killable: - waits for completion of a task (killable)
4138 * @x: holds the state of this particular completion
4139 *
4140 * This waits to be signaled for completion of a specific task. It can be
4141 * interrupted by a kill signal.
4142 */
4143 int __sched wait_for_completion_killable(struct completion *x)
4144 {
4145 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4146 if (t == -ERESTARTSYS)
4147 return t;
4148 return 0;
4149 }
4150 EXPORT_SYMBOL(wait_for_completion_killable);
4151
4152 /**
4153 * try_wait_for_completion - try to decrement a completion without blocking
4154 * @x: completion structure
4155 *
4156 * Returns: 0 if a decrement cannot be done without blocking
4157 * 1 if a decrement succeeded.
4158 *
4159 * If a completion is being used as a counting completion,
4160 * attempt to decrement the counter without blocking. This
4161 * enables us to avoid waiting if the resource the completion
4162 * is protecting is not available.
4163 */
4164 bool try_wait_for_completion(struct completion *x)
4165 {
4166 unsigned long flags;
4167 int ret = 1;
4168
4169 spin_lock_irqsave(&x->wait.lock, flags);
4170 if (!x->done)
4171 ret = 0;
4172 else
4173 x->done--;
4174 spin_unlock_irqrestore(&x->wait.lock, flags);
4175 return ret;
4176 }
4177 EXPORT_SYMBOL(try_wait_for_completion);
4178
4179 /**
4180 * completion_done - Test to see if a completion has any waiters
4181 * @x: completion structure
4182 *
4183 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4184 * 1 if there are no waiters.
4185 *
4186 */
4187 bool completion_done(struct completion *x)
4188 {
4189 unsigned long flags;
4190 int ret = 1;
4191
4192 spin_lock_irqsave(&x->wait.lock, flags);
4193 if (!x->done)
4194 ret = 0;
4195 spin_unlock_irqrestore(&x->wait.lock, flags);
4196 return ret;
4197 }
4198 EXPORT_SYMBOL(completion_done);
4199
4200 static long __sched
4201 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4202 {
4203 unsigned long flags;
4204 wait_queue_t wait;
4205
4206 init_waitqueue_entry(&wait, current);
4207
4208 __set_current_state(state);
4209
4210 spin_lock_irqsave(&q->lock, flags);
4211 __add_wait_queue(q, &wait);
4212 spin_unlock(&q->lock);
4213 timeout = schedule_timeout(timeout);
4214 spin_lock_irq(&q->lock);
4215 __remove_wait_queue(q, &wait);
4216 spin_unlock_irqrestore(&q->lock, flags);
4217
4218 return timeout;
4219 }
4220
4221 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4222 {
4223 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4224 }
4225 EXPORT_SYMBOL(interruptible_sleep_on);
4226
4227 long __sched
4228 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4229 {
4230 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4231 }
4232 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4233
4234 void __sched sleep_on(wait_queue_head_t *q)
4235 {
4236 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4237 }
4238 EXPORT_SYMBOL(sleep_on);
4239
4240 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4241 {
4242 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4243 }
4244 EXPORT_SYMBOL(sleep_on_timeout);
4245
4246 #ifdef CONFIG_RT_MUTEXES
4247
4248 /*
4249 * rt_mutex_setprio - set the current priority of a task
4250 * @p: task
4251 * @prio: prio value (kernel-internal form)
4252 *
4253 * This function changes the 'effective' priority of a task. It does
4254 * not touch ->normal_prio like __setscheduler().
4255 *
4256 * Used by the rt_mutex code to implement priority inheritance logic.
4257 */
4258 void rt_mutex_setprio(struct task_struct *p, int prio)
4259 {
4260 unsigned long flags;
4261 int oldprio, on_rq, running;
4262 struct rq *rq;
4263 const struct sched_class *prev_class;
4264
4265 BUG_ON(prio < 0 || prio > MAX_PRIO);
4266
4267 rq = task_rq_lock(p, &flags);
4268 update_rq_clock(rq);
4269
4270 oldprio = p->prio;
4271 prev_class = p->sched_class;
4272 on_rq = p->se.on_rq;
4273 running = task_current(rq, p);
4274 if (on_rq)
4275 dequeue_task(rq, p, 0);
4276 if (running)
4277 p->sched_class->put_prev_task(rq, p);
4278
4279 if (rt_prio(prio))
4280 p->sched_class = &rt_sched_class;
4281 else
4282 p->sched_class = &fair_sched_class;
4283
4284 p->prio = prio;
4285
4286 if (running)
4287 p->sched_class->set_curr_task(rq);
4288 if (on_rq) {
4289 enqueue_task(rq, p, 0, oldprio < prio);
4290
4291 check_class_changed(rq, p, prev_class, oldprio, running);
4292 }
4293 task_rq_unlock(rq, &flags);
4294 }
4295
4296 #endif
4297
4298 void set_user_nice(struct task_struct *p, long nice)
4299 {
4300 int old_prio, delta, on_rq;
4301 unsigned long flags;
4302 struct rq *rq;
4303
4304 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4305 return;
4306 /*
4307 * We have to be careful, if called from sys_setpriority(),
4308 * the task might be in the middle of scheduling on another CPU.
4309 */
4310 rq = task_rq_lock(p, &flags);
4311 update_rq_clock(rq);
4312 /*
4313 * The RT priorities are set via sched_setscheduler(), but we still
4314 * allow the 'normal' nice value to be set - but as expected
4315 * it wont have any effect on scheduling until the task is
4316 * SCHED_FIFO/SCHED_RR:
4317 */
4318 if (task_has_rt_policy(p)) {
4319 p->static_prio = NICE_TO_PRIO(nice);
4320 goto out_unlock;
4321 }
4322 on_rq = p->se.on_rq;
4323 if (on_rq)
4324 dequeue_task(rq, p, 0);
4325
4326 p->static_prio = NICE_TO_PRIO(nice);
4327 set_load_weight(p);
4328 old_prio = p->prio;
4329 p->prio = effective_prio(p);
4330 delta = p->prio - old_prio;
4331
4332 if (on_rq) {
4333 enqueue_task(rq, p, 0, false);
4334 /*
4335 * If the task increased its priority or is running and
4336 * lowered its priority, then reschedule its CPU:
4337 */
4338 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4339 resched_task(rq->curr);
4340 }
4341 out_unlock:
4342 task_rq_unlock(rq, &flags);
4343 }
4344 EXPORT_SYMBOL(set_user_nice);
4345
4346 /*
4347 * can_nice - check if a task can reduce its nice value
4348 * @p: task
4349 * @nice: nice value
4350 */
4351 int can_nice(const struct task_struct *p, const int nice)
4352 {
4353 /* convert nice value [19,-20] to rlimit style value [1,40] */
4354 int nice_rlim = 20 - nice;
4355
4356 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4357 capable(CAP_SYS_NICE));
4358 }
4359
4360 #ifdef __ARCH_WANT_SYS_NICE
4361
4362 /*
4363 * sys_nice - change the priority of the current process.
4364 * @increment: priority increment
4365 *
4366 * sys_setpriority is a more generic, but much slower function that
4367 * does similar things.
4368 */
4369 SYSCALL_DEFINE1(nice, int, increment)
4370 {
4371 long nice, retval;
4372
4373 /*
4374 * Setpriority might change our priority at the same moment.
4375 * We don't have to worry. Conceptually one call occurs first
4376 * and we have a single winner.
4377 */
4378 if (increment < -40)
4379 increment = -40;
4380 if (increment > 40)
4381 increment = 40;
4382
4383 nice = TASK_NICE(current) + increment;
4384 if (nice < -20)
4385 nice = -20;
4386 if (nice > 19)
4387 nice = 19;
4388
4389 if (increment < 0 && !can_nice(current, nice))
4390 return -EPERM;
4391
4392 retval = security_task_setnice(current, nice);
4393 if (retval)
4394 return retval;
4395
4396 set_user_nice(current, nice);
4397 return 0;
4398 }
4399
4400 #endif
4401
4402 /**
4403 * task_prio - return the priority value of a given task.
4404 * @p: the task in question.
4405 *
4406 * This is the priority value as seen by users in /proc.
4407 * RT tasks are offset by -200. Normal tasks are centered
4408 * around 0, value goes from -16 to +15.
4409 */
4410 int task_prio(const struct task_struct *p)
4411 {
4412 return p->prio - MAX_RT_PRIO;
4413 }
4414
4415 /**
4416 * task_nice - return the nice value of a given task.
4417 * @p: the task in question.
4418 */
4419 int task_nice(const struct task_struct *p)
4420 {
4421 return TASK_NICE(p);
4422 }
4423 EXPORT_SYMBOL(task_nice);
4424
4425 /**
4426 * idle_cpu - is a given cpu idle currently?
4427 * @cpu: the processor in question.
4428 */
4429 int idle_cpu(int cpu)
4430 {
4431 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4432 }
4433
4434 /**
4435 * idle_task - return the idle task for a given cpu.
4436 * @cpu: the processor in question.
4437 */
4438 struct task_struct *idle_task(int cpu)
4439 {
4440 return cpu_rq(cpu)->idle;
4441 }
4442
4443 /**
4444 * find_process_by_pid - find a process with a matching PID value.
4445 * @pid: the pid in question.
4446 */
4447 static struct task_struct *find_process_by_pid(pid_t pid)
4448 {
4449 return pid ? find_task_by_vpid(pid) : current;
4450 }
4451
4452 /* Actually do priority change: must hold rq lock. */
4453 static void
4454 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4455 {
4456 BUG_ON(p->se.on_rq);
4457
4458 p->policy = policy;
4459 p->rt_priority = prio;
4460 p->normal_prio = normal_prio(p);
4461 /* we are holding p->pi_lock already */
4462 p->prio = rt_mutex_getprio(p);
4463 if (rt_prio(p->prio))
4464 p->sched_class = &rt_sched_class;
4465 else
4466 p->sched_class = &fair_sched_class;
4467 set_load_weight(p);
4468 }
4469
4470 /*
4471 * check the target process has a UID that matches the current process's
4472 */
4473 static bool check_same_owner(struct task_struct *p)
4474 {
4475 const struct cred *cred = current_cred(), *pcred;
4476 bool match;
4477
4478 rcu_read_lock();
4479 pcred = __task_cred(p);
4480 match = (cred->euid == pcred->euid ||
4481 cred->euid == pcred->uid);
4482 rcu_read_unlock();
4483 return match;
4484 }
4485
4486 static int __sched_setscheduler(struct task_struct *p, int policy,
4487 struct sched_param *param, bool user)
4488 {
4489 int retval, oldprio, oldpolicy = -1, on_rq, running;
4490 unsigned long flags;
4491 const struct sched_class *prev_class;
4492 struct rq *rq;
4493 int reset_on_fork;
4494
4495 /* may grab non-irq protected spin_locks */
4496 BUG_ON(in_interrupt());
4497 recheck:
4498 /* double check policy once rq lock held */
4499 if (policy < 0) {
4500 reset_on_fork = p->sched_reset_on_fork;
4501 policy = oldpolicy = p->policy;
4502 } else {
4503 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4504 policy &= ~SCHED_RESET_ON_FORK;
4505
4506 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4507 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4508 policy != SCHED_IDLE)
4509 return -EINVAL;
4510 }
4511
4512 /*
4513 * Valid priorities for SCHED_FIFO and SCHED_RR are
4514 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4515 * SCHED_BATCH and SCHED_IDLE is 0.
4516 */
4517 if (param->sched_priority < 0 ||
4518 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4519 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4520 return -EINVAL;
4521 if (rt_policy(policy) != (param->sched_priority != 0))
4522 return -EINVAL;
4523
4524 /*
4525 * Allow unprivileged RT tasks to decrease priority:
4526 */
4527 if (user && !capable(CAP_SYS_NICE)) {
4528 if (rt_policy(policy)) {
4529 unsigned long rlim_rtprio;
4530
4531 if (!lock_task_sighand(p, &flags))
4532 return -ESRCH;
4533 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4534 unlock_task_sighand(p, &flags);
4535
4536 /* can't set/change the rt policy */
4537 if (policy != p->policy && !rlim_rtprio)
4538 return -EPERM;
4539
4540 /* can't increase priority */
4541 if (param->sched_priority > p->rt_priority &&
4542 param->sched_priority > rlim_rtprio)
4543 return -EPERM;
4544 }
4545 /*
4546 * Like positive nice levels, dont allow tasks to
4547 * move out of SCHED_IDLE either:
4548 */
4549 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4550 return -EPERM;
4551
4552 /* can't change other user's priorities */
4553 if (!check_same_owner(p))
4554 return -EPERM;
4555
4556 /* Normal users shall not reset the sched_reset_on_fork flag */
4557 if (p->sched_reset_on_fork && !reset_on_fork)
4558 return -EPERM;
4559 }
4560
4561 if (user) {
4562 #ifdef CONFIG_RT_GROUP_SCHED
4563 /*
4564 * Do not allow realtime tasks into groups that have no runtime
4565 * assigned.
4566 */
4567 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4568 task_group(p)->rt_bandwidth.rt_runtime == 0)
4569 return -EPERM;
4570 #endif
4571
4572 retval = security_task_setscheduler(p, policy, param);
4573 if (retval)
4574 return retval;
4575 }
4576
4577 /*
4578 * make sure no PI-waiters arrive (or leave) while we are
4579 * changing the priority of the task:
4580 */
4581 raw_spin_lock_irqsave(&p->pi_lock, flags);
4582 /*
4583 * To be able to change p->policy safely, the apropriate
4584 * runqueue lock must be held.
4585 */
4586 rq = __task_rq_lock(p);
4587 /* recheck policy now with rq lock held */
4588 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4589 policy = oldpolicy = -1;
4590 __task_rq_unlock(rq);
4591 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4592 goto recheck;
4593 }
4594 update_rq_clock(rq);
4595 on_rq = p->se.on_rq;
4596 running = task_current(rq, p);
4597 if (on_rq)
4598 deactivate_task(rq, p, 0);
4599 if (running)
4600 p->sched_class->put_prev_task(rq, p);
4601
4602 p->sched_reset_on_fork = reset_on_fork;
4603
4604 oldprio = p->prio;
4605 prev_class = p->sched_class;
4606 __setscheduler(rq, p, policy, param->sched_priority);
4607
4608 if (running)
4609 p->sched_class->set_curr_task(rq);
4610 if (on_rq) {
4611 activate_task(rq, p, 0);
4612
4613 check_class_changed(rq, p, prev_class, oldprio, running);
4614 }
4615 __task_rq_unlock(rq);
4616 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4617
4618 rt_mutex_adjust_pi(p);
4619
4620 return 0;
4621 }
4622
4623 /**
4624 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4625 * @p: the task in question.
4626 * @policy: new policy.
4627 * @param: structure containing the new RT priority.
4628 *
4629 * NOTE that the task may be already dead.
4630 */
4631 int sched_setscheduler(struct task_struct *p, int policy,
4632 struct sched_param *param)
4633 {
4634 return __sched_setscheduler(p, policy, param, true);
4635 }
4636 EXPORT_SYMBOL_GPL(sched_setscheduler);
4637
4638 /**
4639 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4640 * @p: the task in question.
4641 * @policy: new policy.
4642 * @param: structure containing the new RT priority.
4643 *
4644 * Just like sched_setscheduler, only don't bother checking if the
4645 * current context has permission. For example, this is needed in
4646 * stop_machine(): we create temporary high priority worker threads,
4647 * but our caller might not have that capability.
4648 */
4649 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4650 struct sched_param *param)
4651 {
4652 return __sched_setscheduler(p, policy, param, false);
4653 }
4654
4655 static int
4656 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4657 {
4658 struct sched_param lparam;
4659 struct task_struct *p;
4660 int retval;
4661
4662 if (!param || pid < 0)
4663 return -EINVAL;
4664 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4665 return -EFAULT;
4666
4667 rcu_read_lock();
4668 retval = -ESRCH;
4669 p = find_process_by_pid(pid);
4670 if (p != NULL)
4671 retval = sched_setscheduler(p, policy, &lparam);
4672 rcu_read_unlock();
4673
4674 return retval;
4675 }
4676
4677 /**
4678 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4679 * @pid: the pid in question.
4680 * @policy: new policy.
4681 * @param: structure containing the new RT priority.
4682 */
4683 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4684 struct sched_param __user *, param)
4685 {
4686 /* negative values for policy are not valid */
4687 if (policy < 0)
4688 return -EINVAL;
4689
4690 return do_sched_setscheduler(pid, policy, param);
4691 }
4692
4693 /**
4694 * sys_sched_setparam - set/change the RT priority of a thread
4695 * @pid: the pid in question.
4696 * @param: structure containing the new RT priority.
4697 */
4698 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4699 {
4700 return do_sched_setscheduler(pid, -1, param);
4701 }
4702
4703 /**
4704 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4705 * @pid: the pid in question.
4706 */
4707 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4708 {
4709 struct task_struct *p;
4710 int retval;
4711
4712 if (pid < 0)
4713 return -EINVAL;
4714
4715 retval = -ESRCH;
4716 rcu_read_lock();
4717 p = find_process_by_pid(pid);
4718 if (p) {
4719 retval = security_task_getscheduler(p);
4720 if (!retval)
4721 retval = p->policy
4722 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4723 }
4724 rcu_read_unlock();
4725 return retval;
4726 }
4727
4728 /**
4729 * sys_sched_getparam - get the RT priority of a thread
4730 * @pid: the pid in question.
4731 * @param: structure containing the RT priority.
4732 */
4733 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4734 {
4735 struct sched_param lp;
4736 struct task_struct *p;
4737 int retval;
4738
4739 if (!param || pid < 0)
4740 return -EINVAL;
4741
4742 rcu_read_lock();
4743 p = find_process_by_pid(pid);
4744 retval = -ESRCH;
4745 if (!p)
4746 goto out_unlock;
4747
4748 retval = security_task_getscheduler(p);
4749 if (retval)
4750 goto out_unlock;
4751
4752 lp.sched_priority = p->rt_priority;
4753 rcu_read_unlock();
4754
4755 /*
4756 * This one might sleep, we cannot do it with a spinlock held ...
4757 */
4758 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4759
4760 return retval;
4761
4762 out_unlock:
4763 rcu_read_unlock();
4764 return retval;
4765 }
4766
4767 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4768 {
4769 cpumask_var_t cpus_allowed, new_mask;
4770 struct task_struct *p;
4771 int retval;
4772
4773 get_online_cpus();
4774 rcu_read_lock();
4775
4776 p = find_process_by_pid(pid);
4777 if (!p) {
4778 rcu_read_unlock();
4779 put_online_cpus();
4780 return -ESRCH;
4781 }
4782
4783 /* Prevent p going away */
4784 get_task_struct(p);
4785 rcu_read_unlock();
4786
4787 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4788 retval = -ENOMEM;
4789 goto out_put_task;
4790 }
4791 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4792 retval = -ENOMEM;
4793 goto out_free_cpus_allowed;
4794 }
4795 retval = -EPERM;
4796 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4797 goto out_unlock;
4798
4799 retval = security_task_setscheduler(p, 0, NULL);
4800 if (retval)
4801 goto out_unlock;
4802
4803 cpuset_cpus_allowed(p, cpus_allowed);
4804 cpumask_and(new_mask, in_mask, cpus_allowed);
4805 again:
4806 retval = set_cpus_allowed_ptr(p, new_mask);
4807
4808 if (!retval) {
4809 cpuset_cpus_allowed(p, cpus_allowed);
4810 if (!cpumask_subset(new_mask, cpus_allowed)) {
4811 /*
4812 * We must have raced with a concurrent cpuset
4813 * update. Just reset the cpus_allowed to the
4814 * cpuset's cpus_allowed
4815 */
4816 cpumask_copy(new_mask, cpus_allowed);
4817 goto again;
4818 }
4819 }
4820 out_unlock:
4821 free_cpumask_var(new_mask);
4822 out_free_cpus_allowed:
4823 free_cpumask_var(cpus_allowed);
4824 out_put_task:
4825 put_task_struct(p);
4826 put_online_cpus();
4827 return retval;
4828 }
4829
4830 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4831 struct cpumask *new_mask)
4832 {
4833 if (len < cpumask_size())
4834 cpumask_clear(new_mask);
4835 else if (len > cpumask_size())
4836 len = cpumask_size();
4837
4838 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4839 }
4840
4841 /**
4842 * sys_sched_setaffinity - set the cpu affinity of a process
4843 * @pid: pid of the process
4844 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4845 * @user_mask_ptr: user-space pointer to the new cpu mask
4846 */
4847 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4848 unsigned long __user *, user_mask_ptr)
4849 {
4850 cpumask_var_t new_mask;
4851 int retval;
4852
4853 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4854 return -ENOMEM;
4855
4856 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4857 if (retval == 0)
4858 retval = sched_setaffinity(pid, new_mask);
4859 free_cpumask_var(new_mask);
4860 return retval;
4861 }
4862
4863 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4864 {
4865 struct task_struct *p;
4866 unsigned long flags;
4867 struct rq *rq;
4868 int retval;
4869
4870 get_online_cpus();
4871 rcu_read_lock();
4872
4873 retval = -ESRCH;
4874 p = find_process_by_pid(pid);
4875 if (!p)
4876 goto out_unlock;
4877
4878 retval = security_task_getscheduler(p);
4879 if (retval)
4880 goto out_unlock;
4881
4882 rq = task_rq_lock(p, &flags);
4883 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4884 task_rq_unlock(rq, &flags);
4885
4886 out_unlock:
4887 rcu_read_unlock();
4888 put_online_cpus();
4889
4890 return retval;
4891 }
4892
4893 /**
4894 * sys_sched_getaffinity - get the cpu affinity of a process
4895 * @pid: pid of the process
4896 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4897 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4898 */
4899 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4900 unsigned long __user *, user_mask_ptr)
4901 {
4902 int ret;
4903 cpumask_var_t mask;
4904
4905 if (len < nr_cpu_ids)
4906 return -EINVAL;
4907 if (len & (sizeof(unsigned long)-1))
4908 return -EINVAL;
4909
4910 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4911 return -ENOMEM;
4912
4913 ret = sched_getaffinity(pid, mask);
4914 if (ret == 0) {
4915 size_t retlen = min_t(size_t, len, cpumask_size());
4916
4917 if (copy_to_user(user_mask_ptr, mask, retlen))
4918 ret = -EFAULT;
4919 else
4920 ret = retlen;
4921 }
4922 free_cpumask_var(mask);
4923
4924 return ret;
4925 }
4926
4927 /**
4928 * sys_sched_yield - yield the current processor to other threads.
4929 *
4930 * This function yields the current CPU to other tasks. If there are no
4931 * other threads running on this CPU then this function will return.
4932 */
4933 SYSCALL_DEFINE0(sched_yield)
4934 {
4935 struct rq *rq = this_rq_lock();
4936
4937 schedstat_inc(rq, yld_count);
4938 current->sched_class->yield_task(rq);
4939
4940 /*
4941 * Since we are going to call schedule() anyway, there's
4942 * no need to preempt or enable interrupts:
4943 */
4944 __release(rq->lock);
4945 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4946 do_raw_spin_unlock(&rq->lock);
4947 preempt_enable_no_resched();
4948
4949 schedule();
4950
4951 return 0;
4952 }
4953
4954 static inline int should_resched(void)
4955 {
4956 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4957 }
4958
4959 static void __cond_resched(void)
4960 {
4961 add_preempt_count(PREEMPT_ACTIVE);
4962 schedule();
4963 sub_preempt_count(PREEMPT_ACTIVE);
4964 }
4965
4966 int __sched _cond_resched(void)
4967 {
4968 if (should_resched()) {
4969 __cond_resched();
4970 return 1;
4971 }
4972 return 0;
4973 }
4974 EXPORT_SYMBOL(_cond_resched);
4975
4976 /*
4977 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4978 * call schedule, and on return reacquire the lock.
4979 *
4980 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4981 * operations here to prevent schedule() from being called twice (once via
4982 * spin_unlock(), once by hand).
4983 */
4984 int __cond_resched_lock(spinlock_t *lock)
4985 {
4986 int resched = should_resched();
4987 int ret = 0;
4988
4989 lockdep_assert_held(lock);
4990
4991 if (spin_needbreak(lock) || resched) {
4992 spin_unlock(lock);
4993 if (resched)
4994 __cond_resched();
4995 else
4996 cpu_relax();
4997 ret = 1;
4998 spin_lock(lock);
4999 }
5000 return ret;
5001 }
5002 EXPORT_SYMBOL(__cond_resched_lock);
5003
5004 int __sched __cond_resched_softirq(void)
5005 {
5006 BUG_ON(!in_softirq());
5007
5008 if (should_resched()) {
5009 local_bh_enable();
5010 __cond_resched();
5011 local_bh_disable();
5012 return 1;
5013 }
5014 return 0;
5015 }
5016 EXPORT_SYMBOL(__cond_resched_softirq);
5017
5018 /**
5019 * yield - yield the current processor to other threads.
5020 *
5021 * This is a shortcut for kernel-space yielding - it marks the
5022 * thread runnable and calls sys_sched_yield().
5023 */
5024 void __sched yield(void)
5025 {
5026 set_current_state(TASK_RUNNING);
5027 sys_sched_yield();
5028 }
5029 EXPORT_SYMBOL(yield);
5030
5031 /*
5032 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5033 * that process accounting knows that this is a task in IO wait state.
5034 */
5035 void __sched io_schedule(void)
5036 {
5037 struct rq *rq = raw_rq();
5038
5039 delayacct_blkio_start();
5040 atomic_inc(&rq->nr_iowait);
5041 current->in_iowait = 1;
5042 schedule();
5043 current->in_iowait = 0;
5044 atomic_dec(&rq->nr_iowait);
5045 delayacct_blkio_end();
5046 }
5047 EXPORT_SYMBOL(io_schedule);
5048
5049 long __sched io_schedule_timeout(long timeout)
5050 {
5051 struct rq *rq = raw_rq();
5052 long ret;
5053
5054 delayacct_blkio_start();
5055 atomic_inc(&rq->nr_iowait);
5056 current->in_iowait = 1;
5057 ret = schedule_timeout(timeout);
5058 current->in_iowait = 0;
5059 atomic_dec(&rq->nr_iowait);
5060 delayacct_blkio_end();
5061 return ret;
5062 }
5063
5064 /**
5065 * sys_sched_get_priority_max - return maximum RT priority.
5066 * @policy: scheduling class.
5067 *
5068 * this syscall returns the maximum rt_priority that can be used
5069 * by a given scheduling class.
5070 */
5071 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5072 {
5073 int ret = -EINVAL;
5074
5075 switch (policy) {
5076 case SCHED_FIFO:
5077 case SCHED_RR:
5078 ret = MAX_USER_RT_PRIO-1;
5079 break;
5080 case SCHED_NORMAL:
5081 case SCHED_BATCH:
5082 case SCHED_IDLE:
5083 ret = 0;
5084 break;
5085 }
5086 return ret;
5087 }
5088
5089 /**
5090 * sys_sched_get_priority_min - return minimum RT priority.
5091 * @policy: scheduling class.
5092 *
5093 * this syscall returns the minimum rt_priority that can be used
5094 * by a given scheduling class.
5095 */
5096 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5097 {
5098 int ret = -EINVAL;
5099
5100 switch (policy) {
5101 case SCHED_FIFO:
5102 case SCHED_RR:
5103 ret = 1;
5104 break;
5105 case SCHED_NORMAL:
5106 case SCHED_BATCH:
5107 case SCHED_IDLE:
5108 ret = 0;
5109 }
5110 return ret;
5111 }
5112
5113 /**
5114 * sys_sched_rr_get_interval - return the default timeslice of a process.
5115 * @pid: pid of the process.
5116 * @interval: userspace pointer to the timeslice value.
5117 *
5118 * this syscall writes the default timeslice value of a given process
5119 * into the user-space timespec buffer. A value of '0' means infinity.
5120 */
5121 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5122 struct timespec __user *, interval)
5123 {
5124 struct task_struct *p;
5125 unsigned int time_slice;
5126 unsigned long flags;
5127 struct rq *rq;
5128 int retval;
5129 struct timespec t;
5130
5131 if (pid < 0)
5132 return -EINVAL;
5133
5134 retval = -ESRCH;
5135 rcu_read_lock();
5136 p = find_process_by_pid(pid);
5137 if (!p)
5138 goto out_unlock;
5139
5140 retval = security_task_getscheduler(p);
5141 if (retval)
5142 goto out_unlock;
5143
5144 rq = task_rq_lock(p, &flags);
5145 time_slice = p->sched_class->get_rr_interval(rq, p);
5146 task_rq_unlock(rq, &flags);
5147
5148 rcu_read_unlock();
5149 jiffies_to_timespec(time_slice, &t);
5150 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5151 return retval;
5152
5153 out_unlock:
5154 rcu_read_unlock();
5155 return retval;
5156 }
5157
5158 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5159
5160 void sched_show_task(struct task_struct *p)
5161 {
5162 unsigned long free = 0;
5163 unsigned state;
5164
5165 state = p->state ? __ffs(p->state) + 1 : 0;
5166 printk(KERN_INFO "%-13.13s %c", p->comm,
5167 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5168 #if BITS_PER_LONG == 32
5169 if (state == TASK_RUNNING)
5170 printk(KERN_CONT " running ");
5171 else
5172 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5173 #else
5174 if (state == TASK_RUNNING)
5175 printk(KERN_CONT " running task ");
5176 else
5177 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5178 #endif
5179 #ifdef CONFIG_DEBUG_STACK_USAGE
5180 free = stack_not_used(p);
5181 #endif
5182 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5183 task_pid_nr(p), task_pid_nr(p->real_parent),
5184 (unsigned long)task_thread_info(p)->flags);
5185
5186 show_stack(p, NULL);
5187 }
5188
5189 void show_state_filter(unsigned long state_filter)
5190 {
5191 struct task_struct *g, *p;
5192
5193 #if BITS_PER_LONG == 32
5194 printk(KERN_INFO
5195 " task PC stack pid father\n");
5196 #else
5197 printk(KERN_INFO
5198 " task PC stack pid father\n");
5199 #endif
5200 read_lock(&tasklist_lock);
5201 do_each_thread(g, p) {
5202 /*
5203 * reset the NMI-timeout, listing all files on a slow
5204 * console might take alot of time:
5205 */
5206 touch_nmi_watchdog();
5207 if (!state_filter || (p->state & state_filter))
5208 sched_show_task(p);
5209 } while_each_thread(g, p);
5210
5211 touch_all_softlockup_watchdogs();
5212
5213 #ifdef CONFIG_SCHED_DEBUG
5214 sysrq_sched_debug_show();
5215 #endif
5216 read_unlock(&tasklist_lock);
5217 /*
5218 * Only show locks if all tasks are dumped:
5219 */
5220 if (!state_filter)
5221 debug_show_all_locks();
5222 }
5223
5224 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5225 {
5226 idle->sched_class = &idle_sched_class;
5227 }
5228
5229 /**
5230 * init_idle - set up an idle thread for a given CPU
5231 * @idle: task in question
5232 * @cpu: cpu the idle task belongs to
5233 *
5234 * NOTE: this function does not set the idle thread's NEED_RESCHED
5235 * flag, to make booting more robust.
5236 */
5237 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5238 {
5239 struct rq *rq = cpu_rq(cpu);
5240 unsigned long flags;
5241
5242 raw_spin_lock_irqsave(&rq->lock, flags);
5243
5244 __sched_fork(idle);
5245 idle->state = TASK_RUNNING;
5246 idle->se.exec_start = sched_clock();
5247
5248 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5249 __set_task_cpu(idle, cpu);
5250
5251 rq->curr = rq->idle = idle;
5252 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5253 idle->oncpu = 1;
5254 #endif
5255 raw_spin_unlock_irqrestore(&rq->lock, flags);
5256
5257 /* Set the preempt count _outside_ the spinlocks! */
5258 #if defined(CONFIG_PREEMPT)
5259 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5260 #else
5261 task_thread_info(idle)->preempt_count = 0;
5262 #endif
5263 /*
5264 * The idle tasks have their own, simple scheduling class:
5265 */
5266 idle->sched_class = &idle_sched_class;
5267 ftrace_graph_init_task(idle);
5268 }
5269
5270 /*
5271 * In a system that switches off the HZ timer nohz_cpu_mask
5272 * indicates which cpus entered this state. This is used
5273 * in the rcu update to wait only for active cpus. For system
5274 * which do not switch off the HZ timer nohz_cpu_mask should
5275 * always be CPU_BITS_NONE.
5276 */
5277 cpumask_var_t nohz_cpu_mask;
5278
5279 /*
5280 * Increase the granularity value when there are more CPUs,
5281 * because with more CPUs the 'effective latency' as visible
5282 * to users decreases. But the relationship is not linear,
5283 * so pick a second-best guess by going with the log2 of the
5284 * number of CPUs.
5285 *
5286 * This idea comes from the SD scheduler of Con Kolivas:
5287 */
5288 static int get_update_sysctl_factor(void)
5289 {
5290 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5291 unsigned int factor;
5292
5293 switch (sysctl_sched_tunable_scaling) {
5294 case SCHED_TUNABLESCALING_NONE:
5295 factor = 1;
5296 break;
5297 case SCHED_TUNABLESCALING_LINEAR:
5298 factor = cpus;
5299 break;
5300 case SCHED_TUNABLESCALING_LOG:
5301 default:
5302 factor = 1 + ilog2(cpus);
5303 break;
5304 }
5305
5306 return factor;
5307 }
5308
5309 static void update_sysctl(void)
5310 {
5311 unsigned int factor = get_update_sysctl_factor();
5312
5313 #define SET_SYSCTL(name) \
5314 (sysctl_##name = (factor) * normalized_sysctl_##name)
5315 SET_SYSCTL(sched_min_granularity);
5316 SET_SYSCTL(sched_latency);
5317 SET_SYSCTL(sched_wakeup_granularity);
5318 SET_SYSCTL(sched_shares_ratelimit);
5319 #undef SET_SYSCTL
5320 }
5321
5322 static inline void sched_init_granularity(void)
5323 {
5324 update_sysctl();
5325 }
5326
5327 #ifdef CONFIG_SMP
5328 /*
5329 * This is how migration works:
5330 *
5331 * 1) we queue a struct migration_req structure in the source CPU's
5332 * runqueue and wake up that CPU's migration thread.
5333 * 2) we down() the locked semaphore => thread blocks.
5334 * 3) migration thread wakes up (implicitly it forces the migrated
5335 * thread off the CPU)
5336 * 4) it gets the migration request and checks whether the migrated
5337 * task is still in the wrong runqueue.
5338 * 5) if it's in the wrong runqueue then the migration thread removes
5339 * it and puts it into the right queue.
5340 * 6) migration thread up()s the semaphore.
5341 * 7) we wake up and the migration is done.
5342 */
5343
5344 /*
5345 * Change a given task's CPU affinity. Migrate the thread to a
5346 * proper CPU and schedule it away if the CPU it's executing on
5347 * is removed from the allowed bitmask.
5348 *
5349 * NOTE: the caller must have a valid reference to the task, the
5350 * task must not exit() & deallocate itself prematurely. The
5351 * call is not atomic; no spinlocks may be held.
5352 */
5353 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5354 {
5355 struct migration_req req;
5356 unsigned long flags;
5357 struct rq *rq;
5358 int ret = 0;
5359
5360 rq = task_rq_lock(p, &flags);
5361
5362 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5363 ret = -EINVAL;
5364 goto out;
5365 }
5366
5367 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5368 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5369 ret = -EINVAL;
5370 goto out;
5371 }
5372
5373 if (p->sched_class->set_cpus_allowed)
5374 p->sched_class->set_cpus_allowed(p, new_mask);
5375 else {
5376 cpumask_copy(&p->cpus_allowed, new_mask);
5377 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5378 }
5379
5380 /* Can the task run on the task's current CPU? If so, we're done */
5381 if (cpumask_test_cpu(task_cpu(p), new_mask))
5382 goto out;
5383
5384 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
5385 /* Need help from migration thread: drop lock and wait. */
5386 struct task_struct *mt = rq->migration_thread;
5387
5388 get_task_struct(mt);
5389 task_rq_unlock(rq, &flags);
5390 wake_up_process(mt);
5391 put_task_struct(mt);
5392 wait_for_completion(&req.done);
5393 tlb_migrate_finish(p->mm);
5394 return 0;
5395 }
5396 out:
5397 task_rq_unlock(rq, &flags);
5398
5399 return ret;
5400 }
5401 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5402
5403 /*
5404 * Move (not current) task off this cpu, onto dest cpu. We're doing
5405 * this because either it can't run here any more (set_cpus_allowed()
5406 * away from this CPU, or CPU going down), or because we're
5407 * attempting to rebalance this task on exec (sched_exec).
5408 *
5409 * So we race with normal scheduler movements, but that's OK, as long
5410 * as the task is no longer on this CPU.
5411 *
5412 * Returns non-zero if task was successfully migrated.
5413 */
5414 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5415 {
5416 struct rq *rq_dest, *rq_src;
5417 int ret = 0;
5418
5419 if (unlikely(!cpu_active(dest_cpu)))
5420 return ret;
5421
5422 rq_src = cpu_rq(src_cpu);
5423 rq_dest = cpu_rq(dest_cpu);
5424
5425 double_rq_lock(rq_src, rq_dest);
5426 /* Already moved. */
5427 if (task_cpu(p) != src_cpu)
5428 goto done;
5429 /* Affinity changed (again). */
5430 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5431 goto fail;
5432
5433 /*
5434 * If we're not on a rq, the next wake-up will ensure we're
5435 * placed properly.
5436 */
5437 if (p->se.on_rq) {
5438 deactivate_task(rq_src, p, 0);
5439 set_task_cpu(p, dest_cpu);
5440 activate_task(rq_dest, p, 0);
5441 check_preempt_curr(rq_dest, p, 0);
5442 }
5443 done:
5444 ret = 1;
5445 fail:
5446 double_rq_unlock(rq_src, rq_dest);
5447 return ret;
5448 }
5449
5450 #define RCU_MIGRATION_IDLE 0
5451 #define RCU_MIGRATION_NEED_QS 1
5452 #define RCU_MIGRATION_GOT_QS 2
5453 #define RCU_MIGRATION_MUST_SYNC 3
5454
5455 /*
5456 * migration_thread - this is a highprio system thread that performs
5457 * thread migration by bumping thread off CPU then 'pushing' onto
5458 * another runqueue.
5459 */
5460 static int migration_thread(void *data)
5461 {
5462 int badcpu;
5463 int cpu = (long)data;
5464 struct rq *rq;
5465
5466 rq = cpu_rq(cpu);
5467 BUG_ON(rq->migration_thread != current);
5468
5469 set_current_state(TASK_INTERRUPTIBLE);
5470 while (!kthread_should_stop()) {
5471 struct migration_req *req;
5472 struct list_head *head;
5473
5474 raw_spin_lock_irq(&rq->lock);
5475
5476 if (cpu_is_offline(cpu)) {
5477 raw_spin_unlock_irq(&rq->lock);
5478 break;
5479 }
5480
5481 if (rq->active_balance) {
5482 active_load_balance(rq, cpu);
5483 rq->active_balance = 0;
5484 }
5485
5486 head = &rq->migration_queue;
5487
5488 if (list_empty(head)) {
5489 raw_spin_unlock_irq(&rq->lock);
5490 schedule();
5491 set_current_state(TASK_INTERRUPTIBLE);
5492 continue;
5493 }
5494 req = list_entry(head->next, struct migration_req, list);
5495 list_del_init(head->next);
5496
5497 if (req->task != NULL) {
5498 raw_spin_unlock(&rq->lock);
5499 __migrate_task(req->task, cpu, req->dest_cpu);
5500 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5501 req->dest_cpu = RCU_MIGRATION_GOT_QS;
5502 raw_spin_unlock(&rq->lock);
5503 } else {
5504 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5505 raw_spin_unlock(&rq->lock);
5506 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5507 }
5508 local_irq_enable();
5509
5510 complete(&req->done);
5511 }
5512 __set_current_state(TASK_RUNNING);
5513
5514 return 0;
5515 }
5516
5517 #ifdef CONFIG_HOTPLUG_CPU
5518
5519 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5520 {
5521 int ret;
5522
5523 local_irq_disable();
5524 ret = __migrate_task(p, src_cpu, dest_cpu);
5525 local_irq_enable();
5526 return ret;
5527 }
5528
5529 /*
5530 * Figure out where task on dead CPU should go, use force if necessary.
5531 */
5532 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5533 {
5534 int dest_cpu;
5535
5536 again:
5537 dest_cpu = select_fallback_rq(dead_cpu, p);
5538
5539 /* It can have affinity changed while we were choosing. */
5540 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5541 goto again;
5542 }
5543
5544 /*
5545 * While a dead CPU has no uninterruptible tasks queued at this point,
5546 * it might still have a nonzero ->nr_uninterruptible counter, because
5547 * for performance reasons the counter is not stricly tracking tasks to
5548 * their home CPUs. So we just add the counter to another CPU's counter,
5549 * to keep the global sum constant after CPU-down:
5550 */
5551 static void migrate_nr_uninterruptible(struct rq *rq_src)
5552 {
5553 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5554 unsigned long flags;
5555
5556 local_irq_save(flags);
5557 double_rq_lock(rq_src, rq_dest);
5558 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5559 rq_src->nr_uninterruptible = 0;
5560 double_rq_unlock(rq_src, rq_dest);
5561 local_irq_restore(flags);
5562 }
5563
5564 /* Run through task list and migrate tasks from the dead cpu. */
5565 static void migrate_live_tasks(int src_cpu)
5566 {
5567 struct task_struct *p, *t;
5568
5569 read_lock(&tasklist_lock);
5570
5571 do_each_thread(t, p) {
5572 if (p == current)
5573 continue;
5574
5575 if (task_cpu(p) == src_cpu)
5576 move_task_off_dead_cpu(src_cpu, p);
5577 } while_each_thread(t, p);
5578
5579 read_unlock(&tasklist_lock);
5580 }
5581
5582 /*
5583 * Schedules idle task to be the next runnable task on current CPU.
5584 * It does so by boosting its priority to highest possible.
5585 * Used by CPU offline code.
5586 */
5587 void sched_idle_next(void)
5588 {
5589 int this_cpu = smp_processor_id();
5590 struct rq *rq = cpu_rq(this_cpu);
5591 struct task_struct *p = rq->idle;
5592 unsigned long flags;
5593
5594 /* cpu has to be offline */
5595 BUG_ON(cpu_online(this_cpu));
5596
5597 /*
5598 * Strictly not necessary since rest of the CPUs are stopped by now
5599 * and interrupts disabled on the current cpu.
5600 */
5601 raw_spin_lock_irqsave(&rq->lock, flags);
5602
5603 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5604
5605 update_rq_clock(rq);
5606 activate_task(rq, p, 0);
5607
5608 raw_spin_unlock_irqrestore(&rq->lock, flags);
5609 }
5610
5611 /*
5612 * Ensures that the idle task is using init_mm right before its cpu goes
5613 * offline.
5614 */
5615 void idle_task_exit(void)
5616 {
5617 struct mm_struct *mm = current->active_mm;
5618
5619 BUG_ON(cpu_online(smp_processor_id()));
5620
5621 if (mm != &init_mm)
5622 switch_mm(mm, &init_mm, current);
5623 mmdrop(mm);
5624 }
5625
5626 /* called under rq->lock with disabled interrupts */
5627 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5628 {
5629 struct rq *rq = cpu_rq(dead_cpu);
5630
5631 /* Must be exiting, otherwise would be on tasklist. */
5632 BUG_ON(!p->exit_state);
5633
5634 /* Cannot have done final schedule yet: would have vanished. */
5635 BUG_ON(p->state == TASK_DEAD);
5636
5637 get_task_struct(p);
5638
5639 /*
5640 * Drop lock around migration; if someone else moves it,
5641 * that's OK. No task can be added to this CPU, so iteration is
5642 * fine.
5643 */
5644 raw_spin_unlock_irq(&rq->lock);
5645 move_task_off_dead_cpu(dead_cpu, p);
5646 raw_spin_lock_irq(&rq->lock);
5647
5648 put_task_struct(p);
5649 }
5650
5651 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5652 static void migrate_dead_tasks(unsigned int dead_cpu)
5653 {
5654 struct rq *rq = cpu_rq(dead_cpu);
5655 struct task_struct *next;
5656
5657 for ( ; ; ) {
5658 if (!rq->nr_running)
5659 break;
5660 update_rq_clock(rq);
5661 next = pick_next_task(rq);
5662 if (!next)
5663 break;
5664 next->sched_class->put_prev_task(rq, next);
5665 migrate_dead(dead_cpu, next);
5666
5667 }
5668 }
5669
5670 /*
5671 * remove the tasks which were accounted by rq from calc_load_tasks.
5672 */
5673 static void calc_global_load_remove(struct rq *rq)
5674 {
5675 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5676 rq->calc_load_active = 0;
5677 }
5678 #endif /* CONFIG_HOTPLUG_CPU */
5679
5680 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5681
5682 static struct ctl_table sd_ctl_dir[] = {
5683 {
5684 .procname = "sched_domain",
5685 .mode = 0555,
5686 },
5687 {}
5688 };
5689
5690 static struct ctl_table sd_ctl_root[] = {
5691 {
5692 .procname = "kernel",
5693 .mode = 0555,
5694 .child = sd_ctl_dir,
5695 },
5696 {}
5697 };
5698
5699 static struct ctl_table *sd_alloc_ctl_entry(int n)
5700 {
5701 struct ctl_table *entry =
5702 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5703
5704 return entry;
5705 }
5706
5707 static void sd_free_ctl_entry(struct ctl_table **tablep)
5708 {
5709 struct ctl_table *entry;
5710
5711 /*
5712 * In the intermediate directories, both the child directory and
5713 * procname are dynamically allocated and could fail but the mode
5714 * will always be set. In the lowest directory the names are
5715 * static strings and all have proc handlers.
5716 */
5717 for (entry = *tablep; entry->mode; entry++) {
5718 if (entry->child)
5719 sd_free_ctl_entry(&entry->child);
5720 if (entry->proc_handler == NULL)
5721 kfree(entry->procname);
5722 }
5723
5724 kfree(*tablep);
5725 *tablep = NULL;
5726 }
5727
5728 static void
5729 set_table_entry(struct ctl_table *entry,
5730 const char *procname, void *data, int maxlen,
5731 mode_t mode, proc_handler *proc_handler)
5732 {
5733 entry->procname = procname;
5734 entry->data = data;
5735 entry->maxlen = maxlen;
5736 entry->mode = mode;
5737 entry->proc_handler = proc_handler;
5738 }
5739
5740 static struct ctl_table *
5741 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5742 {
5743 struct ctl_table *table = sd_alloc_ctl_entry(13);
5744
5745 if (table == NULL)
5746 return NULL;
5747
5748 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5749 sizeof(long), 0644, proc_doulongvec_minmax);
5750 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5751 sizeof(long), 0644, proc_doulongvec_minmax);
5752 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5753 sizeof(int), 0644, proc_dointvec_minmax);
5754 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5755 sizeof(int), 0644, proc_dointvec_minmax);
5756 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5757 sizeof(int), 0644, proc_dointvec_minmax);
5758 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5759 sizeof(int), 0644, proc_dointvec_minmax);
5760 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5761 sizeof(int), 0644, proc_dointvec_minmax);
5762 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5763 sizeof(int), 0644, proc_dointvec_minmax);
5764 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5765 sizeof(int), 0644, proc_dointvec_minmax);
5766 set_table_entry(&table[9], "cache_nice_tries",
5767 &sd->cache_nice_tries,
5768 sizeof(int), 0644, proc_dointvec_minmax);
5769 set_table_entry(&table[10], "flags", &sd->flags,
5770 sizeof(int), 0644, proc_dointvec_minmax);
5771 set_table_entry(&table[11], "name", sd->name,
5772 CORENAME_MAX_SIZE, 0444, proc_dostring);
5773 /* &table[12] is terminator */
5774
5775 return table;
5776 }
5777
5778 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5779 {
5780 struct ctl_table *entry, *table;
5781 struct sched_domain *sd;
5782 int domain_num = 0, i;
5783 char buf[32];
5784
5785 for_each_domain(cpu, sd)
5786 domain_num++;
5787 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5788 if (table == NULL)
5789 return NULL;
5790
5791 i = 0;
5792 for_each_domain(cpu, sd) {
5793 snprintf(buf, 32, "domain%d", i);
5794 entry->procname = kstrdup(buf, GFP_KERNEL);
5795 entry->mode = 0555;
5796 entry->child = sd_alloc_ctl_domain_table(sd);
5797 entry++;
5798 i++;
5799 }
5800 return table;
5801 }
5802
5803 static struct ctl_table_header *sd_sysctl_header;
5804 static void register_sched_domain_sysctl(void)
5805 {
5806 int i, cpu_num = num_possible_cpus();
5807 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5808 char buf[32];
5809
5810 WARN_ON(sd_ctl_dir[0].child);
5811 sd_ctl_dir[0].child = entry;
5812
5813 if (entry == NULL)
5814 return;
5815
5816 for_each_possible_cpu(i) {
5817 snprintf(buf, 32, "cpu%d", i);
5818 entry->procname = kstrdup(buf, GFP_KERNEL);
5819 entry->mode = 0555;
5820 entry->child = sd_alloc_ctl_cpu_table(i);
5821 entry++;
5822 }
5823
5824 WARN_ON(sd_sysctl_header);
5825 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5826 }
5827
5828 /* may be called multiple times per register */
5829 static void unregister_sched_domain_sysctl(void)
5830 {
5831 if (sd_sysctl_header)
5832 unregister_sysctl_table(sd_sysctl_header);
5833 sd_sysctl_header = NULL;
5834 if (sd_ctl_dir[0].child)
5835 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5836 }
5837 #else
5838 static void register_sched_domain_sysctl(void)
5839 {
5840 }
5841 static void unregister_sched_domain_sysctl(void)
5842 {
5843 }
5844 #endif
5845
5846 static void set_rq_online(struct rq *rq)
5847 {
5848 if (!rq->online) {
5849 const struct sched_class *class;
5850
5851 cpumask_set_cpu(rq->cpu, rq->rd->online);
5852 rq->online = 1;
5853
5854 for_each_class(class) {
5855 if (class->rq_online)
5856 class->rq_online(rq);
5857 }
5858 }
5859 }
5860
5861 static void set_rq_offline(struct rq *rq)
5862 {
5863 if (rq->online) {
5864 const struct sched_class *class;
5865
5866 for_each_class(class) {
5867 if (class->rq_offline)
5868 class->rq_offline(rq);
5869 }
5870
5871 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5872 rq->online = 0;
5873 }
5874 }
5875
5876 /*
5877 * migration_call - callback that gets triggered when a CPU is added.
5878 * Here we can start up the necessary migration thread for the new CPU.
5879 */
5880 static int __cpuinit
5881 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5882 {
5883 struct task_struct *p;
5884 int cpu = (long)hcpu;
5885 unsigned long flags;
5886 struct rq *rq;
5887
5888 switch (action) {
5889
5890 case CPU_UP_PREPARE:
5891 case CPU_UP_PREPARE_FROZEN:
5892 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5893 if (IS_ERR(p))
5894 return NOTIFY_BAD;
5895 kthread_bind(p, cpu);
5896 /* Must be high prio: stop_machine expects to yield to it. */
5897 rq = task_rq_lock(p, &flags);
5898 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5899 task_rq_unlock(rq, &flags);
5900 get_task_struct(p);
5901 cpu_rq(cpu)->migration_thread = p;
5902 rq->calc_load_update = calc_load_update;
5903 break;
5904
5905 case CPU_ONLINE:
5906 case CPU_ONLINE_FROZEN:
5907 /* Strictly unnecessary, as first user will wake it. */
5908 wake_up_process(cpu_rq(cpu)->migration_thread);
5909
5910 /* Update our root-domain */
5911 rq = cpu_rq(cpu);
5912 raw_spin_lock_irqsave(&rq->lock, flags);
5913 if (rq->rd) {
5914 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5915
5916 set_rq_online(rq);
5917 }
5918 raw_spin_unlock_irqrestore(&rq->lock, flags);
5919 break;
5920
5921 #ifdef CONFIG_HOTPLUG_CPU
5922 case CPU_UP_CANCELED:
5923 case CPU_UP_CANCELED_FROZEN:
5924 if (!cpu_rq(cpu)->migration_thread)
5925 break;
5926 /* Unbind it from offline cpu so it can run. Fall thru. */
5927 kthread_bind(cpu_rq(cpu)->migration_thread,
5928 cpumask_any(cpu_online_mask));
5929 kthread_stop(cpu_rq(cpu)->migration_thread);
5930 put_task_struct(cpu_rq(cpu)->migration_thread);
5931 cpu_rq(cpu)->migration_thread = NULL;
5932 break;
5933
5934 case CPU_DEAD:
5935 case CPU_DEAD_FROZEN:
5936 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5937 migrate_live_tasks(cpu);
5938 rq = cpu_rq(cpu);
5939 kthread_stop(rq->migration_thread);
5940 put_task_struct(rq->migration_thread);
5941 rq->migration_thread = NULL;
5942 /* Idle task back to normal (off runqueue, low prio) */
5943 raw_spin_lock_irq(&rq->lock);
5944 update_rq_clock(rq);
5945 deactivate_task(rq, rq->idle, 0);
5946 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5947 rq->idle->sched_class = &idle_sched_class;
5948 migrate_dead_tasks(cpu);
5949 raw_spin_unlock_irq(&rq->lock);
5950 cpuset_unlock();
5951 migrate_nr_uninterruptible(rq);
5952 BUG_ON(rq->nr_running != 0);
5953 calc_global_load_remove(rq);
5954 /*
5955 * No need to migrate the tasks: it was best-effort if
5956 * they didn't take sched_hotcpu_mutex. Just wake up
5957 * the requestors.
5958 */
5959 raw_spin_lock_irq(&rq->lock);
5960 while (!list_empty(&rq->migration_queue)) {
5961 struct migration_req *req;
5962
5963 req = list_entry(rq->migration_queue.next,
5964 struct migration_req, list);
5965 list_del_init(&req->list);
5966 raw_spin_unlock_irq(&rq->lock);
5967 complete(&req->done);
5968 raw_spin_lock_irq(&rq->lock);
5969 }
5970 raw_spin_unlock_irq(&rq->lock);
5971 break;
5972
5973 case CPU_DYING:
5974 case CPU_DYING_FROZEN:
5975 /* Update our root-domain */
5976 rq = cpu_rq(cpu);
5977 raw_spin_lock_irqsave(&rq->lock, flags);
5978 if (rq->rd) {
5979 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5980 set_rq_offline(rq);
5981 }
5982 raw_spin_unlock_irqrestore(&rq->lock, flags);
5983 break;
5984 #endif
5985 }
5986 return NOTIFY_OK;
5987 }
5988
5989 /*
5990 * Register at high priority so that task migration (migrate_all_tasks)
5991 * happens before everything else. This has to be lower priority than
5992 * the notifier in the perf_event subsystem, though.
5993 */
5994 static struct notifier_block __cpuinitdata migration_notifier = {
5995 .notifier_call = migration_call,
5996 .priority = 10
5997 };
5998
5999 static int __init migration_init(void)
6000 {
6001 void *cpu = (void *)(long)smp_processor_id();
6002 int err;
6003
6004 /* Start one for the boot CPU: */
6005 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6006 BUG_ON(err == NOTIFY_BAD);
6007 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6008 register_cpu_notifier(&migration_notifier);
6009
6010 return 0;
6011 }
6012 early_initcall(migration_init);
6013 #endif
6014
6015 #ifdef CONFIG_SMP
6016
6017 #ifdef CONFIG_SCHED_DEBUG
6018
6019 static __read_mostly int sched_domain_debug_enabled;
6020
6021 static int __init sched_domain_debug_setup(char *str)
6022 {
6023 sched_domain_debug_enabled = 1;
6024
6025 return 0;
6026 }
6027 early_param("sched_debug", sched_domain_debug_setup);
6028
6029 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6030 struct cpumask *groupmask)
6031 {
6032 struct sched_group *group = sd->groups;
6033 char str[256];
6034
6035 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6036 cpumask_clear(groupmask);
6037
6038 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6039
6040 if (!(sd->flags & SD_LOAD_BALANCE)) {
6041 printk("does not load-balance\n");
6042 if (sd->parent)
6043 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6044 " has parent");
6045 return -1;
6046 }
6047
6048 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6049
6050 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6051 printk(KERN_ERR "ERROR: domain->span does not contain "
6052 "CPU%d\n", cpu);
6053 }
6054 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6055 printk(KERN_ERR "ERROR: domain->groups does not contain"
6056 " CPU%d\n", cpu);
6057 }
6058
6059 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6060 do {
6061 if (!group) {
6062 printk("\n");
6063 printk(KERN_ERR "ERROR: group is NULL\n");
6064 break;
6065 }
6066
6067 if (!group->cpu_power) {
6068 printk(KERN_CONT "\n");
6069 printk(KERN_ERR "ERROR: domain->cpu_power not "
6070 "set\n");
6071 break;
6072 }
6073
6074 if (!cpumask_weight(sched_group_cpus(group))) {
6075 printk(KERN_CONT "\n");
6076 printk(KERN_ERR "ERROR: empty group\n");
6077 break;
6078 }
6079
6080 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6081 printk(KERN_CONT "\n");
6082 printk(KERN_ERR "ERROR: repeated CPUs\n");
6083 break;
6084 }
6085
6086 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6087
6088 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6089
6090 printk(KERN_CONT " %s", str);
6091 if (group->cpu_power != SCHED_LOAD_SCALE) {
6092 printk(KERN_CONT " (cpu_power = %d)",
6093 group->cpu_power);
6094 }
6095
6096 group = group->next;
6097 } while (group != sd->groups);
6098 printk(KERN_CONT "\n");
6099
6100 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6101 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6102
6103 if (sd->parent &&
6104 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6105 printk(KERN_ERR "ERROR: parent span is not a superset "
6106 "of domain->span\n");
6107 return 0;
6108 }
6109
6110 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6111 {
6112 cpumask_var_t groupmask;
6113 int level = 0;
6114
6115 if (!sched_domain_debug_enabled)
6116 return;
6117
6118 if (!sd) {
6119 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6120 return;
6121 }
6122
6123 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6124
6125 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6126 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6127 return;
6128 }
6129
6130 for (;;) {
6131 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6132 break;
6133 level++;
6134 sd = sd->parent;
6135 if (!sd)
6136 break;
6137 }
6138 free_cpumask_var(groupmask);
6139 }
6140 #else /* !CONFIG_SCHED_DEBUG */
6141 # define sched_domain_debug(sd, cpu) do { } while (0)
6142 #endif /* CONFIG_SCHED_DEBUG */
6143
6144 static int sd_degenerate(struct sched_domain *sd)
6145 {
6146 if (cpumask_weight(sched_domain_span(sd)) == 1)
6147 return 1;
6148
6149 /* Following flags need at least 2 groups */
6150 if (sd->flags & (SD_LOAD_BALANCE |
6151 SD_BALANCE_NEWIDLE |
6152 SD_BALANCE_FORK |
6153 SD_BALANCE_EXEC |
6154 SD_SHARE_CPUPOWER |
6155 SD_SHARE_PKG_RESOURCES)) {
6156 if (sd->groups != sd->groups->next)
6157 return 0;
6158 }
6159
6160 /* Following flags don't use groups */
6161 if (sd->flags & (SD_WAKE_AFFINE))
6162 return 0;
6163
6164 return 1;
6165 }
6166
6167 static int
6168 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6169 {
6170 unsigned long cflags = sd->flags, pflags = parent->flags;
6171
6172 if (sd_degenerate(parent))
6173 return 1;
6174
6175 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6176 return 0;
6177
6178 /* Flags needing groups don't count if only 1 group in parent */
6179 if (parent->groups == parent->groups->next) {
6180 pflags &= ~(SD_LOAD_BALANCE |
6181 SD_BALANCE_NEWIDLE |
6182 SD_BALANCE_FORK |
6183 SD_BALANCE_EXEC |
6184 SD_SHARE_CPUPOWER |
6185 SD_SHARE_PKG_RESOURCES);
6186 if (nr_node_ids == 1)
6187 pflags &= ~SD_SERIALIZE;
6188 }
6189 if (~cflags & pflags)
6190 return 0;
6191
6192 return 1;
6193 }
6194
6195 static void free_rootdomain(struct root_domain *rd)
6196 {
6197 synchronize_sched();
6198
6199 cpupri_cleanup(&rd->cpupri);
6200
6201 free_cpumask_var(rd->rto_mask);
6202 free_cpumask_var(rd->online);
6203 free_cpumask_var(rd->span);
6204 kfree(rd);
6205 }
6206
6207 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6208 {
6209 struct root_domain *old_rd = NULL;
6210 unsigned long flags;
6211
6212 raw_spin_lock_irqsave(&rq->lock, flags);
6213
6214 if (rq->rd) {
6215 old_rd = rq->rd;
6216
6217 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6218 set_rq_offline(rq);
6219
6220 cpumask_clear_cpu(rq->cpu, old_rd->span);
6221
6222 /*
6223 * If we dont want to free the old_rt yet then
6224 * set old_rd to NULL to skip the freeing later
6225 * in this function:
6226 */
6227 if (!atomic_dec_and_test(&old_rd->refcount))
6228 old_rd = NULL;
6229 }
6230
6231 atomic_inc(&rd->refcount);
6232 rq->rd = rd;
6233
6234 cpumask_set_cpu(rq->cpu, rd->span);
6235 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6236 set_rq_online(rq);
6237
6238 raw_spin_unlock_irqrestore(&rq->lock, flags);
6239
6240 if (old_rd)
6241 free_rootdomain(old_rd);
6242 }
6243
6244 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6245 {
6246 gfp_t gfp = GFP_KERNEL;
6247
6248 memset(rd, 0, sizeof(*rd));
6249
6250 if (bootmem)
6251 gfp = GFP_NOWAIT;
6252
6253 if (!alloc_cpumask_var(&rd->span, gfp))
6254 goto out;
6255 if (!alloc_cpumask_var(&rd->online, gfp))
6256 goto free_span;
6257 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6258 goto free_online;
6259
6260 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6261 goto free_rto_mask;
6262 return 0;
6263
6264 free_rto_mask:
6265 free_cpumask_var(rd->rto_mask);
6266 free_online:
6267 free_cpumask_var(rd->online);
6268 free_span:
6269 free_cpumask_var(rd->span);
6270 out:
6271 return -ENOMEM;
6272 }
6273
6274 static void init_defrootdomain(void)
6275 {
6276 init_rootdomain(&def_root_domain, true);
6277
6278 atomic_set(&def_root_domain.refcount, 1);
6279 }
6280
6281 static struct root_domain *alloc_rootdomain(void)
6282 {
6283 struct root_domain *rd;
6284
6285 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6286 if (!rd)
6287 return NULL;
6288
6289 if (init_rootdomain(rd, false) != 0) {
6290 kfree(rd);
6291 return NULL;
6292 }
6293
6294 return rd;
6295 }
6296
6297 /*
6298 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6299 * hold the hotplug lock.
6300 */
6301 static void
6302 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6303 {
6304 struct rq *rq = cpu_rq(cpu);
6305 struct sched_domain *tmp;
6306
6307 /* Remove the sched domains which do not contribute to scheduling. */
6308 for (tmp = sd; tmp; ) {
6309 struct sched_domain *parent = tmp->parent;
6310 if (!parent)
6311 break;
6312
6313 if (sd_parent_degenerate(tmp, parent)) {
6314 tmp->parent = parent->parent;
6315 if (parent->parent)
6316 parent->parent->child = tmp;
6317 } else
6318 tmp = tmp->parent;
6319 }
6320
6321 if (sd && sd_degenerate(sd)) {
6322 sd = sd->parent;
6323 if (sd)
6324 sd->child = NULL;
6325 }
6326
6327 sched_domain_debug(sd, cpu);
6328
6329 rq_attach_root(rq, rd);
6330 rcu_assign_pointer(rq->sd, sd);
6331 }
6332
6333 /* cpus with isolated domains */
6334 static cpumask_var_t cpu_isolated_map;
6335
6336 /* Setup the mask of cpus configured for isolated domains */
6337 static int __init isolated_cpu_setup(char *str)
6338 {
6339 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6340 cpulist_parse(str, cpu_isolated_map);
6341 return 1;
6342 }
6343
6344 __setup("isolcpus=", isolated_cpu_setup);
6345
6346 /*
6347 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6348 * to a function which identifies what group(along with sched group) a CPU
6349 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6350 * (due to the fact that we keep track of groups covered with a struct cpumask).
6351 *
6352 * init_sched_build_groups will build a circular linked list of the groups
6353 * covered by the given span, and will set each group's ->cpumask correctly,
6354 * and ->cpu_power to 0.
6355 */
6356 static void
6357 init_sched_build_groups(const struct cpumask *span,
6358 const struct cpumask *cpu_map,
6359 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6360 struct sched_group **sg,
6361 struct cpumask *tmpmask),
6362 struct cpumask *covered, struct cpumask *tmpmask)
6363 {
6364 struct sched_group *first = NULL, *last = NULL;
6365 int i;
6366
6367 cpumask_clear(covered);
6368
6369 for_each_cpu(i, span) {
6370 struct sched_group *sg;
6371 int group = group_fn(i, cpu_map, &sg, tmpmask);
6372 int j;
6373
6374 if (cpumask_test_cpu(i, covered))
6375 continue;
6376
6377 cpumask_clear(sched_group_cpus(sg));
6378 sg->cpu_power = 0;
6379
6380 for_each_cpu(j, span) {
6381 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6382 continue;
6383
6384 cpumask_set_cpu(j, covered);
6385 cpumask_set_cpu(j, sched_group_cpus(sg));
6386 }
6387 if (!first)
6388 first = sg;
6389 if (last)
6390 last->next = sg;
6391 last = sg;
6392 }
6393 last->next = first;
6394 }
6395
6396 #define SD_NODES_PER_DOMAIN 16
6397
6398 #ifdef CONFIG_NUMA
6399
6400 /**
6401 * find_next_best_node - find the next node to include in a sched_domain
6402 * @node: node whose sched_domain we're building
6403 * @used_nodes: nodes already in the sched_domain
6404 *
6405 * Find the next node to include in a given scheduling domain. Simply
6406 * finds the closest node not already in the @used_nodes map.
6407 *
6408 * Should use nodemask_t.
6409 */
6410 static int find_next_best_node(int node, nodemask_t *used_nodes)
6411 {
6412 int i, n, val, min_val, best_node = 0;
6413
6414 min_val = INT_MAX;
6415
6416 for (i = 0; i < nr_node_ids; i++) {
6417 /* Start at @node */
6418 n = (node + i) % nr_node_ids;
6419
6420 if (!nr_cpus_node(n))
6421 continue;
6422
6423 /* Skip already used nodes */
6424 if (node_isset(n, *used_nodes))
6425 continue;
6426
6427 /* Simple min distance search */
6428 val = node_distance(node, n);
6429
6430 if (val < min_val) {
6431 min_val = val;
6432 best_node = n;
6433 }
6434 }
6435
6436 node_set(best_node, *used_nodes);
6437 return best_node;
6438 }
6439
6440 /**
6441 * sched_domain_node_span - get a cpumask for a node's sched_domain
6442 * @node: node whose cpumask we're constructing
6443 * @span: resulting cpumask
6444 *
6445 * Given a node, construct a good cpumask for its sched_domain to span. It
6446 * should be one that prevents unnecessary balancing, but also spreads tasks
6447 * out optimally.
6448 */
6449 static void sched_domain_node_span(int node, struct cpumask *span)
6450 {
6451 nodemask_t used_nodes;
6452 int i;
6453
6454 cpumask_clear(span);
6455 nodes_clear(used_nodes);
6456
6457 cpumask_or(span, span, cpumask_of_node(node));
6458 node_set(node, used_nodes);
6459
6460 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6461 int next_node = find_next_best_node(node, &used_nodes);
6462
6463 cpumask_or(span, span, cpumask_of_node(next_node));
6464 }
6465 }
6466 #endif /* CONFIG_NUMA */
6467
6468 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6469
6470 /*
6471 * The cpus mask in sched_group and sched_domain hangs off the end.
6472 *
6473 * ( See the the comments in include/linux/sched.h:struct sched_group
6474 * and struct sched_domain. )
6475 */
6476 struct static_sched_group {
6477 struct sched_group sg;
6478 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6479 };
6480
6481 struct static_sched_domain {
6482 struct sched_domain sd;
6483 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6484 };
6485
6486 struct s_data {
6487 #ifdef CONFIG_NUMA
6488 int sd_allnodes;
6489 cpumask_var_t domainspan;
6490 cpumask_var_t covered;
6491 cpumask_var_t notcovered;
6492 #endif
6493 cpumask_var_t nodemask;
6494 cpumask_var_t this_sibling_map;
6495 cpumask_var_t this_core_map;
6496 cpumask_var_t send_covered;
6497 cpumask_var_t tmpmask;
6498 struct sched_group **sched_group_nodes;
6499 struct root_domain *rd;
6500 };
6501
6502 enum s_alloc {
6503 sa_sched_groups = 0,
6504 sa_rootdomain,
6505 sa_tmpmask,
6506 sa_send_covered,
6507 sa_this_core_map,
6508 sa_this_sibling_map,
6509 sa_nodemask,
6510 sa_sched_group_nodes,
6511 #ifdef CONFIG_NUMA
6512 sa_notcovered,
6513 sa_covered,
6514 sa_domainspan,
6515 #endif
6516 sa_none,
6517 };
6518
6519 /*
6520 * SMT sched-domains:
6521 */
6522 #ifdef CONFIG_SCHED_SMT
6523 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6524 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6525
6526 static int
6527 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6528 struct sched_group **sg, struct cpumask *unused)
6529 {
6530 if (sg)
6531 *sg = &per_cpu(sched_groups, cpu).sg;
6532 return cpu;
6533 }
6534 #endif /* CONFIG_SCHED_SMT */
6535
6536 /*
6537 * multi-core sched-domains:
6538 */
6539 #ifdef CONFIG_SCHED_MC
6540 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6541 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6542 #endif /* CONFIG_SCHED_MC */
6543
6544 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6545 static int
6546 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6547 struct sched_group **sg, struct cpumask *mask)
6548 {
6549 int group;
6550
6551 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6552 group = cpumask_first(mask);
6553 if (sg)
6554 *sg = &per_cpu(sched_group_core, group).sg;
6555 return group;
6556 }
6557 #elif defined(CONFIG_SCHED_MC)
6558 static int
6559 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6560 struct sched_group **sg, struct cpumask *unused)
6561 {
6562 if (sg)
6563 *sg = &per_cpu(sched_group_core, cpu).sg;
6564 return cpu;
6565 }
6566 #endif
6567
6568 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6569 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6570
6571 static int
6572 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6573 struct sched_group **sg, struct cpumask *mask)
6574 {
6575 int group;
6576 #ifdef CONFIG_SCHED_MC
6577 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6578 group = cpumask_first(mask);
6579 #elif defined(CONFIG_SCHED_SMT)
6580 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6581 group = cpumask_first(mask);
6582 #else
6583 group = cpu;
6584 #endif
6585 if (sg)
6586 *sg = &per_cpu(sched_group_phys, group).sg;
6587 return group;
6588 }
6589
6590 #ifdef CONFIG_NUMA
6591 /*
6592 * The init_sched_build_groups can't handle what we want to do with node
6593 * groups, so roll our own. Now each node has its own list of groups which
6594 * gets dynamically allocated.
6595 */
6596 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6597 static struct sched_group ***sched_group_nodes_bycpu;
6598
6599 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6600 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6601
6602 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6603 struct sched_group **sg,
6604 struct cpumask *nodemask)
6605 {
6606 int group;
6607
6608 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6609 group = cpumask_first(nodemask);
6610
6611 if (sg)
6612 *sg = &per_cpu(sched_group_allnodes, group).sg;
6613 return group;
6614 }
6615
6616 static void init_numa_sched_groups_power(struct sched_group *group_head)
6617 {
6618 struct sched_group *sg = group_head;
6619 int j;
6620
6621 if (!sg)
6622 return;
6623 do {
6624 for_each_cpu(j, sched_group_cpus(sg)) {
6625 struct sched_domain *sd;
6626
6627 sd = &per_cpu(phys_domains, j).sd;
6628 if (j != group_first_cpu(sd->groups)) {
6629 /*
6630 * Only add "power" once for each
6631 * physical package.
6632 */
6633 continue;
6634 }
6635
6636 sg->cpu_power += sd->groups->cpu_power;
6637 }
6638 sg = sg->next;
6639 } while (sg != group_head);
6640 }
6641
6642 static int build_numa_sched_groups(struct s_data *d,
6643 const struct cpumask *cpu_map, int num)
6644 {
6645 struct sched_domain *sd;
6646 struct sched_group *sg, *prev;
6647 int n, j;
6648
6649 cpumask_clear(d->covered);
6650 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6651 if (cpumask_empty(d->nodemask)) {
6652 d->sched_group_nodes[num] = NULL;
6653 goto out;
6654 }
6655
6656 sched_domain_node_span(num, d->domainspan);
6657 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6658
6659 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6660 GFP_KERNEL, num);
6661 if (!sg) {
6662 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6663 num);
6664 return -ENOMEM;
6665 }
6666 d->sched_group_nodes[num] = sg;
6667
6668 for_each_cpu(j, d->nodemask) {
6669 sd = &per_cpu(node_domains, j).sd;
6670 sd->groups = sg;
6671 }
6672
6673 sg->cpu_power = 0;
6674 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6675 sg->next = sg;
6676 cpumask_or(d->covered, d->covered, d->nodemask);
6677
6678 prev = sg;
6679 for (j = 0; j < nr_node_ids; j++) {
6680 n = (num + j) % nr_node_ids;
6681 cpumask_complement(d->notcovered, d->covered);
6682 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6683 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6684 if (cpumask_empty(d->tmpmask))
6685 break;
6686 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6687 if (cpumask_empty(d->tmpmask))
6688 continue;
6689 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6690 GFP_KERNEL, num);
6691 if (!sg) {
6692 printk(KERN_WARNING
6693 "Can not alloc domain group for node %d\n", j);
6694 return -ENOMEM;
6695 }
6696 sg->cpu_power = 0;
6697 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6698 sg->next = prev->next;
6699 cpumask_or(d->covered, d->covered, d->tmpmask);
6700 prev->next = sg;
6701 prev = sg;
6702 }
6703 out:
6704 return 0;
6705 }
6706 #endif /* CONFIG_NUMA */
6707
6708 #ifdef CONFIG_NUMA
6709 /* Free memory allocated for various sched_group structures */
6710 static void free_sched_groups(const struct cpumask *cpu_map,
6711 struct cpumask *nodemask)
6712 {
6713 int cpu, i;
6714
6715 for_each_cpu(cpu, cpu_map) {
6716 struct sched_group **sched_group_nodes
6717 = sched_group_nodes_bycpu[cpu];
6718
6719 if (!sched_group_nodes)
6720 continue;
6721
6722 for (i = 0; i < nr_node_ids; i++) {
6723 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6724
6725 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6726 if (cpumask_empty(nodemask))
6727 continue;
6728
6729 if (sg == NULL)
6730 continue;
6731 sg = sg->next;
6732 next_sg:
6733 oldsg = sg;
6734 sg = sg->next;
6735 kfree(oldsg);
6736 if (oldsg != sched_group_nodes[i])
6737 goto next_sg;
6738 }
6739 kfree(sched_group_nodes);
6740 sched_group_nodes_bycpu[cpu] = NULL;
6741 }
6742 }
6743 #else /* !CONFIG_NUMA */
6744 static void free_sched_groups(const struct cpumask *cpu_map,
6745 struct cpumask *nodemask)
6746 {
6747 }
6748 #endif /* CONFIG_NUMA */
6749
6750 /*
6751 * Initialize sched groups cpu_power.
6752 *
6753 * cpu_power indicates the capacity of sched group, which is used while
6754 * distributing the load between different sched groups in a sched domain.
6755 * Typically cpu_power for all the groups in a sched domain will be same unless
6756 * there are asymmetries in the topology. If there are asymmetries, group
6757 * having more cpu_power will pickup more load compared to the group having
6758 * less cpu_power.
6759 */
6760 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6761 {
6762 struct sched_domain *child;
6763 struct sched_group *group;
6764 long power;
6765 int weight;
6766
6767 WARN_ON(!sd || !sd->groups);
6768
6769 if (cpu != group_first_cpu(sd->groups))
6770 return;
6771
6772 child = sd->child;
6773
6774 sd->groups->cpu_power = 0;
6775
6776 if (!child) {
6777 power = SCHED_LOAD_SCALE;
6778 weight = cpumask_weight(sched_domain_span(sd));
6779 /*
6780 * SMT siblings share the power of a single core.
6781 * Usually multiple threads get a better yield out of
6782 * that one core than a single thread would have,
6783 * reflect that in sd->smt_gain.
6784 */
6785 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6786 power *= sd->smt_gain;
6787 power /= weight;
6788 power >>= SCHED_LOAD_SHIFT;
6789 }
6790 sd->groups->cpu_power += power;
6791 return;
6792 }
6793
6794 /*
6795 * Add cpu_power of each child group to this groups cpu_power.
6796 */
6797 group = child->groups;
6798 do {
6799 sd->groups->cpu_power += group->cpu_power;
6800 group = group->next;
6801 } while (group != child->groups);
6802 }
6803
6804 /*
6805 * Initializers for schedule domains
6806 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6807 */
6808
6809 #ifdef CONFIG_SCHED_DEBUG
6810 # define SD_INIT_NAME(sd, type) sd->name = #type
6811 #else
6812 # define SD_INIT_NAME(sd, type) do { } while (0)
6813 #endif
6814
6815 #define SD_INIT(sd, type) sd_init_##type(sd)
6816
6817 #define SD_INIT_FUNC(type) \
6818 static noinline void sd_init_##type(struct sched_domain *sd) \
6819 { \
6820 memset(sd, 0, sizeof(*sd)); \
6821 *sd = SD_##type##_INIT; \
6822 sd->level = SD_LV_##type; \
6823 SD_INIT_NAME(sd, type); \
6824 }
6825
6826 SD_INIT_FUNC(CPU)
6827 #ifdef CONFIG_NUMA
6828 SD_INIT_FUNC(ALLNODES)
6829 SD_INIT_FUNC(NODE)
6830 #endif
6831 #ifdef CONFIG_SCHED_SMT
6832 SD_INIT_FUNC(SIBLING)
6833 #endif
6834 #ifdef CONFIG_SCHED_MC
6835 SD_INIT_FUNC(MC)
6836 #endif
6837
6838 static int default_relax_domain_level = -1;
6839
6840 static int __init setup_relax_domain_level(char *str)
6841 {
6842 unsigned long val;
6843
6844 val = simple_strtoul(str, NULL, 0);
6845 if (val < SD_LV_MAX)
6846 default_relax_domain_level = val;
6847
6848 return 1;
6849 }
6850 __setup("relax_domain_level=", setup_relax_domain_level);
6851
6852 static void set_domain_attribute(struct sched_domain *sd,
6853 struct sched_domain_attr *attr)
6854 {
6855 int request;
6856
6857 if (!attr || attr->relax_domain_level < 0) {
6858 if (default_relax_domain_level < 0)
6859 return;
6860 else
6861 request = default_relax_domain_level;
6862 } else
6863 request = attr->relax_domain_level;
6864 if (request < sd->level) {
6865 /* turn off idle balance on this domain */
6866 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6867 } else {
6868 /* turn on idle balance on this domain */
6869 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6870 }
6871 }
6872
6873 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6874 const struct cpumask *cpu_map)
6875 {
6876 switch (what) {
6877 case sa_sched_groups:
6878 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6879 d->sched_group_nodes = NULL;
6880 case sa_rootdomain:
6881 free_rootdomain(d->rd); /* fall through */
6882 case sa_tmpmask:
6883 free_cpumask_var(d->tmpmask); /* fall through */
6884 case sa_send_covered:
6885 free_cpumask_var(d->send_covered); /* fall through */
6886 case sa_this_core_map:
6887 free_cpumask_var(d->this_core_map); /* fall through */
6888 case sa_this_sibling_map:
6889 free_cpumask_var(d->this_sibling_map); /* fall through */
6890 case sa_nodemask:
6891 free_cpumask_var(d->nodemask); /* fall through */
6892 case sa_sched_group_nodes:
6893 #ifdef CONFIG_NUMA
6894 kfree(d->sched_group_nodes); /* fall through */
6895 case sa_notcovered:
6896 free_cpumask_var(d->notcovered); /* fall through */
6897 case sa_covered:
6898 free_cpumask_var(d->covered); /* fall through */
6899 case sa_domainspan:
6900 free_cpumask_var(d->domainspan); /* fall through */
6901 #endif
6902 case sa_none:
6903 break;
6904 }
6905 }
6906
6907 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6908 const struct cpumask *cpu_map)
6909 {
6910 #ifdef CONFIG_NUMA
6911 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6912 return sa_none;
6913 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6914 return sa_domainspan;
6915 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6916 return sa_covered;
6917 /* Allocate the per-node list of sched groups */
6918 d->sched_group_nodes = kcalloc(nr_node_ids,
6919 sizeof(struct sched_group *), GFP_KERNEL);
6920 if (!d->sched_group_nodes) {
6921 printk(KERN_WARNING "Can not alloc sched group node list\n");
6922 return sa_notcovered;
6923 }
6924 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6925 #endif
6926 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6927 return sa_sched_group_nodes;
6928 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6929 return sa_nodemask;
6930 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6931 return sa_this_sibling_map;
6932 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6933 return sa_this_core_map;
6934 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6935 return sa_send_covered;
6936 d->rd = alloc_rootdomain();
6937 if (!d->rd) {
6938 printk(KERN_WARNING "Cannot alloc root domain\n");
6939 return sa_tmpmask;
6940 }
6941 return sa_rootdomain;
6942 }
6943
6944 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6945 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6946 {
6947 struct sched_domain *sd = NULL;
6948 #ifdef CONFIG_NUMA
6949 struct sched_domain *parent;
6950
6951 d->sd_allnodes = 0;
6952 if (cpumask_weight(cpu_map) >
6953 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6954 sd = &per_cpu(allnodes_domains, i).sd;
6955 SD_INIT(sd, ALLNODES);
6956 set_domain_attribute(sd, attr);
6957 cpumask_copy(sched_domain_span(sd), cpu_map);
6958 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6959 d->sd_allnodes = 1;
6960 }
6961 parent = sd;
6962
6963 sd = &per_cpu(node_domains, i).sd;
6964 SD_INIT(sd, NODE);
6965 set_domain_attribute(sd, attr);
6966 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6967 sd->parent = parent;
6968 if (parent)
6969 parent->child = sd;
6970 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6971 #endif
6972 return sd;
6973 }
6974
6975 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6976 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6977 struct sched_domain *parent, int i)
6978 {
6979 struct sched_domain *sd;
6980 sd = &per_cpu(phys_domains, i).sd;
6981 SD_INIT(sd, CPU);
6982 set_domain_attribute(sd, attr);
6983 cpumask_copy(sched_domain_span(sd), d->nodemask);
6984 sd->parent = parent;
6985 if (parent)
6986 parent->child = sd;
6987 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6988 return sd;
6989 }
6990
6991 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6992 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6993 struct sched_domain *parent, int i)
6994 {
6995 struct sched_domain *sd = parent;
6996 #ifdef CONFIG_SCHED_MC
6997 sd = &per_cpu(core_domains, i).sd;
6998 SD_INIT(sd, MC);
6999 set_domain_attribute(sd, attr);
7000 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7001 sd->parent = parent;
7002 parent->child = sd;
7003 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7004 #endif
7005 return sd;
7006 }
7007
7008 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7009 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7010 struct sched_domain *parent, int i)
7011 {
7012 struct sched_domain *sd = parent;
7013 #ifdef CONFIG_SCHED_SMT
7014 sd = &per_cpu(cpu_domains, i).sd;
7015 SD_INIT(sd, SIBLING);
7016 set_domain_attribute(sd, attr);
7017 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7018 sd->parent = parent;
7019 parent->child = sd;
7020 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7021 #endif
7022 return sd;
7023 }
7024
7025 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7026 const struct cpumask *cpu_map, int cpu)
7027 {
7028 switch (l) {
7029 #ifdef CONFIG_SCHED_SMT
7030 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7031 cpumask_and(d->this_sibling_map, cpu_map,
7032 topology_thread_cpumask(cpu));
7033 if (cpu == cpumask_first(d->this_sibling_map))
7034 init_sched_build_groups(d->this_sibling_map, cpu_map,
7035 &cpu_to_cpu_group,
7036 d->send_covered, d->tmpmask);
7037 break;
7038 #endif
7039 #ifdef CONFIG_SCHED_MC
7040 case SD_LV_MC: /* set up multi-core groups */
7041 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7042 if (cpu == cpumask_first(d->this_core_map))
7043 init_sched_build_groups(d->this_core_map, cpu_map,
7044 &cpu_to_core_group,
7045 d->send_covered, d->tmpmask);
7046 break;
7047 #endif
7048 case SD_LV_CPU: /* set up physical groups */
7049 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7050 if (!cpumask_empty(d->nodemask))
7051 init_sched_build_groups(d->nodemask, cpu_map,
7052 &cpu_to_phys_group,
7053 d->send_covered, d->tmpmask);
7054 break;
7055 #ifdef CONFIG_NUMA
7056 case SD_LV_ALLNODES:
7057 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7058 d->send_covered, d->tmpmask);
7059 break;
7060 #endif
7061 default:
7062 break;
7063 }
7064 }
7065
7066 /*
7067 * Build sched domains for a given set of cpus and attach the sched domains
7068 * to the individual cpus
7069 */
7070 static int __build_sched_domains(const struct cpumask *cpu_map,
7071 struct sched_domain_attr *attr)
7072 {
7073 enum s_alloc alloc_state = sa_none;
7074 struct s_data d;
7075 struct sched_domain *sd;
7076 int i;
7077 #ifdef CONFIG_NUMA
7078 d.sd_allnodes = 0;
7079 #endif
7080
7081 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7082 if (alloc_state != sa_rootdomain)
7083 goto error;
7084 alloc_state = sa_sched_groups;
7085
7086 /*
7087 * Set up domains for cpus specified by the cpu_map.
7088 */
7089 for_each_cpu(i, cpu_map) {
7090 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7091 cpu_map);
7092
7093 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7094 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7095 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7096 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7097 }
7098
7099 for_each_cpu(i, cpu_map) {
7100 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7101 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7102 }
7103
7104 /* Set up physical groups */
7105 for (i = 0; i < nr_node_ids; i++)
7106 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7107
7108 #ifdef CONFIG_NUMA
7109 /* Set up node groups */
7110 if (d.sd_allnodes)
7111 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7112
7113 for (i = 0; i < nr_node_ids; i++)
7114 if (build_numa_sched_groups(&d, cpu_map, i))
7115 goto error;
7116 #endif
7117
7118 /* Calculate CPU power for physical packages and nodes */
7119 #ifdef CONFIG_SCHED_SMT
7120 for_each_cpu(i, cpu_map) {
7121 sd = &per_cpu(cpu_domains, i).sd;
7122 init_sched_groups_power(i, sd);
7123 }
7124 #endif
7125 #ifdef CONFIG_SCHED_MC
7126 for_each_cpu(i, cpu_map) {
7127 sd = &per_cpu(core_domains, i).sd;
7128 init_sched_groups_power(i, sd);
7129 }
7130 #endif
7131
7132 for_each_cpu(i, cpu_map) {
7133 sd = &per_cpu(phys_domains, i).sd;
7134 init_sched_groups_power(i, sd);
7135 }
7136
7137 #ifdef CONFIG_NUMA
7138 for (i = 0; i < nr_node_ids; i++)
7139 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7140
7141 if (d.sd_allnodes) {
7142 struct sched_group *sg;
7143
7144 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7145 d.tmpmask);
7146 init_numa_sched_groups_power(sg);
7147 }
7148 #endif
7149
7150 /* Attach the domains */
7151 for_each_cpu(i, cpu_map) {
7152 #ifdef CONFIG_SCHED_SMT
7153 sd = &per_cpu(cpu_domains, i).sd;
7154 #elif defined(CONFIG_SCHED_MC)
7155 sd = &per_cpu(core_domains, i).sd;
7156 #else
7157 sd = &per_cpu(phys_domains, i).sd;
7158 #endif
7159 cpu_attach_domain(sd, d.rd, i);
7160 }
7161
7162 d.sched_group_nodes = NULL; /* don't free this we still need it */
7163 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7164 return 0;
7165
7166 error:
7167 __free_domain_allocs(&d, alloc_state, cpu_map);
7168 return -ENOMEM;
7169 }
7170
7171 static int build_sched_domains(const struct cpumask *cpu_map)
7172 {
7173 return __build_sched_domains(cpu_map, NULL);
7174 }
7175
7176 static cpumask_var_t *doms_cur; /* current sched domains */
7177 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7178 static struct sched_domain_attr *dattr_cur;
7179 /* attribues of custom domains in 'doms_cur' */
7180
7181 /*
7182 * Special case: If a kmalloc of a doms_cur partition (array of
7183 * cpumask) fails, then fallback to a single sched domain,
7184 * as determined by the single cpumask fallback_doms.
7185 */
7186 static cpumask_var_t fallback_doms;
7187
7188 /*
7189 * arch_update_cpu_topology lets virtualized architectures update the
7190 * cpu core maps. It is supposed to return 1 if the topology changed
7191 * or 0 if it stayed the same.
7192 */
7193 int __attribute__((weak)) arch_update_cpu_topology(void)
7194 {
7195 return 0;
7196 }
7197
7198 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7199 {
7200 int i;
7201 cpumask_var_t *doms;
7202
7203 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7204 if (!doms)
7205 return NULL;
7206 for (i = 0; i < ndoms; i++) {
7207 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7208 free_sched_domains(doms, i);
7209 return NULL;
7210 }
7211 }
7212 return doms;
7213 }
7214
7215 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7216 {
7217 unsigned int i;
7218 for (i = 0; i < ndoms; i++)
7219 free_cpumask_var(doms[i]);
7220 kfree(doms);
7221 }
7222
7223 /*
7224 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7225 * For now this just excludes isolated cpus, but could be used to
7226 * exclude other special cases in the future.
7227 */
7228 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7229 {
7230 int err;
7231
7232 arch_update_cpu_topology();
7233 ndoms_cur = 1;
7234 doms_cur = alloc_sched_domains(ndoms_cur);
7235 if (!doms_cur)
7236 doms_cur = &fallback_doms;
7237 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7238 dattr_cur = NULL;
7239 err = build_sched_domains(doms_cur[0]);
7240 register_sched_domain_sysctl();
7241
7242 return err;
7243 }
7244
7245 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7246 struct cpumask *tmpmask)
7247 {
7248 free_sched_groups(cpu_map, tmpmask);
7249 }
7250
7251 /*
7252 * Detach sched domains from a group of cpus specified in cpu_map
7253 * These cpus will now be attached to the NULL domain
7254 */
7255 static void detach_destroy_domains(const struct cpumask *cpu_map)
7256 {
7257 /* Save because hotplug lock held. */
7258 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7259 int i;
7260
7261 for_each_cpu(i, cpu_map)
7262 cpu_attach_domain(NULL, &def_root_domain, i);
7263 synchronize_sched();
7264 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7265 }
7266
7267 /* handle null as "default" */
7268 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7269 struct sched_domain_attr *new, int idx_new)
7270 {
7271 struct sched_domain_attr tmp;
7272
7273 /* fast path */
7274 if (!new && !cur)
7275 return 1;
7276
7277 tmp = SD_ATTR_INIT;
7278 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7279 new ? (new + idx_new) : &tmp,
7280 sizeof(struct sched_domain_attr));
7281 }
7282
7283 /*
7284 * Partition sched domains as specified by the 'ndoms_new'
7285 * cpumasks in the array doms_new[] of cpumasks. This compares
7286 * doms_new[] to the current sched domain partitioning, doms_cur[].
7287 * It destroys each deleted domain and builds each new domain.
7288 *
7289 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7290 * The masks don't intersect (don't overlap.) We should setup one
7291 * sched domain for each mask. CPUs not in any of the cpumasks will
7292 * not be load balanced. If the same cpumask appears both in the
7293 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7294 * it as it is.
7295 *
7296 * The passed in 'doms_new' should be allocated using
7297 * alloc_sched_domains. This routine takes ownership of it and will
7298 * free_sched_domains it when done with it. If the caller failed the
7299 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7300 * and partition_sched_domains() will fallback to the single partition
7301 * 'fallback_doms', it also forces the domains to be rebuilt.
7302 *
7303 * If doms_new == NULL it will be replaced with cpu_online_mask.
7304 * ndoms_new == 0 is a special case for destroying existing domains,
7305 * and it will not create the default domain.
7306 *
7307 * Call with hotplug lock held
7308 */
7309 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7310 struct sched_domain_attr *dattr_new)
7311 {
7312 int i, j, n;
7313 int new_topology;
7314
7315 mutex_lock(&sched_domains_mutex);
7316
7317 /* always unregister in case we don't destroy any domains */
7318 unregister_sched_domain_sysctl();
7319
7320 /* Let architecture update cpu core mappings. */
7321 new_topology = arch_update_cpu_topology();
7322
7323 n = doms_new ? ndoms_new : 0;
7324
7325 /* Destroy deleted domains */
7326 for (i = 0; i < ndoms_cur; i++) {
7327 for (j = 0; j < n && !new_topology; j++) {
7328 if (cpumask_equal(doms_cur[i], doms_new[j])
7329 && dattrs_equal(dattr_cur, i, dattr_new, j))
7330 goto match1;
7331 }
7332 /* no match - a current sched domain not in new doms_new[] */
7333 detach_destroy_domains(doms_cur[i]);
7334 match1:
7335 ;
7336 }
7337
7338 if (doms_new == NULL) {
7339 ndoms_cur = 0;
7340 doms_new = &fallback_doms;
7341 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7342 WARN_ON_ONCE(dattr_new);
7343 }
7344
7345 /* Build new domains */
7346 for (i = 0; i < ndoms_new; i++) {
7347 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7348 if (cpumask_equal(doms_new[i], doms_cur[j])
7349 && dattrs_equal(dattr_new, i, dattr_cur, j))
7350 goto match2;
7351 }
7352 /* no match - add a new doms_new */
7353 __build_sched_domains(doms_new[i],
7354 dattr_new ? dattr_new + i : NULL);
7355 match2:
7356 ;
7357 }
7358
7359 /* Remember the new sched domains */
7360 if (doms_cur != &fallback_doms)
7361 free_sched_domains(doms_cur, ndoms_cur);
7362 kfree(dattr_cur); /* kfree(NULL) is safe */
7363 doms_cur = doms_new;
7364 dattr_cur = dattr_new;
7365 ndoms_cur = ndoms_new;
7366
7367 register_sched_domain_sysctl();
7368
7369 mutex_unlock(&sched_domains_mutex);
7370 }
7371
7372 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7373 static void arch_reinit_sched_domains(void)
7374 {
7375 get_online_cpus();
7376
7377 /* Destroy domains first to force the rebuild */
7378 partition_sched_domains(0, NULL, NULL);
7379
7380 rebuild_sched_domains();
7381 put_online_cpus();
7382 }
7383
7384 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7385 {
7386 unsigned int level = 0;
7387
7388 if (sscanf(buf, "%u", &level) != 1)
7389 return -EINVAL;
7390
7391 /*
7392 * level is always be positive so don't check for
7393 * level < POWERSAVINGS_BALANCE_NONE which is 0
7394 * What happens on 0 or 1 byte write,
7395 * need to check for count as well?
7396 */
7397
7398 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7399 return -EINVAL;
7400
7401 if (smt)
7402 sched_smt_power_savings = level;
7403 else
7404 sched_mc_power_savings = level;
7405
7406 arch_reinit_sched_domains();
7407
7408 return count;
7409 }
7410
7411 #ifdef CONFIG_SCHED_MC
7412 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7413 struct sysdev_class_attribute *attr,
7414 char *page)
7415 {
7416 return sprintf(page, "%u\n", sched_mc_power_savings);
7417 }
7418 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7419 struct sysdev_class_attribute *attr,
7420 const char *buf, size_t count)
7421 {
7422 return sched_power_savings_store(buf, count, 0);
7423 }
7424 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7425 sched_mc_power_savings_show,
7426 sched_mc_power_savings_store);
7427 #endif
7428
7429 #ifdef CONFIG_SCHED_SMT
7430 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7431 struct sysdev_class_attribute *attr,
7432 char *page)
7433 {
7434 return sprintf(page, "%u\n", sched_smt_power_savings);
7435 }
7436 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7437 struct sysdev_class_attribute *attr,
7438 const char *buf, size_t count)
7439 {
7440 return sched_power_savings_store(buf, count, 1);
7441 }
7442 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7443 sched_smt_power_savings_show,
7444 sched_smt_power_savings_store);
7445 #endif
7446
7447 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7448 {
7449 int err = 0;
7450
7451 #ifdef CONFIG_SCHED_SMT
7452 if (smt_capable())
7453 err = sysfs_create_file(&cls->kset.kobj,
7454 &attr_sched_smt_power_savings.attr);
7455 #endif
7456 #ifdef CONFIG_SCHED_MC
7457 if (!err && mc_capable())
7458 err = sysfs_create_file(&cls->kset.kobj,
7459 &attr_sched_mc_power_savings.attr);
7460 #endif
7461 return err;
7462 }
7463 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7464
7465 #ifndef CONFIG_CPUSETS
7466 /*
7467 * Add online and remove offline CPUs from the scheduler domains.
7468 * When cpusets are enabled they take over this function.
7469 */
7470 static int update_sched_domains(struct notifier_block *nfb,
7471 unsigned long action, void *hcpu)
7472 {
7473 switch (action) {
7474 case CPU_ONLINE:
7475 case CPU_ONLINE_FROZEN:
7476 case CPU_DOWN_PREPARE:
7477 case CPU_DOWN_PREPARE_FROZEN:
7478 case CPU_DOWN_FAILED:
7479 case CPU_DOWN_FAILED_FROZEN:
7480 partition_sched_domains(1, NULL, NULL);
7481 return NOTIFY_OK;
7482
7483 default:
7484 return NOTIFY_DONE;
7485 }
7486 }
7487 #endif
7488
7489 static int update_runtime(struct notifier_block *nfb,
7490 unsigned long action, void *hcpu)
7491 {
7492 int cpu = (int)(long)hcpu;
7493
7494 switch (action) {
7495 case CPU_DOWN_PREPARE:
7496 case CPU_DOWN_PREPARE_FROZEN:
7497 disable_runtime(cpu_rq(cpu));
7498 return NOTIFY_OK;
7499
7500 case CPU_DOWN_FAILED:
7501 case CPU_DOWN_FAILED_FROZEN:
7502 case CPU_ONLINE:
7503 case CPU_ONLINE_FROZEN:
7504 enable_runtime(cpu_rq(cpu));
7505 return NOTIFY_OK;
7506
7507 default:
7508 return NOTIFY_DONE;
7509 }
7510 }
7511
7512 void __init sched_init_smp(void)
7513 {
7514 cpumask_var_t non_isolated_cpus;
7515
7516 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7517 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7518
7519 #if defined(CONFIG_NUMA)
7520 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7521 GFP_KERNEL);
7522 BUG_ON(sched_group_nodes_bycpu == NULL);
7523 #endif
7524 get_online_cpus();
7525 mutex_lock(&sched_domains_mutex);
7526 arch_init_sched_domains(cpu_active_mask);
7527 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7528 if (cpumask_empty(non_isolated_cpus))
7529 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7530 mutex_unlock(&sched_domains_mutex);
7531 put_online_cpus();
7532
7533 #ifndef CONFIG_CPUSETS
7534 /* XXX: Theoretical race here - CPU may be hotplugged now */
7535 hotcpu_notifier(update_sched_domains, 0);
7536 #endif
7537
7538 /* RT runtime code needs to handle some hotplug events */
7539 hotcpu_notifier(update_runtime, 0);
7540
7541 init_hrtick();
7542
7543 /* Move init over to a non-isolated CPU */
7544 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7545 BUG();
7546 sched_init_granularity();
7547 free_cpumask_var(non_isolated_cpus);
7548
7549 init_sched_rt_class();
7550 }
7551 #else
7552 void __init sched_init_smp(void)
7553 {
7554 sched_init_granularity();
7555 }
7556 #endif /* CONFIG_SMP */
7557
7558 const_debug unsigned int sysctl_timer_migration = 1;
7559
7560 int in_sched_functions(unsigned long addr)
7561 {
7562 return in_lock_functions(addr) ||
7563 (addr >= (unsigned long)__sched_text_start
7564 && addr < (unsigned long)__sched_text_end);
7565 }
7566
7567 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7568 {
7569 cfs_rq->tasks_timeline = RB_ROOT;
7570 INIT_LIST_HEAD(&cfs_rq->tasks);
7571 #ifdef CONFIG_FAIR_GROUP_SCHED
7572 cfs_rq->rq = rq;
7573 #endif
7574 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7575 }
7576
7577 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7578 {
7579 struct rt_prio_array *array;
7580 int i;
7581
7582 array = &rt_rq->active;
7583 for (i = 0; i < MAX_RT_PRIO; i++) {
7584 INIT_LIST_HEAD(array->queue + i);
7585 __clear_bit(i, array->bitmap);
7586 }
7587 /* delimiter for bitsearch: */
7588 __set_bit(MAX_RT_PRIO, array->bitmap);
7589
7590 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7591 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7592 #ifdef CONFIG_SMP
7593 rt_rq->highest_prio.next = MAX_RT_PRIO;
7594 #endif
7595 #endif
7596 #ifdef CONFIG_SMP
7597 rt_rq->rt_nr_migratory = 0;
7598 rt_rq->overloaded = 0;
7599 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7600 #endif
7601
7602 rt_rq->rt_time = 0;
7603 rt_rq->rt_throttled = 0;
7604 rt_rq->rt_runtime = 0;
7605 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7606
7607 #ifdef CONFIG_RT_GROUP_SCHED
7608 rt_rq->rt_nr_boosted = 0;
7609 rt_rq->rq = rq;
7610 #endif
7611 }
7612
7613 #ifdef CONFIG_FAIR_GROUP_SCHED
7614 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7615 struct sched_entity *se, int cpu, int add,
7616 struct sched_entity *parent)
7617 {
7618 struct rq *rq = cpu_rq(cpu);
7619 tg->cfs_rq[cpu] = cfs_rq;
7620 init_cfs_rq(cfs_rq, rq);
7621 cfs_rq->tg = tg;
7622 if (add)
7623 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7624
7625 tg->se[cpu] = se;
7626 /* se could be NULL for init_task_group */
7627 if (!se)
7628 return;
7629
7630 if (!parent)
7631 se->cfs_rq = &rq->cfs;
7632 else
7633 se->cfs_rq = parent->my_q;
7634
7635 se->my_q = cfs_rq;
7636 se->load.weight = tg->shares;
7637 se->load.inv_weight = 0;
7638 se->parent = parent;
7639 }
7640 #endif
7641
7642 #ifdef CONFIG_RT_GROUP_SCHED
7643 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7644 struct sched_rt_entity *rt_se, int cpu, int add,
7645 struct sched_rt_entity *parent)
7646 {
7647 struct rq *rq = cpu_rq(cpu);
7648
7649 tg->rt_rq[cpu] = rt_rq;
7650 init_rt_rq(rt_rq, rq);
7651 rt_rq->tg = tg;
7652 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7653 if (add)
7654 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7655
7656 tg->rt_se[cpu] = rt_se;
7657 if (!rt_se)
7658 return;
7659
7660 if (!parent)
7661 rt_se->rt_rq = &rq->rt;
7662 else
7663 rt_se->rt_rq = parent->my_q;
7664
7665 rt_se->my_q = rt_rq;
7666 rt_se->parent = parent;
7667 INIT_LIST_HEAD(&rt_se->run_list);
7668 }
7669 #endif
7670
7671 void __init sched_init(void)
7672 {
7673 int i, j;
7674 unsigned long alloc_size = 0, ptr;
7675
7676 #ifdef CONFIG_FAIR_GROUP_SCHED
7677 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7678 #endif
7679 #ifdef CONFIG_RT_GROUP_SCHED
7680 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7681 #endif
7682 #ifdef CONFIG_CPUMASK_OFFSTACK
7683 alloc_size += num_possible_cpus() * cpumask_size();
7684 #endif
7685 if (alloc_size) {
7686 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7687
7688 #ifdef CONFIG_FAIR_GROUP_SCHED
7689 init_task_group.se = (struct sched_entity **)ptr;
7690 ptr += nr_cpu_ids * sizeof(void **);
7691
7692 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7693 ptr += nr_cpu_ids * sizeof(void **);
7694
7695 #endif /* CONFIG_FAIR_GROUP_SCHED */
7696 #ifdef CONFIG_RT_GROUP_SCHED
7697 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7698 ptr += nr_cpu_ids * sizeof(void **);
7699
7700 init_task_group.rt_rq = (struct rt_rq **)ptr;
7701 ptr += nr_cpu_ids * sizeof(void **);
7702
7703 #endif /* CONFIG_RT_GROUP_SCHED */
7704 #ifdef CONFIG_CPUMASK_OFFSTACK
7705 for_each_possible_cpu(i) {
7706 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7707 ptr += cpumask_size();
7708 }
7709 #endif /* CONFIG_CPUMASK_OFFSTACK */
7710 }
7711
7712 #ifdef CONFIG_SMP
7713 init_defrootdomain();
7714 #endif
7715
7716 init_rt_bandwidth(&def_rt_bandwidth,
7717 global_rt_period(), global_rt_runtime());
7718
7719 #ifdef CONFIG_RT_GROUP_SCHED
7720 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7721 global_rt_period(), global_rt_runtime());
7722 #endif /* CONFIG_RT_GROUP_SCHED */
7723
7724 #ifdef CONFIG_CGROUP_SCHED
7725 list_add(&init_task_group.list, &task_groups);
7726 INIT_LIST_HEAD(&init_task_group.children);
7727
7728 #endif /* CONFIG_CGROUP_SCHED */
7729
7730 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7731 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7732 __alignof__(unsigned long));
7733 #endif
7734 for_each_possible_cpu(i) {
7735 struct rq *rq;
7736
7737 rq = cpu_rq(i);
7738 raw_spin_lock_init(&rq->lock);
7739 rq->nr_running = 0;
7740 rq->calc_load_active = 0;
7741 rq->calc_load_update = jiffies + LOAD_FREQ;
7742 init_cfs_rq(&rq->cfs, rq);
7743 init_rt_rq(&rq->rt, rq);
7744 #ifdef CONFIG_FAIR_GROUP_SCHED
7745 init_task_group.shares = init_task_group_load;
7746 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7747 #ifdef CONFIG_CGROUP_SCHED
7748 /*
7749 * How much cpu bandwidth does init_task_group get?
7750 *
7751 * In case of task-groups formed thr' the cgroup filesystem, it
7752 * gets 100% of the cpu resources in the system. This overall
7753 * system cpu resource is divided among the tasks of
7754 * init_task_group and its child task-groups in a fair manner,
7755 * based on each entity's (task or task-group's) weight
7756 * (se->load.weight).
7757 *
7758 * In other words, if init_task_group has 10 tasks of weight
7759 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7760 * then A0's share of the cpu resource is:
7761 *
7762 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7763 *
7764 * We achieve this by letting init_task_group's tasks sit
7765 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7766 */
7767 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7768 #endif
7769 #endif /* CONFIG_FAIR_GROUP_SCHED */
7770
7771 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7772 #ifdef CONFIG_RT_GROUP_SCHED
7773 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7774 #ifdef CONFIG_CGROUP_SCHED
7775 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7776 #endif
7777 #endif
7778
7779 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7780 rq->cpu_load[j] = 0;
7781 #ifdef CONFIG_SMP
7782 rq->sd = NULL;
7783 rq->rd = NULL;
7784 rq->post_schedule = 0;
7785 rq->active_balance = 0;
7786 rq->next_balance = jiffies;
7787 rq->push_cpu = 0;
7788 rq->cpu = i;
7789 rq->online = 0;
7790 rq->migration_thread = NULL;
7791 rq->idle_stamp = 0;
7792 rq->avg_idle = 2*sysctl_sched_migration_cost;
7793 INIT_LIST_HEAD(&rq->migration_queue);
7794 rq_attach_root(rq, &def_root_domain);
7795 #endif
7796 init_rq_hrtick(rq);
7797 atomic_set(&rq->nr_iowait, 0);
7798 }
7799
7800 set_load_weight(&init_task);
7801
7802 #ifdef CONFIG_PREEMPT_NOTIFIERS
7803 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7804 #endif
7805
7806 #ifdef CONFIG_SMP
7807 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7808 #endif
7809
7810 #ifdef CONFIG_RT_MUTEXES
7811 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7812 #endif
7813
7814 /*
7815 * The boot idle thread does lazy MMU switching as well:
7816 */
7817 atomic_inc(&init_mm.mm_count);
7818 enter_lazy_tlb(&init_mm, current);
7819
7820 /*
7821 * Make us the idle thread. Technically, schedule() should not be
7822 * called from this thread, however somewhere below it might be,
7823 * but because we are the idle thread, we just pick up running again
7824 * when this runqueue becomes "idle".
7825 */
7826 init_idle(current, smp_processor_id());
7827
7828 calc_load_update = jiffies + LOAD_FREQ;
7829
7830 /*
7831 * During early bootup we pretend to be a normal task:
7832 */
7833 current->sched_class = &fair_sched_class;
7834
7835 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7836 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7837 #ifdef CONFIG_SMP
7838 #ifdef CONFIG_NO_HZ
7839 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7840 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7841 #endif
7842 /* May be allocated at isolcpus cmdline parse time */
7843 if (cpu_isolated_map == NULL)
7844 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7845 #endif /* SMP */
7846
7847 perf_event_init();
7848
7849 scheduler_running = 1;
7850 }
7851
7852 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7853 static inline int preempt_count_equals(int preempt_offset)
7854 {
7855 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7856
7857 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7858 }
7859
7860 void __might_sleep(const char *file, int line, int preempt_offset)
7861 {
7862 #ifdef in_atomic
7863 static unsigned long prev_jiffy; /* ratelimiting */
7864
7865 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7866 system_state != SYSTEM_RUNNING || oops_in_progress)
7867 return;
7868 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7869 return;
7870 prev_jiffy = jiffies;
7871
7872 printk(KERN_ERR
7873 "BUG: sleeping function called from invalid context at %s:%d\n",
7874 file, line);
7875 printk(KERN_ERR
7876 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7877 in_atomic(), irqs_disabled(),
7878 current->pid, current->comm);
7879
7880 debug_show_held_locks(current);
7881 if (irqs_disabled())
7882 print_irqtrace_events(current);
7883 dump_stack();
7884 #endif
7885 }
7886 EXPORT_SYMBOL(__might_sleep);
7887 #endif
7888
7889 #ifdef CONFIG_MAGIC_SYSRQ
7890 static void normalize_task(struct rq *rq, struct task_struct *p)
7891 {
7892 int on_rq;
7893
7894 update_rq_clock(rq);
7895 on_rq = p->se.on_rq;
7896 if (on_rq)
7897 deactivate_task(rq, p, 0);
7898 __setscheduler(rq, p, SCHED_NORMAL, 0);
7899 if (on_rq) {
7900 activate_task(rq, p, 0);
7901 resched_task(rq->curr);
7902 }
7903 }
7904
7905 void normalize_rt_tasks(void)
7906 {
7907 struct task_struct *g, *p;
7908 unsigned long flags;
7909 struct rq *rq;
7910
7911 read_lock_irqsave(&tasklist_lock, flags);
7912 do_each_thread(g, p) {
7913 /*
7914 * Only normalize user tasks:
7915 */
7916 if (!p->mm)
7917 continue;
7918
7919 p->se.exec_start = 0;
7920 #ifdef CONFIG_SCHEDSTATS
7921 p->se.wait_start = 0;
7922 p->se.sleep_start = 0;
7923 p->se.block_start = 0;
7924 #endif
7925
7926 if (!rt_task(p)) {
7927 /*
7928 * Renice negative nice level userspace
7929 * tasks back to 0:
7930 */
7931 if (TASK_NICE(p) < 0 && p->mm)
7932 set_user_nice(p, 0);
7933 continue;
7934 }
7935
7936 raw_spin_lock(&p->pi_lock);
7937 rq = __task_rq_lock(p);
7938
7939 normalize_task(rq, p);
7940
7941 __task_rq_unlock(rq);
7942 raw_spin_unlock(&p->pi_lock);
7943 } while_each_thread(g, p);
7944
7945 read_unlock_irqrestore(&tasklist_lock, flags);
7946 }
7947
7948 #endif /* CONFIG_MAGIC_SYSRQ */
7949
7950 #ifdef CONFIG_IA64
7951 /*
7952 * These functions are only useful for the IA64 MCA handling.
7953 *
7954 * They can only be called when the whole system has been
7955 * stopped - every CPU needs to be quiescent, and no scheduling
7956 * activity can take place. Using them for anything else would
7957 * be a serious bug, and as a result, they aren't even visible
7958 * under any other configuration.
7959 */
7960
7961 /**
7962 * curr_task - return the current task for a given cpu.
7963 * @cpu: the processor in question.
7964 *
7965 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7966 */
7967 struct task_struct *curr_task(int cpu)
7968 {
7969 return cpu_curr(cpu);
7970 }
7971
7972 /**
7973 * set_curr_task - set the current task for a given cpu.
7974 * @cpu: the processor in question.
7975 * @p: the task pointer to set.
7976 *
7977 * Description: This function must only be used when non-maskable interrupts
7978 * are serviced on a separate stack. It allows the architecture to switch the
7979 * notion of the current task on a cpu in a non-blocking manner. This function
7980 * must be called with all CPU's synchronized, and interrupts disabled, the
7981 * and caller must save the original value of the current task (see
7982 * curr_task() above) and restore that value before reenabling interrupts and
7983 * re-starting the system.
7984 *
7985 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7986 */
7987 void set_curr_task(int cpu, struct task_struct *p)
7988 {
7989 cpu_curr(cpu) = p;
7990 }
7991
7992 #endif
7993
7994 #ifdef CONFIG_FAIR_GROUP_SCHED
7995 static void free_fair_sched_group(struct task_group *tg)
7996 {
7997 int i;
7998
7999 for_each_possible_cpu(i) {
8000 if (tg->cfs_rq)
8001 kfree(tg->cfs_rq[i]);
8002 if (tg->se)
8003 kfree(tg->se[i]);
8004 }
8005
8006 kfree(tg->cfs_rq);
8007 kfree(tg->se);
8008 }
8009
8010 static
8011 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8012 {
8013 struct cfs_rq *cfs_rq;
8014 struct sched_entity *se;
8015 struct rq *rq;
8016 int i;
8017
8018 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8019 if (!tg->cfs_rq)
8020 goto err;
8021 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8022 if (!tg->se)
8023 goto err;
8024
8025 tg->shares = NICE_0_LOAD;
8026
8027 for_each_possible_cpu(i) {
8028 rq = cpu_rq(i);
8029
8030 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8031 GFP_KERNEL, cpu_to_node(i));
8032 if (!cfs_rq)
8033 goto err;
8034
8035 se = kzalloc_node(sizeof(struct sched_entity),
8036 GFP_KERNEL, cpu_to_node(i));
8037 if (!se)
8038 goto err_free_rq;
8039
8040 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8041 }
8042
8043 return 1;
8044
8045 err_free_rq:
8046 kfree(cfs_rq);
8047 err:
8048 return 0;
8049 }
8050
8051 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8052 {
8053 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8054 &cpu_rq(cpu)->leaf_cfs_rq_list);
8055 }
8056
8057 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8058 {
8059 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8060 }
8061 #else /* !CONFG_FAIR_GROUP_SCHED */
8062 static inline void free_fair_sched_group(struct task_group *tg)
8063 {
8064 }
8065
8066 static inline
8067 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8068 {
8069 return 1;
8070 }
8071
8072 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8073 {
8074 }
8075
8076 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8077 {
8078 }
8079 #endif /* CONFIG_FAIR_GROUP_SCHED */
8080
8081 #ifdef CONFIG_RT_GROUP_SCHED
8082 static void free_rt_sched_group(struct task_group *tg)
8083 {
8084 int i;
8085
8086 destroy_rt_bandwidth(&tg->rt_bandwidth);
8087
8088 for_each_possible_cpu(i) {
8089 if (tg->rt_rq)
8090 kfree(tg->rt_rq[i]);
8091 if (tg->rt_se)
8092 kfree(tg->rt_se[i]);
8093 }
8094
8095 kfree(tg->rt_rq);
8096 kfree(tg->rt_se);
8097 }
8098
8099 static
8100 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8101 {
8102 struct rt_rq *rt_rq;
8103 struct sched_rt_entity *rt_se;
8104 struct rq *rq;
8105 int i;
8106
8107 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8108 if (!tg->rt_rq)
8109 goto err;
8110 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8111 if (!tg->rt_se)
8112 goto err;
8113
8114 init_rt_bandwidth(&tg->rt_bandwidth,
8115 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8116
8117 for_each_possible_cpu(i) {
8118 rq = cpu_rq(i);
8119
8120 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8121 GFP_KERNEL, cpu_to_node(i));
8122 if (!rt_rq)
8123 goto err;
8124
8125 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8126 GFP_KERNEL, cpu_to_node(i));
8127 if (!rt_se)
8128 goto err_free_rq;
8129
8130 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8131 }
8132
8133 return 1;
8134
8135 err_free_rq:
8136 kfree(rt_rq);
8137 err:
8138 return 0;
8139 }
8140
8141 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8142 {
8143 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8144 &cpu_rq(cpu)->leaf_rt_rq_list);
8145 }
8146
8147 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8148 {
8149 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8150 }
8151 #else /* !CONFIG_RT_GROUP_SCHED */
8152 static inline void free_rt_sched_group(struct task_group *tg)
8153 {
8154 }
8155
8156 static inline
8157 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8158 {
8159 return 1;
8160 }
8161
8162 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8163 {
8164 }
8165
8166 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8167 {
8168 }
8169 #endif /* CONFIG_RT_GROUP_SCHED */
8170
8171 #ifdef CONFIG_CGROUP_SCHED
8172 static void free_sched_group(struct task_group *tg)
8173 {
8174 free_fair_sched_group(tg);
8175 free_rt_sched_group(tg);
8176 kfree(tg);
8177 }
8178
8179 /* allocate runqueue etc for a new task group */
8180 struct task_group *sched_create_group(struct task_group *parent)
8181 {
8182 struct task_group *tg;
8183 unsigned long flags;
8184 int i;
8185
8186 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8187 if (!tg)
8188 return ERR_PTR(-ENOMEM);
8189
8190 if (!alloc_fair_sched_group(tg, parent))
8191 goto err;
8192
8193 if (!alloc_rt_sched_group(tg, parent))
8194 goto err;
8195
8196 spin_lock_irqsave(&task_group_lock, flags);
8197 for_each_possible_cpu(i) {
8198 register_fair_sched_group(tg, i);
8199 register_rt_sched_group(tg, i);
8200 }
8201 list_add_rcu(&tg->list, &task_groups);
8202
8203 WARN_ON(!parent); /* root should already exist */
8204
8205 tg->parent = parent;
8206 INIT_LIST_HEAD(&tg->children);
8207 list_add_rcu(&tg->siblings, &parent->children);
8208 spin_unlock_irqrestore(&task_group_lock, flags);
8209
8210 return tg;
8211
8212 err:
8213 free_sched_group(tg);
8214 return ERR_PTR(-ENOMEM);
8215 }
8216
8217 /* rcu callback to free various structures associated with a task group */
8218 static void free_sched_group_rcu(struct rcu_head *rhp)
8219 {
8220 /* now it should be safe to free those cfs_rqs */
8221 free_sched_group(container_of(rhp, struct task_group, rcu));
8222 }
8223
8224 /* Destroy runqueue etc associated with a task group */
8225 void sched_destroy_group(struct task_group *tg)
8226 {
8227 unsigned long flags;
8228 int i;
8229
8230 spin_lock_irqsave(&task_group_lock, flags);
8231 for_each_possible_cpu(i) {
8232 unregister_fair_sched_group(tg, i);
8233 unregister_rt_sched_group(tg, i);
8234 }
8235 list_del_rcu(&tg->list);
8236 list_del_rcu(&tg->siblings);
8237 spin_unlock_irqrestore(&task_group_lock, flags);
8238
8239 /* wait for possible concurrent references to cfs_rqs complete */
8240 call_rcu(&tg->rcu, free_sched_group_rcu);
8241 }
8242
8243 /* change task's runqueue when it moves between groups.
8244 * The caller of this function should have put the task in its new group
8245 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8246 * reflect its new group.
8247 */
8248 void sched_move_task(struct task_struct *tsk)
8249 {
8250 int on_rq, running;
8251 unsigned long flags;
8252 struct rq *rq;
8253
8254 rq = task_rq_lock(tsk, &flags);
8255
8256 update_rq_clock(rq);
8257
8258 running = task_current(rq, tsk);
8259 on_rq = tsk->se.on_rq;
8260
8261 if (on_rq)
8262 dequeue_task(rq, tsk, 0);
8263 if (unlikely(running))
8264 tsk->sched_class->put_prev_task(rq, tsk);
8265
8266 set_task_rq(tsk, task_cpu(tsk));
8267
8268 #ifdef CONFIG_FAIR_GROUP_SCHED
8269 if (tsk->sched_class->moved_group)
8270 tsk->sched_class->moved_group(tsk, on_rq);
8271 #endif
8272
8273 if (unlikely(running))
8274 tsk->sched_class->set_curr_task(rq);
8275 if (on_rq)
8276 enqueue_task(rq, tsk, 0, false);
8277
8278 task_rq_unlock(rq, &flags);
8279 }
8280 #endif /* CONFIG_CGROUP_SCHED */
8281
8282 #ifdef CONFIG_FAIR_GROUP_SCHED
8283 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8284 {
8285 struct cfs_rq *cfs_rq = se->cfs_rq;
8286 int on_rq;
8287
8288 on_rq = se->on_rq;
8289 if (on_rq)
8290 dequeue_entity(cfs_rq, se, 0);
8291
8292 se->load.weight = shares;
8293 se->load.inv_weight = 0;
8294
8295 if (on_rq)
8296 enqueue_entity(cfs_rq, se, 0);
8297 }
8298
8299 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8300 {
8301 struct cfs_rq *cfs_rq = se->cfs_rq;
8302 struct rq *rq = cfs_rq->rq;
8303 unsigned long flags;
8304
8305 raw_spin_lock_irqsave(&rq->lock, flags);
8306 __set_se_shares(se, shares);
8307 raw_spin_unlock_irqrestore(&rq->lock, flags);
8308 }
8309
8310 static DEFINE_MUTEX(shares_mutex);
8311
8312 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8313 {
8314 int i;
8315 unsigned long flags;
8316
8317 /*
8318 * We can't change the weight of the root cgroup.
8319 */
8320 if (!tg->se[0])
8321 return -EINVAL;
8322
8323 if (shares < MIN_SHARES)
8324 shares = MIN_SHARES;
8325 else if (shares > MAX_SHARES)
8326 shares = MAX_SHARES;
8327
8328 mutex_lock(&shares_mutex);
8329 if (tg->shares == shares)
8330 goto done;
8331
8332 spin_lock_irqsave(&task_group_lock, flags);
8333 for_each_possible_cpu(i)
8334 unregister_fair_sched_group(tg, i);
8335 list_del_rcu(&tg->siblings);
8336 spin_unlock_irqrestore(&task_group_lock, flags);
8337
8338 /* wait for any ongoing reference to this group to finish */
8339 synchronize_sched();
8340
8341 /*
8342 * Now we are free to modify the group's share on each cpu
8343 * w/o tripping rebalance_share or load_balance_fair.
8344 */
8345 tg->shares = shares;
8346 for_each_possible_cpu(i) {
8347 /*
8348 * force a rebalance
8349 */
8350 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8351 set_se_shares(tg->se[i], shares);
8352 }
8353
8354 /*
8355 * Enable load balance activity on this group, by inserting it back on
8356 * each cpu's rq->leaf_cfs_rq_list.
8357 */
8358 spin_lock_irqsave(&task_group_lock, flags);
8359 for_each_possible_cpu(i)
8360 register_fair_sched_group(tg, i);
8361 list_add_rcu(&tg->siblings, &tg->parent->children);
8362 spin_unlock_irqrestore(&task_group_lock, flags);
8363 done:
8364 mutex_unlock(&shares_mutex);
8365 return 0;
8366 }
8367
8368 unsigned long sched_group_shares(struct task_group *tg)
8369 {
8370 return tg->shares;
8371 }
8372 #endif
8373
8374 #ifdef CONFIG_RT_GROUP_SCHED
8375 /*
8376 * Ensure that the real time constraints are schedulable.
8377 */
8378 static DEFINE_MUTEX(rt_constraints_mutex);
8379
8380 static unsigned long to_ratio(u64 period, u64 runtime)
8381 {
8382 if (runtime == RUNTIME_INF)
8383 return 1ULL << 20;
8384
8385 return div64_u64(runtime << 20, period);
8386 }
8387
8388 /* Must be called with tasklist_lock held */
8389 static inline int tg_has_rt_tasks(struct task_group *tg)
8390 {
8391 struct task_struct *g, *p;
8392
8393 do_each_thread(g, p) {
8394 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8395 return 1;
8396 } while_each_thread(g, p);
8397
8398 return 0;
8399 }
8400
8401 struct rt_schedulable_data {
8402 struct task_group *tg;
8403 u64 rt_period;
8404 u64 rt_runtime;
8405 };
8406
8407 static int tg_schedulable(struct task_group *tg, void *data)
8408 {
8409 struct rt_schedulable_data *d = data;
8410 struct task_group *child;
8411 unsigned long total, sum = 0;
8412 u64 period, runtime;
8413
8414 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8415 runtime = tg->rt_bandwidth.rt_runtime;
8416
8417 if (tg == d->tg) {
8418 period = d->rt_period;
8419 runtime = d->rt_runtime;
8420 }
8421
8422 /*
8423 * Cannot have more runtime than the period.
8424 */
8425 if (runtime > period && runtime != RUNTIME_INF)
8426 return -EINVAL;
8427
8428 /*
8429 * Ensure we don't starve existing RT tasks.
8430 */
8431 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8432 return -EBUSY;
8433
8434 total = to_ratio(period, runtime);
8435
8436 /*
8437 * Nobody can have more than the global setting allows.
8438 */
8439 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8440 return -EINVAL;
8441
8442 /*
8443 * The sum of our children's runtime should not exceed our own.
8444 */
8445 list_for_each_entry_rcu(child, &tg->children, siblings) {
8446 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8447 runtime = child->rt_bandwidth.rt_runtime;
8448
8449 if (child == d->tg) {
8450 period = d->rt_period;
8451 runtime = d->rt_runtime;
8452 }
8453
8454 sum += to_ratio(period, runtime);
8455 }
8456
8457 if (sum > total)
8458 return -EINVAL;
8459
8460 return 0;
8461 }
8462
8463 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8464 {
8465 struct rt_schedulable_data data = {
8466 .tg = tg,
8467 .rt_period = period,
8468 .rt_runtime = runtime,
8469 };
8470
8471 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8472 }
8473
8474 static int tg_set_bandwidth(struct task_group *tg,
8475 u64 rt_period, u64 rt_runtime)
8476 {
8477 int i, err = 0;
8478
8479 mutex_lock(&rt_constraints_mutex);
8480 read_lock(&tasklist_lock);
8481 err = __rt_schedulable(tg, rt_period, rt_runtime);
8482 if (err)
8483 goto unlock;
8484
8485 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8486 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8487 tg->rt_bandwidth.rt_runtime = rt_runtime;
8488
8489 for_each_possible_cpu(i) {
8490 struct rt_rq *rt_rq = tg->rt_rq[i];
8491
8492 raw_spin_lock(&rt_rq->rt_runtime_lock);
8493 rt_rq->rt_runtime = rt_runtime;
8494 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8495 }
8496 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8497 unlock:
8498 read_unlock(&tasklist_lock);
8499 mutex_unlock(&rt_constraints_mutex);
8500
8501 return err;
8502 }
8503
8504 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8505 {
8506 u64 rt_runtime, rt_period;
8507
8508 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8509 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8510 if (rt_runtime_us < 0)
8511 rt_runtime = RUNTIME_INF;
8512
8513 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8514 }
8515
8516 long sched_group_rt_runtime(struct task_group *tg)
8517 {
8518 u64 rt_runtime_us;
8519
8520 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8521 return -1;
8522
8523 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8524 do_div(rt_runtime_us, NSEC_PER_USEC);
8525 return rt_runtime_us;
8526 }
8527
8528 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8529 {
8530 u64 rt_runtime, rt_period;
8531
8532 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8533 rt_runtime = tg->rt_bandwidth.rt_runtime;
8534
8535 if (rt_period == 0)
8536 return -EINVAL;
8537
8538 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8539 }
8540
8541 long sched_group_rt_period(struct task_group *tg)
8542 {
8543 u64 rt_period_us;
8544
8545 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8546 do_div(rt_period_us, NSEC_PER_USEC);
8547 return rt_period_us;
8548 }
8549
8550 static int sched_rt_global_constraints(void)
8551 {
8552 u64 runtime, period;
8553 int ret = 0;
8554
8555 if (sysctl_sched_rt_period <= 0)
8556 return -EINVAL;
8557
8558 runtime = global_rt_runtime();
8559 period = global_rt_period();
8560
8561 /*
8562 * Sanity check on the sysctl variables.
8563 */
8564 if (runtime > period && runtime != RUNTIME_INF)
8565 return -EINVAL;
8566
8567 mutex_lock(&rt_constraints_mutex);
8568 read_lock(&tasklist_lock);
8569 ret = __rt_schedulable(NULL, 0, 0);
8570 read_unlock(&tasklist_lock);
8571 mutex_unlock(&rt_constraints_mutex);
8572
8573 return ret;
8574 }
8575
8576 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8577 {
8578 /* Don't accept realtime tasks when there is no way for them to run */
8579 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8580 return 0;
8581
8582 return 1;
8583 }
8584
8585 #else /* !CONFIG_RT_GROUP_SCHED */
8586 static int sched_rt_global_constraints(void)
8587 {
8588 unsigned long flags;
8589 int i;
8590
8591 if (sysctl_sched_rt_period <= 0)
8592 return -EINVAL;
8593
8594 /*
8595 * There's always some RT tasks in the root group
8596 * -- migration, kstopmachine etc..
8597 */
8598 if (sysctl_sched_rt_runtime == 0)
8599 return -EBUSY;
8600
8601 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8602 for_each_possible_cpu(i) {
8603 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8604
8605 raw_spin_lock(&rt_rq->rt_runtime_lock);
8606 rt_rq->rt_runtime = global_rt_runtime();
8607 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8608 }
8609 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8610
8611 return 0;
8612 }
8613 #endif /* CONFIG_RT_GROUP_SCHED */
8614
8615 int sched_rt_handler(struct ctl_table *table, int write,
8616 void __user *buffer, size_t *lenp,
8617 loff_t *ppos)
8618 {
8619 int ret;
8620 int old_period, old_runtime;
8621 static DEFINE_MUTEX(mutex);
8622
8623 mutex_lock(&mutex);
8624 old_period = sysctl_sched_rt_period;
8625 old_runtime = sysctl_sched_rt_runtime;
8626
8627 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8628
8629 if (!ret && write) {
8630 ret = sched_rt_global_constraints();
8631 if (ret) {
8632 sysctl_sched_rt_period = old_period;
8633 sysctl_sched_rt_runtime = old_runtime;
8634 } else {
8635 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8636 def_rt_bandwidth.rt_period =
8637 ns_to_ktime(global_rt_period());
8638 }
8639 }
8640 mutex_unlock(&mutex);
8641
8642 return ret;
8643 }
8644
8645 #ifdef CONFIG_CGROUP_SCHED
8646
8647 /* return corresponding task_group object of a cgroup */
8648 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8649 {
8650 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8651 struct task_group, css);
8652 }
8653
8654 static struct cgroup_subsys_state *
8655 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8656 {
8657 struct task_group *tg, *parent;
8658
8659 if (!cgrp->parent) {
8660 /* This is early initialization for the top cgroup */
8661 return &init_task_group.css;
8662 }
8663
8664 parent = cgroup_tg(cgrp->parent);
8665 tg = sched_create_group(parent);
8666 if (IS_ERR(tg))
8667 return ERR_PTR(-ENOMEM);
8668
8669 return &tg->css;
8670 }
8671
8672 static void
8673 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8674 {
8675 struct task_group *tg = cgroup_tg(cgrp);
8676
8677 sched_destroy_group(tg);
8678 }
8679
8680 static int
8681 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8682 {
8683 #ifdef CONFIG_RT_GROUP_SCHED
8684 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8685 return -EINVAL;
8686 #else
8687 /* We don't support RT-tasks being in separate groups */
8688 if (tsk->sched_class != &fair_sched_class)
8689 return -EINVAL;
8690 #endif
8691 return 0;
8692 }
8693
8694 static int
8695 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8696 struct task_struct *tsk, bool threadgroup)
8697 {
8698 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8699 if (retval)
8700 return retval;
8701 if (threadgroup) {
8702 struct task_struct *c;
8703 rcu_read_lock();
8704 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8705 retval = cpu_cgroup_can_attach_task(cgrp, c);
8706 if (retval) {
8707 rcu_read_unlock();
8708 return retval;
8709 }
8710 }
8711 rcu_read_unlock();
8712 }
8713 return 0;
8714 }
8715
8716 static void
8717 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8718 struct cgroup *old_cont, struct task_struct *tsk,
8719 bool threadgroup)
8720 {
8721 sched_move_task(tsk);
8722 if (threadgroup) {
8723 struct task_struct *c;
8724 rcu_read_lock();
8725 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8726 sched_move_task(c);
8727 }
8728 rcu_read_unlock();
8729 }
8730 }
8731
8732 #ifdef CONFIG_FAIR_GROUP_SCHED
8733 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8734 u64 shareval)
8735 {
8736 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8737 }
8738
8739 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8740 {
8741 struct task_group *tg = cgroup_tg(cgrp);
8742
8743 return (u64) tg->shares;
8744 }
8745 #endif /* CONFIG_FAIR_GROUP_SCHED */
8746
8747 #ifdef CONFIG_RT_GROUP_SCHED
8748 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8749 s64 val)
8750 {
8751 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8752 }
8753
8754 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8755 {
8756 return sched_group_rt_runtime(cgroup_tg(cgrp));
8757 }
8758
8759 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8760 u64 rt_period_us)
8761 {
8762 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8763 }
8764
8765 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8766 {
8767 return sched_group_rt_period(cgroup_tg(cgrp));
8768 }
8769 #endif /* CONFIG_RT_GROUP_SCHED */
8770
8771 static struct cftype cpu_files[] = {
8772 #ifdef CONFIG_FAIR_GROUP_SCHED
8773 {
8774 .name = "shares",
8775 .read_u64 = cpu_shares_read_u64,
8776 .write_u64 = cpu_shares_write_u64,
8777 },
8778 #endif
8779 #ifdef CONFIG_RT_GROUP_SCHED
8780 {
8781 .name = "rt_runtime_us",
8782 .read_s64 = cpu_rt_runtime_read,
8783 .write_s64 = cpu_rt_runtime_write,
8784 },
8785 {
8786 .name = "rt_period_us",
8787 .read_u64 = cpu_rt_period_read_uint,
8788 .write_u64 = cpu_rt_period_write_uint,
8789 },
8790 #endif
8791 };
8792
8793 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8794 {
8795 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8796 }
8797
8798 struct cgroup_subsys cpu_cgroup_subsys = {
8799 .name = "cpu",
8800 .create = cpu_cgroup_create,
8801 .destroy = cpu_cgroup_destroy,
8802 .can_attach = cpu_cgroup_can_attach,
8803 .attach = cpu_cgroup_attach,
8804 .populate = cpu_cgroup_populate,
8805 .subsys_id = cpu_cgroup_subsys_id,
8806 .early_init = 1,
8807 };
8808
8809 #endif /* CONFIG_CGROUP_SCHED */
8810
8811 #ifdef CONFIG_CGROUP_CPUACCT
8812
8813 /*
8814 * CPU accounting code for task groups.
8815 *
8816 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8817 * (balbir@in.ibm.com).
8818 */
8819
8820 /* track cpu usage of a group of tasks and its child groups */
8821 struct cpuacct {
8822 struct cgroup_subsys_state css;
8823 /* cpuusage holds pointer to a u64-type object on every cpu */
8824 u64 __percpu *cpuusage;
8825 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8826 struct cpuacct *parent;
8827 };
8828
8829 struct cgroup_subsys cpuacct_subsys;
8830
8831 /* return cpu accounting group corresponding to this container */
8832 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8833 {
8834 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8835 struct cpuacct, css);
8836 }
8837
8838 /* return cpu accounting group to which this task belongs */
8839 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8840 {
8841 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8842 struct cpuacct, css);
8843 }
8844
8845 /* create a new cpu accounting group */
8846 static struct cgroup_subsys_state *cpuacct_create(
8847 struct cgroup_subsys *ss, struct cgroup *cgrp)
8848 {
8849 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8850 int i;
8851
8852 if (!ca)
8853 goto out;
8854
8855 ca->cpuusage = alloc_percpu(u64);
8856 if (!ca->cpuusage)
8857 goto out_free_ca;
8858
8859 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8860 if (percpu_counter_init(&ca->cpustat[i], 0))
8861 goto out_free_counters;
8862
8863 if (cgrp->parent)
8864 ca->parent = cgroup_ca(cgrp->parent);
8865
8866 return &ca->css;
8867
8868 out_free_counters:
8869 while (--i >= 0)
8870 percpu_counter_destroy(&ca->cpustat[i]);
8871 free_percpu(ca->cpuusage);
8872 out_free_ca:
8873 kfree(ca);
8874 out:
8875 return ERR_PTR(-ENOMEM);
8876 }
8877
8878 /* destroy an existing cpu accounting group */
8879 static void
8880 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8881 {
8882 struct cpuacct *ca = cgroup_ca(cgrp);
8883 int i;
8884
8885 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8886 percpu_counter_destroy(&ca->cpustat[i]);
8887 free_percpu(ca->cpuusage);
8888 kfree(ca);
8889 }
8890
8891 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8892 {
8893 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8894 u64 data;
8895
8896 #ifndef CONFIG_64BIT
8897 /*
8898 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8899 */
8900 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8901 data = *cpuusage;
8902 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8903 #else
8904 data = *cpuusage;
8905 #endif
8906
8907 return data;
8908 }
8909
8910 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8911 {
8912 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8913
8914 #ifndef CONFIG_64BIT
8915 /*
8916 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8917 */
8918 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8919 *cpuusage = val;
8920 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8921 #else
8922 *cpuusage = val;
8923 #endif
8924 }
8925
8926 /* return total cpu usage (in nanoseconds) of a group */
8927 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8928 {
8929 struct cpuacct *ca = cgroup_ca(cgrp);
8930 u64 totalcpuusage = 0;
8931 int i;
8932
8933 for_each_present_cpu(i)
8934 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8935
8936 return totalcpuusage;
8937 }
8938
8939 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8940 u64 reset)
8941 {
8942 struct cpuacct *ca = cgroup_ca(cgrp);
8943 int err = 0;
8944 int i;
8945
8946 if (reset) {
8947 err = -EINVAL;
8948 goto out;
8949 }
8950
8951 for_each_present_cpu(i)
8952 cpuacct_cpuusage_write(ca, i, 0);
8953
8954 out:
8955 return err;
8956 }
8957
8958 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8959 struct seq_file *m)
8960 {
8961 struct cpuacct *ca = cgroup_ca(cgroup);
8962 u64 percpu;
8963 int i;
8964
8965 for_each_present_cpu(i) {
8966 percpu = cpuacct_cpuusage_read(ca, i);
8967 seq_printf(m, "%llu ", (unsigned long long) percpu);
8968 }
8969 seq_printf(m, "\n");
8970 return 0;
8971 }
8972
8973 static const char *cpuacct_stat_desc[] = {
8974 [CPUACCT_STAT_USER] = "user",
8975 [CPUACCT_STAT_SYSTEM] = "system",
8976 };
8977
8978 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8979 struct cgroup_map_cb *cb)
8980 {
8981 struct cpuacct *ca = cgroup_ca(cgrp);
8982 int i;
8983
8984 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8985 s64 val = percpu_counter_read(&ca->cpustat[i]);
8986 val = cputime64_to_clock_t(val);
8987 cb->fill(cb, cpuacct_stat_desc[i], val);
8988 }
8989 return 0;
8990 }
8991
8992 static struct cftype files[] = {
8993 {
8994 .name = "usage",
8995 .read_u64 = cpuusage_read,
8996 .write_u64 = cpuusage_write,
8997 },
8998 {
8999 .name = "usage_percpu",
9000 .read_seq_string = cpuacct_percpu_seq_read,
9001 },
9002 {
9003 .name = "stat",
9004 .read_map = cpuacct_stats_show,
9005 },
9006 };
9007
9008 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9009 {
9010 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9011 }
9012
9013 /*
9014 * charge this task's execution time to its accounting group.
9015 *
9016 * called with rq->lock held.
9017 */
9018 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9019 {
9020 struct cpuacct *ca;
9021 int cpu;
9022
9023 if (unlikely(!cpuacct_subsys.active))
9024 return;
9025
9026 cpu = task_cpu(tsk);
9027
9028 rcu_read_lock();
9029
9030 ca = task_ca(tsk);
9031
9032 for (; ca; ca = ca->parent) {
9033 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9034 *cpuusage += cputime;
9035 }
9036
9037 rcu_read_unlock();
9038 }
9039
9040 /*
9041 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9042 * in cputime_t units. As a result, cpuacct_update_stats calls
9043 * percpu_counter_add with values large enough to always overflow the
9044 * per cpu batch limit causing bad SMP scalability.
9045 *
9046 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9047 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9048 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9049 */
9050 #ifdef CONFIG_SMP
9051 #define CPUACCT_BATCH \
9052 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9053 #else
9054 #define CPUACCT_BATCH 0
9055 #endif
9056
9057 /*
9058 * Charge the system/user time to the task's accounting group.
9059 */
9060 static void cpuacct_update_stats(struct task_struct *tsk,
9061 enum cpuacct_stat_index idx, cputime_t val)
9062 {
9063 struct cpuacct *ca;
9064 int batch = CPUACCT_BATCH;
9065
9066 if (unlikely(!cpuacct_subsys.active))
9067 return;
9068
9069 rcu_read_lock();
9070 ca = task_ca(tsk);
9071
9072 do {
9073 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9074 ca = ca->parent;
9075 } while (ca);
9076 rcu_read_unlock();
9077 }
9078
9079 struct cgroup_subsys cpuacct_subsys = {
9080 .name = "cpuacct",
9081 .create = cpuacct_create,
9082 .destroy = cpuacct_destroy,
9083 .populate = cpuacct_populate,
9084 .subsys_id = cpuacct_subsys_id,
9085 };
9086 #endif /* CONFIG_CGROUP_CPUACCT */
9087
9088 #ifndef CONFIG_SMP
9089
9090 int rcu_expedited_torture_stats(char *page)
9091 {
9092 return 0;
9093 }
9094 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9095
9096 void synchronize_sched_expedited(void)
9097 {
9098 }
9099 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9100
9101 #else /* #ifndef CONFIG_SMP */
9102
9103 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9104 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9105
9106 #define RCU_EXPEDITED_STATE_POST -2
9107 #define RCU_EXPEDITED_STATE_IDLE -1
9108
9109 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9110
9111 int rcu_expedited_torture_stats(char *page)
9112 {
9113 int cnt = 0;
9114 int cpu;
9115
9116 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9117 for_each_online_cpu(cpu) {
9118 cnt += sprintf(&page[cnt], " %d:%d",
9119 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9120 }
9121 cnt += sprintf(&page[cnt], "\n");
9122 return cnt;
9123 }
9124 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9125
9126 static long synchronize_sched_expedited_count;
9127
9128 /*
9129 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9130 * approach to force grace period to end quickly. This consumes
9131 * significant time on all CPUs, and is thus not recommended for
9132 * any sort of common-case code.
9133 *
9134 * Note that it is illegal to call this function while holding any
9135 * lock that is acquired by a CPU-hotplug notifier. Failing to
9136 * observe this restriction will result in deadlock.
9137 */
9138 void synchronize_sched_expedited(void)
9139 {
9140 int cpu;
9141 unsigned long flags;
9142 bool need_full_sync = 0;
9143 struct rq *rq;
9144 struct migration_req *req;
9145 long snap;
9146 int trycount = 0;
9147
9148 smp_mb(); /* ensure prior mod happens before capturing snap. */
9149 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9150 get_online_cpus();
9151 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9152 put_online_cpus();
9153 if (trycount++ < 10)
9154 udelay(trycount * num_online_cpus());
9155 else {
9156 synchronize_sched();
9157 return;
9158 }
9159 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9160 smp_mb(); /* ensure test happens before caller kfree */
9161 return;
9162 }
9163 get_online_cpus();
9164 }
9165 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9166 for_each_online_cpu(cpu) {
9167 rq = cpu_rq(cpu);
9168 req = &per_cpu(rcu_migration_req, cpu);
9169 init_completion(&req->done);
9170 req->task = NULL;
9171 req->dest_cpu = RCU_MIGRATION_NEED_QS;
9172 raw_spin_lock_irqsave(&rq->lock, flags);
9173 list_add(&req->list, &rq->migration_queue);
9174 raw_spin_unlock_irqrestore(&rq->lock, flags);
9175 wake_up_process(rq->migration_thread);
9176 }
9177 for_each_online_cpu(cpu) {
9178 rcu_expedited_state = cpu;
9179 req = &per_cpu(rcu_migration_req, cpu);
9180 rq = cpu_rq(cpu);
9181 wait_for_completion(&req->done);
9182 raw_spin_lock_irqsave(&rq->lock, flags);
9183 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9184 need_full_sync = 1;
9185 req->dest_cpu = RCU_MIGRATION_IDLE;
9186 raw_spin_unlock_irqrestore(&rq->lock, flags);
9187 }
9188 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9189 synchronize_sched_expedited_count++;
9190 mutex_unlock(&rcu_sched_expedited_mutex);
9191 put_online_cpus();
9192 if (need_full_sync)
9193 synchronize_sched();
9194 }
9195 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9196
9197 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.239584 seconds and 6 git commands to generate.